
HAL Id: tel-03015166
https://theses.hal.science/tel-03015166

Submitted on 19 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the modelling and statistical analysis of a gamma
deteriorating system with imperfect maintenance

Gabriel Salles

To cite this version:
Gabriel Salles. On the modelling and statistical analysis of a gamma deteriorating system with im-
perfect maintenance. Statistics [math.ST]. Université de Pau et des Pays de l’Adour, 2020. English.
�NNT : 2020PAUU3013�. �tel-03015166�

https://theses.hal.science/tel-03015166
https://hal.archives-ouvertes.fr


UNIVERSITÉ DE PAU ET DES PAYS DE L'ADOUR - ÉCOLE DOCTORALE 211
Laboratoire de Mathématiques et de leurs Applications de Pau (LMAP)

Gabriel Salles

On the modelling and statistical analysis of a gamma

deteriorating system with imperfect maintenance

Thesis committee

Laurent Bordes Professor, University of Pau Supervisor
Jean-Yves Dauxois Professor, INSA Toulouse Examiner
Olivier Gaudoin Professor, University of Grenoble Reviewer
Massimiliano Giorgio Professor, University of Naples Federico II Reviewer
Sophie Mercier Professor, University of Pau Supervisor
Christian Paroissin Assistant professor, University of Pau Examiner

A thesis submitted for the degree of

Doctor of Philosophy in Mathematics

October 2020



2



Contents

Acronyms 7

I Introduction 9

II Imperfect repairs based on reduction of the degradation level 17

1 Introduction 19

1.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Arithmetic Reduction of Degradation model of order one . . . . . . . . . . . . . . . . . . . 19

1.3 Arithmetic Reduction of Degradation model of order in�nity . . . . . . . . . . . . . . . . 22

2 Parametric inference for the Arithmetic Reduction of Degradation models 25

2.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Moments method estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Description of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Application to the Arithmetic Reduction of Degradation model of order one . . . . 26

2.2.3 Application to the Arithmetic Reduction of Degradation model of order in�nity . . 30

2.3 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Application to the Arithmetic Reduction of Degradation model of order one . . . . 32

2.3.2 Application to the Arithmetic Reduction of Degradation model of order in�nity . . 37

3 Simulation study 39

3.1 Arithmetic Reduction of Degradation model of order one . . . . . . . . . . . . . . . . . . . 39

3.2 Arithmetic Reduction of Degradation model of order in�nity . . . . . . . . . . . . . . . . 40

4 Semiparametric estimate of the maintenance actions e�ciency 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Intrinsic deterioration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.2 The imperfect repair model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.3 Observation scheme and �rst consequences . . . . . . . . . . . . . . . . . . . . . . 47

4.3 The semiparametric estimator and its asymptotic properties . . . . . . . . . . . . . . . . . 51

4.3.1 De�nition and �rst properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.2 Technical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.3 Consistency and convergence rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Extension to the case where several systems are observed . . . . . . . . . . . . . . . . . . 60

3



Contents

4.4.1 Extended semiparametric estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.2 Consistency and convergence rates according to the number of observed systems . 60

4.5 Empirical illustration based on simulated data . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Extension of the semiparametric estimation method to the Arithmetic Reduction of De-

gradation model of order in�nity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

III Imperfect repairs based on reduction of age 71

5 Introduction 73

6 Parametric inference for the Arithmetic Reduction of Age model of order one 77

6.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Method of moments estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 Half data method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4.1 Half data based on the odd indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4.2 Half data based on the even indexes . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5 Maximum composite likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5.1 Composite likelihood based on the observations . . . . . . . . . . . . . . . . . . . . 101

6.5.2 Composite likelihood based on the increments . . . . . . . . . . . . . . . . . . . . . 103

7 Simulation study 107

7.1 Methods selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Large scale numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

IV Conclusion 121

V References 125

VI Appendix 131

A ARD1 model, results of the simulation study 133

B ARD∞ model, results of the simulation study 147

C ARA1 model, results of the simulation study 161

D Introduction (french version) 181

E Conclusion (french version) 187

F Abstract (french version) 189

4



Acronyms

5





Contents

ARA1 Arithmetic Reduction of Age of order 1

ARD1 Arithmetic Reduction of Degradation of order 1

ARDm Arithmetic Reduction of Degradation of order m

ARD∞ Arithmetic Reduction of Degradation of order ∞
ARI1 Arithmetic Reduction of Intensity of order 1

a.s. almost surely

CBM Condition-Based Maintenance

CLO Composite Likelihood based on the Observations

CLI Composite Likelihood based on the Increments

EB Empirical Bias

ECR Exponential Convergence Rate

HDEI Half Data based on the Even Indexes

HDOI Half Data based on the Odd Indexes

i.i.d. independent and identically distributed

MC Monte Carlo

MLE Maximum Likelihood Estimation

ME Moments Estimation

p.d.f probability density function

PNEE Proportion of Numerically Exact Estimates

QMC Quasi Monte Carlo

r.v. Random Variable

S-ECR Sub-Exponential Convergence Rate

7



Contents

8



Part I

Introduction

9





Safety and dependability are crucial issues in many industries (such as, e.g., railways, aircraft engines

or nuclear power plants), which have lead to the development of the so-called reliability theory. For

many years, only lifetime data were available and the �rst reliability studies were focused on lifetime

data analysis (see, e.g., [32]), which still remains of interest in many cases. In that context and in

case of repairable systems with instantaneous repairs, successive failure (or repair) times appear as the

arrival points of a counting process, and failures hence correspond to recurrent events. As for the type

of possible repairs, typical classical models are perfect (As-Good-As-New) and minimal (As-Bad-As-Old)

repairs, leading to renewal and non homogeneous Poisson processes as underlying counting processes,

respectively (see [5]). Regarding the failure intensity, the e�ects of both these maintenance types are

illustrated in Figure D.1: a minimal repair does not a�ect the failure intensity, while a perfect repair

reduces it to its initial value. However, the reality often lies in-between, leading to the class of imperfect

repairs (also represented in Figure D.1). Many models have been envisioned in the literature for their

Time

Fa
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Failure intensity
Minimal maintenance action
Imperfect maintenance action
Perfect maintenance action

Figure 1

modeling, such as, e.g., virtual age models introduced by Kijima [26], further studied in [13, 16], and

extended in [7] where the authors introduce covariates in the virtual age model. Other possible models

are geometric processes [27] (extended in [6] and more recently in [12]) or, as already mentioned, models

based on reduction of failure intensity [13, 16]. See, e.g., [17] for a recent account and extensions of such

models. See also [36] for more references and other models.

Nowadays, the development of online monitoring and the increasing use of sensors for safety assessment

make it possible to get speci�c information on the health of a system and on its e�ective evolution over

time, without waiting for the system failure. This information is often synthesized into a scalar indicator,
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which can for instance stand for the length of a crack, the thickness of a cable, the intensity of vibrations,

corrosion level, ... This scalar indicator can be considered as a measurement of the deterioration level

of the system. The evolution of this deterioration indicator over time is nowadays commonly modeled

through a continuous-time and continuous-state stochastic process, which is often considered to have

an increasing trend. Classical models include inverse Gaussian [44] or Wiener processes (with trend)

[22, 29, 45]. Also, the transformed Wiener process was lately introduced in [20], and further studied in

[18], where the degradation increments can be negative. All these stochastic processes are quite common

in many other �elds out of reliability theory, such as �nance, insurance or epidemiology. This thesis

focuses on gamma processes, which are widely used since they were introduced in the reliability �eld

mostly simultaneously by Abdel-Hameed [1] and Çinlar [10]. This process is monotonous and is hence

well adapted for modeling non decreasing degradation.

Before coming to the de�nition of a gamma process, let us start with the de�nition of the gamma

distribution, which allows to set up the notations and parametrization used in this document.

A random variable X is said to be gamma distributed with shape parameter a > 0 and rate parameter

b > 0 (denoted X ∼ Γ(a, b)), if its distribution admits the following probability density function (p.d.f.):

fX(x) =
ba

Γ(a)
xa−1e−bx 1R+(x)

with respect to the Lebesgue measure. The corresponding expectation and variance are E(X) = a/b and

V(X) = a/b2.

Let us now recall some well-known properties of the gamma distribution:

Let X1 and X2 be two independent and gamma distributed random variables with respective distributions

Γ(a1 , b) and Γ(a2 , b), where a1, a2, b > 0. Then, for all c > 0, the random variables cX1 and X1 +X2 are

gamma distributed Γ (a1 , b/c) and Γ(a1 + a2 , b) respectively.

Now, let a(·) : R+ 7→ R
+ be a continuous and non decreasing function such that a(0) = 0 and let

b > 0. Also let (Xt)t≥0 be a right-continuous stochastic process with left-side limits. Then, the stochastic

process (Xt)t≥0 is a non homogeneous gamma process with shape function a(·) and rate parameter b, as

soon as

� X0 = 0 almost surely (a.s.);

� (Xt)t≥0 has independent increments;

� each increment is gamma distributed: for all 0 ≤ s < t, we have Xt −Xs ∼ Γ(a(t)− a(s), b),

(see, e.g., [1]). See [40] and its references for a large overview of the gamma processes. Also, an example

of simulated trajectories of a gamma process is given in Figure D.2.

In order to mitigate the degradation of the system over time and extends its lifetime, preventive

maintenance actions can be considered, in addition to corrective repairs which are performed at failure.

In the context of deteriorating systems, many preventive maintenance policies from the literature consider

condition-based maintenance (CBM) actions, where the preventive repair is triggered by the reaching of a

preventive maintenance threshold by the deterioration level. In that context, "most of the existing CBM

models have been limited to perfect maintenance actions", as noted by [3] (see also [45]). Some imperfect

repair models are however emerging in the latest reliability literature, in this new context of deteriorating

systems, see [3] for a recent review. Some models are based on the notion of virtual age previously

introduced in the context of recurrent events (see, e.g., [19, 33]), where the system is rejuvenated by a

12
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Figure 2: Simulated trajectories of a gamma process with shape function a(t) = t and scale parameter
b = 1.

maintenance action. Other models consider that an imperfect repair reduces the deterioration level of

the system, such as [25, 28, 35, 37, 42], which can be accompanied by some increase in the deterioration

rate, as in [15]. Also, some papers consider that the e�ciency decreases with the number of repairs

(see, e.g., [30, 46]), and further studies, as in [23], deal with imperfect maintenance models such that

(i) repairs have a random e�ciency (ii) the deterioration rate increases with the number of repairs.

In all these papers however, the main point mostly is on the optimization of a maintenance policy,

including these imperfect maintenance actions together with perfect repairs (replacements). Up to our

knowledge, very few papers from the literature deal with statistical issues concerning imperfect repair

models for deteriorating systems, except from [45], where the authors suggest a maximum likelihood

method for estimating the parameters of the Wiener process (that describes the deterioration out of

repairs) together with an iterative procedure based on a Kalman �lter for the di�erent factors implied in

successive imperfect repairs.

In the context of systems subject to deterioration and imperfect repairs, the estimates for the para-

meters of the underlying degradation process and maintenance e�ciency are of great use for maintenance

policies optimization. Indeed, once the parameters have been estimated, the future behavior of the main-

tained system can be predicted, which allows to adapt (optimize) the periodicity of the maintenance

actions and e�ciently plan a general overhaul for instance. From a safety point of view, the principal

inquiry is to ensure that the maintenance actions are e�ective enough to keep with a high probability the

degradation level below a �xed threshold (safety level). As long as this safety level is not reached, the

maintenance actions can be adjusted, either by adapting their periodicity or by improving their e�ciency

(if possible). Of course, apart from the previous safety concern, the maintenance costs are another issue.

As an example, in [42], the costs minimization is based on the monitoring time and on the imperfect

maintenance e�ciency. In [23], the author considers a threshold for the degradation level, beyond which

an imperfect maintenance action is performed. The optimization is made with respect to this threshold

and the inspections periodicity. Finally, in [43], a maintenance policy is proposed, where a replacement

13



is performed either when the degradation exceeds a given threshold or when a �xed number of imperfect

preventive maintenance actions are conducted. See, e.g., the three papers cited above and their reference

for an overview on maintenance policies optimization.

This thesis focuses on the development and applications of estimation procedures for three speci�c

imperfect repair models in the context of a gamma deteriorating system. The document is split into four

parts, including the present introduction.

Part II deals with the Arithmetic Reduction of Degradation models of order one and in�nity (ARD1

and ARD∞), where each maintenance action reduces the deterioration level of the system. The ARD1

model was �rst introduced in [8] and further studied in [34]. Mimicking the Arithmetic Reduction of

Intensity (ARI1) model of order 1 developed by [16] in the context of recurrent events, the idea of this

model is that a maintenance action removes a proportion ρ of the degradation accumulated by the system

from the last maintenance action (where ρ ∈ [0, 1)). Based on the same idea, [16] also de�ned the ARI

model of in�nite order for recurrent events, that we extend here to the degradation framework in order

to introduce the ARD∞ model. Regarding this imperfect repair model, each maintenance action removes

a proportion ρ of the current degradation, that is the degradation accumulated by the system from the

initial time t = 0. Once these models de�ned, we place ourselves in a fully parametric framework and

the observation scheme is stated. The Moments Estimation (ME) and Maximum Likelihood Estimation

(MLE) methods are developed in Chapter 2 for both models. To be more precise, the identi�ability

is studied and then we provide expressions for the parameters estimates. Numerical experiments based

on simulated data are conducted in Chapter 3. In Chapter 4, we propose an original estimator for

ρ, which does not depend on the underlying gamma process parameters, leading to a semiparametric

framework. The idea of this estimator has come from a preliminary study in the framework based on

the MLE method, where we observed that for one single trajectory, the minimum of the set of admissible

ρ's has quite an interesting behavior when the shape function a of the underlying Gamma deterioration

process is concave, getting quickly very close to the unknown e�ciency parameter when the number of

repairs increases. This semiparametric estimate was �rst developed in the context of the ARD1 model,

leading to a publication (see [38]) which is exactly reproduced here in Sections 4.1 to 4.6. In Section

4.7 we propose an extension of this work to the ARD∞ model, which is speci�c to this thesis.

In Part III, we consider an imperfect repair model based on the virtual age introduced by [34]: the

Arithmetic Reduction of Age model of order one (ARA1). Following the idea of [16] in the context of

lifetime analysis, this model is such that a maintenance action removes a proportion ρ of the age of the

system accumulated since the last maintenance action. Unlike for the ARD1 model, here the system is

rejuvenated, that is it is put back to the exact situation where it was some time before. The �rst steps

of the work are similar to those of the previous part: the model as well as the observation scheme are

de�ned, the ME method is studied from the point of view of the model parameters identi�ability, and

estimates expressions are provided. Then, the MLE method is developed. However, due to dependency

issues, the likelihood function appears to be a product of integrals of large dimension, and thus numerical

estimations becomes di�cult to compute in a classical way. Hence, the MLE method requires approx-

imating the integrals by the Monte Carlo and randomized Quasi Monte Carlo methods. Also, in order

to avoid the computation of high-dimensional integrals, alternatives to the maximum likelihood method

are developed: the composite maximum likelihood and the half data methods. The �rst one is based
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on the composite marginal likelihood constructed under independence assumptions, also referred to in

the literature as the independence likelihood (see, e.g., [9]). In the present work, this method consists

in considering that the observations are independent and thus obtain an approximation of the likelihood

function, which allows to develop the maximum composite likelihood estimation method. See [41] for

an overview of composite likelihood methods. The half data method is based on sub-sample methods

introduced by [21] and commonly used within bootstrap estimation (see, e.g., [4]). Here only one out of

two observations are taken into account, which eliminates the dependence issues. Once again, the study

of the estimation methods is based on the parameters identi�ability, which was very challenging in one

case, as well as the expressions of either the estimates or the log-likelihood. However, the identi�ability

is not treated regarding two out of the six methods we studied since the simulation studies reveal iden-

ti�ability issues for these speci�c methods. Lastly in Chapter 7, some illustrations of the numerical

performances of these methods are provided in two stages. A �rst study allows to eliminate methods

with poor performance while a second study allows to select, among the remaining methods, the most

appropriate one as a function of the observations characteristics.

Finally, Part IV highlights the conclusions of the thesis and future perspectives.
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Chapter 1

Introduction

1.1 Preliminary

A system is considered whose intrinsic deterioration is modelled by a gamma process (Xt)t≥0 with shape

function a(·) and scale parameter b, as de�ned in the introduction. The system is subject to periodic

(period T ) and instantaneous imperfect maintenance actions, where each maintenance action removes

ρ% of the deterioration accumulated from the last m maintenance actions, where m ∈ N∗ and ρ in [0, 1)

are �xed. This model is called Arithmetic Reduction of Degradation model of order m (ARDm). The

Euclidean parameter ρ is a measure of the e�ciency of the imperfect maintenance action.

In the following, two models are considered: the ARD1 model and the ARD∞ model. The de�nitions

of both models are �rst given in the two following sections. Two parametric estimation methods are

developed in Chapter 2, and numerical experiments based on simulated data are provided in Chapter

3. Finally, a semiparametric estimate of the maintenance actions e�ciency is developed in Chapter 4.

1.2 Arithmetic Reduction of Degradation model of order one

Regarding this model, a maintenance action reduces the degradation accumulated from the last mainten-

ance action only. The repairs have an e�ect (or e�ciency) de�ned by a parameter ρ ∈ [ 0 , 1) and thus,

at time jT , j ∈ N∗, the maintenance e�ect results in a reduction of a proportion ρ of the deterioration

accumulated over the time interval [ (j − 1)T , jT ).

Let (Yt)t≥0 stands for the random process describing the degradation level evolution of the maintained

system according to the ARD1 model. Let (X(j))j∈N∗ be a sequence of independent copies of (Xt)t≥0,

where X(j) describes the intrinsic deterioration of the system over ((j− 1)T, jT ). The system is assumed

to be in the perfect working order at the initial time, that is Y0 = X
(1)
0 = 0. Over the time interval

[0 , T ), the system deteriorates according to X(1)
t . Therefore:

Yt = X
(1)
t and YT = (1− ρ)

(
X

(1)
T −X

(1)
0

)
= (1− ρ)X

(1)
T .

For t ∈ [T , 2T ), the system's degradation level is equal to the sum of the degradation accumulated

between times t and T , that is X(2)
t −X(2)

T , and the degradation level right after the �rst maintenance
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action, thus:

Yt = YT +
(
X

(2)
t −X

(2)
T

)
and

Y2T = Y2T− + ρ
(
X

(2)
2T− −X(2)

T

)
= (1− ρ)

((
X

(2)
2T −X

(2)
T

)
+
(
X

(1)
T −X

(1)
0

))
.

Hence, for any t in [nT , (n+ 1)T ), with n in N∗, we have:

YnT = (1− ρ)

n∑
j=1

(
X

(j)
jT −X

(j)
(j−1)T

)
and

Yt = YnT +
(
X

(n+1)
t −X(n+1)

nT

)
.

Note that the random variables YnT and
(
X

(n+1)
t −X(n+1)

nT

)
are independent and gamma distributed,

Γ (a(nT ) , b/(1− ρ)) and Γ (a(t)− a(nT ) , b), respectively.

This de�nition as well as the following property are already given in [34], and we recall it here for

sake of completeness.

Proposition 1. For each n in N and nT ≤ t < (n + 1)T , the expectation of the degradation level Yt is

given by E (Yt) = (a(t)− ρa(nT ))/b and its variance by V (Yt) = (a(t)− ρ (2− ρ) a(nT ))/b2.

Proof. Let us set n in N and nT ≤ t < (n+ 1)T . The expression of Yt is the following

Yt = YnT +
(
X

(n+1)
t −X(n+1)

nT

)
,

where YnT and
(
X

(n+1)
t −X(n+1)

nT

)
are independent and gamma distributed Γ (a(nT ) , b/(1− ρ)) and

Γ (a(t)− a(nT ) , b) respectively. Hence, the expectation as well as the variance of Yt can be expressed as

the sum of both terms, and thus E(Yt) = E(YnT ) + E

(
X

(n+1)
t −X(n+1)

nT

)
V(Yt) = V(YnT ) + V

(
X

(n+1)
t −X(n+1)

nT

)
We now replace the expressions of the mean and variance of the gamma distribution, see Part I, which

leads to
E(Yt) =

(1− ρ)a(nT ) + a(t)− a(nT )

b

V(Yt) =
(1− ρ)

2
a(nT )

b2
+
a(t)− a(nT )

b2

and �nishes the proof.
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1.2. Arithmetic Reduction of Degradation model of order one
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Figure 1.1: Expectations of Xt and Yt, where the shape function is such that a : t 7→ αtβ with α = 2
and β = 3/2, and with b = 1 and ρ = 1/2.

Example 1. Let us consider the shape function a (t) = αtβ, with α = 2 and β = 3/2. Figure 1.1

represents the degradation evolution expected of the maintained system, as well as that of the intrinsic

deterioration expected (unmaintained system). Figure 1.2 represents the variances of the same quantit-

ies.
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Figure 1.2: Variances of Xt and Yt, where the shape function is such that a : t 7→ αtβ with α = 2 and
β = 3/2, and with b = 1 and ρ = 1/2.

1.3 Arithmetic Reduction of Degradation model of order in�nity

This model is very close to the previous one. The only di�erence is that a maintenance action a�ect the

degradation accumulated from the initial time t = 0. Thus at times jT , for j in N
∗, the maintenance

action results in a reduction of a proportion ρ of the current degradation level.

Let (Yt)t≥0 be the random process describing the degradation level evolution of a system according

to the ARD∞ model. Let (X(j))j∈N∗ be a sequence of independent copies of (Xt)t≥0. We consider once

again that Y0 = X
(1)
0 = 0. Both ARD1 and ARD∞ models have identical behaviour over the time interval

[0 , 2T ). Then, for all t in [0 , T ) we have:

Yt = X
(1)
t and YT = (1− ρ)

(
X

(1)
T −X

(1)
0

)
= (1− ρ)X

(1)
T ,

and for all t in [T , 2T )

Yt = YT +
(
X

(2)
t −X

(2)
T

)
.

When the second maintenance action happens, a proportion ρ of the degradation accumulated from the

time t = 0 is removed, thus Y2T = (1− ρ)
(
YT +

(
X

(2)
2T −X

(2)
T

))
, which can be written as:

Y2T = (1− ρ)2
(
X

(1)
T −X

(1)
0

)
+ (1− ρ)

(
X

(2)
2T −X

(2)
T

)
.

From this, for any t in [nT , (n+ 1)T ) with n in N, we easily derive the expression of Yt, which is:

Yt =

n∑
j=1

(1− ρ)n−j+1
(
X

(j)
jT −X

(j)
(j−1)T

)
+
(
X

(n+1)
t −X(n+1)

nT

)
,

and where all the increments are mutually independent and gamma distributed. More precisely, for all n

22



1.3. Arithmetic Reduction of Degradation model of order in�nity

0 1 2 3 4 5 6

0
5

10
15

20
25

30

Time
0 1 2 3 4 5 6

0
5

10
15

20
25

30

Expectation of Xt

Expectation of Yt

D
et

er
io

ra
tio

n

Figure 1.3: Expectations of Xt and Yt, where the shape function is such that a : t 7→ αtβ with α = 2
and β = 3/2, and with b = 1 and ρ = 1/2.

in N∗ and 1 ≤ i ≤ n, we have:

�

(
X

(n+1)
t −X(n+1)

nT

)
∼ Γ (a(t)− a(nT ) , b) ;

� (1− ρ)n−j+1
(
X

(j)
jT −X

(j)
(j−1)T

)
∼ Γ

(
a(jT )− a((j − 1)T ) , b

(1−ρ)n−j+1

)
.

Hence, the mean and variance of Yt are given by

E (Yt) =
1

b

 n∑
j=1

(1− ρ)n−j+1 (a(jT )− a((j − 1)T )) + (a(t)− a(nT ))


and

V(Yt) =
1

b2

 n∑
j=1

(1− ρ)2(n−j+1) (a(jT )− a((j − 1)T )) + (a(t)− a(nT ))


for all t ∈ [nT , (n+ 1)T ) with n ∈ N.

Based on the same framework as in Example 1, Figure 1.3 represents the degradation evolution

expected of the maintained system, as well as that of the intrinsic deterioration mean (unmaintained

system). Figure 1.4 represents the variances of the same quantities.

For sake of simplicity, from now on, we set ∆X(j) = X
(j)
jT −X

(j)
(j−1)T , which represents the increment

of the intrinsic deterioration over [(j − 1)T, jT ).
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Figure 1.4: Variances of Xt and Yt, where the shape function is such that a : t 7→ αtβ with α = 2 and
β = 3/2, and with b = 1 and ρ = 1/2.
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Chapter 2

Parametric inference for the Arithmetic

Reduction of Degradation models

2.1 Preliminary

In this chapter, the Moments Estimation (ME) and the Maximum Likelihood Estimation (MLE) methods

are developed in the framework of both ARD models de�ned above, in order to estimate the models

parameters. The periodicity T is assumed to be known, thus the parameters of interest are the parameters

of the shape function, the scale parameter b and the maintenance e�ciency ρ. The estimation methods

are then tested in the next chapter, within the framework of a power law shape function. To be more

precise, the shape function is de�ned as a : t 7→ αtβ with α, β > 0. We set θ = (α, β, ρ, b) ∈ Θ the

parameter set, with Θ = (0,∞)2 × [0, 1),×(0,∞).

We assume that the degradation level is measured right before the �rst n maintenance actions for

some n in N
∗, that is at times T−, 2T−,. . . ,nT−.. Also, s i.i.d. systems are considered. For sake of

readability, let us de�ne the following notations:

� Yj = YjT− for 1 ≤ j ≤ n;

� Y =
(
YjT−

)
1≤j≤n = (Yj)1≤j≤n;

� y
(i)
j is the observed degradation level of the ith maintained system at times jT− for 1 ≤ j ≤ n and

1 ≤ i ≤ s, which is a realisation of the r.v. Yj ;

� y(i) =
(
y

(i)
j

)
1≤j≤n

is the complete observations set related to the ith maintained system, it is a

realisation of Y ;

� y is the complete observations set, that is y =
(
y

(i)
j

)
1≤j≤n, 1≤i≤s

, it corresponds to s i.i.d. realisa-

tions of Y.

2.2 Moments method estimation

2.2.1 Description of the method

In order to estimate the parameter θ by the ME method, the distance between the empirical moments

and the theoretical moments must be minimized. Here the centered moments are considered, except for
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Chapter 2. Parametric inference for the Arithmetic Reduction of Degradation models

the �rst moment. Let us consider the distance function D which is de�ned as

D(θ ,θ0) =

d∑
k=1

n∑
j=1

(
mk(θ , jT−)−mk(θ0 , jT

−)
)2

where θ0 is the true value of the parameter, d the maximal order of the moments, n the number of

observations by trajectory and mk(θ , jT−) the kth moment (centered if k > 1) at time jT−, that is

m1(θ, jT−) = E
(
YjT−

)
and ∀k ≥ 2, mk(θ, jT−) = E

((
YjT− − E

(
YjT−

))k)
.

Then, an estimation θ̂ of θ0 can be obtained through

θ̂ = arg min
θ∈Θ

D̂(θ)

with D̂(θ) the empirical version ofD(θ ,θ0), where true unknown moments are replaced by their empirical

counterparts. This empirical version of D has the following expression

D̂(θ) =

d∑
k=1

n∑
j=1

(
mk(θ , jT−)− m̂k(jT−)

)2
(2.1)

with m̂k(jT−) the kth empirical moment (centered if k > 1) at time jT−. These empirical moments are

empirical estimates of the moments mk(θ0 , jT
−) and are de�ned by

m̂1(jT−) =
1

s

s∑
i=1

y
(i)
j and ∀k ≥ 2, m̂k(jT−) =

1

s

s∑
i=1

(
y

(i)
j − m̂1(jT−)

)k
.

This method is based on the classical approach of the Generalized Method of Moments as exposed in

[31]. The two following sections are devoted to the application of the ME method as de�ned above, in

the case of the ARD1 and ARD∞ models, beginning by the model of order 1.

2.2.2 Application to the Arithmetic Reduction of Degradation model of order

one

Let us recall that the shape function is de�ned by a(t) = αtβ with α, β > 0, and thus the estimation

focuses on four parameters θ = (α , β , ρ, b) ∈ Θ with Θ = (0 ,+∞)
2 × [0 , 1) × (0 ,+∞). In order to

apply the ME method, we �rst need to see how many moments d and how many data n are necessary to

identify the model parameters, which is done in next proposition.

Proposition 2. The parameters of the ARD1 model are identi�able from the ME method, that is

D(θ ,θ0) = 0 implies that θ = θ0 for all θ,θ0 ∈ Θ, as soon as d ≥ 2 and n ≥ 3. In other words,

the identi�ability holds from the ME method as soon as the systems are observed at times T−, 2T− and

3T−, and if at least the �rst two moments (expectation and variance) are used.

Proof. Here we prove that the assertion D(θ ,θ0) = 0 ⇒ θ = θ0 is true ∀θ,θ0 ∈ Θ as soon as n ≥ 3 and

d ≥ 2. Assume that D(θ ,θ0) = 0, and let θ = (α , β , b , ρ, b) and θ0 = (α0 , β0 , ρ0 , b0) be in Θ. Based

on the de�nition of the function D, we have for all j in {1 , ... , n}:
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2.2. Moments method estimation

{
m1(θ , jT−) = m1(θ0 , jT

−)

m2(θ , jT−) = m2(θ0 , jT
−)

When j = 1, the �rst two moments are those of the random variable X(1)
T , hence this system is equivalent

to {
α
b T

β = α0

b0
T β0

α
b2T

β = α0

b20
T β0

thus{
b = b0

αT β = α0T
β0

Note that only the parameter b is identi�ed. Taking into account the second observation time, that is

when j = 1, 2 we can write
α
b T

β = α0

b0
T β0

α
b2T

β = α0

b20
T β0

α
b (2T )β − α

b ρT
β = α0

b0
(2T )β0 − α0

b0
ρ0T

β0

α
b2 (2T )β − α

b2 ρ(2− ρ)T β = α0

b20
(2T )β0 − α0

b20
ρ0(2− ρ0)T β0

and thus
α
b T

β = α0

b0
T β0

α
b2T

β = α0

b20
T β0

α
b T

β
(
2β − ρ

)
= α0

b0
T β0

(
2β0 − ρ0

)
α
b2T

β
(
2β − ρ(2− ρ)

)
= α0

b20
T β0

(
2β0 − ρ0(2− ρ0)

)
which can be reduced to

b = b0

αT β = α0T
β0

2β − ρ = 2β0 − ρ0

2β − ρ(2− ρ) = 2β0 − ρ0(2− ρ0)

Now let us �rst assume that ρ0 6= 1 − ρ. The third and fourth equations lead to ρ(1 − ρ) = ρ0(1 − ρ0),

hence we have ρ = ρ0. This implies that 2β = 2β0 and thus β = β0 from the third equation. Finally, the

second equation provides α = α0.

Now let us assume that ρ0 = 1− ρ. In that case, we need to add the third observation, leading to the

following expressions for the expectation and variance when j = 1, 3:
α
b T

β = α0

b0
T β0

α
b2T

β = α0

b20
T β0

α
b T

β
(
3β − 2βρ

)
= α0

b0
T β0

(
3β0 − 2β0ρ0

)
α
b2T

β
(
3β − 2βρ(2− ρ)

)
= α0

b20
T β0

(
3β0 − 2β0ρ0(2− ρ0)

)
This system can be written as
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
b = b0

αT β = α0T
β0

3β − 2βρ = 3β0 − 2β0ρ0

3β − 2βρ(2− ρ) = 3β0 − 2β0ρ0(2− ρ0)

and because ρ0 = 1− ρ by assumption, we have
b = b0

αT β = α0T
β0

3β − 2βρ = 3β0 − 2β0 + 2β0ρ

3β − 2βρ(2− ρ) = 3β0 − 2β0 + 2β0ρ2

The third and fourth equations lead to 2β(ρ − ρ2) = 2β0(ρ − ρ2). If ρ = 0 then ρ0 = 1 − ρ = 1

which is impossible since ρ0 ∈ [0, 1). Hence ρ ∈ (0, 1), which implies that 2β = 2β0 and thus β = β0, and

�nally α = α0 from the second equation. As a result, from the third equation we deduce that ρ = ρ0.

Note that because ρ0 = 1− ρ, necessarily ρ = ρ0 = 0.5.

Hence, only the �rst three observations and the �rst two moments are necessary in order to obtain

the identi�ability of the model parameters.

In the following, we consider d = 2, thus Equation (2.1) becomes

D̂(θ) =

n∑
j=1

((
m1(θ , jT−)− m̂1(jT−)

)2
+
(
m2(θ , jT−)− m̂2(jT−)

)2)
which can be written as

D̂(θ) =

n∑
j=1

((
E
(
YjT−

)
− m̂1(jT−)

)2
+
(
V
(
YjT−

)
− m̂2(jT−)

)2)
.

From now on, another parametrization of the empirical distance function D̂(θ) is considered in order

to simplify our calculations. Let us set θ′ = (µ , η , b , ρ), with µ = α/b and η = α/b2. Thus we have for

all j in {1 , ... , n},

E(YjT−) = µT β
(
jβ − ρ (j − 1)

β
)

and V(YjT−) = ηT β
(
jβ − ρ(2− ρ) (j − 1)

β
)
,

which implies

D̂(θ′) = µ2g1(β , ρ)− 2µ g2(β , ρ) + η2h1(β , ρ)− 2η h2(β , ρ) + C (2.2)

where the functions g1, g2, h1 and h2 are independent of µ and η, and C is a constant independent of θ′.

To be more precise, the quantity C is given by

C =

n∑
j=1

(
m̂1(jT−)2 + m̂2(jT−)2

)
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2.2. Moments method estimation

and the functions g1, g2, h1 and h2 have the following expressions

g1(β , ρ) = T 2β

 n∑
j=1

j2β − 2ρ

n∑
j=1

(j (j − 1))
β

+ ρ2

n∑
j=1

(j − 1)2β



g2(β , ρ) = T β

 n∑
j=1

jβm̂1(jT−)− ρ
n∑
j=1

(j − 1)βm̂1(jT−)


h1(β , ρ) = T 2β

 n∑
j=1

j2β − 2ρ(2− ρ)

n∑
j=1

(j (j − 1))
β

+ ρ2(2− ρ)2

n∑
j=1

(j − 1)2β


h2(β , ρ) = T β

 n∑
j=1

jβm̂2(jT−)− ρ(2− ρ)

n∑
j=1

(j − 1)βm̂2(jT−)


We now look for critical points of D̂(θ′), by looking for the zeros of the partial derivatives of D̂ with

respect to θ. However, due to the expression of D̂(θ′) given by Equation (2.2), we only write down

∂µD̂(θ′) and ∂ηD̂(θ′) as the other partial derivatives are of no use, because of their complexity. This

leads to:

{
∂µD̂(θ′) = 0

∂ηD̂(θ′) = 0

which provides

{
2µ g1(β , ρ)− 2g2(β , ρ) = 0

2η h1(β , ρ)− 2h2(β , ρ) = 0

Hence we can express the parameters µ and η with respect to β and ρ as follows: µ = hµ(β, ρ) =
g2(β , ρ)

g1(β , ρ)

and η = hη(β, ρ) =
h2(β , ρ)

h1(β , ρ)
. Based on this, Equation (2.2) can be now written as

D̃(β, ρ) ≡ D̂ (hµ(β, ρ), hη(β, ρ), β, ρ) = C −
(
g2

2(β , ρ)

g1(β , ρ)
+
h2

2(β , ρ)

h1(β , ρ)

)
.

Then, the function D̃(β, ρ) is numerically minimized to obtain an estimation of β and ρ. Thereafter

we estimate µ and η by plugging, setting µ̂ = hµ(β̂ , ρ̂) and η̂ = hη(β̂ , ρ̂). From this we derive expressions

of α̂ and b̂, and �nally we obtain the following estimate

θ̂ =

(
g2(β̂ , ρ̂)h1(β̂ , ρ̂)

g1(β̂ , ρ̂)h2(β̂ , ρ̂)
, β̂ , ρ̂,

g2
2(β̂ , ρ̂)h1(β̂ , ρ̂)

g2
1(β̂ , ρ̂)h2(β̂ , ρ̂)

)
. (2.3)

where(
β̂ , ρ̂

)
= arg min

(β,ρ)∈(0,∞)×[0,1)

D̃(β, ρ)

We now look at the ME method in the case of an ARD∞ model.
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2.2.3 Application to the Arithmetic Reduction of Degradation model of order

in�nity

This case is similar to the previous one, thus less details are given in this section, beginning with the

following proposition about the parameters identi�ability.

Proposition 3. The parameters of the ARD1 model are identi�able from the ME method, that is

D(θ ,θ0) = 0 implies that θ = θ0 for all θ,θ0 ∈ Θ, as soon as d ≥ 2 and n ≥ 3.

Proof. Here we prove that the assertion D(θ ,θ0) = 0 ⇒ θ = θ0 is true ∀θ,θ0 ∈ Θ as soon as n ≥ 3

and d ≥ 2. Assume that D(θ ,θ0) = 0, and let θ = (α , β , b , ρ, b) and θ0 = (α0 , β0 , ρ0 , b0) be in Θ. So

given the function D, we have for all j in {1 , ... , n}:{
m1(θ , jT−) = m1(θ0 , jT

−)

m2(θ , jT−) = m2(θ0 , jT
−)

Note that the mean and expectation of the degradation level Yt over [0, 2T ) is equivalent for both ARD1

and ARD∞ model. Hence, most of the present proof is similar to this of Proposition 2, hence it can

be concluded that the identi�ability holds if n = 2 and ρ 6= 1− ρ0.

Now assume that ρ0 = 1 − ρ and let us add the third observation (j = 3). Let us recall that for j = 1,

we have b = b0 and αT β = α0T
β0 . Hence, we derive the following equations when j = 1, 2, 3:

b = b0

αT β = α0T
β0

2β − ρ = 2β0 − ρ0

2β − ρ(2− ρ) = 2β0 − ρ0(2− ρ0)

3β − 2β + (1− ρ)(2β − 1) + (1− ρ)2 = 3β0 − 2β0 + (1− ρ0)(2β0 − 1) + (1− ρ0)2

3β − 2β + (1− ρ)2(2β − 1) + (1− ρ)4 = 3β0 − 2β0 + (1− ρ0)2(2β0 − 1) + (1− ρ0)4

We have ρ0 = 1− ρ by assumption, thus

b = b0

αT β = α0T
β0

2β − ρ = 2β0 − (1− ρ)

2β − ρ(2− ρ) = 2β0 − (1− ρ)(1 + ρ)

3β − 2β + (1− ρ)(2β − 1) + (1− ρ)2 = 3β0 − 2β0 + ρ(2β0 − 1) + ρ2

3β − 2β + (1− ρ)2(2β − 1) + (1− ρ)4 = 3β0 − 2β0 + ρ2(2β0 − 1) + ρ4

The third and fourth equations are identical and provides

2ρ− 1 = 2β − 2β0 (2.4)

while the last two ones leads to

ρ(1− ρ)
(
ρ2 − 3ρ+ 2β + 1

)
= ρ(1− ρ)

(
ρ2 + ρ+ 2β0 − 1

)
.

Note that if ρ = 0, then ρ0 = 1 which is impossible since ρ0 belongs to [0, 1). Hence ρ ∈ (0, 1), and the
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2.2. Moments method estimation

equation above is equivalent to

4ρ− 2 = 2β − 2β0 . (2.5)

Finally, from Equations (2.4) and (2.5), we derive that 4ρ − 2 = 2ρ − 1. Therefore ρ = 1/2 and

ρ0 = 1− ρ = 1/2, and �nally ρ = ρ0. This leads to β = β0 and then α = α0, which �nishes the proof.

The function D̂ (see Equation (2.1)) is also considered here, and an estimation of θ will be obtained

through the minimization of this function. The same parametrisation θ′ = (µ , η , b , ρ) is used, with

µ = α/b and η = α/b2, and for j in {1 , ... , n}, we have:

E(YjT−) = µg
(j)
1 (β , ρ) and V(YjT−) = ηg

(j)
2 (β , ρ),

with

g
(j)
1 (β , ρ) = T β

(
jβ − (j − 1)β +

j−1∑
i=1

(1− ρ)
j−i (

iβ − (i− 1)β
))

g
(j)
2 (β , ρ) = T β

(
jβ − (j − 1)β +

j−1∑
i=1

(1− ρ)
2(j−i) (

iβ − (i− 1)β
))

.

Thus the function D̂(θ′) can be written as

D̂(θ′) =

n∑
j=1

(
µg

(j)
1 (β , ρ)− m̂1(jT−)

)2

+

n∑
j=1

(
ηg

(j)
2 (β , ρ)− m̂2(jT−)

)2

. (2.6)

Once again we look for the zeros of the partial derivatives of D̂ with respect to µ and η. Here we have

{
∂µD̂(θ′) = 0

∂ηD̂(θ′) = 0

which is equivalent to


µ

n∑
j=1

(
g

(j)
1 (β , ρ)

)2

−
n∑
j=1

g
(j)
1 (β , ρ)m̂1(jT−) = 0

η

n∑
j=1

(
g

(j)
2 (β , ρ)

)2

−
n∑
j=1

g
(j)
2 (β , ρ)m̂2(jT−) = 0

Based on the above equations we can express µ and η as functions of β and ρ that cancel the partial

derivatives of D̂ with respect to µ and η, leading to

µ = hµ(β , ρ) =

n∑
j=1

g
(j)
1 (β , ρ)m̂1(jT−)

n∑
j=1

(
g

(j)
1 (β , ρ)

)2
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and

η = hη(β , ρ) =

n∑
j=1

g
(j)
2 (β , ρ)m̂2(jT−)

n∑
j=1

(
g

(j)
2 (β , ρ)

)2
.

Then, replacing µ and η by hµ(β , ρ) and hη(β , ρ) in Equation (2.6), we obtain a function D̃ which

only depends on β and ρ, and is given by

D̃(β, ρ) ≡ D̂ (µ(β, ρ), η(β, ρ), β, ρ) = C−



 n∑
j=1

g
(j)
1 (β , ρ)m̂1(jT−)

2

n∑
j=1

(
g

(j)
1 (β , ρ)

)2
+

 n∑
j=1

g
(j)
2 (β , ρ)m̂2(jT−)

2

n∑
j=1

(
g

(j)
2 (β , ρ)

)2


where C is the same constant as de�ned in the previous section. Finally, the minimization of this function

with respect to β and ρ provides estimations of β and ρ, and thus of the entire parameter set θ′. Then,

from the relationship between θ′ and θ we derive an estimate of θ, which is given by

θ̂ =



n∑
j=1

g
(j)
1 (β̂ , ρ̂)m̂1(jT−)

n∑
j=1

(
g

(j)
2 (β̂ , ρ̂)

)2

n∑
j=1

(
g

(j)
1 (β̂ , ρ̂)

)2 n∑
j=1

g
(j)
2 (β̂ , ρ̂)m̂2(jT−)

, β̂ , ρ̂,

 n∑
j=1

g
(j)
1 (β̂ , ρ̂)m̂1(jT−)

2
n∑
j=1

(
g

(j)
2 (β̂ , ρ̂)

)2

 n∑
j=1

(
g

(j)
1 (β̂ , ρ̂)

)2

2
n∑
j=1

g
(j)
2 (β̂ , ρ̂)m̂2(jT−)


.

2.3 Maximum likelihood estimation

2.3.1 Application to the Arithmetic Reduction of Degradation model of order

one

In this section we deal with the MLE method. We begin with the case where one single system is observed

(s = 1) and we start by computing the joint p.d.f. of the random vector Y , from where the likelihood

function is easily expressed for s > 1. With that aim, we need the following technical result.

Proposition 4. The degradation level YjT right after the maintenance at time jT can be expressed with

respect to the random variables Y1, . . . , Yj and the maintenance e�ciency parameter ρ as follows:

YjT = (1− ρ)

j∑
k=1

ρ j−k Yk, for all 1 ≤ j ≤ n.
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2.3. Maximum likelihood estimation

Proof. The result is proved by induction on j. When j = 1, the result is veri�ed as (1− ρ)

j∑
k=1

ρ j−k Yk =

(1− ρ)Y1 = YT . Now assume that

YjT = (1− ρ)

j∑
k=1

ρ j−k Yk, for some 1 ≤ j ≤ n,

we want to prove that

Y(j+1)T = (1− ρ)

j+1∑
k=1

ρ j−k+1 Yk,

or equivalently that

Y(j+1)T = (1− ρ)Yj+1 + (1− ρ)

j∑
k=1

ρ j−k+1 Yk. (2.7)

Recall that Y(j+1)T = YjT + (1− ρ)∆X(j+1), which can also be expressed as

Y(j+1)T = YjT + (1− ρ) (Yj+1 − YjT ) .

This leads to

Y(j+1)T = (1− ρ)Yj+1 + ρYjT .

By assumption on YjT , we have

Y(j+1)T = (1− ρ)Yj+1 + ρ(1− ρ)

j∑
k=1

ρ j−k Yk

which can be written as Equation (2.7) and thus �nishes the proof.

Lemma 1. Let y = (y1, . . . , yn) be a realisation of Y . The p.d.f. fY of Y is given by

fY (y) =

n∏
j=1

f∆X(j) (gj(ρ,y)) ,

where f∆X(j) is the p.d.f. of the random variable ∆X(j), and


gj(ρ,y) = yj − (1− ρ)

j−1∑
k=1

ρ j−k−1yk

g1(ρ,y) = y1
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Chapter 2. Parametric inference for the Arithmetic Reduction of Degradation models

Proof. The probability multiplication rule provides

fY (y) = fY1(y1)

n∏
j=2

fYj |(Y1, ... ,Yj−1) (yj | (y1, . . . , yj−1)) .

Then, we have by de�nition Yj

fYj |(Y1, ... ,Yj−1) (yj | (y1, . . . , yj−1)) = fY(j−1)T+∆X(j)|(Y1, ... ,Yj−1) (yj | (y1, . . . , yj−1)) .

Let us now recall that for all 2 ≤ j ≤ n we have ∆X(j) ⊥ (Y1, . . . , Yj−1) and

Y(j−1)T = (1− ρ)

j−1∑
k=1

ρ j−k−1 Yk

from Proposition 4. We derive that,

fY(j−1)T+∆X(j)|(Y1, ... ,Yj−1) (yj | (y1, . . . , yj−1)) = f∆X(j) (gj(ρ,y)) .

This �nishes the proof as f∆X(1) (g1(ρ,y)) = fY1
(y1) by de�nition of Y1 and g1.

We now consider s independent and identical systems. The previous lemma allows us to write down

the expression of the likelihood function as follows:

L (θ|y) =

s∏
i=1

fY (y(i)) (2.8)

which is equivalent to

L (θ|y) =

s∏
i=1

n∏
j=1

f∆X(j)

(
g

(i)
j (ρ)

)
(2.9)

with
g

(i)
j (ρ) = y

(i)
j − (1− ρ)

j∑
k=1

ρj−k−1y
(i)
k

g
(i)
1 (ρ) = y

(i)
1

Let us recall that for 1 ≤ j ≤ n, the random variables ∆X(j) are gamma distributed with shape and

scale parameters ∆A(j) and b, respectively. As a result, Equation (2.9) becomes

L (θ|y) =

s∏
i=1

n∏
j=1

b∆A
(j)

Γ
(
∆A(j)

) (g(i)
j (ρ)

)∆A(j)−1

e−bg
(i)
j (ρ) (2.10)

where ∆A(j) = αT β
(
jβ − (j − 1)β

)
.
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2.3. Maximum likelihood estimation

For similar reasons as for parameters identi�ability when applying the ME method, we now study the

identi�ability in the case of the MLE method.

Proposition 5. The parameters of the ARD1 model are identi�able from the likelihood function, that is

L (θ|y) = L (θ0|y) for all y = (y1, . . . , yn) implies that θ0 = θ and θ,θ0 ∈ Θ, as soon as n ≥ 2. In other

words, the identi�ability holds from the likelihood function as soon as observations are conducted twice,

at times T− and 2T−, and whatever s is.

Proof. Only the case where one single system is observed (s = 1), which is su�cient to conclude. Assume

that L (θ|y) = L (θ0|y) for all y = (y1, . . . , yn), the purpose is to show that θ = θ0 for all θ = (α, β, ρ, b)

and θ0 = (α0, β0, ρ0, b0) in Θ as soon as n ≥ 2, whatever s is.

First, when n = 1, the observation is a realization of ∆X(1), which does not depend on rho, so that

the model obviously is non identi�able. Assume that n = 2. We have by assumption:

` (θ|y)− ` (θ0|y) = 0,

where ` is the log-likelihood function, and thus by de�nition this is equivalent to

log f∆X(1) (y1|θ)− log f∆X(1) (y1|θ0)

+ log

(
f∆X(2) (y2 − (1− ρ)y1|θ)

f∆X(2) (y2 − (1− ρ0)y1|θ0)

)
= 0. (2.11)

for all y1 in (0,∞) and y2 in
(

max
(
(1 − ρ)y1, (1 − ρ0)y1

)
,∞
)
. This equation is assumed to be true,

regardless of the observations set (y1, y2). Considering that y2 tends towards∞, the quotient of the p.d.f.

tends towards 1 and we obtain that

log f∆X(1) (y1|θ)− log f∆X(1) (y1|θ0) = 0.

Thus, Equation (2.11) entails that

{
log f∆X(1) (y1|θ)− log f∆X(1) (y1|θ0) = 0

log f∆X(2) (y2 − (1− ρ)y1|θ)− log f∆X(2) (y2 − (1− ρ0)y1|θ0) = 0
(2.12)

for all y1, y2, and where the �rst equation depends on y1 only while the second one depends on both y1

and y2. Using the expression of f∆X(1) , the �rst equation in (2.12) becomes

log
Γ
(
α0T

β0
)
bαT

β

Γ (αT β) bα0Tβ0
0

+
(
αT β − α0T

β0
)

log y1 + (b0 − b)y1 = 0, (2.13)

which provides


log

Γ(α0T
β0)bαT

β

Γ(αTβ)b
α0T

β0

0

= 0

αT β − α0T
β0 = 0

b0 − b = 0

(2.14)
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Chapter 2. Parametric inference for the Arithmetic Reduction of Degradation models

based on the fact that the three functions y1 7→ 1, y1 7→ y1 and y1 7→ log y1 involved in (2.13) are

linearly independent. Then, b = b0 and αT β = α0T
β0 . Now, in the same way, we can write the second

equation in (2.12) as

log
Γ
(
α0T

β0(2β0 − 1)
)
bαT

β(2β−1)

Γ (αT β(2β − 1)) b
α0Tβ0 (2β0−1)
0

+
(
αT β(2β − 1)− 1

)
log(y2 − (1− ρ)y1)

−
(
α0T

β0(2β0 − 1)− 1
)

log(y2 − (1− ρ0)y1) + b0(y2 − (1− ρ0)y1)− b(y2 − (1− ρ)y1) = 0.

Then, replacing b by b0 and αT β by α0T
β0 , we obtain

log
Γ
(
αT β(2β0 − 1)

)
bαT

β(2β−2β0 )

Γ (αT β(2β − 1))
+
(
αT β(2β − 1)− 1

)
log(y2 − (1− ρ)y1) (2.15)

−
(
αT β(2β0 − 1)− 1

)
log(y2 − (1− ρ0)y1) + by1(ρ0 − ρ) = 0.

We consider that y1 tends towards 0, which leads to

log
Γ
(
αT β(2β0 − 1)

)
bαT

β(2β−2β0 )

Γ (αT β(2β − 1))
+ αT β(2β − 2β0) log(y2) = 0

and because the functions y2 7→ 1 and y2 7→ log y2 are linearly independent, we have

αT β(2β − 2β0) log(y2) = 0

for all y2 > 0, and thus β = β0. As a result, Equation (2.15) can be written as

(
αT β(2β − 1)− 1

)
log

(
y2 − (1− ρ)y1

y2 − (1− ρ0)y1

)
+ by1(ρ0 − ρ) = 0

which is equivalent to

(
αT β(2β − 1)− 1

)
log

(
1 +

ρ− ρ0

y2/y1 − (1− ρ0)

)
+ by1(ρ0 − ρ) = 0.

Now, when y2 tends towards ∞, we derive that by1(ρ0 − ρ) = 0 for all y1 > 0, hence ρ = ρ0. Merging

this result with the previous, we have
ρ = ρ0

β = β0

b = b0

αT β = α0T
β0

and �nally θ = θ0.

The maximum likelihood estimate can be computed numerically by maximizing the log-likelihood

function l (θ|y) = logL (θ|y) whose expression is

` (θ|y) = s

α(nT )β log b−
n∑
j=1

log Γ
(

∆A(j)
) (2.16)
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2.3. Maximum likelihood estimation

+

s∑
i=1

n∑
j=1

(
∆A(j) − 1

)
log g

(i)
j (ρ) − b

s∑
i=1

n∑
j=1

g
(i)
j (ρ).

We now look for the zeros of the partial derivatives of l, and the equation ∂b l (θ|y) = 0 implies that

b =
sα(nT )β

s∑
i=1

n∑
j=1

g
(i)
j (ρ)

.

Now b is substituted by this expression into Equation (2.16), which provides the pro�le likelihood function

l̃ de�ned by

l̃ ((α, β, ρ)|y) =

s∑
i=1

n∑
j=1

(
∆A(j) − 1

)
log g

(i)
j (ρ) (2.17)

− s

α(nT )β

1− log
sα(nT )β

s∑
i=1

n∑
j=1

g
(i)
j (ρ)

−
n∑
j=1

log Γ
(

∆A(j)
)
 .

Finally, we obtain an estimate θ̂ = (α̂, β̂, ρ̂, b̂) of θ given by:

θ̂ =

arg max
(α,β,ρ)

l̃ ((α, β, ρ)|y) ,
sα̂(nT )β̂

s∑
i=1

n∑
j=1

g
(i)
j (ρ)

 . (2.18)

2.3.2 Application to the Arithmetic Reduction of Degradation model of order

in�nity

Here the MLE method is studied in the case of a ARD∞ model. However, the development of this method

is exactly the same as in the previous section, the only di�erence is the expression of YjT with respect to

ρ and the observations, and consequently the de�nition of the function g(i)
j .

For the ARD∞ model, the degradation level YjT right after the maintenance at time jT can be easily

expressed with respect to Yj and the maintenance e�ciency parameter ρ, as we have YjT = (1 − ρ)Yj .

Then, we de�ne g(i)
j as

g
(i)
j (ρ) = Yj − (1− ρ)Yj−1.

With such an expression of g(i)
j , Lemma 1 holds for the ARD∞ model and the likelihood function has

the same expression provided by (2.16). As a result, the likelihood expression is the same here. Note

that both models are identical over the time interval [0, 2T ), during which the �rst two observations

are conducted. Hence, the parameters of the ARD∞ model are identi�able as before. As a conclusion,

Equations (2.17) and (2.18) provide an estimate θ̂ of the model parameters.
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The aim of the next chapter is to investigate numerically the estimation methods performances for

each model, starting with the ARD1 model.
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Chapter 3

Simulation study

3.1 Arithmetic Reduction of Degradation model of order one

We place ourselves in the following framework for the model parameters and the observations characte-

ristics:

� Shape function parameter: α = 1 and β ∈ {1.2, 1.6};

� Scale parameter: b = 1;

� Maintenance actions e�ciency: ρ ∈ {0.2, 0.5, 0.8};

� Period of repairs: T = 1;

� Observations times: {jT−; 1 ≤ j ≤ n} with n ∈ {5, 20};

� Number of observed i.i.d. systems: s ∈ {50, 200}.

For each parameters combination, 2000 data sets are generated, and an estimation of θ is computed for

each data set. The ME method is here based on the minimization of a bivariate function, resulting in an

estimation of β and ρ. The optimization is performed through a constrained gradient method: β is sought

over the interval [0.1, 5] and ρ in [0.01, 0.99]. This iterative algorithm is initialized at point (2.5, 0.5) when

ρ 6= 0.5, and at point (2.5, 0.8) otherwise. Regarding the MLE method, it is based on the maximization

of a function depending on three parameters: α, β and ρ. Once again the optimization is performed

through a constrained gradient method in the same way as before for β and ρ, and the parameter α is

sought in the same interval as β. Some investigations lead us to conclude that the initialization point of

the iterative optimization procedure has no in�uence on the estimation results, and it only has very few

impact on the CPU times. Moreover, the CPU time is negligible as the mean CPU time for one single

estimation is less than 0.1 second for the ME method and 0.25 second for the MLE method.

The results are analysed through two indicators, the Relative Bias (RB) in percentage, de�ned as

RB
(
θ̂
)

= 100× | θ̄ − θ0 |
θ0

,

where θ̄ is the empirical mean of the estimates, and the empirical variances of the estimates. For each

possible combination of (β, ρ), the RB and the variances of the estimations are summarized in Appendix

A. The �gures deal either with the RB or with the variance, and are composed of four graphs: one for
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each parameter of the model. These graphs show four curves each, representing either the relative bias

or the variance evolution with s for both the ME and the MLE methods when n = 5 and n = 20.

To be able to compare the results from one parameter to another, as well as the parameters sets, the

y-axis range is the same for all plots. However, both the RB and the variance can be higher than the

maximum value displayed in the y-axis. This signi�es that if a curve does not appear on a graph, as the

black one in the top right-hand graph as well as the bottom left-hand one of Figure A.1, it means that

all the points of the curve are out of range.

Analysis of the results

When n = 5, the ME method provides good estimations in terms of relative bias and variance of:

� α and b when ρ = 0.2;

� β when ρ = 0.5;

� b when ρ = 0.8.

The value of β does not a�ect signi�cantly the estimations quality, but note that ρ is never well estimated

here, even if the RB is sometimes low, the variance is always fairly high. As a result, this method provides

poor quality estimations regarding the four parameters simultaneously.

If n = 20, once again the value of β does not a�ect signi�cantly the results. In this case, when ρ = 0.8,

the ME method provides good estimations of the parameters. However, if ρ = 0.5 then the estimation

quality of b is poor, it is also true for the estimation of ρ when its true value is set to 0.2.

Regarding the MLE method, it provides good quality estimations, better than those from the ME

method. The RB of all the parameters estimators are less than 2%, except when ρ = 0.2, n = 5 and

s = 50 where the RB related to ρ approaches 5%. Also, the variances are low, especially regarding β and

ρ: they are between 5.4× 10−3 and 9.1× 10−5 for β, and between 2.2× 10−3 and 1.4× 10−6 for ρ. Here

the value of β does not a�ect the results as well. Finally, the MLE method is more e�cient in the case

where n = 20 than when n = 5, except sometimes regarding the estimation of the scale parameter.

Remark 1. The case where β < 1 is not studied here due to numerical issues with the computation of

the likelihood function given in Equation (2.10). Actually, if β < 1 then the shape parameter ∆A(j) of

the degradation increments ∆X(j) is less than 1 as well. Hence the quantity
(
g

(i)
j (ρ)

)∆A(j)−1

might tend

towards in�nity. To be more precise, there exists in some case a value ρ̃ in (0, 1) such that the likelihood is

only de�ned over (ρ̃, 1) regarding the parameter ρ, with g
(i)
j (ρ̃) = 0 and lim

ρ→ρ̃+
L
(
θ|
(
y(1), . . . ,y(s)

))
=∞.

Although this particularity allows to have a good estimation of the maintenance e�ciency (see Chapter

4), the sensitivity of the likelihood in the neighbourhood of ρ̃ prevents the optimization from estimating

properly the other parameters.

3.2 Arithmetic Reduction of Degradation model of order in�nity

Here the same analysis as in the previous section is done, with an identical framework for the model para-

meters, the observations characteristics, the optimization procedure as well as for the results summary

which appears in Appendix B. Also, the case β < 1 is not studied for the reasons already mentioned
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above.

Regarding the ME method, the parameter β is here well estimated when ρ = 0.2, associated with a

low variance, and that whatever the values of n, s or β. When n = 5, this method is not reliable if ρ = 0.5

as none of the parameters is properly estimated, while α and b are rather well estimated if ρ = 0.8. When

n = 20, the method provides good estimations of β and b if ρ = 0.5. Finally, as for the ARD1 model, the

ME method is e�cient when ρ = 0.8, but the variance of this parameter is rather high. Once again the

true value of β does not a�ect the results in a signi�cant way.

About the MLE method, the results are close to those of the previous section:

� globally very good estimations with RB values smaller than 2%, except when ρ = 0.2;

� when ρ = 0.2, the RB related to this parameter is higher (it approaches 3%);

� the variances of the estimations of β and ρ are low, with similar boundaries as before;

� this method is better as n increases, except sometimes for α.

As a result, for both ARD1 and ARD∞ models, the MLE method is the best.
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Chapter 4

Semiparametric estimate of the

maintenance actions e�ciency

Sections 4.1 to 4.6 are devoted to a semiparametric estimation procedure in the context of an ARD1

model. These sections are the exact reproduction of the following paper: [38] G. Salles, S. Mercier,

and L. Bordes. Semiparametric estimate of the e�ciency of imperfect maintenance actions for a gamma

deteriorating system. Journal of Statistical Planning and Inference, 206:278-297, 2020.

Section 4.7 has been added to the previous paper, where the same procedure is explored in the

context of an ARD∞ model.1

4.1 Introduction

Safety and dependability are crucial issues in many industries (such as, e.g., railways, aircraft engines

or nuclear power plants), which have lead to the development of the so-called reliability theory. For

many years, only lifetime data were available and the �rst reliability studies were focused on lifetime

data analysis (see, e.g., [32]), which still remains of interest in many cases. In that context and in case of

repairable systems with instantaneous repairs, successive failure (or repair) times appear as the arrival

points of a counting process, and failures hence correspond to recurrent events. As for the type of possible

repairs, typical classical models are perfect (As-Good-As-New) and minimal (As-Bad-As-Old) repairs,

leading to renewal and non homogeneous Poisson processes as underlying counting processes, respectively

(see [5]). The reality often lies in-between, leading to the class of imperfect repairs. Many models have

been envisioned in the literature for their modeling, such as, e.g., virtual age models introduced by Kijima

[26] and further studied in [13, 16], geometric processes [27] (extended in [6]) or models based on reduction

of failure intensity [13, 16]. See, e.g., [17] for a recent account and extensions of such models. See also

[36] for more references and other models.

Nowadays, the development of online monitoring and the increasing use of sensors for safety assessment

make it possible to get speci�c information on the health of a system and on its e�ective evolution over

time, without waiting for the system failure. This information is often synthesized into a scalar indicator,

which can for instance stand for the length of a crack, the thickness of a cable, the intensity of vibrations,

corrosion level, ... This scalar indicator can be considered as a measurement of the deterioration level

1Due to the introduction of a published paper within this chapter, some notations di�er from those used in the remainder

of the document.
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of the system. The evolution of this deterioration indicator over time is nowadays commonly modeled

through a continuous-time and continuous-state stochastic process, which is often considered to have

an increasing trend. Classical models include inverse Gaussian [44] or Wiener processes with trend

[22, 29, 45], which are also quite common in many other �elds out of reliability theory, such as �nance,

insurance or epidemiology. This paper focuses on gamma processes, which are widely used since they

were introduced in the reliability �eld by Çinlar [10]. See [40] and its references for a large overview.

In order to mitigate the degradation of the system over time and extends its lifetime, preventive

maintenance actions can be considered, in addition to corrective repairs which are performed at failure.

In the context of deteriorating systems, many preventive maintenance policies from the literature consider

condition-based maintenance (CBM) actions, where the preventive repair is triggered by the reaching of a

preventive maintenance threshold by the deterioration level. In that context, "most of the existing CBM

models have been limited to perfect maintenance actions", as noted by [3] (see also [45]). Some imperfect

repair models are however emerging in the latest reliability literature, in this new context of deteriorating

systems, see [3] for a recent review. Some models are based on the notion of virtual age previously

introduced in the context of recurrent events (see, e.g., [19, 33]), where the system is rejuvenated by a

maintenance action. Other models consider that an imperfect repair reduces the deterioration level of

the system, such as [25, 28, 35, 37, 42], which can be accompanied by some increase in the deterioration

rate, as in [15]. Also, some papers consider that the e�ciency decreases with the number of repair

(see, e.g., [30, 46]), and further studies, as in [23], deal with imperfect maintenance models such that

(i) repairs have a random e�ciency (ii) the deterioration rate increases with the number of repairs.

In all these papers however, the main point mostly is on the optimization of a maintenance policy,

including these imperfect maintenance actions together with perfect repairs (replacements). Up to our

knowledge, very few papers from the literature deal with statistical issues concerning imperfect repair

models for deteriorating systems, except from [45], where the authors suggest a maximum likelihood

method for estimating the parameters of the Wiener process together with an iterative procedure based

on a Kalman �lter for the di�erent factors implied in successive imperfect repairs. This estimation

procedure is developed in a fully parametric context and validated on simulated data, without any study

of the asymptotic properties of the estimators.

The evaluation of the maintenance actions e�ciency is mainly used for maintenance policies optim-

ization. Once the repair e�ciency has been estimated, the future behavior of the maintained system

can be predicted, which allows to adapt (optimize) the periodicity of the maintenance actions and e�-

ciently plan a general overhaul. From a safety point of view, the principal inquiry is to ensure that the

maintenance actions are e�ective enough to keep with a high probability the degradation level below a

�xed threshold (safety level). As long as this safety level is not reached, the maintenance actions must

be adjusted, either by adapting their periodicity or by improving their e�ciency (if possible). Of course,

apart from the previous safety concern, the maintenance costs are another issue. As an example, in [42],

the costs minimization is based on the monitoring time and on the imperfect maintenance e�ciency. In

[23], the author considers a threshold for the degradation, beyond which an imperfect maintenance is

performed. The optimization is made with respect to this threshold, the inspections periodicity and the

repairs e�ciency. See, e.g., both papers cited above and their reference for an overview on maintenance

policies optimization.

This paper focuses on a speci�c imperfect repair model, where each maintenance action reduces the

deterioration level of the system. The model was �rst introduced in [8] and further studied in [34], where

it was called Arithmetic Reduction of Degradation model of order 1 (ARD1). Mimicking Arithmetic

Reduction of Age (ARA1) and Arithmetic Reduction of Intensity (ARI1) models of order 1 developed by
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[16] in the context of recurrent events, the idea of an ARD1 model is that a maintenance action removes

a proportion ρ of the degradation accumulated by the system from the last maintenance action (where

ρ ∈ [0, 1)). The parameter ρ appears as a measure of the maintenance e�ciency, which lies between

As-Good-As-New when ρ→ 1− and As-Bad-As-Old when ρ = 0. Along the same lines as [8, 16, 34], the

maintenance actions e�ciency is here assumed to be �xed and independent of the intrinsic degradation.

This paper is concerned with the development and study of an estimation procedure for the mainten-

ance e�ciency parameter ρ, in the context of a gamma deteriorating system subject to periodic ARD1

imperfect repairs. Observations are lead on just before each maintenance action. Considering n suc-

cessive repairs, this leads to multivariate data, from where an estimator of ρ is proposed. The idea of

this estimator has come from a preliminary study in a parametric framework based on the maximum

likelihood method, where we have observed that the minimum of admissible ρ's has quite an interesting

behavior, getting quickly very close to the unknown e�ciency parameter when n increases. This has

lead to the proposition of an original estimator for ρ, which depends only on the data, and not on the

shape function and rate parameter of the gamma process, leading to a semiparametric framework. Under

technical assumptions, the strong consistency of this new estimator is shown, as the number n of repairs

tends towards in�nity. Also, the convergence rate is proved to be surprisingly high, and can even reach

an exponential speed in some cases. This estimator hence appears to be super consistent (under speci�c

conditions). This is illustrated on simulated data at the end of the paper, where we provide two examples

for which we observe that roughly 95% of the estimates are exact at the machine precision level (6.10−17)

as soon as n > 40 and n > 88, respectively, with a mean error below 10−15 in both cases. The study

is next extended to the case where s independent and identical systems are observed (n times each). A

similar semiparametric estimator is proposed for the (common) maintenance e�ciency and the strong

consistency is proved to hold as s tends towards in�nity, no matter the �xed value of n and out of any

technical condition requirement. The convergence rate is studied, which is shown to depend on the shape

function of the gamma process and on the maintenance period, leading to a speed that can be either

slower or faster than
√
s, according to the case.

The outline of this paper is as follows. The framework is speci�ed in Section 4.2, which covers the

gamma deterioration process, the ARD1 imperfect repair model and the observation scheme. Section 4.3

is devoted to the study of the semiparametric estimator in the case where one single system is observed,

which includes its asymptotic properties when the number of repairs tends towards in�nity. Section 4.4

deals with the extension to several systems and considers the asymptotic properties with respect to the

number of observed systems. Some illustrations of the estimator performances are provided in Section

4.5 and conclusions are formulated in Section 4.6.

4.2 Framework

4.2.1 Intrinsic deterioration

Let us �rst recall that a random variable X is said to be gamma distributed with a and b as shape

and rate parameters, respectively (X ∼ Γ(a, b) with a, b > 0), if its distribution admits the following

probability density function (p.d.f.):

fX(x) =
ba

Γ(a)
xa−1e−bx 1R+(x)

45



Chapter 4. Semiparametric estimate of the maintenance actions e�ciency

with respect to Lebesgue measure. Its mean, variance and Laplace transform are provided by

E (X) =
a

b
, V (X) =

a

b2
, LX (t) = E

(
e−tX

)
=

(
b

b+ t

)a
, ∀t ≥ 0,

respectively. Moreover, cX ∼ Γ(a, b/c) for any c > 0, and the sum of n independent random variables

Xi ∼ Γ(ai, b) (with 1 ≤ i ≤ n) is also gamma distributed with X1 + · · ·+Xn ∼ Γ (a1 + · · ·+ an, b).

Now, let a(·) : R+ 7→ R
+ be a continuous and non decreasing function such that a(0) = 0 and let

b > 0. Also let (Xt)t≥0 be a right-continuous process with left-side limits. Then, we recall that (Xt)t≥0

is a non homogeneous gamma process with shape function a(·) and rate parameter b, as soon as

� X0 = 0 almost surely (a.s.),

� (Xt)t≥0 has independent increments,

� each increment is gamma distributed: for all 0 ≤ s < t, we have Xt −Xs ∼ Γ(a(t)− a(s), b),

(see, e.g., [1]).

In all the sequel, the intrinsic deterioration of the system (that is out of repairs) is assumed to be

modeled by a non homogeneous gamma process (Xt)t≥0 with shape function a(·) and rate parameter b.

4.2.2 The imperfect repair model

In order to lower the deterioration level, instantaneous and periodic imperfect repairs are carried out

on the system every T units of time (T > 0). Following [8, 34], an Arithmetic Reduction Degradation

model of order 1 (ARD1) is considered, where a maintenance action removes a proportion ρ ∈ [0, 1) of

the deterioration accumulated since the last maintenance action (or from time t = 0). The model used

in the present paper is just the same as that used in [34], which we now recall, for sake of completeness.

Between repairs, the system is assumed to evolve according to independent and identically distributed

(i.i.d.) copies
(
X

(i)
t

)
t≥0

, i = 1, 2, . . . of the gamma process (Xt)t≥0, where exponent (i) refers to the

i-th between-repair period [(i− 1)T, iT ) (where time 0 is considered as a repair time). We set (Yt)t≥0 to

describe the overall deterioration level of the maintained system, as a result of the intrinsic deterioration

and of the imperfect periodic repairs.

On the �rst time interval [0, T ), there is no repair and

Yt = X
(1)
t for all t ∈ [0, T ).

This implies that YT− = X
(1)
T− = X

(1)
T a.s., based on the almost sure continuity of a gamma process.

At time T , the deterioration level is reduced of ρX(1)
T so that YT = (1− ρ)X

(1)
T a.s.

On the second time interval [T, 2T ), we now have:

Yt = YT +X
(2)
t −X

(2)
T for all t ∈ [T, 2T ),

which leads to

Y2T− = YT +X
(2)
2T− −X(2)

T = (1− ρ)X
(1)
T +X

(2)
2T −X

(2)
T a.s.

and

Y2T = (1− ρ)X
(1)
T + (1− ρ)

(
X

(2)
2T −X

(2)
T

)
a.s.
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More generally, on the j-th time interval (with j ∈ N), the e�ective degradation level can be expressed

as

Yt = YjT +
(
X

(j+1)
t −X(j+1)

jT

)
for all t ∈ [jT, (j + 1)T ),

which leads to

YjT− = (1− ρ)

j−1∑
p=1

(
X

(p)
pT −X

(p)
(p−1)T

)
+
(
X

(j)
jT −X

(j)
(j−1)T

)
(4.1)

and

YjT = (1− ρ)

j∑
p=1

(
X

(p)
pT −X

(p)
(p−1)T

)
(with the convention that an empty sum is zero).

An example of trajectory of (Yt)t≥0 is given in Figure 4.1 for a(t) = t1.5, b = 1, T = 1 and ρ = 0.5,

together with the corresponding trajectories of the (X
(j)
t )t≥0, j = 1, 2, . . .

Figure 4.1: An example of simulated trajectories of
(
X

(j)
t

)
t≥0

, j = 1, . . . , 5 and of (Yt)t≥0 (intrinsic

and overall degradation levels, respectively) with parameters a(t) = t1.5, b = 1, T = 1 and ρ = 0.5.

Note that out of maintenance times (t /∈ {jT, j = 1, 2, . . . }), the random variable Yt is the sum of two

gamma random variables which do not share the same rate parameter (except if ρ = 0). Hence, it is not

gamma distributed. Please see [34] for more details on this model.

The periodicity T is assumed to be known and the previous model is called ARD1 model with para-

meter (a(·), b, ρ) in the following (with T omitted).

As known from the introduction, our focus is on the development of an estimation procedure for

the maintenance e�ciency parameter ρ. We now specify the observation scheme and derive some �rst

consequences.

4.2.3 Observation scheme and �rst consequences

The deterioration level of the maintained system is assumed to be (perfectly) measured n times (n ∈
N
∗), right before the n �rst maintenance actions, that is at times T−, . . . , nT−. The data hence is an
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observation of (YT− , . . . , YnT−), where YjT− is provided by (4.1).

For the sake of simplicity, we set

Yj = YjT− ,

Uj = X
(j)
jT −X

(j)
(j−1)T,

aj = a(jT )− a
(
(j − 1)T

)
for all j = 1, . . . , n and Y = (Y1, . . . , Yn).

With the previous notation and based on the independent increments of a gamma process, the random

variables Uj 's can be seen to be independent with Uj ∼ Γ(aj , b) for all j = 1, . . . , n. Also, for an ARD1

model with parameter (a(·), b, ρ), Equation (4.1) can now be written as:

Yj = (1− ρ)

j−1∑
p=1

Up + Uj (4.2)

for all 1 ≤ j ≤ n.
We �rst check the theoretical identi�ability of the model, considering the parameters of the underlying

gamma process as nuisance parameters (and T �xed).

Proposition 6. (Identi�ability) Let Y =
(
Y1, . . . , Yn

)
and Ỹ =

(
Ỹ1, . . . , Ỹn

)
be two random vectors

based on the ARD1 repair model with parameters (a(·), b, ρ) and
(
ã(·), b̃, ρ̃

)
, respectively (and the same

period T ). Assume that there are at least two observations (n ≥ 2). Then if Y and Ỹ are identically

distributed (denoted by Y
D
= Ỹ ), necessarily ρ = ρ̃.

Proof. Assume that Y
D
= Ỹ and n ≥ 2. Then Y1 and Ỹ1 are identically distributed, with Y1 = U1 ∼

Γ (a1, b) and Ỹ1 = Ũ1 ∼ Γ
(
ã1, b̃

)
. This implies that a1 = ã1 and b = b̃.

Also, Y2 = (1− ρ)U1 + U2 and Ỹ2 = (1− ρ̃)Ũ1 + Ũ2 must share the same distribution, and hence the

same Laplace transform.

Based on the independence between U1 and U2, the Laplace transform of Y2 is

LY2
(t) = L(1−ρ)U1

(t)LU2
(t) =

(
b

b+ (1− ρ)t

)a1 ( b

b+ t

)a2
,

with a similar expression for Ỹ2. Remembering that a1 = ã1 and b = b̃, this leads to(
b

b+ (1− ρ)t

)a1 ( b

b+ t

)a2
=

(
b

b+ (1− ρ̃)t

)a1 ( b

b+ t

)ã2
,

for all t ≥ 0, which can be simpli�ed into(
1 + (1− ρ̃)u

1 + (1− ρ)u

)a1
=

1

(1 + u)
ã2−a2

for all u ≥ 0, setting u = t/b. A �rst order series expansion at point 0 induces that a1 (ρ̃− ρ) = ã2 − a2

and next that

1 + (1− ρ̃)u

1 + (1− ρ)u
=

1

(1 + u)ρ̃−ρ
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for all u ≥ 0. Taking the limit when u→ +∞ in the previous equation, we get

1− ρ̃
1− ρ

= lim
u→+∞

1

(1 + u)ρ̃−ρ
=


0 if ρ̃ > ρ,

1 if ρ̃ = ρ,

∞ if ρ̃ < ρ.

This is possible only if ρ̃ = ρ since ρ and ρ̃ belong to [0, 1), which achieves the proof.

The identi�ability hence holds as soon as two observations are available.

From now on, we assume that the true maintenance e�ciency parameter is ρ0 ∈ [0, 1). The Yj 's and

the Uj 's hence correspond to an ARD1 model with parameters (a (·) , b, ρ0). A �rst link between the Yj 's

and the Uj 's (j = 1, · · · , n) has been provided in Equation (4.2). We now invert this system of equations,

thus providing an expression of the Uj 's with respect to the Yj 's, that will be used in the sequel.

Lemma 2. For each j ∈ {1, · · · , n}, the increment Uj can be expressed with respect to the observations

Y1, . . . , Yj and to the maintenance e�ciency parameter ρ0 as follows:

Uj =

j∑
p=1

ρ j−p0 (Yp − Yp−1) , (4.3)

where we set Y0 = 0.

Proof. This result is proved by induction on j. For j = 1, the ARD1 model de�nition provides Y1 = U1.

Now, assume that (4.3) is true for some �xed 1 ≤ j ≤ n− 1. Observe from (4.2) that

Yj+1 − Yj = (1− ρ0)

j∑
p=1

Up + Uj+1 −

[
(1− ρ0)

j−1∑
p=1

Up + Uj

]
= Uj+1 − ρ0Uj ,

or equivalently that Uj+1 = Yj+1 − Yj + ρ0Uj .

Using the induction assumption, we easily derive that

Uj+1 = Yj+1 − Yj + ρ0

j∑
p=1

ρ j−p0 (Yp − Yp−1)

=

j+1∑
p=1

ρ j+1−p
0 (Yp − Yp−1) .

Hence, Equation (4.3) holds for j + 1, which achieves the proof.

For each 1 ≤ j ≤ n, let us now de�ne the function gj(ρ,Y) by

gj (ρ,Y) =

j∑
p=1

ρ j−p (Yp − Yp−1) , ∀ρ ∈ [0, 1), (4.4)

where we recall that the Yj 's refer to the true maintenance e�ciency parameter ρ0.

Lemma 2 ensures that gj(ρ0,Y) matches with the increment Uj , that is

gj(ρ0,Y) = Uj , (4.5)
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Figure 4.2: Representation of the sets Dj , j = 1, . . . , n (black horizontal segments) for ρ0 = 0.5 (vertical
blue line) and b = 1, with a(t) =

√
t (concave function), n = 30 for the left plot, and a(t) = t1.5 (convex

function), n = 106 for the right one, where the lower bounds Mj 's of the Dj 's are highlighted by blue
crosses, Example 2.

for each 1 ≤ j ≤ n. As these increments are gamma distributed, they necessarily are non negative.

Hence the true parameter ρ0 ful�ls the condition gj (ρ0,Y) ≥ 0 for each j ∈ {1, . . . , n}. An important

consequence is that the range for the admissible ρ's can be restricted to the set

Dn = {ρ ∈ [0, 1) : gj (ρ,Y) ≥ 0 for all j ∈ {1, . . . , n}} .

For a better understanding of what the Dn's are, we now look at an example, based on simulated

data, where we consider the successive D1, . . . , Dn (where the Dj 's, j = 1, . . . , n, are de�ned in a similar

way as Dn).

Example 2. Two sets of parameters are considered, with ρ0 = 0.5, T = 1 and b = 1 for both, a(t) =
√
t

(concave function) for the �rst set and a(t) = t1.5 (convex function) for the second one. An observation

of Y is generated for each of the two parameter sets, and the corresponding observations of the Dj's are

next computed. They are plotted in the left and right plots of Figure 4.2 for the concave and convex cases,

respectively. The range for n is {1, · · · , 30} for the left plot (concave case) and
{

1, · · · , 106
}
for the right

plot (convex case). Also, the parameter ρ0 is highlighted by a vertical blue line on each plot. We can

observe that in both cases, the sets Dj's are intervals of the shape [Mj , 1) and that M1 ≤ M2 ≤ · · · ≤
Mn ≤ ρ0. (Please note that the Mj's are indicated by blue crosses on the graphs). As can be seen on

the left plot, it seems that, in case of a concave shape function, the sequence (Mj) converges very quickly

towards ρ0 when j increases. When the shape function is convex, it might also be convergent towards ρ0

(?), but if so, it can only be at a very slow rate.

From the previous example, it seems that Mn could be a very good estimator for ρ0 in the concave

case. However, in the convex case, even if the sequence (Mj) happened to converge towards ρ0 when j

increases (which we do not know), the rate of convergence would apparently be far below the classical

square-root speed that could be obtained, e.g., with a maximum likelihood estimator. There hence is no

interest in pursuing on this way in the convex case.
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As a summary, from the previous observations, we suggest to use Mn as an estimator of the mainten-

ance e�ciency parameter ρ0, that we hope to be convergent at a very high speed in the case of a concave

shape function. Note that it is a semiparametric estimator of ρ0 since the parameters of the gamma

process are unknown and not restricted to a parametric family (the shape function a(·) is unknown).

4.3 The semiparametric estimator and its asymptotic properties

This section is devoted to the formal de�nition of the semiparametric estimator (Subsection 4.3.1), to-

gether with the study of its asymptotic properties (Subsection 4.3.3), when the number of imperfect

repairs n tends to in�nity, with one single system observed.

4.3.1 De�nition and �rst properties

Let us �rst recall from the previous section that

Dj = {ρ ∈ [0, 1) : gk (ρ,Y) ≥ 0 for all k ∈ {1, . . . , j}}

for all 1 ≤ j ≤ n. Note that each set Dj is non empty, because gk (1−,Y) = Yk ≥ 0 for all k ∈ {1, . . . , j}.
Also, g1 (ρ,Y) = Y1 ≥ 0 for all ρ ∈ [0, 1), which implies that D1 = [0, 1). Finally, it is readily seen

that

Dj+1 = {ρ ∈ Dj : gj+1 (ρ,Y) ≥ 0}

and that Dj+1 ⊂ Dj for all 1 ≤ j ≤ n− 1.

Let us set

Mj = inf (Dj)

for all 1 ≤ j ≤ n.

Proposition 7. The function gj(ρ,Y) and the sequence (Mj)1≤j≤n (almost surely) satisfy the following

properties:

1. Mj ≤Mj+1 for all 1 ≤ j ≤ n− 1;

2. ρ 7→ gj(ρ,Y) is non negative on Dj for all 1 ≤ j ≤ n;

3. ρ 7→ gj(ρ,Y) is non decreasing on Dj−1 for all 1 ≤ j ≤ n (where we set D0 = D1 = [0, 1) for

convenience);

4. Dj = [Mj , 1) for all 1 ≤ j ≤ n;

5. Mj ≤ ρ0 for all 1 ≤ j ≤ n.

Proof. Points 1 and 2 are clear due to Dj+1 ⊂ Dj and to the de�nition of Dj .

Let us show the three following points (Points 3-5) all together by induction on j.

At �rst, we have D0 = D1 = [0, 1), M1 = 0 ≤ ρ0 and g1 (ρ,Y) = Y1 for all ρ ∈ [0, 1). Hence Points

3-5 are true for j = 1.
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Now, assume Points 3-5 to be true for some j ∈ {1, · · · , n− 1} and, to begin with, let us note that

Equation (4.4) implies that

gj+1 (ρ,Y) = Yj+1 − Yj + ρ

j∑
p=1

ρ j−p (Yp − Yp−1)

= Yj+1 − Yj + ρ gj (ρ,Y) (4.6)

for all 1 ≤ j ≤ n− 1 (where Yj+1 − Yj might be negative).

By the induction assumption, gj (ρ,Y) is non decreasing on Dj−1, and hence also on Dj (as Dj ⊂
Dj−1). Based on the previous recursion formula (4.6) and as gj (ρ,Y) also is non negative on Dj , this

implies that gj+1 (ρ,Y) is non decreasing on Dj .

As Dj = [Mj , 1) by the induction assumption, we now have

Mj+1 = inf {ρ ∈ [Mj , 1) : gj+1 (ρ,Y) ≥ 0} ,

where gj+1 is non decreasing and continuous on [Mj , 1), with gj+1 (1−,Y) = Yj+1 > 0 (almost surely).

This implies that Dj+1 is an interval and Dj+1 = [Mj+1, 1).

Finally, from Equation (4.5), we have gj+1 (ρ0,Y) = Uj+1 ≥ 0. As Mj ≤ ρ0 by the induction

assumption and gj+1 (ρ,Y) is known to be non decreasing on [Mj , 1), we necessarily have Mj+1 ≤ ρ0.

Hence Points 2-5 are true for j + 1, and this achieves the proof.

Based on the previous results, we can see that the sequence (Mj)1≤j≤n can be alternatively de�ned

through{
M1 = 0,

Mj+1 = inf {ρ ∈ [Mj , 1) : gj+1 (ρ,Y) ≥ 0} , for all 1 ≤ j ≤ n− 1.
(4.7)

Also, considering a possibly in�nite number of observations, the sequence (Mn)n≥1 is non decreasing

and upperly bounded by ρ0. It hence is an almost sure convergent sequence. It remains to prove that

it converges towards ρ0, which is done in Subsection 4.3.3, under speci�c technical assumptions (among

with, concavity of the shape function of the gamma process). With that aim, some technical results have

�rst to be established, which is done in the next subsection.

4.3.2 Technical results

Lemma 3. Let ρ ∈ [0, 1). Then, gj (ρ,Y) ≥ 0 implies that ρ0 − ρ ≤
Uj
Uj−1

for each 2 ≤ j ≤ n.

Proof. Let us �rst prove by induction that

gj (ρ,Y) = (ρ− ρ0)

j−1∑
p=1

ρj−1−pUp + Uj ·

For j = 1, the result is clear because g1 (ρ,Y) = Y1 = U1. Assume that the result holds for some

j ∈ {1, · · · , n− 1}. Based on (4.6) and (4.5), we know that

gj+1 (ρ,Y) = Yj+1 − Yj + ρ gj (ρ,Y) ,

Uj+1 = Yj+1 − Yj + ρ0 Uj ,

52



4.3. The semiparametric estimator and its asymptotic properties

(taking ρ = ρ0 in the �rst line to derive the second one), which provides

gj+1 (ρ,Y) = Uj+1 − ρ0 Uj + ρ gj (ρ,Y) .

Using the induction assumption, gj+1 (ρ,Y) can now be expressed as follows:

gj+1 (ρ,Y) = Uj+1 − ρ0Uj + ρ

(
(ρ− ρ0)

j−1∑
p=1

ρj−1−pUp + Uj

)

= (ρ− ρ0)

j∑
p=1

ρj−pUp + Uj+1

where the last equality results from straightforward calculations. Thus we obtain the �rst result.

Next we note that gj (ρ,Y) ≥ 0 is true as soon as

(ρ− ρ0)

j−1∑
p=1

ρj−1−pUp + Uj ≥ 0,

or equivalently

ρ0 − ρ ≤
Uj

Uj−1 +
∑j−2
p=1 ρ

j−1−pUp
.

This implies the result since
j−2∑
p=1

ρj−1−pUp ≥ 0.

In the following, we will have to control quantities of the shape P (ρ0 − ρ > ε), which will be done by

controlling quantities of the shape P (Uj/Uj−1 > ε), using arguments based on the previous lemma. This

will be achieved through the use of the following Remark and Lemma.

Remark 2. For each j ≥ 2, the random variables Uj−1 and Uj are known to be independent and gamma

distributed Γ (aj−1, b) and Γ (aj , b), respectively. It follows that, for all ε ≥ 0,

P

(
Uj
Uj−1

> ε

)
= P

(
Uj

Uj−1 + Uj
>

ε

1 + ε

)
where the random variable Uj/ (Uj−1 + Uj) is beta distributed B (aj , aj−1) (standard property of gamma

distributions), with p.d.f.

faj ,aj−1
(t) =

1

B(aj , aj−1)
taj−1 (1− t)aj−1−1

, ∀t ∈ [0, 1] . (4.8)

Lemma 4. Let us denote by Ix(α1, α2) the cumulative density function of the beta distribution B (α1, α2)

with positive parameters α1 and α2 (which is also called the regularized incomplete beta function). For

all x ∈ [0, 1],

Ix(α1, α2) ≥ xα1(1− x)α2

1 + α1

α2

. (4.9)
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Proof. Let us �rst show that

Ix(α1, α2) ≥ xα1(1− x)α2

α1B(α1, α2)
(4.10)

for all x ∈ [0, 1].

Note that Inequality (4.10) can be seen as a direct consequence of [14, Eq. 8.17.20]. As it is stated

without proof in the quoted reference, we prefer to propose some details here.

For (α1,α2) �xed, let us set

g (x) = Ix(α1, α2)− xα1(1− x)α2

α1B(α1, α2)
,∀x ∈ [0, 1] .

Based on the p.d.f. of a beta distribution recalled in (4.8), it is easy to check that

g′ (x) =
xα1 (1− x)

α2−1

B(α1, α2)

(
1 +

α2

α1

)
≥ 0.

Thus g (x) is non decreasing with respect to x. As g (0) = 0, we derive that g (x) ≥ 0 for all x ∈ [0, 1]

and Inequality (4.10) is true.

It remains to show that

1

α1B(α1, α2)
≥ 1

1 + α1

α2

(4.11)

to derive (4.9). Now, [2, Eq. 6.1.3 p. 255] states that for all positive real number α, the inverse of Γ(α)

can be expressed as

Γ(α)−1 = α exp (γα)
∏
m≥1

[(
1 +

α

m

)
exp

(
− α
m

)]
,

where γ is Euler's constant. By de�nition of the Beta function, we hence have

B(α1, α2) =
Γ (α1) Γ (α2)

Γ (α1 + α2)

=
α1 + α2

α1α2


∏
m≥1

[(
1 + α1+α2

m

)
exp

(
−α1+α2

m

)]
∏
m≥1

[(
1 + α1

m

)
exp

(
−α1

m

)] ∏
m≥1

[(
1 + α2

m

)
exp

(
−α2

m

)]
 .

As the products are convergent, this can be simpli�ed into

B(α1, α2) =
α1 + α2

α1α2

∏
m≥1

[ (
1 + α1+α2

m

)(
1 + α1

m

) (
1 + α2

m

)]

≤ 1

α1
+

1

α2
,

which provides (4.11) and the result.

Corollary 1. Let 2 ≤ j ≤ n. Then ρ0 −Mj ≤ Uj/Uj−1 and

P (ρ0 −Mj > ε) ≤ P

(
Uj
Uj−1

> ε

)
≤ 1− ε̃aj (1− ε̃)aj−1

1 +
aj
aj−1
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for all ε ∈ (0, 1), with ε̃ = ε/ (1 + ε).

Proof. By de�nition of Mj , we know that gj(Mj ,Y) ≥ 0. Based on Lemma 3, we derive that ρ0 −Mj ≤
Uj/Uj−1. Hence:

P (ρ0 −Mj > ε) ≤ P

(
Uj
Uj−1

> ε

)
.

Now, a direct consequence from Remark 2 and Lemma 4 can be written as follows:

P

(
Uj
Uj−1

> ε

)
= 1− Iε̃(aj , aj−1) ≤ 1− ε̃aj (1− ε̃)aj−1

1 +
aj
aj−1

with ε̃ = ε/ (1 + ε), which allows to conclude.

All the previous results are valid without any assumption on the shape function a (·). We now come to

speci�c technical results, which requires some concavity assumption for a (·) to hold. To be more precise,

our main assumption states as follows.

Assumption (H) The shape function a (·) of the gamma process is concave and di�erentiable on R+,

and such that lim
t→∞

a′(t) = 0.

Remark 3. All the asymptotic results of the paper remain valid if the concavity and di�erentiability

properties for a (·) only hold from one point t0 (that is on a set [t0,+∞)), and not on the whole half-line

R+.

Remark 4. Many classical concave shape functions ful�lls Assumption (H), such as

a1(t) = αtβ , a2(t) = log
(
1 + αtβ

)
or a3(t) = 1− exp

(
−αtβ

)
,

with α > 0 and 0 < β < 1 for the �rst case and 0 < β ≤ 1 in the other two cases.

When β > 1, both shape functions a2(·) and a3(·) are concave only from the point t0, with t0 =

[(β − 1)/α]
1/β

and t0 = [(β − 1)/(αβ)]
1/β

, respectively. Hence, as stated in Remark 3, all the asymptotic

results remain valid for a (·) = a2(·) or a3(·) and for all β > 0.

Nevertheless, for the sake of simplicity, the shape function a (·) is assumed to be concave and dif-

ferentiable from the initial time, in all the results requiring Assumption (H) to hold.

Lemma 5. Suppose Assumption (H) to hold. Then the sequence (an)n∈N∗ is non increasing, and tends

to 0 when n tends to ∞.

Proof. By the mean value theorem, there exists c(n) in ((n− 1)T , nT ) such that

an = a(nT )− a((n− 1)T ) = T a′(c(n)).

As lim
t→∞

a′(t) = 0 by assumption and lim
n→∞

c(n) = ∞, it follows that lim
t→∞

a′(c(n)) = 0, which induces

the convergence of (an)n∈N∗ towards 0. Finally, an ≥ an+1 for all n ≥ 0 is a direct consequence of the

concavity of a(·).

Lemma 6. Suppose Assumption (H) to hold. Then,

P (ρ0 −M4n > ε) ≤
(

1− ε a2(n+1)

21+a2n+1+a2(n+1)

)n
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for all n ≥ 1 and all ε ∈ (0, 1).

Proof. Let 2 ≤ k ≤ n. Based on Corollary 1, we know that ρ0 −Mk ≤ Uk/Uk−1. As (Mk)2≤k≤n is non

decreasing, we get that

ρ0 −Mn = min
2≤k≤n

(ρ0 −Mk) ≤ min
2≤k≤n

Uk
Uk−1

.

Now, in order to boil down to independent random variables Uk/Uk−1, let us consider only the even

terms k = 2j. Also, for sake of simpli�cation, let us substitute n by 4n. We get

ρ0 −M4n ≤ min
2≤k≤4n

Uk
Uk−1

≤ min
1≤j≤2n

U2j

U2j−1
.

This induces

P (ρ0 −M4n > ε) ≤ P

(
min

1≤j≤2n

U2j

U2j−1
> ε

)
=

2n∏
j=1

P

(
U2j

U2j−1
> ε

)

since the ratios are independent random variables. Based on Corollary 1 again, we derive that

P (ρ0 −M4n > ε) ≤
2n∏
j=1

[
1− ε̃ a2j (1− ε̃)a2j−1

1 +
a2j
a2j−1

]
(4.12)

where ε̃ = ε/ (1 + ε). Under Assumption (H), we know from Lemma 5 that a2j ≤ a2j−1 for all 1 ≤ j ≤ 2n.

Thus

1

1 +
a2j
a2j−1

≥ 1

2

and

2n∏
j=1

[
1− ε̃ a2j (1− ε̃)a2j−1

1 +
a2j
a2j−1

]
≤

2n∏
j=1

[
1− 1

2
ε̃ a2j (1− ε̃)a2j−1

]

≤
2n∏

j=n+1

[
1− 1

2
ε̃ a2j (1− ε̃)a2j−1

]
(4.13)

(as each term is smaller than 1 in the product).

Using again the non increasingness of (aj)n+1≤j≤2n, we get that ε̃a2j ≥ ε̃a2(n+1) and (1 − ε̃)a2j−1 ≥
(1− ε̃)a2n+1 for all j ∈ {n+ 1, n+ 2, . . . , 2n}, since ε̃ ∈ (0, 1). This implies

2n∏
j=n+1

[
1− 1

2
ε̃ a2j (1− ε̃) a2j−1

]
≤
(

1− 1

2
ε̃ a2(n+1)(1− ε̃) a2n+1

)n
. (4.14)

Putting together (4.12), (4.13) and (4.14) leads to

P (ρ0 −M4n > ε) ≤
(

1− 1

2
ε̃ a2(n+1)(1− ε̃) a2n+1

)n
=

(
1− ε a2(n+1)

2 (1 + ε)
a2n+1+a2(n+1)

)n
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by de�nition of ε̃. Finally, because 1/ (1 + ε) > 1/2 (as ε < 1), we have

P (ρ0 −M4n > ε) ≤
(

1− ε a2(n+1)

21+a2n+1+a2(n+1)

)n
,

which �nishes the proof.

We are now ready to state our main results, which is done in next subsection.

4.3.3 Consistency and convergence rates

Theorem 1. Suppose Assumption (H) to hold. ThenMn is a strongly consistent estimator of ρ0 (Mn −→
ρ0 almost surely) as the number of repairs n tends to in�nity.

Proof. First, because (Mn)n≥1 is non decreasing, it is su�cient to prove the almost sure convergence of

the subsequence (M4n)n≥1 towards ρ0. (The same remark is valid for the convergence rate, hereafter).

Let ε ∈ (0, 1). From Lemma 6, we know that

∑
n≥1

P (ρ0 −M4n > ε) ≤
∑
n≥1

(
1− ε a2(n+1)

21+a2n+1+a2(n+1)

)n
. (4.15)

Hence, it is enough to show the convergence of the right-side series in the previous inequality, to show

the strong consistency.

Under Assumption (H) and by Lemma 5, we have lim
n→+∞

a2(n+1) = lim
n→+∞

a2n+1 = 0. Then

lim
n→+∞

n

√(
1− ε a2(n+1)

21+a2n+1+a2(n+1)

)n
= lim
n→+∞

(
1− ε a2(n+1)

21+a2n+1+a2(n+1)

)
=

1

2
< 1.

The root test ensures the convergence of the right-side series in (4.15), which allows to conclude.

We now look at the convergence rate, which reveals itself to be very high (at least sub-exponential,

or even exponential).

Theorem 2. Suppose Assumption (H) to hold. Then we have:

1. The almost sure convergence rate of the estimator Mn is at least sub-exponential (that is at least

polynomial of order k, for any k > 0) as soon as a2n = O
(
(log n)−1

)
.

2. The almost sure convergence rate is at least exponential as soon as a2n = O
(
n−1

)
.

3. The convergence rate in probability is at least exponential as soon as a2n = o
(
n−1 log n

)
.

Proof. Let εn ∈ (0, 1) for all n ∈ N∗. Based on Lemma 6, we have

P (ρ0 −M4n > ε4n) ≤
(

1− ε
a2(n+1)

4n

21+a2n+1+a2(n+1)

)n
.

As a2n+1 ≤ a2(n+1) ≤ a1 from Lemma 5, we get that 21+a2n+1+a2(n+1) ≤ 21+2a1 and hence

P (ρ0 −M4n > ε4n) ≤ (1− un)
n (4.16)
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with un = C ε
a2(n+1)

4n and C = 1/
(
21+2a1

)
. From the root test, we know that the series with gen-

eric term (1− un)
n is convergent as soon as lim supn→+∞ (1− un) < 1, or equivalently as soon as

lim infn→∞ un > 0. Hence, the series with generic term the left-side expression in (4.16) is convergent as

soon as lim infn→∞ un > 0.

Let us now look at the three di�erent points of the theorem. Assume �rst that εn = ε/nk with k > 0

and ε ∈ (0, 1). This provides

un = C

(
ε

(4n)
k

) a2(n+1)

= C exp
{
a2(n+1) [log (ε)− k log (4)− k log (n)]

}
.

Assume further that a2n = O
(
(log n)−1

)
, or equivalently that a2(n+1) = O

(
(log n)−1

)
. Then, there exists

K > 0 such that a2(n+1) log (n) < K, from where we derive that

un > C exp
{
a2(n+1) (log (ε)− k log (4))− k K

}
.

Hence

lim inf
n→∞

un ≥ C lim inf
n→∞

exp {−k K} > 0

because a2(n+1) converges towards 0 (see Lemma 5).

This shows that the series with generic term the left-side expression in (4.16) is convergent for εn =

ε/nk and any (k, ε), which means that Mn almost surely converges towards ρ0 at speed at least n−k for

any k > 0, namely the convergence rate is at least sub-exponential, which proves the �rst point.

Now let us set εn = ε exp(−kn) with k > 0 and ε ∈ (0, 1).

We have

un = C ε a2(n+1) exp
(
−4kna2(n+1)

)
= C exp

(
na2(n+1)

(
log (ε)

n
− 4k

))
.

Assume that a2n = O
(
n−1

)
. Then, there exists K > 0 such that na2(n+1) < K, from where we derive

that

un > C exp

(
K

(
log (ε)

n
− 4k

))
.

Hence

lim inf
n→∞

un ≥ C exp (−4Kk) > 0,

which allows to conclude for the second point.

Finally, assume that a2n = o
(
n−1 log n

)
. The point here is to show the convergence in probability.

Based on (4.16), it is su�cient to show that limn→+∞ (1− un)
n

= 0.

We have

(1− un)
n

= exp
{
n log

[
1− C ε a2(n+1) exp

(
−4kna2(n+1)

)]}
.
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As log (1− x) ≤ −x for all x ∈ (0, 1), we get that

(1− un)
n ≤ exp

{
−C nε a2(n+1) exp

(
−4kna2(n+1)

)}
= exp (−C vn) (4.17)

with

vn = exp

{
log (n)

[
1 +

na2(n+1)

log (n)

(
log (ε)

n
− 4k

)]}
Based on a2n = o

(
n−1 log n

)
, we have limn→+∞ na2n/ log (n) = 0, which implies

lim
n→+∞

[
1 +

na2(n+1)

log (n)

(
log (ε)

n
− 4k

)]
= 1

and hence vn tends to ∞. We derive from (4.17) that (1− un)
n converges towards 0, which allows to

conclude.

Example 3. Let a(t) = αtβ with 0 < α, β < 1, which is already known to ful�ll Assumption (H) from

Remark 4. Also, we have

a2n = αT β
(
(2n)β − (2n− 1)β

)
= α(2nT )β

(
1−

(
1− 1

2n

)β)

∼
n→+∞

C
1

n1−β

where C = αβ2β−1T β. It is easy to check that the condition a2n = O
(
(log n)−1

)
from Point 1 in Theorem

2 is satis�ed (but not the conditions for the other points). Hence, we can conclude that the almost sure

convergence holds with an at least sub-exponential rate.

Example 4. Let a(t) = log
(
1 + αtβ

)
with α > 0, 0 < β ≤ 1, which is already known to ful�ll Assumption

(H) from Remark 4. Also, based on log (x) ∼ x− 1when x→ 1 for the second line, we have

a2n = log

(
1 + αT β(2n)β

1 + αT β(2n− 1)β

)
∼

n→+∞
αT β

(2n)β − (2n− 1)β

1 + αT β(2n− 1)β

∼
n→+∞

1

(1− 1
2n )β

− 1

∼
n→+∞

β

2n
.

Hence, the condition a2n = O
(
n−1

)
is satis�ed (strongest condition in Theorem 2), and the almost sure

convergence holds with an at least exponential rate. Note that this result would remain valid for β > 1 as

the shape function is concave from point t0 = [(β − 1)/α]
1/β

(see Remark 4).

Example 5. Let a(t) = 1 − exp
(
−αtβ

)
with α > 0, 0 < β ≤ 1, which is already known to ful�ll

Assumption (H) from Remark 4. We have

a2n = exp
(
−α (2nT )

β
)
− exp

(
−α (2n− 1)T β

)
,
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which clearly implies a2n = O
(
n−1

)
. Hence the almost sure convergence holds with an at least exponential

rate. Note that, here again, the result would remain valid for β > 1 as the shape function is concave from

point t0 = [(β − 1)/(αβ)]
1/β

(see Remark 4).

Up to here, it was supposed that one single system is observed. In the next section, we now envision

the possibility of observing several systems.

4.4 Extension to the case where several systems are observed

4.4.1 Extended semiparametric estimator

In this section, s identical and independent systems are considered. They share the same intrinsic

deterioration and ARD1 repair model with parameter (a(·), b, ρ0) and they are all observed at times T−,

2T−, ..., nT−, as described in Section 4.2. For each i ∈ {1, . . . , s}, we add exponent (i) to each quantity

referring to the i-th system. For instance, Y(i) =
(
Y

(i)
1 , . . . , Y

(i)
n

)
stands for the multivariate observation

of the i-th system at times T−, 2T−, ..., nT−. Also, the sequence
(
M

(i)
j

)
1≤j≤n

is de�ned by

{
M

(i)
1 = 0

M
(i)
j = inf

{
ρ ∈

[
M

(i)
j−1, 1

)
: gj

(
ρ,Y(i)

)
≥ 0
}

for all 2 ≤ j ≤ n

in a similar way as in (4.7).

The extended semiparametric estimator is de�ned as

Ms,n = max
1≤i≤s

(
M (i)
n

)
for all n ≤ 1 and s ≥ 1.

The asymptotic properties of each sequence
(
M

(i)
n

)
n∈N∗

(with i �xed) has been studied in the previous

section. Clearly, similar results are valid for the sequence (Ms,n)n∈N∗ with s �xed (with an even higher

rate of convergence as M (i)
n ≤ Ms,n ≤ ρ0 for each i). We hence focus on the asymptotic properties of

(Ms,n)s∈N∗ with n �xed in the sequel of this section. We take n ≥ 2, which ensures the identi�ability,

based on Proposition 6.

4.4.2 Consistency and convergence rates according to the number of observed

systems

Theorem 3. Let n ≥ 2. Then Ms,n is a strongly consistent estimator of ρ0 as the number of observed

systems s tends to in�nity.

Proof. From Proposition 7, we know that M (i)
2 ≤ M

(i)
n ≤ ρ0 for each 1 ≤ i ≤ s, which implies that

Ms,2 ≤Ms,n ≤ ρ0. Hence, it is enough to prove that Ms,2 is a strongly consistent estimator of ρ0. From

the de�nition of Ms,2, we have

ρ0 −Ms,2 = min
1≤i≤s

(
ρ0 −M (i)

2

)
and as the systems are i.i.d., this provides

P (ρ0 −Ms,2 > ε) = P

(
ρ0 −M (1)

2 > ε
)s

(4.18)
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for all ε > 0. Now, Corollary 1 leads to

P (ρ0 −Ms,2 > ε) ≤ P

(
U

(1)
2

U
(1)
1

> ε

)s

and because P
(
U

(1)
2 /U

(1)
1 > ε

)
< 1, we get

∑
s≥1

P

(
U

(1)
2

U
(1)
1

> ε

)s
<∞.

Thus, Ms,2 tends towards ρ0 almost surely, which proves the result.

Theorem 4. Let n ≥ 2. The almost sure convergence rate of the estimator Ms,n (with respect to s) is

at least s−k, for all positive real number k such that

k <
1

min
2≤p≤n

ap
.

Proof. Let us set εs = ε/sk, with k > 0 and ε ∈ (0, 1). The point is to show that the series with generic

term P (ρ0 −Ms,n > εs) converges for all k < 1/min2≤p≤n ap. Using a similar procedure as for Equation

(4.18) and based on Corollary 1, we have2

P (ρ0 −Ms,n > εs) = P

[
min

1≤i≤s

(
ρ0 −M (i)

n

)
> εs

]
≤

(
n∏
p=2

Pp(s)

)s
(4.19)

where

Pp(s) = 1− ε
ap
s(

1 +
ap
ap−1

)
(1 + εs)

ap−1+ap
.

Note that Pp(s) ∈ (0, 1) for any s ≥ 1 and 2 ≤ p ≤ n so that the product in (4.19) is smaller than each

of its term. Hence, keeping only the 2p-th term, we get

P (ρ0 −Ms,2n > εs) ≤ (P2p(s))
s

for all p ≥ 1 such that 2p ≤ n. Then, using that εs = εs−k and 1/(1 + εs) > 1/2, we obtain

(P2p(s))
s ≤

1− s−ka2p(
1 +

a2p
a2p−1

)
2 a2p−1+a2p

ε a2p

s

.

Now, using that log(1− x) ≤ −x for all x in [0, 1), it follows that (P2p(s))
s ≤ us, where

us = exp
(
−Cp s1−ka2p

)
and Cp = ε a2p

((
1 +

a2p

a2p−1

)
2 a2p−1+a2p

)−1

.

Gathering the previous inequalities, we now have P (ρ0 −Ms,n > εs) ≤ us and the point is to study the

2To be more precise, we have P

[
min

1≤i≤s

(
ρ0 −M

(i)
n

)
> εs

]
= P

(
ρ0 −M

(1)
n > εs

)s
≤ P

(
min

2≤p≤n

Up

Up−1
> εs

)s

, which

leads to the result from Corollary 1.
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convergence of the series with generic term us. If 1− ka2p ≤ 0, then us converges towards 1 or exp(−Cp)
(if ka2p = 1), and the series is divergent. If 1− ka2p > 0, then

lim
s→+∞

s2us = 0

and us =
s→+∞

o
(

1
s2

)
, which entails that the series with generic term us is convergent, and hence also the

series with generic term P (ρ0 −Ms,n > εs). This allows to conclude that the almost sure convergence

rate of the estimator Ms,n is at least s−k, for any k < a−1
2p and any p ≥ 1 such that 2p ≤ n.

Now, keeping only the 2p+ 1-th term in the product in (4.19) provides

P (ρ0 −Ms,2n > εs) ≤ (P2p+1(s))
s

for any p such that 2p + 1 ≤ n. Similar arguments as above allow to derive that the convergence rate

it at least s−k, for any k < a−1
2p+1 and any p ≥ 1 such that 2p + 1 ≤ n. Finally, it is hence true for any

k < a−1
p and any p such that 2 ≤ p ≤ n, and consequently for any k < max2≤p≤n

(
a−1
p

)
, which allows to

conclude.

The real number ap corresponds to the increment of the shape function over the time interval [(p− 1)T, pT ).

The overall convergence rate obtained in the previous theorem corresponds to the smallest increment.

Hence the smaller this increment, the slower the degradation and the higher the convergence rate. More

precisely, when the shape function is concave, the increments decrease over time and the convergence

rate is at least s−1/an because the smallest increment is the last one. On the other hand, the increments

increase over time when the shape function is convex, hence the smallest increment is the second one and

the convergence rate is at least s−1/a2 . Then the convergence rate is higher than the standard square-root

speed as soon as the smallest increment is less than 2. Note that this condition depends on both the

shape function and the period T , as illustrated in the next example.

Example 6. Let a(t) = αt with α > 0, hence ap = αT for each 2 ≤ p ≤ n and the almost sure

convergence rate of Ms,n with respect to s is at least s−1/αT . In comparison with the classical rate s−1/2,

it is higher if αT < 2 and lower if αT > 2.

4.5 Empirical illustration based on simulated data

The aim of this section is to illustrate our most signi�cant results, that is the fast convergence rates

obtained in Section 4.3 in the case where a single system is observed. In that case asymptotic results are

obtained with respect to an increasing number of repairs n. The point hence is to observe the empirical

behavior of the semiparametric estimatorMn of ρ0, which from Theorems 1 and 2 is known to be strongly

consistent, with a convergence rate that can be either exponential (ECR) or sub-exponential (S-ECR)

with respect to n (considering either almost sure convergence or convergence in probability).

These illustrations are based on two simulated datasets, considering a(t) = log(1 + t) (�rst case)

and a(t) =
√
t (second case) as shape functions, which from Examples 4 and 3 provide exponential and

sub-exponential almost sure convergence rates respectively. The �rst (resp. second) case will hence be

referred to as ECR (resp. S-ECR) in the sequel.
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4.5. Empirical illustration based on simulated data

Data simulation and empirical bias

To be able to compare results, we place ourselves within the same framework for both cases. First, the

model parameters as well as the observation characteristics of a maintained system are the following:

� Shape function: a(t) = log(1 + t) (ECR) and a(t) =
√
t (S-ECR);

� Scale parameter: b = 1;

� Maintenance e�ciency parameter: ρ0 = 0.5;

� Period for repairs: T = 1;

� Observation times: {nT−; 1 ≤ n ≤ 250} because the system is maintained 250 times.

Thus for a single maintained system simulated over the time interval [0,250], that is a degradation

trajectory over the time interval [0,250], Mj is computed for each observation time (right before the

repair time) providing a realization (m1, . . . ,m250) of the random vector (M1, . . . ,M250). We generate

250 000 i.i.d trajectories, which leads to 250 000 i.i.d. realizations
{(
m

(i)
1 , . . . ,m

(i)
250

)
; 1 ≤ i ≤ 250 000

}
of

(M1, . . . ,M250). In other words, we have 250 000 estimations of ρ0 at each observation time T−, 2T−, . . . , 250T−.

Then the Empirical Bias (EB) is computed at each observation time nT−as follows

Figure 4.3: Plots of the common logarithm of the Empirical Bias versus n, for the ECR case on the left
and the S-ECR case on the right.

EB(n) =
1

250 000

250 000∑
i=1

(
ρ0 −m(i)

n

)
,

and the common logarithm of EB(n) for both the ECR and S-ECR cases are reported on Figure 4.3. In

both plots, we can observe that

� the empirical bias tends towards a non-zero constant as n increases;

� viewed as a function of n, the empirical bias has jumps.
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Our point now is to explain these two particularities, which are induced by computing limitations, as is

discussed hereafter.

Let Mnum be the largest positive real number such that 1−Mnum = 1 (numerically negligible), which

is roughly equal to 1.11× 10−16 in our case. This entails that (1−Mnum)/2 = 1/2, and hence

ρ0 −
Mnum

2
= ρ0,

based on ρ0 = 1/2. Then, when we obtain an estimate m(i)
n = 0.5 for some 1 ≤ i ≤ 250 000 and

1 ≤ n ≤ 250, it only means that ρ0 − m(i)
n ≤ Mnum/2 and not that m(i)

n = ρ0. Thus, the numerical

estimate of the bias is correct only if ρ0 −m(i)
n ≥Mnum/2, otherwise it is underestimated.

This leads us to introduce the Proportion of Numerically Exact Estimates (PNEE) as a function of n

PNEE(n) =
#
{

1 ≤ i ≤ 250 000 : ρ0 −m(i)
n = Mnum

2

}
250 000

.
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Figure 4.4: Plots of the PNEE as a function of n, for the ECR case on the left and the S-ECR case
on the right. Blue vertical lines point to the smallest repair numbers n for which PNEE(n) is larger or
equal than 95%, 99.5%, 99.99% and 100% from left to right.

This �gure shows that the larger n, the more there are estimates equal to Mnum/2, which explains

why EB(n) tends towards Mnum/2 instead of 0. Moreover we have Mnum/2 ≈ 5.55 × 10−17, and so

log10 (Mnum/2) ≈ −16.25, which matches the numerical results of Figure 4.3. Note that in both ECR

and S-ECR cases, all the estimates are numerically exact before the last observation time 250T−, which

illustrates a very fast convergence rate of the estimator. Looking carefully at the distribution of the

estimates m(i)
n , i = 1, . . . , 250 000, for each n, we have observed that there are a (very) few extreme

values, which correspond to trajectories for which the convergence is slow when n increases. For each

trajectory, the sequence of estimates m(i)
n , n = 1, . . . , 250, is piecewise constant and approximates ρ0 by

below. When a large proportion of sequences has already reached the numerical precision Mnum/2 (and

hence remains constant when n increases), each jump in an extreme trajectory entails a negative jump in

the empirical bias, which is not counterbalanced by any positive jump. This explains the negative jumps
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4.5. Empirical illustration based on simulated data

observed in Figure 4.3.

As a summary, both jumps and convergence to a non-zero constant in Figure 4.3 are due to numerical

limitations and the corresponding points on the plots should not be considered for the further study of

the empirical bias. Thus, in the sequel, we only focus on the �rst values of n for which there is no jump,

that is on 1 ≤ n ≤ 26 for the ECR case and 1 ≤ n ≤ 49 for the S-ECR case.

Our aim now is to explore the convergence rate from an empirical point of view. This can be done

through the study of the empirical bias, as is now explained.

Link between the bias and the exponential convergence rate

Let us show that the convergence rate ofMn is at least exponential whenever log10

(
ρ0−E (Mn)

)
decreases

linearly. Indeed, assuming that log10

(
ρ0 − E (Mn)

)
decreases linearly, there exist k̃ > 0 and C ∈ R such

that

log10

(
ρ0 − E (Mn)

)
= C − k̃n.

Because Mn ∈ [0, ρ0] for any n ≥ 1 with probability one, the random variable ρ0 −Mn is non negative

and by the Markov's inequality we have

P
(
ρ0 −Mn > εn

)
≤ ρ0 − E (Mn)

εn
·

Setting εn = ε exp(−kn) with k ∈ (0, k̃) and ε > 0, we have

P
(
ρ0 −Mn > εn

)
≤ exp(C)

ε
exp

(
−
(
k̃ − k

)
n
)
−→
n→∞

0,

and ∑
n≥1

P
(
ρ0 −Mn > εn

)
≤
∑
n≥1

exp(C)

ε
exp

(
−
(
k̃ − k

)
n
)
< +∞.

Therefore the two last results allow to conclude that the rate of convergence ofMn is at least exponential

for the convergence in probability as well as for the almost sure convergence. If log10

(
ρ0 − E (Mn)

)
decreases at a slower rate than the linear rate, we can not conclude to a sub-exponential convergence

rate, however we observe that the empirical evidence of a slower convergence rate for log10

(
ρ0−E (Mn)

)
coincides with a slower convergence rate for ρ0 −Mn in Theorem 2.

Link between theoretical and empirical results

Because of the previous explanations on the behavior of EB(n), linear regressions are performed on

{EB(n); 1 ≤ n ≤ 26} for the ECR case and {EB(n); 1 ≤ n ≤ 49} for the S-ECR case. We assume that

the relationship between EB(n) and n is modelled by a linear regression either simple or quadratic. The

results are summarized on Figure 4.5, Table 4.1 and Table 4.2.

The tables provide the linear regressions outcomes, that is the coe�cients of the �rst and second degree

polynomial regression (and their related p-values and indicators about residual error (minimum, max-

imum, �rst, second and third quartiles). For the ECR case, both �rst (simple) and second (quadratic)

degree polynomial regression �t well log10 (EB(n)), with adjusted R2 of 0.9994 and 0.9996, respectively.

However, Table 4.1 shows that the second degree term is not signi�cant neither in comparison with
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Table 4.1: Linear regressions summary for the ECR case

(value / p-value) Intercept coe�cient First degree coe�cient Second degree coe�-
cient

1st degree 0.10 / 6.12× 10−4 −0.36 / < 2× 10−16

2nd degree 0.19 / 1.70× 10−5 −0.38 / < 2× 10−16 6.9× 10−4 / 4× 10−3

(Residual error) Minimum 1st quartile Median 3rd quartile Maximum

1st degree −0.09 −0.05 −0.01 0.04 0.12

2nd degree −0.14 −0.03 3× 10−3 0.04 0.10

Table 4.2: Linear regressions summary for the S-ECR case

(value / p-value) Intercept coe�cient First degree coe�cient Second degree coe�-
cient

1st degree −0.95 / 4.79× 10−13 −0.19 / < 2× 10−16

2nd degree −0.21 / 4.90× 10−6 −0.27 / < 2× 10−16 1.76 × 10−4 / < 2 ×
10−16

(Residual error) Minimum 1st quartile Median 3rd quartile Maximum

1st degree −0.31 −0.27 −0.14 0.21 0.84

2nd degree −0.15 −0.06 −5× 10−3 0.06 0.22

Figure 4.5: Partial plots of the common logarithm of the Empirical Bias versus n, for the ECR case
on the left and the S-ECR case on the right. The blue lines correspond to the �rst degree polynomial
regression for the ECR case and to the second degree polynomial regression for the S-ECR case.

the other terms nor for improving the model quality (the adjusted R2 increases and the residual error

decreases). We conclude to a linear decrease of log10 (EB(n)) which induces an at least exponential con-

vergence rate. It is thus consistent with results of Theorem 2 as well as with the related plot in Figure

4.5. Concerning the S-ECR case (see Table 4.2), the addition of the second degree coe�cient improves

the model quality, especially the adjusted R2, which goes from 0.9845 for a linear polynomial to 0.9989

for a quadratic one. Hence the quadratic linear regression model is more relevant than the simple lin-
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ear regression model, which coincides with the (at least) sub-exponential convergence rate mentioned in

Theorem 2.

Regarding the optimality of our results, we recall that the condition of Theorem 2 to obtain an at least

exponential convergence rate is a2n = o
(
n−1 log n

)
. Now repeating the study with a2n = n−1 log n we see

in Figure 4.6 that again an exponential convergence rate is expected because the bias decreases linearly.

We conclude that the condition on a2n in Theorem 2 is probably su�cient but not necessary.

Figure 4.6: Plots of the common logarithm of the Empirical Bias versus n, with a2n = n−1 log n

4.6 Concluding remarks

In this paper we propose a semiparametric inference method for the maintenance e�ciency parameter

involved in the ARD1 repair model for a Gamma deteriorating system. For a single system the main

condition that insures the strong consistency of our semiparametric estimator of the maintenance e�ciency

parameter is the concavity of the shape function of the underlying Gamma deteriorating process. Two

types of asymptotic results are obtained: either a single system is observed with the number of repairs

tending to in�nity, or it is the number of systems that tends to in�nity. In the case of a single system

the almost sure convergence rate of the estimator can be particularly fast, at least exponential for some

particular cases. The simulation study illustrates the convergence rates obtained in case of a single

trajectory. We observe that the theoretical convergence rates are consistent with the numerical simulation

results. However it seems that it is still possible to re�ne the mathematical conditions under which the

convergence rates are obtained. Thus improving the assumptions accuracy may constitute further work.

Note that when several systems are considered the convergence rate of the estimator is slower but its strong

consistency holds whatever the shape function is. Depending on the shape function, the convergence rate

of the estimator may overcome the usual square root rate.

In the wake of this study we want to mention several lines of work that we consider as are important.

First, the observation scheme could be decoupled from the scheme of maintenance actions. Indeed, it

would be interesting, for instance for an ARD1 model, to consider a system with scheduled times of

maintenance actions for which the observation times are independent of the maintenance schedule. Also,
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there exist many other models that extend the ARD1 model, such as for instance the ARDm (resp.

ARD∞) for which the basic idea is that a maintenance action removes a proportion of the degradation

accumulated by the system from the last m maintenance actions (resp. since the system was put into

operation).

As explained in the introduction, there exist also alternatives to arithmetic reduction of degradation

models such as those based on arithmetic reduction of age. For such models, instead of reducing the

degradation level of the system, the maintenance action consists in reducing the age of the system. The

use of these models is not restricted to gamma processes, and can be generalized to any non homogeneous

Lévy process. As an example, [24] deals with both the ARD1 and ARD∞ models, as well as two arithmetic

reduction of age models, considering a Wiener process based degradation. Nevertheless, the estimation

procedure we developed highly relies on the non negativity of the gamma process and hence could not

be adapted to a general non monotonous Lévy process. The adaptation of the estimation procedure of

the present paper to another monotonous Lévy process than the gamma process would be interesting to

study.

Hence there remain many estimation procedures to be developed for all these imperfect repair models

for deteriorating systems, but the semiparametric estimation of the maintenance e�ciency for the models

mentioned above with various observation schemes, is probably the most challenging problems we aim at

investigating in near future.

4.7 Extension of the semiparametric estimation method to the

Arithmetic Reduction of Degradation model of order in�nity

The purpose of this section is to prove that the semiparametric estimation method studied previously

remains valid in the case where the ARD∞ model is considered.

First of all, Proposition 6 also holds for the ARD∞ model, because only the �rst two observations

are necessary to obtain the model identi�ability, and both models are the same over [0, 2T ). Now let us

recall that the degradation level Yt at any time t such that (j − 1)T ≤ t < jT can be expressed as

Yt = X
(j)
t −X

(j)
(j−1)T +

j−1∑
k=1

(1− ρ0)j−kUk

where Uk = X
(k)
kT − X

(k)
(k−1)T for 1 ≤ k ≤ j − 1, and ρ0 is the true value of the maintenance actions

e�ciency. The observation times are still jT− for 1 ≤ j ≤ n, and let us set Yj = YjT− . Therefore, we

have

Yj = Uj +

j−1∑
k=1

(1− ρ0)j−kUk. (4.20)

Note that the degradation level right after the jth maintenance action is (1− ρ0)Yj , hence

Yj = Uj + (1− ρ0)Yj−1

As a result, for each 1 ≤ j ≤ n, the increments Uj can be expressed with respect to the observations
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Yj−1 and Yj as well as the maintenance e�ciency parameter ρ0 as follows:

Uj = Yj − (1− ρ0)Yj−1.

Similarly as in Subsection 4.3.1, we de�ne here the function gj as well as the estimator sequence

(Mj)1≤j≤n. It is not necessary to de�ne the set Dj of the possible values for ρ0 as the sequence (Mj)1≤j≤n
has an explicit expression here.

Let us set gj (ρ,Y ) = Yj − (1− ρ)Yj−1, hence we have gj (ρ0,Y ) = Uj > 0 a.s. Therefore, the parameter

ρ0 ful�ls the condition gj (ρ0,Y ) ≥ 0 for all 1 ≤ j ≤ n. Let us recall that g1 (ρ0,Y ) = Y1 ≥ 0, and for

j = 2, . . . , n the condition gj (ρ0,Y ) ≥ 0 is equivalent to ρ0 ≥ 1− Yj/Yj−1, thus

ρ0 ≥ max
2≤j≤n

(
1− Yj

Yj−1

)
.

Finally, we de�ne the sequence (Mj)1≤j≤n as

 M1 = 0

Mj = max
(
Mj−1 , 1− Yj

Yj−1

)
for all 2 ≤ j ≤ n

which is non-decreasing and bounded by ρ0 because ρ0 ∈ [Mj , 1) for all 1 ≤ j ≤ n.
The last step is to prove that Lemma 3 still holds here. As a result, all the technical results displayed

in Subsection 4.3.2 hold regardless if the order of the ARD model is 1 of ∞, because they only depend

on the sequence properties as well as this lemma. Let us now recall the lemma and prove it within the

ARD∞ context.

Lemma 3. Let us set ρ0 ∈ [0, 1), then gj (ρ,Y ) ≥ 0 implies that ρ0 − ρ ≤ Uj
Uj−1

for all 2 ≤ j ≤ n.

Proof. Assume j ≥ 2. We derive from Equation (4.20) that

1− Yj
Yj−1

= 1− Uj + (1− ρ0)Yj−1

Yj−1

= 1− Uj
Yj−1

− (1− ρ0)

Hence, ρ0 − ρ ≤ Uj/Yj−1, and replacing Yj−1 by its expression allows to write that

ρ0 − ρ ≤
Uj

Uj−1 + (1− ρ0)Yj−2

which leads to the result since (1− ρ0)Yj−2 > 0 a.s.

From this, it can be concluded that the main results displayed in Theorems 1, 2, 3 and 4 are veri�ed

whether the underlying model is the ARD1 or the ARD∞.
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Part III

Imperfect repairs based on reduction of

age
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Chapter 5

Introduction

A system is considered whose intrinsic deterioration is modelled by a gamma process (Xt)t≥0 with shape

function a and scale parameter b. The system is subject to periodic (period T ) and instantaneous

imperfect maintenance actions, and we place ourselves into the framework of a Arithmetic Reduction of

Age model of order one (ARA1). Within the context of virtual age models, an imperfect repair puts

back the system to a similar state as it was before, namely the system is rejuvenated. In the case of the

ARA1 model, a repair removes a proportion ρ ∈ [0, 1) of the age of the system accumulated since the last

maintenance action. This model is de�ned below.

In Chapter 6, several estimation methods are developed, starting with the most usual ones, namely

the methods of moments and the Maximum Likelihood Estimation (MLE). However, the expression of

the joint density of the observations, and consequently the likelihood, is a product of integrals of large

dimension, and thus numerical estimations becomes di�cult to compute in a classical way. At �rst, an

expectation maximization algorithm, as well as a di�erential evolution maximization (see [39]) associated

with quasi Monte Carlo approximations for the integrals, were developed and tested. However, none of

these methods were suitable due to numerical issues and high CPU times. Hence, the MLE is treated

here by approximating the integrals by the Monte Carlo and randomized Quasi Monte Carlo methods.

Besides these methods, in order to avoid the problem of high-dimensional integrals, alternative max-

imum likelihood methods are developed: the composite maximum likelihood and the half data method.

The �rst method consists in assuming that the observations are independent, while the second one only

takes into account one out of two observations. This allows to reduce the dimension of the integrals to 1.

After the methods study, some illustrations of their performances are provided in Chapter 7.

Let us �rst de�ne the ARA1 model. Let
(
X(j)

)
j∈N∗ be a sequence of independent copies of the gamma

process X = (Xt)t≥0, which corresponds to the intrinsic degradation of the system. Let (Zt)t≥0 stands

for the e�ective degradation level of the system. In the framework of the ARA1 model, each maintenance

action remove ρT units of time to the virtual age of the system, which can be expressed as follows:

V (t, ρ) = t− ρnT for nT ≤ t < (n+ 1)T

where V (t, ρ) is the virtual age of the system at real time t. Note that V (nT, ρ) = (1− ρ)nT and

V (nT−, ρ) = [(1− ρ)n+ ρ]T . Also, the nth maintenance action puts the system back to the state it

was ρT units of time before, that is at real time nT − ρT = (n− ρ)T . The related virtual age is

V ((n− ρ)T, ρ) = (n− ρ)T − ρ (n− 1)T = (1− ρ)nT = V (nT, ρ) .
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This is consistent because at real time nT , the system is put back to the exact state it was at real time

(n− ρ)T . This leads to the following expression for the degradation level right after the nth maintenance

action:

ZnT = Z(n−ρ)T (5.1)

and �nally the general expression of the virtual age of the system for all t ≥ 0 is

V (t, ρ) =
∑
j≥0

(t− ρjT ) 1[jT,(j+1)T )(t).

Hence, the degradation level Zt for nT < t ≤ (n+ 1)T , with n in N∗, can be expressed as follows

Zt = ZnT +
(
X

(n+1)
V (t,ρ) −X

(n+1)
V (nT,ρ)

)
= ZnT +

(
X

(n+1)
t−ρnT −X

(n+1)
(1−ρ)nT

)
with

ZnT = Z(n−1)T +
(
X

(n)
V (nT,ρ) −X

(n)
V ((n−1)T,ρ)

)
= Z(n−1)T +

(
X

(n)
(1−ρ)nT −X

(n)
(1−ρ)(n−1)T

)
,

and where
(
X

(n+1)
t−ρnT −X

(n+1)
(1−ρ)nT

)
is gamma distributed Γ

(
a(t− ρnT )− a((1− ρ)nT ), b

)
. Note that ZnT

can be written as

ZnT =

n∑
j=1

(
X

(j)
(1−ρ)jT −X

(j)
(1−ρ)(j−1)T

)
,

which is also gamma distributed with shape and scale parameters a((1− ρ)nT ) and b respectively. Thus

Zt is the sum of two gamma distributed random variables with the same scale parameter, which entails

that Zt is gamma distributed Γ
(
a(t− ρnT ), b

)
for all nT ≤ t < (n+ 1)T , and its mean and variance are

given by

E(Zt) =
a(t− ρnT )

b

and

V(Zt) =
a(t− ρnT )

b2
.

Based on the same framework as in Example 1, Figure 1.3 represents both the degradation evol-

ution mean and variance of the maintained system, as well as those of the intrinsic deterioration mean

(unmaintained system). The scale parameter is here equal to one, hence the mean and the variance are

equal as well due to their similar expressions.
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Figure 5.1: Expectations (equal to variances) of Xt and Zt, where the shape function is such that
a : t 7→ αtβ with α = 2 and β = 3/2, and with b = 1 and ρ = 1/2.
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Chapter 6

Parametric inference for the Arithmetic

Reduction of Age model of order one

6.1 Preliminary

As mentioned in the introduction of this part, several estimation methods are developed in this chapter,

in order to estimate the ARA1 model parameters. The periodicity T is assumed to be known, thus

the parameters of interest are the parameters of the shape function, the scale parameter b and the

maintenance e�ciency ρ. The estimation methods are developed, and then tested in the next chapter,

within the framework of a power law shape function. To be more precise, the shape function is de�ned

as a : t 7→ αtβ with α, β > 0. We set θ = (α, β, ρ, b) ∈ Θ the parameter set, with the parameter space

Θ = (0,∞)2 × [0, 1),×(0,∞).

We assume that the degradation level is measured right before the �rst n maintenance actions for

some n in N
∗, that is at times T−, 2T−,. . . ,nT−. Also, s i.i.d. systems are considered. For sake of

readability, let us de�ne the following notations:

� Zj = ZjT− for 1 ≤ j ≤ n;

� Z =
(
ZjT−

)
1≤j≤n = (Zj)1≤j≤n;

� z
(i)
j is the observed degradation level of the ith maintained system at times jT− for 1 ≤ j ≤ n and

1 ≤ i ≤ s, which is a realisation of the r.v. Zj ;

� z(i) =
(
z

(i)
j

)
1≤j≤n

is the complete observations set related to the ith maintained system;

� z is the complete observations set, that is z =
(
z

(i)
j

)
1≤j≤n, 1≤i≤s

;

� ξ is the parameter set excluding b, that is ξ = (α, β, ρ).

Note that the Zj 's are mutually dependent. Hence, in the next sections, some methods will be

developed considering the observations di�erence (increments), that is ∆Z = (Zj − Zj−1)1≤j≤n, with

Z0 = 0 by assumption on the initial deterioration level, and these random variables Zj − Zj−1 are only

pairwise dependent.

In the following, for sake of simplicity, the same notations are kept (∆ is omitted), that is
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� Zj = ZjT− − Z(j−1)T− for 1 ≤ j ≤ n;

� Z =
(
ZjT− − Z(j−1)T−

)
1≤j≤n = (Zj)1≤j≤n;

� z
(i)
j is the observed increments of the degradation of the ith maintained system between the instants

right before the j− 1th and the jth maintenance for 1 ≤ j ≤ n and 1 ≤ i ≤ s, which is a realisation

of the r.v. Zj ;

� z(i) =
(
z

(i)
j

)
1≤j≤n

;

� z =
(
z

(i)
j

)
1≤j≤n, 1≤i≤s

.

We provide another representation of such transformed observations in the lemma below.

Lemma 7. Let Zj be the degradation increment between the instants right before the j − 1th and the jth

maintenance. For all 1 ≤ j ≤ n, the r.v. Zj can be expressed with respect to independent and gamma

distributed random variables as follows:

Zj = Uj + Vj − Vj−1

with the convention V0 = 0 and where

� U1, . . . , Un,V1, . . . , Vn are independent;

� Uj ∼ Γ (µj (ξ) , b) for 1 ≤ j ≤ n;

� Vj ∼ Γ (νj (ξ) , b) for 1 ≤ j ≤ n,

and the shape functions µj and νj are such that

µj (ξ) =
[(
j(1− ρ)

)β − ((j − 1)(1− ρ)
)β]

αT β

and

νj (ξ) =
[(
j − (j − 1)ρ

)β − (j(1− ρ)
)β]

αT β .

Moreover, because of the independence of Uj and Vj, we also can write Zj as

Zj = Wj − Vj−1

where Wj and Vj−1 are independent, and Wj is gamma distributed Γ (ωj (ξ) , b) with

ωj (ξ) =
[(
j − (j − 1)ρ

)β − ((j − 1)(1− ρ)
)β]

αT β .

Proof. Let Uj be the increment of the underlying degradation process over the real time interval ((j − 1)T, (j − ρ)T ].

Therefore, we have

Uj = Z(j−ρ)T − Z(j−1)T

which can be written as
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6.1. Preliminary

Uj = X
(j)
V ((j−ρ)T,ρ) −X

(j)
V ((j−1)T,ρ).

Thus, we derive that Uj is gamma distributed Γ (a [V ((j − ρ)T, ρ)]− a [V ((j − 1)T, ρ)] , b), which

matches the de�nition of Uj as

a [V ((j − ρ)T, ρ)]− a [V ((j − 1)T, ρ)] = a [(1− ρ) jT ]− a [(1− ρ) (j − 1)T ]

= µ(ξ).

Note that from Equation (5.1), we have

Uj = ZjT − Z(j−1)T . (6.1)

Now, let Vj be the increment of the underlying degradation process over ((j − ρ)T, jT ), with

Vj = ZjT− − Z(j−ρ)T

= X
(j)
V (jT−,ρ) −X

(j)
V ((j−ρ)T,ρ)

and so Vj is gamma distributed Γ (ν(ξ), b). Once again from Equation (5.1), we have

Vj = ZjT− − ZjT . (6.2)

Therefore, Equations (6.1) and (6.2), provide the following expression for the observations increments:

ZjT− − Z(j−1)T− =
(
ZjT− − ZjT

)
+
(
ZjT − Z(j−1)T

)
−
(
Z(j−1)T− − Z(j−1)T

)
= Uj + Vj − Vj−1

= Wj − Vj−1

where Wj = Uj + Vj and where the random variables U1, . . . , Un,V1, . . . , Vn are independent.

Now the model identi�ability must be veri�ed. To this aim, we �rst need the result given in the

lemma below.

Lemma 8. Let X1, X2, Y1 and Y2 be independent and gamma distributed random variables with para-

meters (a1, b1), (a2, b1), (c1, b2) and (c2, b2) respectively. If X1 −X2
D
= Y1 − Y2, then

b1 = b2

a1 = c1

a2 = c2

Proof. Assume that X1 − X2
D
= Y1 − Y2. We �rst look for an expression of the third centered moment

of X1. Let us recall that the third moment of the di�erence of two random variables is equal to the
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di�erence of the moments. Let µ be the Lévy's measure associated to the random variable X1. By [11,

Eq. 2.32] and [11, Prop. 3.13], we have

E

(
(Xt − E (Xt))

3
)

=

∫
R

x3µ(dx) =

∫ ∞
0

x3a1
e−b1x

x
dx

and thus

E

(
(Xt − E (Xt))

3
)

=
2a1

b31

The expectations, variances and third centered moments of X1 −X2 and Y1 − Y2 are equal, which leads

to



a1

b1
− a2

b1
=
c1
b2
− c2
b2

a1

b21
+
a2

b21
=
c1
b22

+
c2
b22

2a1

b31
− 2a2

b31
=

2c1
b32
− 2c2

b32

The �rst and third equation provide b1 = b2, and then from the �rst and second equation we have

 a1 = c1

a2 = c2

which �nishes the proof.

Theorem 5. Let Z and Z̃ be two random vectors based on the ARA1 repair model with parameter θ and

θ̃ respectively, with θ, θ̃ ∈ Θ = (0,∞)2 × (0, 1)× (0,∞). If Z
D
= Z̃ and n ≥ 2, then θ = θ̃.

Proof. Assume that Z
D
= Z̃ and n = 2. Then W1

D
= W̃1 and W2 − V1

D
= W̃2 − Ṽ1, and from Lemma 8

we deduce



b = b̃

ω1(ξ) = ω1(ξ̃)

ν1(ξ) = ν1(ξ̃)

ω2(ξ) = ω2(ξ̃)

with ξ = (α, β, ρ) and ξ̃ = (α̃, β̃, ρ̃). The expressions of ω1, ω2 and ν1 lead to
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6.2. Method of moments estimators



b = b̃

αT β = α̃T β̃[
1− (1− ρ)β

]
αT β =

[
1− (1− ρ̃)β̃

]
αT β̃[

(2− ρ)β − (1− ρ)β
]
αT β =

[
(2− ρ̃)β̃ − (1− ρ̃)β̃

]
αT β̃

which can be written as

αT β = α̃T β̃

b = b̃

(1− ρ)β = (1− ρ̃)β̃

(2− ρ)β = (2− ρ̃)β̃

Let us set r = 1− ρ ∈ (0, 1), the last two equations become:

 rβ = r̃β̃

(1 + r)β = (1 + r̃)β̃

and because r ∈ (0, 1), we have β log(r) = β̃ log(r̃)

β log(1 + r) = β̃ log(1 + r̃)

and �nally

log(1 + r)

log(r)
=

log(1 + r̃)

log(r̃)
.

However, the function r 7→ log(1 + r)/ log(r) is injective over (0, 1), hence necessarily r = r̃. From this

we deduce that ρ = ρ̃, which leads to β = β̃ and then α = α̃. Therefore θ = θ̃.

In other words, the model parameters are identi�able as soon as the observations are conducted twice,

at times T− and 2T−. Now, we go on with the development of parametric estimation methods.

6.2 Method of moments estimators

Here we deal with the Moments Estimation (ME) method, which is the exact copy of the method applied

to the ARD models. Hence, very few details are given in the following. See Section 2.2 for the detailed

de�nition of the method as well as its application. First, let us recall that this method is based on the

minimization of the distance function D de�ned as

81
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D(θ ,θ0) =

d∑
i=1

n∑
j=1

(
mi(θ , jT

−)−mi(θ0 , jT
−)
)2

and we �rst check the parameters identi�ability in this framework through the following proposition.

Proposition 8. The parameters of the ARA1 model are identi�able from the ME method, that is

D(θ ,θ0) = 0 implies that θ = θ0 for all θ,θ0 ∈ Θ, as soon as d ≥ 2 and n ≥ 3.

Proof. Here we prove that the assertion D(θ ,θ0) = 0 ⇒ θ = θ0 is true ∀θ,θ0 ∈ Θ as soon as n ≥ 3

and d ≥ 2. Assume that D(θ ,θ0) = 0, and let θ = (α , β , b , ρ) and θ0 = (α0 , β0 , b0 , ρ0) be in Θ. So

given the function D, we have for all j in {1 , ... , n}: m1(θ , jT−) = m1(θ0 , jT
−)

m2(θ , jT−) = m2(θ0 , jT
−)

which is equivalent to

α (j − ρ(j − 1))
β
T β

b
=
α0 (j − ρ0(j − 1))

β0 T β0

b0

α (j − ρ(j − 1))
β
T β

b2
=
α0 (j − ρ0(j − 1))

β0 T β0

b20

When j = 1, we have
αT β

b
=
α0T

β0

b0
αT β

b2
=
α0T

β0

b20

which leads to

 αT β = α0T
β0

b = b0

(6.3)

Since the expectations and the variances have similar expression, considering both of them only allows

the identi�ability of the scale parameter and the quantity αT β . Hence only the expectation is considered

in the following, and taking into account the second and third observation times leads to

α (2− ρ)
β
T β

b
=
α0 (2− ρ0)

β0 T β0

b0

α (3− 2ρ)
β
T β

b
=
α0 (3− 2ρ0)

β0 T β0

b0

and from System (6.3) we deduce
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6.2. Method of moments estimators

 (2− ρ)
β

= (2− ρ0)
β0

(3− 2ρ)
β

= (3− 2ρ0)
β0

The parameters ρ, ρ0 ∈ [0, 1), thus the quantities 3 − 2ρ and 3 − 2ρ0 are strictly positive and we

have

log(2− ρ)

log(3− 2ρ)
=

log(2− ρ0)

log(3− 2ρ0)

and because the function

f :7→ log(2− x)

log(3− 2x)

is injective over [0, 1), we conclude that θ = θ0.

In other words, the identi�ability holds from the ME method as soon as the systems are observed

three times, at times T−, 2T− and 3T−, and if at least the �rst two moments (expectation and variance)

are used. Then, an estimation θ̂ of θ0 can be obtained through

θ̂ = arg min
θ∈Θ

D̂(θ)

with D̂(θ) the empirical version of D(θ ,θ0) (see Equation (2.1)). Let us set n ≥ 3 and d = 2, and

recall the used parametrization for the ME method: θ̃ = (µ, η, β, ρ) with µ = α/b and η = α/b2, that is

α = µ2/η and b = µ/η). Thus, we have

D̂(θ) = D̂(θ̃)

=
(
µ2 + η2

) n∑
j=1

((
j − (j − 1)ρ

)β
T β
)2

− 2µ

 n∑
j=1

(
j − (j − 1)ρ

)β
T βm̂1

(
jT−

)
− η

 n∑
j=1

(
j − (j − 1)ρ

)β
T βm̂2

(
jT−

)+

n∑
j=1

(
m̂2

1

(
jT−

)
+ m̂2

2

(
jT−

) )

where m̂1 (jT−) and m̂2 (jT−) are the empirical expectations and variances of ZjT− . Now we look for

zeros of the partial derivatives of D̂ with respect to µ and η:

 ∂µD̂(θ̃) = 0

∂ηD̂(θ̃) = 0

which leads to
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

µ =

n∑
j=1

(
j − (j − 1)ρ

)β
T βm̂1

(
jT−

)
n∑
j=1

((
j − (j − 1)ρ

)β
T β
)2

ρ =

n∑
j=1

(
j − (j − 1)ρ

)β
T βm̂2

(
jT−

)
n∑
j=1

((
j − (j − 1)ρ

)β
T β
)2

Given these expressions for µ and η, the function D̂(θ̃) can be written as

 n∑
j=1

(
m̂2

1

(
jT−

)
+ m̂2

2

(
jT−

) )−
 n∑
j=1

(
j − (j − 1)ρ

)β
T βm̂1

(
jT−

)2

+

 n∑
j=1

(
j − (j − 1)ρ

)β
T βm̂2

(
jT−

)2

n∑
j=1

((
j − (j − 1)ρ

)β
T β
)2

which becomes a function only depending on β and ρ. In order to obtain estimates β̂ and ρ̂ of β and ρ,

it remains to minimize numerically this function, which is equivalent to maximize the quantity

 n∑
j=1

(
j − (j − 1)ρ

)β
T βm̂1

(
jT−

)2

+

 n∑
j=1

(
j − (j − 1)ρ

)β
T βm̂2

(
jT−

)2

n∑
j=1

((
j − (j − 1)ρ

)β
T β
)2

(6.4)

Finally, the estimator θ̂ of θ has the following expression



 n∑
j=1

(
j − (j − 1)ρ̂

)β̂
T β̂m̂1

(
jT−

)2

 n∑
j=1

(
j − (j − 1)ρ̂

)β̂
T β̂m̂2

(
jT−

) n∑
j=1

((
j − (j − 1)ρ̂

)β̂
T β̂
)2

 , β̂ , ρ̂ ,

n∑
j=1

(
j − (j − 1)ρ̂

)β̂
T β̂m̂1

(
jT−

)
n∑
j=1

(
j − (j − 1)ρ̂

)β̂
T β̂m̂2

(
jT−

)



6.3 Maximum Likelihood Estimation

In this section we deal with the MLE method. We begin with the case where one single system is observed

(s = 1) and we start by computing the joint p.d.f. of the random vector Z, from where the likelihood

function is easily derived when s > 1.
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We know from Theorem 5 that the model identi�ability holds only if n ≥ 2. Then, let us set n ≥ 2,

the joint p.d.f. fZ of Z is given by

fZ (Z) =

∫
Rn−1

fZ|Vn−1
(Z | v1, . . . , vn−1) fVn−1

(v1, . . . , vn−1) dv1 . . . dvn−1

where Z = (z1, z2, · · · , zn) ∈ R+ × Rn−1. The r.v. Vj are independent, then

fVn−1
(v1, . . . , vn−1) =

n−1∏
j=1

fVj (vj)

and because Zj = Uj + Vj − Vj−1, we can express the p.d.f. fZ|Vn−1
as

fZ1|Vn−1
(z1 | v1, . . . , vn−1) = fU1+V1|V1

(z1 | v1) = fU1
(z1 − v1) ,

fZj |Vn−1
(zj | v1, . . . , vn−1) = fUj+Vj−Vj−1|Vj−1,Vj (zj | vj−1, vj) = fUj (zj + vj−1 − vj)

for 1 < j < n, and

fZn|Vn−1
(zn | v1, . . . , vn−1) = fUn+Vn−Vn−1|Vn−1

(zn | vn−1) = fWn
(zn + vn−1) .

Therefore, with the convention v0 = 0, the joint p.d.f. fZ of Z can be expressed as follows:

fZ (Z) =

∫
Rn−1

n−1∏
j=1

fVj (vj) fUj (zj + vj−1 − vj)

× fWn
(zn + vn−1) dv1 . . . dvn−1. (6.5)

We now reduce the integration domain to [0, 1]
n−1 in order to be able to apply either Monte Carlo

(MC) or Quasi Monte Carlo (QMC) methods for the integrals computations. This will prevent issues

within the implementation of this method, since the computation of an integral over Rn−1 might be an

issue when n is large.

Proposition 9. The joint p.d.f. of the random vector Z can be expressed as

fZ (Z) =

n−1∏
j=1

(
Cj −mj+1

) ∫
[0,1]n−1

Gθ(x, z) dx1 . . . dxn−1

where x = (x1 . . . xn−1), mj = max(0,−zj), Cj =

j∑
i=1

zi, and

Gθ(x, z) =

n−1∏
j=1

fVj ((Cj −mj+1) xj +mj+1)
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×
n−1∏
j=1

fUj (zj + (Cj−1 −mj) xj−1 − (Cj −mj+1) xj +mj −mj+1)

× fWn

(
zn + xn−1

(
Cn−1 −mn

)
+mn

)
Proof. The proof stands in two steps. First, we prove that the integral domain can be reduced to the set
n−1∏
j=1

(
max(0,−zj+1) , Cj

)
for all 1 ≤ j ≤ n− 1. Then, a variable change will ensure the result.

The function to integrate in Equation (6.5) is a product of p.d.f., which can be zero over Rn−1. Hence,

in order to reduce the integral domain, we look for a subset of Rn−1 containing all the value of the vj for

which the p.d.f. are non zero. Here, the functions fUj , fVj and fWn
are all non zero if

� 0 < vj for 1 ≤ j ≤ n− 1;

� 0 < zj + vj−1 − vj for 1 ≤ j ≤ n− 1;

� max(0,−zn) < vn−1.

Let us set mj = max(0,−zj) and Cj =

j∑
i=1

zi > 0 for 1 ≤ j ≤ n − 1, and show by induction that

mj+1 < vj < Cj for all 1 ≤ j ≤ n− 1.

If j = 1, then 0 < z1 + v0 − v1 and v1 < z1 = C1. Similarly, 0 < z2 + v1 − v2 hence v2 − z2 < v1, and

because v2 > 0 we have −z2 < v1, and 0 < v1 implies that m2 < v1. Hence m2 < v1 < C1.

Now assume that mj < vj−1 < Cj−1 for 2 ≤ j ≤ n− 2, the aim is to show that mj+1 < vj < Cj . We

know by assumption that

� vj , vj+1 > 0

� 0 < zj + vj−1 − vj

� 0 < zj+1 + vj − vj+1

and vj < zj + Cj−1 = Cj because vj < zj + vj−1. Also, vj+1 − zj+1 < vj , vj > 0 and vj−1 > 0, which

implies that −zj+1 < vj and �nally mj+1 < vj because of the positivity of vj .

Finally, if j = n−1 we know that mn < vn−1. Moreover, vn−1 < zn−1 +vn−2 < zn−1 +Cn−2 = Cn−1,

which leads to mn < vn−1 < Cn−1. We conclude that the integral domain can be written as

n−1∏
j=1

(
max(0,−zj+1) , Cj

)
.

Note that the p.d.f. might be zero within this domain, but cannot be non zero outside. Now, the following

change of variables can be applied. Let us set

xj =
vj −mj+1

Cj −mj+1
for all 1 ≤ j ≤ n− 1

hence

dvj = (Cj −mj+1) dxj
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6.4. Half data method

for 1 ≤ j ≤ n− 1, and the integration domain becomes [0, 1]
n−1. Finally, substituting the vj and the dvj

by xj and dxj leads to the result.

We now consider s observed systems. Let us set S (zi,n) such that

S (zi,n) =

n−1∏
j=1

(
Ci,j −mi,j+1

)

with Ci,j =
∑j
k=1 zi,k and mi,j+1 = max (0,−zi,j+1). The log-likelihood is easily derived from the

previous result, which has the following expression

` (θ | z) =

s∑
i=1

logS (zi,n) +

s∑
i=1

log

∫
[0,1]n−1

Gθ(x, z) dx1 . . . dxn−1. (6.6)

6.4 Half data method

We recall that the random variables Zj = Uj + Vj − Vj−1 for 1 ≤ j ≤ n are not independent, which

leads to a cumbersome expression for the joint p.d.f., which is di�cult to assess from a numerical point

of view, as we have seen in the previous section. However, the Zj 's with non consecutive indices j's can

be seen to be independent, as these variables are pairwise dependent. We hence follow the idea of the

sub-sample methods (see [4, 21]), and we consider only one-out-of two Zj 's, restricting the information

to either odd indices, or even indices, and letting down the other ones.

6.4.1 Half data based on the odd indexes

For sake of simplicity, n is assumed here to be odd, and we set p = (n+ 1)/2. The half data vector Z̃ is

composed by the r.v.s. Zj whose index is odd, that is

Z̃ =
(
Z2j−1

)
1≤j≤p

=
(
W2j−1 − V2j−2

)
1≤j≤p

where the Z2j−1 are independent. Based on Lemma 8, the identi�ability holds if the following system

of equations
ω2j−1(ξ) = ω2j−1(ξ0)

ν2j−2(ξ) = ν2j−2(ξ0)

(6.7)

for j = 1, . . . , p has a unique solution in (R+)
2 × (0, 1), that is ξ = ξ0. We �rst consider the case n = 3

(where two observations per trajectory are used), which will be seen to be non identi�able on the whole

domain. We next go the the case n=5 (where three observations per trajectory are used), which will be

shown to provide identi�ability on the whole domain.

Case n = 3

System (6.7) becomes :
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

αT β = α0T
β0

[
(3− 2ρ)β − (2− 2ρ)β

]
αT β =

[
(3− 2ρ0)β0 − (2− 2ρ0)β0

]
α0T

β0

[
(2− ρ)β − (2− 2ρ)β

]
αT β =

[
(2− ρ0)β0 − (2− 2ρ0)β0

]
α0T

β0

which is equivalent to

αT β = α0T
β0

(1 + 2r)β − (2r)β = (1 + 2r0)β0 − (2r0)β0

(1 + r)β − (2r)β = (1 + r0)β0 − (2r0)β0

with r = 1 − ρ and r0 = 1 − ρ0. We concentrate on the last two equations and try to identify the

cases where they imply that (r, β) = (r0, β0). In such cases, the �rst equation leads to α = α0, and

identi�ability is obtained.

Let us set

h1 (r, β) = (1 + 2r)
β − (2r)

β

h2 (r, β) = (1 + r)
β − (2r)

β

with β > 0 and r ∈ (0, 1).

Lemma 9. Let (r, β) and (r0, β0) be such that hi (r, β) = hi (r0, β0) for i = 1, 2. Then,

1. if β0 = β or r = r0 then (r, β) = (r0, β0);

2. if β0 ≤ 1 then (r, β) = (r0, β0);

3. if β0 > 1 then β > 1;

4. if β0, β > 1, then β0 > β implies r > r0 and β0 < β implies r < r0;

5. if (r0, β0) is such that h2(r0, β0) < 1, then (r, β) = (r0, β0).

Proof. The partial derivatives of h1 and h2 are given by

∂rh1 (r, β) = 2β
[
(2r + 1)

β−1 − (2r)
β−1
]

∂βh1 (r, β) = (2r + 1)
β

ln (2r + 1)− (2r)
β

ln (2r)

∂rh2 (r, β) = β
(

(r + 1)
β−1 − 2 (2r)

β−1
)

∂βh2 (r, β) = (r + 1)
β

ln (r + 1)− (2r)
β

ln (2r)
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Note that both partial derivatives with respect to β are strictly positive. Moreover, ∂rh1 (r, 1) = 0 and

the quantity ∂rh1 (r, β) has the same sign as β − 1, and if β ≤ 1 then ∂rh2 (r, β) < 0.

Also, when β > 1, the partial derivative ∂rh2 (r, β) changes sign at g(β) from positive to negative, where

g(β) =
1

2
β
β−1 − 1

and β 7→ g(β) is non-decreasing from (1,∞) to (0, 1).

1. Assume β = β0. If β ≤ 1, then r 7−→ h2 (r, β) is injective and thus h2(r, β) = h2(r0, β0) implies

r = r0. Similarly, if β > 1 then r 7−→ h1 (r, β) is injective and r = r0.

Assume now that r = r0, hence β = β0 because the function β 7−→ h1 (r, β) is injective.

2. Assume β0 = 1, thus h1 (r0, 1) = 1 and by assumption h1 (r, β) = 1. However if β > 1, then

h1 (r, β) > h1 (0, β) = 1 and in the same way, if β < 1, then h1 (r, β) < 1. This implies β = β0 = 1,

and r = r0 is directly obtained from the previous case.

3. Assume β0 < 1, thus h1 (r0, β0) < h1 (r0, 1) = 1 = h1 (r, 1) and so h1 (r, β) < 1, hence β < 1.

If β > β0, then h1 (r, β) > h1 (r, β0). Moreover h1 (r, β) = h1 (r0, β0) hence

0 = h1 (r, β)− h1 (r0, β0)

= h1 (r, β)− h1 (r, β0) + h1 (r, β0)− h1 (r0, β0)

and so h1 (r, β0)− h1 (r0, β0) < 0 because h1 (r, β) > h1 (r, β0), which leads to r > r0.

Let us now de�ne h3 such that h3 (r, β) = h1 (r, β)−h2 (r, β). We have h3 (r, β) = (1+2r)β−(1+r)β

and

∂rh3 (r, β) = β
(

2 (2r + 1)
β−1 − (1 + r)

β−1
)
> 0;

∂βh3 (r, β) = (2r + 1)
β

ln (2r + 1)− (1 + r)
β

ln (1 + r) > 0.

Based on the fact that β > β0 and r > r0, it can be stated that

h3 (r, β) > h3 (r0, β0) ,

which is impossible because h3 (r, β) = h3 (r0, β0) by de�nition, hence (r, β) = (r0, β0). In the same

way, this result holds when β < β0.

4. Assume β0 > 1, then h1 (r, β) = h1 (r0, β0) > h1 (r0, 1) = 1 = h1 (r, 1) hence β > 1.

With similar arguments as in the previous case, if β < β0, then r > r0. Finally if β > β0, then

r < r0 by symmetry.

5. If β0 ≤ 1 then (r, β) = (r0, β0) from the second case.

Assume β0 > 1 and h2(r0, β0) < 1. Then, we know from the third case that β > 1, which implies

that r 7→ h2(r, β) is increasing over (0, g(β)]. Also, note that h2(0, β) = 1 for all β > 0, and
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because r 7→ h2(r, β) is increasing over (0, g(β)], necessarily h2(r, β) > 1, which is impossible as

h2(r0, β0) = h2(r, β). Hence r0 > g(β0) and r > g(β) with similar arguments.

Also, either β0 > β and r > r0, or β0 < β and r < r0. If β0 > β and r > r0 then h2(r0, β0) >

h2(r0, β) because ∂βh2(r, β) > 0. Moreover, r > r0 > g(β0) > g(β) and the function r 7→ h2(r, β)

is decreasing over [g(β), 1), hence h2(r0, β) > h2(r, β). This leads to h2(r0, β0) > h2(r, β) which is

impossible since h2(r0, β0) = h2(r, β). In the same way, the result holds when β0 < β and r < r0.

Corollary 2. Let (α, β, r, α0, β0, r0) be such that (6.7) is satis�ed. If β0 ≤ 1 or h2(r0, β0) < 1 then

ξ = ξ0 as soon as n ≥ 3.

Proof. From Lemma 9, if β0 ≤ 1 or h2(r0, β0) < 1 then (β, r) = (β0, r0), and the �rst line of (6.7)

ensures that α = α0. Let us recall that r = 1−ρ and r0 = 1−ρ0, this leads to the conclusion ξ = ξ0.

The remaining cases now are 1 < β < β0 and r < r0, or 1 < β0 < β and r > r0.

Let (r, β) and (r0, β0) be such that: (*)

• hi (r, β) = hi (r0, β0) for i = 1, 2,

• 1 < β < β0 and r0 < r.

Note that the case where 1 < β0 < β and r > r0 is identical to this one by symmetry, hence the study

of one of the cases is enough.

Now, we investigate whether Conditions (*) are compatible. To this end, let us now de�ne the function

u2 by

u2 (γ) = (1 + γr)
β − (2r)

β − (1 + γr0)
β0 + (2r0)

β0

for γ > 0, where the parameters (r, β, r0, β0) are �xed and omitted in the notation u2(γ), for sake of

simpli�cation. From Conditions (*) we have u2 (1) = u2 (2) = 0, which is possible only if u2 is non-

monotonic over [1, 2]. Therefore, in the following, the monotonicity of u2 is studied.

Lemma 10. Suppose Conditions (*) to hold. Then u′2 (γ) > 0 if and only if rβ
r0β0

> w (γ), with

w (γ) =
(1 + γr0)

β0−1

(1 + γr)
β−1

for all γ > 0.

Moreover, w (γ) reaches its minimum at γ0 given by

γ0 =
r0 − r − r0β0 + rβ

rr0 (β0 − β)
.

Proof. The derivative of u2 is given by

u′2 (γ) = rβ (1 + γr)
β−1 − r0β0 (1 + γr0)

β0−1
,

thus u′2 (γ) > 0 if and only if rβ
r0β0

> w (γ). Then, w′ (γ) has the same sign as the quantity

(β0 − 1) r0 (1 + γr)− (β − 1) r (1 + γr0)
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which is positive if and only if γ > γ0, and so w (γ) > w (γ0) for all γ 6= γ0.

Corollary 3. Suppose Conditions (*) to hold. If the function u2 is non-monotonic over [1, 2], then one

of the following assertions holds :

� γ0 ≤ 1 and rβ
r0β0

∈ (w (1) , w (2)) with w (1) < w (2);

� γ0 ≥ 2 and rβ
r0β0

∈ (w (2) , w (1)) with w (2) < w (1);

� γ0 ∈ (1, 2) and rβ
r0β0

∈ (w (γ0) ,max (w (1) , w (2))).

Proof. Remember from Lemma 10 that the function w is �rst decreasing on [0, γ0] and next increasing

on [γ0,∞), and note that there are three possible cases, according to whether γ0 ≤ 1, γ0 ≥ 2 or γ0 ∈ (1, 2).

Assume �rst that γ0 ≤ 1. Then w is increasing on [1, 2], and hence w (1) < w (2). Based on Lemma

10 again, if the function u2 is non monotonic, it means that rβ
r0β0

must belong to (w (1) , w (2)), otherwise,

the sign of u′2 would remain a constant on [1, 2].

In the same way, if γ0 ≥ 2, then w is decreasing on [1, 2], and hence w (2) < w (1). Also, rβ
r0β0

must

belong to (w (2) , w (1)), with similar arguments.

Finally, assume that γ0 ∈ (1, 2). Then, the function w is decreasing on [1, γ0] and increasing on [γ0, 2],

so that

w ([1, 2]) = [w (γ0) ,max (w (1) , w (2))] .

If the function u2 is non monotonic, it now means that rβ
r0β0

must belong to (w (γ0) ,max (w (1) , w (2))).

Lemma 11. Suppose Conditions (*) to hold. Then γ0 > 1 implies rβ
r0β0

≥ w (1).

Proof. Assume that γ0 > 1. Our aim is to show that rβ
r0β0

≥ w (1) which is equivalent to prove that

g (r, β) ≤ 0 (6.8)

with g (r, β) = r0β0 (1 + r0)
β0−1 − rβ (1 + r)

β−1, for all r in (0, 1) and β > 0 such that γ0 > 1.

As a �rst step, let us show that γ0 > 1 implies that

r > v1 (β) = r0
β0 − 1

β − 1− r0 (β0 − β)
·

Let us note that γ0 > 1 can be written as

r

1 + r
>

r0

1 + r0

β0 − 1

β − 1
, (6.9)
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or equivalently as

r

(
1− r0

1 + r0

β0 − 1

β − 1

)
> 1. (6.10)

Let us check that the factor between brackets is positive in the previous expression. As r/ (r + 1) < 1,

Inequality (6.9) entails that

1 >
r0

1 + r0

β0 − 1

β − 1
(6.11)

which can be written as

β > β1 ≡ 1 +
r0

1 + r0
(β0 − 1) .

Now it is easy to check that based on β > β1 that Inequality (6.11) is true, and we now obtain from

(6.10) that

r >
1

1− r0
1+r0

β0−1
β−1

− 1 = v1 (β) .

Based on the fact that g is decreasing with respect to r, we now obtain that

g (r, β) < g (v1 (β) , β) .

In order to show (6.8), it is now su�cient to prove that g (v1 (β) , β) < 0. We have

g (v1 (β) , β) = r0β0 (1 + r0)
β0−1 − r0 (β0 − 1)

β − 1− r0 (β0 − β)
β

(
1 +

r0 (β0 − 1)

β − 1− r0 (β0 − β)

)β−1

= r0β0 (1 + r0)
β0−1 − r0 (β0 − 1)

β − 1− r0 (β0 − β)
β

(r0 + 1)
β−1

(β − 1)
β−1

(β + βr0 − r0β0 − 1)
β−1

= r0 (r0 + 1)
β−1

[
β0 (1 + r0)

β0−β − β0 − 1

β − 1
β

(β − 1)
β

(β + βr0 − r0β0 − 1)
β

]
= r0 (r0 + 1)

β−1
φ (β)

with

φ (β) = β0 (1 + r0)
β0−β − (β0 − 1)

β

β − 1

1(
1− r0

β0−β
β−1

)β .
The quantity g (v1 (β) , β) has the same sign as φ (β), hence it remains to prove that φ (β) ≤ 0. First, we

have β/(β − 1) > β0/(β0 − 1) because β < β0. This implies

φ (β) < β0

(1 + r0)
β0−β − 1(

1− r0
β0−β
β−1

)β

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and consequently it is su�cient to show that

β ln

(
1− r0

β0−β
β−1

1 + r0

)
< −β0 ln (1 + r0) . (6.12)

Let us set z such that

z =
β0 − β
β − 1

·

Inequation (6.12) is equivalent to τ (z) < −β0 ln (1 + r0) where

τ (z) =
z + β0

z + 1
ln

(
1− r0z

1 + r0

)
with 0 < z <

β0 − β1

β1 − 1
=

1

r0
.

The derivative of τ is given by

τ ′ (z) = − β0 − 1

(z + 1)
2 ln

(
1− r0z

1 + r0

)
+
z + β0

z + 1

−r0

1− r0z

and has the same sign as

σ (z) = − (β0 − 1) ln

(
1− r0z

1 + r0

)
− r0

(z + β0) (z + 1)

1− r0z
.

Also

σ′ (z) = − (β0 − 1)
−r0

1− r0z
− r0

1

(1− r0z)
2

(
−r0z

2 + 2z + β0 + r0β0 + 1
)

= r0 (z + 1)
zr0 − r0β0 − 2

(zr0 − 1)
2

and σ′ (z) < 0 because zr0 < 1. Thus the function σ is non-increasing, with σ (0) < 0, therefore

σ (z) < 0. This leads to τ ′ (z) < 0 for all 0 < z < 1
r0
, which implies that τ is also non-increasing, with

τ (0) = −β0 ln (1 + r0). Therefore, Inequation (6.12) is satis�ed because

τ (z) < −β0 ln (1 + r0)

for all 0 < z < 1
r0
, which implies g(r, β) ≤ 0 and �nally rβ

r0β0
≥ w (1).

Corollary 4. Suppose Conditions (*) to hold. If the function u2 is non-monotonic, then γ0 < 2 and
rβ
r0β0

∈ (w (1) , w (2)), with w (1) < w (2).

Proof. From the second point of Corollary 3, if u2 is non-monotonic and γ0 ≥ 2, then rβ
r0β0

∈ (w (2) , w (1)).

This is inconsistent with the results of Lemma 11 because γ0 > 1 implies rβ
r0β0

≥ w(1), hence this point

cannot be veri�ed. Moreover, in the case where γ0 ∈ (1, 2), we have rβ
r0β0

∈ (w (γ0) ,max (w(1), w (2))),

that is either rβ
r0β0

∈ (w (γ0) , w (2)) or rβ
r0β0

∈ (w (γ0) , w (1)). Once again because γ0 > 1 implies
rβ
r0β0

≥ w(1), the second case is impossible. It remains the case rβ
r0β0

∈ (w (γ0) , w (2)), but w(1) > w (γ0)

by de�nition of γ0, hence necessarily
rβ
r0β0

∈ (w (1) , w (2)) with w (1) < w (2).

In summary, if hi (r, β) = hi (r0, β0) for i = 1, 2, then the identi�ability holds when β0 ≤ 1 or

h2 (r0, β0) < 1, and in the case where β0 > 1 we know that β > 1. Moreover, if β < β0 and r > r0 we

have from Corollary 4:
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� γ0 < 2;

�
rβ
r0β0

∈ (w (1) , w (2)), with w (1) < w (2).

We now look at the possible zone for (r, β) with a �xed (r0, β0) based on the previous results, from a

numerical point of view.

Example 7. In Figure 6.1 are illustrated the possible zones for (r, β) based on Corollary 4 with

(r0, β0) = (0.01, 5) and (r0, β0) = (0.05, 4). The blue hatched area corresponds to the (r, β) such that
rβ
r0β0

> w(1), while the grey hatched area corresponds to the (r, β) such that rβ
r0β0

< w(2), and in both

zones γ0 < 2. Therefore, from Corollary 4, if there is a solution (r, β) satisfying Conditions (*) then

(r, β) belongs to the intersection of the hatched zones, which can be very small as seen in the right-hand

plot.
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Figure 6.1: Both graphs highlight the possible areas for (r, β) ful�lling Conditions (*) given a �xed
(r0, β0), based on Corollary 4. The blue hatched area corresponds to the (r, β) such that γ0 < 2 and
rβ
r0β0

> w(1), while the grey hatched area corresponds to the (r, β) such that γ0 < 2 and rβ
r0β0

< w(2). The
red crosses represent the values of (r0, β0), with (r0, β0) = (0.01, 5) on the left-hand plot and (r0, β0) =
(0.05, 4) on the right-hand one.

Up to now, we only know that, if hi(r, β) = hi(r0, β0) for i = 1, 2 with 1 < β < β0 and r0 < r, then

(r, β) should be in the intersection of the two hatched zones in Figure 6.1, obtained through Corollary

4. Based on some numerical investigations, it seems that such an intersection is never empty whatever

(r0, β0) is. Hence, we are not able to conclude about possible identi�ability, based on the previous

theoretical results.

We next investigate identi�ability from a numerical point of view. For each (r0, β0) in (0, 1)× (1,∞), let

us de�ne the function

g(r0,β0)(r, β) =
(
h1(r, β)− h1(r0, β0)

)2

+
(
h2(r, β)− h2(r0, β0)

)2

,
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which is zero as soon as hi(r, β) = hi(r0, β0) for i = 1, 2. We begin with a �rst numerical illustration of

the behavior of this function.

Example 8. Let us set (r0, β0) ≈ (0.07, 4.14). The function g(r0,β0)(r, β) is plotted in Figure 6.2. It can

be seen that besides (r0, β0) where the function g(r0,β0)(r, β) is zero, there is another point (r, β) = (0.1, 3)

for which this function is very close to zero, and there is one single such point. From a numerical point of

view, there hence seems to exist a solution to Conditions (*), and identi�ability seems not to hold. The

possible area for (r, β) given by Corollary 4 is plotted in Figure 6.3, where (r, β) = (0.1, 3) is indicated

by a red cross. We observe that (r, β) = (0.1, 3) is in the possible area that was theoretically obtained,

which is coherent. More speci�cally, we have:

� hi(r, β) ≈ hi(r0, β0) for i = 1, 2;

� 1 < β < β0 and r0 < r;

� γ0 ≈ −2.48 < 2;

�
rβ
r0β0

≈ 1.03 ∈
(
w(1), w(2)

)
where w(1) ≈ 1.02 and w(2) ≈ 1.05.

Similar results were found dealing with both points from Example 7. In each case, a unique (r, β)

was found: (r, β) ≈ (0.0213, 2.385) when (r0, β0) = (0.01, 5) and (r, β) ≈ (0.072, 2.853) when (r0, β0) =

(0.05, 4).

These numerical counter-examples lead us to conjecture that the identi�ability does not hold over the

entire set (0, 1)× (0,∞) when n = 3.

Figure 6.2: The surface represents the common logarithm of g(r0,β0)(r, β) depending on (r, β), with
(r0, β0) ≈ (0.07, 4.14). Both blue lines highlight the two points (r0, β0) and (r, β) = (0.1, 3) for which
g(r0,β0)(r, β) ≈ 0.

Now, we are looking for the zone where identi�ability does not hold, from a numerical point of view.

For some (r0, β0) ∈ (0, 1)× (1, 50), approximate solutions (r, β) such that g(r0,β0)(r, β) = 0 are searched.

To be more speci�c, for each (r0, β0), we look for (r, β) such that
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Figure 6.3: The possible area for (r, β) ful�lling Conditions (*) given (r0, β0) ≈ (0.07, 4.14), based on
Corollary 4, is plotted in blue. Between the curves, we have γ0 < 2 and rβ

r0β0
∈ (w (1) , w (2)), with

w (1) < w (2). The red crosses represent (r, β) and (r0, β0).

� (r, β) 6= (r0, β0);

� (r, β) is not in a neighbourhood of (r0, β0), that is ‖(r0, β0)− (r, β)‖1 > 0.01;

� g(r0,β0)(r, β) < 10−9.

For each (r0, β0) that has been considered in the study, either there was no solution for (r, β), so that it

seems that such a (r0, β0) belongs to the identi�ability zone, either there was one single solution (r, β)

(as in the previous examples), and identi�ability does not seem to hold for such a (r0, β0). The points

where identi�ability does not seem to hold are indicated in Figure 6.4 with a black cross. The red line

corresponds to the boundary of the zone containing such non identi�able points, and no solution has

been found outside this area. The area where the identi�ability were proved to hold is also plotted in

blue. Besides this zone, the previous numerical results lead us to the conjecture that the

identi�ability does not hold within the red area, while it holds outside.
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6.4. Half data method

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

r

be
ta

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

r

be
ta

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

r

be
ta

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

Non identifiable points
Boundary
Identifiable area

Figure 6.4: The black points are the values for (r0, β0) for which there exists (r, β) such that
g(r0,β0)(r, β) < 10−9 and (r, β) is not in a neighbourhood of (r0, β0). The red lines correspond to the
boundary of such points, and the area where theoretical identi�ability holds is plotted in blue.

Case n = 5

The system (6.7) becomes :

αT β = α0T
β0

h1(r, β) = h1(r0, β0)

h2(r, β) = h2(r0, β0)

h3(r, β) = h3(r0, β0)

h4(r, β) = h4(r0, β0)

(6.13)

where

h3 (r, β) = (1 + 4r)
β − (4r)

β

h4 (r, β) = (1 + 3r)
β − (4r)

β

Here Conditions (*) have to be rede�ned as two equations were added to the previous system.

Let (r, β) and (r0, β0) be such that: (**)

• hi (r, β) = hi (r0, β0) for i ∈ {1, 2, 3, 4}
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Chapter 6. Parametric inference for the Arithmetic Reduction of Age model of order one

• 1 < β < β0 and r0 < r.

As before for n = 3, let us de�ne u4 such that

u4 (γ) = (1 + γr)
β − (4r)

β − (1 + γr0)
β0 + (4r0)

β0

for γ ∈ [3, 4]. Hence from Conditions (**) we have

u2 (1) = u2 (2) = 0

u4 (3) = u4 (4) = 0

Using similar arguments as those in Corollary 3 leads to the following corollary for u4.

Corollary 5. Suppose Conditions (**) to hold. If the function u4 is non-monotonic over [3, 4], then one

of the following assertions holds :

� γ0 ≤ 3 and rβ
r0β0

∈ (w (3) , w (4));

� γ0 ≥ 4 and rβ
r0β0

∈ (w (4) , w (3));

� γ0 ∈ (3, 4) and rβ
r0β0

∈ (w (γ0) ,max (w (3) , w (4))).

In Figure 6.5, the same area as in Figure 6.3 is plotted in blue, as well as the area where the results

of Corollary 5 are satis�ed, for (r0, β0) ≈ (0.07, 4.14). The intersection of the two areas seems empty,

which indicates that identi�ability holds in this case.
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Figure 6.5: Both areas match the points (r, β) for which either the results of Corollary 4 (blue area)
or the results of Corollary 5 (grey area) are satis�ed, with β0 > β, r > r0 and (r0, β0) ≈ (0.07, 4.14).
The red cross represents (r0, β0).

Theorem 6. (Identi�ability) Let (ξ, ξ0) be such that (6.13) is satis�ed, then ξ = ξ0 as soon as n ≥ 5.
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6.4. Half data method

Proof. From Lemma 2, if β0 ≤ 1 then the identi�ability holds. Now assume Conditions (**) to hold.

Necessarily γ0 < 2 and rβ
r0β0

∈ (w (1) , w (2)) based on Corollary 4.

If γ0 ≤ 1, then rβ
r0β0

∈ (w (1) , w (2)) and rβ
r0β0

∈ (w (3) , w (4)) from Corollary 5. However, w (γ) is

non-decreasing over [1, 4], which is inconsistent. Hence γ0 ∈ (1, 2).

Then, rβ
r0β0

∈ (w (1) , w (2)) and rβ
r0β0

∈ (w (3) , w (4)) and thus rβ
r0β0

∈ (max (w (1) , w (3)) ,min (w (2) , w (4))).

The function w is non-decreasing over (γ0, 4), which leads to w (4) > w (3) > w (2) as γ0 < 2, and we

know that w (1) < w (2). Hence max (w (1) , w (3)) = w (3) and min (w (2) , w (4)) = w (2). Therefore
rβ
r0β0

∈ (w (3) , w (2)), which is impossible because w (3) > w (2).

As a conclusion, the case where 1 < β < β0 and r > r0 is impossible, as well as the case β > β0 > 1 and

r < r0 by symmetry, thus (β, r) = (β0, r0) and �nally ξ = ξ0.

6.4.1.0.1 Likelihood expression

By de�nition, these random variables Z2j−1, for 1 ≤ j ≤ p, are independent. Hence the joint density

function of Z̃ is given by

fZ̃ (zn) =

p∏
j=1

fZ2j−1(z2j−1) = fW1(z1)

p∏
j=2

fW2j−1−V2j−2(z2j−1). (6.14)

For 2 ≤ j ≤ p, the p.d.f. of W2j−1 − V2j−2 can be developed as

fW2j−1−V2j−2
(z2j−1) =

∫
R

fW2j−1
(z2j−1 + x)fV2j−2

(x) dx.

Finally, replacing the p.d.f.'s by their expressions in Equation (6.14), we obtain the following expression

for the joint density of Z̃

fZ̃ (z) =

zω1−1
1 bΩp exp

−b p∑
j=1

z2j−1


Γ(ω1)

p∏
j=2

Γ(ω2j−1)Γ(ν2j−2)

×

 p∏
j=2

∫ ∞
max(0,−z2j−1)

xν2j−2−1(z2j−1 + x)ω2j−1−1 exp (−2bx) dx

1R+(z1)

with ν0 = 0 and Ωp =
∑p
j=1

(
ω2j−1 + ν2j−2

)
.

Now s identical systems are considered. Hence an index i is added to each quantity, referring to the ith

system, and the observation set is given by

Z̃ =
(
Z

(i)
2j−1

)
1≤i≤s , 1≤j≤p
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Chapter 6. Parametric inference for the Arithmetic Reduction of Age model of order one

whose related density function is given by

fZ̃ (z) =

bsΩ̃p exp

−b s∑
i=1

p∑
j=1

z
(i)
2j−1

 s∏
i=1

(
z

(i)
1

)ω1−1

Γ(ω1)s
p∏
j=2

Γ(ω2j−1)sΓ(ν2j−2)s

×

 s∏
i=1

p∏
j=2

∫ ∞
max(0,−z(i)2j−1)

xν2j−2−1(z
(i)
2j−1 + x)ω2j−1−1 exp (−2bx) dx

1R+(z1).

Finally, the log-likelihood has the following expression

` (θ | z) = sΩ̃p log b− b
s∑
i=1

p∑
j=1

z
(i)
2j−1 + (ω1 − 1)

s∑
i=1

log z
(i)
1 − s log Γ(ω1) (6.15)

− s
p∑
j=2

log Γ(ω2j−1)− s
p∑
j=2

log Γ(ν2j−2) +

s∑
i=1

p∑
j=2

log I
(
θ | z(i)

2j−1

)
where

I
(
θ | z(i)

2j−1

)
=

∫ ∞
max(0,−z(i)2j−1)

xν2j−2−1(z
(i)
2j−1 + x)ω2j−1−1 exp (−2bx) dx.

Note that all the results hold if n is an even integer, but in this case p must be such that p = n/2.

6.4.2 Half data based on the even indexes

In a manner similar to that used in the previous section, we only consider the Zj 's whose index is even,

in order for these random variables to be independent. The identi�ability is not studied here. Indeed, in

Chapter 7 dealing with numerical analysis, we will see that this method may have identi�ability issues.

Here n is assumed to be even, and we set p = n/2. The considered observations set is

Z̃ = (Zj)1≤j≤p = (Wj − Vj−1)1≤j≤p

The joint p.d.f. of Z̃ is here given by

fZ̃ (z̃n) =

p∏
j=1

fZ2j (z2j) =

p∏
j=1

fW2j−V2j−1(z2j)

Therefore, in a similar way than for the previous method, we derive the joint density expression below

fZ̃ (z̃) =

bΩp exp

−b p∑
j=1

z2j


p∏
j=1

Γ(ω2j)Γ(ν2j−1)

 p∏
j=1

∫ ∞
max(0,−z2j)

xν2j−1−1(z2j + x)ω2j−1 exp (−2bx) dx

 (6.16)

where
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6.5. Maximum composite likelihood estimation

Ωp =

p∑
j=1

(
ω2j + ν2j−1

)
.

Now, considering s i.i.d. systems, we easily derive the log-likelihood expression from Equations (6.15)

and (6.16), which is given by

` (θ | z) = sΩ̃p log b− b
s∑
i=1

p∑
j=1

z
(i)
2j − s

p∑
j=1

log Γ(ω2j) (6.17)

− s
p∑
j=1

log Γ(ν2j−1) +

s∑
i=1

p∑
j=1

log I
(
θ | z(i)

2j

)
where

I (θ | zi,2j) =

∫ ∞
max(0,−z(i)2j )

xν2j−1−1(z
(i)
2j−1 + x)ω2j−1 exp (−2bx) dx.

Note that if n is odd, the previous results hold with p = (n− 1)/2.

6.5 Maximum composite likelihood estimation

Another way to avoid dependency issues is to assume that the variables are independent, even if they

are not. It is the purpose in this section, where two MLE methods are developed considering composite

likelihood. To be more precise, the �rst one deal with the observations (assumed mutually independent),

while the second one is based on the increments (also assumed mutually independent), according to the

de�nition provided by [41].

6.5.1 Composite likelihood based on the observations

For all j ∈ {1, . . . , n}, the r.v. Zj = ZjT− are gamma distributed Γ
(
a (jT − ρ(j − 1)T ) , b

)
. Let us set

aj = a (jT − ρ(j − 1)T ) the shape parameters of these distributions, we have the following expression for

the p.d.f. of Zj

fZj (z) =
baj

Γ(aj)
zaj−1 exp (−bz) 1R+(z)

Assuming that these r.v.s are independent, the likelihood is given by

L (z | θ) =
b
∑n
j=1 aj

n∏
j=1

Γ(aj)

exp

−b n∑
j=1

zj

 n∏
j=1

z
aj−1
j .

Now we look at the parameters identi�ability in this case, as it might not hold under the independence

assumption.
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Chapter 6. Parametric inference for the Arithmetic Reduction of Age model of order one

Proposition 10. The parameters of the ARA1 model are identi�able from the composite likelihood func-

tion, that is L (θ|z) = L (θ0|z) for all y = (z1, . . . , zn) implies that θ0 = θ and θ,θ0 ∈ Θ, as soon as

n ≥ 3. In other words, the identi�ability holds from the likelihood function as soon as observations are

conducted three times, and whatever s is.

Proof. Given the expression of the likelihood, we know that the gamma distribution parameters are iden-

ti�able. Hence, for j = 1, 2, 3, we deduce that

αT β = α0T
β0

b = b0

(2− ρ)
β

= (2− ρ0)
β0

(3− 2ρ)
β

= (3− 2ρ0)
β0

This system is the same one as this in Proposition 8, which was proved to have a unique solution,

and so the identi�ability holds.

Now, the log-likelihood is given by

` (θ | z) = log(b)

n∑
j=1

aj − b
n∑
j=1

zj −
n∑
j=1

log Γ(aj) +

n∑
j=1

(aj − 1) log zj .

The parameter b can be written as a function of the other ones by solving the equation ∂b` (θ | z) = 0,

which leads to

b =

n∑
j=1

aj

n∑
j=1

zj

.

Then, substituting b by its expression above in the log-likelihood leads to

`
(
θ̃ | zn

)
=

log

 n∑
j=1

aj

− 1− log

 n∑
j=1

zj

 n∑
j=1

aj −
n∑
j=1

log Γ(aj) +

n∑
j=1

(aj − 1) log zj

where θ̃ = (α, β, ρ).

We now deal with the extension of this method considering s i.i.d. systems. The log-likelihood has

the following expression

` (θ | z) = s log b

n∑
j=1

aj − s
n∑
j=1

log Γ(aj) +

s∑
i=1

log

exp

−b n∑
j=1

z
(i)
j

 n∏
j=1

(
z

(i)
j

)aj−1


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= s log b

n∑
j=1

aj − s
n∑
j=1

log Γ(aj)− b
s∑
i=1

n∑
j=1

z
(i)
j +

s∑
i=1

n∑
j=1

(aj − 1) log z
(i)
j .

Once again the parameter b can be expressed with respect to the other ones, leading to

b =

s

n∑
j=1

aj

s∑
i=1

n∑
j=1

z
(i)
j

and injecting this expression in ` entails the following expression for the pro�le composite likelihood

function:

`
(
θ̃ | zn

)
= log


s

n∑
j=1

aj

s∑
i=1

n∑
j=1

zi,j

 s

n∑
j=1

aj − s
n∑
j=1

log Γ(aj)−

s

n∑
j=1

aj

s∑
i=1

n∑
j=1

zi,j

s∑
i=1

n∑
j=1

zi,j

+

s∑
i=1

n∑
j=1

(aj − 1) log zi,j

which can be reduced to

`
(
θ̃ | zn

)
=

s n∑
j=1

aj

log s− 1 + log
n∑
j=1

aj − log
s∑
i=1

n∑
j=1

zi,j

 (6.18)

− s
n∑
j=1

log Γ(aj) +

s∑
i=1

n∑
j=1

(aj − 1) log zi,j .

6.5.2 Composite likelihood based on the increments

As in the previous section, the aim here is to provide the expression of the composite log-likelihood, but

dealing with the di�erence of the observations Zj = ZjT− −Z(j−1)T− . Let us recall that Zj = Wj−Vj−1.

Thus, the p.d.f. of the Zj 's for 1 ≤ j ≤ n is given by fWj−Vj−1
(z), whose expression is close to that in

Equation (6.16), hence we can write

fZj (z) =
bwj+vj−1

Γ(wj)Γ(vj−1)
exp (−bz)

∫ ∞
max(0,−z)

(z + x)wj−1 xvj−1−1 exp (−2bx) dx.

Similarly as in the previous case, assuming that the Zj 's are independent allows us to write the joint

density of Z, whose expression is given below
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Chapter 6. Parametric inference for the Arithmetic Reduction of Age model of order one

fZ (z) =
b
∑n
j=1 wj+vj−1∏n

j=1 Γ(wj)Γ(vj−1)
exp

−b n∑
j=1

zj

 n∏
j=1

[∫ ∞
max(0,−zj)

(zj + x)wj−1 xvj−1−1 exp (−2bx) dx

]

and thus the composite log-likelihood has the following expression

` (θ | Z) = log(b)

n∑
j=1

(wj + vj−1)− b
n∑
j=1

zj −
n∑
j=1

log Γ(wj)−
n∑
j=1

log Γ(vj−1)

+

n∑
j=1

[
log

∫ ∞
max(0,−zj)

(zj + x)wj−1 xvj−1−1 exp (−2bx) dx

]
.

Now we extend the log-likelihood expression to the case where s i.i.d. systems are observed. The joint

density of Z is

fZ (z) =

s∏
i=1

[
b
∑n
j=1 wj+vj−1∏n

j=1 Γ(wj)Γ(vj−1)
exp

−b n∑
j=1

z
(i)
j


×

n∏
j=1

[∫ ∞
max(0,−z(i)j )

(z
(i)
j + x)wj−1 xvj−1−1 exp (−2bx) dx

]]
or equivalent

fZ (z) =
bs

∑n
j=1 wj+vj−1∏n

j=1 Γ(wj)sΓ(vj−1)s
exp

−b s∑
i=1

n∑
j=1

z
(i)
j

 s∏
i=1

n∏
j=1

Ii,j(z,θ)

where

Ii,j(z,θ) =

∫ ∞
max(0,−z(i)j )

(z
(i)
j + x)wj−1 xvj−1−1 exp (−2bx) dx

Finally, the composite log-likelihood is given by

` (θ | Z) = s log b

n∑
j=1

(wj + vj−1)− s
n∑
j=1

(log Γ(wj) + log Γ(vj−1)) (6.19)

− b
s∑
i=1

n∑
j=1

z
(i)
j +

s∑
i=1

n∑
j=1

log Ii,j(Z,θ).

Once again, the identi�ability is not studied here for the same reasons as those explained in Section 6.4.2.
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Chapter 7

Simulation study

7.1 Methods selection

The aim of this chapter is to investigate numerically the estimators quality for each method. For sake of

simplicity, the estimation methods are abbreviated as follows:

� Moments estimation: ME;

� Maximum likelihood estimation: MLE;

� Maximum likelihood estimation using Monte Carlo approximation: MC;

� Maximum likelihood estimation using Quasi Monte Carlo approximation: QMC;

� Maximum likelihood estimation using half of the data which have an odd index: HDOI;

� Maximum likelihood estimation using half of the data which have an even index: HDEI;

� Maximum likelihood estimation using the composite likelihood based on the observations: CLO;

� Maximum likelihood estimation using the composite likelihood based on the increments: CLI;

The estimation methods are �rst tested on large samples in order to select the most e�cient ones. To

be able to compare results, we place ourselves within the same framework for each method. The model

parameters and the observations characteristics are the following:

� Shape function parameter: ξ = (α, β) = (1, 1);

� Scale parameter: b = 1;

� Maintenance actions e�ciency: ρ = 0.5;

� Period of repairs: T = 1;

� Observations times: {jT−; 1 ≤ j ≤ n} with n = 10;

� Number of observed i.i.d. systems: s = 1000.

We generate 500 observations sets, and for each method except for MC and QMC an estimation of

θ = (α, β, ρ, b) is computed for each set. These estimations are based on the minimization or maximization

of the quantities provided in Equations (6.4), (6.15), (6.17), (6.18) and (6.19), based on a gradient method.

The range for the parameters in the optimization procedure is the following:
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Chapter 7. Simulation study

� α ∈ [0.1, 5] for all methods except the ME method;

� β ∈ [0.1, 5] for both ME and CLO methods, the range is reduced to β ∈ [0.1, 2.5] for the HDEI, the

HDOI and the CLI methods, due to numerical issues for large beta (see below);

� ρ ∈ [0.01, 0.99] for all the methods;

� b ∈ [0.1, 5] for the HDEI, the HDOI and the CLI methods.

The numerical issues for large beta are related to the computations of the integrals in the log-likelihood

(see Equations (6.15), (6.17) and (6.19)). To be more precise, a large β induces high shape parameters

for the involved gamma p.d.f., beyond 3150 when (α, β, ρ) = (1, 5, 0.5) and n = 10, leading to integrals

which seem di�cult to compute through the standard methods implemented in R. Reducing the max-

imum possible value of β to 2.5 allows the computations to be possible as the shape parameter does not

exceed 28.

Concerning the initialization of the optimization procedure, we have experimented several di�erent initial

points. In each case, the �nal results were almost the same. Then, we have chosen to consider the true

values of the parameters as initial points, which allows to slightly reduce the CPU times without a�ecting

the numerical results.

The relative bias (in percentage) and the variances resulting of these estimations are shown in Table

7.1 and Table 7.2 respectively. Also, Figures 7.1 to 7.5 represent the pairs plots of the estimations

for each of the �ve methods.

The classical MLE is not treated here because it requires the use of MC and QMC approximations, and

the large dimension (n− 1 = 9) induces too high computing times.

Table 7.1: Relative bias estimation

Methods / Relative bias (%) α̂ β̂ ρ̂ b̂

ME 0.14% 1.18% 2.43% 0.01%

HDEI 1.32% 0.11% 0.06% 0.63%

HDOI 0.11% 0.002% 0.17% 0.1%

CLO 0.08% 0.29% 0.02% 0.01%

CLI 2.79% 1.91% 10.24% 2.27%

Table 7.2: Variances estimation

Methods / Variances α̂ β̂ ρ̂ b̂

ME 6.8× 10−3 1.0× 10−2 1.5× 10−2 1.7× 10−3

HDEI 6.0× 10−3 1.2× 10−3 2.3× 10−4 3.8× 10−3

HDOI 8.2× 10−4 2.6× 10−4 1.9× 10−4 7.7× 10−4

CLO 5.4× 10−4 1.6× 10−3 2.1× 10−3 1.9× 10−5

CLI 1.3× 10−3 2.3× 10−4 4.6× 10−5 5.2× 10−4

First, from Tables 7.1 and 7.2 as well as Figure 7.5, it can be seen that the CLI method is biased,

especially regarding the parameter ρ: the mean bias is beyond 10% associated with a variance less than
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5.5× 10−5. This disquali�es the CLI method.

Among the remaining estimation methods, the ME method is globally less e�cient than the other three:

regarding the parameters β and ρ, the bias and the variances are higher than for any other method. This

can also be seen by comparing Figure 7.1 with Figures 7.2,7.3,7.4.

We observe the same characteristics for the HDEI regarding α and b, that is a higher bias and variance

than for the HDOI and CLO methods. Moreover, extreme values can be seen in Figure 7.2. This

is a lack of robustness of the HDEI method compared to alternative methods since for some data sets

estimations can be very far from the true parameters values.

Figure 7.1: Pairs plots of ME method estimates. The red lines indicate the true value of each parameter.

In conclusion, the HDOI and the CLO methods are the most reliable with respect to the three other

ones (ME, HDEI and CLI). Hence, in the following, these methods are investigated and compared in

order to determine which one is the most e�cient. Remember that the identi�ability holds for n ≥ 5

for the HDOI method while it holds as soon as n ≥ 3 for the CLO method. Moreover, if n = 2, the

identi�ability holds for the MLE only. Hence, before going on further with the comparison between the

HDOI and the CLO methods, the cases n = 2, 3, 4 are studied.

As already mentioned, the MC and QMC methods require large computing times. However, in order

to increase the estimations accuracy, the number of points has to be large regarding n and this a�ects

the computing time. Hence, the number of systems s and the number of points for the integral approx-

imations are set to 100 and 214 = 16, 384 respectively.
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Figure 7.2: Pairs plots of HDEI estimates. The red lines indicate the true value of each parameter.

In the case where n = 2, only the MLE can be used because of identi�ability issues. The computation

of the integrals involved in the likelihood function is done through QMC and MC simulations, as well

as through numerical integration based on adaptive quadrature. The results are shown in Table 7.3.

Regarding the parameters α, β and b, the MC and the QMC methods are better than the MLE, while it

is the opposite for the estimation of ρ.

Table 7.3: Relative bias and variances for the MLE, MC and QMC methods when n = 2

Methods / Relative bias (%) α̂ β̂ ρ̂ b̂

MLE 2.66% 1.12% 0.62% 3.05%

MC 0.08% 0.52% 7.01% 0.03%

QMC 0.45% 0.43% 3.52% 0.77%

Methods / Variances α̂ β̂ ρ̂ b̂

MLE 9.7× 10−3 2.2× 10−2 4.7× 10−3 1.2× 10−2

MC 1.7× 10−2 3.7× 10−2 1.6× 10−2 2.0× 10−2

QMC 1.5× 10−2 3.9× 10−2 1.5× 10−2 2.2× 10−2

We now deal with the cases n = 3, 4, four estimation methods are tested: the MC and QMC based

MLE, the CLO and the HDOI method. The other three ones are not considered due to their poor
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Figure 7.3: Pairs plots HDOI estimates. The red lines indicate the true value of each parameter.

quality. The estimation framework is the same as before except for the number of observed systems,

which is reduced to s = 100. Note that even if n < 5 here, the identi�ability for the HDOI method holds

as β = 1 (Corollary 2). The results are given in Table 7.4 to Table 7.7.

Table 7.4: Relative bias and variances for the CLO method when n = 3, 4

Relative bias (%) α̂ β̂ ρ̂ b̂

n = 3 0.43% 42.56% 3.44% 0.39%

n = 4 0.29% 25.44% 6.36% 0.13%

Variances α̂ β̂ ρ̂ b̂

n = 3 5.7× 10−3 0.62 0.11 1.1× 10−3

n = 4 5.3× 10−3 0.39 0.08 7.0× 10−4

Table 7.5: Relative bias and variances for the MC method when n = 3, 4

Relative bias (%) α̂ β̂ ρ̂ b̂

n = 3 2.98% 0.12% 1.46% 2.80%

n = 4 6.65% 0.28% 0.43% 4.34%

Variances α̂ β̂ ρ̂ b̂

n = 3 1.7× 10−2 2.6× 10−2 8.6× 10−3 1.8× 10−2

n = 4 8.8× 10−3 9.4× 10−3 3.3× 10−3 1.3× 10−2
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Figure 7.4: Pairs plots of CLO estimates. The red lines indicate the true value of each parameter.

Table 7.6: Relative bias and variances for the QMC method when n = 3, 4

Relative bias (%) α̂ β̂ ρ̂ b̂

n = 3 6.14% 4.93% 3.19% 7.27%

n = 4 5.01% 1.92% 3.17% 4.57%

Variances α̂ β̂ ρ̂ b̂

n = 3 1.5× 10−2 2.8× 10−2 7.1× 10−3 1.5× 10−2

n = 4 1.1× 10−2 1.1× 10−2 5.5× 10−3 1.0× 10−2

Table 7.7: Relative bias and variances for the HDOI method when n = 3, 4

α̂ β̂ ρ̂ b̂

Relative bias (%) 2.22% 2.19% 1.73% 3.54%

Variances 1.3× 10−2 1.7× 10−2 8.5× 10−3 1.8× 10−2

Regarding the small size of the data sets (100 trajectories observed at 4 times), the estimations of α

and b by the CLO method are rather good. However, this method is not reliable for estimating parameters

β and ρ.

In regards to the MC and QMC methods, the �rst one is clearly better in terms of bias while both

have similar variances. Hence, the MC method is better than the QMC method. Also, unlike the CLO

method, the MC method provides good results regarding β and ρ, and the estimation quality of α and b

is acceptable.
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Figure 7.5: Pairs plots of CLI estimates. The red lines indicate the true value of each parameter.

Finally, the HDOI method does not di�er for n = 3 and 4 since it considers the �rst and third observations

only. This method is slightly more e�cient for estimating b when n = 3 and α when n = 3 or 4 than the

MC method, and both methods have similar variances.

If n = 2, 3, 4, no method stands out clearly from the others.

Let us recall that the MC and QMC approximations deal with the integrals of the function Gθ(x, zi,n)

with respect to x over [0, 1]
n−1, for 1 ≤ i ≤ s, whose expression is given by

Gθ(x, zi,n) =

n−1∏
j=1

fVj

((
C

(i)
j −mi,j+1

)
xj +mi,j+1

)

×
n−1∏
j=1

fUj

(
zj +

(
C

(i)
j−1 −mi,j

)
xj−1 −

(
C

(i)
j −mj+1

)
xj +mi,j −mi,j+1

)
× fWn

(
zi,n + xn−1

(
C

(i)
n−1 −mi,n

)
+mi,n

)

where Cj =

j∑
i=1

zj and mj = max(0,−zj). We now study the function G and the integral approximation

of this function through the following example.

Example 9. Let us set n = 3 and s = 4. An observations set z4,3 is generated within the framework of

this chapter for the model parameters, leading to the following values:
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z4,3 =



1.568 −1.013 −0.116

0.632 0.075 0.218

0.032 0.183 0.342

0.008 3.025 0.118


where the component zi,j is the degradation level of the i-th system at time jT−. For each 1 ≤ i ≤ s, the
function Gθ0

(
(x1, x2), zi,3

)
is evaluated for (x1, x2) in (0, 1)

2
. The level sets of this function are plotted

in Figure 7.6 for i = 1, 2, 3, 4 from left to right, top to bottom. It can be seen that there is a region

where the function G is zero, which highly depends on the observations and can reach more than half of

the integration region. Regarding the remaining area where G is non-zero, the shape of the function is

similar in each plot, that is:

� slowly increasing from the light grey area, where it is minimal, to the darker grey area;

� quickly increasing towards in�nity at the edge (red area).

Within this framework, the shape parameter of the Uj's and Vj's is 0.5. Hence, their p.d.f., which are

considered in the expression of G, are equal to the function

y 7→ exp(−y)

Γ(0.5)
√
y
1(0,∞)(y).

Regarding the r.v. U1, we have y = z
(i)
1 −

(
z

(i)
1 −mi,2

)
x1−mi,2 with x1 ∈ [0, 1] and mi,2 = max(0,−zi,2).

Hence, when x1 tends towards 1 then y tends towards zero. In this case fU1
tends to ∞, this explains

why G tends towards ∞ at this edge, which also can be seen in Figure 7.6. Similar results are obtained

regarding the other distributions, which leads to the observed growth over almost all the edges. Note that

this particularity is not an issue regarding the p.d.f. of Wn since its shape parameter is 1 here.

Now, we are interested in the importance of the edge in the integral approximation. With this aim,

the integrals are computed with roughly 5× 105 points for the MC. The proportion of points belonging to

the red area as well as the proportion of the integral arising from the red area are summarized in Table

7.8.

Table 7.8: Integral approximations characteristics on the edges

i
Integral of G over
(0, 1)2

Proportion coming from
the red area

Proportion of points fall-
ing in the red area

1 0.1 13% 0.7%

2 0.57 19% 0.3%

3 74.3 6% 0.2%

4 0.64 11% 0.2%

The weight of the edges is high because, for each computation, 6% to 19% of the integral arise from

the red area while this area represents less than 1% of the integral domain.

The previous example leads us to the conclusion that the MC and QMC based methods could be

improved by using importance sampling. Another alternative could be to consider a larger number of
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7.1. Methods selection

Figure 7.6: Levels of the function Gθ0(x1, x2, zi,3) depending on x1, x2 and for i = 1, 2, 3, 4 from left
to right, top to bottom.

points. However, the mean CPU time required for the retained estimation methods is another point that

needs to be enlightened, our CPU times calculations are summarized in Table 7.9.

The mean CPU time for both MC and QMC methods is around 5 to 42 times higher than for the

others methods, and this gap is proportional to the number of points for the integral approximations.

Finally, the MC method is preferred to estimate the parameters when associated with a higher number

of points, because of its e�ciency. Also, the use of importance sampling could reduce the CPU time.
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Table 7.9: Mean CPU times for one single estimation when n = 2, 3, 4, based on 500 repetitions

MC and QMC MLE HDOI

n = 2 10min 2min NA

n = 3 16min NA 28s

n = 4 20min NA 28s

However, due to their lower CPU times, the MLE method, without using neither MC nor QMC approx-

imations, or the HDOI method can be more suitable to perform further investigation as the estimation

of the variance estimators by boostrapping.

All the methods main characteristics are summarized in Table 7.10. Some of the proposed estimation

methods can not be used in any case as they are not e�cient enough when tested on large samples: the

ME, the HDEI and the CLI methods. Also, depending on the number n of observations by trajectory,

identi�ability issues limit the number of possible methods.

As we just stated above, if n < 5, then either the MC method, or the MLE and the HDOI methods are

preferred. When n = 10, the HDOI method as well as the CLO method provide good results. In order

to determine which one of these two methods is the most e�cient, they are tested on various samples of

observations in the following section.

7.2 Large scale numerical tests

In this part, we deal with the CLO and the HDOI methods, which are tested on various observations

sets. The considered model parameters as well as the observations characteristics are partly the same.

To be more precise, the parameters α and b as well as the period of repairs T remain equal to 1, while

the other parameters are varying as follows:

� Shape function parameter: β = 0.5, 1, 1.5;

� Maintenance actions e�ciency: ρ = 0.2, 0.5, 0.8;

� Observations times: {jT−; 1 ≤ j ≤ n} with n = 4, 16;

� Number of observed i.i.d. systems: s = 5, 25, 100, 400

and the method is used 2000 times for each combination of those parameters. The estimations are

computed as before, that is a maximization by the gradient method, searching (α, β, ρ) over [0.1, 5]2 ×
[0.01, 0.99] for the CLO method, and (α, β, ρ, b) over [0.1, 5]× [0.1, 2.5]× [0.01, 0.99]× [0.1, 5] for the HDOI

method. However, the initialization is di�erent here: the initial value for the parameters is set at the

middle of the search intervals, except in the case ρ = 0.5 where this parameter is initialized at 0.75.

Note that when n = 4 and β = 1.5, the identi�ability for the HDOI method must be discussed

depending on the value of ρ. When ρ = 0.2, 0.5, Corollary 2 states that identi�ability holds since

h2(0.2, 1.5) < 1 and h2(0.5, 1.5) < 1, but this is not true if ρ = 0.8. However, the numerical study of the

identi�ability, whose results are illustrated in Figure 6.4, led us to conjecture that identi�ability holds

outside a given area, and the point (β, r) = (β, 1− ρ) = (1.5, 0.2) does not belong to this area.
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Table 7.10: Characteristics summary for the methods selection

Methods Identi�ability
Numerical ap-
proximation of
integrals

Estimations Pros Cons

ME n ≥ 3 None
Unbiased and high dis-
persion

No integral
approxima-
tions and quick
computation

Lack of accuracy

MLE n ≥ 2

Monte-Carlo
and Quasi
Monte-Carlo
approximations
(integrals of di-
mension n − 1),
or numerical ap-
proximations of
one-dimensional
integrals when
n = 2

Unbiased only if the
number of points for
the integral approx-
imation is su�cient,
medium dispersion no
matter the number of
points. The MC based
estimation is better

Identi�ability
holds as soon as
n ≥ 2

The number of points for
the MC and QMC ap-
proximations does not af-
fect the estimators' vari-
ances, but there a bias
appears if it is too low.
Unusable when n is too
large because the number
of points must be larger
as well, which leads to
non manageable comput-
ing time.

HDEI Not studied

Numerical ap-
proximations of
one-dimensional
integrals

Unbiased and medium
dispersion. Some es-
timates are very far
from the true value

Accurate overall
It is possible for an estim-
ation to be an outlier

HDOI
n ≥ 5 (par-
tially when
n = 3, 4)

Numerical ap-
proximations of
one-dimensional
integrals

Unbiased and low dis-
persion

Accurate and
reliable method

Identi�ability holds over
the entire parameters set
only if n ≥ 5

CLO n ≥ 3 None
Unbiased and medium
to low dispersion

No integral
approxima-
tions and quick
computation,
accurate and
reliable method

The parameter β can-
not be estimated properly
(biased and high disper-
sion) when n is small, that
is n = 3, 4.

CLI Not studied

Numerical ap-
proximations of
one-dimensional
integrals

Highly biased (from
2% for α̂ to 10% for ρ̂)
and low dispersion

None

A high bias associated
with a low dispersion
make this method unus-
able
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For each (β, ρ) in {0.5, 1, 1.5}× {0.2, 0.5, 0.8}, the Relative Bias (RB) and the variances of the estim-

ations are summarized in Appendix C. The �gures deal either with the RB or with the variance, and

are composed of four graphs: one for each parameter of the model. These graphs show four curves each,

representing either the relative bias or the variance evolution with s for both the HDOI and the CLO

methods when n = 4 and n = 16.

For the sake of clarity, as the RB can be higher than 200% as well as close to zero, instead of representing

RB we chose to represent the quantity log(1+RB). Such a scale for the RB is unusual, hence, red dotted

lines point out thresholds for which the RB is equal to 5%, 10%, 25% and 50%.

Finally, to be able to compare the results from one parameter to another, as well as the parameters sets,

the y-axis range are the same for all plots. However, both the RB and the variance can be higher than

the maximum value displayed in the y-axis. This signi�es that if a curve does not appear on a graph,

as the black one in the top right-hand graph of Figure C.5, each point of this curve is higher than this

maximum.

As already stated in the previous part, the CLO method cannot be used if n is small because the

estimations of β and ρ are biased. This can be seen once again when n = 4 through the �gures exposed

in Appendix C. In this case, the HDOI method is therefore the most reliable one whatever the value of

β and ρ. Moreover, this method provides satisfying results even if only few observations are taken into

account.

When n = 16, the value of the parameter ρ does not a�ect signi�cantly the methods performance,

unlike the parameter β. If β = 0.5, the CLO method appears to provide satisfying results while the HDOI

method is biased with variances close to zero, and the value of s has little impact on both the bias and

variances. This is clearly due to the number of observations the method deals with, because based on

the same observations sets, this method is more e�cient considering n = 4. We now try to understand

why the performance of the HDOI method becomes poorer when n increases and look at an example.

Example 10. We place ourselves within the following framework: n = 16, T = 1 and θ = (α, β, ρ, b) =

(1, 0.5, 0.5, 1). The expectations of the components of Z are given by

E (Z) =
(
ωj(ξ)− νj−1(ξ)

)
1≤j≤16

and plotted in Figure 7.7. This example shows that if the shape function for the underlying degradation

process is concave, then the increments of the degradation get smaller and smaller, and vary more and

more slowly as j increases.

In Example 10, we can see that a small value for β quickly entails small deterioration increments

between PM actions. Let us recall that the maintenance actions put back the system in the situation it

was ρT units of times earlier. Hence, because of the slow degradation rate, the maintenance actions have

a small impact on the degradation since the system was near the same situation before a repair, whatever

its e�ciency. As a result, this induces a numerical identi�ability issue, leading to poor quality estimation

results. Moreover, the HDOI method only takes into account one out of two increments, which reinforces

this problem.

As a result, the �rst observations are the most important ones, and considering more observations

which contain few additional information about the model parameters adversely a�ects the estimation

quality. However, β = 0.5 leads to a concave shape function and thus the degradation intensity is
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Figure 7.7: Expectations of the degradation increments with respect to j. The red dots matches the
information taken into account in the HDOI method while the grey ones are not.

decreasing over time. Therefore, the maintenance actions reduce the deterioration level of the system,

but they also induce an increase in the degradation intensity as the system is put back in a state it was

earlier, which is inconsistent. As a conclusion, the ARA models are not the most suitable models in this

case.

If β = 1, the CLO and the HDOI methods provide similar results for the estimations of α. Regarding b,

the �rst one is better than the second one, while it is the opposite regarding β and ρ. Finally, when

β = 1.5, both methods provide similar results for the estimations of β and ρ, and the CLO method is

better in estimating α and b.

Given these characteristics, the choice of the method depends on the context, that is the degradation

intensity, the maintenance actions e�ciency and the number of observations by trajectory. This choice

can be done through Table 7.11.

Table 7.11: Summary for the choice of the estimation method

Decreasing degradation in-
tensity (β < 1)

Constant degradation intens-
ity (β = 1)

Increasing degradation in-
tensity (β > 1)

n = 4 HDOI

n = 16 CLO if ρ is small, otherwise
HDOI reducing n to 4

HDOI CLO

Overall, the HDOI method overcomes the CLO method. However, the CLO method always provides

good estimations of α and b, whatever the values of β and n. Furthermore, the HDOI method better

estimates β and ρ, reducing arti�cially the value of n in some cases. Hence, further work could be to

improve the estimation quality by combining both the HDOI and the CLO methods. One approach is to

keep the estimations of α and b provided by the CLO method and those of β and ρ from the other one.

117



Chapter 7. Simulation study

In a similar way, plug-in estimations could be tested, that is substituting the values α̂ and b̂ obtained by

the CLO method in the log-likelihood of the HDOI method and then estimate β and ρ, as well as the

opposite.
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Part IV

Conclusion
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This work has studied imperfect repair models in the context of gamma deteriorating systems. More

speci�cally, estimation methods have been developed for the arithmetic reduction of degradation models

of order one and in�nity (ARD1 and ARD∞) in Part II, as well as for the arithmetic reduction of age

model of order one (ARA1) in Part III.

In Part II, we �rst dealt with two classical estimation methods in a fully parametric framework,

namely the Moments Estimation and the Maximum Likelihood Estimation (ME and MLE) methods.

The parameters identi�ability was studied, estimators expressions were provided and �nally the perform-

ance of the methods was illustrated. After that, arising from the study of the MLE method, an estimator

for the maintenance actions e�ciency (parameter ρ) was proposed in a semiparametric framework. In the

case of one single trajectory and when the shape function of the underlying gamma process is concave,

this estimator was proved to be strongly consistent as the number of repairs tends towards in�nity, with

a surprisingly high convergence rate, at least exponential for some particular cases. This work was next

extended to the case where s independent and identical systems are observed. A similar semiparametric

estimator was proposed for ρ and the strong consistency was proved to hold as s tends towards in�nity,

no matter the �xed number of repairs and out of any technical condition requirement. The convergence

rate was also studied, which was shown to depend on the shape function of the gamma process and on

the maintenance period, leading to a speed that can be either slower or faster than
√
s, according to the

case.

In Part III, we proposed several estimations methods for an ARA1 model, which are based on either

the observations or on the increments, leading to six di�erent estimation methods. Depending on the

method, either expressions of the estimators or the log-likelihood are provided, and the identi�ability

of the model parameters was studied regarding four out of the six methods. In order to study and

compare the performance of all these methods, numerical investigations based on simulated data have

been conducted at a large scale. Two of them has appeared to be more e�cient than the other ones:

the Half Data based on the Odd Indexes (HDOI) and the Composite Likelihood based on the Observa-

tions (CLO) methods. Overall, however, none of these two methods stands out clearly from the other.

Thus the choice of the method must be done with respect to the context. To be more speci�c, this choice

depends on the number of repairs, the repairs e�ciency and the degradation intensity evolution over time.

Several points of interest would be interesting to study in complement to this thesis. There exist many

other models that extend the ARD models studied here, such as for instance the ARDm model for which

the basic idea is that a maintenance action removes a proportion of the degradation accumulated by the

system from the last m maintenance actions. An idea could be to generalize the semiparametric estimate

of the maintenance e�ciency to such a model, which seems to be possible as this method relies on the

non negativity of the gamma process. Moreover, the adaptation of this estimation procedure to another

monotonous Lévy process than the gamma process would be interesting to study. Finally, based on a

short numerical study, we have seen that the condition which ensures an exponential convergence rate

was su�cient but not necessary. Further investigations could be done in order to see whether it could

be possible to re�ne the mathematical conditions under which the di�erent convergence rates are obtained.

Regarding the work done in Part III, several estimation procedures could be improved. As already

stated, it could be interesting to see whether the estimation quality is better by combining the HDOI

and the CLO methods. Moreover, we explained that the Monte Carlo and Quasi Monte Carlo integral
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approximations required in the MLE method could be improved by using importance sampling. Further

work should be done to address these possible improvements.

Beyond that, except in Chapter 4, asymptotic properties of the estimators were not investigated in

this document and further work is required for a better understanding of their behaviour, beyond the

numerical investigation performed in this thesis. One might study these properties as an extension of the

present work.

Besides all of this, further work could be the development of estimation procedures in the context of

an ARA∞ model, for which a maintenance action removes a proportion of the age accumulated by the

system since it was put into operation. More research might be done in this context, mimicking the work

done regarding the ARA1 model as a �rst step.

Finally, another point could be to consider an observation scheme which is decoupled from the main-

tenance schedule. It is not the case here as the degradation level is measured right before each repair.

As an example, observations could still be conducted periodically while the system could be maintained

at random times according to a Poisson process. However, preliminary investigations were done in this

framework, and the degradation level of the maintained system seems di�cult to write down with a

simple expression, but that could remain exploitable for developing estimation procedures. Hence, this

seems a challenging (but interesting) subject for further research.
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Appendix A

ARD1 model, results of the simulation

study

As already stated in Section 3, the results are exposed as follows.

For each possible combination of (β, ρ), the RB and the variances of the estimations are summarized

in the following. The �gures deal either with the RB or with the variance, and are composed of four

graphs: one for each parameter of the model. These graphs show four curves each, representing either

the relative bias or the variance evolution with s for both the ME and the MLE methods when n = 5

and n = 20.

To be able to compare the results from one parameter to another, as well as the parameters sets, the

y-axis range is the same for all plots. However, both the RB and the variance can be higher than the

maximum value displayed in the y-axis. This signi�es that if a curve does not appear on a graph, as the

black one in the top right-hand graph as well as the bottom left-hand one of Figure A.1, it means that

all the points of the curve are out of range.
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Appendix A. ARD1 model, results of the simulation study
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Figure A.1: Plots of the RB evolution of the parameters estimations depending on s, when (β, ρ) =
(1.2, 0.2).
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Figure A.2: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (1.2, 0.2).
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Figure A.3: Plots of the RB evolution of the parameters estimations depending on s, when (β, ρ) =
(1.2, 0.5).
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Figure A.4: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (1.2, 0.5).
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Figure A.5: Plots of the RB evolution of the parameters estimations depending on s, when (β, ρ) =
(1.2, 0.8).
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Figure A.6: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (1.2, 0.8).
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Figure A.7: Plots of the RB evolution of the parameters estimations depending on s, when (β, ρ) =
(1.6, 0.2).
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Figure A.8: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (1.6, 0.2).
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Figure A.9: Plots of the RB evolution of the parameters estimations depending on s, when (β, ρ) =
(1.6, 0.5).
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Figure A.10: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (1.6, 0.5).
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Figure A.11: Plots of the RB evolution of the parameters estimations depending on s, when (β, ρ) =
(1.6, 0.8).
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Figure A.12: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (1.6, 0.8).
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Appendix B

ARD∞ model, results of the simulation

study

As already stated in Section 3, the results are exposed as follows.

For each possible combination of (β, ρ), the RB and the variances of the estimations are summarized

in the following. The �gures deal either with the RB or with the variance, and are composed of four

graphs: one for each parameter of the model. These graphs show four curves each, representing either

the relative bias or the variance evolution with s for both the ME and the MLE methods when n = 5

and n = 20.

To be able to compare the results from one parameter to another, as well as the parameters sets, the

y-axis range is the same for all plots. However, both the RB and the variance can be higher than the

maximum value displayed in the y-axis. This signi�es that if a curve does not appear on a graph, as the

black one in the top right-hand graph as well as the bottom left-hand one of Figure A.1, it means that

all the points of the curve are out of range.
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Figure B.1: Plots of the RB evolution of the parameters estimations depending on s, when (β, ρ) =
(1.2, 0.2).
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Figure B.2: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (1.2, 0.2).
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Figure B.3: Plots of the RB evolution of the parameters estimations depending on s, when (β, ρ) =
(1.2, 0.5).
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Figure B.4: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (1.2, 0.5).
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Figure B.5: Plots of the RB evolution of the parameters estimations depending on s, when (β, ρ) =
(1.2, 0.8).
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Figure B.6: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (1.2, 0.8).
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Figure B.7: Plots of the RB evolution of the parameters estimations depending on s, when (β, ρ) =
(1.6, 0.2).
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Figure B.8: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (1.6, 0.2).
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Figure B.9: Plots of the RB evolution of the parameters estimations depending on s, when (β, ρ) =
(1.6, 0.5).
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Figure B.10: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (1.6, 0.5).
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Figure B.11: Plots of the RB evolution of the parameters estimations depending on s, when (β, ρ) =
(1.6, 0.8).
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Figure B.12: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (1.6, 0.8).
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Appendix C

ARA1 model, results of the simulation

study

As already stated in Section 7.2, the results are exposed as follows.

For each (β, ρ) in {0.5, 1, 1.5}× {0.2, 0.5, 0.8}, the Relative Bias (RB) and the variances of the estim-

ations are summarized in the following. The �gures deal either with the RB or with the variance, and

are composed of four graphs: one for each parameter of the model. These graphs show four curves each,

representing either the relative bias or the variance evolution with s for both the HDOI and the CLO

methods when n = 4 and n = 16.

For the sake of clarity, as the RB can be higher than 200% as well as close to zero, instead of representing

RB we chose to represent the quantity log(1+RB). Such a scale for the RB is unusual, hence, red dotted

lines point out thresholds for which the RB is equal to 5%, 10%, 25% and 50%.

Finally, to be able to compare the results from one parameter to another, as well as the parameters sets,

the y-axis range are the same for all plots. However, both the RB and the variance can be higher than

the maximum value displayed in the y-axis. This signi�es that if a curve does not appear on a graph,

as the black one in the top right-hand graph of Figure C.5, each point of this curve is higher than this

maximum.
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Figure C.1: Plots of the quantity log(1+RB) related to the parameters estimations depending on s,
when (β, ρ) = (0.5, 0.2).
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Figure C.2: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (0.5, 0.2).
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Figure C.3: Plots of the quantity log(1+RB) related to the parameters estimations depending on s,
when (β, ρ) = (0.5, 0.5).
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Figure C.4: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (0.5, 0.5).
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Figure C.5: Plots of the quantity log(1+RB) related to the parameters estimations depending on s,
when (β, ρ) = (0.5, 0.5).
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Figure C.6: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (0.5, 0.8).
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Figure C.7: Plots of the quantity log(1+RB) related to the parameters estimations depending on s,
when (β, ρ) = (1, 0.2).
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Figure C.8: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (1, 0.2).
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Figure C.9: Plots of the quantity log(1+RB) related to the parameters estimations depending on s,
when (β, ρ) = (1, 0.5).
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Figure C.10: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (1, 0.5).
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Figure C.11: Plots of the quantity log(1+RB) related to the parameters estimations depending on s,
when (β, ρ) = (1, 0.8).
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Figure C.12: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (1, 0.8).
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Figure C.13: Plots of the quantity log(1+RB) related to the parameters estimations depending on s,
when (β, ρ) = (1.5, 0.2).

172



0 100 200 300 400

0.
00

0.
05

0.
10

0.
15

0.
20

alpha

s

V
ar

ia
nc

es

0 100 200 300 400

0.
00

0.
05

0.
10

0.
15

0.
20

0 100 200 300 400

0.
00

0.
05

0.
10

0.
15

0.
20

0 100 200 300 400

0.
00

0.
05

0.
10

0.
15

0.
20

0 100 200 300 400
0.

00
0.

05
0.

10
0.

15
0.

20

beta

s

V
ar

ia
nc

es

0 100 200 300 400
0.

00
0.

05
0.

10
0.

15
0.

20
0 100 200 300 400

0.
00

0.
05

0.
10

0.
15

0.
20

0 100 200 300 400
0.

00
0.

05
0.

10
0.

15
0.

20

0 100 200 300 400

0.
00

0.
05

0.
10

0.
15

0.
20

rho

s

V
ar

ia
nc

es

0 100 200 300 400

0.
00

0.
05

0.
10

0.
15

0.
20

0 100 200 300 400

0.
00

0.
05

0.
10

0.
15

0.
20

0 100 200 300 400

0.
00

0.
05

0.
10

0.
15

0.
20

0 100 200 300 400

0.
00

0.
05

0.
10

0.
15

0.
20

b

s

V
ar

ia
nc

es

0 100 200 300 400

0.
00

0.
05

0.
10

0.
15

0.
20

0 100 200 300 400

0.
00

0.
05

0.
10

0.
15

0.
20

0 100 200 300 400

0.
00

0.
05

0.
10

0.
15

0.
20

beta=1.5 / rho=0.2

Figure C.14: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (1.5, 0.2).
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Figure C.15: Plots of the quantity log(1+RB) related to the parameters estimations depending on s,
when (β, ρ) = (1.5, 0.5).
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Figure C.16: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (1.5, 0.5).
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Figure C.17: Plots of the quantity log(1+RB) related to the parameters estimations depending on s,
when (β, ρ) = (1.5, 0.8).
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Figure C.18: Plots of the variance evolution of the parameters estimations depending on s, when
(β, ρ) = (1.5, 0.8).
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Appendix D

Introduction (french version)

La sécurité et la �abilité sont deux indicateurs cruciaux pour un grand nombre de structures (telles que,

par exemple, les chemins de fer, les moteurs d'aéronefs ou les centrales nucléaires), ce qui a conduit

au développement de la théorie de la �abilité. Durant des années, seules les données de durée de vie

étaient disponibles et les premières études �abilistes se concentraient sur l'analyse de ces données (voir,

par exemple, [32]), ce qui présente encore aujourd'hui un intérêt dans un large variété de cas. Dans ce

contexte et dans le cas de système réparables, maintenus de manière instantanée, les instants de défail-

lances (ou de maintenances) successifs sont vus comme des points d'arrivée d'un processus de comptage,

et les défaillances correspondent donc à des événements récurrents. Il existe plusieurs types de mainten-

ance. Les modèles classiques considèrent des maintenances parfaites et minimales, dont les processus de

comptage sous-jacents sont respectivement décrits par des processus de renouvellement et des processus

de Poisson non homogènes (voir [5]). En s'intéressant à l'intensité de défaillance, par exemple, l'e�et de

ces deux types de maintenance est illustré sur la Figure D.1 : une maintenance minimale n'a�ecte pas

l'intensité de défaillance, tandis qu'une maintenance parfaite la réduit à sa valeur initiale. Cependant, la

réalité se situe souvent entre ces deux extrêmes, d'où l'introduction des maintenances imparfaites (aussi

représentée sur la Figure D.1). Dans la littérature, un grand nombre de modèles ont été envisagés pour

les modéliser, tels que, par exemple, les modèles d'âge virtuel introduits par Kijima [26], traités de façon

plus approfondie dans [13, 16], et davantage dans [7] où les auteurs ajoutent des covariables au modèle

d'âge virtuel. D'autres possibilités sont les processus géométriques [27] (plus largement étudié dans [6], et

plus récemment dans [12]) ou, comme évoqués plus haut, les modèles basés sur la réduction de l'intensité

de défaillance [13, 16]. Voir, par exemple, [17] pour un compte rendu récent et des extensions pour de

tels modèles. Voir aussi [36] pour plus de références et d'autres modèles.

Aujourd'hui, le développement de la surveillance en ligne et l'utilisation croissante de capteurs per-

mettent d'obtenir des informations spéci�ques sur l'état d'un système et sur son évolution au cours du

temps, sans avoir à attendre une panne du système. L'information obtenu est souvent traduite par un

nombre réel, pouvant représenter par exemple la longueur d'une �ssure, l'épaisseur d'un câble, le niveau de

corrosion, ... Cet indicateur peut être considéré comme une mesure du niveau de dégradation du système.

De nos jours, l'évolution de ce nombre réel au cours du temps est communément modélisée par un proces-

sus stochastique, souvent considéré comme ayant une tendance positive. Les modèles classiques incluent

le processus inverse Gaussien [44] ou les processus de Wiener (avec tendance) [22, 29, 45]. Dernièrement,

le processus de Wiener transformé a également été introduit par [20], et davantage étudié dans [18], où

les incréments de la dégradation peuvent être négatifs. Tous ces processus stochastiques sont relative-

ment commun dans des domaines variés autre que celui de la �abilité, tel que la �nance, les assurances
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Figure D.1

ou l'épidémiologie. Cette thèse est dédiée au processus gamma, largement répandus depuis qu'ils ont

été introduits dans le domaine de la �abilité par Abdel-Hameed [1] et Çinlar [10]. Ce processus étant

monotone, il est parfaitement adapté pour la modélisation de l'évolution de dégradation croissante.

Avant de dé�nir le processus gamma, la loi gamma est dé�nie, permettant d'introduire les notations

et la paramétrisation utilisées dans la suite du document.

Une variable aléatoire X suit une loi gamma de paramètre de forme a > 0 et de paramètre d'échelle

b > 0 (noté X ∼ Γ(a, b)), si sa fonction de densité est telle que :

fX(x) =
ba

Γ(a)
xa−1e−bx 1R+(x)

par rapport à la mesure de Lebesgue. L'espérance et la variance d'une telle variable sont données par

E(X) = a/b et V(X) = a/b2.

On rappelle maintenant quelques propriétés très connues de la loi gamma :

Soient X1 et X2 deux variables aléatoires indépendantes suivant des lois gamma Γ(a1 , b) et Γ(a2 , b)

respectivement, avec a1, a2, b > 0. Ainsi, pour tout c strictement positif, les variables aléatoires cX1 et

X1 +X2 suivent également des lois gamma Γ (a1 , b/c) et Γ(a1 + a2 , b) respectivement.

On pose maintenant la fonction a(·) : R+ 7→ R
+ croissante et continue, telle que a(0) = 0, et on pose

b > 0. Soit (Xt)t≥0 un processus stochastique continue à droite avec limites à gauche. Le processus

(Xt)t≥0 est un processus gamma non homogène ayant pour fonction de forme a(·) et pour paramètre
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d'échelle b, si

� X0 = 0 presque sûrement;

� les incréments du processus sont indépendants;

� les incréments suivent des lois gamma, autrement dit pour tout 0 ≤ s < t, on a Xt − Xs ∼
Γ(a(t)− a(s), b),

(voir, par exemple, [1]). Voir [40] et ses références pour un large aperçu des processus gamma. Un

exemple de trajectoires simulées selon un processus gamma est donné sur la Figure D.2.
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Figure D.2: Trajectoires simulées selon un processus gamma ayant pour fonction de forme a(t) = t et
pour paramètre d'échelle b = 1.

Dans le but d'atténuer la dégradation du système au cours du temps et ainsi rallonger sa durée de

vie, des actions de maintenance préventives peuvent être e�ectuées, en plus des maintenances correct-

ives qui sont réalisées lors d'une défaillance. Du point de vue de la dégradation, un grand nombre de

politiques de maintenance présentes dans la littérature considèrent des maintenances conditionnelles, où

une maintenance préventive est e�ectuée dès lors que la dégradation atteint un seuil donné. Dans ce cas,

la plupart des modèles de maintenance conditionnelle existants se limitent à des maintenances parfaites

("most of the existing CBM models have been limited to perfect maintenance actions"), comme relevé

dans [3] (ou encore [45]). Cependant, plusieurs modèles de maintenance imparfaite apparaissent dans la

littérature récente, dans le contexte de la dégradation de systèmes, voir [3] pour une récente revue de

la littérature. Certains modèles sont basés sur la notion d'âge virtuel, précédemment introduite dans le

cadre des évènements récurrents (voir, par exemple, [19, 33]), pour lesquels le système est rajeuni par une

maintenance. D'autres modèles supposent qu'un maintenance imparfaite réduit le niveau de dégradation

du système, tels que [25, 28, 35, 37, 42], et pouvant également être accompagnée par une augmentation de

l'intensité de dégradation, comme dans [15]. Dans d'autres articles, l'e�cacité des maintenances est sup-

posée décroissante avec le nombre de maintenances (voir, par exemple, [30, 46]), et d'autres études plus

poussées, comme dans [23], considèrent des modèles de maintenance imparfaite tels que (i) les mainten-

ances ont une e�cacité aléatoire (ii) l'intensité de dégradation augmente avec le nombre de maintenance.
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Dans tous ces articles, cependant, le point essentiel est l'optimisation de la politique de maintenance, en

considérant à la fois des maintenances parfaites (remplacements) et imparfaites. À notre connaissance,

peu d'articles traitent des modèles de maintenance imparfaite d'un point de vue statistique, excepté [45],

où les auteurs proposent un méthode du maximum de vraisemblance pour estimer les paramètres du pro-

cessus de Wiener (décrivant la dégradation du système non maintenu) associée à une procédure itérative

basée sur un �ltre de Kalman pour les di�érents facteurs impliqués dans les maintenances imparfaites

successives.

Dans le cadre de systèmes se détériorant et sujets à des maintenances imparfaites, l'estimation des

paramètres du processus de dégradation sous-jacent et de l'e�cacité des maintenances est d'une grande

utilité pour l'optimisation des politiques de maintenance. En e�et, une fois les paramètres estimés,

des prédictions sur le devenir du système maintenu peuvent être faites, permettant alors par exemple

d'adapter (optimiser) la périodicité des actions de maintenance et de plani�er une révision générale.

D'un point de vue sécurité, la principale préoccupation est de s'assurer que les maintenances sont suf-

�samment e�caces, a�n de maintenir avec une forte probabilité le niveau de dégradation sous un seuil

donné. Tant que ce seuil n'est pas atteint, les actions de maintenance peuvent être ajustées, soit en ad-

aptant leur périodicité, soit en augmentant leur e�cacité (lorsque c'est possible). Mis à part la sécurité,

les coûts de maintenance est évidemment un autre axe important. C'est par exemple ce qui est fait dans

[42], où la minimisation des coûts est basée sur la durée de surveillance du système et de l'e�cacité des

actions de maintenance. Dans [23], l'auteur considère un seuil de dégradation au delà duquel un main-

tenance imparfaite est réalisée. L'optimisation est faite en fonction de ce seuil ainsi que la périodicité des

inspections. Finalement, dans [43], une politique de maintenance est proposée, où un remplacement est

e�ectué soit lorsque la dégradation dépasse un certain seuil, soit lorsqu'un nombre �xé de maintenances

imparfaites ont été réalisées. Voir, par exemple, ces trois articles et leurs références pour un aperçu en

rapport avec l'optimisation de politiques de maintenance.

Cette thèse est dédiée au développement et à l'application de procédures d'estimation pour trois mod-

èles spéci�ques de maintenance imparfaite dans le cadre de systèmes se dégradant suivant un processus

gamma. Le document est divisé en quatre partie, incluant cette introduction.

Dans la Partie II, deux modèles de maintenance imparfaite sont étudiés. Il s'agit des modèles de

réduction arithmétique de la dégradation d'ordre un et in�ni (ARD1 et ARD∞, ARD signi�ant Arith-

metic Reduction of Degradation), pour lesquels chaque maintenance réduit le niveau de dégradation du

système. Le modèle ARD1 a tout d'abord été introduit dans [8] et davantage étudié dans [34]. En se

basant sur le modèle de réduction arithmétique de l'intensité (de défaillance) d'ordre un dans le cadre des

évènements récurrents, l'idée de ce modèle est qu'une maintenance retire une proportion ρ de la dégrad-

ation accumulée par le système depuis la dernière maintenance (où ρ ∈ [0, 1[). Partant de cette même

idée, [16] a également dé�ni le modèle de réduction arithmétique de l'intensité d'ordre in�ni pour les

évènements récurrents, que l'on adapte ici dans le contexte de la dégradation, conduisant à la dé�nition

du modèle ARD∞. Concernant ce modèle, chaque maintenance réduit de ρ% le niveau de dégradation

actuel, c'est-à-dire la dégradation accumulée par le système depuis sa mise en service. Une fois ces mod-

èles dé�nis, on se place dans un cadre paramétrique et le schéma d'observation est lui aussi dé�ni. La

méthode des moments et la Méthode du Maximum de Vraisemblance (MMV) sont développées pour les

deux modèles dans le Chapitre 2. Plus précisément, l'identi�abilité est étudiée, et on donne ensuite une

expression de l'estimateur des paramètres. Des tests numériques basés sur des jeux de données simulés

sont réalisés au sein du Chapitre 3. Dans le Chapitre 4, un estimateur original de ρ est proposé, qui
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ne dépend pas des paramètres du processus gamma sous-jacent, mais uniquement des observations. Le

cadre est alors semi paramétrique. L'idée de cet estimateur provient d'une étude préliminaire dans le

cadre du maximum de vraisemblance. Il a été observé que lorsqu'un unique système est considéré, la

valeur minimale possible pour ρ se comporte de façon intéressante dans le cas où la fonction de forme a

du processus gamma sous-jacent est concave : cette valeur se rapproche très rapidement de la vraie valeur

(inconnue) de l'e�cacité des actions de maintenance lorsque le nombre de maintenance augmente. Cet

estimateur semi paramétrique a tout d'abord été étudié dans le cadre du modèle ARD1, travail publié par

la suite dans un journal international (voir [38]) et qui est reproduit ici à l'identique dans les Sections

4.1 à 4.6. Dans la Section 4.7, cette procédure d'estimation est adapté pour le modèle ARD∞, et ce

travail est spéci�que au présent document.

Dans la Partie III, on considère un modèle de maintenance imparfaite basé sur l'âge virtuel et in-

troduit par [34] : le modèle de réduction arithmétique de l'âge (virtuel) d'ordre un (ARA1, ARA signi�ant

Arithmetic Reduction of Age). Suivant l'idée de [16] dans le cadre des évènements récurrents, ce modèle

est tel que chaque action de maintenance retire une proportion ρ de l'âge du système accumulé depuis la

dernière maintenance. Contrairement au modèle ARD1, le système est ici rajeuni, c'est-à-dire qu'il est re-

mis dans l'état exact où il se trouvait a un instant donnée précédent la maintenance. Les premiers axes des

travaux de cette partie sont similaires à ceux de la partie précédente : le modèle et le schéma d'observation

sont dé�nis, la méthode des moments est étudiée d'un point de vue identi�abilité, puis on donne une

expression de l'estimateur des paramètres du modèle. Ensuite, la MMV est développée. Cependant, à

cause d'un problème de dépendance, la fonction de vraisemblance se révèle être un produit d'intégrales en

grande dimension, et cela pose problème pour estimer les paramètres numériquement de façon classique.

Ainsi, la MMV nécessite d'approcher numériquement les intégrales par des méthodes de Monte Carlo et

Quasi Monte Carlo randomisé. Mis à part cela, a�n de contourner l'approximation numérique d'intégrales

en grande dimension, des méthodes alternatives basées sur le maximum de vraisemblance sont étudiées

: le maximum de vraisemblance composite et la méthode du demi échantillon. La première méthode

consiste à supposer que les observations sont indépendantes, tandis que la seconde ne prend en compte

qu'une observation sur deux. Une fois de plus, le développement de ces méthodes se traduit par l'étude

de l'identi�abilité des paramètres, qui a été complexe pour une des méthodes, ainsi que l'expression des

estimateurs (ou de la log-vraisemblance). Cependant, l'identi�abilité n'a pas été véri�ée concernant deux

des six méthodes proposées car les tests numériques ont révélé des problèmes d'identi�abilité pour ces

deux méthodes. En�n, dans le Chapitre 7, les performances numériques des méthodes sont illustrées en

deux temps. Une première étude permet d'éliminer les méthodes peu performantes, et dans un second

temps, une étude plus poussée nous permet de sélectionner, parmi les méthodes restantes, la plus appro-

priée en fonction du cadre d'application.

Pour �nir, la Partie IV met en évidence les conclusions de la thèse ainsi que les perspectives.

183



Appendix D. Introduction (french version)

184



Appendix E

Conclusion (french version)

Dans ce document, des modèles de maintenance imparfaite ont été étudiés dans le cadre de systèmes se

dégradant suivant un processus gamma. Plus précisément, des méthodes d'estimation ont été dévelop-

pées pour les modèles de réduction arithmétique de la dégradation (ARD pour Arithmetic Reduction of

Degradation) d'ordre un et in�ni (notés ARD1 et ARD∞) dans la Partie II, ainsi que pour le modèle de

réduction arithmétique de l'âge (ARA pour Arithmetic Reduction of Age) d'ordre un (noté ARA1) dans

la Partie III.

Dans la Partie II, on traite tout d'abord deux méthodes d'estimation classiques dans un cadre

paramétrique : la méthode des moments et celle du maximum de vraisemblance. L'identi�abilité des

paramètres a été étudiée, les expressions des estimateurs ont été donnée et la performance des méthodes

a été illustrée. Par la suite, découlant de l'étude de la méthode du maximum de vraisemblance, un estim-

ateur de l'e�cacité des maintenances (le paramètre ρ) est proposé dans un cadre semi paramétrique. Dans

le cas où un unique système est observé et lorsque la fonction de forme du processus gamma sous-jacent

est concave, la convergence presque sûre de cet estimateur lorsque le nombre de maintenance tend vers

l'in�ni est démontrée, associée à une vitesse de convergence étonnamment élevée, au moins exponentielle

dans certains cas particuliers. Ces travaux sont ensuite généralisés au cas où s systèmes identiques et

indépendants sont observés. Un estimateur semi paramétrique similaire est proposé pour ρ, et la conver-

gence presque sûre de cet estimateur lorsque s tend vers l'in�ni est véri�ée, et ce peu importe le nombre

de réparations n (�xé) et sous aucune hypothèse. La vitesse de convergence a aussi été étudiée, il est

démontré qu'elle dépend de la fonction de forme du processus gamma et de la périodicité des mainten-

ances, conduisant à une vitesse de convergence pouvant être plus lente ou plus rapide que
√
s selon les cas.

Dans la Partie III, plusieurs méthodes d'estimation sont proposées dans le cadre d'une modèle ARA1,

qui sont basées soit sur les observations, soit sur les incréments, conduisant à six méthodes di�érentes.

Selon la méthode traitée, soit une expression des estimateurs, ou soit la log-vraisemblance, est donnée,

et l'identi�abilité des paramètres du modèle a été étudiée pour quatre des six méthodes. Dans le but

d'étudier et comparer les performances de ces méthodes, des tests numériques basés sur des données

simulées ont été menés à grande échelle. Deux méthodes se sont révélées être plus e�caces que les autres

: la méthode du demi échantillon basée sur les indices impairs, ainsi que la méthode du maximum de

vraisemblance composite basée sur les observations. Cependant, d'un point de vue global, aucune des

deux méthodes ne se détache. Ainsi, le choix de la méthode doit être fait selon le contexte. Plus précisé-

ment, ce choix dépend du nombre de maintenances, de leur e�cacité et de l'évolution de l'intensité de
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dégradation au cours du temps.

Il y a plusieurs points non abordés qu'il serait intéressant d'étudier en complément de cette thèse.

Il existe beaucoup d'autres modèles dans la continuité des modèles ARD étudiés ici, par exemple les

modèles ARDm qui reposent sur l'idée qu'une action de maintenance réduit d'une certaine proportion

la dégradation accumulée par le système depuis les m dernières maintenances. Une des axes de travail

envisageable est de généraliser l'estimateur semi paramétrique de l'e�cacité des maintenances à un tel

modèle, ce qui semble possible car cette méthode repose sur la positivité des incréments du processus

gamma. De plus, il serait intéressant d'adapter cette procédure d'estimation en considérant un proces-

sus de Lévy monotone autre que le processus gamma. Finalement, en se basant sur une rapide analyse

numérique, il a été illustré que la condition qui assure une vitesse de convergence exponentielle est suf-

�sante, mais non nécessaire. Des études plus approfondies pourraient être menées dans le but de savoir

s'il est possible d'a�ner les conditions sous lesquelles les di�érentes vitesses de convergence sont obtenues.

Concernant les travaux menés dans la Partie III, des méthodes d'estimations pourraient être améli-

orées parmi celles qui sont proposées. Comme il a été précisé, il serait intéressant de voir si la qualité des

estimations est améliorée en combinant la méthode du demi échantillon basée sur les indices impairs avec

la méthode du maximum de vraisemblance composite basée sur les observations. De plus, il a été expliqué

que les approximations des intégrales par les méthodes de Monte Carlo et Quasi Monte Carlo pouvaient

être améliorées en ayant recours à de l'échantillonnage préférentiel. Des travaux supplémentaires pour-

raient être faits pour aborder ces possibles améliorations.

En plus de cela, mis à part dans le Chapitre 4, les propriétés asymptotiques des estimateurs n'ont pas

été étudiées dans ce document et une étude complémentaire est requise pour une meilleure compréhension

de leur comportement asymptotique, au delà des expériences numériques e�ectuées dans cette thèse. Ces

propriétés pourraient alors être étudiées dans la continuité des travaux actuels.

Au delà de ces points spéci�ques, un étude future pourrait concerner le développement de procédures

d'estimation dans le cadre d'un modèle ARA∞, pour lequel une maintenance réduit d'une proportion

donnée l'âge du système accumulé depuis sa mise en service. D'avantage de recherches peuvent être faites

dans ce contexte, en imitant les travaux e�ectués pour le modèle ARA1 dans un premier temps.

Finalement, un dernier point à étudier peut être de considérer un schéma d'observation indépendant

des opérations de maintenance, ce qui n'est pas le cas ici étant donnée que le niveau de dégradation est

mesuré juste avant chaque maintenance. Par exemple, les observations pourraient toujours être conduites

de manière périodique, tandis que le système pourrait être maintenu à des instants aléatoires suivant un

processus de Poisson. Cependant, des études préliminaires ont été faites dans ce cadre, et le niveau de

dégradation du système maintenu semble di�cile à exprimer, mais reste exploitable pour le développement

de procédures d'estimation. Ainsi, cela semble être un ambitieux, mais intéressant, projet pour de futures

recherches.
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La thèse s'intéresse à l'étude de modèles de maintenance imparfaite dans le cadre d'une système se dé-

gradant suivant un processus gamma. Plus précisément, trois modèles particuliers sont considérés, et le

but est de développer des méthodes d'estimation pour les paramètres de chacun de ces modèles. Pour

commencer, une dé�nition brève du processus gamma est donnée.

Soit la fonction a(·) : R+ 7→ R
+ croissante et continue, et telle que a(0) = 0, et b > 0. Soit (Xt)t≥0

un processus stochastique continue à droite avec limites à gauche. Le processus (Xt)t≥0 est un processus

gamma non homogène ayant pour fonction de forme a(·) et pour paramètre d'échelle b, si

� X0 = 0 presque sûrement;

� le processus est à incréments indépendants;

� les incréments suivent des lois gamma, c'est-à-dire que pour tout 0 ≤ s < t, on a Xt − Xs ∼
Γ(a(t)− a(s), b),

(voir, par exemple, [1]). Dans l'ensemble des travaux, on considère un système dont le niveau de dégrad-

ation évolue selon un processus gamma (Xt)t≥0 comme dé�ni ci-dessus, et ayant pour fonction de forme

et paramètre de d'échelle a(·) et b respectivement. On suppose également que le système est maintenu de

manière imparfaite, et les actions de maintenance sont supposées instantanées et périodiques de période

T connue.

La première partie étudie un type spéci�que de modèle de maintenance imparfaite : les modèles de

réduction arithmétique de la dégradation, dits ARD pour Arithmetic Reduction of Degradation. Plus

exactement, deux modèles ARD sont considérés, qui sont les modèles ARD d'ordre un et d'ordre in�ni

(respectivement ARD1 et ARD∞). On donne maintenant la dé�nition du modèle ARD1, la dé�nition de

l'autre modèle sera ensuite donnée.

Pour un modèle ARD1, une action de maintenance a pour e�et de réduire d'une proportion donnée

ρ ∈ [0, 1) la dégradation du système accumulée depuis la dernière maintenance. L'e�cacité des actions

de maintenance est alors mesurée par le paramètre ρ, ainsi, l'action de maintenance à l'instant jT réduit

de ρ% la dégradation accumulée par le système durant l'intervalle de temps [ (j − 1)T , jT [.

On note (Yt)t≥0 le processus stochastique décrivant l'évolution du niveau de dégradation du système

maintenu suivant le modèle ARD1. On note également (X(j))j∈N∗ une suite de copies indépendantes de
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(Xt)t≥0, où X(j) correspond à la dégradation intrinsèque (sans maintenance) du système entre les instants

(j − 1)T et jT . Le système est supposé en parfait état à l'instant initial t = 0, soit Y0 = X
(1)
0 = 0. Entre

l'instant initial et la première maintenance à l'instant T , le système se dégrade suivant le processus X(1)
t .

Ainsi

Yt = X
(1)
t et YT = (1− ρ)

(
X

(1)
T −X

(1)
0

)
= (1− ρ)X

(1)
T .

Pour t ∈ [T , 2T [, la dégradation du système correspond à la somme de la dégradation accumulée sur

[t, 2T [, soit X(2)
t −X

(2)
T , et du niveau de dégradation juste après la première maintenance, donc

Yt = YT +
(
X

(2)
t −X

(2)
T

)
et

Y2T = Y2T− + ρ
(
X

(2)
2T− −X(2)

T

)
= (1− ρ)

((
X

(2)
2T −X

(2)
T

)
+
(
X

(1)
T −X

(1)
0

))
.

Ainsi, pour tout t dans [nT , (n+ 1)T [, avec n dans N∗, on a :

YnT = (1− ρ)

n∑
j=1

(
X

(j)
jT −X

(j)
(j−1)T

)
et

Yt = YnT +
(
X

(n+1)
t −X(n+1)

nT

)
.

où les variables aléatoires YnT et
(
X

(n+1)
t −X(n+1)

nT

)
suivent des lois gamma Γ (a(nT ) , b/(1− ρ)) et

Γ (a(t)− a(nT ) , b) respectivement.

Concernant le modèle ARD∞, une action de maintenance à l'instant jT réduit le niveau de dégradation

à cet instant de ρ%, soit la dégradation du système accumulée depuis l'instant initial t = 0. Ce modèle

et le précédent se comportent de manière identique sur l'intervalle de temps [0 , 2T [. Ainsi, en conservant

les mêmes notations que pour le modèle précédent, on peut directement écrire que pour tout t dans [0 , T [

on a

Yt = X
(1)
t et YT = (1− ρ)

(
X

(1)
T −X

(1)
0

)
= (1− ρ)X

(1)
T ,

et pour tout t dans [T , 2T [

Yt = YT +
(
X

(2)
t −X

(2)
T

)
.

Lorsque la seconde maintenance survient, une proportion ρ de la dégradation accumulée depuis l'instant

t = 0 est retirée, ainsi Y2T = (1− ρ)
(
YT +

(
X

(2)
2T −X

(2)
T

))
, qui peut être écrit comme

Y2T = (1− ρ)2
(
X

(1)
T −X

(1)
0

)
+ (1− ρ)

(
X

(2)
2T −X

(2)
T

)
.
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Finalement, pour tout t dans [nT , (n+ 1)T [ et n dans N, on déduit une expression pour Yt, qui est :

Yt =

n∑
j=1

(1− ρ)n−j+1
(
X

(j)
jT −X

(j)
(j−1)T

)
+
(
X

(n+1)
t −X(n+1)

nT

)
,

et où les incréments sont indépendants et suivent des lois gamma.

Une fois établie la dé�nition formelle de ces modèles, la suite de cette première partie est elle même

divisée en deux axes, tous deux basés sur le développement de méthodes d'estimation pour chacun des

modèles. Pour cela, un schéma d'observation est tout d'abord dé�ni, où l'on considère que s systèmes

indépendants et identiquement distribués (i.i.d.) sont observés n fois chacun, juste avant les n premières

maintenances, soit aux instants jT− pour 1 ≤ j ≤ n. On se place ensuite dans le contexte particulier où

la fonction de forme a du processus gamma sous-jacent est de type power law, soit a : t 7→ αtβ avec α,

β > 0. Ainsi, les paramètres d'intérêt sont les paramètres de la fonction de forme α et β, le paramètre

d'échelle b, ainsi que l'e�cacité des actions de maintenance ρ.

Dans un premier temps, deux méthodes d'estimation classiques sont développées. Il s'agit de la

méthode des moments et de celle du maximum de vraisemblance. Une brève introduction de chaque

méthode est faite, l'identi�abilité des paramètres est ensuite étudiée et en�n une expression des estim-

ateurs est donnée. Ensuite, des tests numériques sont menés sur des jeux de données simulés, et pour

�nir les résultats sont analysés.

En se basant sur une particularité révélée lors du l'étude du maximum de vraisemblance, un un

estimateur original pour l'e�cacité des actions de maintenance est développé. Cet estimateur dépend

uniquement des observations, et non des paramètres du processus gamma sous-jacent, il s'agit donc d'un

estimateur semi paramétrique.

Une fois cette estimateur dé�ni et plusieurs résultats techniques intermédiaires donnés, cette méthode

d'estimation est en premier lieu étudiée en considérant un unique système (s = 1). Lorsque la fonction

de forme du processus gamma sous-jacent est concave, la convergence presque sûre de cet estimateur est

véri�ée lorsque n tend vers l'in�ni. De plus, sous certaines hypothèses techniques plus fortes, la vitesse

de convergence de cet estimateur est particulièrement élevée, jusqu'à atteindre une vitesse exponentielle.

Cette méthode est ensuite généralisée au cas où plusieurs systèmes i.i.d. sont observés. La convergence

presque sûre est encore une fois véri�ée lorsque n est �xé et s tend vers l'in�ni, et ce sous aucune hypo-

thèse sur la fonction de forme. La vitesse de convergence est ici plus faible que précédemment, mais peut

tout de même est plus haute que la vitesse de convergence classique
√
s.

Dans la seconde partie, un autre modèle de maintenance imparfaite est étudié, qui est un modèle d'âge

virtuel. Il s'agit du modèle de réduction arithmétique de l'âge (virtuel) d'ordre un (ARA1 pour Arithmetic

Reduction of Age of order one). Pour un tel modèle, une action de maintenance réduit l'âge virtuel du

système de ρT unités de temps. En d'autre termes, une maintenance retire ρ% de l'âge accumulé par le

système depuis la dernière maintenance. Ainsi, on peut écrire que

V (t) = t− ρkT pour kT ≤ t < (k + 1)T

où V (t) est l'âge virtuel du système à l'instant t. On remarque que V (kT ) = (1− ρ) kT et V (kT−) =

[(1− ρ) k + ρ]T . De plus, la k-ème action de maintenance remet le système dans l'état où il se trouvait

à l'instant kT − ρT = (k − ρ)T . L'âge virtuel correspondant est

V ((k − ρ)T ) = (k − ρ)T − ρ (k − 1)T = (1− ρ) kT = V (kT ) .
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ce qui est cohérent car à l'instant kT , le système est remis dans l'état où il se trouvait à l'instant (k − ρ)T .

Cela implique que

Z(k−ρ)T = ZkT

et �nalement

V (t) =
∑
j≥0

(t− ρjT ) 1[jT,(j+1)T )(t).

Ainsi, le niveau de dégradation Zt pour nT < t ≤ (n+ 1)T , avec n dans N∗, peut s'écrire comme

Zt = ZnT +
(
X

(n+1)
V (t) −X

(n+1)
V (nT )

)
= ZnT +

(
X

(n+1)
t−ρnT −X

(n+1)
(1−ρ)nT

)
avec

ZnT = Z(n−1)T +
(
X

(n)
V (nT ) −X

(n)
V ((n−1)T )

)
= Z(n−1)T +

(
X

(n)
(1−ρ)nT −X

(n)
(1−ρ)(n−1)T

)
,

et où
(
X

(n+1)
t−ρnT −X

(n+1)
(1−ρ)nT

)
suit une loi gamma Γ

(
a(t− ρnT )− a((1− ρ)nT ), b

)
. De plus, on peut écrire

ZnT comme

ZnT =

n∑
j=1

(
X

(j)
(1−ρ)jT −X

(j)
(1−ρ)(j−1)T

)
,

qui suit également une loi gamma dont les paramètres de forme et d'échelle sont a((1 − ρ)nT ) et b re-

spectivement. Ainsi, Zt est la somme de deux variables aléatoires indépendantes suivant des lois gamma

de même paramètre d'échelle, ce qui entraîne que Zt suit aussi une loi gamma Γ
(
a(t− ρnT ), b

)
.

Des méthodes d'estimations sont ensuite développées dans le même contexte que celui de la première

partie, c'est-à-dire que l'on conserve ici le même schéma d'observation ainsi que la même fonction de

forme tels qu'ils sont dé�nis plus haut. Ainsi, les paramètres à estimer restent inchangés. Les méthodes

développées sont basées soit sur les observations, soit sur les incréments des observations, i.e. les variables

aléatoires ZjT− − Z(j−1)T− pour 1 ≤ j ≤ n. Une fois encore la méthode des moments est traitée, basée

sur les observations. La méthode du maximum de vraisemblance est ensuite abordée, cette fois-ci basée

sur les incréments. Cependant, ces incréments n'étant pas indépendants, la fonction de vraisemblance se

révèle être un produit d'intégrales en dimension n− 1, et cela pose problème pour estimer les paramètres

numériquement de façon classique. Ainsi, un travail préliminaire est fait dans le but de ramener le

domaine d'intégration à [0, 1]n−1, puis le maximum de vraisemblance est traité en utilisant les méthodes

de Monte Carlo et Quasi Monte Carlo randomisé pour les approximations d'intégrales.

En plus de cela, a�n de contourner le problème des intégrales en grande dimension, quatre méthodes

alternatives basées sur le maximum de vraisemblance sont étudiées : la méthode du demi échantillon et

le maximum de vraisemblance composite. La première méthode, basée sur les incréments, consiste à ne

considérer qu'un incrément sur deux. Étant donné que le j-ème incrément est dépendant des j − 1-ème

et j + 1-ème, n'en choisir qu'un sur deux permet d'obtenir l'indépendance. Ainsi, suivant le principe du

maximum de vraisemblance, une expression de la vraisemblance basée sur la moitié des incréments est

donnée, nécessitant dans ce cas l'approximation d'intégrales de dimensions 1 seulement. Deux méthodes
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sont développées suivant ce procédé, la première considérant les incréments dont les indices sont impairs

et la seconde ceux dont les indices sont pairs. Le maximum de vraisemblance composite considérée

par la suite repose sur une hypothèse simple, celle de l'indépendance. Dans ce cas deux méthodes

sont également développées, l'une basée sur les observations (supposées indépendantes) et l'autre sur les

incréments (supposés indépendants). Concernant cette méthode, lorsque les incréments sont considérés,

la vraisemblance nécessite une fois de plus l'approximation d'intégrales de dimensions 1, tandis qu'il n'y a

aucune intégrale dans l'expression de la vraisemblance composite basée sur les observations. En parallèle,

l'identi�abilité des paramètres du modèle est étudiée pour chacune des méthodes, exceptées la méthode

du demi échantillon basée sur les indices pairs et la méthode du maximum de vraisemblance composite

basée sur les incréments. En e�et, lors des tests numériques e�ectués, ces deux méthodes ont révélé des

problèmes d'identi�abilité.

Pour �nir, l'ensemble de ces méthodes ont été testées numériquement sur des données simulées. Cette

étude s'est déroulée en deux temps. Tout d'abord, les tests ont été réalisés sur de larges jeux de données,

dans le but de voir quelles méthodes sont les plus �ables et lesquelles ne le sont pas. Deux méthodes se

sont révélées être plus e�caces, et ont ensuite été testées à plus grande échelle. Finalement, les résultats

sont analysés dans le but de conclure quelle méthode est la plus �able. Cependant, aucune des méthodes

ne se détache nettement. Ainsi, le choix de la méthode se fait en fonction du contexte d'application. Plus

précisément, le choix se fait en fonction du nombre de maintenance n, de leur e�cacité ρ, ainsi qu'en

fonction de l'évolution de l'intensité de dégradation, plus précisément de la convexité de la fonction de

forme (qui dépend de la valeur du paramètre β).
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