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Résumé

À grande échelle, il est frappant de voir que la distribution anisotrope de la matière forme un
large réseau de vides délimités par des murs qui, avec les filaments présents à leurs intersections,
tissent la toile cosmique. La matière qui doit former plus tard les halos de matière noire et leurs
galaxies afflue vers les nœuds compacts se situant à l’intersection des filaments et garde dans ce
processus une empreinte de la toile cosmique.

Dans cette thèse, je développe une extension contrainte de la théorie de l’excursion dans son
approximation dite “du franchissement vers le haut” pour prédire la masse, le taux d’accrétion et le
temps de formation des halos de matière noire au voisinage des proto-filaments (qui sont identifiés
comme des points-selles du potentiel). Les points-selles sont utilisés comme un référentiel local
dans lequel l’évolution des propriétés physiques et morphologiques des galaxies est quantifiée aux
grandes échelles. À masse fixée, le modèle prédit que le taux d’accrétion et le temps de formation
varient avec l’orientation et la distance au point-selle, confirmant que le biais d’assemblage est
sensible aux forces de marées de la toile cosmique. Les halos peu massifs, s’étant formés tôt et
“affamés” sont regroupés le long de l’axe principal des filaments, tandis que les halos plus massifs,
plus jeunes sont répartis autour des nœuds. Les différents gradients observés pour différentes
quantités, tels que la masse typique et le taux d’accrétion, ont pour origine l’anisotropie du
point-selle et leur dépendance distincte aux moyennes et aux variances du champ. Pour les
faibles décalages vers le rouge, ce modèle prédit qu’à masse fixe il y a un excès de galaxies rouges
dans des directions préférentielles, comme l’ont montré des relevés spectroscopiques (GAMA) et
photométriques (COSMOS), mais aussi les simulations hydrodynamiques (Horizon-AGN).

J’ai également calculé les taux de fusions par analyse multi-échelle des conditions initiales pour
prédire l’assemblage anisotrope des halos et comprendre son impact sur la formation des galaxie.
Outre les fusions de halos, j’ai aussi pris en compte les fusions de murs et de filaments qui ont un
effet sur l’accrétion galactique et j’ai calculé leurs statistiques à un et deux points en fonction du
temps cosmique. J’ai établi le lien entre les taux de fusion et la connectivité. J’ai ensuite exploité
ce lien pour estimer l’effet des structures à grande échelle sur le biais d’assemblage. Cette théorie
décrit l’anisotropie de la toile cosmique, qui est un élément important pour décrire conjointement
l’évolution de la physique et de la dynamique des galaxies dans leur environnement, en particulier
les alignements intrinsèques ou les diversités morphologiques.

Afin d’étudier l’accrétion cosmique à de plus faibles échelles, j’ai implémenté une nouvelle
méthode de particules traceuses dans le code à raffinement de grille adaptatif Ramses. Cette méth-
ode est basée sur un échantillonnage de Monte-Carlo et est capable de reconstruire la trajectoire
lagrangienne du gaz et son retraitement. Je démontre que la distribution spatiale des particules
traceuses reproduit précisément celle du gaz, et je propose une extension capable de suivre tout
le cycle des baryons dans leurs échanges avec les étoiles et les trous noirs. Cette approche est
particulièrement adaptée aux problèmes astrophysiques qui requièrent simultanément d’avoir
une résolution efficace des chocs avec un solveur de Godounov et de suivre l’histoire lagrangienne
des baryons. Je l’utilise ensuite dans plusieurs simulations zoomées pour étudier l’acquisition
du moment angulaire par les galaxies via leur accrétion bi-modale pour les hauts décalages vers
le rouge. J’y observe que l’amplitude et l’orientation du moment angulaire du gaz froid sont
conservées jusque dans le halo interne où le moment angulaire contribue à l’augmentation de la
rotation des galaxies. Les couples de pressions sont plus importants en amplitude mais, de par
leur turbulence, ils sont incohérents et sont dominés globalement par les couples gravitationnels.
Les couples de la matière noire dominent dans le halo externe, ceux des étoiles dominent dans le
disque.
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Abstract

The strikingly anisotropic large-scale distribution of matter is made of an extended network of
voids delimited by sheets, with filaments at their intersection which together form the cosmic
web. Matter that will later form dark matter halos and their galaxies flows towards compact nodes
at filaments’ intersections and in the process, retains the imprint of the cosmic web.

In this thesis, I predict the mass, accretion rate, and formation time of dark matter halos
near proto-filaments (identified as saddle points of the potential) using a conditional version of
the excursion set theory in its so-called up-crossing approximation. The (filament-type) saddle
points provides a local frame in which to quantify the induced physical and morphological
evolution of statistical properties of galaxies on large scales. The model predicts that at fixed
mass, mass accretion rate and formation time vary with orientation and distance from the saddle,
demonstrating that assembly bias is indeed susceptible to the tides imposed by the cosmic web.
Starved, early-forming halos of smaller mass lie preferentially along the main axis of filaments,
while more massive and younger halos are found closer to the nodes. Distinct gradients for
distinct quantities such as typical mass and accretion rate occur because the saddle condition is
anisotropic, and because the statistics of these observables depend on both the means and their
covariances. The signature of this model corresponds at low redshift to an excess of reddened
galaxies at fixed mass along preferred directions, as recently reported in spectroscopic (GAMA)
and photometric (COSMOS) surveys and in hydrodynamical simulations (Horizon-AGN).

I also compute the rate of merger events in the multi-scale initial conditions to forecast special
events driving the anisotropic assembly of dark matter halos and understand their impact on
galaxy formation. Beyond halo mergers, I consider all sets of mergers, including wall and filament
mergers, as they impact the geometry of galactic infall. Their one- and two-points statistics
are computed as a function of cosmic time. I establish the relation between merger rates and
connectivity, which is then used to assess the impact the large scale structures on assembly bias.
The anisotropy of the cosmic web, as encoded in this theory, is a significant ingredient to describe
jointly the physics and dynamics of galaxies in their environment, e.g. in the context of intrinsic
alignments or morphological diversity.

In order to explore the impact of cosmic infall on smaller scales I implemented a novel tracer
particles algorithm in the Eulerian adaptive mesh refinement code Ramses. The tracer particles
are based on a Monte Carlo approach and keep tracks of where fluid elements originate, so as to
follow their Lagrangian trajectories and re-processing history. I show that they reproduce the gas
distribution very accurately and I extend them to also trace the stars and black holes through
the full cycle of baryons. These tracer particles are ideal to study complex astrophysical systems
where both the efficiency of shock-capturing Godunov schemes and a Lagrangian follow-up
of the fluid are required simultaneously, in particular in cold flows. Thanks to this accurate
tracer particle algorithm, the acquisition and loss of angular momentum of both cold and hot
accretion flows onto galaxies at high redshift can be studied reliably. I find that the amplitude and
orientation of the specific angular momentum of the cold gas is preserved down to the inner halo
where the angular momentum contributes to the spin-up of galaxies, while for the hot gas it is lost
at larger radii. Pressure torques, stronger in magnitude than gravitational torques are, however,
spatially incoherent, which leads them to have no significant impact on the redistribution of
angular momentum of the accretion flows. Gravitational torques, which dominate globally, are
the main driver of the loss of angular momentum of the accretion flows in those halos, with
dark matter gravitational torques dominating in the outer halo and stellar gravitational torques
dominating in the disk.
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1. Introduction

1.1 From a single galaxy to an expanding Universe

From the 18th century, most of the observed objects in the sky were thought to be located in a
single entity — the Milky Way — whose borders were the borders of the Universe. Setting apart
planets and stars, these objects were broadly classified as nebulæ, from the Latin word for cloud
or fog, as they resemble diffuse clouds in sky. In 1771, Charles Messier published his “Catalogue
des Nébuleuses et des Amas d’Étoiles” (Catalogue of Nebulæ and Star Clusters). Charles Messier
first interest was in comets, but in order to observe them, he had to be able to distinguish moving
objects from fixed objects in the sky, such as stars, star clusters and nebulæ. This led him to
systematically compile a list of the objects in the sky that were impairing his observations. This
catalogue, known as the Messier Catalogue is still today one of the most popular catalogues
among amateur astronomers.

With the advent of better observations and the systematic classification of the objects, as-
tronomers started distinguishing star clusters from diffuse nebulæ from spiral nebulæ. During the
18th and 19th centuries, many philosophers and mathematicians (E. Swedenborg, P.L. Maupertuis,
T. Wright) speculated that the Milky Way is itself a “spiral nebula”, made of a flattened disk
of stars and that the spiral nebulæ are its analogues, but reside outside the Milky Way, while
others argued that the spiral nebulæ were part of the Milky Way. This questioned not only the
location of the Milky way and the spiral nebulæ in space, but also their relative sizes. However,
observational evidences were missing to rule out any of the two models and it was not until the
20th century that it was finally shown that these nebulæ live outside of the Milky Way. One of
the first proofs of the extra-galactic nature of the nebulæ can be attributed to Vesto Slipher. In
1912, he made spectrographic observations of the brightest spiral nebulæ ; all of them showed
significant Doppler shifts, suggesting that the nebulæ are receding at velocities of hundreds to
thousands of kilometres per seconds, much greater than the relative velocities of the stars of the
Milky way. In 1917, observations of supernovæ in the Great Andromeda Nebula (now called the
Andromeda galaxy) revealed that the supernovæ were 10 magnitudes fainter than supernovæ in
the Milky Way, suggesting that they were much further away than the ones observed in the Milky
Way. Using conservative assumptions, Shapley and Curtis, 1921 estimated that the Andromeda
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Figure 1.1.1: The 110 objects of the Messier catalogue, taken and compiled by an
amateur astronomer. Credits: Michael A. Phillips.
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Figure 1.1.2: Le�: Rotational profile of the Andromeda galaxy from Rubin and Ford,
1970. Right: Scheme of the rotational velocity profile. The expected rotational velocity
profile with no dark matter is shown as a dashed line, the observed rotational profile is
shown as a solid line. Without dark matter, the rotation profile decreases after some radii
while the addition of dark matter makes the profile flatter at large radii, in agreement
with observations.

Nebula could not be any closer than 20 000 ly, but still 7 000 ly off the plane of the Milky way.
This was further confirmed by the distance estimations of the nebulæ by Edwin Hubble, which
definitely showed that nebulæ were too distant to be part of the Milky Way. We now call spiral
(and elliptical) nebulæ “galaxies” from the greek words γάλα (“milk”) and ξίας (“way”).

In 1929, Hubble was able to show that galaxies were receding at increasing velocities with
increasing distance, so that galaxies further away are receding faster, a relation now known as
Hubble-Lemaître’s law. The law states that the receding velocity is proportional to the distance
times the Hubble constantH . Even though the measurements were largely inaccurate — Hubble’s
measurements gave H = 500 km/s/Mpc while modern estimates are around 70 km/s/Mpc —
the result showed that the Universe is not only made of multiple galaxies, but it is also expanding,
paving the way to modern cosmology. At this point, the basic building blocks of the Universe
were broadly found: the Universe is made of a multitude of individual galaxies, each of which has
millions to several hundred billions stars, and sizes of the order of 10 kly to 100 kly, while the
distances between galaxies are of the order of theMly.

The next step in our current understanding of the structure of galaxies and cosmology appeared
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in the course of the 20th century. The discoveries of the distances and sizes of galaxies was shortly
followed by estimations of their mass. In order to do so, a simple way is to use the laws of gravity:
objects orbiting massive objects have smaller periods according to Kepler’s laws. By measuring
the velocities of objects gravitating in or around galaxies, one can infer their gravitational mass.
Since galaxies are made of stars, one can also estimate the stellar mass from the galaxies’ apparent
luminosity. The ratio of gravitational mass required to explain the observed velocities to the
observed stellar mass, known as the “mass-to-light” ratio was initially thought to be one. However,
observations in the 1920s showed that the mass required to explain the motion of stars in the
neighbourhood of the Sun is much larger than the observed one. Later in the 1930s, observations
of the motion of galaxies in the Coma cluster led to the same conclusion that the gravitational
mass should be much larger than the observed ones. These evidences were later confirmed when
Rubin and Ford, 1970 showed that most of the mass of galaxies is not in stars. This was shown by
measuring the rotational velocity of HII regions in the Andromeda galaxy. If the bulk of the mass
of the galaxy was due to its stars, then the rotational velocity should increase from the centre to
a radius of 10 000 ly, reaching a maximum of ∼ 200 km/s before decreasing. The observations
however showed that the rotation curve rises as a function of radius before reaching a plateau
at a radius of 10 000 ly at about 250 km/s, as shown on figure 1.1.2, left panel. This discovery,
followed by multiple similar results, all confirmed that most of the mass in galaxies — and similarly
in galaxy clusters — is hidden and is invisible. This matter that interacts via gravity but cannot
be seen is now called Dark Matter (DM). In order to match observations, galaxies should be
embedded in an extended DM halo, so that the decrease of stellar density with increasing radius
is mitigated by the extended dark matter halo in the outskirts of the galaxy. This is schematically
illustrated on figure 1.1.2, right panel. In addition to a correct distance ladder, astronomers now
had access to a mass scale, albeit imprecise: in addition to the billion of stars that make galaxies,
an extended and massive halo of dark matter surrounds each galaxy.

At about the same time other evidences for dark matter emerged with the discovery of
the Cosmic Microwave Background (CMB) by Penzias and Wilson, 1965. This electromagnetic
emission, emitted at the infancy of the Universe, shows that the Universe started in a quasi-
homogeneous hot and dense state, with tiny density fluctuations of the order of the 10−4 to
10−5. In a model missing dark matter, these initial density fluctuations would be too small for
gravitational collapse to have time to pull matter together and form the observed large-scale
structures of the Universe. This is a consequence of the interaction of baryonic matter with
radiation: up to the emission of the CMB, gravitational collapse was prevented due to the radiative
pressure of photons scattering from atoms to atoms. Dark matter provides a solution to the
problem because it does not interact with light. Therefore, its density perturbations can grow first
and create a potential well into which baryonic structures will later collapse. In addition to the
CMB observations, several other observations such as gravitational lensing by galaxy clusters or
the temperature distribution of hot gas in galaxies and clusters all pointed towards dark matter.

These discoveries, in conjunction with the development of general relativity led to the emer-
gence of the standard model of cosmology, the Λ Cold Dark Matter (ΛCDM) model. The ΛCDM
describes the evolution of the Universe after the CMB and is made of the following building bricks

1. the CMB is described by a Gaussian random field with known statistical properties,
2. the Universe is homogeneous and isotropic with no spatial curvature,
3. the Universe contains dark energy (Λ term), cold dark matter (CDM) in addition to ordinary

matter and radiation.

According to the ΛCDM model, the Universe started from a hot dense state some 14Gyr ago
and has been expanding since then, as measured by Hubble, 1929 and is now in accelerated
expansion, as a result of the non-null Λ term in Einstein’s equations. About 85% of the current
matter of the Universe is DM, the remaining 15% being ordinary baryonic matter (gas, stars,
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Figure 1.2.1: (Le�:) The galaxy distribution obtained from spectroscopic redshift sur-
veys (blue) and from mock catalogues (red) constructed from cosmological simulations.
From Springel et al., 2006. (Right:) Catalogue of the spectroscopic HectoMAP survey in
the local Universe (Hwang et al., 2016). The cosmic web made of large voids, filaments
and dense nodes is clearly visible.

etc.). All this matter only adds up to 30% of the total energy density of the current Universe, the
remaining 70% being dark energy. The success of the ΛCDM is well illustrated by the advent of
the “precision cosmology” era, in which the parameters of the model can be fitted to observations
down to percent levels using a variety of measurements, from CMB observations (Bennett et al.,
2013; Planck Collaboration, 2018a), baryonic acoustic oscillations (e.g. Eisenstein et al., 2005;
Moresco et al., 2016; Alam et al., 2017), type Ia supernovæ (e.g. Riess et al., 1998; Perlmutter et al.,
1999; Abbott et al., 2019), weak lensing, cluster abundances (see e.g. Weinberg et al., 2013, and
references therein for a detailed review).

1.2 The large scale structure of the Universe

Since the assumption of homogeneity clearly breaks down on small scales, as revealed by the
presence of galaxies or stars, there must be certain homogeneities present at a certain time in
history of the Universe. The homogeneities can be traced back in time to the CMB, but also to much
larger scales, as can be seen in galaxy surveys that have revealed the existence of superstructures
(cluster of galaxies, super-clusters and filaments and walls connecting them) on scales up to a
few tens to hundreds of Mpc1, as can be seen on figure 1.2.1. While each of these structures,
from galaxies to super clusters or filaments, is unique in its morphology and mass, their overall
statistical properties are homogeneous: the probability of any configuration is independent on
the spatial location. Recent surveys, like the Sloan Digital Sky Survey (Abazajian et al., 2003), the
2MASS redshift survey (Huchra et al., 2012) or HectoMap (Hwang et al., 2016) have improved
significantly our knowledge of the galaxy distribution showing with no doubt that galaxies form
a complex web-like network on large scales made of voids, walls and filaments that interconnect
with clusters of galaxies. This pattern is known as the cosmic web.

Due to the laws of gravity, the initial tiny fluctuations evolved into large and complex
anisotropic structures that shape the current Universe. At scales of up to a few tens of Mpc,
large under-dense regions called voids are found (Pan et al., 2012). Put together, the voids form a
foam-like structure where each bubble is bound by denser walls or pancakes, sometimes called
Zel’dovich pancakes (Zeldovich, 1970). The initial motion of particles can be well approximated
in their linear regime by a rectilinear trajectory where the direction is set by the initial peculiar

1The pc length unit is commonly used in astronomy, where 1 pc ≈ 3.08× 1016 m ≈ 3.3 ly.
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gravitational forces. Similar to parallel light rays bent by a disturbed water surface, the particles
will travel until they form caustics. The first caustics to form, resulting from the collapse of matter
along one direction, are bi-dimensional in nature. Following this first collapse, a second direction
may collapse to form secondary caustics, resulting in uni-dimensional filamentary structures.
Finally, filamentary structures may also collapse to form “knots” or nodes of the cosmic web.

As the cosmic web builds up, dense and spheroidal regions will undergo spherical collapse,
resulting in the formation of dark matter halos. These primordial halos will later merge to form
larger halos that in turn will also merge. This continuous accretion and successive merger scenario
is often referred to as hierarchical formation. In classical models, galaxies form in (sub-)halos
(Kauffmann et al., 1993) themselves located in the cosmic web. The distribution of galaxies in the
Universe follows that of the large-scale structures as most of them are found in walls, filaments
and nodes of the cosmic web. Recent developments have also shown that not only does the spatial
distribution of galaxies relate to the cosmic web, but also some of their properties such as the
orientation of their spin or their colour.

1.3 From the cosmic web to galaxy formation

According to the classical galaxy formation paradigm, gas falling on a proto-galaxy heats up to
the Virial temperature of its host halo when crossing the virial radius (Rees and Ostriker, 1977;
Silk, 1977). In this scenario, the gas acquires the same angular momentum distribution as dark
matter before turning around and flowing towards the proto-galaxy, which has been confirmed
by hydrodynamic simulations that do not describe cooling (e.g. van den Bosch et al., 2002). This
process of angular momentum acquisition, at the core of the understanding of the formation of
disk galaxies at high redshift, is well explained by the Tidal Torque Theory (TTT, Peebles, 1969;
Doroshkevich, 1973; S. D. M. White, 1984). It predicts that the angular momentum of the dark
matter increases under the effect of the gravitational torques of the cosmic web before dark matter
decouples from the expansion of the Universe. In the classic scenario, the gas undergoes the
same tidal field before decoupling but loses all dynamical and causal connection with the large
scale structures at the Virial radius. Following this idea, classical models of galaxy formation
typically ignore any explicit coupling of the baryons to their large scale environment, so that
galaxy properties are directly inherited from the mass history of their host halo or some quantities
averaged over all angles.

It has been established that the clustering of dark matter halos, as measured by halo bias, not
only depends on halo mass but also on other halo properties such as formation time, concentration,
spin and ellipticity (Gao et al., 2005; Wechsler et al., 2006; Gao and S. D. M. White, 2007; Hahn
et al., 2007). This problem, commonly referred to as the “assembly-bias problem” can be rephrased
as follows: the clustering of dark matter halos and their properties are correlated, beyond a mere
mass and density relation. On large scales, systematic galactic surveys (de Lapparent et al., 1986;
Geller and Huchra, 1989; Colless et al., 2001; Tegmark et al., 2004; Abazajian et al., 2003) have
revealed that the Universe is structured around voids, sheets, filaments and knots that form the
cosmic web. Using a different approach, a growing number of evidence have since showed that
some halo and galaxy properties present distinct features at different locations in the cosmic web.
As presented in Kraljic et al., 2018, void galaxies are found to be less massive, bluer and more
compact than galaxies outside of voids (Rojas et al., 2004; Beygu et al., 2016); galaxies infalling
into clusters along filaments show signs boosted star formation rate even before becoming part of
the clusters while those infalling from the voids do not (Porter et al., 2008; Martínez et al., 2016);
Kleiner et al., 2017 find systematically higher HI fractions for massive galaxies near filaments
compared to field population, interpreted as evidence for a more efficient cold gas accretion from
the intergalactic medium. A small but significant trend in the distribution of galaxy properties
within filaments was reported in the spectroscopic surveys VIPERS (Malavasi et al., 2017) and
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GAMA (Kraljic et al., 2018) and with photometric redshifts in the COSMOS field (Laigle et al.,
2018). When corrected for large-scale density effects, these studies find significant mass and
type segregations, where the most massive or quiescent galaxies are closer to filaments than less
massive or active galaxies, emphasizing that large-scale cosmic flows play a role in shaping galaxy
properties. On the other hand, other works reported that the most important driver of galaxy
properties is stellar mass, as opposed to environment (Robotham et al., 2013; Alpaslan et al., 2015;
Alpaslan et al., 2016), while the environment may impact the efficiency of galaxy formation (Guo
et al., 2015; Eardley et al., 2015).

On large scales, the Tidal Torque Theory (TTT) naturally connects the distribution of matter
to the angular momentum of halos (see section 2.1.6, e.g. Lee and Pen, 2001; Hirata and Seljak,
2004) in its recently revisited, conditioned formulation (Codis et al., 2015), with low-mass galaxies
being preferentially aligned with filament’s direction while more massive ones have their spin
perpendicular to it. While it is far from obvious that the alignment of halo spin implies that the
galactic spin are also aligned (Tenneti et al., 2015; Chisari et al., 2017, e.g. ), the effect has also
been confirmed for galaxies in numerical simulations (Dubois et al., 2014; Welker et al., 2014;
Martizzi et al., 2019) and recently observationally (e.g. Trujillo et al., 2006; Lee and Erdogdu, 2007;
Paz et al., 2008; Tempel et al., 2013; Tempel and Libeskind, 2013; Pahwa et al., 2016, see also for
B. J. T. Jones et al., 2010; Cervantes-Sodi et al., 2010; Andrae and Jahnke, 2011; Goh et al., 2019 for
contradictory results).

Classical models have proven quite successful in explaining many observed properties of
galaxies, via the so-called halo model (see Cooray and R. Sheth, 2002, for a detailed review),
in particular against isotropic statistics such as the two-point correlation function, yet they
fail to capture some galactic properties, such as spin alignments, which are specifically driven
by scale-coupling to the cosmic web (Codis et al., 2015), nor do they fully take into account
how a given galaxy is gravitationally sensitive to the larger scales anisotropies. Indeed, when
gas cooling is accounted for, it has been shown that a substantial part of the baryon mass and
angular momentum is acquired via cold filamentary flows (Birnboim and Dekel, 2003; Ocvirk
et al., 2008; Dekel et al., 2009; Kereš et al., 2009), feeding the galaxy in a highly anisotropic way.
Unlike shock-heated gas, cold flows are able to penetrate halos to reach their innermost regions,
feeding galaxies with pristine fuel for star formation. A three-dimensional visualization of galactic
formation processes at intermediate scales (made possible by the joint use of tracer particles for
the cold gas phase, and well-resolved zoom simulations) reveals that these gaseous flows stem
from the cosmic web. In fact, the spatial distribution of caustics (the geometric location of the dark
matter shell crossing and the isothermal shock of cold gas) provides us with direct information
on the dynamical state of the gas likely to be accreted on the proto-galaxy: in this scenario, the
gas first flows towards the caustics created by the dark matter to form wall-like structures, in
which galaxies are embedded (Danovich et al., 2012). The gas then radiatively cools and looses
its velocity component in the direction perpendicular to the walls to condense at the centre of
dark matter filaments found at the intersection of walls. In the process, the gas retains a net
transverse motion that sets the direction and amplitude of its angular momentum which will later
be fed coherently into growing proto-galaxies. Doing so, it retains its angular momentum — and
hence its causal connection to the cosmic web — until it reaches the innermost part of the galaxy
(Pichon et al., 2011; Danovich et al., 2015), providing a unique testbed to assess the effect of the
cosmic web on the formation of galaxies.

With the advent of large spectroscopic surveys (GAMA, Driver et al., 2011; VIPERS, Guzzo
et al., 2014) and cosmological simulations (Illustris, Vogelsberger et al., 2014; Horizon-AGN
Dubois et al., 2014; Dubois et al., 2016; Eagle, Schaye et al., 2015; Massive-Black II, Khandai et al.,
2015), astronomers can now explore time modulations of the galactic properties with statistically
meaningful data, but also their spatial modulations in the frame of the cosmic web (e.g. Alpaslan
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et al., 2016; Malavasi et al., 2017; Laigle et al., 2018; Kraljic et al., 2019). There is now a dire need
for both new methods and models to understand the coupling between the anisotropic cosmic web
and the baryonic physics of galaxies. In particular one needs to build new estimators to quantify
the spatial modulation of galaxy properties beyond isotropic two-point correlation functions on
top of the classical halo model. As the effect of the cosmic web is expected to be second-order
(after mass and local density dependence), new estimators and models have to be built that take
into account explicitly the anisotropy of the cosmic web to prevent the signal from being lost
when averaging over all possible angles.

The aim of this dissertation is to provide such estimators and models, with a novel framework
devoted to the study of the effect of anisotropic features on the formation of dark matter halos
and their galaxies. The approach followed in my work is two-fold: I study the effect of the cosmic
web on large and small scales on the assembly of dark matter halos across cosmic time using
conditional excursion set and critical set theory and use numerical simulations to unveil how
these effects impact galaxy formation.

Chapter 2 describes the context on which this dissertation is based, presenting the different
models and tools used in the course of my work. Chapter 3 presents an extension of the excursion
set theory and predicts the accretion rate, formation time and typical mass of dark matter halos
as a function of their environment. Chapter 4 presents a framework based on the peak theory to
quantity the environmental effects acting on halo formation. In particular, it aims to provide a
comprehensive description of the major events relevant to the assembly of galaxies. Chapter 5
presents a new numerical scheme able to accurately track the cosmic accretion in mesh-based
hydrodynamical simulations. Chapter 6 presents results obtained from a numerical study of how
angular momentum is acquired from the cosmic web and transported towards galaxies via cold
flows. Chapter 7 wraps things up and discusses perspectives.
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Disclaimer

The results presented in chapter 3 have led to a publication in MNRAS (Musso, Cadiou et al.,
2018). I have derived all the equations of the paper independently and checked their correctness
using numerical simulations. I also produced all the plots of the paper. The writing of the paper
was done in collaboration with M. Musso, with contributions from C. Pichon, S. Codis, K. Kraljic
and Y. Dubois.

The results presented in chapter 4 have been obtained in collaboration with C. Pichon and
S. Codis, with contributions from Y. Dubois and M. Musso.

The results presented in chapter 5 have led to a publication in A&A (Cadiou et al., 2019). I
have produced all the results of the paper, with contributions from Y. Dubois and C. Pichon.

I have produced all the results of chapter 6, with contributions from Y. Dubois and C. Pichon.
I have read and contributed to to all publications presented in appendix B, albeit not as the

main author. More specifically, I contributed to the theoretical sections of Kraljic et al., 2018;
Kraljic et al., 2019. I contributed to the numerical setup of Beckmann et al., 2019 by providing the
tracer particle code.

To the best of my knowledge, all the results presented in the dissertation are original.
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2. Context

In this chapter, I will present the different models used throughout my work. In section 2.1, I
will present the cosmological context in which galaxies form, before describing the processes
involved in galaxy formation in section 2.2.

2.1 Cosmology

In this section, I detail the different models that describe the initial conditions of the Universe in
section 2.1.1. In section 2.1.2, I detail how these initial fluctuations grow to form the large-scale
structure of the Universe and dark matter halos. In sections 2.1.3 to 2.1.5, I present models suited
to study the statistical properties of dark matter halos and detail how they then acquire angular
momentum in section 2.1.6. Finally, in section 2.1.7, I provide some tools to describe the initial
conditions of the Universe.

Figure 2.1.1: Map of the CMB as observed by the Planck satellite in 2013. Credit: ESA,
Planck Collaboration.
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2.1.1 Properties of the initial conditions of the Universe

In the standard model of cosmology, the time and space frame of the Universe was created at
the Big Bang. Between 10−36 s and 10−33 s ∼ 10−32 s, the Universe experienced a phase of
exponential growth known as inflation. Quantum fluctuations in the microscopic scales were
quickly expanded to cosmological scales to yield a flat, statistically homogeneous and isotropic
Universe. After the end of inflation, the hot initial plasma cooled until light and matter decoupled
at about 3 000K, a moment known as the Last Scattering Surface (LSS). Photons emitted from the
LSS were able to travel freely through space and experienced only the expansion of the Universe
since then. Today, they can be observed in the microwave range of the light spectrum — as they
have been emitted at z ∼ 1100 — and form the well-studied CMB illustrated on figure 2.1.1.

The CMB is as-of-today the best example of a black body spectrum with a temperature of
2.726K. It is characterised by very small temperature fluctuations of about 0.0013K. These
fluctuations can theoretically have two forms. Isocurvature perturbations have the property that
the total energy density is constant in space so that the sum of the fractional variation of each
component compensates exactly. An increase of 1% of any component is compensated by a net
decrease of 1% of other components. Cosmic strings are commonly associated to isocurvature
perturbations.

On the other hand, for adiabatic perturbations, the fractional variation of each component of
the matter (baryons, photons, DM, neutrinos) are the same so that an excess of 1% of photons
results in an excess of 1% of baryons. This is the model favoured by cosmic inflation. In the
following, we will assume that the initial perturbations are adiabatic perturbations. Under this
assumption, regions that are hotter are also denser ones so that the CMB is therefore also an
observation of the density fluctuations of the Universe at z ∼ 1100. The fluctuations in the
initial density field are very well described by a homogeneous Gaussian Random Field, whose
mathematical properties are described in section 2.1.1.1.

The evolution of the Universe after inflation is well described by the ΛCDM model, as already
mentioned in the introduction. The ΛCDM is made of cold DM and a cosmological constant, Λ,
entering Einstein’s equation, resulting in an expanding Universe. At low redshifts (later times),
the expansion becomes accelerated once the density of the Universe is Λ-dominated. The model
is described by six parameters: the baryon density Ωb, the dark matter density Ωc, the age of the
Universe t0, the spectral index ns, the normalization of the amplitude of the primordial fluctuations
∆2

R and the reionisation optical depth. From these parameters, one can derive the Hubble constant
H0, the total matter density Ωm = Ωc +Ωb, the root-mean-square of the field linearly evolved at
z = 0 and smoothed with a Top-Hat filter of size 8Mpc/h , σ8. The values of the six parameters
are now measured from observations of the CMB (WMAP, Planck Collaboration, 2018a), as well
as many other independent observations (see Weinberg et al., 2013, for a detailed review). The
best-fit values from CMB observations are reported in Table 2.1. They show that today’s Universe
is in accelerated expansion, with 70% of the energy density in the form of dark energy (Λ term),
25% as DM and only 5% as baryonic matter while other particles — such as photons or neutrinos
— make a negligible contribution.

In the following, we will particularly focus on the density contrast δ

δ ≡ ρ− ρ̄

ρ̄
. (2.1)

Here ρ̄ is the mean density of the Universe and ρ is the local density. This field is well represented
by a Gaussian random with zero mean.
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Table 2.1: Planck collaboration best-fit cosmological parameters. See Planck Collabora-
tion, 2018a for more details.

Parameter Comment Value Unit

ns Scalar spectral index 0.9667(40)
H0 Hubble constant 67.74(46) km s−1Mpc−1

Ωb Baryon density 0.0486(10)
Ωc Dark matter density 0.2589(57)
Ωm Matter density 0.3089(62)
ΩΛ Dark energy density 0.6911(62)
σ8 R.m.s. of the matter fluctuation 0.8159(86)
z∗ Redshift at decoupling 1089.90(23)

2.1.1.1 Gaussian Random Field

Since the initial conditions of the Universe1 are very well described by a Gaussian random field, it
is worth providing a mathematical description of their structure and properties. While a more
in-depth and mathematical description of random fields and their geometry is provided in Adler
and Taylor, 2007, let us provide some basic definitions and properties.

A random variable X ∈ R has a Gaussian distribution (or normal distribution) with mean µ
and variance σ if its PDF reads

P (X) =
1√
2πσ2

exp

(

−(X − µ)2

2σ2

)

. (2.2)

This definition can easily be generalized to d dimensions: a random vector X ∈ R
d has a

multivariate Gaussian distribution with mean µ ∈ R
d and variance Σ ∈M(Rd), where Σ is a

positive-definite matrix, if its PDF reads

P (X) =
1

√

(2π)d detΣ
exp

(

−1

2
(X − µ)TΣ−1(X − µ)

)

. (2.3)

The element i, j of the covariance matrix is the covariance of the ith element ofX with its j-th
element. It can be formally written as

Σij = 〈(Xi − µi)(Xj − µj)〉, (2.4)

where the brackets indicate an ensemble average. For a function F : Rd → R, the ensemble
average over the ensemble of possible realizations Ω is defined as

〈F 〉 ≡
∫

Ω
ddX ′ F (X′)P (X ′). (2.5)

In the following, brackets symbols are expectation, integrated over all possible realisations. Using
ergodicity in an isotropic and homogeneous field, this is equivalent to averaging over space.

Using multivariate Gaussian distributions, we can also define a discrete Gaussian random
field. Let X be a discrete field defined at positions {ri}i=1,...,N . The field is said to be a Gaussian
random field if the vectorX = {X(ri)}i=1,...,N is distributed following a multivariate Gaussian
distribution. In cosmology, it is very common to use the two-point correlation function instead of

1In the following of the manuscript, I will call “the initial conditions” the initial conditions in the matter dominated
Universe, which are set by the measurements of the CMB.
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the covariance. For a given pair of point ri, r′j , the two-point correlation function of a field is
defined as

ξ(ri, r
′
j) ≡

〈
(X(ri)− µ(ri))(X(r′j)− µ(r′j))

〉
, (2.6)

where µ(r) = 〈X(r)〉 is the mean of the field (it is a field itself). This is the generalization of
equation (2.4) to a discrete field.2 Since a multivariate Gaussian distribution is described uniquely
by its mean and covariance, a discrete Gaussian random field is entirely described by its mean
and two-point correlation function.

We are now in a position to define a (continuous) Gaussian random field. Let X by a field in
d dimensions. The field is a Gaussian random field if for any given position r there exists µ, σ
such that

X(r) ∼ N (µ, σ), (2.7)

and the covariance of the field at any pair of point r, r′ is given by the two-point correlation
function

ξ(r, r′) =
〈
(X(r)− µ(r))(X(r′)− µ(r′))

〉
. (2.8)

The standard model of cosmology further assumes that the Universe is statistically homoge-
neous and isotropic. Mathematically, a Gaussian random field is homogeneous and isotropic if its
correlation functions verifies

ξ(r, r′) = ξ(
∥
∥r − r′

∥
∥) = ξ(s), (2.9)

where s = ‖r − r′‖ is the separation and its mean is a constant

µ(r) = µ0. (2.10)

As a consequence, the statistical properties of the field are invariant by translation and rotation.

2.1.1.2 Power spectrum

In a statistically homogeneous Universe, it is convenient to represent the random the field δ by
its Fourier components using the following convention

δ(k) =

∫

d3r δ(r)e−ik·r, δ(r) =
1

(2π)3

∫

d3k δ(k)eik·r. (2.11)

The power spectrum P (k) of the field is the expectation value
〈
δ(k)δ⋆(k′)

〉
≡ P (k)(2π)3δD

(
k − k′

)
. (2.12)

Here the superscript ∗ stands for the complex conjugate, which makes P (k) positive definite.
The Dirac delta is a consequence of translational invariance (homogeneity). Otherwise, the
ensemble average 〈δ(k)δ(k′)〉 would acquire a phase factor when r → r +∆r. If the field is
real δ⋆(k) = δ(−k), and we obtain

〈
δ(k)δ(k′)

〉
= P (k)(2π)3δD

(
k + k′

)
. (2.13)

Requesting further rotational invariance implies that the power spectrum depends only on
k = ‖k‖, i.e.

〈
δ(k)δ⋆(k′)

〉
= P (k)(2π)3δD

(
k − k′

)
. (2.14)

Taking the Fourier transform of equation (2.12), we obtain the relation between the two-point
correlation function and the power spectrum

ξ(r) =
1

(2π)3

∫

k

d3kP (k)eik·r. (2.15)

2Note that this definition is not specific to Gaussian random fields.
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Figure 2.1.2: (Le�:) Plot of the matter power spectrum as a function of the wave number
assuming a Planck 2018 (Planck Collaboration, 2018a) cosmology. At scales involved in
galaxy formation (0.1Mpc/h to 10Mpc/h), the spectrum resembles a power-law with
slope ∼ −2. (Right:) Standard deviation of the field smoothed with different filters as
labelled.

For a statistically homogeneous and isotropic Gaussian random field in three dimensions this can
be rewritten in a more compact way as

ξ(r) =
1

2π2

∫ ∞

0
dk k2P (k)j1(kr), (2.16)

where j1 is the second spherical Bessel function. For the sake of completeness, note that in one
and two dimensions we have

ξ1D(r) =
1

π

∫ ∞

0
dk P (k)j0(kr), (2.17)

ξ2D(r) =
1

2π

∫ ∞

0
dk kP (k)J0(kr), (2.18)

where J0 is the first Bessel function and j0 the first spherical Bessel function. The ΛCDM power
spectrum depends on the properties of inflation and of the early Universe. It features notably
a peak at ∼ 100Mpc/h and then decreases roughly as a power-law with index ns ∼ 1− 2, as
shown on figure 2.1.2, left panel.

Generating Gaussian Random Field

Because the initial conditions of the Universe are well described by a Gaussian random field, the
generation of Gaussian random field is the first step of any numerical simulation that aims at
simulating the Universe from its birth. Let us describe a method to generate Gaussian random
fields on a periodic grid with a given power spectrum P (k). The first naive approach works as
follows

1. generate a white noise field from a Gaussian distribution with zero mean and unit variance

µ(r) ∼ N (0, 1),

2. compute µ(k), the Fourier transform of µ(r) (using e.g. the Fast Fourier Transform (FFT)
algorithm),
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Table 2.2: Correspondence of linear operators between their real-space and Fourier-
space representations. Note that real space filters are convolution operators while their
Fourier representation is a multiplication.

Operator Real space Fourier space

Gradient ∇ ik

Laplacian ∇2 −k2
Spatial shift δ(r) 7→ δ(r +∆r) eik·∆r

Gaussian filter WG(r) ≡
1

(2π)3/2R3
e−r2/2R2

W̃G(k) = e−(kR)2/2

Top-Hat filter WTH(r) ≡
3

4πR3
ϑH

(

1− r

R

)

W̃TH(k) =
3j1(kR)

kR

Sharp k filter Wsharp(r) ≡
3

4πR3

3j1(r/R)

r/R
W̃sharp(k) = ϑH(1− kR)

Derivative of TH W ′
TH = ∂R[WTH] − 3

R
j2(kR)

Derivative of Gaussian W ′
G(r) = − 1

2R2
WG(r) −k

2

2
W̃G(k)

3. compute the Fourier field
δ(k) =

√

P (k)µ(k),

4. obtain the real-space overdensity δ(r) using an inverse Fourier transform of δ̃(k).
While the naive approach is easy to implement, it has a number of issues for small boxes (see e.g.
Pen, 1997). Indeed, the power spectrum is assumed to be spherically symmetric, an assumption
that does not hold on a finite rectangular box. One way to partially solve the problem is due to
Hahn and Abel, 2011, where they suggested sampling the power spectrum in real-space instead
of Fourier space, so that the periodicity of the box is correctly accounted for. This is the approach
used in the Music software to generate initial conditions for cosmological simulations.

2.1.1.3 Correlation of the field and linear operators

In the context of excursion set theory and peak theory, discussed in sections 2.1.3 and 2.1.5, one
needs to be able to compute correlation functions of the field and its derivatives with respect
to space or smoothing scale. The motivations to compute these correlation functions will be
discussed in further details in sections 2.1.3 and 2.1.5 for excursion set theory and peak patch,
while the importance of the smoothing operation is discussed in section 2.1.2.2. One of the
properties of Gaussian random field is that any linear combination of a Gaussian random field is
itself a Gaussian random field. Stated differently, any linear transformation of a Gaussian random
field is a Gaussian random field itself so that, in general, any linear operator will conserve the
Gaussian property of a field. Following the lines of section 2.1.1.2, let us define the two-point
cross-correlation function between two Gaussian random fields δ1 and δ2

ξδ1,δ2(r) ≡
1

(2π)6

∫

d3k

∫

d3k′
〈
δ1(k)δ

⋆
2(k

′)
〉
ei(k−k′)·r. (2.19)

The results of section 2.1.1.2 can be recovered setting δ1 = δ2.
Let F be a linear operator. We define its Fourier representation F̃ as

F̃ [δ](k) =

∫

d3r e−ik·rF [δ](r). (2.20)

The Fourier representation of convolution filters, such as the Top-Hat filter and the Gaussian filter,
become simple multiplications in Fourier space. Noting that any derivation operators (∇,∇2, . . . )
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can be written as a convolution with the relevant distribution, their representation in Fourier
also become a simple multiplication, where the multiplication factor does not depend on the
underlying field. This means that F̃ [δ](k) = F̃(k)δ(k). Some common operators and their
Fourier representations are given in Table 2.2. In the following, we will restrain ourselves to
operators that can be written as multiplications in Fourier space3. Using this formalism, we can
compute any correlation function between two operators applied to a Gaussian random field. The
correlation between F1[δ] and F2[δ], where F1 and F2 are linear operators, reads

ξF1F2
= 〈F1[δ]F2[δ]〉

=
1

(2π)6

∫

d3k

∫

d3k′ F̃1(k)F̃⋆
2 (k

′)
〈
δ(k)δ⋆(k′)

〉

=
1

(2π)6

∫

d3k

∫

d3k′ F̃1(k)F̃⋆
2 (k

′)(2π)3P (k)δD
(
k − k′

)

=
1

(2π)3

∫

d3kP (k)F̃1(k)F̃⋆
2 (k). (2.21)

Note that in general the fields returned by the operators may not be invariant under rotation
or even translation, even when the underlying field is itself isotropic or homogeneous. This is
for example the case when considering the gradient of the field in a given direction of space. As
an example, let us compute the correlation function between the field smoothed by a Gaussian
filter at scale R1 and the field smoothed by a Gaussian filter at scale R2 at a separation r4 using
equation (2.21)

ξR1,R2
(r) = 〈(WG,R1

∗ δ)(0)× (WG,R2
∗ δ)(r)〉

=
1

(2π)3

∫

d3kP (k)W̃G,R1
(k)W̃G,R2

(k)e−ik·r

=
1

(2π)3

∫

d3kP (k) exp

(

−k
2(R2

1 +R2
2)

2
− ik · r

)

. (2.22)

2.1.2 Formation of the structures of the Universe

In this section, I detail the models that describe the formation of the structures of the Universe. In
section 2.1.2.1, I present how initial tiny fluctuations grow in the linear regime. In section 2.1.2.2, I
detail the analytical solution of the spherical collapse that will be at the base of our understanding
of the formation of dark matter halos. In section 2.1.2.3, I detail how the first structures emerge
from the displacement of matter in the Zel’dovich approximation.

2.1.2.1 Linear perturbations

Since the initial conditions of the Universe are given by tiny fluctuations of the density field
around its mean value, it is expected that the initial evolution can be described in the linear regime,
expressed as perturbations of the density contrast δ. In the linear regime, the variance of the
density contrast increases as matter departs from under-dense regions to reach over-dense regions.
In order to study this regime, let us first restrict ourselves to a pressure-less fluid approach that
describes well DM in the ΛCDM model. In this model, the DM is assumed to start from a state
where the velocity field has no velocity dispersion (the velocity field is single-valued). Linear
perturbations aim at providing a description of the density contrast up to the moment where
multiple particles with different velocities are found at the same location, a moment known as

3This includes any operator that can be written as a convolution operation with a distribution, in particular
convolution and linear differential operators.

4The separation can be interpreted as a shift operator applied to the field.
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shell-crossing. It turns out that this regime provides a good description of the first steps of the
formation of the large scale structures of the Universe.

The equations of interest are the continuity, Euler (with no pressure) and Poisson equations

∂ρ

∂t
+∇ · ρv = 0, (2.23)

∂v

∂t
+ (v · ∇)v = −∇Φ, (2.24)

∇2Φ = 4πGρ. (2.25)

Equation (2.24) can be obtained from the Vlasov-Poisson equation, assuming that a single velocity
is found at each location. Here spatial derivatives have been done in proper units. We can compute
the comoving position via r = a(t)x. In these variables, the peculiar velocity u is the sum of the
Hubble flow and the comoving velocity v

u ≡ ȧ(t)x+ v, v ≡ aẋ. (2.26)

Under the change of variable r → x, equations (2.23)–(2.25) can be rewritten using the following
transformation for the time derivative and gradient operators

∇ → ∇x

a
,

∂

∂t
→ ∂

∂t
− ȧ

a
x · ∇x. (2.27)

Recalling that δ(r, t) = (ρ(r, t)− ρ̄(t))/ρ̄(t), this yields in comoving coordinates

∂δ

∂t
+

1

a
∇x · [(1 + δ)v] = 0, (2.28)

∂v

∂t
+
ȧ

a
v +

1

a
(v · ∇x)v = −∇xΦ

a
, (2.29)

∇2
xΨ = 4πGρ̄a2δ, (2.30)

with Ψ ≡ Φ+ aäx2/2. (2.31)

These equations can then be linearised at first order in δ, v and Ψ

∂δ

∂t
+

1

a
∇x · v = 0, (2.32)

∂v

∂t
+
ȧ

a
v = −∇xΦ

a
, (2.33)

∇2
xΨ = 4πGρ̄a2δ. (2.34)

We then derive equation (2.32) w.r.t. t and use equations (2.33) and (2.34) to finally get the second
order partial differential equation

∂2δ

∂t2
+

2ȧ

a

∂δ

∂t
− 4πGρ̄δ = 0. (2.35)

In order to move forward, we can use the Fourier representation of the overdensity δ(k). This
yields a second order ordinary differential equation

d2δ(k, t)

dt2
+

2ȧ

a

dδ(k, t)

dt
− 4πGρ̄δ(k, t) = 0. (2.36)

We can immediately see that equation (2.36) does not have any scale dependence: all modes grow
(or decay) at the same rate. The perturbations evolve as a function of time only and can formally
be written as

δ(k, t) = A(k)D+(t) +B(k)D−(t), (2.37)
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where D+(t) is a growing mode and D−(t) is a decaying mode and A and B are constants of
time. D+ is usually normalized to its value at t(z = 0) so that D+(z = 0) = 1. The decaying
mode can be directly expressed as a function of the Hubble constant

D−(t) ∝ H(t), (2.38)

and the growing mode is obtained using

D+(t) ∝ H(t)

∫ t

0

dt′

a2(t′)H2(t′)
∝ H(z)

∫ ∞

z

1 + z′

E3(z′)
dz′ , (2.39)

where

E(z) ≡ H(z)

H0
=
√

ΩΛ,0 + (1− Ω0)(1 + z)2 +Ωm,0(1 + z)3 +Ωr,0(1 + z)4. (2.40)

Ω0 is equal to one in a flat Universe, while ΩΛ,0,Ωm,0 and Ωr,0 are the current Λ, matter and
radiation density. They are linked to their value at redshift z by

ΩΛ(z) =
ΩΛ,0

E2(z)
, Ωm(z) =

Ωm,0(1 + z)3

E2(z)
, Ωr(z) =

Ωr,0(1 + z)4

E2(z)
. (2.41)

In the matter dominated era or in an Einstein de-Sitter (EdS) universe5, the growing mode scales
as

D+(z) ∼ t2/3 ∼ 1

1 + z
. (2.42)

In the general case in a ΛCDM cosmology, there is no explicit formula for D+ but equation (2.39)
can be integrated numerically, as shown on figure 2.1.3. Alternatively, a good approximation is
due to Carroll et al., 1992

D+(z) ∝
Ωm(z)

1 + z

[

Ω4/7
m (z)− ΩΛ(z) +

(

1 +
Ωm(z)

2

)(

1 +
ΩΛ(z)

70

)]−1

. (2.43)

This approximation holds for a close Universe with non-null matter density and a Λ contribution.
In the remainder of the dissertation, the linear growth factor will be notedD(z) ≡ D+(z) for

the sake of simplicity, while the decaying mode will be neglected.

2.1.2.2 Spherical collapse

Let us consider a region of the Universe with uniform initial density ρi and radius Ri. For the
sake of simplicity, we will assume to be in an EdS Universe, but similar results can be found
including a cosmological constant (see e.g. Lacey and Cole, 1993; Lahav et al., 1991). Following
section 2.1.2.1, we assume that there is no shell-crossing. We thereforce assume that collapse will
happen in concentric spheres, with the outermost spheres collapsing in a time larger or equal
to the collapse time of the inner spheres. Under this assumption, the total mass in a sphere is
constant. Let δi = (ρi − ρ̄m,i)/ρ̄m,i be the initial overdensity of the region w.r.t. the cosmic mean
matter density ρ̄m,i. The total mass in the region is given by M = (4π/3)R3

i ρ̄i(1 + δi). The
region evolves under the action of gravity following

d2R

dt2
= −GM

R2
= −H

2
i R

3
i

2R2
(1 + δi), (2.44)

5An EdS Universe is a flat, matter-only Universe with no cosmological constant. It is a good approximation to our
Universe after the radiation-dominated era z < 300 and before the Λ-dominated era z > 2.
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Figure 2.1.3: Linear matter growth factor in a Planck 2018 cosmology (Planck Collabo-
ration, 2018a) using the exact expression of D+ (equation (2.39), solid black) and the fit
by Carroll et al. (equation (2.43), dashed blue).

whereHi is the initial Hubble rate. It is worth noting that at fixed initial overdensity, equation (2.44)
is scale invariant: the evolution of the sphere depends on the initial density only. Let us now
integrate equation (2.44) over time to get the specific energy equation6

1

2
Ṙ2 − H2

i R
3
i

2R
(1 + δi) = E. (2.45)

If E > 0, the solution is unbound and the radius will grow forever. If E < 0, the solution is
bound and the radius will eventually collapse to R→ 0. At early times, the bulk velocity is due
to the Hubble flow Ṙi ≈ HiRi so that the total energy reads

E = −H
2
i R

2
i

2
δi. (2.46)

The energy is negative for overdensities δi > 0 and positive otherwise. This shows that in the
spherical collapse model, any initial overdensity will eventually collapse. Let us now assume that
δi > 0 to derive the evolution of the spherical region. Under this assumption, the solution of
equation (2.44) can be written parametrically

r = A(1− cos θ), t = B(θ − sin θ). (2.47)

Here A and B are set by the initial conditions

A = −GM
E

, B2 = −(GM)2

E3
. (2.48)

The evolution for a spherical region collapsing in a Hubble time (r(tH) = 0) is shown on
figure 2.1.4. Using the conservation of energy and equations (2.45) and (2.46), we can compute
the turnaround radius — or maximum radius — Rt for which the radial velocity vanishes

Rt =
(1 + δi)

δi
Ri, tt =

π

2
Hi

1 + δi

δ
3/2
i

. (2.49)

6Since the mass of the sphere is assumed to be constant, this specific energy is conserved.
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Figure 2.1.4: Plot of the evolution of spherical collapse overdensity δSC (blue) and linear
overdensity δl (orange) in a EdS Universe and in a ΛCDM Universe (dotted orange). The
spherical collapse solution diverges in a time t = te = 2tt (here te = tH ≈ 13.8Gyr).
At this time, the linear overdensity has a value δc ≈ 1.69 (horizontal solid grey line). At
turnaround (vertical solid grey line) the spherical-collapse overdensity is δSC ≈ 4.55
and the linear overdensity δl ≈ 1.06. At early times (inset), the spherical collapse model
and the linear evolution coincide with δ(t) ∼ (1 + z)−1.

After turnaround, the region will start contracting until R(tf) = 0 with tf = 2tt. For small initial
overdensities, turnaround time and radius scale like

Rt ∼
Ri

δi
, tt ∼

π

2

Hi

δ
3/2
i

. (2.50)

This shows that small overdensities have large turnaround radii, since collapse time is inversely
proportional to the initial overdensity. This regime is the one of interest assuming cosmological
initial conditions, as the observation of the CMB gives us |δi| ∼ 10−3 at z ∼ 1000.

In practice, the region will not collapse to a single point. As the region collapses, the effect of
the initial (random) velocity dispersion will become non-negligible so that the assumption of a
perfectly spherical collapse will break. Instead of converting all the gravitational energy to kinetic
energy, both terms will eventually reach equilibrium. This process, known as “virialization” will
relax to the state where the Virial theorem is verified, i.e.

2K + U = 0, (2.51)

where K = Ṙ2/2 is the specific kinetic energy and U = −GM/R is the specific gravitational
energy. Combining equations (2.46) and (2.51) and introducing the Virial radius Rvir we find that

Rvir =
Rt

2
. (2.52)

After virialization, the radius of the region will be half the radius at turnaround and the density
is eight time the density at turnaround. It can be shown that the overdensity at the time of
virialization is

1 + δ(tvir) = 18π2 ≈ 178. (2.53)
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This overdensity is frequently used in numerical simulation to define the radius of dark matter
halos and is written∆178 or quite frequently∆200 when using a value of 200. The corresponding
linear density contrast at the time of virialization, which defines the critical density δc is

δc ≡ δl(tvir) =
3

5

(
3

4

)2/3

(θvir − sin θvir)
2/3 =

3

5

(
3π

2

)2/3

≈ 1.6865. (2.54)

As underlined in the introduction of the section, equation (2.54) only holds in an EdS Universe,
but similar values can be derived for a ΛCDM Universe. This critical density is of interest, as it
provides a way to find regions that will collapse non-linearly following the spherical models using
the linear overdensity field: any region with their linear density δ > δc should be considered as
collapsed and virialized. This will be further discussed in section 2.1.3

2.1.2.3 Zel’dovich approximation

An interesting approach to understand the genesis of the cosmic web is to adopt a Lagrangian
view dual to the Eulerian description used in section 2.1.1. Instead of expressing quantities at
fixed comoving coordinates (Eulerian view), one can indeed write the cosmic fields as a function
of the initial position q. This initial position is related to the comoving coordinate x at time t by
a displacement term

x(q, t) = q +ψ(q, t), (2.55)

where ψ(q, t) is the displacement field. Starting from a homogeneous initial density field, the
local density at time t then reads

ρ(q, t) =
ρ̄(q)

J
, (2.56)

where J is the Jacobian of the Eulerian-to-Lagrangian transformation J = |dx/dq | given by

J =

∣
∣
∣
∣
δKij +

∂ψi

∂qj

∣
∣
∣
∣
, (2.57)

with δKij the Kronecker delta. Lagrangian Perturbation Theory finds a perturbative solution for
the displacement field,

ψ(q, t) = ψ(1)(q, t) +ψ(2)(q, t) + · · · . (2.58)

The Zel’dovich approximation is the first-order approximation to equation (2.58), which reads

ψ(q, t) ≈ ψ(1)(q, t) =

∫
dk

(2π)3
eik·q

ik

k2
δk(t). (2.59)

Applying the same formalism as in section 2.1.2.1, we find that the displacement field has a
growing and a decaying mode. Keeping only the growing mode, we can express equation (2.59)
in terms of the linear matter growth function

ψ(q, t) ≈ ψ+(q)D+(t). (2.60)

Plugging equation (2.60) into the Jacobian of equation (2.57) we find that the density reads

ρ(q, t) =
ρ̄

|(1−D+(t)λ1)(1−D+(t)λ2)(1−D+(t)λ3)|
, (2.61)

with λ1 ≥ λ2 ≥ λ3 the eigenvalues of− ∂ψ+
i

/
∂qj . Note that the deformation tensor− ∂ψ+

i

/
∂qj

is equal to the hessian of the gravitational potential — the tidal tensor — up to a time-dependent
factor (4πGρ(t)a2(t)D(t))−1 (Porciani et al., 2002). The Zel’dovich displacement is therefore a
rectilinear trajectory that moves particles along the direction of the initial force that converts the
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Figure 2.1.5: Scheme of the triaxial collapse under the Zel’dovich approximation,
showing the collapse of an initial spherical shell as consecutive ellipsoids. The last shell
is represented in shaded red and resembles a flattened spheroid (a Zel’dovich pancake)
in the yz plane, the first axis to collapse is the x axis, the second y and the last z.

three-dimensional sphere in q-space to a flattened ellipsoid in the real r-space, see figure 2.1.5.
Multiple studies have shown that the Zel’dovich approximation holds up to the mildly non-linear
regime of structure formation (e.g. M. White, 2014) and describes well the anisotropic collapse of
matter that shapes the cosmic web. Indeed, equation (2.61) suggests that for D+(t)λ1 → 1, the
density diverges resulting in the formation of a caustic. The approximation clearly does not hold
any more for particles that shell crossed, but it still provides a good approximation for particles
that surround the shell-crossed region. In addition, the Zel’dovich approximation gives us a
physical understanding of the next likely direction(s) of collapse. If λ2 > 0, the region contracts
in the corresponding direction, eventually leading to the formation of a filamentary structure.
Finally, if λ3 > 0, the region will also contract along the third direction, leading to the formation
of a node of the cosmic web. While the details of the secondary and third collapse are not well
predicted by the Zel’dovich approximation, various models have been designed to overcome this
shortcoming, such as the adhesion model (Kofman et al., 1992) or more recently the origami model
(Neyrinck, 2014).

2.1.3 The excursion set theory

The excursion set approach, originally formulated by Press and Schechter, 1974, assumes that
virialized halos form from spherical regions whose initial mean density equals some critical value.
The distribution of late-time halos can thus be inferred from the simpler Gaussian statistics of
their Lagrangian progenitors. The approach implicitly assumes approximate spherical symmetry
(but not homogeneity), and uses spherical collapse, as presented in section 2.1.2.2, to establish a
mapping between the initial mean density of a patch and the time at which it recollapses under
its own gravity.
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According to this model, a sphere of initial radius R shrinks to zero volume at redshift z if
its initial mean overdensity δ equals δcD(zin)/D(z), where D(z) is the growth rate of linear
matter perturbations, zin the initial redshift, and δc = 1.686 for an Einstein–de Sitter universe,
or equivalently, if its mean overdensity linearly evolved to z = 0 equals δc/D(z), regardless of
the initial size. If so, thanks to mass conservation, this spherical patch will form a halo of mass
M = (4π/3)R3ρ̄ (where ρ̄ is the comoving background density). The redshift z is assumed to be
a proxy for its virialization time.

Bond et al., 1991 added to this framework the requirement that the mean overdensity in all
larger spheres must be lower than δc, for outer shells to collapse at a later time. This condition
ensures that the infall of shells is hierarchical, and the selected patch is not crushed in a bigger
volume that collapses faster (the so-called cloud-in-cloud problem). The number density of halos of
a givenmass at a given redshift is thus related to the volume contained in the largest spheres whose
mean overdensity δ ≡ δ(R) crosses δc. The dependence of the critical value δc on departures
from spherical collapse induced by initial tides was studied by Bond and Myers, 1996, and later by
R. K. Sheth et al., 2001, who approximated it as a scale-dependent barrier.

As the variation of δ(R)with scale resembles random diffusion, it is convenient to parametrize
it with the variance

σ2(R) ≡ Var(δ(R)) =

∫

dk
k2P (k)

2π2
W̃ 2

TH(kR) (2.62)

of the stochastic process, smoothed with a real-space Top-Hat filter W̃TH, rather thanwithR orM ;
see section 2.1.1.3 for the details of the filter and its Fourier representation. In equation (2.62), P (k)
is the underlying power spectrum. The three quantities σ,R andM are in practice interchangeable.
The mass fraction in halos of massM at z is

M

ρ̄

dn

dM
=

∣
∣
∣
∣

dσ

dM

∣
∣
∣
∣
f(σ) , (2.63)

where dn/dM is the number density of halos per unit mass (i.e. the mass function) and f(σ) —
often called the halo multiplicity — is the probability distribution of the first-crossing scale of the
random walks, that is of the smallest σ (largest R) for which

δ(R, r) ≡ 1

(2π)3

∫

d3k δm(k)W̃TH(kR)e
ik·r =

δc
D(z)

, (2.64)

where δm is the (unsmoothed) matter density. The first-crossing requirement avoids double
counting and guarantees that f(σ) is a well-behaved probability distribution, and the resulting
mass fraction is correctly normalized.

The first-crossing probability, f(σ)∆σ, is the fraction of walks that cross the threshold
between σ−∆σ and σ for the first time. Considering discretized trajectories with a large number
of steps σ1, . . . , σN of width ∆σ ≡ σi − σi−1 (corresponding to concentric spheres of radii
R1, · · · , RN ), the first-crossing probability is the joint probability that δN > δc and δi < δc for
i < N , with δi ≡ δ(σi) and σN = σ = N∆σ. Hence, the distribution f(σ) is formally defined as
the limit

f(σ) ≡ lim
∆σ→0

1

∆σ

〈

ϑH(δN − δc)
N−1∏

i

ϑH(δc − δi)

〉

, (2.65)

where ϑH(x) is Heaviside’s step function, and the expectation value is evaluated with the multi-
variate distribution p(δi, . . . , δN ). This definition discards crossings for which δi > δc for any
i < N , since ϑH(δc − δi) = 0, assigning at most one crossing (the first) to each trajectory. For
instance, in figure 2.1.6, trajectory B would not be assigned the crossing marked with (3), since
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Figure 2.1.6: Pictorial description of the first-crossing and upcrossing conditions to
infer the halo mass from the excursion set trajectory. The first-crossing condition on σ
assigns at most one halo to each trajectory, with massM(σ). Upcrossing may instead
assign several masses to the same trajectory (that is, to the same spatial location), thus
over-counting halos. Trajectory B in the figure has a first crossing (upwards) at scale
σB (1), a downcrossing (2) and second upcrossing (3), but the correct mass is only given
by σB . However, the correlation of each step with the previous ones makes turns in
small intervals of σ exponentially unlikely: at small σ most trajectories will thus look
like trajectory A. Thanks to the correlation between steps at different scales, for small σ
(largeM ) simply discarding downcrossings is a very good approximation.

the trajectory lies above threshold between (1) and (2). Since taking the mean implies integrating
over all trajectories weighed by their probability, f(σ) can be interpreted as a path integral over
all allowed trajectories with fixed boundary conditions δ(0) = 0 and δ(σ) = δc (Maggiore and
Riotto, 2010).

In practice, computing f(σ) becomes difficult if the steps of the random walks are correlated,
as is the case for real-space Top-Hat filtering with a ΛCDM power spectrum, and for most realistic
filters and cosmologies. For this reason, more easily tractable but less physically motivated
sharp cutoffs in Fourier space have often been preferred, for which the correlation matrix of the
steps becomes diagonal, treating the correlations as perturbations (Maggiore and Riotto, 2010;
Corasaniti and Achitouv, 2011). The upcrossing approximation described below can instead be
considered as the opposite limit, in which the steps are assumed to be strongly correlated (as is the
case for a realistic power spectrum and filter). This approximation is equivalent to constraining
only the last two steps of equation (2.65), marginalizing over the first N − 2.

2.1.4 The upcrossing approximation to f(σ).

Indeed, Musso and R. K. Sheth, 2012 noticed that for small enough σ (i.e. for large enough masses),
the first-crossing constraint may be relaxed into the milder condition

δ′ ≡ dδ

dσ
> 0 ; (2.66)

that is, trajectories simply need to reach the threshold with positive slope (or with slope larger
than the threshold’s if δc depends on scale). This upcrossing condition may assign several halos
of different masses to the same spatial location. For this reason, while first-crossing provides a
well-defined probability distribution for σ (e.g. with unit normalization), upcrossing does not.
However, since the first-crossing is necessarily upwards, and down-crossings are discarded, the
error introduced in f(σ) by this approximation comes from trajectories with two or more turns.
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Musso and R. K. Sheth, 2012 showed that these trajectories are exponentially unlikely if σ is
small enough when the steps are correlated. The first-crossing and upcrossing conditions to infer
the halo mass from excursion sets are sketched in figure 2.1.6: while the trajectory A would be
(correctly) assigned to a single halo, the second upcrossing of trajectory B in the figure would be
counted as a valid event by the approximation, and the trajectory would (wrongly) be assigned
to two halos. The probability of this event is non-negligible only if σ is large. This is further
illustrated on figure 2.1.7. The figure presents bundles of random trajectories drawn using a
ΛCDM power spectrum constrained to a crossing (up or down) at a given radius. For small
values of σ most of the trajectories that are first-crossing are also upcrossing. The fraction drops
significantly for larger values of σ.

Returning to equation (2.65), expanding δN−1 around δN gives

ϑH(δc − δN−1) ≃ ϑH(δc − δN ) + δD(δc − δ) δ′∆σ , (2.67)

where the crossing scale σ, giving the halo’s final massM , is defined implicitly in equation (2.64),
as the solution of the equation δ(σ) = δc/D

7. The assumption that this upcrossing is first-crossing
allows us to marginalize over the first N − 2 variables in equation (2.65) without restrictions.
The first term has no common integration support with ϑH(δN − δc), and only the second one –
containing the Jacobian (δ′ − δ′c) – contributes to the expectation value (throughout the text, a
prime will denote the derivative d/dσ). Adopting for convenience the normalized walk height
ν ≡ δ/σ, for which

〈
ν2
〉
= 1, the corresponding density of solutions in σ-space obeys

∣
∣ν ′ − ν ′c

∣
∣ δD(ν − νc) = (|δ′|/σ) δD(ν − νc) , (2.68)

where νc ≡ δc/(σD) is the rescaled threshold. The probability of upcrossing at σ in equation (2.65)
is therefore simply the expectation value of this expression,

fup(σ) ≡ pG(ν = νc)

∫ ∞

0
dδ′ δ′pG(δ

′|νc) , (2.69)

where the integral runs over δ′ > 0 because of the upcrossing condition (2.66). Usually, one sets
D = 1 at z = 0 for simplicity so that νc = δc/σ. For Gaussian initial conditions8, the conditional
distribution pG(δ′|νc) is a Gaussian with mean νc and variance 1/Γ2, where

Γ2 =
1

〈δ′2〉 − 1
=

γ2

1− γ2
=

1

σ2 〈ν ′2〉 , (2.70)

and γ2 = 〈δ′δ〉2/
〈
δ′2
〉 〈
δ2
〉
is the cross-correlation coefficient between the density and its

slope9. Thanks to this factorization, integrating equation (2.69) over δ′ yields the fully analytical
expression

fup(σ) = pG(νc)
µ

σ
F (X) , (2.71)

where pG is a Gaussian with mean 〈ν〉 = 0 and variance Var(ν) = 1. For a constant barrier, the
parameters µ and X are defined as

µ ≡ 〈δ′ | νc〉 = νc , and X ≡ µ
√

Var(δ′ | νc)
= Γνc , (2.72)

7A careful calculation shows that the step function should be asymmetric, so that ϑH(δ − δc) = 1 when δ = δc
instead of 1/2.

8No conceptual complications arise in dealing with a non-Gaussian distribution, which is nonetheless beyond the
scope of this dissertation.

9recalling that 〈δ′δ〉 = σ so that γ2 = 1/
〈

δ′2
〉

.
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with

F (x) ≡
∫ ∞

0
dy

y

x

e−(y−x)2/2

√
2π

=
1+erf(x/

√
2)

2
+
e−x2/2

x
√
2π

, (2.73)

which is a function that tends to 1 very fast as x→ ∞, with correction decaying like e−x2/2/x3.
It departs from one by ∼ 8% for a typical Γνc ∼ 1. Equation (2.71) can be written explicitly as

fup(σ) =
νce

−ν2c /2

σ
√
2π

F (Γνc) , (2.74)

where the first factor in the r.h.s. of equation (2.74) is the result of Press and Schechter, 1974,
ignoring the factor of 2 they introduced by hand to fix the normalization. For correlated steps,
their non-normalized result reproduces well the large-mass tail of f(σ) (which is automatically
normalized to unit and requires to correcting factor), but it is too low for intermediate and small
masses. The upcrossing probability fup(σ) also reduces to this result in the large mass limit, when
Γνc ≫ 1 and F (Γνc) ≃ 1. However, for correlated steps fup(σ) is a very good approximation
of f(σ) on a larger mass range. For a ΛCDM power spectrum, the agreement is good for halo
masses as small as 1012M⊙ h

−1, well below the peak of the distribution. The deviation from the
strongly correlated regime is parametrized by Γνc, which involves a combination of mass and
correlation strength: the approximation is accurate for large masses (small σ and large νc) or
strong correlations (large Γ). Although Γ mildly depends on σ, fixing Γ2 ∼ 1/3 (or γ ∼ 1/2)
can be theoretically motivated (Musso and R. K. Sheth, 2014a) and mimics well its actual value
for real-space Top-Hat filtering in ΛCDM on galactic scales. The limit of uncorrelated steps
(Γ = 0), whose exact solution is twice the result of Press and Schechter, 1974, is pathological
in this framework, with fup becoming infinite. More refined approximation methods can be
implemented in order to interpolate smoothly between the two regimes (Musso and R. K. Sheth,
2014b).

From equation (2.71), a characteristic massM⋆ can be defined by requesting that the argument
of the Gaussian be equal to one, i.e. νc = 1 or σ(M⋆) = δc/D. This definesM⋆ implicitly via

equation (2.62) for an arbitrary cosmology. This quantity is particularly useful because fup(σ)
does not have well-defined moments (in fact, even its integral over σ diverges). This is a common
feature of first passage problems (Redner, 2001), not a problem of the upcrossing approximation:
even when the first-crossing condition can be treated exactly, and f(σ) is normalized – it is a
distribution function –, its moments still diverge. Therefore, given that the mean 〈M〉 of the
resulting mass distribution cannot be computed,M⋆ provides a useful estimate of a characteristic
halo mass. In chapter 3, I will revisit this subject to imposing larger tides. We will see that since
the process remains Gaussian, it boils down to shifting the mean and the covariances.

2.1.5 The peak patch theory

The peak patch theory as introduced by Bond and Myers, 1996 aims at providing a more com-
prehensive description of the formation of dark matter halos. It is built as a combination of the
excursion set theory (detailed in section 2.1.3), spherical collapse (detailed in section 2.1.2.2) and
the Zel’dovich approximation (detailed in section 2.1.2.3). The theory aims to reproduce the mass
distribution of dark matter halos using smoothing operations in the initial Lagrangian field, but
also to predict the spatial distrbution in Eulerian space, using the Zel’dovich flow as an estimation
of the displacement of the structures from their initial Lagrangian position.

The fundamental quantity in peak theory is the set of local maxima of the density field;
therefore, peaks define a point process. Since the evolved density field is highly nonlinear, the
peak constraint is generally applied to the initial (Lagrangian) Gaussian density field, with the
assumption that the most prominent peaks should be in one-to-one correspondence with luminous
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Figure 2.1.7: Excursion set trajectories constrained to δ = δc (dotted line) at σ = 0.5
(blue bundle), σ = 1 (orange bundle) and σ = 1.5 (green bundle), dashed lines show
mean trajectories. 93% (resp. 74%, 64%) of the first-crossing trajectories at σ = 0.5
(resp. σ = 1, σ = 1.5) are upcrossing.

galaxies or massive halos in the Universe. The theory is based on the study of the peaks of the
initial density fields, which can be derived using the Kac-Rice formula (Kac, 1943; Rice, 1945). For
a Gaussian random field δ, let {q1, q2, . . . , qp, . . . } be the Lagrangian position of point-particles
such as centres of halos in some volume. The comoving Lagrangian density ng(q) of these
point-particles is formally written as a sum of Dirac distributions

n(q) =
∑

p

δ
(d)
D (q − qp) . (2.75)

In order to derive the number density in terms of the properties of the field, let us introduce the
following variables

x ≡ δ

σ
, xi ≡

∂iδ

σ1
, xij ≡

∂i∂jδ

σ2
, (2.76)

where the σi are defined in section 2.1.7.1. Here we are using a different naming convention
compared to the original paper Bardeen et al., 1986. For reference, their result can be obtained
using the following substitutions x = ν, xi = ηi/σ1 and xij = ξij/σ2. Here we implicitly
assumed the field to be smoothed at some scaleR with any filter for which σ2 is finite. Filters that
verifies this property are notably the sharp-k filter and the Gaussian filter, while the physically
motivated Top-Hat filter does not. Indeed, at large k,WTH(kR) ∼ −3 cos(kR)/kR so that the
integrand of σ2 becomes ∼ k2P (k) cos2(kR) which, for any power spectrum decaying more
slowly than k−2, has a UV-divergence.

In the case of critical points (maxima, saddle points and minima) the number density ncp(q)
can be entirely expressed in terms of x, xi and xij . Without loss of generality, let us suppose that
a critical point exists at the origin and let us derive the expression of the number density in its
vicinity. Since the gradient at the critical points is null by definition, the gradient at a position q
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can be expressed using a Taylor expansion

xi(q) = xi(0)
︸ ︷︷ ︸

0

+
σ2
σ1
qixij(0). (2.77)

This expression can then be plugged back in equation (2.75), provided that xij is invertible10,

ncp(q) = δ
(d)
D

(
σ2
σ1

(xij)
−1xi

)

, (2.78)

where d is the number of dimensions. All the terms except for xi can be taken out of the Dirac
distribution so that the number density becomes

ncp(q) =

(
σ1
σ2

)d

|xij |δ(d)D (xi) . (2.79)

In order to get the number density of a given kind of critical point, equation (2.79) needs to
be extended to take into account the eigenvalues λ1, λ2, . . . , λd of the hessian of the field. The
number density of maxima is given by

nmax(q) =
|xij |
Rd∗

δ
(d)
D (xi)

∏

j≤d

ϑH(−λj) . (2.80)

Here R∗ is the typical distance between extrema, see section 2.1.7.1. In more general terms,
one can define the kind of a critical point by the sign of its (sorted) eigenvalues, also named the
“signature”. In three dimensions, maxima have a signature−−−, filament-type saddle points+−−,
wall-type saddle points ++− and minima +++. Noting k the number of negative eigenvalues,
the number density reads

nk(q) =
|xij |
Rd∗

δ
(d)
D (xi)

∏

j≤k

ϑH(−λj)
∏

j>k

ϑH(λj) . (2.81)

The mean number density can be exactly calculated for a Gaussian field in two and three dimen-
sions. In two dimensions, the mean number densities are

〈nmax〉 = 〈nmin〉 =
1

8
√
3πR2∗

, (2.82)

〈nsad〉 =
1

4
√
3πR2∗

. (2.83)

In three dimensions, the mean number densities are

〈nmax〉 = 〈nmin〉 =
29
√
15− 18

√
10

1800π2R3∗
, (2.84)

〈nsadf〉 = 〈nsadw〉 =
29
√
15 + 18

√
10

1800π2R3∗
. (2.85)

The “localized” number density, i.e. the number density at fixed height, can be easily derived from
there

nk(q, ν0) = nk(q)δD(x− ν0) . (2.86)

10The extension to the case where xij is not invertible is provided in chapter 4.
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Figure 2.1.8: 3D representation of the mean angular momentum of halos (arrows) in the
vicinity of a flattened filamentary structure (red cylinder) computed from first principle
using conditional tidal torque theory. Close to the filament saddle point, the spins are
aligned with the axis of the filament. Close to the nodes (at both ends of the filament),
the spins become perpendicular to the axis of the filament and “rotate” around its axis.

This quantity is of interest to the study of the formation of halos, as it yields the number density
of peaks of a given height. Using the spherical collapse model with x = σδc/D(z), one can then
relate equation (2.86) to the number density as a function of time (using spherical collapse) and
mass (using the smoothing scale). In peak theory, the number density of halos in Eulerian space
is then obtained by shifting each peak by their individual Zel’dovich displacement, connecting
the properties of the initial field to the later time halo distribution.

2.1.6 Tidal torque theory

The tidal torque theory has been developed to address the problem of the halo and galaxy
angular momentum acquisition. In this model, proto-halo and proto-galaxies acquire their angular
momentum by tidal torquing coming from the surrounding matter distribution (Hoyle, 1949;
Peebles, 1969; Doroshkevich, 1970; S. D. M. White, 1984; Catelan and Theuns, 1996; Crittenden
et al., 2001; Schäfer, 2009). Given a proto-halo that will later collapse, TTT provides an estimate of
the growth of the angular momentum about the centre of mass, to the lowest non-vanishing order
in perturbation theory. To do so, TTT links the evolution of the angular momentum (defined
below) to the misalignment of the inertia tensor, which describes the spatial distribution of matter
in the proto-halo, and the tidal tensor, which describes the tides from the larger scale environment.
The upshot of the theory is that gravitational torques act to realign the inertia tensor of matter
with the tidal tensor at larger scales, resulting in a net torque.

In general, the angular momentum L(t) of a rotating volume V , with velocity v(r, t) and
density ρ(r, t) with respect to its centre of mass is

L(t) ≡
∫

V
d3r r× vρ(r, t). (2.87)

Here I have implicitly assumed that the centre of mass is at the origin for the sake of simplicity and
that the mean velocity is 0. Let me now assume an initial proto-halo of volume VL in Lagrangian
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space, with mean density ρ0. I have shown in section 2.1.2.3 that in the mildly non-linear regime,
the time evolution of the particles can be described as a function of the displacement field using
equation (2.55) and equation (2.60)

ẋ = Ḋ+(t)∇ψ. (2.88)

One can then rewrite equation (2.87) for the proto-halo in terms of the peculiar velocity of its
particles, i.e.

L(t) = a5ρ0

∫

VL

d3q q× ẋ ≈ a5ρ0D+

∫

VL

d3q q×∇ψ(q). (2.89)

Let me further assume that the displacement field varies slowly in the proto-halo, so that

∇ψ(q) ≈ ∇ψ(0) + q∇∇ψ(0), (2.90)

so that the displacement field can be expressed as function of the tidal shear gensor ∇∇ψ
evaluated at the centre of mass. The expression of the angular momentum of the volume can be
further simplified introducing the inertia tensor I (the quadrupolemoment of themass distribution)
in Lagrangian coordinates

Iij ≈ ρ0a
3

∫

LV

d3q qiqj . (2.91)

For an initally uniform density, one can use the inertia tensor to describe the mass distribution as
an ellipse whose axes are the eigenvectors of I and semi-axes are the square root of the eigenvalues.
In the end, the i-th component of the angular momentum can be expressed as a function of time
and the initial inertia tensor and tidal shear tensor

Li(t) = a2Ḋ(t)ǫijkIjlψlk. (2.92)

Here I have used the fully anti-symmetric Levi-Civita tensor ǫijk and the tidal shear tensor ψij .
Equation (2.92) shows that the angular momentum initially grows as a2(t)Ḋ(t) which is ∼ t for
a EdS Universe (Porciani et al., 2002). In addition, only the traceless parts of the inertia and the
tidal shear enter equation (2.92), as the trace describes the compression (or expansion) of the
proto-halo. Equation (2.92) also shows that L(t) is null if the volume is spherical (so that the
inertia tensor is symmetric) or is bounded by an equipotential surface (so that the tidal shear is
symmetric). In the frame of the eigenvalues (t1, t2, t3) of the tidal shear, equation (2.92) simply
reads Li ∝ (tj − tk)Ijk, where i, j, k are cyclic permutations of 1, 2 and 3 (Porciani et al., 2002),
e.g. L1 ∝ (t2 − t3)I23. Tidal torquing is effective until the moment of turnaround in the spherical
collapse picture, because the collapse dramatically reduces the lever arms. After the collapse, the
halo conserves the angular momentum it has accumulated until turnaround.

More recently, Codis et al., 2012 suggested an extension of the TTT, coined “constrained TTT”.
The theory relies on the study of the primordial field, constrained to a large-scale filamentary
structure, in which the tidal tensor as well as the inertia tensor become functions of space. Since
the tidal tensor probes larger scales than the inertia tensor, the effect of large-scale structures
act differentially on their typical orientations: the former tends to be aligned towards large
overdensities (typically a node of the cosmic web), while the former is aligned to the local most
massive structure (typically the nearest filament). On average, the upshot of the theory is that the
typical orientation of the angular momentum of the proto-halo, which measures the misalignment
of the two tensors, is modulated by the cosmic web: the angular momentum is aligned with the
filaments for small proto-halos, found close to the filament saddle point, and become perpendicular
for larger ones, found close to the nodes (the spin rotates around the filament), as shown on
figure 2.1.8. This is a typical example of the impact of the cosmic web on a galactic property.

This approach, where the initial conditions are constrained to take into account large-scale
filamentary structures, will be further explored in the following of the dissertation.
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2.1.7 Description of Gaussian random fields

In this section, I provide some useful variables that can be used to describe a Gaussian random
field. In section 2.1.7.1, I define the variance of the field and its derivatives, as well as spectral
parameters that encode the cross-correlation of the field and its derivatives. In section 2.1.7.2,
I show how one can match smoothing scale when smoothing a field with different filters, in
particular going from Gaussian filtering to Top-Hat filtering.

2.1.7.1 Spectral parameters of the field

When deriving quantities from the initial density field, it is of interest to quantify the variance of
the field as they are natural scales for the rarity of events. This is usually done in terms of the
generalized variance of the field and its derivatives and anti-derivatives

σ2i (R) =
1

2π2

∫

dk k2P (k)k2iW 2(kR) , (2.93)

so that
σ20 = 〈δ2〉, σ21 = 〈(∇iδ)

2〉, σ22 = 〈(∆δ)2〉, σ23 = 〈(∆∇iδ)
2〉, (2.94)

where the gradient∇iδ can be evaluated in any arbitrary direction. The evolution of σ0(R) for
different filters is shown on figure 2.1.2, right panel.

Following closely Pogosyan et al., 2009, let us introduce the characteristic scales of the field

R0 =
σ0
σ1
, R∗ =

σ1
σ2
, R̃ =

σ2
σ3
. (2.95)

These scales are ordered as R0 ≥ R∗ ≥ R̃. The first two have well-known meanings of typical
separation between roots of the field R0 and mean distance between extrema, R∗ (Bardeen et al.,
1986) and the third one, R̃ is, by analogy, the typical distance between inflection points. This also
gives a motivation for the ordering of the scales: in 1D, there is at least one extrema between
each root of a function and there is at least one inflection point between each root, so that the
distance between consecutive roots is larger than the typical distance between peaks. As shown
in section 2.1.5, the scales enter naturally the expressions of the number density of peaks (R∗)
and anticipating the results to come, we can expect R̃ to enter any number density requiring the
knowledge of the field and its third derivative.

Let us define a set of spectral parameters that depend on the shape of the underlying power
spectrum. Out of these three scales two dimensionless ratios may be constructed that are intrinsic
parameters of the theory

γ ≡ R∗
R0

=
σ21
σ0σ2

, γ̃ ≡ R̃

R∗
=

σ22
σ1σ3

. (2.96)

From the geometrical point of view γ specifies how frequently one encounters a maximum
between two zero crossings of the field, while γ̃ describes, on average, how many inflection points
are between two extrema. Using the results of section 2.1.1.3, one can rewrite σ21 in terms of
〈
δ∇2δ

〉
so that γ and γ̃ are the cross-correlation coefficients between the field and its derivatives

at the same point

γ = −〈δ∆δ〉
σ0σ2

, γ̃ = −〈∇δ ·∆∇δ〉
σ1σ3

. (2.97)

These scales and scale ratios fully specify the correlations between the field and its deriva-
tive at the same point. For power-law spectra with Gaussian smoothing at scale R, R0 =
R
√

2/(n+ 3), R∗ = R
√

2/(n+ 5) and R̃ = R
√

2/(n+ 7) while γ =
√

(n+ 3)/(n+ 5) and
γ̃ =

√

(n+ 5)/(n+ 7). Note that the definition of equation (2.96) is not the same as the definition
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used in the excursion set theory (see e.g. equation (2.70)). In the following of the dissertation,
unless stated otherwise, we will use the definition of equation (2.96). For the sake of completeness,
let us remind here the definition of γ entering the excursion set theory, which we will distinguish
from the definition above using the subscript “ES”

γ2ES =
〈δδ′〉2

〈δ2〉 〈δ′2〉 . (2.98)

For power-law spectra with an index ns < −1 smoothed with a Top-Hat filter, γES = (ns +
1)(ns + 3)/ns(ns + 5).

2.1.7.2 Matching smoothing scales

Figure 2.1.2, right panel shows the variance of the field smoothed with different filters. It shows
that at the same scale, the Gaussian filter has a smaller variance than the Top-Hat filter. In order
to study the same level of non-linearity, one has to establish a mapping between the smoothing
scale. Using the definition of the variance of the field

σ2(R) =

∫ ∞

0
dk

k2P (k)

2π2
W (kR)2, (2.99)

we have for a Top-Hat filter with a power-law power spectrum with spectral index n

σ2TH(R) = 9× 2n−1 (n+ 1)R−n−3 sin
(
nπ
2

)
Γ(n− 1)

π2(n− 3)
, (2.100)

while for a Gaussian filter it is

σ2G(R) =
R−n−3Γ

(
n+3
2

)

4π2
. (2.101)

The field smoothed by a Top-Hat filter at scale R and a Gaussian filter at scale (R/α) have the
same level of non-linearity if σTH(R) = σG(R/α), i.e.

α(n)n+3 = 9× 22−n sin
(
nπ
2

)
Γ(n− 1)

(n− 3)Γ
(
n+1
2

) . (2.102)

For example α(−2) = 6
√
π

5 ≈ 2.12. For a ΛCDM power spectrum α becomes a weak function
of the smoothing scale, for example α(R = 0.5Mpc/h) = 2.14 while α(R = 8Mpc/h) = 2.12.
The evolution of α with the smoothing scale is shown on figure 2.1.9, which shows that at scales
involved in galaxy formation α ≈ 2.1.

2.2 Galaxy formation

On large scales, the effect of baryonic processes is very small and baryons simply follow the
dark matter dynamics. However, on small-to-intermediate scales, baryonic physics cannot be
neglected and should be taken into account. This is particularly challenging, as the physics
driving the evolution of the baryons is made of non-linear and highly coupled equations. To make
things worse, the gravitational force and turbulence couple different scales together. A pragmatic
approach to the problem of galaxy formation is to write numerical codes that simulate all relevant
physical processes. In the simulated in silico Universe, one can then study the formation of
galaxies to better understand observations and constrain their models.

In practice, the problem of galaxy formation could be rephrased as a Cauchy problem, where
the initial conditions are set to a Gaussian random field according to the ΛCDM model, while
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Figure 2.1.9: Ratio of the Gaussian smoothing scale to the Top-Hat smoothing scale to
get the same level of non-linearity for a ΛCDM power spectrum σTH(R) = σG(R/α).
Horizontal gray lines show the value of α for some power-law power spectra (which
does not depend on R).

coupled partial differential equations describe the interactions via the four fundamental forces.
However, the different scales at play make a numerical treatment particularly difficult: the
formation of a galaxy depends on its large scale environment on Mpc scales, its dynamical
evolution is on kpc scales, while the evolution of its stars and its central Supermassive Black Hole
(SMBH) act on sub-pc scales and these scales are coupled via the gravitational force.

The challenge for cosmological numerical simulations is then two-fold. First, since the
resolution of numerical simulations is finite, effective models should be build to account for the
unresolved physics. Second, numerical simulations should be able to capture processes at very
different scales. Section 2.2.2 provides a description of the different physical processes involved
in galaxy formation while focusing particularly on their implementation in the code Ramses.
Section 2.2.3 presents the set of equations solved and the numerical methods involved in their
resolution.

2.2.1 Classical model of galaxy formation

In the classical model of galaxy formation, galaxies grow by the accretion of gas at the centre
of the potential well of DM halos. The gas is initially distributed uniformly and traces the DM
distribution (on scales larger than the Jeans length). Following the evolution of proto-halos, the
gas first expands with the Hubble flow until turn-around. Let me first describe the physical state
of the gas in the halo, before discussing implication on the mode of accretion.

Let me assume a cloud of monoatomic gas of massMgas in the potential of the DM halo, with
massMvir and virial radius Rvir. If one assumes that the gas is in equilibrium, the virial theorem
reads

2K + U +Σ = 0, (2.103)

whereK is the kinetic (thermal) energy of the gas, U is the gravitational potential energy and
Σ is the work of the external pressure forces. For an isothermal monoatomic gas (γ = 5/3) and
assuming that the external pressure vanishes, we have

K =
3MgaskBT

2µmp
, U = −3GMgasM

5r
, (2.104)

where µ is the mean molecular weight of the gas and mp the proton mass. Here, I have assumed
that the cloud has a radius r and spherical symmetry. If one introduces the circular velocity
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V 2
c = GM/r, the temperature of the gas then reads

T =
µmp

5kB
V 2
c = 2.4× 105µ

(
Vc

100 km s−1

)2

K, (2.105)

which defines the virial temperature. At the centre of the halo where the density is higher, gas
slowly cools down from the inside-out and therefore looses its pressure support. This enables
further gravitational collapse, which, in turn, leads to star formation.

Upon its entry in the halo, the accreted gas will encounter the hot halo gas at temperatures of
the order of 2× 105K. If the accreted gas is cooler than the virial temperature, as is expected
for primordial gas, a general expectation is that an accretion shock will form (see e.g. Binney,
1977; Bertschinger, 1985; Tozzi and Norman, 2001; Benson, 2010, and references therein), with
a general conclusion that the shock occurs at a radius comparable to or slightly larger than the
virial radius and the accreted gas will be shock-heated to the virial temperature.

On the contrary, if the cooling time is short compared to the dynamical time, the gas is able
to flow into the centre of the halo without heating (S. D. M. White and Frenk, 1991). Based on
3D numerical simulations, it was confirmed that a significant fraction of the gas in low-mass
galaxies has never been shock heated (see e.g. Kereš et al., 2005; Ocvirk et al., 2008; Kereš et al.,
2009; Nelson et al., 2013) and reaches the galaxy through cold flows. Using an analytic treatment,
Birnboim and Dekel, 2003 showed that if the cooling times are sufficiently short in the post-shock
region, the shock looses its pressure support and becomes unstable, shrinking to smaller radii.
This is expected for small mass halosM < 1012M⊙, but also for more massive ones at z > 2.
These cold flows have since been identified as a robust prediction of theΛCDMmodel, consistently
reproduced in different numerical codes with different subgrid models (Stewart et al., 2017).

2.2.2 Baryonic processes

This section provides an overview of the different phenomenon at play in galaxy formation. It is
particularly focused on their numerical implementation and especially in Ramses. Section 2.2.2.1
describes how gas is cooled and heated. Section 2.2.2.2 describes how stars form and release energy
as supernovæ. Section 2.2.3 details the different methods used to account for the cosmological
context.

2.2.2.1 Gas cooling and heating

Following the results of section 2.1.2.2 halos are virialized structures that cannot collapse much
further as their kinetic energy balances out their gravitational energy. In order to form galaxies
at their centre, the gas needs to be able to collapse further. This can only happen if the gas can
get rid of its thermal energy, which happens mainly via cooling. In order to understand galaxy
formation, one needs to compare the different timescales. The first timescale at play here is the
cooling timescale

tcool =
E

Ė
. (2.106)

The timescale associated with the expansion of the Universe is the Hubble timescale

tH ∼ H(z)−1. (2.107)

The timescale associated with the monolithic collapse of a pressure-less fluid is the free-fall, or
dynamical, time

tdyn ∼ (Gρ)−1/2. (2.108)

There are then three scenarios. If tcool > tH, the Universe expands faster than the gas cools and
no significant collapse can take place. If tdyn < tcool < tH, the system evolves quasi-statically
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Table 2.3: Various radiative transitions of importance in forming galaxies.

Type Reaction Name

Free-Free e− +X+ → γ + e− +X+ Bremsstahlung

Free-Bound e− +X+ → X+ γ Recombination
Bound-Free e− +X → 2e− +X+ Collisional ionisation
Bound-Bound e− +X → e− +X∗ Collisional excitation

but the gas cannot cool efficiently to form galaxies. In practice, a succession of cooling followed
by adiabatic contraction can happen at constant Jeans mass, but this does not lead to an efficient
gravitational collapse. Finally if tcool < tdyn, the extra energy of the gas is quickly radiated away
and gravitational collapse can happen. In this case, the loss of pressure following a temperature
decrease is rapid so that the Jeans mass drops without giving the system a chance to re-adjust its
density. The drop in Jeans mass can lead to smaller structures being able to collapse gravitationally
and hence to fragmentation. The precise study of the cooling and heating processes is therefore
at the core of our understanding of galaxy formation. The main paths to cool the gas are the
Compton cooling and radiative cooling.

Cooling processes

Compton cooling happens when a low-energy photon passes through an ionised thermal gas. In
the process, photons and electrons exchange energy due to Compton scattering so that electrons
lose energy to the radiation field, causing the gas to cool. It turns out that the change in the
energy density of the radiation uγ can be expressed as

duγ
dt

=
4kb
mec

σTneuγ(Te − Tγ), (2.109)

where σT is the Thomson scattering cross-section, ne is the electron number density, Te is the
electron fluid temperature and Tγ is the temperature of the radiation. In the case of cosmology,
the photons come from the CMB and we have Te ≫ Tγ . Thus, we have a net gain of energy in
the photons, and hence a net loss of energy in the electrons, which in turn will induce a net loss
in the gas. This process is known as inverse Compton scattering. Using the fact that uγ = aT 4

γ ,
where a is the expansion factor, the cooling rate per unit volume becomes

CComp =
4kBTe
mec

σTneaT
4
γ ∝ neTe(1 + z)4. (2.110)

The cooling is therefore most efficient at high-redshift, but after reionisation since it requires free
electrons to interact with, and the cooling timescale is

tcool,Comp ≈ 2.3× 1012(1 + z)−4yr, (2.111)

which equals the Hubble time at about z ∼ 6. After reionisation and before z ∼ 6, the gas can
cool efficiently using inverse Compton scattering.

Radiative cooling is a two-body radiative process that happens when a pair of atoms loses
energy as a result of their interaction. The main processes of radiative cooling are listed in
Table 2.3. The type of the interaction depends on the physical state of the electrons involved (free
or bound). At high temperatures T ' 107K11 the dominating process in the fully ionised gas is
bremsstahlung. The process is due to successive interactions between electrons and ions which

11The temperature depends notably on the metallicity of the gas.
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bends the trajectories of the electrons, resulting in the emission of a radiation. The cooling rate
per unit volume, assuming a charge number of unity and ni ∼ ne, valid for a completely ionised
hydrogen gas, is

Cff ≈ 1.4× 10−23

(
T

108K

)1/2 ( ne

1 cm−3

)2
erg s−1 cm−3. (2.112)

This process gives us the behaviour of the cooling rate at high temperature Cff ∝
√
T .

At lower temperatures, several other processes become important. The first is collisional
ionisation, in which atoms become ionised by collisions with other atoms. In the process, part of
the kinetic energy of the atoms is used to ionise the electron. The second is recombination, in
which an electron recombines with an ion, emitting a photon. The third is collisional excitation,
in which atoms are first excited by collisions with electrons and then emit a photon on their
transition to the ground state. The efficiency of the three processes depends strongly on the
temperature as well as the chemical composition of the gas.

At temperatures below 104K, most of the electrons have recombined and cooling due to
collisional excitation drops quickly. At this temperature, cooling is still possible, albeit smaller, e.g.
by exciting the rovibrational levels of molecules. For metal enriched gas, CII and OI fine structure
transitions contribute to the cooling (see e.g. Wolfire et al., 2003).

In practice, cooling is numerically treated using the cooling function

Λ ≡ C
n2H

, (2.113)

where C is the total cooling rate (including all the mentioned processes) per unit volume and
nH is the number density of hydrogen atoms. The cooling function is usually derived in the
collisional ionisation equilibrium limit, assuming that the relaxation times are fast enough. The
cooling function also depends on the metallicity of the gas. Figure 2.2.1, left panel, shows the
cooling function of a Z = 0.02Z⊙ gas. Most notably, the first peak of the cooling function is due
to collisions involving H atoms, while the second peak is due to He and metals collisions and
depends on the exact composition of the gas ; figure 2.2.1, right panel, shows the contribution of
the different chemical species to the cooling function for aZ = Z⊙ plasma. It is worth mentioning
that some codes now compute out-of-equilibrium cooling rates for H and He, such as Grackle or
Krome (Grassi et al., 2014; Smith et al., 2017).

Heating processes

In addition to the different cooling mechanism, an atom can also be ionised by absorbing a
photon, a process called photoionisation. The presence of a radiation field can change the
population of ions, which in turn can have an impact on the cooling rate of the gas. It can also
heat the gas via photoionisation heating: an ionising photon is absorbed by an electron, part of
the energy is used to ionise the electron and the surplus is transferred as kinetic energy. The
photoionisation heating rate per unit volume is expected to be proportional to the intensity
of the radiation field. Since the process is based on the ionisation of a an electron, it is most
efficient at low temperatures where the gas is not fully ionised. In the presence of a UV radiation
background of J(ν) = 10−22 (νH/ν) erg s

−1 cm−2 sr−1Hz−1, a gas in ionisation equilibrium has
a photoionisation heating that balances the cooling at temperature T / 104 − 105K, depending
on the gas density.

2.2.2.2 Stellar models

To understand the non-linear problem of galaxy formation and evolution, theorists use cosmo-
logical simulations of DM, describing the flow and collapse of baryonic star-forming gas either
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Figure 2.2.1: (Le�:) Cooling function in the collisional ionisation equilibrium limit for a
Z = 0.02Z⊙ plasma. From Gnedin et al., 2015. (Right:) Cooling function for a Z = Z⊙
plasma, indicating the contributions the each chemical species to the cooling function.
From Wiersma et al., 2009. The dominant contribution to the cooling function at low
temperature are H and He atoms. At T ∼ 105K, different metals dominate the cooling
function, depending on the chemical composition of the gas. At large temperature, the
cooling is dominated by Bremsstahlung.

Figure 2.2.2: Le�: HST image of M82 showing “light echoes” around a supernova bubble
(from Yang et al., 2017) Centre: HST image of the crab nebula (remnant of SN1054).
Right: Composite image of Kepler’s supernova remnant (CXO, HST and Spitzer Space
Telescope). Credits: NASA, ESA, JHU.

with directly coupled hydrodynamics or semi-analytic models. Strong feedback in galaxies is
a vital ingredient in any model of galaxy evolution that comes even close to reproducing basic
observables, such as the star formation history of the Universe, the stellar mass function of
galaxies, the Kennicutt–Schmidt relation, rotational velocities and outflows (e.g. Vogelsberger
et al., 2013; Dubois et al., 2014; Hopkins et al., 2014; Schaye et al., 2015; Somerville and Davé,
2015).

Indeed, naive arguments would predict that star formation consumes stars over a few free-fall
times, effectively depleting an entire galaxy in a few million years. Observations on the other
side show that the process of star formation should be rather slow and inefficient. In addition,
observations show the ubiquitous presence of large, massive outflows around galaxies (e.g. Cecil
et al., 2001) of hundreds of km/s, that each release about 1051 erg. The origin of these outflows
can be traced back to bubbles expanding around supernova remnants (see for example figure 2.2.2).
Each exploding supernova releases large amounts of energy that are able to drive large-scale
shocks, pushing gas outwards and leaving the shocked region heated and ionised.

Any simulation aimed at reproducing galaxies as we observe them must therefore include
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stars, but also track their evolution and their explosion. As of today, numerical simulations still
struggle to consistently track the formation, evolution and destruction of stars.

A full treatment of the formation of stars would indeed require to resolve the physics at play
in star formation: the collapse of molecular clouds into proto-stars, the ignition of their internal
fusion, the accurate tracking of the winds, and eventually their explosion into supernovæ, etc.
Some codes exist that do follow these processes (e.g. MESA, Paxton et al., 2011), yet they require a
simulation of their own for each individual star. While these codes provide useful information to
understand the evolution of small populations of star, they clearly cannot be scaled up to galaxy
or, even worse, cosmological simulations.

Since it is unpractical to follow all stars that make up a galaxy in a large cosmological
simulation, one should relax the goal to track each of them individually and track them as small
populations instead. This is the current approach of most cosmological simulations (e.g. Hopkins
et al., 2014; Dubois et al., 2016). Simulations are populated with “stellar particles” that represent a
star population with a coherent formation time. The rate of star formation is usually given by a
Kennicutt law (Kennicutt, 1998). This law links the local properties of the gas (local density and
local free-fall time) to the star formation rate ρ̇⋆

ρ̇⋆ = ε
ρ

tff
, (2.114)

where ε is the star formation efficiency, which is usually set to a few percent in order to agree
with observations, tff is the free-fall time and ρ the gas density. This law is the three-dimensional
counterpart of the Schmidt law (Schmidt, 1959) that links the surface brightness of a galaxy
to the observed surface density. More refined models have also been built in which the star
formation efficiency becomes a function of additional properties of the gas, for example of their
gravo-turbulent properties (Kimm et al., 2017; Trebitsch et al., 2017) following the results of
Federrath and Klessen, 2012 which showed the role of turbulence in driving up or down the star
formation efficiency. The stellar population is assumed to be sampled by its Initial Mass Function
(IMF). Various models exist (Salpeter, 1955; Kroupa, 2001; Chabrier, 2003) that mostly differ on
the low and high mass ends of the IMF, which will in turn have an impact on the feedback caused
by the supernovæ. Indeed, top-heavy IMFs have more stars on the massive end and will produce
more supernovæ, boosting the efficiency of the stellar feedback.

After a few million years, the most massive stars start exploding into supernovæ. Doing so,
they yield back metals as well as inject energy in the interstellar medium. Multiple models have
been proposed to track how and where energy and momentum is fed back to the gas, as well
as the total quantity returned (the yield). Let us briefly detail those used in Ramses as well as
provide some hints of their pros and cons, following the lines of Rosdahl et al., 2017.

In the first supernova feedback models (Katz, 1992), all the energy was released as thermal
energy in the gas surrounding the stars. This however had little effect on the star formation rate,
which leads to the so-called overcooling problem. In this model, the energy is diluted into a large
amount of gas which in turn heats up a little bit. Because the energy has been spread over a
large volume compared to the physical size of the supernova bubble, the gas is able to radiatively
cool quickly. In practice, the cooling is so fast that the energy is usually radiated away in a few
timesteps, and all the injected energy is lost before a significant fraction has been converted to e.g.
kinetic energy. While the cooling of the gas is physically motivated (see section 2.2.2.1), the issue
of this model is that the energy is spread into too large a volume, resulting in an overestimation
of the cooling rates.

In order to solve the overcooling problem, different sub-grid models have been built, each of
which aimed at reducing the amount of energy loss by (over-estimated) radiative cooling, which
can be gathered into four classes.
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Figure 2.2.3: Effect of the different feedback models, from left to right: no feedback,
direct thermal dumping, kinetic feedback, delayed cooling, stochastic feedback and
mechanical feedback. From Rosdahl et al., 2017. Effective feedback leads to smoother,
thick discs with larger outflows.

In kinetic feedback models, a fraction of the supernova energy is directly injected as momentum
in the gas (Navarro and S. D. M. White, 1993; Springel and Hernquist, 2003; Dubois and Teyssier,
2008). In delayed cooling models, radiative cooling is temporarily disabled in the cell containing
the supernova remnant (Gerritsen, 1997; Stinson et al., 2013; Teyssier et al., 2013). In stochastic

feedback models, the supernova energy is spread over time and space into fewer but more energetic
explosions (Dalla Vecchia and Schaye, 2012; Rosdahl et al., 2017). Finally, multiphase models track
the different phases of the gas (hot and cold), resulting in a more efficient feedback. A physically
motivated approach to the problem would be to have different models for different grid resolutions
and different states of the surrounding medium. This is the approach followed by the mechanical

feedback model (Kimm and Cen, 2014; Kimm et al., 2015). The effect of these models is illustrated
on figure 2.2.3, which presents a comparison of the different feedback models on the disc of an
idealized galaxy. The study of the impact of the feedback models on galaxy formation is an active
domain of research (e.g. Rosdahl et al., 2017; Kimm et al., 2017; Nelson et al., 2019).

It is worth noting that, in addition to Supernova (SN) feedback, a key ingredient in galaxy
formation is Active Galactic Nuclei (AGN) feedback (e.g. Silk and Rees, 1998; Magorrian et al.,
1998; Harrison et al., 2018, for a recent review).

2.2.3 Numerical simulations

While the formation of the large-scale structures of dark matter halos can be studied to some
extent from first principles, as detailed in section 2.1, the complex baryonic physics involved in
galaxy formation make the task much more complex on smaller scales. This is usually dealt with
numerical simulations. The intrinsic multi-scale nature of the phenomenon involved in galaxy
formation is however challenging to any numerical treatment, as was already underlined in the
previous section, as very different scales are coupled. For example, sub-kpc scales involved in
galaxy formation are coupled to the large-scale hydrodynamical evolution of the gas by powerful
feedback events, which may disrupt the gas at hundreds of kpc. This in turn will impact the
inflow of gas and couple back to feedback.

Let us illustrate this scale-coupling problem with some back-of-the-envelope calculation to
estimate the number of resolution element required to resolve galaxies and the cosmic web at
the same time. In order to accurately capture the evolution of a galaxy in its environment, the
size of the simulated Universe should be at least an order of magnitude larger than the maximum
distance travelled by the particles ending up in the central galaxy. Assuming that the galaxy is
a Milky-Way like progenitor, its initial Lagrangian patch has a size of the order of a few Mpc
so that the box size should at least be a few tens of Mpc. At the same time, in order to resolve
the scale-height of a disk galaxies h ∼ 1 kpc accurately, cell sizes should be at least an order of
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magnitude smaller which sets the resolution to about 50 pc. On a regular lattice, the number of
cells would therefore be

Ncell ≈
(
50Mpc

50 pc

)3

= 1018 cell. (2.115)

In a very simple simulation that only stores the physical state of a monoatomic neutral gas
(density, pressure, velocities) in double-precision floats, each cell would require 20 o of storage.
In total, storing the state of the gas on the full grid would therefore require 2× 1019 o = 20Eo.
For the sake of comparison, setting each cell to 0 would require at least 200 yr on a 3Ghz
single processor12. On the fastest currently-available super computer13, using all the 2 000 000
cores at the same time, it would still take more than a day for a single update. If we make a
very conservative assumption that each cell is updated once per timestep and that a timestep
corresponds to 1Myr in the simulation, running a cosmological simulation on the fastest super
computer for 14Gyr would take 60 yr to complete. This approach is obviously not practical so
that alternative approaches have been devised.

I first present the set of equations that numerical simulations have to solve in section 2.2.3.1.
Section 2.2.3.2 presents the two approaches used in astrophysics to solve the scale-separation
problem, focusing in particular on finite volume methods. Section 2.2.3.3 details how the hydro-
dynamical equations are solved in finite volume methods. Section 2.2.3.4 details how Poisson’s
equation is solved on a grid. Finally, section 2.2.3.5 presents the modifications required to take
into account cosmological expansion, how the initial conditions are set and also presents the
different state-of-the-art cosmological simulations at the time of the writing of this dissertation.

2.2.3.1 Hydrodynamical equations

In the context of cosmological astrophysical simulations, the scales considered are much larger
than the mean free path λ

λ ∼ mp

σρ
= 7.4× 10−5

(
ρ

1mp/cm
3

)−1

pc, (2.116)

wheremp ≈ 1.67× 10−27 kg is the proton mass, σ = 3.5× 10−20m2 is the Hydrogen-Hydrogen
collisional cross section and ρ is the gas density. The mean free-path is below 1 pc as long as
the density is larger than 1× 10−4mp/cm

3. As of today, no cosmological simulation reaches
sub-parsec resolutions in regions with such low densities so that the equation describing the gas
can be well approximated in the fluid limit.

Assuming that the gas is described by a pressure p, a density ρ, a velocity v and a specific
internal energy E , the evolution of the gas is described14 by

∂ρ

∂t
+∇ · (ρv) = 0, (2.117)

∂v

∂t
+ (v · ∇)v = −

(

∇Φ+
∇p

ρ

)

, (2.118)

∂

∂t

[

ρ

(
v2

2
+ E

)]

+∇ ·

[

ρ

(
v2

2
+
P

ρ
+ E

)

v

]

− ρv · ∇Φ = H− C, (2.119)

∇2Φ = 4πGρtot. (2.120)

H, C are the heating and cooling rates per unit volume, as described in section 2.2.2.1, ρtot is the
total density accounting for the fluid, DM, stars and SMBHs. Φ is the gravitational potential. For

12Assuming that the processor can update memory once per cycle.
13DOE/SC/Oak Ridge National Laboratory, United States. Data from top500.org.
14Here we assume that the different gas phases are resolved and disjoint, so that a monofluidic approach can be

used.

https://www.top500.org/list/2019/06/
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an ideal gas with adiabatic index γ, the system of equation is closed by the perfect gas Equation
of State (EoS)

P = ρ(γ − 1)E . (2.121)

These equations corresponds to the equation of conservation of mass (equation (2.117)), linear
momentum (equation (2.118)) and internal energy (equation (2.119)). The system is closed by
the Poisson equation (equation (2.120)) that connects the density to the Newtonian gravitational
potential. The set of equation equations (2.117)–(2.120) can be extended to take into account the
effect of cosmic rays, magnetic fields, radiative transfer or dust. Here, for the sake of simplicity,
these effects have been ignored.

The heating term is due to photoionisation where an atom of fluid is ionised by a photon.
Ionising photons can originate from the UV background (see e.g. Haardt and Madau, 1996), stars
or AGNs.

Equations (2.117)–(2.120) do not have an exact solution in the general case, so that a numerical
treatment is required.

2.2.3.2 Finite-mass and finite-volume methods

Multiple methods have been developed to solve the set of equations (2.117)–(2.120), but in the
context of cosmological simulations two main methods emerged that provide a practical solution
to the scale-separation problem. They can be grouped in two main categories.

SPH simulations

Smooth Particle Hydrodynamics (SPH) simulations are based on a mass discretization of the fluid.
The fluid is described as a set of fixed-mass macro-particle, whose interactions are described by
the Lagrangian version of equations (2.117)–(2.119). In order to solve equation (2.120), the total
density is interpolated on a grid, onto which the equation is solved. Finally, the potential — or its
derivatives — is interpolated at the particles’ location. More details are provided in section 2.2.3.4.
Each fluid particle has a variable “smoothing length” that depends on the density of the fluid via

ρ ∼ m/r3, where m is the mass of the fluid particle. The exact normalisation depends on the
choice of a kernel. The obvious advantage of this approach is to provide an accurate description of
the Lagrangian evolution of the gas, while Eulerian quantities can be approximated by projecting
particles onto an arbitrary mesh. This last step can easily be done in post-processing. This is
the approach used in GADGET (Springel, 2005), Gasoline (Wadsley et al., 2004), Gizmo (Hopkins,
2015). In its simplest form (all particles have the same mass), the scale-separation problem is
addressed by adapting the smoothing-length to match the local density.

AMR simulations

Adaptive Mesh Refinement (AMR) simulations are finite-volume methods. The evolution of
the gas is described in an Eulerian framework. Equations (2.117)–(2.119) are solved on a fixed
arbitrary grid. In order to capture the multi-scale evolution of the gas relevant to astrophysical
phenomenon, the grid is adaptively refined following arbitrary criteria. Commonly used criteria
are the following

• Semi-Lagrangian criterion: a cell is refined if its mass exceeds a fixed massMthreshold. This
is commonly used in cosmological simulations in order to have cells of similar masses (but of
different sizes), so that overdense regions (e.g. galaxies) are more refined than under-dense
regions (e.g. cosmological voids).

• Jeans criterion: a cell is refined if its size exceeds the Jeans length λJ = cs
√

π/Gρ, where
c2s = γP/ρ is the local sound speed. This is commonly used to resolve the gravitational
collapse (e.g. the collapse of molecular clouds in star forming regions).

• Pressure or density gradients: a cell is refined if the pressure or density gradient exceed
some fraction of the quantity itself. This is commonly used to resolve shock fronts (e.g. SN
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1 Mpc

(a) Patch-based AMR (enzo).

10 kpc

(b) Octree AMR (Ramses).

Figure 2.2.4: Plot of cosmological simulations with cell boundaries annotated in thin
white lines. (a): patch-based codes divide space using a set of nested grids (thick white
rectangles) made of an arbitrary number of cells in each dimension. (b): octree codes
divide space using nested octs made of 8 cells, allowing a finer control of the grid
structure.
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(a) Domain decomposition of the unit-square
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CPU 2
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Figure 2.2.5: (a) Domain decomposition of the unit-square for a 322 grid over nine
domains using the Hilbert space-filling curve, shown as the continuous line. (b) Buffer
zones built at the interface between domains. The thick black line marks the boundary
of the spatial decomposition between CPU 1 and CPU 2. CPU 1 owns all the red cells
while CPU 2 owns the blue ones. There is a one-cell-thick buffer zone outside of each
domain that a CPU can access (CPU 1 has access to light blue cells and CPU 2 has access
to light red cells). This ensures that each cell has access to all its 26 = 27 − 1 direct
neighbours (for example to compute spatial gradients).
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blasts).

In addition, AMR codes can further be split into patch-based codes and octree codes. Patch-
based codes (e.g. Enzo (Bryan et al., 2014), see figure 2.2.4a) use a nested hierarchy of rectangular
patches of increasing resolution. The building blocks of the computational grid are therefore
rectangular patches of various sizes, whose positions and aspects ratio are optimised with respect
to flow geometry, speed and memory constraints in order to represent regions of increasing
resolutions. Space is divided in nested rectangular patches (thick white lines) made of cells of
fixed resolution.

Octree codes’ building blocks are octs (e.g. Art (Kravtsov et al., 1997), Ramses (Teyssier, 2002)).
An oct is an 2x2x2 set of cells, where each of the 8 cells is either a leaf cell or is itself an oct, as
illustrated in figure 2.2.4b. The resulting grid follows complex flow geometry more closely, at
the price of a data management which is more complicated than patch-based AMR. High density
regions are followed by fine cells (as in the centre of the plot), while less dense regions have
coarser cells.

These two strategies enable the code to partition space. In order to compute the time evolution
of the hydrodynamical quantities, the codes then have to solve the so-called Riemann problem at
cell boundaries, as described in section 2.2.3.3.

In order to increase the computation power wielded by numerical simulations, most of the
numerical codes are now parallelized to run on multiple cores at the same time. They now
routinely run on hundreds or even thousands of cores. In this context numerical codes have to
be optimised to best balance the computation weight between each computation domain, while
trying to minimise the number of communications. This is further complicated by the fact that
for AMR codes, the grid is non-uniform so that there is no obvious space decomposition that will
balance the cells evenly between all domains.

In order to solve this issue, AMR codes usually use space-filling curves. Space filling curves
are bijective functions from 1d space to the 3d unitary cube, providing a unique index to each
cell in the simulation. In addition, they should also conserve locality so that two cells that are
close should have a close index. Using such a space-filling curve, the load balancing problem
becomes a simple problem of sharing a set of N cells evenly betweenM domains. In Ramses

the space-filling curve used is the Hilbert curve, as illustrated on figure 2.2.5a. Each computing
unit has access to the list of the indexes on the Hilbert curve that separate the different domains,
represented as black dashed lines on figure 2.2.5a, so that it can easily compute to which domain
each cell belongs. This method is also a very efficient way to encode the volumetric partition
of space into M log2(N) bits. For example in a simulation with 20 levels of refinement and
4096 processors, the information about the spatial partitioning can be encoded optimally on
log2((2

20)3)× 4096 ≈ 250 kbit = 31 kio.

Once the space has been decomposed betweenM domains, boundary regions are constructed
at the interface between contiguous domains. The thickness of the boundary region depends on the
order of spatial derivatives involved in the evolution equations. In cases where the hydrodynamical
solver is using first-order finite differences, as is the case with Ramses, a 1-oct-thick layer is built
at the interface between each domain, as illustrated on figure 2.2.5b.

2.2.3.3 The Riemann problem and Godunov solvers

Let us consider the Riemann problem with initial left and right values values U = Ul for x ≤ 0
and U = Ur for x > 0. The state vector U follows a conservation equation

Ut + F (U)x = 0, (2.122)
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where F is the flux vector and subscripts indicate partial derivatives relative to the variable (e.g.
Ut = ∂U/∂t ). Introducing the Jacobian matrix

A =
∂F

∂U
,

we can rewrite equation (2.122) into its conservative form

Ut +A(U)Ux = 0. (2.123)

The Riemann problem

The Riemann problem is the initial value problem of equation (2.123) with piece-wise initial
conditions. In general, the equation does not accept an analytical solution, so that one needs to
design a numerical solver. Let us now focus on Euler’s equation in 1D. U can be written using
the conservative formulation of equations (2.117)–(2.119) with an ideal gas EoS

U =






ρ
ρu

ρ
(
u2

2 + E
)




 and A(U) =





0 1 0
−1

2(γ − 3)u2 (3− γ)u γ − 1
1
2(γ − 2)u3 − a2u

γ−1
3−2γ
2 u2 + a2

γ−1 γu



 ,

(2.124)

where we have used the sound speed a =
√

γp
ρ . We can also use the flux vector to have

F (U) =





ρu
ρu2 + p
u(E + p)



 , (2.125)

where we have used the total energy E per unit volume

E = ρ

(
1

2
u2 + E

)

. (2.126)

The different waves propagating at the interface are described by the eigenvalues and eigenvectors
of the JacobianA. In the 1D case, the eigenvalues are λ1 = u− a, λ2 = u, λ3 = u+ a describing
three waves propagating downstream, with the stream and upstream. The wave associated with
λ2 is a contact discontinuity characterized with a constant pressure and velocity. The two waves
associated with λ1 and λ3 are either rarefaction waves (smooth) or shock waves (discontinuities).
Rarefaction waves are characterized by a smooth change of ρ, u and p across the front. On the
contrary, shock waves are characterized by a jump of ρ, u and p which are described by the
Rankine–Hugoniot jump condition. Let us introduce the Mach number

M ≡ u

a
=

√

ρu2

γp
. (2.127)

The Mach number is the ratio of the velocity to the sound speed. It can also be interpreted as the
ratio of ram-pressure ρu2 to thermal pressure. Denoting the pre- and post-shock regions with
subscript 1 and 2, the Rankine-Hugoniot jump conditions read

ρ2
ρ1

=
u1
u2

=
(γ + 1)M2

1

(γ − 1)M2
1 + 2

, (2.128)

p2
p1

=
2γM2

1 − (γ − 1)

γ + 1
. (2.129)

These conditions also imply the temperature jump

T2
T1

=

[
(γ − 1)M2

1 + 2
][
2γM2

1 − (γ − 1)
]

(γ + 1)2M2
1

. (2.130)

Further details can be found in Toro, 2009, p.87–91.
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Figure 2.2.6: HLLC approximate Riemann solver. Solution in the star region consist of
two constant states (U∗L and U∗R) separated from each other by a middle wave (S∗).
The left and right state are separated from the star region by two waves (SL and SR).
Adapted from Toro, 2009.

Riemann solvers

The task of Riemann solvers is to solve the Riemann problem. One such solver is the HLLC solver
(Toro et al., 1994) that is itself an extension of the HLL solver (Harten et al., 1983). The solver
approximates the evolution of the contact discontinuity with the three waves described above
(rarefaction, entropy and shock waves) that separate four states, as illustrated on figure 2.2.6.
The flux is then computed using the conservation equations and the properties of the different
contact discontinuities at the interface between each state, see Toro, 2009, chapter 10 for more
details. The HLLC solver is frequently used in astrophysical setups, as it is very stable albeit quite
diffusive.

Godunov solvers

Godunov solvers is a class of conservative numerical schemes first described by Godunov, 1959.
It is based on a three-step algorithm15

1. Reconstruction: the value of the state variable is interpolated at cell faces using the values at
the centre of the cells with a slope limiter. The slope limiter prevents spurious oscillations
to appear in the solution.16

2. Evolution: the Riemann problem is solved using the interpolated values at the faces. This
is the physical step. This step can be solved using either an exact Riemann solver or an
approximate one (e.g. the HLLC solver described in the previous paragraph).

3. Averaging: the value of the state variable is updated using the flux of the Riemann solver.
While the original Godunov scheme was first order in space and time, higher order methods have
since been introduced (e.g. MUSCL-Hancock (van Leer, 1984), PLM (Colella, 1985)). In the end the
Godunov scheme outputs a flux that can readily be used to update the state vector. For MUSCL
schemes, the state vector is updated using

Un+1
i = Un

i +
∆t

∆x

(

F
n+1/2
i−1/2 − F n+1/2

i+1/2

)

. (2.131)

Here i is the index of the cell and n is the timestep ; the flux F is computed at half time steps
(n+ 1/2) at cell boundaries.

15The first step is actually due to van Leer, 1984.
16In practice, the slope limiter reduces the order of the scheme to 1 around discontinuities but increases the order of

the method in smooth regions.
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Figure 2.2.7: Illustration of the multigrid method. The multigrid algorithm starts at
level l = 0 where it solves the Poisson equation exactly. It then proceeds to level 1, does
a V-cycle, proceeds to level 2, does a V-cycle, ...

2.2.3.4 Poisson solvers

In addition to fully solve the equations of hydrodynamics, special care should be taken for the
gravitational force. Indeed, the gravitational force has infinite range so that each cell and particle
in the simulation are gravitationaly coupled to any other. There are multiple methods to compute
the gravitational force, either by solving Poisson equation or using so-called “direct methods”.
The former is based on Poisson equation (2.120) while the latter uses the force equation

Fi = −
∑

j∧i

Gmimj

‖r‖3
r. (2.132)

Direct methods

Direct methods compute for each particle (or for each gas cell) the force due to all other particles
(or cells). While this method gives exact results, it suffers from performance issue since it scales
as O(N2), where N is the number of massive elements (particles, cells, . . . ).

PM methods

In Particle Mesh (PM) methods, one first solves the Poisson equation to compute the potential,
then uses the gradient of the potential to compute the gravitational force. The DM, star, black hole
and gas density are projected onto a common mesh17. The Poisson equation is then solved on the
grid and the gravitational acceleration is computed using the gradient of the potential F = −∇Φ.
There are two notable techniques to solve the Poisson equation: the multi-grid approach and the
conjugate gradient approach.

In the multi-grid approach, the Poisson equation is solved iteratively using a succession of “V
cycles”. This is illustrated in figure 2.2.7. At first, an exact solution is found at the coarsest level
l = 0. Then the algorithm goes to the next finer level l = 1. An approximate solution is found
using the coarser solution, then corrected using the information at coarser levels. The algorithm
repeats itself until l = lmax.

The conjugate gradient method is a general method to find the solution of a linear problem

A ·X = B.

On a discrete grid, one can reformulate the Poisson equation into a simple linear problem,

17The mesh is usually the AMR grid.
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presented here for the one-dimensional case, with
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X = {φi} andB = 4πG{ρi,tot}. The exact solution is found in N iterations for an AMR grid
with N cells. In practice the error on the solution decreases with each step so that a simple
convergence criterion is generally used to stop the iteration earlier, typically after a few hundreds
iterations. Any iterative method can be used in place of the conjugate gradient method to solve
the linear set of equations, for example the Gauss-Seidel method (which is the default method in
Ramses).

2.2.3.5 Cosmological simulations

In this section, we detail the modifications to numerical code that are usually implemented to
account for the cosmological expansion of the Universe and the initial conditions. Here, we focus
especially on simulations with box sizes large enough to capture the large-scale structures of the
Universe (& 50Mpc/h), with enough resolution to capture galactic scales (∆xmin . 1 kpc) and
that include at least star formation, SN feedback, SMBH formation, AGN feedback heating and
cooling of the gas, gravity and dark matter, the whole simulation being evolved in an expanding
Universe.

Accounting for the cosmological expansion

In Ramses, cosmology is accounted for by the following change of “super-comoving” variables

dt̃ = H0
dt

a2
, x̃ =

1

a

x

L
, ρ̃ = a3

ρ

Ωmρc
, p̃ = a5

p

ΩmρcH2
0L

2
, ṽ = a

v

H0L
. (2.134)

These variables have been introduced by Martel and Shapiro, 1998. Here H0 is the Hubble
constant, Ωm is the matter density, L is the box size and ρc is the critical density. In these
variables, equations (2.117)–(2.120) become

∂ρ̃

∂t̃
+ ∇̃ · (ρ̃ṽ) = 0, (2.135)

∂(ρ̃ṽ)

∂t̃
+ ∇̃ · (ρ̃ṽ× ṽ) = −

(

∇̃p̃+ ρ̃∇̃φ̃
)

, (2.136)

∂(ρ̃ẽ)

∂t̃
+ ∇̃ ·

(

ρ̃ṽ

[

ẽ+
p̃

ρ̃

])

= −ρ̃ṽ · ∇̃φ̃, (2.137)

∇̃2φ̃ =
3

2
aΩm(ρ̃− 1). (2.138)

Note that an extra term has to be added to equation (2.119) if γ 6= 5/3. In order to write
equation (2.138), we have used the transformation from Eulerian potential Φ to peculiar potential
φ

Φ =
2πGρ̄r2

3
+

2πGρ̄Λr
2

3
+ φ. (2.139)

The peculiar potential is equal to the Eulerian potential in non-cosmological cases.
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Figure 2.2.8: Location of particles following the Zel’dovich flow. Arrows indicate the
direction of motion. Time increases linearly going from left (t = 0) to right (first shell-
crossing). The background shows the initial overdensity field (red is overdense). These
positions provide the initial conditions to numerical simulations.

Initial conditions

In order to provide an ab initio scenario of the evolution of the Universe, cosmological simulations
are usually started at high redshifts. The initial conditions can be computed using a random
Gaussian random field and DM particles are then set on a regular grid and moved according to the
Zel’dovich approximation (see section 2.1.2.3), as illustrated on figure 2.2.8. The approximation is
used to fast-forward time to z ∼ 100. At this time, the Zel’dovich approximation still provides
very accurate results, yet the density contrast is high enough for the approximate Poisson solver
to be able to solve the Poisson equation.

State-of-the-art cosmological simulations

Let us briefly introduce the different cosmological simulations. For the sake of comparison only
simulations with sizes comparable to ∼ 100Mpc/h are mentioned here. They are presented in
Table 2.4; they usually have mass resolutions of the order of 1× 106M⊙ for SPH and moving
mesh simulations and spatial resolutions of 1 kpc for AMR simulations. In addition to different
resolutions and hydrodynamical solvers, they have also very different feedback recipes. Compre-
hensive comparisons of the different simulation techniques and physical recipes is the topic of
ongoing research (see e.g. the Aquila comparison project Scannapieco et al., 2012, the AGORA
comparison project Kim et al., 2013; Kim et al., 2016).

In section 2.1, I have presented the cosmological context inwhich galaxies form. In section 2.1.1,
I have presented the current evidences that the Universe is organised at large-scales in the so-
called “cosmic-web”. In section 2.1.2, I have presented the models that describe the formation of
the large-scale structures of the Universe, and in particular the cosmic web. The remaining of the
dissertation will in particular focus on the link between the cosmic web and the formation of dark
halos and their galaxies. In order to do so, I have presented the different tools I have used in my
work. From a theoretical perspective, one can predict properties of dark matter halos from first
principle using the excursion set theory, as presented in sections 2.1.3 and 2.1.4 and the peak-patch
theory, as presented section 2.1.5. These tools enable us to compute the properties of dark matter
halos, yet they fail at predicting the fate of baryons in galaxies, which is usually understood in
the classical model of galaxy formation presented in section 2.2.1. One way to study the evolution
of baryons is to rely on hydrodynamical numerical simulations, which I presented in section 2.2.
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Table 2.4: Summary of recent state-of-the art cosmological simulations. Only simula-
tions including gas and with box sizes of the order of 100Mpc have been included. The
resolution is mentioned in mass for SPH simulations and in spatial resolution for AMR
simulations. 1: This simulation is a re-zoom simulation of the Horizon-AGN simulation.

Simulation name Box size Resolution Method Reference

FIRE m13 60Mpc 3× 105M⊙ SPH Hopkins et al., 2014
MassiveBlack II 100Mpc/h 2× 106M⊙ SPH Khandai et al., 2015

Illustris-1 100Mpc 1× 106M⊙ Moving mesh Vogelsberger et al.,
2014

Illustris-TNG100 100Mpc 1× 106M⊙ Moving mesh Springel et al., 2018

Horizon-AGN 100Mpc/h 1 kpc AMR Dubois et al., 2016
New Horizon1 100Mpc/h 30 pc AMR Park et al., 2019

The different models used in the cosmological simulations I have used in my dissertation are
detailed in section 2.2.2, while a more technical description focused on the numerical methods is
provided in section 2.2.3.



2.3 State-of-the-art and synopsis 49

2.3 State-of-the-art and synopsis

Figure 2.3.1: Sketch of the approaches used in this thesis to study the formation of
dark matter halos and galaxies. The different processes relevant to the formation of dark
matter halos and their galaxies are shown in gray. The two axes developed in the thesis
are shown in the green area (theoretical exploration, chapters 3 and 4) and blue area
(numerical exploration, chapters 5 and 6). Along the former, I developed extensions to
the excursion set and peak theory that explicitly include the anisotropic effect of the
cosmic web. This was used to predict environmental-driven effects on the properties
of DM halos. Along the latter, I developed numerical methods to accurately follow
the cosmic accretion of gas in simulations and applied it to understand how angular
momentum is transported by cold flows on high-redshift galaxies.

One of the successes of the ΛCDMmodel is its ability to predict a significant number of properties
of DM halos and their galaxies. In the classical model of galaxy formation, galaxy form out of the
condensation of the gas in the potential well of their host halo. As such, galaxy properties are
usually understood as a result of the halo mass — which sets the amount of gas available and the
internal kinematics — and the local density — which regulates gas accretion and pair interactions.
The classical analytical and semi-analytical models intrinsically suppose that halo properties,
and as a consequence, galaxy properties are only influenced by their local environment via the
local density, with some extensions probing also the local tidal environment. These models have
proven successful at predicting many galactic properties, such as their spatial clustering or their
mass function.

In the context of assembly bias, many extensions of the halo model have been suggested to
understand the modulation effects of the cosmic web in terms of local properties. In particular,
it has been suggested that the local tidal field may explain part of the assembly bias signal (e.g.
Hahn et al., 2009; Ludlow et al., 2014) when formulated in terms of the formation time. Tidal
forces induce a shear flow in the vicinity of small halos that flow along filaments of the cosmic
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web. One of the outcomes is that the accretion rate of small halos is decreased by neighbouring
structures, so that small halos growing in dense environments are not able to accrete mass. As a
consequence, these halos appear older resulting in a differential biasing as a function of formation
time. Similarly, Paranjape et al., 2018 suggested that the effect of halo concentration on the bias is
well explained by a local quantification of the local tidal anisotropy. All these models are typically
extensions of the halo model with new halo-centred probes of the larger-scale environment.

Another possible approach, which is the one followed in this dissertation, is to relax the
halo-centric assumption and work in the frame that sets the large scale environment: the cosmic
web. Indeed, due to the statistical properties of the initial conditions of the Universe, the different
scales involved in galaxy formation and the formation of the cosmic web are coupled statistically.
In particular, large-scale structures such as large filaments have an impact on the statistical
properties of the field out of which halos grow, which has the effect of biasing halo assembly. One
can argue that the assembly signal can be explained simply via this biasing effect of the cosmic
web: the cosmic web is responsible for driving the typical assembly history at fixed halo mass
and local density.

This approach has already proven successful at providing a theoretical explanation to the
spin-alignment problem (Codis et al., 2015). This framework has since been used to show that, in
hydrodynamical simulations, the cosmic web has also an effect on the assembly of galaxies. In
Kraljic et al., 2018; Kraljic et al., 2019 (appendices B.1 and B.2), we reported that the specific star
formation rate and the velocity-to-velocity-dispersion ratio both present significant modulations
along the filaments, highlighting that, indeed, filamentary structures can be used as a metric to
parametrise the assembly of dark matter halos and galaxies therein. Using an extension to the
excursion set theory (Bond et al., 1991; Lacey and Cole, 1993; Mo and S. D. M. White, 1996), I
show in chapter 3 (Musso, Cadiou et al., 2018) that the cosmic web, and in particular large scale
filaments, biases the formation of dark matter halos. In this dissertation, I also argue that the
assembly bias problem stated in these terms can also provide a valuable understanding of how
halos grow, but also how their galaxy forms.

Although a number of evidences are pointing towards an effect of the cosmic web on galaxy
formation, the detailed physics that couples them is still poorly understood. One of the issues
lays in the description of the cosmic web itself, so that different methods may lead to different
effects on galaxy formation. One key parameter to further study the effect of the cosmic web
is then the question of its description, the challenge residing in its continuous and multi-scale
nature. Many methods have been developed to tackle this issue and provide a local frame in
which galaxy properties can be studied (Bond et al., 1996; Sousbie et al., 2008 and Libeskind et al.,
2018 for a review). In chapter 4, I highlight a process entering galaxy and dark halo formation,
namely the coalescence of critical points of the cosmic web as a function of cosmic time. I present
theoretical predictions that account for it in a compact way and provide theoretical predictions of
the evolution of the cosmic web in the Lagrangian space of the initial conditions (based on the
idea of Hanami, 2001) and link them to the connectivity of the cosmic web (Codis et al., 2018). In
a broad sense, the cosmic web within the initial Lagrangian patch of dark halos now belongs to
their internal structure, and as such impacts directly the details of their assembly history.

The complex coupling of the different processes involved in galaxy formation (star formation,
feedback, gas cooling, hydrodynamics) render theoretical predictions particularly complex. One
way around is to rely on numerical simulations that model these processes experimentally
to study galaxy formation. This has been shown to reproduce well the spatial clustering of
galaxies (Springel et al., 2006), but also their properties such as morphology, colour or sizes (e.g.
Vogelsberger et al., 2014; Dubois et al., 2016; Schaye et al., 2015 and Scannapieco et al., 2012; Kim
et al., 2016 for a comparison of the predictions). One of the strong predictions of the numerical
codes and their physical models is the presence of cold gas, that flows along dark matter filaments
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that form the cosmic web (Stewart et al., 2017), so that one can now rely on hydrodynamical
numerical simulations to simulate galaxy formation in their cosmological context. These flows
have been shown to be a main channel driving angular-momentum rich material down to the
inner regions of the galaxies (Kimm et al., 2011; Stewart et al., 2013; Danovich et al., 2015; Tillson
et al., 2015; Bullock et al., 2016), which are key to understand the emergence of the disk structure
of galaxies. One of the key to understand the dynamics of cold flows is to understand how their
history differs from that of the hot-accreted gas, and how it impacts the angular momentum
acquisition of the central galaxy, by studying the Lagrangian history of the gas. Studies based
on Godunov solvers, albeit very accurate at capturing hydrodynamical shocks, only provide the
Eulerian history of the gas. In order to get the Lagrangian history of the gas, codes have been
equipped with tracer particles. In chapter 5, I present a new tracer particle implementation for
the code Ramses based on a Monte Carlo approach. This implementation significantly improves
over previous implementations and enables us to study accurately the Lagrangian history of the
baryons through their hydrodynamical evolution and their recycling in stars and AGNs. Using
the new tracer particles, I present in chapter 6 an analysis of the Lagrangian evolution of the
angular momentum of the gas as it flows into galaxies at high redshift, so as to better understand
how galaxies get their spin. The evolution of the magnitude and orientation of the angular
momentum is computed for the cold- and the hot-accreted gas. I decompose the forces between
stellar gravitational forces, dark matter gravitational forces and pressure forces to assess which
component dominates where at different locations.
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3.1 Introduction

Galaxies form and evolve within a complex network, the so-called cosmic web (Bond et al., 1996,
see section 2.1.2), made of filaments embedded in sheet-like walls, surrounded by large voids and
intersecting at clusters of galaxies (Jõeveer et al., 1978). Halo masses are highly dependent on
their large-scale surrounding, as elegantly explained by the theory of biased clustering (Kaiser,
1984a; Efstathiou et al., 1988), such that high mass objects are preferentially found in over-dense
regions near nodes (Bond and Myers, 1996; Pogosyan et al., 1996). The importance of interactions
with the larger scale environment in driving their evolution has indeed recently emerged as a
central tenet of halo formation theory.

It has been established that the clustering of dark matter halos, as measured by halo bias, not
only depends on halo mass but also on other halo properties such as formation time, concentration,
spin and ellipticity (Gao et al., 2005; Wechsler et al., 2006; Gao and S. D. M. White, 2007; Hahn
et al., 2007). This effect, commonly referred to as “assembly bias” can be rephrased as follows:
the clustering of dark matter halos and their properties are correlated, beyond a mere mass and
density relation. Using a different approach, a growing number of evidence from simulations
(Welker et al., 2014; Kraljic et al., 2018; Kraljic et al., 2019; Martizzi et al., 2019) and observations
(e.g. Porter et al., 2008; Kleiner et al., 2017; Malavasi et al., 2017) have since showed that some
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halo and galaxy properties present distinct features at different locations in the cosmic web. One
striking example is spin-alignments which have been measured for DM halos (e.g. Codis et al.,
2012; Dubois et al., 2014) and galaxies (e.g. Tempel et al., 2013; Welker et al., 2014; Chisari et al.,
2017), but also the colour segregation of galaxies (Rojas et al., 2004; Martínez et al., 2016; Beygu
et al., 2016; Laigle et al., 2018; Kraljic et al., 2018; Kraljic et al., 2019, e.g. ).

As a filament is formally the field line that joins two maxima of the density field through a
filament-type saddle point (Pogosyan et al., 2009), studying the expected properties of galaxies
and halos in the vicinity of filament-type saddle points is a sensible choice. Indeed, TTT (Peebles,
1969; Schäfer, 2009) was recently revisited (Codis et al., 2015, see section 2.1.6) in the context of
such anisotropic environments, biased by the presence of a filament within a wall, which is most
efficiently represented by this point process of filament-type saddles. It predicts the alignment
of the angular momentum distribution of the forming galaxies with the filament’s direction,
and perpendicular orientation for massive population. Since spin plays an important role in the
physical and morphological properties of galaxies, a signature is also expected in the properties
of galaxies as a function of the longitudinal and transverse distance to this saddle.

Most of the previous theoretical work on the impact of the anisotropy of the environment
on galactic assembly history focused on dark matter halos. At a given mass, halos that are
sufficiently far away from the potential wells grow by accreting their surrounding matter, leading
to a correlation between the instantaneous accretion rate and the density of their environment
(e.g. Zentner, 2007). On the other hand, halos close to the potential wells are expected to stall and
stop to grow earlier, as their mass inflow is dynamically quenched by anisotropic tides generated
in their vicinity (e.g. Dalal et al., 2008; Hahn et al., 2009; Ludlow et al., 2014; Borzyszkowski
et al., 2017). Individual properties of dark matter halos, such as their mass, formation time or
accretion rate, are thus expected to be affected by the exact position of halos within the large-scale
anisotropic cosmic web.

These works underlined the role of the shear strength (a scalar quantity constructed out of the
traceless shear tensor which does not correlate with the local density), measured on the same scale
as the halo (Castorina et al., 2016; Paranjape et al., 2018). As tidal forces act against gravitational
collapse, the shear strength encodes the delay induced by the dynamical quenching due to the
environment. This has been justified as a phenomenological explanation of the scale-dependent
scatter in the initial overdensity of proto-halos measured in simulations (Ludlow et al., 2014;
R. K. Sheth et al., 2013) or as a theoretical consequence of the coupling between the shear and the
inertia tensor which tends to slow down collapse (Bond and Myers, 1996; R. K. Sheth et al., 2001;
Del Popolo et al., 2001).

The purpose of this paper is to address the question of the environmental quenching of halos.
In particular, is the cosmic web responsible for the environmental quenching of halos? What effect
does it have on different variables entering the assembly of dark matter halos? In collaboration
with M. Musso, we extended the excursion set theory to account for the large-scale modulations
induced by a filament-type saddle point. From this, we computed the mass function and the
accretion rate and formation times at fixed final mass.

The results presented here were published in Musso, Cadiou et al., 2018.

3.2 “How does the cosmic web impact assembly bias?”
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ABSTRACT

The mass, accretion rate, and formation time of dark matter haloes near protofilaments

(identified as saddle points of the potential) are analytically predicted using a conditional

version of the excursion set approach in its so-called upcrossing approximation. The model

predicts that at fixed mass, mass accretion rate and formation time vary with orientation and

distance from the saddle, demonstrating that assembly bias is indeed influenced by the tides

imposed by the cosmic web. Starved, early-forming haloes of smaller mass lie preferentially

along the main axis of filaments, while more massive and younger haloes are found closer to

the nodes. Distinct gradients for distinct tracers such as typical mass and accretion rate occur

because the saddle condition is anisotropic, and because the statistics of these observables

depend on both the conditional means and their covariances. The theory is extended to other

critical points of the potential field. The response of the mass function to variations of the

matter density field (the so-called large-scale bias) is computed, and its trend with accretion

rate is shown to invert along the filament. The signature of this model should correspond at low

redshift to an excess of reddened galactic hosts at fixed mass along preferred directions, as re-

cently reported in spectroscopic and photometric surveys and in hydrodynamical simulations.

The anisotropy of the cosmic web emerges therefore as a significant ingredient to describe

jointly the dynamics and physics of galaxies, e.g. in the context of intrinsic alignments or

morphological diversity.

Key words: galaxies: evolution – galaxies: formation – galaxies: kinematics and dynamics –

large-scale structure of Universe – cosmology: theory.

1 IN T RO D U C T I O N

The standard paradigm of galaxy formation primarily assigns galac-

tic properties to their host halo mass. While this assumption has

proven to be very successful, more precise theoretical and observa-

tional considerations suggest other hidden variables must be taken

into account.

The mass–density relation (Oemler 1974), established observa-

tionally 40 yr ago, was explained (Kaiser 1984; Efstathiou et al.

1988) via the impact of the long-wavelength density modes of the

dark matter (DM) field, allowing the proto-halo to pass earlier the

critical threshold of collapse (Bond et al. 1991). This biases the mass

function in the vicinity of the large-scale structure: the abundance

of massive haloes is enhanced in overdense regions.

Numerical simulations have shown that denser environments dis-

play a population of smaller, older, highly concentrated ‘stalled’

⋆ E-mail: mmusso@sas.upenn.edu (MM); cadiou@iap.fr. (CC)

haloes, which have stopped accreting and whose relationship with

the environment is in many ways the opposite of that of large-mass

actively accreting haloes that dominate their surroundings. This

is the so-called assembly bias (e.g. Sheth & Tormen 2004; Gao,

Springel & White 2005; Wechsler et al. 2006; Dalal et al. 2008;

Paranjape & Padmanabhan 2017; Lazeyras, Musso & Schmidt

2017). More recently, Alonso, Eardley & Peacock (2015), Tramonte

et al. (2017) and von Braun-Bates et al. (2017) have investigated

the differential properties of haloes with respect to loci in the cos-

mic web. As they focused their attention to variations of the mass

function, they also found them to vary mostly with the underlying

density. Paranjape, Hahn & Sheth (2017) have shown that haloes

in nodes and filaments behave as two distinct populations when a

suitable variable based on the shear strength on a scale of the order

of the halo’s turnaround radius is considered.

In observations, galactic conformity (Weinmann et al. 2006) re-

lates quenching of centrals to the quenching of their satellite galax-

ies. It has been detected for low- and high-mass satellite galaxies

up to high redshift (z ∼ 2.5, Kawinwanichakij et al. 2016) and

C© 2018 The Author(s)

Published by Oxford University Press on behalf of the Royal Astronomical Society
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fairly large separation (4 Mpc, Kauffmann et al. 2013). Recently,

colour and type gradients driven specifically by the anisotropic

geometry of the filamentary network have also been found in sim-

ulations (Laigle et al. 2017; Kraljic et al. 2018) using the Horizon-

AGN simulation (Dubois et al. 2014), and observations using SDSS

(Yan, Fan & White 2013; Martı́nez, Muriel & Coenda 2016; Poudel

et al. 2017; Chen et al. 2017), GAMA (Alpaslan et al. 2016;

Kraljic et al. 2018) and, at higher redshift, VIPERS (Malavasi et al.

2017) and COSMOS (Laigle et al. 2017). This suggests that some

galactic properties do not only depend on halo mass and density

alone: the co-evolution of conformal galaxies is likely to be con-

nected to their evolution within the same large-scale anisotropic

tidal field.

An improved model for galaxy evolution should explicitly inte-

grate the diversity of the geometry of the environment on multiple

scales and the position of galaxies within this landscape to quantify

the impact of its anisotropy on galactic mass assembly history. From

a theoretical perspective, at a given mass, if the halo is sufficiently

far from competing potential wells, it can grow by accretion from

its neighbourhood. It is therefore natural to expect, at fixed mass, a

strong correlation between the accretion rate of haloes and the den-

sity of their environment (Zentner 2007; Musso & Sheth 2014b).

Conversely, if this halo lies in the vicinity of a more massive struc-

ture, it may stop growing earlier and stall because its expected

feeding will in fact recede towards the source of anisotropic tide

(e.g. Dalal et al. 2008; Hahn et al. 2009; Ludlow, Borzyszkowski &

Porciani 2014; Wang et al. 2011).

Most of the work carried out so far has focused on the role of

the shear strength (a scalar quantity constructed out of the trace-

less shear tensor which does not correlate with the local density)

measured on the same scale of the halo: as tidal forces act against

collapse, the strength of the tide will modify the relationship of

the halo with its large-scale density environments, and induce dis-

tinct mass assembly histories by dynamically quenching mass in-

flow (Hahn et al. 2009; Castorina et al. 2016; Borzyszkowski et al.

2016). Such local shear strength should be added, possibly in the

form of a modified collapse model that accounts for tidal deforma-

tions, so as to capture e.g. the effect of a central on its satellites’

accretion rate. This modified collapse model has been motivated in

the literature on various grounds, e.g. as a phenomenological ex-

planation of the scale-dependent scatter in the initial overdensity of

proto-haloes measured in simulations (Ludlow et al. 2014; Sheth,

Chan & Scoccimarro 2013) or as a theoretical consequence of the

coupling between the shear and the inertia tensor which tends to

slow down collapse (Bond & Myers 1996; Sheth, Mo & Tormen

2001; Del Popolo, Ercan & Gambera 2001). Notwithstanding, the

position within the large-scale anisotropic cosmic web also directly

conditions the local statistics, even without a modification of the

collapse model, and affects different observables (mass, accretion

rate, etc.) differently.

The purpose of this paper is to provide a mathematical under-

standing of how assembly bias is indeed partially driven by the

anisotropy of large-scale tides imprinted in the so-called cosmic

web. To do so, the formalism of excursion sets will be adapted to

study the formation of structures in the vicinity of saddle points

as a proxy for filaments of the cosmic web. Specifically, various

tracers of galactic assembly will be computed conditional to the

presence of such anisotropic large-scale structure. This will allow

us to understand why haloes of a given mass and local density

stall near saddles or nodes, an effect which is not captured by the

density–mass relation, as it is driven solely from the traceless part

of the tide tensor. This should have a clear signature in terms of the

distinctions between contours of constant typical halo mass ver-

sus those of constant accretion rate, which may in turn explain the

distinct mass and colour gradients recently detected in the above-

mentioned surveys.

The structure of this paper is the following. Section 2 presents

a motivation for extended excursion set theory as a mean to com-

pute tracers of assembly bias. Section 3 presents the unconstrained

expectations for the mass accretion rate and half-mass. Section 4

investigates the same statistics subject to a saddle point of the po-

tential and computes the induced map of shifted mass, accretion

rate, and half-mass time. It relies on the strong symmetry between

the unconditional and conditional statistics. Section 5 provides a

compact alternative to the previous two sections for the less theo-

retically inclined reader and presents directly the joint conditional

and marginal probabilities of upcrossings explicitly as a function of

mass and accretion rate. Section 6 reframes our results in the context

of the theory of bias as the response of the mass function to varia-

tions of the matter density field. Section 7 wraps up and discusses

perspectives. Appendix A sums up the definitions and conventions

used in the text. Appendix B tests these predictions on realizations

of Gaussian random fields (GRFs). Appendix C investigates the

conditional statistics subject to the other critical points of the field.

Appendix D presents the probability distribution function (PDF) of

the eigenvalues at the saddle. Appendix E presents the covariance

matrix of the relevant variables to the PDFs. Appendix F presents

the relevant joint statistics of the field and its derivatives (spatial and

with respect to filtering) and the corresponding conditional statistics

of interest. Appendix G presents the generalization of the results

for a generic barrier. Appendix H speculates about galactic colours.

2 BA S I C S O F T H E E X C U R S I O N SE T

APPROACH

The excursion set approach, originally formulated by Press &

Schechter (1974), assumes that virialized haloes form from spher-

ical regions whose initial mean density equals some critical value.

The distribution of late-time haloes can thus be inferred from the

simpler Gaussian statistics of their Lagrangian progenitors. The ap-

proach implicitly assumes approximate spherical symmetry (but not

homogeneity), and uses spherical collapse to establish a mapping

between the initial mean density of a patch and the time at which it

recollapses under its own gravity.

According to this model, a sphere of initial radius R shrinks to

zero volume at redshift z if its initial mean overdensity δ equals

δcD(zin)/D(z), where D(z) is the growth rate of linear matter pertur-

bations, zin the initial redshift, and δc = 1.686 for an Einstein–de

Sitter universe, or equivalently, if its mean overdensity linearly

evolved to z = 0 equals δc/D(z), regardless of the initial size. If so,

thanks to mass conservation, this spherical patch will form a halo

of mass M = (4π/3)R3ρ̄ (where ρ̄ is the comoving background

density) . The redshift z is assumed to be a proxy for its virialization

time.

Bond et al. (1991) added to this framework the requirement that

the mean overdensity in all larger spheres must be lower than δc, for

outer shells to collapse at a later time. This condition ensures that the

infall of shells is hierarchical, and the selected patch is not crushed

in a bigger volume that collapses faster (the so-called cloud-in-cloud

problem). The number density of haloes of a given mass at a given

redshift is thus related to the volume contained in the largest spheres

whose mean overdensity δ ≡ δ(R) crosses δc. The dependence of

the critical value δc on departures from spherical collapse induced

by initial tides was studied by Bond & Myers (1996), and later

MNRAS 476, 4877–4906 (2018)
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by Sheth et al. (2001), who approximated it as a scale-dependent

barrier. This will be further discussed in Section 7.2.

As the variation of δ(R) with scale resembles random diffusion,

it is convenient to parametrize it with the variance

σ 2(R) ≡ Var(δ(R)) =
∫

dk
k2P (k)

2π2
W 2(kR) (1)

of the stochastic process, smoothed with a real-space Top-Hat filter

W,1 rather than with R or M. In equation (1), P(k) is the underlying

power spectrum. The three quantities σ , R, and M are in practice

interchangeable. The mass fraction in haloes of mass M at z is

M

ρ̄

dn

dM
=
∣
∣
∣
∣

dσ

dM

∣
∣
∣
∣
f (σ ) , (2)

where dn/dM is the number density of haloes per unit mass (i.e.

the mass function) and f(σ ) – often called the halo multiplicity – is

the probability distribution of the first-crossing scale of the random

walks, that is of the smallest σ (largest R) for which

δ(R, r) ≡
∫

d3k

(2π)3
δm(k)W (kR)eik·r =

δc

D(z)
, (3)

where δm is the (unsmoothed) matter density. The first-crossing

requirement avoids double counting and guarantees that f(σ ) is a

well-behaved probability distribution, and the resulting mass frac-

tion is correctly normalized. In equation (3), the linear growth factor,

D(z), is defined as a function of redshift via

D(z) =
H (a)

H0

∫ a

0

da
√

�m/a + ��a2
, with a =

1

1 + z
. (4)

At early time, D(z) scales like 1/(1 + z). Here, H (a) =
H0

√

�m/a + ��a2 is the Hubble constant.

The first-crossing probability, f(σ )�σ , is the fraction of walks

that cross the threshold between σ − �σ and σ for the first time.

Considering discretized trajectories with a large number of steps

σ 1, . . . , σ N of width �σ ≡ σ i − σ i − 1 (corresponding to concentric

spheres of radii R1, . . . , RN), the first-crossing probability is the

joint probability that δN > δc and δi < δc for i < N, with δi ≡
δ(σ i) and σ N = σ = N�σ . Hence, the distribution f(σ ) is formally

defined as the limit

f (σ ) ≡ lim
�σ→0

1

�σ
〈ϑ(δN − δc)

N−1∏

i

ϑ(δc − δi)〉, (5)

where ϑ(x) is Heaviside’s step function, and the expectation value

is evaluated with the multivariate distribution p(δ1, . . . , δN). This

definition discards crossings for which δi > δc for any i < N,

since ϑ(δc − δi) = 0, assigning at most one crossing (the first)

to each trajectory. For instance, in Fig. 1, trajectory B would not

be assigned the crossing marked with (3), since the trajectory lies

above threshold between (1) and (2). Since taking the mean implies

integrating over all trajectories weighed by their probability, f(σ )

can be interpreted as a path integral over all allowed trajectories

with fixed boundary conditions δ(0) = 0 and δ(σ ) = δc (Maggiore

& Riotto 2010).

In practice, computing f(σ ) becomes difficult if the steps of the

random walks are correlated, as is the case for real-space Top-Hat

filtering with a � cold dark matter (�CDM) power spectrum, and

for most realistic filters and cosmologies. For this reason, more eas-

ily tractable but less physically motivated sharp cut-offs in Fourier

1 The window function in Fourier space is W(x) = 3j1(x)/x, j1 being the

spherical Bessel function of order 1.

Figure 1. Pictorial description of the first-crossing and upcrossing con-

ditions to infer the halo mass from the excursion set trajectory. The first-

crossing condition on σ assigns at most one halo to each trajectory, with mass

M(σ ). Upcrossing may instead assign several masses to the same trajectory

(that is, to the same spatial location), thus overcounting haloes. Trajectory

B in the figure has a first crossing (upwards) at scale σB (1), a downcrossing

(2), and second upcrossing (3), but the correct mass is only given by σB.

However, the correlation of each step with the previous ones makes turns

in small intervals of σ exponentially unlikely: at small σ most trajectories

will thus look like trajectory A. Thanks to the correlation between steps at

different scales, for small σ (large M) simply discarding downcrossings is a

very good approximation.

space have been often preferred, for which the correlation matrix

of the steps becomes diagonal, treating the correlations as pertur-

bations (Maggiore & Riotto 2010; Corasaniti & Achitouv 2011).

The upcrossing approximation described below can instead be con-

sidered as the opposite limit, in which the steps are assumed to be

strongly correlated (as is the case for a realistic power spectrum and

filter). This approximation is equivalent to constraining only the last

two steps of equation (5), marginalizing over the first N − 2.

2.1 The upcrossing approximation to f(σ ).

Indeed, Musso & Sheth (2012) noticed that for small enough σ

(i.e. for large enough masses), the first-crossing constraint may be

relaxed into the milder condition

δ′ ≡
dδ

dσ
> 0 ; (6)

that is, trajectories simply need to reach the threshold with posi-

tive slope (or with slope larger than the threshold’s if δc depends

on scale). This upcrossing condition may assign several haloes of

different masses to the same spatial location. For this reason, while

first crossing provides a well-defined probability distribution for

σ (e.g. with unit normalization), upcrossing does not. However,

since the first crossing is necessarily upwards, and downcrossings

are discarded, the error introduced in f(σ ) by this approximation

comes from trajectories with two or more turns. Musso & Sheth

(2012) showed that these trajectories are exponentially unlikely if

σ is small enough when the steps are correlated. The first-crossing

and upcrossing conditions to infer the halo mass from excursion sets

are sketched in Fig. 1: while the trajectory A would be (correctly)

assigned to a single halo, the second upcrossing of trajectory B in

the figure would be counted as a valid event by the approximation,

and the trajectory would (wrongly) be assigned to two haloes. The

probability of this event is non-negligible only if σ is large.

Returning to equation (5), expanding δN − 1 around δN gives

ϑ(δc − δN−1) ≃ ϑ(δc − δN ) + δD(δc − δ)δ′�σ, (7)

MNRAS 476, 4877–4906 (2018)
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where the crossing scale σ , giving the halo’s final mass M, is de-

fined implicitly in equation (3), as the solution of the equation

δ(σ ) = δc/D.2 The assumption that this upcrossing is first crossing

allows us to marginalize over the first N − 2 variables in equation

(5) without restrictions. The first term has no common integration

support with ϑ(δN − δc), and only the second one – containing the

Jacobian (δ′ − δ′
c) – contributes to the expectation value (through-

out the text, a prime will denote the derivative d/dσ ). Adopting

for convenience the normalized walk height ν ≡ δ/σ , for which

〈ν2〉 = 1, the corresponding density of solutions in σ -space obeys
∣
∣ν ′ − ν ′

c

∣
∣ δD(ν − νc) = (|δ′|/σ ) δD(ν − νc) , (8)

where νc ≡ δc/(σD) is the rescaled threshold. The probability of

upcrossing at σ in equation (5) is therefore simply the expectation

value of this expression,

fup(σ ) ≡ pG(ν = νc)

∫ ∞

0

dδ′δ′pG(δ′|νc) , (9)

where the integral runs over δ′ > 0 because of the upcrossing

condition (6). Usually, one sets D = 1 at z = 0 for simplicity

so that νc = δc/σ . For Gaussian initial conditions,3 the conditional

distribution pG(δ′|νc) is a Gaussian with mean νc and variance 1/Ŵ2,

where

Ŵ2 =
1

〈δ′2〉 − 1
=

γ 2

1 − γ 2
=

1

σ 2〈ν ′2〉
, (10)

and γ 2 = 〈δ′δ〉2/〈δ′2〉〈δ2〉 is the cross-correlation coefficient be-

tween the density and its slope.4 Thanks to this factorization, inte-

grating equation (9) over δ′ yields the fully analytical expression

fup(σ ) = pG(νc)
μ

σ
F (X) , (11)

where pG is a Gaussian with mean 〈ν〉 = 0 and variance Var(ν) = 1.

For a constant barrier (see Appendix G for the generalization to a

non-constant case), the parameters μ and X are defined as

μ ≡ 〈δ′|νc〉 = νc , and X ≡
μ

√
Var (δ′|νc)

= Ŵνc , (12)

with

F (x) ≡
∫ ∞

0

dy
y

x

e−(y−x)2/2

√
2π

=
1 + erf(x/

√
2)

2
+

e−x2/2

x
√

2π
, (13)

which is a function that tends to 1 very fast as x → ∞, with

correction decaying like exp ( − x2/2)/x3. It departs from one by

∼8 per cent for a typical Ŵνc ∼ 1. Equation (11) can be written

explicitly as

fup(σ ) =
νce−ν2

c /2

σ
√

2π
F (Ŵνc) , (14)

where the first factor in the right-hand side (RHS) of equation (14)

is the result of Press & Schechter (1974), ignoring the factor of

2, they introduced by hand to fix the normalization. For correlated

steps, their non-normalized result reproduces well the large-mass

tail of f(σ ) (which is automatically normalized to unit and requires

to correcting factor), but it is too low for intermediate and small

masses. The upcrossing probability fup(σ ) also reduces to this result

2 A careful calculation shows that the step function should be asymmetric,

so that ϑ(δ − δc) = 1 when δ = δc instead of 1/2.
3 No conceptual complications arise in dealing with a non-Gaussian distri-

bution, which is none the less beyond the scope of this paper.
4 Recalling that 〈δ′δ〉 = σ so that γ 2 = 1/〈δ′2〉.

in the large-mass limit, when Ŵνc ≫ 1 and F(Ŵνc) ≃ 1. However,

for correlated steps fup(σ ) is a very good approximation of f(σ ) on

a larger mass range. For a �CDM power spectrum, the agreement

is good for halo masses as small as 1012 M⊙ h−1, well below the

peak of the distribution. The deviation from the strongly correlated

regime is parametrized by Ŵνc, which involves a combination of

mass and correlation strength: the approximation is accurate for

large masses (small σ and large νc) or strong correlations (large Ŵ).

Although Ŵ mildly depends on σ , fixing Ŵ2 ∼ 1/3 (or γ ∼ 1/2)

can be theoretically motivated (Musso & Sheth 2014c) and mimics

well its actual value for real-space Top-Hat filtering in �CDM on

galactic scales. The limit of uncorrelated steps (Ŵ = 0), whose

exact solution is twice the result of Press & Schechter (1974), is

pathological in this framework, with fup becoming infinite. More

refined approximation methods can be implemented in order to

interpolate smoothly between the two regimes (Musso & Sheth

2014a).

From equation (11), a characteristic mass M⋆ can be defined by

requesting that the argument of the Gaussian be equal to one, i.e.

νc = 1 or σ (M⋆) = δc/D. This defines M⋆ implicitly via equation

(1) for an arbitrary cosmology. This quantity is particularly useful

because fup(σ ) does not have well-defined moments (in fact, even

its integral over σ diverges). This is a common feature of first

passage problems (Redner 2001), not a problem of the upcrossing

approximation: even when the first-crossing condition can be treated

exactly, and f(σ ) is normalized – it is a distribution function –,

its moments still diverge. Therefore, given that the mean 〈M〉 of

the resulting mass distribution cannot be computed, M⋆ provides a

useful estimate of a characteristic halo mass.

2.2 Joint and conditional upcrossing probability

The purpose of this paper is to recompute excursion set predictions

such as equation (11) in the presence of additional conditions im-

posed on the excursions. Adding conditions (like the presence of a

saddle at some finite distance) will have an impact not only on the

mass function of DM haloes, but also on other quantities such as

their assembly time and accretion rate.

Let us present in full generality how the upcrossing probabil-

ity is modified by such supplementary conditions. When, besides

δ(σ ) = δc and the upcrossing condition, a set of N linear5 functional

constraints {F1[δ], . . . ,FN [δ]} = {v1, . . . , vN } on the density field

is enforced, the additional constraints modify the joint distribution

of ν and ν ′. The conditional upcrossing probability may be obtained

by replacing p(ν, ν ′) with p(ν, ν ′|{v}) in equation (9). For a Gaus-

sian process, when the functional constraints do not involve δ′, this

replacement yields after integration over the slope

fup(σ, {v}) = pG(νc, {v})
μv

σ
F (Xv) , (15)

where pG(νc|{v}) is a Gaussian with mean 〈ν|{v}〉 and variance

Var (ν|{v}), while μv and Xv are defined as

μv ≡ 〈δ′|νc, {v}〉 , Xv ≡
μv√

Var (δ′|νc, {v})
, (16)

and 〈δ′|νc, {v}〉 and Var
(
δ′|νc, {v}

)
are the mean and variance of

the conditional distribution, pG(δ′|νc, {v}) given by equations (F10)

and (F11) and evaluated at δ = δc, while F is given by equation (13).

Equation (15) is formally the conditional counterpart to equation

5 Indeed the saddle condition below imposes linear constraints on the con-

trast and the potential, since the saddle’s height and curvature are fixed.
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How does the cosmic web impact assembly bias? 4881

Table 1. List of variables for the three different probabilities studied in the

text (upcrossing, accretion rate given upcrossing, and formation time given

upcrossing), conditioned or not to the presence of the saddle point, split by

whether they relate to the height of the excursion set trajectory or its slope.

Variables like μ and X always appear as μF(X) and describe the mean slope

of the upcrossing trajectories given the different conditions (presence of the

saddle and/or height νf of the trajectory at formation). The unconditional

case has μ = νc and X = Ŵνc. The remaining variables appear as arguments

of a Gaussian, and are used to define the typical values σ ⋆, α⋆, and D⋆ of the

excursion set variables σ , α, and Df. The height-related variables describe

the probability of reaching the collapse threshold νc (unconditional or given

the saddle), or the formation threshold νf given νc (with or without saddle).

The slope-related ones describe the probability of having at upcrossing the

slope corresponding to a given accretion rate. See also Table A1.

Without saddle With saddle

Height Slope Height Slope

Upcrossing (σ ) νc μ, X νc,S μS , XS

Accretion (α) Yα Yα,S

Formation (Df) νf, c μf, Xf νf,c,S μf,S , Xf,S

(11), while incorporating extra constraints corresponding to e.g. the

large-scale Fourier modes of the cosmic web.

The brute force calculation of the conditional means and vari-

ances entering equation (15) can rapidly become tedious. To speed

up the process, and gain further insight, one can write the condi-

tional statistics of δ′ in terms of those of δ and their derivatives.

This is done explicitly in Appendix F1, which allows us to write

explicitly the conditional probability of upcrossing at σ given {v},

obtained by dividing equation (15) by p({v}), as

fup(σ |{v}) = −ν ′
c,v

e−ν2
c,v/2

√
2π

F

⎛

⎝−
ν ′

c,v
√

Var
(
ν ′

v

)

⎞

⎠ , (17)

given

νc,v ≡
δc − 〈δ|{v}〉
√

Var (δ|{v})
, and ν ′

c,v ≡
dνc,v

dσ
, (18)

where these conditionals and variances can be expressed explic-

itly in terms of the constraint via equations (F8)–(F11). Equation

(17) is therefore also formally equivalent to equation (14), upon

replacing νc → νc, v and 〈ν ′2〉 → 〈ν ′2
v 〉 to account for the constraint.

Remarkably, the conditional probability fup(σ |{v}) is thus simply

expressed as an unconditional upcrossing probability for the effec-

tive unit variance process obtained from the conditional density.

The above-sketched formal procedure will be applied to practical

constraints in the next section. For convenience and consistency,

Table 1 lists all the variables that are introduced in the following

sections, for the combinations of the various constraints (on the

slope at crossing, on the height of the trajectory at σ (M/2), and on

the presence of a saddle) that will be imposed.

3 AC C R E T I O N R AT E A N D F O R M AT I O N T I M E

Let us first present the tracers of galactic assembly when there is

no large-scale saddle. Specifically, this section will consider the

DM mass accretion rate and formation redshift. It will compute

the joint PDFs, the corresponding marginals, typical scales, and

expectations. Its main results are the derivation of the conditional

probability of the accretion rate – equation (25) – and formation

time – equation (36) – for haloes of a given mass. The emphasis

will be on derivation in the language of excursion set. The reader

Figure 2. Pictorial representation of the procedure to infer accretion rates

from excursion sets. As the redshift z grows, the barrier δc/D(z) becomes

higher and the first-crossing scale σ (z) moves to the right, towards smaller

masses. This procedure reconstructs the entire mass accretion history M(z)

from the first-crossing history σ (D). As the two redshifts z1 and z2 in figure

get close to each other, the difference between σ (z1) and σ (z2) is completely

fixed by the slope of the trajectory. This deterministic relation connects the

excursion set slope to the halo’s instantaneous mass accretion rate. Finite

jumps of the first-crossing σ after a downturn [where the inverse function

σ (δ) becomes multivalued, as in (1)] cannot describe smooth accretion and

are traditionally associated with large mergers.

only concerned with statistical predictions in terms of quantities of

direct astrophysical interest may skip to Section 5.

Following Lacey & Cole (1993), the entire mass accretion history

of the halo is encoded in the portion of the excursion set trajectory

after the first crossing: solving the implicit equation (3) at all z

enables to reconstruct M(z). As the barrier δc/D(z) decreases with

time (since D(z) grows as z decreases), the first-crossing scale moves

towards smaller values (larger masses), thereby describing the ac-

cretion of mass on to the halo. Clearly, since δ(σ ) is not monotonic,

M(z) is not a continuous function. Finite jumps of the first-crossing

scale, corresponding to portions for which σ is not a global max-

imum of the interval [0, σ ], can be interpreted as mergers (see

trajectory B in Fig. 1, or the portion marked with (1) in Fig. 2). In

the upcrossing approximation, the constraint δ′(σ ) > 0 discards the

downward part of each jump.

3.1 Accretion rate

In the language of excursion sets, finding the mass accretion history

is equivalent to reconstructing the function σ (D) [where D was

defined in equation (4)]: because the barrier grows as D decreases

with z, the crossing scale σ moves towards larger values (smaller

masses). Differentiating both sides of equation (3) with respect to z

gives

α ≡ −
D

σ

dσ

dD
=

δc

σδ′ =
νc

σ (ν ′ − ν ′
c)

, (19)

where α measures the fractional change of the first-crossing scale

σ (M) with D(z), and is related to the instantaneous relative mass

accretion rate by

1

M

dM

dz
≡

Ṁ

M
= α

d log D

dz

(

−
d log M

d log σ

)

. (20)

The upcrossing condition implies that α > 0: excursion set haloes

can only increase their mass, since dlog M/dlog σ < 0.

A pictorial representation of this procedure is given in Fig. 2.

Equation (19) gives a relation between the accretion rate of the final

haloes and the Lagrangian slope of the excursion set trajectories,

MNRAS 476, 4877–4906 (2018)
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4882 M. Musso et al.

which is statistically meaningful in the framework of excursion sets

with correlated steps (because the slope then has finite variance).

Note that α scales both like the inverse of the slope δ′ and the

logarithmic rate of change of σ with D. It also essentially scales like

the relative accretion rate, Ṁ/M since in equation (20) dlog D/dz is

simply a time-dependent scaling, while on galactic scales, (n ∼ 2),

dlog M/dlog σ ∼ −6 (see also Section 5 and Appendix E for the

generic formula).

Fixing the accretion rate establishes a local bidimensional map-

ping between {ν, ν ′}, or {δ, δ′}, and {σ , α}, defined as the solutions

of the bidimensional constraint

C ≡ {ν(σ ) − νc, ν
′(σ ) − ν ′

c − νc/σα} = 0 . (21)

The density of points in the (σ , α) space satisfying the constraint is

| det (∂C/∂{σ, α}) | δ(2)
D (C) . (22)

Since ∂(ν − νc)/∂α = 0, the determinant in equation (22) is sim-

ply |(ν ′ − ν ′
c)(νc/σα2)| = ν2

c /σ
2α3, and is no longer a stochastic

variable. Taking the expectation value of equation (22) gives

fup(σ, α) =
ν2

c

σ 2α3
pG(νc, ν

′
c + νc/σα),

=
Ŵν2

c

σα3

e−ν2
c /2

√
2π

e−Y 2
α /2

√
2π

, (23)

with [using the conditional mean μ = νc from equation (12)]

Yα ≡
νc/α − μ

√
Var (δ′|νc)

= Ŵ(σν ′
c + νc/α) , (24)

which is the joint probability of upcrossing at σ with accretion rate

α.6 This can be formally recovered setting 〈δ′|νc, α〉 = νc/α and

Var
(
δ′|νc, α

)
→ 0 in equation (16) (because the constraint fixes δ′

completely), which gives F(Xα) = 1 as needed.

The conditional probability of having accretion rate α given up-

crossing at σ can be obtained taking the ratio of equations (23) and

(14), which gives

fup(α|σ ) =
Ŵνc

α3

e−Y 2
α /2

√
2πF (Ŵνc)

, (25)

and represents the main result of this subsection. The exact form of

fup(α|σ ) from equation (25), as σ changes is shown in Fig. 3. This

conditional probability has a well-defined mean value, which reads

〈α|σ 〉 =
∫ ∞

0

dα αfup(α|σ ) =
1 + erf(Ŵνc/

√
2)

2F (Ŵνc)
; (26)

however, the second moment 〈α2|σ 〉 and all higher order statistics

are ill defined. The nth moment is in fact proportional to the ex-

pectation value of (1/δ′)n − 1 (over positive slopes and given νc),

which is divergent. Equation (25) shows that very small values of

α (corresponding to very steep slopes) are exponentially unlikely,

and very large ones (shallow slopes) are suppressed as a power law.

Unlike fup(σ ), the conditional distribution fup(α|σ ) is a well-defined

normalized PDF. However, it is still an approximation to the exact

PDF, as it assumes that the distribution of the slopes at first cross-

ing is a (conditional) Gaussian. This assumption is accurate for

steep slopes, but overestimates the shallow-slope tail, for which the

exact first-crossing condition would impose a boundary condition

pG(δ′ = 0|δc) = 0. The higher moments of the exact conditional

6 As expected, marginalizing equation (23) over α > 0 gives back equation

(11), upon setting Ŵνc/α = x.

Figure 3. Plot of the conditional PDF fup(α|σ ) of the accretion rate for

values of σ corresponding to Ŵνc = 10, 5, and1. As the mass gets smaller,

so does Ŵνc and the conditional PDF moves towards smaller accretion rates

α. Therefore, haloes of smaller mass tend to accrete less.

distribution of accretion rates should be convergent. However, even

if this was not the case, let us stress that these divergences would

not represent a pathology of excursion sets, but are instead a rather

common feature of first-passage statistics in a cosmological context.

Regardless of convergence issues, it remains true that the estimate

(26) of the mean 〈α|σ 〉 gets a significant contribution from the less

accurate side of the distribution. One may therefore look for other

more informative quantities. In analogy with M⋆, defined as the

value of M for which νc = 1, one can define the characteristic

accretion rate α⋆ as the value for which Yα , the argument of the

Gaussian in equation (25), equals one

α⋆(σ ) =
Ŵνc

1 + Ŵνc

. (27)

For the above-mentioned typical value, it follows that α⋆(M⋆) =
(√

3 − 1
)

/2 ≈ 1/3. Another useful quantity is the most likely

value of the accretion rate, corresponding to the maximum αmax of

fup(α|σ ). Requesting the derivative of the PDF to vanish, one gets

αmax(σ ) =
(Ŵνc)2

6

[√

1 +
12

(Ŵνc)2
− 1

]

. (28)

All three quantities 〈α|σ 〉, α⋆, and αmax tend to 1 in the large-mass

limit, and decrease for smaller masses. They thus contain some

equivalent information on the position of the bulk of the conditional

PDF of α at given mass. Hence, haloes of smaller mass accrete less

on average.

3.2 Halo formation time

The formation time is conventionally defined as the redshift zf at

which a halo has assembled half of its mass. It is thus related to the

height of the excursion set trajectory at the scale σ 1/2 ≡ σ (M/2)

corresponding to the radius R1/2 = R/21/3. As the barrier δc/D(z)

grows with z, and the first-crossing scale moves to the right towards

higher values of σ , zf is the redshift at which σ 1/2 becomes the first-

crossing scale for that trajectory, if it exists. That is, neglecting for

the time being the presence of finite jumps in the first-crossing scale

(interpreted as mergers), one simply needs to solve for zf the implicit

relation δ(σ 1/2) = δc/D(zf), which makes zf a stochastic variable.

As described in Fig. 4, trajectories with the same upcrossing scale

σ but different heights at σ 1/2 describe different formation times: a

MNRAS 476, 4877–4906 (2018)
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How does the cosmic web impact assembly bias? 4883

Figure 4. Pictorial representation of the interplay between accretion rate

and formation time as inferred from excursion sets. Two haloes A and B

upcross the threshold δc/D(z1) at the same scale σ . At redshift z1, they have

therefore the same mass. Halo A has a steeper slope than halo B, and has

thus a lower accretion rate. At a slightly larger redshift z2, halo A crosses the

higher threshold δc/D(z2) at a lower σ , and its mass is thus larger than halo

B’s: halo A assembles its mass earlier, consistent with its lower accretion

at z1. At the half-mass scale σ 1/2 = σ (M/2), the trajectory of halo A is

higher: its threshold δc/Df has a value of Df lower than halo B’s at the same

σ 1/2. Halo A has thus assembled half of its mass at a redshift zf higher than

halo B.

higher δ1/2 corresponds to a smaller D(zf) and thus to a halo with

larger zf, which assembled half of its mass earlier.

In the language of excursion sets, it is convenient to work with

Df ≡ D(zf) rather than with zf. In terms of unit variance variables,

haloes with formation time Df correspond to trajectories satisfying

ν1/2 ≡
δ(σ1/2)

σ1/2

=
δc

σ1/2Df

≡ νf , (29)

where ν1/2 is the Gaussian variable at σ 1/2 and νf is the threshold

at Df. This constraint at σ 1/2 imposes a second condition on the

trajectory after ν = νc, which selected the crossing scale σ . One

then needs to transform the bidimensional constraint

C̃ ≡ {ν − νc, ν1/2 − νf} = 0 (30)

on {ν, ν1/2} into one for {σ , Df}, which gives

∣
∣det

(
∂C̃/∂{σ,Df}

)∣
∣ δ

(2)
D (C̃) =

∣
∣ν ′ − ν ′

c

∣
∣

νf

Df

δ
(2)
D (C̃) , (31)

thanks to the fact that ∂(νc − ν)/∂Df = 0.

The joint probability of upcrossing at σ having formation time Df,

denoted fup(σ , Df), is defined as the expectation value of equation

(31) with the condition ν ′ > ν ′
c. That is,

fup(σ,Df) ≡
νf

Df

∫ ∞

ν′
c

dν ′(ν ′ − ν ′
c) pG(νc, ν

′, νf) ,

=
νf

Df

pG(νc, νf)
μf

σ
F (Xf) , (32)

where the second equality follows from setting {v} = νf in the

general expression (15), while μf and Xf are given by

μf(Df) ≡ 〈δ′|νc, νf〉 , Xf(Df) ≡
μf(Df)√

Var (δ′|νc, νf)
, (33)

as specified by equation (16). The conditional mean 〈δ′|νc, νf〉 and

variance Var
(
δ′|νc, νf

)
are computed in equations (F21) and (F22),

which give

μf(Df) =
ω′δc

σ1/2Df

+
σ − ω′ω

σ 2 − ω2

(

δc −
ωδc

σ1/2Df

)

, (34)

Xf(Df) = μf(Df)

/[

〈δ′2〉 − ω′2 −
(σ − ω′ω)2

σ 2 − ω2

]1/2

, (35)

where ω = 〈δν1/2〉 and ω′ = 〈δ′ν1/2〉 are given by equations (E14)

and (E15), respectively.

The conditional probability of Df given upcrossing at σ – the

main result of this subsection – is obtained dividing equation (32)

by equation (11)

fup(Df |σ ) =
νf

Df

pG(νf |νc)
μfF (Xf)

νcF (X)
,

=
(
δc/σ1/2D

2
f

)
e−ν2

f,c
/2

√

2π(1 − 〈νν1/2〉2)

μfF (Xf)

νcF (X)
, (36)

where (νf/Df)pG(νf|νc) = p(Df|νc), not surprisingly, is the condi-

tional probability of the (non-Gaussian) variable Df given νc, and

νf,c ≡
νf − 〈νν1/2〉νc
√

1 − 〈νν1/2〉2
=

δc

σ1/2

1/Df − 〈δδ1/2〉/σ 2

√

1 − 〈νν1/2〉2
. (37)

Recall also that X = Ŵνc. The conditional probability fup(Df|σ )

depends on Df directly, through νf, c and through μf (which appears

also in Xf). As both νf, c and μf are proportional to 1/Df in the small-

Df limit, equation (36) scales like e−ν2
f,c

/2
/D3

f . Hence, fup(Df|σ ) is

exponentially suppressed for small Df, that is for large formation

redshift zf: it is exponentially unlikely for a halo to assemble half

of its mass at very high redshift.

Like in the previous section, the Gaussian cut-off in equation (36)

enables to define a characteristic value D⋆(σ ) of the formation time,

below which fup(Df|σ ) is exponentially suppressed, by requesting

that νf, c = 1. This definition corresponds to

D⋆(σ ) =
δc/σ1/2

〈νν1/2〉νc +
√

1 − 〈νν1/2〉2
, (38)

which can then be solved for the typical formation redshift z⋆.

Similarly, one may define the most likely formation time Dmax by

finding the value of Df that maximizes equation (36). Because its

expression is rather involved and not much more informative than

D⋆, it is not reported here.

Expanding D⋆ in powers of �σ 1/2 ≡ σ 1/2 − σ (even though

�σ 1/2/σ ≃ −(1/2)dlog σ/dlog M may not be small, in which case

this expansion may just give a qualitative indication), one gets

D⋆ ≃ 1 −
�σ1/2

σ

(

1 +
√

〈δ′2〉 − 1

νc

)

≃ 1 −
1

α⋆

�σ1/2

σ
, (39)

confirming the intuitive relation between accretion rate and for-

mation time. Haloes with smaller accretion rates today must have

formed earlier, in order for their final mass to be the same. To derive

this expression, 〈δδ1/2〉 was expanded up to second order in �σ , us-

ing 〈δδ′〉 = σ and 〈δδ′′〉 = 1 − 〈δ′2〉 = Ŵ−2. Let us stress that, strictly

speaking, the conditional probability fup(Df|σ ) is not a well-defined

probability distribution. For instance, just like fup(σ ), equation (36)

is not normalized to unity when integrated over 0 < Df < D. This

is an artefact introduced by the upcrossing approximation to the

first-crossing problem, because equation (29) does not require tra-

jectories to reach δc/Df for the first time. As Df gets close to D,

most trajectories reaching δc/Df do so with negative slope, or after

one or more crossings, which leads to overcounting. For Df = D,
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4884 M. Musso et al.

trajectories that first crossed δc/Df at σ cannot first cross again at

σ 1/2, since σ 1/2 − σ remains finite: the true distribution should then

have f(Df|σ ) = 0. This is clearly not the case for fup(Df|σ ). In spite

of these shortcomings, equation (36) approximates well the true

conditional PDF for Df ≪ D⋆, and the characteristic time D⋆ still

provides a useful parametrization of the height of the tail.

A better approximation than equation (36) may be obtained by

imposing an upcrossing condition at σ 1/2 as well

δc

D2
f

∫ ∞

0

dδ′ δ′
∫ ∞

0

dδ′
1/2 pG(δc, δ

′, δc/Df, δ
′
1/2) . (40)

Notice the absence in this expression of the Jacobian factor δ′
1/2: this

is because the constraint at σ 1/2 is not differentiated with respect

to σ 1/2, but only with respect to Df. This reformulation, which

unfortunately does not admit a simple analytical expression, would

improve the approximation for values of Df closer to D⋆, but it

would still not yield a formally well-defined PDF. Furthermore, the

mean 〈Df|σ 〉 and all higher moments would still be infinite: these

divergences are in fact a common feature of first passage statistics,

which typically involve the inverse of Gaussian variables. For all

these reasons, this calculation is not pursued further.

This section has formalized analytical predictions for accretion

rates and formation times from the excursion set approach with

correlated steps. It confirmed the tight correlation between the

two quantities, according to which at fixed mass, early-forming

haloes must have small accretion rates today. Because the focus is

here on accounting for the presence of a saddle of the potential at

finite distance, for simplicity and in order to isolate this effect we

have restricted our analysis to the case of a constant threshold δc.

More sophisticated models (e.g. scale-dependent barriers involving

other stochastic variables that account for deviations from spherical

collapse) could however be accommodated without extra concep-

tual effort (see Appendix G).

4 H ALO STATISTIC S N EA R SA D D LES

Let us now quantify how the presence of a saddle of the large-scale

gravitational potential affects the formation of haloes in its prox-

imity. To do so, let us study the tracers introduced in the previous

section (the distributions of upcrossing scale, accretion rate, and

formation time) using conditional probabilities. The condition we

enforce is that the upcrossing point (the centre of the excursion set

trajectories) lies at a finite distance r from the saddle point. The fo-

cus will be on (filament-type) saddles of the potential that describe

local configurations of the peculiar acceleration with two spatial

directions of inflow (increasing potential) and one of outflow (de-

creasing potential). See Appendix C for other critical points. These

initial regions will evolve into filaments (at least in the Zel’dovich

approximation), where particles accumulate out of the neighbouring

voids from two directions, and the saddle points filament centres,

where the gravitational attraction of the two nodes balances out. A

schematic representation of this configuration is given in Fig. 5.

The saddles are identified as points with null gradient of the

gravitational potential, smoothed on a sphere of radius RS (which

is assumed to be larger than the halo’s scale R). This condition

guarantees that the mean peculiar acceleration of the sphere, which

at first order is also the acceleration of its centre of mass, vanishes.

That is, the null condition (for i = 1, . . . , 3)

gi ≡
1

R⋆

∫
d3k

(2π)3

iki

k2
δm(k)

W (kRS )

σS

= 0, (41)

Figure 5. Illustration of the conditional excursion set smoothing on a few

infinitesimally close scales around R (in green) at finite distance r from

a saddle point of the gravitational potential smoothed on scale RS ≫ R

(in red). The eigenvectors ex and ez of the tidal tensor at the saddle give the

directions of steepest increase and decrease of the potential, corresponding

to maximum inflow and outflow, respectively. The region is compressed

along ex and ey and stretched along ez, thus creating a filament. The solid

lines are isocontours of the mean density, the thickest the densest. The dotted

line indicates a ridge of mean density (the filament), parallel to ez near the

saddle.

where σS ≡ σ (RS ), is imposed on the mean gradient of the potential

smoothed with a Top-Hat filter on scale RS . This mean acceleration

is normalized in such a way that 〈gigj〉 = δij/3 by introducing the

characteristic length-scale7

R2
⋆ ≡

∫

dk
P (k)

2π2

W 2(kRS )

σ 2
S

. (42)

Having null peculiar acceleration, the patch sits at the equilibrium

point of the attractions of what will become the two nodes at the

end of the filament.8

The configuration of the large-scale potential is locally described

by the rank 2 tensor

qij ≡
1

σS

∫
d3k

(2π)3

kikj

k2
δm(k)W (kRS ) , (43)

which represents the Hessian of the perturbed potential smoothed

on scale RS , normalized so that 〈tr2(q)〉 = 1. This tensor is the

opposite of the so-called strain or deformation tensor. The pecu-

liar gravitational acceleration at the surface of the sphere is pro-

portional to −qijrj. Thus, the trace tr(q) = νS of qij describes the

7 This scale is similar, but not equivalent, to the scale often defined in peak

theory. Calling σ 2
i the variance of the density field filtered with k2iW(kR),

the R∗ defined here is σ−1/σ 0, while the peak theory scale is
√

3σ1/σ2.
8 The mean gravitational acceleration gi includes an unobservable infinite

wavelength mode, which should in principle be removed. A way to circum-

vent the problem would be to multiply W (kRS ) by a high-pass filter on some

large-scale R0 to remove modes with k �1/R0. Because gi is set to 0, it does

not introduce any anisotropy, but simply affects the radial dependence of

the conditional statistics through its covariance 〈gigj〉, which however is not

very sensitive to long wavelengths. For this reason, this minor complication

is ignored.
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How does the cosmic web impact assembly bias? 4885

average infall (or expansion, if negative) acceleration of the three

axes with respect to the background, while the anisotropic shear is

given by the traceless part q̄ij ≡ qij − δijνS/3, which deforms the

region by slowing down or accelerating each axis. By construction,

〈νS q̄ij 〉 = 0.

For the initial spherical patch to evolve into a filament, the eigen-

values qi of qij must obey q1 < 0 < q2 < q3 (see also Fig. D1). In this

configuration, the Zel’dovich flow of the patch has one expanding

direction and two infalling ones. The non-linear evolution is un-

likely to revert this behaviour, and the spherical region will end up

in a filament (Zel’dovich 1970; Bond, Kofman & Pogosyan 1996).

There is no clear consensus on what the initial density of a protofila-

ment should be for the structure to form at z = 0 (see however Shen

et al. 2006). The value νS = 1.2 was chosen here, corresponding to

a mean density of 0.8 within a sphere of RS = 10 Mpch−1, which

is about one standard deviation higher than the mean value for

saddle points of this type (see Appendix D for details), and thus

corresponds to a filament slightly more massive than the average

(or to an average filament that has not completely collapsed yet).

The qualitative results presented in this paper do not depend on the

exact value of νS (even though they obviously do at the quantitative

level).

4.1 Expected impact of saddle tides

The mean and covariance of δ and δ′ at r are modified by the

presence of the saddle at the origin. The zero mean density field is

replaced by δ − 〈δ|S〉, where (using Einstein’s convention as usual)

〈δ|S〉 = 〈δ|S〉〈δνS〉νS + 3〈δgi〉gi +
15

2
〈δq̄ij 〉q̄ij , (44)

where the correlation functions are evaluated at finite separation.

Here, S stands for a filament-type saddle condition of zero gradient

and two positive eigenvalues of the tidal tensor, see Fig. 5. The

slope δ′ is replaced by the derivative of this whole expression with

respect to σ , which gives δ′ − 〈δ′|S〉, since the correlation functions

of δ′ with the saddle quantities correspond to the derivatives of the

δ correlations. These modified height and slope no longer correlate

with any saddle quantity. Thus, the abundance of the various tracers

at r can be inferred from standard excursion sets of this effective

density field. The building blocks of this effective excursion set

problem – the variance of the field and of its slope, height, and

slope of the effective barrier – are derived in full in Appendix F.

The main text of this section discusses how the saddle condition

affects the upcrossing statistics, and the excursion set proxies for

accretion rate and formation time.

For geometrical reasons, since statistical isotropy is broken only

by the separation vector, any angular dependence of the correlation

functions may arise only as ri or rirj. Let us thus write equation (44)

as

〈δ|S〉 = ξ00νS + 3ξ11

r

R⋆

r̂igi − 5ξ20

3r̂i q̄ij r̂j

2
, (45)

where r̂i ≡ ri/r and the correlation functions ξαβ (r, R, RS ) – whose

exact form is given in equation (E11) – depend only on the radial

separation r = |r| and the two smoothing scales, and have positive

sign. Notice the presence of a minus sign in the shear term. In the

frame of the saddle, oriented with the ẑ-axis in the direction of

outflow,

Q ≡ r̂i q̄ij r̂j = q̄3 sin2 θ cos2 φ + q̄2 sin2 θ sin2 φ + q̄1 cos2 θ , (46)

where θ and φ are the usual cylindrical coordinates in the frame of

the eigenvectors (e3, e2, e1) of q̄ij with eigenvalues q̄3 > q̄2 > q̄1.

Figure 6. Pictorial representation of the effect of the presence of saddle

point on the excursion set trajectories at a finite distance from it. Haloes

A and B lie in the direction of the filament (Q ≡ r̂i q̄ij r̂j < 0), where the

mean density is higher than the average density. Halo C lies in the direction

orthogonal to it (Q > 0), where the mean density is lower. Haloes in the

filament are likely to cross the collapsing threshold earlier, like halo A, than

haloes in the voids. They thus tend to have larger mass. At fixed crossing scale

σB = σC, haloes in the filament are likely to cross with shallower slopes,

like halo B, than halo in the voids. At their half-mass scale σ 1/2 > σA, their

trajectories tend to be lower. Hence, at fixed mass, haloes in the filaments

tend to have larger accretion rates and to assemble half of their mass later.

Conversely, haloes in the voids assemble their mass earlier, and then stop

accreting.

When setting gi = 0, an angular dependence can only appear as

a functional dependence on Q(r̂) = r̂i q̄ij r̂j . That is, a dependence

on the direction r̂ with respect to the eigenvectors of the shear q̄ij .

As shown by equation (45), a negative value of Q corresponds to

a higher mean density, which makes it easier for δ to reach δc and

for haloes to form. At fixed distance from the saddle point, halo

formation is thus enhanced in the outflow direction with respect

to the inflow direction: haloes are naturally more clustered in the

filament than in the voids. Moreover, excursion set trajectories with

a lower mean will tend to cross the barrier with steeper slopes than

those crossing at the same scale but with a higher mean, and will

reach higher densities at smaller scales. Hence, haloes of the same

mass that form in the voids will form earlier and have a lower

accretion rates. These trends are shown in Fig. 6.

To understand the radial dependence, one may expand equation

(45) for small r away from the saddle, obtaining

〈δ|S〉 ≃ 〈δνS〉r=0νS + 〈δ∇2νS〉r=0

r2

2
r̂iqij r̂j ; (47)

whether the mean density increases or decreases with r depends

on the sign of the eigenvalues, i.e. the curvatures of the saddle, of

the full q defined in equation (43). Since 〈δ∇2νS〉 < 0, the mean

density grows quadratically with r if r̂iqij r̂j < 0, and decreases

otherwise. One thus expects the saddle point to be a maximum

of halo number density, accretion rate, and formation time in the

two directions perpendicular to the filament, and a minimum in the

direction parallel to it (corresponding to the negative eigenvalue q1).

4.2 Conditional halo counts

The conditional distribution of the upcrossing scale σ at finite dis-

tance r from a saddle point of the potential can be evaluated fol-

lowing the generic procedure described in Section 2.2, fixing

{vI } = {νS , 0, −
√

5(3Q/2)} ≡ S(r) (48)
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4886 M. Musso et al.

as the constraint. With this replacement, equation (15) divided by

pG(S) gives

fup(σ ; r) =
e
−ν2

c,S
/2

√
2πVar (δ|S)

μSF (XS ) , (49)

which is the sought conditional distribution, with

μS (r) ≡ 〈δ′|νc,S〉 , XS (r) ≡
μS (r)

√
Var (δ′|νc,S)

, (50)

as in equation (16). The effective threshold νc,S given the saddle

condition is obtained replacing the generic constraint v with S in

equation (18).

The explicit calculation of the conditional quantities needed to

compute νc,S , μS , and XS is carried out in Appendix F. The results

of Appendix F2 [namely, equation (F13)] give

νc,S (r) ≡
δc − 〈δ|S〉
√

Var (δ|S)
=

δc − ξ00νS + 15
2
ξ20Q(r̂)

√

σ 2 − ξ 2
, (51)

consistently with equation (45), where

ξ 2(r) ≡ ξ 2
00(r) + 3ξ 2

11(r)r2/R2
⋆ + 5ξ 2

20(r) . (52)

The effective slope parameters, obtained by replacing equations

(F10) and (F11) into equation (50), are

μS (r) = ξ ′
ISI +

σ − ξ ′
I ξI

√

σ 2 − ξ 2
νc,S (r) , (53)

XS (r) = μS (r)

/[

〈δ′2〉 − ξ ′2 −
(σ − ξ ′

I ξI )2

σ 2 − ξ 2

]1/2

, (54)

in terms of the vectors

ξ (r) ≡ {ξ00(r),
√

3ξ11(r)r/R⋆,
√

5ξ20(r)} , (55)

ξ ′(r) ≡ {ξ ′
00(r),

√
3ξ ′

11(r)r/R⋆,
√

5ξ ′
20(r)} . (56)

The correlation functions ξαβ (r, R, RS ) and their derivatives ξ ′
αβ =

dξαβ/dσ are given in equations (E11) and (E12), respectively. Note

that throughout the text, ξαβ or ξαβ (r) will be used as a shorthand

for ξαβ (r, R, RS ).

Equation (49), the main result of this subsection, is the conditional

counterpart of equation (11), and is formally identical to it upon re-

placing νc, ν ′
c, and X with νc,S (r), ν ′

c,S (r) = −μS (r)/
√

σ 2 − ξ 2

and XS (r). The position-dependent threshold νc,S (r) and the slope

parameter μS (r), given by equations (51) and (53), respectively,

contain anisotropic terms proportional toQThese terms account for

all the angular dependence of fup(σ ; r). In the large-mass regime,

as {ξ ′
I } ≃ 0, XS ≃ νc,S/(1 − ξ 2) ≫ 1 and F (XS ) ≃ 1. The most

relevant anisotropic contribution is thus the angular modulation of

νc,S , which raises or lowers the exponential tail of fup(σ ; r) along

or perpendicular to the filament. Upcrossing, and hence halo for-

mation, will be most likely in the direction that makes the threshold

νc,S smallest, as this makes it easier for the stochastic process to

reach it.

In analogy to the unconditional case, when a characteristic mass

scale could be defined for which σ = δc, equation (49) suggests

to define the characteristic mass scale σ ⋆ = σ (M⋆) for haloes near

the saddle as the one for which νc,S = 1 in equation (51). In the

language of excursion sets, this request naturally sets the scale

σ 2
⋆ (r) ≡

(

δc − ξ00νS +
15

2
ξ20Q

)2

+ ξ 2(r) . (57)

This is now an implicit equation for σ ⋆, because the RHS has a

residual dependence on σ ⋆ through ξαβ (r, R(σ⋆), RS ), as shown in

Figure 7. Isocontours in the x–z plane of the typical upcrossing scale σ ⋆

around a saddle point [at (0, 0)]. The saddle point is defined using the values

of Table D1. The profiles in the direction of the filament (z-direction) and

of the void (x-direction) are plotted on the sides. The smoothing scale is

R = 1 Mpc h−1. They are obtained by solving equation (57) for σ ⋆ at each

point, with a �CDM power spectrum, and normalized to the value at the

saddle point. In the filament, haloes form at a smaller σ (higher mass) and

conversely in the void.

Appendix E. This equation can be solved numerically for σ ⋆ and

then for M⋆.

The angular dependence of σ⋆(r) is entirely due to ξ20Q. Since

the pre-factor ofQ ≡ r̂iqij r̂j is positive, σ⋆(r) will be smallest when

r aligns with the eigenvector with the smallest eigenvalue, and Q
is most negative. This happens when θ = 0 in equation (46): that

is, in the direction of positive outflow, along which a filament will

form. Thus, in filaments haloes tend to be more massive than field

haloes. The full radial and angular dependence of the characteristic

mass scale σ ⋆ is shown in Fig. 7.

4.3 Conditional accretion rate

The abundance of haloes of given mass and accretion rate at distance

r from a saddle is obtained by replacing the probability distribution

pG(νc, ν
′
c + νc/σα) in equation (23) with its conditional counter-

part given the saddle constraint. As shown by equation (F12), this

conditional distribution is equal to the distribution of the effective in-

dependent variables ν̃ and δ′ − 〈δ′|νc,S〉 introduced in Section 2.2,

times a Jacobian factor of σ/(1 − ξ 2/σ 2). Furthermore, the relation

(19) giving the excursion set slope in terms of the accretion rate

reads in these new variables

δ′ − 〈δ′|νc,S〉 =
νc

α
− μS . (58)

Putting these two ingredients together, equation (23) becomes

fup(σ, α; r) =
ν2

c

σ 2α3
pG(νc, ν

′
c + νc/σα|S) ,

=
ν2

c

α3

e
−
(

ν2
c,S

+Y 2
α,S

)

/2

2π
√

(σ 2 − ξ 2)Var (δ′|νc,S)
, (59)
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How does the cosmic web impact assembly bias? 4887

where Var
(
δ′|νc,S

)
is given by equation (F17) and

Yα,S (r) ≡
νc/α − μS (r)
√

Var (δ′|νc,S)
, (60)

with μS (r) given by equation (53). Again, like equation (23), this

result could be obtained by taking 〈δ′|νc, α,S〉 = νc/α and the

limit Var
(
δ′|νc, α,S

)
→ 0 in equation (16), which would give

F (Xα,S ) = 1.

To investigate the anisotropy of the accretion rate for haloes of

the same mass, one needs the conditional probability of α given

upcrossing at σ , that is the ratio of equations (59) and (49). This

conditional probability reads

fup(α|σ ; r) =
νce

−Y 2
α,S

/2

α3
√

2πVar (δ′|νc,S)

νc

μSF (XS )
, (61)

with μS (r) and XS (r) given by equations (53) and (54), respec-

tively. The second fraction in this expression is thus a normalization

factor that does not depend on α, and which tends to 1 when νc ≫
1 in the large-mass limit. Equation (61) is the main result of this

subsection. It depends on the angular position r̂ through the terms

ξ ′
20Q and ξ20Q contained in μS (r), and thus also in YαS and XS .

The angular dependence is now weighted by two different functions

ξ 20(r) and ξ ′
20(r), whose relative amplitude matters to determine the

overall effect.

To understand the angular variation of the exponential tail of

this distribution, let us focus on how Yα(r) depends on r̂ . That is,

on the anisotropic part of −μS (r). In the large-mass limit, when

σξ ′
αβ (r) ≪ ξαβ (r), equation (53) tells us that the anisotropic part

of Yα(r) is proportional to −ξ20Q, with a proportionality factor

that is always positive and O(1). Thus, the modulation has the

opposite sign of the anisotropic part of νc,S , given in equation

(51): for trajectories with the same upcrossing scale, the probability

of having a given accretion rate is lowest in the direction of the

eigenvector of q̄ij with the lowest (most negative) eigenvalue, for

which Yα is largest. That is, for haloes with the same mass, the

probability of having a given accretion rate is lowest along the ridge

of the potential saddle, which will become the filament.

The typical accretion rate α⋆ of the excursion set haloes described

by the distribution (61) corresponds to the condition Yα⋆,S = 1. This

definition transforms equation (27) into

α⋆(σ, r) ≡
νc√

Var (δ′|νc,S) + μS (r)
, (62)

where Var
(
δ′|νc,S

)
and μS (r) are given by equations (F17) and

(53). In the limit of small anisotropy, the angular variation of the

typical accretion rate is

�α⋆(σ, r) =
α2

⋆ |q̄=0

νc

15

2

[

ξ ′
20 −

σ − ξ ′
I ξI

σ 2 − ξ 2
ξ20

]

r̂i q̄ij r̂j , (63)

where α⋆|q̄=0 – the value of α⋆(σ, r) when q̄ij = 0 – is function of

r but not of the angles. Therefore, at a fixed distance r from the

saddle, haloes that form in the direction of the filament tend to have

higher accretion rates than haloes with the same mass that form in

the orthogonal direction. The full dependence of the characteristic

accretion rate α⋆ for haloes of the same mass on the position with

respect to the saddle point of the potential is shown in Fig. 8. The

figure shows that the saddle point is a local minimum of the accretion

rate along the direction connecting two regions with high density of

final objects, which is two peaks of the final halo density field. This

is consistent with the result that the accretion of haloes in filaments

is suppressed by the effect of the tidal forces (as shown by, e.g.

Hahn et al. 2009; Borzyszkowski et al. 2016). The threshold δ �
δc is reached at smaller σ in filaments than in void, hence the slope

is smaller at upcrossing. It is shown schematically in the top panel

of Fig. B3. A verification with a constrained random field is shown

in the bottom panel of Fig. B3. The details of the method used are

given in Appendix B.

One can also evaluate the mean of the conditional distribution (61)

following equation (26), integrating αfup(α|σ,S) over the range of

positive α. This conditional mean value is

〈α|σ 〉(r) =
νc

μS (r)

1 + erf(XS (r)/
√

2)

2F (XS (r))
; (64)

in the large-mass regime, where XS ≫ 1 and the whole second frac-

tion tends to 1, the position-dependent conditional mean 〈α|σ 〉(r)

is essentially the same as α⋆(r) defined in equation (62). As for

fup(α|σ ), all higher order moments are ill defined. One can also find

useful information in the most likely accretion rate

αmax(σ, r) =
ν2

c

6Var (δ′|νc,S)

[√

1 +
12

X2
S (r)

− 1

]

, (65)

which generalizes equation (28) to the presence of a saddle point

at distance r . The same conclusion holds here namely the most

likely accretion rate increases from voids to saddles and saddles

to nodes. The following only considers maps of α⋆(σ, r), since

the information encoded in αmax(σ, r) and 〈α|σ 〉(r) is somewhat

redundant.

4.4 Conditional formation time

The formation time in the vicinity of a saddle is obtained by fixing

the saddle parameters S = {νS , r̂igi, r̂i q̄ij r̂j }, with gi = 0, besides

ν = νc and ν1/2 = νf. A five-dimensional constraint on the Gaussian

variables must now be dealt with, and mapped into {σ,Df,S}. Since

the mapping of the saddle parameters is the identity, the Jacobian

of the transformation still gives |ν ′ − ν ′
c|νf/Df , like in Section 3.2

(where there was no saddle constraint). The formalism outlined in

Section 2.2 still applies: the joint probability of upcrossing at σ

with formation time Df given the saddle is obtained replacing {v}
with {νf,S} in equation (16), multiplying by the Jacobian νf/Df and

dividing by the probability pG(S) of the saddle. The result is

fup(σ, Df ; r) =
νf

Df

pG(νc, νf |S)
μf,S

σ
F (Xf,S ) (66)

which extends equation (32) by including the presence of a saddle

point of the potential at distance r , with

μf,S ≡ 〈δ′|νf, νc,S〉 , Xf,S ≡
μf,S√

Var (δ′|νf, νc,S)
. (67)

The conditional mean and variance of δ′ given {νf, νc,S} are ex-

plicitly computed in Appendix F4, equations (F30) and (F31).

The conditional probability of the formation time Df given σ

at a distance r from the saddle follows dividing equation (66) by

fup(σ |r), given by equation (49). This ratio – which is the main

result of this section – gives

fup(Df |σ ; r) =
νf

Df

pG(νf |νc,S)
μf,S

μS

F (Xf,S )

F (XS )
,

=
(δc/D

2
f )e

−ν2
f,c,S

/2

√

2πVar
(
δ1/2|νc,S

)

μf,S

μS

F (Xf,S )

F (XS )
. (68)
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4888 M. Musso et al.

Figure 8. Isocontours in the x–z plane of the typical accretion rate α⋆ (upper left) and formation time D⋆ (upper right) around a saddle point [at (0, 0)] and

in the x–y plane of the characteristic upcrossing scale σ ⋆ (lower left) and typical accretion rate ( lower right). The saddle point is defined using the values of

Table D1. The profiles going through the saddle point in the x–z (upper panels) and x–y (lower panels) planes are plotted on the sides. The smoothing scale

is R = 1 Mpc h−1. They were obtained with a �CDM power spectrum, and normalized to the value at the saddle point. Since the filament has higher mean

density, excursion set trajectories upcrossing at a given σ have shallower slopes. Hence, typical haloes are more massive in filaments and at fixed mass, haloes

forming in the filament have larger accretion rates at z = 0 and form later. The same hierarchy exists between the two perpendicular directions.

Equation (68) provides the counterpart of equation (36) near a saddle

point, in terms of the effective threshold

νf,c,S (Df, r) ≡
δc/Df − 〈δ1/2|νc,S〉
√

Var
(
δ1/2|νc,S

) , (69)

with

〈δ1/2|νc,S〉 = ξ1/2 · S +
〈δδ1/2〉 − ξ · ξ1/2

σ 2 − ξ 2
(δc − ξ · S) , (70)

Var
(
δ1/2|νc,S

)
= σ 2

1/2 − ξ 2
1/2 −

(〈δδ1/2〉 − ξ · ξ1/2)2

σ 2 − ξ 2
. (71)

It also depends on the effective upcrossing parameters μS (r) and

XS (r), given in equations (50)–(53). The explicit forms of the func-

tions μf,S (Df, r) and Xf,S (Df, r) are reported in Appendix F4 for

convenience [equations (F33) and (F34)].

Note that in equation (68), fup(Df |σ ; r) depends on Df also

through νf,c,S and μf,S . For early formation times (Df ≪ 1), the
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conditional mean 〈δ′|νf, νc,S〉 becomes large, since the trajectory

must reach a very high value at σ 1/2. Hence, μf,S (Df, r) ∝ 1/Df .

In this limit, the last ratio in equation (68) above tends to 1, and

fup(Df |σ ; r) ∝ (1/D3
f ) exp(−ν2

f,c,S/2), with a proportionality con-

stant that does not depend on the angle. Then, the probability decays

exponentially for small Df as νf,c,S grows. The typical formation

time D⋆ = D(z⋆) can be defined as that value for which νf,c,S = 1

and this exponential cut-off stops being effective, that is

D⋆(r, σ ) ≡
δc

√

Var
(
δ1/2|νc,S

)
+ 〈δ1/2|νc,S〉

, (72)

which provides the anisotropic generalization of the expression

given in equation (38). The explicit expression for the conditional

mean 〈δ1/2|νc,S〉 and variance Var
(
δ1/2|νc,S

)
are given by equa-

tions (70) and (71), respectively.

As the angular variation of 〈δ1/2|νc,S〉 is approximately

15

2
�σ1/2ξ20(r)Q(r̂) , (73)

where Q(r̂) ≡ r̂i q̄ij r̂j , �σ 1/2 = σ 1/2 − σ > 0, the formation time

D⋆ is larger when r is aligned with the eigenvector with the most

negative eigenvalue, corresponding to the direction of the filament.

One has in fact

�D⋆(r, σ ) = −
D2

⋆ |q̄=0

δc

15

2
�σ1/2ξ20(r)Q(r̂) , (74)

where D⋆ depends only on the radial distance r, which shows that

at a fixed distance from the saddle point, haloes in the direction

of the filament tend to form later (larger D⋆). The saddle point is

thus a minimum of the half-mass time D⋆ along the direction of the

filament, that is a maximum of z⋆: haloes that form at the saddle

point assemble most of their mass the earliest. Fig. 8 displays a

cross-section of a map of D⋆ in the frame of the saddle.

5 A S T RO P H Y S I C A L R E F O R M U L AT I O N

The joint and conditional PDFs derived in Sections 2–4 were ex-

pressed in terms of variables (σ , α, and Df) that are best suited for

the excursion set theory. Now, for the sake of connecting to obser-

vations and gathering a wider audience, let us write explicitly what

the main results of those sections – equations (14), (25), and (36),

and their constrained counterparts (49), (61), and (68) – imply in

terms of astrophysically relevant quantities like the distribution of

mass, accretion rate, and formation time of DM haloes.

5.1 Unconditional halo statistics

The upcrossing approximation provides an accurate analytical so-

lution of the random walk problem formulated in the Extended

Press–Schechter model, for a Top-Hat filter in real space and a real-

istic power spectrum. In this framework, the mass fraction in haloes

of mass M is

M

ρ̄

dn

dM
=
∣
∣
∣
∣

dσ

dM

∣
∣
∣
∣
fup(σ (M)) , (75)

with fup(σ ) given by equation (14) and is a function of mass via

equation (1). For instance, for a power-law power spectrum P(k)

∝ k−n with index n = 2 one has M/M⋆ = (σ/σ ⋆)−6. The general

power-law result M ∝ σ 6/(n − 3) follows from equation (E17).

The excursion set approach also establishes a natural relation

between the accretion rate of the halo and the slope of the trajectory

at barrier crossing. One can thus predict the joint statistics of σ and

of the excursion set proxy α ≡ νc/[d(δ − δc)/dσ ] for the accretion

rate. In order to get the joint mass fraction in haloes of mass M

and accretion rate Ṁ , one needs to introduce the Jacobian of the

mapping from (σ , α) to (M, Ṁ). Since σ (M) does not depend on

α, this Jacobian has the simple factorized form |dσ/dM||dα/dṀ|.
Since dα/dṀ = α/Ṁ from equation (20), one can write the joint

analogue of equation (75) as

MṀ

ρ̄

d2n

dMdṀ
=
∣
∣
∣
∣

d log σ

dM

∣
∣
∣
∣

σαfup(σ, α) , (76)

where fup(σ , α) is now given by equation (23), whereas σ (M) and

α(M, Ṁ) are functions of M and Ṁ via equations (1) and (20),

respectively. From the ratio of equations (76) and (75), the expected

mean density of haloes of given mass and accretion rate can be

reformulated as

Ṁ
d2n

dMdṀ
= αfup(α|σ )

dn

dM
, (77)

where fup(α|σ ) is given by equation (25). This expression relates

analytically the number density of haloes binned by mass and ac-

cretion rate to the usual mass function.

Similarly, the joint mass fraction of haloes of mass M and forma-

tion time zf (defined as the redshift at which the halo has assembled

half of its mass) can be inferred from the joint statistics of σ and Df

≡ δc/δ(σ 1/2), where σ 1/2 ≡ σ (M/2) is the scale containing half of

the initial volume. The redshift dependence of the growth function

D(z) is defined by equation (4). Hence, the mass fraction in haloes

of given mass M and formation time zf is

M

ρ̄

d2n

dMdzf

=
dσ

dM

dDf

dzf

fup(σ,Df) , (78)

and its conditional is

d2n

dMdzf

=
dDf

dzf

fup(Df |σ )
dn

dM
, (79)

where the joint and conditional distributions of Df and σ are given

by equations (32) and (36), respectively.

Interestingly, while the excursion set mass function is subject

to the limitation of upcrossing theory, the conditional statistics of

accretion rate, or formation redshift, at given mass should be con-

siderably more accurate. This is because the main shortcoming of

excursion sets is the lack of a prescription for where to centre

in space each set of concentric spheres giving a trajectory. These

spheres are placed at random locations, whereas they should insist

on the centre of the protohalo. However, choosing a better theoret-

ical model (e.g. the theory of peaks) to set correctly the location

of the excursion set trajectories would not dramatically modify the

conditional statistics. Changing the model would modify the func-

tion F(x), defined in equation (13), that modulates each PDF. In

conditional statistics, only ratios of this function appear, which are

rather model independent, whereas the probability of the constraint

does not appear. The relevant part for our analysis – the exponential

cut-off of each conditional distribution given the constraint – would

not change. Hence, even though equation (75) does not provide a

good mass function dn/dM, one may argue that the relations (77)

and (79) are still accurate in providing the joint abundance statistics

of mass and accretion rate, or mass and formation redshift, once a

better model – or even a numerical fit – is used to infer dn/dM.

5.2 Halo statistics in filamentary environments

In the tide of a saddle of given height and curvature, equations

(75), (76), and (78) remain formally unchanged, except for the
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4890 M. Musso et al.

Figure 9. PDF of σ at upcrossing given the saddle point in the x (void, in

red) and z (filament, in blue) directions at distance r = 10 Mpc h−1 (solid

lines) and r = 5 Mpc h−1 (dashed lines). The saddle point is defined using

the values of Table D1. The PDF without the saddle point is shown in black

and at the saddle point in dashed black. The value of σ ⋆ at the saddle point

is shown by the vertical dashed line. In the filament, the PDF is boosted

for small values of σ : there are more massive haloes in the filament. The

opposite trend is seen in the void.

replacement of fup(σ ), fup(σ , α), and fup(σ , Df) by their position-

dependent counterparts fup(σ ; r), fup(σ, α; r), and fup(σ, Df ; r)

conditioned to the presence of a saddle, given by equations

(49), (59), and (66), respectively. Similarly, in equations (77) and

(79), one should substitute the distribution fup(α|σ ) and fup(Df|σ )

by their conditional counterparts fup(α|σ ; r) and fup(Df |σ ; r)

of accretion rate and formation time at fixed halo mass, given

by equations (61) and (68).

These functions depend on the mass M, accretion rate Ṁ , and

formation time zf of the halo through σ (M), α(M, Ṁ), and Df(zf), as

before. However, conditioning onS introduces a further dependence

on the geometry of the environment (the height νS of the saddle

and its anisotropic shear q̄ij ) and on the position r of the halo

with respect to the saddle point. This dependence arises because

the saddle-point condition modifies the mean and variance of the

stochastic process (δ, δ′) – the height and slope of the excursion set

trajectories – in a position-dependent way, making it more or less

likely to form haloes of given mass and assembly history within

the environment set by S. The mean becomes anisotropic through

Q = r̂i q̄ij r̂j , and both mean and variance acquire radial dependence

through the correlation functions ξαβ and ξ ′
αβ , defined in equation

(E12), which depend on r, RS , and R [the variance remains isotropic

because the variance of q̄ij is still isotropic, see e.g. equation (71)

and Appendix E].

The relevant conditional distributions are displayed in Figs 9–11.

The plots show that haloes in the outflowing direction (in which

the filament will form) tend to be more massive, with larger ac-

cretion rates and forming later than haloes at the same distance

from the saddle point, but located in the infalling direction (which

will become a void). This trend strengthens as the distance from

the centre increases. The saddle point is thus a minimum of the

expected mass and accretion rate of haloes, and a maximum of for-

mation redshift, as one moves along the filament. The opposite is

true as one moves perpendicularly to it. This behaviour is consis-

tent with the expectation that filamentary haloes have on average

lower mass and accretion rate, and tend to form earlier, than haloes

in peaks.

Figure 10. PDF of α at upcrossing given the smoothing scale and the

saddle point in the x (void, in red) and z (filament, in blue) directions at

distance r = 10 Mpc h−1 (solid lines) and r = 5 Mpc h−1 (dashed lines)

(upper panel) compared to the PDF without the saddle point (lower panel).

The saddle point is defined using the values of Table D1. The PDF with

no saddle point is shown in solid black and the PDF at the saddle point in

dashed black. In the filament, the PDF is boosted at its high end: haloes

accrete more. The opposite trend is seen in the void.

Figure 11. PDF of Df at upcrossing given the smoothing scale and the

saddle point in the x (void, in red) and z (filament, in blue) directions at

distance r = 10 Mpc h−1 (solid lines) and r = 5 Mpc h−1 (dashed lines) and

without saddle point (black) compared to the PDF at the saddle point. The

saddle point is defined using the values of Table D1. In the filament, the

PDF is boosted at the late formation end: haloes form later. The opposite

trend is seen in the void.

MNRAS 476, 4877–4906 (2018)
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How does the cosmic web impact assembly bias? 4891

Figure 12. Top: plot of the typical mass M⋆, middle: the typical specific accretion rates Ṁ/M , and bottom: the formation redshifts z⋆ for different masses as

a function of the distance to the saddle point, left: in the direction of the void and right: in the direction of the filament. The colour of each line encodes the

smoothing scale (hence the mass), from dark to light M = 1011 M⊙ h−1 (R = 0.8 Mpc h−1) to M = 1013 M⊙ h−1 (R = 3.7 Mpc h−1) logarithmically spaced;

the dashed line is evaluated at M = M⋆. Labels are given in unit of 1011 M⊙ h−1. The saddle point has been defined using the values given in Table D1. More

massive haloes accrete more and form later than less massive ones. At the typical mass, the space variation of the specific accretion rate and the formation

redshift is smaller in the direction of the filament than in the direction of the void.

To better quantify these trends let us define the tidally modified

characteristic quantities

M⋆(r) = M(σ⋆(r)) , (80)

Ṁ⋆(r, M) = −
d log D

dz

dM

d log σ
α⋆(r, σ ) , (81)

z⋆(r, M) = z(D⋆(r)) ≃ 1/D⋆(r, σ ) − 1 , (82)

giving the typical mass and the accretion rate and formation time at

given mass as a function of the position with respect to the centre

of the saddle.

The last approximation holds for haloes that assemble half of their

mass before z ∼ 2, since at early times D ≃ (1 + z)−1. These typical

quantities are known functions of the position-dependent typical

values of the excursion set parameters σ⋆(r), α⋆(r, σ ), and D⋆(r, σ )

given by equations (57), (62), and (72), respectively. They gener-

alize the corresponding characteristic quantities obtained without

conditioning on the saddle, given by σ ⋆ = δc, and by the functions

α⋆(σ ) and D⋆(σ ) defined in equations (27) and (38).

Taylor expanding equation (57) in the anisotropy gives the first-

order angular variation of M⋆ at fixed distance r from the saddle

�M⋆(r) = −
15

2

δc ξ20(r)

|(dσ/dM)M⋆
|
Q(r̂) , (83)

where ξ 20(r) is the radial part of the shear-height correlation function

at finite separation. Since ξ 20 is positive, this variation is largest

when r is parallel to the eigenvector with the smallest eigenvalue.

That is, in the direction of positive outflow (with negative Q =
r̂i q̄ij r̂j ), along which a filament will form. Thus, in filaments haloes

tend to be more massive, and haloes of large mass are more likely.

The full dependence of the characteristic mass M⋆ as a function

of the position with respect to the saddle point of the potential is

shown in Fig. 12.

Similarly, like equations (63) and (74) for α⋆ and D⋆, the first-

order angular variations of Ṁ⋆ and z⋆ are

�Ṁ⋆(r, M) = −
d log D

dz

dM

d log σ

α2
⋆ |q̄=0

νc

×
15

2

[

ξ ′
20 −

σ − ξ ′
I ξI

σ 2 − ξ 2
ξ20

]

Q(r̂) , (84)

�z⋆(r, M) =

∣
∣
∣
∣
∣

dz

dD

∣
∣
∣
∣
∣

D2
⋆ |q̄=0

δc

15

2

∣
∣
∣
∣
∣

dσ

dM

∣
∣
∣
∣
∣

M

2
ξ20(r)Q(r̂) . (85)

These results confirm that in the direction of the filament, haloes

have on average larger mass accretion rates and smaller formation

redshifts than haloes of the same mass that form at the same distance

from the saddle point, but in the direction perpendicular to it. The

space variation becomes larger with growing halo mass and fixed

RS , as shown in Fig. 12, because the correlations become stronger

as the difference between the two scales gets smaller. Conversely,

for smaller masses haloes have on average smaller accretion rates

(like in the unconditional case, see Fig. 3) and later formation times,

but also less prominent space variations.

Note that two estimators of delayed mass assembly, �Ṁ⋆ and �z⋆

do not rely on the same property of the excursion set trajectory and

do not lead to the same physical interpretation. In particular, when

extending the implication of delayed mass assembly to galaxies

and their induced feedback, one should distinguish between the

instantaneous accretion rate, and the integrated half-mass time as

MNRAS 476, 4877–4906 (2018)
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4892 M. Musso et al.

they trace different components of the excursion hence different

epochs.

5.3 Expected differences between the isocontours

In order to investigate whether the assembly bias generated by the

cosmic web and described in this work is purely an effect due to

the local density (itself driven by the presence of the filament),

this section studies the difference between the isocontours of the

local density field and any other statistics (mass accretion rate for

instance). The latter will be shown not to follow exactly the isoden-

sity surfaces, but to intersect each other. This misalignment may

only appear if spherical symmetry is broken (all isocontours would

otherwise be spherical). However, it also shows that halo properties

do not depend only on the local density, indicating that the role of

the anisotropy of the nearby filament in the formation of structures

goes beyond the simple creation of an anisotropic density field.

The normals to the level surfaces of Ṁ⋆(r,M), M⋆(r), z⋆(r,M),

and 〈ρ〉(r) ≡ ρ̄(1 + 〈δ|S〉) scale like the gradients of these func-

tions. First note that any mixed product (or determinant) such as

∇Ṁ⋆ · (∇M⋆ × ∇〈ρ〉) will be null by symmetry; i.e. all gradients

are coplanar. This happens because the present theory focuses on

scalar quantities (mediated, in our case, by the excursion set density

and slope). In this context, all fields vary as a function of only two

variables, r and Q = r̂i q̄ij r̂j , hence the gradients of the fields will

all lie in the plane of the gradients of r and Q.9 Ultimately, if one

focuses on a given spherically symmetric peak, then Q vanishes, so

all gradients are proportional to each other and radial. Let us now

quantify the misalignments between two normals within that plane.

In spherical coordinates, the Nabla operator reads

∇ =
(

∂

∂r
,

1

r

∂

∂θ
,

1

r sin θ

∂

∂φ

)

≡
(

∂

∂r
,

1

r
∇̃
)

, (86)

so that for instance

∇Ṁ⋆ ∝
(
∂Ṁ⋆

∂r
,

1

r

∂Ṁ⋆

∂Q
∇̃Q

)

,

where equation (46) implies that

∇̃Q =

(

sin 2θ
(
q̄3 cos2 φ + q̄2 sin2 φ − q̄1

)

sin θ (q̄2 − q̄3) sin 2φ

)

. (87)

Hence, for instance the cross product ∇M⋆ × ∇Ṁ⋆ reads

(
∂Ṁ⋆

∂r

∂M⋆

∂Q
−

∂Ṁ⋆

∂Q

∂M⋆

∂r

)

∇̃Q . (88)

It follows that the two normals are not aligned, since the pre-factor

in equation (88) does not vanish: the fields are explicit distinct

and independent functions of both r and Q. The origin of the mis-

alignment lies in the relative amplitude of the radial and ‘polar’

derivatives (with respect to Q) of the field. For instance, even at

linear order in the anisotropy, since �Ṁ⋆ in equation (84) has a

radial dependence in ξ ′
20 as a pre-factor to Q, whereas M⋆ has only

ξ 20 as a pre-factor in equation (83), the bracket in equation (88) will

involve the Wronskian ξ ′
20∂ξ20/∂r − ξ20∂ξ ′

20/∂r which is non-zero

9 In order to break this degeneracy, one would need to look at the statistics

of higher spin quantities. For instance, the angular momentum of the halo

would depend on the spin-one coupling εijk r̂j q̄kl r̂l , with εijk the totally anti-

symmetric tensor (see e.g. Codis, Pichon & Pogosyan 2015), or to consider a

barrier that depends on the local shear at r filtered on scale R (e.g. Castorina

et al. 2016), like e.g. δc + βσ q̄ij (r, R)q̄ij (r, R) with some constant β.

because ξ 20 and its derivative with respect to filtering are linearly

independent. This misalignment does not hold for M⋆ and 〈ρ〉 at

linear order, since �M⋆ (equation 83) and 〈ρ〉 (equation 45) are

proportional in this limit. Yet it does arises when accounting for

the fact that the contribution to the conditional variance in M⋆ also

depends additively on ξ 2(r) in equation (57) [with ξ 2(r) given by

equation (52) as a function of the finite separation correlation func-

tions ξαβ computed in equation (E12) for a given underlying power

spectrum]. Indeed, one should keep in mind that the saddle condi-

tion not only shifts the mean of the observables but also changes

their variances. Since the critical ‘star’ observables (M⋆, z⋆, etc.)

involve rarity, hence ratio of the shifted means to their variances

(e.g. entering equation 60), both impact the corresponding normals.

It is therefore a clear specific prediction of conditional excursion

set theory relying on upcrossing that the level sets of density, mass

density, and accretion rates are distinct.

Physically, the distinct contours could correspond to an excess

of bluer or reddened galactic hosts at fixed mass along preferred

directions depending on how feedback translate inflow into colour

as a function of redshift. Indeed feedback from active galactic nu-

clei (AGNs), triggered during merger events, regulates gas inflows

(Dubois et al. 2016), which in turn impacts star formation: when

it is active, at intermediate and low redshift, it may reverse the

naive expectation (see Appendix H). This would be in agreement

with the recent excess transverse gradients (at fixed mass and den-

sity) measured both in cosmological hydrodynamical simulation

Horizon-AGN (Dubois et al. 2014) and those observed in spectro-

scopic (e.g. VIPERS or GAMA, Malavasi et al. 2017; Kraljic et al.

2018) and photometric (e.g. COSMOS, Laigle et al. 2017) surveys:

bluer central galaxies at high redshifts when AGN feedback is not

efficient and redder central galaxies at lower redshift.

Our predictions are formulated in the initial conditions. How-

ever, one should take into account a Zel’dovich boost to get the

observable contours of the quantities derived in the paper. Regions

that will collapse into a filament are expected to have a convergent

Zel’dovich flow in the plane perpendicular to the filament and a

diverging flow in the filament’s direction. As such, the contours of

the different quantities will be advected along with the flow and will

become more and more parallel along the filament. This effect is

clearly seen in Fig. 13 which shows the contours of both the typical

density and the accretion rate10 (bottom panel) after the Zel’dovich

boost (having chosen the amplitude of the boost corresponding to

the formation of the filamentary structure). The contours are com-

pressed towards the filament and become more and more parallel.

Hence, the stronger the non-linearity, the more parallel the con-

tours. This is consistent with the findings of Kraljic et al. (2018),

whose colour and (stellar) mass gradients follow the underlying

mean density, when the density is averaged on sufficiently small

scales.

6 A SSEMBLY B IAS

The bias of DM haloes (see Desjacques, Jeong & Schmidt 2016,

for a recent review) encodes the response of the mass function to

variations of the matter density field. In particular, the Lagrangian

bias function b1 describes the linear response to variations of the

initial matter density field. For Gaussian initial conditions, the

10 Interactive versions can be found online https://cphyc.github.io/

research/assembly/with boost.html and https://cphyc.github.io/research/

assembly/no boost.html.
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Figure 13. Level surfaces of the typical density ρ⋆ (light to dark blue) and

of the accretion rate α⋆ (light to dark red) with no Zel’dovich boost (upper

panel and with a Zel’dovich boost (lower panel). The saddle is represented

by a ball. Once boosted, the structure of the filament in the z-direction is

clearly seen and the isocontours align one with each other.

correlation of the halo overdensity with an infinite wavelength mat-

ter overdensity δ0 is then (Fry & Gaztanaga 1993),

〈δ0δh(r, M)〉 =
∫

dr1〈δ0δm(r1)〉b1(r, r1, M) , (89)

where formally b1(r, r1, M) ≡ 〈∂[δh(r, M)]/∂[δm(r1)]〉 is the ex-

pectation value of the functional derivative of the local halo over-

density with respect to the (unsmoothed) matter density field δm(r)

(Bernardeau, Crocce & Scoccimarro 2008). In the standard setup,

because of translational invariance (which does not hold here), it is

only a function of the separation |r − r1|.
The dependence of the halo field on the matter density field

can be parametrized with a potentially infinite number of variables

constructed in terms of the matter density field, evaluated at the same

point. With a simple chain rule applied to the functional derivative,

equation (89) can be written as the sum of the cross-correlation of

δ0 with each variable, times the expectation value of the ordinary

partial derivative of the halo point process with respect to the same

variable. The latter are the so-called bias coefficients, and are math-

ematically equivalent to ordinary partial derivatives of the mass

function with respect to the expectation value of each variable.

The most important of these variables is usually assumed to be

the density δ(r, R) filtered on the mass scale of the haloes, which

mediates the response to the variation of an infinite wavelength

mode of the density field, the so-called large-scale bias. Because

the smoothed density correlates with the k = 0 mode of the density

field, this returns the peak-background split bias. Its bias coefficient

is also equal to (minus) the derivative with respect to δc.

Excursion sets make the ansatz that the next variable that mat-

ters is the slope δ′(r, R) (Musso, Paranjape & Sheth 2012). In the

simplest excursion set models with correlated steps and a constant

density threshold, trajectories crossing δc with steeper slopes have

a lower mean density on larger scales (Zentner 2007). They are thus

unavoidably associated with less strongly clustered haloes. This

prediction is in agreement with N-body simulations for large-mass

haloes, but the trend is known to invert for smaller masses (Sheth

& Tormen 2004; Gao et al. 2005; Wechsler et al. 2006; Dalal et al.

2008). Although more sophisticated models are certainly needed in

order to account for the dynamics of gravitational collapse, we will

see that the presence of a saddle point contributes to explaining this

inversion.

None of the concepts outlined above changes in the presence of

a saddle point: the bias coefficients are derivatives of dn/dM, that

is of the upcrossing probability through equation (75). Because we

are interested in the bias of the joint saddle-halo system, we must

differentiate the joint probability fup(σ ; r)p(S), rather than just

fup(σ ; r), and divide by the same afterwards. Of course, the result

picks up a dependence on the position within the frame of the saddle.

The relevant uncorrelated variables are δ − 〈δ|S〉, δ′ − 〈δ′|ν,S〉,
νS , r̂igi = 0, and Q = r̂i q̄ij r̂j . Differentiating equation (49), the

bias coefficients of the halo are

b10(M; r) ≡
∂ log

[
fup(σ ; r)

]

∂〈δ|S〉
=

δc − ξISI

σ 2 − ξ 2
, (90)

b01(M; r) ≡
∂ log

[
fup(σ ; r)

]

∂〈δ′|νc,S〉
=

1 + erf(XS (r)/
√

2)

2μS (r)F (XS (r))
, (91)

which without saddle reduce to (a linear combination of) those

defined by Musso et al. (2012). The coefficients of the saddle are

b
(S)
100 ≡ −

∂

∂δs

log pG(S) =
νS

σS

, (92)

b
(S)
010 ≡ −

∂

∂(r̂igi)
log pG(S)

∣
∣
∣
∣
∣
gi=0

= 0 , (93)

b
(S)
001 ≡ −

∂

∂Q
log pG(S) =

15

2

3Q

2
. (94)

A constant δ0 does not correlate with q̄ij , since there is no zero

mode of the anisotropy. One can see this explicitly by noting that

ξ20(R0, RS , r) → 0 as R0 → ∞. The only coefficients that survive

in the cross-correlation with δ0 are thus b10, b01 and b
(S)
100, so that

equation (89) becomes

〈δ0δh(r, M)〉 = b
(S)
100〈δ0δs〉 + b10Cov (δ0, δ|S)

+ b01Cov
(
δ0, δ

′|νc,S
)
. (95)
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4894 M. Musso et al.

Similarly, in this limit δ0 does not correlate with gi either, while

〈δ0δ〉 becomes independent of R. Thus, 〈δ0δ〉 ≃ 〈δ0δs〉 and 〈δ0δ
′〉 ≃

0. Hence,

〈δ0δh〉
〈δ0νS〉

≃ νS +
δc − ξISI

σ 2 − ξ 2
(σs − ξ00)

−b01

[

ξ ′
00 +

σ − ξ ′
I ξI

σ 2 − ξ 2
(σs − ξ00)

]

. (96)

Setting νS = ξαβ = ξ ′
αβ = 0 recovers Musso et al.’s (2012) results.

The anisotropic effect of the saddle is easier to understand looking

at the sign of the terms in the round and square brackets, correspond-

ing to Cov (δ0, δ|S) and −Cov
(
δ0, δ

′|νc,S
)

respectively. One can

check that for R = 1 Mpc h−1 and RS = 10˜Mpc h−1 both terms

are negative near r = 0, but become positive at r ≃ 0.75RS . This

separation marks an inversion of the trend of the bias with νc,S ,

the parameter measuring how rare haloes are given the saddle en-

vironment. Far from the saddle, haloes with higher νc,S are more

biased, which recovers the standard behaviour since νc,S → νc as r

→ ∞. However, as r/RS � 0.75, the trend inverts and haloes with

higher νc,S become less biased. Therefore, one expects that at fixed

mass and distance from the saddle-point haloes in the direction of

the filament are less biased far from the saddle, but become more

biased near the saddle point. The upper panel of Fig. 14, displaying

the exact result of equation (96), confirms these trends and their

inversion at r ≃ 0.75RS . The height of the curves at r = 0 depends

on the chosen value for νS , but the inversion at r ≃ 0.75RS and the

behaviour at large r do not. Fig. 14 also shows that a saddle point

of the potential need not be a saddle point of the bias (in the present

case, it is in fact a maximum).

The inversion can be interpreted in terms of excursion sets. Near

the saddle, fixing νS at r = 0 puts a constraint on the trajectories

at r that becomes more and more stringent as the separation gets

small. At r = 0, the value of the trajectory at RS is completely

fixed. Therefore, trajectories constrained to have the same height

at both RS and R, but lower 〈δ|S〉 at R, will tend to drift towards

lower values between RS and R, and thus towards higher values for

R0 ≫ RS . This effect vanishes far enough from the saddle point,

since the constraint on the density at RS becomes looser as the

conditional variance grows. Hence, trajectories with lower 〈δ|S〉
at R will remain lower all the way to R0. Note however that inter-

preting these trends in terms of clustering is not straightforward,

because the variations happen on a scale RS ≪ R0 (they are thus

an explicit source of scale-dependent bias). The most appropriate

way to understand the variations of clustering strength is looking

at the position dependence of dn/dM, which is predicted explicitly

through fup(σ ; r) in equation (49).

When one bins haloes also by mass and accretion rate, the bias is

given by the response of the mass function at fixed accretion rate.

That is, to get the bias coefficients one should now differentiate the

joint probability fup(σ, α; r)pG(S) with respect to mean values of

the different variables, with fup(σ, α; r) given by equation (59). The

only bias coefficient that changes is b01, the derivative with respect

to 〈δ′|νc,S〉, which becomes

b01(M, Ṁ, r) ≡
∂ log

[
fup(σ, α; r)

]

∂〈δ′|νc,S〉
=

νc/α − μS (r)

Var (δ′|νc,S)
, (97)

with α defined by equation (20). Inserting this expression in equa-

tion (96), returns the predicted large-scale bias at fixed accretion

rate. Notice that in this simple model, the coefficient multiplying

the 1/α term is purely radial. The asymptotic behaviour of the bias

at small accretion rates will then always be divergent and isotropic,

Figure 14. Upper panel: large-scale Lagrangian bias as a function of the

distance from the saddle point, along the filament and perpendicularly to it,

for haloes of mass M = 2.0 × 1011 M⊙ h−1 (R = 1 Mpc h−1). Haloes in

the perpendicular direction are less biased at small separation, but the trend

inverts at r/RS ≃ 0.75. Lower panel: bias as a function of accretion rate,

for different values of the separation r/RS in the direction of the filament.

For haloes closer to the centre, bias decreases with accretion rate, but the

trend inverts at r/RS ≃ 0.75. In the perpendicular direction, the effect is

30 per cent smaller, but the relative amplitudes and the inversion point do not

change appreciably. As discussed in the main text, both inversions depend

on the fact that δ − 〈δ|S〉 and δ0 correlate at large distance from the saddle,

but they anticorrelate at small separation.

with a sign depending on that of the square bracket in equation (96).

If this term is positive, the bias decreases as α gets smaller, and vice

versa. Clearly, the value of α for which the divergent behaviour

becomes dominant depends on the size of all the other terms, and

is therefore anisotropic.

As one can see from Fig. 14, the sign of the small-α divergence

depends on the distance from the saddle point. It is negative for

r � 0.75RS , but it reverses closer to the centre. This effect is again

a consequence of the constraint on the excursion set trajectories at

RS . Trajectories with steeper slopes at R will sink to lower values

between RS and R, then turn upwards to pass through δ(RS ), and

reach higher values for R0 ≫ RS . The haloes they are associated

with are thus more biased. This trend is represented in Fig. 15. This

inversion effect is lost as the separation increases, and the constraint

on the density at RS becomes loose, and trajectories that reach R

with steeper slopes are likely to have low (or even negative) values

at very large scales. These haloes are thus less biased, or even

antibiased.
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Figure 15. Plot of the mean of density given the saddle point, the upcrossing

condition and the slope at R for different slopes. The saddle point was defined

using the values of Table D1. The details of the calculation are provided in

Appendix B. For steep slopes (small accretion rate), the mean of the density

overshoots at small σ , resulting in a larger bias.

It follows that the bias of haloes far from structures grows with

accretion rate (the usual behaviour expected from excursion sets),

while the trend inverts for haloes near the centre of the filament.

Because typical mass of haloes also depends on the position along

the filament, with haloes towards the nodes being more massive, the

different curves of Fig. 14 correlate with haloes of different mass.

This effect explains why low-mass haloes with small accretion rate

(or early formation time, or high concentration) are more biased,

when measuring halo bias as a function of mass and accretion rate

(or formation time or concentration, which strictly correlate with

accretion rate), without knowledge of the position in the cosmic web.

Conversely, the high-mass ones are less biased (Sheth & Tormen

2004; Gao et al. 2005; Wechsler et al. 2006; Dalal et al. 2008;

Faltenbacher & White 2010; Paranjape & Padmanabhan 2017). It

is also intriguing to compare this result with the measurements by

Lazeyras et al. (2017, , namely their fig. 7) which show the same

trends (although their masses are not small enough to clearly see

the inversion).

Note in closing that the conditional bias theory presented here

does not capture changes in accretion rate and formation time pre-

sented in Sections 4.3 and 4.4.

7 C O N C L U S I O N A N D D I S C U S S I O N

7.1 Conclusion

With the advent of modern surveys, assembly bias has become the

focus of renewed interest as a process which could explain some of

the diversity of galactic morphology and clustering at fixed mass.

It is also investigated as a mean to mitigate intrinsic alignments in

weak-lensing survey such as Euclid or LSST. Both observations and

simulations have hinted that the large-scale anisotropy of the cosmic

web could be responsible for stalling and quenching. This paper

investigated this aspect in Lagrangian space within the framework of

excursion set theory. As a measure of infall, we computed quantities

related to the slope of the contrast conditioned to the relative position

of the collapsing halo with respect to a critical point of the large-

scale field. We focused here on mass accretion rate and half-mass

redshift and found that their expectation vary with the orientation

and distance from saddle points, demonstrating that assembly bias

is indeed influenced by the geometry of the tides imposed by the

cosmic web.

More specifically, we derived the Press–Schechter typical mass,

typical accretion rate, and formation time of dark haloes in the

vicinity of cosmic saddles by means of an extension of excursion

set theory accounting for the effect of their large-scale tides. Our

principal findings are the following: we have computed the (i) up-

crossing PDF for halo mass, accretion rate, and formation time; they

are given by equations (14), (23), and (32), and their constrained-

by-saddles counterparts equations (49), (61), and (68). These PDFs

allowed us to identify the (ii) typical halo mass, and typical ac-

cretion rate and formation time at given mass as functions of the

position within the frame of the saddle via equations (83)–(85).

All quantities are expressed as a function of the geometry of the

saddle for an arbitrary cosmology encoded in the underlying power

spectrum via the correlations ξαβ and ξ ′
αβ given by equations (E11)

and (E12). In turn, this has allowed us to compute and explain the

corresponding (iii) distinct gradients for the three typical quanti-

ties and for the local mean density (Section 5.3). The misalignment

of the gradients, defined as the normals to the their isosurfaces,

arises because the saddle condition is anisotropic and because it

does not only shift the local mean density and the mean density

profile (the excursion set slope) but also their variances, affecting

different observables in different way. Finally, we have presented

(iv) an extension of classical large-scale bias theory to account for

the saddle (Section 6).

Our simple conditional excursion set model subject to filamentary

tides makes intuitive predictions in agreement with the trends found

in N-body simulations: haloes in filaments are less massive than

haloes in nodes, and at equal mass they have earlier formation

times and smaller accretion rates today. The same hierarchy exists

for haloes in walls with respect to filaments. For the configuration

we examined, the effect is stronger as one moves perpendicularly

to the filament. The typical mass changes by a factor of 5 along

the filament, and by two orders of magnitude perpendicularly. The

relative variation of accretion rates and formation times is of about

5–10 per cent along the filament, and of about 20–30 per cent in the

perpendicular direction, for haloes of 1011 M⊙ h−1. Furthermore,

our model predicts that at fixed halo mass, the trend of the large-scale

bias with accretion rate depends on the distance from the centre of

the filament. Far from the centre, the large-scale bias grows with

accretion rate (which is the naive expectation from excursion sets),

while near the centre the trend inverts and haloes with smaller

accretion rates become more biased. Since haloes near the centre

are also on average less massive, this effect should contribute to

explaining why the trend of bias with accretion rate (or formation

time) inverts at masses much smaller than the typical mass.

These findings conflict with the simplistic assumption that the

properties of galaxies of a given mass are uniquely determined by

the density of the environment. The presence of distinct space gradi-

ents for the different typical quantities is also part and parcel of the

conditional excursion set theory, simply because the statistics of the

excursion set proxies for halo mass, accretion rate, and formation

time (the first-crossing scale and slope, and the height at the scale

corresponding to M/2) are different functions of the position with

respect to the saddle point. They have thus different level surfaces.

At the technical level, the contours depend on the presence of the

conditional variance of δ(r), besides its conditional mean, and of

the correlation functions of δ′(r). At finite separation, the traceless

shear of the large-scale environment modifies in an anisotropic way

the statistics of the local mean density δ(r) (and of its derivative δ′(r)

with respect to scale). The variations are modulated by Q = r̂i q̄ij r̂j ,

MNRAS 476, 4877–4906 (2018)
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4896 M. Musso et al.

Figure 16. Scheme of the intensity of the accretion rate at different locations

near a filament-type saddle for different final halo masses. The darkness

of the colour encodes the intensity of the accretion rate (darker is more

accretion). At fixed mass, the accretion rate increases from voids to saddle

points and from saddle points to nodes (along dotted line which marks the

filament’s direction). At a given location, the accretion rate increases with

mass.

i.e. the relative orientation of the separation vector in the frame set

by the tidal tensor of the saddle. This angular modulation enters

different quantities with different radial weights, which results in

different angular variations of the local statistics of density, mass,

and accretion rate/formation time. It provides a supplementary vec-

tor space, ∇̃Q, beyond the radial direction over which to project

the gradients, whose statistical weight depend on each specific ob-

servable. These quantities have thus different isosurfaces from each

other and from the local mean density, a genuine signature of the

traceless part of the tidal tensor. The qualitative differences in terms

of mass accretion rate and galactic colour is sketched in Fig. 16.

7.2 Discussion and perspectives

In contrast to the findings of Alonso et al. (2015), Tramonte et al.

(2017), and von Braun-Bates et al. (2017), we focused our attention

on variations of mass accretion rates with respect to the cosmic web

rather than mass functions. We have found that, even in a very simple

model like excursion sets, halo properties are indeed affected by the

anisotropic tides of the environment (involving the traceless part of

the tidal tensor), and not just by its density (involving the trace of the

tidal tensor). This effect cannot be explained by a simple rescaling

of the local mean density (the average density in a sphere of radius

of the order of the Lagrangian radius, centred around the halo).

Our predictions are in qualitative agreement with the observational

results of Kraljic et al. (2018), who detect a misalignment between

the isocontours of mass, secondary halo property (type/colour in

their case), and local mean density averaged on sufficiently large

scales. This misalignment tends to disappear as the scale of the

smoothing becomes small, and the signal is increasingly driven by

the density alone: this can be interpreted as a consequence of the

dynamical stretching of all contours as the filament forms.

Although the excursion set approach is rather crude, and addi-

tional constraints (e.g. peaks) would be needed to pinpoint the exact

location of halo formation in the initial conditions, we argued that

the effect we are investigating does not strongly depend on the

presence of these additional constraints. The underlying reason is

that the extra constraints usually involve vector or tensor quantities

evaluated at the same location r as the excursion set sphere, which

do not directly correlate with the scalars considered here (they only

do so through their correlation with the saddle point). They may

add polynomial corrections to the conditional distributions, but will

not strongly affect the exponential cut-offs on which we built our

analysis. Our formalism may thus not predict exactly whether a

halo will form (hence, the mass function), but it can soundly de-

scribe the secondary properties and the assembly bias of haloes that

actually form. A more careful treatment would change our results

only at the quantitative level. For this reason, we chose to prefer

the simplicity of the simple excursion set approach. Furthermore,

in order to describe the cosmic web, we focused on saddle points of

the initial gravitational potential, rather than of the density field, as

these are more suitable to trace the dynamical impact of filamentary

structures in connection to the spherical collapse model.

The present Lagrangian formalism only aims at describing the be-

haviour of the central galaxy: it cannot claim to capture the strongly

non-linear process of dynamical friction of subclumps within dark

haloes, nor strong deviations from spherical collapse. We refer to

Hahn et al. (2009) which captures the effect on satellite galaxies, and

to Ludlow et al. (2014), Castorina et al. (2016), and Borzyszkowski

et al. (2016) which study the effect of the local shear on haloes

forming in filamentary structures. Incorporating these effects would

require adopting a threshold for collapse that depends on the local

shear, as discussed in the Introduction. Such a barrier would not

pose a conceptual problem to our treatment;11 technically, however

it requires two extra integrations (over the amplitude of the local

shear and its derivative with respect to scale), and cannot be done

analytically. The shear-dependent part of the critical density (and

its derivative) would correlate with the shear of the saddle at r = 0,

and introduce an additional anisotropic effect on top of the change

of mean values and variances of density and slope we accounted

for. Evaluating this effect will be the topic of future investigation.

Our analysis demonstrated that the large-scale tidal field alone

can induce specific accretion gradients, distinct from mass and den-

sity ones. One would now like to translate those distinct DM gradi-

ents into colour and specific star formation rate (SFR) gradients. At

high redshift, the stronger the accretion, the bluer the central galaxy.

Conversely at low redshift, one can expect that the stronger the ac-

cretion, the stronger the AGN feedback, the stronger the quenching

of the central. Should this scaling hold true, the net effect in terms

of gradients would be that colour gradients differ from mass and

density ones. The transition between these two regimes (and in gen-

eral, the inclusion of baryonic effects) is beyond the scope of this

paper, but see Appendix H for a brief discussion.

Beyond the DM-driven processes described in this paper, differ-

ent explanations have been recently put forward to explain filamen-

tary colour gradients. On the one hand, it has been argued (Aragon-

Calvo, Neyrinck & Silk 2016) that the large-scale turbulent flow

within filaments may explain the environment dependence in ob-

served physical properties. Conversely, the vorticity of gas inflow

within filaments (Laigle et al. 2015) may be prevalent in feeding

galactic discs coherently (Pichon et al. 2011; Stewart et al. 2011).

Both processes will have distinct signatures in terms of the effi-

ciency and stochasticity of star formation. A mixture of both may

11 The details of the impact on the present derivation are given in

Appendix G.
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How does the cosmic web impact assembly bias? 4897

in fact be taking place, given that the kinematic of the large-scale

flow is neither strictly coherent nor fully turbulent. Yet, even if

ram-pressure stripping in filaments operate as efficiently as in clus-

ters, it will remain that the anisotropy of the tides will also impact

the consistency of angular momentum advection, which is deemed

important at least for early-type galaxies. The amplitude of thermo-

dynamical processes depends on the equation of state of the gas and

on the amplitude of feedback which are not fully calibrated today.

Recall that shock heating, AGN and stellar feedback are driven by

cold gas infall, which in turn is set by gravity (as the dominant

dynamical force). Since gravity has a direct effect through its tides,

unless one can convincingly argue that its direct impact is negligible

on galactic scales, it should be taken into account.

Codis et al. (2015), following a formally related route, investi-

gated the orientation of the spin of dark haloes in relation to their

position with respect to the saddle points of the (density) cosmic web

(see also Wang & Kang 2018, for a slightly different approach). To-

gether with their predictions on spin orientation, this work could be

extended to model galaxy colours based on both spin and mass ac-

cretion. It could also guide models aiming at mitigating the effect of

intrinsic alignments (Joachimi et al. 2011) impacting weak-lensing

studies, while relying on colour gradients. More generally, galactic

evolution as captured by semi-analytical models will undoubtedly

gain from a joint description of involving both mass and spin acqui-

sition as relevant dynamical ingredients. Indeed, it has been recently

shown in hydrodynamical simulation (e.g. Zavala et al. 2016) that

the assembly of the inner DM halo and its history of specific angular

momentum loss is correlated to the morphology of galaxies today.

One should attempt to explain the observed diversity at a given

mass driven by anisotropic large-scale tides, which will impact gas

inflow towards galaxies, hence their properties. An improved model

for galaxy properties should eventually explicitly integrate the ge-

ometry of the large environment (following, e.g. Hanami 2001) and

quantify the impact of its anisotropy on galactic mass assembly

history.

Thanks to significant observational, numerical, and theoretical

advances, the subtle connection between the cosmic web and galac-

tic evolution is on the verge of being understood.

AC K N OW L E D G E M E N T S

Simulations were carried on the Horizon Cluster hosted by In-

stitut d’Astrophysique de Paris. We thank S. Rouberol for run-

ning it smoothly for us. This research is part of Spin(e) (ANR-13-

BS05-0005, http://cosmicorigin.org). We are thankful to Stephane

Arnouts, Francis Bernardeau, Oliver Hahn, Clotilde Laigle, Aseem

Paranjape, Dmitri Pogosyan, Ravi Sheth, Marie Treyer, and Di-

dier Vibert for helpful discussions. MM is partially supported by

the Programme Visiteur of the Institut d’Astrophysique de Paris.

CC is supported by the Institut Lagrange de Paris LABEX (under

reference ANR-10-LABX-63 and ANR-11-IDEX-0004-02).

R E F E R E N C E S

Alonso D., Eardley E., Peacock J. A., 2015, MNRAS, 447, 2683

Alpaslan M. et al., 2016, MNRAS, 457, 2287

Aragon-Calvo M. A., Neyrinck M. C., Silk J., 2016, preprint

(arXiv:1607.07881)

Bernardeau F., Crocce M., Scoccimarro R., 2008, Phys. Rev. D, 78, 103521

Bond J. R., Myers S. T., 1996, ApJS, 103, 1

Bond J. R., Cole S., Efstathiou G., Kaiser N., 1991, ApJ, 379, 440

Bond J. R., Kofman L., Pogosyan D., 1996, Nature, 380, 603

Borzyszkowski M., Porciani C., Romano-Diaz E., Garaldi E., 2016,

MNRAS, 469, 594

Castorina E., Paranjape A., Hahn O., Sheth R. K., 2016, preprint

(arXiv:1611.0361)

Chen Y.-C. et al., 2017, MNRAS, 466, 1880

Codis S., Pichon C., Pogosyan D., 2015, MNRAS, 452, 3369

Corasaniti P. S., Achitouv I., 2011, Phys. Rev. D, 84, 023009

Dalal N., White M., Bond J. R., Shirokov A., 2008, ApJ, 687, 12

Del Popolo A., Ercan E. N., Gambera M., 2001, Balt. Astron., 10, 629

Desjacques V., Jeong D., Schmidt F., 2016, preprint (arXiv:1611.09787)

Doroshkevich A. G., 1970, Astrophysics, 6, 320

Dubois Y., Devriendt J., Slyz A., Teyssier R., 2010, MNRAS, 409, 985

Dubois Y., Pichon C., Devriendt J., Silk J., Haehnelt M., Kimm T., Slyz A.,

2013, MNRAS, 428, 2885

Dubois Y. et al., 2014, MNRAS, 444, 1453

Dubois Y., Peirani S., Pichon C., Devriendt J., Gavazzi R., Welker C.,

Volonteri M., 2016, MNRAS, 463, 3948

Efstathiou G., Frenk C. S., White S. D. M., Davis M., 1988, MNRAS, 235,

715

Faltenbacher A., White S. D. M., 2010, ApJ, 708, 469

Fry J. N., Gaztanaga E., 1993, ApJ, 413, 447

Gao L., Springel V., White S. D. M., 2005, MNRAS, 363, L66

Gradshteyn I. S., Ryzhik I. M., 2007, Table of Integrals, Series, and Products,

Seventh edn. Elsevier/Academic Press, Amsterdam

Hahn O., Porciani C., Dekel A., Carollo C. M., 2009, MNRAS, 398, 1742

Hanami H., 2001, MNRAS, 327, 721

Joachimi B., Mandelbaum R., Abdalla F. B., Bridle S. L., 2011, A&A, 527,

A26

Kaiser N., 1984, ApJ, 284, L9

Kauffmann G., Li C., Zhang W., Weinmann S., 2013, MNRAS, 430, 1447

Kawinwanichakij L. et al., 2016, ApJ, 817, 9

Kraljic K. et al., 2018, MNRAS, 474, 547

Lacey C. G., Cole S., 1993, MNRAS, 262, 627

Laigle C. et al., 2015, MNRAS, 446, 2744

Laigle C. et al., 2017, MNRAS, 474, 5437

Lazeyras T., Musso M., Schmidt F., 2017, J. Cosmol. Astropart. Phys., 3,

059

Ludlow A. D., Borzyszkowski M., Porciani C., 2014, MNRAS, 445, 4110

Maggiore M., Riotto A., 2010, ApJ, 711, 907

Malavasi N. et al., 2017, MNRAS, 465, 3817

Martı́nez H. J., Muriel H., Coenda V., 2016, MNRAS, 455, 127

Musso M., Sheth R. K., 2012, MNRAS, 423, L102

Musso M., Sheth R. K., 2014a, MNRAS, 438, 2683

Musso M., Sheth R. K., 2014b, MNRAS, 443, 1601

Musso M., Sheth R. K., 2014c, MNRAS, 443, 1601

Musso M., Paranjape A., Sheth R. K., 2012, MNRAS, 427, 3145

Oemler A., Jr, 1974, ApJ, 194, 1

Paranjape A., Padmanabhan N., 2017, MNRAS, 468, 2984

Paranjape A., Hahn O., Sheth R. K., 2017, preprint (arXiv:1706.09906)

Pichon C., Pogosyan D., Kimm T., Slyz A., Devriendt J., Dubois Y., 2011,

MNRAS, 1739

Pogosyan D., Bond J. R., Kofman L., Wadsley J., 1998, in Colombi S.,

Mellier Y., Raban B., eds, Wide Field Surveys in Cosmology. Editions

Frontieres, Dreux, p. 61

Poudel A., Heinämäki P., Tempel E., Einasto M., Lietzen H., Nurmi P., 2017,

A&A, 597, A86

Press W. H., Schechter P., 1974, ApJ, 187, 425

Redner S., 2001, A Guide to First-Passage Processes. Cambridge University

Press, Cambridge

Shen J., Abel T., Mo H. J., Sheth R. K., 2006, ApJ, 645, 783

Sheth R. K., Tormen G., 2004, MNRAS, 350, 1385

Sheth R. K., Mo H. J., Tormen G., 2001, MNRAS, 323, 1

Sheth R. K., Chan K. C., Scoccimarro R., 2013, Phys. Rev. D, 87, 083002

Sousbie T., Pichon C., Colombi S., Pogosyan D., 2008, MNRAS, 383, 1655

Stewart K. R., Kaufmann T., Bullock J. S., Barton E. J., Maller A. H.,

Diemand J., Wadsley J., 2011, ApJ, 738, 39

Tramonte D., Rubino-Martin J. A., Betancort-Rijo J., Dalla Vecchia C.,

2017, MNRAS, 467, 3424

MNRAS 476, 4877–4906 (2018)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

7
6
/4

/4
8
7
7
/4

8
2
6
0
4
0
 b

y
 C

N
R

S
 u

s
e
r o

n
 0

8
 M

a
rc

h
 2

0
1
9

http://dx.doi.org/10.1093/mnras/stu2632
http://dx.doi.org/10.1093/mnras/stw134
http://arxiv.org/abs/1607.07881
http://dx.doi.org/10.1103/PhysRevD.78.103521
http://dx.doi.org/10.1086/192267
http://dx.doi.org/10.1086/170520
http://dx.doi.org/10.1038/380603a0
http://arxiv.org/abs/1611.0361
http://dx.doi.org/10.1093/mnras/stw3127
http://dx.doi.org/10.1093/mnras/stv1570
http://dx.doi.org/10.1103/PhysRevD.84.023009
http://dx.doi.org/10.1086/591512
http://arxiv.org/abs/1611.09787
http://dx.doi.org/10.1007/BF01001625
http://dx.doi.org/10.1111/j.1365-2966.2010.17338.x
http://dx.doi.org/10.1093/mnras/sts224
http://dx.doi.org/10.1093/mnras/stu1227
http://dx.doi.org/10.1093/mnras/stw2265
http://dx.doi.org/10.1093/mnras/235.3.715
http://dx.doi.org/10.1088/0004-637X/708/1/469
http://dx.doi.org/10.1086/173015
http://dx.doi.org/10.1111/j.1745-3933.2005.00084.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15271.x
http://dx.doi.org/10.1046/j.1365-8711.2001.04652.x
http://dx.doi.org/10.1086/184341
http://dx.doi.org/10.1093/mnras/stt007
http://dx.doi.org/10.3847/0004-637X/817/1/9
http://dx.doi.org/10.1093/mnras/stx2638
http://dx.doi.org/10.1093/mnras/262.3.627
http://dx.doi.org/10.1093/mnras/stu2289
http://dx.doi.org/10.1088/1475-7516/2017/03/059
http://dx.doi.org/10.1088/0004-637X/711/2/907
http://dx.doi.org/10.1093/mnras/stw2864
http://dx.doi.org/10.1093/mnras/stv2295
http://dx.doi.org/10.1111/j.1745-3933.2012.01266.x
http://dx.doi.org/10.1093/mnras/stt2387
http://dx.doi.org/10.1093/mnras/stu1222
http://dx.doi.org/10.1093/mnras/stu1222
http://dx.doi.org/10.1111/j.1365-2966.2012.21903.x
http://dx.doi.org/10.1086/153216
http://dx.doi.org/10.1093/mnras/stx659
http://arxiv.org/abs/1706.09906
http://dx.doi.org/10.1086/152650
http://dx.doi.org/10.1086/504513
http://dx.doi.org/10.1111/j.1365-2966.2004.07733.x
http://dx.doi.org/10.1046/j.1365-8711.2001.04006.x
http://dx.doi.org/10.1103/PhysRevD.87.083002
http://dx.doi.org/10.1111/j.1365-2966.2007.12685.x


4898 M. Musso et al.

von Braun-Bates F., Winther H. A., Alonso D., Devriendt J., 2017, J. Cosmol.

Astropart. Phys., 3, 012

Wang P., Kang X., 2018, MNRAS, 473, 1562

Wang J. et al., 2011, MNRAS, 413, 1373

Wechsler R. H., Zentner A. R., Bullock J. S., Kravtsov A. V., Allgood B.,

2006, ApJ, 652, 71

Weinmann S. M., van den Bosch F. C., Yang X., Mo H. J., 2006, MNRAS,

366, 2

Yan H., Fan Z., White S. D. M., 2013, MNRAS, 430, 3432

Zavala J. et al., 2016, MNRAS, 460, 4466

Zel’dovich Y. B., 1970, A&A, 5, 84

Zentner A. R., 2007, Int. J. Mod. Phys. D, 16, 763

A P P E N D I X A : D E F I N I T I O N S A N D N OTAT I O N S

Table A1 presents all the definitions introduced in the paper.

Table 1 gives also the motivation behind the choice of variables.

The following conventions is used throughout:

(i) unless stated otherwise, all the quantities evaluated at (halo)

scale R have their dependence on R omitted (e.g. σ = σ (R));

(ii) the quantities that have a radial dependence are evaluated at

a distance r when the radius is omitted. Sometimes, the full form is

used to emphasize the dependence on this variable;

(iii) unless stated otherwise, the quantities are evaluated at z = 0

and D(z) = 1 (e.g. δc = 1.686);

(iv) a prime denotes a derivative with respect to σ of the excursion

set (e.g. δ′ = dδ/dσ );

(v) variables carrying a hat have unit norm (e.g. |r̂| = 1), matrices

carrying an overbar are traceless (e.g. tr(q̄ij ) = 0);

(vi) the Einstein’s convention on repeated indexes is used

throughout, except in Appendix F2.

APPENDI X B: VALI DATI ON W I TH G RFS

Let us first compare the prediction of Section 4 to statistics derived

from realization of GRF, while imposing a saddle-point condition.

The values used at the saddle point are reported in Table D1. We

further imposed the saddle point’s eigenframe to coincide with the

x, y, z frame, which in practice has been done by imposing q̄ij to

be diagonal. We have used two different methods to validate our

results, by generating random density cubes (Appendix B1) and by

computing the statistics of a constrained field (Appendix B2).

B1 Validation for σ ⋆

The procedure is the following: (i) 4000 cubes of size (128)3 and

width Lbox = 200 Mpc h−1 centred on a saddle point were gen-

erated following a �CDM power spectrum; (ii) each cube has

been smoothed using a Top-Hat filter at 25 different scales rang-

ing from 0.5 to 20 Mpc h−1; (iii) for each point of each cube, the

first-crossing point σ first was computed; and (iv) the 4000 realiza-

tions were stacked to get a distribution of σ first and to compute

the median value. It is worth noting that the value of Ŵ(σ (R)) in

the GRF is not the same as in theory. This is a well-known effect

(see e.g. Sousbie et al. 2008) that arise on small scales due to the

finite resolution of the grid and on large scale because of the finite

size of the box. The Ŵ measured in a GRF is correct at scales ver-

ifying �L � R ≪ Lbox, where �L is the grid spacing. In our case,

the largest smoothing scale is 20 Mpc h−1 = Lbox/10. However,

the smallest scale is comparable to the grid spacing. To attenuate

the effect of finite resolution, we have measured Ŵ(σ (R)) in the

GRF and used its value to compute the theoretical cumulative dis-

tribution function (CDF). The results of the measured CDF Ffirst and

Table A1. Summary of the variables used throughout the paper.

Variable Definition Comment

ρ̄m (2.8 × 1011 h2M⊙/Mpc3) × �M Uniform matter background density

R, M, M⋆ M = 4/3πR3ρ̄m Smoothing scale, mass, and typical mass

δm (ρm − ρ̄m)/ρ̄m Linear matter overdensity

W(x) 3j1(x)/x Real-space Top-Hat filter (Fourier representation)

δ

∫
d3k

(2π)3
δm(k)W (kR)eik·r Linear matter overdensity smoothed at scale R, position r

σ 2 Var(δ) Variance of the overdensity at scale R

ν δ/σ Rescaled overdensity

δc, νc 1.68, δc/σ Critical overdensity

δ′, ν′ dδ/dσ , dν/dσ Slope of the E.S. trajectories

Ŵ−2 Var(δ′) − 1 = 〈(σν′)2〉 = Var
(
δ′|ν

)
Conditional variance of δ′ at fixed ν

RS , σS σS = σ (RS ) Smoothing scale used at the saddle point

R2
⋆ (42)

∫

dk
P (k)

2π2

W 2(kRS )

σ 2
S

. Characteristic length-scale of the saddle (squared)

gi , qij , νS (41) and (43) Mean acceleration, tidal tensor, and overdensity at saddle (see Table D1 for their value)

q̄ij ,Q q̄ij = qij − νSδij /3, r̂i q̄ij r̂j Traceless tidal tensor and anisotropy ellipsoidal-hyperbolic coordinate

ξαβ , ξ ′
αβ (E11) and (E12); ξ ′

αβ = dξαβ/dσ Two-point correlation functions at separation r and scales R, RS

α, α⋆ νc/[σ (ν′ − ν′
c)]; (27) and (62) Accretion rate and typical accretion rate

R1/2, σ 1/2 R/21/3, σ (R1/2) Half-mass radius and variance

δ1/2, ν1/2 δ(σ 1/2), δ1/2/σ 1/2 Overdensity at half-mass

Df, D⋆ δc/δ1/2; (38) and (72) Formation time and typical formation time

νf δc/(σ 1/2Df) Density threshold at formation time

ω, ω′ (E14) and (E15); ω′ = dω/dσ Zero-distance correlation functions between scales R and R1/2

�, �′ (F27) and (F32); �′ = d�/dσ Zero-distance conditional covariance between scales R and R1/2 given the saddle point

δ0 δ(R0 ≫ R) Large-scale overdensity

δh Local halo number density contrast
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Figure B1. Theoretical CDF of σ at upcrossing (bold lines) and numerical

CDF (steps) at first-crossing at four locations around the saddle point (the

distances are in Mpc h−1 in the x (void) and z (filament) directions). The CDF

have been normalized to share the same 50˜ per cent quantile (the horizontal

line). See the text for the details of the normalization.

Figure B2. Mean value of α using a numerical method (purple to yellow)

versus its theoretical value (grey contours). Both are normalized by the

theoretical value at the saddle point.

theoretical CDF Fup (with the measured Ŵ) at four different positions

are shown on Fig. B1. The measured CDFs have been normalized

so that F−1
first(0.5) = F−1

up (0.5): we impose that the CDF match at the

‘median’ (defined as the σ such that F(σ ) = 0.512). As shown on

Fig. B2, the abscissa of the peak of the PDF in the direction of

the void is around σ ≈ 2.7. As σ (Rmin) ≈ 3, it means that in the

direction of the void, the PDF is only sampled up to its peak. The

experimental CDF at such location is hence only probing less than

50˜ per cent of the distribution and the median is not reached. In this

case, we are normalizing the experimental CDF to have the same

12 This definition matches the classical one for distributions that have a

normalized CDF, which is not true for Fup.

value at the largest σ as the theoretical CDF. As shown on Fig. B1,

the experimental and theoretical CDFs start diverging at F � 0.5.

At larger σ , the upcrossing approximation used in the theory breaks

as more and more trajectories cross multiple time the barrier (they

are counted once for the first crossing and multiple times for up-

crossing). The orange and blue lines, in the direction of the filament

show this clearly as they diverge one from each other at large σ . As

σ ⋆ is a measure of the location of the peak of the PDF (which is

where the CDF is the steepest), it is sufficient that the experimental

and theoretical CDF match up to their flat end to have the same σ ⋆

values.

B2 Validation for α⋆ using constrained fields

A second check was implemented on the accretion rate as follows:

(i) for each location, the covariance matrix of ν, δ′, νS , q̄ij , gi was

computed at finite distance. These quantities all have a null mean;

(ii) the covariance matrix and the mean of ν, δ′ conditioned to the

value at the saddle point was computed using the values of Table D1;

(iii) the variance and mean of ν, δ′ were computed given ν = νc

and the saddle point; and (iv) a sample of 106 points were then

drawn from the distribution of δ′ > 0 (upcrossing). (v) The values

of α ∝ 1/δ′ were computed to obtain a sample of α. Each draw

was weighted by 1/α (the Jacobian of the transform from δ′ to α).

Finally, the numerical value of 〈α|σ,S〉 was estimated from the

samples and compared with the theoretical value. The results are

shown on Fig. B2 and are found to be in very good agreement.

We computed Fig. B3 by following steps (i)–(iii) at 10 Mpc h−1

in the direction of the filament (blue) and of the void (orange) and

plotting the mean and standard deviation of δ given the saddle and

the threshold. Fig. 15 was computed by following steps (i)–(iii) at

the saddle point (r = 0). An extra constrain on the value of δ′ was

then added to compute the different curves.

A P P E N D I X C : OT H E R C R I T I C A L P O I N T S

For the sake of generality, let us discuss here the conditional excur-

sion set expectations in the vicinity of other critical points of the

potential. At the technical level, all the formulae we derived in Sec-

tion 4 depend on the eigenvalues of qij with no a priori assumption on

their sign. The expressions will thus remain formally the same, with

all information about the environment being channelled through the

values of νS and r̂i q̄ij r̂j . For instance, the typical quantities M⋆, Ṁ⋆,

and z⋆ parametrizing the PDFs of interest will be defined in exactly

the same way as in equations (80)–(82). However, their level curves

will have different profiles in different environments.

As physical intuition suggests, and equation (47) explicitly

shows, the dependence of the various halo statistics on the dis-

tance from the stationary point (whether the probability of a given

halo property increases or decreases with separation) is encoded

in the signs of the eigenvalues qi of qij. Besides filaments (hav-

ing two positive eigenvalues), one may thus be interested in wall-

type saddles (one positive eigenvalue), maxima (all negative), and

minima (all positive), corresponding to voids and nodes, respec-

tively. In general, q1 + q2 + q3 = νS parametrizes the mean varia-

tion with distance (averaged over the angles), whereas the trace-

less shear q̄ij is responsible for the angular variation at fixed

distance.

In all cases, however, for a given direction M⋆, Ṁ⋆, and −z⋆ will

either all increase (if riqijrj < 0) or all decrease (if riqijrj > 0).

MNRAS 476, 4877–4906 (2018)
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Figure B3. Top: scheme of the mean value of the density in the direction

of a filament (red) and void (blue) close to a saddle point smoothed at

σ = σS with the constrain that δ(σ (R)) = δc. (1) The value of the density

imposed at the saddle point forces both mean densities to increase. (2) In

the direction of the filament, a large-scale overdensity, the mean density at

a given point increases quickly, but (3) the constrain δ(σ ) = δc prevents any

further increase at σ � σ (R), hence the slope δ′ is small at upcrossing. (4)

In the direction of the void, a large-scale underdensity, the mean density

at a given point cannot increase with σ . (5) At σ � σ (R), the upcrossing

constrain forces a sharp increase of the density to reach δ(R) = δc, hence

the slope is high at upcrossing. Bottom: a validation using constrained GRF

at a distance of 10 Mpc h−1 in the direction of the filament (blue) and of the

void (orange). See the text for the details.

Their increase will be fastest (or their decrease slowest) in the di-

rection of q̄3, the least negative eigenvalue, and slowest in that of

q̄1. The rationale of this behaviour will always be that an increase

of the conditional mean density will make it easier for excursion set

trajectories to reach the threshold. Upcrossing will happen prefer-

entially at smaller σ , corresponding to the formation of haloes of

bigger mass. At fixed mass (fixed crossing scale σ ), the crossing

will happen preferentially with shallower slopes, corresponding to

higher accretion rates and more recent formation (i.e. assembly of

half-mass).

C1 Walls

A wall will form in correspondence of a saddle point of the potential

filtered on scale RS , for which q1 < q2 < 0 < q3. This combina-

tion of eigenvalue signs generates collapse in one spatial direction

and expansion in the other two. As argued, a saddle point of the

potential induces a saddle point of the opposite type in M⋆, Ṁ⋆,

and −z⋆, which will increase along two space directions following

the increase of the mean density, and decrease along one. Since for

walls (like for filaments), the value of νS is likely to be smaller

than
√

tr(q̄2), they will tend to have an angular modulation larger

Figure C1. Isocontours in the x–z plane of the typical accretion rate α⋆

around a wall-type saddle point [at (0, 0)]. The saddle point is defined

using the values of Table D1. The profiles in the main direction of the

wall (z-direction) and of the void (x-direction) are plotted on the sides. The

smoothing scale is R = 1 Mpc h−1. The typical accretion rate is computed

using a �CDM power spectrum. Similarly to what happens in filaments,

haloes accrete more in the direction of the wall than in the direction of the

void.

than the radial angle-averaged variation. Walls are thus likely to be

highly anisotropic configurations also of the accretion rate and of

the formation time. This is illustrated for example in Fig. C1 for the

accretion rate. On average, νS will be smaller for a wall-type saddle

(which has two negative eigenvalues) than for a filament-type one.

Thus, haloes in walls tend to be less massive, and at fixed mass, they

tend to have smaller accretion rates and earlier assembly times.

C2 Voids

A void will eventually form (although not necessarily by z = 0)

when r = 0 is a local maximum of the potential filtered on scale

RS (from which matter flows away), for which q1 < q2 < q3 < 0.

The centre of the void is a minimum of M⋆, Ṁ⋆, and −z⋆. All

these quantities will gradually increase with the separation. As |νS |
may be large (in particular for a large, early-forming void), halo

statistics in voids may not show a large anisotropy relative to their

radial variation. However, because voids have the most negative νS ,

they are the environment with the least massive haloes, the smallest

accretion rates and the earliest formation times (at fixed mass).

C3 Nodes

Nodes form out of local minima of the gravitational potential, for

which 0 < q1 < q2 < q3 (corresponding to three directions of infall).

The centre of the node is thus a maximum of M⋆, Ṁ⋆, and −z⋆, all

of which decrease with radial separation. Like voids, large early-

forming nodes (whose density νS must reach νc when σS is very

small) are relatively less anisotropic, since the relative amplitude of

the angular variation induced by q̄ij is likely to be small compared

to the radial variation. Since νS is the largest for nodes, they host

the most massive haloes, and at fixed mass, those with the largest

accretion rates and the latest formation times.
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A P P E N D I X D : PD F O F S A D D L E S

This section presents the distribution of the eigenvalues of the

anisotropic (i.e traceless) part of the tidal tensor at critical points of

the potential field. By definition, a critical point is such that gi = 0

and its kind is given by the signature (the signs of the eigenvalues

of the hessian of the potential, qij): + + + for a peak, − + + for

a filament-type saddle point, − − + for a wall-type saddle point,

and − − − for a void. Because the anisotropic tidal tensor reads

q̄ij = qij − δijνS/3, the type of the critical point is then given by

the number of eigenvalues of q̄ij above −νS/3.

The distribution of the eigenvalues of the (normalized) tidal tensor

denoted q1 < q2 < q3 is described by the Doroshkevich formula

(Doroshkevich 1970; Pogosyan et al. 1998)

p(qi) =
675

√
5

8π
exp

[
15

2
I2 − 3I 2

1

]

(q3 − q1)(q3 − q2)(q2 − q1),

(D1)

where {In} denotes the rotational invariants which define the char-

acteristic polynomial of qij, namely its trace I1 = q1 + q2 + q3,

trace of the comatrix I2 = q1q2 + q2q3 + q1q3, and determinant

I3 = q1q2q3. Subject to a filament-type saddle-point constraint, this

PDF becomes

p(qi | − + +) =
540

√
5π

29
√

2 + 12
√

3
q1q2q3ϑ(q2)ϑ(−q1)p(qi), (D2)

after imposing the condition of a saddle | det qij |δD(gi)ϑ(q2)

ϑ( − q1) for which as the acceleration is decoupled from the tidal

tensor, only the condition on the sign of the eigenvalues and the

determinant contribute. From this PDF, it is straightforward to com-

pute the distribution of saddles of heights νS = q1 + q2 + q3

p(νS | − + +) = p+(νS )ϑ(νS ) + p−(νS )ϑ(−νS ), (D3)

with

p+(νS )

=
5
√

10πe−
ν2
S
2

(
3νS − ν3

s

)
Erfc

(√
5νS

2
√

2

)

+ e− 9ν2
s

8

(
32 + 155ν2

s

)

(

29
√

2 + 12
√

3
)√

π

,

p−(νS )

=
5
√

10πe−
ν2
S
2

(
3νS − ν3

s

)
Erfc

(
−

√
5νS√
2

)

+ e−3ν2
s
(
32 − 10ν2

S

)

(29
√

2 + 12
√

3)
√
π

.

In particular, the height of filament-type saddles has mean and

standard deviation given by

〈νS |−++〉 = 250
(

3(29
√

2 + 12
√

3)
√
π

)−1

≈ 0.76,

Std (νS |−++) =

√

696
√

6 + 75π(10 − 3
√

6) − 2114

15
√
π

≈ 0.55.

For other types of critical points, a similar calculation can be

done. As expected, the heights of wall-type saddle points fol-

low the same distribution as −νS . Peak and void heights have

mean ±
√

2114 + 696
√

6/15
√
π ≈ ±2.3 and standard deviation

√

75π(10 + 3
√

6) − (2114 + 696
√

6)/15
√
π ≈ 0.62.

This work picks a typical value for the filament-type saddle at

roughly 1σ from the mean νS = 1.2. For wall-type saddles, νS = 0

is chosen. The distribution of eigenvalues of the anisotropic tidal

tensor q̄i for a filament-type saddle point with a given positive13

height can then be easily obtained from equation (D2)

p(q̄1|νS ) =
15(3q̄1 + νS )

[

a1e−
4ν2
S
3

+ 5
2
q̄1νS−

15q̄2
1

2 − a2e−
ν2
S
2

−
45q̄2

1
8

]

16(29
√

2 + 12
√

3)
√
πP+(νS )

,

where q̄1 < −νS/3 and a1 and a2 are two polynomials of q̄1 and νS
given by

a1(q̄1, νS ) = 32 [5|νS − 6q̄1|(3q̄1 + νS ) + 12] ,

and

a2 = 6075q̄4
1 − 8100q̄3

1 νS + 900q̄2
1

(
3ν2

S − 4
)

+ 480q̄1νS

−160ν2
S + 384.

Similarly, the PDF of the intermediate and major eigenvalues are,

respectively, given by

p(q̄2|νS ) =
15(3q̄2 + νS )a1e− 11

12
ν2
S

+ 5
4
q̄2νS−15q̄2

2
− 5

12
(νS+3q̄2)|νS−6q̄2|

16(29
√

2 + 12
√

3)
√
πP+(νS )

where q̄2 > −νS/3 and a1 = a1(q̄2, νS ), and

p(q̄3|νS ) =
15(3q̄3 + νS )

[

a1e−
ν2
S
2

−
45q̄2

3
2 + ā1e−

4ν2
S
3

+ 5
2
q̄3νS−

15q̄2
3

2

]

16(29
√

2 + 12
√

3)
√
πP+(νS )

where q̄3 > νS/6, having defined a1 = a1(q̄3, νS ) and ā1(q̄3, νS )

= −a1(−q̄3, −νS ). Similar expressions can be obtained for wall-

type saddles (together with peaks and voids). The top panel of

Fig. D1 shows the distribution of eigenvalues for a filament-type

saddle point of height νS = 1.2 and the bottom panel shows the

distribution for a wall-type saddle point of height νS = 0. Typical

values of q̄ij were selected to correspond roughly to the maximum

of the above-mentioned distributions of q̄1, q̄2, q̄3 and are reported

in Table D1. Note that all the results obtained in this section are

independent of the power spectrum. The only assumption is that the

density is a GRF.

A P P E N D I X E : C OVA R I A N C E M AT R I C E S

Let us present here the covariance matrix of all variables introduced

in the main text. The density δ and slope δ′ are evaluated at position r

and smoothed on the halo scale R, the half-mass density δ1/2 is also

evaluated at the halo position r but smoothed on R1/2 = 2−1/3R,

while the saddle rareness νS , acceleration gi, and detraced tidal

tensor q̄ij are evaluated at the origin and smoothed on a scale RS ≫
R. The correlation matrix of X ≡

{
δ, δ′, ν1/2, νS , gi, q̄ij

}
, a vector

with 12 Gaussian components, is

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ 2 σ ω C14 C15 C16

σ 〈δ′2〉 ω′ C24 C25 C26

ω ω′ σ 2
1/2 C34 C35 C36

C14 C24 C34 1 0 0

CT
15 CT

25 CT
35 0 C55 0

CT
16 CT

26 CT
36 0 0 C66

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (E1)

with ω = 〈δν1/2〉, ω′ = 〈δ′ν1/2〉, and

C14 = 〈δνS〉 = ξ00, C15 = 〈δgi〉 =
ri

R⋆

ξ11, (E2)

C16 = 〈δq̄ij 〉 =
(

δij

3
− r̂i r̂j

)

ξ20, (E3)

13 A similar expression can be obtained for negative heights.
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4902 M. Musso et al.

Figure D1. Top panel: distribution of heights of critical points of various

signatures (peaks, filament-type saddles, wall-type saddles, and voids) for

GRF with any power spectrum. Middle panel: PDF of the eigenvalues, q̄1

(blue), q̄2 (yellow), and q̄3 (green), of the anisotropic tidal tensor given a

filament-type constraint at νS = 1.2. Bottom panel: same as middle panel

for a wall-type constraint at νS = 0.

Table D1. Eigenvalues q̄i = qi − νS/3 of the traceless tidal tensor q̄ij ,

height νS , and smoothing scale used to define the saddle points. See Ap-

pendix D for details.

Traceless tide Height Scale Saddle type

Quantity q̄1 q̄2 q̄3 νS RS

Value −0.7 0.1 0.6 1.2 10 Mpc h−1 Filament-type

Value −0.6 −0.2 0.8 0 10 Mpc h−1 Wall-type

C24 = 〈δ′νS〉 = ξ ′
00, C25 = 〈δ′gi〉 =

ri

R⋆

ξ ′
11, (E4)

C26 = 〈δ′q̄ij 〉 =
(

δij

3
− r̂i r̂j

)

ξ ′
20, (E5)

C34 = 〈ν1/2νS〉 =
ξ

(1/2)
00

σ1/2

, C35 = 〈δ1/2gi〉 =
ri

R⋆

ξ
(1/2)
11

σ1/2

, (E6)

C36 = 〈δ1/2q̄ij 〉 =
(

δij

3
− r̂i r̂j

)
ξ

(1/2)
20

σ1/2

, (E7)

C55 = 〈gigj 〉 =
δij

3
, C66 = 〈q̄ij q̄kl〉 =

2Pij ,kl

15
. (E8)

Hence, C14, C24, and C34 are scalars, C15, C25, and C35 are three

vectors, C16, C26, and C36 are 3 × 3 traceless matrices (or five

vectors in the space of symmetric traceless matrices), C55 is a 3 × 3

matrix, and C66 is a 5 × 5 matrix. The matrix C66 involves

Pij ,kl ≡
δikδj l + δilδjk

2
−

δij δkl

3
, (E9)

a projector that removes the trace and the antisymmetric part from a

matrix. Since Pij, abPab, mn = Pij, mn and so P −1
ij ,mn = Pij ,mn, it acts as

the identity in the space of symmetric traceless matrices. Pij, kl can

be written in its matrix form by numbering the pairs {(1, 1), (2, 2),

(1, 2), (1, 3), (2, 3)} from 1 to 5, the dimensionality of the space,

resulting in a 5 × 5 matrix. The element (3, 3) has been dropped

because it is linearly linked to (1, 1) and (2, 2). The explicit value

of C66 is therefore

C66 =
1

45

⎛

⎜
⎜
⎜
⎜
⎝

4 −2 0 0 0

−2 4 0 0 0

0 0 3 0 0

0 0 0 3 0

0 0 0 0 3

⎞

⎟
⎟
⎟
⎟
⎠

. (E10)

The finite separation correlation functions ξαβ (r, R, RS ) and

ξ ′
αβ (r, R, RS ) are defined as

ξαβ ≡
∫

dk
k2P (k)

2π2
W (kR)

W (kRS )

σS

jα(kr)

(kr)β
, (E11)

ξ ′
αβ ≡

∫

dk
k2P (k)

2π2
W ′(kR)

W (kRS )

σS

jα(kr)

(kr)β
, (E12)

where W′(kR) = [dW(kR)/dR]/(dσ/dR). Similarly, the correlation

functions at the two different mass scales M and M/2 are

ξ
(1/2)
αβ ≡ ξαβ (r, R1/2, RS ) , (E13)

where R1/2 ≡ R/21/3. At null separation (r = 0), it yields

ω =
〈δδ1/2〉
σ1/2

=
∫

dk
k2P (k)

2π2
W (kR)

W (kR1/2)

σ1/2

, (E14)

ω′ =
〈δ′δ1/2〉

σ1/2

=
∫

dk
k2P (k)

2π2
W ′(kR)

W (kR1/2)

σ1/2

. (E15)

Recall that for a Top-Hat filter, one has

W (kR) =
3j1(kR)

kR
and W ′(kR) =

3j2(kR)

R|dσ/dR|
, (E16)

and notice that W′(kR) is suppressed by a factor of k2R2 with

respect to W(kR)/σ when k ≪ 1/R. In fact, in this limit

jn(kR) ∼ (kR)n/(2n + 1)!!. Hence, the action of d/dσ is proportional

to that of R2∇2, and σξ ′
αβ ∝ R2∇2ξαβ ∼ (R/RS )2ξαβ . It follows that

for R ≪ RS one has σξ ′
αβ ≪ ξαβ . In presence of a strong hierarchy

of scales, the terms containing ξ ′
αβ are negligible (see Fig. E1).
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How does the cosmic web impact assembly bias? 4903

Figure E1. Plot as a function of r of the correlation functions defined in equation (E12). From left to right on the top row ξ00, ξ11, and ξ20. The bottom row

shows the same quantities derived with respect to σ . The correlation functions are evaluated at RS = 10˜Mpc h−1 for different values of R logarithmically

spaced between 10−1 Mpc h−1 (light colour) and 10 Mpc h−1 (dark colours) with a �CDM power spectrum and plotted as a function of the distance r.

For a scale invariant power spectrum P(k) = A(k/k0)−n, ξαβ and

ξ ′
αβ have an analytical expression that depends on the relation be-

tween r, RS , and R. For example, when RS > r + R:

ξαβ (r, R, RS )

σS

= BF4

(
α − β − n

2
,

3 + α − β − n

2
;

5

2
, α +

3

2
;
R2

R2
S

,
r2

R2
S

)

and

ξ ′
αβ (r, R, RS ) =

2(α − β − n + 3)(n − α + β)

5(n − 3)

(
R

RS

) 7−n
2

B

×F4

(
2 + α − β − n

2
,

5 + α − β − n

2
;

7

2
, α +

3

2
;
R2

R2
S

,
r2

R2
S

)

,

where F4 is the Appell Hypergeometric function of the fourth kind

(Gradshteyn & Ryzhik 2007, p. 677),14 while

B = −
(

r

RS

)α−β

×
π(n + 3) csc

(
nπ
2

)
Ŵ
(

3+α−β−n

2

)

2β+2n+23(n − 1)Ŵ
(

3+2α
2

)
Ŵ(−n − 1)Ŵ

(
n−α+β+2

2

)

and

σ 2(R) = σ 2
8

(
R

R8

)n−3

,
d log σ 2

d log R
= n − 3, (E17)

where R8 = 8 Mpc h−1 and σ 8 = σ (R8) are normalization factors.

For the same power-law power spectrum, setting α = 1 + n and

β = R1/2/R = 2−1/3, ω and ω′ defined in equations (E14) and (E15)

have the analytical expressions

ω

σ
=

(1 + β)α
(
β2 − αβ + 1

)
− (1 − β)α

(
β2 + αβ + 1

)

2α(2 − α)β
α+2

2

, (E18)

and

ω′ =
(
3β3 + βn2 + 3β2n + n

)
(1 − β)n

2nβ
n+3

2 (n − 3)(n − 1)

+
(
3β3 + βn2 − 3β2n − n

)
(1 + β)n

2nβ
n+3

2 (n − 3)(n − 1)
. (E19)

14 http://mathworld.wolfram.com/AppellHypergeometricFunction.html

APPENDI X F: C ONDI TI ONAL STATI STI CS

The goal of this section is to derive explicitly the conditional statis-

tics needed in the paper. Assuming that the underlying density

field obeys Gaussian statistics, the PDF of the 12-dimensional

vector X ≡
{
δ(r), δ′(r), ν1/2(r), νS , gi, q̄ij

}
already defined in

Appendix E involves inverting the 12 × 12 covariance matrix

C ≡ 〈X · XT〉, given by equation (E1). Since however the focus

here is on conditioning heights and slopes, which are scalar quan-

tities, their correlation with the saddle is the correlation with the

three unit-variance Gaussian components

S(r̂) ≡ {νS ,
√

3r̂igir/R⋆, −
√

5(3r̂i q̄ij r̂j/2)} . (F1)

Hence, the six-dimensional vector X̃ ≡ {δ(r), δ′(r), ν1/2(r),S} is

sufficient, and has a 6×6 covariance matrix given by

C̃(r) =

⎛

⎜
⎜
⎝

σ 2 σ ω ξ (r)

σ 〈δ′2〉 ω′ ξ ′(r)

ω ω′ σ 2
1/2 ξ1/2(r)

ξT (r) ξ ′T (r) ξT
1/2(r) 13×3

⎞

⎟
⎟
⎠

, (F2)

where

ξ (r) ≡
{

ξ00,
√

3ξ11r/R⋆,
√

5ξ20

}

,

ξ ′(r) ≡
{

ξ ′
00,

√
3ξ ′

11r/R⋆,
√

5ξ ′
20

}

,

ξ1/2(r) ≡
{

ξ
(1/2)
00 ,

√
3r/R⋆ξ

(1/2)
10 ,

√
5ξ

(1/2)
20

}

/σ1/2 . (F3)

The PDF of X̃ is the six-variate Gaussian

pG(X̃) =
1

(2π)3
√

detC̃
exp

(

−
1

2
X̃ · C̃

−1 · X̃

)

, (F4)

so that in each case, the task is to invert the appropriate section of the

covariance matrix C̃ ≡ 〈X̃ · X̃
T〉, marginalizing over the variables

that are not involved.

F1 The general conditional case

To speed up the computation of conditional statistics, rather than

doing a brute force block inversion of C̃, it is best to use the decor-

related variables

νv ≡
δ − 〈δ|{v}〉
√

Var (δ|{v})
, and ν ′

v ≡
dνv

dσ
, (F5)

where the possible {v} considered in this work are ν1/2, S or

{ν1/2,S}. By construction, νv and ν ′
v are uncorrelated, because νv

has unit variance. Furthermore, if each vI is independent of σ (as

MNRAS 476, 4877–4906 (2018)
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it will be the case in the following), ν ′
v does not correlate with the

constraint either, since 〈ν ′
vvI 〉 = 〈νvvI 〉′ = 0. Then, being a linear

combination of δ′, ν, and {v} that does not correlate with ν nor vI,

ν ′
v must be proportional to δ′ − 〈δ′|ν, {v}〉 (the only such linear

combination by definition), and 〈ν ′2
v 〉 to Var

(
δ′|ν, {v}

)
. That is,

〈δ′|ν, {v}〉 = δ′ −
√

Var (δ|{v}) ν ′
v ,

= 〈δ′|{v}〉 +
[Var (δ|{v})]′

2Var (δ|{v})
(δ − 〈δ|{v}〉) , (F6)

Var
(
δ′|ν, {v}

)
= Var (δ|{v}) 〈ν ′2

v 〉 ,

= Var
(
δ′|{v}

)
−

[Var (δ|{v})]′2

4Var (δ|{v})
, (F7)

providing the conditional statistics of δ′ given ν and {v} in

terms of those of δ and δ′ given {v} alone. Since [Var (δ|{v})]′ =
2Cov

(
δ, δ′|{v}

)
, these formulae reduce to the standard results for

constrained Gaussian variables, but taking derivatives makes their

calculation easier.

To compute νv and ν ′
v explicitly, one needs to insert (using Ein-

stein’s convention on repeated indices)

〈δ|{v}〉 = ψIC
−1
IJ vJ , (F8)

Var (δ|{v}) = σ 2 − ψIC
−1
IJ ψJ , (F9)

in equation (F5), where CIJ ≡ 〈vIvJ〉 is the covariance matrix of the

constraint, and ψ I ≡ 〈δvI〉 is the mixed covariance. The conditional

statistics obtained from equations (F6) and (F7) are then

〈δ′|ν, {v}〉 = ψ ′
IC

−1
IJ vJ +

σ − ψ ′
IC

−1
IJ ψJ

√

σ 2 − ψIC
−1
IJ ψJ

νv, (F10)

Var
(
δ′|ν, {v}

)
= 〈δ′2〉 − ψ ′

IC
−1
IJ ψ ′

J −
(σ − ψ ′

IC
−1
IJ ψJ )2

σ 2 − ψIC
−1
IJ ψJ

, (F11)

[where νv is given by equation (F5)] from which one can evaluate

equations (15) and (16), after setting δ = δc. Since 〈δ′|νc〉 = νc and

Var
(
δ′|νc

)
= 1/Ŵ2, equation (11) is recovered in the unconstrained

case. For later convenience, let us also note that the conditional

probability of ν and ν ′ given the constraint {v} is

pG(ν, ν ′|{v}) = σ
pG(νv) pG(δ′ − 〈δ′|νc, {v}〉)

√

1 − ψIC
−1
IJ ψJ /σ 2

, (F12)

since by construction νv and δ′ − 〈δ′|νc, {v}〉 ∝ ν ′
v are independent.

F2 Conditioning to the saddle

Equation (F8) and its derivative guarantee that conditioning on the

values of S (that is, fixing the geometry of the saddle) returns

〈δ|S〉 = ξ · S , Var (δ|S) = σ 2 − ξ 2 ,

〈δ′|S〉 = ξ ′ · S , Var
(
δ′|S

)
= 〈δ′2〉 − ξ ′2 ,

〈ν1/2|S〉 = ξ1/2 · S , Var
(
ν1/2|S

)
= 1 − ξ 2

1/2. (F13)

To make the equations less cluttered, here and in the following,

scalar products of these vectors are denoted with a dot, rather than in

Einstein’s notation. Equation (F13) effectively amounts to replacing

in all unconditional expressions

δ → δ − ξ · S,

δ′ → δ′ − ξ ′ · S,

ν1/2 → ν1/2 − ξ1/2 · S, (F14)

reducing the problem to three zero-mean variables that no longer

correlate with S (but still do with each other!). The covariance of

δ, δ′ and ν1/2 at fixed S reads

Cov
(
δ, δ′|S

)
= σ − ξ · ξ ′,

Cov
(
δ, ν1/2|S

)
= ω − ξ · ξ1/2,

Cov
(
δ′, ν1/2|S

)
= ω′ − ξ ′ · ξ1/2, (F15)

with ω and its derivative ω′ given by equations (E14) and (E15).

The first equation in (F15) is one half the derivative of Var (δ|S)

with respect to σ from equation (F13), consistently with taking the

conditional expectation value of the relation δδ′ = (1/2)dδ2/dσ .

The third is the derivative of the second, since ξ 1/2 depends on

σ 1/2 and not on σ (the relation between the two scales arising since

σ 1/2 = σ (M/2) should be imposed after taking the derivative).

F3 Slope given height at distance r from the saddle

The saddle point being fixed, it can now be assumed that the excur-

sion set point is at the critical overdensity ν = νc. The conditional

mean and variance of the slope are then

〈δ′|νc,S〉 = 〈δ′|S〉 +
Cov

(
δ′, δ|S

)

Var (δ|S)
(δc − 〈δ|S〉)

= ξ ′ · S +
σ − ξ · ξ ′

σ 2 − ξ 2
(δc − ξ · S) , (F16)

after using equations (F13) and (F15), and

Var
(
δ′|νc,S

)
= Var

(
δ′|S

)
−

Cov
(
δ′, ν|S

)2

Var (ν|S)
,

= 〈δ′2〉 − ξ ′2 −
(σ − ξ · ξ ′)2

σ 2 − ξ 2
, (F17)

respectively. This result is equivalent to decorrelating the effective

variables δ − ξ · S and δ′ − ξ ′ · S introduced in equation (F14),

whose covariance is in fact σ − ξ ′ · ξ .

Equation (F16) contains an angle-dependent offset r̂i q̄ij r̂j ξ20 and

a density dependent one ξ00νS , entering through S. On the contrary,

the conditional variance does not depend on the angle nor the height

of the saddle. At large distance from the saddle, when ξ = ξ ′ = 0,

equations (F16) and (F17) tend as expected to the unconditional

mean νc and variance 1/Ŵ2 = 〈δ′2〉 − 1.

From equations (F16) and (F17), one can compute the effective

upcrossing parameters presented in the main text

μS (r) = ξ ′ · S +
σ − ξ ′ · ξ

σ 2 − ξ 2
(δc − ξ · S) , (F18)

XS (r) = μS(r)/
√

Var (δ′|νc,S) . (F19)

F4 Upcrossing at σ with given formation time but no saddle

Recalling that ω = 〈δδ1/2〉/σ 1/2 and ω′ = 〈δ′δ1/2〉/σ 1/2, as defined

by equations (E14) and (E15), the conditional statistics of δ and δ′

given that ν1/2 = νf are

〈δ|νf〉 = ωνf , Var (δ|νf) = σ 2 − ω2 ,

〈δ′|νf〉 = ω′νf , Var
(
δ′|νf

)
= 〈δ′2〉 − ω′2 ,

Cov
(
δ, δ′|νf

)
= σ − ωω′ . (F20)

Hence, the conditional mean and variance of δ′ given νc = δc/σ

and νf are

〈δ′|νc, νf〉 = ω′νf +
σ − ω′ω

σ 2 − ω2
(δc − ωνf) , (F21)
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Var
(
δ′|νc, νf

)
= 〈δ′2〉 − ω′2 −

(σ − ω′ω)2

σ 2 − ω2
. (F22)

which is equivalent to decorrelating the zero-mean effective vari-

ables δ − ωνf and δ′ − ω′νf, whose covariance is σ − ω′ω. From

equations (F21) and (F22), one can compute the parameters of the

effective upcrossing problem

μf(Df) = 〈δ′|νc, νf〉 , (F23)

Xf(Df) = μf(Df)/
√

Var (δ′|νc, νf) , (F24)

introduced in Section 2.2.

F5 Upcrossing at σ given formation time and the saddle

Similarly, thanks to equations (F13) and (F15), the mean and co-

variance of pG(ν|νf,S) are

〈δ|νf,S〉 = 〈δ|S〉 +
Cov

(
δ, ν1/2|S

)

Var
(
ν1/2|S

)
(
νf − 〈ν1/2|S〉

)
,

= ξ · S + � νf,S , (F25)

Var (δ|νc,S) = Var (δ|S) −
Cov

(
δ, ν1/2|S

)2

Var
(
ν1/2|S

) ,

= σ 2 − ξ 2 − �2 , (F26)

where [recalling that ξ has the dimensions of δ but ξ 1/2 has those

of ν, see equation (F3)]

νf,S ≡
(νf − ξ1/2 · S)
√

1 − ξ 2
1/2

, � ≡
ω − ξ · ξ1/2
√

1 − ξ 2
1/2

. (F27)

As discussed in Appendix F1, the statistics of pG(δ′|νc, νf,S) can

be derived from those of pG(δ|νf,S) as follows:

〈δ′|νc, νf,S〉 = 〈δ|νf,S〉′ +
Var (δ|νf,S)′

2Var (δ|νf,S)
(δc − 〈δ|νf,S〉) (F28)

thanks to the relations 〈δ|νf,S〉′ = 〈δ′|νf,S〉 and Var (δ|νf,S)′ =
2Cov

(
δδ′|νf,S

)
, and

Var
(
δ′|νc, νf,S

)
= Var

(
δ′|νf,S

)
−

[Var (δ|νf,S)′]2

4Var (δ|νf,S)
. (F29)

Hence, taking derivatives of equations (F25) and (F26) give

〈δ′|νc, νf,S〉 = ξ ′ · S + �′νf,S

+
σ − ξ ′ · ξ − �′�

σ 2 − ξ 2 − �2
(δc − ξ · S − � νf,S ) , (F30)

and

Var
(
δ′|νc, νf,S

)
= 〈δ′2〉 − ξ ′2 − �′2

−
(σ − ξ ′ · ξ − �′�)2

σ 2 − ξ 2 − �2
, (F31)

where

�′ =
ω′ − ξ ′ · ξ1/2
√

1 − ξ 2
1/2

, (F32)

which can finally be used to compute the effective slope parameters

μf,S (Df, r) = 〈δ′|νc, νf,S〉 , (F33)

Xf,S (Df, r) = μf,S (Df, r)/
√

Var (δ′|νc, νf,S) . (F34)

A P P E N D I X G : G E N E R I C A N D M OV I N G

BA R R I E R

The results presented hereby hold for a constant barrier, however,

one can easily recover the results for a non-constant one – where

the upcrossing conditions becomes δc > δ′
c – by replacing μv by

μv − δ′
c in the general formula of equations (15) and (16), yielding

μv ≡ 〈δ′|νc, {v}〉 − δ′
c , (G1)

and by taking into account contributions from δ′
c in ν ′

c

ν ′
c =

δ′
c

σ
−

δc

σ 2
, (G2)

and in the definition of accretion rate

α =
δc

σ (δ′ − δ′
c)

(G3)

in equation (19). In practical terms, dealing with a moving barrier

simply amounts to replacing

μ → 〈δ′|νc〉 − δ′
c , (G4)

μf → 〈δ′|νc, νf〉 − δ′
c , (G5)

μS → 〈δ′|νc,S〉 − δ′
c , (G6)

μf,S → 〈δ′|νc, νf,S〉 − δ′
c , (G7)

in equations (12), (33), (50), and (67), which automatically affects

also the corresponding X, Xf, XS , and Xf,S , as well as Yα and Yα,S

in equations (24) and (60).

For instance, for a barrier of the type δc + βσ q̄ij ,R q̄ij ,R (Castorina

et al. 2016), where q̄ij ,R is the traceless tidal tensor smoothed on

scale R, and β is some constant, one would use

δ′
c → β(q̄ij ,R q̄ij ,R + 2σ q̄ ′

ij ,R q̄ij ,R) . (G8)

More generally, barriers should involve {In}, the rotationally invari-

ants of q̄ij ,R defined in Appendix D.

A P P E N D I X H : IM P L I E D G A L AC T I C C O L O U R S

Let us in closing attempt to convert the position-dependent accretion

rates, computed in the main text, in terms of colour modulo some

reasonable assumption on the respective role of AGN and how star

formation proceeds at low and high redshifts. Galaxy colours are

proportional to the amount of recent star formation, which in turn is

driven by the recently accreted gas from cosmic infall. One compli-

cation comes from the impact of feedback on heating the gas to be

accreted on to galaxies. Cosmological hydrodynamical simulations,

which include the feedback of supermassive black holes, suggest

that, at intermediate and low redshift, mass accretion through merg-

ers triggers AGN feedback in massive galaxies. This in turn heats up

the circumgalactic medium and prevents subsequent smooth gas ac-

cretion from feeding central galaxies efficiently (e.g. Dubois et al.

2010), quenching star formation and reddening massive galaxies

(hosted in haloes with mass of 1012 M⊙ h−1 or more). Conversely,

at higher redshift, cold flows are less impacted by galactic feedback

and reach the centre of dark haloes unimpaired, so that matter in-

fall translates into bluer galaxies (though it has been suggested that

in massive haloes, the disruption of cold flows can be significant,

Dubois et al. 2013). Fig. H1 sketches these ideas, while distin-

guishing low- and high-mass haloes. As argued in the main text,

this

MNRAS 476, 4877–4906 (2018)
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4906 M. Musso et al.

Figure H1. Scheme of the intensity of expected colour/SFR at different

location near a filament-type saddle for different final halo mass. The dis-

played colour encodes galactic colour (or equivalently sSFR from high blue

to low red). Massive galaxies in the filament (respectively, nodes) are ex-

pected to accrete more cold baryonic matter at high redshift and be bluer

than less massive ones and than their counterparts in voids (respectively,

filaments). At lower redshifts, AGN feedback is expected to quench cold

gas accretion, thus reddening the massive ones – they are more likely to be

central ones. The impact on lower mass satellite galaxies may also depend

on the efficiency of processes such as starvation or ram-pressure stripping.

scenario remains speculative, if only because the impact of AGN

feedback is still a fairly debated topic. For instance ram-pressure

stripping on satellites plunging into clusters is known to induce

reddening, but its efficiency within filaments is unclear. Fig. 16

encodes the robust result of the present investigation.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure 3.3.1: Isocontours of constant typical redshift z = 0 mean density (filled con-
tours), mass (dotted lines) and accretion rate (dashed lines) in the frame of a filament
(along the Oz axis) in Lagrangian space (initial conditions) from low (light colours) to
high values (dark colours). The saddle is at coordinate (0, 0) while the induced peak
and void are at coordinates (0,±7) and (±8, 0)Mpc/h , respectively. The gradients of
the three fields, are not parallel (the contours cross). The choice of scale sets the units
on the x- and z-axis (chosen here to be 5Mpc/h , while the mass and accretion rates
are computed for a local smoothing of 0.5Mpc/h). At lower redshift/smaller scales,
one expects the non-linear convergence of the flow towards the filament to bring those
contours together, as shown on figure 3.3.2.

3.3 Conclusion

Let me complement the conclusions of this article in the context of this dissertation and of
subsequent works.

We have shown that the excursion set theory can be extended to take into account anisotropic
effects induced by the cosmic web. This can be done by constraining the statistics entering the
excursion to the presence of a proto-filament at a given location, which in turn spatially modulates
the mean and the variance of the field, resulting in a biasing of the excursion. From this, one can
show that different quantities derived from the properties of the excursion under the anisotropic
constrain, such as the halo mass function and the accretion rate and formation time at fixed
final mass, become distinct functions of the local mean and variance of the field, so that their
modulation by the cosmic web is different.

The differential effect induced by the cosmic web can be illustrated by computing the isocon-
tours of the different assembly variables, which can be shown to explicitly cross, as illustrated on
figure 3.3.1. The figure shows that, for example, isodensity contours cross isocontours of accretion
rate at fixed final mass. As a consequence, while most of the spatial variation of the accretion rate
can be attributed to the modulation due to the local density surrounding a given halo, part of the
variation is due to the tidal effect of the large-scale filamentary structure. The same conclusion
can be drawn for the formation time and lead to the conclusion that the structure of the cosmic
web, as encoded by the filament-type saddle point, drives part of the assembly bias signal. More
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Figure 3.3.2: Typical mass measured in the Horizon-AGN simulation (left panel, from
Kraljic et al., 2019) and predictions from constrained excursion set theory (right) along
the axis of filaments (vertical axis). Compared to the prediction without Zel’dovich
boost (dashed lines), the isomass contour lines after the boost are compressed in the
direction of filament.

massive halos are found in the filament compared to the surrounding void and wall, while the
most massive halos are found in nodes of the cosmic web. At fixed final mass, halos forming
close to the saddle are stalled and formed early, whereas those forming close to the nodes formed
later and accrete more. The same hierarchy is found between wall and filaments. Similar trends
have been measured for galaxies in the GAMA spectroscopic survey (Driver et al., 2011) and
the Horizon-AGN simulation in a paper I contributed to (Kraljic et al., 2018, see appendix B.1).
Namely, it was shown that galaxies in filaments are more massive than their wall counterparts.
In addition, galaxies also segregate by colour, with an excess of red passive galaxies close to the
filament core than in the wall.

In a follow-up work (Kraljic et al., 2019, see appendix B.2), we measured the properties of
virtual galaxies in the Horizon-AGN simulation in the frame of the cosmic web, reproducing the
same maps as Musso, Cadiou et al., 2018, figure 8. In this work, I have shown that the results from
the constrained excursion set theory can be qualitatively reproduced if one takes into account
the mean Zel’dovich displacement (following the idea of Bond and Myers, 1996), which has the
effect of squeezing the isocontour lines in the direction perpendicular to the filament and stretch
them in the direction parallel to the filament. This is for example illustrated on figure 3.3.2, which
shows typical mass isocontours in the Horizon-AGN simulation (left panel) and the prediction
from the constrained excursion set theory (right panel).

The constrained excursion set theory presented in this chapter enabled us to study the impact
of the cosmic web on the formation of dark matter halos, yet more work is required to understand
its impact on galaxy formation, as was presented in appendices B.1 and B.2. In chapter 4, I propose
a new theoretical model that can be used to quantify the effect of the cosmic web on galaxy
formation, by looking at special events that drive the evolution of galaxies, namely halo mergers
and filament disconnections, as these events impact galactic infall, which then impacts galaxy
formation, and in particular disk formation. This is further studied chapters 5 and 6, where I
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study the transport of angular momentum from the large scales down to the disk in a suite of
high-resolution hydrodynamical simulations.
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4.1 Introduction

To what extent can today’s properties of galaxies be predicted from the initial Gaussian random
field from which they emerge? Within the paradigm of the spherical collapse, one can draw a
relationship between the time of collapse of a given proto-halo given its over density, and between
its mass and the scale at which its initial patch must be smoothed to pass a given threshold. As
the halo grows in mass, it will explore larger and larger radii. In the extended Press-Schechter
theory, this excursion is usually described in terms of the mean overdensity found at increasing
radii, recovering the result that large overdensities collapse earlier in cosmic time and can be
further refined to take into account non-spherical collapse (e.g. R. K. Sheth et al., 2001; Hahn
et al., 2009), or the effect of gravitational clustering (Bond and Myers, 1996). In this sense, the fate
of a given region is encoded in its initial conditions and is captured by the multi-scale properties
of the corresponding Gaussian random field. Most of the aforementioned works have typically
described proto-halos as peaks in the primordial field, effectively compressing the continuous
density field into a set of points (peaks). In a more general way, the topology of the field can
be described by the set of its critical points (peaks, saddle points and voids). In Hanami, 2001
it was suggested that the drift of these critical points, which draws the so-called skeleton tree,
bears physical meaning, as it captures the variation of this topology with scale, hence cosmic
time. In Manrique and Salvador-Sole, 1995; Manrique and Salvador-Sole, 1995; Hanami, 2001 the
focus was on the coalescence of filament saddles with maxima which the authors called slopping
saddles (as they are vanishing saddle points on the slope of peaks), and are proxy for halo merging
events.

More generally here I will consider the coalescence of minima with wall-saddles and wall-
saddles with filament-saddles corresponding respectively to the disappearance of a wall and a
filament. It is the sequence and geometry of these special events in the Lagrangian patch and
its vicinity that will later form a halo which will shape the fate of its host galaxy. Indeed, these
coalescences impact the geometry of the cosmic web (in particular the filaments) which in turn
defines preferred directions along which galaxies are fed with cold gas and acquire their spin.
Merger events are also known to play an important role in triggering AGN feedback, which in
turn impacts gas inflow and therefore galactic morphology. Hence, I will extend Hanami, 2001 by
studying the clustering of these other merger events in the multi-scale landscape. The aim is to
provide a compact description of the cosmic web in the initial conditions that is able to capture
important events in the life of a galaxy, which includes its merger history, but also the merger
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Figure 4.1.1: Snapshot and zooms of a hydrodynamical simulation showing filaments
(in red) walls (in shades of blue to green) and peaks (at the nodes of the filamentary
network) as traced by Disperse (Sousbie et al., 2011). The cosmic evolution of these
large scale structures impacts the geometry of infall. As this simulation forms galaxies
their properties reflect partially the corresponding tides and the funnelling of cold gas
along the filamentary structure. Understanding when and how the topology of this
network changes is therefore of great interest in this context.

history of the filaments feeding it and the merger history of the walls feeding its filaments. My
motivations are many-fold:

i) Study the generalised history of accretion: what mergers happen when, at what frequency?
ii) Study the relation between different merger events, and their clustering in space and time,
iii) quantify the merger rates in a larger scale filamentary structure to study assembly bias.
In order to achieve these goals, I will present the general theory of the merger events, which I

will refer to as “critical events”. Section 4.2 provides a mathematical description of these events
in the initial conditions and computes their one-point statistics (number counts). Section 4.3
predicts the clustering properties of these special events. Section 4.4 compares the predictions
to realisations of Gaussian random fields and validates the theoretical formulas. Section 4.5
presents applications of the theory in the context of galaxy formation. Finally section 4.6 wraps
up. Section 4.A presents the counts in arbitrary dimensions and illustrates them in up to 6D.
Section 4.B explains how the critical events are measured in random field maps and cubes.
Section 4.C presents the joint PDF of a Gaussian random field up to the third derivative of the field.
Throughout the chapter, sections where the third form is used (we, us) were done in collaboration
with S. Codis and C. Pichon.

4.2 Theory: one-point statistics

Let me consider the overdensity field δ = (ρ− ρ̄)/ρ̄ to be a homogeneous and isotropic Gaussian
random field of zero mean, described by its power spectrum P (k), as defined in section 2.1.1.2.
In this section, I will focus on one-point statistics associated with merger rates. In section 4.2.1,
I define the concept of critical events. In section 4.2.2, I present the number counts of critical
events, counted together and by type (peak, filament and wall mergers). In section 4.2.3, I present
the number counts as a function of the events’ height. Section 4.2.4 sketches the corresponding
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theory in two-dimensions, while section 4.2.5 presents its extension to non-Gaussian fields.

4.2.1 Critical events definition

When studying the time evolution of the density field, the spherical collapse model has shown that
one can establish a mapping between collapse time and overdensity – high overdensity regions
collapse earlier in the history of the Universe than underdense ones. At the same time, larger
overdensities enclose more mass and will hence give birth to more massive structures. These
relations mathematically read

νc(R) =
δc

σ(R)D(z)
, M =

4π

3
ρ̄R3, (4.1)

where R is the smoothing scale of the Top-Hat filter, σ(R) is the variance of the field at that
scale, D(z) is the linear matter growth function at redshift z (see section 2.1.2.1), δc = 1.69 is
the spherical collapse critical overdensity (see section 2.1.2.2) and ρ̄ is the mean matter density
of the Universe. Here I have introduced the density contrast ν ≡ δ/σ(R), which is a zero-mean
unit-variance Gaussian random field. The spherical collapse threshold can also be adapted to
study the formation of voids (R. K. Sheth and van de Weygaert, 2004; Jennings et al., 2013) with
δv = −2.7. From a theoretical perspective, the action of smoothing the density field δ enables to
probe the time-evolution of spherical proto-halos by following the density evolution of peaks as
smoothing scale increases. One caveat of using a Top-Hat filtering lays in the fact that the second
derivative of the smoothed field has an infinite variance, so that one cannot study the statistics of
its peaks and extrema. In the following of the work, I will make use of a Gaussian filtering instead,
as it provides smooth fields1. In order to match the results of equation (4.1) with a Gaussian filter,
one needs to establish a mapping of the smoothing scales between Top-Hat filtering and Gaussian
filtering. This is usually achieved by matching the variance of the field σG(R/α) = σTH(R). At
scales of a few Mpc/h , the scale ratio is of the order of α ≈ 2.1 for a ΛCDM power spectrum
(see section 2.1.7.2) so that equation (4.1) becomes

M =
4π

3
ρ̄(αR)3 (4.2)

for a field smoothed by a Gaussian filter of radius R. This translates the fact that the variance
of the field smoothed with a Gaussian filter at scale R is the same as the field smoothed with a
Top-Hat filter at scale αR, so that at fixed smoothing scale, one can assign a larger mass to a peak
found using Gaussian filtering compared to a region smoothed with a Top-Hat filtering.

Let me now define critical events associated to mergers. These events are defined in smoothing-
position space and correspond to mergers of critical points (peaks, saddle points and minima). The
slopping saddles defined in Hanami, 2001 are particular critical events that correspond to mergers
between a peak and a saddle point. In this chapter, I will instead focus on all critical events as
they are of interest to study the evolution of the geometry of the cosmic web. The formation
and location of critical events is illustrated for a 1D field on figure 4.2.1: critical events are found
at the tip of critical point lines and represent the disappearance of a critical point into a critical
point of another kind (e.g. a maximum and a minimum in 1D, a maximum and a saddle point in 2
or 3D). They encode locations where the topology of the field is changed by removing a pair of
critical points.

Let me emphasise here that critical points are a compact encoding of the proto-structures:
each proto-filament has at its centre a filament-type saddle-point, while proto-walls have at their
centre a wall-type saddle-point. Using an analogy with a mountainous landscape, one can describe
a given mountain range by giving the set of its peaks and passes. In practice, this procedure has

1In practice, all the derivatives of the field have a well-behaving variance.
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compressed the continuous information about the height of the mountains into a discrete set of
critical points. A similar approach can be used to describe the skeleton of the cosmic web as a set
of its critical points.

Let me illustrate the concept of critical events using the same analogy, the latter being
restricted to 2D space, see figures 4.2.2 and 4.2.3. A mountainous landscape is made of peaks
analogous to proto-halos. Each pair of neighbouring peaks is linked via a pass, analogous to a
proto-filamentary structure. Following the ridge from one peak to another one is analogous to
following a filamentary structure between two proto-halos. On each downhill side of a pass there
are two valleys whose faces are analogous to proto-walls in the cosmic web while their depth
(hence their geometry) is described by their lowest point. With the action of time, the mountains
will erode until eventually no peak will subsist – this is analogous to the smoothing operation.
In the process, a disappearing peak will see its height (the density) decrease with time. If the
peak is not prominent enough, it will eventually be smoothed to the point where it no longer is a
peak but a shoulder on another peak’s slope. Just before the peak disappears, it is still linked to
its neighbour via a pass. When the peak disappears so does the pass – indeed a pass is always
located between two peaks ; when one disappears, so does the pass. This particular event is what
I define as a critical event. It encodes the moment when two critical points (here a peak and a
saddle point) annihilate. This can also be interpreted as the moment a peak disappears on the
slope of its nearest neighbour – the two peaks merged and the most prominent subsisted. Critical
events have hence a dual interpretation: in the initial Lagrangian space, critical points are found
at the location where a critical event merges into a critical event of another kind (e.g. a peak with
a filament saddle-point). In the Eulerian physical space, critical points spot the merger of two
similar structures, for example two halos merging into a single one (squashing the filament in
between them).

Since the primordial density field is a 3D field, the density landscape is made of peaks (proto-
halos), saddle-points (proto-filaments and proto-walls) and minima (proto-voids). Critical events
record the merger of peaks into proto-filaments (PF critical events), of proto-filaments into
proto-walls (FW critical events) and of proto-walls into proto-voids (WV critical events).

Using the duality discussed above, they also encode halo mergers (PF critical events), fil-
ament mergers (FW critical events) and wall mergers (WV critical events). This is illustrated
on figure 4.2.4. PF critical events (top panel) encode the merger of two halos separated by a
filament. After the merger, the most prominent peak subsists, while the other proto-halo and
the proto-filament have annihilated. FW critical events (centre panel) encode the merger of two
filaments separated by a wall. After the merger, the most prominent filament subsists, while
the other proto-filament and the proto-wall have annihilated. WV critical events (bottom panel)
encode the merger of two walls separated by a void. After the merger, the most prominent wall
subsists, while the other proto-wall and the proto-void have annihilated.

4.2.2 3D critical events number counts

In this section, I will present the derivation of the number count of critical events in smoothing-
position space in 3D. In section 4.2.2.1, I present how one can express the critical event constraint
as a function of the local properties of the field and its derivatives. I then express the condition
in the frame of the Hessian of the field in section 4.2.2.2 where it takes a simpler expression. In
section 4.2.2.3, I extend the previous formula to distinguish between different critical event types
(halo mergers, filament mergers, wall mergers). In the following of the section, I will use the
quantities defined in section 2.1.7.1, namely σi, γ, γ̃ which were defined as

σ2i (R) =
1

2π2

∫

dk k2P (k)k2iW 2(kR), γ =
σ21
σ0σ2

, γ̃ =
σ22
σ1σ3

. (4.3)

HereW is a Gaussian filterW (x) = exp
(
−k2R2/2

)
.
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x

R

Figure 4.2.1: 2D “landscape” of a 1D field smoothed at a scale R in smoothing-position
space. Here R is the smoothing scale, while δ is the density smoothed at the given scale.
Solid lines indicate maxima (red) and minima (blue). Critical point lines end at critical
events (black dots). The projections of the critical point lines are shown as red and blue
dashed lines, while vertical dotted purple lines indicate the projection of critical events
to illustrate that critical events are found at the location where two critical points merge.

4.2.2.1 General formulation

Following Hanami, 2001, the number density of critical events in smoothing-position space is
given by

∂4N
∂r3∂R

≡ 〈δ(3)D (r − r0) δD(R−R0)〉 , (4.4)

where r0 is the position of a critical event (i.e. a critical point with a degenerate direction) in real
space and R0 its associated smoothing scale. Following the definition of section 4.2.1, critical
events are found at the smoothing-position location where two critical points of different types
(maximum, saddle points or minimum) merge. The nature of a critical point (occurring where
∇δ = 0) is characterised by its index, that is to say the number of negative eigenvalues of the
density Hessian matrix at this point. Critical events can then be defined as critical points for which
one of the eigenvalues vanishes, which is also equivalent to having a vanishing determinant. By
definition, only critical points whose indices differ by one can merge (peak–filament type saddle
point, filament–wall type saddles, wall type saddle–void) so that only one eigenvalue vanishes2.

Let me therefore first define the determinant of the Hessian d(δ) ≡ det(∇∇δ) = λ1λ2λ3,
λ1 ≤ λ2 ≤ λ3 being the ordered eigenvalues of the Hessian matrix ∇∇δ. In the following,
I will use ∂R to denote derivatives with respect to scale R. Since critical events are found
where d = 0 and ∇δ = 0, let me rewrite equation (4.4) in terms of the properties of the field,
using the coordinate transformation from r, R to ∇δ, d. This involves the 4D Jacobian of the

2The event where two eigenvalues vanish has a null probability.
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xy

R

Figure 4.2.2: 3D “landscape” of a 2D field smoothed at a scale R in smoothing-position
space. The density field (blue to red map) is smoothed at increasing R. For each scale,
the critical points (red lines: peaks, green lines: saddle points, blue lines: minima) are
found. At the tip of each branch a critical event is found ( : peak-saddle critical events,
×: saddle-minima). Lines near the boundaries have been hidden for the sake of clarity.

transformation3

J(d,∇δ) =

∣
∣
∣
∣

∂Rd ∇d
∂R∇δT ∇∇δ

∣
∣
∣
∣
=

∣
∣
∣
∣

∂Rd ∇d
−R∇∇2δT ∇∇δ

∣
∣
∣
∣
, (4.5)

using the fact that for a Gaussian filter (see Table 2.2)

∂Rδ = −R∇2δ, (4.6)

with ∇2 the Laplacian operator. The fully covariant formulation of the number density of critical
events is then

∂4N
∂r3∂R

=
〈

|J | δ(3)D (∇δ) δD(d)
〉

. (4.7)

The expectation value in equation (4.7) can be evaluated using the joint distribution of the field
and its successive derivatives up to third order, P (x, xi, xij , xijk) which involves 20 variables,
see section 4.C for the PDF for Gaussian random fields. One difficulty in evaluating equation (4.7)
spans from δD(d). In practice, it can for instance be dealt with numerically by ‘broadening’ the
Dirac delta function: this method is used for validation and when considering two-point statistics
in the section 4.3.1. Alternatively, one can go to the Hessian’s eigenframe as described in the next
section.

3Note that the determinant can be developed along the first line or the first column of the Jacobian matrix to find
out – as shown by the simplifications in the next section – that the final result in our case does not depend on ∂Rd,
thanks to the zero determinant constraint det∇∇δ = 0.
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Figure 4.2.3: From left to right and top to bottom, a smoothing sequence of a Gaussian
random field, whose density is colour coded from blue to red as a function of height
(analogous to the slices shown on figure 4.2.2). The skeleton tracing the ridges is shown
in purple, while the anti-skeleton tracing the trough is shown in white. The saddles
shown as green crosses lay at the intersection. The Maxima are shown as red triangles
while the minima as blue squares. As one smooths the field, these critical points drift
towards each other along the skeletons, until they vanish in pairs. The upcoming
coalescence are identified with grey circles. Note that as saddle points vanish, the two
corresponding skeletons do too. Note also that the direction of coalescence is typically
set by the skeleton’s just before coalescence. In this two dimensional example, the ratio
of peak+saddle to void+saddle event is one. The black segment in the bottom left of the
first and last image represents the amount of smoothing. This chapter is concerned with
studying the one and two-point statistics of these grey circles. Note that these events
are indeed proxy for mergers of the peaks of the underlying field: for instance, between
snapshot 3 and 5 the central four peaks have merged into one. Similarly, between 1 and
4 the central four voids have merged into one. I provide an interactive tool to follow
such events in 2D and 3D.

4.2.2.2 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so one can rewrite it in the frame of
the eigenvalues of the Hessian (which will be denoted with tildas) without loss of generality.
Developing d into σ32x̃11x̃22x̃33 and assuming (arbitrarily) that direction 3 is the degenerate one,
the Jacobian can be rewritten as follows

J(d, δ)

σ1σ42σ3
= |x̃11x̃22|

∣
∣
∣
∣

∂Rx̃33 x̃33i
∂Rx̃i x̃ij

∣
∣
∣
∣
, (4.8)

= |x̃11x̃22|

∣
∣
∣
∣
∣
∣
∣
∣

∂Rx̃33 x̃133 x̃233 x̃333
∂Rx̃1 x̃11 0 0
∂Rx̃2 0 x̃22 0
∂Rx̃3 0 0 0

∣
∣
∣
∣
∣
∣
∣
∣

, (4.9)

= |x̃11x̃22|2|∂Rx̃3||x̃333|, (4.10)

https://pub.cphyc.me/Science/3d/critical_point_2D.html
https://pub.cphyc.me/Science/3d/critical_point_3D.html
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Peak-filament 

crit. event
(halo merger)

Filament-wall 

crit. event
(filament merger)

Wall-void 
crit. event
(wall merger)

Figure 4.2.4: Illustration of critical events in a 3D random fields and their physical
meaning.  symbols are peaks, × symbols are filament-type saddle points (filament
centres),⊗ symbols are wall-type saddle points (wall centres) and# symbols are minima
(void centres). Top: Peak-filament critical events encode the merger of two halos and
the disappearance of their shared filament. After the merger, only one peak subsists
and the filament disappears. Middle: Filament-wall critical events encode the merger
of two filaments and the disappearance of their shared wall. After the merger, only
one filament subsists. Bottom: Wall-void critical events encode the merger of two
walls and the disappearance of their joint void (surrounded by the two walls and the
dotted lines). After the merger, only one wall-type saddle-point subsists and the void
has disappeared. Halo mergers are encoded by peak-filament critical events, filament
mergers. Alternatively, one could have chosen to describe these events as resp. filament,
wall and void disappearances.

where the factorisation with |x̃11x̃22| along the first line in equation (4.8) is a consequence of x̃33
being zero – which also nulls the last component of equation (4.9). Using equation (4.6) again to
re-express the derivative w.r.t. smoothing in terms of the Laplacian of the field, one can rewrite
the number density of critical events using the typical scales of equation (2.95) as 4

∂n

∂R
=

2π2R

R̃2R3∗

〈

|∑ix̃3ii||x̃333|δ
(3)
D (x̃i) |x̃11x̃22|δD(x̃33)

〉

, (4.11)

where I introduced n = ∂3N/∂r3 the volume density of critical events (that does not depend on
the spatial location r as the field is assumed to be stationary). Let me stress that the distribution
of the fields expressed in the frame of the Hessian matrix differs from the original ones. The
statistics of x and xi and xijk are left unchanged and I therefore drop the tildes for the field and its
first and third derivatives . However, going from cartesian coordinates to the Hessian eigenframe

4One factor of |x̃11x̃22| drops between equation (4.10) and (4.11) because of the Dirac of d in equation (4.7).
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modifies the distribution of the second derivatives that were chosen here to be ordered (such that
the Doroshkevich formula is recovered)

P̃ (x̃11, x̃22, x̃33) = 2π2(x̃33 − x̃22)(x̃22 − x̃11)(x̃33 − x̃11)×
P (x11= x̃11, x22= x̃22, x33= x̃33, x12=0, x23=0, x13=0),

where x̃11 < x̃22 < x̃33 are distributed according to P̃ and fields in cartesian coordinates follow
the distribution P . Note that the factor 2π2 is due to the integration over the Euler angles.
Equation (4.11) therefore introduces a jacobian 2π2|x11x22(x11−x22)|, as x33 is null, when going
from the Hessian eigenframe to cartesian coordinates and the differential number count of critical
events becomes

∂n

∂R
=

2π2R

R̃2R3∗

〈

|∑ix3ii||x333|δ
(3)
D (xi) |x11x22|2|x11−x22|δD(x33) δ(3)D (xi 6=k)

〉

, (4.12)

where δ(3)D (xi 6=k) must be understood as a product of Dirac delta functions of all the off-diagonal
components of the Hessian matrix. Here R∗ and R̃ are the typical inter critical point separation
and inter inflection point separation introduced in equation (2.95), section 2.1.7.1. The novelty
of equation (4.12) w.r.t. the classical BBKS formula is the weight |∑i x3ii||x333| which requires
the knowledge of the statistics of the 3rd order derivative of the field. The expectations in
equation (4.12) can be evaluated with the joint statistics of the field and its successive derivatives,
P (x113, x223, x333, x11, x22) which now only involves 5 variables. Interestingly, because the
dominant contribution to the expectation value of 〈|∑ix3ii||x333|〉 comes from

〈
x2333

〉
with very

good accuracy (at the percent level), equation (4.12) is very well approximated by

∂n

∂R
≈ 2π2R

R̃2R3∗

〈

x2333δ
(3)
D (xi) |x11x22|2|x11−x22|δD(x33) δ(3)D (xi 6=k)

〉

. (4.13)

Note that this equation closely resembles the equation giving the flux of critical lines per unit
surface presented in Pogosyan et al., 1998, up to the delta function on the third eigenvalue in the
present context. This is in fact expected since I require here that along the filament’s direction the
curvature should be flat, whereas they marginalised over all possible longitudinal curvature. The
similarity reflects the fact that critical points essentially slide along critical lines as one smooths
the field, see figure 4.2.3. In some sense the 3D event count can be approximatively recast into a 1D
event count along the ridges. The expectation involves the product of the transverse curvatures
because the larger those curvatures the larger the flux of such lines per unit transverse surface.

4.2.2.3 Gaussian number density of critical events per type

The aforementioned formalism makes no assumption on the type of the merging critical points.
While the coalescence of peaks with filaments (PF critical events, the slopping saddles of Hanami,
2001) are clearly central to the theory of mass assembly, the filament-saddle to wall-saddle
(FW critical events) and wall-saddle to minima coalescence (WV critical events) also impact the
topology of galactic infall, as they destroy filaments, walls, voids within the surrounding cosmic
web.

Let me therefore compute the number density of critical events of each type of mergers (P ≡
PF, F ≡ FW andW ≡WV). Using the fact that for Gaussian random fields, equation (4.12) can
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be split into odd- and even-derivative terms, one can write

∂nj
∂R

=
2π2R

R̃2R3∗

Codd
︷ ︸︸ ︷
〈∣
∣
∣
∣
∣

∑

i

xjii

∣
∣
∣
∣
∣
|xjjj |δ(3)D (xi)

〉

×
〈

ϑH(x33 − x22)ϑH(x22 − x11) δD(xjj) δ
(3)
D (xk 6=l)

∣
∣
∣
∣
∣

∑

kl

εjkl

2 x2kkx
2
ll(xkk − xll)

∣
∣
∣
∣
∣

〉

︸ ︷︷ ︸

Cj,even

(4.14)

where ε is the completely antisymmetric Levi-Civita tensor, ϑ the Heaviside function, and j =
1, 2, 3 for peak (P), filament (F ) and wall (W) mergers respectively. Note that equation (4.14) for
a given value of j is essentially the same as equation (4.12), modulo a choice of null eigenvalue
and the requirement that the eigenvalues are sorted. In 3D, Codd and Cj,even have analytical
expressions given by

C2,even = 〈λ1λ3δD(λ2)〉 =
2√
15π

,

C1,even = C3,even = 〈λ1λ2δD(λ3)〉 =
29− 6

√
6

18
√
10π

, (4.15)

and

Codd =

√
27(1− γ̃2)√

50π5

(

2
√

21(1− γ̃2)
+ tan−1

√

21(1− γ̃2)

2

)

, (4.16)

which can also be computed in arbitrary dimensions as shown in section 4.A. From this I can
compute the ratio of peak to filament mergers rP/F = C2,even/C1,even. Interestingly, the event
ratio is independent of the spectral index of the field and is given by

rP/F =
24

√
3

29
√
2− 12

√
3
≈ 2.05508 ≈ 37

18
, (4.17)

which is nothing but the ratio between the mean number of wall-type saddles and peaks minus
1, a relationship which is valid in arbitrary dimension, as shown in section 4.A.4. This equation
shows that there are twice more filament disappearing in filament merger events (F events) than
in halo merger events (P events). Similarly, I can compute rF/W to deduce that there are twice
more walls disappearing due to filament mergers (F events) than due to void mergers (W events).
Section 4.A also presents these ratios in dimension 4 to 6.

4.2.3 3D differential event counts of a given height

Introducing δD(x− ν) in the expectation of equation (4.14) allows me to write the density of
critical events as a function of height, hence make the distinction between mergers of important
critical points and less significant ones. The introduction of the height will also be used later to
compute the number density of events as a function of cosmic time in section 4.5.1.

For Gaussian random fields, the field only correlates with its even derivatives (second in this
case). Imposing the height of the critical events considered here therefore only modifies the term
Cj,even while Codd is left unchanged, following

Cj,even(ν) =
〈

ϑH(x33 − x22)ϑH(x22 − x11) δD(xjj)δ
(3)
D (xk 6=l) δD(x− ν)

×
∣
∣
∣
∣
∣

∑

kl

εjkl

2
x2kkx

2
ll(xkk − xll)

∣
∣
∣
∣
∣

〉

.

(4.18)
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Interestingly, Cj,even(ν) appears to have an analytical expression once rotational invariants are
used to evaluate the expectations. Following the formalism described first in Pogosyan et al., 2009,
we introduce the variables

J1 = I1 , J2 = I21 − 3I2 , (4.19)

J3 =
27

2
I3 −

9

2
I1I2 + I31 , ζ =

x+ γJ1
√

1− γ2
, (4.20)

that are linear combinations of the density field x and rotational invariants of its second derivatives
namely the trace I1 = trH = λ1 + λ2 + λ3, minor I2 = 1/2((trH)2 − trH · H) = λ1λ2 +
λ2λ3 + λ3λ1 and determinant I3 = detH = λ1λ2λ3 of the Hessian matrix H = (xij). The
distribution of these variables is given by

P (ζ, J1, J2, J3) =
25

√
10π

24π2
exp

(

−1

2
ζ2 − 1

2
J2
1 − 5

2
J2

)

, (4.21)

where J3 is uniformly distributed between −J3/2
2 and J3/2

2 and J2 is positive. Using these
rotational invariants, one can rewrite equation (4.18) for each type of critical event

C1,even(ν) =
〈

|I2|δD(x− ν) δD(I3)B(−2J
1/2
2 < J1 < −J1/2

2 )
〉

,

C2,even(ν) =
〈

|I2|δD(x− ν) δD(I3)B(−J1/2
2 < J1 < J

1/2
2 )

〉

, (4.22)

C3,even(ν) =
〈

|I2|δD(x− ν) δD(I3)B(J1/2
2 < J1 < 2J

1/2
2 )

〉

= C1,even,

with

δD(I3) =
27

2
δD

(

J3 −
3J1J2 − J3

1

2

)

, (4.23)

δD(x− ν) =
1

√

1− γ2
δD

(

ζ − ν + γJ1
√

1− γ2

)

, (4.24)

and the condition that the determinant is null due to λj being zero is enforced by restricting the
range of J1 according to the Boolean specified in equations (4.22). Eventually, the integration in
equation (4.22) can be done symbolically and an analytical expression for Cj,even(ν) follows

C1,even(ν)=
∑

i=1,6,9

c1,i exp

(

− ν2

2 (1− γ2/i)

)

, (4.25)

C2,even(ν)=c2,6 exp

(

− ν2

2(1− 5γ2/6)

)

, (4.26)

with

c1,1 =
3
√

5
2γ
√

1− γ2ν
(
275γ4 + 30γ2

(
2ν2 − 23

)
+ 351

)

π3/2 (9− 5γ2)4
,

c1,6 = −
erf

(

γν√
2
√

5γ4−11γ2+6

)

+ 1

√
5π
√

6− 5γ2
,

c2,6 =
2

π
√

30− 25γ2
,

c1,9 =

erf

( √
2γν√

5γ4−14γ2+9

)

+1

4π
√
5 (9− 5γ2)5/2

(

3600γ4ν4

(9− 5γ2)2
+
120γ2

(
27−35γ2

)
ν2

9− 5γ2
+575γ4−1230γ2+783

)

.
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Figure 4.2.5: The PDF of critical events of the various types (P,F ) in 2D for ns =
−2,−3/2,−1,−1/2 from light to dark. Note that the dominant change with spectral
index is in the amplitude which scales like 1/R̃2/Rd

⋆. The rest of the shape variation
comes from the weaker γ and γ̃ dependence of Codd and Ceven.

The resulting counts of critical events as a function of their height ν is plotted in figure 4.4.1
for different values of the spectral index ns. Note that ∂2n/∂R∂ν scales like 1/R4 but is also a
function of R via the spectral parameters γ and γ̃.

4.2.4 2D event counts and differential counts

Since the formalism is very similar, let me also briefly present the analogues of equation (4.14) for
2D fields. It reads

∂2n

∂R∂ν
=

2πR

R̃2R2∗
〈|x211 + x222||x222|δD(x1) δD(x2)〉× (4.27)

〈ϑH(x22−x11) δD(x22)δD(x12) δD(x− ν)|x11−x22|〉 ,

which after some algebra, given the knowledge of the 2D PDF given in section 4.C, yields for the
peak merger rate

∂2n

∂R∂ν
=
RCodd

R̃2R2∗

[

4γν
√

1− γ2

(3− 2γ2)2
exp

(

− ν2

2(1− γ2)

)

+

√
8π(2γ4 + γ2(ν2 − 5) + 3)

(3− 2γ2)5/2
erfc

(

−γν
√

4γ4 − 10γ2 + 6

)

exp

(

− 3ν2

6− 4γ2

)]

,

(4.28)

with

Codd =
γ̂ + 3γ̂2 tan−1 (3γ̂)

4π2
, given γ̂ =

√

1− γ̃2 .

The wall merger rate is obtained by swapping ν to −ν in this expression. The two rates are
plotted in figure 4.2.5 and validated against Gaussian random fields in figure 4.4.2. The counts,
∂n/∂R = 2CoddR/(3

√
3R̃2R2

∗) follows by integration over ν.
Section 4.A also presents differential counts in dimension 4 to 6, together with asymptotic

expressions in the large dimension limit for the integrated count ratios. As expected, for any
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dimension the number counts per unit log-volume is logarithmically scale invariant (up to the
slow variation in the spectral parameters), i.e. Rd ∂2nd

/
∂ logR∂ν is a function of γ, γ̃ and ν

only.

4.2.5 Beyond Gaussian statistics

Let us finally compute the one-point statistics for close to Gaussian fields. The Edgeworth
expansion joint statistics of the field at x, P (x, xi, xij , xijk), involving the hierarchy of cumulants
obeys

P (x) = PG(x)

(

1 +
∞∑

k=3

σk−2 〈Hk(x)〉
σ2k−2

·Hk(x)

)

, (4.29)

where Hk is a vector of orthogonal polynomials with respect to the kernel PG obeying Hk =
(−1)k ∂kPG

/
∂xk /PG while at three order in perturbation theory (Bernardeau et al., 2002),

〈Hk(x)〉 /σ2k−2 is independent of the varianceσ2(z) below k = 6. Equation (4.29) is in practice an
expansion of the Gaussian PDF in the mildly non-linear regime where σ(z) ≪ 1, so that the model
is particularly accurate at large scales and at early times. Cumulants such as

〈
x21x111

〉
entering

equation (4.29) could in the context of a given cosmological model involve a parametrisation of
modified gravity (via e.g. a parametrisation of F2(k1,k2)), and/or primordial non-gaussianities
(via e.g. fNL). From this expansion, or relying on the connection between event ratio and
connectivity discussed in section 4.A.5, we can for instance compute the non-Gaussian correction
to the ratio of critical events, defined in equation (4.17) as

rP/F
rP/F ,G

= 1 + cr
(
8
〈
J3
1

〉
−10 〈J1J2〉 − 21

〈
q2J1

〉)
+O(σ2). (4.30)

where cr =
(
29
√
2+12

√
3
)
/210/

√
π, while σ21q

2 = |∇ρ|2 the modulus square of the gradient,
J1 and J2 are defined in equation (4.20) via the trace and minor of the Hessian. These extended
skewness parameters are isotropic moments of the underlying bispectrum which, when gravity
drives the evolution, scale with σ at three order in perturbation theory (e.g.

〈
J3
1

〉
/σ is indepen-

dent of σ). The correction to one entering equation (4.30) is negative (approximately equal to
−σ(1/7− log(L)/5) for a ΛCDM spectrum smoothed over LMpc/h), suggesting that gravita-
tional clustering reduces the relative number of peak mergers compared to filament mergers: fila-
ments disconnect. When astronomers constrain the equation of state of dark energy using the cos-
mic evolution of voids disappearance they effectively measure σ in equation (4.30). Conversely, for
primordial non Gaussianities, the extended skewness parameters must be updated accordingly (see

Gay et al., 2012; Codis et al., 2013). For instance, 〈J1q2〉 = 〈J1q2〉grav−2fNL

√

1+f2NL/(1+4f2NL).

Since the computation of the expectation (4.14) with the Edgeworth expansion (4.29) is beyond
the scope of this dissertation, let us investigate an alternative proxy for the event rate. Figure 4.2.6
makes use of the perturbative prediction of Gay et al., 2012 to first order in σ for the gravitationally-
driven non-Gaussian differential extrema counts to compute the product of such counts as a proxy
for the events, namely P(ν) ∝ P (ν)×F (ν), F(ν) ∝F (ν)×W (ν), and W(ν)∝W (ν)×V (ν).
This Ansatz is reasonable, since for a merger to occur, two critical points of the same height must
exist beforehand. We use the Gaussian PDF as a reference, to recalibrate the relative amplitude of
the filament to peak merger counts. Since Gay et al., 2012 provide fits to the critical PDFs as a
function of σ, it is straightforward to compute their product.

From figure 4.2.6, we see that gravitational clustering shifts the peak event counts to lower
contrast, as it should. This is confirmed in simulation in figure 4.5.6. Less trivially, the filament
merger rates also shift towards negative contrasts. From these PDFs one can re-compute the
cosmic evolution of the ratio of critical events: it scales like rP/F = 7/34(1− σ/7) (for n = −1),
in good agreement with equation (4.30), suggesting that this approximation indeed captures the
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Figure 4.2.6: Predicted cosmic evolution of the product of extrema counts as a proxy
for the event counts (W in blue, F in green and P in red) for the variances σ = 0, 0.04,
0.08, 0.12, 0.16 (from light to dark) and an underlying scale invariant power spectra of
index n = −1. The F counts have been rescaled by a constant 205/332 factor to better
match the actual counts. The predicted trend with σ are in qualitative agreement with
the measured counts presented in figure 4.5.6.

main features of gravitational clustering. This provides a physical understanding of the evolution
of the one-point distribution of the critical events in the mildly non-linear regime.

4.3 Theory: two-point statistics

In the previous section, I have presented the concept of critical events (section 4.2.1) and derived
their number counts counted together and by type (section 4.2.2), and by height (section 4.2.3). I
have also presented how these results can be transposed in two dimensions (section 4.2.4 and
eventually in d dimensions, see section 4.A.3). The formalism has also been extended in the mildly
non-linear regime section 4.2.5.

Let me now present a method to compute the two-point statistics of critical events. Such
statistics are of interest, for example to study the cosmic evolution of the connectivity of peaks, or
to understand how large scale tides bias mass accretion (the so-called assembly bias). Section 4.3.1
presents the two-point statistics of merger events in 3D, while section 4.3.2 provides analytical
approximations while assuming mergers occur along a straight filament. Section 4.3.3 computes
the conditional merger rates subject to larger scale tides.

4.3.1 Clustering of critical events in R, r space

One cannot generally assume that the orientation of the two critical events are aligned w.r.t. the
separation vector, so the covariant condition for critical event of type j ∈ {P,F ,W}, condj , is
given by the argument of the expectation in equation (4.7) multiplied by requirement on the sign
of the two non-zero eigenvalues. For instance

condP(x) = |J |δ(3)D (xi) δD(d)× ϑH(−tr(xik))ϑH
(
tr2(xik

)
− tr(xilxlk)) ,

where the two Heaviside conditions ensure that the trace is negative and the minor positive so
that the two eigenvalues are negative. From the joint two-point count of critical events, I can
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define the relative clustering of critical events of kind i, j smoothed at scales (Rx, Ry) and located
at positions (rx, ry), ξij(s) as

1 + ξij(s) =
〈condi(x) condj(y)〉
〈condi(x)〉〈condj(x)〉

, (4.31)

with

s ≡
√
2




rx − ry

√

R2
x +R2

y



 , (4.32)

the event separation between x(0) and y(s). Note that this definition of the separation includes
the dependence of the correlation functions to the smoothing scale, as the product of two Gaussian

kernels with scales Rx, Ry is equivalent to smoothing at a single scale R =
√

(R2
x +R2

y)/2. The

definition of equation (4.32) provides a natural distance ladder when comparing points at two
different smoothing scales. Evaluating the expectation in equation (4.31) requires full knowledge
of the joint statistics of the field P (x, xi, xij , xijk, y, yi, yij , yijk) (involving 40 variables, see
section 4.C.2).

We rely on Monte-Carlo methods in MATHEMATICA in order to evaluate numerically equa-
tion (4.31). Namely, we draw random numbers from the conditional probability that x and y
satisfy the joint PDF, subject to the condition that xk = 0, yk = 0, x = ν1 and y = ν2. For each
draw (x(k),y(k)) depending on the type of critical event hence the sign of tr(xij) and tr2(xik)−
tr(xikxkj)we drop or keep the sample; if it is kept, we evaluate |J(x)|δ(ǫ)D (d(x)) |J(y)|δ(ǫ)D (d(y))

where δ(ǫ)D is a normalised Gaussian of width ǫ, which in the limit of ǫ→ 0 would correspond to
a Dirac function imposing here that the two determinants are zero. Eventually

〈condi(x)condj(y)〉 ≈
Pm(x = ν1, y = ν2, xl = yl = 0)

N
×

∑

k∈Sij

∣
∣
∣J(x(k))

∣
∣
∣δ

(ǫ)
D

(

d(x(k))
) ∣
∣
∣J(y(k))

∣
∣
∣δ

(ǫ)
D

(

d(y(k))
)

, (4.33)

where N is the total number of draws, Pm the marginal probability for the field values and
its gradients, and Sij is the subset of the indices of draws satisfying the constraints i, j on the
Hessians. The same procedure can be applied to evaluate the denominator. Equation (4.31) then
yields an estimation of ξij(s, ν1, ν2). This algorithm is embarrassingly parallel.

This is illustrated in figure 4.3.1a which shows the auto-correlation of peak merger ξPP on
the one hand, and the cross-correlation of peak and filament merger ξPF on the other at fixed
merger height, as labelled. Here we used ǫ = 0.1. Note that because equation (4.31) is a ratio, the
prefactors in the counts involving scales all cancel out. Similar results are presented in 2D on
figure 4.3.1b.

4.3.2 Correlation of peak merger along filament

Let us briefly present the two-point statistics of high density peak mergers while assuming for
simplicity that the mergers occur along the same (straight) filament (discussed in section 4.2.2), as
it is instructive and simpler. In this approximation we can resort to one dimensional statistics.
In the high density limit, we may drop the Heaviside constraint on the sign of the eigenvalues
since all high density critical points tend to be automatically maxima. Then the (1D) correlation
function of peak mergers, 1 + ξν1ν2(s) of height ν1 and ν2 becomes

〈δD(x− ν1)x
2
111δD(x1) δD(x11) δD(y − ν2) y

2
111δD(y1) δD(y11)〉

〈δD(x− ν1)x2111δD(x1) δD(x11)〉〈δD(y − ν2) y2111δD(y1) δD(y11)〉
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Figure 4.3.1: (a): The auto-correlation of peak merger ξPP (in shades of red, as labelled
in terms of the height of the two critical points) and the cross-correlation of peak and
filament merger ξPF (in shades of yellow, as labelled) as a function of separation s. As
expected, the saddle mergers are clustered closer to the higher peak compared to the
peak mergers. (b): The two-point correlation of events in 2D fields with scale invariant
power spectra of index ns = −1

where the expectation is over the Gaussian PDF whose covariance for the field (x, x1, x11, x111,
y, y1, y11, y111) obeys
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, (4.34)

where for instance γ02(s) = 〈x(0)y22(s)〉, which can be computed using the formalism presented
in section 2.1.1.3. The dominant contribution in the large threshold ν1, ν2 ≫ 1, large separation
s≫ 1 regime reads

∆ξ0ν1ν2(s) =
ν1ν2 (γ00(s) + γ (2γ02(s) + γγ22(s)))

(1− γ2)2
, (4.35)

which as expected scales like the underlying correlation, γ00(s), boosted by the bias factor ν1ν2
(Kaiser, 1984b)5. In that limit, the next order correction to the correlation function involving the
third derivative of the field reads

∆ξ1ν1ν2(s) =
2
(
γ̃2γ11(s) + 2γ̃γ13(s) + γ33(s)

)2

(1− γ̃2)2
, (4.36)

where γ̃-weighted linear combination of the auto-correlation of∇∆δ and the cross-correlation of
∇∆δ and∇δ appear, evaluated at events separated by s. The assumption of successive mergers
of peaks occurring along a straight filament is of course very idealised, and prevents us from
considering cross-correlations between peak mergers and e.g. filament mergers.

5As γ02 and γ22 decay faster than γ00.
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4.3.3 Conditional merger rates in vicinity of larger tides

In the context of galaxy formation, it is of interest to quantify conditional merger rates computed
subject to tides imposed by the large scale structure to explain geographically the origin of
assembly bias. To do so one must compute the conditional event counts, subject to a given large
scale critical point at some distance s from the running point x. The critical point can be e.g. a
peak of a given geometry and height, if one is concerned with the impact of clusters on mergers
trees of dark halos in their vicinity (Hahn et al., 2009; Ramakrishnan et al., 2019), or it could be a
saddle point, as a proxy for a larger scale filament, when studying how halo growth stalls in such
vicinity (Borzyszkowski et al., 2017; Musso et al., 2018). In turn this involves the joint expectation

〈condj(x) δD(yi)|det yij |〉 . (4.37)

Here condj is defined as in equation (4.31), namely it is the argument of equation (4.7) for a
critical event of kind j

Evaluating equation (4.37) requires the full knowledge of the joint statistics of the field at rx
and ry , P(x, xi, xij , xijk, y, yi, yij) (involving 30 variables). The correlations of the PDF involves
the covariance of the field and its derivatives computed at two smoothing scales, Rx and Ry . I
can then marginalise over all variables, subject to e.g. imposing the height, νc and shape, µci of
the large scale critical point

〈cond(x)δD(yi)| det yij |δD(x− ν)δD(y − νc)ϑH(−λi) δD(µi − µci )〉

where λi are the eigenvalues of xij and µi are the eigenvalues of yij . The conditions imposed
by the mergers and the properties of the peaks and large scale environment reduces the number
of integrals from 30 to 21. Section 4.B.3 describes how to sample conditional event counts using
constrained realisation of Gaussian random fields. While a direct integration of equation (4.38) is
beyond the scope of this dissertation, section 4.5.1 presents the statistics of critical events in the
vicinity of a large-scale filamentary structure, sampled using constrained Gaussian random fields.

4.4 Measurements for Gaussian random fields

In the previous sections, I have provided the one-point statistics of critical events section 4.2 and
their two-point statistics section 4.3.

Let me now validate the theory while counting critical events within realisations of Gaus-
sian random fields. Section 4.4.1 details the procedure followed to generate Gaussian random
fields. Section 4.4.2 measures the one-point statistics and compares them to predictions, while
section 4.4.3 measures the two-point statistics.

4.4.1 Method

For each power-law power spectrum with spectral index ns = −2,−1.5,−1,−0.5, I have gen-
erated 200 Gaussian random fields. I have also generated 200 Gaussian random fields with a
ΛCDM power spectrum using mpgrafic (Prunet et al., 2008) in a Planck cosmology (Planck
Collaboration, 2018a) generated using the Eisenstein and Hu, 1999 fitting formula. Each realisation
will henceforth be called a “cube”. Each cube has a size of 2563 pixels and a physical extent of
100Mpc/h .6 Each cube has been smoothed using a Gaussian filter with scale ranging from
1Mpc/h to 20Mpc/h (2.56 px to 51.2 px). The smoothing operation were operated in Fourier
space, assuming periodic boundary conditions. At each scale, all critical points are detected
(minima, saddle points and extrema) using the method detailed in section 4.B.1 while the critical
events have been detected using the method detailed in section 4.B.2.

6The box size is only relevant in the ΛCDM case, as the power-law cases are scale invariant.
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Additionally, I have generated 200 20482 cubeswith a power-law power spectrumwith spectral
index ns = −1 and a physical box size of 1 000Mpc/h which I smoothed with a Gaussian filter
with scale ranging from 1Mpc/h to 20Mpc/h .

4.4.2 Critical events counts

In this section I present the number density of critical event measured in cubes with a power-law
power spectrum and compare the theoretical predictions of section 4.2.3 to measurements in
cubes.

I first measured the ratio of the number of critical events of different kind, which is found
to be rF/P = rF/W ≈ 2.1, regardless of the smoothing scale or the underlying power spectrum.
This excess of about 2% in the ratio originates to an over-detection of saddle points with respect
to local extrema. Theory predicts this ratio to be Nsaddle/Npeak ≈ 3.055 in 3D (see e.g. Codis
et al., 2018, equation 2) while the measured value is 3.1. In the following of the chapter, I have
corrected the excess number density of F ,W critical events by applying a correction factor to
their number counts.

Let me now proceed to the number count at fixed density. Figure 4.4.1 shows the PDF of the
critical events as a function of their height for different power-law spectra (ns = −2, −1.5, −1,
−0.5, ΛCDM). The critical events have been selected at scale 2.35Mpc/h ≤ R ≤ 3.01Mpc/h
(6.0 px ≤ R ≤ 7.7 px). The lower boundary ensures that the critical points are well separated7.
The upper boundary is fixed so that the smoothed cubes have consistent effective spectral param-
eters γeff(R) and γ̃eff(R). Indeed, the cubes have scale-dependent spectral parameters induced by
the finiteness of the box and the discreteness of the grid (see e.g. Gay, 2011, figure 5.1). Errorbars
have been estimated using a bootstrap method ran on 400 subsamples each made of 50 randomly
chosen cubes. Solid lines show the result of a fit of the theoretical formula to the cube data with
free parameters γ̂, ˆ̃γ.

The effective spectral index n̂s is fixed using γ =
√

(ns + 3)/(ns + 5). Themeasured values of
γ and γ̃ are consistent with the effective values measured directly in the cubes using equation (2.97).
For example with ns = −2, the values measured in the cubes are γeff = 0.62 ± 0.02, γ̃eff =
0.72± 0.01 (ns,eff = −1.75± 0.13) using equation (2.97). The mean values have been estimated
with a sample of 100 cubes and the errors are the standard deviations of the sample. The fitting
procedure on the PDF of the critical events yields γ̂ = 0.621 ± 0.002, ˆ̃γ = 0.737 ± 0.004
(n̂s = −1.74± 0.02). The relative difference between theory and measurements, presented on
the upper panel of figure 4.4.1, shows no systematic deviation of the measurements and is within
a few percents in the region where most of the events are.

In order to further test the theoretical prediction, I have proceeded to the same analysis in
the 2D case. The results are presented on figure 4.4.2 and show that the agreement between
theory and measurements is of the order of the percent. Once again, no systematic deviation
of the measurements is noted. The results in 2 and 3D confirm the analytical formula derived
in section 4.2.3 and illustrate the accuracy of the detection algorithm presented in section 4.B.
Interestingly, since the algorithm has been designed to make no assumption on the number of
dimensions, it is expected to work as well in d dimensions.

4.4.3 Two-point statistics

Let me now estimate the two-point statistics of critical events using the critical events from the
cubes presented above. For any two subsets A and B of critical events, one can estimate their

7Critical points are typically separated by R∗ & 0.6R (for ns < 0), so R = 6px gives a typical separation of
3.6 px between critical points, which is larger than the number of points used to infer the curvature.
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Figure 4.4.1: PDF of the critical events as a function of height in a scale invariant
GRF as labelled. The left bundle corresponds to void mergers, the middle bundle to
filaments mergers and the right bundle to peak mergers. The solid curve corresponds
to the theory while the error bars correspond to the error on the mean extracted from
160 simulations. The grey lines are the results obtained for a ΛCDM power spectrum
initially smoothed over a scale of 2.5Mpc/h . The top panel shows the residuals for
ns = −2. The detection algorithm is still accurate in 3D.
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Figure 4.4.2: PDF of the critical events as a function of height in a scale invariant GRF
in 2D with spectral index ns = −1. The left curve corresponds to filament mergers and
the right curve to peak mergers. The solid curve correspond to the theory while the
error bars correspond to the error on the mean extracted from 200 simulations. The
top panel shows the residuals. The agreement between the analytic prediction and
the measurements reflects the accuracy of the algorithm presented in section 4.B in
identifying critical events.
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correlation function numerically using

ξAB(s) =
〈AB〉

f
√

〈ARA〉〈BRB〉
, (4.38)

where RA and RB are uniformly distributed random points with 1/f times the number of points
as A and B respectively. I have additionally checked that common estimators, such as the Landy-
Szalay estimator yield similar results. This is further discussed in section 4.B.4, which shows
that both estimators yield similar results at scales of interest to our analysis (s = r/R ' 1). For
each cube in the simulation, I then select all critical events in a thick slice of smoothing scales
(∆R/R = 0.3). The critical events are then split in two subsamples, the first is selected at an
overdensity ν = 1 with kind j and the second at ν = 0.7 with kind k (j, k ∈ {P,F ,W}). The
correlation functions are then given by the number of pairs at distance s = r/R in all cubes using
equation (4.38). The pair counting was done using a dual-tree algorithm, as described in Moore
et al., 20018.

Figure 4.4.3 shows the measured correlation functions in 2D for a power law power spectrum
with spectral index ns = −1 (top panel) and in 3D with a ΛCDM power spectrum smoothed at
scales between 1 and 20Mpc/h (bottom panel). In both cases the PF cross-correlation function
(peak merger to filament merger correlation) peaks at r ≈ 1.5R while the PP auto-correlation
function (peak merger auto-correlation) peaks at r ≈ 2.5R. This indicates that each halo merger
is more likely to be followed by a filament merger compared to another halo merger. Interestingly,
peak mergers are also more likely to be followed by void mergers. Indeed, a halo merger induces
a topological defect, as it leads to a resulting over-connected halo. The defect is quickly corrected
by a filament merger, decreasing the local connectivity of the halo back towards the cosmic
average. Doing so another topological defect appears as a void becomes under-connected as one
of its walls disappeared. This last defect is then corrected by a last void merger that makes the
under-connected void disappear. On average, critical events happen so that the global ratio of
peak-to-filament, filament-to-walls and wall-to-void stays constant as smoothing increases, so
that the global connectivity is preserved. The link between critical events and global connectivity
of the cosmic web is further discussed in section 4.5.2.

4.5 Applications to galaxy formation and discussions

I showed how one can derive the one-point and two-points statistics of critical events in sections 4.2
and 4.3. I have then successfully compared the predictions to Gaussian random fields and provided
the two-point correlations functions in section 4.4.1.

The scope of application of the present formalism is obviously very wide. Rather than
attempting to cover it all, I will present a few examples here, while a more thorough investigation
is left for future work.

In a cosmic framework, section 4.5.1 will first translate the one-point statistics presented in the
previous section into halo and void merger rates as a function of mass and redshift. Section 4.5.2
explains howmergers of filaments need to match that of halos in order to preserve the connectivity
of peaks. Section 4.5.3 explains how conditional merger counts in the vicinity of a filament explains
how the environment drives assembly bias. Section 4.5.4 illustrates how the theoretical predictions
compare to results fromN -body simulations and galaxy catalogues. It also shows howwall merger
rates can be used to yield constraints on modified gravity or primordial non gaussianities.

8See the scipy doc for more information.

https://docs.scipy.org/doc/scipy-0.19.1/reference/generated/scipy.spatial.cKDTree.count_neighbors.html
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Figure 4.4.3: (a): Correlation functions between critical events P,F in 2D at fixed
smoothing scale. (b): Correlation functions between critical events P,F ,W in 3D at
fixed smoothing scale. Pairs of critical events have been selected at ν = 0.7 and ν = 1.0.
The correlation function of halo-merger with filament-merger, ξPF , peaks at r ∼ 1.5R
while the halo-merger auto-correlation functions ξFF peaks at r ∼ 2R. This shows
that halo-mergers are more likely to be followed by filament-mergers. The data have
been filtered using a Savgol filter. Errorbars have been estimated assuming a Poisson
noise on the sample.

4.5.1 Merger rates inM , z space

The predictions in the initial Lagrangian space bear theoretical interest, yet they do not translate
easily to measurable quantities. In this section, let me show how one can map the predictions
to observable quantities, and in particular merger rates inM, z space. It is straightforward to
change variable from R toM (recalling thatM = 4

3πρ̄(αR)
3 from equation (4.2)) and from ν

to z using the spherical collapse condition (equations 4.1 and 4.2), so that for condition c (peak,
void) one has9

∂2n

∂ logM∂z

∣
∣
∣
c
=

∂2n

∂R∂ν

∣
∣
∣
c

∂R

∂ logM

∂ν
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= − ∂2n

∂R∂ν

∣
∣
∣
c

δc
3αD(z)2

dD

dz

(
3M

4πρ̄

)1/3

, (4.39)

where α ≈ 2.1 and ρ̄ ≈ 2.8× 1011 h2M⊙/Mpc3ΩM (see e.g. Musso, Cadiou et al., 2018, Table
A1). The same reasoning can be applied to get a similar relation for void mergers (or equivalently
wall mergers) substituting δc by |δv| = 2.7 (see Jennings et al., 2013, equation 8). Note that this
simple relation holds in principle for small enough voids only (R / 3Mpc/h). A more detailed
study will be provided in future works. From equations (4.14) and (4.39), I am now in a position
to count how many (peak, void) mergers occur early or late in the accretion history of a certain
mass or within some mass range, via straightforward integration.

Figure 4.5.1 shows the merger rate of peaks and voids as a function of the mass of non linearity.
The cosmology-dependent terms of equation (4.39) (D(z) and dD/dz ) have been computed using
the code Colossus (Diemer, 2018) in a Planck cosmology. With increasing time mergers of
increasing size are able to happen, as the collapse barrier decreases. In order to evaluate the
number density of critical events, I have assumed a scale-dependent equivalent power-law power
spectrum10. Note that the cutoff at large-scale is significantly faster that the Press-Schechter

9Note that dD/dz = −Df/(1+z) with f ≡ d logD/d log a ∼ Ω0.6
m .

10At each scale, the equivalent power-law power spectrum is given by the formula ns,eq = −3−2 d log σ/d logR ,
where σ is computed using a ΛCDM power spectrum.
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Figure 4.5.1: PDF of the halo merger rate (solid red lines) and the wall merger rate
(dashed blue lines) as a function of redshift of formation (from dark to light at z =
0, 0.25, 0.5, 0.75, 1), see the text for details, up to a renormalisation. For the sake of
clarity, only the redshifts z = 0, 0.5, 1 appear in the legend. For small masses the merger
rate follows the Press-Schechter (Press and Schechter, 1974) halo mass function up to a
renormalisation (black dotted line), while at larger masses the halo merger rate decays
significantly faster. As expected, the transition mass increases with time. The same
evolution is found for void mergers.

cutoff, as mergers of large-mass objects require two massive objects.
It should in principle be possible to generalise equation (4.39) for filament mergers, but this

would require the knowledge of a relation between the initial overdensity and the mass of the
filament or its length, as well as a collapse condition. In practice, this would likely result in
implementing a cylindrical collapse condition, while Pogosyan et al., 2009 suggested this could be
achieved using a somehow smaller critical overdensity for filamentary collapse. The impact of
our results on filament merger rates inM, z space will be done in a follow-up work.

Beyond the scope of this dissertation, those results could also be extended to take into account
mergers with different ratios, so that they can be compared to measurements in numerical
simulations (e.g. Genel et al., 2009; Fakhouri et al., 2010; Rodriguez-Gomez et al., 2015).

4.5.2 Consistency with cosmic connectivity evolution

The properties of the initial random field was shown by Codis et al., 2018 to control to a large
extent the connectivity of dark halos, as defined by the number of connected filaments (locally
and globally) at a given cosmic time. The upshot of this work is that the packing of peaks (i.e. the
“volume” they occupy, as imposed by their exclusion zone) and saddles implies that 3-4 filaments
typically dominate locally. Interestingly, the rate of filament disappearing must match the peak
merger rate, in order to preserve this number. Beyond numerology, this rate is important because
filaments later feed coherently dark halos, so their lifespan matters to understand the balance
between filamentary cold gas inflow (from subsisting filaments) and environmentally-driven
disruptions (from filaments mergers).

In practice, one should distinguish the local and global connectivity (see Codis et al., 2018,
for more details). Unfortunately, the link between global connectivity and merger rates that was
discussed in the present work does not translate straightforwardly to the local connectivity. Our



112 Chapter 4. Forecasting special events driving the assembly of dark halos

qualitative understanding of the critical structure of Gaussian random fields remains in close
relation to packaging: each vicinity of a critical point, and with the same argument, of a critical
event, must by continuity occupy a certain volume of space, as set by its eigenvalues, which
puts constrains on the position of other points in the vicinity. Indeed, critical points are found
where the gradient vanishes, with some local curvature, so that the field is quadratic in each
eigenvector’s direction. As a consequence, the gradient of the field is linear at non-null separation
and cannot vanish, so that no other critical point can be found in the direct vicinity of another
critical point or event. At large separations the field decorrelates from its values at the critical
point, so that another critical point event becomes likely. The same reasoning applies to critical
event, except that the field has a third order behaviour along the ridge of the vanishing saddle
point (it is an inflection point in that direction). The idea is that e.g. before connecting a given
peak to a peak of a different height, the field must first go through a local minimum along the
ridge, which distance is set by the ‘width’ of that peak. For events, the process of smoothing the
field will impact both the local curvature but also the curvature of these other points. Hence, it is
expected that smoothing jointly disconnects neighbouring peaks as mergers occur: the ridges are
smoothed out because technically their saddle points vanish.

I can quantify this process via the two-point correlation functions of these events. From the
auto- and cross-correlations of the P and F events presented in section 4.3, I can define the ratio
of the separation at the maximum of these two correlations (sij = argmaxsξij(s)) as a measure
of the relative ‘proximity’ of the two events. Since this ratio sPF/sPP ≈ 3/4 is smaller than
one, it means that filament mergers are more clustered around halo mergers than halo mergers
around halo mergers, so that the rate at which filaments disappear matches the merger rate and
the typical number of filaments per halo remains constant through cosmic time. As a result of
this spatial clustering, the most likely sequence happening is a PFFP , (one halo merger, followed
by two filament mergers, followed by a halo merger) as presented on the cartoon of figure 4.5.2 in
2D. This sequence conserves the connectivity of peaks, and is consistent with the relative rates of
events. Figure 4.5.3 illustrates an analogous consistent PF4P (one halo merger, followed by four
filament mergers, followed by a halo merger) sequence in 3D. Figure 4.5.4 shows how the local
connectivity of 3 can also be preserved, as the weaker filaments typically lie off the main plane.

Finally, the clustering of filament disappearance impacts the connectivity of peaks as they
merge as discussed in the next section (see figure 4.5.5, bottom right panel). This is a direct
consequence of the clustering of events of the various types.

4.5.3 Assembly bias in the frame of filaments

Let me now make use of the merger statistics to study the impact of the large scale structures
on assembly bias, following section 4.3.3. Previous works have highlighted the modulation
effect induced by large-scale filamentary structure on the assembly of dark matter halos and their
galaxies. Indeed, it is expected on theoretical grounds that the typical accretion rate increases when
going from saddle towards nodes Musso, Cadiou et al., 2018. Looking at galactic properties instead,
Kraljic et al., 2019 showed that the galactic ratio of rotational-velocity-to-velocity-dispersion
(v/σ) is also modulated as a function of the distance and orientation to the nearest filamentary
structure. Using the framework developed in this work, I generate a suite of Gaussian random
fields constrained to the presence of a proto-filament (represented as a filament-type saddle point)
at the centre of the box, the exact generation procedure being described in section 4.B.3. The
proto-filament is defined at a scale R = 5Mpc/h , is oriented along the z axis and lays in a wall
in the yz plane. Using the set of constrained cubes, I compute the excess density of each kind of
critical event with respect to the cosmic mean, at fixed smoothing scale (hence at fixed object
mass) 2.5 ≤ R ≤ 5Mpc/h . The results are shown on figure 4.5.5.

The peak merger rate is shown on the top left panel of figure 4.5.5. Going from the voids
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4

6

Figure 4.5.2: Snapshots of the density field at two smoothing scales (colour coded from
blue, low density to red high density). The black line represents density ridges/trough
connecting the red peaks, and the blue voids via the green saddle points. As the two
low persistence pair of peaks (in white) merge the connectivity increases from 4 to 6 (as
labeled). The fate of this connectivity now depends on the nature and location of the
next merger events inspired from Sousbie et al., 2011.

to the wall, from the wall to the filament and from the filament to the nearest node, the peak
merger rate increases and the maximum peak merger rate is found at the location where a node
is expected (z ∼ ±10Mpc/h). At larger scales, the field becomes unconstrained so that the peak
merger rate falls back to its cosmic mean. I reproduce here from first principle the results of
Borzyszkowski et al., 2017, showing that halos close to the filament saddle are stalled compared
to those in nodes: they do not undergo many mergers nor do they accrete much as the local tidal
fields channels all the matter towards the two surrounding nodes, bypassing the centre of the
filament. Quantitatively, halos forming at the centre of the filament are found to have a halo
merger rate close to the cosmic average, while those close to the nodes are expected to have 40%
more mergers. Conversely, halos forming in a void next to a filamentary structure are expected to
have a merger rate −20% smaller than the cosmic mean.

Filament merger rates act locally to decrease the connectivity of halos, as each filament
merger will disconnect one filament from two halos. The top right panel of figure 4.5.5 shows
that the merger rate is maximal along the wall and minimal along the filament. Going off the
plane of the wall (x direction), the filament merger rate simply decreases towards the cosmic
mean. Interestingly the filament merger rate is minimal in the nodes (−13%) and maximal in
the wall (+10%). As a consequence, halos forming close to a node have a larger halo merger
rate but a smaller filament merger rate. This in turn will have an impact on the assembly of dark
matter halos and their galaxies. In the wall where the filament merger rate is the highest, I expect
filaments to merge faster than halos, resulting in halos with fewer connected filaments. This can
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Figure 4.5.3: As labelled from a) to d) an abstraction of the merger sequence of a 2D
‘cosmic crystal’ impacting the connectivity of the central peak. Ridges are shown in
black while troughs are shown in dark blue. The red circles represent the peaks, the
green stars the saddles and the blue diamonds the voids. A P1 merger (highlighted in
light grey) rises the mean connectivity of the central peak from 4 to 6, but the next two
F1,2 mergers (highlighted in darker grey) lower it back to 4. The next P2 merger (panel
d) will reduce the void’s connectivity. A more realistic representation of this process is
also visible on figure 4.2.3.

be interpreted using the results of section 4.2.4. Indeed, in a cosmic wall, the geometry is locally
2D so that the theoretically expected connectivity becomes 4 instead of 6.

The bottom left panel of figure 4.5.5 shows that the wall merger rate is decreased in walls
and even more strongly in filaments. The minimum wall merger rate is found at the location of
the node with a rate −40% smaller than the cosmic mean. Conversely, the wall merger rate is
enhanced in the two voids surrounding the wall with a rate 20% above the cosmic mean.

The evolution of the connectivity with cosmic environment is resumed by the bottom right
panel of figure 4.5.5, which shows the ratio of halo mergers (P critical events) to filament mergers
(F critical events), for which the cosmic mean is 2.055 (see equation (4.17)). Small values of
rF/P indicate that halos merge faster than their surrounding filaments, so that the connectivity
increases as halos grow. On the contrary, large values of rF/P indicate that filaments merge faster
than halos, so that the connectivity decreases as halos grow. The bottom right panel of figure 4.5.5
shows that in nodes, the ratio drops to about rF/P ≈ 1.1. On the contrary halos forming in voids
are expected to have a ratio of about 2.4. I therefore expect that, at fixed final mass, halos forming
next to a node will grow an increasing number of connected filaments11. The expected physical

11Conversely Codis et al., 2015 found that when averaged over all large scale structures, connectivity increases with
mass.
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Figure 4.5.4: Following the cartoon shown in figure 4.5.3, the left panel shows a
smoothing sequence (from top to bottom) which would preserve the connectivity of a
3D peak. It requires that each P merger should be followed by four F mergers in the
vicinity. The right panel highlights how the multiplicity is preserved if one starts with 3
dominant co-planar filaments.

outcome of this process is that the streams feeding a galaxy growing next to a node will become
more and more isotropic with increasing connectivity.

Assuming that an isotropic acquisition of matter leads to a smaller amount of angular mo-
mentum being transferred down to the disk, I propose that this effect prevents the formation of
gaseous disks in the vicinity of nodes. Conversely, I expect that halos growing in the neighbour-
ing voids see their filaments destroyed faster than they merge, so that the halo is likely to grow
with steadier flows coming from a few filaments (see also Codis et al., 2015; Laigle et al., 2015,
section 6.2.1, and 5 resp. for similar conclusions reached via the kinematic structure of large scale
flows in filaments). The results presented here show a significant effect of the saddle point on
the dynamical evolution of halos and their surrounding. At first order, the one-point statistics
presented in section 4.2 show that the number density of halo mergers increases with increasing
density, while the number density of filament merger decreases so that a more detailed analysis
will be required to disentangle the effect from density from the modulation from the cosmic
web. Following the arguments of Musso, Cadiou et al., 2018, one can however argue that the
saddle point differentially impacts the statistics of halo mergers compared to filament mergers (as
their two-points correlation functions are in principle different), so that an effect beyond density
can be expected. This could be checked by comparing the filament merger-to-halo merger ratio
estimated from the mean local density alone to the maps presented in figure 4.5.5. These effects
however require a more in-depth analysis and will be studied in future works.

4.5.4 Departures from gaussianity

With increasing time, non-linearities arising from gravitational collapse translate into departures
from gaussianity (Bernardeau et al., 2002). This can formally be studied in the framework described
in section 4.2.5. In particular, the PDFs will become skewed as the dynamics of gravitational
collapse depends on the primordial overdensity.
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Halo mergers (P events) Filament mergers (F events)

Wall mergers (W events) Filament merger to peak merger F/P ratio

Figure 4.5.5: From left to right and top to bottom, peak-merger, filament-merger and
wall-merger excess density around a large-scale proto-filament, illustrated by the vertical
cylinder (z direction) and the wall in which it resides, illustrated by the grey plane (yz
plane). The bottom right panel shows the local ratio of filament to peak mergers rF/P .
Each side of the cube shows a slice through the centre, shifted to the side of the plot for
visualisation purposes. Red regions have an excess of critical events while blue regions
have a deficit of critical events with respect to cosmic average. Interactive versions of
these plots can be found online for the halo mergers, filament mergers, wall mergers
and filament to peak merger ratio. Going from voids to wall, from wall to filament and
from filament to the nearest node (along the z axis), the halo merger rate increases and
the filament merger rate decreases. Halos in the filament are therefore stalled: they
merge less than those in the nodes. At the same time, the filament merger rate decreases
when going from the filament towards the node so that the mean connectivity, given by
the ratio of halo merger to filament merger, is expected to increase.

https://pub.cphyc.me/Science/3d/critical_events_peak_around_filaments.html
https://pub.cphyc.me/Science/3d/critical_events_filament_around_filaments.html
https://pub.cphyc.me/Science/3d/critical_events_wall_around_filaments.html
https://pub.cphyc.me/Science/3d/critical_events_filament_to_peak_around_filaments.html
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Figure 4.5.6: Critical events number count as a function of the rarity in dark-matter
only simulations in different redshift bins as mentioned in the legend, with the same
colours as figure 4.4.1. The curves have been normalised so that in each redshift bin,
the integral of the three curves (W,P,F ) equals one. At high redshift, the merger
rates resembles the Gaussian prediction (thick dashed grey lines, with an arbitrary
normalisation). The skewness of the distributions increases with decreasing redshift as
the field departs from gaussianity.

Results in N -body simulations

Here, let me quantify the effect first on simulations, and then compare to the proxy of section 4.2.5
relying on known perturbative results. Figure 4.5.6 presents the redshift evolution of critical event
counts measured in 200 realisations of ΛCDM simulations in boxes of 500Mpc/h involving 2563

particles evolved using Gadget (Springel et al., 2001) sampled on a 2563 grid smoothed with
a Gaussian filter over 6Mpc/h . The algorithm described in section 4.B is used to identify and
match the critical points. The qualitative similarity with the cosmic evolution of the measured
event counts and the prediction shown in figure 4.2.6 is striking, strongly suggesting that indeed,
the set of critical events in the initial condition do capture the upcoming cosmic evolution of the
field.

At high redshift, the Gaussian prediction is recovered. At lower redshift, the P and F counts
shift towards lower contrast, but respectively decrease and increase in amplitude, while the
W counts increase in amplitude. Since the first halos to merge are due to high σ peaks, it is
expected that the low-z PDFs are biased towards low densities. Similarly, the mean density of
filamentary structure decreases with increasing time, as the less dense filaments take more time
to gravitationally form, so that the PDFs of the filament mergers shift to smaller densities at
low z. The evolution of void structures with cosmological time is somehow symmetric to the
evolution of peaks: early forming voids are the most underdense while late-time voids form out of
less underdense regions. At fixed resolution, this results in a shift of the typical density of voids
towards higher densities. Indeed, in the limit of infinite time, it is expected that the only voids
found at a given size stem from ν = 0, as any void with ν < 0 will have had time to collapse
earlier. This confirms that the predictions from the Gaussian initial condition, extended to take
into account departures from gaussianity can indeed be used to predict halo, filament and wall
merger events in real datasets.
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Figure 4.5.7: PDF of the critical events extracted from the galaxy catalogue of
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fewer walls hence wall mergers detected. From Nicolas Cornuault, private communica-
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Figure 4.5.8: (a): Critical point number counts as a function of the rarity in dark-matter
only simulations in different redshift bins as mentioned in the legend. The curves have
been normalised so that in each redshift bin, the integral of the four curves equals
one. The purple bundle corresponds to voids, the blue one to walls, the green one to
filaments and the red one to peaks. (b): Product of the PDFs. At large redshifts, the
curves resemble the prediction of figure 4.2.6.



4.6 Conclusion 119

Comparison to galaxy catalogues

It is of interest to follow the position of all critical points (not just the maxima) explicitly as a
function of true cosmic time in galaxy catalogue extracted from hydrodynamical simulations, so
as to assess i) the impact of biasing involved in selecting specific tracers and ii) how non-linear
clustering impacts the statistics. This was done in collaboration with N. Cornuault and C. Pichon
illustratively using 330 snapshots of galaxies extracted from Horizon-AGN (shown on figure 4.1.1
at redshift zero with its set of walls and filaments), for which the critical points are derived using
DisPerSE with a persistence threshold of σ/100. The algorithm described in section 4.B is used
to match merging critical points as a function of redshift. The set of events are then binned as a
function of log density for 4 redshift bins and shown on figure 4.5.7. Gravitational clustering has
skewed the PDFs, but most dramatically galaxies poorly trace under dense regions, hence the
number of wall mergers plummeted. While more work needs to be done in order to be conclusive,
this illustrates that the detection algorithms presented here can readily be applied to virtual
catalogues in state-of-the-art simulations.

Void counts as a cosmological measurement

One particular application of these results is the study of the void number counts. Voids are
very interesting laboratory both for galaxy evolution and cosmology. They represent primitive
environments for galaxies, where density is low and matter flow is still relatively curl-free. Void
galaxies are therefore interesting probes for galaxy formation (e.g. Lindner et al., 1996). Voids are
also a tool of choice to probe the cosmology or to test theory of modified gravity (e.g. Gay et al.,
2012; Lavaux and Wandelt, 2012; Cai et al., 2015) as a mean to constrain the equation of state of
dark energy. In particular, these authors have used the cosmic evolution of the size and the number
of voids as constrains on the linear matter growth function D(z). In the present formalism void
disappear as a function of cosmic time via mergers of walls, hence the one-point statistics of
wall merger could be used as a cosmic probe. From equation (4.29) the cosmic evolution of the
rate of void of volume V merging during time interval δz can be expanded to first order in σ via

equation (4.39) as
∂2n

∂logV∂z =
∂2n

∂logV∂z
∣
∣
∣
G
+ σ(z)

∂2n

∂logV∂z
∣
∣
∣
NG

, (4.40)

where the first term reflects cosmic evolution of the rate of void disappearance presented in sec-
tion 4.5.1, while the second term is obtained by substituting ∂2n/∂R∂ν

∣
∣
G
by ∂2n/∂R∂ν

∣
∣
NG

into
equation (4.39). As discussed in section 4.2.5, the scaling of these non-Gaussian corrections yield
joint estimates for the cumulants (Codis et al., 2013), hence a measure of fNL or a parametrisation
of modified gravity.

4.6 Conclusion

As a proxy for cosmic evolution, I computed the rate of merging critical points as a function of
smoothing scale from the primordial density field to forecast special events driving the assembly of
dark halos and possibly galaxies. I considered all sets of critical points coalescence, including wall-
saddle to filament-saddle (filament mergers) and wall-saddle to minima (wall or void mergers), as
they impact the topology of galactic infall, such as filament disconnection or void disappearance.
The theory developed in this chapter, hereafter the “critical event theory”, is central to the
understanding of the effect of the cosmic web on the formation of galaxies, since their evolution
is the result of their past history, which is usually encoded by their merger tree and the properties
of their host halo. In this context, the critical event theory provides a way to encode not only the
evolution of the halo hosting the galaxy via its merger tree, but also the evolution of its upcoming
internal structure with time, which itself is responsible for driving the angular momentum
acquisition, as will be seen in chapter 6. I argue that the theory can be seen as an extension to the
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classical halo model, where the properties of galaxies have an extra dependence on their “dressed”
merger history which takes into account the merger history of their surrounding filaments and
walls.

The scope of this theory is obviously very broad, but let me sum up here the results relevant
to astrophysics and in particular to the problem of the assembly of galaxies.

i) I studied critical events of all types, their clustering properties, and presented analytical
formulas for the one-point statistics of these events in fields of dimensions up to 6, and also
the two-point statistics.

ii) I have established the link between critical events and connectivity. This allows me to com-
pute the connectivity of peaks and other critical events in arbitrary dimensions. Physically,
I established the duality between the evolution of the cosmic web (critical events) and its
topological features (connectivity).

iii) I provided a covariant formulation of the critical event theory which allowed me to also
compute the two-point statistics for critical events. The two-point statistics show that halo
mergers are typically followed by a filament merger, so that the connectivity is conserved.

iv) I have shown that the critical event theory can be further extended to take into account the
early stages of non-linear gravitational evolution. This has then been compared positively to
numerical simulations at high redshift. This extension also probes the non-Gaussianities that
arise from primordial non-Gaussianities and can be used as a cosmological measurement.

v) I have shown that halos forming in nodes grow by successive mergers, while their filaments
do not merge, so that that their local connectivity increases. The trend is expected to reverse
in voids, where filament mergers happen faster than halo mergers, resulting in halos with a
small connectivity. This is likely to have an impact on galaxy formation, and in particular
on angular momentum acquisition.

I have only touched on practical applications for the forecasting of special events in a multi-
scale landscape. It should prove to be a fruitful field of research in astronomy and beyond in the
future. This work is part of an ongoing research effort and will lead to a publication in the near
future.

4.A Critical events in ND

For the sake of completeness and possible interest in other fields of research, let us present the
one-point statistics of critical events in arbitrary dimension d.

4.A.1 Joint PDF of the field and its second derivatives

From Pogosyan et al., 2009 the probability of measuring the set of d eigenvalues of the d dimen-
sional Hessian {λi} and density ν obeys

Vd
∏

i≤d

dλi
∏

i<j

(λj − λi) exp
(

−1

2
Qγ(ν, {λi})

)

, (4.41)

where Qγ is a quadratic form in λi and ν given by

Qγ(ν, {λi}) = ν2 +
(
∑

i λi + γν)2

(1− γ2) +Qd({λi}) , (4.42)

with

Qd({λi}) = (d+ 2)




1

2
(d− 1)

∑

i

λ2i −
∑

i 6=j

λiλj



 . (4.43)

In equation (4.41) Vd arises from the integration over the angles and is given by equation (4.56)
below.
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4.A.2 Joint PDF of the first and third derivatives

Here, we will look into the PDF of the first and third derivatives in d dimensions in order to
compute the odd derivative term Codd that enters critical event number counts in d dimensions.

First, let us note that the first derivatives are Gaussian distributed with individual variance
〈
x2i
〉
= 1/d so that the probability for all first derivatives to be zero is

P (∇ρ = 0) =

(
d

2π

)d/2

. (4.44)

Now let us study the statistics of the third derivatives. By symmetry, one can note that

〈(
∑

i

x1ii

)2〉

=
1

d
, (4.45)

because the third derivatives are rescaled by σ3, and

〈
x21jj

〉
= 〈x111x1jj〉 =

1

5

〈
x2111

〉
= 3 〈x1jjx1kk〉 ∀j 6= k 6= 1.

Therefore,

1

d
=
〈
x2111

〉
+(d−1)

〈
x21jj

〉
+2(d−1) 〈x111x1jj〉+(d−1)(d−2) 〈x1kkx1jj〉 ∀j 6= k 6= 1 (4.46)

implies that
〈
x2iii
〉
= 15/d(d+ 2)(d+ 4) and the full covariance matrix of the third derivatives is

therefore now known. However, we are interested in statistics subject to a zero gradient constraint,
in particular the three quantities of interest are (fixing d as the degenerate direction and assuming
an implicit summation on the i indices)

〈
x2ddd|xd = 0

〉
=
〈
x2ddd

〉
− 〈xdiixd〉

2

〈
x2d
〉 , (4.47)

〈

(xdii)
2 |xd = 0

〉

=
〈

(xdii)
2
〉

− 〈xdddxd〉
2

〈
x2d
〉 , (4.48)

〈xdiixddd|xd = 0〉 = 〈xdiixddd〉 −
〈xdxddd〉 〈xdxdii〉

〈
x2d
〉 , (4.49)

which can easily be computed thanks to the additional relation
〈
x211
〉
= 3/d(d+ 2),

〈
x2ddd|xd = 0

〉
=

3

d(d+ 2)

[
5

d+ 4
− 3γ̃2

d+ 2

]

, (4.50)

〈

(xdii)
2 |xd = 0

〉

=
1− γ̃2
d

, (4.51)

〈xdiixddd|xd = 0〉 = 3

d(d+ 2)
(1− γ̃2). (4.52)

4.A.3 Critical event number counts in ND

It now follows that the critical event number counts of type j at height ν in dimension d read

∂2ndj
∂R∂ν

=
RVdCd,odd

R̃2Rd∗

〈

δD(λj)

∣
∣
∣
∣
∣
∣

∏

i 6=j≤d

ϑH(λi − λj)λi

∣
∣
∣
∣
∣
∣

〉

, (4.53)
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where this expectation is computed using the conditional expectations presented in the previous
section. Equation (4.53) is a function of ν because of the correlation between ν and

∑

i λi seen in
equation (4.42). Recalling the formal analogy with the flux of critical lines per unit hyper surface,

∂2ndP
∂R∂ν

γν→∞∼ R

R̃2Rd∗

VdCd,odd√
2π

exp

[

−1

2
ν2
](

ν

R0

)d−1

,

in the large d large ν limit (Pogosyan et al., 2009). The contribution from the odd part of the
distribution function, Cd,odd obeys

Cd,odd =

〈
∣
∣
∣

∑

i

xjii

∣
∣
∣|xjjj |δ(d)D (xi)

〉

, (4.54)

where the expectation in equation (4.54) should be computed with the odd derivative PDF given
in section 4.A.2. After a bit of algebra,

Cd,odd =

(
d

2π

)d
2
[

2
√
6

π

√

(d− 1) (1− γ̃2)
d2(d+ 2)2(d+ 4)

+
6
(
1− γ̃2

)

πd(d+ 2)
tan−1

(√

3

2

√
d+ 4

√

1− γ̃2√
d− 1

)]

.

(4.55)

Finally, the volume Vd of the hyper-wedge corresponding to the marginalisation over the orienta-
tion of the Hessian obeys

Vd =
1

2d−1d!

x
dSO(d) =

1

2d−1d!

n−1∏

i=1

Vol(Si) ,

=
1

2d−1d!

n−1∏

i=1

2π(i+1)/2

Γ((i+ 1)/2)
, (4.56)

where Vol(Si) denotes the i-dimensional volume (i.e. surface area) of the unit i-sphere in R
i+1,

the factor d! comes from not sorting the eigenvalues and the factor 2d−1 from not imposing their
sign. It follows that V2 = π/2, V3 = π2/3, V4 = π4/12, V5 = π6/45 and V6 = π9/540. The
PDFs of critical events in 4D, 5D and 6D are shown in figure 4.A.1. Note that the intermediate
signature events dominate in number over the extreme ones, in accordance with the relative
number of critical points.

4.A.4 Ratios of critical events

From equation (4.42), the integration over ν yields the marginal probability of {λi}

Vd
∏

i≤d

dλi
∏

i<j

(λj−λi) exp



−1

2
Qd({λi})−

1

2

(
∑

i

λi

)2


 . (4.57)

Finally, the d dimensional ratio of critical event of type j and k is simply given by

rj/k=

〈

δD(λj)
∣
∣
∣
∏

i 6=j ϑH(λi−λj)λi
∣
∣
∣

〉

〈

δD(λk)
∣
∣
∣
∏

i 6=k ϑH(λi−λk)λi
∣
∣
∣

〉 , (4.58)

where the PDF to evaluate this expectation is given by equation (4.57). Note that these counts
correspond to the area below each curve shown in figure 4.A.1. In 3D, we recover the ratio
presented in the main text. In 4D the ratio is analytic and reads

rF/W =
2(57 + 25π − 50 cot−1(3))

75π − 2(57 + 50 cot−1(2))
≈ 3.17. (4.59)
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Figure 4.A.1: The PDF of critical events of the various types (P,F ,W1,W2) in 4D
(le�), in 5D (right) and 6D (bottom) for ns = −2,−3/2,−1,−1/2 from light to dark.

More generally,

d = 2: rF/W = 1 ,

d = 3: rF/P = 2.06 ,

d = 4: rF/P = 3.17 , rW/P = 3.17 ,

d = 5: rF/P = 4.36 , rW1/P = 6.72 , rW2/P = 4.36 ,

d = 6: rF/P = 5.67 , rW1/P = 11.97 , rW2/P = 11.97, rW3/P = 5.67.

Note that these ratios are pure numbers and do not depend on the detailed shape of the underlying
powerspectrum (for Gaussian random fields).

4.A.5 Self-consistency links with critical points counts

These results can be used to derive the connectivity as defined in Codis et al., 2018. Indeed, let
us formally write Ni the number density of critical point of kind i in d dimensions and Ni the
number density of critical event of kind i–i+ 1. The evolution of Ni is given by

∂Ni

∂R
= −







N0 if i = 0,

(Ni−1 +Ni) if 0 < i < d− 1,

Nd−1 if i = d− 1.

(4.60)
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For Gaussian random fields, the number density of critical point can be formally written as

Ni =
1

Rd∗

〈∣
∣
∣

∏

j

λj

∣
∣
∣

〉〈

δ
(3)
D (xi)

〉

︸ ︷︷ ︸

Ci

,

where the PDF to evaluate the left part of the r.h.s. is given by equation (4.57). Here Ci is a number
common to all power spectra. The derivative of Ni with respect to the smoothing scale is then

∂Ni

∂R
= −Ni × d

d logR∗
dR

. (4.61)

Using equation (4.60) and equation (4.61) yields a simple relation between the number density of
critical points and the number density of critical events

Ni =
1

d× d logR∗/dR







N0 if i = 0,

(Ni−1 +Ni) if 0 < i < d− 1,

Nd−1 if i = d− 1.

For Gaussian random fields, one has the property that Ni = Nd−i−1 and Ni = Nd−i−2. This
follows from the fact that the field δ is invariant under sign change so that −δ has the same
properties. This provides us with simple way to compute the ratio of critical events as a function
of the ratio of the critical points. For any d, the ratio of filament to peak is connected to the ratio
of F to P critical events

N1

N0
=
N0 +N1

N0
= 1 +

N1

N0
= 1 + rF/P . (4.62)

As an example, let use derive the ratio of other critical points in dimensions up to 6D. For d = 4,

N1

N0
=
N2

N3
= 1 + rF/P ≈ 4.17,

N2

N1
=
N1 +N2

N0 +N1
=
N0 +N1

N0 +N1
= 1.

For d = 5,

N1

N0
=
N3

N4
= 1 + rF/P ≈ 5.36,

N2

N1
=
N2

N3
=
N1 +N2

N0 +N1
=
rF/P + rW1/P
1 + rF/P

≈ 2.07.

For d = 6,

N1

N0
=
N4

N5
= 1 + rF/P ≈ 6.67,

N2

N1
=
N3

N4
=
N1 +N2

N0 +N1
=
rF/P + rW1/P
1 + rF/P

≈ 2.64,

N3

N2
= 1.

Given that Codis et al., 2018 provides an asymptotic limit for the connectivity, I can re-express it
in terms of the ratio of critical events as

N1

N0
=
Nd−2

Nd−1
= 1 + rF/P = d+

1

2
((2d− 4)/7)7/4 , (4.63)



4.A Critical events in ND 125

2 4 6 8 10 12 14
d

5

10

15

20

rF/P

Figure 4.A.2: The ratio of peak to filament merger as a function of d. For reference, the
first diagonal is shown as a dashed grey line as well. The ratio is approximately fitted as

d−1+((2d− 4)/7)7/4/2 and shown as red dots. The dashed line is the identity.

which in the large d limit, asymptotes to

rF/P
d→∞∼ 1

2

(
2

7

)7/4

d7/4 ≈ 1

17
d7/4 . (4.64)

4.A.6 Testing the link between critical pts and events counts

From equation (4.61) and because for a Gaussian filter, we have

dσ2i
dR2

= −σ2i+1,

one can easily derive

∂Ni

∂R
= −Ni × d

R

R2
⋆

1− γ̃2
γ̃2

(4.65)

which in d = 3 for peaks reads

−∂N0

∂R
= 3N0

R

R2
⋆

1− γ̃2
γ̃2

(4.66)

=
3R

R3
⋆R̃

2
(1− γ̃2)29

√
15− 18

√
10

1800π2
(4.67)

which happens to be equal to the differential number counts of 3D critical events (equation (4.14))
but only if Codd is computed with the approximation in equation (4.13) that boils down to (using
equation (4.50))

Codd ≈
3(1− γ̃2)
d(d+ 2)

(
d

2π

)d/2

. (4.68)

The discrepancy is however tiny, as a result of the transverse third derivatives being only very
weakly correlated to the on-diagonal terms, i.e. 〈xijjxiii〉 is small. More work will however be
required to understand the origin of this disagreement.
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4.B Algorithms

The source code of the implementation can be found online. It is based on Python and the Scipy

stack (E. Jones et al., 2001).

4.B.1 Critical points detection

This section presents the algorithm used to find the extrema in a N -dimensional field. Let F , Fi

and Fij be a field evaluated on a grid, its derivative and its Hessian. For any point x on the grid,
we have the following relation

Fj(x) = Fj(xc) + (xi − xc,i)Fij(x) +O(∆x2i ). (4.69)

Critical points are found where F ′
j = 0 by solving the linear system of equation

∆xiFij = −Fj , (4.70)

where∆x = x− xc. The algorithm works as follows:
1. Solve equation (4.70) for each cell on the grid. We then get a set of points (xi

c,x
i), where

the former is the cell centre and the latter the closest critical point.
2. Remove all critical points found at |xi

c,x
i|∞ ≥ ∆x, where ∆x is the grid spacing.

3. For all critical point, compute the value of the Hessian by interpolating linearly from the
2N (4 in 2D, 6 in 3D) neighbouring cells.

4. Compute the eigenvalues of the Hessians and the type of the critical point (maximum,
saddle point(s) or minimum).

5. Merge all critical points of the same kind closer than∆x. To do this, we first build a KD-Tree
of the critical points and find all the pairs located at a distance dij = |xi − xj |∞ ≤ ∆x.
For each pair, we keep only the point that is the closest to its associated cell.

4.B.2 Critical events detection

The algorithm is based on the idea that each critical event has two predecessors at the previous
smaller smoothing scale (two critical points). Conversely, each critical point has either a critical
point successor of the same kind at the next (larger) smoothing scale or a critical event. Therefore,
a way to detect critical events is to find critical points that do not have a successor. These points
will be referred to as “heads” as they are the tip of a continuous line of critical points in the
smoothing scale direction. Critical events are then found between pairs of heads of kind k and
k + 1 (e.g. a peak and a filament).

Following this idea, the algorithm can be decomposed in two steps: compute the heads of
each kind, than find pairs of heads to detect critical events. In the following of the section,
let us call R0 (resp. R1) the smallest (resp. largest) scale at which the field is smoothed. Let
CR,k = {ri, R}i=1,...,N be the set of theN critical points of kind k at scaleR. The whole detection
algorithm reads

1: procedure FindCritEvents(CR,k, α)
2: E ← {} ⊲ All critical events
3: for k in 1, . . . , d do ⊲ Find heads of critical points
4: Hk ← BuildHeads(k, ∆ logR)
5: end for
6: R← R0

7: while R ≤ R1 do ⊲ Find pairs of heads (crit. events)
8: ∆R← R×∆ logR ⊲
9: E ← E+FindHeadPairs(H1, . . . , Hd, R, α∆R)
10: R← R+∆R

https://github.com/cphyc/py_extrema
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11: end while
12: return E
13: end procedure

The parameter α controls how far heads can be in the smoothing scale direction, in units of logR.
A value of 1 looks for pairs of heads at the same scale, a value of 2 looks for pairs of heads at a
scales R,R+∆R.

The first step (line 4) of the algorithm builds the set of heads Hk. It works as follows

1: procedure BuildHeads(k, ∆ logR) ⊲ Build heads of kind k
2: Hk ← CR1,k ⊲ Initialise heads
3: Pk ← Hk ⊲ Initialise progenitors
4: R← R1

5: while R ≥ R0 do
6: P ′

k ← {} ⊲ Initialise new progenitors at R
7: for p, c, d in SortedPairs(Pk, CR,k, R) do
8: if c 6∈ P ′

k then
9: P ′

k ← P ′
k + {p, c} ⊲ Found new progenitor

10: end if
11: end for
12: Pk ← P ′

k

13: for c in CR,k do ⊲ Loop over crit. points
14: if c 6∈ P ′

k then ⊲ Keep only unpaired ones. . .
15: Hk ← Hk + {c} ⊲ . . . and add them to heads
16: Pk ← Pk + {c}
17: end if
18: end for
19: R← R(1−∆ logR)
20: end while
21: return Hk ⊲ Heads are points with no successors at larger R
22: end procedure

Here, SortedPairs(X,Y,Rmax) returns (x, y, d), where x, y are points in X,Y and d ≤ Rmax is
their relative distance (in (r, R) space). The tuples are sorted by increasing distance. This can be
efficiently implemented using a KD-tree with periodic boundary conditions. BuildHeads builds
all heads by using a watershed approach. Starting from the largest smoothing scales, it finds and
discards all critical events that are progenitors of a head at any larger scale. The remaining points
have no successor (they are the progenitor of nothing) and are hence heads.

Once the heads have been computed, the second step of the algorithm pairs them (line 9)

1: procedure FindHeadPairs(H1, . . . , Hd, R,∆R) ⊲ Find pairs of heads (crit. events)
2: HR,k ← {c ∈ Hk | R ≤ c.R < R+∆R} ⊲ Keep heads at scale R
3: P ← {} ⊲ Head pair list
4: for k in 1, . . . , d− 1 do
5: P ← P+SortedPairs(HR,k, HR,k+1, R)
6: P ← P+SortedPairs(HR,k+1, HR,k, R)
7: end for
8: P ← SortByDistance(P )
9: P ′ ← {} ⊲ Pairs with no double counts
10: for c1, c2, d in P do
11: if c1 6∈ P ′ and c2 6∈ P ′ then
12: P ′ ← P ′ + {c1, c2}
13: end if
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14: end for
15: E ← {} ⊲ Critical events
16: for c1, c2 in P ′ do
17: E ← E+ CritEventData(c1, c2)
18: end for
19: return E
20: end procedure

Lines 5-6 ensure that the detection method is invariant by permutation of k ← d − k + 1.
CritEventData(c1, c2) computes the properties (position, kind, gradient, . . . ) of the critical
events given two critical points. FindHeadPairs works as follows. It first finds all pairs of heads
separated by less than a smoothing scale. It then loops over all pairs (sorted by increasing distance)
and greedily consumes heads. Each head can only be paired once, to its closest not-yet-paired head
of either the previous or next kind. This prevents for example F critical points from being paired
to a P and a W critical point, which would result in a double count. Note that this procedure
may leave some heads unpaired (e.g. critical points at the largest smoothing scale do not merge
but have no successor). In practice the unpaired heads typically account for less than a percent
(0.5% for ∆R = αR∆ logR with α = 2) of the total number of heads.

An alternative to the present algorithm could involve modifying Disperse to only retain the
points of lowest persistence.

4.B.3 Generation algorithm

I have used ConstrField coupled withMPgrafic from Prunet et al., 2008 to generate constrained
realisations of a Gaussian random field. I generate an unsmoothed Gaussian random field,
constrained to have a filament-type saddle point of height δ = 1 (ν = 1.17) at smoothing
scale R = 5Mpc/h . The eigenvalues of the Hessian are constrained to be {λ1, λ2, λ3} =
σ2{−1/2,−1/2,−1} with eigenvectors {x̂, ŷ, ẑ}. Figure 4.B.1 shows the mean density profiles
as well as one realisation. As expected, the density is locally entirely set by the constrain and has
a parabola-like shape. At larger scales, the field decouples from the constrains resulting in large
fluctuations around the mean value.

4.B.4 Comparison of two-point correlation function estimators

In the field of cosmology, some efforts (see Kerscher et al., 2000, and references therein) have
been dedicated to build unbiased estimators of the two-point correlations. Indeed, such estimator
are impacted by the size of the sample as well as finite volume effects if the catalog does not cover
the entire sky. Because of periodic boundaries, I do not have problem with the size of the box.
The estimator used in this work is

ξAB =
〈AB〉

f
√

〈ARA〉〈BRB〉
, (4.71)

where A,B are two catalogs and RA, RB are random samples with 1/f times more data than
A,B respectively. I have compared it to the popular Landy-Szalay (LS) estimator (Landy and
Szalay, 1993; Szapudi and Szalay, 1999)

ξAB,LS =
〈(A−RA/f)(B −RB/f)〉

〈RARB〉/f2
. (4.72)

The results are shown on figure 4.B.2. At large scales, both estimators converge to the expected
value of one. However at small scales, the LS estimator is more noisy since at small scales, no
pairs AB are found so that the estimator of equation (4.71) returns 0, while the LS estimator
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Figure 4.B.1: Density profile of a random field constrained to a density δ = 1, null
gradient and a Hessian with eigenvalues σ2/2,−σ/2,−σ in directions x, y, z at the
centre of the box, assuming periodic boundary conditions. The expectation of the
field is shown in dashed lines and the value of the field in one realisation is shown in
solid lines. Dotted lines show the second order Taylor series of the field around the
constrained point. The inset shows a zoom on the constrained zone. For the sake of
clarity, each curve have been shifted by 0.02. At small distances from the constrain, the
field resembles its mean and its Taylor expansion.

includes contributions from ARB and BRA pairs and returns a non-null, noise-dominated
signal. Following a pragmatic approach I have used throughout all our analysis the estimator of
equation (4.71).

4.C Joint PDFs

Let us present here the PDF of the field and its (up to 3rd) derivative which will allow us to
compute the expectations involved in the main text.

4.C.1 One-point PDFs

Since the odd and even variables of Gaussian random fields do not correlate, let us write the joint
PDF as PG = P0(x, xkl)P1(xi, xijk). The expression for P0(x, xkl) for the Gaussian field was
first given by Bardeen et al., 1986. Introducing the variables

u ≡ −∆x = −(x11 + x22 + x33) , (4.73)

w ≡ 1

2
(x11 − x33) , (4.74)

v ≡ 1

2
(2x22 − x11 − x33) , (4.75)

in place of diagonal elements of the Hessian (x11, x22, x33) one finds that u, v, w, x12, x13, x23
are uncorrelated. Importantly, the field, x is only correlated with u and

〈xu〉 = γ, 〈xv〉 = 0, 〈xw〉 = 0, 〈xxkl〉 = 0, k 6= l,
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Figure 4.B.2: PP correlation function in the 2D case using the estimator of equa-
tion (4.71) (blue line) vs the Landy-Szalay estimator (light orange line). The difference
(green line) has been shifted by 2.5 for visualisation purposes. The LS estimator yields a
correlation function that is more noisy at small separations.

where γ is the same quantity as in equation (2.96). The full expression of P0(x, xkl) is then

P0(x, xkl) =
51/2152

(2π)7/2(1− γ2)1/2
exp

(

−1

2
[Q0 +Q2]

)

,

with the quadratic forms Q0 and Q2 given by

Q0 = x2 +
(u− γx)2

(1− γ2)
, (4.76)

Q2 = 5v2 + 15(w2 + x212 + x213 + x223),

=
15

2
xabxab , (4.77)

where the last identity is demonstrated in Pogosyan et al., 2009 and involves the detraced tensors:

tij = tij −
1

3
taaδij , (4.78)

tijk = tijk −
3

5
taa(jδkl) , (4.79)

with an implicit summation over repeated indices and symmetrization between parenthesised
indices (for instance: taa(jδkl) = [taajδkl+taakδlj+taalδjk]/3 and so on). Equation (4.76) depends
only on a single correlation parameter: γ. A similar procedure can be performed for the joint
probability of the first and third derivatives of the fields, P1(xi, xijk) by defining the following
nine parameters (see also Hanami, 2001)

ui ≡ ∇iu, vi ≡
1

2
ǫijk∇i (∇j∇j −∇k∇k)x , with j < k ,

wi ≡
√

5

12
∇i

(

∇i∇i −
3

5
∆

)

x , (4.80)

and replacing the variables (xi11, xi22, xi33)with (ui, vi, wj). In that case, the only cross-correlations
in the vector (x1, x2, x3, u1, v1, w1, u2, v2, w2, u3, v3, w3, x123) which do not vanish are between
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the same components of the gradient and the gradient of the Laplacian of the field:

〈xiui〉 = γ̃/3, i = 1, 2, 3, (4.81)

where γ̃ was defined in equation (2.96). This allows us to write:

P1(xi, xijk)=
1057/233 exp

(
−1

2 (Q1 +Q3)
)

(2π)13/2(1− γ̃2)3/2
, (4.82)

with the quadratic forms:

Q1 = 3
∑

i

(
(ui − γ̃xi)

2

(1− γ̃2)
+ x2i

)

, (4.83)

Q3 = 105

(

x2123 +
3∑

i=1

(v2i + w2
i )

)

,

=
35

2
xijkxijk . (4.84)

4.C.2 Two-point PDFs

Calling x = (x, xi, xij , xijk) and y = (y, yi, yij , yijk), the Joint PDF reads

P2(x,y) =
exp

[

−1
2

(
x

y

)T

·C−1 ·
(
x

y

)]

det|C|1/2 (2π)15
, (4.85)

where C is the covariance matrix which depends on the separation vectors only because of
homogeneity

C =

(
Cxx Cxy

C
T
xy Cyy

)

. (4.86)

Note that xT ·C−1
x · x is given by Q0(x) +Q2(x) +Q1(x) +Q3(x), where the Qi are given by

equations (4.76) and (4.84). The cross terms will involve correlations of all components of x and y

Cxy = 〈x · yT〉 . (4.87)

The correlation length of the various components of Cxy differ, as higher derivatives decorrelate
faster, see figure 4.C.1. Note that the separations are measured in units of R, whereas the Qi are
independent of R.
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5.1 Introduction

Astrophysical numerical codes usually solve the equation of hydrodynamics in two different
approaches, following either the Lagrangian or Eulerian description of the gas. In the former
approach known as SPH, the basic elements are macro-particles that represent a given mass of
gas (Springel et al., 2001; Wadsley et al., 2004; Price et al., 2017). This approach very conveniently
provides the Lagrangian history of the gas, as each particle carries a fixed amount of mass along
with their thermodynamical quantities (temperature, density, velocity, metallicity). Another
possible approach known as AMR is based on a Eulerian point of view. In these methods, the
basic elements are finite volumes of gas (Teyssier, 2002; Bryan et al., 2014), spatially laid on
a grid. One of the strength of AMR methods is their ability to control the spatial resolution
in regions of interest by adapting the resolution. The most common approach is the so-called
“pseudo-Lagrangian” refinement scheme, where regions containing a lot of mass are refined,
effectively ending up with each volume containing a similar mass (see section 2.2.3). One can
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however trigger refinement on arbitrary criterion, such as the gas vorticity, the local Jeans length
or above a certain pressure gradient, so that the geometry of the flow can be captured by adapting
the geometry of the grid. As AMR methods are built around Riemann solvers, they are also very
good at capturing shocks in numerical simulations. They can therefore provide a very good
solution to the problem of cosmic accretion, which requires to accurately resolve shocks around
the virial radius. However, due to their Eulerian nature, AMR codes are unable to capture the
Lagrangian evolution of the gas and do not provide the past thermodynamical history of a parcel
of gas.

This caveat is particularly problematic when studying cosmic accretion, and in particular cold
flows as their peculiar evolution is usually captured by their maximum temperature, as the gas
that composes them never heated up above a given threshold (see section 6.2.3) This effectively
selects the gas that crossed the virial radius without shocking, so that the definition of cold flows
requires the knowledge of the past Lagrangian history of the gas. To overcome this issue, AMR
codes have been equipped with “tracer” particles. Tracer particles are passively displaced with
the gas flow and hence track its Lagrangian evolution. On their trajectory, they usually record
instantaneous quantities, in particular the temperature of the gas and its density, but also the
torques resulting from the gravitational interaction of the gas with the halo and the disk and from
the pressure of the surrounding hot medium.

This chapter presents a technical description of the tools I developed in order to make Ramses
suited to the study of cold flows, although the methods presented hereafter can also be applied
to a variety of other problems. Section 5.2 presents a new tracer particle scheme developed
for the code Ramses. I compare the implementation to previous ones and show that it largely
improves the results. In particular, the new tracer particles are able to accurately reproduce the
Eulerian distribution of the gas (so that they are trustable) and also provide the entire Lagrangian
evolution of the baryons (so that they provide a comprehensive history of the baryons’ evolution).
Section 5.3 presents the methods developed to compute the different torques acting on a parcel of
fluid in post-processing. As will be shown in the next chapter, these methods can then be used to
provide a detailed description of the evolution of the angular momentum of the cold flows.

5.2 “Accurate tracer particles of baryon dynamics in the adaptive mesh refinement
code Ramses”

One of the requirements of tracer particles is that they should accurately reproduce the Eule-
rian distribution of the gas. In the naive approach, tracer particles are advected by the gas by
interpolating the velocity. This is usually done with a cloud-in-cell interpolation (first order
interpolation), where the value of the velocity is interpolated from the 8 closest cells. Such a
velocity-based approach was implemented in Ramses (Dubois et al., 2012) and used to probe the
link between cosmic gas infall and galactic gas feeding. This approach yields smooth Lagrangian
trajectories, yet it falls short of reproducing the gas density distribution accurately in regions
of converging flows, as I showed in Cadiou et al., 2019 (paper below). In addition, there is no
natural way of taking into account transfers of baryons between the gas, stars and SMBHs which
are particularly relevant in the context of galaxy formation in the inner regions surrounding the
galaxy.

Using a different approach, Genel et al., 2013 suggested to instead sample mass fluxes via a
Monte-Carlo method. In this approach, the mass flux between cells, which is readily computed by
the Riemann solver of the code, is approximated by moving particles across cells interface: each
particle jumps from cell i to cell j with probability

pij =
∆Mij

Mi
, (5.1)
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where ∆Mij is the transferred mass (as computed by the Riemann solver) and Mi is the mass
of the cell originally containing the particle. Since tracer particles reproduce mass fluxes, their
evolution is fully consistent with that of the gas, up to a sampling noise.

Instead of providing smooth trajectories, Monte Carlo tracer particles provide a statistical
sample whose mean accurately tracks the properties of baryons in the simulation and whose
spatial distribution matches the Eulerian gas density. They are therefore perfectly suited to the
problem of cold filamentary accretion. In the paper provided hereafter, I present the details of
the implementation for gas-to-gas transfers. I then present how one can extend equation (5.1)
to take into account any baryon transfers, providing a clear improvement over previous tracer
particle implementations. I then show that my implementation is able to accurately reproduce the
Eulerian distribution of the gas, while providing at the same time the full Lagrangian evolution
of baryons in their journey in the gas, stars and SMBHs. As a proof of concept, the method is
then applied to the problem of cold flows to recover the bimodal accretion mode observed in SPH
simulations (e.g. Kereš et al., 2005).

The paper, published in A&A in Cadiou et al., 2019, is provided hereafter.
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ABSTRACT

We present a new implementation of the tracer particles algorithm based on a Monte Carlo approach for the Eulerian adaptive mesh
refinement code Ramses. The purpose of tracer particles is to keep track of where fluid elements originate in Eulerian mesh codes, so
as to follow their Lagrangian trajectories and re-processing history. We provide a comparison to the more commonly used velocity-
based tracer particles, and show that the Monte Carlo approach reproduces the gas distribution much more accurately. We present a
detailed statistical analysis of the properties of the distribution of tracer particles in the gas and report that it follows a Poisson law. We
extend these Monte Carlo gas tracer particles to tracer particles for the stars and black holes, so that they can exchange mass back and
forth between themselves. With such a scheme, we can follow the full cycle of baryons, that is, from gas-forming stars to the release
of mass back to the surrounding gas multiple times, or accretion of gas onto black holes. The overall impact on computation time is
∼3% per tracer per initial cell. As a proof of concept, we study an astrophysical science case – the dual accretion modes of galaxies
at high redshifts –, which highlights how the scheme yields information hitherto unavailable. These tracer particles will allow us to
study complex astrophysical systems where both efficiency of shock-capturing Godunov schemes and a Lagrangian follow-up of the
fluid are required simultaneously.

Key words. hydrodynamics – methods: numerical – cosmology: theory – Galaxy: formation

1. Introduction

Many astrophysical problems of interest require us to solve
equations of hydrodynamics on very different timescales and
physical scales. Two main methods have been developed to solve
these equations. On the one hand, one can study the motion
of the gas by following the evolution of interacting particles.
This Lagrangian approach is the one used by smooth particle
hydrodynamics (SPH, e.g. Springel 2005; Wadsley et al. 2004;
Price et al. 2018) codes. These codes sample the gas distribu-
tion using a set of fixed-mass macro-particles smoothed with a
given kernel, and move particles accordingly. By construction,
this approach provides the Lagrangian evolution of the gas. This
property is also one of its shortcomings: low-density regions are
populated by large particles and hence lack resolution. On the
other hand, gas hydrodynamics can also be described on a grid,
where gas distribution is sampled on finite volumes, and solved
with efficient shock-capturing Godunov solvers. Adaptive mesh
refinement (AMR, e.g. Kravtsov et al. 1997; Teyssier 2002;
Springel 2010; Bryan et al. 2014) codes follow this approach and
allow for a dynamical refinement of the mesh. Though quasi-
Lagrangian refinement is most commonly adopted in situations
addressing galaxy formation problems, super-Lagrangian reso-
lutions can also be achieved by refining the grid based on gas
quantities such as the Jeans length to follow gravitationaly unsta-
ble star-forming regions (Agertz et al. 2009), the vorticity to fol-
low the seeding of turbulence (e.g. Iapichino & Niemeyer 2008),
the relative variation of any hydro quantity (such as e.g. the
ionised fraction of hydrogen; Rosdahl & Blaizot 2012), or using

a passive scalar to keep track of a particular gas phase (such as
for jets, see, e.g. Bourne & Sijacki 2017), among others. While
super-Lagrangian refinement provides a very flexible method to
trigger refinement, it falls short of providing the Lagrangian his-
tory of the gas.

To overcome this issue, AMR codes have been equipped
with “tracer” particles. Tracer particles are passively displaced
with the gas flow, and hence track its Lagrangian evolution.
Each tracer can also be used to record instantaneous quantities,
such as the thermodynamical properties of the gas or any other
property. Many astrophysical problems can can benefit greatly
from this Lagrangian information. For example, when studying
galaxy formation, the past Lagrangian history of the gas is cru-
cial to understand how gas has been accreted and how it has
been ejected in large-scale galactic outflows. Tracer particles can
be used to study the density and temperature evolution of the
gas (e.g. Nelson et al. 2013; Tillson et al. 2015) that will even-
tually form stars. For example, one could use tracer particles to
study the temperature evolution of the gas as it falls onto galax-
ies, to study the number of dynamical times before it becomes
star forming or to quantity the number of time gas is recycled in
stars or sent in galactic fountains. Another problem that requires
the use of tracer particles is the study of mixing. Particularly
in turbulent environments, such as the interstellar or the inter-
galactic medium, the Lagrangian information provides informa-
tion about, for example, mixing timescale (e.g. Federrath et al.
2008), the origin of turbulence (e.g. Vazza et al. 2011, 2012), or
how it contributes to core buildup Mitchell et al. (2009). In addi-
tion to this, the past Lagrangian evolution of a parcel of fluid
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can also impact the modelling itself (e.g. Federrath et al. 2008;
Silvia et al. 2010).

In this paper we present a new implementation of tracer par-
ticles in the AMR Ramses code (Teyssier 2002). This imple-
mentation is based on the one developed by Genel et al. (2013)
for the moving mesh arepo code (Springel 2010). It has been
extended to track the full Lagrangian history of baryons in
any phase, including their conversion from gas to stars, from
stars back into the gas via supernova feedback, their interac-
tion with feedback from black holes, and their accretion onto
them. This Monte Carlo (MC) tracer particle implementation
improves the previous implementation, velocity-advected trac-
ers. With the velocity-based approach, tracer particles are moved
based on the interpolated local values of the gas velocity field.
While this yields qualitative results, it suffers from systematic
effects: tracer particles over-condensate in regions of converg-
ing flows (Genel et al. 2013). Monte Carlo tracer particles fol-
low a different idea. They are moved so that the tracer particle
mass flux at each cell interface is statistically equal to that of the
gas. Thanks to this property, the Eulerian distribution of tracers
converge to that of the gas when the number of tracer particles
goes to infinity. In addition to matching the gas distribution, the
implementation of tracer particles here is also able to match the
distribution of baryons in stars and in black holes.

The paper is structured as follows. Section 2 details the
implemented algorithm. Section 3 presents tests and validations
of the new implementation. In particular, Sect. 3.1 presents the
results from idealised tests and Sect. 3.2 presents an analysis of
the properties of tracers in a real astrophysical simulation. Using
the same simulation, Sect. 3.3 illustrates the efficiency of the
scheme applied to a specific science case – the bimodal accretion
of gas onto galaxies at high redshift. Section 4 assesses the per-
formance of the scheme. Section 5 provides a discussion of our
results and our conclusions. Appendix A provides more details
about the algorithm.

2. Implementation

The Ramses code (Teyssier 2002) solves the full set of Euler
equations by formulating the equations in terms of finite-volume,
that is, by calculating fluxes at the interfaces of cells of the adap-
tive mesh. This is done by using a MUSCL-Hancock method
with a second-order Godunov solver calculating the fluxes from
linearly interpolated values at cell faces from the cell-centred
values limited by a total-variation-diminishing scheme. Such a
Eulerian-based method has proven efficient at capturing shock
discontinuities and achieves efficient mixing of shear layers of
gas; however, its main drawback is that it does not naturally pro-
vide the Lagrangian trajectories of gas elements.

To address this problem, it is possible to introduce the so-
called tracer particles of the flow that should follow the flow
lines of the gas. A naive approach to track the motion of the
gas is to use the velocity of the gas itself, assign it to tracer par-
ticles, and move them accordingly. This is done with a cloud-
in-cell interpolation of the velocity values of the overlapped
cells where the volume of the cloud is that of the host cell,
though the level of the interpolation is not particularly impor-
tant (nearest grid point or triangular shape cloud; Federrath et al.
2008). Such a velocity-based approach was implemented in
Ramses (Dubois et al. 2012a) and used to probe the link between
cosmic gas infall and galactic gas feeding, and its acquisition
of angular momentum (Pichon et al. 2011; Dubois et al. 2012a;
Tillson et al. 2015). While this approach yields smooth trajec-
tories, it falls short of reproducing the gas density distribution

accurately in regions with strong convergence of the velocity
field (Genel et al. 2013).

To address this shortcoming, we have implemented in
Ramses the MC approach of tracer particles introduced
by Genel et al. (2013) for arepo (Springel 2010). Instead of hav-
ing proper velocities and positions, MC tracers are attached to
individual cells and are allowed to “jump” from the centre of
one cell to the centre of another according to the mass fluxes
obtained through the Godunov solver.

We have generalised the MC method to track exchanges
of baryons between gas, star particles, and supermassive black
hole (SMBH) particles, and in the following we refer to them
as “buckets”. At each time step, tracers are allowed to jump
from any bucket i to any bucket j with a probability (gas→gas,
gas↔star, gas→black hole) of

pi j =



















∆Mi j

Mi

, if∆Mi j ≥ 0,

0, if∆Mi j < 0,
(1)

where ∆Mi j is the mass flowing from bucket i to bucket j
between t and t + ∆t and Mi is the mass of the depleted bucket
i at time t. This probability is also the fraction of baryons flow-
ing from one bucket to another. If the initial Eulerian distribu-
tions of tracers and baryons are equal, then in the limit where the
number of tracers becomes large, satisfying Eq. (1) is sufficient
for the Eulerian distributions to remain equal at all times. Here
is an outline of the proof. For any bucket i containing Nt trac-
ers of equal mass mt, let the total tracer mass read Mt ≡ Ntmt.
Because tracers are moved stochastically, the tracer mass flux
∆Mt,i j is a random variable. If at time t, Mt = Mi (i.e. the Eule-
rian distributions are the same), then the expected tracer flux is
E

[

∆Mt,i j

]

= Nt × pi jmt = Mi pi j = ∆Mi j. When the number
of tracers becomes large, the tracer mass flux converges to the
baryon flux, ∆Mt,i j → ∆Mi j. The buckets have the same initial
mass and are updated with the same mass fluxes, so they remain
equal at the next time step, t + ∆t. Therefore, if the initial Eule-
rian distributions are equal, by induction they remain equal at all
times (in the limit of a large number of tracers)1.

All the processes that are able to move tracers from bucket
to bucket are summarised in Fig. 1. Tracers can move from one
gas cell to another through gas dynamics, and the jet mode of
AGN feedback from SMBHs, from gas to stars via star forma-
tion, from stars to gas via supernova (SN) feedback, and from
gas to SMBHs via black hole accretion. Below, we present the
different algorithms used for each of these processes.

2.1. Gas dynamics

The algorithm moving tracer particles from one gas cell to
another is the following. For each level of refinement, all the
unrefined leaf cells are iterated over. For each leaf cell i con-
taining tracer particles, the total outgoing mass is computed as
∆M ≡ ∑2Nd

j=1 max(∆Mi j, 0), where j runs over the index of the
neighbouring cells, Nd is the number of dimensions, and ∆Mi j

is the mass transferred between cell i and cell j in one time
step and obtained from the Godunov flux of mass Fm,ij, that is,
∆Mij = Fm,ij∆t. We take

pgas =
∆M

Mi

, (2)

1 In general, any stochastic scheme for which the expected tracer flux
equals that of the baryons is able to track the Eulerian distribution at all
times.
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stellar 
feedback

AGN
feedback

star formation

SMBH accretion
SMBH

gas

stars

AGN jet

Fig. 1. Scheme of the different “buckets” that can hold tracer parti-
cles and the process that moves them around. The three buckets are gas
cells, stars, and SMBHs. Arrows indicate outgoing mass fluxes between
buckets and the physical process associated, and grey squares represent
tracer particles. The jet mode feedback from AGNs (around SMBHs) is
able to move gas tracer particles from the central cell to the surround-
ing cells. The particles have no spatial distribution within the buckets or
any phase-space distribution. Tracer particles are exchanged probabilis-
tically between buckets based on the mass fluxes. For example, for the
gas, they are exchanged based on the mass fluxes at the boundary of the
cells.

to be the probability of displacing a gas tracer particle from one
cell to any other of its neighbouring cell, and

p j = max
(

∆Mi j

∆M
, 0

)

, (3)

to be the probability of moving this tracer particle into cell j.
For each tracer particle in cell i, a random number r is drawn
from a uniform distribution between 0 and 1. If r < pgas, the
tracer is selected. For each selected tracer, another random num-
ber r′ is drawn. For each neighbouring cell j with a positive flux
(such that ∆Mi j > 0), if r′ < p j the tracer particle is moved into
cell j and the algorithm proceeds to the next particle; else, r′ is
decreased so that r′ ← r′−p j and the algorithm proceeds to the
next neighbouring cell. Because the sum of all the p j is 1, this
procedure will assign the tracer to a single cell.

When a cell of mass M0 is refined between two time steps,
all its tracers are distributed randomly to one of the eight newly
created cells, the probability for a tracer particle to be attached to
the new cell i being p = Mi/M0 (refined density can be interpo-
lated from neighbouring values or equally distributed amongst
new cells). Conversely when a cell is derefined all its tracers are
attached to the parent cell.

2.2. Star formation

This part of the algorithm involves moving tracers from the gas
phase into star particles, and moving the star-tracer particles
along with their star particles.

We first recall that the star formation process in Ramses is
usually modelled by a Schmidt law, where the star formation
rate density is non-zero and

dρ⋆
dt
= ǫ⋆

ρg

tff
, (4)

when ρg > ρ0, and where ρg is the gas density, ρ0 a gas density
threshold, tff = (3π/(32Gρg))1/2 the gas free-fall time, and ǫ⋆
the efficiency of star formation, which can be taken as an ad hoc
constant, or as a function of the local gravo-turbulent properties

of the gas (Krumholz & McKee 2005; Hennebelle & Chabrier
2011; Padoan & Nordlund 2011). A single star particle made of
N⋆ stars of mass resolution M⋆,0 is created, where N⋆ is drawn
according to random Poisson process (Rasera & Teyssier 2006):

Psf =
λN⋆

N⋆!
exp (−λ), (5)

where Psf is the probability of creating N⋆ particles from the gas
(and accordingly removing M⋆ ≡ N⋆M⋆,0 mass from the gas
cell), and

λ =
ρg∆x3

M⋆,0

∆t

ǫ−1
⋆ tff
· (6)

Finally, the transfer of gas tracer particles to star-tracer par-
ticles at time of creation t of M⋆ is given by the probability

p⋆ =
M⋆

Mi

· (7)

In more details, we loop over all the gas tracer particles con-
tained in the cell where the new star is created. For each of
them, a random number r is drawn from a uniform distribution
between 0 and 1. If r < p⋆, the gas tracer particle is turned
into a star-tracer particle at the same position as that of the star
particle (i.e. at the centre of the cell). The star-tracer particle is
“attached” to the star particle by moving along with the star par-
ticle, which is done through a classic leap-frog integration of its
motion. Therefore, at all time steps, the position of the tracer is
updated to match the position of its star. The index of the star is
also recorded on the tracer for convenience.

The implementation also comes with two alternatives to ini-
tialise the tracer particles. One can feed in a list of positions to
the code; one tracer will be created at each location. Alterna-
tively, we developed an initialisation scheme that takes as input
the mass that each tracer particle represents, mt. The scheme is
called “in-place initialisation” as it is performed directly within
the code: the scheme is called once at startup, after the AMR
grid has been built. It loops over all cells, and for each of them
computes the number of tracer particles to create. The expected
number of tracers created in a cell of mass Mcell is N = mt/Mcell.
Let us write N0 = ⌊N⌋. The scheme creates N0 ≡ ⌊N⌋ particles
in the cell and then creates an additional one with probability
N−N0. In the end, the expected number of tracer particles cre-
ated in the cell is N, meaning that on average each cell is popu-
lated with the correct number of tracer particles. In the following,
unless stated otherwise, the tracer particle distribution is always
initialised using the in-place method.

2.3. Supernova feedback

Let us describe the transfer of mass of a star particle to the gas
according to type II SN explosions (referred to henceforth as
SNII) and their associated tracer particles. This can be trivially
extended to the more complete description of the evolution of
stellar mass loss.

When a star particle sampling an initial mass function (IMF)
of mass M⋆ explodes into type II SNe, it releases a mass ηSNM⋆,
where ηSN can be crudely approximated by the mass fraction of
the IMF going SNII. The probability of releasing a star-tracer
particle into the gas is pSN = ηSN. For each star particle turning
into SNe, we loop over all the star-tracer particles attached to it.
For each of these, a random number r is drawn from a uniform
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Fig. 2. Scheme of the 48 neighbouring virtual cells (only the 24 rear
ones are shown) where mass and momentum are deposed during a SN
event. The cell containing the SN has a size of ∆x and is outlined in red.

distribution between 0 and 1. If r < pSN, the star-tracer parti-
cle is released in the gas and turned into a gas tracer particle.
Otherwise, the tracer is left attached to the stellar remnant.

The transfer of star-tracer particles to the gas by SNII is
described here for the so-called mechanical feedback model of
(Kimm & Cen 2014; see also Kimm et al. 2015)2. In this model,
the gas is released into the neighbouring cells. The mechani-
cal feedback scheme is designed to overcome the consequences
of radiative losses in SN bubbles due to the lack of resolution.
Where the cooling time of the SN-heated gas is shorter than the
hydrodynamical time step, the energy-conserving phase (with
Sedov-Taylor solution), during which the momentum is growing
by the pressure work of the bubble, cannot be captured properly,
and leads to spurious energy and momentum loss. To circum-
vent this problem, Kimm & Cen (2014) introduced a model that
correctly accounts for the momentum injection according to the
Sedov-Taylor or snow-plough solution (Thornton et al. 1998),
which depends on the cooling rate of the gas, or more precisely
on the energy release, local gas density, and metallicity. The cell
containing the exploding star particle is virtually represented by
8 cells refined by an additional level, which are equivalently
surrounded by 48 such virtual neighbouring cells, as illustrated
in Fig. 2 (Kimm & Cen 2014). The mass ejecta together with
the mass of the swept-up gas of the central true cell is released
evenly in all the virtual cells, and is attributed back accordingly
to the true existing cells.

The tracer particles are interfaced with this feedback model
as follows: For each released star to gas tracer particle, a random
integer number l ∈ [1, 48] is drawn uniformly. The star tracer is
then moved to the centre of the lth virtual cell and attributed to
the corresponding true existing cell as a new gas tracer particle.

2.4. SMBH formation and gas accretion

Supermassive black holes are modelled as sink particles that
can form out of the dense star-forming gas, grow by accretion
of gas, and coalesce following the implementation described
in Dubois et al. (2012b).

2 We have extended this implementation to i) simple thermal pulses of
energy (with or without delayed cooling; Teyssier et al. 2013), where
the mass is released to the central cell only, and ii) to the so-called
kinetic model of (Dubois & Teyssier 2008; in its more recent form
described in Rosdahl et al. 2017) where “debris” particles are replaced
by a bubble injection region of energy, momentum, and mass according
to the Sedov-Taylor solution.

A SMBH forms according to several user-defined criteria,
typically above a given gas density threshold ρ0 and outside an
exclusion distance radius rex within which SMBH is artificially
prevented if any other SMBH already exists (in order to prevent
creation of multiple SMBHs within the same galaxy). When a
SMBH forms with an initial seed mass MSMBH,0, gas tracer par-
ticles in the cell of mass Mi containing the SMBH are attached
to the SMBH and become SMBH tracer particles according to a
probability

pSMBH =
MSMBH,0

Mi

· (8)

SMBHs can continuously accrete gas according to the
Bondi–Hoyle–Littleton accretion rate, capped at Eddington with

ṀSMBH = (1 − εr) Ṁacc = (1 − εr) min(ṀB, ṀEdd), (9)

ṀB =
4πρG2M2

SMBH

(c2
s + u2)3/2

(

ρ

ρboost

)α

, (10)

ṀEdd =
4πGmpMSMBH

σTεrc
, (11)

where Ṁacc, ṀSMBH, ṀB, and ṀEdd are the disc, SMBH, Bondi–
Hoyle–Littleton, and Eddington accretion rates, respectively, mp
is the mass of a proton, G the gravitational constant, σT the
Thomson cross-section, εr the radiative efficiency, cs the speed
sound, u the mean velocity of the gas with respect to the SMBH,
and c the speed of light. ρboost and α are free parameters set,
here, to ρboost = 8mp cm−3 and α = 2 introduced to boost
the accretion rate due to unresolved small-scale larger densi-
ties (Booth & Schaye 2009). The value of εr is either chosen as
a constant value equal to 0.1, or, here, as a varying function of
the spin of SMBH, whose evolution is governed by gas accre-
tion and BH coalescence (see Dubois et al. 2014a,b, and Dubois
et al., in prep., for details).

The mass taken from the gas cell in one time step is ∆Macc ≡
∆t min(ṀBH, ṀEdd). We note that ∆Macc > ṀSMBH∆t as part of
the accreted mass is radiated away due to relativistic effect (and
lost to the simulation). Each gas tracer in the cell containing the
SMBH at a given time is accreted into the black hole with a
probability of

pacc =
∆Macc

Mi

. (12)

Tracer particles also model SMBH merger events. All the tracer
particles attached to the two parent SMBHs are moved to the
newly formed SMBH. There is no mechanism to extract tracers
from the SMBH (reflecting the fact that there is no way to extract
matter from a BH). One should also note that the total mass of
SMBH tracers is larger than the total mass of SMBHs, as part of
the energy-mass has been radiated away during accretion (and
tracers have a fixed mass).

2.5. AGN feedback

In Dubois et al. (2012b), there are two modes of AGN feed-
back: a quasar/heating mode and a radio/jet mode. The mode is
selected based on the ratio of the Bondi–Hoyle–Littleton accre-
tion rate to the Eddington accretion rate χ = ṀB/ṀEdd. If
χ < 0.01, the AGN is in jet mode, and, otherwise, it is in quasar
mode (Merloni & Heinz 2008).

In quasar mode, all the energy of the AGN proportional to
EAGN,Q = εf,QεrṀaccc2∆t (the value εf,Q = 0.15 is calibrated to
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Fig. 3. Schematic representation of the jet model. Gas is transported
from the central cell (hatched region) containing the SMBH (black dot)
into the jet (blue shaded region). The radial profile of the jet is a Gaus-
sian of scale rAGN. The shape of the jet is a “capsule” (a cylinder capped
with two half spheres).

match the BH-to-galaxy mass relation; Dubois et al. 2012b) is
released as thermal energy in all cells within a sphere of size
RAGN and the mass of the gas is left untouched. This feedback
mode has only an indirect effect on the gas mass distribution (and
hence on tracer particles), turning some fraction of the released
thermal energy into kinetic energy and launching a quasar-like
wind.

In radio mode, a jet is launched from the AGN. The jet moves
mass from the central cell only and spreads it into the jet and
injects linear momentum, and energy. The released energy (and
hence, momentum within the jet), as for the quasar mode, is pro-
portional to the rest-mass accreted energy with an efficiency of
εf,R , which is either taken as a constant value of 1 (to match the
SMBH-to-galaxy mass relation; Dubois et al. 2012b) or a vary-
ing function of the spin of the SMBH following the results of
magnetically arrested discs (MADs) from McKinney et al. 2012;
see Dubois et al., in prep. for details). The jet is modelled by a
“capsule” (a cylinder with spherical caps) of size rAGN, as illus-
trated in Fig. 3. The radius of the jet rAGN is usually set to a
few times the cell resolution. The mass sent through the jet is
proportional to the accreted mass onto the SMBH

Ṁjet = fLoadṀSMBH, (13)

where fLoad is a mass-loading factor, usually 100. The mass
transported by the jet is distributed to all the cells intersecting
with the capsule. Each cell i receives a relative fraction ψi of the
mass (and of the injected linear momentum)

ψi =
ρi

∫

I e−r2/2r2
AGN d3V

∑

j ρ j

∫

J e−r2/2r2
AGN d3V

, (14)

where I (resp. J) is the volume of the intersection between the
AGN capsule and the cell i (resp. j) and ρi is the cell mean den-
sity. The radius r in Eq. (14) is the polar radius in the cylindrical
frame centred on the AGN and aligned with its direction (it is
the distance to the jet centre). This integral is computed approx-
imately, using a numerical integration scheme.

The tracer particles are interfaced with the jet model as fol-
lows. Each gas tracer particle in the cell i containing the SMBH
is moved into the jet volume with a probability of

pjet =
Ṁjet∆t

Mi

· (15)

For each of these particles a random number r is drawn from a
uniform distribution between 0 and 1. If r < pjet, the tracer is
selected and moved into the jet. The new position of the tracer
(x, y, z) is drawn randomly, z being the coordinate in the direction
of the jet; x and y are drawn from a normal distribution of vari-
ance rAGN and z is drawn uniformly between −2rAGN and 2rAGN.
The algorithm uses a draw-and-reject method until one position
inside the capsule is found. We note that the gas tracer distribu-
tion (as given by Eq. (15)) is consistent with the distribution of
the gas sent through the jet (as given by Eq. (14))3.

More details about the algorithm are given in Appendix A.

3. Validations and tests

Let us now present various validation tests of the algorithm.
Section 3.1 presents the results of idealised tests for gas-only
tracer particles. Section 3.2 presents the results obtained from a
cosmological zoom-in simulation of a galaxy with its SMBH at
z = 2 and provides the details of the observed distribution of
tracer particles. Unless stated otherwise, the gas hydrodynam-
ics is solved with an adiabatic index of γ = 5/3 and the HLLC
approximate Riemann solver (Toro 2009), applying the MinMod
slope limiter on the linearly reconstructed states.

3.1. Idealised tests

In this section, we introduce different idealised tests to con-
firm that the evolution of the gas is correctly tracked by
gas tracers. Section 3.1.1 presents a simple two-dimensional
(2D) advection of an overdensity to quantify diffusion effects.
Sections 3.1.2 and 3.1.3 present a Sedov–Taylor explosion and
a Kelvin–Helmoltz instability and confirm that the gas tracers
are able to accurately follow the motion of the gas for a strong
shock case and a mixing layer of gas, respectively. Section 3.1.4
presents an idealised halo with an AGN at its centre to confirm
that the gas tracers correctly track the evolution of the gas in
AGN jets.

3.1.1. Uniform advection

In order to quantify the level of diffusion of MC tracers, we run
a simulation similar to that run for Fig. 6 of Genel et al. (2013).
The simulation is a region of 1 cm in size with a constant den-
sity of 1 g cm−3 and a velocity of 0.01 cm s−1. An overdensity
of 14 g cm−3 is set at 0 < x < 0.05 cm. The sound speed is
cs = 1.3 cm s−1 in the under-dense region and 0.35 cm s−1 in the
over-dense region. The simulation is performed on a uniform 2D
1282 grid including 250 000 tracer particles, initially distributed
in the same way as the gas. Due to the intrinsic numerical diffu-
sion (advection error) of the hydrodynamical solver, the spatial
extent of the overdensity increases as a function of time as it is
advected away. This is illustrated in the central panel of Fig. 4.
We note that the density profiles have each been shifted along
their x coordinate for visualisation purposes and do not reflect
their real absolute position (in fact the rightmost peak travelled
5 cm in 100 s). The top panel of Fig. 4 shows that, when rescaled
by the expected noise level σ ≡ 1/

√
Mcell/mt = 1/

√
N (N is

the expected number of tracer particles in the cell), the relative
error between the gas tracers and the gas distributions shows

3 In practice, the numerical evaluation of the integrals of Eq. (14) may
lead to small yet undetected discrepancies between the gas tracer and
the gas distributions.
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Fig. 4. Top panel (bottom):: gas density profile (solid line) and gas den-
sity profile (plus symbols) at different times (reported in the legend).
The profiles have been recentred and shifted horizontally by −0.12 cm,
0, 0.12 cm, and 0.24 cm for t = 0, 1, 9, and 100 s, respectively. Top panel
(top):: relative difference between the gas and gas tracer density profiles
in units of the expected noise level σ = 1/

√
Mcell/mt. Bottom panel:

evolution of the spatial extent of an advected overdensity as a function
of time for the gas (dashed) and the gas tracer particles (dot symbols)
for a high-resolution run (blue) and a low-resolution run (orange, see
text for details). The difference shows no spatial dependence. The gas
tracers diffuse exactly as the gas.

no spatial modulation. Their distributions are the same with an
extra factor that is entirely due to sampling noise, which in turn
depends only on the local cell mass and the (constant) tracer
mass.

In more quantitative terms, let us compare the time evolu-
tion of the spatial extent of the gas tracer overdensity to that
of the gas. We rerun the simulation on a 322 grid (low resolu-
tion) in addition to the previous run (high resolution). We com-
pute the spatial extent by fitting a Gaussian function ρ(x) =
ρ0 + H exp(−(x − x0)2/(2σ2

ρ)) to the gas and gas tracer profiles,
with free parameters ρ0 the base density, H the amplitude of the
overdensity, x0 the position of the overdensity, and σρ its spa-
tial extent. The results are shown in the bottom panel of Fig. 4.
As expected due to the numerical diffusion, the spatial extent of
the overdensity increases as a function of time and the diffusion
becomes larger when the resolution is decreased. In both cases,
the Eulerian distribution of tracer particles is diffused exactly as
much as the gas4.

4 This result complements that of Genel et al. (2013). Indeed we study
here the diffusion of the Eulerian distribution of the tracer particles,
while the original paper presents the Lagrangian diffusion of the tracer
particles.
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Fig. 5. Bottom panel: radial profile at different times of a Sedov explo-
sion (from blue to yellow) for the gas (solid lines) and the gas tracer
(dots). The error bars are 2σ errors. Top panel: relative difference
between the gas profile and the gas tracer profile. Data have been shifted
by −0.25, −0.125, 0, 0.125 and 0.25 radius units respectively (from blue
to yellow) so that one may easily distinguish the different data points.
Details of the simulation are discussed in the text. The gas tracer parti-
cles are accurately advected with the gas.

3.1.2. Sedov-Taylor explosion

We ran a classical Sedov-Taylor explosion in three dimensions
and compare the gas density radial profile to the density profile
of gas tracer particle. The simulation was performed on a coarse
grid of 1283, refined on the relative variation of the density and
of the pressure: a new level is triggered when the local relative
variation of one of these quantities is larger than 1% with up to
two levels of refinement. The simulation was initialised with a
uniform density and pressure of 1 g cm−3 and 10−5 dyne cm−2,
respectively, and an over-pressure in the central cell of the box
of 6.7 × 106 dyne cm−2. 2 900 000 tracers, statistically uniformly
distributed initially in the box, hence, with around ∼1.4 tracer
per initial cell.

The evolution of the spherically averaged radial density pro-
file of the gas and of the tracers is shown in Fig. 5. The tracer
density has been computed by deposing the gas tracer mass in
the nearest cell. The axes have been normalised so that the radius
of the blast is one at the latest output. The error bars have been
estimated assuming that the number of tracers per radial bin is
given by a Poisson distribution. This assumption is discussed in
more detail in Sect. 3.2.2.

At all stages of the blast, the tracer particles radial profile
matches that of the gas at percent levels. This is more easily seen
in the top panel of Fig. 5 where the relative difference between
the gas tracer density and the gas density is plotted. The errors
are all within a few percent and consistent with random fluctua-
tions. As the explosion expands, the swept-up mass of gas in the
shocked region increases. This is well tracked by the tracer dis-
tribution. Because the mass increases, the total number of tracer
particles in the shock increases proportionally, causing the sam-
ple noise to decrease. In this particular test, the tracer distribu-
tion accurately reproduces that of the gas in the pre- (which is
trivially that of the initial distribution) and post-shocked regions
(shocked shell plus hot bubble interior). The noise level is a func-
tion of the number of tracer particles; its expected value is pro-
portional to the total gas mass only.
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Fig. 6. Projection of the density (top panel) and of the gas tracer den-
sity (bottom panel) around a developing Kelvin–Helmoltz instability.
To reduce the noise of the gas tracer projection, we have superposed the
four projections of the forming rollers (each of size 0.25 cm). The gas
tracer distribution resembles that of the gas with extra noise due to their
stochastic nature.

The Sedov explosion is a reliable way of testing the ability of
hydrodynamical codes to deal with shocks: more specifically it
tests the ability of the code to capture the shock dynamics prop-
erly and also tests that the code resolves the shock interface with
a few cells in a regime where the Mach number is largely above
1. Here, the gas tracer distribution has been shown to match that
of the gas to a high degree of confidence, confirming that the
gas tracers are correctly transported with the flow and are able to
resolve shocks.

3.1.3. Kelvin–Helmholtz instability

We ran a classical Kelvin–Helmoltz (KH) instability in three
dimensions to compare the gas density to the gas tracer density
projected maps. The gas has an adiabatic index γ = 7/55. The
simulation is performed on a 1283 grid with a physical size of
1 cm and a maximum level of refinement of 210. Cells are refined
based on the relative variation of the density: a new level is trig-
gered when the local relative variation of the density is larger
than 1%. Only hydrodynamics is included. The instability is ini-
tialised with two regions of left and right density of 2 g cm−3

and 1 g cm−3, and of tangential velocity uy,L = −1 cm s−1 (resp.
uy,R = 1 cm s−1). The instability was initially triggered by adding
a small damped sinusoidal perturbation of the perpendicular
velocity field ux = u0 cos (k(x − λ/2)) exp(−k|x − x0|), where
λ = 0.25 cm, k = 2π/λ, x0 = 0.5 cm and v0 = 0.1 cm s−1. Here
2 900 000 gas tracers were initially distributed in the box, so that
their Eulerian distribution matched that of the gas.

Figure 6 shows a projection of the gas density and of the
tracer density at time t = 0.3 s, when the Kelvin–Helmoltz was
already settled. The gas tracer distribution reproduces well the
vortices found in the gas distribution, with extra noise due to the
reduced number of tracer particles.

The largest k wave numbers of the perturbation are the first to
grow following a KH growth timescale of τKH = 2πR1/2/(|∆u|k),
with ±R = ρR/ρL, and ∆u = uy,R−uy,L. Therefore, as time pro-
ceeds, larger rollers develop in the shear interface between the
two phases of gas, and hence, the mixing layer spreads further.
We computed the evolution of the cross-section profile of the
density at different times. The results are presented in Fig. 7. The
phase-mixing region grows as a function of time and the growth

5 This value is consistent with the adiabatic index of air at 20◦.
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Fig. 7. Evolution of the cross-section of the gas density (solid lines)
and the gas tracer density (symbols and shaded regions) for the Kelvin–
Helmoltz instability at different times (from blue to red from the start
to the end of the simulation at t = 0.3 s). The profiles have been shifted
vertically (each by 0.6 g cm−3) so that one may easily distinguish them
from one another. The shaded regions are ±5σ, where σ has been esti-
mated using a Poisson sampling noise. The gas tracers are accurately
following the diffusion of the gas.

is correctly captured by the tracer particles that are able to track it
within their intrinsic noise level. Therefore, the gas tracer parti-
cles are able to correctly capture the KH shear instability leading
to mixing of two gas phases. Interestingly, the present algorithm
does not lead to any relative diffusion between the gas and the
tracers, as is illustrated quantitatively in Sect. 3.1.1.

3.1.4. AGN feedback

We subsequently tested the accuracy of the mass transfer for the
jet mode of AGN feedback, which transfers part of the gas of the
central cell to the surrounding cells within a “capsule” region
(see Sect. 2.5 for details). We ran an idealised simulation of a
halo with an AGN at its centre. The simulation is performed on
a coarse grid of 1283, refined according to a quasi-Lagrangian
refinement criterion: a cell is refined/derefined wherever the
mass resolution is above/below 1.4 × 107 M⊙ up to a maximum
level of refinement of 12. The box size is 1.2 Mpc, hence with
a minimum cell size of 300 pc. The max level of refinement is
also enforced in all the cells closer than 4∆x from the SMBH,
where ∆x is the minimum cell size. The gas distribution fol-
lows a NFW (Navarro et al. 1997) gas density profile, while the
dark matter part follows a similar NFW profile modelled with
a static gravitational profile (no back reaction of gas onto dark
matter). The NFW profile has parameters V200 = 200 km s−1 (at
200 times the critical density of a H0 = 70 km s−1 Mpc−1 Uni-
verse), a concentration of c = 6.8, and is 10% gas. The gas is ini-
tially put at rest and at hydrostatic equilibrium. A SMBH of mass
MSMBH,0 = 3.5 × 1010 M⊙

6 is set at the centre of the box and 106

tracers are set in the cell containing the black hole. We force the
AGN to be in jet mode with a fixed direction in space and boost
its efficiency so that all the tracer particles are sent into the jet in
one time step. The radius and height of the jet is rAGN = 50 kpc.
This value is much larger than usual values which are usually
a few times the cell resolution (here typical values would be a

6 We note that the SMBH mass is taken anomalously high for a typical
halo mass of M200 ≃ 3 × 1012 M⊙. This is chosen simply to get a suffi-
cient power of the jet through the Bondi accretion rate given the NFW
distribution of gas.
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few kiloparsecs). This is chosen so that the jet reaches cells at
different levels of refinement and in other CPU domains. Within
50 kpc of the AGN, there are 1200, 24 000, 12 000, 13 000 and
8000 cells at levels 28 to 212 (∆x from 5 kpc to 0.3 kpc) so that the
tracer particles are deposited in regions of different refinement
level. This region also covers 8 of the 16 CPU domains used.
This controlled test enables us to check that the distribution of
tracers sent through the jet matches the expected distribution, in
the presence of deep refinement and parallelism.

Let us first present the theoretical probability distribution
function as a function of the distance to the jet and along the jet.
We then compare theoretical figures to those of the simulation.
The marginal probability density function (PDF) in the direction
of the jet r‖ is given by

p(r‖) =
1
A















√
e − er2

‖ /2r2
AGN , if |r‖| < rAGN,√

e − 1, if rAGN < |r‖| < 2rAGN,
(16)

where

A = 2
√

erAGN

(

2 +
√

2F
(
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√

2
)

− 1/
√

e
)

. (17)

Here F is Dawson’s integral. The marginal PDF in the radial
direction r⊥ is

p(r⊥) =
r⊥e−r2

⊥/2r2
AGN

(

1 +
√

1 − r2
⊥/r

2
AGN

)

r2
AGN

(

2 −
√

2F
(

1/
√

2
)

− 1/
√

e
) · (18)

The marginal PDF in the radial distribution is similar to a χ dis-
tribution with two degrees of freedom with an extra factor due
to the two spherical caps: more particles are found close to the
centre of the jet since the capsule is more extended close to its
centre.

Figure 8 presents the results from the comparison of the sim-
ulation to the expected distribution. The distribution in the radial
direction has been rescaled by a factor of two to span the same
range as in the parallel direction. Theoretical curves (Eqs. (16)
and (18)) are in very good agreement with the observed distri-
butions, confirming that the algorithm is distributing tracer par-
ticles correctly in jets. In addition we have also run the same
idealised simulation without forcing the AGN efficiency. We
report that the tracer mass flux is equal to the gas mass flux. This
confirms that the physical model of the jet is accurately sam-
pled by the tracer particles interacting with it, both in terms of
its mass and for its spatial distribution.

3.2. Astrophysical test

We have run a 50 cMpc/h-wide cosmological simulation down
to z = 2 zoomed on a group of mass 1 × 1013 M⊙ at z = 0, where
the size of the zoom in the Lagrangian volume of initial condi-
tions is chosen to encapsulate a volume of two times the virial
radius of the halo at z = 0. We start with a coarse grid of 1283

(level 7) and several nested grids with increasing levels of refine-
ment up to level 11. The adopted cosmology has a total matter
density of Ωm = 0.3089, a dark energy density of ΩΛ = 0.6911,
a baryonic mass density of Ωb = 0.0486, a Hubble constant of
H0 = 67.74 km s−1 Mpc−1, a variance at 8 Mpc σ8 = 0.8159,
and a non-linear power spectrum index of ns = 0.9667, compat-
ible with a Planck 2015 cosmology (Planck Collaboration XIII
2016).

The simulation includes a metal-dependant tabulated gas-
cooling function following Sutherland & Dopita (1993) allow-
ing the gas to cool down to T ∼ 104 K via Bremsstrahlung
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Fig. 8. Distribution of particles moved by a jet before any hydro-
dynamical time step has occurred. Shown is the parallel distribution
marginalised over the plane of the jet (blue) and the radial distribution
marginalised over the direction of the jet (orange) vs. the expected theo-
retical distributions from Eqs. (16) and (18) (dashed grey). The abscissa
is in units of rAGN in the parallel direction and in units of rAGN/2 in the
radial direction. The distribution of gas tracers sent into the jet perfectly
matches the expected one.

radiation (effective until T ∼ 106 K), and via collisional and
ionisation excitation followed by recombination (dominant for
104 K ≤ T ≤ 106 K). The metallicity of the gas in the sim-
ulation is initialised to Z0 = 10−3 Z⊙ to allow further cool-
ing below 104 K down to Tmin = 10 K. Reionisation occurs
at z = 8.5 using the Haardt & Madau (1996) model and gas
self-shielding above 10−2 mp cm−3. Star formation is allowed
above a gas number density of n0 = 10 H cm−3 according to the
Schmidt law and with an efficiency εff that depends on the gravo-
turbulent properties of the gas (for details, see Kimm et al. 2017;
Trebitsch et al. 2017). The main distinction of this turbulent star-
formation recipe with the traditional star formation in Ramses
(Rasera & Teyssier 2006) is that the efficiency can approach and
even exceed 100% (with εff > 1 meaning that stars are formed
faster than in a free-fall time). The stellar population is sampled
with a Kroupa (2001) initial mass function, where ηSN = 0.317
and the yield (in terms of mass fraction released into metals)
is 0.05. The stellar feedback model is the mechanical feedback
model of Kimm et al. (2015) with a boost in momentum due to
early UV pre-heating of the gas following Geen et al. (2015).
The simulation also tracks the formation of SMBHs and the evo-
lution of AGN feedback in jet mode (radio mode) and thermal
mode (quasar mode) using the model of Dubois et al. (2012b).
The jet is modelled in a self-consistent way by following the
angular momentum of the accreted material and the spin of the
black hole (Dubois et al. 2014b). The radiative efficiency and
spin-up rate of the SMBH is then computed using the MAD
results of McKinney et al. (2012).

We have a minimum roughly constant physical resolution of
35 pc (one additional maximum level of refinement at expan-
sion factor 0.1, 0.2, and 0.4), a star particle mass resolution of
m⋆,res = 1.1 × 104 M⊙, a dark matter (DM) particle mass res-
olution of mDM,res = 1.5 × 106 M⊙, and gas mass resolution of
2.2 × 105 M⊙ in the refined region. A cell is refined according to
a quasi-Lagrangian criterion: if ρDM+ρb/ fb/DM > 8mDM,res/∆x3,
where ρDM and ρb are respectively the DM and baryon den-
sity (including stars plus gas plus SMBHs), and where fb/DM
is the cosmic mean baryon-to-DM mass ratio. The max level of
refinement is also enforced in all cells closer than 4∆x from any
SMBH, where ∆x is the minimum cell size. We add tracer parti-
cles in the refined region with a fixed mass of mt = 2.0 × 104 M⊙
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Fig. 9. Top panels: density weighted projection of the gas density in a cosmological simulation (left), of the velocity tracer distribution (right), and
of the MC gas tracer distribution (centre). All the plots share the same colour map. Bottom panels: relative difference between the tracer and the
gas. Velocity tracers accumulate in convergent regions (e.g. filaments, nodes). The MC gas tracer distribution reproduces more accurately that of
the gas than velocity tracers.

(Ntot ≈ 1.3 × 108 particles). There is on average 0.55 tracers per
star and 22 per initial cell. Cells of size 35 pc and density 20 cm−3

contain on average one tracer per cell.

3.2.1. Velocity tracers versus Monte Carlo tracers

In addition to the above simulation, we ran the exact same one
replacing each MC tracer with a velocity-advected tracer. This
simulation was performed down to z = 6 and compared to the
fiducial one. Both have a similar gas distribution, confirming that
the tracer particles are indeed passive7. At this redshift, 99% of
the baryons are still in the gas phase (0.72% in stars and 8 ×
10−5% in SMBHs), meaning that the comparison between MC
tracers (that can be transferred into stars) and velocity tracers
is fair when looking at cosmological scales. Since the velocity
tracers have not been linked to star formation or SMBHs, we
expect significant discrepancies within galaxies, where the gas-
to-star ratio is much smaller.

The top panels of Fig. 9 show projections of the density-
weighted density of gas (top left panel), of MC tracers (top-
centre panel), and of velocity-advected tracers (top-right panel).
The distribution of the MC tracers resembles that of the gas with
extra noise due to sampling noise. All the prominent structures

7 They have however an indirect impact on stochastic processes such
as star formation and SN feedback as they impact the random num-
ber generator (hence the outcome of these random processes will vary
depending on how many and where the tracer particles are).

in the gas are also present in the MC tracer distribution. On
the other hand, the velocity tracer distribution is much sharper
than that of the gas. The velocity tracers aggregate in converg-
ing flows (filaments and centres of galaxies) while MC tracers
do not (they aggregate in high-mass regions, as expected). At
such large scales, the origin of the discrepancy is an intrinsic
issue of velocity tracers. This test shows that on a qualitative
level, the MC tracers have a distribution that is in much better
agreement with the gas distribution than the velocity advected
tracers. The relative difference between the gas distribution and
the tracer distribution is presented in the bottom panels of Fig. 9.
The relative difference between the MC tracer density and the
gas density (bottom central panel) is significantly smaller than
the relative difference between the velocity advected tracer den-
sity and the gas density (bottom right panel). The latter is also
much more biased: the velocity advected tracer density in con-
vergent flows (e.g. filaments) can be up to an order of magnitude
larger than the gas density, while in the vicinity of converging
regions, the velocity advected tracer density is largely underes-
timated (e.g. around filaments). On the contrary, the MC tracer
density is found to be in better agreement with the gas density
and is not biased.

3.2.2. Gas tracers

As we have seen, velocity tracer particles are a less reliable tracer
of the actual gas density compared to MC tracer particles, and
this can already be seen on cosmological scales. Therefore, we
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Fig. 10. Density-weighted projection of the gas density (left panels), of the gas tracer density (centre panels), and of their relative difference (right
panels) along the x axis around the most massive galaxy of the cosmological simulation at z = 2. Top panels: large-scale structure of the gas; data
have been selected within 200 kpc of the centre. Bottom panels: zoom on the central galaxy; data have been selected within 10 kpc of the centre of
the galaxy. The MC tracer density is similar to that of the gas. The radial modulations are due to differences in cell mass at fixed cell resolution:
massive cells (closer to the centre at fixed resolution) are best sampled by the MC tracers.

now continue to explore only the distribution of MC tracer parti-
cles with respect to the actual distribution of baryons. Figure 10
shows the density-weighted projected gas density and cloud-in-
cell interpolated gas tracers around the zoomed galaxy of the
simulation. Visual inspection reveals that the gas tracer distribu-
tion matches that of the gas with additional noise. All structures
with a contrast above the noise level are reproduced by the gas
tracers. More quantitatively, Fig. 11 shows the density of trac-
ers versus the density of gas for the entire available range of gas
densities (i.e. 9 orders of magnitude); the expected one-to-one
relation is seen, with some scatter due to MC sampling noise.

More quantitative results can be obtained by computing the
statistical properties of the gas tracer population. A cell of mass
Mcell is expected to contain on average Mcell/mt tracers. For a
sample of cells of similar masses, we expect the mean number
of tracers per cell to be λ ≡ 〈Mcell〉/mt. The distribution of the
number of tracers per cell in the simulation is shown in Fig. 12
for different cell-mass bins. Within a cell-mass bin, the number
of tracers Nt can be seen to be very well approximated by a Pois-
son distribution with parameter λ

pλ(Nt = k) =
λke−λ

k!
· (19)

To confirm this observation, we compared the mean number of
tracers per cell to the expected number λ in the top panel of
Fig. 12. For all cell masses, the mean number of tracer particles
per cell is accurately described by its expected Poisson distribu-
tion. At large values of gas mass within a cell (right of the plot),

the scatter in the histogram count is due to the small number
of massive cells in the simulation. Indeed, these cells can only
be found in the most refined regions (otherwise they would be
refined into smaller cells) where they also tend to be converted
into stars.

In the following we assume that the gas tracer distribution is
given by a Poisson distribution with parameter λ = 〈Mcell〉/mt.
This yields a simple rule of thumb to estimate the precision of
the tracer scheme. The accuracy of the Eulerian distribution of
the tracer can be written 1/

√
λ ∼
√

mt/Mcell.

3.2.3. Star formation and feedback

Figure 13 shows the integrated stellar mass and star-tracer mass
around the zoomed galaxy of the cosmological simulation. Both
distributions are visually in agreement and feature the same spa-
tial distribution. At large radii where the star density is smaller
than the gas density (r & 4 kpc, see Fig. 14), the noise level of the
star-tracer distribution is larger than that of the gas. This is due to
the fact that small masses are poorly resolved by the MC tracers.
Close to the galactic centre, the increasing star density induces
a larger star-tracer density, and therefore, at fixed resolution, a
smaller noise sampling. This is illustrated by the right panel of
Fig. 13, where the centre of the plot shows smaller fluctuations
than at large radii. More quantitative results are presented below.

We first present the analytical distribution of tracer parti-
cles for stars and for the number of tracers released in SN
events, derived from first principles. When a star particle is
formed, each tracer in the cell containing the newly created star
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Fig. 11. Gas density vs. gas tracer density, colour coded by cell mass.
The grey dashed line shows the one-to-one relation. The gas and gas
tracer densities match on nine orders of magnitude.

particle is attached to the star particle and has a probability of
p⋆ ≡ M⋆,0/Mcell of becoming a “star tracer”, where M⋆,0 is the
mass of the newly created star particle8. Because M⋆,0 < Mcell –
a star particle cannot be formed with more material than what
is available – this probability is well defined: 0 < p⋆ < 1.
When the heavy stars in a star particle go into SN, they yield
ηM⋆, and the mass of the corresponding star particle becomes
M⋆ = (1 − η)M⋆,0. The star tracers are then returned to the gas
with a probability of η. Before the SNe explode, the distribution
of tracers for an individual star particle is given by a binomial
distribution with parameters Ni (the initial number of tracer in
the cell where the star particle formed) and p⋆

pform(Ni; N f = k) =
(

Ni

k

)

pk
⋆(1 − p⋆)Ni−k. (20)

The number of tracer particles released in the SN event reads

pSN(N f ; N = k) =
(

N f

k

)

ηk(1 − η)N f−k, (21)

where N f is the number of star tracers in the star particle before
the SN explosion. The number of tracers in the star particle after
the SN has exploded is, thus, given by a binomial distribution of
parameters Ni and (1 − η)p⋆,

pf
⋆(Ni; N = k) =

(

Ni

k

)

((1 − η)p⋆)k (1 − (1 − η)p⋆)Ni−k . (22)

In the limit where the Ni becomes large and (1 − η)p⋆ small,
Eq. (22) converges mathematically to a Poisson distribution with
parameter Ni(1 − η)p⋆.

Now, we compare the expected distribution of tracer parti-
cles to the measured one. Figure 15 presents the distribution of
the number of tracer particles per star particle for different star
particle mass bins. The number of star tracers per star particle
can be seen to be well approximated by a Poisson distribution
with parameter λ = 〈M⋆〉/mt. There is a clear deviation at the
tail of the distribution which displays an excess of probability.

8 We note that in practice the star particles have a mass that is a multi-
ple of the stellar mass resolution.
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Fig. 12. Bottom panel: distribution of the number of gas tracers for
different cell-mass bins as observed in the simulation (solid lines) vs.
a Poisson distribution with parameter λ = 〈Mcell〉/mt (dashed lines,
reported in the legend). Top panel: relative difference between the
observed mean number of tracer particles and the expected one, λ, as
a function of λ. For all cells, the distribution of the number of gas trac-
ers per cell is given by a Poisson distribution with parameter λ.

This is however expected as when a star forms in a cell, a sig-
nificant part of the cell mass is converted into the star, so that
p⋆ ≈ 1. Because usually (1 − η) ≈ 0.9, the product p⋆(1 − η)
is also of order unity. At the same time, cells where stars form
have a typical mass of 104M⊙ ∼ mt, meaning that they contain
only a few gas tracers at star formation. Therefore, we expect a
significant deviation from a Poisson distribution, as the require-
ment for Eq. (22) to converge to a Poisson distribution is not
met. This argument is reinforced by the fact that, compared to
light stars (e.g. the blue curve of Fig. 15), the most massive stars
have a more top-heavy distribution (e.g. the red curve) than a
Poisson distribution. Indeed, these massive stars are relatively
more massive than their parent cell, meaning that the parameter
p⋆ is larger. In the simulation, star formation is only activated
for cells above a given (fixed) density threshold. This is usually
achieved at the maximum resolution, causing cells experiencing
star formation to have typically the same mass, and therefore the
same number of gas tracer particles, regardless of the mass of
the forming stars. Consequently, the massive star particle distri-
bution is indeed less Poissonian than that of the light stars, since
their p⋆ is larger at fixed Ni. Figure 15 is in qualitative agreement
with this.

3.2.4. SMBH evolution

Using our cosmological simulations, we have checked that the
total mass of SMBH tracer particles (Mt SMBH,tot = (3.5 ±
0.3) × 106 M⊙

9) matches that of SMBH in the simulation
(MSMBH,tot/(1− εr) = 3.1 × 106 M⊙) at the 10% level, up to an εr
factor. This factor is due to the mass lost by the accreted mate-
rial as it falls onto the black hole. This mass is radiated away and
lost to the simulation. Because the tracer particles have a fixed
mass in our implementation, they are unable to capture the mass
energy that is radiated. However, one could store the value of εr
at accretion time onto each tracer to be able to reconstruct the
exact mass that the SMBH tracer represents.

9 The uncertainty has been estimated using a 1-σ Poissonian noise.
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Fig. 13. Stellar surface density (left panel), star-tracer surface density (centre panel), and relative difference (right panel). The data are the same
as in Fig. 10. In the difference map, regions where no stars are found are indicated in grey. The star and star-tracer distributions are in very good
agreement; their difference shows no spatial dependence. The noise level is higher than in Fig. 10 at large radii where the star surface density is
smaller than the gas surface density, hence the star mass distribution is less resolved than the gas.
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Fig. 14. Bottom panel: radial profile of the gas density (solid blue) and
star density (solid orange) vs. the gas tracer density (blue cross) and
the star-tracer density (orange cross). The error bars are given by a
Poisson sampling noise. Top panel: relative difference between the
baryon and the tracer profiles. The tracers match their baryon coun-
terpart at a few percent level.

3.3. Bi-modal accretion at high redshift: a science case for
tracer particles

Low-mass galaxies (embedded in halos Mh . 1011 M⊙) exhibit a
significant amount of “cold-mode” cosmological accretion made
of cold gas streaming in narrow filaments with a temperature typ-
ically below Tmax / 105 K (Birnboim & Dekel 2003; Kereš et al.
2005; Ocvirk et al. 2008; Nelson et al. 2013, 2016). A “hot-
mode” phase made of gas that was shock heated before enter-
ing the virial radius (Tmax ∼ 106 K) appears in halos with higher
mass. At early times (z > 2.5), the accretion is dominated by
the cold mode. As time goes by, halos grow in mass so that an
increasing fraction of the gas heats up before entering the halo.
The outcome of this is a decrease of the relative importance of
cold accretion compared to hot accretion. By z / 2, most of the
accreted material comes from the diffuse hot phase. Hence, get-
ting access to the Lagrangian history of the stars and of the star-
forming gas is key to pinning down the origin of gas acquisition
in galaxies.
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Fig. 15. Distribution of the number of star tracers per star for different
star particle mass bins (in units of 104 M⊙) as observed in the simula-
tion (symbols and shaded surfaces) vs. as given by a Poisson distribu-
tion with parameter λ = 〈M⋆〉/mt (dashed). The error bars have been
estimated using a bootstrap method. For all stars, the distribution of the
number of star tracers per star is approximated by a Poisson distribution
with parameter λ.

We revisit this result using ramses and the MC tracer parti-
cles. Using the cosmological simulation of Sect. 3.2, we study
the accretion of gas as a function of time around the central
galaxy. We select all the gas tracers that end up in star particles
(not the star-forming gas) at z = 2 and r < 0.1Rvir. The halos
were detected using the AdaptaHOP halo finder (Aubert et al.
2004). For the positioning of the centre of the DM halo, we start
from the first AdaptaHOP guess of the centre (densest particle
in the halo) and from a sphere the size of the virial radius of
the halo; we use a shrinking sphere (Power et al. 2003) by recur-
sively finding the centre of mass of the DM within a sphere 10%
smaller than the previous iteration. We stop the search once the
sphere has a size smaller than ≃100 pc and take the densest par-
ticle in the final region. Twenty neighbours are used to compute
the local density. Only structures with a density greater than 80
times the average total matter density and with more than 200
particles are taken into account. The original AdaptaHOP finder
is applied to the stellar distribution in order to identify galax-
ies with more than 200 particles. Their Lagrangian history is
reconstructed in post-processing from the 132 equally spaced
(∆t = 25 Myr) outputs, and the thermodynamical properties of
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Fig. 16. Bottom panel: histogram of the maximum temperature of the
gas accreted onto the central galaxy between different redshifts (from
early accretion time in blue to late accretion time in yellow). Top panel:
cumulative distribution of the gas temperature. Only the gas-forming
stars within the virial radius are selected. The total distribution inte-
grated over the total accretion time is shown with the black dashed line
in the bottom panel. The total distribution has been rescaled by a factor
of one third for visualisation. The halo has two modes of accretion: a
cold and a hot mode. At high z the cold mode dominates and at low z
the hot mode dominates.

the gas are extracted from the local gas cell value. For each tracer
particle, the maximum temperature Tmax reached before falling
into the virial radius is recorded. The infall time is defined as the
last inward crossing of the virial radius. The merger tree is com-
puted following Tweed et al. (2009). The procedure only selects
tracer particles falling onto the galaxy in the gas phase. This
excludes gas tracers tracking gas that formed stars in satellite
galaxies but includes gas from wet mergers. Figure 16 presents
the temperature distribution of the accreted gas for different bins
of infall time. At early times (blue lines, z & 3) the accretion is
bi-modal. About 50% of the gas is accreted via the cold mode,
as shown in the top panel of Fig. 16. At later redshifts (z . 2.5),
the accretion becomes dominated by the hot mode. The relative
importance of the cold accretion decreases and the distribution
become less and less bimodal, until it is eventually entirely dom-
inated by the hot mode. This is in qualitative agreement with
the findings of Kereš et al. (2005) though the exact quantitative
amount of cold versus hot accreted gas relies significantly on
i) the numerical scheme to model gas dynamics (Nelson et al.
2013) and ii) the modelled feedback processes (Dubois et al.
2013).

Caution should be taken here: contrary to what was done
in the original study, only the accretion onto a single galaxy is
investigated. In particular, our results are sensitive to the particu-
lar accretion and merger history of that galaxy, which impact the
temperature distribution of the gas. In order to achieve a fairer
comparison, one would have to run a full cosmological simula-
tion and study the gas accretion of the full population within the
box. While this would now technically be possible thanks to the
new tracer algorithm, it is nonetheless well beyond the scope of
this paper.

4. Performance

To quantify the performance of the tracer particles and their asso-
ciated CPU overhead (defined as the excess of computation time
required by the tracer particles), we restarted the simulation of
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Fig. 17. Overhead as a function of the number of tracer particles per
initial cell (symbols). The orange symbol is the simulation with the
tracer deactivated. The data (excluding the run with the tracer deacti-
vated) have been fitted with a linear function (dashed line). The esti-
mated overhead (slope of the fit) is ∼3% per tracer per initial cell with
an extra constant of ∼10%.

Table 1. Run time per coarse time step for the different runs.

Name Absolute Tracer Run time Overhead
number per cell (s) (%)

t100 129325116 10 1310 39.9
t67 86214303 6.7 1270 35.3
t20 64656206 5 1210 28.7
t33 43104621 3.3 1160 23.1
t20 25861310 2 1100 17.5
t10 12929077 1 1060 13.1
t0.1 130250 0.01 1060 13.4
t0 0 0 1020 9.2
not 0 0 940 –

Notes. The run notr was performed with no tracer particles and with
all the tracer particle routines deactivated. The column “Tracer per cell”
is the number of tracer particles per initial cell in the zoomed region.
The “Overhead” column contains the run-time overhead defined with
respect to the notr run.

Sect. 3.2 at redshift z = 2, while varying the numbers of tracer
particles to test the scaling of the algorithm. At restart, we dec-
imate the tracer population to keep only 67, 50, 33, 20, 10, or
0.1% of the initial population (in the gas, star, and black holes).
We also run a simulation with no tracer but all the tracer routines
activated (t0) and a simulation with no tracer and the tracer rou-
tines deactivated (notracer). The parameters of the runs are
presented in the first three columns of Table 1. The run time
is defined as the total run time divided by the number of steps.
The overhead is defined as the relative increase of the run time
with respect to the run not. All the runs were stopped after two
iterations of the coarse time step (about ∼2000 s of run time,
∼2.8 Myr of simulation time). The results are also plotted in
Fig. 17.

By comparing the two runs t0 and notr, we conclude that
the tracer particle machinery adds a constant cost of about 10%
to the computation. This is due to the fact that the tracer particles
require the fluxes at the interface of each cell (six quantities per
cell) to be stored, which then have to be communicated between
CPUs. In addition, there are multiple loops that iterate over all
the cells and all the particles (see Sect. 2 for more details). In
principle, this could be optimised by setting tracer particles in
their own linked list, but we exploited the particle machinery
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available in Ramses, and treated tracer particles just like stan-
dard particles (star or DM) with respect to code structure. In the
following, the computation overhead will be expressed in terms
of the number of tracer per initial cell: Nt/Ncell,i, where Nt is the
number of tracer particles and Ncell,i is the number of initial (gas)
cells.

The runs with tracers show that the total run time starts
increasing with the number of tracer particles per cell10 when
this number becomes of the order of ∼0.1 tracer per initial cell.
Above this threshold, the run time scales roughly linearly with
the number of tracer per initial cell. We have run the simula-
tion on the Occigen supercomputer with 672 cores (28 nodes of
24 cores). Each node is made of two Intel Haswell 12-Core E5-
2690 V3s11 running at a clock frequency of 2.6 GHz. The nodes
are wired together with a DDR Infiniband network (20 Gbit s−1).
The code was compiled with the Intel Fortran compiler version
17.0 and OpenMPI 2.0.2. In this setup the overhead is 3% per
tracer per initial cell. For example the run t100 with 10 tracer
per initial cell had a 40% overhead. Part of the overhead is due
to the tracer particles themselves (moving, generating random
numbers, etc.). Another part is due to the load balancing. Indeed,
in this simulation, tracer particles are only found in the zoomed
region, which is already the most CPU-intensive region. Our
simulation can be seen as a worst-case scenario for the tracer
particles. In general, let us write the conservative formula giving
an estimate of the overhead induced by the tracer particles

∆t

t
= 0.03

(

Nt

Ncell,i

)

+ 0.1, (23)

where t is the run time and ∆t the extra cost induced by the tracer
particles. Here, Nt and Ncell,i are the total number of tracer parti-
cles and the total number of initial cells, respectively.

5. Conclusions

We present a new implementation of tracer particles in the
Ramses AMR code based on the Monte Carlo approach
from Genel et al. (2013). It has been interfaced with the most
common physical models used in cosmological simulations (star
formation and stellar feedback, SMBH growth and AGN feed-
back). We have shown that the Lagrangian history of the gas is
accurately reconstructed by testing the accuracy of the tracer dis-
tribution in an advection-dominated problem and in a diffusion-
dominated problem. The gas tracer distribution matches that of
the gas, even in complex situations that involve subgrid models.
We have also provided a comparison of the new MC tracer parti-
cles to the previous velocity-based implementation and showed
that the new version largely outperforms the accuracy of the pre-
vious one. We have made a detailed study of the distribution of
tracer particles in a zoom-in cosmological simulation including
state-of-the art subgrid model physics (cooling, star formation,
SN feedback, SMBHs, and AGN feedback) and show that: (i) in
each cell, the gas tracer distribution is given by a Poisson distri-
bution with parameter λ = Mcell/mt; and (ii) for each star, the
number of star tracers can be approximated by a Poisson distri-
bution with parameter λ = M⋆/mt. The properties of the Poisson
distribution give a simple rule to estimate the sampling noise
of the tracer particle, as the noise can be represented by 1/

√
λ.

In turn this should allow users to quantify how many particles

10 We note that here the number of cells is the one in the refined regions,
not the initial number of cells.
11 See Intel-Xeon-Processor- E5-2690.

are needed to reach their sought accuracy. We have also shown
that the gas tracer particles sample exactly the intrinsic numer-
ical diffusion of the Godunov solver. To highlight the assets of
tracer particles in a realistic setting, they were implemented in
the problem of cold flow accretion at high redshift. The known
bi-modality in the temperature of gas was recovered.

The performance of the algorithm was explored. In a zoom-
in full physics cosmological simulation, the run time grows
roughly linearly with the number of tracer particles per cell. The
overall impact on computation time is estimated to be ∼3% per
tracer per initial cell plus a constant computation time overhead
of 10%, regardless of the number of tracer particles. These fig-
ures should serve as upper limits on the computation time. The
performance of the scheme could be optimised by using two sep-
arate linked lists for the tracer particles and the other particles, as
is done in arepo (Genel et al. 2013). Implementing these possi-
ble improvements will be the subject of future studies. Presently,
the performance is significantly lower than that reported in the
original paper of Genel et al. (2013): in addition to using a spe-
cific linked list for the tracer particles, the moving mesh of arepo
reduces the number of tracer movements and mitigates the cost
of each tracer.

In comparison to the original paper by Genel et al. (2013),
we provide an additional detailed description of the statistical
properties of the ensemble of tracer particles not only in the gas
but also in stars and in AGN jets. We also studied how their
distributions behave when complex sub-grid models are involved
(star formation and feedback, AGN feedback, BH accretion) and
checked that their distribution is in agreement with the baryon
distribution.

This implementation provides an efficient method to accu-
rately track the evolution of the Lagrangian history in the Eule-
rian code Ramses. It opens new perspectives to study how baryon
flows interact in hydrodynamical simulations. For instance,
tracer particles could be used to quantify the spatial and time
evolution of the anisotropically accreted gas, its contribution
to the spin of galaxies, and how these processes impact galac-
tic morphology. Specifically, following Tillson et al. (2015),
Danovich et al. (2015), and DeFelippis et al. (2017), one could
address the following open questions: Where does the angular
momentum go? Does it contribute to the spin-up of the galaxies
or is it re-distributed before entering the disk? If it is, is it due to
turbulent pressure, shock-heating or SN and AGN feedback?
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Appendix A: Tracer particle algorithm

Let us describe here the pseudo-code underlying the tracer par-
ticle algorithm. The corresponding Fortran code is available
upon request.

A.1. Gas to gas cells

The main function in charge of moving tracers between gas cells
is called TreatCell. It takes as input the index of a cell and loops
over all tracers in it. It requires all the (mass) fluxes to be stored.
The pseudo code is the following.

function TreatCell(icell)
mcell ←MassOfCell(icell)
Fnet ← 0
for idir ← 1, 2Ndim do ⊲ Compute outgoing flux

5: F ← GetFluxInDir(icell, idir)
if F > 0 then

Fnet ← Fnet + F
end if

end for
10: tracers← GetTracerParticlesInCell(icell)

pout ← Fnet/mcell ⊲ Probability to move part. out of cell
for jpart in tracers do ⊲ Loop on tracer particles

r1 ← DrawUniform(0, 1)
if r1 < pout then

15: r2 ← DrawUniform(0, 1)
for idir ← 1, 2Ndim do ⊲ Select a direction

F ← GetFluxInDir(icell, idir)
p = F/Fnet
if r2 < p then ⊲ Move in direction idir

20: MoveParticle(icell, jpart, idir)
break

else
r2 ← r2 − p

end if
25: end for

end if
end for

end function

This function requires the MoveParticle function, which is
defined as follow

function MoveParticle(icell, ipart, idir)
Ftot ← GetFluxInDir(icell, idir)
neighbors← GetCellsOnFace(icell, idir)
īdir ← GetOppositeDirection(idir)

5: r ← DrawUniform(0, 1)
for jcell in neighbors do

F ← − GetFluxInDir( jcell, īdir)
p← F/Ftot
if r < p then⊲ Move particle to the centre of the cell

10: SetParticleAtCenter(ipart, jcell)
break

else ⊲ Proceed to next cell
r ← r − p

end if
15: end for

end function

Fig. A.1. Cell faces numbering.

GetFluxInDir returns the mass that goes through the cell
face in one timestep. Assuming that cell faces are numbered
from 1 to 6 (left, right, top, bottom, front, rear, see Fig. A.1),
GetOppositeDirection reads

function GetOppositeDirection(idir)
mask← [2, 1, 4, 3, 6, 5]
return mask[idir]

end function

When looped over all cells, the algorithm treating all the trac-
ers has complexity O(N) where N is the total number of tracer
particles and requires O(NdimNcell) memory to store the fluxes
and O(N) to store the tracer particles information.

A.2. AGN

Here we present how the volume of the jet is computed. We also
present how the positions of the tracer particles in the jet are
drawn. The function in charge of drawing position for the tracer
particles in the jet is Tracer2Jet

function Tracer2Jet(j)
loop

c← 2
while c > 1 do

5: a← NormalDistribution(0, 1)
b← NormalDistribution(0, 1)
c← a2 + b2

end while
x← rAGN × a

10: y← rAGN × b
h← Uniform(−2rAGN, 2rAGN)
r2 ← x2 + y2

if |h| > rAGN and (|h| − rAGN)2 + r2 < r2
AGN then

break
15: else if |h| ≤ rAGN then

break
end if

end loop
⊲ We now have a position in the frame of the jet.

20: uz ← j/|j|
ux ← [jy + jz,−jx + jz,−jx − jy]
ux ← ux/|ux|
uy ← uz ∧ ux

return x ux + y uy + h uz

25: end function
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152 Chapter 5. Following anisotropic accretion: numerical tools

5.3 Torque extraction

Most of the previous works (Danovich et al., 2015; Prieto et al., 2017) have studied the relative
contribution of each torques to the angular momentum (AM) evolution of the cold gas focusing
in particular on their magnitude, splitting the torques between the pressure and the gravitational
torques. This section provides an improvement over these past works by computing the gravi-
tational torques from each source (stars, DM and the gas) separately. I also lay down a general
method to compute gradients in post-processing in AMR codes, which I then use to compute
pressure gradient, and in particular, pressure torques. The precise computation of pressure gradi-
ents and the component-by-component decomposition of the gravitational torques will prove
important in the context of the study of the evolution of cold flows in galaxies, as will be discussed
in more depth in chapter 6, but let me first present here how one can rigorously compute them.

Section 5.3.1 details the method I developed to compute the gravitational torques from the
different sources in numerical simulations. I show that I am able to extract the torques originating
from the DM, stars, the gas. The method is then checked and I show that it provides percent-
accurate results. Section 5.3.2 details the method I developed to compute the pressure torques
in post-processing. The method can be used in general to compute any spatial derivative on an
AMR grid that can be computed from the values of the direct neighbours, which includes the
gradient, the divergence, the curl and the Laplacian operators.

5.3.1 Gravitational torques

In the vicinity of galaxies, the different massive sources (DM, stars, gas) all contribute to the total
gravitational potential φ = φDM + φ⋆ + φgas via the Poisson equation

∇2φi = 4πGρi, (5.2)

where φi and ρi are the gravitational potential and the density of the component i (DM, stars,
gas). One can then compute the specific forces resulting from each potential Fi = −∇φi which
can then be used to compute the specific torques at position r

τi ≡ r× Fi. (5.3)

In order to extract the torques resulting from each gravitational source, I have modified the code
Ramses to extract in post-processing the specific forces due to the different matter components
(DM, gas, stars). This was performed by stripping down Ramses to keep only the Poisson solver,
applied to the density of each individual component1. Since the resulting code is a simplified
version of Ramses, it can be run with exactly the same parameters as the original run, so that
the results yielded are consistent (for example, the cosmology is the same). Using the numerical
simulation detailed in section 5.2, I have computed the gravitational force of the stars, gas and
dark matter that act on the gas for each output. For each component (star, gas and DM), I have
also computed the rate of change of specific angular momentum (sAM) of the gas as

fi =
τi · l

‖l‖2
, (5.4)

where l = r×v is the gas sAM, both positions and velocities are evaluated for the gas in the frame
of the central halo. Note that equation (5.4) yields a quantity that can be interpreted as the number
of time torques are able to remove all the AM per unit time (it is a frequency). Equation (5.4) is
therefore a measure of the inverse e-folding time along the Lagrangian trajectory of a particle.
fi is positive and large where torques are efficient at increasing the sAM and negative where

1The fiducial implementation solves the Poisson equation directly on the total matter density (gas + stars + DM).
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Figure 5.3.1: (a): Relative difference between the sum of the sAM evolution rate due to
stars, DM and gas gravitational forces (as computed with the method presented in the
text) and the rate due the total gravitational torques (as computed by Ramses). (b): Same,
but with the total gravitational accelerations. Vertical dashed line indicate 5% and 95%
quantiles. The vertical dotted line indicates the median value. The two methods yield
similar results within a few percents.

torques are efficient at decreasing the sAM. Figure 5.3.1a shows the relative difference between
the sum of the evolution rates f⋆ + fDM + fgas extracted individually in post-processing and
the total evolution rate f = τ · l/‖l‖2 computed on-the-fly by Ramses. Figure 5.3.1b shows the
relative difference between the gravitational accelerations computed using the two methods. The
agreement is of the order of less than a percent in 90% of the cells. Note that a perfect agreement is
not expected, as the potential from the SMBHs has been neglected in the post-processing method.
In addition, Ramses’ Poisson solver has an intrinsic accuracy of 10−4, consistent with the median
error obtained in the gravitational accelerations (0.02%). Overall, the agreement between the
computed rates are within a few percents. The errors on the evolution rate are slightly larger,
albeit still small, as a result of the division by l that skews the distribution and assigns larger
weights in regions where l is small. This confirms that the post-processing decomposition yields
results consistent with the on-the-fly-computed gravitational field used internally to evolve the
simulation.

5.3.2 Pressure gradient estimation

The precise capture of shocks is fundamental to most of the astrophysical codes. These shocks
then result in strong, short-wavelengths gradients which are usually captured by a few cells
in most AMR codes. While numerical codes routinely deal with strong gradients, most AMR
post-processing tools either do not provide any utility to compute them (pynbody, Pontzen et al.,
2013; pymses, Guillet et al., 2013), or have gradient computing capacities that are not available for
octtree-based AMR datasets, as is the case with Ramses (e.g. yt, Turk et al., 2011). The approach
usually followed is to project data on a fixed resolution grid, which is then used to compute
gradients using a finite-difference scheme. Even though this approach yields sensible results at
scales comparable to the (arbitrary) grid spacing, any information at finer scales is smoothed out
while values at coarser levels have to be interpolated, eventually leading to spurious gradients.
In the case of the study of accretion onto galaxies, the fixed-grid approach fails to provide a
precise description of the gradients at play (pressure and potential gradients), as shocks may
form anywhere in a large volume ∼ R3

vir. In order to capture all shocks on a regular grid, one
would then require the grid to be at least as well-resolved as the AMR grid, effectively requiring
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∼ (Rvir/∆x)3 ≈ (100 kpc/30 pc)3 ≈ 3× 1010 cells.2 This is in practice too large to fit in
memory, as it would require about 120Gio of data as each pixel requires 4 o of data. In practice,
it is much more efficient and consistent to directly work on the AMR structure dumped alongside
the physical information of the simulation.

Using a tree search algorithm, as illustrated on figure 5.3.3, I have developed a post-processing
tool that is able to compute finite difference gradients directly on the AMR grid. The binary search
algorithm ensures that any given location is found in at most N steps, where N is the number
of AMR levels in the simulation (typically between 10 and 20). To do so, I have extended the
yt code (Turk et al., 2011) to enable computation of gradients for oct-based AMR datasets. The
algorithm works as follows. (a) Loop over all octs in the tree. (b) Compute the positions of the
43 = 64 virtual cells centred on the oct and extending in ±2∆x in three directions, as illustrated
on figure 5.3.2, left panel. (c) Get the value of interest at the centre of each virtual cell from the
AMR grid. If the virtual cell exists on the grid or is contained in a coarser cell, the value on the
grid is directly used. If the virtual cell contains leaf cells, the mean of these cells is used.3 (d)
Compute the gradient of the quantity using a centred finite-difference scheme on the 43 grid, as
illustrated on figure 5.3.2, right panel. (e) Store the value of the gradient in the central 23 cells.

This approach aims to provide results as close as possible to the values used internally by
Ramses. It is worth noting that this approach is exactly consistent with the internal approach
of Ramses, except at the interface between different grid levels where a linear interpolation is
used by Ramses, whereas our method uses a simple average. One way to check the consistency
is to compare gradients computed by the post-processing tool to the ones computed internally
by Ramses. This is for example done using the velocity divergence, as shown on figure 5.3.4.
The figure shows that the post-processing method recovers the velocity divergence within a few
percent, while most of the scatter is attributed to the fact that Ramses uses a linear interpolation
at the interface between coarse and fine cells.

2Here I have used the resolution of the simulation presented in section 5.2 and the typical size of the virial radius
of a 1012 M⊙ halo at z = 2.

3Note that to be fully consistent with Ramses at fine-to-coarse boundaries, one should either use a linear interpola-
tion with a total variation diminishing scheme (TVD) or a straight injection and use 1.5∆x distance in the gradient
estimate.
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Figure 5.3.2: Scheme of the AMR structure used to estimate the gradient of a quantity f
in the central oct (red). Octs are represented in thick lines, cells in thin lines and virtual
cells in dashed lines. Le� panel: The virtual cell values on a 43 grid are interpolated
from the nearest cell in the AMR grid. If the nearest cell is at the same level, its value is
directly used. If the cell is at a coarser level, its value is directly used (for example f31
and f32 have the value of the green cell). If the cell is refined, the mean of its children
is used (for example f20 is the mean of all the blue cells). Right panel: Gradients are
estimated using a first-order finite difference centred scheme on the 43 virtual cells.
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Figure 5.3.3: (a) Scheme of a binary search in an oct structure in 1D. The requested
points are shown as red and blue dashed lines. The algorithm starts at the root level
l = 0 and goes down the structure ; at each level, it picks the cell that contains the
requested point. (b) A similar illustration in 2D, the algorithm works in the same way.
At each level, it selects one of the four cells (red and blue squares) from the oct (thick
line). The algorithm can be easily generalised to three or more dimensions. It is able to
find any cell containing a given point in lmax iterations exactly. If the grid is sparse, as
is the case for an AMR structure, lmax becomes an upper boundary.
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Figure 5.3.4: Le� panel: Plot of the velocity divergence as computed by Ramses vs. the
ratio of the value computed in post-processing to Ramses’s one. Right panel: PDF of the
ratio. 95% of the distribution falls between the two horizontal lines. 95% of the cells
have a value between 0.71 and 1.12 times the value computed internally by Ramses.
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5.4 Conclusion

In section 5.2, I have presented a new tracer particle scheme. I have shown that it is able
to accurately capture the Lagrangian evolution of the baryons in a full-featured cosmological
simulation. In particular, I showed that the tracer particles have a spatial distribution close to that
of the gas, which significantly improves over previous methods. I also showed that the tracer
particles can be used to get the full Lagrangian evolution of the baryons as they move from gas to
stars and into SMBHs. In section 5.3, I presented two numerical methods to extract the torques
acting on a parcel of fluid. The methods presented have been shown to yield consistent results that
are much improved compared to previous methods. The gravitational torque extraction method
can be used to decompose the contribution to the gravitational torques due to each individual
components (DM, stars and gas). I have also presented a method to compute pressure gradients
on an AMR grid which I then applied to the computation of pressure torques. This approach
provides results consistent with the internal values of the code.

The methods detailed in this chapter have a broad range of application. The tracer particle
scheme has already been adopted by other researchers to study the formation and destruction
of clumps in clusters (see appendix B.3) and to study gas flows in the circumgalactic medium
(P. Mitchell, private communications). They are also used in the context of protoplanetary
disk formation, where they have been modified to follow the Lagrangian evolution of dust
grains (U. Lebreuilly, private communications). The gradient computation was for example
used to compare the cosmic ray pressure gradient, thermal pressure gradient and gravitational
acceleration in isolated simulations of dwarf galaxies, and concluded that cosmic ray pressure
was the dominant acceleration mechanism above 1 kpc from the plane of the disc (G. Dashyan at
al., submitted).
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6.1 Introduction
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Figure 6.1.1: Sketch of the galaxy and its environment with the outer halo (r > Rvir/3),
the inner halo (Rvir/3 > r > Rvir/10) and the disk (r < Rvir/10). The mode of
accretion are the cold mode via cold flows (in blue) and the hot mode, characterized by a
stable shock at the virial radius (in red). Cold flows may also shock and heat at a smaller
radius to be determined. On large scales, cold flows are embedded in the cosmic web.

One of the successes of the ΛCDM model is its ability to reproduce the large-scale structure of
the Universe observed in galaxy distribution (e.g. Springel et al., 2006). These structure form
out of the initial tiny density fluctuations of the primordial density field and under the effect of
gravitational forces, matter departs from underdense regions to flow through cosmic sheets into
filamentary structures. Matter then flows from these filaments towards high-density peaks that
will later become halos. In the process, matter acquires kinetic properties (e.g. vorticity Pichon
and Bernardeau, 1999; Laigle et al., 2015) in its journey through voids, sheets and filaments of the
cosmic web, which, in turn, affect the assembly of dark matter halos, as shown in chapter 4. Before
shell crossing, baryons follow the same initial fate as DM and flow from underdense regions
to sheets. Yet, as they flow in sheets, pressure forces prevents them from shell-crossing so that
they lose their normal velocity component to the shock front, dissipating large-scale acquired
kinetic energy into internal energy (eventually radiated away by gas cooling processes). Following
potential wells created by dark matter, baryons then flow towards filamentary structures where
they lose a second component of their velocity1 and reach a dense-enough state to efficiently cool
radiatively.

At first order, galaxy formation is affected by the mass of their dark matter halo host and
the local environment, as encoded by the local density on sub-Mpc scales, as it is assumed that
baryons have the same past accretion history as dark matter. These models have proven successful
at explaining a number of observed trends, in particular against isotropic statistics, in the so-called
halo model, yet they fail to explain some effects such as spin alignments (Tempel and Libeskind,

1The component lost is in the direction perpendicular to the shock, which is in the plane of the wall and the
filament.
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2013; Codis et al., 2015; Dubois et al., 2014; Chisari et al., 2017), colour segregation (Laigle et al.,
2018; Kraljic et al., 2018; Kraljic et al., 2019) or star formation rates (Malavasi et al., 2017; Kraljic
et al., 2019). Indeed, galaxies form by converting their gas into stars and by successive mergers,
which are in turn affected by the tides and large-scale modulations of the density field induced by
the cosmic web. The detailed history of how the gas was acquired, which can be described using
the critical event theory developed in chapter 4, and how much AM it brought, as well as the
origin of the mergers should in principle impact the formation of the galaxy. Since the physical
processes involved in dark matter halo formation differ from the baryonic processes at the core of
galaxy formation, one can expect that the cosmic web will have a different impact, if any, on the
formation of galaxies and may explain the disparity of their properties in similar-looking dark
matter halos.

In particular, at fixed halo mass and local density, properties of galaxies such as their colour
or the kinematic structure vary with their location in the cosmic web. One key process in the
differential evolution of galaxies is gas accretion. Indeed, at large redshifts it has been suggested
that the accretion of gas is dominated by flows of cold gas funnelled from the large scales to
galactic scales (Birnboim and Dekel, 2003; Dekel and Birnboim, 2006). This mode of accretion has
then been confirmed in numerical simulations using different methods (Kereš et al., 2005; Dekel
and Birnboim, 2006; Ocvirk et al., 2008; Nelson et al., 2013) as the source of a significant fraction
of the baryonic mass but also AM (Pichon et al., 2011; Kimm et al., 2011; Stewart et al., 2013;
Stewart et al., 2017) and it has been proposed that these flows may feed supermassive black holes
(Di Matteo et al., 2012; Dubois et al., 2012), which in turn affect the cold inflow rates (Dubois et al.,
2013). Using an extension of TTT (Peebles, 1969; Schaefer, 2009), Codis et al., 2015 showed that
anisotropic environments, such as large-scale filamentary structures, biases the AM distribution
to align it with the cosmic web. It is then expected that this gas will fall in galaxies via cold flows,
feeding disks with angular-momentum rich gas that is itself aligned with the tides of the cosmic
web.

Recent works have shown that the flows are subject to a variety of processes: they may
fragment (Cornuault et al., 2018) or be disrupted by hydrodynamical instabilities (Mandelker
et al., 2016; Mandelker et al., 2019), but they are also sensible to feedback events (Dubois et al.,
2013). In this context, Danovich et al., 2015 showed that in numerical simulations, cold flows are
nevertheless able to feed galaxies with angular-momentum rich material (as speculated by Pichon
et al., 2011; Stewart et al., 2013). In this study, it was shown that the AM acquired outside the halo
at z = 2 is transported down to the inner halo; the gas then settles in a ring surrounding the disk,
where gravitational torques spin the gas down to the mean spin of the baryons. Another study,
albeit at larger redshifts, found that the dominant force was pressure (Prieto et al., 2017). Since
there is not much freedom on the final AM of the galaxies, as constrained by their radius, the
excess AM brought by cold flows has to be redistributed somehow before it reaches the disk. The
details of where this AM will end up are key to understand the AM distribution in galaxies, but
also to understand to what extent their spin is aligned with the cosmic web. If the dominant forces
acting on the AM are pressure forces, resulting from internal processes (SN winds, AGN feedback
bubbles), then the spin of the galaxy would likely be a result of chaotic internal processes and
would lose its connection to the cosmic web. Similarly, if the AM is lost into thermal energy (which
is then radiated away) in shocks, the galactic spin would be a weak function of the large-scale
AM induced by the cosmic web. On the contrary, if the dominant forces are gravitational forces,
then the spin-down of the cold gas is likely to drive a spin-up of either the disk or the dark matter
halo, which themselves are the result of their past AM accretion history. In this last scenario, the
details of which part(s) of the halo or the disk interact exchange AM with the infalling material
would constrain models aimed to understand the evolution of the spin of galaxies.

Historically, the study of cold accretion has been particularly challenging in numerical simu-
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lations. Early simulations using SPH methods largely over-estimated the fraction of gas accreted
cold (see e.g. Nelson et al., 2013, for a discussion on this particular issue) as a result of the difficulty
to capture shocks using SPH. AMR simulations do not suffer from this caveat (Ocvirk et al., 2008),
yet they fail at providing the Lagrangian history of the gas — in particular its past temperature
— which is required to detect the cold-accreted gas. In order to circumvent this limitation, most
simulations relied on velocity-advected tracer particles (Dubois et al., 2013; Tillson et al., 2015).
However, this approach yields a very biased tracer distribution that fails at reproducing correctly
the spatial distribution of gas in filaments: most tracer particles end up in convergent regions
(centre of galaxies, centre of filaments) while divergent regions are under-sampled. In order
to reproduce more accurately the gas distribution, Genel et al., 2013 suggested relying on a
Monte-Carlo approach where tracer particle follow mass fluxes instead of being advected. Using
this approach, I have showed in chapter 5 (Cadiou et al., 2019) that tracer particles are able to
faithfully reproduce the gas distribution while providing the Lagrangian history of the gas, and
in particular its past temperature and position.

In this chapter, I investigate the evolution of the AM of the cold and hot gas using cosmological
simulations of group progenitors at z > 2. I provide a detailed study of the evolution of the AM of
the cold and hot gas. In particular, this chapter aims at answering the question of which forces are
responsible for the spin-down and realignment of the AM of the gas accreted in the two modes of
accretion (hot and cold). Section 6.2 presents the numerical setup. Section 6.3 presents the AM
evolution of the cold and hot gas. It follows the evolution of the magnitude and orientation of the
AM and the different forces and torques at play in the different regions of the halos. It details the
evolution of the magnitude and orientation of the AM and the different forces and torques at play
in the different regions of the halos. Section 6.4, I present their implication on the distribution of
AM in the galaxy and the inner halo. Finally, section 6.5 wraps things up and concludes.

In the following of this chapter, I will adopt the same naming conventions as Danovich et al.,
2015. I will write Rvir the virial radius of a halo. The outer halo is defined as the region between
Rvir and Rvir/3. The inner halo is defined as the region between Rvir/3 and Rvir/10. The “disk”
is the region at radius r < Rvir/10 where the galaxy is found. This is sketched on figure 6.1.1.

6.2 Methods

In section 6.2.1, I establish the equations that link the AM evolution of the gas to the different
torques. In section 6.2.2, I describe the simulations I ran. In section 6.2.3, I describe how I selected
the cold gas being accreted on the halos in the simulations.

6.2.1 Equations

In the following, the position and velocities are computed in the frame of the halo, as measured
with the AdaptaHOP halo finder (Tweed et al., 2009). Let me first derive the equation driving the
evolution of the sAM of the gas,

l = r× v. (6.1)

To do so, let us start from Euler’s equation and the mass conservation equation

∂ρ

∂t
+∇ · (ρv) = 0, (6.2)

∂v

∂t
+ (v · ∇)v = −∇P

ρ
−∇φ. (6.3)

Taking the derivative of equation (6.1) w.r.t. time, one gets that

dl

dt
= r×

(
∂v

∂t
+ (v · ∇)v

)

+

(
∂r

∂t
+ (v · ∇)r

)

× v. (6.4)
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After trivial algebra, the rightmost part of the right-hand side vanishes. Using equations (6.3)
and (6.4), the Lagrangian time derivative of the sAM then reads

dl

dt
= τP + τφ, (6.5)

where τP ≡ −r×∇P/ρ, τφ = −r×∇φ are the specific pressure and gravitational torques.
Here P and ρ are the pressure and density of the gas and φ is the gravitational potential. The
potential is defined using Poisson equation

∇2φ = 4πGρtot, (6.6)

where ρtot is the total matter density (DM, stars, gas and SMBHs). Using the linearity of equa-
tion (6.6), the total potential can be written as the sum of the potential due to each component
φ = φDM+φ⋆+φgas

2, using the method developed in section 5.3.1. One can similarly decompose
the gravitational torques into three different components τφ = τφ,DM + τφ,⋆ + τφ,gas. In the
following, I will use this decomposition to assess which gravitational components contributes to
the evolution of the sAM of the gas.

Following section 5.3, let me define the rate of change induced by each torque

fi =
τi · l

‖l‖2
, (6.7)

where i indicates the torque source (DM, star or gas gravitational torques or pressure torques). I
have shown in the previous chapter that this quantity has the physical meaning of the inverse
e-folding time of the sAM on a Lagrangian trajectory. Using equation (6.5) and after some algebra,
one also gets that the total rate of change can be simply expressed as the variation of the sAM
f = d log l/dt . Let me emphasize here that this relation only holds for the total rate of change.
From equation (6.7), one can also define a typical timescale associated with the torques as

tτ,i =

∣
∣
∣
∣

1

fi

∣
∣
∣
∣
. (6.8)

These timescales measure the typical time over which a given torque will significantly change
the sAM of the gas. As equations (6.7) and (6.8) only use the contribution of the torque in the
direction of the sAM, the timescale measures the typical time required to loose all the sAM, but
not to reorient it. Note that one could compute similarly the realignement timescale by replacing
the dot product of equation (6.7) with the norm of the cross product f⊥,i ∝ |τi × l|. In addition,
the rate of change is a scalar that can have a negative value if the torques are spinning the gas
down (anti-aligned with the sAM vector) while it has a positive value if they are spinning the gas
up (aligned with the sAM vector).

6.2.2 Numerical simulation

I have run a suite of three 50 cMpc/h-wide cosmological simulations, hereafter named S1, S2, S3.
The three simulations contain 6 halos with M ' 5× 1011M⊙3, hereafter named A, B, C, D, E
and F. Their properties are presented in Table 6.1. The size of the zoomed Lagrangian volume
in the initial conditions is chosen to encapsulate twice the virial radius of the halo at z = 2.
The simulation are started with a coarse grid of 1283 (level 7) and several nested grids with
increasing levels of refinement up to level 11. The adopted cosmology has a total matter density

2I neglect here the contribution from SMBHs as they do not contribute significantly to the potential on galactic
scales.

3Only pure halos in the zoomed-region have been selected.



164 Chapter 6. Angular momentum acquisition from the cosmic web

Table 6.1: Properties of the halos at z = 2.

Name Simulation Mvir/10
11M⊙ M⋆/10

10M⊙

A S1 3.66 6.07
B S2 7.82 9.20
C S3 6.64 5.09
D S1 7.29 4.18
E S1 5.23 7.84
F S3 4.63 3.49

of Ωm = 0.3089, a dark energy density of ΩΛ = 0.6911, a baryonic mass density of Ωb = 0.0486,
a Hubble constant of H0 = 67.74 km s−1Mpc−1 , a variance at 8Mpc σ8 = 0.8159, and a non-
linear power spectrum index of ns = 0.9667, compatible with a Planck 2015 cosmology (Planck
Collaboration, 2015).

The simulations include a metal-dependent tabulated gas cooling function following Suther-
land and Dopita, 1993 allowing gas to cool down to T ∼ 104K via Bremsstrahlung radiation
(effective until T ∼ 106K), via collisional and ionisation excitation followed by recombination
(dominant for 104K ≤ T ≤ 106K) and via Compton cooling (see section 2.2.2.1). The metallicity
of the gas in the simulation is initialised to Z0 = 10−3 Z⊙ to allow further cooling below 104K
down to Tmin = 10K (Rosen and Bregman, 1995). Reionisation occurs at z = 8.5 using the
Haardt and Madau, 1996 model and gas self-shielding above 10−2mp cm

−3. Star formation is
allowed above a gas number density of n0 = 10mp cm

−3 and with efficiency ǫff that depends on
the gravoturbulent properties of the gas (for details, see Kimm et al., 2017; Trebitsch et al., 2017).
The main distinction of this turbulent star-formation recipe with the traditional star formation in
Ramses (Rasera and Teyssier, 2006) is that the efficiency can approach and even exceed 100%
(with ǫff > 1 meaning that stars are formed faster than in a free-fall time). The stellar population
is sampled with a Kroupa, 2001 initial mass function, where ηSN = 0.317 and the yield (in terms of
mass fraction released into metals) is 0.05. The stellar feedback model is the mechanical feedback
model of Kimm et al., 2015 with a boost in momentum due to early UV pre-heating of the gas
following Geen et al., 2015. The simulation also tracks the formation of SMBHs and the evolution
of AGN feedback in jet mode (radio mode) and thermal mode (quasar mode) using the model
of Dubois et al., 2012. The jet is modelled self-consistently by following the AM of the accreted
material and the spin of the black hole (Dubois et al., 2014). The radiative efficiency and spin-up
rate of the SMBH is then computed using the results of McKinney et al., 2012 in their MAD model.
SMBHs are created with a seed mass of 104M⊙ for S1 and 105M⊙ for S2 and S3.

The simulations have a roughly constant physical resolution of 35 pc (one additional maximum
level of refinement at expansion factor 0.1 and 0.2), a star particle mass resolution ofm⋆,res =
1.1× 104M⊙, a dark matter (DM) particle mass resolution of mDM,res = 1.5× 106M⊙, and gas
mass resolution of 2.2× 105M⊙ in the refined region. A cell is refined according to a quasi-
Lagrangian criterion: if ρDM + ρb/fb/DM > 8mDM,res/∆x3, where ρDM, and ρb are respectively
the DM and baryon density (including stars plus gas plus SMBHs), and where fb/DM is the
universal baryon-to-DM mass ratio. The maximum level of refinement is also enforced up to 4
minimum cell size distance around all SMBHs. Tracer particles (Cadiou et al., 2019) are added
in the refined region with a fixed mass of mt = 2.0× 104M⊙ (Ntot ≈ 1.3× 108 particles). The
description of the tracer particle scheme is detailed in chapter 5. There is on average 0.55 tracer
per star and 22 per initial gas resolution element. Cells of size 35 pc and density 20 cm−3 contain
on average one tracer per cell.
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Figure 6.2.1: Upper panel: Projection of the gas density around the halos A (left), B
(centre) and C (right) at z = 2. Lower panel: Line-of-sight integrated star density.

6.2.3 Cold gas selection

The ratio of the total accreted mass with a maximum temperature below a given threshold Tmax

to the total gas mass — the cold fraction — is a widely reported quantity in the study of the
cosmological gas accretion, dating back to Kereš et al., 2005. In this study, a temperature cut
T . Tmax = 2.5× 105K (see e.g. Nelson et al., 2013, for a discussion on the effect of the
threshold) is used. In order to study the sAM evolution of the cold gas, I use the Lagrangian
history of all the baryons (gas and star) that end up within 2Rvir of the central galaxy. This
ensemble of particle in the vicinity of the galaxy is then grouped in three sets:

1. the baryons that end up in the inner halo r < 0.3Rvir at the end of the simulation; I will
refer to this subset as “baryons in the galaxy”,

2. the baryons that never heated above the threshold temperature T ≤ Tmax from 1.5Rvir to
0.3Rvir; I will refer to this subset as “cold baryons”,

3. the baryons that were never accreted on a satellite galaxies; I will refer to this subset as
“directly accreted baryons”; this effectively selects gas whose first accretion is onto the main
halo. In practice, this is done by excluding any tracer found at any time at less than a third
of the virial radius of any halo other than the main one.

The distribution of the gas in halo A at z = 2 is shown on figure 6.2.2 where baryons in the
galaxy are represented in the red ensemble, cold-accreted baryons in blue and directly accreted
baryons in green. In the following of the chapter, the subset of interest is the intersection of the
three ensembles: this is the gas that was accreted cold onto the galaxy, that end up in the inner
halo at z = 2 and that was not accreted via mergers. In the remaining of the paper, I will refer to
this subset as the “cold gas” while I will use “hot gas” to describe gas that was not accreted via

mergers but which eventually heated up above the temperature threshold.
I have checked that the fraction presented on figure 6.2.2 are robust to changes of the threshold
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Figure 6.2.2: Venn diagram of the ensembles of tracer particles used to define the
cold-accreted tracer particles. Direct cold-accreted tracer particles are the intersection
of the tracer particles accreted cold between 1.5 and 0.5Rvir (blue) that end up in the
central galaxy at z = 2 (red) and that were first accreted onto the central halo (green).
See the text for details on how each of these ensembles are defined. Percentages indicate
the fraction in simulation A of all the particles within 2Rvir found in each part of the
diagram. Percentages within parenthesis indicate the fraction of tracer in the inner halo
(r < 0.3Rvir) found in each part of the diagram. Direct cold-accreted baryons represent
26% of the baryons that end up within 2Rvir and 37% of the baryons within 0.3Rvir.

radius for first-accretion detection: using Rthresh = 0.5Rvir instead of 0.3Rvir only leads to
percent differences. Indeed, most of the gas already within 0.5Rvir of a halo is likely to later fall
into the inner part of the galaxy.

6.3 Results

I have now described the equations driving the AM evolution of the gas (section 6.2.1), the
numerical setup (section 6.2.2) and described how the cold gas is selected (section 6.2.3). In this
section, I detail the results obtained. In section 6.3.1, I present the differences between the sAM
and the AM per unit volume, as used in Danovich et al., 2015. In section 6.3.2, I detail the dominant
forces found in the different regions surrounding the galaxy. In sections 6.3.3 and 6.3.4, I describe
the evolution of the AMmagnitude and orientation respectively. Finally, in section 6.3.5, I describe
which torques dominate the evolution of the AM of the gas.

6.3.1 Specific angular momentum vs. angular momentum per unit volume

Equation (6.5) differs from Eq. 9 of Danovich et al., 2015. Indeed, it is an equation on the sAM
instead of the AM per unit volume. The rate of change of AM per volume includes a dependence
to the cell volume via the velocity divergence, which is itself highly sensible to the compression
and decompression of the gas. This is particularly important in astrophysical flows that are
highly compressible. Contrary to what Danovich et al., 2015 reported, I find that the divergence
term dominates over the gravitational and pressure terms. Inflowing gas typically moves at
100 km/s with typical variation scales of a few kpc. An order of magnitude of the divergence
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is then ≈ 100 km s−1/1 kpc ≈ 100Gyr−1, with larger values found in shocked and highly
compressed regions. These values are comparable or larger than pressure and gravitational
torques, highlighting their importance in the study of the evolution of the AM per unit volume.

In the following of the dissertation, I will use the sAM, its evolution being described by
equation (6.5). I will hence not consider the divergence term in the study, as it does not enter the
equation of evolution of the sAM. In addition to ignoring this term, following the Lagrangian
evolution of the sAM has the advantage of interfacing naturally with tracer particles. Indeed,
Lagrangian tracer particles have a fixed mass, so that their sAM is linked to their AM via a
constant factor (their mass).

6.3.2 Dominant forces in the cold and hot phase

The different accretion mode for the cold and the hot phase of the gas leads to a spatial segregation
of the cold phase into thin collimated filamentary structures, as shown on figure 6.2.1. In addition,
their thermodynamical properties differ: the cold phase is made of a quite homogenous gas, so
that the internal pressure gradients are weak. As a result, strong pressure gradients are found at
their interface, as shown by Danovich et al., 2015. On the contrary the hot gas is less homogenous,
so that pressure forces may be locally dominant. Figure 6.3.1 presents projected maps of the
magnitude of the gravitational forces and pressure forces around one halo at z = 2.7 for the hot
gas (top panel) and the cold gas (bottom panel). In addition, figures 6.A.1a and 6.A.1b in annex
presents similar maps in the three directions (x, y and z) for the pressure and DM gravitational
forces. In the hot gas, the two dominant forces are qualitatively DM gravitational forces and
pressure forces, with stellar gravitational forces being important only in the inner halo. In the cold
phase, pressure forces are significantly smaller, while gravitational forces are mostly unchanged.
In the inner halo, a notable “pressure-ring” is clearly visible in the cold gas, as shown in the
bottom right panel of figure 6.3.1.

In order to better disentangle the different contributions to the dynamical evolution of the
gas, one needs to distinguish the radial component of the forces — that is responsible for the
infall of the gas — and the ortho-radial component — that is mostly responsible for the sAM
variation. This is shown on figure 6.3.2 that presents radial profiles of the two components of each
(specific) forces (pressure forces, gravitational forces) in one of the simulated halos. In the disk,
the dominant forces in the radial and ortho-radial directions are stellar gravitational forces due to
the disk. The forces are mostly radial, with their ortho-radial component one order of magnitude
smaller than the radial one. In the inner halo, stellar gravitational forces become less dominant.
The (inward) radial acceleration becomes DM-dominated, while the ortho-radial component is
dominated by pressure torques. This is in particular the case for the hot gas, where ortho-radial
pressure forces are one order of magnitude larger than DM gravitational forces. In the cold phase,
the ortho-radial acceleration is due to both the DM and the pressure forces. The ortho-radial
acceleration stays pressure-dominated in the hot phase up to a few Virial radii. Interestingly,
both components of the gravitational forces have similar magnitudes in the cold and hot phase. I
also notice that in the outer halo, the magnitude of both components of the pressure forces are
comparable, indicating that pressure forces do not have a preferred direction. Here, I report that
the “pressure-ring” corresponds to the rise of the ortho-radial pressure forces, as shown clearly in
figure 6.3.1, right panel. This probably marks the transition between the free-falling cold flows
and the circumgalactic medium and may have a significant impact on the structure of the accreted
gas, and in particular on the cold flows.

6.3.3 The magnitude of the angular momentum

Before turn-around, gas acquires AM via torque with the cosmic web as explained by TTT (Hoyle,
1949; Peebles, 1969; S. D. M. White, 1984; Catelan and Theuns, 1996, see section 2.1.6). At these
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Figure 6.3.1: From left to right, mass-weighted projection of the magnitude of the DM
gravitational forces, stellar gravitational forces, gas gravitational forces and gas pressure
gradients, top panel: for all the gas but the cold one and bottom panel: only the cold gas in
halo A at z = 2.7. In the hot phase outside the halo, gas pressure and DM gravitational
forces have similar magnitudes. In the inner halo star and DM gravitational forces have
a magnitude comparable to pressure forces. In the cold phase, the pressure forces are
significantly weaker. The gas gravitational forces are negligible everywhere in both the
cold and hot phases.
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Figure 6.3.2: Le�: Radial profile of the radial component and right: of the ortho-
radial component of the different forces around halo A at z = 2.7: DM gravitational
forces (black), stellar gravitational forces (orange), gas gravitational forces (blue) and
pressure forces (red). Inward radial accelerations are shown as solid lines and outward
accelerations are shown as dashed lines. Dark lines show the profiles for the hot gas
and light lines for the cold gas. The virial radius Rvir, Rvir/3 and Rvir/10 are shown as
vertical dashed grey lines. Gravitational forces have a similar action on cold gas. The
ortho-radial component of pressure forces is significantly smaller in the cold gas outside
the inner halo.
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Figure 6.3.3: Evolution of the ratio of the gas gravitational torques to the DM gravi-
tational torques (blue) and of the ratio of the stellar gravitational torques to the DM
gravitational torques (orange) for gas crossing a Rvir/3 at z = 2.5 in halo A. The ratio
Ωb/ΩDM (horizontal dotted line) corresponds to the initial gas-to-DM density ratio.
Star torques become important in the inner halo r / Rvir/3 (vertical dotted line).

scales, the torque magnitudes are proportional to the mean density of the gas and DM component.
Indeed, when the gas is far from the halo, the density ratio sourcing the gravitational torques
is given Ωb/ΩDM ≈ 0.19. As a consequence, a similar ratio is expected on the torque ratio, as
shown on figure 6.3.3, which presents the evolution of the torques acting on the cold gas accreted
in halo A at z = 2.5. As expected, the gas-to-DM torque ratio goes to Ωb/ΩDM in the early times,
when the gas is still far from the galaxy.

The sAM of the hot and cold gas follows a different path. In order to study how the sAM
evolves, one can study the Lagrangian evolution of the sAM of all the gas accreted at the same
time as a function of its radius, as shown on figure 6.3.4. The figure presents the Lagrangian
evolution of the sAM as a function of radius for the cold (solid lines) and hot gas (dashed lines).
In all halos, the sAM of the cold gas is conserved down to smaller radii, typically r ∼ Rvir/3 than
in the hot gas.

For the hot gas, the virial shock is able to efficiently mix the pristine, freshly-accreted high-
sAM gas with the gas already in the halo. In the process, most of the AM is either turned into
thermal energy or transferred to the hot halo. This picture is consistent with the results of
section 6.3.2 and figure 6.3.1, where I showed that the dominant forces in the outer halo and up to
the outskirts of the halo in the hot gas are pressure forces.

The fate of cold gas is significantly different. On average in all halos, the cold gas has a sAM
∼ 3 times larger than the hot gas throughout its accretion in the outer halo down to the inner
halo. The cold gas is mostly in free-fall (Rosdahl and Blaizot, 2012) up to the inner halo, where
the cold gas shocks and the sAM quickly drops down to values comparable to the hot gas. While
significant deviations are found from halo to halo, see the different panels of figure 6.3.4, the mean
Lagrangian history of the sAM is clearly different between the cold and the hot gas. These results,
together with figure 6.3.1, suggest that the spin-down of the gas happens due to the interaction
with the inner DM halo and the stellar disk.
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Figure 6.3.4: Evolution of the magnitudes of the mean sAM of the cold gas (solid lines)
and of the hot gas (dashed lines) as a function of the distance to the halo centre for all
halos. Bottom right: Mean value of the sAM averaged over all halos. The gas has been
selected to cross the virial radius inward for the first time at t = 2.2Gyr (z = 2.9).
In the outskirts of the halos (r ∼ 3Rvir), hot gas starts loosing sAM while cold gas
conserves it down to the inner halo (r ∼ Rvir/3).

6.3.4 The orientation of the angular momentum

So far, I have only described the evolution of the magnitude of the sAM of the gas. In practice,
the evolution of the orientation of the sAM evolves slightly differently. In order to quantify the
evolution of the sAM orientation, a relevant quantity is the relative angle between the sAM at
radius R1, R2, defined as

cos θ =
l(R1) · l(R2)

‖l(R1)‖‖l(R2)‖
. (6.9)

If the sAM orientation is conserved, equation (6.9) should have values close to one, whereas
random reorientations yield values close to zeros. Values close to −1 are found in anti-aligned
cases. The evolution of cos θ is shown on figure 6.3.5, which presents the relative alignment of
the sAM between its value at Rvir and its past value at 3Rvir (left panel) and its value at the
interface between the outer and inner halo (0.3Rvir, centre panel) and between the inner halo
and the disk (0.1Rvir, right panel). The alignment angle is computed at crossing time (r = Rvir)
for all six halos. The sAM of the cold gas stays mostly aligned from 3Rvir to 0.3Rvir with typical
misalignments of the order of π/3 (∼ 60°) or less. At its entry in the disk, most of the original
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Figure 6.3.5: Le�: Relative orientation of the sAM of the cold gas at Rvir compared to
its value at 3Rvir (le�),Rvir/3 (middle) andRvir/10 (right) for each halo (thin lines). The
blue thick line shows the median value for the cold gas, smoothed over 11 consecutive
outputs (550Myr) using a fourth-order Savgol filter and the red thick line shows the
median value for the hot gas smoothed in a similar way. In all simulations, the orientation
of the sAM of the cold gas is conserved down to ∼ Rvir/3. Upon the entry in the disk,
the sAM is reoriented and loses its connection to the large scale. The sAM of the hot
gas start decoupling at larger radii.

orientation has been lost. I however report a weak yet non-null alignment. Before entering the
halo, the evolution of the hot gas is similar to the cold gas: the orientation is conserved from 3Rvir

toRvir but it becomes significantly less aligned betweenRvir andRvir/3, where the misalignment
is typically of the order of 2π/5 (∼ 70°). I do not report any significant evolution of the sAM
orientation with redshift.

6.3.5 Dominant torques in the cold and hot phase

I have presented in sections 6.3.3 and 6.3.4 that the cold gas retains its orientation and magnitude
down to the inner halo, while the hot gas has lost most of its orientation before entering the halo
and conserves its orientation down to the inner halo. Here, I study which torques are responsible
for the realigment and spin-down of the gas.

Figure 6.3.6 shows a 3D representation of the sAM, pressure torques and gravitational torques
acting on the cold gas of halo A at z = 3. The figure illustrates that both sAM and gravitational
torques have a coherent long-range spatial structure, as neighbouring vectors are aligned one
with each other. On the contrary, pressure torques vary on scales similar or smaller than the size
of filamentary structures, so that the net contribution of the pressure torque on a slab of filament
cancels out, as neighbouring vectors point in opposite directions. Gravitational torques have a net
(positive or negative) contribution thanks to their large-scale coherence, so that their effect adds
up. More quantitatively, the coherence of the torques can be estimated by comparing the local
torque value to the local torque standard deviation. This is similar to computing their “signal-to-
noise” ratio, where the signal is the torque magnitude and the noise is its local deviation. Large
values of this quantity are found in regions where torques have a coherent structures while small
values are found in regions with no structure. In figure 6.3.7, I present mass-weighted projections
of their signal-to-noise ratio, where the local standard deviation is computed using the 33 nearest
cells in the cold gas. This illustrates that pressure torques have no spatial coherence, so that
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Figure 6.3.6: 3D representation of the sAM (left panel), pressure torques (central panel)
and DM gravitational torques (right panel, black) and stellar gravitational torques (right
panel, yellow) of the cold gas being accreted onto the central galaxy of halo A at z = 2.7.
An interactive version can be found online. Pressure torques applied to the cold gas
are mostly directed radially with respect to the filamentary structure, so that their net
impact averages to zero. Gravitational torques are spatially coherent and contribute to
a non-null net torque on the cold gas.

different locations of the cold flows may be either spun-up or spun-down. On the contrary, large
patches of the cold flows undergo coherent gravitational torques that can add up. Interestingly,
gas gravitational torques seem to have more fluctuations than other gravitational torques, so that
their net effect is small, even though they may contribute to the local force budget in the inner
halo. In the disk, all torque sources lose their long-range spatial coherence and appear noisy. This
signal-to-noise ratio for pressure torques is of the order of 10−3, so that it is expected that the
net contribution of pressure torques can be decreased by three order of magnitudes compared to
their mean magnitude.

In order to go one step further, let me study the evolution of the cold gas by computing the
contributions of the different torques to the spin-up or spin-down of the gas, projected on the axis
of the mean sAM at a given radius. This is done on figure 6.3.8, which presents the Lagrangian
evolution of the projection of the torques on the mean sAM at 5Rvir (left panel), Rvir (centre
panel) and Rvir/2 (right panel) for halo B. The quantity plotted here is the projection of each
torques on the mean sAM of the cold gas at a given radius

τ‖,i,R0
(t) ≡ τi(t) ·

∑

part li(r = R0)
∣
∣
∣
∑

part li(r = R0)
∣
∣
∣

, (6.10)

where R0 = 5Rvir, Rvir, Rvir/2 respectively and i denotes the pressure torque or any of the
gravitational torques. The cold gas has been selected to cross r = Rvir/3 at t = 2Gyr (z = 3.2).
The projected torque measures the propensity of the torque to spin the gas down if negative or
spin the gas up if positive. In particular, large negative values contribute to remove the sAM
acquired in the cosmic web. I have checked that the results presented are not sensitive to the
radius at which the sAM has been measured, as long as it its measured in the outer halo or
beyond. This is expected from figure 6.3.5, where I have showed that the sAM of the cold gas is
well-aligned down to the inner halo, so that the orientation is conserved. I also report that using
the mean sAM of the gas or the individual value of the sAM of each tracer particle lead to similar
results (only the plot with the mean value is reported in this dissertation).

Figure 6.3.8 shows that, once averaged over the entire cold phase, pressure forces do not
contribute significantly to the variation of the sAM of the gas. Indeed, I have shown on figure 6.3.7
that pressure forces are dominated by high-frequency spatial modulations, with a signal-to-noise
ratio of the order of 10−3. While the magnitude of the pressure forces are comparable to the
DM gravitational forces, their net contribution to the torque budget is shown to be at least three

https://pub.cphyc.me/Science/3d/torque_z=2.html
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Figure 6.3.7: Mass-weighted projection of the ratio between the magnitude of the
torques and the local standard deviation of the torques in halo A at z = 2 from left to
right, for pressure torques, stellar gravitational torques, DM gravitational torques and
gas torques. The local standard deviation is computed using the value of the torque in
the 8 nearest cells. Blue regions indicate regions where torques are distributed randomly
and red regions indicate where torques have a smooth and coherent distribution. The
inner halo (Rvir/3) is indicated by the grey dashed circle, while the dotted grey circle
indicates Rvir/10. In all regions, pressure torques have no spatial coherence on kpc
scales. All gravitational sources have a much larger coherence scale, apart in a few
regions in the filaments and in the disk.

order of magnitude smaller. As gas falls towards the galaxy, gravitational forces exert increasing
torques resulting in a spin-down of the gas. In the inner halo down, torques become weakly
aligned to the mean sAM of the gas at Rvir, so that their projection can either contribute to the
spin-up or spin-down in this specific frame, which is shown on figure 6.3.8 by rapid jumps from
negative to positive values once the gas has entered the inner halo. Similar results can be found if
one projects the torques on the axis of the AM vector of the galaxy at the end of the simulation,
L⋆(z = 2), as shown for halos A and B on figure 6.A.2. These plots also feature individual
Lagrangian trajectories of the gas and illustrate that pressure torques spin the gas up as much as
they spin it down. In contrast, gravitational torques are coherent over the Lagrangian evolution
of the gas, so that their contribution adds up to spin the cold gas down. The bottom-right panels
of figure 6.A.2 show the ratio of the DM gravitational torques to the stellar gravitational torques.
As shown in figure 6.3.8, stellar gravitational torques are negligible in the outer halo but become
dominant in the inner halo and in the disk.

The hierarchy between the different torques can in principle evolve with redshift. In order to
study their relative importance, I have computed the total pressure torques, DM gravitational
torques and stellar torques and compared the magnitude of each torques to the total torques from
all sources τall = τP + τDM + τ⋆. The ratio r is then defined as

ri =
|∑particles τi|
|∑particles τall|

. (6.11)

Here i can be any of P,DM, ⋆ and sums are taken over all cold gas particles. The results are
presented on figure 6.3.9, where torque ratios are presented as a function of the radial distance
to the galaxy. Note that due to the definition, ratios can exceed one4. The figure shows that
after a settling time of about 1Gyr (z = 5.7), the ratios of each torque are constant at all radii,
with the DM gravitational torques dominating in the outer halo and stellar gravitational torques
dominating around the disk. Outside the halo at 2Rvir, gravitational torques contribute to 90% of
the total torques, while this fraction decreases to about 60% at Rvir/3. In the disk, gravitational

4This can happen if two torques have similar magnitudes but opposite directions.
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Figure 6.3.8: Evolution of the radius (le� panel) and the specific torques projected on
the direction of the mean sAM of the gas at r = 5Rvir, r = Rvir and r = Rvir/2 for halo
B (from left to right). Solid lines indicate negative values (spin down) and dashed lines
positive values (spin up). Particle are selected to cross Rvir/3 at t = 2Gyr (z = 3.2)
(vertical dotted lines). The mean time at which the sAM is measured is shown as vertical
dashed lines. In all regions, pressure torques are negligible, as a result of averaging the
projection of a randomly oriented field (the pressure torques) onto a fairly smooth field
(the sAM).

torques are dominated by stellar gravitational torques. In the six halos, the net contribution of
pressure torques is negligible.

6.4 Discussion

At large radii, the evolution of the AM follows the tides imposed by the cosmic web, as explained
by the TTT (e.g. Codis et al., 2012). The gas then flows on the forming galaxy via two different
channels: the hot and cold accretion, in particular for massive enough galaxies at z & 2 (Birnboim
and Dekel, 2003; Dekel and Birnboim, 2006; Pichon et al., 2011; Nelson et al., 2013). The pre-
dominance of one or the other channels of accretion can be used to understand the formation of
disky galaxies and the internal evolution of the galaxy. Indeed, in cold flows that result from cold
accretion, the gas is able to penetrate deep in the halo and can feed the galaxy with fresh gas, with
a steady AM orientation (Pichon et al., 2011; Stewart et al., 2013). In numerical simulations, it has
been observed that cold gas has a higher AM at larger radii, as measured by their spin parameter
(Kimm et al., 2011; Tillson et al., 2015; Danovich et al., 2015) which is up to one order of magnitude
larger than that of the DM. In the inner halo and the disk however, the spin parameter of the
cold-accreted gas is found to be only three times larger than that of the DM at the same location.
The nature of the torques acting to reduce the AM of the gas is still debated today. While Danovich
et al., 2015 argued that the dominant torques are gravitational torques regardless of the distance
to the galaxy, Prieto et al., 2017 instead found that the dominant torques were pressure torques. In
this work, I find that the pressure forces are dominant in the hot phase and are as important as the
DM gravitational forces in the outer halo, in particular in the ortho-radial direction. In the inner
halo, a transition occurs so that the dominant forces become stellar gravitational forces. I also
report a significant “pressure ring” in the inner halo that may affect the kinematics of the infalling
gas in which pressure forces dominate over all forces in both the cold- and hot-accreted gas. This
pressure ring may impact the thermodynamical evolution of the gas, as well as to contribute to
mixing the cold-accreted material to the hot gas, effectively blurring the line between hot- and
cold-accreted material. The study of this pressure ring will be the topic of future work.

While pressure forces can act locally as the dominant forces, I report that their net contribution
to the evolution of the cold gas is negligible. Indeed, pressure forces do not possess any structure
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Figure 6.3.9: Absolute value of the torque ratios ri measured in the cold gas (see text
for details) as a function of time in different halos for different radial distance, as labelled.
Bottom le�: Mean value of the torque ratios, averaged over all six halos. After 1Gyr,
there is no average evolution of the torque ratios at any radius.

over hundreds of parsecs, so that their individual contributions to the evolution of the cold gas
cancel out. On the contrary, gravitational forces, that depend on the distribution of matter on
larger scales, are able to coherently apply torques on the infalling material, resulting in most of
the spin-down signal.

The net effect of the gravitational forces is reported to be a spin-down of the accreted gas, as a
result of gravitational torques. Most of the spin-down of the hot gas happens before entering the
halo and is due to DM torques. One possible reason is the following: under the effect of gas infall,
the DM halo becomes slightly polarised which in turn creates a tidal field that will torque the hot
gas down. Using the ortho-radial gravitational forces reported in figure 6.3.1, the typical angular
momentum of the gas upon its entry in the halo (∼ 104 km/s kpc) would be depleted in a time
tτ,DM(R = 100 kpc) ≈ 104 km/s kpc/10−1 km/s/Myr × 80 kpc ≈ 1 250Gyr, which is about
twice the free-fall time of the halo tff = 500Myr at z = 2. If the hot gas lingers in the outskirts
of the outer halo during two free-fall times, the DM gravitational torques are large enough to
get rid of most of the angular momentum before accretion. In our simulations, hot gas takes on
average (1 000± 500)Myr to fall from 3Rvir(z = 2) to Rvir(z = 2)/3 where Rvir(z = 2) is the
final virial radius of the halo at z = 2.

Interestingly, I find that, even though most of the AM has been lost before entering the halo,
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the orientation of the AM of the hot gas is well-conserved between Rvir and Rvir/3. This can
be explained either by the fact that the spin of the halo, which has been reported to be well
aligned with the first principal axis of the large scale tides (Danovich et al., 2012) do not reorient
significantly the AM of hot gas (which is itself aligned with the first principal axis of the large
scale tides), or that the infall of the hot gas coincides with the loss of most, but not all, of its
angular momentum. In this scenario, the hot gas starts infalling at the sweet spot where most
of the angular momentum has been lost (so that the centrifugal force becomes negligible), but
before all of it has been removed. This problem will however require a more detailed analysis.

As reported in Rosdahl and Blaizot, 2012, the trajectory of the cold gas is different and follows a
mostly radial (with a non-null impact parameters) almost free-fall trajectory. In our simulation, the
cold gas typically takes (500± 350)Myr to go from 3Rvir toRvir/3, so that the halo gravitational
torques are not large enough to reduce the AM of the cold gas. As the cold gas plunges into the
halo, the influence of the disk increases up to the point where torques become dominated by
stars. I report here that the location where the disk torques become important coincides with the
location where most of the AM of the cold gas has been lost. This may be an indication that the
disk is actually responsible for the spin-down of the cold gas. If so, one would need to understand
how the disk responds to an anisotropic accretion and more work is needed to understand in
details the origin of the torques originating from the disk. One can then suggest that both the
inner halo and the disk will then tend to be aligned to the mean orientation of the inflowing
material in a similar way. This may explain why galactic spin is well aligned with the internal
halo’s, while being only mildly aligned with the global halo spin.

Cornuault et al., 2018 suggested that cold flows do not survive within the halo. They suggested
that they instead fragment into clouds while their internal pressure increases. In the process, the
kinetic energy of the gas is lowered as part of it is converted into turbulence and the gas mixes
much more efficiently with the hot gas of the halo, effectively loosing the shielding effect usually
assumed for cold flows. In this scenario, the pressure gradients observed in my simulations may
contribute to efficiently mix the angular-momentum rich cold gas to the hot gas. This would
likely result to a diffusion of the AM of the cold gas into the hot medium and increase the relative
importance of pressure torques to the problem of the AM transport.

Using idealised simulations, Mandelker et al., 2016; Padnos et al., 2018; Mandelker et al., 2019
showed that cold flows may also be sensitive to the Kelvin-Helmholtz instability. In particular, they
showed that thin-enough filaments are destroyed before reaching the galaxy. In this last case, the
cold gas would effectively lose its angular momentum to the hot halo before interacting with the
galaxy. Interestingly, these studies also suggested that cold flows may entrain the neighbouring
hot gas as they fall in while slowing down the infall of the cold gas, which may result in an efficient
mixing of the AM at the boundary of the cold flows. Berlok and Pfrommer, 2019 suggested that
the mixing may be decreased if one considers magnetised flows with field lines parallel to the
flow, as a result of a magnetic tension working against the Kelvin-Helmholtz instability.

Nelson et al., 2015 studied the effect of AGN feedback on cold accretion. They showed
that feedback is able to significantly increase the infall time. If the delay is large enough, DM
gravitational torques may have time to remove all AM from the cold gas before it enters the inner
halo — as is already the case with hot gas in the simulations presented in this dissertation. In
another study on the effect of AGN feedback on cold flows, Dubois et al., 2013 showed that at
z ≥ 6, the AGN activity in massive halo is able to prevent cold flows from reaching the disk
and significantly decreases the cold gas mass in the inner halo. On large scales, AGN activity
increases the curvature of filaments and decreases their length. The exact effect of AGN feedback
will require further studies. It may lead to a revision of the results presented in this dissertation
depending on their ability to disrupt the cold flow structures prior to accretion and delay the
infall. One possible way to study this would require running numerical simulations with different
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Figure 6.5.1: Sketch of the evolution of the AM at large z (not to scale). Hot gas (red
dashed line) is spun-up by the cosmic web and loses most of its AM at the virial radius
in the shock. Cold gas (blue dashed line) is spun-up by the cosmic web and retains its
AM down to the inner halo. Between the inner halo and the disk, most of the AM is lost
due to interactions with the DM halo and the disk.

Using a set of high-resolution zoom-in simulations, I have studied the evolution of the AM of gas
accreted via the cold and the hot mode around six group progenitors at z & 2. I also presented new
numerical methods to extract the contributions of the different forces and torques (gravitational
and pressure torques). My findings are the following:

i) the magnitude of the sAM of the cold gas is conserved down to the inner halo, the magnitude
of the sAM of the hot gas is lost outside the halo,

ii) the orientation of the sAM of the cold gas is conserved down to the inner halo,
iii) the sAM of the hot gas is significantly less aligned to the large scale environment,
iv) the dominant local forces in the cold gas are pressure forces and DM gravitational forces in

the outer halo, and DM gravitational and stellar gravitational forces in the inner halo and
the disk,

v) though, the pressure forces lack a spatial structure, so that their net contribution averages
out in the cold gas,

vi) therefore, the dominant torques in the cold cold gas are gravitational torques: DM gravi-
tational torques dominate in the outer halo, stellar gravitational torques dominate in the
disk.

The results on the major torques are sketched on figure 6.5.1. My findings indicate that the
acquisition of the AM for group progenitors at z & 2 is driven by the AM acquired at large-scale,
consistent with the findings that the spin of galaxies is aligned with their environment. Most of
the AM is able to flow down to the inner halo where gravitational torques redistribute it to the
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DM and the disk component, effectively transporting AM from the scales of the cosmic web to the
scales involved in disk formation. These findings indicate that galaxy formation models aimed at
understanding AM acquisition should take into account the cold accretion mode, at least at high
redshift. I have underlined that AM acquisition is dominated at large scales by the interaction
with the cosmic web. In the halo, the evolution of the sAM of the cold flows is dominated by
interactions with the inner halo and the disk. The sAM of the hot-accreted material is dominated
by its interaction with the halo.

This work is part of an ongoing research effort. As a significant part of my work was devoted
to the development of numerical methods, I have only touched some aspects of the complex
angular momentum exchanges in the CGM. This fascinating topic will continue to motivate some
of my research in the upcoming years.

6.A Additional material

In this section, I provide additional material. Figures 6.A.1a and 6.A.1b present mass-weighted
projections of the magnitude of the pressure gradients and of the DM gravitational forces for halo
A. They complement figure 6.3.1 by providing views in the xz and yz planes. In particular, the
structure of the pressure ring is clearly visible in the pressure plots and not visible at all in the
gravitational forces plots. Figures 6.A.2a and 6.A.2b present the evolution of the torques projected
on the AM vector of the galaxy at z = 2 for halos A and B. The evolution of the torques projected
on the axis of the galaxy are qualitatively similar for halos A and B.
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Figure 6.A.1: (a) Mass-weighted projections of the magnitude of pressure gradients
and (b) of the magnitude of DM gravitational forces for the hot gas (top rows) and the
cold gas (bottom rows) in halo A. From left to right in the xy, xz and yz plane. The
grey circle is the virial radius of the halo. Pressure forces have a smaller magnitude in
the cold gas than in the hot gas. DM gravitational forces have comparable magnitudes
in the cold and hot gas.
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Figure 6.A.2: Trajectories (grey lines) of cold accreted gas particles with a first infall
at z = 2.5 (vertical dotted line) in halo A (a) and B (b). Upper le�: The radial distance
to the galaxy, upper centre: The total gravitational torque, upper right: the pressure
torques, bottom le�: the DM gravitational torques, bottom centre: the stellar gravitational
torques and bottom right: the ratio of the DM to stellar gravitational torques. All the
torques are projected onto the normalised AM vector of the galaxy L̂⋆. Median (blue)
and mean (orange) values are shown as a function of time. DM is responsible to sAM
acquisition at large radii. Stars and DM are responsible for the decrease of sAM at
∼ 2Rvir > r > Rvir/3. In the inner halo, torques become dominated by stars.
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7. Conclusion

7.1 Closing remarks

One of the key value of natural science lays in its predictive power. Hence, in the context of
structure formation, a central question that theoretical cosmology must address is the following:
to what extent can today’s properties of galaxies be predicted from the initial Gaussian random
field from which they emerge? More specifically, how can one encode the initial conditions in a
compressed way to predict the fate of galaxies that will emerge from them?

Using an extension of the excursion set theory (Bond et al., 1991; Lacey and Cole, 1993;
Mo and S. D. M. White, 1996), I have shown in chapter 4 (Musso, Cadiou et al., 2018) that the
cosmic web, and in particular large scale filaments, biases the formation of dark matter halos.
The formalism predicts that the variables entering the assembly history of the halo, namely the
halo formation time and the accretion rate, are modulated by the cosmic web. As a result, at fixed
final mass, halos forming close to nodes of the cosmic web are found to accrete more and have
formed at later times, in agreement withN -body simulations for large-mass halos (R. K. Sheth and
Tormen, 2004; Gao et al., 2005; Wechsler et al., 2006; Dalal et al., 2008). This effect complements
other suggestions that the tides may be responsible for the assembly bias signal as it is purely
geometric: as halos grow by accreting material, they also probe larger scales whose statistical
structure is set by the cosmic web. I also argued that this provides a natural frame in which the
assembly signal is simply a spatial modulation, or stated differently, different assembly histories
are to be expected at different locations. This framework has since been used to show that, in
hydrodynamical simulations, the cosmic web has also an effect on the assembly of galaxies. In
Kraljic et al., 2018; Kraljic et al., 2019 (appendices B.1 and B.2), we reported that the specific star
formation rate and the velocity-to-velocity-dispersion ratio both present significant modulations
along filaments, highlighting that, indeed, filamentary structures can be used as a metric to
parametrise the assembly of dark matter halos and galaxies therein.

In this dissertation, I also highlighted a process entering galaxy and darkmatter halo formation,
namely the coalescence of critical points of the cosmic web, whose theory was developed in
chapter 4. I computed the rate of merger events as a function of smoothing scale from the
initial cosmic landscape to forecast special events which impact the geometry of galactic infall,
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and in particular filament disconnection. Using an extension of the theory to the mildly non-
linear regime, I showed that one can connect our predictions to results obtained from N -body
simulations. In particular, the formalism is able to detect halo merger events, but also filament-
and wall-mergers in the Lagrangian initial conditions. I argued that these events, named “critical
events”, may be relevant parameters entering galaxy models, in particular to understand the
evolution of galaxy properties that depend on the geometry of the accretion (such as their spin or
their velocity-to-velocity-dispersion). This could readily be used to constrain further the assembly
of galaxies by providing variables describing the evolution of the environment.

In the current understanding of galaxy formation, the evolution of the baryons is driven by
the cosmic web on large scales, while at small scales complex interactions between the gas, stars
and AGNs and the dark matter halo drive most of the physics. While the impact of the cosmic
web on halo and galaxy formation can be studied to some extent from first principles as I have
demonstrated in chapters 3 and 4, the complex baryonic physics at play make the task much
more complex on smaller scales. I have presented a novel tracer particle scheme in chapter 5
(Cadiou et al., 2019) that is able to accurately trace the Lagrangian trajectories of gas elements
in the adaptive mesh refinement code Ramses. As a first application, the method has then been
applied on a suite of hydrodynamical cosmological simulations to study the angular momentum
acquisition on z > 2 galaxies, presented in chapter 6. I have studied the formation of disk galaxies
at large redshift and showed that the information acquired by the gas at large scales is transported
to the inner regions of the halo and in the galaxy. In particular, cold flows are able to retain
most of their angular momentum down to the inner halo. In the inner halo and around the disk,
complex gravitational torques redistribute the angular momentum to the inner halo and the stellar
component. I argue that this may lead to a good alignment of the inner halo and the galaxy, since
their angular momentum is partially driven by their interaction with cold flows. This internal
alignment is also expected to reflect the large-scale tidal field set by the cosmic web, as most of
the anisotropic information is transported to the internal regions.

As a final conclusion, I have shown that the cosmic web is able to influence the assembly of
dark matter halos. One can build theoretical models in which part of the assembly bias can simply
be interpreted as a large-scale environment modulation, which cannot be parametrised easily in
terms of the local properties of the field, and which apply to both for dark matter halos and galaxies.
I proposed a set of parameters, the critical events, that are suited to the compact description of the
evolution of the cosmic web and argued that the geometry of the accretion onto galaxies via cold
flows, and its evolution, can have a significant impact on the properties of galaxies, in particular
against the ones sensitive to the anisotropy of the flows. This is in particularly highlighted by a
numerical study that showed that the angular momentum of the gas, set by the cosmic web, is
effectively transported down to the galaxy where complex interactions redistribute it. I suggest
that in order to capture effects beyond mass and density relations, models of galaxy and halo
formation should be augmented by parameters describing the non-local structure of the cosmic
web at large-scales in terms of its critical points (nodes, filament and wall centres) but also in
terms of their evolution, as described by critical events within their Lagrangian patch.

7.2 Perspectives and applications of my work

Thanks to the novel tools (constrained excursion set theory, critical event theory, Monte Carlo
tracer particles) I have recently developed, our prospects of understanding the impact of the
cosmic web on galaxy formation is hopefully brighter. It should enable us to soon produce new
results in the context of galaxy formation and large scale structure hydrodynamics.
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7.2.1 Extensions of the constrained excursion set theory

On the theoretical side, the predictions on assembly bias have proven quite successful at providing
a physical understanding of the effect of the cosmic web on halo formation (Kraljic et al., 2018;
Kraljic et al., 2019, see appendices B.1 and B.2). There is however room for further improvement
to get a more refined model. One possible extension would require taking into account ellipsoidal
collapse (Hahn and Paranjape, 2014; Ludlow et al., 2014; Ramakrishnan et al., 2019). As a first step,
one could extend the work of chapter 4 with a barrier that depends on the mean tidal structure of
the field. While this would not provide a definitive answer, one would recover the predictions
of Musso et al., 2018 with an extra modulation coming from the mean tidal environment in the
form of a shifted, spatially-modulated barrier δc → δc(r), where r is the distance to the nearest
structure. This would likely have the consequence of delaying collapse in high-tide regions.
Another possible approach to the problem of the tides on the collapse of halos is to rely on a
Monte-Carlo sampling to explore the different excursion trajectories constrained to their large-
scale environment. One could then seek the first-crossing given a barrier that is itself a random
variable of the smoothing scale (using for example the shear strength, Hahn et al., 2009; Castorina
et al., 2016; Borzyszkowski et al., 2017). In addition to explicitly taking into account ellipsoidal
collapse and the effect of tides, this would also enable us to use the first-crossing condition instead
of an approximation, so that the results could be extended to smaller masses. A detailed study
would also require taking into account the Zel’dovich displacement (in the spirit of the peak patch
theory, Bond and Myers, 1996), and in particular study the effect of a galaxy travelling from voids
to sheets, from sheets to filaments, and along filaments to nodes, as significant relative velocities
can be acquired by the travelling galaxy which may explain the presence of quenched halos at
the geometrical centre of filaments (Borzyszkowski et al., 2017; Romano-Díaz et al., 2017; Garaldi
et al., 2018).

7.2.2 Following dust formation using Monte-Carlo sampling methods

The Monte Carlo tracer particle, described in chapter 5, have obviously a broad range of applica-
tions. They have already been used to follow the formation and disruption of clumps in Coma-like
clusters (Beckmann et al., 2019, appendix B.3). The problem of following the Lagrangian history of
elements in a Eulerian framework should also find applications in coupled dust grain-gas models.
In particular, bi-fluid models of strongly coupled dust and gas mixtures are difficult to integrate
numerically. For Lagrangian-based methods they tend to produce spurious dust aggregates when
the grains are accumulated below the resolution length of the gas (Ayliffe et al., 2012). In AMR
codes, it was recently proposed to treat the dust-gas mixture as a single fluid with a diffusion
term fluid instead (Lebreuilly et al., 2019), yielding accurate results for strongly coupled (small)
grains. This method however requires one fluid per grain size bin, so that the treatment of a
large range of grain size quickly becomes tedious. In order to circumvent this problem, one could
modify the Monte Carlo approach of chapter 5 to follow individual dust grains with arbitrary
grain size distribution. One would have to modify the transition probability involved in the tracer
particle scheme (equation 5.1) to account for the relative drift of the dust grain with respect to the
gas. This approach should prove particularly useful in simulations where different grain sizes can
form, as the bi-fluid approach fails in the small grain regime (where dust is strongly coupled to the
gas), while the dust-gas mixture approach fails in the large grain regime (where dust decouples
from the gas).

7.2.3 Applications beyond cosmology

The analysis of chapter 4 was mostly restricted to (quasi) Gaussian random fields, because of their
relevance in cosmology and also because in this context the theory can be developed in some
details. However, any system involving random field whose (continuous) evolution is controlled
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by one parameter could in principle be investigated with this framework in order to identify
merger of ridges (though the specific role played by Gaussian smoothing would clearly generally
not hold). For instance, critical events in dust maps (such as Meisner and Finkbeiner, 2014; Planck
Collaboration, 2018b) could be used as an alternative statistics to quantify the properties of the
underlying turbulence, a process which is known to display self-similarities.

A wide range of important physical processes occur when rare events collide, hence boosting
probabilities and passing thresholds, which in the context of this work corresponds to mergers
of rare peaks (e.g. analysing dust map emission or disintegration events in Fermi maps). In this
context, the process of interest is the appearance of pairs of critical points as one “unsmooths”
the field: this will corresponds to the generation of pairs of critical points. Following the results
of section 4.A.3, the formalism could be extended to situations where the field whose evolution
is investigated corresponds to probability distributions living in higher dimensions (or on more
complex manifolds).

In the context of streaming of hierarchical images the set of critical events within a 2D image
characterises its multi-scale topology. It would therefore be of interest to send beforehand a
description of this set as a mean of prioritising which sub region of the image needs to be streamed
first because the topology of its excursion (i.e. the local parsimonious representation of the image
as iso-contours) has changed. This would allow the received image to acquire its most important
higher resolution features first.

7.2.4 Critical events as input to Machine learning and Bayesian inference

The physics of galaxies is largely driven by non-linear processes (gas cooling, feedback, star
formation). In order to capture these processes, we usually make use of numerical simulations
that reproduce the known physics and can later be used to learn which processes are key to
galaxy formation. In particular, I argue that some properties of galaxies, and in particular vector
quantities (the spin, see e.g. Obuljen et al., 2019) or those sensible to the recent accretion history
(v/σ, star formation rate) can be better understood if one takes into account the merger history
of the halo and its environment. Indeed, there is a long tradition of relying on merger trees of
dark halos extracted from simulations as a mean to predict the physical properties of galaxies
(with so-called semi-analytical models, see e.g. Benson, 2010, and reference therein). One of
the long term main motivations for the present work is to extend this strategy to the other two
merger trees (filaments and walls), and to rely on modern segmentation techniques to identify
which combination of events are most likely to lead to galaxies of a certain type to be produced in
cosmological simulations. This strategy is likely to be efficient and rewarding, as the set of critical
events is a very strong compression of the initial conditions, and because once the segmentation
has been done, the subset of events which are in the Lagrangian patch of a proto-galaxy with
a given tag have physical meaning. For instance, recent disconnection of filaments at a given
smoothing scale are likely to impact gas infall at the redshift of corresponding smoothing scale,
hence associated galaxy star formation and disc reformation. The set of critical events represents a
useful effective topological compression of the initial conditions which will impact the upcoming
“dressed” mergers (i.e. the cosmic evolution of peaks and their filaments and walls). Note that the
exact relative configuration of critical events in the smoothing-position space may be of relevance,
and is not fully captured by the sole knowledge of the one and two-point statistics. Since the link
between the galaxy formation and their properties is still poorly understood, a model agnostic
approach can be used to study the effect of critical events on galaxy formation.

Predicting galactic properties using machine learning

In order to assess this, one can rely on machine learning techniques. Let me illustrate the strategy
one could use using a catalogue of synthetic galaxies from a cosmological simulation. Let me
assume that a set of virtual galaxies has been classified with a continuous parameter, e.g. based
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on their morphology via their kinematic properties, v/σ. This ratio is computed from the 3D
velocity distribution of stellar particles of each galaxy. In the frame of the angular momentum of
that galaxy, the velocity is decomposed into cylindrical components vr , vθ , vz , and the rotational
velocity of a galaxy v is defined as the mean of vθ of individual stars. The average velocity
dispersion of the galaxy σ2 = (σ2

r + σ2
θ + σ2

z)/3 is computed using the velocity dispersion of
each velocity component σr , σθ and σz . This ratio allows me to separate rotation-dominated
(v/σ ≫ 1) from dispersion-dominated (v/σ ≪ 1) galaxies. For each central galaxy identified in
the simulation, one can identify their corresponding dark matter halo to trace the Lagrangian
patch of dark matter particles back into the ICs. This defines a connected gravitational patch that
contains all critical events causally connected to the final galaxy. Hence, the simulation provides
me with a set of relations for k patches and three types of critical events j ∈ [P,F ,W]

(
{∆rj,i, Rj,i, νj,i}i≤nj,k

)

j∈[P,F ,W]
→ (v/σ)k , (7.1)

where∆rj,i is the relative position within the patch of the critical event i of type j measured w.r.t.
the centre of mass of the patch, νj,i is its contrast, and Rj,i the corresponding smoothing scale,
while v/σk is the velocity ratio of the patch k. Let me call Ek the l.h.s. of this relation. Standard
machine learning tools (random tree forest, stochastic gradient descent), allows me to build a
predictor, Pr(E) from a subset of (Ek → v/σk)k≤Ktrain

drawn randomly from the full sample.
From this training, one can do one of two things: i) use it as a predictor to associate (v/σ)k to
other patches for which we computed their set of events, Ek. ii) identify which features in this
event set is responsible for the corresponding value of v/σ.

The former approach would be useful to find regions of interest in the initial conditions,
therefore avoiding a costly try-and-error approach. For example, this could provide a likelihood of
finding a galaxy with given morphology in the initial conditions, so that only regions of interest
are resolved with high resolution. This is usually tackled by running larger than necessary
simulations, in which only the regions of interest are kept a posteriori. While the approach
suggested here would still have a chance of failing, it could significantly decrease the computation
volume required to simulate a given configuration and could complement other approaches, such
as genetically modified initial conditions (Roth et al., 2016; Rey and Pontzen, 2017).

The latter approach could be implemented over sets of simulations which implement different
feedback recipes as a mean of disentangling the relative impact of environment and sub-grid
physics on the evolution of galaxies This could also provide useful insight to understand which
halos host early-growing SMBHs. Indeed, it was recently proposed (Huang et al., 2019) that
the structure of the initial conditions preconditions the early evolution of SMBHs in numerical
simulations, while another study showed that the environment has an impact on AGN properties
(Porqueres et al., 2018; Man et al., 2019). This problem is tightly coupled to the problem of feeding
galaxies with fresh gas, which, at high-redshift, is linked to the orientation and structure of the
local cosmic web via cold filamentary accretion. Here I argue that critical events are useful tools
to study this class of problem, in particular at high redshifts.

Critical events as input to Bayesian framework

Let me illustrate how one could use critical events to study the susceptibility of a set of galactic
parameters to their cosmic web environment. Using a similar approach as described in the
previous paragraph, the sample can be decomposed as a set of inputs and output variablesX,Y ,
treated here as random variables

X
(0)
j = {Mj , ρj} , X

(1)
j =

{
{∆ri,j , Ri,j , νi,j , ki,j}i=1,...,Nj

}

j
, Yj = (v/σ)j . (7.2)

where∆rj,i is the relative position within the patch,Ri,j is the smoothing scale, νi,j is the density
contrast and ki,j is the kind (k ∈ [P,F ,W]) of the critical event i. Here I have split the inputs
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between the variables commonly included in galaxy formation models, the mass of the halo Mj

and the density ρj , which I namedX(0)
j . The input variableX(1)

j contains the “augmented” past
history as encoded by the Nj critical events found in the Lagrangian patch of galaxy j. The
output variable is chosen here to be v/σ, but it could be any other galactic property, such as the
bulge mass or the SMBH mass. Using the concept of cross-entropy, one can then compute the
information gain on the distribution of v/σ when adding to the classical mappingX(0) 7→ Y the
augmented merger tree (X(0),X(1)) 7→ Y . The cross-entropy will tell us how many more bit of
(Shannon) information is gained by adding the information from the merger history of the cosmic
web in the gravitational patch of the galaxy. This can then be further extended by segmenting
X(1) into subsets containing only halo mergers, filament mergers and wall mergers to quantity
which event better encodes the parameter v/σ.

When co-analysing the evolution of galactic properties with critical point mergers, one could
relate the various (filament, wall) mergers to special events in terms of change in connectivity
and feedback (e.g. the destruction of filaments by AGN activity, see Dubois et al., 2013). It could
also be used to explore the relation between spin flip and with filaments or walls vanishing.

In this dissertation, I have provided new models and tools, which, in conjunction with my
numerical work, should prove fruitful for research in galaxy and halo formation theory, astronomy
and beyond.
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A. Notations and conventions

Table A.1 presents the different notations and conventions used throughout the manuscript.
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Table A.1: Conventions and notations used throughout the manuscript

Name Definition

Vectors r,X,Σ, . . .

Matrices A,X,Σ, . . .

Unitary vector x̂, r̂, . . .

Probability density function p(x)

Gaussian probability density function pG(x) =
1√
2πσ2

exp
(
−x2/2σ2

)

Spatial derivatives, Laplacian ∂i,∇2 ≡ δij∂i∂j

Divergence, curl operator ∇ · f,∇× f

Fourier transform f(k) =

∫

d3r f(r)eik·r

Expectation 〈Q〉 =
∫

dxQ(x)p(x)

2-point function ξ(r) = 〈δ(0)δ(r)〉
Kronecker symbol δij = 1 for i = j and 0 otherwise

Dirac distribution δD(x) ,

∫

dx δD(x) f(x) = f(0)

Heaviside step function ϑH(x) = 1 for x > 0 and 0 otherwise

Linear matter power spectrum P (k)

Linear density field smoothed on scale R δ(R)

Variance of linear density field on scale R σ2(R)

Critical density (spherical collapse) δc = 1.686

Peak rarity on scale R ν(R) = δ(R)/σ(R)
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B. Contributed publications

Outline
B.1 “Galaxy evolution in the metric of the cosmic web” (published in MNRAS) 189

B.2 “Galaxies flowing in the oriented saddle frame of the cosmic web” (published in
MNRAS) 216

B.3 “Dense gas formation and destruction in a simulated Perseus-like galaxy cluster
with spin-driven black hole feedback” (accepted in A&A) 245

In the context of my work, I contributed to the three papers presented in this chapter. The
first two (Kraljic et al., 2018, appendix B.1 and Kraljic et al., 2019, appendix B.2) stemmed from
my theoretical work presented in chapter 4. I contributed to a third one (Beckmann et al., 2019,
appendix B.3) by providing my tracer particle implementation presented in chapter 5.

B.1 “Galaxy evolution in the metric of the cosmic web” (published in MNRAS)

In this paper, the role of the cosmic web in shaping the properties of the cosmic web is explored.
The skeleton of the cosmic web is extracted from the spatial distribution of galaxies in the Galaxy
And Mass Assembly (GAMA) spectroscopic survey. As a comparison, the similar job is carried on
the Horizon-AGN simulation. The properties of galaxies are projected on the frame of the cosmic
web, namely they are computed as function of the distance to the closest filament and the closest
node.

The paper shows that the cosmic web induces a segregation of galaxies. In particular most
massive galaxies are found close to filament centres and the trend subsists for star forming
galaxies. At fixed mass, there are more passive galaxies, red galaxies and quenched galaxies close
to filament centres than outside of it. The paper also shows that part of the segregation signal
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cannot be interpreted as the effect of the local density only, showing that the cosmic web has an
effect on galaxy properties beyond the mere mass and density relations.

Using the formalism developed in chapter 3, I have shown (section 7.2 of the paper) that one
can provide a theoretical explanation to this segregation signal. Given a large-scale filamentary
structure, one can compute mass, density and accretion rate isocontours to show that they are
misaligned one with each other. Rephrasing, different variables entering the assembly of DM
halos and their galaxies show distinct spatial dependences on the environment as set by cosmic
web. For example, it is expected from first principles that at fixed halo mass, the density maximum
is found closer to the filament centre than the DM accretion rate peak. As a result, the cosmic
web systematically biases the different variables responsible for galactic properties, so that they
become a function of their spatial location with respect to the cosmic web, on top of their mass
and density dependence.
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ABSTRACT

The role of the cosmic web in shaping galaxy properties is investigated in the Galaxy And

Mass Assembly (GAMA) spectroscopic survey in the redshift range 0.03 ≤ z ≤ 0.25. The

stellar mass, u − r dust corrected colour and specific star formation rate (sSFR) of galaxies are

analysed as a function of their distances to the 3D cosmic web features, such as nodes, filaments

and walls, as reconstructed by DisPerSE. Significant mass and type/colour gradients are found

for the whole population, with more massive and/or passive galaxies being located closer to the

filament and wall than their less massive and/or star-forming counterparts. Mass segregation

persists among the star-forming population alone. The red fraction of galaxies increases when

closing in on nodes, and on filaments regardless of the distance to nodes. Similarly, the star-

forming population reddens (or lowers its sSFR) at fixed mass when closing in on filament,

implying that some quenching takes place. These trends are also found in the state-of-the-art

hydrodynamical simulation HORIZON-AGN. These results suggest that on top of stellar mass

and large-scale density, the traceless component of the tides from the anisotropic large-scale

environment also shapes galactic properties. An extension of excursion theory accounting for

filamentary tides provides a qualitative explanation in terms of anisotropic assembly bias: at

a given mass, the accretion rate varies with the orientation and distance to filaments. It also

explains the absence of type/colour gradients in the data on smaller, non-linear scales.

Key words: large-scale structure of Universe – cosmology: observations – galaxies: evolu-

tion – galaxies: high-redshift – galaxies: statistics.

1 IN T RO D U C T I O N

Within the � cold dark matter (�CDM) cosmological paradigm,

structures in the present-day Universe arise from hierarchical clus-

tering, with smaller dark matter haloes forming first and progres-

sively merging into larger ones. Galaxies form by the cooling and

⋆E-mail: katarina.kraljic@lam.fr

condensation of baryons that settle in the centres of these haloes

(White & Rees 1978) and their spin is predicted to be corre-

lated with that of the halo generated from the tidal field torques

at the moment of proto-halo collapse (tidal torque theory, TTT;

e.g. Peebles 1969; Doroshkevich 1970; Efstathiou & Jones 1979;

White 1984). However, dark matter haloes, and galaxies residing

within them, are not isolated. They are part of a larger-scale pat-

tern, dubbed the cosmic web (Jõeveer, Einasto & Tago 1978; Bond,

Kofman & Pogosyan 1996), arising from the anisotropic collapse

C© 2017 The Author(s)

Published by Oxford University Press on behalf of the Royal Astronomical Society
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of the initial fluctuations of the matter density field under the effect

of gravity across cosmic time (Zel’dovich 1970).

This web-like pattern, brought to light by systematic galaxy red-

shift surveys (e.g. De Lapparent, Geller & Huchra 1986; Geller &

Huchra 1989; Colless et al. 2001; Tegmark et al. 2004), consists

of large nearly-empty void regions surrounded by sheet-like walls

framed by filaments which intersect at the location of clusters of

galaxies. These are interpreted as the nodes, or high-density peaks

of the large-scale structure pattern, containing a large fraction of

the dark matter mass (Bond et al. 1996; Pogosyan et al. 1996). The

baryonic gas follows the gravitational potential gradients imposed

by the dark matter distribution, then shocks and winds up around

multistream, vorticity-rich filaments (Codis et al. 2012; Hahn,

Angulo & Abel 2015; Laigle et al. 2015). Filamentary flows, along

specific directions dictated by the geometry of the cosmic web,

advect angular momentum into the newly formed low mass galax-

ies with spins typically aligned with their neighbouring filaments

(Pichon et al. 2011; Stewart et al. 2013). The next generation of

galaxies forms through mergers as they drift along these filaments

towards the nodes of the cosmic web with a post merger spin pref-

erentially perpendicular to the filaments, having converted the or-

bital momentum into spin (e.g. Aubert, Pichon & Colombi 2004;

Navarro, Abadi & Steinmetz 2004; Aragón-Calvo et al. 2007b;

Codis et al. 2012; Libeskind et al. 2012; Trowland, Lewis & Bland-

Hawthorn 2013; Aragon-Calvo & Yang 2014; Dubois et al. 2014;

Welker et al. 2015).

Within the standard paradigm of hierarchical structure forma-

tion based on �CDM cosmology (Blumenthal et al. 1984; Davis

et al. 1985), the imprint of the (past) large-scale environment on

galaxy properties is therefore, to some degree, expected via galaxy

mass assembly history. Intrinsic properties, such as the mass of a

galaxy (and internal processes that are directly linked to its mass),

are indeed shaped by its build-up process, which in turn is cor-

related with its present environment. For instance, more massive

galaxies are found to reside preferentially in denser environments

(e.g. Dressler 1980; Postman & Geller 1984; Kauffmann et al. 2004;

Baldry et al. 2006). This mass-density relation can be explained

through the biased mass function in the vicinity of the large-scale

structure (LSS; Kaiser 1984; Efstathiou et al. 1988) where the en-

hanced density of the dark matter field allows the proto-halo to

pass the critical threshold of collapse earlier (Bond et al. 1991)

resulting in an overabundance of massive haloes in dense envi-

ronments. However, what is still rightfully debated is whether the

large-scale environment is also driving other observed trends such

as morphology-density (e.g. Dressler 1980; Postman & Geller 1984;

Dressler et al. 1997; Goto et al. 2003), colour-density (e.g.

Blanton et al. 2003; Baldry et al. 2006; Bamford et al. 2009) or star

formation-density (e.g. Hashimoto et al. 1998; Lewis et al. 2002;

Kauffmann et al. 2004) relations, and galactic ‘spin’ properties,

such as their angular momentum vector, their orientation or chiral-

ity (trailing versus leading arms).

On the one hand, there are evidences that the cosmic web af-

fects galaxy properties. Void galaxies are found to be less mas-

sive, bluer, and more compact than galaxies outside of voids (e.g.

Rojas et al. 2004; Beygu et al. 2016); galaxies infalling into clusters

along filaments show signs of some physical mechanisms operating

even before becoming part of these systems, that galaxies in the

isotropic infalling regions do not (Porter et al. 2008; Martı́nez,

Muriel & Coenda 2016); Kleiner et al. (2017) find systemati-

cally higher HI fractions for massive galaxies (M⋆ > 1011 M⊙)

near filaments compared to the field population, interpreted as evi-

dence for a more efficient cold gas accretion from the intergalactic

medium; Kuutma, Tamm & Tempel (2017) report an environmental

transformation with a higher elliptical-to-spiral ratio when moving

closer to filaments, interpreted as an increase in the merging rate

or the cut-off of gas supplies near and inside filaments (see also

Aragon-Calvo, Neyrinck & Silk 2016); Chen et al. (2017) detect a

strong correlation of galaxy properties, such as colour, stellar mass,

age and size, with the distance to filaments and clusters, highlight-

ing their role beyond the environmental density effect, with red

or high-mass galaxies and early-forming or large galaxies at fixed

stellar mass having shorter distances to filaments and clusters than

blue or low-mass and late-forming or small galaxies, and Tojeiro

et al. (2017) interpret a steadily increasing stellar-to-halo mass ra-

tio from voids to nodes for low mass haloes, with the reversal of

the trend at the high-mass end, found for central galaxies in the

GAMA survey (Driver et al. 2009, 2011), as an evidence for halo

assembly bias being a function of geometric environment. At higher

redshift, a small but significant trend in the distribution of galaxy

properties within filaments was reported in the spectroscopic sur-

vey VIPERS (z ≃ 0.7; Malavasi et al. 2017) and with photometric

redshifts (0.5 < z < 0.9) in the COSMOS field (with a 2D analysis;

Laigle et al. 2017). Both studies find significant mass and type seg-

regations, where the most massive or quiescent galaxies are closer

to filaments than less massive or active galaxies, emphasizing that

large-scale cosmic flows play a role in shaping galaxy properties.

On the other hand, Alpaslan et al. (2015) find in the GAMA data

that the most important parameter driving galaxy properties is stel-

lar mass as opposed to environment (see also Robotham et al. 2013).

Similarly, while focusing on spiral galaxies alone, Alpaslan et al.

(2016) do find variations in the star formation rate (SFR) distribution

with large-scale environments, but they are identified as a secondary

effect. Another quantity tracing different geometric environments

that was found to vary is the luminosity function. However, while

Guo, Tempel & Libeskind (2015) conclude that the filamentary

environment may have a strong effect on the efficiency of galaxy

formation (see also Benı́tez-Llambay et al. 2013), Eardley et al.

(2015) argue that there is no evidence of a direct influence of the

cosmic web as these variations can be entirely driven by the under-

lying local density dependence. These discrepancies are partially

expected: the present state of galaxies must be impacted by the ef-

fect of the past environment, which in turn does correlate with the

present environment, if mildly so, but these environmental effects

must first be distinguished from mass-driven effects which typically

dominate.

The TTT, naturally connecting the large-scale distribution

of matter and the angular momentum of galactic haloes (e.g.

Jones & Efstathiou 1979; Barnes & Efstathiou 1987; Heavens &

Peacock 1988; Porciani, Dekel & Hoffman 2002a,b; Lee 2004),

in its recently revisited, conditioned formulation (Codis, Pichon &

Pogosyan 2015) predicts the angular momentum distribution of the

forming galaxies relative to the cosmic web, which tend to first

have their angular momentum aligned with the filament’s direction

while the spin orientation of massive galaxies is preferentially in

the perpendicular direction. Despite the difficulty to model prop-

erly the halo-galaxy connection, due to the complexity, non-linearity

and multiscale character of the involved processes, modern cosmo-

logical hydrodynamic simulations confirm such a mass-dependent

angular momentum distribution of galaxies with respect to the cos-

mic web (Dubois et al. 2014; Welker et al. 2014, 2017). On galactic

scales, the dynamical influence of the cosmic web is therefore traced

by the distribution of angular momentum and orientation of galax-

ies, when measured relative to their embedding large-scale environ-

ment. The impact of such environment on the spins of galaxies has

MNRAS 474, 547–571 (2018)
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only recently started to be observed (confirming the spin alignment

for spirals and preferred perpendicular orientation for ellipticals;

Trujillo et al. 2006; Lee & Erdogdu 2007; Paz et al. 2008; Tempel

et al. 2013; Tempel & Libeskind 2013; Pahwa et al. 2016, but see

also Jones, van de Weygaert & Aragón-Calvo 2010; Cervantes-Sodi,

Hernandez & Park 2010; Andrae & Jahnke 2011, for contradictory

results). What is less obvious is whether observed integrated scalar

properties such as morphology or physical properties (SFR, type,

metallicity, which depend not only on the mass but also on the past

and present gas accretion) are also impacted.

Theoretical considerations alone suggest that local density as a

sole and unique parameter (and consequently any isotropic defini-

tion of the environment based on density alone) is not sufficient

to account for the effect of gravity on galactic scale (e.g. Mo, van

den Bosch & White 2010) and therefore capture the environmental

diversity in which galaxies form and evolve: one must also con-

sider the relative past and present orientation of the tidal tensor

with respect to directions pointing towards the larger-scale struc-

ture principal axes. At the simplest level, on large scales, gravity

should be the dominant force. Its net cumulative impact is encoded

in the tides operating on the host dark matter halo. Such tides may

be decomposed into the trace of the tidal tensor, which equals the

local density, and its traceless part, which applies distortion and ro-

tation to the forming galaxy. The effect of the former on increasing

scales has long been taken into account in standard galaxy forma-

tion scenarios (Kaiser 1984), while the effect of the latter has only

recently received full attention (e.g. Codis et al. 2015). Beyond the

above-discussed effect on angular momentum, other galaxy’s prop-

erties could in principle be influenced by the large-scale traceless

part of the tidal field, which modifies the accretion history of a halo

depending on its location within the cosmic web. For instance, the

tidal shear near saddles along the filaments feeding massive haloes

is predicted to slow down the mass assembly of smaller haloes

in their vicinity (Hahn et al. 2009; Borzyszkowski et al. 2017;

Castorina et al. 2016). Bond & Myers (1996) integrated the ef-

fect of ellipsoidal collapse (via the shear amplitude), which may

partially delay galaxy formation, in the Extended Press-Schechter

(EPS) theory. Yet, in that formulation, the geometry of the delay

imposed by the specific relative orientation of tides imposed by the

large-scale structure is not accounted for, because time delays are

ensemble-averaged over all possible geometries of the LSS. The

anisotropy of the large-scale cosmic web – voids, walls, filaments,

and nodes (which shape and orient the tidal tensor beyond its trace) –

should therefore be taken into account explicitly, as it impacts mass

assembly. Despite of the above-mentioned difficulty in properly de-

scribing the connection between galaxies and their host dark matter

haloes, this anisotropy should have direct observational signatures

in the differential properties of galaxies with respect to the cosmic

web at fixed mass and local density. Quantifying these signatures is

the topic of this paper. Extending EPS to account for the geometry

of the tides beyond that encoded in the density of the field is the

topic of the companion paper (Musso et al. 2017).

This paper explores the impact of the cosmic web on galaxy prop-

erties in the GAMA survey, using the Discrete Persistent Structure

Extractor code (DisPerSE; Sousbie 2011; Sousbie, Pichon & Kawa-

hara 2011) to characterize its 3D topological features, such as nodes,

filaments and walls. GAMA is to date the best data set for this kind

of study, given its unique spectroscopic combination of depth, area,

target density and high completeness, as well as its broad mul-

tiwavelength coverage. Variations in stellar mass and colour, red

fraction and star formation activity are investigated as a function of

galaxy distances to these three features. The rest of the paper is or-

ganized as follows. Section 2 summarizes the data and describes the

sample selection. The method used to reconstruct the cosmic web

is presented in Section 3. Section 4 investigates the stellar-mass and

type/colour segregation and the star formation activity of galaxies

within the cosmic web. Section 5 shows how these results compare

to those obtained in the HORIZON-AGN simulation (Dubois et al. 2014).

Section 6 addresses the impact of the density on the measured gradi-

ents towards filaments and walls. Results are discussed in Section 7

jointly with predictions from Musso et al. (2017). Finally, Section 8

concludes. Additional details on the matching technique and the

impact of the boundaries to the measured gradients are provided in

Appendices A and B, respectively. Appendix C investigates the ef-

fect of smoothing scale on the found gradients, Appendix D briefly

presents the HORIZON-AGN simulation, Appendix F provides tables

of median gradients and a short summary of predicted gradient

misalignments is presented in Appendix E.

Throughout the study, a flat �CDM cosmology with

H0 = 67.5 km s−1 Mpc−1, �M = 0.31 and �� = 0.69 is adopted

(Planck Collaboration XIII 2016). All statistical errors are com-

puted by bootstrapping, such that the errors on a given statistical

quantity correspond to the standard deviation of the distribution of

that quantity re-computed in 100 random samples drawn from the

parent sample with replacement. All magnitudes are quoted in the

AB system, and by log we refer to the 10-based logarithm.

2 DATA A N D DATA P RO D U C T S

This section describes the observational data and derived products,

namely the galaxy and group catalogues, that have been used in this

work.

2.1 Galaxy catalogue

The analysis is based on the GAMA survey1 (Driver

et al. 2009, 2011; Hopkins et al. 2013; Liske et al. 2015), a joint

European-Australian project combining multiwavelength photom-

etry (UV to far-IR) from ground and space-based facilities and

spectroscopy obtained at the Anglo-Australian Telescope (AAT,

NSW, Australia) using the AAOmega spectrograph. GAMA pro-

vides spectra for galaxies across five regions, but this work only

considers the three equatorial fields G9, G12 and G15 covering a to-

tal area of 180 deg2 (12 × 5 deg2 each), for which the spectroscopic

completeness is >98 per cent down to a r-band apparent magnitude

mr = 19.8. The reader is referred to Wright et al. (2016) for a com-

plete description of the spectro-photometric catalogue constructed

using the LAMBDAR2 code that was applied to the 21-band photo-

metric data set from the GAMA Panchromatic Data Release (Driver

et al. 2016), containing imaging spanning the far-UV to the far-IR.

The physical parameters for the galaxy sample such as the ab-

solute magnitudes, extinction corrected rest-frame colours, stellar

masses and specific star formation rate (sSFR) are derived using

a grid of model spectral energy distributions (SED; Bruzual &

Charlot 2003) and the SED fitting code LEPHARE
3 (Arnouts

et al. 1999; Ilbert et al. 2006). The details used to derive these

physical parameters are given in the companion paper (Treyer et al.

in preparation).

1 http://www.gama-survey.org/
2 Lambda Adaptive Multi-Band Deblending Algorithm in R.
3 http://cesam.lam.fr/lephare/lephare.html
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Figure 1. Spatial distribution of whole galaxy population with mr < 19.8 in the GAMA field G12 in the redshift range 0.03 ≤ z ≤ 0.25 (grey points).

Overplotted are galaxy group members, colour coded by the size of their group. Only groups having five or more members are shown. The top and bottom

panels illustrate the galaxy group members before and after correcting for the FoG effect, respectively.

The classification between the active (star-forming) and passive

(quiescent) populations is based on a simple colour cut at u − r = 1.8

in the rest-frame extinction corrected u − r versus r diagram that is

used to separate the two populations. This colour cut is consistent

with a cut in sSFR at 10−10.8 yr−1 (see Treyer et al. in preparation).

Hence, in what follows, the terms red (blue) and quiescent (star-

forming) will be used interchangeably.

The analysis is restricted to the redshift range 0.03 ≤ z ≤ 0.25,

totalling 97 072 galaxies. This is motivated by the high galaxy

sampling required to reliably reconstruct the cosmic web. Be-

yond z ∼ 0.25, the galaxy number density drops substantially (to

2 × 10−3 Mpc−3 from 8 × 10−3 Mpc−3 at z ≤ 0.25, on average),

while below z ∼ 0.03, the small volume does not allow us to explore

the large scales of the cosmic web.

The stellar mass completeness limits are defined for the passive

and active galaxies as the mass above which 90 per cent of galaxies

of a given type (blue/red) reside at a given redshift z ± 0.004. This

translates into mass completeness limits of log(M⋆/M⊙) = 9.92

and log(M⋆/M⊙) = 10.46 for the blue and red populations at

z ≤ 0.25, respectively.

2.2 Group catalogue

Since the three-dimensional distribution of galaxies relies on the

redshift-based measures of distances, it is affected by their peculiar

velocities. In order to optimize the cosmic web reconstruction, one

needs to take into account these redshift-space distortions. On large

scales, these arise from the coherent motion of galaxies accompa-

nying the growth of structure, causing its flattening along the line of

sight, the so-called Kaiser effect (Kaiser 1987). On small scales, the

so-called Fingers of God (FoG; Jackson 1972; Tully & Fisher 1978)

effect, induced by the random motions of galaxies within virialized

haloes (groups and clusters) causes the apparent elongation of struc-

tures in redshift space, clearly visible in the galaxy distribution in

the GAMA survey (Fig. 1, top panel). While the Kaiser effect tends

to enhance the cosmic web by increasing the contrast of filaments

and walls (e.g. Subba Rao et al. 2008; Shi et al. 2016), the FoG effect

may lead to the identification of spurious filaments. Because the im-

pact of the Kaiser effect is expected to be much less significant than

that of the FoG (e.g. Subba Rao et al. 2008; Kuutma et al. 2017),

for the purposes of this work, we do not attempt to correct for it and

we focus on the compression of the FoG only. To do so, the galaxy

groups are first constructed with the use of an anisotropic Friends-

of-Friends (FoF) algorithm operating on the projected perpendicular

and parallel separations of galaxies, that was calibrated and tested

using the publicly available GAMA mock catalogues of Robotham

et al. (2011) (see also Merson et al. 2013, for details of the mock

catalogues construction). Details on the construction of the group

catalogue and related analysis of group properties can be found in

the companion paper (Treyer et al. in preparation). Next, the centre

of each group is identified following Robotham et al. (2011) (see

also Eke et al. 2004, for a different implementation). The method is

based on an iterative approach: first, the centre of mass of the group

(CoM) is computed; next its projected distance from the CoM is

found iteratively for each galaxy in the group by rejecting the most

distant galaxy. This process stops when only two galaxies remain

and the most massive galaxy is then identified as the centre of the

group. The advantage of this method, as shown in Robotham et al.

(2011), is that the iteratively defined centre is less affected by inter-

lopers than luminosity-weighted centre or the central identified as

the most luminous group galaxy. The groups are then compressed

radially so that the dispersions in transverse and radial directions are

equal, making the galaxies in the groups isotropically distributed

about their centres (see e.g. Tegmark et al. 2004). In practice, since
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the elongated FoG effect affects mostly the largest groups, only

groups with more than six members are compressed. Note that the

precise correction of the FoG effect is not sought. What is needed

for the purpose of this work is the elimination of these elongated

structures that could be misidentified as filaments.

Fig. 1 displays the whole galaxy population and the identified FoF

groups (coloured by their richness) in the GAMA field G12. The

top and bottom panels show the groups before and after correcting

for the FoG effect, respectively. For the sake of clarity, only groups

having at least five members are shown. The visual inspection re-

veals that most of the groups are located within dense regions, often

at the intersection of the apparently filamentary structures.

3 T H E C O S M I C W E B E X T R AC T I O N

With the objective of exploring the impact of the LSS on the evo-

lution of galaxy properties, one first needs to properly describe the

main components of the cosmic web, namely the high-density peaks

(nodes) which are connected by filaments, framing the sheet-like

walls, themselves surrounding the void regions. Among the vari-

ous methods developed over the years, two broad classes can be

identified. One uses the geometrical information contained in the

local gradient and the Hessian of the density or potential field (e.g.

Novikov, Colombi & Doré 2006; Aragón-Calvo et al. 2007a,b; Hahn

et al. 2007a,b; Sousbie et al. 2008a,b; Forero-Romero et al. 2009;

Bond, Strauss & Cen 2010a,b), while the second exploits the

topology and connectivity of the density field by using the water-

shed transform (Aragón-Calvo, van de Weygaert & Jones 2010)

or Morse theory (e.g. Colombi, Pogosyan & Souradeep 2000;

Sousbie et al. 2008a; Sousbie 2011). The theory for the former

can be built in some details, (see e.g. Pogosyan et al. 2009), shed-

ding some light on physical interpretation, while the latter avoids

shortcomings of a second-order Taylor expansion of the field and

provides a natural metric in which to compute distances to fila-

ments. Within these broad categories, some algorithms deal with

discrete data sets, while others require that the density field must

be first estimated (possibly on multiple scales). An exhaustive de-

scription of several cosmic web extraction techniques and a com-

parison of their classification patterns as measured in simulations

are presented in Libeskind et al. (2017). While this paper found

some differences between the various algorithms, which should in

principle be accounted for as modelling errors in this work, these

differences remain small on the scales considered.

3.1 Cosmic web with disperse

This work uses the Discrete Persistent Structure Extractor

(DisPerSE; see Sousbie et al. 2011, for illustrations in a cosmologi-

cal context), a geometric three-dimensional ridge extractor dealing

directly with discrete data sets, making it particularly well adapted

for astrophysical applications. It allows for a scale and parameter-

free coherent identification of the 3D structures of the cosmic web

as dictated by the large-scale topology. For a detailed description

of the DisPerSE algorithm and its underlying theory, the reader is

referred to Sousbie (2011); its main features are summarized below.

DisPerSE is based on discrete Morse and persistence theories.

The Delaunay tessellation is used to generate a simplicial complex,

i.e. a triangulated space with a geometric assembly of cells, faces,

edges and vertices mapping the whole volume. The Delaunay Tes-

sellation Field Estimator (DTFE; Schaap & van de Weygaert 2000;

Cautun & van de Weygaert 2011) allows for estimating the density

field at each vertex of the Delaunay complex. The Morse theory en-

ables to extract from the density field the critical points, i.e. points

with a vanishing (discrete) gradient of the density field (e.g. max-

ima, minima and saddle points). These critical points are connected

via the field lines tangent to the gradient field in every point. They in-

duce a geometrical segmentation of space, where all the field lines

have the same origin and destination, known as the Morse com-

plex. This segmentation defines distinct regions called ascending

and descending k-manifolds.4 The morphological components of

the cosmic web are then identified from these manifolds: ascending

0-manifolds trace the voids, ascending 1-manifolds trace the walls

and filaments correspond to the ascending 2-manifolds with their

extremities plugged on to the maxima (peaks of the density field).

In addition to its ability to work with sparsely sampled data sets

while assuming nothing about the geometry or homogeneity of the

survey, DisPerSE allows for the selection of retained structures on

the basis of the significance of the topological connection between

critical points. DisPerSE relies on persistent homology theory to

pair critical points according to the birth and death of a topolog-

ical feature in the excursion. The ‘persistence’ of a feature or its

significance is assessed by the density contrast of the critical pair

chosen to pass a certain signal-to-noise threshold. The noise level

is defined relative to the RMS of persistence values obtained from

random sets of points. This thresholding eliminates less significant

critical pairs, allowing to simplify the Morse complex, retaining

its most topologically robust features. Fig. 2 shows that filaments

outskirt walls, themselves circumventing voids. The filaments are

made of a set of connected segments and their end points are con-

nected to the maxima, the peaks of the density field where most

of clusters and large groups reside. Each wall is composed of the

facets of tetrahedra from the Delaunay tessellation belonging to

the same ascending 2-manifold. In this work, DisPerSE is run on

the flux-limited GAMA data with a 3σ persistence threshold. Fig. 3

illustrates the filaments for the G12 field, overplotted on the density

contrast of the underlying galaxy distribution, 1 + δ, where the lo-

cal density is estimated using the DTFE density estimator. Even in

this 2D projected visualization, one can see that filaments trace the

ridges of the 3D density field connecting the density peaks between

them.

3.2 Cosmic web metric

Having identified the major cosmic web features, let us now define

a new metric to characterize the environment of a galaxy, which

will be referred to as the ‘cosmic web metric’ and into which galax-

ies are projected. Fig. 4 gives a schematic view of this frame-

work. Each galaxy is assigned the distance to its closest filament,

Dskel. The impact point in the filament is then used to define the

distances along the filament towards the node, Dnode and towards

the saddle point, Dsaddle. Similarly, Dwall denotes the distance of

the galaxy to its closest wall. In this work, only distances Dnode,

Dskel and Dwall are used. Other investigations of the environment

in the vicinity of the saddle points are postponed to a forthcoming

work.

The accuracy of the reconstruction of the cosmic web fea-

tures is sensitive to the sampling of the data set. The lower the

4 The index k refers to the critical point the field lines emanate from (ascend-

ing) or converge to (descending), and is defined as its number of negative

eigenvalues of the Hessian: a minimum of the field has index 0, a maximum

has index 3 and the two types of saddles have indices 1 and 2.
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552 K. Kraljic et al.

Figure 2. Illustration of the walls and filaments in the G12 field. For the sake of clarity and for the illustrative purposes, only the cosmic web features detected

above a persistence threshold of 5σ are shown. Filaments are coloured in black, with the most persistent ones (>6σ ) plotted in red, while walls are colour coded

randomly. Note how DisPerSE is capable of recovering the important features of the underlying cosmic field by identifying its (topologically) most-robust

features. In particular, it extracts filaments as a set of connected segments, which outskirt walls, themselves circumventing voids.

Figure 3. Illustration of the filamentary network (black lines) extracted with the DisPerSE code within the ±1.2◦ of the central declination of the G12 field.

The persistence threshold with which the filamentary network and the associated structures, used in this work and shown here, are extracted is 3σ . Also shown

is the density contrast of the underlying galaxy distribution, measured with the small-scale adaptive DTFE estimator (see the text) and averaged over cells of

2.3 × 2.3 Mpc2 (white colour is used for empty cells). In spite of the projection effects, the visual inspection reveals that filaments follow the ridges of the

density field which connect the peaks together.

sampling the larger the uncertainty on the location of the individ-

ual components of the cosmic web. To account for the variation

of the sampling throughout the survey, unless stated differently,

all the distances are normalized by the redshift-dependent mean

inter-galaxy separation 〈Dz〉, defined as 〈Dz〉 ≡ n(z)−1/3, where n(z)

represents the number density of galaxies at a given redshift z. For

the combined three fields of GAMA survey, 〈Dz〉 varies from 3.5 to

7.7 Mpc across the redshift range 0.03 ≤ z ≤ 0.25, with a mean value

of ∼5.6 Mpc.

4 G ALAXY PROPERTI ES WI THI N

THE C OSMI C W EB

In this section, the dependence of various galaxy properties, such

as stellar mass, u − r colour, sSFR and type, with respect to their

location within the cosmic web is analysed. First, the impact of the

nodes, representing the largest density peaks, is investigated. Next,

by excluding these regions, galaxy properties are studied within the

intermediate density regions near the filaments. Finally, the analysis

is extended to the walls.
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Galaxy evolution in the metric of the cosmic web 553

Figure 4. Schematic view of the ‘cosmic web’ metric in which the analysis

is performed. The position of a galaxy within the cosmic web is parametrized

by its distance to the closest filament, Dskel, and its distance to the closest

wall, Dwall. Dnode and Dsaddle represent the distances from the impact point

to the node and saddle along the corresponding filament, respectively.

4.1 The role of nodes via the red fractions

Let us start by analysing the combined impact of nodes and filaments

on galaxies through the study of the red fractions. The red fraction,

defined as the number of passive galaxies with respect to the entire

population, is analysed as a function of the distance to the nearest

filament, Dskel and the distance to its associated node, Dnode.

This analysis is restricted to galaxies more massive than

log (M⋆/M⊙) ≥ 10.46, as imposed by the mass limit complete-

ness of the passive population (see Section 2). The stellar mass

distributions of the passive and star-forming populations are not

identical, with the passive galaxies dominating the high mass end.

Therefore, to prevent biases in the measured gradients introduced

by such differences, the mass-matched samples are used. The de-

tailed description of the mass-matching technique can be found in

Appendix A1.

In Fig. 5 the red fraction of galaxies is shown as a function of Dskel

in three different bins of Dnode. While the fraction of passive galaxies

is found to increase with decreasing distances to both the filaments

and nodes, the dominant effect is the distance to the nodes. At fixed

Dskel, the fraction of passive galaxies sharply increases with de-

creasing distance to the nodes. Recalling that the mean inter-galaxy

separation 〈Dz〉 ∼ 5.6 Mpc, a 20–30 per cent increase in the fraction

of passive galaxies is observed from several Mpc away from the

nodes to less than ∼500 kpc. This behaviour is expected since the

nodes represent the loci where most of the groups and clusters reside

and reflect the well-known colour-density (e.g. Blanton et al. 2003;

Baldry et al. 2006; Bamford et al. 2009) and star formation-density

(e.g. Lewis et al. 2002; Kauffmann et al. 2004) relations. However,

the gradual increase suggests that some physical processes already

operate before the galaxies reach the virial radius of massive haloes.

At fixed Dnode, the fraction of passive galaxies increases with de-

creasing distance to filaments, but this increase is milder compared

to that with respect to nodes: an increase of ∼10 per cent is observed

regardless of the distance to the nodes. These regions with inter-

mediate densities appear to be a place where the transformation of

galaxies takes place as emphasized in the next section.

Figure 5. Red fraction of galaxies (the number of quiescent galaxies over

the entire population) as a function of Dskel for three different bins of

Dnode as indicated by the colour. Both distances are normalized by the

redshift-dependent mean inter-galaxy separation 〈Dz〉. Only galaxies with

log (M⋆/M⊙) ≥ 10.46 are considered. Star-forming and quiescent popula-

tions are matched in mass (see Section 4.2.1). The error bars are calculated

from 100 bootstrap samples. The fraction of red galaxies is found to increase

with decreasing distances both to the closest filament Dskel and to the node

of this Dnode. Recalling that 〈Dz〉 ∼ 5.6 Mpc, the fraction of passive galaxies

increases at given Dskel by ∼20 per cent from several tens of Mpc away from

the nodes (blue line) to less than ∼0.5 Mpc (red line). At fixed Dnode, the

increase of the red fraction with decreasing distance to filaments is milder,

of ∼10 per cent, regardless of the distance to the node.

4.2 The role of filaments

In order to infer the role played by filaments alone in the transfor-

mation of galactic properties, the impact of nodes, the high-density

regions has to be mitigated. By construction, nodes are at the inter-

section of filaments: they drive the well-known galaxy type-density

as well as stellar mass-density relations. To account for this bias,

Gay et al. (2010) and Malavasi et al. (2017) adopted a method

where a given physical property or distance of each galaxy was

down-weighted by its local density. Laigle et al. (2017) adopted a

more stringent approach by rejecting all galaxies that are too close

to the nodes. This method allows us to minimize the impact of

nodes, avoiding the difficult-to-quantify uncertainty of the residual

contribution of the density weighting scheme. We therefore adopt

the latter approach. As shown in Appendix B1, this is achieved by

rejecting all galaxies below a distance of 3.5 Mpc from a node.

4.2.1 Stellar mass gradients

Fig. 6 shows the normalized probability distribution functions

(PDFs) of the distance to the nearest filament Dskel in three stellar

mass bins for the entire population and star-forming galaxies alone

(top left-hand and right-hand panels, respectively). The medians of

the PDFs, shown by vertical lines, are listed together with the cor-

responding error bars in Table 1. The significance of the observed

trends is assessed by computing the residuals between the distri-

butions in units of σ (bottom panels), defined as �1−2/
√

σ 2
1 + σ 2

2 ,

where �1 − 2 is the difference between the PDFs of the populations

1 and 2, and σ 1 and σ 2 are the corresponding standard deviations.

For the entire population (left-hand panels), differences between

the PDFs of the three stellar mass bins are observed: the most
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554 K. Kraljic et al.

Figure 6. Top row: Differential distributions of the distances to the nearest filament, Dskel (normalized by 〈Dz〉, the redshift-dependent mean inter-galaxy

separation) for the entire galaxy population (left-hand panel) and star-forming galaxies alone (right-hand panel) in three different stellar mass bins. Note that

these bins are different for the two populations: this is due to the stellar mass completeness limit that is different (see Section 2). To highlight an effect specific

to the filaments, the contribution of node is minimized (see the text for details). The vertical lines indicate the medians of the distributions and their values

together with associated error bars are listed in Table 1. The numbers of galaxies in different considered bins are indicated in each panel. The error bars are

calculated from 100 bootstrap samples. There is a mass segregation of galaxies with respect to filaments of the entire as well as star-forming population:

more massive galaxies tend to be preferentially located closer to the filaments compared to their lower-mass counterparts. Bottom row: Residuals in units of σ

between the two most extreme mass bins (purple line; 10.7 > log (M⋆/M⊙) ≥ 10.46 and log (M⋆/M⊙) ≥ 11.0 on the left-hand panel and 10.3 > log (M⋆/M⊙)

≥ 9.92 and log (M⋆/M⊙) ≥ 10.8 on the right-hand panel), and between the high and intermediate mass bins (orange solid line; log (M⋆/M⊙) ≥ 11.0 and

11.0 > log (M⋆/M⊙) ≥ 10.7 on the left-hand panel and log (M⋆/M⊙) ≥ 10.8 and 10.8 > log (M⋆/M⊙) ≥ 10.3 on the right-hand panel).

Table 1. Medians for the PDFs displayed in Figs 6–10.

Selectiona Bin Medianb

Dskel/〈Dz〉 Dwall/〈Dz〉

log(M⋆/M⊙) ≥ 11 0.379 ± 0.009 0.334 ± 0.005

All galaxies 11 > log(M⋆/M⊙) ≥ 10.7 0.456 ± 0.007 0.381 ± 0.004

10.7 > log(M⋆/M⊙) ≥ 10.46 0.505 ± 0.006 0.403 ± 0.004
Massc

log(M⋆/M⊙) ≥ 11 0.459 ± 0.012 0.385 ± 0.011

SF galaxies 11 > log(M⋆/M⊙) ≥ 10.4 0.534 ± 0.007 0.429 ± 0.006

10.4 > log(M⋆/M⊙) ≥ 9.92 0.578 ± 0.007 0.453 ± 0.007

Star-forming 0.504 ± 0.008 0.411 ± 0.006
Typed SF versus passivee

Passive 0.462 ± 0.007 0.376 ± 0.006

Notes. aPanels of Figs 6–10.
bMedians of distributions as indicated in Figs 6–10 by vertical lines; errors represent half width at half-maximum

of the bootstrap distribution, i.e. the distribution of medians from each of 100 bootstrap samples, fitted by a

Gaussian curve.
cFigs 6 and 9.
dFigs 7 and 10.
eOnly galaxies with stellar masses log(M⋆/M⊙) ≥ 10.46 are considered.

massive galaxies (log (M⋆/M⊙) ≥ 11) are located closer to the

filaments than the intermediate population (11 > log (M⋆/M⊙)

≥ 10.7), while the population with the lowest stellar masses

(10.7 > log (M⋆/M⊙) ≥ 10.46) is found furthest away from the

filaments. The significances of the difference between the most

massive and the two lowest stellar mass bins are shown in the bot-

tom panel. Between the most extreme stellar mass bins (purple

line), the difference exceeds 4σ close to the filament and 2σ at

larger distances. It is slightly less significant between the interme-

diate and lowest stella mass bins (orange line), but still in excess

of 2σ close to the filament. The differences between the PDFs can

be also quantified in terms of their medians, where the differences

between the highest and lowest stellar mass bins are significant at

an ∼10σ level (see Table 1). These results confirm previous claims

of a mass segregation with respect to filaments, where the most

massive galaxies are located near the core of the filaments, while
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Figure 7. Top: Differential distributions of the distances to the nearest

filament, Dskel (normalized by 〈Dz〉, the redshift-dependent mean inter-

galaxy separation) for star-forming and quiescent galaxies that have been

matched in mass (see the text for details). To highlight an effect specific

to the filaments, the contribution of node is minimized (see the text for

details). The vertical lines indicate the medians of the distributions and

their values, together with associated error bars, are listed in Table 1. The

numbers of galaxies in different considered bins are indicated in each panel.

The error bars are calculated from 100 bootstrap samples. Galaxies are

found to segregate, relative to filaments, according to their type: quiescent

galaxies tend to be preferentially located closer to the filaments compared

to their star-forming counterparts. Bottom: Residuals in units of σ between

the star-forming and passive galaxies.

the less massive ones tend to reside preferentially on their outskirts

(Laigle et al. 2017; Malavasi et al. 2017). As the impact of the nodes

has been minimized, it is therefore established that this stellar mass

gradient is driven by the filaments themselves and not by the densest

regions of the cosmic web.

The mass segregation is also found among the star-forming pop-

ulation alone (right-hand panels), such that more massive star-

forming galaxies tend to be closer to the geometric core of the

filament than their less massive counterparts. Note that the mass

bins for star-forming galaxies differ from mass bins used for the

entire population. The completeness stellar mass limit allows us to

decrease the lowest mass bin to log (M⋆/M⊙) = 9.92 when con-

sidering the star-forming galaxies alone (see Section 2). The signif-

icance of these stellar mass gradients between the extreme stellar

mass bins exceeds 4σ near the filaments, while the difference of the

medians reaches an ∼8σ level (see Table 1).

4.2.2 Type gradients

Let us now investigate the impact of the filamentary network on

the type/colour of galaxies. To do so, galaxies are split by type

between star-forming and passive galaxies based on the dust cor-

rected u − r colour as discussed in Section 2.1. As for the analysis

of the red fraction (Section 4.1), the sample is restricted to galax-

ies with log (M⋆/M⊙) ≥ 10.46 and the star-forming and passive

populations are matched in stellar mass. Fig. 7 shows the PDFs of

Figure 8. u − r colour (blue line) and sSFR (red line) of star-forming

galaxies as a function of Dskel. The y-axes indicate the amount by which

u − r colour and sSFR differ from the median values at given mass (see

the text for details). Only galaxies with log (M⋆/M⊙) ≥ 9.92 and far-away

from nodes (at Dnode >3.5 Mpc) are considered. Star-forming galaxies tend

to have higher u − r colour (tend to be redder) and lower sSFR when they

get closer to the filaments than their more distant counterparts.

the normalized distances Dskel within the mass-matched samples of

star-forming and passive populations, which by construction have

the same number of galaxies. Galaxies are found to segregate ac-

cording to their type such that passive galaxies tend to reside in re-

gions located closer to the core of filaments than their star-forming

counterparts. The significance of the type gradients between the two

populations exceeds 3σ near filaments while the difference between

the medians reaches an ∼4σ level (see Table 1).

4.2.3 Star formation activity gradients

To explore whether the impact of filaments on the star formation

activity of galaxies can be detected beyond the red fractions and type

segregation reported above, the focus is now on the star-forming

population alone through the study of their (dust corrected) u − r

colour and sSFR.

Both these quantities are known to evolve with stellar mass which

itself varies within the cosmic web (see above). To remove this mass

dependence, the offsets of u − r colour and sSFR, �u − r and

�sSFR, respectively, from the median values of all star-forming

galaxies at a given mass are computed for each galaxy. Fig. 8

shows the medians of �u − r and �sSFR as a function of Dskel.

Both quantities are found to carry the imprint of the large-scale

environment. At large distances from the filaments (Dskel ≥ 5 Mpc),

star-forming galaxies are found to be more active than the average.

At intermediate distances (0.5 ≤ Dskel ≤ 5 Mpc), star formation

activity of star-forming galaxies does not seem to evolve with the

distance to the filaments, while in the close vicinity of the filaments

(Dskel ≤ 0.5 Mpc), they show signs of a decrease in star formation

efficiency (redder colour and lower sSFR). The significance of these

results will be discussed in Section 7.

4.3 The role of walls in mass and type gradients

Let us now investigate the impact of walls on galaxy properties.

Figs 9 and 10 show the PDFs of the distances to the closest wall Dwall

for the same selections as in Figs 6 and 7, respectively. The distances
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Figure 9. Top row: As in Fig. 6, but for the distances to the nearest wall, Dwall. To minimize the contribution of nodes and filaments to the measured signal,

galaxies located closer to a node than 3.5 Mpc and closer to a filament than 2.5 Mpc are removed form the analysis. There is a mass segregation of galaxies

with respect to walls of the entire as well as star-forming population: more massive galaxies tend to be preferentially located closer to the filaments compared

to their lower-mass counterparts. Bottom row: Residuals in units of σ as in Fig. 6.

Figure 10. Top row: As in Fig. 7, but for the distances to the nearest wall,

Dwall. To minimize the contribution of nodes and filaments to the measured

signal, galaxies located closer to a node than 3.5 Mpc and closer to a filament

than 2.5 Mpc are removed from the analysis. Galaxies are found to segregate,

with respect to walls, according to their type: quiescent galaxies tend to be

preferentially located closer to the walls compared to their star-forming

counterparts. Bottom row: Residuals in units of σ as in Fig. 7.

are again normalized by the redshift-dependent mean inter-galaxy

separation 〈Dz〉. The values of medians with corresponding error

bars are listed in Table 1. As for filaments, one seeks signatures

induced by a particular environment solely, walls in this case. Given

that filaments are located at the intersections between walls, in

addition to the contamination by nodes, which is of concern for

filaments, one has to make sure that the contribution of filaments

themselves is minimized as well. Following the method adopted

in Section 4.2.1, Appendix B2 shows that this can be achieved by

removing from the analysis galaxies having distances to the nodes

smaller than 3.5 Mpc and distances to the closest filaments less than

2.5 Mpc.

The derived trends are qualitatively similar to those measured

with respect to filaments. Massive galaxies are located closer to

walls compared to their low-mass counterparts; star-forming galax-

ies preferentially reside in the outer regions of walls; and mass seg-

regation is present also among star-forming population of galaxies

with more massive star-forming galaxies having smaller distances

to the walls than low-mass counterparts. Since these walls typically

embed smaller-scale filaments, the net effect of transverse gradi-

ents perpendicular to these filaments should add up to transverse

gradients perpendicular to walls.

The significance of the measured trends, in terms of the residuals

between medians (see Table 1), is above 3σ for all considered

gradients, slightly lower than for the gradients towards filaments.

The deviations of ∼10σ and ∼5σ are detected between the highest

and lowest stellar mass bins among the whole and star-forming

population alone, respectively, while between the star-forming and

passive galaxies it reaches ∼4σ , as in the case of gradients towards

filaments.
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Galaxy evolution in the metric of the cosmic web 557

Table 2. Medians for the PDFs displayed in Fig. 11.

Selectiona Bin Medianb

Dskel (Mpc) Dwall (Mpc)

log(M⋆/M⊙) ≥ 10.8 1.34 ± 0.09 0.79 ± 0.04

Mass 10.8 > log(M⋆/M⊙) ≥ 10.4 1.73 ± 0.08 1.14 ± 0.03

10.4 > log(M⋆/M⊙) ≥ 10 1.97 ± 0.04 1.22 ± 0.02

−10.8 > log(sSFR/yr−1) 1.46 ± 0.07 1.02 ± 0.03

sSFRc −10.4 > log(sSFR/yr−1) ≥ −10.8 1.88 ± 0.06 1.18 ± 0.03

log(sSFR/yr−1) ≥ −10.4 2.0 ± 0.04 1.18 ± 0.02

Notes. aPanels of Fig. 11.
bMedians of distributions as indicated in Fig. 11 by vertical lines; errors are computed as in Table 1.
cOnly galaxies with stellar masses log(M⋆/M⊙) ≥ 10 are considered.

5 C O M PA R I S O N W I T H T H E H O R I Z O N -AG N

SIMULATION

In this section, a qualitative support for the results on the mass and

star-formation activity segregation is provided via the analysis of the

large-scale cosmological hydrodynamical simulation HORIZON-AGN

(Dubois et al. 2014). Note that the main purpose of such an analysis

is to provide a reference measurement of gradients in the context

of a large-scale ‘full physics’ experiment. The construction of the

GAMA-like mock catalogue is not performed because the geome-

try of HORIZON-AGN does not allow us to recover the entire GAMA

volume and the flux-limited sample requires a precise modelling of

fluxes in different bands.

A brief summary of some of the main features of the simulation

can be found in Appendix D. Here, the results on the mass and sSFR

gradients towards filaments and walls are presented. The HORIZON-

AGN simulation is analysed at low redshift (z ∼ 0.1), comparable

to the mean redshift studied in this paper, and the same analysis

is performed as in the GAMA data. The filamentary network and

associated structures are extracted by running the DisPerSE code

with the persistence threshold of 3σ .

Fig. 11 shows the mass (left-hand panels) and sSFR (right-hand

panels) gradients towards filaments (figure a) and walls (figure b) as

measured in the HORIZON-AGN simulation. The impact of the nodes

and filaments on the measured signal is minimized by removing

from the analysis galaxies that are closer to the node than 3.5 Mpc

and closer to the filament than 1 Mpc. The detailed description of

the method used to identify these cuts in distances can be found

in Appendix B1. Consistently with the measurements in GAMA,

galaxies in HORIZON-AGN are found to segregate by stellar mass, with

more massive galaxies being preferentially closer to both the fil-

aments and walls than their low-mass counterparts. Similarly, the

presence of the sSFR gradient, whereby less star-forming galax-

ies tend to be closer to the cores of filaments and walls than their

more star-forming counterparts, is in qualitative agreement with the

type/colour gradients detected in the GAMA survey. Note that the

three bins of sSFR are used to separate out the highly star-forming

galaxies, with log (sSFR/yr−1) ≥ −10.4, from passive ones, with

log (sSFR/yr−1) < −10.8, in order to compare with the type gradi-

ents in the observations. In the simulation, sSFR is a more reliable

parameter for type than for the colour.

The significance of the trends is measured, as previously, in terms

of the residuals between medians (see Table 1). For the gradients

towards filaments, the difference of �6σ is found between the

most extreme, both mass and sSFR, bins, while it drops to ∼2–3σ

between the intermediate and lowest bins. For the gradients towards

walls, the deviation between the most extreme bins is ∼10 and 4σ

for mass and sSFR bins, respectively, while there is only a little to no

difference between intermediate and lowest stellar mass and sSFR

bins, respectively. The gradients are slightly less significant than in

the GAMA measurements, most likely due to the low numbers of

galaxies per individual bins in HORIZON-AGN, but qualitatively similar

as in GAMA.

6 T H E R E L AT I V E I M PAC T O F D E N S I T Y

Let us now address the following questions: what is the specific role

of the geometry of the large-scale environment in establishing mass

and type/colour large-scale gradients? Are these gradients driven

solely by density, or does the large-scale anisotropy of the cosmic

web provide a specific signature?

A key ingredient in answering these questions is the choice of

the scale at which the density is inferred. The properties of galaxies

at a given redshift are naturally a signature of their past light-cone.

This light-cone in turn correlates with the galaxy’s environment: the

larger the scale is, the longer the look-back time one must consider,

the more integrated the net effect of this environment. This past

environment accounts for the total accreted mass of the galaxy, but

may also impact the geometry of the accretion history and more

generally other galactic properties such as its star formation effi-

ciency, its colour or its spin. At small scales, the density correlates

with the most recent and stochastic processes, while going to larger

scales allows taking the integrated hence smoother history of galax-

ies into account. Since this study is concerned about the statistical

impact of the large-scale structure on galaxies, it is natural to con-

sider scales large enough to average out local recent events they

may have encountered, such as binary interactions, mergers and

outflows. Therefore in the discussion below, the density is com-

puted at the scale of 8 Mpc, the ‘smallest’ scale at which the effect

of the anisotropic large-scale tides can be detected.

In practice, in order to try to disentangle the effect of density

from that of the anisotropic large-scale tides, the following reshuf-

fling method (e.g. Malavasi et al. 2017) is adopted. For mass gradi-

ents, 10 equipopulated density bins are constructed and in each of

them the stellar masses of galaxies are randomly permuted. By con-

struction, the underlying mass-density relation is preserved, but this

procedure randomizes the relation between the stellar mass and the

distance to the filament or the wall. For the type/colour gradients,

in each of 10 equipopulated density bins, 10 equipopulated stellar

mass bins are constructed. Within each of such bins, u − r colour

of galaxies are randomly permuted. Thus by construction, this pre-

serves the underlying colour-(mass)-density relation, but breaks the

relation between the colour/type and the distance to the particular

environment, the filament or wall.

MNRAS 474, 547–571 (2018)
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558 K. Kraljic et al.

Figure 11. Top rows: Differential distributions of the distances as a function of stellar mass (left-hand panels) and sSFR (right-hand panels) for galaxies

in HORIZON-AGN. To minimize the contribution of nodes and filaments to the measured signal, galaxies located closer to a node than 3.5 Mpc and closer to a

filament than 1 Mpc are removed from the analysis. The vertical lines indicate the medians of the distributions (see Table 2 for the numerical values). Numbers

of galaxies in different considered bins are indicated in each panel. There is mass and sSFR segregation of galaxies with respect to both filaments and walls:

more massive and less star-forming galaxies tend to be preferentially located closer to the cores of filaments and walls compared to their lower-mass and more

star-forming counterparts, respectively. These results are in qualitative agreement with the measurements in GAMA. Bottom rows: Residuals in units of σ

between the two most extreme mass and sSFR bins, log (M⋆/M⊙) ≥ 10.8 and 10.4 > log (M⋆/M⊙) ≥ 10 on the left-hand panel and −10.8 > log (sSFR/yr−1)

and log (sSFR/yr−1) ≥ −10.4 on the right-hand panel, respectively. (a) Differential distributions of the distances to the nearest filament, Dskel. (b) Differential

distributions of the distances to the nearest wall, Dwall.

In order to account for the variation of the density through the

survey, the density contrast, defined as 1 + δ = n/n(z), where

n(z) corresponds to the mean redshift-dependent number density,

is used in logarithmic bins. The number density n is computed

in the Gaussian kernel and every time five reshuffled samples are

constructed.

In Fig. 12(a), the mass and type gradients towards filaments, as

measured in GAMA and previously shown in Figs 6 and 7, are

compared with the outcome of the reshuffling technique. The orig-

inal signal is found to be substantially reduced after the reshuffling

of masses and colours of galaxies. For the mass gradients, the de-

viation between the most extreme bins before reshuffling exceeds

3σ , while after the reshuffling, the signal gets reduced, with typical

deviations of ∼1σ . The original signal for the type/colour gradi-

ents is weaker than in the case of the mass gradients, however it

is similarly nearly cancelled out once the reshuffling method is

MNRAS 474, 547–571 (2018)
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(a)

(b)

Figure 12. Top rows: Differential distributions of the normalized distances to the nearest filament, Dskel as a function of stellar mass of the entire galaxy

population (left-hand panels), for star-forming galaxies only (middle panels) and as a function of galaxy’s type (right-hand panels) with reshuffling (Figure a)

and with density-matched samples (Figure b). In Figure (a), the distributions before applying the reshuffling method (solid lines) are compared to the results

after the reshuffling (dashed lines). Figure (b) illustrates the distributions for the galaxy samples that are matched so that their density distributions are the same

(see the text for details on the matching). The density estimators used in both the reshuffling and density matching corresponds to the (large-scale) density

computed in the Gaussian kernel at the scale of 8 Mpc. As previously, the contribution of nodes to the measured signal is minimized. The numerical values

of medians, shown as vertical lines, are listed in Table 3. The two methods yield qualitatively similar result: on the one hand when the large-scale density is

used in reshuffling, the signal is reduced (dashed lines, Figure a) suggesting that the measured gradients (solid lines, Figure a) are not driven by the density at

this scale, on the other hand, the gradients are measured within the samples that are matched in density at large scale. Bottom rows: Residuals in units of σ

between the highest and lowest mass bins (left-hand and middle panels) and between the star-forming and passive galaxies (right-hand panels). (a) Reshuffling.

(b) Density matching.

applied. The values of medians of the distributions after the reshuf-

fling can be found in Table 3. Qualitatively similar behaviour is

obtained for the gradients towards walls (not shown here). The

analysis in HORIZON-AGN provides a qualitative support for these re-

sults. In Appendix D2, Fig. D1(a), the same reshuffling method is

applied to simulated galaxies. The density used for this test is com-

puted in the Gaussian kernel at 5 Mpc. This scale corresponds to the

∼1.5× mean inter-galaxy separation in HORIZON-AGN, consistently

with the GAMA data.

Alternatively, to assess the impact of the density on the mea-

sured gradients within the cosmic web, one may want to use density

matching. The purpose of this method is to construct mass- and

colour-density matched samples, whereby galaxies with different

masses and/or colours have similar density distributions, in order to

make sure that the measured properties are not driven by their dif-

ferences (see Appendix A2 for details on the matching technique).

As shown in Fig. 12(b), the main result on the density-matching

technique leads to the same conclusions as the reshuffling method.
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Table 3. Medians for the PDFs displayed in Fig. 12: large-scale density

Selectiona Bin Medianb

Dskel/〈Dz〉
Originalc reshufflingd Matchinge

log(M⋆/M⊙) ≥ 11 0.379 ± 0.009 0.441 ± 0.009 0.379 ± 0.01

All galaxies 11 > log(M⋆/M⊙) ≥ 10.7 0.456 ± 0.007 0.463 ± 0.006 0.44 ± 0.009

10.7 > log(M⋆/M⊙) ≥ 10.46 0.505 ± 0.007 0.475 ± 0.006 0.486 ± 0.01
Masses

log(M⋆/M⊙) ≥ 11 0.459 ± 0.01 0.541 ± 0.015 0.459 ± 0.011

SF galaxies 11 > log(M⋆/M⊙) ≥ 10.4 0.534 ± 0.007 0.543 ± 0.007 0.514 ± 0.012

10.4 > log(M⋆/M⊙) ≥ 9.92 0.578 ± 0.007 0.552 ± 0.007 0.549 ± 0.012

Star-forming 0.503 ± 0.007 0.491 ± 0.007 0.498 ± 0.007
Types SF versus passivef

Passive 0.462 ± 0.007 0.476 ± 0.007 0.467 ± 0.006

Notes. aPanels of Fig. 12.
bMedians of distributions as indicated in Fig. 12 by vertical lines; errors are computed as in Table 1.
cAs in Table 1 for Dskel/〈Dz〉.
dReshuffling is done in bins of density computed at 8 Mpc (see the text for details).
eMedians for the density-matched sample, where the density considered is computed at 8 Mpc.
fOnly galaxies with stellar masses log(M⋆/M⊙) ≥ 10.46 are considered.

After matching galaxy populations in the large-scale density, mass

and type gradients towards filaments and walls are still detected,

suggesting that beyond the density, large-scale structures of the

cosmic web do impact these galactic properties.

7 D ISCUSSION

Let us first discuss the observational findings of the previous section

in the framework of existing work (Section 7.1) and then focus on

a recent extension of anisotropic excursion set which is developed

in the companion paper (Section 7.2). The latter will allow us to

explain why colour gradients prevail at fixed density.

7.1 Cosmic web metric: expected impact on galaxy evolution

In the current framework for galaxy formation, in which galaxies

reside in extended dark matter haloes, it is quite natural to split the

environment into the local environment, defined by the dark matter

halo and the global large-scale anisotropic environment, encom-

passing the scale beyond the halo’s virial radius. The anisotropy

of the cosmic web is already a direct manifestation of the generic

anisotropic nature of gravitational collapse on larger scales. It pro-

vides the embedding in which dark haloes and galaxies grow via

accretion, which will act upon them via the combined effect of

tides, the channeling of gas along preferred directions and angular

momentum advection on to forming galaxies.

The observations and simulations presented in Sections 4, 5 and 6

provide a general support for this scenario. While rich clusters and

massive groups are known to be environments which induce ma-

jor galaxy transformations, the red fraction analysis presented in

Section 4.1 (Fig. 5) reveals that the fraction of passive galaxies in

the filaments starts to increase several Mpc away from the nodes

and peaks in the nodes. This gradual increase suggests that some

‘pre-processing’ already happens before the galaxies reach the virial

radius of massive haloes and fall into groups or clusters (e.g. Porter

et al. 2008; Martı́nez et al. 2016). The above-mentioned morpholog-

ical transformation of elliptical-to-spiral ratio when getting closer

to the filaments (see also Kuutma et al. 2017) can be interpreted

as the result of mergers transforming spirals into passive ellipti-

cal galaxies along the filaments when migrating towards nodes as

suggested by theory and simulations (Codis et al. 2012; Dubois

et al. 2014). These findings show that filamentary regions, corre-

sponding to intermediate densities, are important environments for

galaxy transformation. This is also confirmed by the segregation

found in Sections 4.2 (Figs 6 and 7). More massive and/or passive

galaxies are found closer to the core of filaments than their less

massive and/or star-forming counterparts. These differential mass

gradients persist among the star-forming population alone. In ad-

dition to mass segregation, star-forming galaxies show a gradual

evolution in their star formation activity (see Fig. 8). They are bluer

than average at large distances from filaments (Dskel � 5 Mpc), in a

‘steady state’ with no apparent evolution in star formation activity

at intermediate distances (0.5 ≤ Dskel ≤ 5 Mpc) and they show signs

of decreased star formation efficiency near the core of the filaments

(Dskel � 0.5 Mpc). These results are in line with the picture where

on the one hand more massive/passive galaxies lay in the core of

filaments and merge while drifting towards the nodes of the cosmic

web. On the other hand, the low mass/star-forming galaxies tend to

be preferentially located in the outskirts of filaments, a vorticity-rich

regions (Laigle et al. 2015), where galaxies acquire both their angu-

lar momentum (leading to a spin parallel to the filaments) and their

stellar mass via essentially smooth accretion (Dubois et al. 2012b;

Welker et al. 2017, also relying on HORIZON-AGN). The steady state

of star-formation in these regions can reflect the right balance be-

tween the consumption and refuelling of the gas reservoir by the

cold gas controlled by their surrounding filamentary structure (as

shown by Codis et al. 2015, following Pichon et al. 2011, the out-

skirts of filaments are the loci of most efficient helicoidal infall of

cold gas). This may not be true anymore when galaxies fall in the

core of the filaments. The decline of star formation activity can, in

part, be due to the higher merger rate but also due to a quenching

process such as strangulation, where the supply of cold gas is halted

(Peng, Maiolino & Cochrane 2015). It could also find its origin in

the cosmic web detachment (Aragon-Calvo et al. 2016), where the

turbulent regions inside filaments prevent galaxies to stay connected

to their filamentary flows and thus to replenish their gas reservoir.

7.2 Link with excursion set theory

The distinct transverse gradients found for mass, density and type

or colour may also be understood within the framework of condi-

tional excursion set theory. Qualitatively, the spatial variation of the

(traceless part of the) tidal tensor in the vicinity of filaments will
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Galaxy evolution in the metric of the cosmic web 561

delay infall on to galaxies, which will impact differentially galac-

tic colour (at fixed mass), provided accretion can be reasonably

converted into star formation efficiency.

7.2.1 Connecting gradients to constrained excursion set

The companion paper (Musso et al. 2017) revisits excursion set

theory subject to conditioning the excursion to the vicinity of a

filament. In a nutshell, the main idea of excursion set theory is to

compute the statistical properties of the initial (over)density – a

stochastic variable – enclosed within spheres of radius R, the scale

which, through the spherical collapse model, can be related to the

final mass of the object (should the density within the sphere pass

the threshold for collapse). Increasing the radius of the sphere pro-

vides us with a proxy for ‘evolution’ (larger sphere, larger mass,

smaller variance, later formation time) and a measure of the impact

of the environment (different sensitivity to tides for different, larger,

spheres). The expectations associated with this stochastic variable

can be re-computed subject to the tides imposed by larger scale

structures, which are best captured by the geometry of a filament-

saddle point, S, providing the local natural ‘metric’ for a filament

(Codis et al. 2015). These large-scale tides will induce distinct

weighting in the conditional PDF(δ,∂Rδ|S) for the overdensity δ,

and its successive derivatives with respect to scale, ∂Rδ etc. (so as to

focus on collapsed accreting regions). Indeed, the saddle will shift

not only the mean expectation of the PDFs but also importantly their

co-variances (see Musso et al. 2017, for details). The derived ex-

pected (dark matter) mean density ρ(r, θ , φ), Press-Schechter mass

M(r, θ , φ) and typical accretion rate Ṁ(r, θ, φ) then become explicit

distinct functions of distance r and relative orientation to the closest

(oriented) saddle point. Within this model, it follows that the orien-

tation of the mass, density and accretion rate gradients differ. The

misalignment arises because the various fields weight differently

the constrained tides, which will physically e.g. delay infall, and

technically involve different moments of the aforementioned con-

ditional PDF (see Appendix E for more quantitative information on

contour misalignment). This is shown in Fig. 13, which displays a

typical longitudinal cross-section of those three maps in the frame

of the saddle (with the filament along the Oz axis) in Lagrangian

space.5

This line of argument explains environmentally driven differen-

tial gradients, yet there is still a stretch to connect it to the observed

gradients. While there is no obvious consensus on the detailed ef-

fect of large-scale (dark matter) accretion on to the colour or star

formation of galaxies at fixed mass and density, one can expect

that the stronger the accretion, the stronger the AGN feedback, the

stronger the quenching. Should this (reasonable) scaling hold true,

the net effect in terms of gradients would be that colour gradients

differ from mass and density ones. This is qualitatively consistent

with the findings of this paper.

5 This companion paper does not capture the strongly non-linear process of

dynamical friction of sub clumps within dark haloes, nor strong deviations

from spherical collapse. We refer to Hahn et al. (2009), which captures

the effect on satellite galaxies, and to Ludlow, Borzyszkowski & Porciani

(2014), Castorina et al. (2016) and Borzyszkowski et al. (2017) which study

the effect of the local shear on haloes forming in filamentary structures.

This requires adopting a threshold for collapse that depends explicitly on

the local shear. The shear-dependent part of the critical density (and its

derivative) correlates with the shear of the saddle, and introduces an addi-

tional anisotropic effect on top of the change of mean values and variances

of density and slope.

Figure 13. Isocontours of constant typical redshift z = 0 mean density

(filled contours), mass (dotted lines) and accretion rate (dashed lines) in

the frame of a filament (along the Oz axis) in Lagrangian space (initial

conditions) from low (light colours) to high values (dark colours). The saddle

is at coordinate (0,0) while the induced peak and void are at coordinates

(0,±7) and (±8,0) h−1Mpc, respectively. As argued in the main text, this

figure shows that the contours, hence the gradients of the three fields, are not

parallel (the contours cross). The choice of scale sets the units on the x- and

z-axis (chosen here to be 5 h−1Mpc, while the mass and accretion rates are

computed for a local smoothing of 0.5 h−1Mpc). At lower redshift/smaller

scales, one expects the non-linear convergence of the flow towards the

filament to bring those contours together, aligning the gradients (see Fig. 14).

7.2.2 Gradient alignments on smaller non-linear scales

The above-presented Lagrangian theory clearly applies only on

sufficiently large scales so that dynamical evolution has not driven

the large-scale flow too far from its initial configuration. On smaller

scales, one would expect the same line of argument to operate in

the frame set by the saddle smoothed on the corresponding scale,

but with one extra caveat: the increased level of non-linearity will

have compressed the local filament transversally and stretched it

longitudinally, following the generic kinetic flow measured in N-

body simulation (e.g. Sousbie et al. 2008a), or predicted at the level

of the Zel’dovich approximation (Codis et al. 2015).

Consequently, the contours of constant dark matter density ρ, typ-

ical dark halo mass M and typical relative accretion rate Ṁ/M in

the frame of the saddle shown in Fig. 13 will be driven more parallel

to each other, hence the difference in the orientation of the density,

mass and accretion gradient will become smaller and smaller as

one considers smaller scales, and/or more non-linear dynamics (see

Fig. 14). As colour gradient at fixed mass, and mass gradient at fixed

density towards filaments originate from this initial misalignment,

it should come as no surprise that as one probes smaller scales, such

relative gradients disappear. When considering statistical expecta-

tions concerned with anisotropy (delayed accretion, acquisition of

angular momentum, etc.), the net effect of past interactions should

first be considered on the largest significant scale, beyond which

the universe becomes isotropic. Conversely, the level of stochastic-

ity should increase significantly on smaller scales, where one must
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Figure 14. Illustration of the Zel’dovich flow (green arrows) in the vicinity

of a filament (red cylinder) embedded in a wall (purple flattened cylinder),

with filament saddle at the centre. The non-linear evolution operating more

strongly on smaller scales will advect the contours presented in Fig. 13 along

the green arrows, bringing them more parallel to each other. Consequently

at these smaller scales, the mass and accretion gradients do not differ signif-

icantly from the density gradients. See Codis et al. (2015) and Musso et al.

(2017) for more details.

account for, e.g. the configuration of the last merger event, or the

last fly-by. Such a scenario is indeed supported by our findings in

both GAMA and HORIZON-AGN, presented in Appendices C and D2,

Figs C1 and D1, respectively, whereby the use of the small-scale

density tracer does not allow us to disentangle between the effects

of the local density and that of cosmic web, suggesting that at such

scale, they are closely correlated through the small-scale processes.

7.2.3 Relationship to wall gradients

When measured relative to the walls, galaxy properties are found

to exhibit the same trends as for filaments, in that more massive

and/or quiescent galaxies are found closer to the walls than their

low mass and/or star-forming counterparts. This result is again in

qualitative agreement with the idea of walls being, together with

the filaments, the large-scale interference patterns of primordial

fluctuations capable of inducing anisotropic boost in overdensity

together with the corresponding tides, and consequently imprinting

their geometry in the measured properties of galaxies. The gradients

measured for walls have the same origin as those inducing the

differential gradients near the filament-type saddles, but are sourced

by the geometry of the tides near the wall-type saddles (Codis

et al. 2015, Appendix B). The main difference between the two

saddles lies in the transverse curvatures, which is steeper for wall-

type saddles than for filament-type saddles (when considering the

mean, eigenvolume weighted, eigenvalues of the curvature tensor

with the relevant signatures) leading to weaker differences between

the different gradients when considering walls. This is consistent

with the findings of Section 4.3.

In closing, note that the (resp. Eulerian and Lagrangian) inter-

pretations presented in Sections 7.1 and 7.2 are complementary, but

fall short in explaining in details the origin of quenching. Neverthe-

less, in view of both observation and theory, the cosmic web metric

appears as a natural framework to understand galaxy formation

beyond stellar mass and local density.

8 SU M M A RY A N D C O N C L U S I O N S

This paper studies the impact of the large-scale environment on

the properties of galaxies, such as their stellar mass, dust corrected

u − r colour and sSFR. The discrete persistent structure extractor

(DisPerSE) was used to identify the peaks, filaments and walls in

the large-scale distribution of galaxies as captured by the GAMA

survey. The principal findings are the following.

(i) Mass segregation. Galaxies are found to segregate by stellar

mass, such that more massive galaxies are preferentially located

closer to the cores of filaments than their lower mass counterparts.

This mass segregation persists among the star-forming population.

Similar mass gradients are seen with respect to walls in that galax-

ies with higher stellar mass tend to be found closer to the walls

compared to galaxies with lower mass and persisting even when

star-forming population of galaxies is considered alone.

(ii) Type/colour segregation. Galaxies are found to segregate by

type/colour, with respect to both filaments and walls, such that

passive galaxies are preferentially located closer to the cores of

filaments or walls than their star-forming counterparts.

(iii) Red fractions. The fraction of passive galaxies increases with

both decreasing distance to the filament and to the node, i.e. at fixed

distance to the node, the relative number of passive galaxies (with

respect to the entire population) increases as the distance to the

filament decreases and similarly, at a given distance to the filament,

this number increases with decreasing distance to the node.

(iv) Star formation activity. Star-forming galaxies are found to

carry an imprint of large-scale environment as well. Their dust

corrected u − r and sSFR are found to be more enhanced and

reduced, respectively, in the vicinity of the filaments compared to

their outskirts.

(v) Consistency with cosmological simulations. All the found

gradients are consistent with the analysis of the HORIZON-AGN ‘full

physics’ hydrodynamical simulation. This agreement suggests that

what drives the gradients is captured by the implemented physics.

(vi) Connection to excursion set theory. The origin of the distinct

gradients can be qualitatively explained via conditional excursion

set theory subject to filamentary tides (Musso et al. 2017).

This work has focused on filaments, nodes and in somewhat lesser

details on walls. Similar observational results were recently reported

at high redshift by using the cosmic web filamentary structures in

the VIPERS spectroscopic survey (Malavasi et al. 2017) and while

using projected filaments in photometric redshift slices in the COS-

MOS field (Laigle et al. 2017). These observations are of intrin-

sic interest as a signature of galactic assembly; they also comfort

theoretical expectations which point towards distinct gradients for

colour, mass and density with respect to the cosmic web. The tides

of the large-scale environment play a significant specific role in the

evolution of galaxies, and are imprinted in their integrated physical

properties, which vary as a function of scale and distance to the dif-

ferent components of the cosmic web in a manner which is specific

to each observable.
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These observations motivate a theory which eventually should

integrate the anisotropy of the cosmic web as an essential ingredient

to (i) describe jointly the dynamics and physics of galaxies, (ii)

explain galactic morphological diversity, and (iii) mitigate intrinsic

alignment in upcoming lensing dark energy experiments, once a

proper modelling of the mapping between galaxies and their haloes

(allowing e.g. to convert the DM accretion rate into colour of galaxy)

becomes available.

Future large-scale spectrographs on 8 metre class telescopes

(MOONS;6 Cirasuolo et al. 2014; Cirasuolo & MOONS Consor-

tium 2016, PFS;7 Sugai et al. 2015) or space missions (WFIRST;8

Spergel et al. 2013, 2015, and Euclid;9 Laureijs et al. 2011, the deep

survey for the latter) will extend the current analysis at higher red-

shift (z ≥ 1) with similar samplings, allowing us to explore the role

of the environment near the peak of the cosmic star formation his-

tory, an epoch where the connectivity between the LSS and galaxies

is expected to be even tighter, with ubiquitous cold streams. Tomog-

raphy of the Lyman-α forest with PFS, MOONS, ELT-HARMONI

(Thatte et al. 2010) tracing the intergalactic medium will make the

study of the link between galaxies and this large-scale gas reservoir

possible.
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A P P E N D I X A : MAT C H I N G T E C H N I QU E

A1 Mass matching

This Appendix provides details on the mass matching procedure.

First the mass distributions of the two populations are cut so that

they cover the same stellar mass range, i.e. they have the same

minimum and maximum value of stellar mass. Then, in each stellar

mass bin, the population with lower number of galaxies is taken as

the reference sample and Nmatch samples of galaxies are extracted

in the other population, such that their mass distribution is the same

as the one of the reference sample. In practice, for each galaxy in

the reference sample, the corresponding galaxy of the larger sample

is sought among galaxies whose mass difference with respect to the

reference mass is smaller than �M⋆ in logarithmic space. If there

is no galaxy in larger sample satisfying this condition, the galaxy

of the reference sample is removed from the analysis. In each of

Nmatch samples, every galaxy of the larger sample is considered

only once, however repetitions are allowed across all samples. By

construction, after applying this procedure, one ends up with Nmatch

samples consisting of the same number of star-forming and passive

galaxies and having very similar stellar mass distributions.

If not stated differently, 20 mass-matched samples are typically

constructed using 10 equipopulated stellar mass bins for each and

choosing a value of 0.1 for �M⋆ parameter. Varying the values
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of Nmatch, �M⋆ and the number of stellar mass bins within the

reasonable range does not alter our conclusions.

A2 Density matching

This Appendix provides details on the density matching procedure.

First, let us describe how the mass-density matched samples are

constructed. The galaxy sample is first divided into three logarith-

mic stellar mass bins for which the density matched samples are to

be constructed. In each of the 10 equipopulated logarithmic over-

density (1+δ) bins, the reference sample is identified as that of

the previously constructed stellar-mass subsamples with the lowest

number of galaxies. Next, for each galaxy in the reference sample, a

galaxy is randomly chosen from each of two stellar mass bins hav-

ing the overdensity closest to the galaxy in the reference sample. In

practice, the nominal absolute difference in the log (M⋆/M⊙) val-

ues used to match galaxies is 0.1. If no suitable galaxy is found in

at least one of the two stellar mass bins, the galaxy of the reference

sample is removed from the analysis. This procedure is repeated

10 times, ending up with 10 samples of galaxies having the same

overdensity distributions in three different stellar mass bins.

Similarly, to construct type-density matched samples, the entire

galaxy sample is first divided into the subsamples of star-forming

and passive galaxies. Then, in each of the 10 equipopulated log-

arithmic overdensity (1+δ) bins, the reference sample (sample of

passive or star-forming galaxies) is identified as the one having the

lowest number of galaxies. We continue by randomly choosing a

galaxy from the larger sample with an overdensity and stellar mass

close to that of the galaxy from the reference sample. In practice,

we pair galaxies for which the distance in the two-parameter log-

arithmic space, defined by the stellar mass and the overdensity, is

minimal and smaller than 0.1. The procedure is again repeated 10

times in order to construct 10 samples of star-forming and passive

galaxies having their mass and density distributions close to each

other.

A P P E N D I X B : T H E I M PAC T O F C O S M I C

B O U N DA R I E S

It was stated in Sections 4.2.1 and 4.3 that the measured gradients

towards filaments (Figs 6 and 7) and walls (Figs 9 and 10) are

not simply due to gradients towards nodes in the former and due

to gradients towards nodes and filaments in the latter case. This

Appendix presents the performed tests that allowed us to reach

such a conclusion.

B1 Gradients towards filaments

Let us start by considering the gradients towards filaments. In order

to probe these gradients without being substantially contaminated

by the contribution from nodes, galaxies that are closer to nodes than

3.5 Mpc are removed from the analysis. The choice of this distance

dnode
min is motivated by the compromise between eliminating the most

of the gradient coming from nodes while keeping enough objects

to have a statistically significant sample. Note that the distance of

3.5 Mpc is greater than the typical size of groups, which is ∼ 1.5 Mpc

in the redshift range considered in this work, measured as a median

(or mean) projected group radius. The value of median (and mean)

is insensitive to the definition of the group radius (see Robotham

et al. 2011, for various definitions considered). In Fig. B1, the solid

lines show the mass gradients towards filaments for the entire sample

(left-hand panel) on the one hand and after excluding galaxies with

distances to the node Dnode ≤ 3.5 Mpc (right-hand panel).

The contribution of nodes to mass gradients towards filaments is

measured by randomizing distances to the filament, Dskel, in bins

of distances to the node, Dnode. By construction, gradients towards

nodes are preserved. 20 samples are constructed in each of which

this reshuffling method is applied in 20 equipopulated logarithmic

bins. As shown by the dashed lines in Fig. B1 and values of medians

listed in Table F1, the reshuffling cancels the gradients towards

filaments for dnode
min = 3.5 Mpc.

Figure B1. Top row: Differential distributions of the normalized distances to the nearest filament, Dskel. The solid lines show mass gradients for all galaxies

(left-hand panel) and after removing galaxies with distances to the node smaller than 3.5 Mpc (right-hand panel). The dashed lines illustrate mass gradients after

the reshuffling of Dskel of galaxies in bins of distances to the node Dnode. The vertical lines indicate the medians of the distributions and their values, together

with associated errors, are listed in Table F1. The reshuffling method cancels mass gradients towards filaments once galaxies at distances closer than 3.5 Mpc

from nodes are removed. Bottom row: Residuals in units of σ between the two most extreme mass bins (log (M⋆/M⊙) ≥ 11.0 and 10.7 > log (M⋆/M⊙) ≥
10.46) before (solid lines) and after (dashed lines) the reshuffling.
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Figure B2. Top row: Differential distributions of the normalized distances to the nearest wall, Dwall. The solid lines show mass gradients after removing

galaxies with distances to the node smaller than 3.5 Mpc (left) and after applying an additional criterion on the distance to the filament, such that galaxies with

distances to the filament smaller than 2.5 Mpc (right) are removed. The dashed lines illustrate mass gradient after reshuffling of Dskel of galaxies in bins of

distances to the node Dnode. As shown on the right-hand panel, these are almost completely cancelled after removing sufficiently large regions around nodes

and filaments. The vertical lines indicate the medians of the distributions and their values, together with associated errors, are listed in Table F2. Bottom row:

Residuals are in units of σ as in Fig. B1.

In addition, following Laigle et al. (2017), it can be shown that

in the regions sufficiently far away from nodes, gradients towards

nodes and those towards filaments are independent. It was checked

that the mass gradients towards nodes, present for the entire galaxy

sample, are substantially reduced once galaxies for which distances

to the node Dnode ≤ 3.5 Mpc are excluded. This time, the distances

to the node, Dnode, were randomized in bins of distances to the fil-

ament, Dskel, i.e. by construction, gradients towards filaments were

preserved. Again, 20 samples were constructed using 20 equipopu-

lated logarithmic bins. After reshuffling, weak gradients at the level

of at most 1σ are still present, but note that additional increase in

dnode
min does not reduce them further.

This analysis allows us to conclude that by removing from our

sample galaxies that are closer to nodes than 3.5 Mpc, the impact

of nodes to the measured gradients towards filaments is minimized,

and even if weak gradients towards nodes still exist, these are in-

dependent of gradients towards filaments, i.e. gradients towards

filaments and gradients towards nodes can be disentangled.

Let us finish this section with two remarks. First, note that dis-

tances to the node considered here are 3D euclidian distances. Curvi-

linear distances along the filaments could have been used instead

(as illustrated in Fig. 4). This alternative choice of the distance does

not alter our conclusions. Secondly, instead of using distances to

the node Dnode, one could have considered distances normalized by

the redshift-dependent mean inter-galaxy separation, Dnode/〈Dz〉.
These two approaches give consistent results not only qualitatively,

but also quantitatively.

B2 Gradients towards walls

As with filaments, when measuring the gradients towards walls,

one should investigate whether the gradient is not dominated by

other component of the environments. As filaments are regions

where walls intersect, these represent on top of nodes an additional

source of contamination for the measured gradients towards walls.

Fig. B2 shows the mass gradients towards walls for the galaxy

sample outside the zone of influence of nodes parametrized by

dnode
min = 3.5 Mpc (left-hand panel) and after applying an additional

criterion by excluding galaxies with distances to the closest filament

Dskel ≤ dskel
min with dskel

min = 2.5 Mpc (right-hand panel). The contribu-

tion of filaments to the mass gradients towards walls is measured

by randomizing distances to the wall, Dwall, in bins of distances to

the filament, Dskel. By construction, the gradients towards filaments

are preserved. Here 20 samples are constructed in each of which

the reshuffling method is applied in 20 equipopulated logarithmic

bins. As shown by the dashed lines in Fig. B2 and values of medi-

ans listed in Table F2, the reshuffling cancels the gradients towards

walls for dskel
min = 2.5 Mpc.

Following the method used in Appendix B1, it was verified (but

not shown here) that the mass gradients towards filaments after

randomization of the distances Dskel in bins of distances to the

nearest wall Dwall are substantially reduced. Only a very weak mass

gradient (at a 1σ level at most) is detected after randomization even

for dskel
min = 2.5 Mpc. Similarly to what was found in Section B1,

increasing this parameter does not induce any substantial reduction

of the gradient. Thus this distance was chosen as the limit for the

exclusion region around filaments.

APPENDI X C : SMALL-SCALE

DENSI TY-COSMI C WEB R ELATI ON

In this Appendix, the impact of the small-scale density estimator

on the mass and type/colour gradients is presented. The density

used here is DTFE, i.e. the density computed at the smallest pos-

sible scale.10 As in Section 6, the two methods, the reshuffling and

density-matching, are applied.

10 There is no specific scale associated with the DTFE: it is a local adaptive

method which determines the density at each point while preserving its

multiscale character.
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(a)

(b)

Figure C1. Top rows: As in Fig. 12, but using the DTFE density for both methods, reshuffling (Figure a) and density matching (Figure b). The numerical

values of medians, shown as vertical lines, are listed in Table F3. When the small-scale density, DTFE in this case, is used in the reshuffling method, the

randomized (dashed lines) and original signal (solid lines) are nearly identical. Similarly, all gradients are almost completely erased, as expected. Bottom rows:

Residuals are in unit of σ as in Fig. 12. (a) Reshuffling. (b) Density matching.

Fig. C1 shows the differential distributions of the distances to the

nearest filament, Dskel (normalized by 〈Dz〉, for the same selections

as in Fig. 12. The contribution of the nodes to the measured signal is

minimized, by removing from the analysis galaxies located closer to

a node than 3.5 Mpc. Star-forming and passive galaxies have been

matched in mass, as described in Appendix A1. The vertical lines

indicate the medians of the distributions, whose values, together

with the error bars, are listed in Table F3.

In Figure (a), the mass and type gradients are shown before (solid

lines, as in 12) and after (dashed lines) applying the reshuffling

of galaxies in the bins of overdensity (1+δ), where the number

density corresponds to the DTFE density. The result conforms to

the expectations. The reshuffling does not remove the observed mass

and type/colour gradients, i.e. the distributions before and after the

reshuffling are almost identical, suggesting that at the small scale,

traced by DTFE, the density and cosmic web are closely correlated

through the small-scale processes.

Figure (b) illustrates the PDFs for samples that have been matched

in overdensity (1 + δ), as described in Appendix A2, where the

density considered is DTFE. The density-matching technique yields

qualitatively similar result than the above used reshuffling in that al-

most no mass and type gradients are detected when galaxies matched

in the DTFE density.

Qualitatively same results are obtained for both methods when

applied to the measurements of gradients with respect to the walls

(not shown).

MNRAS 474, 547–571 (2018)
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A P P E N D I X D : T H E H O R I Z O N-AG N S IMU LATI ON

This Appendix is dedicated to presenting the large-scale cosmolog-

ical hydrodynamical simulation HORIZON-AGN (Dubois et al. 2014).

First, some of the main features of the simulation are briefly summa-

rized. The reshuffling method is then implemented on the simula-

tion, as defined in Section 6, and shown to yield qualitatively similar

results to those obtained in GAMA for both large- and small-scale

density tracers.

D1 Simulation summary

The detailed description of the HORIZON-AGN simulation11 can be

found in Dubois et al. (2014), here only its brief summary is given.

The cosmological parameters used in the simulation correspond

to the �CDM cosmology with total matter density �m = 0.272,

dark energy density �� = 0.728, amplitude of the matter power

spectrum σ 8 = 0.81, baryon density �b = 0.045, Hubble con-

stant H0 = 70.4 km s−1 Mpc−1 and ns = 0.967 compatible with the

WMAP-7 data (Komatsu et al. 2011).

The simulation was run with the Adaptive Mesh Refinement code

RAMSES (Teyssier 2002) in a box of length Lbox = 100 h−1 Mpc

containing 10243 dark matter (DM) particles, with a DM mass

resolution of MDM,res = 8 × 107 M⊙, and initial gas resolution of

Mgas,res = 1 × 107 M⊙.

The collisionless DM and stellar components are evolved using a

particle-mesh solver. The dynamics of the gaseous component are

computed by solving Euler equations on the adaptive grid using a

second-order unsplit Godunov scheme.

The refinement is done in a quasi-Lagrangian manner starting

from the initial coarse grid down to �x = 1 proper kpc (seven levels

of refinement) as follows: each AMR cell is refined if the number of

DM particles in a cell is more than 8, or if the total baryonic mass

in a cell is eight times the initial DM mass resolution. This results

in a typical number of 7 × 109 gas resolution elements (leaf cells)

in the HORIZON-AGN simulation at z = 0.

Heating of the gas from a uniform UV background takes place

after redshift zreion = 10 following Haardt & Madau (1996). Gas is

11 http://www.horizon-simulation.org

allowed to cool down to 104 K through H and He collisions with

a contribution from metals using a Sutherland & Dopita (1993)

model.

The conversion of gas into stars occurs in regions with

gas density exceeding ρ0 = 0.1 H cm−3 following the Schmidt

(1959) relation of the form ρ̇∗ = ǫ∗ρg/tff , where ρ̇∗ is the SFR

mass density, ρg the gas mass density, ǫ∗ = 0.02 the con-

stant star formation efficiency, and tff the local free-fall time of

the gas.

Feedback from stellar winds, supernovae type Ia and type II are

included into the simulation with mass, energy and metal release.

HORIZON-AGN simulation takes also into account the formation of

black holes (BHs) that can grow by gas accretion at a Bondi–Hoyle–

Lyttleton rate capped at the Eddington accretion rate when they form

a tight enough binary. The AGN feedback is a combination of two

different modes (the so-called quasar and radio mode) in which

BHs release energy in the form of heating or jet when the accretion

rate is, respectively, above and below 1 per cent of Eddington, with

efficiencies tuned to match the BH-galaxy scaling relations at z = 0

(see Dubois et al. 2012a, for details).

Galaxies are identified using the updated method (Tweed

et al. 2009) of the AdaptaHOP halo finder (Aubert et al. 2004)

directly operating on the distribution of stellar particles. Only galac-

tic structures with a minimum of Nmin = 100 stellar particles are

considered, which typically selects objects with masses larger than

2 × 108 M⊙.

D2 Density reshuffling

Let us finally present the impact of the reshuffling method, as defined

in Section 6, and the choice of the density tracer in the HORIZON-

AGN simulation.

Fig. D1 illustrates that the result of reshuffling depends on the

scale at which the density is computed. As expected, when using

the small-scale density tracer, such as e.g. the DTFE density (Figure

a), both mass and sSFR gradients are almost unchanged, while on

sufficiently large scales, the gradients tend to cancel out (Figure b).

The numerical value of the scale at which this happens is ∼5 Mpc.

This is again in a qualitative agreement with the scale required in

the GAMA survey, corresponding to the ∼1.5× mean inter-galaxy

separation.

MNRAS 474, 547–571 (2018)
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Figure D1. Top rows: As in Fig. 11 for the distances to the nearest filament, Dskel. The contribution of the nodes is minimized by removing galaxies located

within 3.5 Mpc around them from the analysis. The dashed lines correspond to the distributions after the application of the reshuffling method using two

different density tracers, a large (Figure a) and small-scale (Figure b) estimators. The numerical values of medians, shown as vertical lines, are listed in

Table F4. In qualitative agreement with the results obtained with the observed data, in order to cancel the gradients, density at sufficiently large scale has to be

considered. This corresponds to 5 Mpc in the HORIZON-AGN simulation, representing ∼ 1.5× mean inter-galaxy separation, again in agreement with the value

found in observations. Bottom rows: As in Fig. 11 before (solid lines) and after (dashed lines) the reshuffling. (a) Reshuffling using the density computed in

the Gaussian kernel at the scale of 5 Mpc. (b) Reshuffling using the DTFE density.

APPENDIX E: G RA D IEN T MIS A LIGN MENTS

In the context of conditional excursion set theory subject to a sad-

dle S at some finite distance (r, θ , φ) from a forming halo, let us

consider the Hessian of the potential, qij ≡ ∂
2ψ/∂ri∂rj , smoothed

on the saddle scale RS and normalized so that 〈tr2(q)〉 = 1. The

anisotropic shear is given by the traceless part q̄ij ≡ qij − δij tr q/3,

which deforms the region by slowing down or accelerating the

collapse along each axis. At finite separation, this traceless shear

modifies in an anisotropic way the statistics of the smooth mean den-

sity (and of its derivative with respect to scale). The variations are

modulated by Q =
∑

i,j r̂i q̄ij r̂j , with r̂i = ri/r , i.e. by the relative

orientation of the separation vector, r in the frame set by the tidal ten-

sor of the saddle. This extra degree of freedom, Q(θ, φ), provides a

supplementary vector space, beyond the radial direction, over which

to project the gradients, with statistical weight depending on each

MNRAS 474, 547–571 (2018)
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specific observable (mass, accretion rate, etc.). These quantities

have thus potentially different iso-surfaces from each other and

from the local mean density, a genuine signature of the impact of

the traceless part of the tidal tensor. Indeed, for each observable, the

conditioning on S introduces a further dependence on the geome-

try of the environment (the height of the saddle and its anisotropic

shear q̄ij ) and on the position r of the halo with respect to the saddle

point. This dependence arises because the saddle point condition

modifies the mean and variance of the stochastic process (δ,∂Rδ) –

the height and slope of the excursion set trajectories – in a position-

dependent way, making it more or less likely to form haloes of given

mass and assembly history within the environment set by S. The

expectation of the process becomes anisotropic throughQ, and both

mean and variance acquire distinct radial dependence through the

relevant correlation functions ξαβ defined below in equation (E8).

For instance, considering the typical mass, M⋆ and accretion

rate, Ṁ⋆, at scale R, straightforward trigonometry shows that cross-

product of their gradients reads

(

∂Ṁ⋆

∂r

∂M⋆

∂Q
−

∂Ṁ⋆

∂Q

∂M⋆

∂r

)

∇̃Q , (E1)

where ∇̃ = (∂/∂θ, (1/sin θ )∂/∂φ). The companion paper (Musso

et al. 2017) shows that the Taylor expansion in the anisotropy for

the angular variation, Q, of M⋆ and Ṁ⋆ at fixed distance r from the

saddle scale like

�M⋆ ∝ ξ20(r)Q(θ, φ) , (E2)

and

�Ṁ⋆ ∝

[

ξ ′
20(r) −

σ − ξ ′ · ξ

σ 2 − ξ · ξ
ξ20(r)

]

Q(θ, φ) , (E3)

in terms of the variance

σ 2(R) =
∫

dk
k2P (k)

2π2
W 2(kR) , (E4)

and the radius-dependent vectors

ξ (r) ≡ {ξ00(r),
√

3ξ11(r)r/R⋆,
√

5ξ20(r)} , (E5)

ξ ′(r) ≡ {ξ ′
00(r),

√
3ξ ′

11(r)r/R⋆,
√

5ξ ′
20(r)} , (E6)

where

R2
⋆ ≡

∫

dk
P (k)

2π2

W 2(kRS )

σ 2
S

, (E7)

with P(k) the underlying power spectrum, W(k) the top hat filter in

Fourier space, σS = σ (RS ), while the finite separation correlation

functions, ξαβ (r, R, RS ) and ξ ′
αβ (r, R, RS ) are defined as

ξαβ ≡
∫

dk
k2P (k)

2π2
W (kR)

W (kRS )

σS

jα(kr)

(kr)β
, (E8)

ξ ′
αβ ≡

∫

dk
k2P (k)

2π2
W ′(kR)

W (kRS )

σS

jα(kr)

(kr)β
, (E9)

where jα(x) are the spherical Bessel functions of the first kind and

prime denote derivate with respect to σ . Note that equation (E3)

clearly highlights the shifted variance, σ 2 − ξ · ξ , which contributes

to the difference between �M⋆ and �Ṁ⋆. From equation (E3), since

the square bracket is not proportional to ξ 20 as in equation (E2), it

follows that the cross-product in equation (E1) is non-zero, which

in turn implies that the contours of mass and accretion rate differ.

A P P E N D I X F: M E D I A N S O F D I S T R I BU T I O N S

This Appendix gathers tables of medians with corresponding error

bars used in previous sections.

Table F1. Medians of Dskel/〈Dz〉 for Fig. B1.

Selectiona Mass bin Medianb

Dskel/〈Dz〉
Before reshufflingc After reshuffling

log(M⋆/M⊙) ≥ 11 0.27 ± 0.01 0.33 ± 0.02

All galaxies 11 > log(M⋆/M⊙) ≥ 10.7 0.36 ± 0.01 0.37 ± 0.01

10.7 > log(M⋆/M⊙) ≥ 10.46 0.40 ± 0.01 0.38 ± 0.01

log(M⋆/M⊙) ≥ 11 0.38 ± 0.01 0.46 ± 0.02

dnode
min = 3.5 Mpc 11 > log(M⋆/M⊙) ≥ 10.7 0.46 ± 0.01 0.47 ± 0.01

10.7 > log(M⋆/M⊙) ≥ 10.46 0.51 ± 0.01 0.47 ± 0.01

aPanels of Fig. B1.
bMedians of distributions as indicated in Fig. B1 by vertical lines; errors are computed as in Table 1.
cRandomization of Dskel in bins of Dnode.

Table F2. Medians of Dwall/〈Dz〉 for Fig. B2.

Selectiona Mass bin Medianb

Dwall/〈Dz〉
Before reshufflingc After reshuffling

log(M⋆/M⊙) ≥ 11 0.234 ± 0.005 0.258 ± 0.011

dnode
min = 3.5 Mpc 11 > log(M⋆/M⊙) ≥ 10.7 0.279 ± 0.003 0.278 ± 0.005

10.7 > log(M⋆/M⊙) ≥ 10.46 0.295 ± 0.003 0.292 ± 0.004

log(M⋆/M⊙) ≥ 11 0.334 ± 0.007 0.379 ± 0.028

dnode
min = 3.5 Mpc, dskel

min = 2.5 Mpc 11 > log(M⋆/M⊙) ≥ 10.7 0.381 ± 0.004 0.386 ± 0.011

10.7 > log(M⋆/M⊙) ≥ 10.46 0.403 ± 0.004 0.398 ± 0.008

aPanels of Fig. B2.
bMedians of distributions as indicated in Fig. B2 by vertical lines; errors are computed as in Table 1.
cRandomization of Dwall in bins of Dskel.
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D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

7
4
/1

/5
4
7
/4

4
3
0
6
4
3
 b

y
 In

s
titu

t d
'a

s
tro

p
h
y
s
iq

u
e
 d

e
 P

a
ris

 u
s
e
r o

n
 2

2
 J

u
ly

 2
0
1
9



Galaxy evolution in the metric of the cosmic web 571

Table F3. Medians for the PDFs displayed in Fig. C1: small-scale density

Selectiona Bin Medianb

Dskel/〈Dz〉
Originalc reshufflingd Matchinge

log(M⋆/M⊙) ≥ 11 0.379 ± 0.009 0.397 ± 0.009 0.378 ± 0.01

All galaxies 11 > log(M⋆/M⊙) ≥ 10.7 0.456 ± 0.007 0.459 ± 0.006 0.393 ± 0.009

10.7 > log(M⋆/M⊙) ≥ 10.46 0.505 ± 0.006 0.495 ± 0.006 0.406 ± 0.008
Masses

log(M⋆/M⊙) ≥ 10.8 0.459 ± 0.012 0.489 ± 0.013 0.458 ± 0.011

SF galaxies 10.8 > log(M⋆/M⊙) ≥ 10.3 0.534 ± 0.007 0.541 ± 0.008 0.479 ± 0.01

10.3 > log(M⋆/M⊙) ≥ 9.92 0.578 ± 0.007 0.567 ± 0.007 0.494 ± 0.006

Star-forming 0.504 ± 0.008 0.508 ± 0.007 0.495 ± 0.006
Types SF versus passivef

Passive 0.462 ± 0.007 0.458 ± 0.007 0.504 ± 0.006

aPanels of Fig. C1.
bMedians of distributions as indicated in Fig. C1 by vertical lines; errors are computed as in Table 1.
cAs in Table 1 for Dskel/〈Dz〉.
dReshuffling is done in bins of DTFE density (see the main text for more details).
eMedians for the density-matched sample, where the density considered is DTFE.
fOnly galaxies with stellar masses log(M⋆/M⊙) ≥ 10.46 are considered.

Table F4. Medians for the PDFs displayed in Fig. D1

Selectiona Bin Medianb

Dskel [Mpc]

Originalc after reshufflingd

DTFE G5Mpc

log(M⋆/M⊙) ≥ 10.8 1.34 ± 0.09 1.26 ± 0.08 1.72 ± 0.1

Mass 10.8 > log(M⋆/M⊙) ≥ 10.4 1.73 ± 0.08 1.71 ± 0.06 1.82 ± 0.06

10.4 > log(M⋆/M⊙) ≥ 10 1.97 ± 0.04 2.0 ± 0.05 1.86 ± 0.04

−10.8 > log(sSFR/yr) 1.46 ± 0.07 1.61 ± 0.07 1.74 ± 0.08

sSFR −10.4 > log(sSFR/yr) ≥ −10.8 1.88 ± 0.06 1.89 ± 0.06 1.81 ± 0.06

log(sSFR/yr) ≥ −10.4 2.0 ± 0.04 1.9 ± 0.05 1.91 ± 0.06

aPanels of Fig. D1.
bMedians of distributions as indicated in Fig. D1 by vertical lines; errors are computed as in Table 1.
cAs in Table 2 for Dskel (corresponding to the solid lines in Fig. D1).
dReshuffling is done in the bins of the DTFE density and the density computed at the scale of 5 Mpc (corresponding

to the dashed lines in Figures a and b, respectively).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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216 Chapter B. Contributed publications

B.2 “Galaxies flowing in the oriented saddle frame of the cosmic web” (published
in MNRAS)

In this follow-up of Kraljic et al., 2018, we have used the virtual galaxies of Horizon-AGN to
further study the spatial distribution of galactic properties as a function of their location in the
frame of the cosmic web. The properties of galaxies in the simulation have been plotted in the
same frame as the one used throughout section 4.5.3. Namely, the galactic properties have been
plotted as a function of their distance to the nearest filament centre and their angle with respect
to the filament orientation. The key result of the paper is a confirmation that galactic properties
are spatially modulated by the cosmic web. In particular, it has been found that after having
removed the mean stellar mass, halo mass and density effects, maps of the properties of galaxies
still show a modulation with respect to the cosmic web.

Theoretically, I showed (appendix F of the paper) that one can qualitatively recover the spatial
signal observed in numerical simulations if one takes into account the displacement field induced
by Zel’dovich boost (see section 2.1.2.3). Indeed, the mean flow around filamentary structures
squeezes isocontours in the direction transverse to the filament and stretches them towards nodes.
This result, already highlighted in Musso, Cadiou et al., 2018 has been shown to qualitatively
reproduce the spatial distribution of halo mass in the simulation (see figures E1 and E2).

While theoretical predictions seem to be able to forecast the assembly of DM halos, significant
improvements need to be made to relate this to the evolution of their host galaxies. This is in
particular relevant to the study of satellite galaxies which are influenced by the activity of their
more massive neighbours. This work showed that the cosmic web provides a natural frame
in which complex effects driving the formation of galaxies can be studied (AGN feedback, gas
stripping). Following the results of chapter 3 and chapter 4, I suggest that the frame of the cosmic
web will prove useful to understand assembly bias, but can also be used as an ingredient entering
halo and galaxy models.
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ABSTRACT

The strikingly anisotropic large-scale distribution of matter made of an extended network

of voids delimited by sheets, themselves segmented by filaments, within which matter flows

towards compact nodes where they intersect, imprints its geometry on the dynamics of cos-

mic flows, ultimately shaping the distribution of galaxies and the redshift evolution of their

properties. The (filament-type) saddle points of this cosmic web provide a local frame in

which to quantify the induced physical and morphological evolution of galaxies on large

scales. The properties of virtual galaxies within the HORIZON-AGN simulation are stacked

in such a frame. The iso-contours of the galactic number density, mass, specific star forma-

tion rate (sSFR), kinematics, and age are clearly aligned with the filament axis with steep

gradients perpendicular to the filaments. A comparison to a simulation without feedback

from active galactic nuclei (AGNs) illustrates its impact on quenching star formation of cen-

trals away from the saddles. The redshift evolution of the properties of galaxies and their

age distribution are consistent with the geometry of the bulk flow within that frame. They

compare well with expectations from constrained Gaussian random fields and the scaling

with the mass of non-linearity, modulo the redshift-dependent impact of feedback processes.

Physical properties such as sSFR and kinematics seem not to depend only on mean halo

mass and density: the residuals trace the geometry of the saddle, which could point to other

environment-sensitive physical processes, such as spin advection, and AGN feedback at high

mass.

Key words: methods: analytical – methods: numerical – galaxies: evolution – galaxies: for-

mation – galaxies: interactions – galaxies: kinematics and dynamics.

1 IN T RO D U C T I O N

Galaxies form and evolve within a complex network, the so-called

cosmic web (Bond, Kofman & Pogosyan 1996), made of filaments

embedded in sheet-like walls, surrounded by large voids and inter-

secting at clusters of galaxies (Jõeveer, Einasto & Tago 1978). Do

⋆ E-mail: kat@roe.ac.uk

the properties of galaxies, such as their morphology, retain a mem-

ory of these large-scale cosmic flows from which they emerge?

The importance of interactions with the larger scale environment

in driving their evolution has indeed recently emerged as central

tenet of galaxy formation theory. Galactic masses are highly depen-

dent on their large-scale surrounding, as elegantly explained by the

theory of biased clustering (Kaiser 1984; Efstathiou et al. 1988),

such that high-mass objects preferentially form in overdense envi-

ronment near nodes (Bond & Myers 1996; Pogosyan et al. 1996).

C© 2018 The Author(s)

Published by Oxford University Press on behalf of the Royal Astronomical Society
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3228 K. Kraljic et al.

Conversely, what are the signatures of this environment away from

the nodes of the cosmic web?

While galaxies grow in mass when forming stars from intense gas

inflows at high redshift, they also acquire spin through tidal torques

and mergers biased by these anisotropic larger scales (e.g. Aubert,

Pichon & Colombi 2004; Peirani, Mohayaee & de Freitas Pacheco

2004; Navarro, Abadi & Steinmetz 2004; Aragón-Calvo et al. 2007;

Codis et al. 2012; Libeskind et al. 2012; Stewart et al. 2013; Trow-

land, Lewis & Bland-Hawthorn 2013; Aragon-Calvo & Yang 2014,

for dark matter (DM), and Pichon et al. 2011; Dubois et al. 2014;

Welker et al. 2014, in hydrodynamical simulations). This should

in turn have a significant impact on galaxy properties including

morphology, colour, and star formation history of galaxies.

As a filament is formally the field line that joins two maxima of

the density field through a filament-type saddle point1 (Pogosyan

et al. 2009), studying the expected properties of galaxies in the

vicinity of filament-type saddle points is a sensible choice. Indeed,

Tidal Torque Theory (Peebles 1969; Schaefer 2009) was recently

revisited (Codis, Pichon & Pogosyan 2015b) in the context of

such anisotropic environments, biased by the presence of a fila-

ment within a wall, which is most efficiently represented by this

point process of filament-type saddles.2 It predicts the alignment

of the angular momentum distribution of the forming galaxies with

the filament’s direction, and perpendicular orientation for massive

population. Since spin plays an important role in the physical and

morphological properties of galaxies, a signature is also expected

in the properties of galaxies as a function of the longitudinal and

transverse distances to this saddle.

Most of the previous theoretical work on the impact of the

anisotropy of the environment on galactic assembly history focused

on DM haloes. In the emerging picture of halo assembly history, at

a given mass, haloes that are sufficiently far from the potential wells

of other haloes can grow by accretion from their neighbourhood,

leading to a correlation between the accretion rate of haloes and the

density of their environment (e.g. Zentner 2007). Haloes that are

close to more massive structures are on the other hand expected to be

stalled and their growth may stop earlier, as their mass inflow is dy-

namically quenched by anisotropic tides generated in their vicinity

(e.g. Dalal et al. 2008; Hahn et al. 2009; Ludlow, Borzyszkowski &

Porciani 2014; Borzyszkowski et al. 2017; Paranjape, Hahn & Sheth

2018a). Individual properties of DM haloes, such as their mass, for-

mation time, or accretion, are thus expected to be affected by the

exact position of haloes within the large-scale anisotropic cosmic

web (e.g. Lazeyras, Musso & Schmidt 2017). Such expectations are

complementary to the recent work of Musso et al. (2018) whose

analytical prediction of the mass, accretion rate, and formation time

of DM haloes near proto-filaments (identified as saddle points of

the gravitational potential field) confirms that the anisotropy of the

cosmic web is a significant ingredient to describe jointly the dy-

namics and physics of haloes. Their model predicts that at fixed

mass, mass accretion rate, and formation time of haloes also vary

with orientation and distance from the saddle.

Theoretical predictions on the impact of the anisotropic tides of

the cosmic web on the specific properties of galaxies embedded in

those haloes are hampered by the complexity of baryonic processes

1Where the gradient of the density field is null and the density Hessian has

two negative eigenvalues.
2The constrained misalignment between the tidal and the inertia tensors in

the vicinity of filament-type saddles simply explains the distribution of spin

directions and its mass dependent flip.

and the lack of knowledge of detailed physics driving them. Some

attempts were recently made by Alam et al. (2018) and Paranjape,

Hahn & Sheth (2018b) which compared the observed clustering and

quenching properties of galaxies in the Sloan Digital Sky Survey

(SDSS) with corresponding measurements in mock galaxy cata-

logues. These studies focused on whether the cosmic web leaves an

imprint on the galaxy clustering beyond the effects of halo mass, by

constructing mock catalogues using a halo occupation distribution

in such a way that dependencies of galaxy properties on the tidal

anisotropy and isotropic overdensity are driven by the underlying

halo mass function across the cosmic web alone. As such prescrip-

tion qualitatively reproduces the main observed trends, and quanti-

tatively matches many of the observed results, they concluded that

any additional direct effect of the large-scale tidal field on galaxy

formation must be extremely weak.

In this work, the adopted approach is different in that it focuses

directly on galaxies, their physical properties and redshift evolution

as measured in the large-scale cosmological hydrodynamical simu-

lation HORIZON-AGN (Dubois et al. 2014, 2016). The main purpose

of this paper is to show how the 3D distribution of the physical

properties of these synthetic galaxies reflects the (tidal) impact of

the cosmic web on the assembly history of galaxies. It is partly

motivated by recent studies carried in the VIPERS, GAMA, and

COSMOS surveys (Malavasi et al. 2017; Kraljic et al. 2018; Laigle

et al. 2018) which showed that the colour and specific star formation

rate (sSFR) of galaxies are sensitive to their proximity to the cos-

mic web at fixed stellar mass and local density. This paper focuses

specifically on the distribution of the galaxy properties stacked in

the oriented frame of the filament on large (∼Mpc) scales. The nat-

ural choice of frame for stacking is defined by filament-type saddle

points connecting two nodes by one filament (in contrast to nodes

which are typically places where the connectivity of filaments is

higher).

This paper is organized as follows. Section 2 shortly describes the

simulation and the detection of filaments within. Section 3 presents

the galactic maps near the saddle, focusing first on the transverse

and longitudinal (azimuthally averaged) maps, and then their 3D

counterparts, while Section 4 shows their redshift evolution. Sec-

tion 5 relates our finding to the properties of weakly non-Gaussian

random fields near saddles. Some observational implications of our

work together with the comparison with theoretical predictions are

discussed in Section 6. Section 7 wraps up.

Appendix A explores the robustness of our finding with- re-

spect to smoothing and choice of filament tracer, Appendix B dis-

cusses the redshift evolution of the geometry of filaments, Ap-

pendix C presents complementary 2D maps, and Appendix D quan-

tifies the position-in-the-saddle frame efficiency of AGN feedback.

Appendix E sketches the derivation of the theoretical results pre-

sented in the main text. Appendix F presents the geometry of the

bulk galactic velocity flow in the frame of the saddle. Finally, Ap-

pendix G motivates statistically the mediation of mass and density

maps over tides. Throughout this paper, by log , we refer to the

10-based logarithm and we loosely use log M as a short term for

log (M/M⊙) and log ρ for log(ρ/M⊙ h−2 Mpc3).

2 N U M E R I C A L M E T H O D S

Let us briefly review the main numerical tools used in this work

to study the properties of virtual galaxies within the frame of the

saddle.

MNRAS 483, 3227–3254 (2019)
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2.1 Hydrodynamical simulation

The details of the HORIZON-AGN simulation3 can be found

in Dubois et al. (2014), here, only brief description is provided.

The simulation is performed with the adaptive mesh refinement

code RAMSES (Teyssier 2002) using a box size of 100 h−1 Mpc

and adopting a � cold dark matter (�CDM) cosmology with to-

tal matter density �m = 0.272, dark energy density �� = 0.728,

baryon density �b = 0.045, amplitude of the matter power spec-

trum σ 8 = 0.81, Hubble constant H0 = 70.4 km s−1 Mpc−1, and

ns = 0.967 compatible with the WMAP-7 data (Komatsu 2011).

The total volume contains 10243 DM particles, corresponding to

a DM mass resolution of MDM,res = 8 × 107 M⊙. The initial gas

resolution is Mgas,res = 1 × 107 M⊙. The refinement of the initially

coarse 10243 grid down to �x = 1 proper kpc is triggered in a quasi-

Lagrangian manner: if the total baryonic mass reaches 8 times the

initial DM mass resolution, or the number of DM particles becomes

greater than 8 in a cell, resulting in a typical number of 7 × 109 gas

resolution elements (leaf cells) at redshift zero.

The gas heating from a uniform ultraviolet background that takes

place after redshift zreion = 10 is modelled following Haardt &

Madau (1996). Gas is allowed to cool down to 104 K through H

and He collisions with a contribution from metals (Sutherland &

Dopita 1993). Star formation follows a Schmidt relation in regions

of gas number density above n0 = 0.1 H cm−3 and ρ̇∗ = ǫ∗ρg/tff ,

where ρ̇∗ is the star formation rate mass density, ρg the gas mass

density, ε∗ = 0.02 the constant star formation efficiency, and tff

the local free-fall time of the gas. Feedback from stellar winds,

supernovae type Ia and type II are included into the simulation with

mass, energy and metal release (see Kaviraj et al. 2017, for further

details).

The HORIZON-AGN simulation includes the formation of black

holes (BHs) that can grow by gas accretion at a Bondi-capped-at-

Eddington rate and coalesce when they form a tight enough binary.

Energy of BHs can be released in a heating or jet mode (respec-

tively ‘quasar’ and ‘radio’ mode) when the accretion rate is respec-

tively above and below one per cent of Eddington, with efficiencies

tuned to match the BH–galaxy scaling relations at redshift zero (see

Dubois et al. 2012, for further details).

In order to assess the impact of active galactic nuclei (AGNs)

feedback on galaxy properties in the frame of saddle, this analysis

also relies on the HORIZON-NOAGN simulation, which was per-

formed with identical initial conditions and sub-grid modelling, but

without BH formation, thus without AGN feedback (Dubois et al.

2016; Peirani et al. 2017).

2.2 Galaxy properties

The identification of galaxies is performed using the most mas-

sive sub-node method (Tweed et al. 2009) of the ADAPTAHOP halo

finder (Aubert et al. 2004) operating on the distribution of star

particles with the same parameters as in Dubois et al. (2014).

Only structures with a minimum of Nmin = 100 star particles

are considered, which typically selects objects with masses larger

than 2 × 108 M⊙. For each redshift output analysed in this paper

(0.05 < redshift <2) catalogues containing up to ∼350 000 haloes

and ∼180 000 galaxies are produced.

For each galaxy, its V/σ , stellar rotation over dispersion, is ex-

tracted from the 3D distribution of velocities. This is meant to

3See http://www.horizon-simulation.org

provide a kinematic proxy for morphology. The total angular mo-

mentum (spin) of stars is first computed in order to define a set

of cylindrical spatial coordinates (r, θ , z), with the z-axis ori-

ented along the spin of galaxy. The velocity of each individual

star particle is decomposed into cylindrical components vr, vθ , vz,

and the rotational velocity of a galaxy is V = v̄θ , the mean of vθ

of individual stars. The average velocity dispersion of the galaxy

σ 2 = (σ 2
r + σ 2

θ + σ 2
z )/3 is computed using the velocity dispersion

of each velocity component σ r, σ θ , and σ z.

2.3 Saddle frame identification

In order to quantify the position of galaxies relative to the cos-

mic web, a geometric 3D ridge extractor called DISPERSE
4 (Sousbie

2011; Sousbie, Pichon & Kawahara 2011) is run on the full volume

gas density distribution over 5123 cells with a 3σ persistence thresh-

old. This density distribution is smoothed with a Gaussian kernel

with smoothing length of 0.8 comoving Mpc h−1. The orientation

and distribution of galaxies can be measured relative to the direction

of the closest filament’s segment. In particular, the code identifies

saddle points along those filaments. This is a costly method to iden-

tify saddle points, but it provides us with a local preferred polarity

in the frame of the density Hessian (positively towards the larger

of the two maxima). It was checked that the distributions presented

below are relatively insensitive to the choice of smoothing length

(see Appendix A). It was also checked there that these results do

not show a strong dependence on the tracer (DM or gas density)

used to compute the skeleton.

3 SA D D L E S TAC K S I N 2 D A N D 3 D

With the aim of studying the geometry of the galaxy distribution

around filaments, stacking centred on the saddle points of filaments

is applied. When stacking, two different strategies are explored.

First, stacks are produced centred on the saddle, and physical prop-

erties of galaxies are binned as a function of transverse and longi-

tudinal distances away from the skeleton. These properties are also

stacked in 3D in the local frame set by the direction of the filament

at the saddle and the 2D inertia tensor in the plane perpendicular

to the filament. The former method avoids the flaring induced by

the drift of the curved filaments away from the saddle, only asso-

ciate one saddle to each galaxy and stacks azimuthally, while the

latter one allows us to probe the transverse anisotropic geometry of

filaments at the saddle.

3.1 Azimuthally averaged stellar mass and number density

Let us start by considering azimuthally averaged 2D maps in

the frame defined by the saddle and its steepest ascent direction,

and study the cross-sections of galactic number density and stel-

lar mass in the vicinity of the saddle point. In order to infer

the variation of galaxy properties beyond its stellar mass, stel-

lar mass will be fixed by considering three bins, defined as low

(9.0 ≤ log M⋆ ≤ 9.05), intermediate (9.69 ≤ log M⋆ ≤ 9.75), and

high (10.93 ≤ log M⋆ ≤ 11.99) stellar mass bins. These bins corre-

spond to the first, middle, and last 27-quantiles of the stellar mass

distribution of all galaxies at a given redshift above the stellar mass

4The code DISPERSE, which stands for Discrete-Persistent-Structure-

Extractor algorithm is publicly available at the following URL http:

//www.iap.fr/users/sousbie/disperse/.
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3230 K. Kraljic et al.

Figure 1. The galaxy number counts in low (left), intermediate (middle), and high (right) stellar mass bins (see the text for definition), as labelled (in square

brackets), at redshift zero in the frame of the closest saddle. The vertical axis corresponds to the distance from the saddle along the skeleton, while the

horizontal axis corresponds to the transverse direction to the skeleton. The upward direction is defined as the direction of the node with the highest density.

The white horizontal line represents the smoothing length used in the analysis. The sub-panels on the top and the right of each panel show the marginalized

1D distributions of R and z, respectively. Note that the behaviour of the gradient of the number density of galaxies changes with stellar mass, noticeably in

high-mass bin. As expected, high-mass galaxies are more tightly clustered near the filament axis and near nodes (right-hand panel) compared to their lower

mass counterparts (middle and left-hand panels).

limit of 109 M⊙. Each of such constructed stellar mass bin con-

tains ∼3500 galaxies. The smoothing scale applied to the profiles is

0.4 Mpc h−1.5

Figs 1 and 2 show the galactic number counts at low, intermediate,

and high stellar mass, and mean stellar mass for all galaxies above

the stellar mass limit, respectively, at redshift zero in the frame of

the saddle. In that frame, the vertical axis corresponds to the dis-

tance from the saddle point along the skeleton, upwards towards the

densest node, while the horizontal axis corresponds to the transverse

direction. Note that the length of filaments is not constant, however

its distribution is quite narrow with median length of ∼5.5 Mpc h−1

at redshift zero (see Appendix B, Fig. B1). Iso-contours clearly dis-

play a dependence both on the radial distance from the saddle point

and the orientation with respect to the filament’s direction. At fixed

distance from the saddle point, the number of galaxies is enhanced

in the direction of the filament, i.e. they are more clustered in the

filaments than in the voids. The gradient of the number density of

galaxies is also found to change with stellar mass. The high-mass

galaxies are more tightly clustered near the filament axis and tend

to be further away from saddles along the filament compared to

their low-mass counterparts. Saddle points are, as expected, local

minima of both galaxy number counts and stellar mass in the direc-

tion along the filament towards the nodes, and local maxima in the

perpendicular direction. Thus, galaxies in filaments tend to be more

massive than galaxies in voids and within filaments, while the stellar

mass of galaxies increases with increasing distance from the saddle

5Changing the smoothing scale used to produce the maps to 0.2 and 0.8

Mpc h−1 leads to qualitatively similar conclusions. The smoothing impacts

mostly the position of maxima in the transverse direction. At low values,

these tend to be offset from the filament’s axis because of the smoothing of

the skeleton itself.

Figure 2. Mean stellar mass in the frame of the closest saddle for the entire

galaxy population with masses in the range 109– 1012 M⊙ at redshift zero.

The white curves correspond to the contours of the galaxy number counts,

while the white crosses represent the peaks in galactic number density on

axis. More massive galaxies are further away from the saddle (respectively,

closer to the saddle) than the low-mass population in longitudinal (respec-

tively, transverse) direction.

point in the direction toward nodes. This effect is stronger in the

direction perpendicular to the filament, where the relative variation

of the mean stellar mass is about a factor of 2 higher compared to

that along the filament.

MNRAS 483, 3227–3254 (2019)
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Galaxies in the saddle frame of the cosmic web 3231

Figure 3. 3D structure of the neighbourhood of filaments at redshift zero. The galaxy number counts in the frame of the saddle for masses in the range 109–

1012 M⊙ (left) are shown together with two 2D cross-sections, longitudinal and transverse, of the filament at the saddle (right). The flattened flaring away from

the saddle reflects the co-planarity of filamentary bifurcation within the wall. The top–bottom asymmetry reflects the orientation of the skeleton.

The mass gradients shown on Fig. 2 can be qualitatively under-

stood within peak and excursion set theories (see Section 5 and

Codis et al. 2015b; Musso et al. 2018).

3.2 3D stacks of stellar mass and number density

Let us now investigate the 3D structure of the neighbourhood of fila-

ments by stacking galaxies relative to a 3D-oriented local reference

frame, with its origin defined by the position of the saddle point and

its axes defined as follows: the z-axis corresponds to the direction of

the filament at the saddle, and the x- and y-axes represent major and

minor principal axes of the inertia tensor in the plane perpendicular

to the filament axis at the saddle point, respectively.6

In order to increase the signal-to-noise ratio, galaxies are

stacked by flipping them with respect to the filament axis to pro-

duce longitudinal cross-sections, and with respect to both prin-

cipal axes of the inertia tensor in the case of transverse cross

sections.

The 3D distribution of galaxies in such defined frame is shown

in Fig. 3 (left-hand panel) together with planes representing 2D

cross-sections, longitudinal and transverse, as used in the analysis

(right-hand panel). In practice, individual cross-sections are ob-

tained by projecting galaxies within ±1 and ±0.75 Mpc h−1 from

the plane passing through the saddle point for longitudinal and trans-

verse cross-sections, respectively. Note the flaring near the nodes

which arises because the typical saddle is flattened (the two negative

6In practice, the 2D inertia tensor is computed by considering galaxies

within ± 1 (Mpc h−1) around the saddle point and projected into the plane

perpendicular to the filament and passing through the saddle. Note that

changing the volume of the considered region within a factor of a few does

not have a strong impact on orientation.

eigenvalues of the Hessian differ, while the corresponding eigen-

vectors are aligned when stacking), and the Hessian remains corre-

lated away from the saddle. Correspondingly, the skeleton bifurcates

within that plane (Pogosyan et al. 2009; Codis, Pogosyan & Pichon

2018). The top–bottom asymmetry reflects the fact that higher den-

sity contours are drawn near the more prominent peak (which is

traced by the orientation of the skeleton).

As in the case of azimuthally averaged cross-sections, three stel-

lar mass bins are defined as low (9.0 ≤ log M⋆ ≤ 9.05), interme-

diate (9.7 ≤ log M⋆ ≤ 9.77), and high (10.96 ≤ log M⋆ ≤ 11.99)

stellar mass bins, containing ∼10 000 and ∼1000 galaxies, for lon-

gitudinal and transverse cross-sections, respectively. The upward

direction along z-axis corresponds to the direction of the node with

highest density, and the smoothing scale applied to the profiles is

0.4 Mpc h−1, as previously.

The cross-sections of galactic number counts, stellar mass, spe-

cific star formation rate, sSFR =SFR/M∗, where SFR is computed

over a time-scale of 50 Myr, V/σ , and age will be studied in the

vicinity of the saddle. Figs 4 and 5 show the galaxy number counts

in three different stellar mass bins, and mean stellar mass for all

galaxies above the stellar mass limit, respectively, at redshift zero in

the longitudinal (top panels) and transverse (bottom panels) planes

in the frame of the saddle. Once again, iso-contours clearly de-

pend on both the radial distance from the saddle and the orien-

tation with respect to the filament’s direction. Galaxies are found

to be more clustered in filaments than in voids at all masses, i.e.

at fixed distance from the saddle point, the number of galaxies

is enhanced in the direction of the filament. What changes with

stellar mass is the behaviour of the gradients with the most mas-

sive galaxies being more tightly clustered near the filament axis

compared to their lower mass counterparts. As in the case of az-

imuthally averaged cross sections, mass gradients seen in Fig. 5

(left-hand panels) can be also understood in the context of con-

MNRAS 483, 3227–3254 (2019)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

8
3
/3

/3
2
2
7
/5

2
1
2
3
1
6
 b

y
 U

P
M

C
 u

s
e
r o

n
 2

2
 J

u
ly

 2
0
1
9



3232 K. Kraljic et al.

Figure 4. The galaxy number counts at redshift zero in the frame of the saddle for low (left), intermediate (middle), and high (right) stellar mass bins (see

the text for definition), as labelled (in square brackets), in the longitudinal (top) and transverse (bottom) planes at the saddle. The vertical axis on top panels

corresponds to the direction of the skeleton at the saddle (upwards toward the node with the highest density), while the horizontal axis corresponds to the major

principal axis in the transverse direction. The sub-panels on the top and the right of each panel show the marginalized 1D distributions along respective axes.

The white dashed contours represent the galaxy number counts with the horizontal axis corresponding to the minor principal axis in the transverse direction at

the saddle. The black crosses represent the peaks in galactic density on axis and the white horizontal line represents the smoothing length used in the analysis.

The projection is carried over ±1 Mpc h−1 for the longitudinal slice and ±0.75 Mpc h−1 away from the saddles transversally. The strength of the gradient of

the galaxy number density changes with stellar mass. As expected, the high-mass galaxies are more tightly clustered near the filament axis and near nodes

(right-hand panel) compared to their low-mass counterparts (left-hand and middle panels).

strained random field and excursion set theory, as discussed in

Section 5.

Interestingly, the distribution of most massive galaxies around

the saddle points in the transverse direction is axisymmetric up to

the distance of ∼1 Mpc h−1, while the iso-contours of lower mass

galaxies are more flattened (in the direction of x-axis corresponding

to the major axis of the inertia tensor in the transverse cross section)

and extended to larger distances from the saddle. This behaviour is

a manifestation of the mass dependence of galaxy’s connectivity:

higher mass galaxies in denser environments are expected to be

fed by numerous filaments, while lower mass galaxies are typically

embedded in a single filament (Codis et al. 2018).

3.3 Longitudinal and transverse sSFR cross-sections

Let us now focus on sSFRs. Fig. 6 (top row) shows the mean

stellar mass-weighted sSFR at redshift zero in HORIZON-AGN. Iso-

contours display qualitatively similar behaviour in all stellar mass

bins in the direction perpendicular to the filament, for which the

saddle point represents the maximum of sSFR. In the direction along

the filament, the behaviour is more complex: at high stellar mass

sSFR increases with increasing distance from the saddle towards the

nodes, but while the maximum of sSFR overlaps with the position of

the low-density node, it is located closer to the saddle in the direction

of the densest node, as will be discussed below. The sSFR then

decreases in this direction in the vicinity of the node and beyond.

With decreasing stellar mass, the maximum of sSFR moves closer

to the saddle point, until it overlaps with the saddle point for lowest

stellar mass bin.

A general trend of decreasing sSFR with increasing stellar mass

is clearly recovered, with most massive galaxies having their sSFR

substantially reduced in particular in the vicinity of the densest

node, where the average sSFR value can be up to 10 times lower

compared to their low-mass counterparts. Indeed AGN feedback

is an important ingredient for the formation of the more massive

galaxies, suppressing star formation so as to reproduce the observed

high end of the galaxy luminosity function. By comparing the iso-

contours of mean stellar mass-weighted sSFR in HORIZON-AGN

and HORIZON-NOAGN (bottom row of Fig. 6), the two main specific

consequences of AGN feedback can be identified. First, and not

surprisingly, when AGN feedback operates, the overall sSFR is

reduced, mostly in the high stellar mass bin (the mean sSFR in

the highest stellar mass bin changes by a factor of ∼3, while in

the lowest stellar mass bin, it remains ∼1.15). Secondly, AGN

MNRAS 483, 3227–3254 (2019)
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Galaxies in the saddle frame of the cosmic web 3233

Figure 5. Mean galaxy stellar mass (left), sub-halo mass (middle), and host halo mass (right) in the frame of the saddle for masses in the range 109–1012 M⊙
at redshift zero, in the longitudinal (top panels) and transverse (bottom panels) planes at the saddle. The vertical axis corresponds to the direction of the skeleton

at the saddle (upwards toward the node with the highest density), while the horizontal axis corresponds to the major principal axis in the transverse direction.

The white contours correspond to the galaxy number counts with the horizontal axis corresponding to the major principal axis in the transverse direction at the

saddle. The white cross represents the peak in galactic density on axis. More massive galaxies are further away from the saddle than the low-mass population

in the longitudinal direction, while they are closer to the saddle transversally. As expected, more massive galaxies are also residing in more massive haloes.

Note in particular that the iso-contours of stellar mass are very similar to those of sub-halo mass, while the iso-contours of host halo mass, the shape of which

differ from the two others, show much more resemblance to the iso-contours of density (as discussed in Section 6). The peak of maximum mass is further away

from the saddle than the counts.

feedback modifies the shape of sSFR iso-contours. This effect is

most prominent amongst most massive galaxies7 in the vicinity of

the densest node that represents the maximum of the sSFR in the

direction along the filament from the saddle when AGN feedback

is absent. A similar effect is seen at low and intermediate stellar

mass, albeit less pronounced. Overall, the reduced star formation

activity of galaxies due to AGN feedback in the densest environment

translates into an offset of the maximum of the mean stellar mass-

weighted sSFR away from the node. This clearly demonstrates the

importance of the AGN feedback and its ability not only to reduce

the star formation activity of individual objects, but also to modify

their distribution on larger scales in the vicinity of high-density

regions such as nodes, corresponding to galaxy groups and clusters,

7Note that the highest stellar mass bin is not identical in the two simulations.

This is due to the difference in the stellar mass distributions, such that at

high stellar mass end, there are more galaxies in HORIZON-NOAGN than in

HORIZON-AGN that also tend to be more massive (see also Beckmann et al.

2017). However, considering the same stellar mass bins does not impact our

results. Another difference is in the halo-to-stellar mass relation, especially

at the high-mass end. It was checked that the medians of halo masses in

the highest stellar mass bin considered in this work are comparable in both

simulations.

consistently with our findings of AGN feedback being most efficient

near nodes at high stellar mass (see Appendix D).

3.4 Centrals and satellite differential counts

In order to gain a better understanding of what processes regu-

late sSFR of galaxies in their anisotropic environment, galaxies are

next split into centrals and satellites (respectively the most mas-

sive galaxy within 10 per cent the current virial radius of halo,

or sub-halo). Making this separation is further motivated by more

straightforward comparison with theoretical prediction of Musso

et al. (2018, that is strictly applicable to central galaxies alone, as

the effect of the large-scale tidal field on the low-mass objects is not

accounted for). Fig. 7 shows stellar mass-weighted sSFR for centrals

(top panels) and satellites (bottom panels) separately in both sim-

ulations, HORIZON-AGN (leftmost panels) and HORIZON-NOAGN

(rightmost panels) in low and high stellar mass bins. Not surpris-

ingly, the low-mass end is dominated by the population of satellites,

while central galaxies dominate the highest stellar mass bins. What

is more interesting is the distinct response of centrals and satel-

lites in terms of their sSFR as a function of the exact position within

the cosmic web (in both HORIZON-AGN and HORIZON-NOAGN) and

more surprisingly, the distinct impact of AGN feedback on the sSFR

of these two populations.

MNRAS 483, 3227–3254 (2019)
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3234 K. Kraljic et al.

Figure 6. Mass-weighted sSFR in the frame of the saddle at redshift 0 for low (left), intermediate (middle), and high (right) stellar mass bins, as labelled, in the

longitudinal and transverse planes at the saddle, in HORIZON-AGN (topmost panels) and HORIZON-NOAGN (bottommost panels). The vertical axis corresponds

to the direction of the skeleton at the saddle (upwards toward the node with the highest density), while the horizontal axis corresponds to the major principal

axis in the transverse direction at the saddle. The white contours and the white crosses correspond to the galaxy number counts and the peak in galactic density

on axis, respectively. The saddle represents maximum of sSFR in transverse direction at all masses and regardless of the presence of the AGN feedback. What

does change is the star formation activity in particular of the most massive galaxies, where AGN feedback substantially reduces the values of sSFR. Moreover,

note that at high-mass end, the sSFR iso-contours are modified by AGN feedback in the vicinity of the densest node, such that in the longitudinal direction away

from the saddle, the maximum of sSFR is offset from the densest peak. Overall, the sSFR iso-contours display a stellar mass dependence in the longitudinal

direction in that at low-mass (respectively, high-mass) sSFR is maximum (respectively, minimum) at the saddle and it decreases (respectively, increases) in the

direction towards the nodes.

MNRAS 483, 3227–3254 (2019)
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Galaxies in the saddle frame of the cosmic web 3235

Figure 7. Mass-weighted sSFR in the frame of the saddle at redshift 0 for low and high stellar mass bins, as labelled, in the longitudinal and transverse planes

at the saddle, shown for centrals (top row) and satellites (bottom row) separately with (left) and without (right) AGN feedback. The vertical axis corresponds

to the direction of the skeleton at the saddle (upwards toward the node with the highest density), while the horizontal axis corresponds to the major principal

axis in the transverse direction at the saddle. The white contours and the white crosses correspond to the galaxy number counts and the peak in galactic density

on axis, respectively. AGN feedback has the strongest impact on high-mass centrals and in the vicinity of the densest node (compare panel 1b with 2b and

with panel 1d), where it modifies the shape of the sSFR iso-contours as already noticed for the entire high-mass population (see Fig. 6). At low stellar mass,

satellites are generally less star forming compared to centrals, but note also that the sSFR iso-contours of centrals and satellites are also different. For satellites,

the maximum of sSFR is located between the saddle and the peak in the direction along the filament towards the densest node (compare panel 1a with panel

1c or panel 2a with panel 2c).

AGN feedback seems to have a stronger impact on centrals which

are closer to the denser node (compare panel 1b with 2b and 1d with

2d). At high mass, AGN feedback quenches much less efficiently

star formation in satellites than it does in centrals (compare panel

1b with 1d), where it distorts the shape of the sSFR iso-contours in

the vicinity of the denser node. High-mass satellites seem to feel

the impact of both the AGN feedback and environmental processes,

in particular in dense regions, but less so than the centrals (compare

panel 1d with 2d). A possible explanation for massive satellites

being less affected by the AGN feedback (compared to centrals at

the same stellar mass) could be the tidal influence of their main halo

(Hahn et al. 2009) which reduces accretion and merger rate onto

the satellite. As mergers trigger bursts of AGN activity, this induces

less star formation.

At low stellar mass, as expected, AGN feedback does not seem

to have a strong impact on the sSFR of both satellites and centrals

(compare panel 1a with 2a and 1c with 2c). At low stellar mass,

sSFR iso-contours are different for satellites and centrals: (i) satel-

lites have lower sSFR compared to centrals of the same mass, in

the direction both perpendicular to the filament, and along the fil-

ament towards the nodes, and (ii) the shape of sSFR iso-contours

is different for satellites and centrals, in particular in the vicinity of

denser node, in that for satellites, the sSFR reaches its maximum

before reaching the densest node in the direction along the fila-

ment (compare panel 1a with 1c or 2a with 2c). Presumably, satel-

lite specific processes, such as e.g. strangulation, are driving this

difference.8 Note that the sSFR contours for massive centrals in the

8Strangulation (Larson, Tinsley & Caldwell 1980), together with mergers

(Toomre & Toomre 1972), are traditionally considered as group-specific

processes impacting star formation activity of satellites. Other environmental

MNRAS 483, 3227–3254 (2019)
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3236 K. Kraljic et al.

HORIZON-NOAGN simulation (see panel 2b) are, as expected, in

qualitative agreement with the DM accretion predicted by Musso

et al. (2018, see Section 6 for a more detailed discussion).

3.5 Longitudinal and transverse kinematic/age cross-sections

Let us finally focus on the kinematics, quantified by the ratio of rota-

tion to dispersion-dominated velocity, V/σ , and the age of galaxies

in the frame of the saddle. The observational proxies of these quan-

tities would be morphology and colour, respectively. Higher V/σ

typically characterizes disc-dominated morphologies, while lower

V/σ indicates the presence of a substantial bulge component. The

age of galaxies corresponds to the mean ages that are given by the

mass-weighted age of star particles belonging to each galaxy. Fig. 8

shows iso-contours of V/σ (top panels) and age (bottom panels) as a

function of stellar mass at redshift zero. Again, the contours exhibit

both radial and angular gradients with respect to the saddle point. At

all stellar mass bins, galaxies tend to have higher V/σ in the vicinity

of the saddle point that decreases in the orthogonal direction away

from the saddle, while in the direction along the filament towards

the nodes it first increases, reaches its maximum before getting to

the densest node and decreases afterwards. This effect is strongest

for highest mass galaxies. In terms of quantitative comparison of

V/σ at different stellar mass, galaxies in the lowest stellar mass bin

have the lowest V/σ , while intermediate-mass galaxies show the

largest V/σ values. V/σ of the most massive galaxies is lower com-

pared to intermediate stellar masses, but higher than at lowest stellar

mass end. This can be explained by the presence of few massive

disc-dominated galaxies present in the HORIZON-AGN simulation

and higher fraction of ellipticals at low-mass end compared to ob-

servations. Indeed, as shown in Dubois et al. (2016), the maximum

probability of finding discs in HORIZON-AGN is in the stellar mass

range of 1010–1011 M⊙.

Similarly, age gradients display clear radial and angular depen-

dence with respect to the saddle point at all stellar mass bins, how-

ever, with qualitatively different behaviour. In the transverse direc-

tion, saddle point is still maximum of the age at all stellar mass,

while in the direction along the filament away from the saddle, age

increases all the way beyond the node. Interestingly, in this aspect,

age gradients are similar to stellar mass gradients with the oldest

and most massive galaxies being located closer to the node in the

direction of the filament, and in the vicinity of the filament in the

orthogonal direction. This is consistent with the redshift evolution

of the stacks as discussed now.

4 R EDSHIFT EVO LU TION

Let us now examine the evolution of galaxy properties with redshift.

When comparing different epochs one may either consider the fate

of a given set of galaxies, or quantify the cosmic evolution of the

galactic population as a whole.

Fig. 9 shows galaxy number counts in low (left-hand column),

intermediate (middle column), and high (right-hand column) stellar

mass bins at redshifts two (topmost rows) and one (bottommost

quenching processes, mostly operating in clusters include galaxy harassment

(Moore et al. 1996) or ram pressure stripping of gas (Gunn & Gott 1972).

However, in this work, we are not attempting to address the processes

impacting satellite population in particular.

rows),9 while Fig. 10 shows the mean stellar mass of the entire

population above the mass limit at these redshifts, as indicated.10

The corresponding redshift zero maps are shown on Figs 4 and 5,

respectively.

At each redshift, more massive galaxies are more tightly clustered

in the filaments than in the voids, and near the nodes than near the

saddles. Part of this redshift evolution is simply due to the mass

evolution of objects. In other words, one could fix the level of

non-linearity by considering mass bins that evolve with redshift

following the non-linear mass for instance and then consider the

residual redshift evolution. This procedure would allow to focus on

the same class of objects across redshifts.

On Fig. 9, one can follow the progenitors of a given class of

objects by fixing the level of non-linearity which is equivalent to

move approximatively along the diagonal (by adding Fig. 4), i.e.

to focus on less massive objects at high redshift. As galaxies grow

in mass, i.e. as non-linear gravitational clustering proceeds (the

local dynamical clocks being set by inverse square root of the local

density), they also become more concentrated towards the filaments

and nodes (see Appendix E2). For instance, comparing the bottom

right transverse cross-section at redshift one and zero (from Fig. 4),

the vicinity of the saddle is less populated by massive objects as

these have drifted towards the nodes. This redshift evolution is

consistent with the global flow of galaxies first towards the filaments

and then along them (as quantified kinematically in Appendix F),

and with the fact that galaxies accumulate mass with cosmic time.

For a population as a whole, in the close vicinity of the saddle,

the breadth of the filament broadens with cosmic time as shown in

Fig. 11, comparing the filament’s thickness for all galaxies above

the stellar mass limit at redshifts two and zero. Specifically, the full

width at half-maximum (FWHM) of the transverse galaxy num-

ber counts profiles was computed at different positions along the

filament’s direction. As argued in the next section, the measured

increase of the filament’s width with cosmic time is consistent with

the theoretical expectations.

Finally, Fig. 12 shows the redshift evolution of stellar mass-

weighted sSFR. Again, it is interesting to note that the global sSFR

traces the level of non-linearity of the collapse of structures: at

high-redshift, low-mass population (top left panel) has the highest

sSFR, whereas the high-mass low-redshift population (bottom right

panel) is the most quenched. This is also reflected in the position of

maximum of sSFR, which drifts with cosmic time i.e. with the level

of non-linearity of the field. The peak of sSFR seems to occur further

from the denser nodes towards the saddle as a function of cosmic

time. Hence, for the sSFR at least two processes compete: advection

with the main flow and star formation activity which is impacted by

the proximity to AGNs and the local dynamical time-scale (but see

Section 6.6 below).

5 TH E O R E T I C A L P R E D I C T I O N S

Let us briefly present the theoretical framework which will allow us

to interpret the measurements presented in Sections 3 and 4. This

will involve predictions for DM and halo density cross-sections in

9The skeleton and stellar mass bins are constructed as for redshift zero, see

Sections 2.3 and 3.2, respectively. Consequently, the stellar mass bins are

not identical at different redshifts, but they still contain comparable number

of galaxies.
10Note that these cross-sections are in qualitative agreement with az-

imuthally averaged counterparts (see Appendix C).
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Galaxies in the saddle frame of the cosmic web 3237

Figure 8. Stellar mass weighted V/σ (topmost panels) and age (bottommost panels) for low (left), intermediate (middle), and high (right) stellar mass bins as

labelled, in the longitudinal and transverse planes at the saddle. The vertical axis corresponds to the direction of the skeleton at the saddle (upwards toward the

node with the highest density), while the horizontal axis corresponds to the major principal axis in the transverse direction at the saddle. The white contours

and the white crosses correspond to the galaxy number counts and the peak in galactic density on axis, respectively. The behaviour of the number density of

galaxies changes with stellar mass for both physical properties, but much more dramatically for V/σ . The shape of iso-contours are qualitatively different,

while the maximum of V/σ along the filament in the upward direction is located in between the saddle point and the density peak, age increases with increasing

distance away from the saddle towards the nodes, and beyond. Transverse gradients are similar, both in terms of shape of iso-contours and in that the saddle

point is maximum for both quantities in radial direction.
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3238 K. Kraljic et al.

Figure 9. Redshift evolution of the galaxy number counts in the frame of the saddle, in the longitudinal and transverse planes at the saddle. Low (left-hand

column), intermediate (middle column), and high (right-hand column) stellar mass bins are shown at redshifts 2 (topmost panels) and 1 (bottommost panels),

respectively. The white dashed contours represent the galaxy number counts with the horizontal axis corresponding to the minor principal axis in the transverse

direction at the saddle. The corresponding redshift zero maps are shown on Fig. 4. High-mass galaxies are more clustered near the filaments and nodes at all

redshifts considered compared to their lower mass counterparts. Note that as galaxies grow in mass with time, they follow the global flow of matter, reflected

by the increased distance between the saddle point and two respective nodes at lower redshift.
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Galaxies in the saddle frame of the cosmic web 3239

Figure 10. Mean galaxy stellar mass in the frame of the saddle, in the longitudinal and transverse planes at the saddle, for all masses in the range 109.0–

1012.0 M⊙ at redshifts two (left-hand column) and one (right-hand column). The redshift zero maps are shown on Fig. 5. At a given mass, the corresponding

(coloured) contours get further away from the filament axis with cosmic time. Transverse cross-sections (bottom panels) of number counts (white contours)

become more elongated with decreasing redshift, while longitudinally (top panels), they are further away from the saddle at lower redshift: the filaments

become more elliptical and thicken with cosmic time (see Fig. 11 for quantitative estimate of this effect).

the frame of the saddle, and their expected non-linear evolution with

cosmic time.

5.1 Constrained random fields

For Gaussian cosmological initial conditions, peak theory (Bardeen

et al. 1986) can be adapted to predict the mean (total) matter density

maps around saddles. Appendix E derives this mean initial matter

distribution marginalized to the constraint of a saddle point of ar-

bitrary geometry (height and curvatures) when the direction of the

largest (positive) eigenvalue of the Hessian, i.e. the direction of the

filament, is fixed together with its orientation. This last require-

ment is achieved by imposing that the coordinate of the gradient

of the gravitational potential along the filament is always nega-

tive. The resulting oriented map of the density distribution around

saddles is shown in Fig. 13 (left-hand and middle panels). As ex-

pected, more mass is found close to the filament axis and in the

direction of the most attractive potential well (towards the top of

the map). Fig. 13 (right-hand panel) also presents the expected

mass distribution of DM haloes within the frame of the saddle

when the Press–Schechter threshold for collapse is decreased by

the mean density (following the prescription described in Codis

et al. 2015b).

5.2 Expected redshift evolution

Different approaches can be used to incorporate the non-linear evo-

lution in the theoretical predictions, e.g. by doing a Zel’dovich

boost of the mean density map predicted from excursion set

theory, or by incorporating the gravity induced non-Gaussianity

of the distribution using a perturbative approach as sketched

in Appendix E. Both predict that gravitational clustering dis-

torts and enhances the contours of the matter density field

within the frame of the saddle, with a scaling proportional to

σ (M⋆,redshift), the mass- and redshift-dependent scale of non-

linearity. The net effect will depend on what is held fixed while

stacking. At fixed rareness, which is essentially achieved when

focusing on the more massive objects, filaments will collapse

with cosmic time and therefore get thinner and more concen-

trated (see Fig. E1). On the other hand, when the entire popu-

lation of galaxies is considered at each redshift, filaments typi-

cally get thicker, because less rare and therefore less-connected

and less-biased objects form at low redshift and dominate the

population.

While the realm of these predictions is limited (in redshift and

range of tracers), it none the less allows us to understand the trend

at the level of gravity-driven processes, and highlight by contrast

the contribution of AGN or stellar feedback. We refer to Codis et al.
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3240 K. Kraljic et al.

Figure 11. Thickness of the filaments, defined as the FWHM of the Gaus-

sian fit of the transverse galaxy number counts profiles marginalized over x-

(panel a) and y-axes (panel b) at different positions along the filament’s di-

rection (z-axis on the longitudinal cross-sections) at redshifts 2 and 0, in red

and blue, respectively, for all galaxies in the mass range 109– 1012 M⊙. The

transverse projections are carried over 0.2 Mpc h−1 longitudinally (along

the z-axis). As previously, the upward direction along the z-axis corre-

sponds to the direction of the skeleton at the saddle toward the node with

the highest density. When considering the entire population of galaxies,

the cross-sections of filaments in the vicinity of the saddle point (at z = 0

Mpc h−1) grow with time. For the sake of clarity, only measurements at red-

shifts zero and two are shown, however, their redshift evolution is consistent

throughout. Note also that the widths are computed in comoving coordi-

nates: the growth at low redshifts is much stronger in physical coordinates.

See also Appendix B (Fig. B2) for the thickness of the filaments and its

redshift evolution at distances extending more faraway from saddle.

(2015b, their section 4) and Laigle et al. (2015, their section 5)

for predictions for the expected angular momentum and vorticity

distributions and their evolution in the frame of the saddle, which

will prove useful when discussing V/σ maps (and less directly sSFR

maps, which are sensitive to the recent accretion of cold gas).

6 INTERPRETATION A N D D IS C U S S ION

Let us now discuss the findings of Sections 3 and 4 in the context

of existing surveys and structure formation models (Section 5).

6.1 Complementary top-down approach to galaxy formation

Let us start by putting the adopted approach and the results

of this work in the classical context of structure formation

models. Traditionally, galaxy formation and evolution is stud-

ied in the hierarchical framework where galaxies are considered

as evolving in (sub)-haloes possibly embedded in larger haloes

(e.g. Kauffmann, White & Guiderdoni 1993; White 1996). Dynam-

ically, this means that we can associate two typical time-scales

(or ‘clocks’) to each encapsulated environment. This approach is

justified in the well-established bottom–up scenario of structure for-

mation. One can address the impact of the isotropic environment on

the scales of haloes, or equivalently the local density (i.e. the trace

of the Hessian of the gravitational potential) while considering the

merger tree history of individual haloes (and thus galaxies residing

within).11 Such scenario has proven quite successful in explaining

many observed properties of galaxies, via the so-called halo model

(Cooray & Sheth 2002) – in particular against isotropic statistics

(e.g. two-point functions). In this classical view, the impact of the

larger anisotropic scales set by the cosmic web is ignored because

it is assumed that these scales do not couple back down to galactic

scales. Yet this view fails to capture e.g. spin alignments which

are specifically driven by scale coupling to the cosmic web (Codis

et al. 2015a), nor does it fully take into account how the light-

cone of a given galaxy is gravitationally sensitive to the larger scale

anisotropies.

By contrast, Musso et al. (2018) recently investigated the impact

of the large-scale anisotropic cosmic web on the assembly history of

DM haloes within the framework of extended excursion set theory,

accounting for the effect of its large-scale tides. They derived the

typical halo mass, typical accretion rate, and formation time of DM

haloes as a function of the geometry of the saddle. These quantities

were predicted to vary with the orientation and distance from saddle

points, such that haloes in filaments are less massive than haloes in

nodes, so that at equal mass, they have earlier formation times and

smaller accretion rates at redshift zero, the effect being stronger in

the direction perpendicular to the filament. These findings suggest

that on top of the mass and local mean density, the tides of the

larger scale environment also impact haloes’ properties through a

third time-scale.

The approach adopted here follows up and assesses specifically

the impact of this large-scale environment on galaxy properties, and

in particular the top–down relevance of the imposed tides (captured

by the traceless part of the Hessian of the gravitational potential) on

galaxy assembly. In other words, the aim here is to identify proper-

ties of galaxies which are specific to their relative position within the

saddle frame. To do so, the analysis is carried out at fixed stellar mass

and quantified at additional fixed (sub)-halo mass and anisotropic

density (through the analysis of stacked re-oriented residual maps,

see below), instead of the conventional galaxy–halo–group mass

isotropic perspective. This framework does not invalidates past re-

sults expressed in terms of group and halo masses – which remain

the dominant effect impacting galaxy formation, but complements

them at first- or second-order corrections.12 Qualitatively, the aim

is to understand the impact of the stretching and twisting imposed

by those tides above and below the impact of the density. As shown

in Section 5.2, it also provides as a bonus a good understanding

of the bulk flows within that frame, which enlightens the geometry

of filaments’ iso-contours traced by galaxies at fixed mass or fixed

cosmic age.

11The local density is indeed strongly correlated with the group halo mass,

as can be seen by comparing e.g. Figs 5 and 15.
12In fact one could indeed alternatively extend the classical framework by

adding the larger scale group distribution, i.e. the cosmic web traced by

DM haloes as an extra ‘hidden variable’ driving galactic assembly. Below

that scale, the statistics is isotropic, while beyond it one has to define how

ensemble average should be carried. The frame of its saddles is chosen here

as a proxy for this web so as to be able to stack galactic distributions while

taking its effect into account.

MNRAS 483, 3227–3254 (2019)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

8
3
/3

/3
2
2
7
/5

2
1
2
3
1
6
 b

y
 U

P
M

C
 u

s
e
r o

n
 2

2
 J

u
ly

 2
0
1
9



Galaxies in the saddle frame of the cosmic web 3241

Figure 12. Mass-weighted sSFR in the frame of the saddle, in the longitudinal plane. Low (left-hand column), intermediate, (middle column), and high

(right-hand column) stellar mass bins are shown at redshifts two (top), and one (bottom), respectively. The redshift zero map is shown on the top panel of

Fig. 6. sSFR decreases with cosmic time at all stellar masses independently of the relative position with respect to the saddle. Interestingly, the peak of sSFR

drifts away from the densest node as a function of cosmic time or increasing mass (i.e. level of non-linearity).

6.2 Observational signature for the impact of the cosmic web

The idea that galaxy properties, such as their stellar mass, colour,

or sSFR are also driven specifically by the anisotropy of the cosmic

web has only recently started to be explored in observations (e.g.

Eardley et al. 2015; Alpaslan et al. 2016; Tojeiro et al. 2017).

Stellar mass and colour or sSFR gradients have been reported at

low (e.g. Chen et al. 2017), intermediate (z � 0.25; Kraljic et al.

2018), and higher redshifts (z ∼ 0.7–0.9; Chen et al. 2017; Malavasi

et al. 2017; Laigle et al. 2018), with more massive and/or less

star-forming galaxies being found closer to the filaments compared

to their lower mass and/or higher star-forming counterparts. The

focus in this paper is on 2D and 3D cross-sections at fixed stellar

mass, allowing to explore more complex geometric environment

of the filamentary network. The (marginalized) 1D distributions

(over distance along the filament) are in qualitative agreement with

the above-mentioned observed stellar mass and colour or sSFR

gradients with respect to filaments. Marginalizing over the distance

perpendicular to the axis of the filaments yields gradients along the

filament, such that at fixed orthogonal distance from the filament,

more massive and/or less star-forming galaxies are preferentially

located in the vicinity of the node. Such a signature was found by

Kraljic et al. (2018) in terms of red fractions, who reported the

increasing fraction of passive galaxies with decreasing distances

both to the filaments and nodes, with the dominant effect being the

distance to the nodes. These gradients should now be measured in

the 3D distribution of galaxies inferred from large galaxy redshift

surveys, such as e.g. SDSS (York et al. 2000) or GAMA (Driver

et al. 2009, 2011), providing a large statistical sample of galaxies

and for which additional information about the properties of group

haloes is available.

In terms of redshift evolution of sSFR, note that while at redshift

above one the sSFR of galaxies increases in the direction along the

filament away from the saddle and reaches its maximum near the

node – in the region where the density is typically highest, this max-

imum is shifted away from the nodes towards the saddle at redshift

one and below (top panels of Figs 6 and 12). Qualitatively similar

behaviour, known as the reversal of the star formation–density rela-

tion at high redshift, was tentatively identified in observations (e.g.

Elbaz et al. 2007; Cooper et al. 2008; Hwang et al. 2010, but see

MNRAS 483, 3227–3254 (2019)
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3242 K. Kraljic et al.

Figure 13. Mean predicted maps of the DM distribution around a saddle point of arbitrary shape and height. The direction of the filament is fixed to be

along the vertical axis for left- and right-hand panels (perpendicular to the plane of the figure in the middle panel) and the top–bottom symmetry is broken by

imposing that the most attractive peak is at the top. Left-hand panel: predicted distribution of the density fluctuation for Gaussian random fields ν (in units

of the variance). Middle panel: corresponding transverse cross-section with the same colour coding. Right-hand panel: corresponding log of the non-linear

mass when the threshold for collapse in the Press–Schechter mass is decreased by the mean density obtained on the left-hand panel. Its numerical counterpart

measured in HORIZON-AGN is shown on Fig. E2 at low and high redshifts (see also Fig. E1 for a prediction).

e.g. Patel et al. 2009; Ziparo et al. 2014, for contradictory results).13

Overall, our results suggest that in order to understand the complex

behaviour of galaxies’ properties, one may need to take into ac-

count the large-scale environment where tides are expected to play

an important role, beyond that of density.

Note finally that a possible reason for the recent non-detection

of Alam et al. (2018) and Paranjape et al. (2018b) with the SDSS

resolution is that the ensemble average of the non-linearly evolved

galactic properties predicted from angular-averaged fields does not

differ by much from the ensemble and angular average of the non-

linearly evolved galactic properties from anisotropic fields. To a

good approximation, angular-averaging and dynamical non-linear

evolution commute, which has of course been the basis of the suc-

cess of the spherical collapse model.14 One has to compute expecta-

tion in the frame of the filament to underline the differences, which

is precisely the purpose of this paper.

6.3 Inferred age, mass, and counts statistics

The findings presented in this work, based on the analysis of galaxy-

related gradients in the frame of saddle, are in qualitative agreement

with the predictions of Musso et al. (2018) and those of Section 5:

the iso-contours of studied galaxy properties show dependence on

both the distance and orientation with respect to the saddle point

of the cosmic web. Specifically, galaxies tend to be more massive

closer to the filaments compared to voids, and inside filaments near

nodes compared to saddles (Figs 1–5). Similarly and equivalently

(given the duality between mass and cosmic evolution discussed in

Appendix E2), Figs 9–11 show that as galaxies grow in mass, they

13Elbaz et al. (2007) specifically found evidence of this reversal for massive

galaxies, such that the sSFR increases with increasing galaxy density at

redshift ∼one.
14This is in fact seen even at the level of the one-point function: one needs to

invoke a moving barrier (Sheth & Tormen 2002), i.e. corrections to spherical

collapse to match the measured mass function of dark haloes.

become more clustered near filaments and nodes with cosmic time,

the width of the filaments narrows for a given mass bin, while the

evolution of the entire population is consistent with broadening of

the filaments, as expected from the theory of rare events (Bernardeau

1994). The number counts maxima are closer to the saddles than the

stellar mass maxima as the former is dominated by the less-massive

and more-common population, forming more evenly within the

frame of the cosmic web, so that they have not had time to drift

to the nodes. Consistently, older galaxies (Fig. 8) are preferentially

located near the nodes of the comic web when comparing their

distribution in the direction along the filaments, and in the vicinity

of filaments in the perpendicular direction. These age gradients are

seemingly at odds with the formation time of haloes predicted by

Musso et al. (2018), where haloes that form at the saddle point

assemble most of their mass the earliest. However, note that the

formation time of haloes does not necessarily trace galactic age

as inferred from the mean age of the stellar population. Indeed,

our findings reflect the so-called downsizing (Cowie et al. 1996)

of both galaxies and haloes (e.g. Neistein, van den Bosch & Dekel

2006; Tojeiro et al. 2017), such that oldest galaxies tend to be most

massive, and galaxies in high-mass haloes are older (they formed

their stars earlier).

Note finally that the theoretical predictions in Musso et al. (2018)

are made at fixed halo mass, while the analysis presented so far in

this work is performed at fixed stellar mass. However, the halo mass

used in their study is physically closer to a sub-halo mass than a

host halo mass,15 and is therefore more strongly correlated with

the stellar mass of galaxies which justifies further the qualitative

comparison at this stage. As anticipated in Section 6.1, additional

fixed sub-halo mass and density will be taken into account through

the analysis of residuals (see Section 6.5).

15The formalism adopted in Musso et al. (2018) does not capture the strongly

non-linear processes operating on satellite galaxies.
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6.4 The impact of AGN feedback

Relating the predicted specific accretion gradients of DM haloes

to galaxies’ observables requires some assumptions. One can in

principle translate DM accretion gradients into sSFR gradients by

considering the role of baryons in the accretion and feedback cy-

cle. In the current framework of galaxy formation and evolution,

galaxies acquire their gas by accretion from the large-scale cosmic

web structure. The average growth rate of the baryonic component

can be related to the cosmological growth rate of DM haloes, from

which follows that higher star formation rate corresponds to higher

DM accretion rate, providing that the SFR follows the gas supply

rate. At high redshift, the vast majority of galaxies are believed to

grow by acquiring gas from steady, narrow, and cold streams (e.g.

Kereš et al. 2005; Ocvirk, Pichon & Teyssier 2008; Dekel et al.

2009). Using these arguments, it should follow that at high redshift,

the stronger the accretion, the higher the sSFR of galaxy. Such a

scenario is consistent with the gradients of the DM accretion rates

found by Musso et al. (2018), where high-mass haloes that form

in the direction of the filament tend to have higher accretion rates

than haloes with the same mass that form in the orthogonal direc-

tion. This qualitatively agrees with the sSFR gradients in the frame

of saddle at high redshift (Fig. 12) and in the simulation without

AGN feedback (Fig. 6) at redshift zero, where galaxies with highest

sSFR at fixed stellar mass tend to be located in the vicinity of the

node in the direction along the filament, and near the saddle in the

orthogonal direction.

In the presence of BHs, it is reasonable to expect at low redshift

that the stronger the accretion, the stronger the AGN feedback, thus

the stronger the quenching of star formation. This should result in

an overall reduced sSFR, a behaviour that is indeed found when

comparing the sSFR iso-contours between the HORIZON-AGN and

HORIZON-NOAGN simulations. Interestingly, Figs 6, 7, and 12 also

show that the shape of the sSFR iso-contours is modified in the pres-

ence of AGN feedback such that, at the high-mass end, galaxies with

highest sSFR seem to be offset from the highest density nodes of the

cosmic web (see also Appendix D which quantifies the difference

of sSFR between HORIZON-AGN and HORIZON-NOAGN). Satellites

are much less impacted by AGN feedback than centrals, and their

sSFR is mostly affected by the environment of groups and clusters.

6.5 Evidence for other processes driving galaxy formation

Closer inspection specifically shows that the iso-contours of sSFR,

V/σ (Figs 6 and 8) on the one hand, and stellar mass (Fig. 5) on

the other differ from one another. This suggests that there may exist

hidden processes driving galactic physics (beyond mass and local

density).

Let us attempt to quantify their nature. Fig. 14 displays the host’s

halo mass (respectively, sub-halo’s mass for satellites defined as the

current virial mass of the sub-halo) in the frame of the saddle, in the

longitudinal cross-section at redshift zero for different stellar mass

bins (see also Fig. 5). Not surprisingly, galaxies with higher stellar

mass are found to live in more massive DM haloes. These halo mass

gradients are in agreement with Section 5’s theoretical prediction

and reflect what was already seen for the stellar mass gradients of

the entire galaxy population, i.e. saddle points represent maxima of

the halo mass in the direction perpendicular to the filament, while

they are minima in the direction along the filament towards nodes

independently of stellar mass. Note that in a given stellar mass bin,

halo mass increases towards filaments and nodes, i.e. the M⋆/Mh

ratio is decreasing along those directions. Strikingly, there is little

change in the shape of these halo mass gradients when varying

stellar mass. This is strongly indicative that stellar mass is at first

order only a function of DM mass (at a given position within the

cosmic web).16 This is in sharp contrast with Fig. 6 (respectively,

Fig. 8), which shows that the sSFR (respectively, V/σ ) contours do

vary significantly across stellar mass bins and have also distinct

shapes compared to Fig. 14.

Besides halo mass, density is another obvious candidate for a

variable that could drive the observed sSFR (respectively, V/σ ) dis-

tributions in the frame of the saddle. Fig. 15 shows the density in

the frame of the saddle, in the longitudinal cross-section at redshift

zero for different stellar mass bins (see also Fig. 5). This density is

computed on the scale of 0.8 Mpc h−1, at which the skeleton was

defined (and where the corresponding level of anisotropy was de-

fined). Not surprisingly, galaxies with higher stellar mass are found

to live in denser regions. These maps are again in agreement with

Section 5’s theoretical prediction and are qualitatively similar to

what was already seen for the halo mass gradients, i.e. saddle points

represent maxima of the density in the direction perpendicular to

the filament, while they are minima in the direction along the fila-

ment towards nodes independently of stellar mass. As for halo mass,

there is little change in the shape of these maps versus stellar mass.

This in turn may indicate that there exist other position-dependent

variables which impact sSFR (respectively, V/σ ).

Let us attempt to quantify this effect by calibrating from the full

simulation the mapping ˆsSFR(Mh, ρ), defined as the median sSFR

at given Mh and local density ρ (and M⋆ given that the mapping is

defined in a given stellar mass bin), where ρ is computed on the

scale of 0.8 Mpc h−1. To do this, the median sSFR is computed in

bins of log Mh and log ρ constructed adaptatively such that each of

10 equipopulated bins of Mh is further divided in eight equipopu-

lated bins of log ρ, in a given stellar mass bin. This median relation

is then used in a 2D interpolation to obtain a relation ˆsSFR(Mh, ρ)

that can be applied to each galaxy (see Appendix G for details).

Should the physical process driving star formation only depend on

mean density and mass,17 this operation would reproduce exactly

Fig. 6. What is found instead is that at given stellar mass, there is

a clear position-dependent discrepancy between the two, as shown

in Fig. 16.18 This figure displays the difference of the mean sSFR

measured at the given position, and the mean sSFR estimated using

the above-defined mapping, in highest stellar mass bin, normalized

by the median sSFR (computed over the whole saddle region). This

discrepancy is indicative that the impact of the saddle accounts for

at least a fraction of the dispersion from the median sSFR−Mh−ρ

16A tight correlation between the stellar and halo mass of galaxies in the

current framework of galaxy formation (Rees & Ostriker 1977; Fall &

Efstathiou 1980) is expected based on abundance matching (e.g. Conroy &

Wechsler 2009; Moster, Naab & White 2013; Rodrı́guez-Puebla et al. 2017)

and confirmed with more direct measurements using e.g. satellite kinematics

(e.g. van den Bosch et al. 2004; More et al. 2009) or weak lensing (e.g.

Moster et al. 2010; Han et al. 2015; van Uitert et al. 2016).
17Note that we cannot rule out that position-dependent shape of the PDF of

the distribution of sSFR, halo mass and density accounts for some residuals,

as one would not expect the averaging and the mapping to fully commute,

see Appendix G.
18We also computed maps of the density smoothed on 2 and 3 Mpc h−1. This

had little impact on the equivalent of Fig. 16, while significant residuals are

found at the lower stellar mass bin, as expected since the smaller the mass

the smaller the scale and the smaller the correlation with the field smoothed

on larger (fixed) scale. This is consistent with the findings of Kraljic et al.

(2018).
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3244 K. Kraljic et al.

Figure 14. Stellar mass-weighted halo mass in the frame of the saddle at redshift zero for low (left), intermediate (middle), and high (right) stellar mass bins,

as labelled, in the longitudinal plane at the saddle. The shape of iso-contours does not change dramatically with stellar mass and not surprisingly, galaxies with

highest stellar masses live in most massive haloes. Note that low values for halo mass result from the smoothing of mean values in sparsely occupied regions.

Figure 15. Stellar mass-weighted density in the frame of the saddle at redshift zero for low (left), intermediate (middle), and high (right) stellar mass bins, as

labelled, in the longitudinal plane at the saddle. As for halo mass (see Fig. 14), the shape of iso-contours does not change dramatically with stellar mass and

not surprisingly, galaxies with highest stellar masses live in densest regions.

relation (middle and right-hand panels), either because of the im-

posed local tides and/or because of the scatter in density imposed by

this saddle (which might also be position-dependent). Interestingly,

when the same transformation is applied to galactic age, no signifi-

cant residuals are found (left-hand panel). This suggests that mean

stellar mass and age, which are integrated quantities, do not seem

to be very sensitive to anything but mean dark halo mass and mean

density. Appendix G discusses in more details how to statistically

disentangle mass, density, and tidal effects.

6.6 Is spin advection one of the residual processes?

In closing, let us speculate on the nature of the physical process

which may be responsible for the residual scatter – having removed

some of the effect of mean mass and local density, while rely-

ing on our saddle-centred stacks to identify processes that may be

driven by anisotropy. As already mentioned, the (radial) distance

to the node quenching from AGN feedback is an obvious candi-

date for the amplitude of the residual maps. Nevertheless, it had

long been known that angular momentum stratification – undoubt-

edly built from anisotropic tides – is a key underlying property

driving morphology of galaxies, which correlates with their star

formation efficiency. Angular momentum acquisition is controlled

by the large-scale tidal tensor, which imprints its torque along the

galaxy’s lightcone. The induced tides not only impact the assembly

and accretion history of the host, but also the filamentary flow of

cold gas connecting to the host, hence its coherent gas supply. It has

recently been shown (Welker et al. 2015) following galaxies that

the quadrupolar vorticity-rich large-scale filaments are indeed the

loci where low- and intermediate-mass galaxies steadily acquire

angular momentum via quasi-polar cold gas accretion, with their

angular momentum aligned with the host filament (see Fig. 17 for

the high-mass bin which has the most significant alignment signal

at low redshift, and Laigle et al. 2015): galaxies are expected to

accrete more efficiently cold gas when their angular momentum is

aligned with the preferential direction of the gas infall, i.e. aligned

MNRAS 483, 3227–3254 (2019)
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Galaxies in the saddle frame of the cosmic web 3245

Figure 16. Age, sSFR, and V/σ residuals, from left to right, having removed the mean stellar mass, halo mass, and density effects, respectively by binning and

considering the median mapping (see the text for details), in terms of fraction of the median values in the frame of the saddle at redshift zero for high stellar

mass bin, in the longitudinal plane at the saddle. The red dashed contours and the red crosses correspond to the galaxy number counts and the peaks in galactic

density on axis, respectively and the red horizontal lines represent the smoothing length used in the analysis. The sub-panels on the top show the distributions

of the three parameters, age, sSFR, and V/σ (in colours), as a function of halo mass, Mh and local density ρ (computed on the scale of 0.8 Mpc h−1, at which

the skeleton and the corresponding level of anisotropy were defined), respectively, with number counts overplotted in black. Interestingly, the residuals for

sSFR and V/σ display an excess at finite distance between the saddle and the nodes, which points towards the expected loci of maximum spin up and limited

AGN quenching. Conversely, the age residuals are very small (�3 per cent) relative to the values of residuals obtained for sSFR and V/σ , consistently with the

observation that the age, halo mass, and local density gradients show many similarities (compare bottom panel of Figs 8, 14, and 15, respectively).

with the filament (Pichon et al. 2011; Stewart et al. 2011). This has

typical local kinematic signatures in terms of (i) spin and (ii) vortic-

ity orientation as predicted by Codis et al. (2015b), and as measured

in HORIZON-AGN with respect to the direction of its closest filament

(Fig. 17), and (iii) in terms of internal kinetic anisotropy in the ve-

locity dispersion of dark haloes (Faltenbacher & White 2009). The

V/σ of galaxies increases as they drift along the filament without

significant merger, as they align themselves to the saddle’s tides

(Fig. 17).

The efficiency of star formation, as traced by sSFR, also depends

on the infalling rate and impact parameter of the cold gas in the

circumgalactic medium. Hence, one also expects star formation ef-

ficiency to be strongest wherever the alignment is tightest. The locus

of this induced excess of star formation and/or V/σ should there-

fore have measurable signatures in observations when quantified in

the metric of the filament (as discussed e.g. in Codis et al. 2015b,

equation 40, in terms of loci of maximum cold gas advection at

some finite distance from the saddle along the filament). There is

a hint of such excess in the residuals shown in Fig. 16 in terms of

both sSFR and V/σ (which should co-evolve). While quenching is

also playing a significant position-dependent role for the high-mass

population, its impact on the lower mass galaxies will be less signif-

icant. Fig. 18 shows indeed that for the lower mass bins, the residual

maps peak significantly on axis, which supports the idea that the

efficiency of angular momentum advection is a relevant process.

This is worth emphasizing, given the above-given theoretical prej-

udices based on following galaxies in the flow (Welker et al. 2015),

and on the orientation of galaxies traced by their spin’s orientation

distribution in the vicinity of the filament axis, predicted to exhibit

a point-reflection symmetric structure (Codis et al. 2015b) as mea-

sured in Fig. 17. While this discussion is more speculative, recall in

any case that most properties of the galactic population measured

within the frame of saddles presented in the previous section –

including redshift evolution and filament thickening/thinning – can

be understood when accounting for their cosmic advection with the

bulk flow along and transverse to the filament. The present study

clearly highlighted that an improved model for galaxy properties

should also explicitly integrate the diversity of the topology of the

large environment on multiple scales (following, e.g. Hanami 2001)

and quantify the impact of its anisotropy on galactic mass assembly

history, and more generally on the kinematic history of galaxies.

The details of how the kinematics impact star formation remains to

be understood. The vorticity-rich kinematics of the large-scale flow

is neither strictly coherent nor fully turbulent. Does the offset of

merger and accretion rate imposed by the large-scale turbulent flow

explain the residual environment dependence in observed physical

properties (Aragon-Calvo, Neyrinck & Silk 2016), or is the helicity

of gas inflow within filaments prevalent in feeding galactic discs

coherently (Pichon et al. )?

7 C O N C L U S I O N S

This paper investigated the properties of virtual galaxies in the

neighbourhood of filament-type saddle points of the cosmic web.

These properties were measured within the frame set by the principal

axes of the saddle in the HORIZON-AGN simulation. The impact of

AGN feedback was assessed by comparing to results obtained in

the HORIZON-NOAGN simulation. The principal findings are the

following:

MNRAS 483, 3227–3254 (2019)
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3246 K. Kraljic et al.

Figure 17. Stellar mass-weighted cosine of angle between the spin of the

galaxy and the direction of the filament (top panel) and between the vorticity

of the gas at the position of the galaxy and the direction of the filament

(bottom panel) for highest stellar mass bin at redshift zero. Transverse cross-

sections comprise galaxies with z-coordinate between 1 and 2.5 Mpc h−1

for the spin and between 0.5 and 1.8 Mpc h−1 for the vorticity, where the

signal is most significant. The vorticity is computed on the gas distribution

at the resolution and smoothing length used to define the skeleton, and

interpolated at the position of galaxies. The map is normalized so that the

integrated amplitude in each quadrant is preserved while smoothing. The

white contours and the white crosses correspond to the galaxy number counts

and the peaks in galactic density, respectively. Note the quadrupolar (point-

reflection symmetric) structure of the spin’s orientation distribution in the

vicinity of the filament axis, in qualitative agreement with the prediction of

Codis et al. (2015b) for DM. The distribution of the vorticity of the gas is

also in qualitative agreement with this prediction and with the measurement

of Laigle et al. (2015, their appendix A), which focused on cooling runs

(without star formation). The tilt in the plane of symmetry of the vorticity

map is likely to be driven by shot noise.

(i) The iso-contours of the galactic number density, mass, sSFR,

V/σ , and age in the saddle’s frame display a clear alignment with the

filament axis and stronger gradients perpendicular to the filaments,

quantifying the impact of the cosmic web in shaping galaxies.

(ii) High-mass galaxies are more clustered around filaments and

within filaments around nodes compared to their low-mass counter-

parts. As expected, the filament’s width of the whole galaxy pop-

ulation grows with cosmic time (as it becomes dominated by less

rare galaxies). Conversely, at fixed mass, it decreases with cosmic

time at the saddle.

Figure 18. V/σ residuals in HORIZON-AGN (left-hand panel) and HORIZON-

NOAGN (right-hand panel), having removed the mean stellar mass, halo

mass, and density effects, respectively by binning and considering the me-

dian mapping (see the text), in the lowest stellar mass bin at redshift zero.

The red dashed contours and the red crosses correspond to the galaxy num-

ber counts and the peaks in galactic density on axis, respectively and the

red horizontal lines represent the smoothing length used in the analysis. The

two maps are qualitatively similar, as expected for this mass bin where AGN

feedback should not have a strong impact, and none the less, the amplitude

of the map is ∼14 per cent, concentrated along the filament’s axis.

(iii) In addition to reducing the overall sSFR of galaxies, AGN

feedback also impacts the shape of the sSFR iso-contours, in par-

ticular for high-mass galaxies and in the vicinity of the nodes of the

cosmic web. AGN feedback quenches centrals more efficiently than

satellites. Satellite strangulation seems to occur within the filaments

and nodes of the cosmic web.

(iv) While the dominant effect of the cosmic web on galaxy

formation seems to be captured by the distance to cosmic nodes,

the full 3D geometry of the web, in particular its saddle points,

provides a natural oriented frame for stacking galaxies, showing

significant effects of the environment beyond solely the distance

to nodes. Hence, galaxies do retain a memory of the large-scale

cosmic flows from which they emerged.

(v) The redshift evolution of the galactic counts and the age

distribution of galaxies are consistent with a drift of the popula-

tion towards the filaments and along them (see Appendix F). The

cosmic evolution of the sSFR reflects both this drift and the trig-

gering of quenching as centrals become massive enough to trigger

AGN feedback near the peaks of the cosmic web. The geometry

of the stacks and their cosmic evolution compare favourably to ex-

pectations for constrained Gaussian random fields in the weakly

non-linear regime.

(vi) The maps of V/σ and sSFR (and their residuals) are consis-

tent with the role played by feedback and angular momentum in

shaping galaxies, beyond that played by mass and density, and its

connection with the geometry of the cosmic web, as described by

Codis et al. (2015b) and Laigle et al. (2015) (in a Lagrangian and an

Eulerian framework, respectively). The point-reflection symmetric

distribution of the orientation of the spin of galaxies and vorticity of

the gas presented in this paper is also in agreement with this picture.

MNRAS 483, 3227–3254 (2019)
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(vii) At high mass and low redshift, AGN feedback coupled

with advection of galaxies along filaments induces some level of

anisotropy in the distribution of galaxy properties (sSFR, V/σ , and

age) which is partially degenerate with the effect of how angular

momentum of galaxies is acquired from the large-scale vorticity of

the anisotropic environment.

(viii) While sSFR responds to the saddle frame over and above

what is expected from halo mass and local density, other indicators

such as stellar age do not.

Overall, all distributions are consistent with the geometry of the flow

in the vicinity of saddles, including quenching by AGN feedback,

strangulation of satellites near the nodes, and possibly time delays

induced by asymmetric tides on local and intermediate scales. They

complement the findings of Kraljic et al. (2018), which also showed

that galaxy properties occupy more than a 2D manifold (in physical

parameter space such as age, sSFR, V/σ , etc.), but at the expense of

not resolving the 3D distribution of fields in the frame of the saddle,

which was the adopted strategy here.19 This strategy allows us to

suggest that one extra degree of freedom is the angular momentum

acquired from the anisotropy of the cosmic web.

The signal-to-noise ratio in the counts is in the current analy-

sis limited by the number of galaxies in the simulated box and

by the choice of sampling the population in 3D. In order to e.g.

probe the transverse asymmetry of saddles (reflecting the relative

depth and distance to neighbouring voids and wall saddles), the

present study could be followed up using simulations with better

statistics so that the counts may be orientated with respect to the

connecting walls and voids. A larger sample would also allow us

to quantify the effect of non-linearities when constructing residual

maps, as discussed in Appendix G. It would also be of interest

to stack observationally measurable quantities such as colour or

metallicity. These predictions could then be directly compared to

observations from upcoming spectroscopic surveys such as 4MOST

(de Jong et al. 2012), DESI (DESI Collaboration et al. 2016), PFS

(Takada et al. 2014), MSE (McConnachie et al. 2016), integral field

spectroscopy such as MANGA (Bundy et al. 2015), SAMI (Croom

et al. 2012), Hector (Bland-Hawthorn 2015) or in projection using

photometric redshifts with DES (Rykoff et al. 2016), Euclid (Lau-

reijs et al. 2011), WFIRST (Spergel et al. 2013), LSST (LSST Dark

Energy Science Collaboration 2012), KiDs (de Jong et al. 2013),

following the pioneer work of Laigle et al. (2018) in the COSMOS

field. Connecting the present findings with work on spin orientation

(Codis et al. 2015b) in the frame of the saddle may also prove use-

ful to mitigate the effect of intrinsic alignment (e.g. Joachimi et al.

2011; Chisari et al. 2015). Investigating the distribution and sur-

vival of filaments on much smaller scales as they enter dark haloes

is also of interest and will be the topic of future work (Ford et al. in

preparation).
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APPENDI X A : VALI DATI ON

Let us briefly study how the measured distributions presented in the

main text are impacted by the smoothing length of the gas density

distribution and the type of tracer used to extract the skeleton. Re-

sults are presented in the frame of the saddle using the curvilinear

coordinates (see Section 3.1), but qualitatively similar conclusions

are obtained for 3D distributions. Fig. A1 shows the galaxy number

counts for the entire galaxy population with masses in the range

109.0–1012.0 M⊙ at redshift zero, using, after rescaling, the same

smoothing length as in the main text (left) and twice as big (right).

Figure A1. Galaxy number counts in the frame of the saddle (curvilin-

ear coordinates) for all masses in the range 109.0–1012.0 M⊙ at redshift

zero (left) compared to the smoothing twice as big (right). Note that the

R- and z-axes have been rescaled by the smoothing length. Similarity of the

contours suggest that the measured distributions are relatively insensitive to

the choice of the smoothing length.

MNRAS 483, 3227–3254 (2019)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

8
3
/3

/3
2
2
7
/5

2
1
2
3
1
6
 b

y
 U

P
M

C
 u

s
e
r o

n
 2

2
 J

u
ly

 2
0
1
9

http://dx.doi.org/10.1086/177035
http://dx.doi.org/10.1111/j.1365-2966.2009.15271.x
http://dx.doi.org/10.1093/mnras/stu2178
http://dx.doi.org/10.1046/j.1365-8711.2001.04652.x
http://dx.doi.org/10.1051/0004-6361/201014807
http://dx.doi.org/10.1051/0004-6361/201015621
http://dx.doi.org/10.1093/mnras/185.2.357
http://dx.doi.org/10.1086/184341
http://dx.doi.org/10.1093/mnras/264.1.201
http://dx.doi.org/10.1093/mnras/stx126
http://dx.doi.org/10.1111/j.1365-2966.2005.09451.x
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://dx.doi.org/10.1093/mnras/stx2638
http://dx.doi.org/10.1093/mnras/stu2289
http://dx.doi.org/10.1093/mnras/stx3055
http://dx.doi.org/10.1086/157917
http://adsabs.harvard.edu/abs/2011arXiv1110.3193L
http://dx.doi.org/10.1088/1475-7516/2017/03/059
http://dx.doi.org/10.1111/j.1745-3933.2012.01222.x
http://adsabs.harvard.edu/abs/2012arXiv1211.0310L
http://dx.doi.org/10.1093/mnras/stu2021
http://dx.doi.org/10.1093/mnras/stw2864
http://cdsads.u-strasbg.fr/abs/2016arXiv160600043M
http://dx.doi.org/10.1038/379613a0
http://dx.doi.org/10.1111/j.1365-2966.2008.14095.x
http://dx.doi.org/10.1088/0004-637X/710/2/903
http://dx.doi.org/10.1093/mnras/sts261
http://dx.doi.org/10.1093/mnras/sty191
http://dx.doi.org/10.1086/424902
http://dx.doi.org/10.1111/j.1365-2966.2006.10918.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13763.x
http://dx.doi.org/10.1093/mnras/sty496
http://dx.doi.org/10.1093/mnras/sty633
http://dx.doi.org/10.1088/0004-637X/705/1/L67
http://dx.doi.org/10.1086/149876
http://dx.doi.org/10.1093/mnras/stx2099
http://dx.doi.org/10.1111/j.1365-2966.2004.07412.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19640.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14753.x
http://dx.doi.org/10.1093/mnras/179.4.541
http://dx.doi.org/10.1093/mnras/stx1172
http://dx.doi.org/10.3847/0067-0049/224/1/1
http://dx.doi.org/10.1142/S0218271809014388
http://dx.doi.org/10.1046/j.1365-8711.2002.04950.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18394.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12685.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18395.x
http://cdsads.u-strasbg.fr/abs/2013arXiv1305.5422S
http://dx.doi.org/10.1088/0004-637X/738/1/39
http://dx.doi.org/10.1088/0004-637X/769/1/74
http://dx.doi.org/10.1086/191823
http://dx.doi.org/10.1093/pasj/pst019
http://dx.doi.org/10.1051/0004-6361:20011817
http://dx.doi.org/10.1093/mnras/stx1466
http://dx.doi.org/10.1086/151823
http://dx.doi.org/10.1088/0004-637X/762/2/72
http://dx.doi.org/10.1051/0004-6361/200911787
http://dx.doi.org/10.1111/j.1365-2966.2004.08021.x
http://dx.doi.org/10.1093/mnras/stw747
http://dx.doi.org/10.1093/mnrasl/slu106
http://cdsads.u-strasbg.fr/abs/2015arXiv151200400W
http://dx.doi.org/10.1214/aoms/1177732676
http://dx.doi.org/10.1086/301513
http://dx.doi.org/10.1142/S0218271807010511
http://dx.doi.org/10.1093/mnras/stt1901


Galaxies in the saddle frame of the cosmic web 3249

Figure A2. Galaxy number counts in the frame of the saddle (curvilinear

coordinates) in low (left) and high (right) stellar mass bins at redshift zero,

using the DM as a skeleton tracer. Similarity between these contours and

those obtained using gas (see Fig. 1) suggest that the measured distributions

are relatively insensitive to the choice of the tracer used to construct the

skeleton.

Similarity of these iso-contours suggests that as expected, the mea-

sured distributions are relatively insensitive to the level of smoothing

applied.

Fig. A2 shows the galaxy number counts in low (left) and high

(right) stellar mass bins at redshift zero, using the DM particles

as a tracer of the cosmic web. These iso-contours that should be

compared with left- and right-hand panels of Fig. 1, suggest again

only a weak dependence of results on the choice of the tracer (i.e.

gas or DM). Note none the less that the skeleton built directly from

galaxies using persistence is significantly different, as it becomes

multiscale in nature. The corresponding complication is beyond the

scope of this paper and will be explored elsewhere.

APPENDIX B: FI LA MEN TS ’ LEN GTH

A N D W I D T H

Fig. B1 shows the probability distribution of the length of filaments

at redshift two and zero. The length of filaments decreases with time,

in agreement with the expected evolution of matter distribution in

the �CDM universe with accelerated expansion at redshift �1 and

Figure B1. Probability distribution function of the length of filaments at

redshift two (red) and redshift zero (blue). The vertical lines correspond to

the medians of distributions.

Figure B2. Thickness of the filaments, defined as the FWHM of the Gaus-

sian fit of the transverse galaxy number counts profiles as in Fig. 11. When

considering the entire population of galaxies, the cross-sections of filaments

in the vicinity of the saddle point (at z = 0 Mpc h−1) grow with time, while

in the vicinity of nodes (z ∼ 2.5 and −1.5 Mpc h−1 for highest and lowest

density nodes, respectively), they get thinner.

as measured by Sousbie et al. (2008) for the DM. As universe

expands, more low-mass objects form leading to the formation of

filaments on smaller scales that eventually merge together while

longer filaments are stretched. Because larger scale filaments are

less numerous than filaments on small scales, the net result is a shift

of the median length towards lower values at lower redshift.

Fig. B2 shows the thickness of the filaments as a function of the

position in the direction along the filament and is complementary to

Fig. 11 in that it extends to the vicinity of the nodes. Regions near

the nodes (in both upper and lower directions from the saddle, corre-

sponding to the nodes of highest and lowest densities, respectively)

are getting thinner with time.

APPENDI X C : A ZI MUTHALLY AVERAGED

SECTI ONS

All distributions presented in Section 3 – considering the stacks in

3D, and Section 4 presenting their redshift evolution – are in qual-

itative agreement with azimuthally averaged maps in 2D, adopting

curvilinear coordinates as in Section 3.1. Let us here focus on red-

shift evolution alone. Fig. C1 shows the galaxy number counts and

mean stellar mass in the frame of the saddle using curvilinear co-

ordinates, at redshifts two and one, complementing Fig. 1. The

redshift evolution of both number counts and mean stellar mass is

in qualitative agreement with the results obtained when considering

stacks in 3D (see Section 4) and consistent with the global flow

of matter towards the filament first and along them afterwards (see

Sousbie et al. 2008, for the DM flow).
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Figure C1. Left-hand and middle panels: redshift evolution of the galaxy number counts in low (left-hand column), intermediate (middle column), and high

(right-hand column) stellar mass bins, in the frame of the saddle (curvilinear coordinates) at redshift two (top row) and one (bottom row), respectively. The

white horizontal lines represent the smoothing length used in the analysis. Rightmost panels: redshift evolution of mean stellar mass iso-contours in the frame of

the saddle (curvilinear coordinates) for the entire galaxy population at redshift two (top row) and one (bottom row), respectively. The white curves correspond

to the contours of the galaxy number counts, while the white crosses represent the peaks in galactic number density on axis. Note how galaxies become more

clustered towards filaments and nodes as they grow in mass with decreasing redshift, consistently with the global flow of matter within the cosmic web and in

agreement with results considering the 3D distributions.

A P P E N D I X D : AG N QU E N C H I N G EF F I C I E N C Y

Fig. D1 shows the normalized difference of sSFR in the HORIZON-

AGN and HORIZON-NOAGN simulations at redshift zero for highest

stellar mass bin. This quantity allows to quantify where the quench-

ing is most efficient. As expected, highest reduction of the sSFR is

in the vicinity of the densest node.

A P P E N D I X E: TH E O R E T I C A L P R E D I C T I O N S

Let us briefly predict from first principles the expected shape of the

matter and halo distribution in the vicinity of a saddle and its cosmic

evolution.

E1 Predictions for the mean constrained initial density field

The initial density field in which the cosmic web develops being

Gaussian, the theory of constrained Gaussian random field provides

a natural framework in which to compute the expectation of the

matter distribution and typical halo mass within the frame set by the

saddle point, as we do not expect the dynamics to be strongly non-

linear on such scales. An important ingredient here is therefore to

impose a filament-type saddle point constraint. Such a critical point

form when the gradient of the density field is zero and is defined by

its geometry, namely (i) its height ν defined as the density contrast

divided by its rms σ0 =
√

〈

δ2
〉

and (ii) its curvature by means of

the three eigenvalues of the Hessian matrix of the density contrast

rescaled again by their rms σ2 =
√

〈

(�δ)2
〉

. For a filament-type

saddle point, λ1 ≥ 0 ≥ λ2 ≥ λ3.

The so-called peak theory (Kac 1943; Rice 1945) then allows

us to predict all statistical properties of critical points once the

(supposedly Gaussian here) probability density function (PDF) of

the field ν = δ/σ 0, its first ν i = δ, i/σ 1 and second derivatives

ν ij = δ, ij/σ 2 is known. The saddle constraint reads

Csad =
1

R3
⋆

λ1λ2λ3�H(λ1)�H(−λ2)δD(νi) , (E1)

MNRAS 483, 3227–3254 (2019)
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Figure D1. sSFR ratio in the HORIZON-AGN, sSFR (AGN), and HORIZON-

NOAGN, sSFR (noAGN), simulations at redshift zero for highest stellar mass

bin. Note that the highest impact of AGN feedback on sSFR of galaxies is,

as expected, in the vicinity of the densest node. White contours represent

galaxy number counts in the HORIZON-AGN simulation.

where the Dirac delta function ensures the gradient to be zero, the

Heaviside Theta functions impose the sign of the eigenvalues, the

Jacobian λ1λ2λ3 = det νij accounts for the volume associated with

a saddle point, and R⋆ = σ 2/σ 1.

To predict the mean density map around a saddle point, one

has to consider the joint statistics of (ν, ν i, ν ij) together with the

density field ν
′

at a distance r from the saddle point. In addition,

the symmetry along the axis of the filament (i = 1 here) will be

broken by imposing the first axis to be oriented in the opposite

direction from that of the gradient of the gravitational potential

(i.e. towards the deepest potential well, the most attractive node).

One therefore also has to consider �1 the derivative of the gravita-

tional potential along the first direction rescaled by its corresponding

variance σ−1 =
√

〈

(∇�)2
〉

. Let us gather those 12 fields in a vec-

tor X = {ν ′, ν, ν1, ν2, ν3, ν11, ν22, ν33, ν12, ν13, ν23, �1} whose PDF

can be written

P(X) =
1

√
det|2πC|

exp

(

−
1

2
XT · C−1 · X

)

, (E2)

where the covariance matrix C = 〈X · X
T〉 depends on the separa-

tion vector r and the linear power spectrum Pk(k) which can include

a filter function on a given scale. In this work, a �CDM power spec-

trum is used (using the same values for the cosmological parameters

as HORIZON-AGN) with a Gaussian filter defined in Fourier space

by

WG(k, L) =
1

(2π)3/2
exp

(

−k2L2

2

)

, (E3)

with L = 0.8 Mpc h−1. One-point covariances do not depend on
the separation but may depend on the spectral parameter γ =
σ 2

1 /(σ0σ2). The variance of the density field is one by definition,
C11 = 1, while the diagonal block corresponding to the saddle po-

sition, C0 = (Cij)i, j > 1, reads

C0 =







































1 0 0 0 −γ /3 −γ /3 −γ /3 0 0 0 0

0 1/3 0 0 0 0 0 0 0 0 −β/3

0 0 1/3 0 0 0 0 0 0 0 0

0 0 0 1/3 0 0 0 0 0 0 0

−γ /3 0 0 0 1/5 1/15 1/15 0 0 0 0

−γ /3 0 0 0 1/15 1/5 1/15 0 0 0 0

−γ /3 0 0 0 1/15 1/15 1/5 0 0 0 0

0 0 0 0 0 0 0 1/15 0 0 0

0 0 0 0 0 0 0 0 1/15 0 0

0 0 0 0 0 0 0 0 0 1/15 0

0 −β/3 0 0 0 0 0 0 0 0 1/3







































,

with β = σ 2
0 /σ−1σ1. The cross-correlations between ν

′
and the

fields at the position of the saddle are to be computed carefully

as they depend on both the separation and the orientation of the

separation vector in the frame of the Hessian described by the coor-

dinates with indices i = 1, 2, and 3. They are explicit function of the

shape of the power spectrum and are therefore computed numeri-

cally (the angle dependence is analytical, hence only the integration

with respect to k = |k| requires a numerical integration). They read

for j between 2 and 12

〈

ν ′Xj

〉

=

∫

d3
kPk(k)

3
∏

i=1

(−ıki)
αi (ık)−2p exp (ık · r)

∫

d3
kPk(k)

∫

d3
kPk(k)

3
∏

i=1

k2αi
i

, (E4)

where p = 1 only for j = 12 (because of Poisson equation) and

zero elsewhere and αi counts the number of derivatives with respect

to index i. Note that the mean density map around a saddle point

of fixed height and curvatures with no symmetry breaking (i.e not

imposing �1 < 0) is analytical and given by (Codis et al. 2015b)

〈

ν ′|S
〉

=
(λ1+λ2+λ3)

(〈

ν ′tr νij

〉

+ γ
〈

ν ′ν
〉)

1 − γ 2

+
ν
(〈

ν ′ν
〉

+ γ
〈

ν ′tr νij

〉)

1 − γ 2
+

45

4

(

r̂
T · H · r̂

)〈

ν ′(
r̂

T · H · r̂
)〉

,

where H is the detraced Hessian of the density and r̂ = r/r .

However, here the goal is to compute this mean map around an

arbitrary saddle (marginalizing over its height and curvatures) and

with symmetry breaking. To do so, a Monte Carlo technique is

implemented to compute the integrals of typically six dimensions

with MATHEMATICA.

The mean map marginalized over the direction perpendicular to

the filament is shown on the left-hand panel of Fig. 13. As expected,

a filamentary ridge is predicted along the λ1 direction with two nodes

at about three smoothing lengths from the saddle. In the direction

perpendicular to the filament, two voids are typically found on both

sides of the saddle. In addition, Fig. 13 also shows the mean density

in a plane perpendicular to the filament and containing the saddle

point. As expected the filament cross-section is squashed in the

direction of the wall (λ2). This squashing will depend on the peak

height and therefore on the mass of galaxies and haloes, namely the

rarer objects will display a more spherical cross-section and vice

versa. Note that for both plots, 10 million draws of the fields per

point are drawn from a Gaussian distribution conditioned to having

ν i = ν12 = ν13 = ν23 = 0. All configurations with positive �1

and wrong signs of the eigenvalues are thrown before computing

the mean density ν
′

in those configurations with weights λ1λ2λ3

(because of the ν i condition) times (λ1 − λ2)(λ2 − λ3)(λ1 − λ3)

(because of the ν12 = ν13 = ν23 condition).
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E2 Cosmic evolution of the dark matter maps

The above formalism is valid in the Gaussian initial conditions

and can in principle be extended perturbatively to the subsequent

weakly non-linear cosmic evolution. For the sake of simplicity, only

the mean non-linear evolution of the density distribution around a

saddle point of fixed geometry is described. Using a Gram–Charlier

expansion (Gay, Pichon & Pogosyan 2012) for the joint distribution

of the field and its derivative, the first non-Gaussian correction to

the mean density map is found to be

〈δ(r|S)〉 ∼ 〈δ(r|S)〉G + σ0

⎡

⎣

∑

ijk≤11

SijkHijk(r)

⎤

⎦ , (E5)

where higher order terms O(σ 2) are neglected. In equation (E5),

the Sijk ≡ 〈XiXjXk〉/σ coefficients generalize the so-called

S3 ≡ 〈δ3〉/〈δ2〉2 to expectations of cubic combinations of the field

ν = δ/σ 0 and the components of its gradients, νk, and its Hessian,

ν ij (rescaled by their respective variance) evaluated at the running

point r and at the saddle. In equation (E5), the function Hijk(r) only

involves known combinations of the Gaussian covariance matrix

Cij evaluated at separation r (so Hijk is independent of redshift).

Note importantly that at tree order, the Sijk also do not depend on

σ 0, so that the only (degenerate) dependence on cosmic time τ and

smoothing scale L (over which the saddle is defined) is through

σ 0(L, τ ) in front of the square bracket of equation (E5). For the

purpose of this paper, this equation therefore implies that gravita-

tional clustering will distort and enhance the contours of DM density

within the frame of the saddle, with a scaling proportional to σ 0.20

Here, the considered scale L can also be related to the typical mass,

M⋆ of the population considered so that the local clock becomes

σ (M⋆,redshift). Hence, equation (E5) simply predicts the observed

mass and redshift scalings of the main text. In practice, computing

the whole Sijk suite takes us beyond the scope of this paper and will

be investigated elsewhere.

Notwithstanding, as a first approximation, most of the effect is

simply due to the density boost ν = νS at the location of the saddle.

The corresponding non-Gaussian correction is simply given by σ 0

multiplied by

H2(νS)

2

ξ (r)

σ 2
0

(C12(r) − S3) , (E6)

with H2(x) = x2 − 1 the second Hermite polynomial, C12 =
〈

ρ2(x)ρ(x + r)
〉

c
/σ 2

0 ξ and again S3 =
〈

ρ3
〉

c
/σ 4

0 . Note that at tree

order in perturbation theory, in the large separation limit, C12(r) −
S3 → −34/21. For a saddle point 1σ above the mean, H2(νS) > 0,

which means that the non-linear evolution tend to sharpen the den-

sity profile around the saddles (given that the height of the saddle,

νS is fixed here), as one would have expected.

Alternatively, excursion set theory (Musso et al. 2018) allows

us to predict the typical mass distribution in the vicinity of a given

saddle point (with fixed geometry) and as was done in that paper, the

predicted profile can be displaced via a so-called Zel’dovich boost.

This is shown in Fig. E1, which corresponds to a cross section

through fig. 13 of Musso et al. (2018) where the length have been

rescaled by a factor α and the masses by a factor α3 to match the

smoothing scale used in this paper and to account for differences

arising from the use of a different filter (Gaussian versus Top-Hat).

Using the same approach, it is also possible to compute the expected

20As such, the thickening of filaments provides us with a cosmological

probe, though admittedly it might not be the most straightforward one!

Figure E1. Coloured contours: predicted cross-section of the halo mass

density after a Zel’dovich boost for a fixed geometry of the saddle in the

plane of the wall and filament (left-hand panel) and perpendicular to the

filament (right-hand panel). Dashed contours: the cross-section before the

boost.

Figure E2. Left-hand panel: DM longitudinal cross-section measurements

in HORIZON-AGN at redshift 0. Right-hand panel: same quantity at redshift

2. The corresponding prediction at high redshift is shown in Fig. 13 and the

agreement is fairly good.

accretion rate of the DM halo. One then recovers fig. 12 of Musso

et al. (2018) that is showing that the effect of the saddle point on

the accretion rate decreases as the mass of the halo decreases. In the

(simplistic) picture where DM accretion rate correlates with fresh

gas accretion and specific star formation, one then qualitatively

recovers the results of Fig. 6, where the effect of the cosmic web

onto the sSFR decreases with the stellar mass. Indeed, as these

two quantities (DM accretion rate and sSFR) only probe the recent

accretion history of the halo, they are sensitive to differential effects

induced by the saddle point which vanish at scales much smaller

than that of the filament.

In order to compare this Lagrangian prediction to simulations,

the mean total matter distribution was measured around saddles

in the HORIZON-AGN simulation. The low-redshift measurement is

shown on the left-hand panel of Fig. E2. Interestingly, the prediction

for Gaussian random fields recovers the qualitative picture found

in the HORIZON-AGN simulation in terms of the geometry of the

MNRAS 483, 3227–3254 (2019)
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Galaxies in the saddle frame of the cosmic web 3253

contours. As expected, the non-linear evolution (not captured by the

Gaussian prediction) further contracts the filaments which become

more concentrated. As one goes to higher redshifts (right-hand panel

of Fig. E2), the contours clearly become closer to the Gaussian

prediction.

APPENDIX F: K IN ETIC BU LK FLOW N EAR

SADDLE

Extending the result of Sousbie et al. (2008, which focused on DM),

let us quantify the geometry of the bulk galactic velocity flow in

the frame of the saddle. Fig. F1 displays the (normalized) velocity

field of galaxies in the frame of the saddle while tracking (left-hand

panel) or not (middle panel) the orientation of the saddle, and the

PDF of the velocity’s modulus and orientation (right-hand panel).

The velocities of the left-hand and middle panels are computed as

previously, i.e. as an average velocity for all galaxies in given 2D

bin and smoothed over 0.3 Mpc h−1. Note that no flipping with re-

spect to the z-axis is applied here. As expected, when the frame is

orientated towards the larger node (left-hand panel), the net flow is

directed towards that node throughout that frame. Interestingly, note

that the flow actually overshoots the peak of density in that frame,

which is in fact expected, in so far that the velocity should, at the

level of the Zel’dovich approximation, point towards the minimum

of the potential, whose peak is typically further away from the sad-

dle. When the orientation of the saddle is ignored (middle panel),

one recovers a ‘saddle-like’ geometry for the flow, i.e. the saddle

point locally repels the flow longitudinally but attracts it transver-

sally. The right-hand panel is consistent with fig. 6 of Sousbie et al.

(2008), but applies now to galaxies in HORIZON-AGN. The PDF

velocity orientation and moduli present a tail of high velocities (at

cos δ < 0), corresponding to galaxies converging transversally to-

wards filaments.

The geometry of the flow displayed in Fig. F1, together with the

distinct initial population distribution (and accretion history) for the

progenitor of high- and low-mass galaxies allow us to understand

their cosmic evolution presented in the main text. On top of this

passive advection, Section 6.5 argues that the tides of the saddle

may impact directly dark halo growth while shifting the conditional

mean and covariances of the accretion rate, and galactic V/σ or

sSFR while biasing spin (hence cold gas) acquisition.

APPENDIX G : STATIS TIC A L OR IGIN

O F R E S I D UA L S

Let us finally discuss the statistical basis of the procedure described

in the main text to study second-order effects beyond the mass

and density and capture the origin of these hidden variables. When

attempting to disentangle the specific role of tides from that of the

local density and/or that of the dark halo mass, we are facing a

statistical mediation problem (see e.g. Wright 1934; Sobel 1982;

Baron & Kenny 1986), in that we aim to determine if the tidal

tensor plays a specific role impacting the sSFR (or V/σ or age etc.)

which is not already encoded in other quantities such as density and

DM mass (which also vary away from the saddle, but typically with

different maps in that frame). For the sake of being concrete, let us

assume that the effect of the tides can be summed up by a scalar

field α (e.g. the squared sum of the difference of the eigenvalues of

the Tidal tensor, α =
∑

(λi − λj)
2, which quantifies the anisotropy

of the collapse, or the net flux of advected angular momentum,

etc.). Our purpose is to extract the map α(r) and check its structure

relative to the saddle.

G1 Conditional mediation

Let us motivate the procedure used in Section 6.5 while relying

on a statistical description of the random variables describing the

various fields at some given position away from the saddle. Let us

first assume for simplicity that the field X = (sSFR, δ ≡ log ρ, m ≡
log MDH, α) obeys a centred21 joint Gaussian statistics:

PDF(sSFR, δ, m, α)=
1

√
det(C0)

exp

(

−
1

2
X

T · C0
−1 · X

)

,

where C0 is the matrix of the covariance of the four fields, which

we will also assume for now to be position independent (but see

below). Note the change of variable to m and δ which are likely to

behave more like Gaussian variables than MDM and ρ.

Applying Bayes’ theorem, we can compute the conditional

PDF(sSFR|δ, m, α) = PDF(sSFR, δ, m, α)/PDF(δ, m, α), where

PDF(δ, m, α) is the marginal (after integration over sSFR). From

this conditional PDF, the expectation sSFR(r) ≡ 〈sSFR|δ, m, α, r〉
subject to the constraint of the three fields δ(r), m(r), and α(r)

reads

sSFR(r) =
(

〈sSFR δ〉, 〈sSFR m〉, 〈sSFR α〉
)

·

⎛

⎝

〈δ2〉 〈δm〉 〈δα〉
〈δm〉 〈m2〉 〈αm〉
〈δα〉 〈αm〉 〈α2〉

⎞

⎠

−1

·

⎛

⎝

δ(r)

m(r)

α(r)

⎞

⎠ ≡
∑

i>1

βiXi,

(G1)

so that the conditional sSFR(r) is simply a linear combination of the

three Xi maps, δ(r), m(r), and α(r) (with coefficients β i involving

the covariances).22 Let us now take the statistical expectation of this

equation at a given pixel. Subtracting the contribution of 〈δ(r)〉 and

〈m(r)〉 from the measured 〈sSFR(r)〉 (while using a linear fit to the

simulation to estimate the β i since we do not know a priori what

the covariances involving α might be23) and focusing on residuals

provides a position-dependent estimate of the field 〈α(r)〉. If its

amplitude is statistically significant, its geometry may tell us if it

is consistent with the nature of the mediating physical process, as

discussed in the main text.

If we relaxed the assumption of Gaussian statistics, the condi-

tionals derived from a Gram–Charlier expansion of the joint PDF

(Gay et al. 2012) would lead (to leading order in non Gaussianity)

to the mapping

sSFR(r) =
∑

i>1

βiXi +
∑

i,j>1

βijXiXj + · · · (G2)

where β i (respectively β ij) are functions of the second respectively,

second- and third-order cumulants of the fields (such as 〈δ2α〉 etc).

Once again we could subtract the (up to quadratic) fitted contribution

of 〈δ(r)〉 and 〈m(r)〉 from the measured 〈sSFR(r)〉 so as to fit the

manifold of the X samples. Unfortunately, in this non-linear regime,

the expectations would not compute any more, 〈XiXj〉 �= 〈Xi〉〈Xj〉
and the residuals will also involve terms such as 〈δα〉, 〈mα〉, or 〈α2〉.

In practice though, the extracted relationships expressed in terms

of δ = log ρ and m = log MDH do in fact look fairly linear, see

21The PDF is assumed to be centred on the mean value of the field averaged

over the whole map
22This relationship could have also been obtained by principal component

analysis in the extended X space: it would have led to the same sets of

covariances as linear coefficients.
23Note that for an explicit choice of α, we could have extracted the co-

variances entering equation (G1) from the simulation and estimated the β i

accordingly.
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3254 K. Kraljic et al.

Figure F1. Left-hand and middle panels: velocity vector of galaxies in the frame of the saddle for masses in the range 109– 1012 M⊙ at redshift zero, in the

longitudinal plane of the saddle, with the upward direction defined to be towards the node of highest density (left), and without imposing any condition on the

direction of the filament at the saddle (middle). The arrows represent the unitary velocity vector in the y − z plane, colour coded by the cosine of the angle

between this vector and the z−axis. Note that as the modulus of the velocity near the saddle point is low, the direction of the velocity vector is not very well

constrained there. Note also that the structure of the velocity field in the saddle frame is intrinsically complex due to the relative velocity of a saddle with

respect to the nodes. The grey contours represent the galaxy number counts. Right-hand panel: PDF of the velocity field of galaxies within the cosmic web as

a function of its modulus v, and the cosine of its angle δ with the closest filament. The excess of galaxies with cos δ close to unity shows that the bulk of the

population appears to be flowing along the filaments in the direction of nodes, i.e. the high-density regions.

e.g. the top panels of Fig. 16, which favours the assumption of

Gaussianity, as was assumed in the main text. We also checked

that relationships such as equation (G1) did not significantly vary

with position within the saddle frame (by marginalizing over sub-

regions within the frame). Finally, we used the median to extract

the β i coefficients, as it is a more robust estimator.

As a word of caution, it should nevertheless be stressed that

since we are aiming to extract a secondary effect (beyond mass

and density), the impact of departure from our assumptions may

prove to be of the same order as the sought signal. Eventually,

larger statistical samples may allow us to statistically disentangle

more robustly the various processes. Note finally that carrying out

the analysis at fixed stellar mass allows us to avoid the bimodality

of some physical parameters which would clearly have broken the

assumption of joint Gaussian statistics.

G2 Mediation of multiple causes

An alternative strategy to address the fact that more than one vari-

able impact V/σ (and/or sSFR, age etc.) is to sample over narrow

bins of stellar and dark halo mass, local density, and position r

within the frame of the cosmic web, and estimate the full joint PDF.

This is challenging for a sample of only 105 galaxies, hence can

only be applied to relatively large bins in practice. We attempted to

disentangle halo mass, density, and tidal effects by computing the

residuals of V/σ (and/or sSFR, age) from median halo mass map-

ping in a given stellar mass and density bin. We found comparable

residuals to those shown in Fig. 16. However, given the size of the

bins we use, we cannot draw any definitive conclusions here. Sim-

ulations with more statistics should be able to address this difficult

point in the future.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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B.3 “Dense gas formation and destruction in a simulated Perseus-like galaxy cluster

with spin-driven black hole feedback” (accepted in A&A)

One striking feature of nearby clusters is the extended filamentary Hα1 emission found at their
centre, yet their formation mechanism and the processes which shape their morphology remain
unclear. In this study, the effect of AGN feedback on the evolution of clumps, defined as contiguous
regions with ρ > 1mp cm

−3 and T < 106K is studied. It shows that the formation of clumps
is directly influenced by the AGN jet and that, for low black hole spin, the clumps are able to
reorient the spin axis (and hence the jet direction). The study makes use of the tracer particles
described in chapter 5, which are key to provide the Lagrangian history of the gas found in clumps.
In particular, they are used to estimate the condensation rate of gas into clumps by computing the
mass of tracer particles that entered each individual clump between two snapshots. It is found
that most of the condensation happens when clumps are falling in, although a small fraction of
the condensation happens for outflowing clumps. Two processes driving the fragmentation of
clumps into smaller structures are found. (1) AGN feedback events are able to break large clumps
into smaller ones, essentially by blowing out 3/4 of the gas. The surviving clumps are entrained
and are ejected from the cluster centre. (2) At the top of their ballistic trajectories, clumps also
fragment before the surviving ones fall back onto the cluster centre.

This study would have proven impossible with previous implementations of velocity-advected
tracers, as their distribution is particularly inaccurate in regions where condensation occur (they
gather in clump centres and stick there). In addition, the velocity-advected approach do not track
the conversion of baryons into stars which may form in the clumps. While they provide somehow
precise trajectories, velocity-advected tracers could not be used to compute e.g. condensation
rate, which require tracer particles to accurately reproduce the Eulerian distribution of the gas
and its time evolution (see Cadiou et al., 2019, chapter 5 for a discussion).

1Not to be confused with with cold filamentary accretion discussed in chapters 5 and 6.
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ABSTRACT

Context. Extended filamentary Hα emission nebulae are a striking feature of nearby galaxy clusters but the formation mechanism of
the filaments, and the processes which shape their morphology remain unclear.
Aims. We conduct an investigation into the formation, evolution and destruction of dense gas in the centre of a simulated, Perseus-like,
cluster under the influence of a spin-driven jet. The jet is powered by the supermassive black hole located in the cluster’s brightest
cluster galaxy. We particularly study the role played by condensation of dense gas from the diffuse intracluster medium, and the
impact of direct uplifting of existing dense gas by the jets, in determining the spatial distribution and kinematics of the dense gas.
Methods. We present a hydrodynamical simulation of an idealised Perseus-like cluster using the adaptive mesh refinement code ram-
ses. Our simulation includes a supermassive black hole (SMBH) that self-consistently tracks its spin evolution via its local accretion,
and in turn drives a large-scale jet whose direction is based on the black hole’s spin evolution. The simulation also includes a live dark
matter (DM) halo, a SMBH free to move in the DM potential, star formation and stellar feedback.
Results. We show that the formation and destruction of dense gas is closely linked to the SMBH’s feedback cycle, and that its
morphology is highly variable throughout the simulation. While extended filamentary structures readily condense from the hot intra-
cluster medium, they are easily shattered into an overly clumpy distribution of gas during their interaction with the jet driven outflows.
Condensation occurs predominantly onto infalling gas located 5 - 15 kpc from the centre during quiescent phases of the central AGN,
when the local ratio of the cooling time to free fall time falls below 20, i.e. when tcool/tff < 20.
Conclusions. We find evidence for both condensation and uplifting of dense gas, but caution that purely hydrodynamical simulations
struggle to effectively regulate the cluster cooling cycle and produce overly clumpy distributions of dense gas morphologies, compared
to observation.

Key words. Galaxies: clusters: intracluster medium – Galaxies: jets – Galaxies: clusters: general – Methods: numerical – Hydrody-
namics

1. Introduction

One of the most striking features of the nearby Perseus clus-
ter, NGC1275, is the extended filamentary Hα emission nebula
in its centre (Lynds 1970; Heckman et al. 1989; Crawford &
Fabian 1992; Conselice et al. 2001; Hatch et al. 2007; Fabian
et al. 2008). Harbouring up to 5 × 1010 M⊙ of cold gas (Salomé,
P. et al. 2006), this emission nebula has a filamentary morphol-
ogy, with individual filaments up to 40 kpc long and only 70
pc wide (Conselice et al. 2001; Fabian et al. 2016). Within the
extended, filamentary Hα emission, dense clumps of molecular
gas have been observed (Salomé, P. et al. 2006; Lim et al. 2012),
and some filaments show signs of star formation (Fabian et al.
2008; Canning et al. 2010, 2014). Larger observational samples
show that the Perseus cluster is not the only object to house such
Hα emission nebulae, with many massive galaxy clusters show-
ing similar features (Crawford & Fabian 1992; Heckman et al.
1989; McDonald et al. 2010, 2012; Olivares et al. 2019) in their
centre. Where does this gas come from, and what causes its char-
acteristic filamentary morphology?

⋆ ricarda.beckmann@iap.fr

Finding cold gas in cluster centres is not unexpected. As
cooling times in the intra-cluster medium (ICM) of massive
galaxy clusters are short, a massive cooling flow of the order of
100 − 1000 M⊙ yr−1 is expected to develop in the cluster centre
(Fabian 1994). However, observed star formation rates in clus-
ters are of the order of only 1-10% of the naive cooling rate in-
ferred from X-ray observations (McDonald et al. 2018). Clusters
must therefore contain a heating source which prevents over-
cooling and slows down star formation. Many clusters show evi-
dence for extended jets powered by active galactic nuclei (AGN),
which are inflating large cavities in the ICM whose power is suf-
ficient to offset cooling (McNamara & Nulsen 2007; Rafferty
et al. 2006; Fabian 2012). Via the self-regulation cycle, which
consists of cold gas feeding the AGN, which in turn powers a jet,
which then inflates cavities that heat the ICM, AGN are expected
to play a decisive role in determining the cooling and star forma-
tion properties of the cluster (see McNamara & Nulsen 2007;
Fabian 2012, for a review). This picture of self-regulation cycles
from AGN jets is getting increasing support from hydrodynami-
cal simulations both in an idealised (Cattaneo & Teyssier 2007;

Article number, page 1 of 18
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Gaspari et al. 2011; Li & Bryan 2014a) and in a cosmological
context (Dubois et al. 2010).

The cospatiality of the Hα emission nebula with the AGN
jets and bubbles suggests that the AGN might not only con-
trol global cooling properties of the cluster but also be more di-
rectly responsible for the morphology of the existing dense gas
(Salomé, P. et al. 2006; Russell et al. 2017; Vantyghem et al.
2017, 2018; McKinley et al. 2018; Tremblay et al. 2018). The of-
ten complex line-of-sight velocity field of the nebula in Perseus
also suggests that this gas is not merely free-falling, or rotation-
ally supported (McDonald et al. 2012; Gendron-Marsolais et al.
2018), but most likely interacts with the turbulence injected by
the AGN jets and buoyantly rising bubbles (Fabian et al. 2003;
Hatch et al. 2006; Revaz et al. 2008). However, with only line-of-
sight velocity information, the three-dimensional velocity pat-
tern of gas is difficult to ascertain.

Simulations by McCourt et al. (2012) and Sharma et al.
(2012) show that even for a globally thermally stable ICM (re-
quired to avoid overly strong cooling flows) dense gas can con-
dense out of the hot ICM via local thermal instabilities for suffi-
ciently low values of tcool/tff . Here, tcool is the local cooling time

tcool =
3
2

nkBT

neniΛ
, (1)

where ni, ne and n are the ion, electron and total number density
respectively, T is the temperature and Λ the cooling rate. The
free fall time is

tff =

(

2r

g

)
1
2

, (2)

where g is the local gravitational acceleration and r is the ra-
dius from the cluster centre. Condensation into multi-phase can
take place when locally tcool/tff < 1, but it is also observed for
larger values of the radial tcool/tff profile due to the turbulence
and inhomogeneities injected by uplifting hot gas from the clus-
ter centre via AGN driven feedback processes (Voit et al. 2017;
Voit 2018). It has been confirmed observationally that molecu-
lar gas is observed at the minima of tcool/tff profiles (Hogan et al.
2017; Pulido et al. 2018; Olivares et al. 2019), with some of these
authors stressing that only tcool determines condensation rates as
the growth of linear perturbations is largely independent of the
geometry of the gravitational potential (Choudhury & Sharma
2016).

Simulations show that the turbulence injected by AGN feed-
back can cause the local thermal instabilities predicted by Mc-
Court et al. (2012), but struggle to reproduce the observed mor-
phologies, with dense gas having either a very clumpy morphol-
ogy (Li & Bryan 2014b; Yang & Reynolds 2016a) or settling
into a massive central disk (Gaspari et al. 2012; Li & Bryan
2014a,b; Prasad et al. 2015). While the latter has is observed in
some clusters, such as in Hydra-A (Hamer et al. 2014; Olivares
et al. 2019), only a small central disk is observed in Perseus (Na-
gai et al. 2019). The dense gas morphology therefore seems to
sensitively trace the energy balanced in the ICM.

One feature of these clusters is that the cold gas is expected
to rain down on the AGN in a cold and chaotic fashion (Gaspari
et al. 2013; Voit & Donahue 2015; Voit et al. 2017), so the cold
gas accreted by the black hole is expected to lack coherent angu-
lar momentum, which in turn could lead to a reorientation of the
black hole spin axis over time. In this paper, we investigate the
impact of this chaotic dense accretion on the formation of further
gas by explicitly tracing the spin of the black hole, and using this
black hole spin axis as the axis for the AGN driven jet (Dubois

et al. 2014). In contrast to existing simulations, which rely on
a fixed jet axis with pre-defined precession within a narrow jet
cone (Li & Bryan 2014a; Yang & Reynolds 2016a; Ruszkowski
et al. 2017; Li et al. 2017; Prasad et al. 2018; Martizzi et al. 2019;
Wang et al. 2019), the spin driven approach used here is able to
inject turbulence over a larger volume of the cluster centre, and
to respond dynamically to the evolving dense gas morphology
throughout the simulation.

In this paper, we will investigate the formation and time evo-
lution of dense gas structures in a Perseus-like cluster under the
influence of a spin-driven jet, with a particular focus on clump
dynamics. The simulations are introduced in section 2. A general
overview of results is given in section 3.1, the jet evolution is
studied in Section 3.2 and the clump properties are investigated
in Section 3.3. A detailed look at the role of uplifting in clump
properties and dynamics is given in Section 3.4, and the impact
of condensation is studied in Section 3.5. A discussion of results
can be found in section 4, and conclusions are summarised in 5.

2. Simulation setup

This paper presents a set of hydrodynamical simulations of iso-
lated galaxy clusters, produced with the adaptive mesh refine-
ment code ramses (Teyssier 2002).

2.1. Technical details and refinement

For the simulations presented here, the Euler equations were
solved with the second order MUSCL-Hancock scheme, which
computes Godunov fluxes using an approximate HLLC Riemann
solver and a MinMod total variation diminishing scheme to re-
construct the interpolated variables. The Courant factor was set
to a value of 0.8.

The simulation was performed in box of size 8 Mpc with a
root grid of 643, and then adaptively refined to a maximum res-
olution of 120 pc. Refinement proceeded according to several
criteria. We used a quasi-Lagrangian criterion: when a cell con-
tains a mass greater than 3.5 × 109 M⊙, it was refined ( and it
was derefined if it contains less than 0.125 this). We also used
a Jeans-based criterion: a cell was refined until the local Jeans
length was > 4 times the cell size. To refine regions of interest
to this work, we also employed two additional refinement crite-
ria. First, the cell containing the BH was forced to be refined at
the maximum resolution. Second, a passive scalar variable was
injected by the BH jet with a mass density ρscalar equals to that
of the gas ρgas, which was advected with the gas and marked
regions affected by BH feedback. The scalar decayed exponen-
tially, with a decay time of tjet = 10 Myr to ensure that the scalar
traces only recent AGN feedback events. After testing different
decay times, we confirm that the results do not sensitively de-
pend on this value. To resolve the AGN bubbles, cells were al-
lowed to be further refined when the scalar fraction exceeded
ρscalar/ρgas > 10−4, equivalent to 92 Myr since the last feed-
back event, and its relative variation from one cell to another
exceeded 10−2. The latter two refinement criteria ensure that the
regions affected by AGN feedback, including the hot, low den-
sity bubbles which would de-refine under a purely Lagrangian
refinement scheme, remained maximally refined over a reason-
able duration of the jet propagation and mixing with hot ICM.
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2.2. Initial conditions

The initial conditions for dark matter (DM) and gas consisted of
a cored Navarro-Frenk-White profile:

ρDM = (1 − fgas)ρs
r3

s

(r + rcore)(r + rs)2
, (3)

where rs = r200/c is the scale radius, rcore = 20 kpc is the core
radius, ρs = ρcδ200 is the density scaling of the profile, with ρc

the critical density of the Universe. The rescaling factor δ200 =
200Ωm

3
c3

f (c) , where f (c) = ln(1+ c)− c/(1+ c), rescaled the profile
to the radius at which the average density of the profile is 200
times the mean density of the Universe. fgas is the gas fraction
of the halo, here taken to be 15 %. The halo had a concentration
parameter c = 6.8, and a virial velocity v200 = 1250 km s−1.

DM particles had a mass resolution of 3.7×108 M⊙ and were
distributed using the dice code (Perret et al. 2014). The profile
was truncated at a radius 2.2 Mpc, for a total DM halo mass of
3.4 × 1014 M⊙. DM particle were live and able to move under
gravity, allowing the DM potential to respond to the evolution of
the cluster core throughout the simulation.

Gas was initiated in hydrostatic equilibrium assuming a gas
fraction of 15 %, distributed according to the profile of the DM
(see Eq. 3), and then allowed to cool. As part of the initial con-
ditions, turbulence was injected into the gas with a velocity dis-
persion of 15 km s−1, but no rotation was added to the halo. This
small initial velocity dispersion in the hot gas serves to break the
symmetry of the initial conditions. Metallicity was initially set
to 0.3 Z⊙ throughout, and the BH sinkparticle was placed in the
centre of the halo. No stars were added as part of the initial con-
ditions. In order to avoid edge effects, the halo was placed in a
sufficiently large box (8 Mpc on a side), and initiated with a gas
density of 9.8×10−8 cm−3 outside of the truncation radius of the
halo.

2.3. Cooling

The metal-dependent cooling of the gas was followed using the
tabulated values of Sutherland & Dopita (1993) down to 104 K.
The cooling function was extended below 104 K with the fitting
functions from Rosen & Bregman (1995). Solar abundance ra-
tios of the elements were assumed throughout, independent of
the overall metallicity.

2.4. Star formation and stellar feedback

Star formation proceeded according to a combined density and
temperature criterion, with star formation permitted in cells with
hydrogen number density of nH > 1 H cm−3 and temperature
T < 104 K. The mass resolution of stars was nHmp∆x3/XH =

5.6 × 104 M⊙, where XH = 0.74 is the fractional abundance of
hydrogen. The star formation rate density proceeded according
to a Schmidt law ρ̇∗ = ǫ∗ρ/tff , where ρ is the gas density, tff is the
gas free-fall time, and ǫ∗ = 0.1 is the constant efficiency of star
formation.

Stellar feedback was included in the form of type II super-
novae only. We used the energy-momentum model of Kimm
et al. (2015) with each stellar particle releasing an energy of
e∗,SN = m∗ηSN1050 erg M−1

⊙ at once after 10 Myr, where ηSN =

0.2 corresponds to the mass fraction of the initial mass function
for stars ending up their life as type II supernovae, and m∗ is
the stellar particle mass. These explosions also enriched the gas
with metals with a constant yield of 0.1. Metals were treated as
a single species and were advected as a passive scalar.

2.5. Black hole accretion and feedback

AGN feedback from the central BH was followed using the
model from Dubois et al. (2010) with several modifications that
include the self-consistent evolution of the BH spin (Dubois et al.
2014) and the spin-dependent feedback efficiency (Dubois et al.,
in prep.).

A BH “sink” particle was placed at the centre of the halo as
part of the initial conditions, with a mass of 3.4 × 108 M⊙. The
BH was then free to move across the grid throughout the simula-
tion. To compensate for unresolved dynamical friction from the
stars within the host galaxy, an analytic drag force was applied
to the sink particle according to Pfister et al. (2019). We did not
model the equally unresolved gas drag explicitly as the difficulty
in measuring the relative velocity between the sink and the tur-
bulent ISM introduces too many numerical artifacts in the black
holes trajectory (see Beckmann et al. 2019). A particular worry
was the black hole getting attached to its own feedback and be-
ing ejected from the central galaxy, which we avoided here by
not using a sub-grid prescription for the gas drag.

The BH accreted according to the Bondi-Hoyle-Lyttleton ac-
cretion rate

ṀBHL =
G2M2

BH
ρ̄

(c̄s
2 + v̄2)3/2

, (4)

where ρ̄, c̄s and v̄ are the mass weighted local average density,
sound speed and relative velocity between the gas and the BH.
All quantities were measured within a sphere with radius 4∆xmin
centred on the instantaneous position of the BH, with the BH
free to move across the grid. ∆xmin is the size of the smallest
resolution element of the simulation. Accretion was not limited
to the Eddington accretion rate.

The AGN feedback was modelled with jets following the
injection method from Dubois et al. (2010). At each feedback
event, feedback energy

Ėfeed = ηMADṀBHLc2 (5)

(where c is the speed of light) was injected as kinetic energy
within all cells contained in a cylinder of radius 0.4 kpc and
height 0.8 kpc. The cylinders was aligned with the BH spin
axis. The efficiency ηMAD is a spin-dependent efficiency obtained
from magnetically arrested disc (MAD) simulations from McK-
inney et al. (2012), which has a minimum at a spin of 0, and a
maximum at a spin of 1. The BH spin-up rate is taken from the
same simulations. The AGN jet was always taken to be aligned
with the BH spin axis, and the conditions for BH-disc alignment
in misaligned grid-scale gas angular momentum (with that of
the BH spin) is obtained by Lense-Thirring considerations (see
Dubois et al. 2014, for details). As the spin-axis changes self-
consistently throughout the simulation, we did not need to add
any explicit precession to the jet, as it naturally arises from the
chaotic nature of the cold gas accretion onto the BH (Gaspari
et al. 2013), which regularly changes the BH spin direction over
time (see Section 3.2).

As mentioned in Section 2.1, a passive scalar of density
ρscalar = ρgas was injected within the feedback cylinder at each
feedback event, where ρgas is the gas density. This scalar then
decayed exponentially with a decay time of 10 Myr, allowing
cells recently affected by the AGN jet to be identified. There-
fore, with the AGN passive scalar quantity, one can define
an age for the gas that has been impacted by the AGN, with
tAGN = −10 ln (Yscalar) Myr, where Yscalar = ρscalar/ρgas.
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2.6. Tracer particles

To follow the dynamical history of gas in the simulation we
employ Monte-Carlo based tracer particles from Cadiou et al.
(2019). These tracer particles are a significant improvement over
classical “velocity”-based tracer particles, in particular in re-
gions with strongly converging flows such as cold gas condensa-
tion and gas collapsing under self-gravity. We set up 2 × 108

tracer particles, with each particle tracing a gas mass of 4 ×
105 M⊙. They were initially distributed according to the gas den-
sity profile in the initial conditions, out to a radius of 200 kpc.

3. Results

3.1. Cluster evolution

As can be seen in Fig. 1, which shows the gas density, tem-
perature, AGN age (see section 2.5) and the gas radial velocity
at various times, the gas in the cluster develops a multi-phase
structure with a complex morphology that evolves significantly
over the course of the simulation. The hot gas in the intra-cluster
medium, which has temperatures in the range 0.09 − 1131 keV
(106 − 1.3 × 1010 K), cools down and condensates into dense
clumps and filaments within the central 50 kpc of the cluster,
with an average temperature of the dense gas of 4.0 × 10−4 keV
(4.6 × 103 K). This dense gas falls towards the centre where it
feeds the central BH and thereby triggers the AGN jet, which, in
return, interacts with existing dense gas and stirs turbulence into
the hot gas, generating hot outflows with outflow velocities up
to 3.5 × 104 km s−1. As the radio jet is oriented along the SMBH
spin axis, which in turn is updated according to the chaotic cold
accretion onto the central BH (Gaspari et al. 2013; Voit et al.
2017), the jet continuously re-orients throughout the simulation
(see Section 3.2 for details). As a result, the shapes of the jet
relics indicated by the “AGN age” also change significantly over
time.

More quantitatively, Fig. 2 shows that gas begins to cool after
approximately 100 Myr, equivalent to the initial cooling time of
gas in the cluster centre as set by the initial conditions. Dense
gas, for the remainder of the analysis, is defined to be gas with a
maximum temperature of 106 K. By 139 Myr, the dense gas mass
first exceeds 109 M⊙, and the cluster enters a cyclic behaviour
where dense gas repeatedly builds up to a total mass in excess of
2 × 1010 M⊙ before being reduced to closer to 2 × 109 M⊙.

We have split the evolution of the cluster into two regimes us-
ing the total dense gas mass. A cooling dominated regime, when
the total dense gas mass of the cluster increases (marked with
a grey background in Fig. 2), and a heating dominated regime,
when the total dense gas mass of the cluster decreases. The
regime of the cluster is evaluated using the smoothed derivative
of the mass of dense gas Mgas,dense. The total dense gas mass in
the cluster can be reduced in a number of different ways: dense
gas can be consumed in star formation, accreted onto the BH or
destroyed via hot winds or shocks driven by AGN feedback.

AGN activity (see second panel of Fig. 2) is highest dur-
ing the heating-dominated phase, with maxima in dense gas fol-
lowed by maxima in AGN activity within 50 Myr or less. These
peaks in AGN activity destroy dense gas in the cluster, causing
the AGN to enter a low feedback state until the dense gas mass
has had time to build up again. Only a small fraction of the gas
is directly accreted by the SMBH, as can be seen by the fact that
the mass increase of the SMBH mass in the top panel of Fig. 2
is much smaller than the decrease in dense gas mass over the
equivalent period of time.

As can be seen in the bottom panel of Fig. 2, the star forma-
tion rate varies strongly over time, following the general trends
set by the total dense gas mass in the cluster. There are clear
bursts of star formation in the cooling dominated interval. This
suggests that a significant amount of the dense gas is directly
consumed by star formation. At peaks of up to 1000 M⊙yr−1, the
star formation rate of our simulated cluster is extremely high in
comparison to observations, which for equivalent mass clusters
report star formation rates in the range 1 − 100 M⊙ yr−1 (O’Dea
et al. 2008). The dense gas mass, by contrast, falls close to the
1010 − 1011 M⊙ observed in Perseus (Bridges & Irwin 1998; Sa-
lomé, P. et al. 2006; Mittal et al. 2015). The SFR might be so
elevated in comparison to observations because gas is cooling
too efficiently to start with, or because gas is being converted too
efficiently into stars once cooled. The latter is discussed further
in Sec. 4.1.

If gas in the cluster is cooling too efficiently, too much gas is
transitioning from the hot, diffuse phase to the dense phase. The
X-ray luminosity of the central 50 kpc of the simulated cluster
are in the range of 1.2 − 5.3 × 1045 erg s−1 , with the observed
values for Perseus of 1.26 × 1045 s−1 (Ebeling et al. 1996) at the
lower end of that range. While the initial conditions were cho-
sen to reproduce observed profiles, the emitted X-ray luminosity
increases due to the gas cooling in the cluster centre.

One limitation of the simulation presented here is the lack
of cosmological context, which means that heating due to turbu-
lence injected by large-scale phenomena, such as galaxy mergers
or anisotropic accretion, is absent. In addition, being purely hy-
drodynamical, the simulation disregards effects such as magnetic
fields and other non-thermal energy sources such as cosmic rays,
which could heat the gas and provide an extra pressure support
against collapse on small scales.

Currently, we rely on equilibrium cooling with an initially
uniform metallicity of 0.3 Z⊙ everywhere, based on observations
of the metallicity in the outskirts of Perseus by Werner et al.
(2013). By 1 Gyr, the volume weighted metallicity in the central
50 kpc of the hot ICM has risen to 0.36 Z⊙ due to stellar feed-
back. While this is higher than the initial value, it still falls below
the value of 0.6 observed by Schmidt et al. (2002). One possi-
bility is that equilibrium cooling assumed here over-estimates
the contribution of metal cooling at high temperatures. X-rays
emitted by the AGN could dissociate metals in high temperature
gas, reducing their contribution to cooling (Dubois et al. 2011;
Agertz et al. 2013).

If radiative transfer and non-equilibrium processes were in-
cluded, the hard X-rays emitted by the AGN would be able to
photo-ionize some important metal coolants further so that their
contribution to cooling is reduced (e.g. Gnedin & Hollon 2012;
Segers et al. 2017). As metal line cooling is the dominant cool-
ing channel for gas between 105 − 107 K, shutting down metal
cooling would hamper the transition of gas from the hot, dif-
fuse phase to the dense phase. To test this hypothesis, we ran a
simulation using a cooling function in which the metal cooling
function is modified by a kernel

fcool = exp















−
(

T
104 K

)10












, (6)

which effectively shuts off metal cooling for gas with tempera-
tures above T > 104 K. As can be seen in the bottom panel of
Fig. 2, while the initial cooling is delayed in comparison to the
fiducial simulation, SFRs remain high even with truncated metal
line cooling and the evolution of dense gas is qualitative indistin-
guishable between the two simulations. We therefore conclude
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Fig. 1: Projections of (from left to right) density, temperature, radial velocity and the time since a cell has been affected by AGN
feedback, tAGN, at five different points in time. Radial velocity and temperature are weighted by tAGN. Radial velocity is measured in
3D space with the SMBH at the origin, and negative velocities are inflowing. Contours are based on the plot of tAGN, and are drawn
at 10 (solid), 50 (dashed) and 200 (dotted) Myr. The location of the SMBH is marked by a white cross, and black contours in the
right hand column denote the outline of dense gas structures. The white dotted line lies along the instantaneous jet axis, which is
plotted to be exactly 10 kpc long in 3D space. The shorter it appears, the more it is aligned with the line of sight of the image (here
taken to be the z-axis of the box at all times).
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Fig. 2: Top panel: Time evolution of cluster properties includ-
ing stellar mass Mstar, BH mass MBH and gas mass Mgas. Middle
panel: AGN luminosity, X-ray luminosity of hot gas within 50
kpc of the cluster centre, and the dense mass again for compar-
ison. Bottom panel: SFR, as well as the dense gas mass again
for comparison, for both the fiducial simulation and for a com-
panion simulation without metal cooling for gas with T > 104

K (see text for details). Dense gas is defined to be gas with a
temperature at or below Tdense = 106 K, hot, diffuse gas with
a temperature above that. White and grey background colours
show the heating and cooling dominated regimes of the fiducial
simulation.

that metal line cooling is not the root cause of the over-cooling
reported here. It is more likely that the over-cooling occurs due
the absence of non-thermal energies from cosmic rays, which are
expected to be able to offset as much as 60 % of the thermal cool-
ing in a cluster environment (Pfrommer 2013; Jacob & Pfrom-
mer 2017a,b; Ruszkowski et al. 2017), while only contributing
on the percent level to the overall pressure (Reimer et al. 2004;
Brown et al. 2011). Due to the large reservoir of heat in cluster
outskirts, thermal conductivity in massive clusters can also be an
efficient process to bring balance back to the hot cooling gas in
the centre of clusters (Narayan & Medvedev 2001; Ruszkowski
& Oh 2010; Yang & Reynolds 2016b; Kannan et al. 2017). These
avenue of investigation will be explored in future work.

3.2. Jet evolution and turbulence in the cluster

One important difference between the work presented here, and
previous works on the subject (Li & Bryan 2014a,b; Yang &
Reynolds 2016a; Ruszkowski et al. 2017; Li et al. 2017; Cielo
et al. 2018; Martizzi et al. 2019; Wang et al. 2019) is that our jet
axis is not fixed throughout the simulation, nor do we add ex-
plicit precession. Instead, the spin evolution of the BH not only
determines the feedback energy but also, crucially, the direction
of the jet, as the jet axis is taken to be aligned with the BH spin
axis, and the BH spin axis is continuously updated according to
the angular momentum of accreted gas.
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Fig. 3: Spin evolution of the SMBH, showing the spin magnitude
(top panel), and the two angles defining the SMBH axis (second
+ third panel) and the angular momentum of the accreted gas
at that particular timestep (bottom two panels). The angles are
measured in the box frame, and are defined to be the same as in
polar coordinates, where θjet is measured in the x-y plane of the
box (shown in Fig. 1) and φjet is the angle with the z-axis (the
line of sight in Fig. 1). Angles are measured in the range 0 ≤ θ <
360◦ and 0 ≤ φ < 180◦. Discontinuous jumps from just below
the upper end of the range, to just above the lower end of the
range, or vice versa, are due to the cyclic nature of the coordinate
system. The top three panels show both the fiducial simulation,
and a second, identical simulation initiated with a higher spin
value. White and grey background colours show the heating and
cooling dominated regimes of the fiducial simulation.

Fig. 3 shows that the direction of the jet explores the full
parameter space of the simulation, repeatedly traversing the full
range of both polar and azimuthal angles (0 ≤ θjet < 360◦ and
0 ≤ φjet < 180◦). This is a consequence of the chaotic angular
momentum accreted by the SMBH. As can be seen in the bot-
tom two panels of Fig 3, the angular momentum of the accreted
gas varies extremely rapidly, both in θ and in φ, as clumps rain
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Fig. 4: Projection plots at t = 874.5 Myr, showing the central gas
disc in the cluster: Top row - density projections of the cluster
centre along two different lines of sight, Bottom left: composite
x-ray image, using the same x-ray bins as in Figure 5, Bottom
right: jetscalar weighted temperature projection. Contours mark
tAGN = 10 and 50 Myr (solid, dashed). The SMBH location is
marked by a black cross, and the jet direction is shown by a
white dotted line in the right hand panels only.

down on the BH from all directions. As the BH spin evolution
is a continuous measure, it varies more slowly than the angular
momentum of the accreted gas. The only time both the gas an-
gular momentum and the BH spin direction settle occurs in the
period t = 820−950 Myr, when both the BH spin and the angular
momentum have θ ≈ 90◦ and φ close to zero (the apparent large
gap in φ at this time is a feature of the coordinate system chosen.
φ = 2◦ to φ = 178◦ only represents a rotation of 4◦, as both 0◦

and 180◦ are aligned with the z-axis of the box). At this time a
rotating central gas disc forms around the SMBH, as can be seen
in Fig. 4,which drives jet bubbles out to more than 70 kpc from
the cluster centre. Dense clumps continue to exist at larger radii,
but are preferentially found outside the region recently affected
by AGN feedback (see solid grey contours on the image).

Our jets self-consistently produce a three-dimensional distri-
bution of fat feedback bubbles seen in Fig. 5, without the need
for adding an ad hoc precession or reorientation of the jet (as
done in e.g. Li & Bryan 2014a,b; Yang & Reynolds 2016a;
Ruszkowski et al. 2017; Li et al. 2017; Cielo et al. 2018; Martizzi
et al. 2019; Wang et al. 2019). Firstly, the jet reorientation due
to spin helps to self-regulate the cooling flow in clusters (Cielo
et al. 2018) by more uniformly redistributing the energy in the
hot gas as long as the reorientation is moderate (i.e. not too close
to mimicking isotropic energy input, see Gaspari et al. 2012).
Secondly, the reorienting jet has important consequences for the
distribution of turbulence in the cluster centre, as over time a
much larger volume is directly affected by the AGN jet. How-
ever, the bubbles shown here are less round and more broken
up than observed X-ray cavities in clusters. This is due to the
fact that in the absence of viscosity and magnetic fields, strong
Rayleigh-Taylor and Kelvin-Helmholtz instabilities at the bub-

ble surface break up bubbles prematurely and shorten their over-
all lifetime (Ogiya et al. 2018).

While we explicitly track the spin evolution of the BH, as
described in Section 2.5, the magnitude of the BH spin remains
small throughout, as can be seen in Fig. 3, with a maximum spin
parameter of 0.08. This is partially a consequence of the model
chosen, as the MAD jet model always preferentially reduces the
spin of the BH. This low spin value in turn has consequences
for the jet direction, as the jet axis is aligned with the BH spin
axis. Due to the low spin value of the BH, the chaotic angular
momentum of accreted gas (see bottom two panels of Fig. 3),
driven by the chaotic infall of the clumps, is able to significantly
realign the spin axis throughout the simulation.

As can be seen in Eq. 5, the feedback energy of the BH is
determined by the feedback efficiency ηMAD, which in turn is
determined by the BH spin. Due to the consistently low spin-
values, the simulation presented here has an average luminosity-
weighted feedback efficiency of only 0.046.

To test the consequences of a higher initial spin value of the
BH, we ran a companion simulation to our fiducial simulation.
The only difference between the two was that the companion
simulation had an initial SMBH spin value of 0.8. As can be
seen in the top panel of Fig. 3, the SMBH spin persistently de-
creases over the course of the simulation, until it converges with
the fiducial simulation after ∼ 500 Myr. While the spin is high,
the jet changes direction very slowly in comparison to the fidu-
cial simulation, as the high angular momentum of the rapidly
spinning BH makes reorientation more difficult. Once the spin
has dropped below 0.4, the jet direction changes more rapidly
and the two simulations become statistically indistinguishable.
The bubbles remain comparatively fat even in the absence of pre-
cession. This is due to the fact that our jets are very light and hot,
and therefore over-pressurized in comparison to the background
medium. While injected bimodally, the bubbles quickly expand
outwards into the surrounding medium. We note that the absence
of magnetic fields, whose wound-up helical structure along the
jet is expected to keep it confined over kpc scales (see Pudritz
et al. 2012, for a review), will have contributed to the fatness
of the bubbles. We therefore postpone a comparison between
bubble structures in a high spin and a low spin case to future,
magnetised simulations.

3.3. Dense gas structures

3.3.1. Quantifying clump morphology

As can be seen visually in Fig. 1, the dense gas in the cluster cen-
tre can be found in clumps of a wide range of sizes and shapes.
A clump is defined here to be a connected volume of space, for
which all cells have a minimum density of 1 H cm−3 and a maxi-
mum temperature of 106 K. All properties are measured by sum-
ming over all cells contained within a given clump. Tracer parti-
cles are associated with a particular clump if they are contained
within the clump volume at the point of measurement.

To quantify this parameter space, we measured the physical
extent of individual clumps using the following methodology:

1. Find the centre of mass for each clump by summing over all
cells contained within the clump, treating each cell as a point
mass located at the cell centre.

2. Calculate the clump’s mass-weighted reduced inertia tensor
using

Ii, j =
∑

n=1

mnxn,ixn, j

R2
n

(7)
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Fig. 5: Synthetic composite X-ray images of the cluster centre, with 0.3-1.2 keV in red, 1.2-2 keV in green and 2-7 keV in blue, to
match the image of Perseus in Fabian et al. (2006), towards the beginning, middle and end of the simulation. Each channel is scaled
to highlight fainter features. Each image is 100 kpc across.

by summing over all cells n contained within a clump, where
xn,i is the ith coordinate of the nth cell within the clump,
measured in the centre of mass frame of the clump. Rn is the
nths cells distance from said centre of mass, and mn is its gas
mass.

3. Calculate the physical extent of the major axis rmaj by finding
the largest distance between any two cell centres contained
within the clump. To this value, ∆xmin is added to extrapolate
from the cell centres to the cell edges contained within the
clumps.

4. Find the axis vectors and axis length ratios using the eigen-
values and eigenvectors of the inertia tensor from Eq. 7.

5. Calculate the median and minor axis length, rmed and rmin
respectively, using the axis length ratios from the previous
step, and the length of the major axis, rmaj.

6. Calculate the volume of the ellipse defined by the three axes:

Vellipse =
4
3
πrmajrmedrmin. (8)

7. Calculate the volume filling fraction fV , which is defined to
be the ratio of the volume defined by the axis vectors, Vellipse
in Eq. 8, and the sum of the cell volumes contained within
the clump:

fV =
Vellipse
∑

n
Vn

(9)

where Vn is the volume of the nth cell contained in the clump.
For solid, round clumps well described by an ellipse, fV will
have a value close to unity. For clumps with a complex mor-
phology, such as bent filaments and three-dimensional net-
works of filaments and clumps, the volume fraction will be
low as the axis vectors used to describe the ellipse mark the
total physical extent of the clump along a given axis vector in
3D space, and said ellipse will therefore contain many cells
outside the clump.

For further analysis, we split the population of clumps into
three categories depending on the length of their major axis rel-
ative to the mean major axis of the whole sample, r̄maj = 1.54
kpc, and the samples standard deviation σmaj = 1.42 kpc:

1. small clumps have a major axis rmaj < r̄maj = 1.54 kpc.
2. big clumps have a major axis length in the range r̄maj =

1.54 < rmaj < r̄maj + σmaj = 2.96 kpc.

3. filaments have rmaj > r̄maj + σmaj = 2.96 kpc.

Some example decompositions according to these criteria can be
seen in Fig. 6.

3.3.2. Clump properties

A variety of bulk clump properties versus axis length are shown
in Fig. 7, for the stacked sample of clumps of the whole simu-
lation. As can be seen in column (a), the distribution of major
axis lengths ranges from the resolution limit of the simulation to
very large, extended objects that have major axes of the order 10
kpc or more. The stacked sample shown here, which contains all
objects from all snapshots at all points in time of the simulation,
contains 37897 small clumps (87.4 %), 4283 big clumps (9.9 %)
and 1153 filaments (2.7 %).

As expected, smaller clumps contain less gas mass (Fig. 7,
column (b)), with a minimum gas mass for the current resolu-
tion of 5 × 105 M⊙, and an average value of 1.8 × 107 M⊙ for
small clumps and 1.1×108 M⊙ for large clumps. The population
of filaments is much more massive, with an average gas mass
of 2.5 × 109 M⊙. Structures with a mass above 109 M⊙ are all
classified as filamentary. This lower mass limit for gas clumps
is determined by the resolution. As we tested with a compan-
ion simulation, in which we reduced ∆xmin to 30 pc, i.e. a fac-
tor 4 smaller than in the fiducial simulation. With this improved
resolution, the gas structures fragment further into even smaller
clumps, with a new minimum mass of 2.2 × 103 M⊙, and a new
minimum axis length still approaching the resolution limit. This
suggests that the shattering into smaller structures is by no means
complete, and with even more resolution, the clumps would con-
tinue to break apart, as in the "cloudlet" model by McCourt et al.
(2018). However, larger, filamentary structures continued to ex-
ist even in the higher resolution simulation.

In terms of shape, smaller clumps have higher values of fV ,
so they are indeed much more compact (column (c), Fig 7). Val-
ues of fV > 1 can occur for compact objects when the axis length
for the median and minor axis are under-estimated in compari-
son to the true extent of the clump which happens mainly for
clumps with less than 20 cells. However, the volume of the el-
lipse used to fit the clump never exceeds that of the sum of the
cells contained in the clump by more than 40 %. More extended
objects have fV far below unity, which is an indicator of complex
morphology. The most clumpy filament produced in this simula-
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Fig. 7: Clump properties for the whole sample (bottom row) and split into the three structure categories (top two rows). From left to
right: clump gas mass Mgas, volume ratio fV , distance between the clump centre of mass and the cluster centre rcentre, bulk velocity
vr and gas velocity dispersion within the clump σgas,radial. The probability distributions φ in the top row is mass weighted, while the
one in the row below is unweighted.

tion still has fV < 0.7 so large clumpy structures do not form at
any point of the simulation.

Small and big clumps have a similar radial distribution (col-
umn (d), Fig. 7) and are preferentially found between 3− 10 kpc
from the cluster centre. Filaments, on the other hand, include
both a subsample found at large radii, and a sample of partic-
ularly extended structures in the cluster centre, an example of

which can be seen in the right hand panel of Fig. 6. This sug-
gests that gas structures merge into larger objects as they reach
the cluster centre, consistent with a model in which small struc-
tures rain down onto a central massive gas structure. This struc-
ture can take the form of a massive gas disk, as for example seen
in Li & Bryan (2014a) and briefly also in the simulation pre-
sented here (see Fig. 4), or in the form of an extended but not
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rotationally-supported object such as the one in the right hand
panel of Fig. 6, or the gas structures seen in the first, third and
fourth snapshot of Fig. 1.

In velocity space, all three populations are similarly dis-
tributed (column (e), Fig. 7), with no discernible difference in
the unweighted probability distribution of small and medium
clumps, as well as filaments. The mass-weighted distribution
in the top row shows that all three categories of structures are
preferentially infalling (i.e. have vr < 0). The time-stacked
sample of the simulation has an unweighted mean radial ve-
locity of 75 km s−1, with a full width half max of 198 km s−1,
where radial velocity is measured in 3D space with the SMBH
at the origin. Negative values denote gas falling towards the
SMBH. These values are comparable to observed bulk veloci-
ties of 100 km s−1 but are at the upper end of observed veloc-
ity widths of 100 − 218 km s−1 for molecular gas in Perseus
(Salomé, P. et al. 2008; Hitomi Collaboration 2016; Gendron-
Marsolais et al. 2018). By comparison, they fall easily within
the range of observed velocity widths for warm ionised gas in
massive clusters (Hamer et al. 2016). We note that, in contrast
to the observational values, the full width-half max calculated
here is calculated across the entire time-stacked sample, not just
along the line of sight. While the mean and dispersion values
show good agreement with observations, the sample of clumps
presented here has an overall larger velocity range than found in
cold-gas maps of nearby clusters, which report velocity values
across the map in the range of 350 km s−1 at most (Olivares et al.
2019; Gendron-Marsolais et al. 2018).

The velocity dispersion σgas,radial is defined to be the veloc-
ity dispersion of the radial velocities of all resolution elements
within an individual clump. It therefore quantifies the range of
velocities found within an individual object. Clumpy structures,
both small and big, have a low velocity dispersion (column (f),
Fig 7), i.e. a small range of radial velocities, with an average
value of just 90 km s−1. The bulk of the filaments, despite ma-
jor axis lengths of 10 kpc or more, have radial velocity disper-
sion of less than 200 km s−1 but there is a small population of
high-velocity dispersion objects with σgas > 200 km s−1, which
is preferentially populated by filaments: They make up 28 % of
the high dispersion objects versus only 2.7 % of the total sample.

Dynamically, the clumps are therefore a surprisingly uniform
population, despite more than 2 orders of magnitude in size dif-
ference, and more than 4 orders of magnitude in mass range. Gas
properties across all three populations are also similar, with a
temperature range of 10−106 K (the latter being the cut-off tem-
perature for the definition of a dense gas structure in this paper),
and densities in the range of 1− 105 H cm−3. The bulk of the gas
has a temperature around 104 K and a density of 10−103 H cm−3.
This is not to say that all objects have the same properties at a
given point in time, but that all types of objects can be found at
all points in phase space at some point throughout the simula-
tion.

The morphology and distribution of objects can vary strongly
on a 5 Myr timescale, as can be seen in Fig. 8. Overall, the
number of structures at all points in time is dominated by small
clumps, which are always the most abundant and make up
87.4 % of the time-integrated sample. During some parts of the
cooling-dominated phase, they also contain the bulk of the dense
gas mass, such as around 400 Myr and at 500−550 Myr. The rest
of the time, the bulk of dense gas mass can be found in filaments,
despite the fact that they only make up 2.7 % of the overall sam-
ple by number. Big clumps contain dense gas mass on the order
of that contained in the small clumps, but represent 9.9 % of the
total number of objects.
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Fig. 8: Time evolution of (from top to bottom) the number, total
dense gas mass, mean gas mass and mean distance to the cluster
centre for the three structure categories. In the bottom two pan-
els, solid lines show the mean and shaded regions the range from
the 10th to the 90th percentile of the distribution. The dashed
grey line in all plots shows the AGN luminosity for comparison.

From Fig. 8, strong bursts of AGN feedback are followed by
a strong increase in the number of small clumps, as well as an
equally strong drop in both the total mass of gas contained in fil-
aments (second panel) and the average mass of gas per filament
(third panel). At the same time, the average radial distance be-
tween the cluster centre and a clumps centre of mass increases
(bottom panel). While the bulk of clumps can usually be found
within the central 20 kpc of the cluster, strong AGN outbursts
produce clumps at much larger radii, up to 50 kpc from the lo-
cation of the cluster centre. This suggests a scenario where large
objects are being shattered into smaller clumps during their in-
teraction with strong AGN jets, and highlights the importance of
the AGN jet not just for slowing down cooling onto the cluster
centre but also for the morphology and kinematics of the exist-
ing dense gas structures. The details of this interaction will be
explored further in the next section.

3.4. Uplifting

Uplifting has been used to explain the unstructured velocity pro-
files observed in nearby clusters (Pulido et al. 2018; Gendron-
Marsolais et al. 2018). When talking about uplifting dense gas
in clusters, two different mechanisms need to be distinguished.
On the one hand, there is the entrainment of existing dense gas
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by the AGN driven outflows, which turns previously infalling
dense gas into outflowing dense gas, which will be discussed in
this section. Alternatively, outflowing dense gas could form via
condensation at large radii, when gas is uplifted from the cluster
centre by AGN jets, before being deposited at larger radii, where
local entropy conditions then allow gas to condense Voit et al.
(2017); Voit (2018).

The impact of one interaction between the AGN jet and
the dense gas in the cluster centre, namely the outburst at
320 − 400 Myr, is shown visually in Fig. 9: at t = 323 Myr
(top left), the dense gas is predominantly infalling and con-
tained in radially oriented filaments. At this point in time, the
filaments contain Mgas,filaments = 1.7 × 1010M⊙, i.e. 76 % of the
total dense gas mass, with an average gas mass per filament of
M̄gas,filaments = 1.47 × 108 M⊙. As the AGN outburst commences,
fed by this infalling dense gas (t = 338 − 356 Myr, middle and
top right panel), the filaments are broken into small and medium
size clumps, and their velocity turns from infalling to outflowing.
By 371 Myr (bottom left), gas is predominatly outflowing, and
the total mass budget of 8.8 × 1010 M⊙ is evenly split between
small clumps, medium clumps and filaments. The filaments that
continue to exist are much less massive, with an average mass of
just M̄gas,filaments = 4.2 × 107 M⊙.

By t = 388 Myr, the gas has reached its largest radial extent
for this episode and is beginning to fall back onto the cluster
centre in the form of a shower of small, distinct clumps. From
371.9 Myr to 388.5 Myr, the total gas only increases by 5 %,
from 8.8 × 1010 M⊙ to 9.3 × 1010 M⊙, but the total number of
objects triples as objects continue to break apart, from 244 at
371.9 Myr to 651 individual objects by 388.5 Myr. By this point,
small clumps dominate the population, as they represent 94 % of
objects and contain 64 % of the total gas mass, with a further
27 % contained in big clumps.

The timeseries of the number of different objects in the top
panel of Fig. 8 shows that this behaviour is generic for the cluster
presented here. Following a strong feedback outburst, the num-
ber of small objects spikes, while the total gas mass and the av-
erage mass per filament decrease strongly. At the same time, the
average distance for objects of all categories increases as they are
ejected from the cluster, with the outermost small clumps being
found as far as 40 kpc or more from the cluster centre.

Looking directly at the number of inflowing and outflowing
objects, as shown in Fig. 10, strong AGN feedback bursts are fol-
lowed by a spike in the number of outflowing objects, as larger,
filamentary structures are entrained and broken up by the hot
winds of AGN feedback and lifted to larger radii. As gas is evac-
uated from the cluster centre the AGN turns off. The entrained
clumps then decelerate under gravity and fall back onto the clus-
ter centre. During this process, they shatter into even smaller
components so the number of individual objects continues to in-
crease even after the AGN has become quiescent again. As the
small clumps fall back onto the cluster centre, they coalesce and
trigger another strong outburst of AGN feedback, which repeats
the cycle. The results presented in this paper are similar to work
by Yang & Reynolds (2016a), who presented evidence for ex-
isting dense gas to be redistributed by the AGN jet. Contrary to
their work, the dense gas in the simulations presented here is not
indestructible. In our simulations, only 25 % of the dense gas
survives its interaction with the hot jet. It gets entrained by the
AGN driven outflows and lifted to large radii. We note that, with
a temperature cut of 106 K, the gas discussed here is equivalent
to the ionised dense gas seen in observation, not to the molecular
gas. We expect that if we were able to adequately distinguish be-

tween ionised warm gas and molecular cold gas, the molecular
gas would be much more difficult to uplift by the AGN jet.

This is surprising in the context of work by Klein et al.
(1994), who showed that for adiabatic cold structures in hot
winds, the drag timescale tdrag ≈ χrclump/vwind is always longer
than the clump crushing timescale tcc ≈ χ1/2rclump/vwind, where
χ is the density contrast between wind and cold clump, rclump is
the clump radius and vwind is the relative velocity. It should there-
fore be impossible to accelerate cold clumps with a hot wind.
However, recent work by Gronke & Oh (2018) shows that ra-
diative cooling can replenish the cold clump mass from the hot
gas during uplifting and thereby dramatically increase the clump
lifetime. Under these assumptions, clumps with radii larger than
rclump > vwindtcool,mixing/χ, where tcool,mixing is the cooling time
in the mixing layer surrounding the cold clumps, should sur-
vive the uplifting process, as cooling from the hot to the cold
phase replenishes gas faster than cold gas from the clumps is
being evaporated. For the simulation presented here, the maxi-
mum outflow velocities in the vicinity of clumps is of the order
104 km s−1, the cooling time in the mixing layer around clumps is
of the order 0.1 Myr and the density contrast χ ≈ 104. Therefore,
clumps with a minimum value of rclump ≈ 1 pc should survive
their interaction with the hot wind, which is much smaller than
the smallest cell size of 120 pc. While poorly resolved clumps
most likely lack this mixing layer, and are therefore destroyed
during the jet interaction, well-resolved cold clouds would be
expected to survive their interaction with the hot outflows and
become entrained without being destroyed, as shown in Fig. 9.
These results are also in agreement with work by Armillotta et al.
(2017), who show that the bulk of cold gas in clouds with radii
above 250 pc survives being accelerated by a hot wind for 200
Myr. It is however likely that the 25 % of dense gas that survives
the interaction in our simulations is an overestimate, as work by
Sparre et al. (2019) showed that more highly resolved clouds
shatter more efficiently during their interaction with hot winds
and therefore have shorter overall lifetimes than less resolved
clouds.

In comparison to the observed velocity maps for Hα emitting
gas in Perseus by Gendron-Marsolais et al. (2018), the velocity
maps from our simulation (as shown in Fig. 9) are much more
coherent, with clumps either predominantly infalling or outflow-
ing in a given map. In this context we note that the maps in Fig.
9 show an unusual period for our cluster, i.e. the only AGN out-
burst during which the number of infalling clumps fall almost
to zero (see Fig. 10). This episode was chosen for analysis as
it illustrates uplifting by AGN feedback particularly cleanly. At
other points in time, dense gas can be observed to be inflowing
and outflowing at the same time in our simulation, due to the
directionality of the jet and the limited width of the jet cone.

It is also important to remember that the observed veloci-
ties are line-of-sight velocities, while Fig. 9 shows radial ve-
locities. As can be seen visually in Fig. 11, which shows both
radial velocities (top row) and line-of-sight velocities (bottom
row) for an inflowing dominated (left column), an outflow dom-
inated (middle panel) and a mixed (right column) point in time,
the line-of-sight velocities appear less ordered than the radial ve-
locities. The outflow or inflow dominated nature of the flow (left
or middle panels respectively) cannot easily be recovered from
line-of-sight velocity maps. This difficulty in distinguishing be-
tween flow patterns in the frame of the cluster, and line-of-sight
flow patterns, is even more obvious in Fig. 12, which shows the
radial velocity probability distributions for the three snapshots
in Fig. 11, as well as that for the three line-of-sight velocities
(here aligned with the x-axis, y-axis and z-axis of the box re-
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Fig. 9: (a) Visual time evolution of one episode of AGN feedback that starts around t = 350 Myr. Only the dense gas is plotted.
The colourmap shows the radial velocity of the gas, with negative values denoting infall, with the background colour set to grey for
clarity. The location of the BH is marked by a cross, and the contours show the extent of the AGN feedback bubbles produced by
the feedback event that starts at t = 323 Myr. (b) Time evolution of dense gas mass contained in the three categories over the same
period of time. Vertical grey lines mark the outputs shown in the top panel.

spectively). In all three cases, the line-of-sight velocities fail to
recover the radial velocity pattern and predict a more gaussian-
like pattern with a mean velocity close to zero. The Gaussian
distribution of line-of-sight velocities is expected for infalling or
outflowing gas distributed roughly spherically around the cluster
centre. The chaotic velocity patterns observed in nearby clusters
are therefore not necessarily evidence for the absence of coher-
ent radial flows of the gas.

3.5. Condensation

As first proposed in McCourt et al. (2012), and then shown in
idealised simulations by Sharma et al. (2012), dense gas can

form out of the hot ICM via local thermal instability, even if
the cluster is globally thermally stable. Condensation can happen
when locally, tcool/tff falls below 1, and is suppressed for higher
values. With sufficient uplifting of gas from the cluster centre,
condensation can occur for larger values of the radial tcool/tff pro-
file, up to the range of 10 − 30 (Voit et al. 2017; Voit 2018), as
also seen in observations (Hogan et al. 2017; Pulido et al. 2018;
Olivares et al. 2019).

In the simulation presented here, we used the tracer particles
to estimate the condensation rate of dense gas. As each tracer
particle has a unique identification number and traces 2×104 M⊙
of gas mass, the trajectories of tracer particles can be used to
track gas flows throughout the simulation. The total mass of
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Fig. 10: Time evolution of the total number of inflowing and
outflowing clumps. The AGN luminosity is shown as a dotted
line for comparison. The solid background highlights the event
shown in Fig. 9.

gas transferred from the hot, diffuse to dense phase between
two simulation outputs can be estimated by counting the number
of tracer particles that pass from the diffuse phase to the dense
phase between two simulation outputs. The condensation rate
Ṁcondensed is then found by dividing the newly condensed gas
mass Mcondensed by the time it took to assemble it.

As can be seen in the left hand panels of Fig. 13, our simula-
tion confirms that condensation primarily occurs when tcool/tff <
20. This is somewhat higher than prediction from idealised cool-
ing simulations (Sharma et al. 2012; McCourt et al. 2012), most
likely because the hot gas along the jet drives up the spherically
averaged cooling time, but in line with observed values (Hogan
et al. 2017; Olivares et al. 2019). Profiles of tcool/tff during the
cooling dominated phases, which produce the bulk of the con-
densation, are generally ordered, with a clear minimum around
10 kpc. During heating dominated phases, by contrast, profiles
show a much wider range of shapes as gas heated by the AGN
rises to large radii in the form of hot bubbles, which signifi-
cantly increase the cooling time both in the centre and at larger
radii. Some condensation continues during the heating domi-
nated phases, and while the condensation remains confined to
< 20 kpc from the cluster centres, the values of tcool/tff can be as
high as 50 even for actively cooling clusters. We postulate that
this continued condensation is due to the multiphase structure of
the ICM and the directionality of AGN feedback. Both tcool and
tff are calculated for the hot ICM only, and it takes even strong
AGN feedback bursts some time to reach large volume filling
factors and shut off condensation completely.

This hypothesis is confirmed by the condensation time-series
in Fig. 14, which shows that condensation is highest towards the
minimum of heating-dominated phases and falls to zero as the
AGN feedback continues of impact the ICM. Fig. 14 also shows
that at the end of cooling-dominated phases, condensation oc-
curs preferentially onto filamentary structures, but by the end of
heating-dominated phases and the beginning of the next cooling-
dominated phases, condensation occurs preferentially onto small
and big clumps, in line with the uplifting - shattering - reconden-
sation picture presented in Section 3.4.

As can be seen in Fig. 14, the total condensation rate of the
cluster varies with time, ranging from a minimum of 3 M⊙ yr−1

at the beginning of cooling dominated intervals to a maximum
of up to 1.8 × 103 M⊙ yr−1 towards the end of cooling domi-
nated phases. While the bulk of condensation takes place onto

filaments, smaller and big clumps dominate when condensation
rates are low. As discussed in the context of the clusters SFR in
Section 3.1, this condensation rate is high in comparison to the
observed condensation rate for Perseus, which is in the range of
50 − 100 M⊙ (Fabian 2012). In future work, we will explore if
this over-cooling occurs because of the omission of non-thermal
energies from cosmic rays in the work presented here, which
are expected to be able to offset as much as 60 % of the ther-
mal cooling in a cluster environment (Pfrommer 2013; Jacob &
Pfrommer 2017a,b; Ruszkowski et al. 2017).

While the areas of high condensation rate are confined to
the minima of the tcool/tff profiles, dense gas can be found over
a much wider range of radii (see righthand panels of Fig. 13),
and significant amounts of dense gas can also be observed dur-
ing heating-dominated times. This is due to the fact that existing
dense gas free-falls onto the cluster centre from its formation lo-
cation around 10 kpc, and is uplifted to larger radii due to its
interactions with AGN feedback. The location at which dense
gas is observed is therefore not a perfect proxy for where it is
formed, as the kinematics in active clusters are complex and sub-
ject to hysteresis.

This can be seen in more detail when comparing the radial
and velocity distributions for stacked samples of newly con-
densed gas (left panel) and dense gas (right panel) in Fig. 15.
While some amount of condensation occurs over the full pa-
rameter space of radii and velocities occupied by dense clumps,
the distribution in both radius and velocity is different for newly
condensed gas and dense gas in general. As shown in both the
mass distribution in Fig. 15, and in the probability distributions
in Fig. 16, dense gas is preferentially found at the cluster centre,
whereas condensation preferentially occurs at larger radii, with
a peak of the distribution at 10 kpc. In velocity space, both exist-
ing dense gas and new condensation are preferentially infalling,
but condensation has a broader distribution towards negative val-
ues, with a mean velocity at −155.6 km/s for condensation com-
pared to −104.3 km/s for dense gas. Overall, only 75.9 % of gas
is infalling, while 82.1 % of condensation occurs onto infalling
clumps. This means that while the bulk of newly condensed gas
is infalling, with an average condensation rate onto inflowing gas
of 2.56 M⊙ yr−1, there is also evidence for gas condensation onto
outflowing clumps, which have an average condensation rate of
1.05 M⊙ yr−1.

We therefore conclude that condensation occurs preferen-
tially onto infalling clumps within the radial range of 5 − 15
kpc, but approximately a fifth of all condensation occurs onto
outflowing gas.

4. Discussion

In this paper, we have studied the formation, evolution and de-
struction of dense gas in the centre of a Perseus-like cluster, un-
der the influence of a spin-driven AGN jet. We have particularly
focused on the role played by uplifting and condensation in the
kinematics and morphology of the dense gas.

4.1. Cooling and star formation

As reported in Section 3.1 and shown again in Fig. 17, the star
formation rate of the cluster (solid line) is much higher than ob-
served values for Perseus, such as for example the 71 M⊙ yr−1

measured by Mittal et al. (2015) (dotted line). As discussed in
Section 3.1, this could be due to an overly high cooling rate of
the gas, or because too much of the resulting dense gas is turned
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Fig. 11: Density weighted velocity projections of the dense gas at three different points in time. The top row shows the radial velocity
for each snapshot, the bottom row the corresponding line of sight velocity (here chosen to be the z-axis of the simulation box).
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Fig. 12: Distribution of resolution elements in radial velocity, and line of sight velocity along the x-axis, y-axis and z-axis of the
simulation box respectively, for the three snapshots in time shown in Fig. 11.

into stars. To compare the star formation efficiency of the cluster
with observation, Fig. 17 shows both the total dense gas conden-
sation rate Ṁcond from Fig. 14 and a naive cooling rate, defined
as

Ṁcool,naive =
Mgas(r < rcool)

tcool(rcool)
(10)

following McDonald et al. (2018), where Mgas(r < rcool) is the
total gas mass contained within the cooling radius rcool, which in
turn is defined to be the radius at which the cooling time profile,
tcool(r) = 3 Gyr.

As can be seen in Fig. 17, both the time series and the aver-
age value for Ṁcool,naive are a factor 2-4 higher than the observed
value, except during the disc-dominated stage between 850 - 950
Myr. By contrast, the dense gas condensation rate, Ṁcond shows
significant variablity but has a time-averaged value that is close
to the naive observed cooling rate. It is also noticeably lower
than the naive cooling rate, suggesting that reheating by the AGN
keeps the majority of cooling gas from cooling efficiently and
prevents it from condensating into dense gas.

Looking at the resulting star formation efficiencies (ǫcool,
bottom panel), the average value of ǫcool = SFR/Ṁcool,naive =
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sation rate is calculated.

0.19 ± 0.27 is only slightly higher than the ǫcool = 0.16 reported
by (McDonald et al. 2018), but the scatter on this value is large.
The error on ǫcool given here is equal to one standard deviation
of the distribution. Looking at the efficiency of converting dense
gas into stars, ǫcond = SFR/Ṁcond = 0.76 ± 1.37 means that the
majority of dense gas is turned into stars. This shows that de-
spite individual cold clumps loosing as much as 75% of their
mass during interactions with strong feedback episodes such as
the one shown in Fig. 9, only about a quarter of the total dense
gas is returned to the hot phase in this manner. Destroying dense
gas once it has condensed is therefore not an efficient mechanism
to regulate star formation in the cluster. Given the large variation
in ǫcond, the instantaneous SFR is not a reliable tracer of Ṁcond,
the cold gas formation rate of the cluster. It is possible that we
overestimate the star formation rate in dense gas, as we use a
comparatively simple density-based star formation recipe of the
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Fig. 15: Phase plot of the total condensation rate (left) and total
dense gas mass (right) over a range of radial positions and radial
velocities of the clumps. Data shown here is stacked over all
clumps at all snapshots of the simulation.

form ρ̇∗ = ǫ∗ρ/tff , which does not take the effects of small-scale
turbulence into account, and could therefore be too efficient for
the context shown here (Shi et al. 2011; Salomé et al. 2016).

Fig. 17 also shows that in general Ṁcool,naive >> Ṁcond, so
the vast majority of gas that cools out of the hot phase does not
reach the dense phase, and is instead reheated by the AGN be-
fore condensing fully. As already known from the classic cooling
flow problem and confirmed here more quantitatively, Ṁcool,naive
is therefore not a good tracer of the overall cooling budget of the
cluster as Ṁcond/Ṁcool,naive = 0.38 ± 0.27 on average, with the
error again denoting a standard deviation.
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show time averages. Dotted and Dashed-dotted lines show ob-
servational values for Perseus from Mittal et al. (2015).

4.2. Filament lifetimes

One notable result of our simulations is that extended gas struc-
tures form preferentially during comparatively AGN quiet times,
and are readily destroyed in the interaction with AGN feedback.
While this interaction between dense gas and AGN feedback is
one of the requirements for effective self-regulation of cooling in
the cluster, it also means that the lifetime of filaments is limited
by the length of AGN duty cycles. While as much as 25 % of the
dense gas mass survives the interaction with the hot, AGN driven
outflows, larger structures are broken into smaller structures in
the process. The result is a volume-filling distribution of small
clumps, which are at first outflowing and then fall back onto the

cluster centre. Such a clumpy morphology of the dense gas is not
supported by observations, which show more extended, filamen-
tary structures (Conselice et al. 2001; Fabian et al. 2006). Two
possible explanations come to mind.

One possibility is that the dense filaments are too readily de-
stroyed in our simulations. If physical processes not modelled
here, such as notably magnetic fields, could support the filaments
against fragmentation, they might survive their interaction with
the AGN jet and retain their extended morphology for longer.
This hypothesis is supported by work on the survival rate of iso-
lated clumps accelerated by hot, magnetised winds (Shin et al.
2008; McCourt et al. 2015; Xu & Lazarian 2018), which show
that magnetised winds draw spherical clouds out into extended,
filamentary structures instead of evaporating them or breaking
them into smaller clumps. From this point of view, we over-
estimate the fragmentation rate of dense filaments into the hot
ICM.

The other possibility is that we underestimate the ability of
AGN feedback to destroy dense clumps, for example by under-
resolving the mixing layers at the outer clump surface (Gronke &
Oh 2018), or simply due to lack of resolution to follow the frag-
mentation process to smaller scales. This hypothesis is supported
by our high-resolution companion simulation, which showed
that the fraction of dense gas that survives this particular up-
lifting event falls from 25 % at a resolution of ∆xmin = 120 pc to
19 % at a resolution of ∆xmin = 30 pc. The fact that the minimum
clump size remains at the resolution limit shows that this process
is by no means converged, and higher resolution would likely
lead to even smaller clumps and even lower dense gas survival
rates. This question has been investigated further by McCourt
et al. (2018), who report that for individual clouds accelerated
by a hot wind, even a sub-pc scale resolution is insufficient for
fragmentation to converge. Based on work by Armillotta et al.
(2017), the survival rates for small gas clumps in hot winds is
very low, which suggests that we would expect the gas currently
contained in our small, compact gas clumps to break into an even
large number of even smaller clumps until it evaporates entirely
and mixes back into the ICM. From this point of view, we are
under-estimating the fragmentation rate of small clumps, as well
as under-estimating the ability of the AGN to evaporate dense
gas.

4.3. The width of filaments

Throughout this paper, we have shown that extended dense gas
structures readily form in the cluster centre. While our filamen-
tary dense gas structures show maximal extents of 1-10 kpc, in
agreement with observations (Conselice et al. 2001), many of
our structures appear much wider than the observed 70 pc. Res-
olution will play a role in determining the width of the filaments,
particularly for very thin filaments which currently have a width
close to the resolution limit, such as the long, thing structures
seen in the left two panels of Fig. 6. A comparison simulation
with higher resolution of ∆xmin = 30 pc, run for only a span of
15 Myr, produced thinner filaments than the fiducial simulation
at 120 pc. However, many filaments seen in the fiducial simu-
lation, such as for example the extended structures in the right
hand panel of Fig. 6, are well resolved at the current resolution
and therefore not influenced by improvements in resolution.

One process not modelled here, which is thought to play an
important role in the morphology of filaments, is anisotropic
thermal conduction along magnetic field lines. In the presence
of anisotropic thermal conduction, in combination with mag-
netic fields, the characteristic thermal collapse length scale (the
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field length) becomes much larger along field lines than per-
pendicular to it (Field 1965), as thermal energy is preferentially
redistributed along field lines. Collapse therefore preferentially
occurs perpendicular to magnetic field lines, smearing spheri-
cal collapse out along magnetic field lines. Isolated simulations
have shown that in the presence of magnetic fields, local thermal
instabilities do indeed produce more extended filamentary gas
structures (McCourt et al. 2012; Ji et al. 2018; Xu & Lazarian
2018) compared to more clumpy dense gas for the purely hy-
drodynamical runs. While this process could help smear dense,
round clumps into long, extended filaments, it is unlikely to
make the existing filaments thinner. Understanding why the fil-
aments reported here take their particular shapes, and how their
morphology might change in the presence of magnetic fields and
cosmic rays, will be the subject of future work.

Another limitation of our work is that with many structures
shown here at the resolution limit of the simulation, it will be
impossible to resolve the detailed internal structure observed for
filaments, which consist of dense molecular clumps surrounded
by an H-α envelope (Salomé, P. et al. 2006; Salomé et al. 2011).
With a more complex internal structure and gas dynamics, we
would expect the energy balances of filaments to change, with
as of yet poorly understood consequences for their morphology.

5. Conclusions

In this paper, we have investigated the formation and evolution
of dense gas in the centre of a Perseus-like cluster under the in-
fluence of a spin driven AGN jet, using hydrodynamical simula-
tions.

We showed that:

1. Under the influence of the AGN jet, the cluster undergoes re-
peated cycles of cooling dominated phases, when dense gas
builds up in the cluster centre, and heating dominated phases,
when the total amount of dense gas decreases. Cycle lengths
are on the order of 100 Myr, but show significant variation.
(Section 3.1)

2. For low black hole spin values, the chaotic cold accretion
onto the cluster centre is able to continuously reorient the
spin axis, with characteristic reorientation timescales of the
order of 10 Myr, allowing the jet to sweep out the full param-
eter space in both polar and azimuthal angle. (Section 3.2)

3. The morphology of dense gas is highly variable throughout
the simulation, with between 20 and 620 individual dense
structures present at a given point in time. (Section 3.3)

4. Major axis lengths of individual clumps range from the reso-
lution limit of the simulation up to more than 30 kpc. Larger
clumps have more complex, filamentary morphologies than
smaller objects, which tend to be rounder and compacter.
(Section 3.3)

5. We find evidence for uplifting of existing dense gas by the
AGN, with dense gas defined to have a maximum temper-
ature of 106 K. During a strong feedback episode, larger,
infalling structures fragment into smaller clumps under the
influence of the hot outflows driven by the AGN. In the pro-
cess, they lose up to 75 % of their gas mass and become
entrained and ejected from the cluster centre. (Section 3.4)

6. Despite these high mass loss rates for individual clumps,
75.7 % of the total dense gas is turned into stars during the
course of the simulations. Despite individual clumps loos-
ing up to 75 % of their mass during interactions with AGN
jets, destruction of dense gas via AGN feedback is therefore
not an efficient channel to regulate star formation in clusters.
(Section 4.1)

7. A second round of fragmentation into even smaller clumps
occurs at the top of the ballistic orbit, before surviving
dense clumps fall back onto the cluster centre where they
re-coalesce into larger objects. (Section 3.4)

8. Condensation takes place preferentially when tcool/tff < 20,
which occurs primarily during cooling dominated phases of
the cluster, and in the radial range of 5−15 kpc. Heating dom-
inated phases see more disturbed profiles of tcool/tff without a
clear minimum as the ICM is heating by the AGN feedback.
(Section 3.5)

9. Dense gas continues to be observable even during heating-
dominated phases, and is preferentially found at smaller radii
than condensation, i.e. at r < 5 kpc, but can be found as far
out as 30 kpc due to uplifting. The presence of dense gas is
therefore not a reliable tracer for condensation. (Section 3.5)

10. While 82.1 % of condensation of gas from the hot ICM
onto dense clumps occurs on infall, there is also evidence
for continued condensation for outflowing gas, with out-
flowing dense clumps having an average condensation rate
of 1.06 M⊙ yr−1, compared to 2.56 M⊙ yr−1 for infalling
clumps. (Section 3.5)

11. Both direct uplifting of dense gas and condensation of gas
from the hot, diffuse to the dense phase in outflowing gas
has been invoked to explain the unstructured velocity maps
observed in nearby clusters. While we find evidence for both
mechanisms, and confirm a general lack of rotation in the
dense gas, we also caution that the observed line of sight ve-
locities fail to show coherent radial flow patterns even when
they are present in the dense gas (Section 3.4).

12. Neither the naive cooling rate Ṁcool,naive nor the SFR are re-
liable observational tracers of the cold gas formation rate
Ṁcond. (Section 4.1)
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Sujet : L’impact des grandes structures de l’Univers sur la formation des
halos de matière noire et des galaxies

Résumé : À grande échelle, il est frappant de voir que la distribution anisotrope de la matière forme
un large réseau de vides délimités par des murs qui, avec les filaments présents à leurs intersections,
tissent la toile cosmique. La matière qui doit former plus tard les halos de matière noire et leurs galaxies
afflue vers les nœuds compacts se situant à l’intersection des filaments et garde dans ce processus une
empreinte de la toile cosmique.
Dans cette thèse, je développe une extension contrainte de la théorie de l’excursion dans son approximation
dite “du franchissement vers le haut” pour prédire la masse, le taux d’accrétion et le temps de formation
des halos de matière noire au voisinage des proto-filaments (qui sont identifiés comme des points-selles du
potentiel). Les points-selles sont utilisés comme un référentiel local dans lequel l’évolution des propriétés
physiques et morphologiques des galaxies est quantifiée aux grandes échelles. À masse fixée, le modèle
prédit que le taux d’accrétion et le temps de formation varient avec l’orientation et la distance au point-
selle, confirmant que le biais d’assemblage est sensible aux forces de marées de la toile cosmique. Les halos
peu massifs, s’étant formés tôt et “affamés” sont regroupés le long de l’axe principal des filaments, tandis
que les halos plus massifs, plus jeunes sont répartis autour des nœuds. Les différents gradients observés
pour différentes quantités, tels que la masse typique et le taux d’accrétion, ont pour origine l’anisotropie
du point-selle et leur dépendance distincte aux moyennes et aux variances du champ. Pour les faibles
décalages vers le rouge, ce modèle prédit qu’à masse fixe il y a un excès de galaxies rouges dans des
directions préférentielles, comme l’ont montré des relevés spectroscopiques (GAMA) et photométriques
(COSMOS), mais aussi les simulations hydrodynamiques (Horizon-AGN).
J’ai également calculé les taux de fusions par analyse multi-échelle des conditions initiales pour prédire
l’assemblage anisotrope des halos et comprendre son impact sur la formation des galaxie. Outre les fusions
de halos, j’ai aussi pris en compte les fusions de murs et de filaments qui ont un effet sur l’accrétion
galactique et j’ai calculé leurs statistiques à un et deux points en fonction du temps cosmique. J’ai
établi le lien entre les taux de fusion et la connectivité. J’ai ensuite exploité ce lien pour estimer l’effet
des structures à grande échelle sur le biais d’assemblage. Cette théorie décrit l’anisotropie de la toile
cosmique, qui est un élément important pour décrire conjointement l’évolution de la physique et de
la dynamique des galaxies dans leur environnement, en particulier les alignements intrinsèques ou les
diversités morphologiques.
Afin d’étudier l’accrétion cosmique à de plus faibles échelles, j’ai implémenté une nouvelle méthode de
particules traceuses dans le code à raffinement de grille adaptatif Ramses. Cette méthode est basée sur un
échantillonnage de Monte-Carlo et est capable de reconstruire la trajectoire lagrangienne du gaz et son
retraitement. Je démontre que la distribution spatiale des particules traceuses reproduit précisément celle
du gaz, et je propose une extension capable de suivre tout le cycle des baryons dans leurs échanges avec
les étoiles et les trous noirs. Cette approche est particulièrement adaptée aux problèmes astrophysiques
qui requièrent simultanément d’avoir une résolution efficace des chocs avec un solveur de Godounov
et de suivre l’histoire lagrangienne des baryons. Je l’utilise ensuite dans plusieurs simulations zoomées
pour étudier l’acquisition du moment angulaire par les galaxies via leur accrétion bi-modale pour les
hauts décalages vers le rouge. J’y observe que l’amplitude et l’orientation du moment angulaire du gaz
froid sont conservées jusque dans le halo interne où le moment angulaire contribue à l’augmentation de
la rotation des galaxies. Les couples de pressions sont plus importants en amplitude mais, de par leur
turbulence, ils sont incohérents et sont dominés globalement par les couples gravitationnels. Les couples
de la matière noire dominent dans le halo externe, ceux des étoiles dominent dans le disque.

Mots clés : galaxies – matière noire – toile cosmique – cosmologie – accrétion anisotrope



Subject : The impact of the large scale structures of the Universe on dark
matter halo and galaxy formation

Abstract: The strikingly anisotropic large-scale distribution of matter is made of an extended network
of voids delimited by sheets, with filaments at their intersection which together form the cosmic web.
Matter that will later form dark matter halos and their galaxies flows towards compact nodes at filaments’
intersections and in the process, retains the imprint of the cosmic web.
In this thesis, I predict the mass, accretion rate, and formation time of dark matter halos near proto-
filaments (identified as saddle points of the potential) using a conditional version of the excursion set
theory in its so-called up-crossing approximation. The (filament-type) saddle points provides a local
frame in which to quantify the induced physical and morphological evolution of statistical properties
of galaxies on large scales. The model predicts that at fixed mass, mass accretion rate and formation
time vary with orientation and distance from the saddle, demonstrating that assembly bias is indeed
susceptible to the tides imposed by the cosmic web. Starved, early-forming halos of smaller mass lie
preferentially along the main axis of filaments, while more massive and younger halos are found closer to
the nodes. Distinct gradients for distinct quantities such as typical mass and accretion rate occur because
the saddle condition is anisotropic, and because the statistics of these observables depend on both the
means and their covariances. The signature of this model corresponds at low redshift to an excess of
reddened galaxies at fixed mass along preferred directions, as recently reported in spectroscopic (GAMA)
and photometric (COSMOS) surveys and in hydrodynamical simulations (Horizon-AGN).
I also compute the rate of merger events in the multi-scale initial conditions to forecast special events
driving the anisotropic assembly of dark matter halos and understand their impact on galaxy formation.
Beyond halo mergers, I consider all sets of mergers, including wall and filament mergers, as they impact
the geometry of galactic infall. Their one- and two-points statistics are computed as a function of cosmic
time. I establish the relation between merger rates and connectivity, which is then used to assess the
impact the large scale structures on assembly bias. The anisotropy of the cosmic web, as encoded in
this theory, is a significant ingredient to describe jointly the physics and dynamics of galaxies in their
environment, e.g. in the context of intrinsic alignments or morphological diversity.
In order to explore the impact of cosmic infall on smaller scales I implemented a novel tracer particles
algorithm in the Eulerian adaptive mesh refinement code Ramses. The tracer particles are based on a
Monte Carlo approach and keep tracks of where fluid elements originate, so as to follow their Lagrangian
trajectories and re-processing history. I show that they reproduce the gas distribution very accurately
and I extend them to also trace the stars and black holes through the full cycle of baryons. These tracer
particles are ideal to study complex astrophysical systems where both the efficiency of shock-capturing
Godunov schemes and a Lagrangian follow-up of the fluid are required simultaneously, in particular
in cold flows. Thanks to this accurate tracer particle algorithm, the acquisition and loss of angular
momentum of both cold and hot accretion flows onto galaxies at high redshift can be studied reliably. I
find that the amplitude and orientation of the specific angular momentum of the cold gas is preserved
down to the inner halo where the angular momentum contributes to the spin-up of galaxies, while for
the hot gas it is lost at larger radii. Pressure torques, stronger in magnitude than gravitational torques
are, however, spatially incoherent, which leads them to have no significant impact on the redistribution
of angular momentum of the accretion flows. Gravitational torques, which dominate globally, are the
main driver of the loss of angular momentum of the accretion flows in those halos, with dark matter
gravitational torques dominating in the outer halo and stellar gravitational torques dominating in the
disk.

Keywords : galaxy – dark matter – cosmic web – cosmology – anisotropic accretion
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