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CHAPTER 1

Introduction

General Context

The twentieth century saw spectacular advances in our comprehension of the universe and its

governing laws, from quantum mechanics to the standard model, and special relativity to general

relativity. Special relativity, theorised in 1905 after prior observations from the electromagnetism

theory of Maxwell completely rejected the notion of absolute time and absolute space. This led

Einstein ten years later to the construction of general relativity in which the gravitational interac-

tion is the geometry of space-time. Quantum mechanics on the other hand revolutionised our

understanding of particle physics. Particles can no longer be interpreted as point-like objects

or waves but rather both, described mathematically by a complex valued probability amplitude.

Including the formalism of special relativity to quantum mechanics then contributed to the cre-

ation of quantum field theory and the standard model, a theoretical description of fundamental

particles and their interactions: electromagnetic, weak and strong forces.

General relativity has been widely verified by various observations such as gravitational lens-

ing, the perihelion advance of Mercury or more straightforwardly the direct measurement of time

3



4 CHAPTER 1. INTRODUCTION

shifts between atomic clocks. This culminated in the last few years with the detection of gravita-

tional waves [1] as well as the direct observation of a black hole [2]. The formalism of quantum

field theory on the other hand predicted successfully the existence of different particles such

as the tau particle and the Brout-Englert-Higgs (BEH) boson [3]. Both general relativity and

quantum field theory permitted the creation of a new generation of measuring equipment which

strongly changed our ability to approach science in a vast variety of domains from physics and

chemistry to medicine, geophysics, archaeology,... It is not out of place to say that the society

as we currently know it, and our day-to-day life, would be strikingly different without technolo-

gies such as transistors and satellite positioning systems which were created thanks to these

theories.

Unfortunately, there remain various observations for which general relativity and the standard

model both fail to give a proper description. The observations of the oscillations of neutrinos [4]

for example can only occur if at least two of them have a mass, which is not the case in the stan-

dard model. Maybe even more dramatically, the observation of large-scale phenomena such as

the formation or rotations of galaxies and the expansion of the universe indicate either some

deviation from general relativity or the inclusion of dark matter and dark energy. Neither gravi-

tational interferometers nor particle accelerators were able to show any deviation from general

relativity or were able to detect particles unpredicted by the standard model. Finally, one of the

biggest conundrum of modern physics is to be able to describe phenomenon such as the big

bang or black holes in which both general relativity and quantum mechanics play a role.

Black holes in general relativity are defined as a region of the universe from which nothing

can escape, whether it be matter or light. They are among the possible ending scenarios of a

dying star whose internal pressure is too weak to compensate its own gravitational force. In a

sense, general relativity already fails to describe such objects, as it is possible for a black hole to

have a region with gravitational singularity, in which the curvature of space-time becomes infinite.

Hawking proved later that if one considers quantum field theory in a black hole background, the

black hole behaves as a black body and therefore evaporates. This leads to the information loss

puzzle. Resolving this issue has as a consequence rejecting at least one postulate from quan-
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tum mechanics, or general relativity, namely the unitary transformations of quantum processes

or the equivalence principle. All of these incompatibilities led the scientific community to seek for

a quantum theory of gravity. Among current research concerning this unification is string theory,

the formalism on which this thesis is based on.

String Theory

String theory was originally constructed as a possible explanation of the strong interaction, and

was later dismissed in favour of quantum chromodynamics. It was then proposed as a possible

theory of quantum gravity as well as a unifying formalism of all fundamental forces. Schemat-

ically, string theory can be seen as a generalisation of quantum field theory, describing one-

dimensional objects called strings instead of point-like particles. In order to include fermionic

states, one is forced to consider supersymmetric theories. In the end, one obtains five con-

sistent superstring theories in ten dimensions: Type IIA, Type IIB, Type I and the E8 × E8 and

SO(32) heterotic string theories. The issue raised by the dimension of an extended space-time

is resolved by considering that additional space dimensions are compact. The four-dimensional

manifestations or our universe are then low energy approximations of a more fundamental theory

with more dimensions.

String theory is not only a theory of strings, but also of branes, which can extend over more

than one spatial dimension. They are essential in type II and type I string theory in order to

recover gauge groups compatible with the standard model and are the electric and magnetic

charges of various fields in string theory.

The five ten dimensional superstring theories are in fact different facets of a unifying eleven

dimensional one named M-theory. Various dualities relate each of them after compactifications

and have been extensively studied in recent years. This thesis addresses such dualities in eight

dimensions and focuses on F-theory [5]. F-theory is twelve dimensional and can be understood

as type IIB string theory with 7-branes. It has various applications in non-perturbative quantum

field theory, particle physics model building and makes the connection between physics and
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algebraic geometry [6].

In this thesis, we first focus on possible links between F-theory and the so called exceptional

field theory. Exceptional field theory is a quantum field theory for point particles that incorporates

the stringy symmetries of string theory. In particular, it provides a low energy description of type

IIB, and the string theory symmetries are manifest. We therefore discuss the possibility for

exceptional field theory to describe aspects of F-theory.

Subsequently, we focus on the duality between F-theory and the heterotic string in eight

dimensions. The heterotic string provides a vast variety of possible gauge groups after com-

pactification, determined by its Wilson lines. In type IIB, the gauge groups appear from stacks

of branes, and in F-theory this is due to the algebraic structure of the space on which one com-

pactifies, in our case K3 surfaces. A convenient way to construct K3 surfaces is to use three-

dimensional polytopes. The duality between K3 surfaces on the F-theory side and Wilson lines

on the heterotic one is only well understood for two of the 4319 possible K3 surfaces constructed

via polytopes [7, 8]. We thus focus on the dualities of F-theory with the heterotic string for other

polytopes in the third part of this manuscript.

Organization of the thesis

This thesis contains three parts. Part I is an introduction to fundamental concepts of string the-

ory. Part II focuses on Exceptional Generalised Geometry (EGG) and Exceptional Field Theory

(EFT), in particular E3(3) × R+ EFT in eight dimensions and its link to F-theory. In Part III we

discuss the duality between F-theory on elliptic K3 surfaces and the heterotic string theory com-

pactified on a two torus. We provide new insight as to find an explicit map between reflexive

polytopes defining K3 surfaces and Wilson lines.

Chapter 1 and 2 are the introductions (in English and French).

In chapter 3, we introduce the notion of compactification and discuss Kaluza-Klein and Scherk-

Schwarz examples. We present the motivation to use Calabi-Yau compactifications in string
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theory. We then briefly discuss T and S dualities. After a discussion on the link between electro-

magnetic duality with magnetic monopoles and strong/weak duality, we present the manifesta-

tion of the continuous SL(2,R) symmetry of type IIB supergravity and its restriction to its discrete

subgroup SL(2,Z) in the quantum case.

In chapter 4, we look at the action of T and S dualities on branes. We start by S-duality

in the case of Type IIB string theory which forces one to consider manifestly SL(2,Z) branes.

We then discuss the notion of monodromy with emphasise on (p, q) branes. We show that the

S-duality transformations of the axio-dilaton is a modular invariance of an elliptic curve, which is

the central notion of the construction of F-theory. We look at the consequences of T and more

generally U-duality on branes. We conclude with a discussion on the web of dualities between

different superstring theories.

In chapter 5, we present basic notions of Double Field Theory (DFT), Generalised Geometry

(GG) and their U-dual extensions Exceptional Field Theory (EFT) and Exceptional Generalised

Geometry (EGG). We start with a few reminders of the different steps necessary to obtain the

Ricci tensor in Riemannian geometry. We then discuss how to incorporate a O(d, d,R) symmetry

into such a formalism, first by considering an extension of the fiber (GG), then by doubling the

number of coordinates (DFT). We briefly describe the generalisations to U-duality.

In chapter 6, we present the results of [9]. We consider a non-trivial solution to the sec-

tion condition in the context of E3(3) × R+ exceptional field theory. We show that allowing fields

to depend on the additional stringy coordinates of the extended internal space permits to de-

scribe the monodromies of (p, q) 7-branes in the context of F-theory. General expressions of

non-trivial fluxes with associated linear and quadratic constraints are obtained via a comparison

to the embedding tensor of eight dimensional gauged maximal supergravity with gauged trom-

bone symmetry. We write a generalised Christoffel symbol for E3(3) ×R+ EFT and show that the

equations of motion of F-theory, namely the vanishing of a 4 dimensional Ricci tensor with two of

its dimensions fibered, can be obtained from a generalised Ricci tensor and an appropriate type

IIB ansatz for the metric.
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In chapter 7, we detail aspects of the compactifications of F-theory on elliptic K3 surfaces and

the compactifications of the heterotic string theory on a two torus. We start by describing the

heterotic string on T 2 and its moduli. We give some examples of gauge group enhancements and

breaking in this context. Then, we present some general notions on the cohomology structure of

Calabi-Yau surfaces. We discuss in more detail the homology and cohomology structure of K3

surfaces as well as their moduli space. We show how to construct K3 surfaces using reflexive

polytopes, as well as their possible fibrations. Finally, we discuss the moduli structure of such

parametrisations of K3 surfaces.

In chapter 8, we present the results of [10]. We show how to construct elliptically fibered K3

surfaces via Weierstrass models which can be parametrized in terms of Wilson lines in the dual

heterotic string theory. We work with a subset of reflexive polyhedra that admit two fibrations and

whose moduli spaces contain the ones of the E8 × E8 or Spin(32)
Z2

heterotic theory compactified

on a two-torus without Wilson lines. One can then interpret the additional moduli as a particular

Wilson line in the heterotic string. A convenient way to find such polytopes is to use graphs of

polytopes where links are related to inclusion relations of moduli spaces of different fibers. We

are then able to map monomials in the defining equations of particular K3 surfaces to Wilson

line moduli in the dual theories. We developed three Sagemath programs which permitted us

to construct graphs giving the gauge group for a generic point in the moduli space, the Weier-

strass model as well as basic enhancements of the generic gauge group, obtained by sending

coefficients of the hypersurface equation defining the K3 surface to zero.

In chapter 9, we present preliminary results of an upcoming paper written in collaboration with

Bernardo Fraiman [11]. We show that in the case of a specific polytope admitting five inequiv-

alent fibration and two moduli, the generic gauge groups for each fibrations can be interpreted

as coming from a Z3 shift vector. Different fibrations are obtained by splitting the shift vector

differently between the two E8 lattices and on the SO(32) heterotic string. We then discuss other

polytopes with two moduli which could possibly be described with Zn shift vectors.
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Introduction en Français

Contexte Général

Le XXe siècle a vu des avancées spectaculaires vis-à-vis de notre compréhension de l’univers et

des lois qui le gouvernent, de la mécanique quantique au modèle standard, et de la relativité re-

streinte à la relativité générale. La relativité restreinte, théorisée en 1905 après les observations

antérieures de la théorie de l’électromagnétisme de Maxwell, a complètement rejeté la notion de

temps et d’espace absolu. Cela a conduit Einstein dix ans plus tard à la construction de la rel-

ativité générale, dans laquelle l’interaction gravitationnelle est la géométrie de l’espace-temps.

D’un autre côté, la mécanique quantique a révolutionné notre compréhension de la physique

des particules. Celles-ci ne peuvent plus être interprétées comme des objets ponctuels, ou des

ondes, mais les deux, et son décrites mathématiquement par une amplitude de probabilité à

valeur complexe. L’intégration du formalisme de la relativité restreinte à la mécanique quantique

a ensuite contribué à la création de la théorie quantique des champs et du modèle standard, une

description théorique des particules fondamentales et de leurs interactions: forces électromag-

nétique, faible et forte.

9
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La relativité générale a été largement vérifiée par diverses observations telles que les lentilles

gravitationnelles, l’avance du périhélie de Mercure ou plus directement la mesure des décalages

temporels entre horloges atomiques. Cela a culminé ces dernières années avec la détection

d’ondes gravitationnelles [1] ainsi que l’observation directe d’un trou noir [2]. Le formalisme de

la théorie quantique des champs, quant à lui, a prédit avec succès l’existence de différentes

particules telles que la particule tau et le boson de Brout-Englert-Higgs (BEH) [3]. La relativ-

ité générale et la théorie quantique des champs ont permis de créer une nouvelle génération

d’équipements de mesure qui a fortement modifié notre capacité à aborder la science dans une

grande variété de domaines allant de la physique et de la chimie à la médecine, la géophysique,

l’archéologie, ... Il n’est pas hors de propos de dire que la société telle que nous la connaissons

actuellement, ainsi que notre vie quotidienne, seraient remarquablement différentes sans les

technologies telles que les transistors et les systèmes de positionnement par satellite qui ont été

créés grâce à ces théories.

Malheureusement, il reste diverses observations pour lesquelles la relativité générale et le

modèle standard ne parviennent pas à donner d’explications. L’observation des oscillations des

neutrinos [4], par exemple, ne peut se produire que si au moins deux d’entre eux ont une masse,

ce qui n’est pas le cas dans le modèle standard. Peut-être encore plus dramatique, l’observation

de phénomènes à grandes échelles tels que les formations ou les rotations de galaxies ainsi

que l’expansion de l’univers indiquent soit une certaine déviation de la relativité générale, soit la

nécessité d’inclure matière noire et d’énergie noire dans la théorie. Ni les interféromètres grav-

itationnels, ni les accélérateurs de particules, n’ont pu cependant montrer d’écart vis-à-vis à la

relativité générale ou n’ont pu détecter des particules non prédites par le modèle standard. Enfin,

l’une des plus grandes énigmes de la physique moderne est de pouvoir décrire des phénomènes

tels le big bang ou les trous noirs, dans lesquels la relativité générale et la mécanique quantique

jouent un rôle.

Les trous noirs en relativité générale sont définis comme une région de l’univers de laquelle

rien ne peut échapper, que ce soit de la matière ou de la lumière. Ils font partie des possibles fin

de vie d’une étoile dont la pression interne est trop faible pour compenser sa propre force gravi-



11

tationnelle. En un sens, la relativité générale ne parvient déjà pas à décrire de tels objets. Il est

en effet possible pour un trou noir de présenter une singularité gravitationnelle dans laquelle la

courbure de l’espace-temps devient infinie. Hawking a prouvé plus tard que si l’on considère la

théorie quantique des champs sur un espace-temps décrivant un trou noir, il se comporte comme

un corps noir et s’évapore. Cela conduit en particulier au paradoxe de l’information. Résoudre

ce problème a pour conséquence de rejeter au moins un postulat de la mécanique quantique,

ou de la relativité générale, à savoir les transformations unitaires des processus quantiques ou

le principe d’équivalence. Toutes ces incompatibilités ont conduit la communauté scientifique à

rechercher une théorie quantique de la gravité. Parmi les recherches actuelles concernant cette

unification figure la théorie des cordes, le formalisme sur lequel cette thèse est basée.

Théorie des Cordes

La théorie des cordes a été construite à l’origine comme une explication possible de l’interaction

forte, pour ensuite être rejetée en faveur de la chromodynamique quantique. Elle a ensuite

été proposée comme une théorie de la gravité quantique ainsi qu’un formalisme d’unification

de l’ensemble des forces fondamentales. Schématiquement, la théorie des cordes peut être

considérée comme une généralisation de la théorie quantique des champs. Elle décrit des ob-

jets unidimensionnels appelés cordes au lieu de particules ponctuelles. Afin d’inclure des états

fermioniques, il est nécessaire de considérer des théories supersymétriques. Finalement, on ob-

tient cinq théories de supercordes cohérentes en dix dimensions : Type IIA, Type IIB, Type I et les

théories hétérotiques E8×E8 et SO(32). Le problème posé par la dimension d’un espace-temps

étendu est résolu en considérant que les dimensions d’espace supplémentaires sont compactes.

Les manifestations à quatre dimensions de notre univers sont alors une approximation à basse

énergie d’une théorie plus fondamentale qui a plus de dimensions.

La théorie des cordes n’est pas seulement une théorie de cordes, mais aussi de branes,

qui peuvent s’étendre sur plus d’une dimension spatiale. Elles sont essentielles en théorie des

cordes de type II et de type I afin d’obtenir des théories de jauge compatibles avec le mod-
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èle standard, et sont les charges électriques et magnétiques de divers champs en théorie des

cordes.

Les cinq théories des supercordes à dix dimensions sont en fait différentes facettes d’une

théorie unificatrice à onze dimensions appelée théorie M. Diverses dualités les relient après

compactifications et ont été largement étudiées ces dernières années. Cette thèse aborde ces

dualités en huit dimensions et est centrée sur la théorie F [5]. Celle-ci est douze dimensionnelle

et peut être comprise comme la théorie des cordes de type IIB avec des 7-branes. Elle a diverses

applications dans la théorie quantique des champs non-perturbatifs, la construction de modèles

de physique des particules et fait le lien entre physique et géométrie algébrique [6].

Dans cette thèse, nous nous concentrons d’abord sur les liens possibles entre la théorie F

et la théorie des champs exceptionnels. La théorie des champs exceptionnels est une théorie

quantique des champs, ponctuelle, incorporant les symétries de la théorie des cordes. En par-

ticulier, elle fournit une description à basse énergie de la théorie des cordes de type IIB tout

en présentant ses symétries de façon manifeste. Nous discutons donc de la possibilité pour la

théorie des champs exceptionnels de décrire des aspects de la théorie F.

Dans un deuxième temps, nous nous concentrons sur la dualité entre la théorie F et la corde

hétérotique en huit dimensions. La corde hétérotique fournit déjà une grande variété de groupes

de jauges possibles après compactification, déterminées principalement par la structure de ses

lignes de Wilson. Dans la théorie type IIB, les groupes de jauge apparaissent suite à un empile-

ment de branes, et en F-théorie cela est dû à la structure algébrique de l’espace sur lequel on

compactifie, dans notre cas une surface K3 elliptique. Un moyen concret de construire des sur-

faces K3 est d’utiliser des polyèdres tridimensionnels. La dualité entre ces surfaces, du côté de

la théorie F, et les lignes de Wilson en corde hétérotique, n’est bien comprise que pour deux des

4319 surfaces K3 construites via des polyèdres [7,8]. Nous nous intéressons donc aux dualités

de la théorie F avec la corde hétérotique pour d’autres polyèdres dans la troisième partie de ce

manuscrit.

Organisation de la thèse
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Cette thèse comprend trois parties. La partie I est une introduction aux concepts fondamentaux

de la théorie des cordes. La partie II se concentre sur la géométrie généralisée exceptionnelle et

la théorie des champs exceptionnels, en particulier E3(3)×R+ EFT en huit dimensions et son lien

avec la théorie F. Dans la partie III, nous discutons de la dualité entre la théorie F sur des sur-

faces elliptiques K3 et la théorie des cordes hétérotiques compactifiée sur un deux-tores. Nous

fournissons de nouvelles perspectives qui permettent de construire une identification explicite

entre des polyèdres réflexifs définissant des surfaces K3 et des lignes de Wilson.

Les chapitres 1 et 2 sont les introductions (en Anglais et en Français).

Dans le chapitre 3, nous introduisons la notion de compactification en traitant les exemples de

Kaluza-Klein et Scherk-Schwarz. Nous présentons les motivations qui amène à considérer des

compactifications de Calabi-Yau dans la théorie des cordes. Nous traitons ensuite des exem-

ples basiques de la dualité T et S. Après avoir montré le lien entre la dualité électromagnétique

avec des monopôles magnétiques, et la dualité forte/faible interaction, nous présentons la man-

ifestation de la symétrie continue SL(2,R) de la supergravité de type IIB et sa restriction à son

sous-groupe discret SL(2,Z) dans le cas quantique.

Dans le chapitre 4, nous examinons les actions des dualités T et S sur les branes. Nous com-

mençons par la dualité S dans le cas de la théorie des cordes de type IIB qui force à considérer

des branes présentant une symétrie SL(2,Z) manifeste. Nous discutons ensuite la notion de

monodromie en insistant sur le cas particulier des (p, q) branes. Nous montrons que les transfor-

mations associées à la dualité S de l’axio-dilaton correspond à une invariance modulaire d’une

courbe elliptique, notion centrale vis-à-vis de la construction de la théorie F. Nous regardons

ensuite les conséquences de la dualité T et plus généralement de la dualité U sur les branes.

Nous concluons par une discussion sur le réseau de dualités entre les différentes théories des

supercordes.

Dans le chapitre 5, nous présentons les notions de base de la théorie des champs doubles
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(Double Field Theory, DFT), de la géométrie généralisée (GG) et de leurs extensions U-dual

i.e. la théorie des champs exceptionnels (Exceptional Field Theory, EFT) et la géométrie ex-

ceptionnelle (Exceptional Generalised Geometry, EGG). Nous commençons par des rappels sur

les étapes nécessaires à l’obtention du tenseur de Ricci en géométrie Riemannienne. Nous dis-

cutons ensuite comment incorporer une symétrie O(d, d,R) dans un tel formalisme, d’abord en

considérant une extension de la fibre (GG), puis en doublant le nombre de coordonnées (DFT).

Enfin, nous décrivons plus brièvement les généralisations dues à la dualité U.

Dans le chapitre 6, nous présentons les résultats de [9]. Nous considérons une solution non

triviale à la condition de section (section condition) dans le contexte de la théorie des champs

exceptionnels E3(3) × R+. Nous montrons que permettre aux champs d’avoir une dépendance

par rapport aux coordonnées supplémentaires de l’espace interne étendu permet de décrire les

monodromies des (p, q) 7-branes dans le contexte de la théorie F. Nous obtenons des expres-

sions générales de flux non triviaux avec contraintes linéaires et quadratiques par une com-

paraison avec le embedding tensor de la supergravité maximale jaugée à huit dimensions avec

symétrie trombone jaugée. Nous déterminons un symbole de Christoffel généralisé pour la

théorie des champs exceptionnelles E3(3)×R+ et montrons que les équations du mouvement de

la théorie F, à savoir l’annulation d’un tenseur de Ricci à 4 dimensions ayant deux de ses dimen-

sions fibrées, peuvent être obtenues à partir d’un tenseur de Ricci généralisé et d’un ansatz de

type IIB pour la métrique.

Dans le chapitre 7, nous détaillons les aspects des compactifications de la théorie F sur les

surfaces elliptiques K3 et les compactifications de la théorie des cordes hétérotiques sur des

deux tores. Nous commençons par décrire la corde hétérotique sur T 2 ainsi que ses modules.

Nous donnons quelques exemples d’extensions et de réductions des groupes de jauges dans

ce contexte. Ensuite, nous présentons des notions générales sur la structure de cohomologie

des espaces de Calabi-Yau. Nous discutons plus en détail la structure d’homologie et de coho-

mologie des surfaces K3, ainsi que l’espace des modules de celles-ci. Nous montrons comment

construire des surfaces K3 ainsi que leurs éventuelles fibrations à l’aide de polyèdres réflexifs.
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Enfin, nous discutons de la structure des modules pour de telles paramétrisations des surfaces

K3.

Dans le chapitre 8, nous présentons les résultats de [10]. Nous montrons comment con-

struire des surfaces K3 elliptiques via des modèles de Weierstrass qui peuvent être paramétrés

en termes de lignes de Wilson dans la théorie des cordes hétérotiques dual. Nous travaillons

avec un sous-ensemble de polyèdres réflexifs admettant deux fibrations, et dont les espaces de

modules contiennent ceux obtenues après la compactification de la théorie hétérotique E8 × E8

ou Spin(32)
Z2

sur des deux-tores et avec des lignes de Wilson nulles. On peut alors interpréter

les modules supplémentaires comme des ceux associés à des lignes de Wilson particulières

dans la corde hétérotique. Un moyen pratique de trouver de tels polyèdres consiste à utiliser

des graphes de polyèdres où les liens sont liés aux relations d’inclusion des espaces de mod-

ules des différentes fibrations. Nous sommes ensuite en mesure d’identifier les monômes dans

les équations définissant les surfaces K3 comme des modules des lignes de Wilson dans les

théories duales. Nous avons construit ce genre de graphes en développant trois programmes

Sagemath qui donnent: le groupe de jauge pour un point générique dans l’espace des modules,

le modèle de Weierstrass, ainsi que les extensions du groupe de jauge générique, obtenues en

envoyant à zéro les coefficients de l’équation définissant la surface K3.

Dans le chapitre 9, nous présentons des résultats préliminaires d’un prochain article écrit en

collaboration avec Bernardo Fraiman [11]. Nous montrons que dans le cas d’un certain polyèdre

présentant cinq fibrations inéquivalentes et deux modules, les groupes de jauge génériques pour

chaque fibration peuvent être interprétés comme un shift vector Z3. Différentes fibrations sont

obtenues en distribuant différement le shift vector entre les deux réseaux E8 ainsi que sur la

corde hétérotique SO(32). Nous discutons enfin la possibilité pour d’autres polyèdres à deux

modules d’être également décrits par des shift vectors Zn.





Part I

Introductory Concepts of String Theory
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CHAPTER 3

Compactifications of String Theory and Dualities

One feature of string theory, which is probably one of the most popular aspect of the theory,

is that it needs additional dimensions in order to be consistent. However peculiar at first, this

condition leads to the concept of compactifications, theorised long time before string theory, and

somehow forgotten for several decades. In this chapter, we introduce the notion of compactifica-

tions together with one closely related concept in string theory: dualities. We start by considering

Kaluza and Klein’s compactifications of general relativity in five dimensions on a circle S1. This

hundred-year-old example already displays the unification of different interactions, hence indicat-

ing interesting prospects as to use compactifications in the construction of a grand unified theory

of fundamental forces. We briefly treat Scherk and Schwarz compactificatitions generalising our

first example and discuss its major implications.

We then present compactifications on a circle in the context of the bosonic string in 26 dimen-

sions. We show that a new feature appears due to the consideration of extended objects such

as strings: T-duality. We then consider compactifications of the bosonic string on a n-torus T n

and show how T-duality can be understood in this case as a discrete O(d, d,Z) symmetry at the

quantum level.
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Next, we focus on the weak/strong duality of string theory: S-duality. We begin by consid-

ering the electromagnetic duality of Maxwell’s theory in vacuum that we generalise to the case

of electrodynamic with magnetic monopole. We show schematically how the Dirac quantisa-

tion condition implies that the electromagnetic duality is also a weak/strong coupling duality. To

conclude our discussion concerning S-duality we discuss it in the context of string theory by

considering type IIB supergravity whose action has a SL(2,R) symmetry.

Finally, we show how one is led to consider Calabi-Yau compactifications of string theory and

discuss some of its basic aspects.

3.1 Dimensional reduction and compactifications

3.1.1 Kaluza and Klein’s mechanism

Einstein’s theory of gravity is a geometric description of the gravitational interaction. The equa-

tions of motion of the metric gµν of a Riemannian or semi-Riemannian manifold M, with µ, ν =

0, ..., 3 can be obtained via the Einstein-Hilbert action in the vacuum and without cosmological

constant

S4d ∼
∫
M
Rvol =

∫
M
R
√
|g|d4x (3.1)

where R is the Ricci scalar. The Einstein’s equation then reads

Rµν = 0 (3.2)

with Rµν the Ricci tensor. Now, one could ask if it is possible to geometrise other forces in

a similar way. Kaluza had the idea to consider a five dimensional manifold instead of a four

dimensional one in a paper published in 19211 and Klein later proposed that this fifth dimension

be compact as a way to interpret it properly. Let us first discuss this interpretation. Consider

a five dimensional manifold as the product of a four dimensional Riemann space and a circle

M = M × S1 as well as a scalar field Φ living on this space. We can choose to impose the
1This was however already treated in a paper by Gunnar Nordström in 1914.
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following periodicity condition on the scalar field

Φ(xµ̂) = Φ(xµ, x4) = Φ(xµ, x4 + 2πR0) (3.3)

where R0 is the radius of the fourth spatial direction, x4 a local coordinate on the circle and xµ

local coordinates of M . This leads to the possible development of Φ as the Fourier expansion

Φ(xµ, x4) =
∑
n∈Z

Φn(xµ)e
inx4

R0 . (3.4)

Now, let us apply the five dimensional Klein-Gordon equation

∂µ̂∂
µ̂Φ =

∑
n∈Z

e
inx4

R0

[
∂µ∂

µ −
(
n

R0

)2
]

Φn(xµ) = 0. (3.5)

This corresponds to an infinite tower of states with masses Mn = | n
R0
|. Generalising this to other

particles we would find various towers of states associated to particles of spin 1
2
, 1,... No ex-

periment as of yet however witnessed such towers of states which leads, if our assumption of

considering an additional compact dimension is correct, to the conclusion that we witness at best

the Kaluza-Klein zero modes with n = 0 of these tower of particles. We can thus ignore the vari-

ous massive states which in practice can be done by taking the limit R0 → 0 or equivalently that

no field has a dependency with respect to the compact coordinate. One should note an impor-

tant distinction between what we call compactification and dimensional reduction: compactifying

means taking the totality of the states into account, which could have various implications in

the ultraviolet. If one considers no dependency with respect to x4, one describes an effective

theory in four dimensions where the dimension of the compact space is sent to zero: this is

called dimensional reduction. The assumption of Klein that the fifth dimension is compact gives

us therefore an interpretation of our four dimensional observations as our incapacity to witness

states with masses of the order 1
R0

.

Consider now general relativity on this five dimensional space. We write the metric gµ̂ν̂ of the
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total space-timeM with coordinates µ̂, ν̂ = 0, ..., 4 as

ĝµ̂ν̂ =

 gµν + e2φAµAν e2φAµ

e2φAν e2φ

 (3.6)

with line element

ds2 = gµνdxµdxν + e2φ(Aµdxµ + dx4)2. (3.7)

Let us assume that the five dimensional metric does not depend on the compact direction. We

then write the five dimensional Einstein-Hilbert action equivalent to (3.1) with five dimensional

Ricci tensor R̂ associated to the metric ĝ as

S5d ∼
∫
M×S1

R̂vol =

∫
M×S1

R̂
√
|ĝ|d5x

= (2πR0)eφ
∫
M

√
|g|
[
R− 1

2
(∂µφ) (∂µφ)− 1

4

(
∂[µAν]

) (
∂[µAν]

)]
d4x.

(3.8)

Kaluza and Klein therefore showed that dimensional reduction of a purely five dimensional

gravitational theory is a way to unify gravity and electrodynamics in four dimensions. Using this

somehow basic example, we already see the inconveniences and the possibilities one can expect

from dimensional reductions and more generally from compactifications. The first thing to point

out is of course that considering a dimensional reduction leads here to the unification of gravity

and U(1) gauge field. To understand this, one has to remember that general relativity can be seen

as a Yang-Mills theory whose curvature and connection are defined via the metric on the tangent

bundle [12]. The Kaluza ansatz (3.7) decomposes the metric in five dimensions as a metric of a

four dimensional subspace together with a scalar field and a four dimensional 1-form which hints

to the gain of a U(1) gauge field in four dimensions. This indicates possible generalisations to

other Yang-Mills theories if one considers higher dimensional spaces. We however encountered

also one of the main issue of compactifications and dimensional reductions in that the field φ is

a moduli : it has no potential and thus cannot be stabilized. As the global factor appearing in the

action (3.8) is proportional to the physical radius Rphys = R0e
φ, the size of the extra dimension is

thus unstable and a moduli.
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3.1.2 Scherk and Schwarz examples

The example depicted before is restricted in two ways: the reduction to a one dimensional space

as well as the periodicity condition considered for every field in the equation (3.3). As described

by Scherk and Schwarz in [13,14], one can consider general transformations of the fields which

are consistent with the symmetries of the action. This can lead to two consequences in the re-

duced theory: giving masses to various fields and reducing the number of supersymmetry.

Let us consider again a complex scalar field Φ = Φ(xµ, x4) in a flat five dimensional manifold

M = R1,3 × S1 for simplicity. With similar conventions for the space-time indices the action is

S ∼
∫
M

(∂µ̂Φ)
(
∂µ̂Φ∗

)
d5x. (3.9)

This is invariant by the global U(1) phase transformation Φ→ eiαΦ. Now let us make the following

ansatz

Φ(xµ, x4 + 2πR0) = e2πimR0Φ(xµ, x4) (3.10)

for some m ∈ R. With this ansatz we find the Fourier expansion

Φ(xµ, x4) = eimx
4
∑
n∈Z

Φn(xµ)e
inx4

R0 . (3.11)

Using again the Klein Gordon equation, we find that the effective field theory describes the

dynamics of a field with mass Mφ = min
(
|m+ n

R0
| for n ∈ Z

)
in the reduced theory. In the di-

mensional reduction limit where one takes R0 → 0 this evidently gives Mφ = |m| as the mass

gap in the massive tower states is sent to infinity.

Now let us sketch how the use of the symmetries of the action can reduce the number of

supersymmetries when one compactifies. To be more specific, compactifying on a torus does

not change the number of supercharges, which therefore raises the number of supersymmetries

of the compactified theory with respect to the uncompactified one. However, with an appro-
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priate choice of boundary condition, or dependency of the fields with respect to the compact

dimension, it is possible to reduce the number of supersymmetries of the compactified theory.

In the original paper from Scherk and Schwarz [13], they consider N = 1 supergravity in four

dimensions. Compactification on a circle with no dependency of the fields with respect to the

compact direction leads to N = 2 supersymmetry due to the fact that the Majorana spinor Ψ can

be decomposed as

Ψ =

 Ψ1

Ψ2

 (3.12)

with Ψ1 and Ψ2 Majorana spinors in three dimensions. A solution to recover N = 1 supergravity

for the compactified theory is to start with the following dependency of the four dimensional spinor

Ψµ(x, y) = eimΓ5yΨµ(x) (3.13)

with (µ = 0, 1, 2), x coordinates on the non compact space R1,2 and y = x3 coordinate on the

circle. With additional constraints one is then able to recover N = 1, d = 3 supergravity.

3.1.3 Calabi-Yau compactifications

Now that we introduced basic notions of compactifications, let us focus on Calabi-Yau compact-

ifications which are widely used in string theory and are central to part III of this thesis. As

we discussed in the introduction, string theory incorporates supersymmetry in order to contain

fermionic states. Type I and the E8 × E8 and SO(32) heterotic string both have N = 1 su-

persymmetry i.e. 16 supercharges in ten dimensions while type II string theories have N = 2

and 32 supercharges. Torus compactifications such as the one we described in the example of

Kaluza-Klein preserve the number of supercharges therefore leading to either N = 4 or N = 8

depending on the original ten dimensional theory. These theories are non-chiral and are thus

not acceptable. Ideally one would want to obtain a four dimensional theory with at most N = 1

whether one wants to completely reject the notion of supersymmetry in four dimensions, or con-

siders that its detection is not currently possible. Supersymmetry however could resolve various
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unanswered issues of the standard model such as dark matter, the hierarchy problem or the con-

struction of a grand unified theory. For these reasons it is therefore preferable to obtain N = 1

supersymmetry in four dimensions. Here we consider a generalisation of torus compactifications

that give the same amount of supersymmetries in the compactified theory: Calabi-Yau compact-

ifications. For type II it therefore gives N = 2 supersymmetry which still is not what we expect,

but is a necessary step in our journey to an acceptable physical four dimensional theory.

To understand why one wants to consider Calabi-Yau compactifications let us write the equa-

tions of motion of the graviton for the bosonic string

Rµν + 2∇µ∇νφ−
1

4
HµηρHν

ηρ = 0 (3.14)

where H = dB2. This equation typically appears in the effective field theory obtained from the

massless modes of type II and heterotic superstring theories. In the case of type I the term B2 is

projected out. In all superstring theories however, if one removes the dilaton term and the fluxes

terms similar to H2 it becomes the following constraint on the Ricci tensor

Rµν = 0. (3.15)

This is a necessary condition for a compact space to be Calabi-Yau, however not a sufficient one.

Compact Calabi-Yau manifolds have several possible definitions which are equivalent, among

which is a compact Kähler manifold of complex dimension n (M, J, g) with reduced holonomy

Hol(g) = SU(n) [15]. The holonomy group, to put it simply, gives information on how fields are

transported along closed loops for a given connection. To be more precise take a vector field

V µeµ ∈ TpM of some manifoldM with dimR(M) = d in a neighbourhood of a point p, and parallel

transport it around a closed loop. This gives a vector V ′µ = V νGν
µ where G ∈ GL(d). Given

the natural group structure associated to loops, the holonomy group is therefore a subgroup of

GL(d). The reader should be careful to the condition that the holonomy group be exactly SU(n)

in the definition of Calabi-Yau manifolds. The Ricci-flat condition (3.15) is less restrictive and
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implies only that Hol(g) ⊆ SU(n) if the space is Kähler and simply connected2.

Now, in the absence of fluxes it is possible to link the number or remaining supersymmetries

to the holonomy group3. Compactifications of string theory (with nSC = 32 or 16 supercharges)

on a compact Kähler space (M, J, g) with dimC(M) = n and Hol(g) = SU(k) (k ≤ n) leads to

a theory with nSC
2k−1 supercharges. With k maximal, Calabi-Yau spaces give therefore the minimal

amount of supersymmetries among the Kähler Ricci-flat spaces.

3.2 Dualities

Now that we introduced the basic aspects of compactifications we present dualities, both inside

and outside the scope of string theory. Dualities in physics are a vague and broad concept. One

could define a duality between two a priori distinct theories simply as a non trivial or non apparent

equivalence. Here we focus on two particular dualities of string theory. We first present T-duality

in the context of the bosonic string compactified on a circle of radius R, dual to the same theory

compactified on a circle of radius R′ = 1
R

. This is then generalised to the case of the d-torus

which gives an O(d, d,Z) duality group.

We then discuss S-duality. It maps in particular the weak coupling regime of a quantum theory

to the strong coupling regime of another. We begin by a discussion of electromagnetism with

magnetic monopoles and show that this generalises the electromagnetic duality to a weak/strong

duality. We then discuss Type IIB supergravity which is self-dual with respect to S-duality.

3.2.1 A first look at T-duality: compactifications of the bosonic string on

a circle

Here we discuss the bosonic string in D + 1 dimensions, based on [17]. Let Xµ(τ, σ) with µ =

0, .., D be the embedding function of a closed string in a D + 1 dimensional spacetime M =

R1,D−1 × S1. Just as the case of a point particle presented in section 3.1.1, impulsion on the
2If the space is not simply connected the condition becomes Hol0(g) ⊆ SU(n) where Hol0 is the restriction to the

subgroup of Hol connexe to the identity.
3See [16] or [17]
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circle of the closed string is quantized as pDn = n
R

with n ∈ Z because of the periodicity condition

on the compact direction. In addition, the string can go around the compact direction. This leads

to the relation

XD(τ, σ) = XD(τ, σ + 2π) = XD(τ, σ) + 2πwR (3.16)

where w ∈ Z is called the winding number. We then write the following mode expansion decom-

position of XD

XD(τ, σ) = xD + α′pDτ + wRσ + i

√
α′

2

∑
n6=0

1

n

(
αDn e

−in(τ−σ) + ᾱDn e
−in(τ+σ)

)
. (3.17)

Replacing the value of the momentum in the previous equation, we now decompose it into its left

and right moving parts as

XD
R (τ − σ) =

1

2

(
xD − c

)
+
α′

2

(
n

R
− wR

α′

)
(τ − σ) + i

√
α′

2

∑
n6=0

1

n
αDn e

−in(τ−σ)

XD
L (τ + σ) =

1

2

(
xD + c

)
+
α′

2

(
n

R
+
wR

α′

)
(τ + σ) + i

√
α′

2

∑
n6=0

1

n
ᾱDn e

−in(τ+σ).

(3.18)

The mass equation is then

−
k=D−1∑
k=0

pkp
k = M2 =

(
n2

R2
+
w2R2

α′2

)
+

2

α′

(
N + Ñ − 2

)
, (3.19)

with N and Ñ the number of left and right oscillators. The modified level matching condition is

N − Ñ + nw = 0. (3.20)

Here we encounter the simplest case of duality which appears in string theory: interchanging

the momentum n and winding m quantum numbers both in the mass equation (3.19) and (3.20),

together with the exchange R ↔ α′

R
leaves the zero mode unchanged. As the left and right

momentum transform as (pDL , p
D
R) → (pDL ,−pDR) we impose the following so that the full quantum
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theory is invariant

(
XD
L , X

D
R

)
→
(
XD
L ,−XD

R

)
c↔ xD.

(3.21)

We showed schematically that compactifying the bosonic string on a circle of radius R is dual

to the same theory compactified on a circle of radius α′

R
by the exchange (3.21). In superstring

theory, T-duality relates different string theories as one has to apply a transformation to the world-

sheet fermions as well. In type II string theory compactified on a circle, T-duality corresponds to

X9
R → −X9

R together with Ψ9
R → −Ψ9

R which relates type IIB to type IIA.

3.2.2 Generalisation to the torus compactifications

Now we extend the discussion of part 3.2.1 to the case of the compactification of a 10 dimen-

sional bosonic string theory on a d dimensional torus T d. We decompose the 10 dimensional

space as M = R1,9−d × T d. We write the 10 dimensional index as µ̂ = 0, ..., 9 = (µ, a) with

a = 1, ..., d and µ index on the Minkowski space R1,9−d. Naturally, we generalise the periodicity

conditions to the d dimensional torus as

xa ∼ xa + 2πRa. (3.22)

The winding and momentum numbers in the direction xa are written wa and na respectively. They

can be put into a single 2d dimensional vector as

NA = (wa, na) . (3.23)

The level matching condition in the torus case is then

N − Ñ +NAGABN
B = 0 (3.24)
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where ηAB is the O(d, d) invariant metric

ηAB =

 0 1

1 0

 (3.25)

and with

GAB =

 g−1 −g−1B

Bg−1 g −Bg−1B

 (3.26)

where g and B are the d dimensional metric and the two-form field on the torus respectively. As

wa and na are discrete quantum numbers, the level matching is thus invariant under an O(d, d,Z)

rotation. The mass equation is

M2 = NAGABN
B + oscillator terms. (3.27)

It is clear from 3.27 that an O(d, d,Z) transformation of the Kaluza-Klein double vector NA can

be compensated by considering appropriate redefinition of the metric g and two-form field B on

the torus. As an example we can consider a T-duality applied to the b-th direction, assumed to

be an isometry, which gives the transformations known as Buscher rules [18–20]

gbb →
1

gbb
, gba →

Bba

gbb
, gac → gac −

gbagbc −BbaBbc

gbb

Bba →
gba
gbb

, Bac → Bac −
gbaBbc −Bbagbc

gbb
.

(3.28)

Here we focused principally on the closed bosonic string and showed that it give rise to an

O(d, d,Z) duality when compactified on a d-dimensional torus. In the next chapter we will discuss

T-duality focusing on open strings and show how it permits to predict the necessity of considering

other extended objects in order for string theory to be fully invariant under O(d, d,Z). First, we

present the other kind of duality of string theory: S-duality.
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3.3 S-duality

T-duality relates different theories via compactifications on different spaces that give a common

lower dimensional quantum theory. Another possibility is to relate the strong coupling of one

theory to the weak coupling of another. This is of particular importance as one can study the

strong coupling limit of a quantum theory by studying the weak coupling limit of its dual theory.

S-duality is of particular importance in type IIB string theory, as in this case it is a self-duality and

give rise to F-theory which incorporates naturally non-perturbative objects of string theory.

We introduce S-duality via an analogy with electrodynamics with magnetic monopoles. We

show that electromagnetic duality in this context is in fact a strong/weak coupling duality. We then

present type IIB supergravity and discuss its SL(2,R) symmetry which includes a strong/weak

coupling invariance. At the quantum level the symmetry is rather a discrete subgroup of SL(2,R)

and usually one considers it to be SL(2,Z). We show that starting with type IIB supergravity

together with S-duality forces one to consider a dual extended object to the fundamental string

in the full quantum theory: the D1-brane.

3.3.1 Electro-magnetic duality and magnetic monopoles

Here we want to show the relation between electromagnetic duality and strong/weak coupling

starting with Maxwell’s theory of electromagnetism, based on [21,22]. In the absence of particles

Maxwell’s equations are famously known to be dual by the transformation ~E → ~B together with

~B → − ~E or equivalently in tensorial formalism the hodge duality F → F̃ and F̃ → −F . More

generally it is easy to see that a rotation by an angle α of the vector ( ~E, ~B) is also an invariant

of the equations of motions. Here we consider the generalised version of the usual Maxwell

equations by including magnetic charges
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∇ · ~E = ρe , ∇∧ ~B − ∂ ~E

∂t
= ~Je

∇ · ~B = ρm , ∇∧ ~E +
∂ ~B

∂t
= ~Jm

∗d ∗ F = Je

∗d ∗ F̃ = −Jm

(3.29)

where ρe and ρm are the electric and magnetic charge density respectively. ~Je and ~Jm are the

electric and magnetic currents and J = (ρ, ~J). This is again invariant via a rotation of angle α.

Specifically we can render manifest this SO(2) symmetry of the the theory with

F =

 F

F̃

 , J =

 Je

−Jm

 . (3.30)

A rotation R(α) by an angle α on both F and J leaves the equations of motion d ∗ F = ∗J

unchanged, where the exterior derivative and Hodge dual are simply applied to each component

of the SO(2) vectors. Electric and magnetic charges are then given by the integration over a

sphere S2 in which lies the electrically or magnetically charged particle

e =

∫
S2

∗F , g =

∫
S2

− ∗ F̃. (3.31)

Dirac showed in 1931 that an electrodynamic quantum theory in which one requires the pres-

ence of magnetic monopoles has to follow the Dirac quantisation condition4 which using our

conventions reads

e · g = 2πn , n ∈ Z (3.32)

with e and g the fundamental electric and magnetic charge respectively, every other charges

being their integer multiples. This leads to

αeαm =
n2

4
, n ∈ Z (3.33)

4We are not considering dyons here, which implies the generalised Dirac-Schwinger quantization condition.
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with αe and αg the electric and magnetic fine structure constants. Now if we consider a rotation

by an angle π
2

of (3.30), the electric and magnetic charge are exchanged

e→ g , g → −e. (3.34)

Considering the Dirac quantisation this gives for n = 1

αe →
1

4αe
, αm →

1

4αm
. (3.35)

We see here that electromagnetic duality in the case of Maxwell’s equations in vacuum corre-

sponds to a strong/weak coupling duality in a more general setting. In the next subsection we

discuss such duality in type IIB string theory and more particularly its low energy limit.

3.3.2 Type IIB string theory and S-duality

Type IIB string theory is one of the five consistent ten dimensional superstring theories. It is

obtained by the quantization of a ten dimensional fermionic string together with a choice of a

Gliozzi-Scherk-Olive (GSO) projection. We do not write the details of this construction as they

have been covered widely in the literature 5 and would not bring particularly interesting points

to our construction. The bosonic field content of type IIB string theory includes a metric g, a

two-form field B2 and the dilaton φ from the NSNS sector, while the RR sector contributes with

p-form fields Cp with p = 0, 2, 4. In the low energy limit the type IIB supergravity theory bosonic

action is6

1

2π
SIIB =

∫
d10x
√
−g
(
R− ∂µτ∂

µτ̄

2Im(τ)2
− 1

2

|G3|2

Im(τ)
− 1

4
|F5|2

)
+

1

4i

∫
1

Im(τ)
C4 +G3 ∧ Ḡ3 (3.36)

5See for example [17,22]
6One should note that self-duality of the five dimensional field strength F5 = ∗F5 is needed after one obtains the

equation of motions.
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with

τ = C0 + ie−φ , G3 = dC2 − τdB2

|Fp|=
1

p!
Fµ1..µpF

µ1..µp , F5 = dC4 −
1

2
C2 ∧ dB2 +

1

2
B2 ∧ dC2

(3.37)

where τ is called the axio-dilaton. This action is invariant under the following transformations of

the axio-dilaton and the two-form fields B2 and C2

τ → aτ + b

cτ + d
,

 C2

B2

 = M

 C2

B2

 , C4 → C4, gµν → gµν (3.38)

where

M =

 a b

c d

 ∈ SL(2,R). (3.39)

Let us focus for now on the SL(2,R) transormation with parameters a = d = 0 and c = −b = 1

which gives

τ → −1

τ
. (3.40)

Now imposing C0 = 0 we find

eφ → e−φ , C2 → −B2 , B2 → C2. (3.41)

As the string coupling constant is gs = e<φ>, this is the string theory equivalent of the strong/weak

duality we described in the previous section. However the SL(2,R) continuous symmetry cannot

be possible for the full type IIB string as it is the case for its supergravity limit. The full quan-

tum symmetry of string theory is conjectured to be a discrete subgroup of the continuous group

SL(2,R). Indeed, we saw that a consistent theory of electrodynamic in which one considers

magnetic monopoles leads to the Dirac quantization condition (3.32) and the notion of funda-

mental charges. The setting we are considering here is quite similar: the fundamental string is

the fundamental electric charge for the field B2. Now, applying a SL(2,R) transformation (3.39)
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gives an object carrying d fundamental electric charge with respect to B2 implying d ∈ Z. Rescal-

ing C2, the maximal subgroup of SL(2,R) with d ∈ Z is then SL(2,Z). The fields B2 and C2

play a symmetric role in the supergravity action. The fact that the fundamental string carries a

fundamental electric charge for B2 indicates that a similar object should carry an electric charge

for the field C2: the D1-brane.



CHAPTER 4

Branes, Dualities and Unifications

In chapter 3, we focused on general aspects of string theory such as compactifications and

dualities. We however omitted to discuss other fundamental objects of string theory such as

branes. They are in particular the electric and magnetic charges of the RR fields we encountered

in type II supergravity and are necessary in order to obtain gauge theories.

This chapter aims to introduce basic facts about branes in the context of Type II string theory

and some of the consequences of dualities of string theory on this matter. We start by a short

introduction on D-branes and their charges. We then show that self S-duality of type IIB string

theory implies the existence of more general branes related by dualities. We follow with a dis-

cussion on monodromies that characterise different branes and can therefore be considered as

generalisation of charges. After a short introduction of some of the aspects of F-theory we dis-

cuss the consequences of T-duality and more generally U-duality on the brane content of string

theory. We finally conclude by some remarks on heterotic string theory which does not contain

D-branes.

35



36 CHAPTER 4. BRANES, DUALITIES AND UNIFICATIONS

4.1 D-branes

Dp-branes are originally defined as dynamical objects on which open strings with (p + 1) Neu-

mann boundary conditions end. They can emit and absorb closed strings which led Polchinsky

to the conclusion that their tension are equal to their charges with respect to the RR fields [23].

It is possible to write the action corresponding to Dp-branes as a Born-Infeld part

SBI = −Tp
∫

dp+1ξe−φ
√

det (Gab +Bab + 2πα′Fab) (4.1)

and a Chern-Simons part where the brane charge is indeed the brane tension Tp

SCS = iTp

∫
p+1

e2πα′F ∧C (4.2)

with Tp = a2πl
−(p+1)
s with a = 1 in type II and a = 1√

2
in type I. ξ are coordinates on the world

volume of the brane i.e. every field is pulled back to the world volume, and C is the sum of

RR fields. Finally, the field strength Fab of Aa corresponds to a U(1) gauge field constrained

to live on the brane world-volume. The gauge group living on the branes world-volume can be

generalised by considering different configurations of branes and can lead to groups coherent

with the standard model or grand unification theories.

Now let us analyse the two actions. First, we see that the physical string coupling τs behaves

as ∼ 1
gs

. Dirichlet branes are therefore non-perturbative objects in the string coupling expansion.

From the Chern-Simons equation (4.2) we can extract a term iTp
∫
p+1

Cp+1. The Dp-brane is

therefore an electric charge for the field Cp+1 and a magnetic charge to C10−9−3. In particular, if

one splits the ten dimensional space-time with respect to the Dp-brane world-volume as R1,9 ∼

R1,p × R10−p−1 and considers a sphere encircling the brane one finds

∫
S8−p

dC7−p = Tp. (4.3)

This is analogous to the definition of the electric charge in electrodynamic (3.31). These terms
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generate fluxes: a globally defined RR field C7−p would lead by Stockes theorem to the integral

(4.3) being zero. This therefore leads to compactifications on spaces which are not Calabi-Yau,

as the fluxes terms cannot be identically zero.

Now the questions one could ask is: are Dirichlet branes and the fundamental string the only

objects one needs to consider in string theory? Already we can see that there must be some

missing pieces: let us consider type IIB string theory. As was explained in 3.3.2, there seem to

be a fundamental discrete symmetry at the quantum level which has for a subgroup the inversion

of the string coupling constant, therefore leading to weak/strong duality labelled S-duality. The

fundamental string and the D1-brane are S-dual but one must introduce new types of branes

that are S-dual to the other Dp-branes. In the following section we discuss the implications of

enforcing S-duality to type IIB string theory with Dp-branes.

4.2 Branes, S-duality and F-theory

4.2.1 Branes and S-duality

We introduced before the action of the type IIB supergravity theory (3.36) as well as the action of

Dp-branes decomposed into a Born-Infeld (4.1) and a Chern-Simons part (4.2). In a democratic

formulation of type IIB we now consider the RR fields to be C2p with p = 0, .., 4, (5)1. Together

with the constraints ∗F2p+1 = (−1)pF9−p we can write the democratic formulation of the type IIB

action as

1

2π
SIIB,dem =

∫
dx10e−2φ

√
−g (R + ∂µφ∂

µφ)− 1

2

∫
e−2φH3 ∧ ∗H3

− 1

4

4∑
p=0

F2p+1 ∧ ∗F2p+1 −
1

2

∫
C4 ∧H3 ∧ F3

(4.4)

1The RR field C10 is non dynamical.
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where the fields are defined in the same way as equation 3.37 with the additional definitions

F1 = dC0 , H3 = dB2. (4.5)

The theory contains fundamental strings (F1) as well as D1, D3, D5, D7, D9 branes. Considering

that S-duality is indeed a symmetry of string theory implies that one should be able to understand

how strings and branes are related under such dualities. For example, the action of S-duality

mixes the fields B2 and C2 whose electric charges are respectively the fundamental string and

the D1-brane, indicating that they are S-dual. More generally, as S-duality is a weak/strong

duality, a n dimensional object should be dual to another n dimensional one in order for the full

action to be consistent. The D5-brane is an electric charge for C8 and magnetic charge for C2,

which leads to consider its dual F5-brane, usually denoted NS5-brane in the literature, which

is a magnetic charge for the two-form field B2 and electric charge for a S-dual field of C8 which

we write B8. In fact, one should be able to write the theory in terms of SL(2,Z) representations:

one needs to think of fundamental strings and D1-brane as a SL(2,Z) doublet ((1, 0)-string and

(0, 1)-string respectively), where a general (p, q)-string is a BPS bound state of p fundamental

and q Dirichlet strings, with p and q coprime. The D3-branes are self-dual under S-duality due

to the constraint F5 = ∗F5 one has to impose in type IIB supergravity and are therefore singlets.

We later discuss with more details the case of S-duality with D7-branes. An important notion as

to characterise such branes is the monodromy which we present now.

4.2.2 Monodromies

Monodromies can be considered as charges in the sense that they characterise objects such

as branes by considering the impact of holonomies on the various fields of the theory. A well

known example of this effect occurs in the path integral formulation of electrodynamics via the

Aharonov-Bohm effect [12]. Here one considers an infinite solenoid extended in the z direction

in R3 with cylindrical coordinates (r, θ, z). In an ideal setting, the magnetic field inside of the

solenoid is constant given by ∗B = B0dz. It is null outside of the solenoid. The potential vector
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which locally corresponds to a solution to B = dA can then be written outside of the solenoid as

A =
Φ

2π
dθ. (4.6)

The path integral formulation from a point A to B on the path γ includes a term of the form

Phase shift ∼ e−iq
∫
γ A (4.7)

for a particle of charge q. Integrating the vector potential (4.6) one finds that going around the

solenoid gives ∮
γ

A = Φ =

∫
D

B (4.8)

where D is a surface whose boundary is γ. There is therefore a possible phase shift with re-

spect to a particle going around the solenoid, which can contribute as destructive of constructive

interferences. This phase shift depends on the "charge" Φ of the solenoide.

More generally, monodromies occur when one is considering codimension 2 charged ob-

jects2. As an example, let us first consider a ten dimensional Minkowski space with a D7-brane

along R1,7 ⊂ R1,9 ' R1,7⊗C. The D7-brane is a magnetic charge for the axion C0. One can show

that, considering supersymmetry constraints, the axio-dilaton behaves as

τ(z) =
1

2πi
ln(z − z0) + terms regular at z0 (4.9)

with z the complex coordinate of the normal space to the brane and z0 the position of the brane.

This implies in particular that the dilaton transforms as

τ → τ + 1 (4.10)

as one encircles the brane around z0. It corresponds to the SL(2,Z) transformation introduced

2See e.g. [24] for a general discussion on monodromies in the context of string theory.
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before in equation (3.38) with matrix parameter

MD7-brane =

 1 1

0 1

 . (4.11)

This is quite similar to the example of Aharonov and Bohm where the one form A was shifted

by the value Φ. If we mesure the monodromy charge in the case of a stack of N D7-branes we

obtain

MN×D7-brane =

 1 N

0 1

 . (4.12)

Now, as we emphasized in the previous subsection the SL(2,Z) duality of type IIB string theory

predicts other types of branes which are dual to the D7-brane. If one considers the general

SL(2,Z) matrix U

U =

 s r

q p

 , sp− rq = 1, (4.13)

their associated charge becomes in the SL(2,Z) dual description [24]

M̃(p,q) = U−1MD7-braneU =

 1 + pq p2

−q2 1− pq

 (4.14)

with p and q coprime. This defines (p, q) 7-branes, on which (p, q) strings which couples to

pB2 + qC2 can end. One important thing to note is that, locally, one can always recover a D7-

brane from a (p, q) 7-brane by an SL(2,Z) transformation. However, two mutually non-local

brane, in the sense that their monodromy charge do not commute, cannot be describe as a

purely D7-brane content in another frame. In some cases, it is possible to consider stacks of

various (p, q)-branes in 8 dimensions that give rise to ADE groups in flat space. All possible

gauge groups can be obtain using the following base of 7-branes

A = (1, 0) , B = (3, 1) , C = (1, 1) (4.15)
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leading to

AN → SU(N) , ANBC → SO(2N) , Ak−1BC2 → Ek (for k = 6, 7, 8). (4.16)

In the next subsection we focus on a formulation of type IIB string theory which naturally incor-

porates 7-branes.

4.2.3 Basics of F-theory

F-theory was constructed as a 12 dimensional geometrisation of type IIB string theory with 7-

branes [5, 25]. In D=10 type IIB supergravity we saw that the axion C0 and the dilaton Φ can be

arranged in a manifestly SL(2,R) complex field τ named the axio-dilaton (see equation (3.37)).

The quantum theory however has SL(2,Z) symmetry due to non-perturbative effects. This cor-

responds exactly to the invariance of the complex parameter of an elliptic curve, i.e. a torus with

a marked point [26]. To be more precise let us consider an elliptic curve with complex parameter

τ defined as

Eτ = C\Λτ = {w ∈ C : w ≡ w + (n+mτ)} , n,m ∈ Z, (4.17)

where τ is valued in the upper half plane and w = 0 is the origin. Applying an SL(2,Z) transfor-

mation to the parameter τ as in (3.38) leaves the lattice Λτ invariant and thus describes the same

elliptic curve. In F-theory one therefore considers the axio-dilaton as the complex parameter of

such an elliptic curve fibered over the 10 dimensional original space of type IIB string theory. The

variation of the value of the axio-dilaton on the 10 dimensional base space is then interpreted

as a variation of the shape of the torus in the fiber. The elliptic curve Eτ can be describe by a

vanishing polynomial in P231 called the Weierstrass form of the elliptic curve. It is given by

y2 −
(
x3 + fxz4 + gz6

)
= 0 (4.18)
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together with the relation

(x, y, z) ∈ C\(0, 0, 0) , (x, y, z) ' (λ2x, λ3y, λz) , λ ∈ C∗. (4.19)

One then recovers the complex parameter τ using the relation

j(τ) = 4
243f 3

∆
, ∆ = 4f 3 + 27g2 (4.20)

with j the Jacobi j-function. f and g verify

f → (cτ + d)4f , g → (cτ + d)6g (4.21)

under an SL(2,Z) transformation with

M =

 a b

c d

 ∈ SL(2,Z). (4.22)

The fibration of the elliptic curve is then possible when one allows f and g to have a dependency

with respect to some coordinates of the original ten dimensional space of type IIB string theory.

It leads to a varying axio-dilaton with respect to the base as the shape of the torus described

by its Weierstrass model varies. It describes the backreaction of the branes onto the geometry,

and gives a strong coupling description of type IIB string theory with (p, q) branes [6,26]. We will

discuss with more detail the compactifications of F-theory to 8 dimensions in the third part of this

manuscript.

4.3 Branes and T-duality

S-duality is obviously not the only quantum symmetry one would want to impose to string theory

and additional branes need to be added to fundamental and Dirichlet ones in order to also be

invariant under T-duality. To this end, let us consider the action of T-duality on open strings,
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and more generally on branes. Under T-duality on S1, the zero mode sector of the closed string

corresponds to an exchange of the momentum number with the winding number as well as an

inversion of the radius of the circle R→ α′

R
. This amounts more generally to the exchange of the

left and right moving sector (3.21). We will now look at the implication of this transformation on

an open string in the bosonic sector of string theory. We first consider an open string propagating

on a circle with quantized momentum pD = n
R

and Neumann boundary condition which gives

XD(τ, σ) = x0 + 2α′
n

R
+ i
√

2α′
∑
n 6=0

1

n
αDn e

−inτcos(nσ). (4.23)

Applying the T-duality transformation (3.21) this gives

X
′D(τ, σ) = c+ 2α′

n

R
σ +
√

2α′
∑
n6=0

1

n
αDn e

−inτsin(nσ). (4.24)

Thus an open string with Neumann boundary condition and n quantity of fundamental momentum

1
R

on a circle of radius R is T-dual to an open string with Dirichlet condition and winding n times

around the dual circle of radius α′

R
. This can be generalised to the fermionic string and it relates

Dp-branes with p Neumann boundary condition to D(p+ 1)-branes if the T-duality transformation

is applied along the direction of the brane, and toD(p−1) if is is applied on a transverse direction.

This is a strong indication for the T-duality one expects between the two type II theories: type IIA

with Dp-branes with p even, and type IIB with p odd. In fact one can already construct a simple

diagram3 of objects appearing in type IIA and type IIB string theories by exclusively starting with

the fundamental string and S and T-duality, see Figure 4.1 [30]. This is quite remarkable: one

F1

D1 D2 D3 D4 D5 D6 D7 D8 D9D0

NS5 NS7 NS9
S

T T T T T T T TT

S S S

S

Figure 4.1: T and S duality relations between Type IIA and IIB branes.

3This is an illustration of more general diagrams presented in e.g. [27–29].
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starts with consistent string theories in ten dimensions that leads to five different possibilities

including type IIA and type IIB string theory. Looking at the zero modes of these theories we can

construct type IIA and type IIB supergravities which have, due to the GSO projection, only odd

and even k form fields respectively. The SL(2,R) symmetry of type IIB supergravity conjectured

to be restrained to a discrete subgroup at the quantum level leads to consider a dual to the

fundamental string: the Dirichlet one brane. By considering several T-dualities one is then able

to construct, starting with exclusively the fundamental string and consideration in the low energy

limit of string theory, associated charged object of the RR form fields as depicted in Figure 4.1.

4.4 U-duality

4.4.1 U-Duality and exotic branes

Up to now we treated S and T duality separately but they obviously combine and the general

duality of string theory is labeled U-duality. String theory then shows a particularly rich structure

of discrete symmetries after toroidal compactification given by the discrete split real forms of

exceptional groups Ed+1(d+1)(Z), where d is the dimension of the torus on which one compacti-

fies [31]. In its low energy limit, those discrete groups become continuous and 11 dimensional

supergravity has a global Ed(d)(R) ≡ Ed(d) symmetry group, whereas for type II supergravity the-

ories the symmetry groups are Ed+1(d+1). The relevant discrete and continuous groups of string

and supergravity compatifications are listed in Table 4.1. The construction we illustrated in the

d Quantum Duality Supergravity Symmetry Max. Compact Subgroup
8 SL(3,Z)× SL(2,Z) SL(3,R)× SL(2,R) SO(3)× SO(2)
7 SL(5,Z) SL(5,R) SO(5)
6 SO(5, 5,Z) SO(5, 5,R) SO(5)× SO(5)
5 E6(6)(Z) E6(6)(R) USp(8)
4 E7(7)(Z) E7(7)(R) SU(8)
3 E8(8)(Z) E8(8)(R) SO(16)

Table 4.1: Discrete symmetry group of M theory and continuous symmetry of 11 dimensional
supergravity after compactification to d dimension.
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Figure 4.1 can then be generalised and involve a higher number of T and S-dualities. They

can give non-pertubative objects called "exotic branes" which are low codimension branes (≤ 2)

whose tensions scales as gαs with α < −2. In the case of codimension-2 exotic branes they have

in particular non-trivial monodromies as one encircles them [24,27–29,32–35]. To illustrate how

such objects appear let us consider the example of type II string theory compactified on T 7 to 3

dimensions whose U-duality group is E8(8)(Z) as presented in [24]. A D7-brane wrapping the T 7

is a point in 3d and the mass of the apparent particle is then

MD7(3456789) =
R3R4...R9

gsl8s
(4.25)

where R3, .., R9 are the radius on the seven torus. T-duality along the y direction and S-duality

then transform the masses of such states as

Ty : Ry →
l2s
Ry

, gs →
ls
Ry

gs , S : gs →
1

gs
, ls → g

1
2
s ls. (4.26)

From the D7-brane U-duality orbit one gets 240 states which have to be interpreted as objects

in type II or M theory before compactification. Among the 240 states are obviously all the branes

with spatial dimension ≤ 7 of Figure 4.1 but others emerge and are necessary for U-duality to be

a quantum symmetry of string theory.

4.4.2 Heterotic string

In this chapter we mainly focused on branes in string theory and some of the implications of

U-duality on this matter. However not all superstring theories contain D-branes and in particular

the heterotic string, which is central to the discussion of part III. The heterotic string is a closed

string theory constructed from the combination of the 26 dimensional left-moving bosonic string

together with the 10 dimensional type II right moving supersymmetric one. To recover a 10

dimensional theory one compactifies the additional 16 fields XI(τ + σ), I = 1, .., 16 on a T 16

torus . The momentum on the torus are quantized and live in a 16 dimensional lattice Γ16.
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Modular invariance then forces this lattice to be Euclidian, even and self-dual. There exist only

two possibilities in 16 dimensions which are the ΓD16 weight lattice of Spin(32)
Z2

and ΓE8⊗ΓE8 where

ΓE8 is the root lattice of E8 [17,36]. Heterotic string therefore naturally leads to SO(32) andE8×E8

gauge theories. As we will see in part III, these gauge groups can be broken or enhanced after

compactifications. We will focus on how the gauge structure arising from heterotic string theory

compactifications on a two torus can be understood as a brane configuration in the context of

elliptically fibered K3 compactifications of F-theory in 8 dimensions.



Part II

Exceptional Field Theory and F-theory
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CHAPTER 5

Exceptional Field Theory and Exceptional Generalised Geometry

As we saw in the previous chapter, dualities play an important role in string theory. However, in

their low energy limit the continuous symmetry listed in table 4.1 are not manifest. This has led

to extensive work on constructing field theories that are manifestly invariant under these symme-

tries. In the case of T-duality this led to the construction of Double Field Theory (DFT) [37, 38]

as well as Generalised Geometry (GG) [39,40], which make manifest an O(d, d) symmetry. DFT

was constructed using a doubled space with additional "winding coordinates" [41–45]. They are

later removed by a section condition to recover a physical theory. Generalised geometry on the

other hand extends the tangent space T to the combination T ⊕ T ∗, thus describing both vectors

and 1-forms in a unique fiber. Both theories are manifestly O(d, d)-covariant, and combine dif-

feomorphisms as well as B-field gauge transformations in a single object: double vectors in DFT

and sections of the generalised fiber in generalised geometry. Extensions of those theories were

constructed to consider the full U-duality and the expected Ed+1(d+1)(R) symmetry one gets from

string theory compactifications in the low energy limit: Exceptional Field Theory (EFT) [46–54]

and Exceptional Generalised Geometry (EGG) [55, 56]. The group of symmetry is larger when

one considers the S-duality in addition to T-duality. Thus, the space is no longer doubled for

49



50 CHAPTER 5. EFT AND EGG

exceptional field theories but is rather decomposed into an external space and an extended in-

ternal one. The geometric structure of this internal space is then constructed to be manifestly

Ed(d) covariant in order to render manifest the symmetries between the NSNS and RR fields

after compactification. Generalised vectors on this extended internal space and sections of the

generalised fiber in the case of EGG then describe usual diffeomorphisms combined with NSNS

and RR gauge transformations [57–61].

In the following chapter we detail some of the aspects of double field theory, generalised

geometry, exceptional field theory and exceptional generalised geometry. We start with basic

mathematical notions on Riemannian spaces. Using this we first construct generalised geometry

and double field theory and emphasize on the similarity with ordinary Riemannian geometry.

We conclude with shorter descriptions of exceptional field theory and exceptional generalised

geometry. We chose to emphasize first on the simpler formalisms of DFT and GG and then

their extension. However, the reader can very well focus on DFT/EFT and GG/EGG without any

consequences.

5.1 Elementary notions of Riemannian Geometry

We give here some basic notions of Riemannian geometry that will be central to construct

generalised geometry and double field theory as well as their extensions exeptional field the-

ory and exceptional generalised geometry. First let us consider a differentiable manifold M

of real dimension d. One can then consider vector fields and 1-forms as sections of the tan-

gent TM and cotangent bundle T ∗M, which by tensor products give (p, q)-tensors as section of

TM⊗p ⊗ (T ∗M)⊗q. This manifold is then considered to be Riemannian if there exist a section of

T ∗M⊗T ∗M which corresponds to a symmetric-positive bilinear form locally1. In particular if dxµ

is a local basis of the cotangent space one can express the metric locally as g = gµνdxµ ⊗ dxν

with gµν symmetric positive and definite. Now we seek the equivalent of the potential vector of

1Pseudo-riemannian if it is a symetric bilinear form and non-degenerate.
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electromagnetism or more generally a connection for Yang-Mills theory. Formally, let us first write

the usual Lie derivative acting on a vector field as

∀X, Y ∈ Γ(M, TM) LXY = [X, Y ]
loc∼ (Xµ∂µY

ν − Y µ∂µX
ν) ∂ν (5.1)

with {∂µ} a local basis of TM. The Lie derivative can therefore be decomposed locally as a

transport termXµ∂µY
ν together with a rotation of Y by a gl(d) rotation ∂µXν [61]. This reflects the

diffeomorphism invariance of general relativity. The general definition of the covariant derivative

is

∀X, Y ∈ Γ(M, TM) ∇XY
loc∼ Xµ (∂µY

ν + Y ρΓµρ
ν) ∂ν . (5.2)

As we seek a connection on the tangent space there exists a unique one, called Levi-Civita

connection, which is in particular torsion free i.e.

∀X, Y ∈ Γ(M, TM) T (X, Y ) = ∇XY −∇YX − [X, Y ] = 0

=
(
L∇X − LX

)
Y

loc∼ Γµν
ρ − Γνµ

ρ = 0

(5.3)

where L∇ is the usual Lie derivative with derivatives replaced by covariant ones. To obtain the

Levi-Civita connection one has to further impose that the metric g is covariantly constant i.e.

∇µgνρ = 0. One then defines the Riemann tensor as a section of TM⊗ (T ∗M)⊗3 via its action

on three vector fields

∀X, Y, Z ∈ Γ(M, TM) R(X, Y, Z) ≡ R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z. (5.4)

Considering the Riemann tensor associated to the Levi-Civita connection, we find the well known

local formula for the Riemann tensor

Rµνρ
κ = ∂µΓνρ

κ − ∂νΓµρκ + ΓκµδΓνρ
δ − Γνδ

κΓµρ
δ (5.5)
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where the Levi-Civita connection is given locally by

Γµν
ρ =

1

2
gρδ (∂µgδν + ∂νgδµ − ∂δgµν) . (5.6)

One then defines the Ricci tensor Rµν = Rµρν
ρ and Ricci scalar R = Rµνg

µν which we used in the

definition of the Einstein-Hilbert action (3.1).

5.2 Generalised Geometry

Now that we wrote the mathematical notions necessary to the construction of general relativity,

let us discuss how to implement symmetries of string theory in a somehow similar formulation.

We saw in the compactification of the bosonic string on a torus in section 3.2.2 that both the

mass equation (3.19) and the level matching condition (3.20) were written in terms of O(d, d,Z)

objects. In particular in the mass equation appears both the metric g and the two-form NSNS

field B2 in a unified way. Specifically, one could consider a particular setting in which B2 is null

which would be equivalent by an O(d, d,Z) rotation to another setting with B2 non zero. At low

energy this would imply that the diffeomorphism invariance of the first setting should translate

into an invariance with respect to a transformation affecting both the metric g and the two-form

field B2. This is the premise on which is constructed generalised geometry. General relativity is

based on diffeomorphism invariance encoded in the action of a Lie derivative with respect to a

vector X ∈ TM. To write a field theory which describes both the metric g and B2, generalised

geometry combines the diffeomorphism invariance of g together with the local gauge invariance

B2 ∼ B2 + dΛ. One is then forced to consider a generalisation of the tangent bundle TM to a

bundle which contains locally the cotangent bundle T ∗M. In order to do this let us consider the

generalised tangent space E defined as

0→ T ∗M→ E → TM→ 0 (5.7)
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which one can consider to be TM⊕ T ∗M locally. However, E is a priori a non-trivial fibration.

If one considers an open cover {U(i)} of M the NSNS field is only locally defined i.e. that in

Ui ∩ Uj one has [60]

B2(i) = B2(j) + dΛ(ij) (5.8)

with a one-form Λ(ij) veryfing

Λ(ij) + Λ(jk) + Λ(ki) = dΛ(ijk) (5.9)

over Ui ∩ Uj ∩ Uk. A section V ∈ Γ(M, E) can locally be written as V(i) = vi + λi with vi ∈ Γ(TUi)

and λi ∈ Γ(T ∗Ui). This naturally defines a O(d, d) metric by < V, V >= ivλ. To properly describe

the dilaton, it is necessary to extend the O(d, d) structure to O(d, d) × R+ and we thus consider

V ∈ (detT ∗M) × E as described in [60]. Following our comparison with general relativity one

defines the generalised Lie derivative

LVW = Lvw + Lvζ − iwdλ (5.10)

with V = v+λ and W = w+ζ. This expression explicitly shows the unification of diffeomorphisms

and gauge transformations. However, it somehow misses to represent a O(d, d) symmetry. In

order to do that one decomposes V locally as V M = (vµ, λµ) with µ = 1, .., d, v ∈ TM and

λ ∈ T ∗M. The Lie derivative can then be written as

LVWM = V N∂NW
M +

(
∂MV N − ∂NV M

)
WN + w(V )(∂NV

N)WM

= V N∂NW
M −

(
δMQ δ

P
N − ηMPηNQ

)
(∂PV

Q)WN + w(V )(∂NV
N)WM

(5.11)

together with ∂M = (∂µ, 0) and w(V ) the conformal weight of V . The gl(2d) term ∂NV
M of

(5.1) has to change in generalised geometry so that the action of the Lie derivative on a vector

in the fundamental representation of O(d, d) stays into this representation. The transport and

weight terms verify this automatically and the central term of (5.11) projects onto the adjoint of

O(d, d) thus leading to a coherent definition of generalised Lie derivative preserving the O(d, d)

symmetry. This generalised Lie derivative is not symmetric however and one usually defines the
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Courant bracket

[|V,W |] =
1

2
(LVW − LWV ) . (5.12)

There is no reason to consider a change in the definition of a generalised connection D and it

would seem natural to define a generalised Ricci tensor as

R(U, V,W ) = [DU , DV ]W −D[|U,V |]W. (5.13)

However this expression is generally not a tensor. Going back to our comparison with general

relativity there is still something missing: the main particularity of general relativity compared to

Yang Mills theory is that the connection and the curvature are defined via the metric, which we

did not define yet. We therefore consider the O(d,d)
O(d)×O(d)

metric

GMN =

 g −Bg−1B −Bg−1

g−1B g−1

 (5.14)

where g and B are usual d dimensional metric and two-form. One also defines a non vanish-

ing section Φ ∈ Γ(detT ∗M) which gives the generalised metric (G,Φ) ∈ O(d,d)×R+

O(d)×O(d)
. It is then

always possible to find a generalised Levi-Civita connection which is generalised metric compat-

ible DG = DΦ = 0 and has a vanishing generalised torsion

∀X, Y ∈ Γ(M,detT ∗M× E) , T (X, Y ) =
(
L∇X − LX

)
Y = 0. (5.15)

In generalised geometry or exceptional generalised geometry, the generalised Levi-Civita con-

nection is not necessarily unique. It is however possible to define a generalised Ricci tensor

which, independently of the choice of generalised Levi-Civita connection, leads to the equations

of motion of type II supergravity.
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5.3 Double Field Theory

Let us now discuss another representation of T-duality in a field theory. Generalised geometry is

constructed as a way to unify in a geometrical formalism the diffeomorphim invariance together

with the gauge invariance of the two-form field appearing in the bosonic string. It is done by

extending the tangent space one considers in Riemannian geometry to a fiber E which locally

corresponds to TM× T ∗M. Double field theory on the other hand can be constructed starting

with other observations which we detail below.

The momentum is quantized for both extended and punctual objects on a torus. The winding

however will obviously not appear in a punctual field theory. What we already know is that

exchanging winding and momentum should be one of the invariance of string theory and that one

obtains the momentum quantum numbers from the d-dimensional torus as xm ↔ nm. A solution

to double the quantum numbers is therefore to double the space so that winding coordinates are

now understood as conjugate momentum of additional stringy coordinates x̃m ↔ wm. One then

has to enforce the continuous O(d, d) symmetry and apply consistency constraints in order for

the theory to be coherent with its string theory perspective.

Instead of a fiber bundle E ∼ TM⊕ T ∗M of a d dimensional manifold let us consider a 2d

differentiable manifold whose coordinates2 we write XM = (x̃m, x
m) with m = 1, .., d. The various

notions we discussed in the case of generalised geometry are very similar in this formulation:

as the low energy limit of string theory has an O(d, d) invariance one considers that the coordi-

nates XM live in its fundamental and therefore transforms in the same way under generalised

diffeomorphisms (5.11). One can then choose to consider a generalised metric which decom-

poses as (5.14), and the condition that the derivative acts as ∂M = (0, ∂m) on the various fields

of the theory gives back a d dimensional theory. It is then possible to define a generalised Levi

Civita connection which leads to generalised Ricci scalar and gives the equations of motion of

the bosonic string compactified on a d dimensional torus3.

Even though generalised geometry and double field theory lead to the equations of motion

2We only consider the compact space here.
3For more details see e.g. [20].
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of the bosonic NSNS sector of string theory it is not the only solution one can consider. It is

however more subtle to treat in a coherent way these other solutions in generalised geometry

than double field theory. In the later formalism, it is quite easy to formulate, at least schematically,

how one can find other interesting solutions thus highlighting the perks of such T-dual formulation

of a quantum field theory. One of the assumptions we made which breaks the O(d, d) symmetry

is to consider that ∂M = (0, ∂m). More generally, it is possible to obtain a d dimensional solution

coherent with the closure of the generalised Lie derivative (5.11) with

[LV ,LW ] = L[|V,W )|]. (5.16)

This leads to the so called section condition which we write

ηMN∂MA∂NB = 0 , ηMN∂M∂NA = 0 (5.17)

where A and B are any field of the theory and ηMN the O(d, d) metric (3.25). The condition on

the left is the strong constraint while the one on the right is called weak constraint. The strong

constraint assures that the resulting fields depend on a d dimensional subspace of the original

theory. It can however be relaxed as was done in [62] where one obtains a formulation of massive

type II supergravity. In the next chapter we investigate the impact of considering fields that verify

a non trivial solution of the section condition on the resulting theory.

5.4 Exceptional Generalised Geometry

In the previous sections we presented how to geometrize the NSNS two-form field B2 as to

obtain two theories which manifestly incorporate a symmetry between diffeormorphism invari-

ance and gauge transformations one obtains from T-duality considerations. Here we present

succinctly how to incorporate in a similar way the RR fields in the context of type II string theory

as to incorporate the full U-duality. For generality and as to consider a high number of fields

on the internal space let us consider type IIB string theory compactified to 4 dimensions. The
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continous U-duality group in this case is E7(7)(R) and its fundamental representation is 56. This

implies that the generalised fiber we considered in the previous section must be extended to 56

dimensions to fully describes a E7(7)(R) symmetry. This can be explained as follows: the gauge

invariances of the various RR field of type IIB supergravity give a Λ(odd)T ∗M contribution in the

fiber. One also has to consider the magnetic duals of both the NSNS two-form field i.e. the six

form field B6 which gives a five form gauge parameter in Λ5T ∗M, as well as the dual of diffeo-

morphisms vectors in T ∗M⊗ Λ6T ∗M. In the end one finds that the generalised fiber E for the

E7(7) exceptional generalised geometry is locally [63]

EType IIB ' TM⊕ T ∗M⊕ Λ5T ∗M⊕
(
T ∗M⊗ Λ6T ∗M

)
⊕ Λ(odd)T ∗M. (5.18)

Depending on the dimensions d of the compactification space, which is 6 in our example, one

can remove different parts of this fiber as to construct Ed+1(d+1) exceptional generalised geometry

with d < 7 in the context of type IIB supergravity. In the case of type IIA supergravity one replaces

the last term with odd forms gauge parameters by even forms [64]. Finally if one considers M-

theory [55–57, 65] the dimension of the compact space is now seven instead of six which leads

to the following fiber

EM theory = TM⊕ Λ2T ∗M⊕ Λ5T ∗M⊕
(
T ∗M⊗ Λ7T ∗M

)
. (5.19)

Following a similar approach to what we described in section 5.2 one is then able to construct

exceptional generalised geometries that incorporate a geometrization of the fields of supergravity

theories.

5.5 Exceptional Field Theory

Let us conclude this chapter by discussing general aspects of exceptional field theory. Similarly

to exceptional generalised geometry, one wants to describe the full U-duality which involves RR

fields in addition to the NSNS two-form field B2. In order to do this construction let us con-
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sider ten dimensional type IIB supergravity. Upon compactification on a d dimensional torus the

resulting theory exhibits a Ed+1(d+1)(R) symmetry. Let us separate the 10 dimensional coordi-

nates which we write X = (xµ, ym) where µ = 0, .., 9 − d and m = 1, .., d. In the case of DFT

one doubles the coordinates on the compact space by introducing a dual winding coordinate

ỹm. However as we now wish to describe RR fields we need to consider the possibilities for

branes to wrap around the compact space as well, which forces the dimension of the extended

space to raise. Accounting for these brane wrapping contributions, exceptional field theory is

constructed by considering an extended space whose internal coordinate Y M lives in the lower

dimensional fundamental representation of Ed+1(d+1). A R+ factor is usually considered as to

describe properly the dilaton. In the context of supergravity this conformal symmetry is called

trombone symmetry and can be thought of as a generalisation of the rescaling symmetry of the

metric in Einstein’s theory of gravity [66,67].

Again, the usual action of Riemannian Lie derivatives do not preserve the group structure of

the theory. This leads to the introduction of a generalised Lie derivative which can be written for

any exceptional geometry as [61,65]

LΛV
M = LΛV

M + ZMN
PQ∂NΛPV Q +

(
λ(V )− 1

p

)
∂NΛNV M (5.20)

where L is the usual Riemannian Lie derivative and λ(V ) the conformal weight of the vector

V . The value of p and the tensor Z depend on which EFT one considers. The closure of the

exceptional generalised Lie derivative gives the section condition4

ZMN
PQ∂MA∂NB = 0 , ZMN

PQ∂M∂NA = 0 (5.21)

for every field A and B. This reduces the number of coordinates the fields are allowed to depend

on. In fact, one is left with the possibility to obtain a ten or eleven dimensional theory. Using

exceptional field theory, massless type II and eleven dimensional gauged supergravities are

4More generally, there are four constraints which in the case of the split forms of the exceptional groups Ed(d)

(d=2..7) are equivalent to the section condition [61].
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obtained in a unified framework in various dimensions [52–54, 68–71]. Massive type IIA was

then obtained using a violation of the section condition in double field theory [62] as well as

deformation of the generalised Lie derivative structure in the context of EFT and EGG [72,73].





CHAPTER 6

Geometry of E3(3) × R+ Exceptional Field Theory and F-Theory

In section 4.2.3, we saw that F-theory is a description of type IIB string theory with exotic 7-

branes which has for consequence to mix the two-form field C2 and B2 under a monodromy (see

equation (3.38)). Exceptional field theory on the other hand unifies the description of such fields

geometrically. This chapter, based on [9], aims to provide insights on the relations between F-

theory and E3(3) × R+ exceptional field theory. Such link between F-theory and EFT was first

discussed for R+ × SL(2) EFT in [71].

Here we focus on the E3(3) × R+ = SL(3) × SL(2) × R+ exceptional field theory arising for

compactifications of type IIB to 8 dimensions [68]. In the first part of this chapter we present a

review of the basic results of SL(3)× SL(2)× R+ EFT and in particular the sufficient conditions

needeed for a consistent theory. We then compute the fluxes of the theory, which we compare

to the embedding tensor of the associated supergravity theory with gauged trombone symme-

try. As the gauging of the trombone symmetry was only done for simple groups, we present a

construction in the particular case where the original global group symmetry is SL(3) × SL(2).

We then construct explicitly a generalised Christoffel symbol and remind the reader about the

61
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construction of a generalised Ricci tensor done in [74]. We then focus on a non-standard so-

lution to the section condition leading to the description of the monodromies of (p, q) 7-branes

in F-theory. This is done by considering that the fields of the final theory have a dependency

on 2 coordinates of the internal extended space, which are linear combination of both the usual

coordinates and the stringy coordinates. This ensures that product and inverse of fields have

a similar dependency on the generalised space and are therefore also solutions to the section

condition. The description of the monodromies leads to the breaking of both gauge transforma-

tions of B2 and C2 which seem to be entirely constrained. This is however not a particular issue

as the monodromies of (p, q) 7-brane are only constructed when the only non-zero field living on

the brane is C8, the dual field of the axion C0. It is thus plausible that when one is describing the

full backreaction of the brane with non-trivial NSNS and RR fields living on its world volume, the

gauge symmetry of these fields normal to the brane are broken. Finally, when one considers the

standard solution to the section condition, we show that the generalised Ricci tensor gives the

equations of motion of F-theory as a Ricci-flatness of a four dimensional space with two fibered

directions.

6.1 Structure of SL(3)× SL(2) Exceptional Field Theory

Compactifying M-theory on a d-dimensional torus, or type II on a d − 1 torus leads to an un-

derlying U-duality symmetry given by the exceptional groups Ed(d)(Z). In the low energy limit

where we recover the eleven dimensional and massless type II supergravities, an underlying

Ed(d)(R) global symmetry appears. This symmetry can be made manifest in the context of ex-

ceptional field theory where the space is decomposed into an external space, and an internal

extended space. Here we consider d = 3, corresponding to a 8-dimensional external space

combined to a 6-dimensional internal extended space with a E3(3) = SL(3) × SL(2) geometric

structure. In fact, as mentioned in section 5.5, one can extend this duality group by considering

the trombone symmetry appearing in supergravity theories. The duality group becomes there-

fore R+ × SL(3) × SL(2). The extended internal space will be our main focus throughout this
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paper as the tensor hierarchy of E3(3) exceptional field theory is done in [68]. We now present

the basics of R+ × SL(3) × SL(2) exceptional field theory which will be needed throughout this

chapter.

We introduce a set of coordinates XM , with M,N,P = 1, .., 6, of the 6-dimensional internal

space which lives in the vector representation (3,2) of SL(3) × SL(2). We can decompose the

index of the fundamental representation M into M = mγ where all Latin letters m,n, p, ... = 1, 2, 3

and all Greek letters γ, η, ρ, ... = 1, 2 correspond respectively to the SL(3) and SL(2) part of E3(3).

We will note ∂M = ∂mγ the derivative with respect to XM = Xmγ. We define the generalised Lie

derivative as given by equation (5.20) where p is equal to 6 in the case of E3(3). The tensor Z

encodes the deviation from Riemannian geometry and is given in terms of the invariants of the

duality group, which in our case is

ZMN
PQ = Zmγnη

pρqσ = εmnzεpqzε
γηερσ (6.1)

where εs are totally antisymmetric invariant tensors of SL(3) and SL(2). The invariant tensor

verifies in particular LZ = 0. Another expression for the generalised Lie derivatives which will be

useful later to determine the fluxes of the extended space is

LΛV
M = ΛN∂NV

M − 2(P(8,1))
M
N
P
Q∂PΛQV N − 3(P(1,3))

M
N
P
Q∂PΛQV N

+λ(V )∂NΛNV M

(6.2)

where (8,1)⊕ (1,3) is the adjoint of SL(3) × SL(2) and the projections on each subspaces are

given by

(P(8,1))
M
N
P
Q = (P(8,1))

mγ
nη
pρ
qσ =

1

2
δγηδ

ρ
σ

(
δpnδ

m
q −

1

3
δmn δ

p
q

)
=

1

2
δγηδ

ρ
σ (P8)m n

p
q

(P(1,3))
M
N
P
Q = (P(1,3))

mγ
nη
pρ
qσ =

1

3
δmn δ

p
q

(
δρηδ

γ
σ −

1

2
δγηδ

ρ
σ

)
=

1

3
δmn δ

p
q (P3)γ η

ρ
σ

(6.3)

with P8 and P3 the projectors onto the SL(3) and SL(2) adjoint respectively. The expressions of
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the projectors onto the adjoint using the generators of SL(3) and SL(2) are detailed in Appendix

A.1. Finally, using (6.3) we can write the generalised Lie derivative in terms of SL(3) and SL(2)

indices

LΛV
mγ = Λnη∂nηV

mγ − V mη∂nηΛ
nγ − V nγ∂nηΛ

mη +

(
λ(V ) +

5

6

)
∂nηΛ

nηV mγ. (6.4)

In order for the theory to be consistent, the algebra of the generalised Lie derivatives (5.20)

has to close, i.e. it should satisfy

[LΛ1 ,LΛ2 ] = LΛ12 (6.5)

where

Λ12 ≡ [Λ1,Λ2]E =
LΛ1Λ2 − LΛ2Λ1

2
(6.6)

is the analogy of the Courant bracket (5.12) introduced in generalised geometry but in the context

of exceptional geometry [56, 65]. The closure of the algebra is however only achieved if one

imposes the section condition (5.21) which in this case is

ZNK
PQ∂N ⊗ ∂K = εnkzεpqzε

ηκερδ∂nη ⊗ ∂kκ = 0

⇔ ∂nη ⊗ ∂kκ − ∂nκ ⊗ ∂kη + ∂kκ ⊗ ∂nη − ∂kη ⊗ ∂nκ = 0.

(6.7)

The fields of the theory therefore can no longer depend arbitrarily on the 6-dimensional internal

space, but in our case rather a 2 or 3 dimensional subspace. This allows one to describe in par-

ticular 8+3=11 dimensional supergravity or 8+2=10 dimensional type II supergravity respectively.

We will consider the embedding of type IIB supergravity: we will focus on the solutions where the

fields effectively depend on a two dimensional subspace of the six dimensional internal space.

The usual way to do this is to consider that

∂1γ(A) = ∂2γ(A) = 0 (6.8)

for any field A. This leads to the breaking of SL(3) into SL(2) × U(1). To make this breaking

manifest we can split the index M = mγ of the fundamental representation into mγ = (m̂γ, 3γ)
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where m̂ = 1, 2.

6.2 Fluxes

Compactifying string theory with fluxes leads, in the low energy limit, to gauged supergravity.

They correspond to deformation of abelian supergravities where a subgroup G0 of the global

symmetry group G of the supergravity theory is promoted to a local symmetry. The embedding

of the gauge group G0 into the global symmetry group G can be described by an object called

the embedding tensor, which corresponds exactly to the fluxes. Supersymmetry and gauge

invariance of the embedding tensor then leads to a set of linear and quadratic constraint on the

embedding tensor, which by extension should be verified by the fluxes of the corresponding low

energy limit of string theory [75,76].

Here we derive the expression of the generalised fluxes for the SL(3) × SL(2) × R+ ex-

ceptional field theory. They will have to verify both linear and quadratic constraints so that the

corresponding 8 dimensional gauged maximal supergravity we obtain in the low energy limit after

compactification with fluxes is consistent. Considering the warp factor in the duality group will

lead us to consider gauged supergravity with a gauged trombone symmetry. The gauging of the

trombone symmetry for SL(3)× SL(2) exceptional field theory has never been done before due

to the group product structure of this particular theory. We construct it here similarly to what is

done in [67] where the trombone symmetry is gauged for simple groups.

6.2.1 Embedding tensor structure of D=8 gauged maximal Supergravity

with trombone symmetry

A way to describe the gauging of a subgroup of a global symmetry group G in supergrav-

ity theories is through the constant embedding tensor ΘM
Γ [75, 76], where Γ is an index of

Adj(G) = Adj (SL(3)× SL(2)) in our case and M corresponds to the fundamental representa-

tion (3,2). A consistent local gauging of the theory forces one to consider two constraints on
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this embedding tensor: a linear one and a quadratic one. Let us recall the results already known

for the particular case of E3(3) exceptional field theory, without the scale factor of the general

extended group. A priori the embedding tensor ΘM
Γ of the theory lives in

(3,2)× ((8,1) + (1,3)) = [(3,2) + (6,2) + (15,2)] + [(3,2) + (2,4)]], (6.9)

but due to the linear and quadratic constraints, the embedding tensor only has (6,2) and (3,2)

components. Using this linear constraint we can write the generators of the gauge group of the

theory using the embedding tensor and the generators of the adjoint of the gauge group {tΓ}

(XM)N
P = ΘM

Γ(tΓ)N
P = Θmγ,n

pδρη + Θmγ,η
ρδpn (6.10)

with

Θmγ,η
ρ = ξmηδ

ρ
γ −

1

2
δρηξmγ = P(3SL(2))

ρ
η
δ
γξmδ

Θmγ,n
p = fγ

(pb)εbmn −
3

4
(ξnγδ

p
m −

1

3
ξmγδ

p
n) = fγ

(pb)εbmn −
3

4
P(8)

p
n
r
mξrγ

(6.11)

with Θmγ,η
ρδpn ∈ (3,2) and Θmγ,n

pδρη ∈ (6,2)1. To avoid confusion between the fundamental rep-

resentation of SL(3) and the adjoint of SL(2) we write the later (3SL(2)).

This is not the more general setting of supergravity gauging however, as one can gauge the

trombone symmetry [66,67]. In order to do that we have to consider a more general ansatz than

the one used in [67], as the global symmetry group is not simple in our case but a product of

simple groups. Considering the R+ factor in the duality group leads to an additional generator

(t0)N
P = −δPN in equation (6.10), and a corresponding additional component of the embedding

tensor ΘM
0 ≡ KM . This component lives in the (3,2) representation, and we expect it to appear

in the same way as the other (3,2) parameter ξM . This leads to the following ansatz for the

1fγ
mn and ξmα need to verify a set of quadratic constraints which can be found in [77].
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generators of the gauge group

XMN
P =Θmγ,n

pδρη + Θmγ,η
ρδpn +

(
ζ1P(8)

p
n
k
mδ

ρ
ηδ
κ
γ + ζ2P(3SL(2))

ρ
η
κ
γδ
p
nδ

k
m − δKMδPN

)
Kkκ (6.12)

where ζ1 and ζ2 are two real parameters. The symmetric part of the generators of the gauge

group, the intertwining tensor, should be in the same representation whether or not we consider

an R+ gauging. This is necessary in order to preserve the two-form field content of the theory

[67]. This is verified for ζ1 = −ζ2 = 6. The generators still have to verify a set of constraints which

can be expressed in terms of the tensors introduced before as

0 =XMN
PKP + 6P(8)

r
m
p
nKrγKpη − 6P(3SL(2))

δ
γ
ρ
ηKmδKnρ −KmγKnη (6.13)

0 =XPM
NXNK

R +XPK
NXMN

R −XPN
RXMK

N −KPXMK
R

+ 6
(
P(8)

q
p
n
mδ

σ
ρ δ

η
γ − P(3SL(2))

σ
ρ
η
γδ
q
pδ
n
m

)
KqσXnη,kκ

rδ

− 6
(
P(8)

q
p
r
nδ

σ
ρ δ

δ
η − P(3SL(2))

σ
ρ
δ
ηδ
q
pδ
r
n

)
KqσXmγ,kκ

nη

+ 6
(
P(8)

q
p
n
kδ
σ
ρ δ

η
κ − P(3SL(2))

σ
ρ
η
κδ
q
pδ
n
k

)
KqσXmγ,nη

rδ.

(6.14)

6.2.2 Generalised Dynamical Fluxes

Now that we described the embedding tensor of maximal supergravity in 8 dimensions with a

gauged trombone symmetry we look at the fluxes of SL(3)×SL(2)×R+ EFT. First let us consider

the generalised metric of the extended space. We can define a generalised metric H living in

the quotient SL(3)
SO(3)

× SL(2)
SO(2)

× R+ which transforms covariantly under SL(3) × SL(2) × R+ and is

invariant under the maximal compact subgroup of E3(3) i.e SO(3) × SO(2). Due to the product

structure of the group, we define a generalised bein which splits as

EĀ
M = e−∆eā

mlᾱ
γ (6.15)
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where ∆ is the R+ component of the metric, eām and lᾱγ the SL(3) and SL(2) beins respectively.

ā and ᾱ are SO(3) and SO(2) planar indices respectively. The metric of the internal space is then

HMN = EĀ
MEB̄

NδĀB̄ = e−2∆Hmngγη (6.16)

where

Hmn = eā
meb̄

nδāb̄

gγη = lᾱ
γlβ̄

ηδᾱβ̄
(6.17)

correspond to an SL(3) an SL(2) metric respectively.

Having defined the generalised bein and a consistent generalised Lie derivative of the theory,

one defines the generalised fluxes similarly to the fluxes in general relativity as2

LEĀEB̄ = FĀB̄
C̄EC̄ . (6.18)

In a coordinate frame, we find the fluxes to be

FMN
P = ΩMN

P − (2P(8,1)
P
N
R
S + 3P(1,3)

P
N
R
S)ΩRM

S +
1

6
ΩRM

RδPN (6.19)

where

ΩMN
P = (E−1)N

Ā∂MEĀ
P (6.20)

is the Weitzenböck connection3. Now, using the expressions of the bein (6.15) we obtain

ΩMN
P = −∂M∆δPN + δρη(e

−1)n
ā∂mγ(eā

p) + δpn(l−1)η
ᾱ∂mγ(lᾱ

ρ)

= −∂M∆δPN + δρηΩmγ,n
p + δpnΩmγ,η

ρ

(6.21)

2For more details see [74].
3We are abusing notation as the Weitzenböck connection should be globally defined, which is a priori not the

case here.



6.2. FLUXES 69

where

δρηΩmγ,n
p = δρη(e

−1)n
ā∂mγ(eā

p) ∈ (3,2)× (8,1)

δpnΩmγ,η
ρ = δpn(l−1)η

ᾱ∂mγ(lᾱ
ρ) ∈ (3,2)× (1,3).

(6.22)

The first term −∂M∆δPN obviously lives in (3,2)× (1,1) = (3,2).

After some manipulations we find the following generalised fluxes

FMN
P =

[
fγ

pzεzmn −
3

4
P(8)

r
m
p
nξrγ

]
δρη +

[
P(3SL(2))

ρ
η
δ
γξmδ

]
δpn

+

(
3

2
− 3

4
ζ

)
P(8)

r
m
p
nKrγ + ζP(3SL(2))

ρ
η
δ
γKmδ −Kmγδ

p
nδ

ρ
η

(6.23)

where

(6,2) : fγ
pz = εkq(zΩkγ,q

p) (6.24)

(3,2) :



θmγ = Ωrγ,m
r − 4∂mγ∆

θ̃mγ = Ωmδ,γ
δ − 3∂mγ∆

Kmγ = −1
6
(θmγ + θ̃mγ)

ξmγ = (θ̃mγ − θmγ)− ζKmγ

(6.25)

and ζ is only used to write the fluxes in a similar form compared to the gauge generators (6.12).

Choosing ζ = −6 gives us the the same expressions we found after considering the intertwining

tensor constraint in the context of D=8 gauged maximal supergravity with gauged trombone

symmetry. We thus have to consider the quadratic constraints (6.13) and (6.14) on K and f. We

present simplified expressions of these constraints for the type IIB supergravity solution of the

section condition in section 6.4.3, after choosing an appropriate ansatz of the generalised bein

(6.15).
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6.3 Equations of motion

We will now look at the equations of motion of the theory. General expressions of these equa-

tions were obtained in [57, 65] using the supersymmetric variations of the internal and external

gravitino and a torsion-free/metric compatible connection. In fact it is specified that in our case,

for E3(3) EFT, one can define a unique generalised Christoffel symbol. In this section, we find

the expression of this generalised torsion free, metric compatible connection. We then find a

generalised Ricci tensor following the construction of [74] for E7(7) EFT. In the last section we

finally obtain the equations of motion of type IIB supergravity after a choice of an appropriate

ansatz for the generalised SL(3)× SL(2)× R+ bein.

6.3.1 Generalised Christoffel symbol

Connections are defined to describe how a field is transported along curves on a manifold. Their

definition can thus be chosen to be exactly the same as the one from Riemannian geometry

∇MEĀ
N = ∂MEĀ

N + ΓMK
NEĀ

K . (6.26)

The torsion however is defined using the Lie derivative and will differ from the usual Riemannian

geometry [65]

TĀB̄C̄ = (E−1)M
C̄
(
L∇EĀ − LEĀ

)
EB̄

M (6.27)

with L∇ the generalised Lie derivative (5.20) where every derivative is replaced by a covari-

ant one. Requiring that the generalised torsion is null we get from (6.26) that the generalised

connection Γ verifies the following generalised torsion condition

ΓMN
P = 2P(8,1)

P
N
D
QΓDM

Q + 3P(1,3)
P
N
D
QΓDM

Q − 1

6
ΓDM

DδPN (6.28)

which can also be written

2Γ[MN ]
P = −ZP

N
R
KΓRM

K . (6.29)
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Using those expressions it is possible to seek a generalised Christoffel symbol of the form

ΓMN
P = Γmγ,n

pδρη + Γmγ,η
ρδpn + trace terms. (6.30)

without loss of generality4. Now, considering the metric compatibility condition

0 = ∇MH
NP = ∂MH

NP + ΓMR
NHRP + ΓMR

PHRN (6.31)

and the splitting of the metric (6.16) the first two terms of the expression (6.30) are found to be

Γmγ,n
p =

1

2
Hpr (∂mγHnr + ∂nγHmr − ∂rγHmn) (6.32)

Γmγ,η
ρ =

1

2
Hρδ (∂mγHηδ + ∂mηHγδ − ∂mδHγη) . (6.33)

The first term (6.32) is just 2 copies of a three dimensional usual Riemannian Christoffel symbol

(for each value of γ), and the second term (6.33) is 3 copies of a two dimensional one (for each

value of m). Finally, using the torsion condition (6.28) we find the generalised Christoffel symbol,

with vanishing generalised torsion and metric compatibility to be

ΓMN
P = Γmγnη

pρ = Γmγ,n
pδρη + Γmγ,η

ρδpn + 2
(
HpkHmn∂kγ∆δ

ρ
η − ∂nγ∆δpmδρη

)
+ 3

(
HρκHγη∂mκ∆δ

p
n − ∂mη∆δpnδργ

)
+ ∂M∆δPN

(6.34)

and whose traces are

ΓRM
R = −ΓMR

R = 6∂M∆. (6.35)

This comes from the fact that the scalar that transforms properly under generalised diffeomor-

phisms is e−6∆ for SL(3)× SL(2) i.e.

δξ(e
−6∆) = ∂P

(
e−6∆ξP

)
. (6.36)

4For more details see Appendix A.2.
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We use the fact that the scalars of the theory should be of this particular form later in order to

define a proper ansatz for the generalised metric and find the equations of motion one expects

in F-theory.

6.3.2 Generalised Ricci tensor

A generalised Ricci tensor for the E7(7) × R+ EFT which transforms covariantly under gener-

alised diffeormorphisms was proposed in [74]. It seems to hold for any exceptional field theory

as it is written in terms of the tensor Z without need of its precise form. Here we show that for

SL(3) × SL(2) × R+, it gives the expected equations of motion, thus confirming the proposed

form of a generalised Ricci tensor in exceptional field theory. We review the main steps in order

to construct a generalised Ricci tensor.

The usual Riemann tensor of a Riemannian space can be expressed as

RMNP
R = ∂MΓNP

R − ∂NΓMP
R + ΓML

RΓNP
L − ΓNL

RΓMP
L. (6.37)

This object however does not transform properly under SL(3) × SL(2) generalised diffeomor-

phisms. Its non covariant variation is

∆ξRMNP
R =2∆ξΓ[MN ]

QΓQP
R

where ∆ξ = δξ − Lξ. If one considers the torsion condition of the generalised Christoffel symbol

(6.29), the non covariant variation of the Riemann tensor is null if Z = 0 i.e. if the usual torsion

condition Γ[MN ]
P = 0 is satisfied. Now, the usual Ricci tensor should be

RMN = RMRN
R (6.38)

but again this does not transform as a tensor under generalised diffeomorphisms. Its non covari-
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ant variation is

∆ξRMP =2∆ξΓ[MR]
QΓQP

R. (6.39)

One can then construct the following generalised Ricci tensor

RMN =
1

2

(
RMN +RNM + ΓRM

PZRS
PQΓSN

Q
)

(6.40)

which verifies

∆ξRMN = 0. (6.41)

We will not detail here the expression of the generalised Ricci tensor obtained using our result

on a generalised Christoffel symbol (6.34). This is described in section 6.4.3, where we consider

a particular ansatz for the SL(3)× SL(2)×R+ bein in terms of the fields of type IIB supergravity.

6.4 Recovering F-theory

In this section, we use the results obtained before in order to relate SL(3)×SL(2)×R+ exceptional

field theory to F-theory. We show that considering a non-trivial solution to the section condition

allows us to describe the monodromies of (p, q) 7-branes appearing in F-theory. Finally we

consider an ansatz for the SL(3)×SL(2)×R+ bein which leads to the type IIB equations of motion.

We also show that the equations of motion obtained on the internal space using the generalised

Ricci tensor and the generalised Christoffel symbol are equivalent to the Ricci-flatness of a 4

dimensional usual Ricci tensor, of which two of the dimensions are fibered as one expects from

F-Theory.

6.4.1 Type IIB ansatz and generalised diffeomorphisms

In order to consider a type IIB solution of the SL(3) × SL(2) × R+ exceptional field theory the

usual ansatz is (6.8) i.e. that the fields only depend on the coordinates X3γ. This effectively
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leads to an 8+2 dimensional theory where the fields have a dependency on the 8 dimensional

external space-time, and two coordinates of the six dimensional internal extended space. Now,

let us consider a particular choice of gauge for the generalised bein in terms of the fields of type

IIB supergravity by breaking the SL(3) subgroup into SL(3)→ SL(2)×U(1). The SL(3) bein can

be chosen to be

eˆ̄a
m̂ =


e
φ+∆′

2 e
φ+∆′

2 C0 0

0 e
−φ+∆′

2 0

e−∆′B e−∆′C e−∆′

 (6.42)

where φ and C0 are the dilaton and axion respectively. B, C are defined properly below in terms

of B2 and C2 and ∆′ will be related to the scale factor ∆ introduced in equation (6.16). In order

to understand what are the fields B and C we look at the action of a generalised Lie derivative

(6.2) of a generalised vector V M ≡ (V 1γ, V 2γ, vγ) onto the SL(3) bein (6.42) which in the most

general case is5

LV (eā
m) = V kγ∂kγeā

m − eāk∂kγV mγ +

(
λ (eā

m) +
1

3

)
∂kγV

kγeā
m. (6.43)

Now let us note L0
V the action of a generalised Lie derivative with respect to the generalised

vector V when the usual section condition (6.8) is verified. Inserting the expression of L0
V (e3̄

3) in

L0
V (e3̄

1) and L0
V (e3̄

2) and using the Leibniz rule property of generalised Lie derivatives leads to

L0
V (C) = vγ∂3γC + ∂3γv

γC − ∂3γV
2γ (6.44)

L0
V (B) = vγ∂3γB + ∂3γv

γB − ∂3γV
1γ. (6.45)

Moreover one can show that the antisymmetric 2 dimensional tensor εαβ is invariant under gen-

eralised diffeomorphisms. This allows to relate the 2 representation of SL(2) to its dual 2̄ using

Vα = V βεβα, V α = εαβVβ. (6.46)

5The expression of the action of generalised Lie derivatives onto the representation (3,1) can be found in [68].
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The generalised Lie derivatives (6.44) and (6.45) are then

L0
V (C) = vγ∂3γC + ∂3γv

γC − ∂3γV
2
ηε
γη (6.47)

L0
V (B) = vγ∂3γB + ∂3γv

γB − ∂3γV
1
ηε
γη. (6.48)

To be more precise, we can define B and C to be the Hodge duals of the NSNS (B2) and RR

(C2) two-forms on the two dimensional space with metric Gγη ∝ gγη
6

B =
1√
|G|

εγη

2
Bγη

C =
1√
|G|

εγη

2
Cγη

V 1γ = V 1
ηε
γη =

λBη√
|G|

εγη

V 2γ = V 2
ηε
γη =

λCη√
|G|

εγη.

(6.49)

One then recovers the gauge transformations of B2 and C2

Cγη → Cγη + ∂[γλ
C
η]

Bγη → Bγη + ∂[γλ
B
η]

(6.50)

with λC and λB the one-form parameters of the gauge transformations.

As expected from an exceptional field theory we see that using generalised diffeomorphisms,

we can describe the usual diffeomorphisms of the two dimensional space (via vγ), combined

with two gauge transformations of the RR and NSNS two-forms (via V 1γ and V 2γ). In the next

section, we look at the implication of a more general solution to the constraint, which describes

the monodromies of exotic (p, q) 7-branes using generalised Lie derivatives.

6In the last section we find thatGγη = e−6∆gγη in order to recover the equations of motion of type IIB supergravity.
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6.4.2 F-theory as R+×E3(3) EFT with non standard solution to the section

condition

Exotic branes have been extensively studied in the context of DFT and EFT where one considers

the fields to depend on winding and wrapping coordinates [24, 27–29, 32–35]. In our case, one

can solve the section condition (6.7) by requiring that the fields depend on two coordinates, but

allow them to be a combination of the ordinary ones X3γ and the ones associated to winding

and D1-brane wrapping Xm̂γ. We propose the following solutions to the section condition of

R+ × SL(3)× SL(2) exceptional field theory

A = f(X3γ + Am̂X
m̂γ) (6.51)

for any field A and with m̂=1,2. In practice this can be seen as a SL(3) rotation of the usual type

IIB equations of motion and fluxes via the SL(3) rotation of the generalised tangent space

∂mγ → Rm
k∂kγ (6.52)

with

Rm
k =


1 0 A1

0 1 A2

0 0 1

 (6.53)

and where one considers the fields to be usual solutions to the section condition (6.8). One has

to note that it is equivalent to rotate the SL(3) bein instead of the generalised tangent space

eā
m → Rk

meā
k. (6.54)

The terms Am̂ are constant with respect to the 6-dimensional internal space, but can a priori

depend on the 8-dimensional space-time coordinates. We recover the usual section condition

for Am̂ = 0. One should note that the structure of the ansatz (6.51) as a global function of the

combined coordinates is necessary in order for products and inverts of fields to be well defined
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i.e. so that they are also solutions to the section condition.

Let us see what happens when performing generalised diffeomorphisms. As we are only

interested in the extra terms compared to the usual section condition solution (6.8), we will again

denote by L0
V the generalised Lie derivative with respect to a generalised vector V when ∂1α(A) =

∂2α(A) = 0 for any field A, which corresponds to the equations (6.44) and (6.45). Let us first look

at the generalised Lie derivative of the fields φ and C0 using the expression (6.43) and the Leibniz

rule

LV (eφ) = L0
V (eφ) + V k̂κ∂k̂κ(e

φ)

− eφ∂1κV
1κ − eφC0∂2κV

1κ +

(
λ(eφ) +

2

3

)
∂k̂κV

k̂κeφ

LV (C0) = L0
V (C0) + V k̂κ∂k̂κ(C0)− ∂1κV

2κ

− C0

(
∂2κV

2κ − ∂1κV
1κ
)
− C2

0∂2κV
1κ + λ(C0)∂k̂κV

k̂κC0.

(6.55)

We consider generalised diffeomorphisms that satisfy ∂k̂κV
k̂κ = V k̂κ∂k̂κ = 0 which can be

achieved by considering that V m̂γ verifies

A2V
2κ = −A1V

1κ. (6.56)

This gives

LV (eφ) = L0
V (eφ)− eφ∂1κV

1κ − eφC0∂2κV
1κ

LV (C0) = L0
V (C0)− ∂1κV

2κ − C0

(
∂2κV

2κ − ∂1κV
1κ
)
− C2

0∂2κV
1κ.

(6.57)

Here we see that the term −∂1κV
2κ is producing a shift of the axion, as is expected from a mon-

odromy of a (p, 0) 7-brane given by the equation (3.38) and using the corresponding monodromy

matrix (4.14). As the other terms are not particularly clear when one looks at the fields φ and

C0 let us consider the generalised Lie derivatives of the fields B and C. Considering the ansatz
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(6.56) we obtain

LV (C) = L0
V (C)−B∂1κV

2κ − C∂2κV
2κ (6.58)

LV (B) = L0
V (B)−B∂1κV

1κ − C∂2κV
1κ. (6.59)

Now, to make sense of the two previous equation in terms of monodromies we take each com-

ponent of V M to be linear in its coordinates. Requiring the conditions (6.51) and (6.56) for V m̂γ

we are able to recover the monodromies of a general (p, q) 7-brane encoded into the generalised

Lie derivatives of the exceptional field theory

LV (C) = L0
V (C) + pqC + p2B

LV (B) = L0
V (B)− pqB − q2C

(6.60)

with the additional conditions

∂1κV
1κ = −∂2κV

2κ = pq

∂1κV
2κ = −p2

∂2κV
1κ = q2

qA1 = pA2.

(6.61)

Now let us look at the particular case of a stack of p D7-branes, as an arbitrary (p′, q′) 7-brane can

be mapped locally to a (p, 0) one, using an SL(2,Z) transformation. We can make the following

ansatz for the dependency of the Lie derivative generalised vector parameter

V M = (0, X3γ − p2

2
X1γ, 0) (6.62)

where we put V 3γ to zero to remove the diffeomorphisms component. Using this we obtain the
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full transformations of the fields to be

LV (eφ) = 0

LV (C0) = p2

LV (C) = p2B + 2

LV (B) = 0.

(6.63)

The additional shift term in the action of the monodromy on C is coming from a breaking of the

gauge symmetry invariance of this field, which is also the case for B. The gauge invariances

of the fields B and C seem to be entirely constrained by the monodromies as one goes around

a D7-brane. One could notice that breaking of the gauge invariances are expected when non

perturbative effects of string theory are taken into account. This is however not an acceptable

explanation in our case as we are in the perturbative regime. A more appropriate explanation

would be that the monodromies we described before have an interpretation only when one is

considering that the only term appearing in the Chern-Simons action of a D7-brane is the C8

term dual to the axion C0 [78]. The full Chern-Simons action is however

∫
M8

C ∧ e−B2 (6.64)

whereM8 is the brane world volume and

C =
∑
p=0..4

C2p. (6.65)

This might break the gauge invariances of both B2 and C2.

6.4.3 Equations of motion via the generalised Ricci tensor

Here we write explicitly the equations of motion with usual section condition (6.8) using the

generalised Ricci tensor (6.40) and with the help of the symbolic computer algebra system

Cadabra [79, 80]. To begin with, let us consider the proposed ansatz (6.42) for the generalised
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bein. As we showed that the scalars that transform properly are of the form e6n∆ where n ∈ Z,

and as the R+ factor in the metric are of the form e−2∆+∆′ and e−2∆−2∆′, a plausible ansatz on the

scalar ∆′ is

∆′ = −4∆. (6.66)

Now according to [65], the equations of motions should live in the representation

(5,1) + (1,2) + (1,1). (6.67)

This leads to the following equations of motion

0 = Rmγ,nηH
mn ∈ (1,2) + (1,1)

0 = R(m|γ,|n)ηg
γη ∈ (5,1) + (1,1).

(6.68)

Using the definition of the generalised Ricci tensor (6.40), the generalised Christoffel symbol

(6.34), the ansatz on the bein (6.42) as well as the ansatz on ∆′ (6.66) and the usual section

condition (6.8) we obtain the equations of motion of type IIB supergravity in 2 dimensions7

Rγρ

[
e−6∆g··

]
+

1

2
∂γφ∂ρφ+

1

2
∂γC0∂ρC0 = 0 (6.69)

gγρ
(
∇γ∇ρφ− e2φ∇γC0∇ρC0

)
= 0 (6.70)

gγρ (∇γC0∇ρC0 + 2∇γC0∇ρφ) = 0 (6.71)

where ∂γ ≡ ∂3γ and Rγρ[e
−6∆g··] corresponds to the usual Ricci tensor associated to the metric

e−6∆gγρ. ∇ is the covariant derivative whose connection is the usual two dimensional Christoffel

symbol of the same metric. One should note that the only way to recover the equations of

motions of type IIB supergravity is to combine the warp factor ∆ with the R+ factor ∆′ coming

from the breaking of SL(3) into SL(2)× U(1) as in (6.66). Finally, as we stated before, the fields

should verify different constraints due to the quadratic conditions (6.13) and (6.14) which in the

7The expression (6.69) can differ from the literature by a minus sign due to the definition of the Riemann tensor
(6.37).
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end can be recast into

θ̃3[γ|Ω3|ρ],k
r = 0. (6.72)

If we write the geometric fluxes of the two dimensional space with bein l̃ᾱγ = e3∆lᾱ
γ as

wγη
ρ = 2(l̃−1)[γ|

ᾱ∂|η]l̃ᾱ
ρ (6.73)

we find that the condition (6.72) is equivalent to

w[γ|δ
δ∂|η]Φ = 0

w[γ|δ
δ∂|η]C0 = 0

w[γ|δ
δ∂|η]∆ = 0.

(6.74)

These can be solved in particular if we consider the trace wγδδ to be null, which is equivalent to

w = 0 for a two dimensional space. This in particular ensures that the two dimensional internal

space is compact [81].

To conclude we show that the equations of motion (6.68) are equivalent to the Ricci-flatness

of a 4 dimensional space: a two torus with constant volume equal to one, fibered over a two

dimensional Riemann space. To do that we consider a 4 dimensional space whose metric is

HMN =

Hm̂n̂ 0

0 gγρ

 (6.75)

and where M = (m̂, γ) with m̂ and γ being 1 or 2. Hm̂n̂ is an SL(2) metric while gγρ is a GL(2)

one. Now in order to describe a fibration we will consider that every field only depends on the two

coordinates xγ. Considering the usual Riemannian Ricci tensor of this four dimensional space

with ∂m̂ = 0 we have

RM=γ,P=ρ = Rγρ −
1

4
∂γH

kr∂ρHkr (6.76)

where Rγρ is the two dimensional usual Ricci tensor associated to the metric gγρ. Assuming that
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the SL(2) metric is of the usual form

Hm̂n̂ =
1

Im(τ)

 |τ |2 −Re(τ)

−Re(τ) 1

 (6.77)

with the axio-dilaton τ given by (3.37), we recover the expected equations of motion we derived

before. The equations of motion for the dilaton (6.70) and the axion (6.71) are obtained by

considering the other components of the Ricci tensor RM=m,P=p.
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CHAPTER 7

F-theory and Heterotic String Duality in Eight Dimensions

F-theory compactified on elliptically fibered K3 surfaces is believed to be dual at the quantum

level to the heterotic string compactified on a two-torus with Wilson lines [5,82–86]. In particular

one should be able to relate the complex parameters of the moduli space on the F-theory side

to the ones on the heterotic one as their moduli space are the same: the Narain space [87,88].

In this chapter we present fundamental notions necessary to understand this duality. This will

be necessary in the next chapter where we construct graphs of polytopes which give information

on the map between moduli from F-theory to the ones in the heterotic string.

We begin with some of the aspects of the compactifications of string theory on a two-torus

T 2. We show that non trivial Wilson lines break the E8 × E8 and SO(32) gauge symmetry. We

then present a basic example which illustrates how one can enhance these gauge groups in a

particular subspace of the moduli space. We then discuss an example which breaks the groups

E8 × E8 and SO(32) to one of their subgroups.

We then focus on elliptically fibered K3 compactifications of F-theory. We begin with some

aspects of cohomology and discuss the cohomological structure of K3 surfaces as well as its

moduli space. We then define elliptic fibrations of such spaces. Finally, we discuss how to

85
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construct K3 surfaces and elliptically fibered K3 surfaces using reflexive polyhedra and toric

geometry.

7.1 Heterotic string theory compactifications on a two-torus

7.1.1 General aspects of the torus compactification

Here we introduce basic notions concerning the compactifications of the heterotic strings on a

two-torus, based on [17, 36]. Let us consider the compactification of the heterotic string on a

2-dimensional torus with constant background metric Gmn = eame
b
nδab with bein e and its inverse

ê, two-form field Bmn and U(1)16 gauge fields AAm with m,n, a, b = 1, 2 and A = 1, .., 16. It is then

possible to decompose the momentum of the string P = (pRa, pLa, p
A) as

pRa =
êma√

2

(
nm − (Gmn +Bmn)wn − πAAAm −

1

2
AAnA

A
mw

n

)
(7.1)

pLa =
êma√

2

(
nm + (Gmn −Bmn)wn − πAAAm −

1

2
AAnA

A
mw

n

)
(7.2)

pA = πA + wmAAm (7.3)

with a = 1, 2, wm the winding numbers and nm the momentum numbers on the internal torus, πA

belonging to the weight lattice ΓD16 of Spin(32)
Z2

or ΓE8 ⊗ ΓE8 with ΓE8 the root lattice of E8. This is

once again forced by modular invariance. The twenty dimensional momentum P transforms as

a vector under O(2, 18,R) and verifies the relation

P 2 ≡ p2
L − p2

R = 2wmnm + |πA|2∈ 2Z (7.4)

The momentum lattice has therefore signature (2, 18), is even and self dual due to modular

invariance and is called the Narain lattice. Now, considering the inequivalent lattices under the
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action of O(2, 18,Z), which corresponds to T-duality, the moduli space is given by

O(2, 18,R)

O(2,R)×O(18,R)×O(2, 18,Z)
. (7.5)

A possible parametrisation of the moduli space in terms of the metric of the torus G, the two-form

field B and the Wilson lines in the first and second direction on the torus A1 and A2 is [89]

τ =
G12 + i

√
|G|

G11

, ρ = B + i
√
|G|+ 1

2
AA1 A

A
1 τ −

1

2
AA1 A

A
2 , ξA = AA1 τ − AA2 . (7.6)

This can be put in parallel with the O(2,2)
O(2)×O(2)

generalised metric of equation (3.26) of part I when

we discussed T-duality in the context of the bosonic string. When the Wilson lines vanish, τ and

ρ are then the complex and Kähler structure of the torus T 2.

Now, focusing on the massless sector of the heterotic string one finds that admissible states

verify pR = 0 which leads to

|pL|2 = 2 with pL =
(√

2êamw
m, πA + wmAAm

)
(7.7)

nm = (Gmn +Bmn)wn + πAAAm +
1

2
AAnA

A
mw

n ∈ Z. (7.8)

In fine, these are the conditions one has to check in order to understand the gauge group struc-

ture of the resulting theory. We now discuss some examples to illustrate how gauge groups are

broken or enhanced for particular values of the moduli G, B and Am.

7.1.2 Examples of gauge group enhancements

Let us first treat probably the simplest example where one considers AAm = 0. In this case, for

nm = wm = 0 one gets the condition |πA|2= 2. Therefore the root vectors of E8 × E8 and SO(32)

are possible states. On the other hand, one can consider states that verify wmGmnw
n = 1 and

(Gmn + Bmn)wn ∈ Z according to equations (7.7) and (7.8). This occurs for particular values of

the background fields of the torus. There exist various possible enhancements in this case. Let

us first consider that G11 = 1 and G12 = B12. In this case one finds that taking winding numbers
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(w1, w2) = (±1, 0) gives (n1, n2) = (±1, 0) and thus verify the condition (7.8). Equation (7.7) is

then |pL|2= |(
√

2êamw
m, 016)|2= 2. We can choose a convenient ansatz for the bein by fixing

e =
√
G11

 1 G12

G11

0
√
G

G11

 . (7.9)

One finally finds the two states

pL =
√

2(±1, 0, 016) (7.10)

generating an enhancement to SU(2) for this particular background both for the E8 × E8 and

SO(32) heterotic strings. The moduli in this case verify τ = ρ.

The other possible possible enhancements are SU(2) × SU(2) and SU(3). The first one

occurs e.g. at G12 = B12 = 0, G11 = G22 = 1 i.e. τ = ρ = i and gives the states

pL =
√

2(±1, 0, 016) , pL =
√

2(0,±1, 016). (7.11)

The SU(3) enhancement happens e.g. at G12 = B12 = 1
2
, G11 = G22 = 1 i.e. τ = ρ = e

2πi
3 and

gives

pL =
√

2(±1, 0) , pL = ±
√

2(
1

2
,

√
3

2
, 016) , pL = ±

√
2(

1

2
,−
√

3

2
, 016). (7.12)

7.1.3 Examples of gauge group breaking

Now let us detail an example where one considers a non trivial Wilson line. Take AA1 = (A,A, 014)

with A ∈ R and A2 = 0 in the case of the SO(32) heterotic string, the roots of SO(32) being

SO(32) :
(
±1,±1, 014

)
+ permutations. (7.13)

Generic values of the two-form field B12, the metric G and the Wilson line parameter A do not

give rise to states with non-zero winding number. We thus focus on the case (w1, w2) = (0, 0).
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The conditions to obtain admissible states are now

|πA|2 = 2 (7.14)

n1 = πAAA1 ∈ Z. (7.15)

We are therefore left to find roots of SO(32) which verify πAAA1 ∈ Z for a generic value of A. It is

easy to show that the admissible states are

pL =
(
0, 0, 0, 0,±1,±1, 012

)
→ SO(28) (7.16)

pL =
(
0, 0,±1,∓1, 014

)
→ SU(2). (7.17)

We thus obtain the group SO(28) × SU(2) with this Wilson line. Doing the same anylisis for the

E8 × E8 heterotic string one finds that one of the E8 is broken to E7. More generally it is shown

in [36] that considering one Wilson line AA1 = (Ak, 016−k) gives SO(32 − 2k) × SU(k) gauge

groups. Of course particular values of the Wilson lines, the metric and the two-form field lead

to additional states. For example considering A ∈ Z automatically satisfy (7.15) and the group

is SO(32). More generally this happens when the Wilson line belongs to the weight lattice of

SO(32).

In Chapter 8 we will write the Wilson lines A1 and A2 in a complex form A = A1 + iA2. The

main goal will be to be able to understand the duality map between heterotic string on T 2 and

F-theory on elliptically fibered K3 surfaces by matching the gauge groups on each side. First

we present in section 7.2 how one can construct such elliptically fibered K3 surfaces and how to

identify the gauge groups in F-theory in 8 dimensions.
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7.2 F-theory compactifications on elliptically fibered K3 sur-

faces

7.2.1 Cohomology classes and Hodge diamonds

Let us present a useful tool which gives information on the toplogy of Calabi-Yau spaces: the

Hodge diamond [90,91]. Let us consider a complex manifoldM with dimC(M) = n. We introduce

holomorphic zi and antiholomorphic local coordinates z̄i (i = 1, ..n) and then define (p, q) forms

as

Ap,q =
1

p! q!
Ai1,..,ip,j̄1,..,j̄qdz

i1 ∧ .. ∧ dzip ∧ dz j̄i ∧ .. ∧ dz j̄q ∈ Ω(p,q). (7.18)

with Ω(p,q) the vector bundle of (p, q) forms. Then one can define an holomorphic and antiholo-

mophic part of the exterior derivative which act as

∂ : Ω(p,q) → Ω(p+1,q) , ∂̄ : Ω(p,q) → Ω(p,q+1). (7.19)

As the operator ∂̄ verifies

∂̄2 = 0 (7.20)

one can define an associated cohomology (Dolbeaut) with

H
(p,q)

∂̄
(M) = H

(p,q)

∂̄
(M,C) =

Ker
(
∂̄ : Ω(p,q) → Ω(p,q+1)

)
Im
(
∂̄ : Ω(p,q−1) → Ω(p,q)

) . (7.21)

When M is a Kähler manifold, which is the case here as we consider Calabi-Yau manifold, there

is a consistency between the deRham and Dolbeaut cohomology. Namely if one considers the

operator

d : Ωr → Ωr+1 (7.22)
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acting on r forms, the deRham cohomology reads

Hr
d(M) =

⊕
p+q=r

H
(p,q)

∂̄
(M), (7.23)

which, if we consider the restriction of r forms to its subpaces of (p, q) forms gives

H(p,q)(M) ≡ H
(p,q)
d (M) = H

(p,q)
∂ = H

(p,q)

∂̄
. (7.24)

Now we can define Hodge numbers as the dimension of these spaces hp,q = dim
(
H(p,q)(M)

)
which are usually represented as a Hodge diamond shown in Figure 7.1. The Hodge numbers,

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

... ...
hn,0 h0,n

... ...
hn,n−2 hn−1,n−1 hn−2,n

hn,n−1 hn−1,n

hn,n

Figure 7.1: Hodge diamond of a compact Kähler manifold.

in the case of a Calabi-Yau manifold verify

hp,q = hq,p = hn−p,n−q,

h0,k = 0, 0 < k < n,

h0,0 = hn,0 = 1.

(7.25)

The Hodge diamond plays a central role to understand the field content of the theory after com-

pactifcation, and in particular the resulting moduli. It can be used to generalise the decomposition

of the five dimensional metric we made in the much simpler case of the circle compactification

in equation (3.6). In this case the space of one forms on S1 is spanned by one generator given

by dx4 and gives one moduli in the four dimensional metric. If we take e.g. the compactification
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of string theory on a CY3, the number of moduli exclusively obtained from the 10 dimensional

metric is 2h2,1 + h1,1. Details on the field content of type IIA and IIB string theory compactified on

CY3 can be found in [17]. Next, we focus on the topologically unique two dimensional Calabi-Yau

manifold called K3.

7.2.2 K3 surfaces and their moduli space

Here we describe some properties of compact complex K3 surfaces which are necessary to

understand the duality between heterotic string on T 2 and F-theory on elliptically fibered K3

surfaces. We discuss some of the key steps permitting to identify the moduli space of a K3

surfaces. Details of such construction can be found in [92–95].

A complex K3 surface M is the only Calabi-Yau manifold whose complex dimension is 2. Its

Hodge diamond is therefore unique and given by

1
0 0

1 20 1
0 0

1

Table 7.1: Hodge Diamond of a complex K3 surface.

Its second cohomology class decomposes as

H2(M,C) = H(2,0)(M,C)⊕H(1,1)(M,C)⊕H(0,2)(M,C). (7.26)

One can consider a Kähler manifold as a real manifold with second cohomology H2(M,R) and

with product structure defined as

( , ) : H2(M,R)×H2(M,R)→ H4(M,R) ' R

(w, v) 7→
∫
M

w ∧ v.
(7.27)

Due to ?2 = 1, one can decompose the second cohomology class with respect to its eigenspaces
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H2+ and H2− with eigenvalues 1 and -1 [96]. Their dimensions are 3 and 19 respectively which

leads to the identification

H2(M,R) ' R3,19. (7.28)

Now let us consider the holomorphic two-form Ω ∈ H(2,0)(M,C) of the K3 surfaces as well as the

Kähler form J ∈ H(1,1)(M,C), orthogonal to Ω. One has

Ω = x+ iy (7.29)

where x, y ∈ H2(M,R) ' R3,19. It verifies

∫
M

Ω ∧ Ω = 0 (7.30)∫
M

Ω ∧ Ω̄ > 0 (7.31)

which means that x and y span a space like subspace of H2(M,R). Moreover J verifies

∫
M

J ∧ J > 0 (7.32)

and is orthogonal to Ω with respect to the product (7.27). Therefore, we have that J and Ω are

determined by a space-like 3-plane in R3,19. The moduli space is then linked to the following

Grassmaniann space [95]

G =
O(3, 19,R)

O(3,R)×O(19,R)
. (7.33)

Now, let us consider the integral homology structure H2(M,Z) together with its cup product, or

intersection pairing such that

∀α, β ∈ H2(M,Z) (α, β) = N(α ∩ β) (7.34)

with N(α∩ β) the number of oriented intersection. By Poincaré duality this defines an equivalent
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structure in the integral second cohomology H2(M,Z)

( , ) : H2(M,Z)×H2(M,Z)→ Z. (7.35)

The lattice H2(M,Z) is even self dual of signature (3, 19) and is isomorphic to the lattice

ΛK3 = H ⊕H ⊕H ⊕ (−E8)⊕ (−E8) (7.36)

where H is the hyperbolic plane and E8 is the even, positive and definite unimodular lattice of

rank 8. One can then define a marked K3 surface (M,Γ3,19) by a choice of isometry Γ3,19 :

H2(M,Z)→ ΛK3. The moduli space associated to Ω and J of the marked K3 surface is then the

Grassmanian space of equation (7.33) quotiented by the isometries of Γ3,19

M = O(Γ3,19)\G. (7.37)

Now, what will be of interest to us in the next chapter are K3 surfaces whose moduli space is

restricted to a subspace of (7.37). This will be necessary to understand which Wilson lines in the

heterotic string with n moduli on T 2 maps to the n moduli of F-theory on an elliptic K3 surface.

To this end let us introduce the Picard lattice

Pic(M) = H(1,1)(M) ∩H2(M,Z). (7.38)

It has signature (1, ρ − 1) where ρ is the Picard number of the K3 surface. Demanding that the

Picard lattice is preserved under the variation of the complex structure of the K3 surface reduces

the number of moduli. This is in particular the case for elliptically fibered K3 surfaces, which have

to preserve the fibration as we discuss next.
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7.2.3 Elliptically fibered K3 surfaces

The moduli space we obtained in the previous section (7.37) is somehow close to the one we

obtained in the case of compactifications of the heterotic string on T 2 in equation (7.5). It is how-

ever bigger and needs some restrictions as to understand the duality between the two theories

after compactification. This is because in F-theory there exists a punctured 2-torus, or elliptic

curve, fibered over the base space. In other words, we have to consider that the K3 surface M

admits an elliptic fibration

π : Eτ → M

↓

B

(7.39)

with a section σ0 : B →M which fixes the zero of the additive group1 on the elliptic curve. In the

case of K3 surfaces, the base space can always be taken to be B = P1. This additional structure

that one imposes on the K3 surface reduces the moduli space. If one considers the class [F ] of

the fiber F and [B] of the base B = P1 in the Picard lattice one finds

([F ], [F ]) = 0 , ([F ], [B]) = 1 , ([B], [B]) = −2. (7.40)

The lattice defined by these elements is then isomorphic to the hyperplane H of signature (1, 1).

Preserving the fibration structure of a general K3 surface therefore leads to the following moduli

space of elliptically fibered K3 surfaces

MElliptically fibered K3 =
O(2, 18,R)

O(2,R)×O(18,R)×O(2, 18,Z)
(7.41)

and matches the moduli space of the compactifications of heterotic string on T 2 of the equation

(7.5).

In practice, every elliptically fibered K3 surfaces can be expressed as a Weierstrass model

1The additive group structure on the elliptic curves originates from the definition we gave in equation (4.17).
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[26]

PW = 0 = y2 −
(
x3 + f(s, t)xz4 + g(s, t)z6

)
(7.42)

with (s, t) ∈ P1, f and g polynomial of degree 8 and 12 in (s, t) respectively and (x, y, z) are

homogeneous coordinates on P(2,3,1). The zero section is obtained for every point (s, t) in the

base as

σ0 : (s, t) 7→ ((s, t), (x = 1, y = 1, z = 0)) . (7.43)

f and g together account for 22 complex parameters. It is however possible to change the co-

ordinate on the base by an SL(2,C) transformation and scale f and g as f → λ2f and g → λ3g

with λ ∈ C∗. There remain therefore 18 complex parameters similarly to what we obtain in the

case of the heterotic string in equation (7.6).

The complex parameter of the elliptic curve is now base dependent and can be extracted

from the equation

j(τ(s, t)) = 4
243f(s, t)3

∆
, ∆(s, t) = 4f(s, t)3 + 27g(s, t)2. (7.44)

The discriminant ∆ is a degree 24 polynomial in (s, t) and has therefore 24 zeros with multiplici-

ties. They correspond to the positions of (p, q) 7-branes in F-theory. We saw in section 4.2.2 that

stacks of such branes give rise to gauge groups in the resulting 8 dimensional theory. Thanks to

Kodaira and Néron, the gauge structure of the 8 dimensional theory can be known without having

to consider explicitly the integral homology of the elliptically fibered K3 surface. One only needs

to consider at which order f , g and ∆ vanish at the zeros of the discriminant. These results are

summarised in Table 7.2.

7.3 Elliptically fibered K3 surfaces from reflexive Polyhedra

Here we discuss the link between elliptically fibered K3 surfaces and reflexive polyhedra in three

dimensions. We first detail how to construct toric spaces and give an example in the case of a
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type ord(f) ord(g) ord(∆) sing
I0 ≥ 0 ≥ 0 0 -
I1 0 0 1 -
II ≥ 1 1 2 -
III 1 ≥ 2 3 A1

IV ≥ 2 2 4 A2

Im 0 0 m Am
I∗0 ≥ 2 ≥ 3 6 D4

I∗2n−5, 2 3 2n+ 1 D2n−1n ≥ 3
I∗2n−4, 2 3 2n+ 2 D2nn ≥ 3
IV ∗ ≥ 3 4 8 E6

III∗ 3 ≥ 5 9 E7

II∗ ≥ 4 5 10 E8

non-min ≥ 4 ≥ 6 ≥ 12 non-can

Table 7.2: Kodaira and Néron table for singular fibers of Weierstrass models.

two dimensional reflexive polyhedron which results in the construction of P(2,3,1). We then discuss

how to obtain K3 surfaces and elliptically fibered K3 surfaces as hypersurfaces on toric spaces

using reflexive polyhedra. Finally we discuss how to obtain moduli of such K3 surfaces.

7.3.1 Toric geometry and reflexive polyhedra

Here we introduce various notations about reflexive polyhedra and present briefly results about

toric Fano varieties. Detailed constructions of toric Fano varieties have been widely discussed

in the litterature (see e.g. [97, 98]). A pedagocical introduction to toric geometry can be found

in [99].

Let us consider two dual lattices M (Monomials) and N (faN) in Zn with real extension MR

and NR and an associated product < ∗, ∗ >: M×N → Z. We note ∆ an integral convex polytope

whose vertices are in M and which contains only the origin as an interior point. We then define

the dual of ∆ as

5 ≡ {v ∈ NR :< w, v > ≥ −1 for all w ∈ ∆} . (7.45)

As usual we consider ∆ to be reflexive, meaning that 5 is also convex, only contains the origin
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and has its vertices {vi, i = 1, ..., k} in N . With this we define strongly convex rational polyhedral

cone, which we simply call cone thereforth for simplicity, as well as fans [91,99]. A cone σ ∈ NR

is a set

σ =

{∑
i

aivi / ai ≥ 0 , i ≤ k

}
(7.46)

such that σ ∩ (−σ) = {0}. A fan is then defined as a collection Σ of cones such that each face

of a cone in Σ is also a cone in Σ and the intersection of two cones is a face of each. The one

dimensional cones of a fan are usually called rays. The normal fan of the polytope ∆ whose rays

are the vertices of 5 then defines a projective toric variety P∆ (which is Fano if and only if ∆

is reflexive, which will be the case here). Explicitly, one associates a variable xi to each of the

vertices vi of the polytope 5 in N which therefore defines Ck. Then one has to remove the sets

ZΣ =
⋃
I

{(x1, ..., xk) / xi = 0 ∀i ∈ I} (7.47)

with I subsets of [|1, k|] such that {vi, i ∈ I} is not included in a cone. Finally one has to quotient

this space by an abelian group G as well as (C\{0})k−n acting as

(x1, ..., xk) ∼ (λq
1
jx1, ..., λ

qkj xk) if
k∑
i=1

qijvj = 0 , λ ∈ C. (7.48)

j goes from 1 to (k−n) as we can find (k−n) independent relations such as these in the polytope

N . Moreover, one chooses integer qijs such that for each linear relation one coefficient is equal

to 1. P∆ is then

P∆ =
Ck\ZΣ

G× C∗(k−n)
. (7.49)

Let us treat an example to illustrate the construction. Consider the two dimensional polytope,

in the lattice we called N , defined by the three vertices

v1 = (1, 0) , v2 = (0, 1) , v3 = (−2,−3), (7.50)

illustrated in Figure 7.2. We define the fan associated to this polytope as the set containing



7.3. ELLIPTICALLY FIBERED K3 SURFACES FROM REFLEXIVE POLYHEDRA 99

.. .. . . . .

... . .....
..... ...

v1

v2

v3

Figure 7.2: Vertices of the polytope defining P231.

the zero dimensional cone {0}, the three one dimensional cones R+vi and the two dimensional

ones {R+v1 + R+v2}, {R+v2 + R+v3} and {R+v3 + R+v1}. To each of the rays we associate a

coordinate xi which thus defines C3. There is only one linear relation with one of the coefficient

set to one which gives the following C∗ action

2v1 + 3v2 + v3 = 0 ⇒ (x1, x2, x3) ∼ (λ2x1, λ
3x2, λx3) , λ ∈ C∗. (7.51)

The space defined by the polytope in the N lattice therefore correspond to the space P(2,3,1) on

which one defines a Weierstrass model. One should note that the space ZΣ in this case only

forbids to consider the point (0, 0, 0). This is quite general: if there exist an equivalence between

coordinates under the action of C∗, the space ZΣ remove the points for which all corresponding

coordinates are set to zero simultaneously.

7.3.2 Elliptically fibered K3 surfaces from reflexive polyhedra

Now that we constructed the toric variety P∆ using the polytope 5 it is possible when n = 3

to construct K3 surfaces as hypersurfaces in P∆ by considering the dual polytope ∆. The K3

surface X∆ can then be written as the locus in P∆ of

∑
m∈∆∩M

cm

i∏
k=1

x<m,vk>+1
k = 0 (7.52)



100 CHAPTER 7. F-THEORY AND HETEROTIC STRING DUALITY IN EIGHT DIMENSIONS

with cm ∈ C.

We can then construct in some cases an elliptically fibered K3 as X∆ together with a sur-

jective morphism π : X∆ → P1 such that generic fiber are genus one elliptic curves. They can

be constructed by considering the K3 surface (7.52), as well as finding a subpolytope 5(2) of

5 in the N lattice. This two dimensional polytope plays the role of the fiber of the elliptic K32.

There are 16 reflexive polyhedra for n = 2 which we note F# using the notation of [100], and

4319 reflexive polytopes for n = 3 [101] which we note M# and correspond to the polytope

ReflexivePolytope(3,#) in Sagemath. It is then possible to obtain Weierstrass models of ellipti-

cally fibered K3 surfaces upon a choice of a fan which contains as rays points of the fiber 5(2).

For example, if the polytope 5 contains the subpolytope defined in Figure 7.2, the rays which

are the vertices of the two dimensional polytope give coordinates (x, y, z) with the relation (7.51).

This in turn identifies a torus in the hypersurface equation (7.52).

Quite amazingly, and upon a particular choice of a fan which will be described in section 8.1.2,

the gauge groups associated to singularities of the elliptically fibered K3s can be read off directly

once one chooses a particular subpolytope 5(2) [102]. Indeed, Candelas and Font noticed that

the points located on both sides of the fiber of the polytope 5 in the N lattice are exactly the

extended Dynkin diagrams which correspond to the gauge groups associated to singularities

appearing in the Weierstrass model via the Kodaira and Néron classification [103, 104] (see

Figure 8.1). This was later explained by Perevalov and Skarke in [105]. Depending on which

of the 16 two dimensional reflexive polyhedra is the fiber, additional contribution coming from

the Mordell-Weil group of rational sections of the elliptic fibration can occur [100, 106–109]. In

particular the fibers F1, F2 or F4 give additional discrete symmetries Z# and fibers F13, F15

and F16 quotient by discrete symmetries 1
Z#

3. Finally, additional contribution of U(1)s or SU(#)

factors can appear, depending on how the polytope 5(2) intersects with 5.

2Such subpolytope cannot be found sometimes, in particular for small Picard numbers.
3Using the notations of [100]. The polytopes are i1,i2,i4 and i9,i7,i6 using notations of [110].
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7.3.3 Invariant parameters of the moduli space

The number of complex moduli for a K3 surface with Picard number p is 20 − p. Previously

we defined an algebraic K3 as an hypersurface (7.52) in the toric variety P∆ whose number

of parameters is a priori given by the number of points in ∆ ∩ M . However different sets of

those parameters correspond to the same point in the moduli space. For example several of the

coefficients can be put to 1 by a reparametrization of the coordinates in the projective space. In

order to properly define complex parameters on the moduli space of the K3 surface we use the

construction developed in [111]. It was shown there that monomials defined by points interior to

facets in ∆∩M can be removed by an appropriate change of coordinates for the different reflexive

polyhedra they considered. We therefore restrict the hypersurface equation (7.52) to the integral

points m ∈ Edges (∆ ∩M) ≡ Edg(∆) as well as the origin. The hypersurface equation can then

be written as

H = −c0

n∏
k=1

xk +
∑

m∈Edg(∆)

cm

n∏
k=1

x<m,vk>+1
k = 0 (7.53)

with vk rays of the normal fan P∆. Due to the link between the period map of K3 surfaces and

their moduli spaces [112], one can seek for parameters of the moduli space by considering the

fundamental period of the holomorphic two-form which can be written in our case as [113]

w̄00 = − c0

(2πi)n

∮
C

dx1 ∧ ... ∧ dxn
H

(7.54)

with C a product of cycles that enclose the hypersurface defined by xi = 0 [111]. This can be

recast as

w̄00 =
1

(2πi)n

∮
C

dx1 ∧ ... ∧ dxn∏n
k=1 xk

∞∑
l=0

H̃ l (7.55)

with

H̃ =
∑

m∈Edg(∆)

cm
∏n

k=1 x
<m,vk>+1
k

c0

∏n
k=1 xk

. (7.56)

The only non zero terms in (7.55) are the constant terms in the development of H̃ l by the residue

theorem. The fundamental period of the holomorphic two-form can therefore be parametrized by
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the following invariants

Moduli ∼ l!

cl0

∏
m∈Edg(∆)

clmm
lm!

(7.57)

such that ∑
m∈Edg(∆)

lm = l (7.58)

and

∀k
∑

m∈Edg(∆)

lm (< m, vk > +1) = l. (7.59)

Taking the second equation, one can then simply look for inequivalent linear relations in the M

lattice such that
∑
lm ·m = (0, 0, 0) with lms positive and minimal. By a change of variables of

these invariants, one can in fact look for inequivalent linear relations between points in the edges

of ∆ such that (7.58) and (7.59) are verified but this time with lm in Z and |lm| minimal. The

complex parameters can then be taken to have the following form

Moduli ∼

 ∏
m∈Edg(∆)

clmm

 c−l0 . (7.60)

As an example let us take the polytope M476, with Picard number equal to 16 i.e. 4 moduli. Its

vertices are given by

M476 : (1, 0, 0)︸ ︷︷ ︸
(1)M

, (0, 1, 0)︸ ︷︷ ︸
(2)M

, (0, 0, 1)︸ ︷︷ ︸
(3)M

, (−4, −2, −1)︸ ︷︷ ︸
(4)M

, (−5, −3, −1)︸ ︷︷ ︸
(5)M

, (−1, −1, 1)︸ ︷︷ ︸
(6)M

. (7.61)

An additional point, (7)M = (−3,−2, 0), is situated on the edges of the polytope. We can thus

consider four inequivalent linear relations between these points, a possibility being

(5)M + (6)M − 2 · (7)M , (7)M + 2 · (2)M + 3 · (1)M (7.62)

(3)M − (1)M − (2)M − (6)M , (4)M − (1)M − (2)M − (5)M (7.63)
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which leads using (7.60) to the complex parameters of the moduli space

M476 (4 Moduli):
c5c6

c2
7

,
c7c

2
2c

3
1

c6
0

,
c3c

2
0

c1c2c6

,
c4c

2
0

c1c2c5

. (7.64)





CHAPTER 8

F-theory and Heterotic Duality,

Weierstrass Models from Wilson Lines

The study of the full moduli space of the heterotic string on T 2 or equivalently F-theory on ellip-

tically fibered K3 surfaces can be a difficult exercise and one wants to focus on subspaces with

fewer complex modular parameters. In the heterotic string one can consider for example com-

pactifications on a two torus with Wilson lines parametrized by few moduli. In F-theory, one can

choose an algebraic K3 with a large Picard number p, as its modular space is parametrized by

20−p complex variables [112]. As we saw, a particularly interesting way to construct K3 surfaces

is to consider reflexive polyhedra in 3 dimensions which define hypersurfaces in toric varieties.

Thanks to Kreuzer and Skarke [101] it is possible to have a list of the totality of the 4319 different

reflexive polyhedra in 3 dimensions and classify them with respect to their Picard number p.

The duality between F-theory and heterotic string has been written explicitly for only two

of the 4319 different K3 surfaces one can construct via reflexive polytopes. First the duality

between the parameters of a Weierstrass model presenting a particular E8 × E8 singularity and

the complex structure and Kähler moduli of the two torus on which the E8×E8 heterotic string is

105
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compactified was constructed in [114]. Later it was found that a particular reflexive polyhedron

admitting two fibrations has for gauge groups E8×E8 and Spin(32)
Z2

[7]. In a more general case with

three moduli, Malmendier and Morrison showed that a particular polytope with again two fibers

with gauge group E7×E8 and Spin(28)×SU(2)
Z2

is related to compactifications of heterotic strings with

one Wilson line modulus [8].

Here we show that if we focus on particular reflexive polyhedra that are linked in some way to

the E8 × E8/
Spin(32)

Z2
polytope, we can understand the Wilson line structure of the dual heterotic

string. This is due to the fact that we can recover the torus on which we compactify the heterotic

string theory as a particular subspace of the moduli spaces of the elliptically fibered K3s. To find

these polytopes we construct graphs where a link between two polytopes M+ and M− is drawn

if, for every elliptically fibered K3 surface obtained via M+, there exist a limit in the moduli space

where one obtains elliptically fibered K3 surfaces of the other polytope M−. In particular, we will

consider the limit where one sends monomials of the hypersurface equation defining the K3 sur-

face associated to M+ to zero, which is equivalent to removing a point in M+. This can be seen

as an extension of the notion of chains presented by Kreuzer and Skarke in [101]. Focusing on

polytopes which have two fibers, links between polytopes then correspond to inclusion relations

between the moduli spaces of elliptically fibered K3s. Considering polytopes which are linked to

E8×E8/
Spin(32)

Z2
, we show that additional monomials in the hypersurface equation which defines

the elliptically fibered K3s on which we compactify on correspond to additional Wilson line mod-

uli in both the E8 × E8 and Spin(32)
Z2

heterotic strings. Using this Wilson line/monomial duality we

can construct Weierstrass models of elliptically fibered K3s which are not directly obtained from

reflexive polyhedra. They can then be interpreted as a certain Wilson lines in the dual heterotic

theories. Finally, we show that in some cases this notion of Wilson line description of K3 surfaces

can be extended to polytopes with more than two fibers. This should be helpful to understand the

duality between F-theory compactified on K3s and heterotic string on a two torus, and eventually

in compactifications to lower dimensions involving K3 surfaces.

The chapter is organised as follows: in section 8.1, we present several computer programs
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which we wrote and are helpful for constructing graphs of polytopes. They were written on

SageMath and with the help of the package PALP [115–117]. The first program uses the ex-

tended Dynkin diagram structure of reflexive polyhedra with fibers in order to construct tables

of gauge groups for each fibration of every reflexive polytope. The second program gives the

corresponding Weierstrass model for every fiber of reflexive polytopes. The third one uses

this Weierstrass model and finds the enhancements one can obtain by simply sending the

coefficients which parametrize the hypersurface equation of the K3 in some toric varieties to

zero. This can be particularly useful to construct graphs of polytopes and we show how one

can link polytopes up to three moduli. In the Appendix B we present typical outputs of the

programs and explain how to use them. The computer programs are available on GitHub at

https://github.com/lilianChabrol/Reflexivepolyhedras. To summarize, here are the three

SageMath programs available online

• Program 1 (Typical output in Appendix A): Gauge groups from the extended Dynkin diagram

structure in the N lattice.

• Program 2 (Typical output in Appendix B): Determination of the Weierstass model of the

corresponding elliptically fibered K3.

• Program 3 (Typical output in Appendix C): Possible enhancements of the gauge groups for

each fibers by sending defining coefficients of the hypersurface to zero.

Finally in section 8.2 we present a Wilson line description of K3 surfaces by considering a par-

ticular graph of polytope which goes up to 6 moduli, or equivalently in this case four Wilson line

moduli on the heterotic side. We then show how to construct Weierstrass models of elliptically

fibered K3s which one can directly interpret in the dual theory as particular Wilson lines.

8.1 Obtaining data on elliptically fibered K3s

We now present the three computer programs that allow to obtain different information about

elliptically fibered K3 surfaces automatically. Again, we writee M# the polytope ∆ in the M

https://github.com/lilianChabrol/Reflexivepolyhedras
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lattice corresponding to ReflexivePolytope(3,#) in SageMath1.

8.1.1 Extended Dynkin diagram from polyhedra

As discussed in section 7.3.2, it is possible to obtain the gauge structure of an elliptically fibered

K3 upon a choice of reflexive polytope (∆,5), and a choice of fiber 5(2). We now present a

generic way to find the gauge group associated to each fiber of every reflexive polytope in the

Kreuzer-Skarke classification of reflexive polyhedra in 3 dimensions.

We first find all two dimensional reflexive polyhedra 5(2) which are subpolytopes of 5 mod-

ulo SL(3,Z) transformations in the N lattice2. Then we identify which of the 16 possible two

dimensional reflexive polytope corresponds to each of the fibers 5(2). This permits in particular

to know if the fiber contains product or quotient by discrete symmetry group [100]: F1, F2 and F3

contribute by a product by Z3, Z2 and Z4 respectively while fibers F13, F15 contribute by 1
Z2

and

F16 by 1
Z3

. We do not write the additional contributions of U(1) factors coming from the Mordell

Weil group as in the end the gauge group must be of rank p − 2, where p is the Picard number

of the K3 surface. We however look for additional SU(#) contribution from the fiber: if polytopes

5(2) and 5 have a common edge with n points, then there appears an additional SU(n − 1)

part in the final gauge group3. Finally, the fiber 5(2) dividing 5 into two parts, we look at points

"above" and "below" the fiber and read off the extended Dynkin diagrams.

As an example let us consider the polytope M476. In Figure 8.1 we represent the dual

polytope N476 of M476 for the two inequivalent fibrations 5(2) it contains. On the left, one can

read off two extended Dynkin diagram of E7. On the right, there is a SO(24) as well as 1
Z2

comming from the fiber F13, and SU(2)× SU(2) contribution due to the intersection of 5(2) and

5 symbolised by red points.

1The vertices of each of the polytopes presented in this chapter are written in the Appendix B.4.
2This feature was already available on Sagemath.
3Equivalently the rank of the SU(#) can be seen by looking at the number of interior points in the common edge.

See the red points in Figure 8.1.
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Figure 8.1: E7 × E7 and SO(24)×SU(2)2

Z2
fiber of the polytope M476. The points in blue draw the

extended Dynkin diagram of E7s on the left, SO(24) on the right. The contribution of SU(2)s from
the fiber are symbolised by red points. The fiber being F13 there is an additional contribution of
1
Z2

.

The results for K3 surfaces with Picard number 19 and 18 i.e. one and two complex parameters

respectively, are presented in the Tables 8.1 and 8.2. They were compared with results of an

unpublished paper [118] presented at a seminar at CERN [119] as well as results from [111]. The

result with Picard 17 and 3 complex parameters is presented in the Appendix B.1 (Table B.1).

Tables with complex parameters up to 5 moduli are available on GitHub, and up to 10 moduli for

elliptically fibered K3s admitting only two inequivalent fibrations.

M0 SO(16)×SO(16)
Z2

SU(12)×E6

Z3
E8 × E8

E7×E7×SU(4)
Z2

M2 E7×SO(20)
Z2

SU(18)
Z3

E8 × E8 × SU(2)

Table 8.1: Gauge groups for polytopes with Picard 19. Columns represent the inequivalent fibers
5(2) dividing the dual N# of M# into two parts. Additional U(1)s should be added so that the
rank is 19.

8.1.2 Weierstrass model, gauge groups and basic enhancements

The computer program introduced in section 8.1 is particularly interesting to determine the gauge

group at a generic point in the moduli space associated to any fiber of any reflexive polytope in

three dimensions. It would however be interesting to get the Weierstrass model which correspond

to these gauge groups in order to find their enhancements for particular values of the moduli.

Some of the enhancements can then be found quite easily by removing points in the polytope
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M3 SO(14)× E7 SO(14)× SU(9) SU(12)×SO(8)
Z2

E6×E6×SU(3)SU(3)
Z3

E8 × E8 × Z3

M4 E8 × E8 × Z3 E6 × SO(14)× SU(3) E7 × E7
SU(10)×SO(12)

Z2

SU(9)×SU(9)
Z3

M5 E7 × E7 × SU(2) SU(10)× E6
SO(16)×SO(12)×SU(2)

Z2

E7×SO(12)×SU(4)
Z2

E8 × E7
SU(6)×SU(12)

Z3

M6 E6 × E7 × SU(3) E7 × E8 E8 × E8 × Z3 SO(14)× SO(14) SO(10)× SU(11) E6×SU(9)×SU(3)
Z3

SU(8)×SO(16)
Z2

M7 E7 × E8
SU(10)×E7

Z2

SU(3)×SU(15)
Z3

E6 × SO(18)

M10 SO(16)×SO(16)
Z2

E7×E7×SU(2)SU(2)
Z2

E8 × E8 × Z4
SU(16)
Z2

M11 SO(16)×E7×SU(2)
Z2

E8 × E8 × Z4 E8 × E7 × SU(2) SO(12)×SO(20)
Z2

SU(16)

M16 SO(18)× E6
SU(15)×SU(3)

Z3
E7 × E8

SU(10)×E7

Z2

M88 E8 × E8
SO(32)
Z2

Table 8.2: Gauge groups for polytopes with Picard 18. Columns represent the inequivalent fibers
5(2) dividing the dual N# of M# into two parts. Additional U(1)s should be added so that the
rank is 18.

∆ in the M lattice which amounts to sending to zero a coefficient in the hypersurface equation

which defines the K3 surface. This is what the second and third program do: find the Weierstrass

model, and the enhancements described above4.

We first look at the polytope 5 in the N lattice. As explained in the introduction we then find

inequivalent subpolytope 5(2) of dimension 2 in 5. For each of this 2 dimensional polytope we

want to associate homogenous coordinates such that it describes the fiber. For most cases one

can just associate one of them to each vertices of the subpolytope and obtain later the gauge

groups expected from reading the extended Dynkin diagrams directly on the polytope 5. How-

ever in 3 cases (F13, F15 and F16) out of the 16 possible two dimensional reflexive polytopes,

considering the vertices will not lead to these groups. This is due to the fact that for these partic-

ular polytopes the fibrations admit more than one section [7]. Using a similar construction to the

one of [119] and in an upcoming paper [118], we then consider the homogeneous coordinates

xi of the fiber to be associated to the points as described in Figure 8.2. To define coordinates

(s, t) on the base space P(1) we seek for two vectors vs and vt, "above" and "below" the fiber. A

fast way to obtain the appropriate Weierstrass model with correct ADE singularities, which corre-

spond to the extended Dynkin diagrams seen in 5, is then to seek for the closest vectors to the

fiber in 5∩N .

Finally we write the hypersurface equation by considering the points on the edges of ∆ and

using equation (7.52). To each of these points corresponds a monomial in the hypersurface

4See Appendix B.2 and B.3 for the output of the programs.
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.. .. . . . .

.
v1 v2

v3

... ..
...

. v1

v2

v3 v4 ....
..

. ...
v1

v2

v3

Figure 8.2: In order to obtain the groups associated to the extended Dynkin diagrams on the N
lattice we consider the following rays when the two dimensional subpolytopes are F13, F15 and
F16.

equation to which we associate a parameter ci ∈ C. Using SageMath we can finally recast this

equation into the Weierstrass form

y2 = x3 + f(s, t)xz4 + g(s, t)z6 (8.1)

where the homogeneous coordinates of the fiber are now (x, y, z) in P(2,3,1), f and g are respec-

tively polynomials of degree 8 and 12 in (s, t). The discriminant of (8.1) is then ∆(f,g) = 4f 3 +27g2

and vanishes at 24 points which are the locations of 7-branes.

Once one has the Weierstrass form of the elliptically fibered K3, one finds the ADE groups

associated to the various singularities using Kodaira and Neron classification presented in Table

7.2 [103,104]. Moreover, the moduli can be expressed via the parameters ci as shown in section

7.3.3. Sending those parameters to zero, we can therefore find possible enhancements of the

group associated to a generic point in the moduli space. The third SageMath program then gives

all possible enhancements obtained by sending all possible combinations of parameters ci to

zero, when the hypersurface still defines an elliptically fibered K3.

8.1.3 Graphs of polytopes

Using this we construct graphs of K3 surfaces, generalising the "chains" defined by Kreuzer and

Skarke in [101]. Nodes on a graph correspond to polytopes, or equivalently their associated
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K3 surface. We then link two polytopes if, by sending the same coefficient ci of (7.53) in every

hypersurface equations for every possible fibration, we obtain the Weierstrass models of fibers

of the other polytope5. Some of these graphs are represented in Figure 8.3, 8.4 and 8.5 and are

discussed below. A less trivial case will be discussed in section 8.2.

Let us consider Figure 8.3: M0 is linked to both M5 and M6 by which we mean that if one

removes a particular point in the polytopes M5 and M6, one recovers the Weierstrass models

corresponding to fibers of M0. This means that the moduli spaces of elliptically fibered K3s

corresponding to the fibrations of the polytopes M5 and M6 contains the moduli spaces of fibers

of the polytope M0.

Figures 8.3, 8.4 and 8.5, combined with the polytopes M15, M30, M38, M104 and M117

with Picard 17 which, a priori, are not linked to any polytope with higher Picard number, describe

all reflexive polyhedra up to 3 complex parameters.

Picard 19:

Picard 18:

Picard 17:

M0

M5 M6

M21 M26 M28 M22 M24 M25

Figure 8.3: Polytopes up to 3 complex parameters that are linked to M0 by removing points in
their M lattice (i.e. a monomial in the hypersurface equation).

Picard 19:

Picard 18:

Picard 17:

M2

M11 M16

M41 M50 M47 M48 M53

Figure 8.4: Polytopes up to 3 complex parameters that are linked to M2 by removing points in
their M lattice (i.e. a monomial in the hypersurface equation).

5One does not necessarily obtain all the fibers of the polytope with fewer moduli. This is however the case for
Figure 8.6.
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Picard 18:

Picard 17:

M3 M4 M7 M10 M88

M27 M20 M29 M14 M49 M221 M230

Figure 8.5: Links between polytopes with Picard 18 and 17. Going from Picard 17 to 18 amounts
to removing a point in the polytope in the M lattice (i.e. a monomial in the hypersurface equation
which defines the K3 surface).

8.2 F-theory/Heterotic string duality in 8 dimensions: Wilson

lines from reflexive polyhedra?

8.2.1 Graphs of Polytopes: from Monomials to Wilson lines...

The duality map between F-theory on K3 and heterotic strings on a two torus has been explicitly

written for two polytopes having each two inequivalent fibrations. The gauge groups associated

to these fibers are amazingly E8 × E8 and SO(32) for the first polytope (M88 using our notation)

and E7×E8 and SO(28)×SU(2) (M221). Using [36], we can see that adding a Wilson line of the

form A = (a2, 014) with a ∈ C, using the notation of the section 7.1.3 breaks E8 × E8 to E7 × E8,

and SO(32) to SO(28)× SU(2) for a generic value of a. On the heterotic side one might be able

to interpret the polytope M221 as a compactification on a two torus, together with one Wilson

line of the form (a2, 014). In fact considering this particular parametrization of Wilson line, the

enhancements one finds on both heterotic strings and F-theory exactly match, as was presented

by Anamaria Font at CERN [119] and studied with more details in an upcomming paper [118].

Now we want to see if we can make similar interpretations by considering polytopes which

admit only two fibrations. Following the construction we presented in section 8.1.3 we seek a

graph of polytopes with two fibers in its dual lattice and which contains M88. As an example let

us consider the polytope M1328 which has Picard number 14. Its moduli space is parametrized

by 6 complex parameters. We write the hypersurfaces equations PG = 0 of its two fibers below,
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where G is the group associated to its ADE singularities

(8.2)PE6×SO(10) = −c0x0x1x2x3st+ c1x2x
2
3s+ c2x

2
0x3s+ c3x

3
0x1st+ c4x0x

3
1x

2
2s

2t2

+ c5x
2
1x

2
2x3t

3 + c6x
4
1x

3
2s

2t3 + c7x0x
3
1x

2
2t

4 + c8x
4
1x

3
2t

5 + c9x
4
1x

3
2st

4,

(8.3)PSU(11)×SU(2) = −c0x0x1x2x3st+ c1x1x
2
2t+ c2x0x1x2x3s

2 + c3x
2
0x1x

2
3s

3

+ c4x
2
1x

3
3st

4 + c5x
3
0x2 + c6x

2
1x

3
3t

5 + c7x
4
0x3s+ c8x

4
0x3t+ c9x

2
0x1x

2
3t

3

with xi homogeneous coordinates of the fiber, and (s, t) coordinates on the base. These hy-

persurfaces can then be recast into a Weierstrass form where (s, t) correspond to coordinates

on the base P1
6 . Considering the underlined monomials in the equations (8.2) and (8.3) gives

the Weierstrass models associated to the polytope M88 and thus corresponds to the heterotic

strings without Wilson lines. By this we mean that if one considers c2 = c4 = c5 = c7 = 0 then

equation (8.2) in its Weierstrass form has for parameters

f =

(
− 1

48

)
· t4 · s4 · c4

0

g =

(
− 1

864

)
· t5 · s5 · (864c3

1c
2
3c6s

2 − c6
0st+ 864c3

1c
2
3c9st+ 864c3

1c
2
3c8t

2)

∆(f,g) =

(
1

16

)
· c2

3 · c3
1 · t10 · s10 · (c6s

2 + c9st+ c8t
2)(432c3

1c
2
3c6s

2 − c6
0st+ 432c3

1c
2
3c9st+ 432c3

1c
2
3c8t

2)

(8.4)

which has E8 × E8 for singularities if one considers Table 7.2. In the case of equation (8.3) it

6We do not write the Weierstrass models due to the size of the parameters f , g and ∆(f,g).
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gives

f =

(
− 1

48

)
· t2 · (16c2

1c
2
3s

6 − 8c2
0c1c3s

5t+ c4
0s

4t2 + 32c2
1c3c9s

3t3 − 8c2
0c1c9s

2t4

− 48c2
1c6c8t

6 + 16c2
1c

2
9t

6)

g =

(
− 1

864

)
· t3 · (4c1c3s

3 − c2
0s

2t+ 4c1c9t
3)(16c2

1c
2
3s

6 − 8c2
0c1c3s

5t+ c4
0s

4t2

+ 32c2
1c3c9s

3t3 − 8c2
0c1c9s

2t4 − 72c2
1c6c8t

6 + 16c2
1c

2
9t

6)

∆(f,g) =

(
− 1

16

)
· c2

8 · c2
6 · c4

1 · t18 · (16c2
1c

2
3s

6 − 8c2
0c1c3s

5t+ c4
0s

4t2

+ 32c2
1c3c9s

3t3 − 8c2
0c1c9s

2t4 − 64c2
1c6c8t

6 + 16c2
1c

2
9t

6)

(8.5)

i.e. a SO(32) singularity. Now we define two moduli ξ and ρ

ξ =
c8c6

c2
9

, η =
c9c

2
3c

3
1

c6
0

. (8.6)

They parametrize the two dimensional moduli space and are found by considering linear rela-

tions on the edges of the polytope M1328 (see Equation (7.60))7. Now, we know that adding a

monomial corresponds to adding complex parameters in the Wilson lines. As we have to add four

complex parameters which correspond to the four additional monomials c2, c4, c5 and c7 in (8.2)

and (8.3), we use the full graph which links M1328 to M88 represented in Figure 8.68. Going

down in the graph, we define four additional complex parameters as

Ac7 =
c7c

2
0

c1c3c8

, Ac2 =
c2c0

c1c3

, Ac4 =
c4c

2
0

c1c3c6

, Ac5 =
c5c

3
0

c3c8c2
1

. (8.7)

We already know that the polytope M221 is obtained on the heterotic side by adding a Wilson line

a(12, 014) therefore the monomial "c7" is associated to this Wilson line. Looking at all the gauge

groups in the graph and using results on the compactification of heterotic strings on a circle [36]

7They correspond to the parameter u and v in [111].
8This graph was found using the third program presented in this chapter applied to the polytope M1328.
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M88:
(
E8×E8

SO(32)

)

M221:
(

E7×E8

SO(28)×SU(2)

)
M230:

(
E7×E7

SU(16)

)

M473:
(
E8×E6

SO(26)

)
M497:

(
E7×E6

SU(14)×SU(2)

)
M476:

(
E7×E7

SO(24)×SU(2)2

)

M859:
(
E7×SO(10)
SU(13)

)
M866:

(
E7×E6

SO(22)×SU(2)

)
M895:

(
E6×E6

SU(12)×SU(2)2

)

M1328:
(

E6×SO(10)
SU(11)×SU(2)

)

Ac7 6= 0 Ac2 6= 0

Ac5 Ac2
Ac4

Ac7

Ac2
Ac4 Ac5 Ac4 Ac5

Ac2

Ac4 Ac2 Ac5

Figure 8.6: Links between various reflexive polyhedra. Going upward from M1328 amounts to
removing points in the polytope M1328, or equivalently monomials in the hypersurface equations
(8.2) and (8.3). Going downward corresponds to adding a complex modulus Ac#.

we find that a possibility for the Wilson lines associated to each monomial is

Ac7 ∼ a(12, 014) , Ac2 ∼ b(116) , Ac4 ∼ c(014, 12) , Ac5 ∼ d [(12, 014) + i(0, 12, 013)] (8.8)

with a, b, c and d in C parametrizing the moduli on the heterotic side. We can see that Ac7 and

Ac4 are linked to the same Wilson lines if it were not for the symmetry breaking of Ac59. Indeed, if

one does not add the monomial c5, or the Wilson line Ac5 in the dual theory, one can interchange

c7 and c4 and obtain the same Weierstrass models obtained from M221. Moreover, due to the

symmetry of the two parameters Ac7 and Ac4, if Ac7 = Ac4 i.e a = c in (8.7), we obtain what we

expect on the heterotic side, namely SO(24)× SU(2)2 → SO(24)× SU(4) for the polytope M476

while E7 × E7 is not enhanced.

9In the E8 × E8 heterotic string one can just interchange the E8s.
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8.2.2 ... and back to monomials

We are now able to describe K3s as parametrizations of Wilson lines of its dual theory (both for

E8×E8 and SO(32)) for particular polytopes M# whose dual N# contain two fibers . Rather we

linked monomials in the defining hypersurface equation of K3s to parameters in the Wilson lines.

This means that we can construct Weierstrass models of elliptically fibered K3s which are not

per say described by reflexive polyhedra, and directly interpret them as particular Wilson lines on

the E8×E8 and SO(32) heterotic strings. Indeed let us go back to the graph of Figure 8.6: adding

the monomial c4 to the underlined terms of (8.2) and (8.3) gives the Weierstrass models one gets

from M221 as explained previously. Adding only c5 however, we cannot obtain a polytope with 3

moduli which will give the same Weierstrass models. Thus let us write the parameters (f, g,∆f,g)

of the Weierstrass models of the polytope M88, together with the additional monomial c5 in (8.2)

and (8.3). For the first fiber we find

(8.9)f =

(
− 1

48

)
· c0 · s3 · t4 · (c3

0s− 24c1c3c5t)

g =

(
− 1

864

)
· s4 · t5 · (864c3

1c
2
3c6s

3− c6
0s

2t+ 864c3
1c

2
3c9s

2t+ 36c3
0c1c3c5st

2 + 864c3
1c

2
3c8st

2−216c2
1c

2
3c

2
5t

3)

(8.10)

∆(f,g) =
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1

16

)
·c2

3 ·c3
1 ·s8 ·t10 ·(432c3

1c
2
3c

2
6s

6−c6
0c6s

5t+864c3
1c

2
3c6c9s

5t+36c3
0c1c3c5c6s

4t2+864c3
1c

2
3c6c8s

4t2

− c6
0c9s

4t2 + 432c3
1c

2
3c

2
9s

4t2 − 216c2
1c

2
3c

2
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0c8s

3t3 + 36c3
0c1c3c5c9s

3t3 + 864c3
1c

2
3c8c9s

3t3

+36c3
0c1c3c5c8s

2t4 +432c3
1c

2
3c

2
8s

2t4−216c2
1c

2
3c

2
5c9s

2t4−c3
0c3c

3
5st

5−216c2
1c

2
3c

2
5c8st

5 +27c1c
2
3c

4
5t

6)
(8.11)

and for the second

(8.12)f =

(
− 1

48

)
· t2 · (16c2

1c
2
3s

6 − 8c2
0c1c3s

5t+ c4
0s

4t2 + 32c2
1c3c9s

3t3 − 8c2
0c1c9s

2t4 − 24c0c1c5c6st
5

− 48c2
1c6c8t

6 + 16c2
1c

2
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6)

g =
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)
· t3 · (64c3

1c
3
3s

9 − 48c2
0c

2
1c

2
3s
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0c1c3s
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0s

6t3 + 192c3
1c

2
3c9s

6t3 − 96c2
0c

2
1c3c9s

5t4

− 144c0c
2
1c3c5c6s
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0c1c9s

4t5 + 36c3
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9s

3t6
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2
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2
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9 + 64c3
1c

3
9t

9)
(8.13)
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∆(f,g) =

(
− 1

16

)
· c2

6 · c3
1 · t15 · (16c2

1c
3
3c

2
5s

9 − 8c2
0c1c

2
3c

2
5s

8t+ c4
0c3c

2
5s

7t2 + 16c0c
2
1c

2
3c5c8s

7t2

− 8c3
0c1c3c5c8s

6t3 + 16c3
1c

2
3c

2
8s

6t3 + 48c2
1c

2
3c

2
5c9s

6t3 + c5
0c5c8s

5t4 − 8c2
0c

2
1c3c

2
8s

5t4

− 16c2
0c1c3c

2
5c9s

5t4 − 36c0c1c3c
3
5c6s

4t5 + c4
0c1c

2
8s

4t5 + c4
0c

2
5c9s

4t5 + 32c0c
2
1c3c5c8c9s

4t5

+ c3
0c

3
5c6s

3t6 − 72c2
1c3c

2
5c6c8s

3t6 − 8c3
0c1c5c8c9s

3t6 + 32c3
1c3c

2
8c9s

3t6 + 48c2
1c3c

2
5c

2
9s

3t6

− 30c2
0c1c

2
5c6c8s

2t7 − 8c2
0c

2
1c

2
8c9s

2t7 − 8c2
0c1c

2
5c

2
9s

2t7 − 96c0c
2
1c5c6c

2
8st

8 − 36c0c1c
3
5c6c9st

8

+ 16c0c
2
1c5c8c

2
9st

8 − 27c1c
4
5c

2
6t

9 − 64c3
1c6c

3
8t

9 − 72c2
1c

2
5c6c8c9t

9 + 16c3
1c

2
8c

2
9t

9 + 16c2
1c

2
5c

3
9t

9)
(8.14)

The gauge groups associated to the singularities of these Weierstrass models are E6 × E8 and

SO(26) respectively. They are exactly what we expect from heterotic string theories with one

Wilson line Ac5 in equation (8.8). This means that if we compactify F-theory on these elliptically

fibered K3s, we know that the Wilson lines on the dual heterotic strings should be of a similar

kind as Ac5. Using this it is then possible to restrict the study of the duality map between the two

theories to a three dimensional moduli space to verify that the enhancements on both F-theory

and heterotic sides match.

8.2.3 Wilson line interpretation for polytope with more than two fibers

The Wilson line description of reflexive polyhedra can be extended to K3 surfaces which have

more than two inequivalent elliptic fibrations. Indeed let us consider the polytope M2 with three

fibers presented in the Figure 8.1. The fiber E8 × E8 × SU(2) is obtained via the fiber E8 × E8

of the polytope M88 with ξ = 1
4

[111]. This in fact corresponds to taking the complex structure

and Kähler moduli equal when compactifying on the two torus on the heterotic string. The two

remaining fibers (E7 × SO(20) and SU(18)) of M2 can be obtained by considering M1328 with

c3 = c4 = c7 = c8 = c9 = 0: E6 × SO(10) is enhanced to E7 × SO(20) while SU(11) × SU(2) to

SU(18). From our construction, the Wilson lines on the dual theory are therefore parametrized

by Ac5 and Ac2. The moduli spaces for the fibers E7 × SO(20) and SU(18) are thus contained in

the moduli spaces of the heterotic strings E8 × E8 and SO(32) with this particular Wilson lines

parametrization respectively.



CHAPTER 9

Fibration Structure of K3 Surfaces in F-theory as Zn Shift Vectors

in the Heterotic String

Up to now we considered polytopes for which we could interpret a subspace of the moduli space

as the torus compactification of the heterotic string. We saw that a convenient way to do this

is to consider polytopes which, in some limit, give the Weierstrass equations associated to the

polytope M88 whose fibrations have E8 × E8 and SO(32) singularities. Here we want to discuss

explicit map between the Wilson lines in the heterotic string and the fibration structure of K3

surfaces with more than two fibers. The results below are preliminary work of an upcoming

paper with Bernardo Fraiman [11].
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9.1 Wilson line structure of a polytope with more than two

fibers: polytope M3

9.1.1 Gauge groups and maximal enhancement

Here we consider the polytope M3 with Picard 18 and 2 moduli. It is defined as the convex hull

of the following points

M3 : (1, 0, 0) , (0, 1, 0) , (−1, −1, 0) , (0, 0, 1) , (−1, 0, −1) . (9.1)

It’s dual N3 has five fibrations whose gauge groups are given in Table 9.1.

Polytope Fiber 1 Fiber 2 Fiber 3 Fiber 4 Fiber 5
M3 SO(14)× E7 SO(14)× SU(9) SU(12)×SO(8)

Z2

(E6×SU(3))2

Z3
E8 × E8 × Z3

Table 9.1: Gauge groups of polytope M3. Additional U(1)s should be added so that the rank is
18.

The equation of the K3 surface can be written as

p = −c0x0x1x2x3x4 + c1x
3
0 + c2x

3
1x

3
2 + c3x

3
3x

3
4 + c4x

3
1x

3
4 + c5x

3
2x

3
3 (9.2)

with two moduli which can be taken to be

ξ =
c1c2c3

c3
0

, η =
c1c4c5

c3
0

. (9.3)

The Weierstrass models of each of the five fibrations are written in appendix B.5. The groups

SO(14) × U(1), E7 × U(1), E6 × SU(3) and SU(9) typically appear in compactifications of the

E8 ×E8 heterotic string on Z3 orbifolds [120–122]. This is also the case for the groups SO(14)×

U(1) × SU(9) and SO(8) × SU(12) × U(1) in the SO(32) heterotic string [123, 124]. In orbifold

compactifications of the heterotic string these groups appear due to a so called shift vector of
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the form
V

n
, V ∈ ΓE8 ⊗ ΓE8 or ΓD16 (9.4)

for a Zn orbifold, such that n times the shift vector is in the lattice ΓD16 or ΓE8 ⊗ ΓE8. In order to

understand why the fibration structure of M3 selects the particular gauge groups of Table 9.1 let

us consider such shifts as frozen Wilson lines. We consider the Wilson lines A2 = 0 and

AA1 =

((
2

3

)
k1

, 08−k1 ,

(
2

3

)
k2

, 08−k2

)
, k1, k2 ∈ [|0, 8|]. (9.5)

These choices are non-conventional in the literature on orbifold compactifications of the heterotic

string. One can considerA1 → A1+V with V ∈ ΓD16 or ΓE8⊗ΓE8 so as to minimize the norm ofA1.

However this form is more symmetric and necessary to compare our results to the paper [36]

where they survey the compactifications of the heterotic string on a circle. We find that the

following values of [k1, k2]1 give for the E8 × E8 lattice

- SO(14)× E7 : [1,2], [1,8], [2,4], [2,7], [4,8], [7,8]

- SO(14)× SU(9) : [1,5], [4,5], [5,7]

- (E6 × SU(3))2 : [3,3], [3,6], [6,6].

We see here that the Wilson line (9.5) give groups of the elliptic fibrations of the polytope M3 if

k = k1 + k2 ∈ 3Z. Moreover on the SO(32) heterotic string one obtains the gauge groups

- SO(14)× SU(9) for k = 9

- SU(12)× SO(8) for k = 12.

We can therefore obtain the gauge groups appearing in the different fibrations of M3 with the

Wilson lines (9.5). In order to verify that this description of the dual of the different fibers is

coherent we look for a maximal enhancement. Let us focus on the fiber (E6 × SU(3))2. We find

1One can exchange k1 and k2 without consequences.
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a maximal enhancement on the F-theory side at

c1 = c2 = c3 = c4 = c5 = 1 , c0 = 0 : (E6 × SU(3))2 → E3
6 . (9.6)

Now, considering the Wilson line with split [3, 6] between the two E8s, an enhancement to E3
6 is

found for a torus with parameters defined in equation (7.6)

τ = −3

2
+ i

√
3

2
, ρ0 = B12 + i

√
G = −1

2
+ i

√
3

6
. (9.7)

Using equations (7.7) and (7.8), we get that the additional states on the heterotic side appear for

the following values of winding numbers (w1, w2) as

- windings ±(0, 1), ±(3, 1) and ±(3, 2) give one additional states each

- windings ±(1, 0), ±(1, 1) and ±(2, 1) give nine additional states each.

If our comparison between the fibers and the Wilson lines is correct, the same point in the moduli

space of the equation (9.6) for the other fibrations should match the enhancements of the other

splits of Wilson lines with same moduli on the torus in the equation (9.7). This is indeed the case

and we find the following enhancements on the F-theory side

M3 (generic point) SO(14)× E7 SO(14)× SU(9) SU(12)×SO(8)
Z2

E6×E6×SU(3)×SU(3)
Z3

c1=c2=c3=c4=c5=1,c0=0 SO(20)× E7 SO(14)× SU(12) SU(12)× SO(14) E3
6

Table 9.2: Enhancements for a particular point in the moduli space of M3 for different fibers.

On the heterotic part the splits [1, 8], [2, 7], [4, 5] of the Wilson line (9.5) together with the moduli

(9.7) for the torus give the same enhancements. The additional states come from the same

values of the winding numbers, however with 15 additional states instead of 9 for the splits [1, 8]

and [2, 7] givingE7×SO(20) gauge group. The Wilson lines with k = k1+k2 in equation (9.5) equal

to 9 or 12 on the SO(32) heterotic string also match the enhancements from SO(14)× SU(9)→

SO(14)× SU(12) and SU(12)× SO(8)→ SU(12)× SO(14).
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9.1.2 Interpretation of the Wilson line description of the polytope

Now that we discussed the gauge structure and the Wilson line associated to the various fibers

in the dual heterotic string let us, discuss a possible interpretation. For the fiber E8 × E8 × Z3

in Table 9.1, the Z3 part indicates that there exists a section σ : P1 → M from the base to the

K3 surface of order 3 on the elliptic curve i.e. such that σ + σ + σ = σ0. The sum is understood

in Eτ = C
Λτ

where τ is the complex parameter of the torus (see Equation (4.17)). Instead of

considering the modular curve Eτ we therefore have to consider the pair (Eτ , p) where τ is the

complex parameter of the elliptic curve and p a point of order 3. Such point of order n can always

be written as [125]

p =
cτ + d

n
+ Λτ for c and d such that gcd(c, d, n) = 1. (9.8)

Preserving this structure breaks the modular group SL(2,Z) of the elliptic curve to a subgroup,

given in this particular case by

Γ1(n) =

γ ∈ SL(2,Z) : γ ≡

 1 ∗

0 1

 (mod n)

 . (9.9)

The moduli space is then H\Γ1(n) with H the upper half plane. This is the case when there is

only one point of order 3. Other settings can break SL(2,Z) to a different subgroup as discussed

in [125].

Now, how does this translate into the Wilson lines we found for the other fibers of the polytope

M3? In this case we considered one Wilson line as a shift vector of order 3 in equation (9.4)

which we split differently between the two E8s. One must therefore consider that the modular

transformation of the parameters (7.6) preserve the shift vector in a similar way i.e. that in general

one should seek to preserve the Wilson lines

A1 =
V1

n
, A2 =

V2

n
, V1, V2 ∈ ΓE8 ⊗ ΓE8 or ΓD16 (9.10)



124 CHAPTER 9. FIBRATIONS AND ZN SHIFT VECTORS IN THE HETEROTIC STRING

It is not clear yet how this translates into the breaking of the SL(2,Z) modular group into one of

its subgroups for either τ or ρ0 = B12 + i
√
G.

9.2 Other Picard 18 polytopes

In principle it is possible to do a similar analysis for other polytopes with 2 moduli. However,

the dual Wilson lines on the heterotic side seems more subtle and we would like to emphasize

some points. First, in the case of the polytope M3 it is not clear yet why (9.5) does not split as

[k1, k2] = [0, 3] or [0, 6]. This does not break one of the E8 and therefore cannot be identified with

one of the fibers.

Now, in Table 8.2 there are 3 polytopes which have a fiber with E8 ×E8 × Z3 and 2 with E8 ×

E8×Z4. According to our previous discussion in section 9.1.2 we therefore seek for shifts of order

3 and 4 respectively to describe these polytopes. This is what we discuss in the next subsections.

We want to emphasize that the Wilson lines we choose, although giving a correct generic gauge

group for the fibers of different polytopes, do not necessarily give correct enhancements. We

believe that both Wilson lines should be considered non zero and hope to provide a coherent

description in the near future.

9.2.1 Z3 Wilson lines shifts

Let us first discuss the case of M4 with Z3 shift. We find that the correct generic gauge group for

each fiber with k = k1 + k2 = 10 splits differently between the E8s. To be precise we find that the

Wilson line (9.5) gives

- E7 × E7 : [2,8]

- E6 × SU(3)× SO(14) : [3,7], [4,6]

- SU(9)× SU(9) : [5,5]

- SU(10)× SO(12) : k = 10 on SO(32) heterotic string.
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However this cannot be the correct answer: on the heterotic side with split [5, 5] i.e. SU(9)×SU(9)

generic gauge group, there is enhancement to SU(18) already on the compactification of the het-

erotic string on a circle and therefore necessarily on the torus. We thus believe that the case of

M3 was unique in the sense that only one Wilson line is needed, and that others might need Z3

shifts on both A1 and A2.

The polytope M6 has 7 fibers including E8 × E8 × Z3. We find the following groups with

k = k1 + k2 equal to 8 or 11 in equation (9.5)

- E8 × E7 : [0,8]

- SO(14)× SO(14) : [1,7], [4,7], [4,4]

- E7 × E6 × SU(3) :[2,6], [3,8]

- SU(9)× E6 × SU(3) : [3,5], [6,5]

- SU(8)× SO(16) : k = 8 on SO(32) heterotic string

- SU(11)× SO(10) : k = 11 on SO(32) heterotic string.

The groups obtained in these cases match what we expect from the fibrations of the polytope

M6 in Table 8.2. We do not yet know if the enhancements on the F-theory and heterotic side

match and one might need possibly two Wilson lines.

9.2.2 Z4 Wilson lines shifts

Now let us look at Z4 shifts of the Wilson lines. The polytope M10 has four fibers, including

E8 × E8 × Z4. We find

- SO(16)× SO(16) :
((

1
2

)
4
, 04,

(
1
2

)
4
, 04

)
- E7 × E7 × (SU(2))2 :

((
1
2

)
6
, 02,

(
1
2

)
6
, 02

)
- SU(16) :

((
1
4

)
16

)
on SO(32) heterotic string.
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In the SU(16) case we considered (116) in ΓD16.

The polytope M11 has five inequivalent fibers and we find

- SO(16)× E7 × SU(2) :
((

1
2

)
6
, 02,

(
1
2

)
4
, 04

)
- E8 × E7 × SU(2) :

((
1
2

)
6
, 02, 08

)
- SO(12)× SO(20) :

((
1
2

)
6
, 010

)
on SO(32) heterotic string

- SU(16) :
((

1
4

)
16

)
on SO(32) heterotic string.

9.3 Final comment

In this chapter, we saw that gauge groups appearing in the compactifications of F-theory on

elliptically fibered K3 surfaces with two moduli defined via reflexive polyhedra could be obtained

on the heterotic side with Zn shift vectors defined with (9.10). In the case of the polytope M3,

the enhancements of the gauge group for each fibration correspond to the enhancements of the

gauge group in the heterotic side with our choice of Wilson line (9.4) for particular values of k1

and k2. In the other cases we considered i.e. M4,M6,M10 and M11, gauge groups for a generic

value of the moduli on the torus in equation (7.6) for our choices of Wilson lines are the ones

corresponding to every fibration. However some of the enhancements do not match. We thus

believe that for these particular polytopes, one has to consider both Wilson lines non-zero in the

dual heterotic string theory.

Moreover, it would be interesting to understand how the SL(2,Z) modular group of τ and ρ0

in (7.6) are impacted by Zn shift vectors in the heterotic string. Finally, the analysis considered

in chapter 8 and represented in Figure 8.6, where we identify additional moduli using graphs

of polytopes as Wilson lines moduli in the heterotic string, should be possible if we are able to

understand properly the structure of the polytopes with two moduli.



APPENDIX A

Appendix of Part II

A.1 Projectors

Here we present the construction of the projectors on the useful representations we used along

this paper. A detailed construction can be found in [76]: it is shown in the first appendix of this

paper that for an arbitrary simple group G, with the exception of E8, one can decompose the

product of the fundamental representation of the group G (D(Λ)) with its adjoint Adj(G) as

D(Λ)×Adj(G)→ D(Λ) + D1 + D2 (A.1)

where D1 and D2 are two other representations. The ones of interest for us are only the funda-

mental and the representation with the smaller dimension (D1), as they are the only represen-

tations allowed for the embedding tensor after one considers the linear constraint coming from

supersymmetry consideration. If we note M the fundamental representation of G and {tα} (α =

1...dim(G)) the generators of the adjoint of G, the projectors on those two representations can

127
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be written1

P(D(Λ))M
α,N

β = A(tαtβ)M
N

P(D1)M
α,N

β = a1δ
α
βδM

N + a2(tβt
α)M

N + a3(tαtβ)M
N

(A.2)

with A, ai constants which are given in [76] for every simple group.

Now let us look at the two simple groups of interest to us, SL(3) and SL(2), whose funda-

mental representations (3) and (2) are written m and γ respectively. For clarity we will note {tα}

(α = 1,...,8) the generators of the adjoint of SL(3), and {sα̃} (α̃ = 1,2,3) the ones of SL(2). With

this we find the projectors onto the the fundamental representation of SL(3) and D1 = (6) to be

P(3),m
α,n

β =
3

8
(tαtβ)m

n

P(6),m
α,n

β =
1

2
δαβδm

n − 1

2
(tβt

α)m
n − 1

4
(tαtβ)m

n.

(A.3)

For the SL(2) case, the result is a little peculiar as one has the following relation

δα̃
β̃
δηγ − (sβ̃s

α̃)γ
η − (sα̃sβ̃)γ

η = 0. (A.4)

The only representations left are then D(Λ) = (2) and D2 = (4). The projection onto the

fundamental is

P(2),γ
α̃,η

β̃ =
2

3
(sα̃sβ̃)γ

η

=
2

3
(δα̃β̃δ

η
γ − (sβ̃s

α̃)γ
η).

(A.5)

We write these projectors in the fundamental representation of each groups, leading for SL(3) to

P(3)mn
p,ab

c =
3

8
(δpmδ

a
c δ

b
n −

1

3
δpnδ

a
c δ

b
m −

1

3
δpmδ

a
nδ

b
c +

1

9
δpnδ

a
mδ

b
c)

P(6)mn
p,ab

c =
1

2
εmnrε

ab(rδp)c

(A.6)

1The adjoint indices are raised and lowered using the Cartan-Killing metric.
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and for SL(2)

P(2)γη
ρ,αβ

ξ =
2

3
(δργδ

α
ξ δ

β
η −

1

2
δρηδ

α
ξ δ

β
γ −

1

2
δργδ

α
η δ

β
ξ +

1

4
δρηδ

α
γ δ

β
ξ ). (A.7)

These expressions are found using the projectors on the adjoint (8) of SL(3)

P(8)
m
n
p
q = (tα)n

m(tα)q
p = δmq δ

p
n −

1

3
δmn δ

p
q (A.8)

and the adjoint (3SL(2)) of SL(2)

P(3SL(2))
γ
η
ρ
δ = (sα̃)η

γ(sα̃)δ
ρ = δγδ δ

ρ
η −

1

2
δγηδ

ρ
δ . (A.9)

A.2 Determination of Γ

The expression of the generalised Christoffel symbol (6.34) was hinted by a series of projections

applied to the torsion condition (6.28). Here we detail the different relations that permitted in the

end to look for a generalised Christoffel of the form (6.30).

First of all, one can relate the traces of the Christoffel symbol by taking the trace of the torsion

condition

ΓMD
D = −ΓDM

D. (A.10)

By taking the partial traces on the different subspaces it is also possible to write the following

relations

Γmγ,nη
nρ = 3Γnη,mγ

nρ − 2Γrδ,mγ
rδδρη

Γmγ,nη
pη = 2Γnη,mγ

pη − Γrδ,mγ
rδδpn

(A.11)
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which can be recast into

Γrγ,mδ
rδ = Γrδ,mγ

rδ

Γmδ,rγ
rδ = Γrδ,mγ

rδ.

(A.12)

Other useful relations are obtained by taking the projection of the torsion condition onto the

representations (8,1) and (1,3)

P(8,1)
R
S
B
CΓAB

C = 2P(8,1)
R
S
B
CΓBA

C

P(1,3)
R
S
B
CΓAB

C = 3P(1,3)
R
S
B
CΓBA

C .

(A.13)

We also have to recall from (A.1) that

PD(Λ) + PD1 + PD2 = IdD(Λ)×Adj(G) (A.14)

which for the groups SL(2) and SL(3) can be written2

P(2) + P(4) = Id(2)×(3)

P(3) + P(6) + P(15) = Id(3)×(8)

(A.15)

where the traces on the spaces (4) and (15) are null. The torsion condition can then be recast

as

(
Γ̃(15,2) + Γ̃(3,4)

)
MN

P = ΓMN
P +

1

6
ΓDM

DδPN −
[

7

8
P(8,1)

K
M
P
N +

7

3
P(1,3)

K
M
P
N

]
ΓRK

R

+

[
9

4
P(8,1)

K
M
P
NP(1,3)

R
K
S
T + 4P(1,3)

K
M
P
NP(8,1)

R
K
S
T

]
ΓSR

T .

(A.16)

The relations

9

4
P(8,1)

K
M
P
NP(1,3)

R
K
S
TΓSR

T =
3

8
P(8,1)

K
M
P
NΓSK

S

4P(1,3)
K
M
P
NP(8,1)

R
K
S
TΓSR

T =
4

3
P(1,3)

K
M
P
NΓSK

S

(A.17)

2In the case of SL(2) the space D1 is empty.
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permit to write the last term between brackets into a trace part, which leads to

ΓMN
P =

(
Γ̃(15,2) + Γ̃(3,4)

)
MN

P + trace terms. (A.18)

Using

Γ̃(15,2)mγ,nη
pρ =

[
P(15,2)Γ

]
MN

P =
[
P(15)Γ

]
mγ,n

pδρη = Γ̃(15)mγ,n
pδρη

Γ̃(3,4)mγ,nη
pρ =

[
P(3,4)Γ

]
MN

P =
[
P(15)Γ

]
mγ,η

ρδpn = Γ̃(4)mγ,η
ρδpn

(A.19)

with partial traces of Γ̃(15) and Γ̃(4) null, we have

ΓMN
P = Γ̃(15)mγ,n

pδρη + Γ̃(4)mγ,η
ρδpn + trace terms. (A.20)

Using this expression in the metric compatibility condition (6.31) and the torsion condition (6.29)

leads to the solution (6.34).





APPENDIX B

Appendix of Part III

B.1 Program 1: Dynkin Diagram from Reflexive Polyhedra

Here we present how to use the first program. The first line is simply reflexivePolytopes = [].

Just enter a list of number between 0 and 4318 to consider the reflexive polytopes Reflexive-

Polytope(3,#) of this list into Sagemath. The program then returns a table containing all gauge

groups for all the fibers of any reflexive polytope. The table is written in latex format on a text file.

Figure B.1 shows the output of this first program where we gave as an entry the reflexive

polytope with Picard number 17 (i.e. 3 complex parameters) and no correction term.
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B.2 Program 2: Weierstrass Models

Here we present again the typical output of the second computer program. Again on the first

line one just specifies in a list the reflexive polytopes # (associated to ReflexivePolytope(3,#).

The output is the hypersurface equation for every fibration of the K3 surface as well as the corre-

sponding Weierstrass models (upon a choice fiber described in Figure 8.2 for F13, F15 and F16.

In another file are saved all the hypersurface equations in Sagemath form.

The following is the typical Latex output when putting as an input "[476]".

Polytope M476

Number of different Fiber is 2

Fiber 1

The hypersurface equation is:

(B.1)p = −c0x0x1x2st+ c1x
2
0 + c2x

3
2 + c3x

4
1x2s

3t5 + c4x
4
1x2s

5t3 + c5x
6
1s

7t5 + c6x
6
1s

5t7 + c7x
6
1s

6t6+

Data of the Weierstrass model:

(B.2)f =

(
1

48

)
· t3 · s3 · (48c2

1c2c4s
2 − c4

0st+ 48c2
1c2c3t

2)

g =

(
− 1

864

)
· t5 · s5 · (72c2

0c
2
1c2c4s

2 + 864c3
1c

2
2c5s

2 − c6
0st+ 864c3

1c
2
2c7st+ 72c2

0c
2
1c2c3t

2 + 864c3
1c

2
2c6t

2)

(B.3)

∆(f,g) =

(
1

16

)
·c2

2 ·c3
1 · t9 ·s9 · (64c3

1c2c
3
4s

6−c4
0c1c

2
4s

5t+72c2
0c

2
1c2c4c5s

5t+432c3
1c

2
2c

2
5s

5t+192c3
1c2c3c

2
4s

4t2

− c6
0c5s

4t2 + 72c2
0c

2
1c2c4c7s

4t2 + 864c3
1c

2
2c5c7s

4t2 − 2c4
0c1c3c4s

3t3 + 72c2
0c

2
1c2c3c5s

3t3

+ 72c2
0c

2
1c2c4c6s

3t3 + 864c3
1c

2
2c5c6s

3t3 − c6
0c7s

3t3 + 432c3
1c

2
2c

2
7s

3t3 + 192c3
1c2c

2
3c4s

2t4 − c6
0c6s

2t4

+72c2
0c

2
1c2c3c7s

2t4 +864c3
1c

2
2c6c7s

2t4−c4
0c1c

2
3st

5 +72c2
0c

2
1c2c3c6st

5 +432c3
1c

2
2c

2
6st

5 +64c3
1c2c

3
3t

6)
(B.4)
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Fiber 2

The hypersurface equation is:

(B.5)p = −c0x0x1x2st+ c1x
2
0 + c2x

2
1x

2
2st

3 + c3x
4
1x2t+ c4x

3
2s

6t+ c5x
3
2s

7 + c6x
4
1x2s+ c7x

2
1x

2
2s

4+

Data of the Weierstrass model:

(B.6)f =

(
− 1

48

)
· s2 · (−48c2

1c5c6s
6 + 16c2

1c
2
7s

6 − 48c2
1c3c5s

5t− 48c2
1c4c6s

5t− 48c2
1c3c4s

4t2

− 8c2
0c1c7s

4t2 + 32c2
1c2c7s

3t3 + c4
0s

2t4 − 8c2
0c1c2st

5 + 16c2
1c

2
2t

6)

(B.7)g=

(
− 1

864

)
·s3 ·(4c1c7s

3−c2
0st

2 +4c1c2t
3)·(−72c2

1c5c6s
6 +16c2

1c
2
7s

6−72c2
1c3c5s

5t−72c2
1c4c6s

5t

− 72c2
1c3c4s

4t2 − 8c2
0c1c7s

4t2 + 32c2
1c2c7s

3t3 + c4
0s

2t4 − 8c2
0c1c2st

5 + 16c2
1c

2
2t

6)

∆(f,g) =

(
− 1

16

)
·c4

1 ·s14 · (c6s+c3t)
2 · (c5s+c4t)

2 · (−64c2
1c5c6s

6 +16c2
1c

2
7s

6−64c2
1c3c5s

5t−64c2
1c4c6s

5t

− 64c2
1c3c4s

4t2 − 8c2
0c1c7s

4t2 + 32c2
1c2c7s

3t3 + c4
0s

2t4 − 8c2
0c1c2st

5 + 16c2
1c

2
2t

6)
(B.8)
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B.3 Program 3: Finding Basic Enhancements and Construct-

ing Graphs

In the following we see the enhancement for the input [476] for the third program. The numbers # between

parenthesis correspond to the parameter c# sent to zero in the definition of the Weierstrass model.

M476

fiber 1

()- E7xE7

(0_)- E7xE7

(3_)- E8xE7

(4_)- E7xE8

(5_)- E7xE7

(6_)- E7xE7

(7_)- E7xE7

(0_3_)- E8xE7

(0_4_)- E7xE8

(0_5_)- E7xE7

(0_6_)- E7xE7

(0_7_)- E7xE7

(3_4_)- E8xE8

(3_5_)- E8xE7

(3_7_)- E8xE7

(4_6_)- E7xE8

(4_7_)- E7xE8

(5_6_)- E7xE7

(5_7_)- E7xE7

(6_7_)- E7xE7

(0_3_4_)- E8xE8

(0_3_5_)- E8xE7

(0_3_7_)- E8xE7

(0_4_6_)- E7xE8

(0_4_7_)- E7xE8

(0_5_6_)- E7xE7

(0_5_7_)- E7xE7

(0_6_7_)- E7xE7

(3_4_7_)- E8xE8

(3_5_7_)- E8xE7

(4_6_7_)- E7xE8

(5_6_7_)- E7xE7

(0_3_4_7_)- E8xE8

(0_3_5_7_)- E8xE7

(0_4_6_7_)- E7xE8

(0_5_6_7_)- E7xE7

fiber 2
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()- SO(24)xSU(2)xSU(2)

(0_)- SO(24)xSU(2)xSU(2)

(3_)- SO(28)xSU(2)

(4_)- SO(28)xSU(2)

(5_)- SO(24)xSU(2)xSU(2)

(6_)- SO(24)xSU(2)xSU(2)

(7_)- SO(24)xSU(2)xSU(2)

(0_3_)- SO(28)xSU(2)

(0_4_)- SO(28)xSU(2)

(0_5_)- SO(24)xSU(2)xSU(2)

(0_6_)- SO(24)xSU(2)xSU(2)

(0_7_)- SO(24)xSU(2)xSU(2)

(3_4_)- SO(32)

(3_5_)- SO(28)xSU(2)

(3_7_)- SO(28)xSU(2)

(4_6_)- SO(28)xSU(2)

(4_7_)- SO(28)xSU(2)

(5_6_)- SO(24)xSU(4)

(5_7_)- SO(24)xSU(2)xSU(2)

(6_7_)- SO(24)xSU(2)xSU(2)

(0_3_4_)- SO(32)

(0_3_5_)- SO(28)xSU(2)

(0_3_7_)- SO(28)xSU(2)

(0_4_6_)- SO(28)xSU(2)

(0_4_7_)- SO(28)xSU(2)

(0_5_6_)- SO(24)xSU(4)

(0_5_7_)- SO(24)xSU(2)xSU(2)

(0_6_7_)- SO(24)xSU(2)xSU(2)

(3_4_7_)- SO(32)

(3_5_7_)- SO(28)xSU(2)

(4_6_7_)- SO(28)xSU(2)

(5_6_7_)- SO(24)xSO(8)

(0_3_4_7_)- SO(32)

(0_3_5_7_)- SO(28)xSU(2)

(0_4_6_7_)- SO(28)xSU(2)

(0_5_6_7_) = 0: SO(24)xSO(8)

B.4 Vertices of the Polytopes presented in this paper

M0: ((1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (−1, −1, −1))

M2: ((1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (−3, −1, −1))

M3: ((1, 0, 0) , (0, 1, 0) , (−1, −1, 0) , (0, 0, 1) , (−1, 0, −1))

M4: ((1, 0, 0) , (−1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (0, −1, −1))

M5: ((1, 0, 0) , (−1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (1, −1, −1))

M6: ((1, 0, 0) , (0, 1, 0) , (−1, −1, 0) , (0, 0, 1) , (1, 0, −1))

M7: ((1, 0, 0) , (−1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (2, −1, −1))

M10: ((1, 0, 0) , (0, 1, 0) , (−2, −1, 0) , (0, 0, 1) , (−2, 0, −1))

M11: ((1, 0, 0) , (0, 1, 0) , (−2, −1, 0) , (0, 0, 1) , (−1, 1, −1))
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M16: ((1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (−2, −1, −1) , (−1, 1, 0))

M88: ((1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (−6, −4, −1))

M221: ((1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (−5, −3, −1) , (−1, −1, 1))

M230: ((1, 0, 0) , (0, 1, 0) , (1, −1, 0) , (0, 0, 1) , (−4, −2, −1))

M473: ((1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (−4, −3, −1) , (−1, 0, 1) , (−2, −1, 1))

M476: ((1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (−4, −2, −1) , (−5, −3, −1) , (−1, −1, 1))

M497: ((1, 0, 0) , (0, 1, 0) , (−1, 1, 0) , (0, 0, 1) , (−2, −3, −1) , (0, −1, 1))

M859: ((1, 0, 0) , (0, 1, 0) , (1, −1, 0) , (0, 0, 1) , (−3, −1, −1) , (0, −1, 1) , (−1, −1, 1))

M866: ((1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (−3, −2, −1) , (−1, 0, 1) , (−4, −3, −1) , (−2, −1, 1))

M895: ((1, 0, 0) , (0, 1, 0) , (−1, 1, 0) , (0, 0, 1) , (−2, −2, −1) , (−2, −3, −1) , (0, −1, 1))

M1328: ((1, 0, 0) , (0, 1, 0) , (−1, 1, 0) , (0, 0, 1) , (−1, −2, −1) , (0, −1, 1) , (−2, −2, −1) , (−2, −3, −1))

B.5 Weierstrass Models of the different fibrations of M3

Number of different Fiber is 5

Fiber 1

The hypersurface equation is:

(B.9)p = −c0x0x1x2x3x4st+ c1x0x
2
3x4 + c2x

2
0x

2
1x3t

3 + c3x1x
3
2x

2
4s

3 + c4x
2
0x

3
1x2s

2t3 + c5x
2
2x3x

2
4s+
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Fiber 2

The hypersurface equation is:
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Titre: Théorie F en huit dimensions : une perspective de la Théorie des Champs Exceptionnels et de la
Théorie des Cordes Hétérotique
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Résumé: L'une des théories les plus promet-
teuses qui vise à uni�er la mécanique quan-
tique et la relativité générale est actuellement
la théorie des cordes. La recherche d'une for-
mulation supersymétrique des cordes a conduit
à cinq théories de supercordes cohérentes en dix
dimensions qui ont ensuite été uni�ées dans le
cadre de la théorie M. L'aspect fondamental de
cette uni�cation est la découverte d'un réseau de
dualités entre les cinq théories des supercordes
et la supergravité à onze dimensions.

Cette thèse aborde les dualités dans le con-
texte de la théorie F en huit dimensions. La
théorie F est douze dimensionnelle et fournit
une formulation non perturbative de la super-
gravité de type IIB avec 7-branes. La théorie
des champs exceptionnels, quant à elle, four-
nit une formulation U-dual de la supergravité
de type IIB. Nous nous concentrons donc sur
les liens possibles entre ces deux formulations.
La théorie F est également supposée être duale
à la théorie des cordes hétérotique en 8 dimen-
sions. La structure des groupes de jauge ap-
paraît radicalement di�éremment dans ces deux
formulations. Dans la théorie F, elle est inter-

prétée comme un choix particulier de structure
algébrique d'une surface K3 elliptique, tandis
que dans le cadre de la corde hétérotique, elle
est principalement déterminée par les lignes de
Wilson. Bien qu'étudiée dans le contexte de la
théorie des cordes de type IIB, l'identi�cation
entre les modules de la théorie F et de la théorie
des cordes hétérotique n'est que peu connue.

Dans la première partie de cette thèse, nous
présentons les notions de base de la théorie des
cordes, des compacti�cations, des branes et des
dualités. Dans la seconde, nous montrons que
la théorie des champs exceptionnels R+ × E3(3)

en huit dimensions présente des aspects de la
théorie F dans un cadre spéci�que, et permet
en particulier de décrire les monodromies des
(p, q) 7-branes. En�n, dans la troisième partie,
nous étudions la dualité entre la compacti�ca-
tion de la théorie F sur une surface K3 elliptique
et la corde hétérotique sur un deux-tore. Nous
présentons comment construire des surfaces K3
elliptiques via des polyèdres ré�exifs qui peuvent
être interprétés en termes de lignes de Wilson
dans la théorie des cordes hétérotique duale.

Title: F-theory in Eight Dimensions: an Exceptional Field Theory and Heterotic String Perspective

Keywords: F-theory, Exceptional Field Theory, Heterotic String, Dualities

Abstract: One of the most promising theories
to unify quantum mechanics and general rela-
tivity is currently string theory. The search for
a supersymmetric formulation of strings led to
�ve consistent ten dimensional superstring the-
ories which were later uni�ed under the scope
of M-theory. The fundamental aspect of this
uni�cation is the discovery of a web of dualities
between the �ve superstring theories and eleven
dimensional supergravity.

This thesis addresses dualities in the con-
text of F-theory in eight dimensions. F-
theory is twelve dimensional and provides a non-
perturbative formulation of type IIB supergrav-
ity with 7-branes. On the other hand excep-
tional �eld theory provides a U-dual formulation
of type IIB supergravity and we therefore focus
on the possible links between these two formula-
tions. F-theory is also conjectured to be dual to
the heterotic string in 8 dimensions. The gauge
group appears radically di�erently in these two
formulations. In F-theory it is interpreted as a

particular algebraic structure of an elliptically
�bered K3 surface, while on the heterotic string
it is principally determined the Wilson lines. Al-
though studied in the context of type IIB string
theory, the explicit map between the moduli in
F-theory and its heterotic dual are still quite
unknown.

In the �rst part of this thesis we present ba-
sic notions of string theory, compacti�cations,
branes and dualities. In the second one, we
show that R+ × E3(3) exceptional �eld theory
in eight dimensions can incorporate aspects of
F-theory in a speci�c setting, and in particu-
lar describes the monodromies of (p, q) 7-branes.
Finally, in the third part we study the duality
between F-theory compacti�ed on an elliptic K3
surface and the heterotic string on a two-torus.
We present how to construct elliptically �bered
K3 surfaces via re�exive polytopes which can be
understood in terms of Wilson lines in the dual
heterotic string theory.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France


	Introduction
	Introduction en Français
	I Introductory Concepts of String Theory
	Compactifications of String Theory and Dualities
	Dimensional reduction and compactifications
	Kaluza and Klein's mechanism
	Scherk and Schwarz examples
	Calabi-Yau compactifications

	Dualities
	A first look at T-duality: compactifications of the bosonic string on a circle
	Generalisation to the torus compactifications

	S-duality
	Electro-magnetic duality and magnetic monopoles
	Type IIB string theory and S-duality


	Branes, Dualities and Unifications
	D-branes
	Branes, S-duality and F-theory
	Branes and S-duality
	Monodromies
	Basics of F-theory

	Branes and T-duality
	U-duality
	U-Duality and exotic branes
	Heterotic string



	II Exceptional Field Theory and F-theory
	Exceptional Field Theory and Exceptional Generalised Geometry
	Elementary notions of Riemannian Geometry
	Generalised Geometry
	Double Field Theory
	Exceptional Generalised Geometry
	Exceptional Field Theory

	Geometry of E_3(3)R^+ Exceptional Field Theory and F-Theory
	Structure of SL(3)SL(2) Exceptional Field Theory
	Fluxes
	Embedding tensor structure of D=8 gauged maximal Supergravity with trombone symmetry
	Generalised Dynamical Fluxes

	Equations of motion
	Generalised Christoffel symbol
	Generalised Ricci tensor

	Recovering F-theory
	Type IIB ansatz and generalised diffeomorphisms
	F-theory as R^+E_3(3) EFT with non standard solution to the section condition
	Equations of motion via the generalised Ricci tensor



	III New insights on F-theory and Heterotic String Duality in Eight Dimensions
	F-theory and Heterotic String Duality in Eight Dimensions
	Heterotic string theory compactifications on a two-torus
	General aspects of the torus compactification
	Examples of gauge group enhancements
	Examples of gauge group breaking

	F-theory compactifications on elliptically fibered K3 surfaces
	Cohomology classes and Hodge diamonds
	K3 surfaces and their moduli space
	Elliptically fibered K3 surfaces

	Elliptically fibered K3 surfaces from reflexive Polyhedra
	Toric geometry and reflexive polyhedra
	Elliptically fibered K3 surfaces from reflexive polyhedra
	Invariant parameters of the moduli space


	F-theory and Heterotic Duality, Weierstrass Models from Wilson Lines
	Obtaining data on elliptically fibered K3s
	Extended Dynkin diagram from polyhedra
	Weierstrass model, gauge groups and basic enhancements
	Graphs of polytopes

	F-theory/Heterotic string duality in 8 dimensions: Wilson lines from reflexive polyhedra?
	Graphs of Polytopes: from Monomials to Wilson lines...
	... and back to monomials
	Wilson line interpretation for polytope with more than two fibers


	Fibration Structure of K3 Surfaces in F-theory as Z_n Shift Vectors in the Heterotic String
	Wilson line structure of a polytope with more than two fibers: polytope M3
	Gauge groups and maximal enhancement
	Interpretation of the Wilson line description of the polytope

	Other Picard 18 polytopes
	Z_3 Wilson lines shifts
	Z_4 Wilson lines shifts

	Final comment

	Appendix of Part II
	Projectors
	Determination of 

	Appendix of Part III
	Program 1: Dynkin Diagram from Reflexive Polyhedra
	Program 2: Weierstrass Models
	Program 3: Finding Basic Enhancements and Constructing Graphs
	Vertices of the Polytopes presented in this paper
	Weierstrass Models of the different fibrations of M3





