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Abstract

While our representation of the world is shaped by our perceptions, our languages, and our inter-
actions, they have traditionally been distinct fields of study in machine learning. Fortunately, this
partitioning started opening up with the recent advents of deep learning methods, which standardized
raw feature extraction across communities. However, multimodal neural architectures are still at their
beginning, and deep reinforcement learning is often limited to constrained environments. Yet, we
ideally aim to develop large-scale multimodal and interactive models towards correctly apprehending
the complexity of the world. As a first milestone, this thesis focuses on visually grounded language
learning for three reasons (i) they are both well-studied modalities across different scientific fields (ii)
it builds upon deep learning breakthroughs in natural language processing and computer vision (ii) the
interplay between language and vision has been acknowledged in cognitive science. More precisely,
we first designed the GuessWhat?! game for assessing visually grounded language understanding
of the models: two players collaborate to locate a hidden object in an image by asking a sequence
of questions. We then introduce modulation as a novel deep multimodal mechanism, and we show
that it successfully fuses visual and linguistic representations by taking advantage of the hierarchical
structure of neural networks. Finally, we investigate how reinforcement learning can support visually
grounded language learning and cement the underlying multimodal representation. We show that
such interactive learning leads to consistent language strategies but gives raise to new research issues.

Résumé

Alors que nous nous représentons le monde au travers de nos sens, de notre langage et de nos interac-
tions, chacun de ces domaines a été historiquement étudié de manière indépendante en apprentissage
automatique. Heureusement, ce cloisonnement tend à se défaire grâce aux dernières avancées en ap-
prentissage profond, ce qui a conduit à l’uniformisation de l’extraction des données au travers des
communautés. Cependant, les architectures neuronales multimodales n’en sont qu’à leurs premiers
balbutiements et l’apprentissage par renforcement profond est encore souvent restreint à des environ-
nements limités. Idéalement, nous aimerions pourtant développer des modèles multimodaux et inter-
actifs afin qu’ils puissent correctement appréhender la complexité du monde réel. Dans cet objectif,
cette thèse s’attache à la compréhension du langage combiné à la vision pour trois raisons : (i) ce sont
deux modalités longuement étudiées aux travers des différentes communautés scientifiques (ii) nous
pouvons bénéficier des dernières avancées en apprentissage profond pour les modèles de langues et
de vision (iii) l’interaction entre l’apprentissage du langage et notre perception a été validé en science
cognitives. Ainsi, nous avons conçu le jeu GuessWhat?! (KéZaKo) afin d’évaluer la compréhension
de langue combiné à la vision de nos modèles : deux joueurs doivent ainsi localiser un objet caché
dans une image en posant une série de questions. Nous introduisons ensuite le principe de modula-
tion comme un nouveau module d’apprentissage profond multimodal. Nous montrons qu’une telle
approche permet de fusionner efficacement des représentations visuelles et langagières en prenant en
compte la structure hiérarchique propre aux réseaux de neurones. Enfin, nous explorons comment
l’apprentissage par renforcement permet l’apprentissage de la langue et cimente l’apprentissage des
représentations multimodales sous-jacentes. Nous montrons qu’un tel apprentissage interactif conduit
à des stratégies langagières valides mais donne lieu à de nouvelles problématiques de recherche.
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Introduction
Today, artificial systems are neither conscious nor dreaming of electrical sheep, but we expect them to
understand their environment and consistently interact with it. Machine understanding thus became
an acceptable compromise between the ancient dream of general artificial intelligence and industrial
requirements; besides, recent deep learning successes seem like machine understanding are within
research reach. Within a few years, we witnessed dramatic improvements over notoriously hard visual
and linguistic challenges: object classification now matches human performances (Russakovsky et al.,
2015) and fake news articles can be written from scratch (Radford et al., 2019). Unfortunately, the
reality may be a bit more complex; as warned before the second Artificial Intelligence (AI) winter:
"It is perilously easy to conclude that, because one has a program which works (in some sense),
its representation of its knowledge must be more or less correct (in some sense)." (Hayes, 1985).
Albeit unarguable accomplishments, deep networks may be facing this pitfall: error artifacts suggest
that state-of-the-art models still lack a form of understanding and are no more than advanced but
foolish automatons. Despite distinguishing hundreds of dog breeds, image classifiers can be fooled
by altering a few pixels (Goodfellow et al., 2015); conversational agents may write a story about
unicorns, but they can contradict themselves within a few sentences (Gao et al., 2019), revealing the
agent understanding trickery.

A recurrent hypothesis is that models are conceived over a restricted representation of the world,
and therefore cannot grasp its underlying complexity: "if we really want computers to understand us,
we need to give them the ability to use more knowledge." Winograd (1971). When training agents
over unimodal datasets or task-specific scenarios, the models may catch conceptual shortcuts and
could fail to grasp high-level concepts that are required to develop abstract reasoning. In practice,
neural networks are indeed reported to excel at exploiting cognitive bias and spurious correlations,
like using image background to discriminate objects (Ribeiro et al., 2016) or indifferently answer-
ing questions after identifying keywords (Agrawal et al., 2016). The initial hypothesis is further
supported by the so-called embodiment theory from cognitive science, which claims that our reason-
ing, language, and thoughts are inextricably shaped by our perception and actions (Barsalou, 2008;
Gibbs Jr, 2005; Wilson and Foglia, 2011). When specifically dealing with language modeling, Har-
nad (1990) identified the symbol grounding problem, showing that pure linguistic models are always
be inherently limited in their language understanding. This symbol grounding problem states that it
is merely impossible to capture the meaning of a word if it is only defined by other words. As those
words also need to be defined, it eventually results in circular and meaningless definitions. There-
fore, a minimum subset of words has to be grounded by external experiences and representations to
initiate language understanding. Following this idea, we here pursue the joint objective of developing
multimodal models to ground concepts, and interactive agents to structure their representation.

Yet, the AI community has mostly been scattered into solving domain-specific tasks due to com-
putational constraints or divergent research paradigms; each community has been working in partial
isolation on unimodal problems such as vision, language or planning, with domain-specific solutions
such as image feature descriptors, or computational grammar. Even recent deep learning break-



2 Contents

throughs have not entirely escaped this path as models are still trained on large unimodal datasets
specific to each community (Krizhevsky et al., 2012; Sordoni et al., 2015). Nonetheless, deep learn-
ing greatly reduced the gap between communities by partially unifying learning methods and feature
representations, and it revives the opportunity for learning from multiple perceptions. Furthermore,
the neural hierarchical architecture offers new freedom to structure and process multimodal knowl-
edge representations. Concurrently, reinforcement learning has matured toward learning original and
complex policies from experience, paving the way for developing large scale and interactive agents.

In this manuscript, we investigate the necessary deep learning machinery to learn consistent mul-
timodal representation and to cement it through interactions with reinforcement learning methods.
More precisely, we concentrate our efforts on visually grounded language tasks as those two modal-
ities provide the necessary components to assess our research hypotheses. On the cognitive side,
language is inherently interactive, and perception is a natural modality to start tackling the symbol
grounding problem (Mooney, 2008). On the technical side, we can build upon deep learning break-
throughs in natural language processing and computer vision. As detailed below, we decompose our
research work into two steps. First, we contribute towards developing new multimodal architectures
for visually grounded language tasks. Second, we extend reinforcement learning algorithms to natural
language, and we assess whether interactive agents manage to ground language to visual cues.

When starting the thesis, perception and language just emerged as a fertile ground to study multi-
modal neural architecture (Malinowski, 2017; Strub et al., 2017a). Within a few years, we witnessed
a surge toward visually grounded language tasks ranging from image captioning (Lin et al., 2014),
visual question answering (Antol et al., 2015) to text-driven image generation (El-Nouby et al., 2018).
This bloom came in pair with novel neural blocks to jointly process textual and visual information.
However, the multimodal paradigm was to fuse the visual and language modalities at the last stages
of neural processing (Wu et al., 2017). In this thesis, we argue that this late-stage aggregation fails
to grasp the full complexity that entangles the modalities together, allowing for conceptual shortcuts
at the early processing stages of neural networks. We here formalize the so-called neural modulation
mechanism to take advantage of the deep and hierarchical nature of networks by interleaving sensory
inputs at the different processing levels. We study whether this change of design paradigm allows
for more comprehensive multimodal representations to emerge, to which we hope to be one of the
cornerstones of the symbol grounding problem.

Although those neural design efforts are necessary, deep networks are solely trainable receptacles,
and merely enhancing their machinery is meaningless without the proper training signals. Until now,
supervised learning has been the dominant training paradigm for language models (Devlin et al.,
2018; Kiros et al., 2015). We argue that such approaches may miss the interactive component in
which language acquisition often takes place. Therefore, we explore whether reinforcement learning
is a suitable framework for training natural language models in the second part of the thesis. We
investigate whether the agent learns to consistently manipulate perceptual language by interacting on
top of visual features, bridging the gap between multimodal and interactive learning.

In summary, we explore two original research directions towards tackling the symbol grounding
problem: (i) how can we improve multimodal learning representation by interleaving visual and lan-
guage cues over the full neural pipeline (ii) how can we take advantage of reinforcement learning to
cement this multimodal representation to acquire language understanding. To that purpose, we first
design an interactive visual and linguistic game, namely GuessWhat?!, as a testbed for our experi-
ments. We then focus on visually grounded language understanding by introducing the modulation
paradigm for multimodal architectures. Finally, we shift towards visually grounded language genera-
tion by casting the natural language acquisition problem into a reinforcement learning problem.

2
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Thesis Outline

Technical background and state-of-the-art descriptions are developed in Chapters 1, 2 and 3. It in-
cludes work that have been published up to May 2019. The first chapter deals with machine learning
techniques including basic supervised learning techniques, an overview of deep learning methods and
reinforcement learning concepts. The second chapter shift towards domain-specific methods and his-
tory, iteratively examining computer vision, natural language processing. In each section, the thesis
motivations are further developed with examples and evidences from other communities. The third
chapter deals with multimodal learning, and provides a brief survey of visually grounded language
tasks, methods and datasets.

This thesis begins by introducing the GuessWhat?! dataset in Chapter 4, describing the game
rules, the dataset collection and statistics before establishing the task baselines. The GuessWhat?!
game is then used as a recurrent benchmark throughout the thesis to evaluate the core difficulties of
multimodal and interactive learning. Hence, GuessWhat?! helped to diagnose some of the weak-
nesses of previous state-of-the-art methods on visual and language understanding.

Chapters 5, 6 and 7 introduce the concept of feature modulation for deep neural networks and as-
sess this new conditioning mechanism on visually grounded language understanding tasks. In Chap-
ter 5, we first highlight the limitations of the dominant multimodal network architectures which fuse
modalities at the uppermost neural processing layers. We then propose to deviate from this archi-
tecture paradigm by conditioning the entire visual processing pipeline by language, and show the
benefits of this original approach. In Chapter 6, we analyze further the machinery behind modulation
by using a synthetic dataset for visual reasoning; we also propose a simple but scalable and efficient
modulation layer. Finally, we refine further this modulation layer and demonstrate its ability to work
on large scale and natural inputs in Chapter 7.

Afterward, we explore how reinforcement learning may benefit visually grounded language gen-
eration in Chapter 8. We thus cast the GuessWhat?! game into a reinforcement learning problem, and
train the agents in an interactive fashion, examining how their language and strategy may evolve by
learning thought interaction.

The thesis finishes with a discussion of the future potential directions for both multimodal learning
and interactive language learning considering our research observations. We briefly mention new
leads for diagnosis tasks and potentially promising research area to adjoin towards improving machine
understanding.

3
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Contributions

The major thesis contributions can be summarized as follow:

• The collection of the first large-scale visually grounded dialogue dataset to assess visual under-
standing and language generation in an interactive manner.

• The formalization, analysis and spread of modulation mechanism for deep multimodal learning
with the development of three specific neural modules.

• The first proof of concept that reinforcement learning can be used to train an agent to gener-
ate natural language and this method can outperform supervised learning approach in a goal-
oriented dialogue setting

• The consolidation of the visually grounded language community by organizing multiple topic-
related workshops

These contributions were performed in collaborations with other researchers. As it often goes
with research, no-one can fully claim the full ownership of these contributions. Having said that, I
tried to roughly approximate my day to-day involvement over published papers in Appendix A to not
claim some of the work of my co-authors. However, I have always performed and/or reproduce all
the experiments in this manuscript, and the chapters are updated version of the research papers.
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No Ph.D. students have the same perspective while writing their manuscript. No readers have
the same expectation while reading a Ph.D. thesis. In this cacophony, it may be worth to explicit my
objectives to manage expectations. Thus, please let me introduce the four core directives I had while
writing this state-of-the-art section.

First of all, I wanted the state-of-the-art section to be self-contained. My goal was to allow new
Ph.D. students to quickly (and hopefully) build upon the work we have been doing over the past
four years. I assumed that the reader has only some rudimentary machine learning knowledge, and
I decided to define basic concepts before digging deeper into the literature. The experienced reader
may thus easily skip the first sections to target more advanced topics directly.

Secondly, the state-of-the-art section aims to give a global overview of various topics, drawing a
link between them. It does not aim at providing a complete overview of each subject with a compre-
hensive review of the underlying works. My research topic lead me to cover many themes, exploring
deep learning, reinforcement learning, computer vision, natural language processing, multimodal
learning and dialogue systems. It is impossible to cover all these topics in details without writing an
extensively long state of the art section. As a result, I focused on the main component of each domain
area, cherry-picking the tools and intuitions that I have been using along with my work. Thus, I did
not write a survey on a specific subset of tasks and algorithms. However, I have always been pointing
out the curious reader to complete studies or books when necessary.

I emphasized the historical and philosophical aspect of machine learning in each chapter. Al-
though I have mostly been studying deep learning models, it is always healthy to remember the
thought and motivation of our predecessors. First, it gives an understanding of the current state of
the art. Then, it reminds us that most of our ideas are far from being new; in several cases, it oc-
curs that we are barely rediscovering some old ideas by using new (but more powerful) tools. On
the other hand, some "obvious" contemporary ideas (e.g., embodiment theory) result of decades of
debate. Finally, checking old works help us to avoid the pitfall that equally bright people faced in the
past.

The state-of-the-art section includes numerous references to cognitive science. Although it is
imperative to not blindly copy human behaviour for designing machine learning models, it has been
a constant source of inspiration for the development of AI. More generally, a change of paradigm
in cognitive science has often led to a modification of machine learning methods in the upcoming
decades. The resurgence of empiricism favoured the abandon of expert systems towards statistical
approaches, and I believe that the same change is happening with the embodiment theory and the
success of deep learning. Again, one must be extremely careful while extrapolating cognitive science
conclusions to machine learning, yet, it would be a waste to not benefit from the reflection of the other
communities.

I now hope that my writing directions are aligned with your reading expectations. More con-
cretely, the first chapter covers statistical learning approaches including machine learning basics,
deep learning, and reinforcement learning techniques. This section is mostly technical, and the expe-
rienced reader can easily skip it. The second chapter explores the computer vision and natural lan-
guage processing before investigating why and how both research topics can benefit from each other.
Each section starts with an historical perspective, followed by the study of deep learning models,
and it ends with a discussion for future research directions supported by philosophical and cognitive
arguments.

I now wish you a pleasant reading!
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Technical Background

«PRINT "Hello World!" END »

Language basics of BASIC language
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A commonly accepted definition of machine learning was introduced by Mitchell (1997) as fol-
lows:

“A computer program is said to learn from an experience E with respect to some class of
tasks T and performance measure P , if its performance at tasks in T , as measured by P ,
improves with experience E.”
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Today, this definition mostly refers to statistical models which are updated by computing statistics
from observed data (Bishop, 2006; Manning et al., 1999; Mitchell, 1997); it is worth noticing that
it also includes other approaches such as dynamic expert systems (Hayes-Roth, 1985; Robinson,
1965) that update a set of rules from experience or case-based reasoning (Aamodt and Plaza, 1994)
that were developed in the past. Statistical machine learning is broadly divided into three sub-tasks,
where experience E is composed of input data and a potential extra signal. Supervised learning
composed with input data with target labels to replicate, and it is briefly summarized in Sec. 1.1.1.
Reinforcement learning maximizes (or minimizes) the sum of qualitative signals over a sequence of
inputs data, and it is discussed in Sec. 1.3. Finally, unsupervised learning learns to directly extract
patterns from the raw input data without explicit supervision, but it is not explored in this manuscript.

1.1 Supervised Learning

1.1.1 Definition

Supervised learning consists in learning a function that maps an input to a label from annotated data.
Formally, given a dataset D = [xn, tn]Nn=1 = [X, t] composed of N samples, where each sample is a
tuple whose first element xn ∈ X is the input data, and the second element is the label/target output
tn ∈ T , the goal is to find the function f∗ : X → T that minimizes the risk defined by the loss (or
error) function Loss : X × T → R through an optimization procedure.

f∗ = arg min
f

E[Loss(f(X), t)], (1.1)

= arg min
f

1
N

N∑
n=1

Loss(f(xn), tn). (1.2)

When the target is qualitative (e.g., classifying image), it is a classification problem. When the
objective is quantitative (e.g., predicting an income), it is a regression problem. A common regression
loss is the Mean Square Error (MSE) where the goal is to find the function f that minimizes the
quadratic error between the predicted output f(x) and the target as follows:

LossMSE = (f(xn)− tn)2. (1.3)

In a classification problem, f defines a probability distribution over C classes, and it is common
to minimize the Cross-Entropy (CE) error:

LossCE = −
C∑
c=1

1t=c[log(fc(xn))]. (1.4)

Until now, we have not specified any constraint on the function f . In practice, the model can
either be parametric or non-parametric. Parametric functions assume that the function f is solely
characterized by a finite set of parameters θ, independently of the size of the dataset, such as linear
functions, neural networks or Gaussian processes, etc. (Bishop, 2006; Russell and Norvig, 2009). In
parallel, non-parametric functions do not make strong assumptions about the form of the mapping
function f such as kernel methods or trees, etc. (Bishop, 2006; Mitchell, 1997). In theory, non-
parametric functions are more flexible but they may be slower to learn, and they generally scale with
the number of data points.

12
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1.1.2 Generalization and Training Procedure

The goal of statistical learning is to train a model to perform accurate prediction on new data. This
objective is called generalization. In supervised learning, a model is trained on a training dataset
before its generalization abilities are assessed on a test dataset with new samples. This protocol
requires both datasets to be disjoint and drawn from a similar distribution (Bishop, 2006; Goodfellow
et al., 2016; Mitchell, 1997).

At training time, the same loss is computed on the two datasets. Whenever the gap between the
training loss and the testing loss becomes too important, it is a symptom of overfitting. It means
that the model is over-specializing on the training data while losing its generalization abilities. Over-
fitting may arise because of lack of data, over-parametrization of a model, noisy labelling and other
reasons. Several methods can be used to reduce over-fitting such as increasing the size of the dataset
or using regularization methods as explored in Sec 1.2.3 for deep learning.

In many cases, overfitting cannot be entirely avoided; it is then crucial to stop the training process
before the model is losing too much generalization abilities. One approach, called early stopping,
consists in using a third validation dataset drawn from the initial data distribution. At training time,
both the training and validation losses are computed. When the validation loss starts to increase,
the training is stopped, and the test loss is calculated and reported. Therefore, it allows detecting
overfitting symptoms to stop the training procedure while save-guarding the final evaluation protocol.

1.1.3 Linear Regression

Linear regression is the standard parametric method to perform supervised learning. Despite its
simplicity, it is still a well-spread method as it both scales and performs well on real-world prob-
lems (Agarwal et al., 2014). A linear model is a linear combination of a fixed function of the input
data. Formally, it is defined by a set of M + 1 parameters θ = [θ]Mm=0, and a set of arbitrary basis
functions φ = [φ]Mm=0 where φ0(x) = 1 such as:

fθ(x) = θ0 +
M∑
m=1

θmφm(x) = θtφ(x). (1.5)

Classic basis functions include the identity function, polynomials function e.g. φm(x) = xm,

spline functions e.g. φm(x) = e−
(x−νm)2

2σm , where νm and σm are hyperparameters (Bishop, 2006).
The linear model can easily be extended to match high dimensional multiple outputs t by writing the
parameters θ as a matrix Θ. Finally, θ0 is often called the bias parameter as it does not depend on the
input x.

Then, a linear regression consists in finding the optimal set of parameters θ∗ such as:

fθ∗ = arg min
θ

1
N

N∑
n=1

E(fθ(xn), tn). (1.6)

When the dataset N is not too big, the optimal parameters θ can be computed by using a least-
square methods:

θ∗ =
(
φ(X)tφ(X)

)−1
φ(X)tt. (1.7)

13
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WhenN increases, it becomes intractable to directly compute the inverted matrixφ(X)tφ(X)
)−1,

and other optimization techniques has been developed. For instance, Broyden-Fletcher-Goldfarb-
Shanno (BFGS) (and its variants) iteratively approximates the inverted matrix by using gradient eval-
uations (Liu and Nocedal, 1989). Stochastic Gradient Descent (SGD) reduces the computational
burden further by randomly drawing samples from the dataset (x, t) ∼ D to estimate update the
model parameters until a convergence criterion is reached (Bottou, 2010). A learning rate η is de-
fined to regulate the speed of convergence and the convergence is guaranteed if

∑∞
h=1 η = ∞ and∑∞

h=1 η
2 <∞.

θh+1 = θh − η∇Loss(fθh(x), t), (1.8)

= θh − η∇(θh tφ(x)− t)2, (1.9)

= θh − 2ηθh(θh tφ(x)− t), (1.10)

where h is the training step. Finally, a linear regression can be turned into a logistic regression by
turning the output into a probability distribution. It thus requires using the adequate training loss e.g.
cross-entropy and to add a final non-linearity to the output e.g. σ(x) = 1

1+ex for binary classification
or softmax(x)c = exc∑C

c′=1 e
xc′

where x ∈ RC for multi-class classification.

1.1.4 Feed-Forward Networks

Unfortunately, linear (and logistic) regressions are inherently limited as they require the input data
to be linearly separable tasks to perform well in classification tasks. However, raw input information
(e.g., image pixels) can be too entangled to directly perform a linear combination to solve the task
at hand. As a result, raw data must be pre-processed to extract key input features before training
the algorithm. This operation may require careful engineering and domain expertise which severely
limits the practical applicability of linear methods (LeCun et al., 2015).

A successful approach to alleviate this limitation is to allow the basis functions to be adap-
tive (Bishop et al., 1995; Goodfellow et al., 2016). In other words, the basis functions are learned
at training time while trying to solve the task, allowing to disentangle the data without expert super-
vision. Following this intuition, Feed-forward Neural Networks or Multi-Layer Perceptron (MLP)
consists in building a stack of K parametrized basis functions [φk]Kk=1 where each basis function is
itself a linear combination of the inputs followed by a non-linearity as defined as follows:

fθ(x) = gK
(
ΘKφK(x) + bK

)
, (1.11)

where

φ(k)(x) = σk−1(Θk−1φk−1(x) + bk−1) and φ(1)(x) = x, (1.12)

where Θ1, . . . ,ΘK are the weight matrices, b1, . . . , bk are the bias vectors, and g(k)(.) are non-
linear functions, also called activation functions. Classic hidden activation functions are the sig-
moid, the hyperbolic tangent tanh(x) = ex−e−x

ex+e−x and the Rectified Linear Unit (ReLU) ReLU(x) =
max(0, x) (Nair and Hinton, 2010). A more intuitive formalization of neural networks is to de-
fine them as a stack of K layers where each layer lk(x) is the composition of an affine transform
ak = Θkx+ bk followed by a non-linearity σk:

14
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    Forward        Backward     

activation
function
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neurons

Figure 1.1: Illustration of the forward and backward pass in neural networks. In the forward pass, the neurons
compute the weighed sum of the input. In the backward pass, the neurons compute the weighted sum of the
backpropagated errors.

lk(x) = gk(Θkx+ bk), (1.13)

and the full stack of layers is the composition of each of the layers:

fθ(x) = lK ◦ lK−1 · · · ◦ l1(x), (1.14)

where the ◦ is the function composition operator. Similar to linear regression, neural networks
are trained with SGD (LeCun et al., 1998b),

θh+1 = θh − η∇E(fθh(x), t), (1.15)

where E is the error/loss function, θ is the concatenation of all weight matrices and bias vectors
of the MLP. However, the hierarchical nature of neural networks has two significant consequences.
First, the training loss becomes non-convex; thus, SGD is not guaranteed to converge to the optimal
solution. Second, the computation of the gradient is not straightforward and requires using the chain
rule to be computed. This operation is also known as the error backpropagation in the neural network
literature (Rumelhart et al., 1985) and it is illustrated in Fig 1.1. Backpropagation is decomposed into
two passes: the forward pass consists in evaluating the network output from the input layers l1(.) to
the uppermost layers lK(.) using Eq. 1.14; the backward pass computes the gradient error at each
layer in a recurrent fashion, from the uppermost layer lK(.) to the input layer l1(.). Formally, given
a stack of two layers parametrized by a weight matrix Θk ∈ RI×J and Θk+1 ∈ RJ×H (we include
the bias into the matrices as in Eq. 1.5) and the inner neuron activation, ak = Θkgk−1(ak−1), the
backward pass estimates the gradient weight errors ∂E

∂θki,j
with the chain rule as follows:

∂E

∂θki,j
= ∂E

∂akj

∂akj
∂θki,j

, (1.16)

where,

∂akj
∂θki,j

= ∂(Θkgk−1(ak−1))
∂θki,j

= gk−1(ak−1)i, (1.17)

and,

15
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∂E

∂akj
=

H∑
h=0

∂E

∂ak+1
h

∂ak+1
h

∂akj
, (1.18)

=
H∑
h=0

∂E

∂ak+1
h

∂(Θk+1gk(ak))
∂akj

, (1.19)

= ∇gk(ak)j
H∑
h=0

θk+1
j,h

∂E

∂ak+1
h

. (1.20)

We here observe the key recursion between ∂E
∂akj

and the activation error of the upper layer ∂E
∂ak+1
h

,

which is the actual backpropagated error in the backward pass. We compute the first recursion term
∂E
∂aK

by estimating the gradient of the loss function according to the final output. For instance, given
the sample pair (x, t), and no final activation such as fθ(x) = aK , the MSE initializes the backprop-
agated error with ∂E

∂aK
= 2(aK − t). Finally, we obtain the weight error by combining Eq. 1.17 and

Eq. 1.20 as follows:

∂E

∂θki,j
= gk−1(ak−1)i∇gk(ak)j

H∑
h=0

θk+1
j,h

∂E

∂ak+1
h

. (1.21)

Note that equation Eq 1.21 encourages using the non-linear activation function whose gradients
are easy to compute, e.g. ∇ tanh(x) = 1 − tanh2(x). As stated before, the neural weights are
updated with SGD according Eq. 1.15 once the error is computed. A classic trick is to accumulate the
error over a mini-batch of samples to reduce the number of gradient updates (LeCun et al., 1998b).

From a theoretical point of view, neural networks are powerful but cursed models. Neural net-
works are universal approximator, which means that a sufficiently large MLP can approximate any
function, given that it has enough capacity, i.e., that it has enough parameters (Cybenko, 1989; Hornik
et al., 1989). However, there exists no optimization methods that guarantees to minimize the training
loss of a neural network. In practice, SGD can be stuck in local minima, diverge, or the backpropa-
gated error can be ill-distributed along the network, leading to vanishing/exploding gradients (Glorot
and Bengio, 2010). In the next section, we explore the different methods that have been developed
over the past twenty years to train neural networks successfully.

1.2 Deep Learning Background

In the previous section, we briefly introduced statistical learning basics, linear regression, and feed-
forward neural networks. In conclusion, we observed that neural networks are powerful function ap-
proximators, but this ability comes at a cost: there is no training procedure that mathematically guar-
antees the convergence of a neural network to an optimal solution. On the other hand, recent empirical
successes demonstrated the viability of neural networks to tackle large scale problems (Krizhevsky
et al., 2012; LeCun et al., 1998a, 2015; Silver et al., 2017b; Sutskever et al., 2014; Tesauro, 1995;
Van den Oord et al., 2016a; Vinyals et al., 2015b). Nowadays, the methods dealing with neural net-
works, e.g. optimizer, architecture, training tricks, are gathered under the name of Deep Learning
(DL).

Several factors lead to the recent success of deep learning models. For instance, the develop-
ment of fast Graphics Processing Units (GPUs) (Raina et al., 2009) alongside with their specialized
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1.2. Deep Learning Background 17

Figure 1.2: LeNet5 is a typical example of ConvNets relying on convolution layers. The figure is imported
from the original LeNet5 paper (LeCun et al., 1998a)

drivers (Chetlur et al., 2014) sped-up the training of large neural networks by several order of mag-
nitudes compared to classic Central Processing Units (CPUs). In parallel, the democratization of
internet in the ’00s granted access to a nearly infinite pool of data that was latter used to train deep
networks (Lowe et al., 2015; Ordonez et al., 2011; Russakovsky et al., 2015). Finally, the development
of auto-differential tools greatly alleviates the burden of implementing new complex neural architec-
tures (Abadi et al., 2016; Bergstra et al., 2010; Collobert et al., 2002; Jia et al., 2014; Paszke et al.,
2017). Consequently, deep learning somehow drifts away from pure statistical modelling to empirical
research; instead of looking for convergence guarantees or error/sample bounds, deep learning re-
search have developed new neural blocks to stack, improved training procedures or designed original
experimental protocol to analyze the network behaviors. Unsurprisingly, this manuscript is anchored
within this new empirical paradigm!

Although providing an extensive overview of deep learning methods is beyond the scope of this
chapter, we explore here the deep learning tools that are used along with this thesis. For further
details, we encourage the reader to prospect the deep learning book (Goodfellow et al., 2016), and
to explore (Bishop et al., 1995) to better grasp the methodology evolution of neural networks within
two decades. In the following, we first describe the fundamental deep learning architectural blocks.
We then explore some deep learning training tools such as regularization or successful optimization
approaches.

1.2.1 Spatial Layers

In their primary form, standard feed-forward networks are not well-suited to learn spatial represen-
tation. If we want to train a classifier on raw Red, Green and Blue (RGB) images, the input consists
of an image I of width W , height H with C channels, e.g. RGB with C = 3. Thus, the input layer
requires C ×W × H× weights per output unit, which quickly becomes intractable, e.g. an image
64× 64 with 128 hidden units requires more 1.5 million parameters. Besides, such networks only ac-
cept images with the same dimension. Finally, a standard MLP equally connects all the image pixels,
ignoring that nearby pixels are more correlated than distant ones.

Convolution Layers Convolutional layers (LeCun et al., 1989, 1998a) were developed to extract
patterns found within local regions of the input images. The convolutional layer generates feature
maps by applying linear convolutional filters (also called kernels) followed by non-linear activation
functions. Formally, given a spatial input x of dimension C ×W ×H , the output of a single convo-
lution filter of size K ×K ′ and parametrized by (θ, b) is defined as follows:

17
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fw,h = σ(
K−1∑
k=0

K′−1∑
k′=0

θk,k′
txw+k,h+k′ + b), (1.22)

where w and h are spatial indices and σ is a non-linear activation function. After convoluting the
input, the filter output f is of size (W −K + 1)× (H −K ′ + 1); yet a stride s can also be applied
to reduce further the size of the output. The convolution window is then moved with a step of size s
and f only contains the values fs.w,s.h, which divides the feature map size by a coefficient s. Finally,
we concatenate all the single convolution filters f into a single feature map tensor F .

Convolution layers rely on three concepts that make them a valuable layer to deal with spatial
inputs: it enforces a strong spatial inductive bias by only looking at local features, it is parameter
efficient by using small shared convolutions filters, it does not fix the input size, it is translation
invariant, and it is robust to small spatial transformation such as translation (Bishop et al., 1995;
LeCun et al., 1998a)

Pooling Layers Pooling layers are non-trainable convolution layers with predefined operations, e.g.
mean-pooling or max-pooling over the sliding windows. In practice, pooling layers often have a stride
s to reduce the size of the spatial input, allowing cost-effective down scaling (Scherer et al., 2010).

Differently, global pooling layers aim to reduce the dimension of an input by making the con-
volution windows size embracing the full input space. For instance, a tensor of feature maps of size
W ×H×C is turned into a vector of dimension C by applying a global mean-pooling over the spatial
dimensions; as a result, each vector element is the mean values of the individual feature maps.

Convolution Neural Networks Convolution Neural Networks (CNNs), or ConvNets, stack several
convolutional and pooling layers into a single pipeline to process spatial inputs. This neural architec-
ture exploits the property that images have a compositional hierarchy, in which higher-level features
are obtained by composing lower-level ones (LeCun et al., 2015). In its first version, CNN was the
first neural architecture to have 99% accuracy on the MNIST (Lecun, 1998), where the models must
classify images with digit numbers as illustrated Fig. 1.2 before being refined in subsequent work
as explored in Sec 2.1.1. We also empirically observe that the bottom ConvNet layers do learn to
detect low-level features such as colours, edges, etc. while upper layers are sensitive to more com-
plex elements such as shapes, objects, etc. (Krizhevsky et al., 2012; Zeiler and Fergus, 2014; Zhou
et al., 2015). However, CNN are not limited to images and have also been used to detect phonemes
in speech (Waibel et al., 1990; Zhang et al., 2016b), perform natural text processing (Collobert and
Weston, 2008; Zhang et al., 2015) or translation systems (Gehring et al., 2017).

1.2.2 Sequential Layers

MLP are also quickly limited while dealing with sequences of data. First, MLP have a predefined
input size, which prevents them from dealing with sequences of undefined length. They are also
insensitive to the ordering of the input by default, which is troublesome while dealing with series.
Although sequential data can be preprocessed with handcrafted features to feed a MLP (Bishop et al.,
1995), this approach quickly becomes limited and misses the original motivations of deep learning.

Recurrent Neural Networks RNNs are a family of neural architectures designed to efficiently
process sequential data (Rumelhart et al., 1985). To do so, RNNs are based on a retro-action loop;
the network handles the current input and the previous network output at each timestep in a recursive
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Figure 1.3: Sketch of a Recurrent Neural Network (RNN) unit (noted as A) with its recursive loop or when it
is unrolled. The figure is imported from (Christopher, 2015)

fashion as shown in Fig 1.3. Formally, given a sequence of inputs [xt]Tt=1, a transition function f
parametrized by θ, a RNN produces a sequence [ht]Tt=1 as follow:

ht = fθ(xt,ht−1), (1.23)

where h0 = 0. In its most basic form, RNN is a single MLP where the input is a concatenation
of the xt and the previous state ht−1. Such recursive structures allow RNNs to process arbitrary long
chains while relying on a fixed number of parameters. Unfortunately, vanilla RNN are empirically
hard to train and perform poorly on long sequences (Bengio et al., 1994; Pascanu et al., 2013).

Long Short-Term Memory Long Short-Term Memory (LSTM) networks are RNNs specifically
designed to correctly process long and short term dependencies in sequential inputs (Hochreiter and
Schmidhuber, 1997). The LSTM is composed of two internal memory cells, a context cell ct and an
output cell ht, that are updated thought a gating mechanism to either memorize, update and forget
information from a stream of data as shown in Fig. 1.4a. Formally, a LSTM is defined by the following
equations:

it = σ(Wi[xt;ht−1] + bi) Compute the input gate, (1.24)

ft = σ(Wf [xt;ht−1] + bf ) Compute the forget gate, (1.25)

ot = σ(Wo[xt;ht−1] + bo) Compute the output gate, (1.26)

ct = it � tanh(Wc[xt;ht−1] + bc) + ft � ct−1 Update the context cell, (1.27)

ht = ot � tanh(ct) Update the output cell, (1.28)

where Wi,Wf ,Wo,Wc are weight matrices, bi, bf , bo, bc are bias vectors, [.; .] is the concate-
nation operator, � is the Hadamard product (or element-wise multiplication), and initial states are
h0 = 0 and c0 = 0. LSTM has successfully been applied to a large variety of language tasks (Bah-
danau et al., 2015; Graves, 2013; Sordoni et al., 2015; Sundermeyer et al., 2012), speech recogni-
tion (Graves et al., 2013) or even image generation (Gregor et al., 2015).

Gated-Recurrent Units Another successful and light weighted RNN architecture is the Gated-
Recurrent Unit (GRU) (Chung et al., 2014) illustrated in Fig. 1.4b. GRUs are also designed to handle
long and short term dependencies, while aiming to be simpler and easier to train than historical
LSTMs. The recurrent network composes with the two gates and a single memory cell, halving the
number of parameters. Formally, a GRU is defined by the following equations:
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(a) Sketch of a LSTM (b) Sketch of a GRU

Figure 1.4: Sketch of different RNN architectures. The figures are imported from (Christopher, 2015)

zt = σ(Wz[xt;ht−1] + bz) update the gate vector, (1.29)

rt = σ(Wr[xt;ht−1] + br) Compute the reset gate, (1.30)

h̃t = tanh(Wh[xt; rt � ht−1] + bh) Update the output cell (1), (1.31)

ht = (1− zt)� ht−1 + zt � h̃t Update the output cell (2), (1.32)

whereWz,Wr,Wh are weight matrices, bz, br, bh are bias vectors. Other LSTM and GRU vari-
ants have been developed to either improve RNN abilities (Dey and Salemt, 2017; Gers and Schmid-
huber, 2001) or incorporate inductive bias such as hierarchical structures (Tai et al., 2015) or recurrent
convolution layers (Cooijmans et al., 2017; Xingjian et al., 2015).

Bi-directionnal Recurrent Networks In the previous paragraph, we implicitly assumed that RNNs
are fed with a stream of inputs [xt]Tt=1 whereas we sometimes have access to the full sequences of data.
In this scenario, one idea is to reverse the input stream to obtain an additional representation of the
sequence. Thus, Bidirectional Recurrent Networks (Bi-RNN) combine two RNNs: one forward RNN,
producing hidden states

−→
ht by running from x1 to xT , and a second backward RNN, producing states←−

ht by running from xT to x1. We then concatenate both unidirectional RNN states ht = [
−→
ht;
←−
ht] at

each step t to have the final output.

1.2.3 Regularization

Deep learning architectures often require dozens of millions of parameters, e.g. Krizhevsky et al.
(2012) implemented a large scale CNN with 60M parameters and Sutskever et al. (2014) used a
stack of LSTMs leading to 380M weights. While it allows a network to approximate a large variety
of functions, this overparametrization may also create severe overfitting problems. For instance,
modern CNN architectures can perfectly classify 1.2 million images with random labelling (Zhang
et al., 2017). Regularization methods, which aims at reducing the generalization gap, are de-facto
crucial tools to train large neural networks effectively. In the following, we explore the regularization
methods that have been used along with this thesis.

Parameter Norm Penalty In machine learning, a common overfitting symptom is to observe pa-
rameters with very high values (Bishop, 2006). Thus, a common regularization technique consists
in adding a parameter norm penalty Ω(.) in the training loss. Formally, given a parametric function
fθ(x), the regularized training loss is defined by:
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(a) (b)

Figure 1.5: Standard MLP before (a), after (b) applying dropout. The figures are imported from (Srivastava
et al., 2014).

Lossreg(fθ(x), t) = Loss(fθh(x), t) + λΩ(θ), (1.33)

where λ ∈ R+ is a positive hyperparameter controlling the norm penalty term. For instance, the
L2 norm penalty Ω(θ) = 1

2 ||θ||
2
2 prevents parameters to diverge as it would increase the training loss.

This regularization is called weight decay in the neural network literature although, this equivalence
seems incorrect when using adaptive gradient methods (Loshchilov and Hutter, 2019). Differently,
the L1 norm penalty Ω(θ) = ||θ||1 =

∑
i |w|i sparsifies the model parameters (Tibshirani, 1996),

performing feature selection and may mitigate potential over-parametrization effect.

Ensemble Methods and Dropout Dietterich (2000) detailed how an ensemble of models can be
combined to improve the final prediction and compensate individual overfitting issues. The expected
generalization error of the ensemble performs then at least as well as any of its members. For instance,
Bootstrap aggregating (Bagging) trains the same model with different training splits, altering the
dataset by copying and removing random samples (Breiman, 1996). In deep learning, trained models
are likely to differ because of random weight initialization or SGD. Thus, ensemble methods are often
well-suited to reduce the generalization gap (Goodfellow et al., 2016).

Dropout is a stochastic regularization procedure which artificially simulates an ensemble of net-
works (Srivastava et al., 2014). Dropout layers apply a random activation mask over the neurons at
each training step, producing new thin network on the fly as shown in Fig 1.5. Formally, the activation
maskm is sampled from a Bernoulli distribution parametrized by p such as:

Dropout(x) =

m� x where m ∼ Bernouilli(p) at training time
1
px at evaluation time.

(1.34)

Another intuition behind dropout is to prevent overfitting by forcing neurons to be redundant
rather than relying on the activity of specific units. Dropout was among the first methods which
allows to train large CNN networks (Krizhevsky et al., 2012). When carefully applied, dropout can
also regularize stacks of RNNs (Pham et al., 2014; Zaremba et al., 2015) and RNN hidden states (Gal
and Ghahramani, 2016).

Batch-Normalization Batch Normalization (BN) is a deep learning technique that was initially
designed to accelerate the training of neural networks by reducing the internal co-variate shift (Ioffe
and Szegedy, 2015). Succinctly, the internal co-variate shift refers to the change in the distribution of
layer inputs caused by updating the preceding layers at training time (Shimodaira, 2000), negatively
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(a) (b)

Figure 1.6: (a) Advanced ConvNet (Inception Szegedy et al. (2015)) trained on ImageNet (Russakovsky et al.,
2015), with/out BN. The figure comes from (Szegedy et al., 2015) and was manually edited to remove other
baselines. (b) Advanced RNN network (Skip-Thought Vectors (Kiros et al., 2015)) trained on movie review
sentiment (Pang and Lee, 2005), with/out LN. The figure comes from (Ba et al., 2016) and was manually edited
to remove other baselines.

impacting the training. BN aims at reducing this distribution shift by normalizing and centring neural
activation at each input according to the mini-batch statistics. Formally, given a mini-batch of features
B = [xn]Nn=1 of N samples where x is an arbitrary input with C features (or channels) of unknown
dimension, BN normalizes the activations at training time as follows:

BN(xn,c,·) = γc
xn,c,· − EB[x·,c,·]√

VarB[x·,c,·] + ε
+ βc, (1.35)

where ε is a constant damping factor for numerical stability, and γc and βc are trainable scalars
introduced to keep the representational power of the original network. At inference time, the batch
mean EB and variance VarB are replaced by the population mean µ and variance σ2, often estimated
by an exponential moving average over the batch at training time. In computer vision, x is often a
tensor of feature maps F of size C ×W ×H where the mean and variance are computed over both
the batch and spatial dimensions, such that each location in the feature map is normalized in a similar
way.

BN eventually seems to not affect the co-variate shift issue (Santurkar et al., 2018), but it unar-
guably speeds up the training of deep CNN and seems to have a regularization effect by improving
generalization (Ioffe and Szegedy, 2015; Luo et al., 2019) as highlighted in Fig 1.6a. There were
also some attempts to apply BN to RNN, but it resulted in mitigated successes (Amodei et al., 2016;
Cooijmans et al., 2017; Laurent et al., 2016).

Layer-Normalization Layer Normalization (LN) is an adaptation of BN that was successfully ap-
plied to RNN (Ba et al., 2016). Like BN, the neural activations are rescaled with two γ and β pa-
rameters. However, LN replaces the mini-batch statistics and the moving average and variance by the
global mean and variance of the input for each single sample, making the regularization independent
of the batch size. Formally, the LN is defined as follows:

h̃n,t,. = γ

Var[xn,t,.]
� (xn,t,. − E[xn,t,.]) + β. (1.36)
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When dealing with RNNs, LN rescales the hidden state hn,t,. with the non-linear activation func-
tion g(.) as follow h̃n,t = g(LN(hn,t,c)). In addition, it also normalizes the backpropagated gradient
along the time dimension, reducing potential vanishing and exploding gradient in the RNN (Ba et al.,
2016). In the end, it is generally recommended to use LN with RNN, and BN with CNN.

1.2.4 Optimization for Deep Learning

Training neural networks requires to minimize a non-linear and non-convex loss function, loosing
convergence guarantees as explained in Sec 1.1.4. At training time, deep networks get stuck in poor
local minima or plateaus (Bengio et al., 2007). "Getting a neural network to work well, or to work
at all, was more of an art than a science" (LeCun et al., 1998b). Once Krizhevsky et al. (2012)
demonstrated the potential of deep networks, there was a surge to adapt optimization methods to
reduce the neural training difficulty (Goodfellow et al., 2016). In the following, we explore some
common practices that have been used during this thesis.

Network Initialization As everyone knows, the best way to initialize a model is to start from the
optimal solution. Unfortunately, it greatly reduces the fun of machine learning, and it is a bit tire-
some to manually type a few millions of parameters for every new neural network. A compromise
was found by designing initialization heuristics, but we have to be careful as starting from a poor
parametrization may have catastrophic consequences while optimizing non-convex losses with SGD.

In practice, neural weights are sampled according to distributions conditioned on the activation
function (sigmoid, tanh, ReLU, etc.) and/or the neural architecture (e.g., MLP, CNN, RNN). As
a rule of thumb, weight initialization is defined such that each layer inputs has a zero mean and a
standard deviation close of one (LeCun et al., 1998b). It prevents non-linear activations, e.g. tanh or
sigmoid, to saturate and alleviate gradient vanishing/explosion at the beginning of the training (Glorot
and Bengio, 2010). Formally, given a MLP with nin inputs and nout outputs parametrized by Θ, a
classic initialization is defined as follows (Glorot and Bengio, 2010):

θ ∼ U
[
− 4

√
6√

nin + nout
;−4

√
6√

nin + nout

]
with sigmoid activations, (1.37)

θ ∼ U
[
−

√
6√

nin + nout
;−

√
6√

nin + nout

]
with tanh activations, (1.38)

(1.39)

where U [a; b] is a uniform distribution between a and b. Later, He et al. (2015) derived the
following initialization procedure for CNN and ReLU activation by specifically addressing the ReLU
non-linearity:

θ ∼ N
(
0,
√

2
√
nin

)
with ReLU activations, (1.40)

where N (a, b) is a Gaussian distribution of mean a and standard deviation b. Note that initial-
ization is sometimes referred to as a regularization procedure as it can help the final generalization.
Another common pre-initialization approach is to pretrained the network on an auxiliary task (e.g.,
unsupervised training) and to reuse a subset of the weights in another final tasks (Bengio et al., 2007;
Erhan et al., 2009), as further explored in Sec 2.1.3.
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Figure 1.7: Plot of an error surface of a single hidden unit recurrent network highlighting the existence of
high curvature walls. The solid lines depict standard trajectories that gradient descent might follow. Using the
dashed arrow, the diagram shows what would happen if the gradients are rescaled to a fixed size when its norm
is above a threshold. The figure and caption are extracted from Pascanu et al. (2013).

Adam Optimizer As discussed in the previous section, neural networks weights were historically
updated by using vanilla SGD θh+1 = θh − η∇E(fθh(x), t) where the learning rate η conditions
the update size. However, this hyperparameter often requires careful finetuning at training time by
manually dismissing its value when the validation error plateaus (LeCun et al., 1998a), or by including
a learning decay (Bishop et al., 1995) . Besides, SGD is notoriously known to be slowly converge on
large networks (Ruder, 2016).

Adaptive learning rates were thus proposed to automatically increase or decrease the learning
rate for each parameter based on individual weight errors (Duchi et al., 2011; Kingma and Ba, 2015;
Tieleman and Hinton, 2012; Zeiler, 2012). Among the (very) vast literature of optimization methods,
Adaptive Moment estimation (Adam) (Kingma and Ba, 2015) have empirically been very successful
on a large variety of tasks although having some inherent theoretical limitations (Loshchilov and
Hutter, 2019; Reddi et al., 2018).

Following (Tieleman and Hinton, 2012; Zeiler, 2012), Adam uses exponentially decaying average
of both past gradients m and past squared gradients v to compute parameter-wise learning rates.
Formally, given an individual gradient weight gh,i = ∇E(fθh(x), t)|θh,i , the adaptive gradient update
rule is defined as follows:

mh = β1mh−1 + (1− β1)gh Compute gradient first order moment, (1.41)

vh = β2vh−1 + (1− β2)g2
h Compute gradient second order moment, (1.42)

m̃h = mh

1− βt1
Debias gradient first-order moment, (1.43)

ṽh = vh
1− βt2

Debias gradient second-order moment, (1.44)

θh+1,i = θh,i −
η√

ṽh,i + ε
m̃h,i Perform gradient descent, (1.45)

(1.46)

where η is the initial learning rate, β1 and β2 are respectively decay rates for first-order and
second-order moments of the gradient and ε is a constant damping factor for numerical stability.
They are generally set to β1 = 0.9 and β2 = 0.999 following the author recommendation (Kingma
and Ba, 2015).
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Gradient Clipping Exploding gradients are a major issue while training RNN (Bengio et al., 1994).
A simple and efficient way to alleviate this issue is to rescale the gradient when its norm reaches a
predefined threshold (Pascanu et al., 2013). Formally, given some arbitrary gradient g and a threshold
δ, the new clipped gradient g̃ is defined as follow:

g̃ = min(δ, ||g||2)
||g||2

g. (1.47)

As highlighted in Fig 1.7, a geometrical intuition of clipping is to prevent the gradient from
abruptly updating the weight while dealing with error surface with high curvature.

1.3 Reinforcement Learning Background

Reinforcement Learning (RL) is a training procedure to teach an agent to interact within an envi-
ronment by maximizing the (discounted) sum of reward signals along its course. Hence, it belongs
to the family of sequential decision-making methods. While supervised learning aims at imitating
expert labeling, RL methods collect positive and negative signals within an environment to update
the agent behavior. Reinforcement learning originates from research in animal psychology with the
seminal work of Thorndike (1898) and Skinner (1938). The authors studied how animals could be
conditioned through trial-and-error experiments. The goal was to enforce a specific behavior by either
giving positive or negative stimuli to the animals. This training intuition was later cast as a mathemat-
ical problem with dynamic programming (Bellman, 1957; Bertsekas and Tsitsiklis, 1996; Puterman,
2014), and reinforcement learning (Sutton and Barto, 1998)

In the following subsections, we first define the mathematical framework of reinforcement learn-
ing before exploring the actual training algorithms. Finally, we examine how deep learning and
reinforcement learning can be interconnected to create deep reinforcement learning algorithms. For
more details on reinforcement learning methods, we invite the reader to look at Sutton and Barto
(1998)

1.3.1 Markov Decision Process

A reinforcement learning process can be described as follows: at each time t, the agent selects an
action ut based on this current state xt, to which the environment responds with a reward rt+1 and
the agent moves to a new state xt+1 as highlighted in Fig 1.8. Formally, the environment can be
modelled as an Markov Decision Process (MDP) (Bellman, 1957; Bertsekas and Tsitsiklis, 1996;
Howard, 1960; Puterman, 2014), where a MDP 1 is a 5-tuple (X,U ,R,P , γ) whose elements are:

• X is a finite set of states x
• U is a finite set of actions ut that can be done in state x at time t
• R : X ×U → R is the reward function returning the reward rt for taking action ut in state xt
• P : X ×U ×X → [0; 1] is the transition kernel where P (x′ = xt+1|x = xt, u = ut) is the

probability of reaching state x′t if the agent takes the action ut in state xt
• γ ∈ [0; 1[ is the discount factor that encodes how to weight long-term rewards.

The MDP is said to be episodic if it is guaranteed to finish after a finite number of steps. In such
cases, the discount factor γ can be equal to one. Differently, a MDP is said to be non-stationary (vs.

1We here use the control notation to prevent some confusion with the GuessWhat?! notation defined later in the thesis
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Environment

State xt

Agent

Reward rt

xt+1

rt+1

Action ut

Figure 1.8: Sketch of a Markov decision process.

stationary) if the transition kernel (or any other element of the MDP) depends on the timestep t. In
the following, we assume that we are dealing with stationary and episodic environments.

The agent is modelled by a policy π : X → U which maps a probability distribution over the
actions u for every state x. The policy is said to be deterministic if for all states x, there is a single
action u with probability one; otherwise, the policy is said to be stochastic. Similar to MDPs, a policy
is said to be non-stationary if it depends on the timestep t.

In the following subsections, we explore different methods to evaluate and optimize (or control)
the policy π. Some of those methods assume to have a full knowledge of the MDP, i.e. the transition
kernel P (x, u,x′) is explicitly defined; they are referred as Dynamic Programming algorithms (Bell-
man, 1957; Bertsekas and Tsitsiklis, 1996; Howard, 1960; Puterman, 2014). Differently, algorithms
that do not have access to the exact transition kernel and sample the transition kernel by interacting
with the environment, are referred to as reinforcement learning methods (Sutton and Barto, 1998). We
first analyze both approaches indifferently as they rely on the same core equations before focusing on
reinforcement learning algorithms.

1.3.2 Evaluation with State-Value Functions

In RL and Dynamic Programming (DP), the ultimate goal is to find the policy π∗ that maximizes the
cumulative expected rewards Eπ[

∑∞
k=0 γkR(xk, u)] for every x where u ∼ π. As a first step, we

need to estimate the quality of a policy in order to improve it. We therefore define the value of a state
x under a policy π to be the expected return of the trajectories generated by the policy when starting
from state x. Formally, the state-value function for policy π can be written as follows:

V π(x) = Eπ
[ ∞∑
k=0

γ
kR(xt+k, ut+k)

∣∣∣ xt = x
]

∀x ∈X. (1.48)

The state-value function also satisfies the Bellman equation as follows (Bellman, 1957):
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V π(x) = Eπ
[ ∞∑
k=0

γ
kR(xt+k, ut+k)

∣∣∣ xt = x
]
, (1.49)

= Eπ
[
R(xt, ut) +

∞∑
k=1

γ
kR(xt+k, ut+k)

∣∣∣ xt = x
]
, (1.50)

= Eπ
[
R(xt, ut) + γ

∞∑
k=0

γ
kR(xt+k+1, ut+k+1)

∣∣∣ xt = x
]
, (1.51)

= Eπ
[
R(xt, ut) + γV π(xt+1)

∣∣∣ xt = x
]
. (1.52)

If we estimate the expectation by following the policy π given the transition kernel P , we obtain:

V π(x) =
∑
u∈U

π(x, u)
∑
x′∈X

P (x, u,x′)
(
R(x, u) + γV π(xt+1)

)
. (1.53)

The Bellman relation (Eq. 1.53) highlights the link between the value of a state and the values
of the other states; this relation is the cornerstone of RL and DP algorithms. For instance, it guar-
antees the existence of a single state-value function for a policy. In dynamic programming, if we
respectively define P π andRπ as the transition kernel and reward function reweighted by the policy
distribution π and V π the value-state function column vector, the state-value function can be com-
puted by either recursively applying the Bellman operation to the value state V π

k+1 = Rπ + γP πV π
k

or using linear algebra V π = (I − γP π)−1Rπ where I is the identity matrix (Bertsekas and Tsit-
siklis, 1996; Puterman, 2014). In reinforcement learning, we first sample a batch of trajectories
τ = [(xt, ut, rt+1,xt+1)]Tt=1 by following the policyπ before estimating the value-state function with
Monte-Carlo methods or temporal difference V πk+1(xt) = V πk

(
xt)+η(rt+1 +γV πk (xt+1)−V πk (xt)

)
where η is a learning rate (Sutton, 1988; Sutton and Barto, 1998).

As a second step, we can define an ordering of the policies by using the state-value function. A
policy π is said to be better than another policy π′ if its state-value function V π is greater than the
other state-value function V π′ for every state x ∈X . Formally,

π ≥ π′ ⇔ V π(x) ≥ V π′(x) ∀x ∈X. (1.54)

It exists a unique optimal state-value function V ∗ that is greater that all the others V π for a given
MDP. Therefore, all policies π∗ that achieve the same state-value V π∗ = V ∗ (Puterman, 2014) are
said to be optimal.

1.3.3 Control with Action-Value Functions

While the state-value function gives a clear definition of optimal policies, it does not directly provide
the optimal policy itself. Thus, we define the action-value function Qπ (or Q-value function) which
encodes the expected return of taking the action u in state x while following π. Intuitively, it gives
a direction about which action should we take in each state if we want to maximize our reward. It is
defined as follow:

Qπ(x, u) = Eπ
[ ∞∑
k=0

γ
kR(xt+k, ut+k)

∣∣∣ xt = x, ut = u
]

∀x ∈X, ∀u ∈ U . (1.55)
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The state-value function and action-value function are linked with the following equation:

V π(x) =
∑
u∈U

π(x, u)Qπ(x, u). (1.56)

Thus, the Q-value function also follows the Bellman equation such as:

Qπ(x, u) = Eπ
[
R(xt, ut) + γQπ(xt+1, ut+1)

∣∣∣ xt = x, , ut = u
]
, (1.57)

= R(x, u) + γ
∑
x′∈X

P (x, u,x′)
∑
u′∈U

π(x′, u′)Qπ(x′, u′). (1.58)

Similarly, the action-value function can also be used to define an ordering:

π ≥ π′ ⇔ Qπ(x, u) ≥ Qπ′(x, u) ∀x ∈X, u ∈ U , (1.59)

and it exists a unique optimal action-value functionQ∗ that is greater than action-value functions
from all other policies. Besides, all the optimal policies share the same optimal action-value function
Qπ

∗ = Q∗. Finally, there is always a deterministic optimal policy in the episodic case that can be
defined by maximizing π∗ overQ∗:

π∗(u|x) =

1 if u = arg maxu′∈U Q∗(x, u′)
0 otherwise.

. (1.60)

Finding an optimal policy therefore requires computing the maximal action-value function Q∗,
which follows the Bellman optimality equation (Bellman, 1957):

Q∗(x, u) = Eπ
[
R(xt, ut) + γ max

u′∈U
Qπ(xt+1, u

′)
∣∣∣ xt = x, , ut = u

]
, (1.61)

= R(x, u) + γ
∑
x′∈X

P (x, u,x′) max
u′

Q∗(x′, u′). (1.62)

In DP, an approximate solution of this equation can be estimated with policy iteration and value it-
eration algorithms (Bertsekas and Tsitsiklis, 1996; Puterman, 2014; Sutton and Barto, 1998)). On the
other hand, reinforcement learning is subdivided into model-free methods, that directly estimate the
policy or value functions without trying to figure the transition kernel, e.g. SARSA (Sutton and Barto,
1998), Q-learning (Watkins and Dayan, 1992), REINFORCE (Williams, 1992), and model-based
methods that first approximate the transition kernel to either apply dynamic programming methods,
e.g. UCRL (Auer and Ortner, 2007; Jaksch et al., 2010), or re-applied model-free algorithms, e.g.
Dyna-Q (Silver et al., 2008; Sutton, 1991).

More specifically, value-based model-free algorithms learn the optimal policy by performing a
training loop. Given an initial state x1 and an initial Q-value function, these algorithms sample a new
transition (xt, ut, rt+1,xt+1) from the environment, update the Q-value function, update the policy
and repeat the operation until a final state is reached. Then, new trajectories are generated until the
optimal policy is obtained, i.e., the policy stops changing.

An algorithm is said to perform on-policy learning when the policy π is trained from trajectories
sampled from π itself. On the other hand, an algorithm is said to be off-policy when the policy π is
trained from trajectories sampled from another behavior policy π′. Both families of algorithms have
their pros and cons: while on-policy are well-understood and stable but sample-inefficient, off-policy
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algorithms suffer from weaker convergence guarantees and high-variance (Geist and Scherrer, 2014;
Munos et al., 2016; Van Hasselt et al., 2018) but they can re-use previously generated trajectories (Lin,
1993; Schaul et al., 2015b) or even use human trajectories (Hester et al., 2018). Besides, off-policy
can natively use exploratory policies which is critical point as we will see in the next subsection.

1.3.4 Exploration vs Exploitation Dilemma

As stated above, value-based and model-free control algorithms alternate between updating the Q-
value function and the policy. Although the action-value function update differs from one algorithm
to another, policy updates perform a greedy improvement over the action-value function:

π′(u|x) =

1 if u = arg maxu′∈U Q(x, u′)
0 otherwise.

(1.63)

Intuitively, a greedy policy may become trapped in a sub-space of the MDP, it would keep pro-
ducing the same sub-optimal trajectories at training time. Somehow, we need to force the algorithm
to vary its actions to have diverse trajectories. In other words, the agent must explore its environ-
ment. Formally, this intuition is known as the Greedy in the Limit with Infinite Exploration (GLIE);
model-free algorithms converge to the optimal policy only if all the state-action pairs are explored
infinitely many times and the policy converges to a greedy policy. In other words, GLIE states that
the algorithm needs to explore all the states of the space before being able to discover an optimal
deterministic policy. Therefore, a simple exploration policy is the ε-greedy policy defined by:

π′(u|x) =

ε/mt + 1− ε if u = arg maxu′∈U Q(x, u′)
ε/mt otherwise,

(1.64)

where ε is the probability to explore a random non-greedy action and mt is a decay factor de-
creasing over time. ε-greedy is guaranteed to explore the full action-state space and converge to a
deterministic policy when m goes to infinity. Unfortunately, this can take an exponentially number of
timesteps before exploring all states (Kakade et al., 2003).

More generally, exploration suffers from the exploration-exploitation dilemma. Should the agent
keep investigating its environment to potentially improve future rewards? or should it take action
based on its current knowledge of the environment to maximize its reward, risking converging to
sub-optimal policies? This dilemma is still an open-problem in reinforcement learning, and several
methods have been proposed to perform efficient exploration. It ranges from smart action-value
function initialization (Wiewiora, 2003), to intrinsic motivation methods that provide an extra reward
signal to explore new states (Chentanez et al., 2005; Schmidhuber, 1990) which includes "pseudo-
count" methods (Bellemare et al., 2016; Brafman and Tennenholtz, 2002; Ostrovski et al., 2017) or
optimism in the face of uncertainty (Brafman and Tennenholtz, 2002; O’Donoghue et al., 2017; Strehl
and Littman, 2008) and numerous other methods that go far beyond the scope of this thesis (Conti
et al., 2018; Fortunato et al., 2018; Osband et al., 2016).

1.3.5 Value-Function Approximation

Until now, we implicitly assumed the action-value functions to be stored inside a single vector rep-
resentation Qπ(x, u). In practice, this representation quickly becomes computationnally intractable
and prevents from dealing with large scale problems. For instance, "simple" games such as Backgam-
mon have 1020 states and Go have 10170 states. Furthermore, discrete representation prevents from
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Figure 1.9: DQN architecture. The inputs are stacked screenshots while the action space is the combination of
the buttons of the Atari-2600 console. The figure comes from (Mnih et al., 2015)

studying continuous action and state space. If we ignore the storage requirement, GLIE also requires
exploring all those states at least a few times before converging to an optimal policy, which is again
computationally unfeasible.

A classic solution is to learn to generalize across states and actions to avoid storing every sin-
gle state and action. Instead of representing the value functions with giant look-up tables, they are
estimated with function approximation. These function approximators can either be non-parametric
functions such as trees (Ernst et al., 2005), nearest neighbours (de Lope et al., 2011), or parametric
functions such as linear models (Bertsekas and Tsitsiklis, 1996; Tsitsiklis and Van Roy, 1997), Gaus-
sian processes (Engel et al., 2003), neural networks (Riedmiller, 2005; Tesauro, 1995). For instance,
following Eq. 1.5, the value-based function Ṽ πθ (x) and Q̃πθ (x, u) can be linearly approximated by:

Ṽ πθ (x) = θ0 +
M∑
m=1

θmφm(x), (1.65)

Q̃πθ (x, u) = θ0 +
M∑
m=1

θmφm(x, u), (1.66)

where the state is represented as a vector x and M is the number of basis functions. As a counter
aspect, function approximations lead to residual approximation errors, that may explode when boot-
strapping the value function (Baird, 1995; Bertsekas and Tsitsiklis, 1996; Tsitsiklis and Van Roy,
1997). Therefore, several RL algorithms lose their theoretical convergence guarantees in the linear
case while combining function approximation, off-policy learning, and bootstrapping (Baird, 1995;
Boyan and Moore, 1995; Sutton and Barto, 1998; Van Hasselt et al., 2018).

Nonetheless, reinforcement learning has witnessed impressive empirical successes since the de-
velopment of deep learning methods. For instance, Deep Q-Networks (DQN) (Mnih et al., 2013,
2015) first showed that RL could learn complex policy from raw features on Atari-2600 games (Belle-
mare et al., 2013). To do so, they extended fitted-Q methods (Ernst et al., 2005; Riedmiller, 2005),
and use the neural architecture depicted in Fig. 1.9 as the function approximator. Since then, there
has been a continuous improvement over Atari games by continuously improving neural fitted-Q ap-
proaches (Hasselt et al., 2016; Hessel et al., 2018; Mnih et al., 2016; Wang et al., 2016b). Other,
major successes include defeating professional players at board games such as Go (Silver et al., 2016,
2017a,b) or video games such as StarcraftII (Vinyals et al., 2019) or Dota2 (Chan et al., 2019). Li
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(2017) provide an extensive list of successful applications of deep RL that ranges from robotics, to
natural language processing, business management, finance, healthcare, smart grid and other various
topics.

1.3.6 Policy Gradient Theorem

In the previous subsections, the Q-functions are used as a proxy to compute the policy. Hence, we
estimate the action-value function of the policy, then update the policy by being greedy over the
action-value function and repeat the process until converging to the optimal policy.

An alternative solution is to directly search for the optimal policy in the space of policy, discarding
the need of computing intermediate value-functions. Q-value functions have inherent issues such as
overestimation (Thrun and Schwartz, 1993), instability due to the greedy-policy update (Bertsekas
and Tsitsiklis, 1996) or delusional bias (Lu et al., 2018). More precisely, the larger is the action-
space, the bigger is the action-value overestimation (Thrun and Schwartz, 1993), requiring additional
tricks to mitigate this effect such as having two Q-value estimates (Hasselt, 2010; Hasselt et al., 2016),
use ad-hoc regularization (Bahdanau et al., 2017), perform action elimination at each state (Zahavy
et al., 2018). Q-functions are also ill-defined when dealing with continuous action spaces. Finally,
value-based methods are oriented toward finding an optimal deterministic policy, while we may desire
to have a stochastic but optimal policy. On the other hand, the space of policies is sometimes easier to
learn than using convoluted value functions like in robotics (Peters and Schaal, 2006). It also provides
a natural representation for continuous actions.

The underlying idea is to directly approximate the policy by parametrizing it, e.g. with neural
networks, and to optimize those parameters towards finding the optimal policy. Therefore, the goal is
to find a policy πθ(u|x) that maximizes the expected return, also known as the mean value:

J(θ) =
∫
dπθ

(x)V πθdx, (1.67)

where dπθ
(x) is the stationary probability state distribution induced by the policy π, i.e, the prob-

ability of being in a state x following the policy πθ. Following the gradient policy theorem (Sutton
et al., 2000), the policy is improved by updating parameters in the direction of the gradient of the
mean value:

θh+1 = θh + ηh∇θJ |θ=θh , (1.68)

where h denotes the training time-step and ηh is a learning rate such that
∑∞
h=1 ηh = ∞ and∑∞

h=1 η
2
h <∞. Following (Sutton et al., 2000), the gradient of the mean value can be estimated from

a batch of trajectories Th sampled from the current policy πθh by:

∇J(θh) =
〈 T∑
t=1

∑
ut∈V

∇θh log πθh(ut|xt)(Qπθh (xt, ut)− b)
〉
Th
, (1.69)

where b is some arbitrary baseline function which can help to reduce the variance of the estimation
of the gradient. Intuitively, the policy gradient follows the direction of the Q-value function, which is
a less drastic change than being greedy over the action-value function. Inspired by the REINFORCE
algorithm (Williams, 1992), it is possible to estimate the Q-function by using Monte-Carlo rollouts.
Thus, the inner sum of actions is estimated by using the actions from the trajectory, simplifying
Eq. (1.69) as follow:a
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∇J(θh) =
〈 T∑
t=1
∇θh log πθh(ut|xt)(Qπθh (xt, ut)− b)

〉
Th
. (1.70)

Unfortunately, this gradient has very high variance and it can require a lot of samples before
converging. We can partly alleviate this issue by analytically computing the optimal baseline given a
rollout (Peters and Schaal, 2006). Another approach is to reduce the variance by using value-based
methods to better estimate the action-value function. Those algorithms are known as actor-critic and
rely on the second set of parameters φ to estimate the Q-value function:

∇J(θh) =
〈 T∑
t=1

∑
ut∈V

∇θh log πθh(ut|xt)(Q
πθh
φ (xt, ut)− b)

〉
Th
, (1.71)

where the parameters φ are generally optimized using temporal difference errors. In addition to
historical actor-critic methods (Grondman et al., 2012), deep reinforcement learning led to various
successful deep actor-critic architectures e.g., Asynchronous Actor-Critic Agents (A3C) with n-step
returns (Mnih et al., 2016), IMPALA and REACTOR, two distributed actor-critic architectures with
off-policy corrections (Espeholt et al., 2018; Gruslys et al., 2018), or Soft-Actor Critic (SAC) that
jointly optimizes the expected reward and entropy of the policy (Haarnoja et al., 2018). Other algo-
rithms are also derived from the policy gradient theorem such as Deep Deterministic Policy Gradients
(DPG) for continuous action (Lillicrap et al., 2015; Silver et al., 2014) or Proximal Policy Optimiza-
tion (PPO) and Trust Region Policy Optimization (TRPO) which aims to approximate natural gradient
updates of the policy (Schulman et al., 2015, 2017). Although those algorithms are crucial in modern
deep reinforcement learning, we do not extensively use them in this thesis, and, we invite the reader
to look at Lapan (2018) for a more complete overview.
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Chapter 2

Re-Uniting Vision and Language

«You can’t cram the meaning of a whole
%&!$# sentence into a single $&!#*
vector! »

Raymond J. Mooney
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As far as the roots of AI go, vision and language have always been among the major compo-
nents of any AI system. For instance, Bush and Wang (1945) imagined the memex, an intelligent
system that cleverly collects and browses visual and textual information. However, a holistic ap-
proach of AI was quickly abandoned, favouring one modality over the other. An interesting example
is the Turing test, where intelligence is assessed through a textual dialogue; yet, vision (and sounds)
are excluded to avoid any form of bias in the evaluation process (Turing, 1950). A few years later
emerged the first promising results in both Natural Language Processing (NLP), with a rule-based
translation system (Dostert, 1955), and Computer Vision (CV), with a statistical model for image
recognition (Rosenblatt, 1958). Although both works were highly controversial (Hutchins, 2003;
Olazaran, 1996), they also reflect the common mathematical paradigms (rule-based vs. statistical)
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that would drive and cluster each research community in the next three decades. As a result, the few
multimodal AI systems that were produced decoupled the language and vision into different submod-
ules, ignoring potential low-level interconnection between modalities (Herzog and Wazinski, 1994;
McDonald and Conklin, 1982). In parallel, cognitive science had been exploring how the processing
of language and vision is coupled, inviting the AI community to broaden their thinking on language
understanding (Harnad, 1990; Jackendoff, 1987; Miller and Johnson-Laird, 1976). However, we have
to wait until the late ’90s and the spread of NLP statistical approaches to witness the first appearance
of hybrid methods (Barnard et al., 2003; Mooney, 2008; Roy, 2002). Finally, language-vision tasks
and algorithms blossomed in the ’10s (Darrell and Mooney, 2011; Gargett et al., 2010), and the re-
search topic was further anchored with the success of deep learning that standardized NLP and CV
representation learning (Malinowski et al., 2015; Vinyals et al., 2015b).

In light of this recent evolution, we study the modern deep learning background and history in
both CV and NLP in this chapter. Every time, we end by examining the philosophical, practical, and
cognitive motivations for better integrating vision and language in AI systems. As a second step,
we define the multimodal learning paradigm and we explore how deep learning components can be
designed to perform multimodal learning with vision and language.

2.1 Deep Learning and Computer Vision

Computer Vision (CV) is the construction of explicit, meaningful description of physical objects
from images (Ballard and Brown, 1982). A major challenge of computer vision is visual recognition,
which consists of recognizing (and labelling) an object in a given image by machines. For instance,
image classification involves categorizing an image into a set of K pre-defined categories, image
detection consists of locating and labelling a specific set of objects inside the image, and image
segmentation aims at grouping pixels by either their semantics (car, person, etc.) and/or their instances
(e.g., car1, car2) as highlighted in Fig 2.1. Historical methods relied on hand-crafted feature detectors
and descriptors that respectively search for salient locations and features in objects (Dalal and Triggs,
2005; Lowe, 2004). More generally, the goal of the feature descriptors was to find the best image
representation that can solve the task at hand.

In 2010, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) was introduced to
benchmark computer vision algorithms. In the initial version of the competition, the goal was to
identify the main objects present in images. For each photograph, the competitors must produce a list
of at most five object categories in the descending order of confidence. ILSVRC used 1.2 million raw
labelled images from the russakovsky2015imagenet dataset (Russakovsky et al., 2015), which was
several orders of magnitude bigger than other computer vision datasets (Everingham et al., 2015; Fei-
Fei et al., 2007). As a result, ILSVRC quickly became the golden benchmark in computer vision. At
the beginning of the competition, the best image classifiers were built on top of hand-crafted features
descriptors; they reached 26% top-5 error accuracy.

2.1.1 Vision Neural Architectures

The ILSVRC challenge turned out to be a fertile ground for deep learning, leading to a massive shift
of the vision community towards neural networks. Here, we briefly present the dominant visual deep
learning architectures that emerged during this competition, and depict them in Fig 2.2 and Tab 2.1.

AlexNet The work that rekindled interest in CNN was AlexNet (Krizhevsky et al., 2012), which
nearly halved the previous best top-5 error accuracy from 26% to 15.3% at ILSVRC in 2012. The
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Figure 2.1: From left to right: image classification, detection, and segmentation tasks. The image classification
is about assigning a category to an image, detection classifies and localizes an object, while segmentation asks
for a more detailed scene representation. The figure is imported from (Malinowski, 2017)

network was composed of five convolution layers with ReLU and three fully connected layers with
dropout. Krizhevsky et al. (2012) already stated that deep learning model would perform better
by increasing computationally power and the amount of data, also highlighting the importance of
network depth and overparameterization.

VGG-Net Two years later, Visual Geometry Group Network (VGGNet) managed to reduce the
top-5 error accuracy to 7.3% by stacking sixteen convolution layers with small kernel size (Simonyan
and Zisserman, 2015). This network became very popular inside the computer vision community as
several pretrained networks were openly available.

GoogleLeNet The same year, GoogleLeNet (or Inception Network) won the ILSVRC challenge
with 6.7% top-5 error accuracy (Szegedy et al., 2015). The authors stacked twenty-two convolution
layers with mixed kernel size and removed the final fully connected layers, making the network very
light-weighted. Besides, Szegedy et al. (2015) used newly developed training methods, incorporat-
ing batch-normalization (Ioffe and Szegedy, 2015) and using adaptive learning rates (Tieleman and
Hinton, 2012).

ResNet The next year, Residual Neural Network (ResNet) supplanted both VGGNets and Google-
LeNet with 3.6% top-5 error accuracy (He et al., 2016), out-performing human level on image clas-
sification. The authors implemented residual connections to bypass the input from one convolution
layers to another. As a result, they could stack up to 152 convolution layers with batch normaliza-
tion. As ResNet plays an important role in this thesis, we further examine this architecture in the next
subsection 2.1.2.

Name Year Depth Params Top-5 Error

Pre-CNN 2011 n/a n/a 26.2%
AlexNet 2012 8 62M 15.3%

VGG-Net 2014 19 138M 7.3%
GoogleNet 2014 22 7M 6.7%
ResNet-152 2015 152 60M 3.2%

Squeeze-and-Excitation 2017 152 68M 2.3%

Table 2.1: Evolution of the ILSVRC top-5 accuracy error alongside with some network properties. Canziani
et al. (2016) performed an extended comparison of those networks.

After ResNet, deep learning architecture kind of reached a plateau and subsequent neural architec-
tures such as ResNetXt (Xie et al., 2017), Squeeze-and-Excitation Networks (Hu et al., 2017a) mostly
explored variants of residual connections or (Tan and Le, 2019) optimize the width, depth and image
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Figure 2.2: A sketch of some traditional visual networks, showing the increase of network complexity and depth
along the years. Regularization layers (e.g., dropout, batch-normalization, and local response normalization)
and activation functions are removed for clarity. The convolutions are described by their kernel size, the number
of kernels and the stride size (default is one); fc stands for fully connected layers with the number of units. We
invite the reader to look at Szegedy et al. (2015)’s paper to have the number of kernel dimension to each
inception module. Note that the first convolution layer in each ResNet block has a stride of size 2.

size to better leverage ResNet abilities. By the end of the ILSVRC challenge in 2017, deep learning
has become the de-facto frameworks for computer vision algorithms. Vision competitions moved on
more large-scale complex vision recognition tasks such as object detection, object segmentation or
pose-estimation (Lin et al., 2014). Large-scale video datasets have also started to emerge (Abu-El-
Haija et al., 2016). ILSVRC was finally stopped, and the organizers are said to be collecting a 3D
image dataset as a next challenge. As illustrated by this thesis, there was also a renew of interest for
multimodal datasets both with newly collected images alongside multimodal annotations such as the
Visual Genome (Krishna et al., 2017) or MS Coco (Chen et al., 2015), or the enhancement of previ-
ously existing CV dataset with new task-specific information such as visually grounded questions or
dialogues (Antol et al., 2015; Das et al., 2017a; de Vries et al., 2017; Kazemzadeh et al., 2014).

2.1.2 Residual Networks

As described above, ResNet won the ILSVRC 2015 classification competition by changing the flow
of image processing inside the network. While previous convolution networks (Krizhevsky et al.,
2012; Simonyan and Zisserman, 2015; Szegedy et al., 2015) constructed a new neural representation
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Figure 2.3: A residual function R(.) for ImageNet for ResNet (He et al., 2016). A classic variant of the
ResBlock is to put the ReLU inside the residual function.

at each layer, ResNet iteratively refines a representation by adding residuals connection. This modifi-
cation enables to train very deep convolution networks without suffering as much from the vanishing
gradient problem. More specifically, ResNets are built from Residual Blocks (ResBlocks),

F k+1 = ReLU
(
F k +R(F k)

)
, (2.1)

where F k denotes the outputted feature map. We refer to Fn,c,w,h to denote the nth input sample of
the cth feature map at location (w, h). The residual functionR(F k) is composed of three convolutions
layers (with a kernel size of 1, 3 and 1, respectively) with batch-normalization followed by ReLU
activation as depicted in Fig 2.3.

ResBlocks are stacked to form a stage (or block) in which the representation dimensionality stays
identical. A general ResNet architecture starts with a single convolutional layer followed by four
stages of computation as shown in Fig. 2.2. The transition from one stage to another is achieved
through a projection layer that halves the spatial dimensions and doubles the number of feature maps.
There are several pretrained ResNets available, including ResNet-50, ResNet-101 and ResNet-152
that differ in the number of residual blocks per stage.

2.1.3 A Word on Transfer Learning

Why would one care about a specific neural architecture for object recognition if one wants to perform
object segmentation? One of the unexpected benefits of neural networks is the adaptability of the
learned features across different datasets and even different tasks (Castrejon et al., 2016; Yosinski
et al., 2014). As pointed out in Sec. 1.2.1, the first layers of convolution networks tend to learn
features that resemble either Gabor filters or colour blobs while training on images. Such behavior
is observed across different vision tasks ranging from classic object recognition (Krizhevsky et al.,
2012) to unsupervised learning (Lee et al., 2009). Intuitively, it suggests that there is little need to
retrain those layers for new tasks as the network would converge again to the same feature extractors.
The next question is to know which layers can be re-used, and which must be re-trained.

In computer vision, it turns out that the full stack of pretrained convolution layers can be kept as
a general image feature extractor. This operation, known as transfer learning, consists in training a
first base network on a base dataset and task before reusing a subset of this base network to train a
second target network on a target dataset and task (Yosinski et al., 2014). For example, a network
is first trained on large vision dataset (e.g., ImageNet), the classification layer is then removed, and
the network is used as a preprocessing unit to perform another computer vision task. Such pipeline
is used in modern object localization methods; we first extract image features with an arbitrary pre-
trained ConvNet, and then output bounding boxes with object categories by only using the extracted
features, discarding the initial raw images in the second processing round (He et al., 2017; Lin et al.,
2017; Redmon and Farhadi, 2017; Ren et al., 2015b). In these examples, the ConvNet networks are
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(a) Panda (57.7% conf.) + noise = Gibbon (99.3% conf.) (b) A Husky misclassified as a wolf

Figure 2.4: (a) Example of image perturbation that lead to error classification without changing the global
appearance of the images (Goodfellow et al., 2015). (b) Detecting salient activation while misclassifying a
Husky into a wolf (Ribeiro et al., 2016).

pretrained on ImageNet (Russakovsky et al., 2015) and the localization layers are trained on different
datasets such as MS Coco (Lin et al., 2014) or VS Pascal (Everingham et al., 2015). Funnily, some
modern neural architectures are based on networks pretrained on object localization, which were
themselves based on object classification pretrained networks (Anderson et al., 2018b).

On a different note, we also observe a clear correlation between the performance on pretrained
networks on ImageNet and the subsequent performance on the transferred task (Kornblith et al.,
2018). It is sometimes beneficial to also finetune pretrained networks to tackle the new task at hand
better. A classic finetuning approach involves backpropagating the target task error into the upper-
most layers of the pretrained networks. More original techniques include fine-tuning specific network
parameters (e.g., batch-normalization parameters as explored in Chapter 5) or adding small adaptive
layers inside pretrained networks (Houlsby et al., 2019).

Transfer learning methodology has unarguably been part of the success of deep learning. How-
ever, its current application may also become a limiting factor to scale up to complex problems. For
instance, multimodal tasks may require low-level interaction between modalities to be solved; thus,
naively stacking pretrained network may be suboptimal. In this thesis, we explore this potential lim-
itation in visually grounded language tasks, examining how transfer learning can be tempered with
multimodal tasks in Chapter 5.

2.1.4 Language as a Natural Extension of Computer Vision

The Impact of Language over Perception

In the previous subsections, we examined the recent successes of deep learning in image recognition
tasks. Yet, we may argue that we are still far from the original holy grail of computer vision: de-
veloping models that have a complete understanding of visual scenes (Geman et al., 2015; Krishna
et al., 2017; Malinowski, 2017). As mentioned in the introduction, we still witness inconsistencies
while classifying images, e.g., labelling human faces as gorilla (Jackyalciné, 2015), or generating
images, e.g. applying zebra stripping onto a horse rider (Zhu et al., 2017a). More surprisingly, we
can generate image noise that would adversely trick a deep neural network into changing the object
labelling without altering the global image perception (Goodfellow et al., 2015) as shown in Fig. 2.4a.
Although the gorilla misclassification and zebra stripping were due to biased datasets, and the image
noise was tailored to deceive the network, they nevertheless reflect the lack of visual concept under-
standing. In practice, we observe that image classifiers sometimes use improper discriminant features
such as background colours (Ribeiro et al., 2016; Selvaraju et al., 2017) as highlighted in Fig. 2.4b.
Besides, the networks are improperly biased towards image texture rather than object shapes Geirhos
et al. (2019), which are known to be robust visual features to frame human understanding (Landau
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et al., 1988). In other words, neural networks would use spurious data correlation rather than compos-
ing and reasoning over robust visual features. Considering cognitive evidence, we here explore some
intuitions arguing in favour of integrating linguistic cues to alleviate visual understanding, and how
they could complement other research directions such as adversarial training (Elsayed et al., 2018),
or architectural changes.

On a human cognitive level, there is a global consensus that language eases image disambiguation,
category learning, and visual reasoning during infancy (Dessalegn and Landau, 2008, 2013; Ferguson
and Waxman, 2017). For instance, Waxman and Booth (2001); Waxman and Markow (1995) point
out the complex interconnections between the acquisition of new words and the acquisition of a
hierarchy of visual concepts. They observe that infant learn to consistently differentiate and cluster
object categories (e.g., animal) and object attribute (e.g., colours) in pair with the understanding of
nouns and adjectives. Dessalegn and Landau (2008, 2013) show that 4-year children have inherent
difficulties to simultaneously visually reason over colours and object locations. However, the children
are more successful when hearing linguistic description specifying colours and directions (e.g., "the
red is on the left"), suggesting that language helps bridging visual concepts together.

A subset of the cognitive science community even argues that our language may affect the way hu-
man may perceive the world, which is also known as the Sapir-Whorf hypothesis (Kay and Kempton,
1984; Whorf et al., 1956). In its extreme variants, this assumption, or "pop-up" effect, supposes that
one can only see the rainbow colours that it can name. Put differently, learning to name a new colour
would pop-up the perception of this colour in the rainbow. Although the long-term impact of lan-
guage over perception is highly controversial (Firestone and J. Scholl, 2014; Klemfuss et al., 2012),
some neuroscience evidence that language temporally affects visual processing by setting visual pri-
ors, altering how incoming information is processed (Boutonnet and Lupyan, 2015; Kok et al., 2014;
Lupyan and Ward, 2013). Simply put, we start perceiving objects after hearing their descriptions, like
turning clouds into dogs in the sky.

Albeit there is still an open debate to which extend language may alter perception, linguistic cues
do help visual processing learning in humans, and these observations can be carefully extended to
machine learning. In that spirit, He and Peng (2017) use natural language descriptions to help to find
discriminating parts or characteristics for each image within artificial neural networks. Rupprecht
et al. (2018) learn to refine image segmentation of a pretrained network by using textual hints at eval-
uation time, dynamically altering the weight and activation of a ConvNet. In Chapter 5, we similarly
explore how to alter visual processing for a given linguistic query to extract more comprehensive
multimodal representations. As a parallel of category learning, Redmon and Farhadi (2017) leverage
word taxonomy from WordNet (Miller, 1995) to retrieve semantic relationships between ImageNet
classification labels (Russakovsky et al., 2015) and the MS Coco object detection labels (Lin et al.,
2014). Thus, they could link 80 MS Coco labels such as "Dog" to the 9000 categories in ImageNet
such as "Norfolk Terrier" or "Golden Retriever". The authors then design a joint loss training, allow-
ing the model to locate and classify objects over ImageNet categories by using the annotation from
MS Coco. Finally, Elhoseiny et al. (2013); Frome et al. (2013) perform zero-shot learning by gener-
ating a classification layer conditioned on textual descriptions, where the classifier learns to capture
and correlate attributes from text input and visual features.

Expressing Vision Understanding with Language

In their current form, neural networks have limited abilities to express their visual understanding. Ob-
ject recognition mostly consists of computing the most likely class labels from predefined sets, which
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grants little space for the models to indicate novelties, potential ambiguities, or partial solutions. As
a next step, we want to train models to demonstrate their ability to understand an image in a less
engineered fashion. For instance, humans can talk about what they see by describing an image within
a few words. They can also answer questions about images, discuss about relevant details, or look for
an underlying meaning of an image (Farhadi et al., 2010; Zitnick and Parikh, 2013). On a different
perspective, humans can draw pictures from a textual description, and alter them given specific in-
struction. Following this intuition, a natural improvement of computer vision algorithms would be to
integrate a linguistic module to assess their visual understanding. In this spirit, Anne Hendricks et al.
(2018) train the neural network to explain its prediction, e.g. bird breed, with short descriptions, e.g.
listing key attributes, although the authors faced some issues with the automatic evaluation process.
Reciprocally Ling and Fidler (2017) guide the network to correctly describe an image by providing
textual hints. As further explored in Sec. 3.1, we recently witnessed a renew of interest in this im-
portant line of research with image captioning tasks (Lin et al., 2014; Ordonez et al., 2011), or visual
question answering (Antol et al., 2015; Malinowski, 2017), which have been depicted as a new visual
Turing test. In theory, we also limit the risk of spurious relationship by complexifying the visual tasks,
even though the reality may be a bit more nuanced (Agrawal et al., 2016). More generally, enhancing
computer vision with language may have significant application in robotics (Chai et al., 2016; Tellex
et al., 2011) and human-machine interaction (Dumas et al., 2009; Jaimes and Sebe, 2007; Pantic and
Rothkrantz, 2003; Zeng et al., 2009).

To summarize, we argue that language is a natural extension of computer vision tasks. First, lin-
guistic cues may refine visual representation by several means: they can guide the learning, pinpoint
discriminant features, enhance category learning, or disambiguate image content. Second, language
provides a fine-grained framework to assess image understanding and potentially improve visual rep-
resentation. Finally, the linguistic channel seems to be a natural evolution for CV algorithms for the
improvement of human-machine interaction.

2.2 Natural Language Processing

Natural Language Processing (NLP) aims to extract representations of textual information to read and
make sense of human languages in a valuable manner. Classic NLP tasks range from automatic trans-
lation, text summarization, question answering to dialogue systems. From its early days, NLP has
been heavily influenced by two linguistic approaches: rationalism and empiricism (Manning et al.,
1999). The rationalist approach assumes that language possesses an underlying structure that must
be discovered, conjecturing that human language is innate and can be modelled like physic laws.
The empiricist approach suggests that language is a cognitive process that can be learned through
experimentation, advocating to explore learning mechanisms rather than linguistic models. In the
50s, Chomsky (1957) released his work on transformational generative grammars, which marked a
milestone in the NLP community; this mathematical theory of language defines a grammar through
rule-based descriptions of syntactic structures and uses it to parse and transform texts. Generative
grammars quickly gained popularity and became the dominant NLP paradigm. It led to some remark-
able rule-based systems such as ELIZA (Weizenbaum, 1966), a conversation agent impersonating a
psychologist by smartly translating patients’ answers into open-questions, or SHRDLU (Winograd,
1971), an interactive interface that followed textual human instructions to operate inside a virtual toy
world as shown in Fig 2.5; However, it later turned-out that rule-based agents require an exponentially
growing number of rules to handle complex tasks, drastically limiting their scope of application. In
parallel, there was a resurgence of empiricism theory in the AI community that learns statistical mod-
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Figure 2.5: (left) ELIZA interface. Impressively, ELIZA manages to give an illusion of understanding with
only a pages of handcrafted-rules (Weizenbaum, 1966). (right) Representation of the block world of SHRDLU.
The agent follows instruction to move and stack geometrical figures.

els of language by parsing and analyzing corpora of text. This experimental protocol has been inspired
by distributional semantics hypotheses, which assume that words occurring in the same contexts tend
to purport similar meanings (Firth, 1957; Harris, 1954). Helped by access to new computing and
data resources, this approach had slowly spread within the NLP community, and statistical models
had slowly supplanted and finally outperformed pure rule-based systems. Statistical algorithms first
tackle NLP tasks by combining handcrafted linguistic features and machine learning methods (e.g.,
trees, support vector machine, etc.) (Manning et al., 1999). It paved for some major successes such as
Watson, a conversational agent who won the Jeopardy! Game by guessing a potential question when
given an initial answer (Ferrucci, 2012). Later, deep learning models started outperforming classic
statistical models (Bengio et al., 2003; Collobert and Weston, 2008; Collobert et al., 2011) by learning
linguistic features (nearly) from scratch, and neural networks have become the mainstream paradigm
in NLP as illustrated by today’s translation systems (Wu et al., 2016).

In the following, we first introduce linguistics basics to make the reader familiar with the classic
NLP terminology. We then examine neural-based architectures that we are using in this thesis. Finally,
we explore how grounded language learning theory would argue towards integrating vision for the
improvement of NLP.

2.2.1 Syntax, Semantics, and Pragmatics

Linguistics breaks down NLP into several concepts to potentially ease the representation learning:
syntax, semantics, and pragmatics. Each of these topics entails different NLP objectives and tasks
to help to disambiguate natural language. The syntax describes the structure of allowable sentences
in the language, independently of the meaning of the phrases. Syntax examines the grammar rules
of languages, defining nouns, verbs, adjectives, etc., and how to compose them. On the other hand,
semantics associate a meaning to the syntactic elements and draw the relationship between entities.
Semantics links a noun to a pronoun, looking for the plausible sentence understanding. For instance,
with eats Ana salad Bob a. is not syntactically correct but Ana eats a salad with Bob is. The syntax
decomposes Ana eats a salad with Bob as a noun followed by a verb and two nominal groups. Seman-
tics suggest that Ana is either eating the salad with the company of Bob, or the salad contains some
pieces of Bob... Pragmatics refers to practical aspects of language, analyzing the objective and/or
consequence of a given phrase. It disambiguate language by using both language and external context
as illustrated in Fig. 2.6. In other words, it looks at the consequence of a sentence and the intended
meaning of sentences in a given context. If you ask the waiter for food, you expect to receive some
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Figure 2.6: Comic strip illustrating contextual ambiguities that can be studied by pragmatics.

food. Pragmatic also makes you start sympathizing for Bob...
In NLP, syntactic tasks include word tokenization, Part-Of-Speech Tagger (POS Tagger) which

associates a grammatical label to each word, or chunking, that factorizes words into grammatical
groups; semantic tasks include word-sense disambiguation, role labelling, named entity extraction,
and anaphora resolution; A classic natural language understanding pipeline iteratively applies syn-
tactic and semantic algorithms to extract and translate sentences into a useful and formatted repre-
sentation; this representation is then used to perform the task at hand such as translation, chatbot,
etc. We invite the reader to look at (Manning et al., 1999) for further details on statistical NLP tasks
and models. From the 90s’, Elman (1991); Hinton (1986) advocated that neural networks are capa-
ble of learning complex language representations, without linguistic decomposition. Despite some
notable works (Bengio et al., 2003; Schwenk, 2007), it took twenty years before Collobert and We-
ston (2008); Collobert et al. (2011) managed to train a single neural architecture that performs well
on several NLP tasks without any linguistic engineering. There now exists a large variety of neural
networks that deal with specific NLP issues as detailed by (Young et al., 2018).

2.2.2 Word embedding

Neural networks represent words as high dimensional floating vectors, also called word embed-
dings (Collobert et al., 2011; Mikolov et al., 2013a,b; Schwenk, 2007). For each task, a fixed vo-
cabulary V of words is first defined, and each word is associated with a unique word index {wi}Ii=0.
For instance, the word car may have the index 1, blue the index 2 etc. Plurals, conjugation or any
word variants also entail new indices, e.g., car and cars are seen as two different words. Words
are then processed through a look-up table, where each word index wi is associated with a unique
trainable weight vector ewi . This word embedding is then used as an input to the neural networks,
such as convolution networks (Collobert and Weston, 2008; Gehring et al., 2017) or recurrent net-
works (Cho et al., 2014b; Mikolov et al., 2010). While training neural networks on arbitrary NLP
tasks, the back-propagated errors go up to the look-up table and update the word embedding.

Collobert and Weston (2008); Mikolov et al. (2013c) showed that the resulting word embedding
capture meaningful syntactic and semantic regularities. More precisely, word embeddings define a
continuous space representation where semantically related words have similar embeddings, and sim-
ilar grammatical properties have similar vector offset. For instance, if we use standard metrics (e.g.,
Euclidean distance or cosine similarity), words are clustered by their topic in this latent space. As
illustrated in Fig 2.7, word embedding referring to countries are grouped together, idem for colours,
animals, etc. Differently, vector offset encodes semantic properties, such as gender, conjugation or
plurals, e.g. wapples − wapple ' wcars − wcar, or wman − wwomen ' wking − wqueen. Those
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Figure 2.7: Word similarities by using word embedding of dimension 50 over a dictionary size of 30, 000
words. For each column the queried word is followed by its index in the dictionary (higher means more rare)
and its 10 nearest neighbors (Euclidean distance). The table comes from (Collobert and Weston, 2008)

generic representations enable a form of linguistic transfer learning, where word embedding can be
reused to new, and potentially unrelated, tasks.

Word2Vec are shallow two-layers neural networks that were designed to efficiently compute ac-
curate word embedding (Mikolov et al., 2013a). Their training procedure is a direct application of the
distributional hypothesis, which states that words that appear in the same contexts have similar seman-
tic properties. Instead of solving a supervised NLP task, Word2Vec are unsupervised networks that
iterate over text corpora to predict each word given its n neighbouring words (CBOW architecture) or
to predict the n surrounding words given the current word (Skip-Gram architecture). This predictive
method later turned out to be similar to other distributional algorithms that are based on word co-
occurrences, such as co-word occurrence matrix factorization (Levy and Goldberg, 2014; Pennington
et al., 2014). Common precomputed word embeddings include Word2Vec (Mikolov et al., 2013b),
FastText (Joulin et al., 2017), or GloVe (Pennington et al., 2014). More recently, context-wise word
embedding have been developed by first parse the input the full sentence, before actually computing
the current embedding (Peters et al., 2018).

2.2.3 Neural Networks for Language Generation and Understanding

The Workshop on Statistical Machine Translation (WMT) has been to NLP what the ILSVRC chal-
lenge has been to computer vision; it has been a fertile ground for designing new linguistic neu-
ral architectures. More precisely, the WMT14 dataset contains several translation corpora, and the
biggest one contains 36M French-English sentence pairs (Bojar et al., 2014). The algorithms are
benchmarked with the BiLingual Evaluation Understudy (BLEU) score (Papineni et al., 2002), which
compares a candidate translation of a text to several reference translations using n-grams. As a result,
the following neural architectures were first assessed on translation tasks before being extended to
more heterogeneous problems which are explored in this thesis.

In language, the dominant neural paradigm is the encoder-decoder architecture (Cho et al., 2014b),
which borrows architectural concepts and terminologies from autoencoder networks (Kramer, 1991).
As its name suggests, the encoder-decoder architecture is decomposed into two blocks: the encoder
converts an initial linguistic input into a fixed size representation, and the decoder generates a new
sequence of words based on this representation. In a French-English translation setting, the encoder
first encodes the French sentence into a vector, and the decoder generates the English sentence in a
second step.
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Figure 2.8: Sketch of a Seq2Seq models. The <start> and <stop> are used to initiate and stop the sampling
procedure. The last state of the encoder is used as the initial state of decoder.

Sequence-to-Sequences The most famous language encoder-decoder architecture is the Sequence-
to-Sequence (Seq2Seq) model (Cho et al., 2014a,b; Sutskever et al., 2014). In its simplest form, the
encoder is a RNN (e.g. LSTM or GRU) that iterates over the input word embeddings. The decoder
is another RNN whose initial state is initialized with the final state of the encoder. At each time step,
the decoder outputs an embedding that is fed to a softmax layer to return the related word index. This
word is then re-injected as a new input to the decoder before outputting the next token as illustrated in
Fig 2.8. Besides, the word vocabulary is enhanced with two extra ad-hoc tokens {<start>,<stop>}
to control the sampling procedure. On the first step, the decoder is fed with the <start> token, and
word generation is stopped when the decoder outputs the <stop> token. By using an intermediate
fixed size representation, Seq2Seq models may output a sequence of words that differs from the input
one.

Training/Evaluation procedure In practice, Seq2Seq models estimate the conditional probability
p(y1′ , . . . , yT ′ |x1, . . . , xT ) where [x]Tt=1 and [y]T ′t′=1 are the sequence of input and output words. This
conditional probability is estimated by:

p(y|x) =
T ′∏
t′=1

p(yt′ |x, y1′ , . . . , yt′−1), (2.2)

At training time, we minimize the negative conditional log-likelihood to obtain the encoder-
decoder parameters θ∗ such as:

pθ∗ = arg min
θ

− 1
N

N∑
n=1

log pθ(yn|xn) (2.3)

= arg min
θ

− 1
N

N∑
n=1

log
T ′n∏
t=1

pθ(ynt |xn, yn1 , . . . , ynt−1) (2.4)

= arg min
θ

− 1
N

N∑
n=1

T ′n∑
t=1

log pθ(ynt |xn, yn1 , . . . , ynt−1), (2.5)

where (xn,yn)Nn=1 are the input and output sequence pairs from the training set. At training
time, the ground truth tokens yn are are fed back in the decoder at each time step, discarding the
tokens generated by the decoder ŷn. This process is also known as teacher forcing (Williams and
Zipser, 1989). At inference time, the ground-truth sequence yn is not available, and the generated
tokens ŷn are used as a decoder input. However, it entails a small compounding error prediction
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as the generated tokens may slowly diverge from the training distribution. A few methods were
developed to alleviate this discrepancy such as schedule sampling, which randomly feeds back the
generated tokens at training time (Bengio et al., 2015), or professor forcing, that relies on Generative
Adversarial Networks (GAN) to reduce the discrepancy between training and inference hidden states
distribution (Lamb et al., 2016).

On a different note, several linguistic tasks (e.g., translation) often rely on a specific language
scoring such a BLEU score or edit distance. However, those scores are often non-differential, and
the log-likelihood thus acts as a training surrogate. A different approach involves using the policy
gradient theorem to compute a gradient from a non-differential metric, e.g., setting the BLEU score
as a reward (Sutton et al., 2000; Williams, 1992). Unfortunately, the resulting gradient has a too high
variance to learn an encoder-decoder from scratch, and this approach is only used to finetune neural
networks (Bahdanau et al., 2017; Paulus et al., 2018; Ranzato et al., 2016). Besides, it also tends to
overfit on the scoring metric, resulting in perfect but meaningless word alignments.

At inference time, we want to generate the most likely sequence of words p(y|x) from the
Seq2Seq models. However, it is not possible to directly retrieve the optimal sequence from Seq2Seq
models: picking the argmax of the probability distribution at each time step does not guarantee to
compute the optimal trajectory:

T ′∏
t′=1

max
yt′

p(yt′ |x, y1′ , . . . , yt′−1) ≤ max
y

T ′∏
t′=1

p(yt′ |x, y1′ , . . . , yt′−1), (2.6)

As a result, searching for the optimal trajectory requires to explore an exponentially large number
of sequences. Beam Search (BSearch) is a breadth-first search heuristic that looks for the most likely
sequence of words by exploring a subset of sentences and keeping the most likely one. At each time
step t′, BSearch keeps theK sequences with the highest normalized probability 1

t′
∏t′
t=0 p(yt|y1, . . . , yt−1).

Then, for each of the top-K sequences, it computes the probability distribution of the next words, and
repeats the operations until the <stop> is reached for all the K-sequences. In generative tasks,
BSearch has been reported to improve the final accuracy (Sutskever et al., 2014); yet, it also suf-
fers from severe computation latencies, and some variants are sometimes explored (Freitag and Al-
Onaizan, 2017).

Attention One potential limitation of encoder-decoder architecture relies in their ability to com-
press the necessary information of an input sequence into a fixed-length vector. Bahdanau et al.
(2015) introduced an attention mechanism that allows the network to attend to previously generated
RNN states, alleviating the burden of compressing all the information in the last hidden state. More
formally, given the sequence of hidden states of the encoder [henct ]Tt=1, a context cell ct′ is computed
at each decoding time step t based on the currrent decoder hidden states [hdect′ ]T ′t′=1:

et,t′ = g(henct ,hdect′ ) αt,t′ = exp(et,t′)∑
i,j exp(ei,j)

ct′ =
T∑
t=1

αt,t′h
enc
t , (2.7)

where g(.) is an arbitrary differential function (e.g. concatenation followed by a some non-linear
projections). The context cell ct′ is then appended to the decoder states before generating the next
token, hdect′ = RNN(yt′−1,h

dec
t′−1, c

dec
t′−1). A few other variants of attention mechanisms were also

developed for Seq2Seq models to tackle different settings, e.g., Luong et al. (2015) explores a local
attention mechanism that does iterate over the full sequence of encoder states at each step. Differently,
Vinyals et al. (2015a) designed an attention-based pointer networks to handle absolute token position
in sequence for Seq2Seq models.
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Attention-Based Models Although attention first sticked out as a component of Seq2Seq models,
an attention mechanism can be described as a generic neural block. More generally, attention can be
defined as a function mapping a query and a set of key-value pairs to an output (Vaswani et al., 2017).
In that spirit, we can rewrite Eq. 2.7 as follows,

E = g(q,K), αi = exp(ei)∑
j exp(ej)

, ot′ =
T∑
i=1

αivi, (2.8)

where a query q is compared to a set of keys K to select a weighted linear combination of val-
ues v, E is tensor output and g(.) is a matching function. For instance, memory networks use an
attention mechanism to answer a question q by reasoning over a linguistic knowledge base K (Ku-
mar et al., 2016; Sukhbaatar et al., 2015; Weston et al., 2014). The matching function is the scalar
product between the query and the keys g(q,K) = Kq, and the output o is either used to answer
the initial question or encode a second query vector to perform multi-hop reasoning over the linguis-
tic knowledge base. Similarly, Neural Turing Machines combine a RNN with an external memory
bank (Graves et al., 2014, 2016), and use an attention mechanism to select, read, and write over
memory slots. Finally, transformers networks push attention mechanism a step further by entirely
encoding and decoding sentence with a self-attention mechanism. In such cases, tokenized words are
simultaneously query vectors and knowledge base components. Noticeably, this later approach com-
pletely discards RNN modules in the encoder and decoders, and it recently became the new state of
the art model in multiple NLP tasks (Devlin et al., 2018; Radford et al., 2019; Vaswani et al., 2017).

Transfer Learning Although transfer learning has been very successful in computer vision, it is
still an open-issue in NLP. Word embedding can admittedly be transferred from one task to an-
other; it is often equally efficient to learn them from scratch on new tasks. On the other hand,
there were several attempts to learn generic sentence embedding through unsupervised learning; it
includes skip-thought vectors (Kiros et al., 2015), doc2vec (Le and Mikolov, 2014), or weighted sum
of word embedding (Arora et al., 2017). Although these methods did provide generic acceptable se-
quence embedding, they were not as ground-breaking as VGGNet (Simonyan and Zisserman, 2015)
or ResNet (He et al., 2016) in computer vision. Again, it is often easier and as efficient to retrain
language models from scratch. Very recent works suggest that transformer networks are an adequate
neural architecture to learn transferable high-quality sequence embedding (Devlin et al., 2018; Rad-
ford et al., 2019; Vaswani et al., 2017), but more experiments must still be done before drawing further
conclusions. Another hypothesis is that the relative success of transfer is symptomatic that current
models still miss some syntactic, semantic or pragmatic properties; it thus advocates for investigat-
ing for new training objectives or experimental protocols. In this spirit, we explore why multimodal
learning may be a promising direction for improving semantics in the following sections.

2.2.4 Grounded Language Learning

The dominant paradigm in modern natural language understanding is to learn statistical language
models from text-only corpora. As previously discussed in Sec 2.2.2, this approach is founded on
a distributional notion of semantics, where the meaning of a word is based only on its relationship
to other words. This approach has been very successful by leading to numerous breakthroughs in
translation systems (Wu et al., 2016), automatic text generation (Radford et al., 2019), or dialogue
systems (Serban et al., 2016; Sordoni et al., 2015). However, several linguistic artifacts demonstrate
that those systems still lack the understanding of the words they manipulate (Gao et al., 2019). For
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Figure 2.9: Illustration of a dictionary graph using data for a tiny (but complete) mini-dictionary (Vincent-
Lamarre et al., 2016). Arrows are from defining words to defined words. The core includes self-defined words
and the kernel is the minimum set that allow to define all the other words in a recurrent fashion.

instance, a dialogue system may contradict itself during a conversation, changing ages or residencies
during a dialogue (Li et al., 2016a). At a lower level, word embedding tends to fail to capture some
basic object properties such that bananas are yellow (Kiela, 2017), or implicit interactions, e.g., eat-
ing involves looking at the food (Kottur et al., 2016). Distributional models are still struggling to
capture complete word semantics despite parsing millions of web pages. We here argue that these
models miss the multimodal and interactive environment in which communication often takes place.
From a cognitive perspective, we suspect distributional models to be facing the symbol grounding
problem (Harnad, 1990).

The symbol grounding problem states that it is not possible to capture the meaning of a symbol
if it is defined only through other symbols (Harnad, 1990). In other words, there is a problematic
circularity in distributional learning: words are defined by other words, that are themselves defined
by other words, etc., ending in a solipsistic form of training. To better explicit this problem, Har-
nad (1990) describes the Chinese dictionary problem, as an extension of the famous Chinese room
argument (Searle, 1980, 1984). Imagine that you want to learn Chinese, but you only have access
to a Chinese-Chinese dictionary, would you be able to learn Chinese? In theory, you have enough
information to learn Chinese as dictionaries are self-sufficient, but it sounds merely impossible to
start understanding Chinese if you do not have some basic understanding of initial key words. In
other words, the meanings of some symbols should be learned by other means than a pure dictionary
look-up. To verify this hypothesis, Vincent-Lamarre et al. (2016) transformed two English dictio-
naries into graphs to examine how words are interconnected, and which words are more likely to be
learned through grounding as illustrated in Fig 2.9. First, the authors observed that 10% of the words
suffice to define the remaining 90% words, and refer it as the kernel; similarly, 7% of the words build
a self-sufficient and core set where every word is defined with the other words in this subset, pointing
out the circular nature of language definition. As a second step, Vincent-Lamarre et al. (2016) com-
pared the age of acquisition of 30k words (Kuperman et al., 2012) and remarked that the core words
are acquired in average at a younger age than the kernel words, which are themselves learned later
than other the words. These observations comfort the idea that language understanding is built upon
both distributional and grounding approaches, where some words must be anchored in another modal-
ity before helping to define other words. This intuition has been the basis for learning multimodal
language embedding, assessing whether multimodal embedding may outperform their distributional
counterpart (Kiela, 2017; Lazaridou et al., 2015b), or study transfer and zero-shot learning (Kiela and
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Clark, 2015; Lazaridou et al., 2014).
Language grounding learning is tightly coupled with the so-called embodiment theory (Gibbs Jr,

2005; Wilson, 2002; Wilson and Foglia, 2011). Embodiment theory states that our reasoning, lan-
guage and thoughts are inextricably shaped by our perceptions and actions. It differs from Cartesian
approaches which advocate studying language as an independent and amodal phenomena (Chom-
sky, 1957; Kintsch, 1998). In the recent years, several new elements in both cognitive science and
neuroscience tend to support the embodiment theory, e.g., our semantics has been built on top of
our visual perception, and sensorimotor experiences (Barsalou, 2008; Glenberg, 2015; Pulvermüller
and Fadiga, 2010), and we cannot understand language without actually experiencing the physical
words. Thereby, perception was shown to be crucial in semantics acquisition and understanding
of shapes (Landau et al., 1988), category learning (Landau et al., 1998; Smith, 2003; Waxman and
Markow, 1995), spatial relationship (Dessalegn and Landau, 2008, 2013) or nouns-adjective differen-
tiation (Waxman and Booth, 2001). Hauk et al. (2004) highlighted the tied interconnection between
sensorimotor inputs and language by showing that specific areas of the motor cortex are activated
when hearing specific words. For instance, "lick" triggered areas of motor cortex that control the
mouth, "kick" triggered the foot area, "pick", the hand, etc. Huth et al. (2016) later exhaustively
mapped the representation of the meaning in narrative language, and the authors observe the seman-
tics information is spread across the entire cerebral cortex with different specialized areas, suggesting
a decentralized semantics understanding. More surprisingly, embodiment is not limited to the acqui-
sition of concrete concepts, but can also be a support for abstract understanding (Borghi et al., 2017).
As a result, language grounding learning is not only one solution to the symbol grounding problem,
it is also the cornerstone of language understanding according to the embodiment theory; if we want
our model to understand language, we also need them to understand our world (Hayes, 1978, 1985).

Embodiment and language grounding theory have been gaining strength in the machine learning
community over the past ten years (Anderson et al., 2018a; Darrell and Mooney, 2011; Kiela, 2017;
Mooney, 2006). Unsurprisingly, there have been direct application of embodiment in robotics (Borghi
and Cangelosi, 2014; Cangelosi, 2010), for e.g., category/attribute learning (Alomari et al., 2017;
Chai et al., 2016; Liu and Chai, 2015), or human-robot interaction (Landsiedel et al., 2017). Closer
to the topic of this thesis, we recently witnessed the development of virtual embodiment (Kiela et al.,
2016), where interactive virtual worlds are designed for language grounding (Anderson et al., 2018c;
Brodeur et al., 2017; Savva et al., 2017; Wu et al., 2018c) with tasks in category learning (Hermann
et al., 2017), question answering (Das et al., 2018b,c), instruction following tasks (Anderson et al.,
2018c; Savva et al., 2017). Although embodiment theory is an attractive theory, it also requires to
tackle new machine learning problems. As described at the beginning of the chapter, NLP, CV, and
interactive models have been mainly developed as separate fields; and despite the recent success of
deep learning, it is still an open question to train a holistic agent that sees, speaks and interacts with its
environment. In this thesis, we thus study two intermediate milestone towards this objective. First, we
focus on visually grounded language understanding through deep multimodal learning; we motivate
this choice as visual perception is among the most studied modality in deep learning while being a
major component of embodiment. In the next chapter, we examine dialogue systems as a testbed
for learning language through interaction; in this spirit, we explore how to train an agent to learn
language by uttering words in a trial-error fashion through reinforcement learning algorithms.
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Chapter 3

Multimodal Learning in Practice

«All our knowledge begins with the senses,
proceeds then to the understanding, and
ends with reason. »

Kant, Critique of Pure Reason
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In the previous chapter, we examined deep learning methods for computer vision and natural lan-
guage processing. In both cases, we argued that machine learning models would benefit from inter-
leaving the two modalities. In computer vision, language provides a powerful interface for assessing
image understanding; it can also support demanding vision tasks such as image disambiguation or cat-
egory learning. In natural language processing, integrating visual cues is a first step towards tackling
the symbol grounding problem while aiming for a holistic language understanding. In this line of re-
search, we explore deep multimodal learning architectures to process visual and language information
into joint representations. Thus, we first rigorously define multimodal learning before highlighting
the visually grounded language tasks present in this thesis. Finally, we define state-of-the-art methods
that were developed to tackle these tasks, decomposing neural models into independent deep learning
blocks.

3.1 Multimodal Learning

We apprehend the world around us through our senses: we observe what surrounds us, listen to
noises and smell odours; our body perceives our moves, and our thoughts are projected through
language. In machine learning, these individual perceptions are also referred to as modalities, and
multimodal learning consists of aggregating (or disambiguating) several modalities at once. However,
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each modality is characterized by distinct statistical properties which are encoded through different
representations, e.g., visual cues are represented by pixel images, audio signals are digitized wave-
forms, and words are discretized into tokens. Those heterogeneous statistics entail the significant
difficulty of multimodal learning: how do we discover the relationship between modalities while
disentangling or fusing them?

The research about the interplay between human perception mostly came together in the 70s with
seminal works in psychotherapy (Lazarus, 1973) and cognitive science (Miller and Johnson-Laird,
1976), and later lead for the previously stated embodiment theory (Barsalou, 2008). The authors
were opposed to the dominant archetype that human behaviour can be decomposed into independent
concepts, such as perception and thoughts, when analyzing psychological disorders or language se-
mantics. As a demonstration, McGurk and MacDonald (1976) showed that the consonants we hear
are paired with our visual perception; the human brain perceives different sounds when observing
different lips movement1. Those observations would motivate a first wave of multimodal learning re-
search in AI such as Audio-Visual Speech Recognition (ASVR) systems (Dupont and Luettin, 2000;
Ngiam et al., 2011; Petajan, 1984; Potamianos et al., 2003). In the ’00s, multimodal learning move
towards studying human-machine interaction by integrating sound, gesture, or visual cues to improve
communication protocols (Dumas et al., 2009; Jaimes and Sebe, 2007; Zeng et al., 2009). Multimodal
models were then developed to recognize affective states, create artificial avatars, or design intuitive
interfaces (Pantic and Rothkrantz, 2003; Zeng et al., 2009). The development of the internet also
raised new multimodal challenges to process and query heterogeneous data (Atrey et al., 2010; Lew
et al., 2006).

Since the deep learning achievements, multimodal learning focused on studying how to com-
bine disjoint raw inputs into high-level joint representations, irrespectively of the underlying tasks
or modalities. Although historical multimodal challenges still exist, e.g., ASVR (Ringeval et al.,
2018) or emotion recognition (Dhall et al., 2019), multimodal learning is now somehow perceived
as an sub-constituent of deep learning research, and architectural changes are transferred across ap-
plication domains as it occurred for new regularizers or optimizers. As further detailed in Sec 3.2,
deep multimodal learning has been applied for intersecting vision, language, speech or even olfactory
modalities (Kiela et al., 2015). Yet, multimodal neural blocks are also used to guide deep genera-
tive models towards generating sound, text or image with GAN (Mirza and Osindero, 2014; Radford
et al., 2015) or auto-regressive models (Van den Oord et al., 2016a,b). Deep reinforcement learning
can also be cast as a multimodal learning problem since the Q function composes with the state and
action spaces for computing the policy (Mnih et al., 2013; Riedmiller, 2005). Different multimodal
reinforcement learning challenges also include goal conditioning (Barreto et al., 2017; Schaul et al.,
2015a) or scaling to large-scale multiplayer games with heterogeneous inputs (Chan et al., 2019;
Vinyals et al., 2019).

3.1.1 Multimodal Training Objectives

Modalities may intersect differently from one problem to another, leading to different training set-
tings. We thus decompose multimodal learning tasks into three categories, namely translation, fusion,
and alignment, to formally express the interaction between the model inputs and outputs. We finally
depict a summary sketch in Fig. 3.1.

1https://www.youtube.com/watch?v=G-lN8vWm3m0
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Figure 3.1: (left) Illustration of classic multimodal tasks. Translation maps one modality to another, fusion
combines modality to solve a prediction task, alignment enforces feature correspondence between modalities.

Translation Translation consists in mapping one modality into another, and it generally relates to
generative models. It includes topics such as speech synthesis, speech recognition (Van den Oord
et al., 2016a), image-captioning (Vinyals et al., 2015b; Xu et al., 2015), or generating ambient sounds
from image (Owens et al., 2016). Formally, given two modalities X and Y , translation defines the
function f : X → Y that projects the modality X into the space Y .

Fusion Fusion aims at combining several input modalities to predict an outcome. It relates modali-
ties together by retrieving input correlation to build a joint representation that tackle the task at hand.
It includes topics such as ASVR (Potamianos et al., 2003), Visual Question Answering (VQA) (Antol
et al., 2015; Malinowski, 2017) or instruction following (Anderson et al., 2018c; Savva et al., 2017).
Given two modalities X and Y , and an output space Z , fusion aggregates both modalities at the input
level, learning the function f : X × Y → Z .

Alignment Alignment explicitly fetches the correspondence between modalities towards under-
standing input features. It generally involves a similarity score for guiding the training procedure,
but it does not fuse both modalities into a joint representation. It often relies on (un/semi)supervised
learning methods. It includes topics such as matching a specific text to visual scenes (Srivastava and
Salakhutdinov, 2012; Tapaswi et al., 2015), performing text-based image retrieval (Liu et al., 2007),
locating sounds in image (Arandjelovic and Zisserman, 2018), or performing zero-shot and transfer
learning (Kiela, 2017; Lazaridou et al., 2015a). Given two input modalitiesX and Y , alignment learns
two feature extractor functions f : X → Rn and g : Y → Rn to enforce a consistent similarity score
sim : Rn × Rn → R between both modalities.

Finally, we refer the reader to (Baltrušaitis et al., 2019) for a more exhaustive (but slightly different)
multimodal taxonomy. Noticeably, the authors argue that multimodal problems are implicitly decom-
posed into multimodal subtasks, which should be tackled by specific neural blocks. For instance,
neural attention mechanisms perform implicit data alignment to fuse two modalities.

3.1.2 Early and Late Conditioning in Deep Learning

The fusion procedure is traditionally split into two distinct schemes: early vs late fusion (Atrey et al.,
2010; Bruni et al., 2014; Hall and Llinas, 1997; Snoek et al., 2005). Following Snoek et al. (2005),
early fusion integrates unimodal features into a single model to directly perform the final task. On
the other hand, late fusion first learns independent scores from external tasks before combining those
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Figure 3.2: Sketch illustrating the level of multimodal conditioning in CNN and RNN neural blocks.

scores to perform the final prediction. In other words, early fusion works at the feature level while
late fusion works at the scoring level (Bruni et al., 2014). Albeit legitimate, these two categories
were designed for models with handcrafted features, and they fail to describe the variety of fusion
schemes that emerges due to the hierarchical nature of deep learning models. In the following, we
thus describe a classic deep learning scheme to define distinct feature-wise fusing mechanisms.

Deep neural networks can be seen as representation-learning methods with multiple levels of
representation. Concretely, deep networks are designed towards decomposing raw input into different
representation stages ranging from low-level features to and high-level ones (LeCun et al., 2015). In a
similar spirit, we propose to define distinct conditioning (or fusion) mechanisms level by identifying
the representation stage where both modalities are merged together. For instance, early conditioning
mechanism would fuse modalities while learning low-level features, middle conditioning for middle-
level features, late conditioning for high-level features etc. When aggregating two modalities, we
highlight that conditioning definition is asymmetric as the modalities may encode different feature
levels; therefore, we respectively refer as the conditioned modality, the representation with the lowest
feature level, and the conditioning modality, the representation with the highest feature level.

Although, feature-levels are somehow acknowledged (Bau et al., 2017; Zhou et al., 2014), they
remain a pure human abstraction. We thus propose arbitrary classification levels, which is based
on the empirical observation that deep learning architectures are decomposed into sub-modules that
entail different representation stages. In a few words, neural networks are often based on core pipeline
that processes raw inputs, a pooling mechanism to induce shape invariance and a final head, which
acts as feature discriminator as illustrated in Fig 3.2. Formally, given a neural block f(.), a pooling
mechanism g(.) that turns nD-tensors into 1D-vectors, a conditioned modality x, and a conditioning
modality y, we define conditioning-levels as follows:

• Early Conditioning. Early conditioning fuses x and y before the neural block f(.). Early
conditioning does not change the dimension of the input as it works at the very raw input level.
A common example is to inject visual features while learning word embedding (Lazaridou
et al., 2015a), or append extra visual channel to an image such as depth (Das et al., 2018a), or
unit life points (Vinyals et al., 2019).
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• Middle Conditioning. Middle conditioning fuses x and y before the pooling mechanism g(.).
Similar to early fusion, middle conditioning does not change the dimension of the input, but it
fuses two processed inputs. It includes methods such as bias conditioning (Van den Oord et al.,
2016b), or tilling mechanism (Malinowski and Doersch, 2018), and the so-call modulation
layers that are introduced in this thesis.

• Mid-late Conditioning. Mid-late conditioning fuses x and y inside the pooling mechanism
g(.). Mid-late conditioning projects the conditioned modality into a lower-dimensional space
guided by the other modality. More generally, we refer as middle conditioning every process
that is neither in the original input space, e.g., spatial or temporal localization, nor in a linearly
separable space with 1D vector representation. For instance, mid-late conditioning includes
the vast literature of attention-pooling mechanism (Fukui et al., 2016; Jiasen et al., 2016), or
object-feature attention (Anderson et al., 2018b).

• Late Conditioning. Late conditioning fuses x and y after the pooling mechanism g(.). Late
conditioning works with 1D modality representation by enforcing high-level alignment be-
tween modalities. It includes vector concatenation, projections, element-wise product, etc. As
opposed to other mechanisms, late conditioning is often symmetric as there is often no discrep-
ancy between modality representations.

Again, we acknowledge the limitation of this classification as simple reshaping may blur the lines
between the different conditioning levels. Other neural architectures also have intermediate pooling
layers. In any case, this categorization still provides insightful comparison during this thesis, and
highlights how complementary are multimodal neural modules, and how they can be composed.

3.1.3 Conditioning Mechanism

Since we decompose conditioning levels, we here describe the mathematical and implementation
details of the underlying mechanisms. We first start with high-level conditioning methods before
exploring mid-late and middle conditioning.

Vanilla late conditioning In its simplest forms, late conditioning merges two vector representations
by simple mathematical operations. Formally, given two modalities x ∈ RN and y ∈ RM and the
resulting multimodal representation z ∈ RK , vanilla conditioning includes concatenation z = [x;y],
element-wise sum z = x + y and element-wise multiplication (or Hadamard product) z = x �
y. Those operations are generally followed by a projection to merge and reduce the multimodal
representation. Besides, element-wise operations may require to project both input modalities to
match their dimensions and ease feature alignments. Interestingly, there exist some redundancies
between those late conditioning operations. For instance, linearly projecting both modalities before
summing them is equivalent as concatenating modalities before linearly projecting them! In practice,
the projections are not linear and each mechanism induce different inductive biases. It also common
to combine the three mechanisms in a single step z = [x;y;x+ y;x� y].

Bilinear transformation Bilinear models are a recurrent multimodal mechanism that interleaves
two vector representations through an intermediate tensor. Formally, a bilinear transformation defines
the relationship between two modalities x ∈ RN and y ∈ RM and the multimodal representation
z ∈ RK through the tensorW ∈ RN×M×K such as:

zk = xTWky ⇔ z = W (x⊗ y), (3.1)
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where ⊗ is the outer product xyT . Tenenbaum and Freeman (1997) introduced bilinear models
to disentangle latent perceptual factors in computer vision. The authors sought to separate an image
style from its content, arguing that classic linear models were not rich enough to extract such complex
interaction. They demonstrate the effectiveness of their approach by applying it to spoken vowel iden-
tification or zero-shot font classification. Bilinear models were then extended to several applications
such facial animation by separating key facial features from visual emotions (Chuang et al., 2002;
Vlasic et al., 2005) or recommendation systems to interleave users tastes and items features (Chu and
Park, 2009; Koren et al., 2009; Yang et al., 2011).

In its original form, the inner tensor prevents bilinear models from scaling to high-dimensional in-
put modalities. As mentioned by Fukui et al. (2016), language-vision tasks often entail input features
N = M = 2048, and a multimodal representation of K = 3000 requires 12.5 billions parameters,
which is computationally intractable. Therefore, an active multimodal research direction has been
to approximate such bilinear transformation within deep networks. For instance, Fukui et al. (2016)
decompose the bilinear transformation into two steps: the authors first perform a dimension reduc-
tion through a count sketch projection (Charikar et al., 2002)2, and compute the bilinear product by
performing a convolution in the Fourier domain, z = FFT−1(FFT(x)� FFT(y)) where FFT (.) are
Fast Fourier Transforms. Differently, Kim et al. (2017a) estimate a low-rank bilinear transformation
by learning a linear projection for both modalities followed by an element-wise product as follows:

zk = xTWky (3.2)

' xTUkV T
k y = 1T (UT

k x� V T
k y), (3.3)

where� denotes an element-wise product andUk and Vk are low rank decomposition ofWk. By
keeping K very small, Yu et al. (2018c) manage to keep the computation tractable by using simple
matrix multiplication, vector reshaping and sum-pooling operations. Kim et al. (2017a, 2018) then
further reduce this equality by sharing the parameters of U and V over the k dimension, falling back
to vanilla late fusion mechanisms. Although a very rough approximation, it turns out to work very
well in practice when carefully tuned. Finally, Ben-Younes et al. (2017, 2019) either performed a
low-rank tensor factorization of W through a Tucker decomposition, or a more general block-term
decomposition which split W into a sum of sparse block-tensors. The authors then show that the
bilinear transformation could be approximated by a sequence of outer products in a low dimensional
space.

Spatial Attention Mechanisms Spatial attention extends machine translation attention mechanisms
(Bahdanau et al., 2015; Luong et al., 2015) introduced in Sec 2.7 to computer vision. While the orig-
inal attention module computes a weighted sum of RNN hidden states, spatial attention computes
weighted sum of pixel-wise activations as shown in Fig. 3.3. More formally, given a conditioning
embedding x ∈ RN and the image feature map Fw,h,c where w, h, c are the width, height, and
channel indices, we obtain a final visual embedding z as follows:

ξw,h = MLP (g(Fw,h,·,x)) ; αw,h = exp(ξw,h)∑
w′,h′ exp(ξw′,h′)

; z =
∑
w,h

αw,hFw,h,·, (3.4)

2given the input x ∈ RN , the count sketch projection outputs a vector x̄ ∈ RD where N � D. It first initializes
two random vectors s ∼ U{1,−1}N and h ∼ U [0, . . . , D − 1]N , then uses h a look-up table to compute x̄ as follows:
x̄[h[i]] = x̄[h[i]] + s[i]x[i] where i ∈ [0..N − 1] and x̄ is initialized as a zero vector.
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Figure 3.3: Spatial attention mechanism. Pixel-wise features Fw,h,. are first merged with the linguistic embed-
ding to generate a mask ξ. This mask is then normalized thought a softmax to get α before being applied to
the feature-maps F . Finally, a sum-pooling is performed for each feature map over the spatial dimension. In
the literature, the attention mechanism differs in the definition of g(., .) and the MLP to a lesser extent.

where MLP (.) is a multi-layer perceptron and g(., .) is an arbitrary late-fusion mechanism (con-
catenation, element-wise product, bilinear transformation, etc.). For instance, Multimodal Compact
Bilinear (MCB) attention (Fukui et al., 2016) defines g(., .) as follows:

g(Fw,h,·,x) = FFT−1(FFT(h(Fw,h,·))� FFT(h(x))), (3.5)

where h(.) is a sketch projection, and the joint representation is followed by a two-layer MLP (.)
with ReLU hidden activation. Similarly, Multimodal Low-rank Bilinear (MLB) attention (Kim et al.,
2017a) appends tanh non-linearity to Eq. 3.3 and defines g(., .) as follows:

g(Fw,h,·,x) = tanh(UTFw,h,·)� tanh(V Tx), (3.6)

where U and V are trainable weight matrices, and the subsequent MLP is a single layer with
tanh activation. We also list below other remarkable spatial attention variants:

• Stacked Attention Networks (SAN) perform several spatial attention hops to iteratively refine the
attention mask α (Yang et al., 2016). Given the query x, a first attention pass is performed over
the image feature F to retrieve the visual embedding z, the query x and the visual embedding z
are then merged to generate a new query vector x′, and the attention process is repeated to obtain a
new visual embedding z′ etc.

• Hard-Attention computes a sparse weighted sum of pixel-wise activations by setting some αw,j to
zero through thresholding or sum truncation. Hard-attention improves computational efficiency by
only processing the most relevant information at the expense of creating a non-differentiable neural
block. As a result, it either requires to optimize a second loss with REINFORCE (Xu et al., 2015),
or using adaptive ReLU (Malinowski et al., 2018b).
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Figure 3.4: Difference between spatial attention and Object-Feature attention. (top) In spatial attention, image
features are extracted from a classification network (e.g. ResNet), and the attention mask is performed over
the spatial dimension. (bottom) In object-feature attention, object visual features are extracted from a object
detection network (e.g. R-CNN), and are directly pooled into a 1D-dimensional representation before applying
an attention mask over the object dimension.

• Relational Networks attend to every pair of pixels for a query vector, the resulting vectors are then
summed to have a fixed-length representation. Formally, relational networks introduce a function
g(., ., .) whose two first terms iterate over the spatial location, and the third is fed with the query
vector. Despite a polynomial complexity, relational vectors successfully deal with several spatial
reasoning tasks (Santoro et al., 2017; Zambaldi et al., 2019).

In visually-grounded language tasks, the query vector x is generally the last hidden state of a
RNN (Kim et al., 2017a; Yang et al., 2016) or the result of a self-attention mechanism (Yu et al.,
2018c). However, it is also possible to perform a co-attention mechanism that jointly attends to the
full linguistic sequences [xt]Tt=1 and the feature maps F . In a seminal work, Xu et al. (2015) perform
image captioning by computing a new spatial attention mask for every new generated word. In VQA
tasks, Jiasen et al. (2016) examine a parallel attention mechanism that first computes a joint query
embedding by fusing the linguistic and visual embedding with mean-pooling before attending to both
modalities with the resulting query vector. In a second experiment, the authors study a co-attention
mechanism that first attends to the language embedding to generate a textual query, followed by a
spatial attention to generate a low-dimensional visual representation. Several follow-up works extend
such co-attention mechanisms to visual dialogue settings, where language embedding are naturally
broken down into multiple representations (Gan et al., 2019; Wu et al., 2018b; Zhuang et al., 2018).

Finally, some neural architectures are only composed of multimodal attention modules such as
visual memory networks (Xiong et al., 2016), or the Memory,Attention, and Composition (MAC)
networks (Hudson and Manning, 2018), which rely on several attention blocks to attend to linguistic,
visual and internal memory representations.

Object-Feature Attention Object-Feature attention builds upon object detection networks, which
output a list of salient image regions as pooled convolutional feature vectors, and computes weighted
sum of the object embeddings as depicted in Fig. 3.4.

In more details, a pretrained object detection networks (e.g. Faster R-CNN (Ren et al., 2015b))
first returns a pool ofK object visual features (K < 100). In a second step, we compute the weighted
sum of object features conditioned on a query vector. Noticeably, the first step is sometimes referred
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as bottom-up attention while the latter is named as top-down attention (Anderson et al., 2018b).
Formally, given a conditioning embedding x, a list of I visual object embedding [oi]I−1

i=0 where oi ∈
RN , we obtain a final visual embedding z following Eq. 3.7:

ξi = MLP (g(oi,x)) ; αi = exp(ξi)∑
i′ exp(ξi′)

; z =
∑
i

αioi, (3.7)

where g(., .) is a late-fusing mechanism similar to the ones described in spatial attention mech-
anism. For instance, Anderson et al. (2018b) use a simple concatenation followed by a non-linear
projection with tanh activation, and Kim et al. (2018) extend low-rank bilinear approximation to
object-feature attention.

Differently, Shrestha et al. (2019) replace the weighted-sum by using a bidirectionnal GRU to
process the object embedding. In more details, the authors concatenate object-features with a linguis-
tic embedding, fuse them with several non-linear projections with residual connection, and use the
last RNN states as a joint embedding.

Many state-of-the-art models in language-vision tasks rely on R-CNN features, e.g. the VQA
winners (Anderson et al., 2018c; Jiang et al., 2018), object localization models (Yu et al., 2018b),
or visual dialogue architectures (Gan et al., 2019; Kang et al., 2019; Kim et al., 2018), and R-CNN
features are slowly supplanting ResNet-like features.

Modulation Mechanism When starting the Ph.D, middle conditioning mechanisms have drawn
little attention in the context of deep learning architecture as defined in Sec 3.1.2. One of the main
contributions of this thesis is thus to design and formalize this so-called modulation mechanism to
condition deep network’s middle stage. We thus thoughtfully explore this concept in Chapters 5, 6
and 7.

Hypernetworks Hypernetworks are an original conditioning mechanism that recently emerged in
the literature (Ha et al., 2016). While previous methods design neural blocks to fuse modalities into
a joint space, hypernetworks use the first modality to generate the weights of another network that
processes the second modality. Formally, given two modalities x ∈ X and y ∈ Y , a multimodal
representation z ∈ Z , we define the primal network as fθ : Y → Z which is parametrized by a
vector θ ∈ Θ and the hypernetwork as hφ : X → Θ which is parametrized by a trainable weight
vectorφ. The hypernetwork first predicts the parameters θ which are then used by the primal network,
such as:

fhφ(x)(y) = x (3.8)

The attentive reader would notice that this mathematical decomposition is an artificial composi-
tion of functions which can be factorized in a classic fusion mechanism where f : X × Y → Z; as a
result, the gradient can be backpropagated through both networks.

From a historical perspective, hypernetworks were first designed to reduce the memory footprint
of large networks (Ha et al., 2016; Schmidhuber, 1992) or to quickly generalize over a set of tasks in
a meta-learning fashion (Bertinetto et al., 2016; Ravi and Larochelle, 2017; Schmidhuber, 1987). For
example, Bertinetto et al. (2016) perform one-show classification by training a network to produce
the weights of a binary-classifier given one single example, entrusting the newly generated network
to detect similar samples.
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To the best of our knowledge, hypernetworks have only recently been explored in multimodal
learning. For instance, adaptive CNN predicts various convolution filters as a function of auxiliary in-
puts like camera perspective, level of noise, etc. (Kang et al., 2017). In language-vision tasks, Ba et al.
(2016) perform zero-shot learning by predicting convolutional filters and classifiers weights based on
textual descriptions of object classes. The same idea was applied to VQA to either produce the last
hidden layer of the classifier (Noh et al., 2016), attention modules Seo et al. (2017), or intermediate
convolution filters (Gao et al., 2018) conditioned on the ongoing question. Finally, modulation can
be assimilated to hypernetworks as the batch normalization parameters are conditioned by linguistic
features instead of being trained by backpropagation as we explore in the manuscript.

3.2 Major Visually-Grounded Tasks

Until now, we have been studying multimodal learning from a generic perspective, we now specifi-
cally focus on vision-language tasks. Thus, we first outline the prominent recent tasks and datasets
that have blossomed over the past five years shown in Fig. 3.5, before mentioning the deep neural
models that were subsequently developed.

Image captioning As the name suggests, image captioning consists of generating coherent and
factual descriptive statements about images, e.g., "Two elephants crossing a road in the forest", "A
boy and a girl watching a sport TV-show". This translation task has witnessed numerous research
works over the years, slowly drifting from specific topic descriptions (e.g., house picture descrip-
tions (McDonald and Conklin, 1982) to key-word descriptions (Barnard et al., 2003) up to free-form
captions (Feng and Lapata, 2010; Vinyals et al., 2015b). Similar to traditional computer vision tasks,
the first captioning datasets only contained a few thousand image-caption pairs (Everingham et al.,
2015; Müller et al., 2012), and internet paves for the emergence (and the need) for large-scale datasets
and image-captioning models (Feng and Lapata, 2010; Lew et al., 2006). Soon after, Ordonez et al.
(2011) released the Im2Text large-scale dataset containing 1 million images from captions collected
on Flickr3. However, the dataset turned out to be as large as it was noisy despite the best efforts of the
authors. Chen et al. (2015); Lin et al. (2014) and Young et al. (2014) later released the MS Coco and
the Flickr30 dataset, which "only" consists of 160k and 30k images with 800k and 150k captions. To
do so, the MS Coco team hired mechanical turkers to obtain multiple high-quality captions per im-
age. Those large datasets also used acknowledged linguistics scores to automatically and standardized
benchmark models, e.g. BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), METEOR (Banerjee and
Lavie, 2005). In a second step, these metrics were supplanted by new captioning scores that better
correlate with human judgment such as CIDEr (Vedantam et al., 2015) or SPICE (Anderson et al.,
2016). Recently, the Visual Genome (Krishna et al., 2017) and Flickr30 entities (Plummer et al., 2015)
datasets shift the classic image captioning task from global descriptions to region image description
(also called dense captioning), containing 100k and 30k images and 5M and 276k region captions.
Deep Learning models quickly lead the way, and Karpathy and Fei-Fei (2015); Vinyals et al. (2015b)
designed a new deep multimodal encoder-decoder approach inspired by the recent successes in ma-
chine translation (Cho et al., 2014b; Sutskever et al., 2014). In this scenario, a pretrained ConvNet first
extracts a fixed-size image representation, and a second RNN translates it into a textual description
in a Seq2Seq fashion. This approach was then refined by integrating attention mechanisms (Ander-
son et al., 2018b; Lu et al., 2017b; Xu et al., 2015), exploring different decoder architectures (Aneja
et al., 2018; Wang et al., 2016a), integrating R-CNN encoders (Anderson et al., 2018b) or using rein-

3https://www.flickr.com/
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Image captioning:
∗ Two businessmen having a conference call in an office
∗ Two Ph.D students acting like businessmen in a room
VQA:
∗ Is the man on the right wearing a tie? No
∗ How many people are standing? 2
ReferIt:
∗ The man having a phone call
∗ The man on the left holding a coffee
GuessWhat?!:
• Is it on the office table? No
• Is he a person? Yes
• The one drinking coffee? Yes
VisDiag:
Two traders working in a meeting room
• What are they wearing? white shirt and black suit
• Are they both sitting? No, one is standing in the front
• What is he doing? Drinking a coffee

Figure 3.5: Examples of language and vision-tasks, where the target object is surrounded by a green bounding
box (GuessWhat?! and ReferIt). Image captioning provide global descriptions of the image, VQA asked open-
form question, ReferIt returns an ambiguous object description in the image, GuessWhat?! aims at locating
the person and VisDiag aims at asking questions to imagine the image content. In VQA and GuessWhat?!, the
answer module performs a classification tasks. In image captioning and VisDiag, the answers module produces
free form-text. Finally, ReferIt is either a classification task (selection within a set of objects), or free-form
spatial localisation (bounding box, object segmentation etc.)

forcement learning to fine-tune the network (Liu et al., 2017; Rennie et al., 2017). As studied in this
thesis, those captioning models were extended to other image-to-text translation tasks, and we use
them while tackling visual dialogue systems in Chapter 4.

Visual Question Answering VQA requires answering free-form questions given an image (e.g.,
"How many zebras are there in the picture?", "Is it raining outside?"). This fusion task has often been
depicted as a Visual Turing Test as it requires a global understanding of the image to answer ques-
tions (Gao et al., 2015; Geman et al., 2015; Malinowski, 2017). Recently, the VQA challenge (Antol
et al., 2015; Goyal et al., 2017) has provided a new dataset far bigger than previous attempts (Geman
et al., 2015; Malinowski and Fritz, 2014). In its original version, the VQA dataset contains 750k
open-ended questions on 250k different images from the MS Coco dataset, followed by several vari-
ants. Gao et al. (2015) concurrently released a VQA Chinese/English dataset containing 150k images
and 310 questions-answer pairs. (Antol et al., 2015; Zhang et al., 2016a) developed a cartoon engine
to generate subtle changes in scene representations leading to high semantic consequences (e.g., flip-
ping a running character would change a caption from running away to cheering). Visual7W (Zhu
et al., 2016) uses object localization to guide the mechanical turkers towards asking object-grounded
questions. FVQA extends the visual questions with textual facts to integrate common sense reason-
ing (Wang et al., 2018). Finally, the Visual Genome dataset (Krishna et al., 2017) released 1.7M
question-answer pairs over 100k images, scaling up further the VQA field. An extensive body of
deep learning models has followed, largely building on the image captioning literature (Fukui et al.,
2016; Jiasen et al., 2016; Kim et al., 2017a; Yang et al., 2016). However, models were observed to
report the same answer to a question irrespective of the image, suggesting that they largely exploit
predictive correlations between questions and answers present in the dataset (Agrawal et al., 2016;
Kafle and Kanan, 2017). This observation led to the second generation of VQA datasets that tried to
anneal those biases, trying to re-balance the dataset distribution. Goyal et al. (2017) collected com-
plementary images to balance the image-answer distribution of the original VQA dataset. C-VQA
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reshuffled the VQAv1 training/testing dataset to enforce a mismatch between the answer distribu-
tion in both sets; this modification allowed the authors to detect models that mostly learn language
biases (Agrawal et al., 2018). TDIUC carefully merged several VQA datasets and generated new
artificial questions from visually annotated images (Kafle and Kanan, 2017).

Current state-of-the-art systems often use the following computational pipeline: they first extract
image features from a pretrained convolutional network such as classication networks (e.g. ResNet,
VGGNet), or a object detection networks (e.g. R-CNN). In parallel, a language embedding is ex-
tracted with a RNN over word embeddings. Both modalities are then fused with multiple conditioning
methods: mid-late conditioning involves spatial attention (Fukui et al., 2016; Gao et al., 2018; Jiasen
et al., 2016; Kim et al., 2017a; Malinowski et al., 2018a; Yu et al., 2018c) or R-CNN feature-map
selection (Anderson et al., 2018b; Cadene et al., 2019; Kim et al., 2018; Shih et al., 2016; Shrestha
et al., 2019; Wu et al., 2018a). Finally, a late conditioning is performed through simple projections,
concatenations and element-wise products (Antol et al., 2015; Jiasen et al., 2016; Kim et al., 2017a;
Malinowski et al., 2015), or by approximating bilinear mechanisms (Ben-Younes et al., 2017; Cadene
et al., 2019; Fukui et al., 2016). We also investigate modulation for middle conditioning architectures
in Chapter 5, 6 and 7. While the mentioned models were detailed in Sec. 3.1.3, we encourage the
reader to look at the VQA challenge winners feedback for low-level training tricks (Jiang et al., 2018;
Teney et al., 2018). Unfortunately, the VQA challenge had also unexpected damaging side effects by
sometimes insidiously driving heavy engineering over model novelties.

Artificial Visual Question Answering Synthetic VQA datasets were concurrently developed to
alleviate some of the described VQA constraints. Besides removing the burden of collecting large
scale datasets, synthetic tasks are designed to anneal potential human cognitive bias and allow to
assess original research directions better. Synthetic datasets are also less sensitive to a state-of-the-
art escalation that sometimes prevailed in competition. However, they are also hard to design, and
the underlying task difficulty is equally hard to estimate; it is easy to end with unfeasible scenarios,
degenerate solutions, or to result in problem-solving researches that overfit on toy problems.

The CLEVR dataset Johnson et al. (2017a) has been the most studied (and successful) artificial
dataset in visually-grounded language tasks by a large margin. It is a synthetic dataset of 700K
(image, question, answer, program) tuples whose images contain 3D-rendered objects of various
shapes, materials, colors, and sizes, and questions are multi-step and compositional in nature. They
range from counting questions (“How many green objects have the same size as the green metallic
block?”) to comparison questions (“Are there fewer tiny yellow cylinders than yellow metal cubes?”).
Similar datasets include 2D-image rendering-based datasets, e.g, the Sort-of-CLEVR (Santoro et al.,
2017), SHAPES (Andreas et al., 2016b), ShapeWorld (Kuhnle et al., 2018), SQOOP (Bahdanau et al.,
2019b), abstract scenes (Zhang et al., 2016a) or 3D world with Minecraft scenes (Yi et al., 2018). Re-
cently, GQA bridge the gap between artificial and natural datasets by generating synthetic language
on top of natural images (Hudson and Manning, 2019). The authors built upon the Visual Genome
images (Krishna et al., 2017), and construct filling question-templates through annotated object prop-
erties and relationships.

The CLEVR task spurred new deep learning approaches that focused on visual reasoning. Partly
inspired by Neural Module Network (NMN) (Andreas et al., 2016a,b), a first approach integrates
(and generates) structured program operations into a neural reasoning architecture to guide the learn-
ing (Hu et al., 2017b; Johnson et al., 2017b; Suarez et al., 2018). For instance, Johnson et al. (2017b)
implements a sequence-to-sequence Program Generator, which takes in a question and outputs a se-
quence corresponding to a tree of composable neural modules. This tree of neural modules is assem-

60



3.2. Major Visually-Grounded Tasks 61

• Are there an equal number of large things and metal spheres?
• There is a sphere with the same size as the metal cube; is it made of the

same material as the small red sphere?
• How many objects are either small cylinders or red things?

• What color is the cube to the right of the yellow sphere?

Figure 3.6: Questions in CLEVR test various aspects of visual reasoning including attribute identification,
counting, comparison, spatial relationships, and logical operations. Illustration are from Johnson et al. (2017a).
The fourth question is accompanied with the underlying reasoning program generated by the CLEVR-engine.
This engine was extended to the ReferIt (Liu et al., 2019a) and VisDiag (Kottur et al., 2019) setting.

bled to form an execution engine that predicts an answer from the image. Other approaches discard
the program supervision and train networks without the need for handcrafted intermediate represen-
tations. The resulting leading CLEVR methods include the MAC networks (Hudson and Manning,
2018; Marois et al., 2018), Relational Networks (Santoro et al., 2017), the use of hyper-networks for
spatial attention (Gao et al., 2018), graph networks (Haurilet et al., 2019), modulation mechanisms
as explored in Chapter 6 and subsequent multi-hop variants (Yao et al., 2018). As both approaches
lead to similar performance, it is still an open issue whether the program supervision is required to
learn visual reasoning with deep learning models. Concurrently, some of the dominant CLEVR ar-
chitectures are observed to not scale-up to real images (Shrestha et al., 2019; Suhr et al., 2018), and
simple but highly competitive CLEVR models were discovered (Malinowski and Doersch, 2018),
pointing out again the limitation of synthetic datasets. In light of these observations, the CLEVR
task is now perceived as a necessary but not sufficient benchmark to assess the generality of visual
reasoning methods, and following synthetic tasks were released to palliate this limitation and answer
other research questions (Hudson and Manning, 2019).

ReferIt Visual referring expression task, aka ReferIt, is a cooperative two-player game at the cross-
road between image-captioning and VQA (Gkatzia et al., 2015; Kazemzadeh et al., 2014). The first
player selects an object in a rich visual scene, for which they must generate an expression that refers
to it (e.g., the person eating ice cream). Based on this expression, the second player selects an object
within the image. Four ReferIt datasets co-exist in the literature: RefClef (Kazemzadeh et al., 2014),
RefCOCO/RefCOCO+ (Yu et al., 2016a) and RefCOCOg (Mao et al., 2015). The original RefClef
dataset uses the IMAGEClef dataset (Escalante et al., 2010) with 30K references over 20K images,
while the three recent extensions are built on top of MS COCO (Lin et al., 2014) with respectively
142k, 142k and 86k references over 20k, 20k and 27k images. Subtle differences exist between
datasets e.g., RefCOCO+ forbids certain words to prevent object references from being too simplistic,
while RefCOCOg only relies on images containing 2-4 objects from the same category. More recently,
a synthetic version of ReferIt has been released on top of the CLEVR game engine (Liu et al., 2019a).
Finally, the Visual Query Detection dataset extends the ReferIt game to multi-choice object detection,
allowing sentences such as the red-cap children (Acharya et al., 2019).

From a modeling perspective, the object retrieval task is divided into the multimodal fusion and
the object selection parts. In the fusion step, the historical strategy incorporates hand-crafted visual
modules that are tailored for ReferIt, and combines within a scoring fusion mechanism (Conti et al.,
2018; Hu et al., 2017c; Kazemzadeh et al., 2014; Nagaraja et al., 2016; Yu et al., 2018b). For instance,

61



62 Chapter 3. Multimodal Learning in Practice

Modular Attention Network (MAttNet) (Yu et al., 2018b) combines the scores of: the subject module
specialized in categories and attributes perception, the localization module specialized in processing
absolute and relative object position, and the relationship module that learns how objects visually
refer to each other. Other fusing strategies involve a classic VQA pipeline that merges language
and image features into a single network through concatenation (Yu et al., 2016a), RNN (Hu et al.,
2016b), co-attention (Rohrbach et al., 2016; Zhuang et al., 2018), or modulation as in Chapter 7. The
object selection step alternates between ranking object crops (Conti et al., 2018; Yu et al., 2018b;
Zhuang et al., 2018), outputting spatial coordinates (Rohrbach et al., 2016), and directly segment-
ing the target object (Hu et al., 2016a; Li et al., 2018). The sentence generation is mostly based
on the image-captioning literature (Johnson et al., 2016), where the loss is sometimes modified to
discriminate referring expressions within the same image (Mao et al., 2015). Differently, Luo and
Shakhnarovich (2017); Yu et al. (2016b) use reinforcement learning to train the object retrieval and
description generation models iteratively. Finally, there have been some efforts to cast the ReferIt
game into a semi-supervised and unsupervized setting (Mao et al., 2015; Rohrbach et al., 2016).

Visually-grounded dialogues Visual dialogues are goal-oriented dialogues where the agent ac-
quires natural language by discussing over visual cues. When starting the Ph.D., visually grounded
language tasks were mostly static as they align one sentence, e.g., questions or captions, with an
image; we thus start developing visual dialogues to integrate the dynamic and interactive facets of
language learning. In practice, visual dialogue may cast the historical language-vision tasks such
as image-text retrieval, VQA, or ReferIt into a dialogue setting. From a vision perspective, such an
approach provides a fine-grained interaction with visual systems, making an extra step toward visual
comprehension. From a dialogue perspective, visual cues are an alternative to the (non-differentiable)
knowledge-base, which are the backbone of various conversational agents. The interactive nature of
visual dialogues also encourages exploring reinforcement learning techniques for language. Finally,
visual dialogues are an ideal test-bed for assessing visually grounded language learning theories. Note
that we further discuss this line of research in Chapter 4 while introducing the GuessWhat?! visual
dialogue task.

Other tasks There exists a large panel of other vision-language tasks that we do not explore in this
thesis but share similar research reflections. For instance, visually grounded semantic (Baroni, 2016)
aims at learning transferable language embedding by incorporating visual cues, learning multimodal
representation at the word level (Baroni et al., 2014; Kiela, 2017; Kottur et al., 2016; Lazaridou et al.,
2015b; Utsumi, 2018), or sentence level (Kiela et al., 2018). There is also an effort towards gen-
erating tasks for assessing visual and linguistic model understanding e.g., Natural Language Visual
Reasoning (NLVR) (Suhr et al., 2017, 2018) determine whether a caption is right with regard to a pair
of images, phrase grounding explicits the alignment between image components and caption words
(Anne Hendricks et al., 2018; Datta et al., 2019; Dogan et al., 2019), and the well-design FoilIt!
Dataset involves detecting and fixing incorrect image captions (Ling and Fidler, 2017; Shekhar et al.,
2017). Visual Storytelling Dataset (Huang et al., 2016) contains annotated sequences of images with
individual image captioning, contextualized image descriptions, and entertaining stories within the
sequence of images. Static image analysis has also been extended to dynamic visual perception by
summarizing videos (Rohrbach et al., 2017; Sanabria et al., 2018; Xu et al., 2016), performing video
question answering (Alamri et al., 2019; Jang et al., 2017; Lei et al., 2018), and designing virtual
interactive world for embodied question answering (Das et al., 2018b,c; Gordon et al., 2018) or in-
struction following (Anderson et al., 2018c; Gargett et al., 2010; Savva et al., 2017). These tasks and
datasets often have some variants with different versions, and even some competitors, but it would be

62



3.2. Major Visually-Grounded Tasks 63

Sisyphean work to fully enumerate the new vision-language tasks that have blossomed in a couple of
years. On a more polemic perspective, this profusion may even harm the community as it takes the
research away from either practical applications or more fundamental questions by focusing on diffi-
cult but still toy problems. Yet, this gentle point has also been a recurrent pitfall of the AI community
over the years4 and we are confident that it should decant as time goes.

4[the paper proposal] is not to create a problem-solving program, or a natural language comprehension system with
the representation as target. It is tempting to make such demonstrations from time to time. (They impress people; and
it is satisfying to have actually made something which works, like building model railways; and one’s students can get
Ph.D.’s that way.) But they divert attention from the main goal. In fact, I believe they have several more dangerous effects.
It is perilously easy to conclude that, because one has a program which works (in some sense), its representation of its
knowledge must be more or less correct (in some sense). Now this is true, in some sense. But a representation may be
adequate to support a limited kind of inference, and completely unable to be extended to support a slightly more general
kind of behaviour. It may be wholly limited by scale factors, and therefore tell us nothing about thinking about realistically
complicated worlds. Images as internal pictures and the STRIPS representation of actions by add and delete lists are two
good examples. (Hayes, 1978)
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As mentioned in the previous chapters, we explore the interactive visual dialogue setting as a
playground for visually grounded language learning. In this chapter, we thus introduce GuessWhat?!,
a two-player guessing game whose goal is to locate an unknown object in a rich image scene by ask-
ing a sequence of questions. Higher-level image understanding, like spatial reasoning and language
grounding, is required to solve the proposed task. Our key contribution is the collection of a large-
scale dataset consisting of 150K human-played games with a total of 800K visual question-answer
pairs on 66K images. We explain our design decisions in collecting the dataset and introduce the
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Oracle and questioner tasks that are associated with the two players of the game. We finally proto-
type deep learning models to establish initial baselines of the introduced tasks, which will be used
alongside the manuscript.

4.1 Introducing GuessWhat?!

4.1.1 Underlying Motivations

People use natural language as the most effective way to communicate, including when it comes
to describe the visual world around them. They often need only a few words to refer to a specific
object in a rich scene. Whenever such expressions unambiguously point to one object, we speak of a
referring expression (Krahmer and Deemter, 2012). However, uniquely identifying the referred object
is not always possible, as it depends on the listener’s state of mind and the context of the scene. Many
real life situations, therefore, require multiple exchanges before it is clear what object is referred to:

- Did you see that dog?
* You mean the one in the corner?
- No, the one that’s running.
* Yes, what’s up with that?

A computer vision system able to hold conversations about what it sees would be an important step
towards intelligent scene understanding. Such systems would be more transparent and interpretable
because humans may naturally interact with them, for example by asking clarifying questions about
what it perceives. Still, a fundamental challenge remains: how to create models that understand
natural language descriptions and ground them in the visual world.

As detailed in Chapter 3.2, the last few years have seen an increasing interest from the com-
puter vision community in tasks towards this goal. Thanks to advances in training deep neural net-
works (Goodfellow et al., 2016) and the availability of large-scale classification datasets (Krishna
et al., 2017; Lin et al., 2014; Russakovsky et al., 2015; Zhou et al., 2014), automatic object recogni-
tion has now reached human-level performance (LeCun et al., 2015). As a result, attention has been
shifted toward tasks involving higher-level image understanding.

On the other hand, there has been a renewed interest in dialogue systems (Lemon and Pietquin,
2012; Serban et al., 2018), inspired by the success of data-driven approaches in other areas of natural
language processing (Cho et al., 2014b; Vinyals and Le, 2015). Traditionally, dialogue systems have
been built through heavy engineering and hand-crafted expert knowledge, despite machine learning
attempts for almost two decades (Levin and Pieraccini, 1997; Singh et al., 1999). One of the dif-
ficulties comes from the lack of automatic evaluation as – contrary to machine translation – there
is no evaluation metric that correlates well with human evaluation (Liu et al., 2016). A promising
alternative is goal-directed dialogue tasks (Lemon and Pietquin, 2012; Singh et al., 1999; Wen et al.,
2016; Weston et al., 2016) where agents converse to pursue a goal rather than casually chit-chat.
The agent’s success rate in completing the task can then be used as an automatic evaluation metric.
Many tasks have recently been introduced, including the bAbI tasks (Weston et al., 2016) for testing
an agent’s ability to answer questions about a short story, the movie dialog dataset (Dodge et al.,
2016) to assess an agent’s capabilities regarding personal movie recommendation and a Wizard-of-
Oz framework (Wen et al., 2016) to evaluate an agent’s performance for assisting users in finding
restaurants.
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Is it human?

Is it leftmost?
Is it in the middle?

Is it an ear?

Is it a cow? 
No

Is it the one at the back ?
Yes

Are they five humans visible?

Is it the third one from the left? Yes Does it have a horn?

Is it a horn?

Yes

Yes

Yes
No

Yes

#153521

No

No

Is it a person?

Is it in the hands of these girls?
Is it a cat?

Yes

Yes
No

The cat in the right side of the
image?

No

#23580 #16867

Figure 4.1: Three examples of our dataset.

Is it a person?

Is it in yellow?

Is it a person?

One with white pants? 
No

One with blue pants in the top?

Is it standing? One in yellow?Yes
Yes

No

#24131 #140888 #166895

Yes

YesIs it a person?

Is he wearing blue shirt?
No

Is he wearing black shirt? Yes

Is it in the foreground?
No

Yes

No

Figure 4.2: Three example of our dataset where different objects are picked in the same image.

In this chapter, we bring these two fields together and propose a novel goal-directed task for multi-
modal dialogue. The two-player game, called GuessWhat?!, extends the ReferIt game (Kazemzadeh
et al., 2014) to a dialogue setting. To succeed, both players must understand the relations between
objects and how they are expressed in natural language. From a machine learning point of view, the
GuessWhat?! challenge is the following: learn to acquire natural language by interaction on a visual
task. Previous attempts in that direction (Akinator, 2007; Wen et al., 2016) do not ground natural
language to their immediate environment; instead they rely on an external database through which a
conversational agent searches.

The key contribution of this chapter is the introduction of the GuessWhat?! dataset that contains
160,745 dialogues composed of 821,889 question/answer pairs on 66,537 images extracted from the
MS COCO dataset (Lin et al., 2014). We define three sub-tasks that are based on the GuessWhat?!
dataset and prototype deep learning baselines to establish their difficulty. The chapter is organized
as follows. First, we explain the rules of the GuessWhat?! game in Sec. 4.1.2. Then, Sec. 4.1.3
describes how GuessWhat?! relates to previous work. In Sec. 4.2.1 we highlight our design decisions
in collecting the dataset, while Sec. 4.2.2 analyses many aspects of the dataset. Sec. 4.3 introduces
the questioner and Oracle tasks and their baseline models. Finally, Sec. 4.5 provides a final discussion
of the GuessWhat?! game.
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4.1.2 GuessWhat?! game

GuessWhat?! is a cooperative two-player game in which both players see the picture of a rich visual
scene with several objects. One player – the Oracle – is randomly assigned an object (which could be
a person) in the scene. This object is not known by the other player – the questioner – whose goal it
is to locate the hidden object. To do so, the questioner can ask a series of yes-no questions which are
answered by the Oracle as shown in Fig. 4.1. Note that the questioner is not aware of the list of allowed
objects, they can only see the whole picture. Once the questioner has gathered enough evidence to
locate the object, they notify the Oracle that they are ready to guess the object. We then reveal the list
of objects, and if the questioner picks the right object, we consider the game successful. Otherwise,
the game ends unsuccessfully. We also include a small penalty for every question to encourage
the questioner to ask informative questions. Figs 4.9 and 4.10 in the supplementary materials 4.5.1
display a full game from the perspective of the Oracle and questioner, respectively.

The Oracle role is a form of visual question answering where the answers are limited to Yes,
No and N/A (not applicable). The N/A option is included to respond even when the question being
asked is ambiguous or an answer simply cannot be determined. For instance, one cannot answer the
question "Is he wearing glasses?" if the face of the selected person is not visible. The role of the
questioner is much harder. They need to generate questions that progressively narrow down the list
of possible objects. Ideally, they would like to minimize the number of questions necessary to locate
the object. The optimal policy for doing so involves a binary search: eliminate half of the remaining
objects with each question. Natural language is often very effective at grouping objects in an image
scene. Such strategies depend on the picture, but we distinguish the following types:

Spatial reasoning We group objects spatially within the image scene. One may use absolute spatial
information – Is it on the bottom left of the picture? – or relative spatial location – Is it to the
left of the blue car?.

Visual properties We group objects by their size – Is it big?, shape – Is it square? – or color – Is it
blue?.

Object taxonomy We can use the hierarchical structure of object categories, i.e. taxonomy, to group
objects e.g. Is it a vehicle? to refer to both cars and trucks.

Interaction We group objects by how we interact with them – Can you drive it?.

The goal of the GuessWhat?! task is to enable machines to understand natural descriptions and
ground them into the visual world. Note that such higher-level reasoning only occurs when the scene
is rich enough i.e. when there are enough objects in the scene. People otherwise tend to fall back to a
linear search strategy by simply enumerating objects (often by their category names).

4.1.3 Related works

The GuessWhat?! game and the data collected from it present opportunities for the visually-grounded
learning research community. In the following, we describe previous works in these areas and relate
them to the new challenges that GuessWhat?! brings to the language-vision ecosystem. We refer the
reader to Sec. 3.2 for extensive details regarding the mentioned tasks.
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ReferIt:
∗ Woman in red jacket with green bag
∗ Left woman in red coat

GuessWhat?!:
• Is it a person? Yes
• One of the people with the stroller on the right? No
• One of the two people crossing the street towards us? No
• The woman in red? Yes

ReferIt:
∗ Guy with hat bottom right front
∗ Guy sitting with hat bottom right
GuessWhat?!:
• Is it a person? Yes
• Are they standing? No
• Are they touching the frisbee ? No
• Are they holding a square thing? Yes
• Black cap ? Yes

Figure 4.3: Samples illustrating the difference between GuessWhat?! and ReferIt games. As both datasets are
constructed on top of MS COCO, we picked identical objects (and images).

Image captioning Our work builds on top of the MS COCO dataset (Lin et al., 2014) which con-
sists of 120k images with more than 800k object segmentations. While image captioning research
uncovered successful approaches to automatically generate coherent, factual statements about im-
ages (Feng and Lapata, 2010), GuessWhat?! instead requires to model the process of asking useful
questions about images. Although the questioner may be assimilated to an image captioning model,
the linguistic pragmatic differs as the questioner intent is to ask a sequence of questions rather than
describing the image.

VQA datasets VQA tasks form another well known extension of the captioning task (Antol et al.,
2015; Goyal et al., 2017; Lei et al., 2018). They instead require answering a open-form question
given a picture instead of describing it. The GuessWhat?! game and dataset attempt to circumvent
these issues. Because of the questioner’s aim to locate the hidden object, the generated questions
are different in nature: they naturally favour spatial understanding of the scene and the attributes of
the objects within it, making it more valuable to consult the image. Besides, it only contains binary
questions, whose answers we find to be balanced and has twice more questions on average per picture.
The GuessWhat?! contains questions with co-references requiring several reasoning steps issued from
the dialogue nature of the task, which is absent from the VQA tasks.

ReferIt Probably closest to our work is the ReferIt game (Bartie et al., 2016; Kazemzadeh et al.,
2014; Mao et al., 2015; Yu et al., 2016a). In this game, one player observes an annotated object in a
scene, for which they need to generate an expression that refers to it (e.g. ẗhe man wearing the white
t-shirt¨). The other player then receives this expression and subsequently clicks on the location of the
object within the image. On a data collection perspective, the recent ReferIt databases select images
with only 2 − 4 objects of the same category. In contrast, GuessWhat?! picks images with 3 − 20
objects without further restrictions on the object class, and thus contains three times more images
than the ReferIt dataset. To further investigate the difference between ReferIt and GuessWhat?!, we
compare two samples for the same selected object in Fig 4.3. While ReferIt directly locates the object
with a single expression, GuessWhat?! iteratively narrows down the object by means of positive and
negative feedback on questions. We also observe that GuessWhat?! dialogues favor more abstract
concepts, such as "Is it edible?" or "Is it on oval plate?" than ReferIt.
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Eye Spy The robotics community has explored variants of the "Eye Spy" (Parde et al., 2015;
Thomason et al., 2016; Vogel et al., 2010) game for grounded language acquisition. In one of the
scenarios, the robot is first shown a set of objects that it can poke through some predefined actions
(grasp, hold, look, etc.) while recording several modalities (VGGNet features, sounds, joint motor
positions, etc.). As a second step, the human describes one of the objects of his choice, and the robot
must guess the referenced object. However, the robotic constraints force the game to remain limited to
small numbers of objects (4 32), and the training is mainly done in an online fashion with no released
dataset. As a result, GuessWhat?! is a promising dataset for transferring knowledge into real-case
scenarios (Tremblay et al., 2018).

Dialogue systems A broad range of datasets co-exist in the dialogue system community (Serban
et al., 2018). Gigantic datasets are composed of spontaneous and unconstrained dialogues that are
extracted from chat logs (Lowe et al., 2015) or micro-blogging platforms (Sordoni et al., 2015).
However, it is difficult to assess the quality of such dialogue systems (Liu et al., 2016; Schatzmann
et al., 2005) and existing metrics do not always correlate with human evaluations (Elliott and Keller,
2014). Besides, those corpora lack some form of grounding, and the resulting models are prone
to inconsistencies, and poor language understanding (Gao et al., 2019; Li et al., 2016b). Guess-
What?! tackles those two difficulties by casting the problem into a goal-oriented setting with visually
grounded questions. To be fair, the GuessWhat?! close-form question also limit the range of potential
language generalization.

Goal-directed dialogue GuessWhat?! is also relevant to the goal-directed dialogue research com-
munity. Such systems are aimed at collaboratively achieving a goal with a user, such as retrieving
information or solving a problem. Although goal-directed dialogue systems are appealing, they re-
main hard to design. Thus, they are usually restricted to specific domains such as train ticket sales,
tourist information or call routing (Pietquin and Dutoit, 2006; Singh et al., 1999; Young et al., 2013).
Besides, existing dialogue datasets are either limited to fewer than 100k example dialogues (Dodge
et al., 2016), unless they are generated with template formats (Dodge et al., 2016; Schulz et al.,
2017; Wei et al., 2018; Wen et al., 2016; Weston et al., 2016) or simulation (Pietquin and Hastie,
2013; Schatzmann et al., 2006) in which case they do not reflect the free-form of natural conver-
sations. Finally, recent work on end-to-end dialogue systems fail to handle dynamic contexts. For
instance, (Wen et al., 2016) intersects a dialogue with an external database to recommend restaurants.
Other well-known game-based dialogue systems (20 Questions, 1988; Akinator, 2007) also rely on
static databases, and are neither contextual nor use natural language. In contrast, GuessWhat?! dia-
logues are heavily grounded by the images. The resulting dialogue is highly contextual and must be
based on the content of the current picture rather than an external database. Thus, to the best of our
knowledge, the GuessWhat?! dataset marks an important step for dialogue research, as it is the first
large scale dataset that is both goal-oriented and multimodal.

Human computation games GuessWhat?! is in line with Von Ahn and Dabbish (2004); Von Ahn
et al. (2006)’s seminal work on human computation games who showed that games are an effective
way to gather labeled data. The first ESP game (Von Ahn and Dabbish, 2004) was developed to
collect image tags and was later extended to Peekaboom (Von Ahn et al., 2006) to gather object
segmentation. These games were developed more than a decade ago when object recognition was in
its infancy and served a different purpose than GuessWhat?!.
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Figure 4.4: (a) Number of questions per dialogue (b) Number of questions per dialogue vs the number of objects
within the picture (c) Word cloud of GuessWhat?! vocabulary with each word proportional to its frequency.
Words are colored based on a hand-crafted clustering. Uninformative words such as "it", "is" are manually
removed.

Visual Dialog Concurrent to our work, the Visual Dialog dataset casts the VQA task into a dialogue
setting, where an agent asks a sequence of questions to picture an image (Das et al., 2017a). The
underlying dataset contains 133k dialogue, with ten open-form questions by game. Note that we
describe further this dataset and compare it with GuessWhat?! in Sec 4.4 to include contemporary
works.

4.2 GuessWhat?! Dataset

4.2.1 Data collection

Images We use a subset of the training and validation images and objects of the MS COCO dataset (Lin
et al., 2014). We first discard objects that are too small (area < 500px2) to be decently located by
a human observer. Then, we only keep images containing three to twenty objects, to avoid trivial or
overly complicated images. In total, we keep 77,973 images with 609,543 objects. We verified that
this selection does not significantly alter the original dataset distribution as depicted in Fig 4.13 and
Fig 4.14 in Appendix 4.5.2.

Amazon Mechanical Turk The data collection was crowd-sourced on Amazon Mechanical Turk
(AMT) (Buhrmester et al., 2011). We created two separate tasks – known as HITs on AMT – for
the questioner and Oracle roles, and rewarded the questioner slightly more than the Oracle. We
ensured the quality of the data collection by several means. First, the workers had to go through a
qualification round which consisted of successfully completing 10 games while producing fewer than
4 mistakes or disconnects. After qualification, HITs continue to consist of a batch of 10 successful
games. We incentivize the worker to produce as many successful dialogues in a row by providing
bonuses for making fewer mistakes. Secondly, players could report on each other and players were
banned after a certain number of reports. Thus, players were incentivized to cooperate. In the end,
we only kept dialogues from qualified people and successful dialogues from the qualification round.
In contrast to traditional dataset collection, our game requires an interactive session between two
players. Fortunately, we found that the GuessWhat?! game was highly engaging. A total of more
than 10K people participated in our HITs, and our top ten participants played over 2, 000 games each.
Since questions were manually typed, they could contain spelling mistakes. Thus, we retrieved all
questions containing words that do not occur in an English dictionary and manually corrected the
1000 most common words. For the remaining 30k questions, we created two HITs to correct the
spelling mistakes. See Figure 4.11 in Appendix 4.5.1 for further details.
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Full Finished Success
# dialogues 160,745 152,000 135,400
# questions 821,889 780,391 672,940
# words 3,985,368 3,788,167 3,254,793
# voc. size 11,464 11,259 10,637
# voc. size (3+) 5,444 5,324 5,013
# images 66,537 66,161 63,642
# segmented objects 535,723 531,847 505,599
# selected objects 134,073 131,415 117,513

Table 4.1: GuessWhat?! statistics split by dataset types.

4.2.2 Data analysis

In the following, we explore properties of the data we collected using the GuessWhat?! game. We
provide global statistics, examine the vocabulary used by the questioners and highlight the relation-
ship between properties of objects to guess and the odds of having a successful dialogue.

Dataset statistics The raw GuessWhat?! dataset is composed of 160,745 dialogues containing
821,889 question/answer pairs on 66,537 unique images with 1,385,197 objects and 134,073 unique
selected objects. The answers are respectively 52.2% no, 45.6% yes and 2.2% N/A. On average, there
are 5.2 questions per dialogue and 2.3 dialogues per image. The dialogues contain 3,985,368 word
tokens in total, making up 11,464 different words with at least one occurrence and 5,444 words with
at least 3 occurrences. Moreover, 84.2% of the dialogues are successful, 10.3% are unsuccessful
and 5.5% are not completed (disconnection, timeout etc.). Thus, different subsets co-exist in the
GuessWhat?! dataset, we will refer to the dataset as full, finished and successful when we include
all the dialogues, all finished dialogues (successful and unsuccessful) or only successful dialogues,
respectively. The previous statistics are broken down into dataset types in Tab 4.1. In practice, we
only use to the successful dataset while training and benchmarking the models as it turns out to be
less noisy.

Question distributions To get a better understanding of the GuessWhat?! games, we show the
number of questions within a dialogue and the average number of questions given the number of
objects within a image in Fig 4.4. First, the number of questions within a dialogue decreases expo-
nentially, as players tend to shorten their dialogues to speed up the game (and therefore maximize
their gains). More interestingly, we observe that the average number of questions given the number
of objects within an image appears to follow a function that grows at a rate between logarithmically
and linearly. A questioning strategy of simply listing objects (e.g. "is it the chair", etc.) implies linear
growth in the number of questions, while the optimal binary search strategy only requires logarithmic
growth. Thus the human questioners seem to imply a strategy that is somewhere in between. We
conjecture three reasons why humans do not achieve the optimal search strategy. First, the questioner
does not have access to the ground truth list of objects in the picture, and might, therefore, overesti-
mate the number of objects. Second, some humans tend to favor a linear search strategy. Finally, the
questioner may ask additional questions to confirm that he has located the right object. This can be
important in the presence of possible Oracle errors.

Vocabulary To gain insight into the vocabulary used by the questioner, we compute the frequency
of words in the GuessWhat?! corpus and display the most frequent words as a word cloud in Fig 4.4c.
Several key words clearly stand out. As explained in Sec. 4.1.2, some of those key words refer to
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Figure 4.5: (a-b) Histogram of absolute/relative successful dialogues with respect to the number of objects and
the size of the objects, respectively. (c) Evolution of answer distribution clustered by the dialogue length

abstract object properties such as person or object, spatial locations such as right/left or side and
visual features such as red/black/white. Furthermore, prepositions are also heavily used to express
relationships between objects. We also compute a co-occurrence matrix of words and show these
correlations in Fig 4.12 in Appendix 4.5.2. To better understand the sequential aspect of the questions,
we study the evolution of the vocabulary at each question round and look at the occurrence difference
to the previous round in Tab. 4.5. We observe that questioners use abstract object properties such
as human/object/furniture only at the beginning of the dialogues, and quickly switch to either spatial
or visual terms such as left/right, white/red or table,chair. This can be highlighted by applying a
Dynamic Topic Model (Blei and Lafferty, 2006) to study the evolution of topics over the course of
the dialogue as shown in Fig 4.16 in Appendix 4.5.2. As a consequence, there are fewer words
introduced over the course of a dialogue as shown in Fig 4.15 in Appendix 4.5.2.

Elements of success To investigate whether certain object properties favour success, we compute
the success ratio of dialogues relative to: the size of the unknown objects in Fig 4.5b, the number of
objects within the images in Fig 4.5a, the object category, the location of objects within the images and
the size of the dialogues in Fig 4.17, Fig 4.18 in Appendix 4.5.2, respectively. As one may expect, the
more complex the scene is, the lower the success rate is. When there are only 3 objects, the questioner
has 95% success rate, while this ratio drops to around 70% with 20 objects. Similarly, big objects
are almost always found while the smallest one are only found 60% of the time. Questioners easily
find objects in the middle of the picture but have more difficulties to find them on the border. Finally,
objects from categories that are often grouped together, e.g. bananas or books, have a lower success
rates.

Miscellaneous In Fig 4.5c we break down the ratio of yes-no answers within the dialogues. While
the first yes-no answers are balanced for small dialogues, they often terminate with a final yes. In con-
trast, long dialogues often start with a higher proportion of negative answers which slowly decrease
during the exchange.

4.2.3 Dataset release

We split the GuessWhat?! dataset by randomly assigning 70%, 15% and 15% of the images and its
corresponding dialogues to the training, validation and test set. This way of dividing the data ensures
that we evaluate performance on images not seen during training. The GuessWhat?! dataset and the
source code is available at https://guesswhat.ai/download.
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it a vase ?

Figure 4.6: An schematic overview of the "Image + Question + Crop + Spatial + Category" oracle model.

4.3 Model Descriptions

We now empirically investigate the difficulty of the Oracle and questioner tasks. To do so, we trained
reasonable baselines for each task and measured their performance.

4.3.1 Game Notation

Formally, a GuessWhat?! game revolves around an image I ∈ RW×H containing a set of K seg-
mented objects O = {o1, . . . , oK}. Each object ok is assigned an object category ck ∈ {1, . . . , C}
and has a pixel-wise segmentation mask Sk ∈ {0, 1}W×H to specify its location and size. The
game further consists of a sequence of J questions q and answer a, which defines a dialogue D =
[(qj , aj)]Jj=1 = [(q1, a1), . . . , (qJ , aJ)], produced by the questioner and Oracle. We will use qj<
and aj< to refer to the first j − 1 questions and answers, respectively. Each question qj contains
a sequence of Ij tokens, i.e. qj = [wji ]Ii=1 = [wj1, . . . , w

j
Ij

], where wji is taken from a vocabulary
V and represents the token at position i in question j. Each answer is either Yes, No or N/A, i.e.
aj ∈ {<yes>,<no>,<na>}. Finally, the Oracle has access to the identity of the correct object o∗,
and the prediction of the questioner is denoted as opredict. Note that the previous notation will be used
thought the full manuscript.

4.3.2 Oracle baselines

The Oracle task requires to produce a yes-no answer for any object within a picture given a natural
language question. We first introduce our model and then outline its results to get a better understand-
ing of the GuessWhat?! dataset.

Model We propose a simple neural network based approach to this model, illustrated in Fig 4.6.
Specifically, we use an appropriate neural network architecture to embed each of the following in-
formation: the image I, the cropped object from S, its spatial information, its category c and the
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current question q. These embeddings are then concatenated as a single vector and fed as input to a
single hidden layer MLP that outputs the final answer distribution using a softmax layer. Finally, we
minimize the cross-entropy error during the training and report the classification error at evaluation
time.

To embed the full image, it is rescaled to a 224 by 224 image and is passed through a pretrained
VGGNet to obtain its fc8 features (last VGGNet layer). As for the selected object, it is first cropped by
finding the smallest rectangle that encapsulates it, based on its segmentation mask. We then rescale the
crop to a 224 by 224 square, before obtaining its fc8 features from the pretrained VGGNet. Although
we could use the mask to drop out pixels around the selected object, we keep the crop as is since
pretrained VGGNets are exposed to such background noise during their training.

We also embed the spatial information of the crop, to help locate the cropped object within the
whole image. To do so, we follow the approach of (Hu et al., 2016b; Yu et al., 2016a) and extract an
8-dimensional vector of the location of the bounding box:

xspatial = [xmin, ymin, xmax, ymax, xcenter, ycenter, wbox, hbox] (4.1)

wherewbox and hbox denote the width and height of the bounding box, respectively. We normalize
the image height and width such that coordinates range from−1 to 1, and place the origin at the center
of the image. As for the object category, we convert its one-hot class vector into a dense category
embedding using a learned look-up table. Finally, the embedding of the current natural language
question q is computed using an LSTM (Hochreiter and Schmidhuber, 1997) where questions are
first tokenized by using the word punct tokenizer from the python nltk toolkit (Bird et al., 2009). For
simplicity, we decided to ignore the question-answer pairs history q<t in our Oracle baseline.

Training setting We train all Oracle models on the successful dataset. During training, we keep
the parameters of the VGGNet fixed, and optimize the LSTM, object category/word look-up ta-
bles and MLP parameters by minimizing the negative log-likelihood of the correct answer. We use
Adam (Kingma and Ba, 2015) for optimization and train for at most 15 epochs. We use early stopping
on the validation set, and report the train, valid and test error.

Results We report results for several Oracle models using a different set of inputs in Table 4.2.
We name the model after the input we feed to it. For instance, (Question+Category+Spatial+Image)
refers to the network fed with the question q, the object category c, the spatial features xspatial
and the full image I. The results of all subsets are reported in Table 4.6 in Appendix 4.5.2. As the
GuessWhat?! dataset is fairly balanced, simply outputting the most common answer in the training set
– No – results in a high 50.8% error rate. Solely providing the image or crop features barely improves
upon this result. Only using the question slightly improves the error rate to 41.2%. We speculate
that this small bias comes from questioners that refer to objects that are never segmented or over-
represented categories. As hoped, we observe that the error rate significantly drops (< 31%) when
we finally feed information on the object to guess (crop, spatial or category) to the model. We find that
crop and category information are redundant: the (Question+Category) and (Question+Crop) model
achieve respectively 29.2% and 25.7% error, while the combined model (Question+Category+Crop)
achieves 24.7%. In general, we expect the object crop to contain additional information, such as
color information, beside the object class. However, we find that the object category outperforms
the object crop embedding. This might be partly due to the imperfect feature extraction from the
crops. We further investigate advanced models that successfully integrate visual cues in Chapter 5
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Model Train err Val err Test err

Majority Baseline (no) 47.4% 46.2% 50.9%
Question 40.2% 41.7% 41.2%
Image 45.7% 46.7% 46.7%
Crop 40.9% 42.7% 43.0%
Question + Crop 22.3% 29.1% 29.2%
Question + Image 37.9% 40.2% 39.8%
Question + Category 23.1% 25.8% 25.7%
Question + Spatial 28.0% 31.2% 31.3%
Question + Category + Spatial 17.2% 21.1% 21.5%
Question + Category + Crop 20.4% 24.4% 24.7%
Question + Spatial + Crop 19.4% 26.0% 26.2%
Question + Category + Spatial + Crop 16.1% 21.7% 22.1%
Question + Spatial + Crop + Image 20.7% 27.7% 27.9%
Question + Category + Spatial + Image 19.2% 23.2% 23.5%

Table 4.2: Classification errors for the Oracle baselines on train, valid and test set. The best performing model
is "Question + Category + Spatial" and refers to the MLP that takes the question, the selected object class and
its spatial features as input.

Model Train acc Val acc Test acc
LSTM 27.9% 37.9% 38.7%
HRED 32.6% 38.2% 39.0%
LSTM+VGG 26.1% 38.5% 39.5%
HRED+VGG 27.4% 38.4% 39.6%

Table 4.3: Classification errors for the guesser baselines on train, valid and on successful set.

and Chapter 7. Finally, our best performing baseline model combines object category and its spatial
features along with the question.

4.3.3 Questioner baselines

Given an image, the questioner must ask a series of questions and guess the correct object. We
separate the questioner task into two different sub-tasks that are trained independently:

Guesser Given an image I and a sequence of J questions and answers (q, a)≤J , the Guesser predicts
the correct object o∗ from the set of all objects O.

Question Generator Given an image I and a sequence of J questions and answers (q, a)≤J , the
Question Generator produce a new question qJ+1.

In general, one also needs a module to determine when to start guessing the object (and stop
asking questions). In our baseline, we bypass this issue by fixing the number of questions to 5 for
the question generator model. However, this constraint was later removed by adding either a stop
dialogue tokens in Chapter 8, or by adding a logistic stopping flag (Shekhar et al., 2018).

Guesser The role of the guesser model is to predict the correct object. To do so, the guesser has
access to the image, the dialogue and the list of objects in the image. We encode the image by
extracting its fc8 features from VGGNet. A dialogue of a GuessWhat?! game is a sequence on
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LSTM / HRED
encoder

Is it a vase? Yes 
Is it partially visible? No
Is it in the left corner? No
Is it the turquoise and purple one? Yes

MLP MLP MLP

obj1

Softmax

Opredict

obj2 obj3 obj4

MLP

Figure 4.7: Overview of the guesser model for an image with 4 segmented objects. The weights are shared
among the MLPs, this allows for an arbitrary number of objects.

two different levels: there is a variable number of question-answer pairs where each question in
turn consists of a variable-length sequence of tokens. This can be encoded into a fixed size vector
by using either an LSTM encoder (Hochreiter and Schmidhuber, 1997) or an Hierarchical recurrent
encoder decoder (HRED) encoder (Serban et al., 2016). While the LSTM encoder considers the
dialogue as one flat sequence, HRED explicitly models the hierarchy by two different RNN. First, an
encoder RNN creates a fixed-size representation of a question or answer by reading in its tokens and
taking the last hidden state of the RNN. This representation is then processed by the context RNN to
obtain a representation of the current dialogue state. For both models, we concatenate the image and
dialogue features and do a dot-product with the embedding for all the objects in the image, followed
by a softmax to obtain a prediction distribution over the objects. Given the best performance of the
"Question+Category+Spat" Oracle model, we represent objects by their category and their spatial
features. More precisely, we concatenate the 8-dimensional spatial representation (see Eq. 4.1) and
the object category look-up and pass it through an MLP layer to get an embedding for the object.
Note that the MLP parameters are shared to handle the variable number of objects in the image. See
Fig 4.7 for an overview of the guesser with HRED and LSTM.

Table 4.3 reports the results for the guesser baselines using human-generated dialogues. As a first
baseline, we report the performance of a random guesser which does not use the dialogue information.
We split the guesser results based on whether they use the VGGNet features or not. In general, we find
that including VGGNet features does not improve the performance of the HRED and LSTM models.
We hypothesize that the VGGNet features are a too coarse representation of the image scene, and that
most of the visual information is already encoded in the question and the object features. Surprisingly,
we find LSTMs to perform slightly better than the sophisticated HRED models. Empirical evidence
would suggest that HRED tend to overfit faster than LSTM partly because of the additional parameters
that are introduced. In the long run, we discard the HRED architecture as the ratio between training
complexity and performance is not favorable.

Question Generator The question generation task is hard for several reasons. First, it requires
high-level visual understanding to ask meaningful questions. Second, the generator should be able to
handle long-term context to ask a sequence of relevant questions, which is one of the most challenging
problems in dialogue systems. Additionally, we evaluate the question generator using the imperfect
Oracle and imperfect guesser, which introduces compounding errors.

HRED (Serban et al., 2016) is the current state of the art method for natural language generation
tasks. We extend this model by conditioning on the VGGNet features of the image as illustrated in
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Figure 4.8: HRED model conditioned on the VGGNet features of the image. To avoid clutter, we here only
show the part of the model that defines a distribution over the third question given the first two questions,
its answers and the image P (q2|q<2, a<2, I). The complete HRED model models the distribution over all
questions.

Fig 4.8. Finally, we train our proposed model by maximizing the conditional log-likelihood:

logP (qj |q<j ,a<j , I) = log
J∏
j=1

P (qj |q<j ,a<j , I) (4.2)

= log
J∏
j=1

Nj∏
i=1

P (wji |w
j
<i, q<j ,a<j , I) (4.3)

with respect to the described parameters. At test time, we use a beam-search to approximately
find the most probable question qj . Evaluating the questioner model requires a pretrained Oracle
and a pretrained guesser model. We use our questioner model to first generate a question which is
then answered by the Oracle model. We repeat this procedure 5 times to obtain a dialogue. We
then use the best performing guesser model to predict the object and report its accuracy as the metric
for the QGen model in Tab. 4.4. A guesser based on human generated dialogues achieves 61.3%
accuracy. The Question Generator models achieve reasonable performance which lies in between
the random performance and the performance of the guesser on human dialogues. Note that some
of these baseline scores were later improved by fine-tuning both the three models. A few generated
dialogues are shown in Fig. 4.20a and 4.20b.
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Model Accuracy
Human generated dialogue 61.3%
QGen+Oracle 34.0%
QGen+Oracle (Strub et al., 2017b) 44.8%
Random 17.1%

Table 4.4: Test error for the question generator models (QGen) based on VGG+HRED(FT) guesser model. We
here report the accuracy error of the guesser model fed with the questions from the QGen model.

4.4 Visual Dialogues Task: Concurrent and subsequent works

In this section, we dig into the literature that follows the release of GuessWhat?!. We also compare our
dataset with the concurrent Visual Dialog task that was released at the same time. We here notice that
despite apparent similarities, both tasks focus on different research facets of interactive and visually
grounded language challenges, making them highly complementary.

GuessWhat?! As mentioned at the beginning, GuessWhat?! extends the ReferIt task into the dia-
logue setting: it is a cooperative two-player game in which both players see the image of a rich visual
scene with several objects.

More generally, the oracle and guesser models may be seen as extensions of VQA models where
object features are appended to the scene representation, and dialogue co-occurence must be disam-
biguated. Later works then naturally explore new neural architectures to enhance the GuessWhat?!
performance such as attention mechanisms that jointly attend to individual question and objects (Deng
et al., 2018; Zhuang et al., 2018), memory network architectures (Abbasnejad et al., 2018; Han et al.,
2017a; Zhao and Tresp, 2018b), or R-CNN modules (Bani et al., 2018).

On the questioner side, the model may be assimilated to basic image-captioning models whose
visual-features are first enhanced with dialogue history. The models are first trained on the Guess-
What?! dataset, before being finetune with RL as latter explored in Chapter 8. Most of the succeed-
ing researches focused on adapting RL to the visual dialogue setting, using reward shaping (Zhang
et al., 2018a), approximating model-based RL to plan over potential oracle answers (Abbasnejad
et al., 2018; Lee et al., 2018b), incorporating replay buffer mechanisms (Zhao and Tresp, 2018a), and
benchmarking exploration strategies, e.g., varying the softmax-policy temperature (Zhao and Tresp,
2018b) or using bayesian Dropout (Abbasnejad et al., 2019).

In a different perspective, Han et al. (2017b) assessed a brute-force strategy to spatially localize
objects with rule-based agents. Zhu et al. (2017b) explore how GuessWhat?! models can learn to
cheat when fully trained with reinforcement learning, highlighting the limitation of accuracy while
benchmarking models. Shekhar et al. (2018) incorporates a decision head to learn when to stop a
dialogue. Finally, Tremblay et al. (2018) embeds a questioner modules into a robot to perform an
entertaining interactive demonstration of GuessWhat?!.

VisDiag VisDiag is also a two-player cooperative game where one of the player is to depict a hidden
image by asking a sequence of open questions. The first player – the A-Bot – is assigned a natural
image, while the second player – the Q-Bot – is assigned a brief image caption before querying the
oracle. After a predefined number of steps, the Q-Bot generates a visual description of the image (Das
et al., 2017b), which is compared to the ground truth. The VisDiag dataset contains 133k dialogue,
with 10 rounds with distinct images. Two synthetic VisDiag were also released: the MNIST-Dialogue
dataset performs the VisDiag task over an array of nine colored MNIST number, while the CLEVR-
dialogue dataset use the CLEVR engine with a hand-crafted but diverse grammar (Kottur et al., 2019)
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82 Chapter 4. Visually Grounded Dialogue: GuessWhat?!

The A-Bot models are VQA models that were enhanced to deal with dialogue co-occurrences, the
A-Bot can either be a generative model by producing sequence of words, or discriminative by scoring
a set of potential answers (Das et al., 2017a). The A-Bot models include memory networks (Das et al.,
2017a; Seo et al., 2017), NMN extensions to deal with dialogue co-references (Kottur et al., 2018)
or different co-attention mechanisms with multi-step reasoning (Gan et al., 2019; Kang et al., 2019;
Wu et al., 2018b; Yang et al., 2019). Differently, Jain et al. (2018) change the network conditioning
mechanism to score answer candidates. Finally, (Lu et al., 2017a; Wu et al., 2018b) introduce a
GAN-like procedure to reject poorly generated answers.

The Q-Bots are pure linguistic agents as they do not observe the image; they are first trained on
the VisDiag dataset, before being finetuned with RL by playing with a A-Bot (Das et al., 2017b).
However, VisDiag has no clear reward signal upon task completion. Thus, Das et al. (2017b) train the
Q-Bot to output an expected visual representation ŷ which is compared with the ground truth image
representation ygt. At every dialog turn t, the authors define the reward as the relative similarity
improvement (Euclidean distance) toward the target image, rt(.) = ||ygt − ŷt−1||22 − ||ygt − ŷt||22.
The Q-Bot performance is computed by assessing whether the target image is within the pool of
the top 5% images closest to the predicted visual representation (among a set of 10k candidates).
However, Das et al. (2017b) observe that reinforcement learning has little effects on the success ratio
and that the models mostly rely on the caption rather than asking discriminate questions. Mironenco
et al. (2017) also notice that randomly changing A-Bot answers does not impact the Q-Bot success.
Zhang et al. (2018b) ease the Q-Bot difficulty by selecting pre-generated questions, and learning when
to stop asking questions. Although the authors obtain good results by using a pool of 200 questions
over 20 images, the model has mediocre performance when dealing with new images. In the end, it is
still an open question whether the Q-bot limitations come from the evaluation protocol, the complex
reward, the continuous action space (to generate the visual embedding), or the game design which
does not entail truly goal-oriented dialogue (Zhang et al., 2018b).

In a different research perspective, Agarwal et al. (2019) explore how to reduce language drift
in Visual Dialog by using a multi-agent setting; the authors jointly train several Q-Bots and A-Bots,
forcing them to align their language understanding and generating to each other, and therefore slow-
ing down the language drift. Finally, Sharma et al. (2018) learn to generate a complete image by
conditioning a GAN with Q-bot dialogues.

Game comparison In the end, GuessWhat?! and VisDiag lead to different research directions
despite apparent similarities. GuessWhat?! research papers would focus on question generation side,
with an emphaze on RL methods while the VisDiag community would mostly extend the VQA task
to the dialogue setting, designing more flexible answer modules. In some senses, GuessWhat?! tends
to embody vision into a language setting, while VisDiag would include language into a computer
vision challenge (which can also be linked from the background of the authors). We also note that
few researchers work on both datasets (Lee et al., 2018b, 2019) despite several joint events between
the GuessWhat?! and VisDiag teams (Strub et al., 2017a, 2018a).

Following Visual Dialogue Datasets We here list a few other visually grounded dialogue chal-
lenges that have been explored over the past two years. For instance, Guo et al. (2018) train a model
to retrieve a shoe picture by conversing with a user-simulator browsing a shoe catalogue (Berg et al.,
2010). Chattopadhyay et al. (2017) introduce GuessWhich?! within the intersection of GuessWhat?!
and VisDiag; an agent interacts with a pretrained A-Bot model to identify a secret image from a vis-
ible pool of candidate images. Differently, Talk-the-Walk (de Vries et al., 2018) casts an instruction
following task into a dialogue where a tourist describes his street view allowing a guide to locate him
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on a map and instruct him the path to follow. Finally, Lee et al. (2018b) introduce the co-draw task
where two agents converse to let the first player replicating a picture displayed to the second player
with high-level drawing action. Although very promising dialogue tasks, both Talk-the-Walk and
Co-Draw dataset contain around 10k games, which turns out to be insufficient to solve these complex
problems. In the end, there exists no truly satisfactory goal-oriented visual dialogue dataset: there are
either too small, have hand-crafted reward signals, or rely on closed-form questions.

4.5 Discussion

We introduced the GuessWhat?! game, a novel framework for multi-modal dialogue. At publication
time, it was the first large-scale dataset involving images and dialogue. A wide range of challenges has
arisen from this union as they rely on different fields of machine learning such as natural language
understanding, generative models or computer vision. GuessWhat?! turns out to be an engaging
game that greatly decreases the cost for collection of a big dataset required for modern algorithms.
This chapter also introduces three agents based on the questioner and Oracle role. In each case, we
prototype a neural architecture, we analyze these results and, we presents a quantitative description
of the GuessWhat?! dataset. We believe GuessWhat?! could allow for a myriad of other applications
that may either be based on the game itself or extending the database to other tasks. Differently,
GuessWhat?! could be a test bed for one-shot learning (Li et al., 2006) of guessing new object
categories, transfer learning on line-drawing images (Castrejon et al., 2016) or using questions from
another language. Thus, the GuessWhat?! dataset offers an opportunity to develop original machine
learning tasks upon it, and it still remains a challenging and rich dataset three years after its release.

83



84 Chapter 4. Visually Grounded Dialogue: GuessWhat?!

4.5.1 User interface

Figures 4.9, 4.10 present the instructions for the Oracle and questioner before they started their first
game.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

Figure 4.9: An example game from the perspective of the Oracle. Shown from left to right and top to bottom.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q)

Figure 4.10: An example game from the perspective of the questioner. Shown from left to right and top to
bottom.
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(a) Interface to fix ill-formatted questions

(b) Interface to validate the fix ill-formatted questions

Figure 4.11: In the first task, we ask workers to correct mistakes in the questions. We then ask workers to
validate the proposed correction by showing the difference between the original question and its correction.
We alternate both tasks till all questions are corrected and validated.
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4.5.2 Additional database statistics
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#122119 Is it a person?
Is it on the shelves?
Is it on the floor?
Is it a cup?
Is it blue?
Is it wood?
Is it the bed?
Is it in the lower half of the image?
Is it in the lower left corner?
Is it near the blue tray with two cups?
Is it near the green and blue toy?
Is it near the boy laying on the floor?
Is it something he is touching?
Is it the remote?
Is it the one in his right hand (close to the wooden box)?

No
No
Yes
No
No
No
No
Yes
No
No
No
Yes
Yes
Yes
No

Figure 4.19: A long dialogue example in a very rich environment.

89



90 Chapter 4. Visually Grounded Dialogue: GuessWhat?!

pe
rs

on
14

.4
8

pe
rs

on
3.

20
=

le
ft

2.
95

↗
fo

od
1.

29
le

ft
1.

69
ri

gh
t

2.
32

↗
an

im
al

1.
16

w
ea

ri
ng

1.
20

ne
w

pe
rs

on
2.

28
↘

hu
m

an
1.

03
ri

gh
t

1.
02

ne
w

w
ea

ri
ng

1.
66

↘
ob

je
ct

0.
77

fr
on

t
0.

97
ne

w
w

ho
le

1.
58

ne
w

ca
r

0.
60

w
hi

te
0.

91
ne

w
w

hi
te

1.
56

=
ve

hi
cl

e
0.

57
re

d
0.

77
ne

w
re

d
1.

26
=

ca
t

0.
41

ca
r

0.
64

↘
bl

ac
k

1.
19

↗
al

iv
e

0.
37

bl
ac

k
0.

60
ne

w
fr

on
t

1.
14

↘
do

g
0.

35
bl

ue
0.

59
ne

w
bl

ue
1.

10
=

(a
)D

ia
lo

gu
es

ha
vi

ng
3

qu
es

tio
ns

pe
rs

on
8.

20
pe

rs
on

1.
98

=
le

ft
1.

69
↗

le
ft

1.
92

=
le

ft
2.

13
=

fo
od

1.
03

le
ft

1.
03

↗
pe

rs
on

1.
41

↘
ri

gh
t

1.
77

↗
ri

gh
t

2.
04

=
hu

m
an

0.
56

ri
gh

t
0.

66
ne

w
ri

gh
t

1.
26

=
pe

rs
on

1.
20

↘
w

hi
te

1.
28

↗
an

im
al

0.
46

fr
on

t
0.

59
ne

w
w

hi
te

0.
84

↗
w

hi
te

1.
12

=
pe

rs
on

1.
26

↘
ve

hi
cl

e
0.

45
ca

r
0.

51
↗

w
ea

ri
ng

0.
82

↗
w

ea
ri

ng
0.

93
=

bl
ac

k
0.

90
↗

ob
je

ct
0.

42
w

hi
te

0.
48

ne
w

si
de

0.
67

↗
bl

ac
k

0.
79

↗
w

ea
ri

ng
0.

85
↘

ca
r

0.
36

w
ea

ri
ng

0.
48

ne
w

re
d

0.
62

↗
re

d
0.

72
=

re
d

0.
80

=
fu

rn
itu

re
0.

24
si

de
0.

43
ne

w
fr

on
t

0.
58

↘
si

de
0.

69
↘

w
ho

le
0.

80
ne

w
le

ft
0.

24
re

d
0.

39
ne

w
bl

ac
k

0.
55

ne
w

bl
ue

0.
65

↗
bl

ue
0.

75
=

ed
ib

le
0.

20
ve

hi
cl

e
0.

39
↘

bl
ue

0.
54

ne
w

fr
on

t
0.

58
↘

fr
on

t
0.

73
=

(b
)D

ia
lo

gu
es

ha
vi

ng
5

qu
es

tio
ns

pe
rs

on
5.

89
pe

rs
on

1.
44

=
le

ft
1.

08
↗

le
ft

1.
26

=
le

ft
1.

33
=

le
ft

1.
42

=
le

ft
1.

65
=

fo
od

0.
74

le
ft

0.
73

↗
pe

rs
on

0.
96

↘
ri

gh
t

1.
08

↗
ri

gh
t

1.
22

=
ri

gh
t

1.
39

=
ri

gh
t

1.
54

=
hu

m
an

0.
38

ri
gh

t
0.

42
ne

w
ri

gh
t

0.
89

=
pe

rs
on

0.
82

↘
w

hi
te

0.
81

↗
w

hi
te

0.
88

=
w

hi
te

0.
96

=
ve

hi
cl

e
0.

30
ta

bl
e

0.
37

↗
si

de
0.

57
↗

w
hi

te
0.

67
↗

pe
rs

on
0.

80
↘

pe
rs

on
0.

84
=

pe
rs

on
0.

90
=

ob
je

ct
0.

28
fr

on
t

0.
36

ne
w

w
hi

te
0.

50
↗

si
de

0.
60

↘
w

ea
ri

ng
0.

59
↗

bl
ac

k
0.

63
↗

re
d

0.
65

↗
ca

r
0.

26
fo

od
0.

35
↘

w
ea

ri
ng

0.
48

↗
w

ea
ri

ng
0.

54
=

si
de

0.
57

↘
re

d
0.

57
↗

bl
ac

k
0.

63
↘

an
im

al
0.

26
si

de
0.

35
ne

w
re

d
0.

41
ne

w
re

d
0.

49
=

re
d

0.
54

=
w

ea
ri

ng
0.

56
↘

bl
ue

0.
57

↗
fu

rn
itu

re
0.

20
ca

r
0.

31
↘

ta
bl

e
0.

39
↘

ta
bl

e
0.

41
=

bl
ac

k
0.

51
↗

bl
ue

0.
54

↗
w

ea
ri

ng
0.

52
↘

le
ft

0.
14

w
ea

ri
ng

0.
28

ne
w

fr
on

t
0.

38
↘

bl
ac

k
0.

41
↗

bl
ue

0.
49

↗
si

de
0.

53
↘

ne
xt

0.
51

ne
w

bo
at

0.
14

so
m

et
hi

ng
0.

28
ne

w
ca

r
0.

37
↘

bl
ue

0.
37

ne
w

fr
on

t
0.

42
↗

fr
on

t
0.

45
=

si
de

0.
51

↘

(c
)D

ia
lo

gu
es

ha
vi

ng
7

qu
es

tio
ns

Ta
bl

e
4.

5:
Pr

op
or

tio
ns

of
th

e
te

n
m

os
tc

om
m

on
w

or
ds

fo
re

ac
h

de
pt

h
of

qu
es

tio
ns

so
rt

ed
by

th
e

si
ze

of
th

e
di

al
og

ue
s

90



4.5. Discussion 91

Model Train err Valid err Test err
Dominant class (no) 47.4% 46.2% 50.9%
Category 43.0% 42.8% 43.1%
Question 40.2% 41.7% 41.2%
Crop 40.9% 42.7% 43.0%
Image 45.7% 46.7% 46.7%
Spatial 43.9% 44.1% 44.3%
Category + Spatial 41.6% 41.7% 42.1%
Question + Crop 22.3% 29.1% 29.2%
Question + Image 37.9% 40.2% 39.8%
Question + Category 23.1% 25.8% 25.7%
Question + Spatial 28.0% 31.2% 31.3%
Spatial + Crop 41.8% 42.4% 42.8%
Crop + Image 41.6% 42.1% 42.4%
Spatial + Image 42.2% 44.1% 44.2%
Category + Crop 41.0% 41.7% 42.3%
Category + Image 42.3% 42.7% 43.0%
Category + Crop + Image 40.6% 41.5% 41.8%
Category + Spatial + Crop 40.6% 41.6% 42.1%
Question + Category + Spatial 17.2% 21.1% 21.5%
Question + Crop + Image 23.7% 29.9% 30.0%
Category + Spatial + Image 40.4% 42.0% 42.2%
Question + Category + Image 23.4% 27.1% 27.4%
Question + Spatial + Image 28.4% 32.5% 32.5%
Spatial + Crop + Image 41.6% 42.1% 42.5%
Question + Category + Crop 20.4% 24.4% 24.7%
Question + Spatial + Crop 19.4% 26.0% 26.2%
Question + Category + Spatial + Crop 16.1% 21.7% 22.1%
Question + Spatial + Crop + Image 20.7% 27.7% 27.9%
Category + Spatial + Crop + Image 40.3% 41.4% 41.8%
Question + Category + Spatial + Image 19.2% 23.2% 23.5%
Question + Category + Crop + Image 20.0% 25.3% 25.5%
Question + Category + Spatial + Crop + Image 17.8% 23.2% 23.3%

Table 4.6: Classification errors for all Oracle baselines.
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Chapter 5

Conditional Batch-Normalization

«Do Androids Dream of Electric Sheep? »

Philip K. Dick

«I am guessing is a sheep? A: Yes »

GuessWhat?!
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In the previous chapter, we observe the poor performance of multimodal learning architecture in
the GuessWhat?! oracle/guesser tasks. At this point, there was little interest in trying to improve
the visually grounded language generation as neural networks failed already failed at correctly in-
terleaving visual and language modalities in simple classification tasks. We thus start examining the
multimodal learning architecture to improve inductive neural biases. We quickly observe that there
was an implicit division between language and vision representations. It was commonly assumed
that language refers to high-level visual concepts, while computer models focused on the low-level
features, and there no interaction between them. This view dominated the literature in computational
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models for language-vision tasks, where visual and linguistic inputs are mostly processed indepen-
dently before being fused into a single representation, as mentioned in Sec 3.1.2. In our research,
we thus deviate from this classic pipeline and propose to modulate the entire visual processing by a
linguistic input, highlighting the need for middle-conditioning mechanisms for deep learning archi-
tecture. In this chapter, we introduce Conditional Bacth Normalization (CBN) as an efficient mecha-
nism to modulate convolutional feature maps by a linguistic embedding. We apply Conditional Bacth
Normalization (CBN) to a pretrained Residual Neural Network (ResNet), leading to the MODulatEd
ResNet (ModeRn) architecture, and show that this significantly improves strong baselines on two vi-
sual question answering tasks. Our ablation study confirms that modulating from the early stages of
visual processing is beneficial.

5.1 Introduction

Human beings combine the processing of language and vision with apparent ease. For example, we
can use natural language to describe perceived objects and we are able to imagine a visual scene
from a given textual description. Developing intelligent machines with such impressive capabilities
remains a long-standing research challenge with many practical applications.

Towards this grand goal, we have witnessed an increased interest in tasks at the intersection of
computer vision and natural language processing. Developing computational models for language-
vision tasks is challenging, especially because of the open question underlying all these tasks: how
to fuse/integrate visual and textual representations? To what extent should we process visual and
linguistic inputs separately, and at which stage should we fuse them? And equally important, what
fusion mechanism to use?

In this chapter, we restrict our attention to the domain of visual question answering which is
a natural testbed for fusing language and vision. The VQA task concerns answering open-ended
questions about images and has received significant attention from the research community (Antol
et al., 2015; Fukui et al., 2016; Goyal et al., 2017; Malinowski et al., 2015). Current state-of-the-art
systems often use the following computational pipeline (Ben-Younes et al., 2017; Malinowski et al.,
2015; Ren et al., 2015a) illustrated in Fig 5.1. They first extract high-level image features from an
ImageNet pretrained convolutional network (e.g. the activations from a ResNet network (He et al.,
2016)), and obtain a language embedding using a RNN over word-embeddings. As fully developed
in Sec 3.1, these two high-level representations are then fused by concatenation (Malinowski et al.,
2015), element-wise product (Jiasen et al., 2016; Kim et al., 2016, 2017a; Malinowski et al., 2015),
Tucker decomposition (Ben-Younes et al., 2017) or compact bilinear pooling (Fukui et al., 2016), and
further processed for the downstream task at hand. Attention mechanisms (Xu et al., 2015) are often
used to have questions attend to specific spatial locations of the extracted higher-level feature maps.

There are two main reasons for why the recent literature has focused on processing each modality
independently. First, using a pretrained convnet as feature extractor prevents overfitting; Despite a
large training set of a few hundred thousand samples, backpropagating the error of the downstream
task into the weights of all layers often leads to overfitting. Second, the approach aligns with the
dominant view that language interacts with high-level visual concepts. Words, in this view, can be
thought of as “pointers” to high-level conceptual representations. To the best of our knowledge, this
work is the first to fuse modalities at the very early stages of the image processing.

In parallel, the neuroscience community has been exploring to what extent the processing of lan-
guage and vision is coupled (Ferreira and Tanenhaus, 2007). More and more evidence accumulates
that words set visual priors which alter how visual information is processed from the very begin-
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5.2. Modulated Residual Networks 95

Figure 5.1: An overview of the classic VQA pipeline (left) vs ours (right). While language and vision modalities
are independently processed in the classic pipeline, we propose to directly modulate ResNet processing by
language.

ning (Boutonnet and Lupyan, 2015; Kok et al., 2014; Thierry et al., 2009). More precisely, it is
observed that P1 signals, which are related to low-level visual features, are modulated while hearing
specific words (Boutonnet and Lupyan, 2015). The language cue that people hear ahead of an image
activates visual predictions and speed up the image recognition process. These findings suggest that
independently processing visual and linguistic features might be suboptimal, and fusing them at the
early stage may help the image processing.

In this chapter, we introduce a novel approach to have language modulate the entire visual pro-
cessing of a pretrained convnet. We propose to condition the batch normalization (Ioffe and Szegedy,
2015) parameters on linguistic input (e.g., a question in a VQA task). Our approach, called Con-
ditional Bacth Normalization (CBN), is inspired by recent work in style transfer (Dumoulin et al.,
2017). The key benefit of CBN is that it scales linearly with the number of feature maps in a convnet,
which impacts less than 1% of the parameters, greatly reducing the risk of over-fitting. We apply
CBN to a pretrained Residual Network, leading to a novel architecture to which we refer as MODu-
latEd ResNet (ModeRn). We show significant improvements on two VQA datasets, VQAv1 (Antol
et al., 2015) and GuessWhat?! (de Vries et al., 2017), but stress that our approach is a general fusing
mechanism that can be applied to other multimodal tasks. To summarize, our contributions are three
fold:

• We propose conditional batch normalization to modulate the entire visual processing by language
from the early processing stages,

• We condition the batch normalization parameters of a pretrained ResNet on linguistic input, leading
to a new network architecture: ModeRn,

• We demonstrate relative improvements on acknowledged strong baseline for two VQA tasks and
show the contribution of this modulation on the early stages.

5.2 Modulated Residual Networks

In this section we introduce conditional batch normalization, and show how we can use it to modulate
a pretrained ResNet. As a brief reminder from Sec 1.2.3, Batch Normalization (BN) is a technique
that was originally designed to accelerate the training of neural networks by reducing the internal
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Figure 5.2: An overview of the computation graph of batch normalization (left) and conditional batch normal-
ization (right). Best viewed in color.

co-variate shift (Ioffe and Szegedy, 2015). Given a mini-batch B = {Fn,·,·,·}Nn=1 of N examples, BN
normalizes the feature maps at training time as follows:

BN(Fn,c,h,w|γc, βc) = γc
Fn,c,w,h − EB[F·,c,·,·]√

VarB[F·,c,·,·] + ε
+ βc, (5.1)

where ε is a constant damping factor for numerical stability, and γc and βc are trainable scalars
introduced to keep the representational power of the original network.

In the proposed model, the key idea is to predict the γ and β of the batch normalization from a
language embedding el. In practice, these parameters must be close to the pretrained ResNet values
when starting the training as a poor initialization could significantly deteriorate performance. Unfor-
tunately, it is difficult to initialize a network to output the pretrained γ and β. For these reasons, we
propose to predict a change ∆βc and ∆γc on the frozen original scalars, for which it is straightforward
to initialize a neural network to produce an output with zero-mean and small variance.

To do so, we use a one-hidden-layer MLP to predict these deltas from the question embedding el
for all feature maps within the layer:

∆β = MLP (el) ∆γ = MLP (el) (5.2)

So, given a feature map with C channels, these MLPs output a vector of size C. We then add
these predictions to the β and γ parameters:

β̂c = βc + ∆βc γ̂c = γc + ∆γc (5.3)

Finally, these updated β̂ and γ̂ are used as parameters for the batch normalization: BN(Fn,c,h,w|γ̂c, β̂c)),
which results in the following equation:

CBN(Fn,c,h,w, el|γc, βc) =
(
γc + ∆γc(el)

)Fn,c,w,h − EB[F·,c,·,·]√
VarB[F·,c,·,·] + ε

+
(
βc + ∆βc(el)

)
, (5.4)

We stress that we freeze all ResNet parameters, including the original γ and β, during training.
In Fig. 5.2, we visualize the difference between the computational flow of the original batch normal-
ization and our proposed modification. As explained in Sec. 2.1.2, a ResNet consists of four stages
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Figure 5.3: An overview of the ModeRn architecture conditioned on the language embedding. ModeRn mod-
ulates the batch norm parameters in all residual blocks.

of computation, each subdivided in several residual blocks. In each block, we apply CBN to the three
convolutional layers, as highlighted in Fig. 5.3.

CBN is a computationally efficient and powerful method to modulate neural activations; It enables
the linguistic embedding to manipulate entire feature maps by scaling them up or down, negating
them, or shutting them off, etc. As there only two parameters per feature map, the total number of
BN parameters comprise less than 1% of the total number of parameters of a pretrained ResNet. This
makes CBN a very scalable method compared to conditionally predicting the weight matrices (or
a low-rank approximation to that). Although, we here focus on visual feature maps and linguistic
representations, we point out that CBN layers can be extended to any multimodal learning pipeline.

5.3 Experimental setting

We evaluate the proposed conditional batch normalization on the first VQA dataset and the Guess-
What?! Oracle tasks. In the next section, we outline the neural architectures we use for our experi-
ments. Noticeably, ModeRn modulates the entire visual processing pipeline and therefore backprop-
agates through all convolutional layers. This requires much more GPU memory than using extracted
features. To feasibly run such experiments on today’s hardware, we conduct all experiments in this
chapter with a ResNet-50 except when mention otherwise.

VQA As mentioned several time, VQA consists of open-ended questions about real images (Antol
et al., 2015). Our baseline architecture first obtains a question embedding el by an LSTM. For the
image, we extract the feature maps F of the last layer of ResNet-50 (before the pooling layer). For
input of size 224x224 these feature maps are of size 7x7, and we incorporate a spatial attention
mechanism, conditioned on the question embedding el, to pool over the spatial dimensions. We use
an MLP with one hidden layer and ReLU activations whose parameters are shared along the spatial
dimensions. In a few words, we are using the original VQA models with an extra spatial attention
mechanism. As for our training procedure, we select the 2k most-common answers from the training
set, and use a cross-entropy loss over the distribution of provided answers. We train on the training set,
do early-stopping on the validation set, and report the accuracies on the test-dev using the evaluation
script provided by (Antol et al., 2015).
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Answer type Yes/No Number Other Overall

22
4x

22
4 Baseline 79.45% 36.63% 44.62% 58.05%

Ft Stage 4 78.37% 34.27% 43.72% 56.91%
Ft BN 80.18% 35.98% 46.07% 58.98%
ModeRn 81.17% 37.79% 48.66% 60.82%

44
8x

44
8

MLB (Kim et al., 2017a) with ResNet-50 80.20% 37.73% 49.53% 60.84%
MLB (Kim et al., 2017a) with ResNet-152 80.95% 38.39% 50.59% 61.73%
MUTAN + MLB (Ben-Younes et al., 2017) 82.29% 37.27% 48.23% 61.02%
MCB + Attention (Fukui et al., 2016) with ResNet-50 60.46% 38.29% 48.68% 60.46%
MCB + Attention (Fukui et al., 2016) with ResNet-152 - - - 62.50%
ModeRn with ResNet-50 81.38% 36.06% 51.64% 62.16%
ModeRn + MLB (Kim et al., 2017a) with ResNet-50 82.17% 38.06% 52.29% 63.01%

Table 5.1: VQA accuracies trained with train set and evaluated on test-dev.

CBN applied to Valid.
accuracy

Relative
Improv.

∅ 56.12% -
Stage 4 57.68% +1.56%
Stages 3− 4 58.29% +0.61%
Stages 2− 4 58.32% +0.03%
All 58.56% +0.24%

(a) VQA, higher is better

CBN applied to Test error Relative
Improv.

∅ 29.92% -
Stage 4 26.42% +3.50%
Stages 3− 4 25.24% +1.18%
Stages 2− 4 25.31% -0.07%
All 25.06% +0.25%

(b) GuessWhat?!, lower is better

Table 5.2: Ablation study to investigate the impact of leaving out the lower stages of ResNet. The last column
compute the relative improvement in percentage points by modulating an extra-layer.

GuessWhat?! In this chapter, we focus on the Oracle task, which is a form of visual question
answering in which the answers are limited to <yes>, <no>and <na>. Specifically, the Oracle may
take as an input the incoming question q, the image I and the target object o∗. This object is described
with its category, its spatial location and the object crop. We here use the crop baseline architecture
from chapter 4, where we merely replace the VGGNet features with ResNet features and we append
a spatial attention mechanism over the crop.

Baselines For VQA, we report the results of two concurrent state-of-the-art architectures from the
VQA challenge 2016 and 2017, namely, MCB (Fukui et al., 2016) (and MUTAN (Ben-Younes et al.,
2017). Both approaches employ an (approximate) bilinear pooling mechanism to fuse the language
and vision embedding by respectively using a random projection and a tensor decomposition. In
addition, we re-implement two spatial attention mechanisms in our models: a standard attention that
concatenates el and ev, and the MLB attention mechanism (Kim et al., 2017a) described in Eq 3.3 in
Sec. 3.1.3. When benchmarking state-of-the-art models, we train our architecture on the training set,
proceed early stopping on the validation set and report accuracy on the test set (test-dev in the case of
VQA.)

5.3.1 Results

VQA We report the best validation accuracy of the outlined methods on the VQA task in Tab. 5.1.
Note that we use input images of size 224x224 when we compare ModeRn against the baselines (as
well as for the ablation study presented in Tab. 5.2a. Our initial baseline achieves 58.05% accuracy,
and we find that finetuning the last layers (Ft Stage 4) does not improve this performance (56.91%).
Interestingly, just finetuning the batch norm parameters (Ft BN) significantly improves the accuracy to
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Raw ft MLB ft stage4 Ft BN CBN
Crop 29.92% 30.15% 27.48% 27.94% 25.06%
Crop + Spatial + Category 22.55% 22.95% 22.68% 22.42% 19.52%
Spatial + Category 21.5%

Table 5.3: GuessWhat?! test errors for the Oracle model with different embeddings. Lower is better.

58.98%. We see another significant performance jump when we condition the batch normalization on
the question input (ModeRn), which improves our baseline with almost 2 accuracy points to 60.82%.

Because state-of-the-art models use images of size 448x448, we also include the results of the
baseline architecture on these larger images. As seen in Tab. 5.1, this nearly matches the state of
the art results with a 62.15%. As ModeRn does not rely on a specific attention mechanism, we
then combine our proposed method with MLB (Kim et al., 2017a) architecture, and observe that
outperforms the historical state-of-the-art MCB model (Fukui et al., 2016) by half a point. Please
note that we select MLB (Kim et al., 2017a) over MCB (Fukui et al., 2016) as the latter requires
fewer weight parameters and is more stable to train.

Note that the presented results use a ResNet-50 while other models rely on extracted image em-
bedding from a ResNet-152. For sake of comparison, we run the baseline models with extracted
image embedding from a ResNet-50. Also for the more advanced MLB architecture, we observe
performance gains of approximately 2 accuracy points.

GuessWhat?! We report the best test errors for the outlined method on the Oracle task of Guess-
What?! in Tab. 5.3. We first compare the results when we only feed the crop of the selected object
to the model. We observe the same trend as in VQA: with an error of 25.06%, CBN performs better
than than either fine-tuning the final block (27.48% error) or the batch-norm parameters (27.94% er-
ror), which in turn improve over just using the raw features (29.92% error). Interestingly, the MLB
spatial attention does not significantly improve the Oracle score over raw features with an accuracy of
XX%. Note that the relative improvement (5 error points) for CBN is much bigger for GuessWhat?!
than for VQA. We also investigate the performance of the methods when we include the spatial and
category information. We observe that finetuning the last layers or BN parameters does not improve
the performance, while ModeRn improves the best reported test error with 2 points to 19.52% error.

5.3.2 Discussion

By analyzing the results from both VQA and GuessWhat?! experiments, it is possible to have a better
insight regarding ModeRn capabilities.

MODERN vs Fine tuning In both experiments, ModeRn outperforms Ft BN. Both methods update
the same ResNet parameters so this demonstrates that it is important to condition on the language
representation. ModeRn also outperforms Ft Stage 4 on both tasks which shows that the performance
gain of ModeRn is not due to the increased model capacity, but to the conditioning mechanism.

Conditional embedding In the provided baselines of the Oracle task of GuessWhat?! (de Vries
et al., 2017), the authors observed that the best test error (21.5%) is obtained by only providing the
object category and its spatial location. For this model, including the raw features of the object crop
actually deteriorates the performance to 22.55% error. This means that this baseline fails to extract
relevant information from the images which is not in the handcrafted features. Therefore the Oracle
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100 Chapter 5. Conditional Batch-Normalization

(a) Feature map projection from raw ResNet (b) Feature map projection from ModeRn

Figure 5.4: t-SNE projection of feature maps (before attention mechanism) of ResNet and ModeRn. Points
are colored according to the answer type of VQA. Whilst there are no clusters with raw features, ModeRn
successfully modulates the image feature towards specific answer types.

can not answer correctly questions which requires more than the use of spatial information and object
category. In the baseline model, the embedding of the crop from a generic ResNet does not help even
when we finetune stage 4 or BN. In contrast, applying ModeRn helps to better answer questions as
the test error drops by 2 points.

Ablation study We investigate the impact of only modulating the top layers of a ResNet. We
report these results in Tab. 5.2. Interestingly, we observe that the performance slowly decreases when
we apply CBN exclusively to later stages. We stress that for best performance it is important to
modulate all stages, but if computational resources are limited we recommend to apply it to the two
last stages. This crucial observation would pave the way for the Feature Wise Linear Modulation
(FiLM) architecture explored in the next chapter.

Modulation vs Attention In VQA, the attention and modulation mechanisms seem to be comple-
mentary as they independently increase the model accuracy, and can be combined to improve the
final performance. In GuessWhat?!, spatial attention has little impact while modulation turns out
to be very successful. In both cases, it suggests that both procedures would fuse the language and
modalities differently. It is unclear whether this difference comes from the nature of the mechanism
itself (with different mathematical equations), or whether from the conditioning level. As mentioned
in Sec. 3.1.2, attention is a mid-late conditioning mechanism, fusing high-level features while CBN
is a middle conditioning mechanism that impacts lower-level concepts. However, CBN is the most
impactful while modulating the uppermost stages of the ResNet.

Visualizing the representations In order to gain more insight into our proposed fusion mechanism,
we compare visualizations of the visual embeddings created by our baseline model and ModeRn. We
first randomly picked 1000 unique image/question pairs from the validation set of VQA. For the
trained ModeRn model, we extract image features just before the attention mechanism of ModeRn,
which we will compare with extracted raw ResNet-50 features and finetune ResNet-50 (Block4 and
batchnorm parameters). We first decrease the dimensionality by average pooling over the spatial
dimensions of the feature map, and subsequently apply t-Distributed Stochastic Neighbor Embedding
(t-SNE) (van G. der and Hinton, 2008) to these set of embeddings. We color the points according to
the answer type provided by the VQA dataset, and show these visualizations for both models in Fig 5.4
and Fig 5.7 in the supplementary materials. Interestingly, we observe that all answer types are spread
out for raw image features and finetuned features. In contrast, the representations of ModeRn are
cleanly grouped into three answer types. This demonstrates that ModeRn successfully disentangles
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the images representations by answer type which is likely to ease the later fusion process. While
finetuning models does cluster features, there is no direct link between those clusters and the answer
type. These results indicate that ModeRn successfully learns representation that differs from classic
finetuning strategies. In Fig. 5.5, we visualize the feature disentangling process stage by stage. It is
possible to spot some sub-clusters in the t-SNE representation, as in fact they correspond to image
and question pairs which are similar but not explicitly tagged in the VQA dataset. For example, the
we highlight pairs where the answer is a color in Fig. 5.6.

5.4 Discussion

5.4.1 Related Work

Modulation was initially introduced in the context of image stylization (Dumoulin et al., 2017; Ghiasi
et al., 2017). The authors aimed to condense multiple image style transfer networks into a single
model by finetuning a minimum subset of parameters for each style. There are notable differences
with our work. First, Dumoulin et al. (2017) uses a non-differentiable table lookup for the normaliza-
tion parameters while we propose a differentiable mapping from the question embedding. Second, we
predict a change on the normalization parameters of a pretrained convolutional network while keep-
ing the convolutional filters fixed. More generally, we here show that modulation is a more generic
framework than initially thought, and we exhibit modulation efficiency through language-vision tasks.
Subsequent works then alleviate the generality of CBN to other multimodal tasks: Delbrouck and
Dupont (2017) performed multimodal translation by modulating the late-stage of the visual pipeline
for each new generated word. CBN layers have been used in the GAN litterature to conditioned the
image generation (Almahairi et al., 2018; Brock et al., 2019; Miyato and Koyama, 2018).

5.4.2 Conclusion

In this chapter, we introduce Conditional Bacth Normalization (CBN) as a novel fusion mechanism
to modulate all layers of a visual processing network. Specifically, we applied CBN to a pretrained
ResNet, leading to the proposed ModeRn architecture. Our approach is motivated by recent evidence
from neuroscience suggesting that language influences the early stages of visual processing. One of
the strengths of ModeRn is that it can be incorporated into existing architectures, and our experiments
demonstrate that this significantly improves the baseline models. We also found that it is important
to modulate the entire visual signal to obtain maximum performance gains.

While this chapter focuses on text and images, ModeRn can be extended to neural architecture
dealing with other modalities such as sound or video. More broadly, CBN can could also be applied
to modulate the internal representation of any deep network with respect to any embedding regardless
of the underlying task. For instance, signal modulation through batch norm parameters may also be
beneficial for reinforcement learning, natural language processing or adversarial training tasks.
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GuessWhat?! VQA

Question

word embedding size 300 300
number of LSTM 1 2
number of LSTM hidden units 1024 1024
use Glove False True

Object category
number of categories 90 N/A
category look-up table dimension 512 N/A

Image
image size 224x224x3 (crop 1.1) 224x224x3
attention units 512 (MLB only) 512

CBN
selected blocks all all
number of MLP hidden units 512 512
ResNet ResNet-50v1 ResNet-50v1

Fusion block fusion embedding size N/A 1024
number of MLP hidden units 512 512
number of answers 3 2000

Optimizer
Name Adam Adam
Learning rate 1e-4 2e-4
Clip value 3 5
number of epoch 10 20
batch size 32 32

Table 5.4: GuessWhat?! Oracle hyperparameters

(a) (Stage4) (b) (Stage3)

(c) (Stage2) (d) (Stage1)

Figure 5.5: t-SNE projection for ModeRn for each stage of ModeRn. The visual features are slowly clustered
blocks after blocks.
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(a) Raw ResNet (b) ModeRn

Figure 5.6: t-SNE projection of feature maps of Reset and ModeRn by coloring. Points are colored according
to the question type (here, colors) of the image/question pair from the VQA dataset.

(a) ResNet + Block4 Ft (b) ResNet + BatchNorm ft

Figure 5.7: t-SNE projection of finetune ResNet feature maps (before attention mechanism). Points are colored
according to the answer type of VQA. No answer-type clusters can be observed in both cases.
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Chapter 6

Visual Reasoning with a General
Modulation Layer

z

«Is there a large block behind a green
pyramid? »

SHRDLU by Winograd (1971)

«Is there a large block behind the green
cylinder? »

CLEVR by Johnson et al. (2017a)
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In the previous chapter, we introduce an original conditioning mechanism, referred to as mod-
ulation, by predicting the batch normalization parameters of a pretrained ResNet. The results were
promising, but several questions were left open in this initial work. Is the modulation tied to batch-
normalization? Can we get rid of the heavy ResNet? Can we jointly train the modulating and mod-
ulated blocks from scratch? How does modulation operate? If we wanted to support our claim that
modulation was a new generic and multimodal neural fusing block, we had to answer those questions
first. The recently released CLEVR dataset allowed us to answer our interrogations without the actual
burden of natural images and dialogues. Besides, spatial attention mechanisms were shown to per-
form on this visual reasoning task poorly. Thus, if we could improve the state-of-the-art by only using
modulation layers, this would provide additional clues that both mechanisms are complementary. In
practice, the results were far better than we first expected.

In this chapter, we thus introduce a general-purpose conditioning method for neural networks
called Feature Wise Linear Modulation (FiLM). FiLM layers influence neural network computation
via a simple, feature-wise affine transformation based on conditioning information. We show that
FiLM layers are highly effective for visual reasoning — answering image-related questions which
require a multi-step, high-level process — a task which has proven difficult for standard deep learning
methods that do not explicitly model reasoning. Specifically, we show on visual reasoning tasks that
FiLM layers 1) halve state-of-the-art error for the CLEVR benchmark, 2) modulate features in a
coherent manner, 3) are robust to ablations and architectural modifications, and 4) generalize well to
challenging, new data from few examples or even zero-shot.

6.1 Introduction

The ability to reason about everyday visual input is a fundamental building block of human intel-
ligence. Some have argued that for artificial agents to learn this complex, structured process, it is
necessary to build in aspects of reasoning, such as compositionality (Hu et al., 2017b; Johnson et al.,
2017b) or relational computation (Santoro et al., 2017). However, if a model made from general-
purpose components could learn to visually reason, such an architecture are likely to be more widely
applicable across domains.

To understand if such a general-purpose architecture exists, we take advantage of the recently
proposed CLEVR dataset (Johnson et al., 2017a) that tests visual reasoning via question answering.
Examples from CLEVR are shown in Figure 6.1. Visual question answering, the general task of
asking questions about images, has its own line of datasets (Antol et al., 2015; Geman et al., 2015;
Malinowski and Fritz, 2014) which generally focus on asking a diverse set of simpler questions on
images, often answerable in a single glance. From these datasets, a number of effective, general-
purpose deep learning models have emerged for visual question answering (Anderson et al., 2018b;
Jiasen et al., 2016; Malinowski et al., 2015; Yang et al., 2016). However, tests on CLEVR show that
these general deep learning approaches struggle to learn structured, multi-step reasoning (Johnson
et al., 2017a). In particular, these methods tend to exploit biases in the data rather than capture
complex underlying structure behind reasoning (Agrawal et al., 2016; Goyal et al., 2017).

In this work, we show that a general model architecture can achieve strong visual reasoning with a
method we introduce as Feature Wise Linear Modulation (FiLM). This modulation layer carries out a
simple, feature-wise affine transformation on a neural network’s intermediate features, conditioned on
an arbitrary input. In the case of visual reasoning, it enable a RNN over an input question to influence
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Q: What number of cylinders are small purple things
or yellow rubber things? A: 2

Q: What color is the other object that is the same
shape as the large brown matte thing? A: Brown

Figure 6.1: CLEVR examples and FiLM model answers.

CNN computation over an image. This process adaptively and radically alters the CNN’s behavior as
a function of the input question, allowing the overall model to carry out a variety of reasoning tasks,
ranging from counting to comparing, for example. FiLM can be thought of as a generalization of
conditional normalization, which has proven highly successful for image stylization (Dumoulin et al.,
2017; Ghiasi et al., 2017; Huang and Belongie, 2017), speech recognition (Kim et al., 2017b), and
visual question answering as in Chapter 5, demonstrating modulation’s broad applicability.

In this chapter, we show that FiLM is a strong conditioning method by showing the following on
visual reasoning tasks:

• It achieves state-of-the-art across a variety of visual reasoning tasks, often by significant margins.

• It operates in a coherent manner. It learns a complex, underlying structure and manipulates the
conditioned network’s features in a selective manner. It also enables the CNN to properly localize
question-referenced objects.

• It is robust; several ablated model still outperform prior state-of-the-art. Notably, we find there
is no close link between normalization and the success of a conditioned affine transformation, a
previously untouched assumption. Thus, we relax the conditions under which this method can be
applied.

• It models learn from little data to generalize to more complex and/or substantially different data
than seen during training. We also introduce a novel FiLM-based zero-shot generalization method
that further improves and validates the modulation layer’s generalization capabilities.

6.2 Model Modulation

Our model processes the question-image input using FiLM, illustrated in Figure 6.2. We start by
explaining the modulation procedure and then describe our particular model for visual reasoning.

6.2.1 Feature-wise Linear Modulation

FiLM learns to adaptively influence the output of a neural network by applying an affine transforma-
tion to the network’s intermediate features, based on some input. More formally, this layer learns two
functions f(.) and h(.) which output γ and β as a function of input q:
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Figure 6.2: A single FiLM layer for a CNN. The dot signifies a Hadamard product. Various combinations of γ
and β can modulate individual feature maps in a variety of ways.

γc = fc(x) βc = hc(x), (6.1)

where x is some arbitrary input, γc and βc modulate a neural network’s activations Fc, whose
subscripts refer to the ith input’s cth feature or feature map, via a feature-wise affine transformation:

FiLM(Fc,x|γc, βc) = γc(x)Fc + βc(x). (6.2)

f and h can be arbitrary functions such as neural networks. Modulation of a target neural net-
work’s processing can be based on the same input to that neural network or some other input, as in
the case of multi-modal or conditional tasks. For CNNs, f and h thus modulate the per-feature-map
distribution of activations based on xn, agnostic to spatial location. In practice, it is easier to refer to
f and h as a single function that outputs one (γ,β) vector, since, for example, f and h can be a joint
MLP. We refer to this single function as the FiLM-generator. We also refer to the network to which
FiLM layers are applied as the modulated (or FiLM) network network.

FiLM layers empower the FiLM-generator to manipulate feature maps of the modulated network
by scaling them up or down, negating them, shutting them off, selectively thresholding them (when
followed by a ReLU), and more. Each feature map is conditioned independently, giving the FiLM-
generator moderately fine-grained control over activations at each FiLM layer. As the modulation
process only requires two parameters per modulated feature map, it is a scalable and computationally
efficient conditioning method, and it is not impacted by the image resolution.

6.2.2 Modulated Residual Blocks

Our model consists of a linguistic pipeline and a modulated visual pipeline as depicted in Figure 6.3.
The FiLM-generator processes a question qn using a GRU network (Chung et al., 2014) with 4096
hidden units that takes in learned, 200-dimensional word embeddings. The final GRU hidden state
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Figure 6.3: The FiLM generator, FiLM network, and residual block architecture of our model.

is a question embedding, from which the model predicts (γkn,·,βkn,·) for each kth residual block via
affine projection.

The visual pipeline extracts 128 14 × 14 image feature maps from a resized, 224 × 224 image
input using either a CNN trained from scratch or a fixed, pretrained feature extractor with a learned
layer of 3 × 3 convolutions. The CNN trained from scratch consists of 4 layers with 128 4 × 4
kernels each, ReLU activations, and batch normalization, similar to prior work on CLEVR (Santoro
et al., 2017). The fixed feature extractor outputs the conv4 layer of a ResNet-101 (He et al., 2016)
pretrained on ImageNet (Russakovsky et al., 2015) to match prior work on CLEVR (Johnson et al.,
2017a,b). Image features are processed by several — 4 for our model — modulated Residual Block
(ResBlock) with 128 feature maps and a final classifier. The classifier consists of a 1× 1 convolution
to 512 feature maps, global max-pooling, and a two-layer MLP with 1024 hidden units that outputs a
softmax distribution over final answers.

Each modulated ResBlock starts with a 1 × 1 convolution followed by one 3 × 3 convolution
with an architecture as depicted in Figure 6.3. We turn the parameters of batch normalization layers
that immediately precede FiLM layers off. Drawing from prior work on CLEVR (Hu et al., 2017b;
Santoro et al., 2017) and visual reasoning (Watters et al., 2017), we concatenate two coordinate feature
maps indicating relative x and y spatial position (scaled from −1 to 1) with the image features, each
ResBlock’s input, and the classifier’s input to facilitate spatial reasoning.

We train our model end-to-end from scratch with Adam (Kingma and Ba, 2015) (learning rate
3e−4), weight decay (1e−5), batch size 64, and batch normalization and ReLU throughout FiLM
network. Our model uses only image-question-answer triplets from the training set without data aug-
mentation. We employ early stopping based on validation accuracy, training for 80 epochs maximum.
Further model details are in the appendix. Empirically, we found FiLM had a large capacity, so many
architectural and hyperparameter choices were for added regularization.

We stress that our model relies solely on feature-wise affine conditioning to use question infor-
mation influence the visual pipeline behavior to answer questions; and no late-fusion mechanism
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Model Overall Count Exist
Compare
Numbers

Query
Attribute

Compare
Attribute

Human (Johnson et al., 2017b) 92.6 86.7 96.6 86.5 95.0 96.0

Q-type baseline (Johnson et al., 2017b) 41.8 34.6 50.2 51.0 36.0 51.3
LSTM (Johnson et al., 2017b) 46.8 41.7 61.1 69.8 36.8 51.8
CNN+LSTM (Johnson et al., 2017b) 52.3 43.7 65.2 67.1 49.3 53.0
Stacked Attention Network (Santoro et al., 2017) 76.6 64.4 82.7 77.4 82.6 75.4
Neural Module Network* (Hu et al., 2017b) 83.7 68.5 85.7 84.9 90.0 88.7
PG+EE (9K prog.)* (Johnson et al., 2017b) 88.6 79.7 89.7 79.1 92.6 96.0
PG+EE (700K prog.)* (Johnson et al., 2017b) 96.9 92.7 97.1 98.7 98.1 98.9
Relational Network†‡ (Santoro et al., 2017) 95.5 90.1 97.8 93.6 97.9 97.1
CNN+BN+Sum � (Malinowski and Doersch, 2018) 95.5 91.0 98.5 84.7 98.4 98.7
CMM � (Yao et al., 2018) 98.6 96.8 99.2 97.7 99.4 99.1
MAC � (Hudson and Manning, 2018) 98.9 97.1 99.5 99.1 99.5 99.5

FiLM 97.7 94.3 99.1 96.8 99.1 99.1
FiLM‡ 97.6 94.3 99.3 93.4 99.3 99.3

Table 6.1: CLEVR accuracy (overall and per-question-type) by baselines, competing methods, and FiLM. (*)
denotes use of extra supervision via program labels. (†) denotes use of data augmentation. (‡) denotes training
from raw pixels. (�) denotes model posterior to FiLM

is performed. This approach differs from classical visual question answering pipelines which fuse
image and language information into a single embedding via element-wise product, concatenation,
attention, and/or more advanced methods (Anderson et al., 2018b; Jiasen et al., 2016; Yang et al.,
2016).

6.3 Experimenting FiLM on CLEVR

First, we test our model on visual reasoning with the CLEVR task and use trained FiLM models to
analyze what FiLM learns. Second, we explore how well our model generalizes to more challeng-
ing questions with the CLEVR-Humans task. Finally, we examine how FiLM performs in few-shot
and zero-shot generalization settings using the CLEVR Compositional Generalization Test. In the
appendix, we provide an error analysis of our model. Two version of the code co-exist at https://
github.com/ethanjperez/FiLM (pytorch) and https://github.com/GuessWhatGame/
clevr (tensorflow).

6.3.1 CLEVR Task

As mentioned in Sec 3.2, CLEVR is a synthetic dataset of 700K (image, question, answer, program)
tuples (Johnson et al., 2017a). Images contain 3D-rendered objects of various shapes, materials,
colors, and sizes. Questions are multi-step and compositional in nature, as shown in Figure 6.1.
They range from counting questions (“How many green objects have the same size as the green
metallic block?”) to comparison questions (“Are there fewer tiny yellow cylinders than yellow metal
cubes?”) and can be 40+ words long. Answers are each one word from a set of 28 possible an-
swers. Programs are an additional supervisory signal consisting of step-by-step instructions, such as
filter_shape[cube], relate[right], and count, on how to answer the question.
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Q: What shape is the... ...purple thing? A: cube
...red thing right of the
blue thing? A: sphere

...red thing left of the blue
thing? A: cube

Q: How many cyan things
are...

...left of the small cube?
A: 2

...right of the gray cube
and left of the small cube?
A: 1

...right of the gray cube or
left of the small cube? A:
4 (P: 3)

Figure 6.4: Visualizations of the distribution of locations which the model uses for its globally max-pooled
features which its final MLP predicts from. FiLM correctly localizes the answer-referenced object (top) or
all question-referenced objects (bottom), but not as accurately when it answers incorrectly (rightmost bottom).
Questions and images used match (Johnson et al., 2017b).

Baselines We compare our approach against very various visual reasoning models discussed in
Sec 3.2 and Sec 3.1.3. As a naive baseline, we refer to Q-type while predicting the answer based on
a question’s category, LSTM when dealing only with the question and CNN+LSTM while concate-
nating mean-pooled visual features and question features. We benchmark spatial attention by using
SAN Yang et al. (2016) networks with two spatial attention hops, and relational networks that per-
form pairwise comparisons over spatial locations Santoro et al. (2017). We also add NMN (Hu et al.,
2017b) and (PG+EE) (Johnson et al., 2017b) that use the CLEVR program to learn separate special-
ized neural modules and dynamically assemble them into a question-dependent network. Posterior to
our work, Multimodal Core (CNN+BN+Sum) tiles the LSTM features over the spatial dimensions be-
fore processing them with batch-normalization and a convolutional layer (Malinowski and Doersch,
2018). MAC network decomposes the network into a reading, writing and controlling units to impose
structural constraints to perform visual reasoning (Hudson and Manning, 2018). Finally, Cascaded
Mutual Modulation (CMM) (Yao et al., 2018) is a variant of Multi-hop FiLM (Multi-hop FiLM) Strub
et al. (2018b), and computes a distinct FiLM embedding for each ResBlock.

Results When first released, FiLM achieved a new overall state-of-the-art on CLEVR, outperform-
ing humans and previous methods, including those using explicit models of reasoning, program su-
pervision, and/or data augmentation. A few subsequent works later significantly outperforms our
approach (Hudson and Manning, 2018; Yao et al., 2018), but the improvement plateaued since then
as shown in Tab. 6.1. For methods not using extra supervision, FiLM roughly halves state-of-the-art
error (from 4.5% to 2.3%). Note that using pretrained image features as input can be viewed as a form
of data augmentation in itself but that FiLM performs equally well using raw pixel inputs. Finally, we
train on CLEVR for 80 epochs, which takes 4 days using 1 NVIDIA TITAN Xp GPU when learning
from image features.
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Figure 6.5: Histograms of γn,c (top) and βn,c (bottom) values for each FiLM layer (layers 1-4 from left to
right) computed on CLEVR’s validation set. Plots are scaled identically. FiLM layers appear gradually more
selective and higher variance.

Figure 6.6: t-SNE plots of (γ, β) of the first (left) and last (right) FiLM layers of a 6-FiLM layer Network.
FiLM parameters cluster by low-level reasoning functions in the first layer and by high-level reasoning func-
tions in the last layer.

6.3.2 What Do FiLM Layers Learn?

We here describe experiments we performed to get a better insight over the modulation process.

Activation Visualizations Figure 6.4 visualizes the distribution of locations responsible for the
globally-pooled features which the MLP in the model’s final classifier uses to predict answers. These
images reveal that the FiLM model predicts using features of areas near answer-related or question-
related objects. This finding highlights that appropriate feature modulation indirectly results in spatial
modulation, as regions with question-relevant features will have large activations while other regions
will not. Figure 6.4 also suggests that the FiLM network carries out reasoning throughout its pipeline.
In the top example, the modulated network has localized the answer-referenced object alone before
the MLP classifier. In the bottom example, the FiLM network retains, for the MLP classifier, features
on objects that are not referred to by the answer but are referred to by the question. The latter example
provides evidence that the final MLP itself carries out some reasoning, using FiLM to extract relevant
features for its reasoning.
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FiLM Parameter Histograms To analyze at a lower level how FiLM uses the question to condition
the visual pipeline, we plot γ and β values predicted over the validation set, as shown in Figure 6.5.
γ and β values take advantage of a sizable range, varying from -15 to 19 and from -9 to 16, re-
spectively. γ values show a sharp peak at 0, showing that FiLM learns to use the question to shut
off or significantly suppress whole feature maps. Simultaneously, FiLM learns to upregulate a much
more selective set of other feature maps with high magnitude γ values. Furthermore, a large fraction
(36%) of γ values are negative; since our model uses a ReLU after FiLM, γ < 0 can cause a signifi-
cantly different set of activations to pass the ReLU to downstream layers than γ > 0. Together, these
findings suggest that FiLM learns to selectively upregulate, downregulate, and shut off feature maps
based on conditioning information.

FiLM Parameters t-SNE Plot Similar to the previous chapter, we visualize FiLM parameter vec-
tors (γ,β) for 3,000 random validation points with t-SNE in Fig 6.6. We analyze the deeper, 6-
ResBlock version of our model, which has a similar validation accuracy as our 4-ResBlock model, to
better examine how FiLM layers in different layers of a hierarchy behave. First and last layer FiLM
(γ,β) are grouped by the low-level and high-level reasoning functions necessary to answer CLEVR
questions, respectively. For example, FiLM parameters for equal_color and query_color are
close for the first layer but apart for the last layer. The same is true for shape, size and material ques-
tions. Conversely, equal_shape, equal_size, and equal_material FiLM parameters are
grouped in the last layer but split in the first layer — likewise for other high level groupings such as
integer comparison and querying. These findings suggest that FiLM layers learn a sort of function-
based modularity without an architectural prior. Simply with end-to-end training, modulation learns
to handle not only different types of questions differently, but also different types of question sub-
parts differently; the model works from low-level to high-level processes as is the proper approach.
For models with fewer FiLM layers, such patterns also appear, but less clearly.

6.3.3 Ablation Studies

Using the validation set, we conduct an ablation study on our best model to understand how FiLM
learns visual reasoning. We show results for test time ablations in Fig. 6.7, for architectural ablations
in Tab. 6.2, and for varied model depths in Tab. 6.2. Without hyperparameter tuning, most archi-
tectural ablations and model depths outperform prior state-of-the-art on training from only image-
question-answer triplets, supporting FiLM’s overall robustness.

Effect of γ and β To test the effect of γ and β separately, we trained one model with a constant γ =
1 and another with β = 0. With these models, we find a 1.5% and .5% accuracy drop, respectively;
FiLM can learn to condition the CNN for visual reasoning through either biasing or scaling alone,
albeit not as well as conditioning both together. This result also suggests that γ is more important than
β. To further compare the importance of γ and β, we run a series of test time ablations (Figure 6.7)
on our best, fully-trained model. First, we replace β with the mean β across the training set. This
ablation in effect removes all conditioning information from β parameters during test time, from a
model trained to use both γ and β. Here, we find that accuracy only drops by 1.0%, while the same
procedure on γ results in a 65.4% drop. This large difference suggests that, in practice, FiLM largely
conditions through γ rather than β. Next, we analyze performance as we add increasingly more
Gaussian noise to the best model’s FiLM parameters at test time. Noise in gamma hurts performance
significantly more, showing FiLM’s higher sensitivity to changes in γ than in β and corroborating
the relatively greater importance of γ.
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Figure 6.7: An analysis of how robust FiLM parameters are to noise at test time. The horizontal lines corre-
spond to setting γ or β to their respective training set mean values.

Restricting γ To understand what aspect of γ is most effective, we train a model that limits γ to
(0, 1) using sigmoid, as many models which use feature-wise, multiplicative gating do. Likewise,
we also limit γ to (−1, 1) using tanh. Both restrictions hurt performance, roughly as much as
removing conditioning from γ entirely by training with γ = 1. Thus, FiLM’s ability to scale features
by large magnitudes appears to contribute to its success. Limiting γ to (0,∞) with exp also hurts
performance, validating the value of FiLM’s capacity to negate and zero out feature maps.

Batch-Normalization We perform an ablation study on the placement of modulaton layers to eval-
uate the relationship between normalization and FiLM that was implicit assumed with CBN. We
moved the FiLM layers, separating it from the batch-normalization procedure, and we find no sub-
stantial performance drop. By demonstrating this conditioning mechanism is not closely connected
to normalization, we open the doors to applications other settings in which normalization is less com-
mon, such as RNNs and reinforcement learning.

Repetitive Conditioning To understand the contribution of repetitive conditioning towards FiLM
model success, we train the models with successively fewer modulating layers. Models with fewer
modulation layers, even a single FiLM layer, do not deviate far from the best model’s performance,
revealing that the model can reason and answer diverse questions successfully by modulating features
even just once. This observation highlights the capacity of even one FiLM layer.

Spatial Reasoning To examine how FiLM models approach spatial reasoning, we train a version of
our best model architecture, from image features, with only 1 × 1 convolutions and without feeding
coordinate feature maps indicating relative spatial position to the model. Due to the global max-
pooling near the end of the model, this model cannot transfer information across spatial positions.
Notably, this model still achieves a high 95.3% accuracy, indicating that the models are able to reason
about space simply from the spatial information contained in a single location of fixed image features.

Residual Connection Removing the residual connection causes one of the larger accuracy drops.
Since there is a global max-pooling operation near the end of the network, this finding suggests that
the best model learns to primarily use features of locations that are repeatedly important throughout
lower and higher levels of reasoning to make its final decision. The higher accuracies for models
with FiLM modulating features inside residual connections rather than outside residual connections
supports this hypothesis.
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Model Overall

Restricted γ or β
FiLM with β := 0 96.9
FiLM with γ := 1 95.9
FiLM with γ := σ(γ) 95.9
FiLM with γ := tanh(γ) 96.3
FiLM with γ := exp(γ) 96.3

Moving FiLM within ResBlock
FiLM after residual connection 96.6
FiLM after ResBlock ReLU-2 97.7
FiLM after ResBlock Conv-2 97.1
FiLM before ResBlock Conv-1 95.0

Removing FiLM from ResBlocks
No FiLM in ResBlock 4 96.8
No FiLM in ResBlock 3-4 96.5
No FiLM in ResBlock 2-4 97.3
No FiLM in ResBlock 1-4 21.4

Miscellaneous
1× 1 conv only, with no coord. maps 95.3
No residual connection 94.0
No batch normalization 93.7
Replace image features with raw pixels 97.6

Best Architecture 97.4±.4

Model Overall

1 ResBlock 93.5
2 ResBlocks 97.1
3 ResBlocks 96.7
4 ResBlocks 97.4
5 ResBlocks 97.4
6 ResBlocks 97.7
7 ResBlocks 97.4
8 ResBlocks 97.6
12 ResBlocks 96.9

Table 6.2: (left) CLEVR val accuracy for ablations, trained with the best architecture with only specified
changes. We report the standard deviation of the best model accuracy over 5 runs. (top-right) Best model
training and validation curves. (bottom-right) CLEVR val accuracy by FiLM model depth.

Model Depth Table 6.2 shows model performance by the number of ResBlocks. FiLM is robust
to varying depth but less so with only 1 ResBlock, backing the earlier theory that the FiLM network
reasons throughout its pipeline.

Error Analysis As illustrated by Fig. 6.8, many model errors are due to partial occlusion (Kuhnle
et al., 2018), which can be alleviate by scaling up the images to a higher resolution. The remaining
errors mostly deal with counting mistakes, but they are off-by-one errors in the majority case, showing
some structures in the prediction. Yet, the model sometimes makes unexpected reasoning mistakes as
shown in Fig. 6.9, suggesting that our model still lacks some visual and/or linguistic understanding.
For example, we find a case where our model correctly counts one gray object and two cyan objects
but simultaneously answers that there are the same number of gray and cyan objects.

6.3.4 CLEVR-Humans: Human-Posed Questions

To assess how well visual reasoning models generalize to more realistic, complex, and free-form
questions, the CLEVR-Humans dataset was introduced (Johnson et al., 2017b). This dataset contains
human-posed questions on CLEVR images along with their corresponding answers. The number of
samples is limited — 18K for training, 7K for validation, and 7K for testing. The questions were
collected from Amazon Mechanical Turk workers prompted to ask questions that were likely hard for
a smart robot to answer. As a result, CLEVR-Humans questions use more diverse vocabulary and
complex concepts as shown in Fig. 6.10.
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Q: Is there a big brown ob-
ject of the same shape as the
green thing? A: Yes (P: No)

Q: What number of other
things are the same material
as the big gray cylinder? A:
6 (P: 5)

Q: What shape is the big
metal thing that is the same
color as the small cylinder?
A: Cylinder (P: Sphere)

Q: How many other things
are the same material as the
tiny sphere? A: 3 (P: 2)

Figure 6.8: Some image-question pairs where our model predicts incorrectly. Most errors we observe are due
to partially occluded objects, as highlighted in the three first examples.

Question Answer
How many gray things are there? 1
How many cyan things are there? 2
Are there as many gray things as cyan things? Yes
Are there more gray things than cyan things? No
Are there fewer gray things than cyan things? Yes

Figure 6.9: A failure (bold) example where our model counts correctly but compares counts erroneously.

To test FiLM on CLEVR-Humans, we take our best CLEVR-trained FiLM model and fine-tune
its FiLM-generating linguistic pipeline alone on CLEVR-Humans. Similar to prior work (Johnson
et al., 2017b), we do not update the visual pipeline on CLEVR-Humans to mitigate overfitting to the
small training set.

Our model achieves competitive accuracy in CLEVR-Humans as shown in Tab. 6.3. Before fine-
tuning, FiLM outperforms prior methods by a smaller margin. After fine-tuning, FiLM reaches a
considerably improved final accuracy. In particular, the gain in accuracy made by FiLM upon fine-
tuning is more than 50% greater than those made by other models. Notably, FiLM surpasses the prior
state-of-the-art method, Program Generator + Execution Engine (PG+EE), after fine-tuning by 9.3%.
Prior work on PG+EEs explains that this neural module network method struggles on questions which
cannot be well approximated with the model’s module inventory (Johnson et al., 2017b). In contrast,
FiLM seems to quickly update the feature-modulation to unseen scenario, which is in line with the
hypernetwork literature for fast domain adaptation (Bertinetto et al., 2016; Ravi and Larochelle, 2017;
Schmidhuber, 1987).

6.3.5 CLEVR Compositional Generalization Test

To test how well models learn compositional concepts that generalize, CLEVR-CoGenT was intro-
duced (Johnson et al., 2017a). This dataset is synthesized in the same way as CLEVR but contains
two conditions: in Condition A, all cubes are gray, blue, brown, or yellow and all cylinders are red,
green, purple, or cyan; in Condition B, cubes and cylinders swap color palettes. Both conditions con-
tain spheres of all colors. CLEVR-CoGenT thus indicates how a model answers CLEVR questions:
by memorizing combinations of traits or by learning disentangled or general representations.

Results We train our best model architecture on Condition A and report accuracies on Conditions
A and B, before and after fine-tuning on B, in Figure 6.11. Surprisingly, FiLM learns better com-
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Q: What object is the color of
grass? A: Cylinder

Q: Which shape objects
are partially obscured from
view? A: Sphere

Q: What color is the matte
object farthest to the right?
A: Brown

Q: If all cubical objects were
removed what shaped objects
would there be the most of?
A: Sphere (P: Rubber)

Figure 6.10: Examples from CLEVR-Humans, which introduces new words (underlined) and concepts. Af-
ter fine-tuning on CLEVR-Humans, a CLEVR-trained model can now reason about obstruction, superlatives
but still struggles with hypothetical scenarios (rightmost). It also has learned human preference to primarily
identify objects by shape (leftmost).

Train Train CLEVR,
Model CLEVR fine-tune human

LSTM 27.5 36.5
CNN+LSTM 37.7 43.2
SAN 50.4 57.6
PG+EE (18K prog.) 54.0 66.6

FiLM 56.6 75.9

Table 6.3: CLEVR-Humans test accuracy, before (left) and after (right) fine-tuning on CLEVR-Humans data

positional generalization even than PG+EE, which explicitly models compositionality and is trained
with program-level supervision that specifically includes filtering colors and filtering shapes. In ad-
dition, we show sample efficiency and forgetting curves in Figure 6.11 where FiLM achieves prior
state-of-the-art accuracy with 1/3 as much fine-tuning data. However, our FiLM model still suffers
from catastrophic forgetting after fine-tuning.

Zero-Shot Generalization FiLM’s accuracy on Condition A is much higher than on B, suggesting
FiLM has memorized attribute combinations to an extent. For example, the model learns a bias that
cubes are not cyan, as learning this training set bias helps minimize training loss. To overcome this
bias, we develop a novel FiLM-based zero-shot generalization method. Inspired by word embedding
manipulations, e.g. “King” - “Man” + “Woman” = “Queen” (Mikolov et al., 2013b), we test if
linear manipulation extends to reasoning with FiLM. We compute (γ,β) for “How many cyan cubes
are there?” via the linear combination of questions in the FiLM parameter space: “How many cyan
spheres are there?” + “How many brown cubes are there?” − “How many brown spheres are
there?”. With this (γ,β), our model can correctly count cyan cubes.

We evaluate this method on validation B, using a parser to automatically generate the right com-
bination of questions. We test previously reported CLEVR-CoGenT FiLM models with this method
and show results in Fig. 6.11. With this method, there is a 3.2% overall accuracy gain when training
on A and testing for zero-shot generalization on B. Yet this method could only be applied to 1/3 of
questions in B. For these questions, model accuracy starts at 71.5% and jumps to 80.7%, demonstrat-
ing a true computationality, which is actually hidden while taking the full CLEVR-CoGenT dataset
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Train A Fine-tune B
Method A B A B

CNN+LSTM+SA 80.3 68.7 75.7 75.8
PG+EE (18K prog.) 96.6 73.7 76.1 92.7
CNN+GRU+FiLM 98.3 75.6 80.8 96.9
CNN+GRU+FiLM 0-Shot 98.3 78.8 81.1 96.9

Figure 6.11: CoGenT results. FiLM ValB accuracy reported on ValB without the 30K fine-tuning samples
(Figure). Accuracy before and after fine-tuning on 30K of ValB (Table).

as in Fig. 6.11. As implemented, this method has many limitations, but it does highlight the potential
of modulation. Thus, FiLM may benefit methods developed for word embeddings, representation
learning, and zero-shot learning.

6.4 Discussion

6.4.1 How CLEVR is the FiLM model? Subsequent Meta-analysis

FiLM has also been used in several subsequent works, and it has spread to large variety of tasks in-
cluding acoustic reasoning (Abdelnour et al., 2018), GAN conditioning (Almahairi et al., 2018; Brock
et al., 2019; Miyato and Koyama, 2018), image segmentation to integrate visual priors (Yang et al.,
2018) or linguistic cues (Rupprecht et al., 2018), speech recognition (Kim et al., 2017b), instruction
following (Bahdanau et al., 2019a), zero and few-shot learning (Jiang et al., 2019; Oreshkin et al.,
2018; Prol et al., 2018) or reinforcement learning (Vinyals et al., 2019).

Following this success, several meta-analyses have emerged to assess modulation learning and un-
derstanding potential (Bahdanau et al., 2019b; Dumoulin et al., 2018; Kuhnle and Copestake, 2018;
Kuhnle et al., 2018). For instance, Kuhnle et al. (2018) run a broad range of experiments on a 2D
CLEVR-like layout with more complex linguistic structures, exploring relational visual reasoning
(darker, lighter, smaller, bigger), superlative, and negation. They observe that FiLM requires a form
of iterative learning procedure to perform well on the most sophisticated reasoning tasks. For in-
stance, FiLM struggles to perform relational reasoning if it is neither jointly trains (or pretrained) on
existential questions or simple logical questions first. Besides, the authors observe that FiLM was
very sensitive to mismatches in the data distribution, and suggest some intrinsic over-fitting issues.
In a second paper, Kuhnle and Copestake (2018) study how FiLM models can approximate large
quantity, and observe that the FiLM model error distributions seem to follow a realistic cognitive
pattern, suggesting that an approximate number system is learned. Bahdanau et al. (2019b) examine
the generalization capabilities of different CLEVR models including FiLM, NMN, Relational Net-
works, and MAC under the following assumption: A good model should be able to reason about all
possible object combinations despite being trained on a very small subset of them. Similar to (Kuhnle
et al., 2018), they observe that modulation is insufficient to generalize well while dealing with rela-
tional reasoning, or when using unbalanced dataset. NMN were far more efficient for this kind of
generalization, and a few experiments suggest that MAC outperform FiLM by better attending to the
linguistic input. However, FiLM is the neural module that was successfully applied to natural data,
and other machine learning fields. One of the takeaways of these meta-analyses is that FiLM, and the
modulation is not a silver-bullet for visual understanding as the CLEVR accuracies may first suggest.
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It is worth to study modulation as a mechanism, but it is misleading to reduce a model to its attention,
modulation or any other conditioning mechanisms as sometimes observed in the literature.

6.4.2 Conclusion

We show that a model can achieve strong visual reasoning using general-purpose Feature-wise Linear
Modulation layers. By efficiently manipulating a neural network’s intermediate features in a selective
and meaningful manner using FiLM layers, a RNN can effectively use language to modulate a CNN
to carry out diverse and multi-step reasoning tasks over an image. Our ablation study suggests that
modulation is resilient to architectural modifications, test time ablations, and even restrictions on
FiLM layers themselves. Notably, we provide evidence that FiLM’s success is not closely connected
with normalization, as previously introduced in Chapter 5. As opposed to ModeRn models, FiLM
based models do not need to embed a full ResNet at evaluation time, making it a valuable and versatile
module. Besides, we show that modulation and CNN layers can be learned jointly from scratch
without the need for pretrained networks. Our findings also suggest that modulation models can
generalize better, more sample efficiently, and even zero-shot to challenging data that classic neural
approaches.
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Before starting our research on multimodal architecture, we observe that previous state-of-the-
art multimodal architectures failed at improving fundamental GuessWhat?! baselines, highlighting
their intrinsic limitations. Hence, we started exploring modulation blocks for multimodal learning in
Chapters 5 and 6. In this chapter, we finally aim to assess our methods on the GuessWhat?! task.
However, we noticed that CBN required too many computational resources to be effective, and we
only tested FiLM on artificial tasks so far. Besides, we also observed that FiLM required a huge RNN
to process the language jointly, and generate modulation parameters in CLEVR. We thus here explore
how to correctly balance language processing capacity to deal with GuessWhat?! natural language.

To do so, we here propose to generate the parameters of FiLM layers going up the hierarchy of a
convolutional network in a multi-hop fashion rather than all at once. By alternating between attending
to the language input and generating FiLM layer parameters, this approach would better scale-up to
settings with long sequences of inputs, e.g., dialogues. Such Multi-hop FiLM (Multi-hop FiLM)
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architecture achieves state-of-the-art for the short input sequence task ReferIt— on-par with single-
hop FiLM generation — while significantly outperforming prior state-of-the-art and single-hop FiLM
generation on the GuessWhat?! visual dialogue task.

7.1 Introduction

In the previous chapters, we introduced FiLM layers as a promising approach for vision-and-language
tasks. These layers apply a per-channel scaling and shifting to a convolutional network’s visual fea-
tures, conditioned on an external input such as language, e.g., captions, questions, or full dialogues.
Such feature-wise affine transformations allow models to dynamically highlight the key visual fea-
tures for the task at hand. The parameters of FiLM layers which scale and shift features or feature
maps are determined by a separate network, the so-called FiLM generator, which predicts these pa-
rameters using the external conditioning input.

However, the best way to design the FiLM generator is still an open question. For visual question-
answering and visual reasoning, prior work uses single-hop FiLM generators that predict all FiLM
parameters at once as in Chapter 5 and 6. That is, a RNN sequentially processes input language to-
kens and then outputs all FiLM parameters via a MLP. In this chapter, we argue that using a Multi-hop
FiLM Generator is better suited for tasks involving longer input sequences and multi-step reasoning
such as dialogue. Even for shorter input sequence tasks, single-hop FiLM generators can require
a large RNN to achieve strong performance; on the CLEVR visual reasoning task (Johnson et al.,
2017a) which only involves a small vocabulary (>30 words) and templated questions, the FiLM gen-
erator in Chapter 6 uses an RNN with 4096 hidden units that comprises almost 90% of the model’s
parameters. Models with Multi-hop FiLM Generators may thus be easier to scale to more difficult
tasks involving human-generated language involving larger vocabularies and more ambiguity.

As an intuitive example, consider the dialogue in Fig. 7.1 through which one speaker localizes
the second girl in the image, the one who does not “have a blue frisbee.” For this task, a single-
hop model must determine upfront what steps of reasoning to carry out over the image and in what
order; thus, it might decide in a single shot to highlight feature maps throughout the visual network
detecting either non-blue colors or girls. In contrast, a multi-hop model may first determine the most
immediate step of reasoning necessary (i.e., locate the girls), highlight the relevant visual features,
and then determine the next immediate step of reasoning necessary (i.e., locate the blue frisbee), and
so on. While it may be appropriate to reason in either way, the latter approach may scale better to
longer language inputs and/or or to ambiguous images where the full sequence of reasoning steps
is hard to determine upfront, which can even be further enhanced by having intermediate feedback
while processing the image.

In this chapter, we therefore explore several approaches to generating FiLM parameters in multi-
ple hops. These approaches introduce an intermediate context embedding that controls the language
and visual processing, and they alternate between updating the context embedding via an attention
mechanism over the language sequence (and optionally by incorporating image activations) and pre-
dicting the FiLM parameters. We evaluate Multi-hop FiLM generation on ReferIt (Kazemzadeh et al.,
2014) and GuessWhat?!, two vision-and-language tasks illustrated in Fig. 7.1. We show that Multi-
hop FiLM models significantly outperform their single-hop counterparts and prior state-of-the-art
for the longer input sequence, dialogue-based GuessWhat?! task while matching the state-of-the-art
performance of other models on ReferIt. Our best GuessWhat?! model only updates the context
embedding using the language input, while for ReferIt, incorporating visual feedback to update the
context embedding improves performance.
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ReferIt GuessWhat?!

- The girl with a sweater Is it a person? Yes
- The fourth person Is it a girl? Yes
- The girl holding a white Does she have a blue No
frisbee frisbee?

Figure 7.1: The ReferIt task identifies a selected object (in the bounding box) using a single expression, while
in GuessWhat?!, a speaker localizes the object with a series of yes or no questions.

In summary, this chapter makes the following contributions:

• We introduce the Multi-hop FiLM architecture and demonstrate that our approach matches or sig-
nificantly improves state-of-the-art on the GuessWhat?! Oracle task, GuessWhat?! Guesser task,
and ReferIt Guesser task.

• We show Multi-hop FiLM models outperform their single-hop counterparts on vision-and-language
tasks involving complex visual reasoning.

• We find that updating the context embedding of Multi-hop FiLM Generator based on visual feed-
back may be helpful in some cases, such as for tasks which do not include object category labels
like ReferIt.

7.2 Multi-hop FiLM

In this section, we introduce the Multi-hop FiLM architecture (shown in Fig. 7.2) to predict the
parameters of FiLM layers in an iterative fashion, to better scale to longer input sequences such as in
dialogue. Another motivation was to better disantangle the linguistic reasoning from the visual one
by iteratively attending to both pipelines.

The Multi-hop FiLM architecture composes with a context vector c that acts as a controller for the
linguistic and visual pipelines. This context vector is used to either attend over a sequence of language
embeddings {el,t}Tt=1 and to modulate the visual feature maps F . Given a pipeline of K modulated
ResBlock, we therefore compute K+ 1 distinct context vectors to perform κ reasoning hops. We first
initialize the context vector c0 with the final state of a bidirectional RNN el,T and repeat the following
procedure for each of the FiLM layers in sequence (from lowest to highest convolutional layer): first,
the context vector is updated by performing attention over RNN states (extracting relevant language
information), and second, the context is used to predict a layer’s FiLM parameters (dynamically
modulating the visual information). Note that the original FiLM architecture is equivalent to re-use
the initial context vector c0 at each modulation step. More formally, the context vector is computed
as follows:

c0 = el,T

cκ = LN(cκ−1 +
∑
t α

κ
t el,t)

(7.1)

where:

αkt (cκ−1, el,t) = exp(ξκt )∑
t exp(ξκt ) ; ξκt (cκ−1, el,t) = MLPAttn(g′(cκ, el,t)), (7.2)
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Figure 7.2: The Multi-hop FiLM architecture, illustrating inputs (green), layers (blue), and activations (purple).
In contrast, Single-hop FiLM models predict FiLM parameters directly from el,T .

where the dependence of ξκt and ακt on (cκ−1, el,t) are omitted to simplify notation. MLPAttn
is a network (shared across layers) which aids in producing attention weights. g′ can be any fusion
mechanism that facilitates selecting the relevant context to attend to; here we use a simple dot-product
following (Luong et al., 2015), so g′(cκ, st) = cκ � st . Finally, FiLM is carried out using a layer-
dependent neural network MLP κFiLM :

[ γκ ; βκ ] = MLP κFiLM (cκ) ; F̂ κ
.,.,c = γκc F

κ
.,.,c + βκc . (7.3)

As a regularization, we append a normalization-layer (Ba et al., 2016) on top of the context vector
after each attention step. A straightforward improvement is to use a transformer block to update el,t
at each reasoning hop (Vaswani et al., 2017), but leave it to future work.

External information Some tasks provide additional information which may be used to further
improve the visual modulation. For instance, GuessWhat?! provides spatial features of the ground
truth object to models which must answer questions about that object. Our model incorporates such
features by concatenating them to the context vector before generating FiLM parameters.

Visual feedback Inspired by the co-attention mechanism (Jiasen et al., 2016; Zhuang et al., 2018),
we also explore incorporating visual feedback into the Multi-hop FiLM architecture. To do so, we
first extract the image or crop features F k (immediately before modulation) and apply a global mean-
pooling over spatial dimensions. We then concatenate this visual state into the context vector ck

before generating the next set of FiLM parameters.

7.3 Experiments

In this section, we describe our overall Multi-hop FiLM architecture before evaluating on the ReferIt
and GuessWhat?! tasks.
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Figure 7.3: Overall model, consisting of a visual pipeline (red and yellow) and linguistic pipeline (blue) and
incorporating additional contextual information (green).

7.3.1 Task Descriptions

Dataset As mentioned in Sec. 3.2, ReferIt (Kazemzadeh et al., 2014; Yu et al., 2016a) is a coop-
erative two-player game. The first player (the Oracle) selects an object in a rich visual scene, for
which she must generate an expression that refers to it (e.g., “the person eating ice cream”). Based on
this expression, the second player (the Guesser) must then select an object within the image. There
are four ReferIt datasets: RefClef, RefCOCO, RefCOCO+ and RefCOCOg where RefClef relies
on the ImageClef dataset Müller et al. (2012), while the three other datasets are based the MScoco
dataset Lin et al. (2014). Each dataset enforces specific rules while collecting the data, but as a rule
of thumb, datasets have more and more long and complex sentences. For instance, RefCOCOg also
contains 8.4 words while RefCOCO only have 3.5 words in average. In our experiments, we also use
the GuessWhat?! dataset which is fully detailed in Chapter 4

Notation Both games consist of quadruplets (I,D, O, o∗), where I ∈ R3×W×H is an RGB image
of width W and height H containing a set of K objects O = {o1, . . . , oK} and D is a language input
(i.e., a series of words) describing an target object o∗ ∈ O present in the image I. Each object ok

is assigned an object category ck ∈ {1, . . . , C}, a pixel-wise segmentation mask Sk ∈ {0, 1}W×H , an
RGB crop within I and spatial informationxspatial = [xmin, ymin, xmax, ymax, xcenter, ycenter, wbox, hbox]

The Oracle task Given the image I, an object o, a question q, and a sequence of j previous
question-answer pairs (q, a)j< where a ∈ {Yes,No,N/A}, the Oracle’s task is to produce an an-
swer a that correctly answers the question q.

The Guesser task Given the image I, the list of objects {o1, . . . , oK}, the target object o∗ ∈ O and
the dialogue D, the guesser needs to output a probability σk that each object ok is the target object
o∗. Following (Hu et al., 2016b), the Guesser is evaluated by selecting the object with the highest
probability of being correct. Note that even if the individual probabilities σφ are between 0 and 1,
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their sum can be greater than 1. More formally, the Guesser loss and error are computed as follows:

LGuesser = −1
Ngames

Ngames∑
n

1
Kn

K∑
k

log(p(o∗|In, onk ,Dn)) (7.4)

EGuesser = −1
Ngames

Ngames∑
n

1(o∗ 6= oarg maxφ σnφ ) (7.5)

where 1 is the indicator function and N the number of samples in a batch of samples.

7.3.2 Model

We use similar models for both ReferIt and GuessWhat?! and provide its architectural details in this
subsection, and we depict the network in Fig. 7.3.

Object Embedding The object category is fed into a dense look-up table ecat, and the spatial
information is scaled to [-1;1] before being up-sampled via non-linear projection to espat. We do not
use the object category in ReferIt models.

Visual Pipeline We first resized the image and object crop to 448 × 448 before extracting 14 ×
14 × 1024 dimensional features from a ResNet-152 (He et al., 2016) (block3) pretrained on Ima-
geNet (Russakovsky et al., 2015). As in Chapter 6, we feed these features to a 3×3 convolution layer
with BN (Ioffe and Szegedy, 2015) and ReLU. We then stack four modulated residual blocks (shown
in Fig 7.2), each producing a set of feature maps F κ via (in order) a 1 × 1 convolutional layer (128
units), ReLU activations, a 3×3 convolutional layer (128 units), and an untrainable Batch Normaliza-
tion layer. The residual block then modulates F κ with a FiLM layer to get F̂ κ, before again applying
ReLU activations. Lastly, a residual connection sums the activations of both ReLU outputs. After the
last residual block, we use a 1×1 convolution layer (512 units) with BN and ReLU followed by MLB
attention (Kim et al., 2017a) (256 units and 1 glimpse) to obtain the final embedding ev. Note our
model uses two independent visual pipeline modules: one to extract modulated image features eimgv ,
one to extract modulated crop features ecropv .

To incorporate spatial information, we concatenate two coordinate feature maps indicating relative
x and y spatial position (scaled to [−1, 1]) with the image features before each ResBlock. In addition,
the pixel-wise segmentations S ∈ {0, 1}M×N are rescaled to 14 × 14 floating point masks before
being concatenated to the feature maps.

Linguistic Pipeline We compute the language embedding by using a word-embedding look-up
(200 dimensions) with dropout followed by a Bi-GRU (512 × 2units) with LN (Ba et al., 2016). As
described in Section 7.2, we initialize the context vector with the last RNN state c0 = sT . We then
attend to the other Bi-GRU states via an attention mechanism with a linear projection and ReLU
activations and regularize the new context vector with LN.

FiLM Parameter Generation We concatenate spatial information espat and object category infor-
mation ecat (GuessWhat?! only) to the context vector. In some specified experiments, we concatenate
a fourth embedding consisting of intermediate visual features F κ after mean-pooling. Finally, we use
a linear projection to map the embedding to FiLM parameters.

Final Layers We generate our final embedding by concatenating the output of the visual pipelines
efinal = [eimgv ; ecropv ] before applying a linear projection (512 units) with ReLU and a softmax layer.
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Referit RefCOCO RefCOCO+ RefCOCOg
Split by (unc) (unc) (google) (umd)
Report on Valid TestA TestB Valid TestA TestB Val Test

MMI (Nagaraja et al., 2016) - 71.7% 71.1% - 58.4% 51.2% 59.3% -
visDif + MMI (Yu et al., 2016a) - 74.6% 76.6% - 59.2% 55.6% 64.0% -
NEG Bag (Nagaraja et al., 2016) - 75.6% 78.0% - - - 68.4% 68.4%
Joint-SLR (Yu et al., 2016b) 78.9% 78.0% 80.7% 61.9% 64.0% 59.2% - 71.9%
PLAN (Zhuang et al., 2018) 81.7% 80.8% 81.3% 64.2% 66.3% 61.5% 69.5 -
MAttNet (Yu et al., 2018b) 85.7% 85.3% 84.6% 71.0% 75.1% 66.2% 73.1% 78.1%
CM-Att-Erase (Liu et al., 2019b) 87.5% 88.1% 86.3% 73.7% 77.6 68.9% - 80.4%

Baseline NN+MLB 77.6% 79.6% 77.2% 60.8% 59.7% 66.2% 63.1% -
Single-hop FiLM 83.4% 85.8% 80.9% 72.1% 77.3% 63.9% 67.8% -
Multi-hop FiLM 83.5% 86.5% 81.3% 73.4% 77.7% 64.5% 69.8% -
Multi-hop FiLM (+img) 84.9% 87.4% 83.1% 73.8% 78.7% 65.8% 71.5% -

Table 7.1: ReferIt Guesser Error.

Training Process We train our model end-to-end with Adam (Kingma and Ba, 2015) (learning rate
3e−4), dropout (0.5), weight decay (5e−6) for convolutional network layers, and a batch size of 64.
We report results after early stopping on the validation set with a maximum of 15 epochs.

7.3.3 Baselines

In our experiments, we re-implement several baseline models to benchmark the performance of our
models. The standard Baseline NN simply concatenates the image and object crop features after mean
pooling, the linguistic embedding, and the spatial embedding and the category embedding (Guess-
What?! only), passing those features to the same final layers described in our proposed model. We
refer to a model which uses the MLB attention mechanism to pool the visual features as Baseline
NN+MLB. We also implement a Single-hop FiLM mechanism which is equivalent to setting all
context vectors equal to the last state of the Bi-GRU el,T . Finally, we experiment with injecting in-
termediate visual features into the FiLM Generator input, and we refer to the model as Multi-hop
FiLM (+img). We also refer the reader to Sec. 3.2 for more details on the other state-of-the art
benchmarks.

7.3.4 Results

ReferIt Guesser We report the best test error of the outlined methods on the ReferIt Guesser task
in Tab. 7.1 and Tab. 7.5. Note that RefCOCO and RefCOCO+ split test sets into TestA and TestB,
only including expression referring towards people and objects, respectively. Our initial baseline
achieves 77.6%, 60.8%, 63.1%, 73.4% on the RefCOCO, RefCOCO+, RefCOCOg, RefClef datasets,
respectively, performing comparably to state-of-the-art models. We observe a significant improve-
ments using a FiLM-based architecture, jumping to 84.9%, 87.4%, 73.8%, 71.5%, respectively, and
outperforming most prior methods and achieving comparable performance with the concurrent MAt-
tNet (Yu et al., 2018b) model. Interestingly, MAttNet and Multi-hop FiLM are built in two different
manners; while the former has three specialized reasoning blocks, our model uses a generic feature
modulation approach. These architectural differences surface when examining test splits: MAttNet
achieves excellent results on referring expression towards objects while Multi-hop FiLM performs
better on referring expressions towards people, suggesting that an assemble models would greatly
perform.
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Oracle Models Quest. Dial. Object Image Crop Test Error

Dominant class (“no”) 7 7 7 7 7 50.9%
Question only Chapter 4 3 7 7 7 7 41.2%
Image only Chapter 4 7 7 7 3 7 46.7%
Crop only Chapter 4 7 7 7 7 3 43.0%

No-Vision (Quest.) Chapter 4 3 7 3 7 7 21.5%
No-Vision (Dial.) 7 3 3 7 7 20.6%

Baseline NN (Quest.) 3 7 3 3 3 23.3%
Baseline NN (Dial.) 7 3 3 3 3 22.4%
Baseline NN + MLB (Quest.) 3 7 3 3 3 21.8%
Baseline NN + MLB (Dial.) 7 3 3 3 3 21.1%

MODERN Chapter 5 3 7 3 7 3 19.5%

Single-hop FiLM (Quest.) 3 7 3 3 3 17.8%
Single-hop FiLM (Dial.) 7 3 3 3 3 17.6%
Multi-hop FiLM 7 3 3 3 3 16.9%
Multi-hop FiLM (+img) 7 3 3 3 3 17.1%

Table 7.2: GuessWhat?! Oracle Error by Model and Input Type.

Guesser Error Test

Random 82.9%

LSTM 38.7%
LSTM + Img 39.5%
PLAN (Zhuang et al., 2018) 36.6%

Base NN + MLB (crop) 38.3%
Single-hop FiLM 35.6%
Multi-hop FiLM 30.5%

Guesser Error Crop Image Crop+Img

Baseline NN 38.3% 40.0% 45.1%
Single-hop FiLM 35.3% 35.7% 35.6%
Multi-hop FiLM 32.3% 35.0% 30.5%

Table 7.3: GuessWhat?! Guesser Error on the successful dataset.

GuessWhat?! Oracle We report the best test error of several variants of GuessWhat?! Oracle
models in Tab. 7.2. First, we looked at naive baselines which discard visual or language cues by
predicting the Oracle’s target answer using only the image (46.7% error) or the question (41.1% error).
As first reported Chapter 4, we observe that the baseline methods perform worse when integrating
the image and crop inputs (21.1%) rather than solely using the object category and spatial location
(20.6%). On the other hand, concatenating previous question-answer pairs to answer the current
question is beneficial in our experiments. Finally, using Single-hop FiLM reduces the error to 17.6%
and Multi-hop FiLM further to 16.9%, outperforming the previous best model by 2.4%.

GuessWhat?! Guesser We provide the best test error of the outlined methods on the GuessWhat?!
Guesser task in Tab. 7.3. As a baseline, we find that random object selection achieves an error rate
of 82.9%. Our initial model baseline performs significantly worse (38.3%) than concurrent models
(36.6%), highlighting that successfully jointly integrating crop and image features is far from trivial.
However, Single-hop FiLM manages to lower the error to 35.6%. Finally, Multi-hop FiLM architec-
ture outperforms other models with a final error of 30.5%.

7.4 Discussion

Single-hop FiLM vs. Multi-hop FiLM In the GuessWhat?! task, Multi-hop FiLM outperforms
Single-hop FiLM by 6.1% on the Guesser task but only 0.7% on the Oracle task. We think that the
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Oracle Model Test
Error

Baseline NN+MLB 26.7%
Single-hop FiLM 19.5%
Multi-hop FiLM 18.9%
Multi-hop FiLM (+img) 18.4%

Guesser Model Crop Image Crop/Img

PLAN (Zhuang et al., 2018) - - 40.3%
Multi-hop FiLM 35.3% 39.8% 33.9%
Multi-hop FiLM (+img) 34.3% 40.1% 33.2%

Table 7.4: (top) GuessWhat?! Oracle (top) and Guesser (down) test error without object category label on the
successful dataset.

small performance gain for the Oracle task is due to the nature of the task; to answer the current
question, it is often not necessary to look at previous question-answer pairs, and in most cases this
task does not require a long chain of reasoning. On the other hand, the Guesser task needs to gather
information across the whole dialogue in order to correctly retrieve the object, and it is therefore more
likely to benefit from multi-hop reasoning. The same trend can be observed for ReferIt. Single-hop
FiLM and Multi-hop FiLM perform similarly on RefClef and RefCOCO, while we observe 1.3% and
2% gains on RefCOCO+ and RefCOCOg, respectively. This pattern of performance is intuitive, as
the former datasets consist of shorter referring expressions (3.5 average words) than the latter (8.4
average words in RefCOCOg), and the latter datasets also consist of richer, more complex referring
expressions due e.g. to taboo words (RefCOCO+). In short, our experiments demonstrate that Multi-
hop FiLM is better able to reason over complex linguistic sequences.

Reasoning mechanism We conduct several experiments to better understand our method. First, we
assess whether Multi-hop FiLM performs better because of increased network capacity. We remove
the attention mechanism over the linguistic sequence and update the context vector via a shared MLP.
We observe that this change significantly hurts performance across all tasks, e.g., increasing the Multi-
hop FiLM error of the Guesser from 30.5 to 37.3%. Second, we investigate how the model attends
to GuessWhat?! dialogues for the Oracle and Guesser tasks, providing more insight into how to the
model reasons over the language input. We first look at the top activation in the (crop) attention
layers to observe where the most prominent information is. Note that similar trends are observed for
the image pipeline. As one may expect, the Oracle is focused on a specific word in the last question
99.5% of the time, one which is crucial to answer the question at hand. However, this ratio drops to
65% in the Guesser task, suggesting the model is reasoning in a different way. If we then extract the
top 3 activations per layer, the attention points to<yes> or<no> tokens (respectively) at least once,
50% of the time for the Oracle and Guesser, showing that the attention is able to correctly split the
dialogue into question-answer pairs. Finally, we plot the attention masks for each FiLM layer to have
a better intuition of this reasoning process in Fig. 7.4.

Crop vs. Image. We also evaluate the impact of using the image and/or crop on the final error
for the Guesser task 7.3. Using the image alone (while still including object category and spatial
information) performs worse than using the crop. However, using image and crop together unarguably
gives the lowest errors, though prior work has not always used the crop due to architecture-specific
GPU limitations as in Chapter 5.

Visual feedback We explore whether adding visual feedback to the context embedding improves
performance. While it has little effect on the GuessWhat?! Oracle and Guesser tasks, it improves
the accuracy on ReferIt by 1-2%. Note that ReferIt does not include class labels of the selected
object, so the visual feedback might act as a surrogate for this information. To further investigate this
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Figure 7.4: Guesser (left) and Oracle (right) attention visualizations for the visual pipeline which processes
the object crop.

hypothesis, we remove the object category from the GuessWhat?! task and report results in Tab. 7.4.
In this setup, we indeed observe a relative improvement 0.4% on the Oracle task, further confirming
this hypothesis.

7.5 Related Work

The ReferIt game (Kazemzadeh et al., 2014) has been a testbed for various vision-and-language tasks
over the past years, including object retrieval (Luo and Shakhnarovich, 2017; Nagaraja et al., 2016;
Yu et al., 2016a,b, 2018b; Zhuang et al., 2018), semantic image segmentation (Hu et al., 2016a;
Rohrbach et al., 2016), and generating referring descriptions (Luo and Shakhnarovich, 2017; Yu et al.,
2016a,b). To tackle object retrieval, (Nagaraja et al., 2016; Yu et al., 2016a, 2018b) extract additional
visual features such as relative object locations and (Luo and Shakhnarovich, 2017; Yu et al., 2016b)
use reinforcement learning to iteratively train the object retrieval and description generation models.
Closer to our work, (Hu et al., 2016b; Zhuang et al., 2018) use the full image and the object crop to
locate the correct object. While some previous work relies on task-specific modules (Yu et al., 2016a,
2018b), our approach is general and can be easily extended to other vision-and-language tasks.

The GuessWhat?! game can be seen as a dialogue version of the ReferIt game, one which ad-
ditionally draws on visual question answering ability. As further studied in the next chapter, Lee
et al. (2018b); Zhu et al. (2017b) make headway on the dialogue generation task via reinforcement
learning. However, these approaches are bottlenecked by the accuracy of Oracle and Guesser mod-
els, despite existing modeling advances in the previous chapters and concurrent work (Zhuang et al.,
2018); accurate Oracle and Guesser models are crucial for providing a meaningful learning signal for
dialogue generation models, so the Multi-hop FiLM architecture may facilitate high quality dialogue
generation as well.

There are other notable models that decompose reasoning into different modules. For instance,
Neural Turing Machine (NTM) (Graves et al., 2014, 2016) divide a model into a controller composed
of read&write neural units. Memory networks use an attention mechanism to answer a query by
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reasoning over a linguistic knowledge base (Sukhbaatar et al., 2015; Weston et al., 2014) or image
features (Xiong et al., 2016). A memory network updates a query vector by performing several
attention hops over the memory before outputting a final answer from this query vector. Although
Multi-hop FiLM computes a similar context vector, this intermediate embedding is used to predict
FiLM parameters rather than the final answer. Thus, Multi-hop FiLM includes a second reasoning step
over the image. The Multi-hop FiLM reasoning module shares several similarities with the attention
encoder from Transformer networks (Devlin et al., 2018; Vaswani et al., 2017), but transformer aims
to learn an intermediate language representation that is latter decoded while Multi-hop FiLM discards
the intermediate linguitic representations once the modulation parameters are predicted. Yet, it would
be worth investigating to improve Multi-hop FiLM in light of the recent successes of the transformers
architecture.

Closer to our work, Hudson and Manning (2018) designed networks composed of Memory,Attention,
and Composition (MAC) cells to perform visual reasoning. Similar to NTM, each MAC cell is com-
posed of a control unit that attends over the language input, a read unit that attends over the image and
a write unit that fuses both pipelines. Though conceptually similar to Multi-hop FiLM models, com-
positional attention networks differ structurally, for instance they use a dynamic neural architecture,
and the core neural blocks are based on spatial attention rather than modulation layers. While MAC
has been unarguably superior to FiLM-ed networks on complex but artificial tasks (Bahdanau et al.,
2019b; Suhr et al., 2017), it faces strong overfitting issues while dealing with natural images (Shrestha
et al., 2019; Suhr et al., 2017). An interesting line of research is to compose with both approaches to
bring the best of the two worlds in a single model.

7.6 Conclusion

In this chapter, we introduce a new way to exploit FiLM layers for vision-and-language tasks. Our
approach generates the parameters of modulation layers going up the visual pipeline by attending to
the language input in multiple hops rather than all at once. We show Multi-hop FiLM Generator archi-
tectures are better able to handle longer sequences than their single-hop counterparts. We outperform
state-of-the-art vision-and-language models significantly on the long input sequence GuessWhat?!
tasks, while maintaining state-of-the-art performance for the shorter input sequence ReferIt task. Fi-
nally, this Multi-hop FiLM Generator approach uses few problem-specific priors, and thus we believe
it can extended to a variety of vision-and-language tasks, particularly those requiring complex visual
reasoning.

Referit RefClef
(berkeley)

Test

SCRC (Hu et al., 2016b) 72.7%

Baseline NN+MLB 74.6%
Single-hop FiLM 84.0%
Multi-hop FiLM 84.3%
Multi-hop FiLM +(img) 85.1%

Table 7.5: ReferIt Guesser Test Error.
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Learning Language by Self-Play
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Introduction to Reinforcement Learning by
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End-to-end dialogue systems has recently become a popular research topic thanks to powerful
tools such as encoder-decoder architectures for sequence-to-sequence learning. Yet, most current
approaches cast human-machine dialogue management as a supervised learning problem, aiming at
predicting the next utterance of a participant given the full history of the dialogue. This vision may fail
to correctly render the planning problem inherent to dialogue as well as its contextual and grounded
nature. In this chapter, we introduce a deep reinforcement learning method to optimize visually
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grounded task-oriented dialogues, based on the policy gradient algorithm. We assess out approach
on the GuessWhat?! game, and examine whether the agent can learn to consistently manipulating
language, and correctly integrating multimodal concepts. We provide encouraging results toward
learning consistent dialogue strategy, and uncover new interactive training difficulties, opening the
spectrum of research directions for goal-oriented dialogues.

8.1 Introduction

Ever since the formulation of the Turing Test (Turing, 1950), building systems that can meaningfully
converse with humans has been a long-standing goal of Artificial Intelligence (AI). Practical dialogue
systems have to implement a management strategy that defines the system’s behavior, for instance
to decide when to provide information or to ask for clarification from the user. Although traditional
approaches use linguistically motivated rules (Weizenbaum, 1966), recent methods are data-driven
and make use of Reinforcement Learning (RL) (Lemon and Pietquin, 2007). Significant progress
in NLP via deep neural networks (Bengio et al., 2003) made neural encoder-decoder architectures
a promising way to train conversational agents (Serban et al., 2016; Sordoni et al., 2015; Vinyals
and Le, 2015). The main advantage of such end-to-end dialogue systems is that they make no as-
sumption about the application domain and are simply trained in a supervised fashion from large text
corpora (Lowe et al., 2015).

However, there are many drawbacks to this approach. First, encoder-decoder models cast the
dialogue problem into one of supervised learning, predicting the distribution over possible next ut-
terances given the discourse so far. As with machine translation, this may result in inconsistent dia-
logues and errors that can accumulate over time. As the action space of dialogue systems is vast, and
existing datasets cover only a small subset of all trajectories, it is difficult to generalize to unseen sce-
narios (Mooney, 2006). Second, the supervised learning framework does not account for the intrinsic
planning problem that underlies dialogue, i.e. the sequential decision making process, which makes
dialogue consistent over time. This is especially true when engaging in a task-oriented dialogue. As
a consequence, reinforcement learning has been applied to dialogue systems since the late 90s (Levin
et al., 1997; Singh et al., 1999) and dialogue optimization has been generally more studied than
dialogue generation. Finally, it is unclear whether encoder-decoder supervised training efficiently in-
tegrates external contexts (larger than the history of the dialogue) that is most often used by dialogue
participants to interact. This context can be their physical environment, a common task they try to
achieve, a map on which they try to find their way, a database they want to access etc. These contexts
are all the more important as they are part of the so called Common Ground, well studied in the dis-
course literature (Clark and Schaefer, 1989). Over the last decades, the field of cognitive psychology
has also brought empirical evidence that human representations are grounded in perception and mo-
tor systems (Barsalou, 2008). These theories imply that a dialogue system should be grounded in a
multi-modal environment in order to obtain human-level language understanding (Kiela et al., 2016).

On the other hand, RL approaches could handle the planning and the non-differentiable met-
ric problems but require online learning (although batch learning is possible but difficult with low
amounts of data (Pietquin et al., 2011)). For that reason, user simulation has been proposed to ex-
plore dialogue strategies in RL settings (Eckert et al., 1997; Pietquin and Hastie, 2013; Schatzmann
et al., 2006). It also requires the definition of an evaluation metric which is most often related to
task completion and user satisfaction (Walker et al., 1997). Without such a goal-achievement metric,
it is difficult to correctly evaluate dialogues (Liu et al., 2016). In addition, successful applications
of the RL framework to dialogue often rely on a predefined structure of the task, such as slot-filling
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Is it a person?

Is it a snowboard?
NoIs it the red one?
Yes

Is it a cow? Yes

NoIs the cow on the left? 
No

On the right ? Yes

Is it an item being worn or held?

Is it the one being held by the
person in blue?

Yes First cow near us?

Is it the big cow in the middle?

Yes

Yes
No

#203974 #168019 

Figure 8.1: Two example games of the GuessWhat?! dataset. The correct object is highlighted by a green
mask.

tasks (Williams and Young, 2007) where the task can be cast as filling in a form.
In this chapter, we present an architecture for end-to-end RL optimization of a task-oriented ques-

tion generator of a dialogue system and its application to a multimodal task, grounding the dialogue
in a visual context. To do so, we start from a corpus of 150k human-human dialogues collected via
the introduced GuessWhat?! game. The goal of the game is to locate an unknown object in a natural
image by asking a series of questions. This task is hard since it requires scene understanding and,
more importantly, a dialogue strategy that leads one to rapidly identify the target object. From this
data, we first build a supervised agent and a neural training environment. It serves to train a Deep
RL agent online which is able to solve the task. We then quantitatively and qualitatively compare the
performance of our system to a supervised approach on the same task. In short, our contributions are
to propose a visually grounded goal-directed dialogue system optimized via Deep RL; and to achieve
15% improvement on task completion over a supervised learning baseline, and expose the benefice
and limitation of our approach.

8.2 GuessWhat?! Game

As a first step, we briefly recap the GuessWhat?! rules, notation and models from Chapter 5 for
self-consistency; the accustomed reader can safely bypass this section.

8.2.1 Rules

GuessWhat?! is a cooperative two-player game in which both players see the image of a rich visual
scene with several objects. One player – the oracle – is randomly assigned an object (which could be
a person) in the scene. This object is not known by the other player – the questioner – whose goal is
to locate the hidden object. To do so, the questioner can ask a series of yes-no questions which are
answered by the oracle as shown in Fig 8.1. Note that the questioner is not aware of the list of objects
and can only see the whole image. Once the questioner has gathered enough evidence to locate the
object, he may choose to guess the object. The list of objects is revealed, and if the questioner picks
the right object, the game is considered successful.
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  w21             w22           w23         w24

  w21           w22            w23          w24                             w31

Is it an item being worn or held?

  w11             w12           w13           w14

  w11           w12            w13          w14

Is it a person?

Yes
a2

No
a1

VGG

Figure 8.2: Question generation model designed by a single LSTM.

8.2.2 Notation

We briefly recap the GuessWhat?! notation from Chapter 4 with a small change in the vocabu-
lary construction. A game is defined by a tuple (I,D, O, o∗) where I ∈ RW×H is an image of
height H and width W , D a dialogue with J question-answer pairs D = (qj , aj)Jj=1, O a list of

K objects O = (ok)Kk=1 and o∗ the target object. Moreover, each question qj = (wji )
Ij
i=1 is a se-

quence of length Ij with each token wji taken from a predefined vocabulary V . The vocabulary V
is composed of a predefined list of words, a question tag <?> that ends a question and a stop to-
ken <stop> that ends a dialogue. An answer is restricted to be either yes, no or not applicable
i.e. aj ∈ {<yes>,<no>,<na>}. For each object k, an object category ck ∈ {1, . . . , C} and a
pixel-wise segmentation mask Sk ∈ {0, 1}H×W are available.

8.2.3 Training Environment

We briefly describe the QGen, oracle and guesser models that are used throughout this chapter. More
precisely, we here reproduce the best baseline architectures from Chapter 4 and the more advanced
Multi-hop FiLM models from Chapter 7.

Question generation architecture As mentioned in Chapter 4, we split the questioner’s job into
two different tasks: one for asking the questions and another one for guessing the object. The question
generation task requires to produce a new question qj+1, given an image I and a history of J questions
and answers pairs (q, a)<j .

We model the question generator with an LSTM, which constructs a distribution over tokens wji
from vocabulary V . In the case of GuessWhat?!, this output distribution is conditioned on all previous
questions and answers tokens as well as the image I:

p(wji |w
j
i−1<, (q, a)j−1<, I). (8.1)

We condition the model on the image by concatenating VGGNet features (fc8) to the input em-
bedding at each step, as depicted in Fig. 8.2. We train the model by minimizing the conditional
negative log-likelihood:

140



8.2. GuessWhat?! Game 141

MLP

<yes>,<no>,<na>

LSTM LSTM LSTM LSTM LSTM

spatial

category

Is           it            a       person      ?  

(a) Oracle Model

LSTM
encoder

Is it a person? No 
Is it an item being worn or held? Yes
Is it a snowboard? Yes

MLP MLP MLP

obj1

Softmax

opredict

obj2 obj3 obj4

MLP

Is it the red one? No
Is it the one being held by 
the one in blue? Yes

(b) Guesser Model

Figure 8.3: Oracle and guesser models are conditioned on handcrafted and pre-extracted visual features such
as object category and spatial location. Only the Multi-hop FiLM model uses raw image feartures.

− log p(qJ<|aJ<, I) = − log
J∏
j=1

p(qj |(q, a)j−1<, I), (8.2)

= −
J∑
j=1

Ij∑
i=1

log p(wji |w
j
i−1<, (q, a)j−1<, I). (8.3)

At test time, the samples p(qj |(q, a)j−1<, I) are sampled as follows. Starting from the state sj1,
we sample a new tokenwji from the output distribution and feed the embedded token e

wji
back as input

to the RNN. We repeat this loop till we encounter an end-of-sequence token. To approximately find
the most likely question, maxqj p(qj |(q, a)1<j , I), we use beam-search procedure. This heuristics
aims to find the most likely sequence of words by exploring a subset of all questions and keeping the
K-most promising candidate sequences at each time step as described in Section 2.2.3.

Oracle The oracle task requires to produce a yes-no answer for any object within an image given
a natural language question. In a few words, we embed the spatial information of the crop by ex-
tracting an 8-dimensional vector of the location of the bounding box. Second, we convert the object
category c∗ into a dense category embedding using a learned look-up table. When using the original
GuessWhat?! baseline, we use an LSTM to encode the current question qj . We then concatenate all
three embeddings into a single vector and feed it as input to a single hidden layer MLP with ReLU
activations. The model outputs the answer distribution p(a|q, c∗, x∗spatial) using a softmax layer as
shown in Fig 8.3a.

In the advanced Multi-hop FiLM model, we use a bi-GRU to encode the current question qj and
the dialogue history (q, a)j<. The resulting embedding is then used to jointly modulate the image
and crop pipelines with a multi-hop architecture as described in Sec 7.3.2. The two visual embedding
are finally concatenated and projected through the same classification layers than the baseline model.

Guesser The guesser model takes an image I and a sequence of questions and answers (q, a)J<,
and predicts the correct object o∗ from the set of all objects. The baseline model considers a dialogue
as one flat sequence of question-answer tokens and uses the last hidden state of the LSTM encoder as
our dialogue representation. We perform a dot-product between this representation and the embedding
for all the objects in the image, followed by a softmax to obtain a prediction distribution over the

141



142 Chapter 8. Learning Language by Self-Play

objects. The object embeddings are obtained from the categorical and spatial features. More precisely,
we concatenate the 8-dimensional spatial representation and the object category look-up and pass it
through an MLP layer to get an embedding for the object. The MLP parameters are shared to handle
the variable number of objects in the image. See Fig 8.3b for an overview of the guesser.

In the advanced Multi-hop FiLM model, we use the oracle model, and change the evaluation and
training procedure to turn it into a guesser. For each new, we iterate over the list of objectsO and com-
pute the probability that a dialogue matches with the object such as p(o = o∗|(q, a)≤J , I, C, c, xspatial).
Finally, we pick the object with the highest probability score.

8.2.4 Generation of Full Games

With the question generation, oracle and guesser model we have all components to simulate a full
game. Given an initial image I, we generate a question q1 by sampling tokens from the question
generation model until we reach the question-mark token. Alternatively, we can replace the sampling
procedure by a beam-search to approximately find the most likely question according to the generator.
The oracle then takes the question q1, the object category c∗ and x∗spatial as inputs, and outputs the
answer a1. We append (q1, a1) to the dialogue and repeat generating question-answer pairs until
the generator emits a stop-dialogue token or the maximum number of question-answers is reached.
Finally, the guesser model takes the generated dialogue D and the list of objects O and predicts the
correct object.

8.3 GuessWhat?! from RL Perspective

One of the drawbacks of training the QGen in a supervised learning setup is that its sequence of ques-
tions is not explicitly optimized to find the correct object. Such training objectives miss the planning
aspect underlying (goal-oriented) dialogues. In this chapter, we propose to cast the question genera-
tion task as an RL task. More specifically, we use the training environment previously described and
consider the oracle and the guesser as part of the RL agent environment. In the following, we first
formalize the GuessWhat?! task as an MDP so as to apply a policy gradient algorithm to the QGen
problem.

8.3.1 GuessWhat?! as a Markov Decision Process

As mentioned in Sec.1.3.1, an RL environment can be modeled as an MDP (Bellman, 1957; Bertsekas
and Tsitsiklis, 1996; Howard, 1960; Puterman, 2014). An MDP is a 5-tuple (X,U ,R,P , γ), whose
elements are respectively, the state space, the action space, the reward function, the transition matrix
and the discount factor. In the case of GuessWhat?!, we define the state xt ∈ X as the status of the
game at step t. Specifically, we define xt = ((wj1, . . . , w

j
i ), (q, a)j−1<, I) where t =

∑j−1
j=1 Ij + i

corresponds to the number of tokens generated since the beginning of the dialogue. An action ut ∈ U
corresponds to select a new wordwji+1 in the vocabulary V . The transition to the next stateP depends
on the selected action:

• If wji+1 = <stop>, the full dialogue is terminated.
• If wji+1 = <?>, the ongoing question is terminated and an answer aj is sampled from the

oracle. The next state is xt+1 = ((q, a)j<, I) where qj = (wj1, . . . , w
j
i , <?>).

• Otherwise the new word is appended to the ongoing question and the next state is xt+1 =
((wj1, . . . , w

j
i , w

j
i+1), (q, a)j−1<, I)
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Questions are arbitrarily terminated after Imax words. Similarly, dialogues are terminated after
Jmax questions. Furthermore, a reward r(x, u) is defined for every state-action pair. A trajectory
τ = (xt, ut,xt+1, r(xt, ut))T< is a finite sequence of tuples of length T which contains a state, an
action, the next state and the reward where T ≤ Jmax ∗ Imax. Thus, the game falls into the episodic
RL scenario as the dialogue terminates after a finite sequence of question-answer pairs. Finally, the
QGen output can be viewed as a stochastic policy πθ(u|x) parametrized by θ which associates a
probability distribution over the actions (i.e. words) for each state (i.e. intermediate dialogue and
image).

8.3.2 Training the QGen with Policy Gradient

While several approaches exist in the RL literature, we opt for policy gradient methods for they
empirically scale well to large action spaces (Chan et al., 2019; Silver et al., 2016; Vinyals et al.,
2019), and value-based methods such as Q-learning are proned to over-estimation and instabilities
while increasing the action space (Bertsekas and Tsitsiklis, 1996; Thrun and Schwartz, 1993; Zahavy
et al., 2018). This action state size constraint is all the more important as the GuessWhat?! vocabulary
contains thousands of words. As detailed in Sec. 1.3.6, the policy parameters can be updated in the
direction of the gradient of the mean value. We then estimate it over a batch of trajectories Th sampled
from the current policy πθh as follows:

∇J(θh) =
〈 T∑
t=1
∇θh log πθh(ut|xt)(Qπθh (xt, ut)− b)

〉
Th
, (8.4)

where γ ∈ [0, 1] is the discount factor, T is the length of the trajectory andQπθh (x, u) is the state-
action value-functionQπθh (x, u) approximated by Monte-Carlo rollouts (Williams, 1992). Following
GuessWhat?! game notation, the policy gradient for the QGen can be written as follow:

∇J(θh) =
〈 J∑
j=1

Ij∑
i=1
∇θh log πθh(wji |w

j
i−1<, (q, a)j−1<, I)

(Qπθh ((wji−1<, (q, a)j−1<, I), wji )− b)
〉
Th
. (8.5)

8.3.3 Reward Function

One tedious aspect of RL is to define a correct and valuable reward function. As the optimal policy is
the result of the reward function, one must be careful to design a reward that would not change the ex-
pected final optimal policy (Ng et al., 1999). Therefore, we put a minimal amount of prior knowledge
into the reward function and construct a zero-one reward depending on the guesser’s prediction:

r(xt, ut) =

1 If argmaxo[Guesser(xt)] = o∗ and t = T

0 Otherwise
. (8.6)

In other words, we give a reward of one if the correct object is found from the generated questions,
and zero otherwise. Note that the reward function requires the target object o∗ while it is not included
in the state x = ((q, a)J<, I). This breaks the MDP assumption that the reward should be a function
of the current state and action. However, policy gradient methods with Monte-Carlo rollout are still
applicable if the MDP is partially observable (Williams, 1992).
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Algorithm 1 Training of QGen with Policy Gradient
Require: Pretrained QGen,Oracle and Guesser
Require: Batch size K

1: for Each update do
2: # Generate trajectories Th
3: for k = 1 to K do
4: Pick Image Ik and the target object o∗k ∈ Ok
5: # Generate question-answer pairs (q, a)k1:j
6: for j = 1 to Jmax do
7: qkj = QGen(q, a)k1:j−1, Ik)
8: akj = Oracle(qkj , o∗k, Ik)
9: if <stop> ∈ qkj then

10: delete (q, a)kj and break;
11: end if
12: end for
13: p(ok|·) = Guesser((q, a)k1:j , Ik, Ok)

14: r(xt, ut) =

1 If argmaxokp(ok|·) = o∗k

0 Otherwise
15: end for
16: Define Th = ((q, a)k1:jk , Ik, rk)1:K
17: Evaluate∇J(θh) with Eq. (8.5) with Th
18: SGD update of QGen parameters θ using∇J(θh)
19: Evaluate∇L(φh) with Eq. (8.7) with Th
20: SGD update of baseline parameters using∇L(φh)
21: end for

8.3.4 Full Training Procedure

We use the QGen, oracle and guesser model architectures outlined in Sec 8.2.3. We first independently
train the three models with a cross-entropy loss. We then keep the oracle and guesser models fixed,
while we train the QGen in the described RL framework. It is important to pretrain the QGen to kick-
start training from a reasonable policy as the size of the action space is simply too big to converge
from a random policy.

In order to reduce the variance of the policy gradient, we implement the baseline bφ(xt) as a
function of the current state, parameterized by φ. Specifically, we use a one layer MLP which takes
the LSTM hidden state of the QGen and predicts the expected reward. We train the baseline function
by minimizing the Mean Square Error (MSE) between the predicted reward and the discounted reward
of the trajectory at the current time step:

L(φh) =
〈[
bφh(xt)−

T∑
t′=t

ζt
′
rt′
]2〉
Th

(8.7)

We summarize our training procedure in Algorithm 1.
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New Objects New Pictures

Supervised Learning
Greedy 43.5% 40.8%

BSearch 47.1% 44.6%

RL + simple environment
Greedy 60.3% 58.4%

BSearch 60.2% 58.4%

RL + advanced environment
Greedy 63.5% 60.9%

BSearch 63.3% 60.9%
Human 84.4%
Random 18,1%

Table 8.1: Object retrieval success ratio after generating dialogues with wither the pretrained QGen, or RL
agents after interacting with oracle/guesser baselines (simple environment) or Multi-hop FiLM oracle/guesser
(advanced environment). New objects refers to uniformly sampling objects within the training set, while new
pictures refer to sampling objects from the test set. When sampling for new objects, we obtain a standard
deviation below 0.2 accuracy point over 5 runs.

8.4 Experiments

8.4.1 Training Details

We pre-train the three networks as described in Sec. 8.2.3. After training, the oracle and guesser
baseline networks respectively obtain 21.5% and 36.2% error, and the Multi-hop FiLM oracle and
guesser decrease their respective errors to 17.0% and 29.5%. In the following, we refer to the baseline
and Multi-hop FiLM models as the simple and advanced environments.

We then initialize our environment with the pretrained models and train the QGen with policy
gradient for 80 epochs with plain stochastic gradient descent (SGD) with a learning rate of 0.001 and
a batch size of 64. For each epoch, we sample each training images once, and randomly choose one
of its objects as the target. We simultaneously optimize the baseline parameters φ with SGD with
a learning rate of 0.001. Finally, we set the maximum number of questions to 5 and the maximum
number of words to 12.

8.4.2 Reinforcement Learning outperforms Supervised Learning...

Accuracy We report the accuracies of the supervised baseline and the RL agents trained with either
the simple or advanced models in Tab. 8.1. We compare sampling objects from the training set (New
Objects) and test set (New Images) i.e., unseen images. On the test set, the supervised model obtains
40.8% accuracy while sampling with a greedy policy; this success ratio is improved up to 44.6%
with beam search. The RL agents increase the accuracy up to 58.4% when trained with the oracle
and guesser baselines and 60.9% with the advanced models, achieving a significant boost of 16%
accuracy points over the supervised models. In the following, we indifferently consider both RL
agents (except stated otherwise) as their overall behavior is very similar. In light of those results,
reinforcement learning has the upper hand over pure supervised learning as the generated dialogues
seem to resolve the task better.

Beam Search vs Greedy While beam search is far more effective than a greedy sampling for the
supervised model, it has no impact when the models are finetuned by policy gradient. This discrep-
ancy can be explained by the shift of distribution issued by reinforcement learning: cross-entropy
optimizes for the most likely next token, while policy gradient optimizes for the trajectory with the
highest expected cumulative reward. As a result, the most likely sequence of actions naturally be-
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comes the greedy policy when trained with policy gradient, making the beam search heuristic useless.
This further highlights that a supervised learning framework misses the intrinsic planning problem
that underlies dialogue as it requires external heuristic to perform well.

Samples We qualitatively compare the two methods by analyzing a few generated samples, as
shown in Tab. 8.2. As expected, the supervised models mostly generate human-like questions that
are grammatically correct. The table also highlights that the supervised baselines sometimes generate
visually relevant but incoherent sequences of questions. For instance, asking "Is it the one to the right
of the girl in?" is not a very logical follow-up of "Is it the one in the middle with the red umbrella?".
Besides, we observe that the supervised models often keep repeating the same questions, as can be
seen in the top two examples in Tab. 8.2. This behavior mainly occurs on the test set i.e. when
confronted with unseen pictures, which suggests some generalization issues. In the end, we observe
a lack of consistency in the generated dialogues, and the QGen mostly asks generic questions that
sometimes turn out to sufficient to identify the target object.

The models trained with policy gradient seem to implement a more relevant strategy: they would
query the most likely categories "Is it a cat?", before localizing the object "is it in left?", "in middle?".
Albeit limited, this strategy makes sense while showing that the agents do learn a consistent policy.
Besides, the agents never indefinitely repeat the same question despite sometimes generating dupli-
cates; it would indicate that the agents learn to explore the state space better, and partially recover
from unseen scenarios. However, the questions are often ill-formatted and contain grammatical mis-
takes such as "Is it in middle?". They are also far less diverse than the supervised learning models as
examined in the next subsection.

8.4.3 ... but Give Raise to New Problems

Policy gradient unarguably enhances the QGen behavior: the final scores are better, the resulting
policies are more consistent than the supervised ones, and some dialogue artifacts, e.g., repeating
the same questions, are dramatically reduced. At first sight, reinforcement learning successfully
tackles the key difficulties of goal-oriented dialogues: it handles the planning problem that underlies
dialogue, and it alleviates the generalization burden of large state space by exploring the environment
instead of relying on a static dataset. However, a careful analysis of the generated games highlights
the emergence of new issues and limitations.

Dialogue length We observe that supervised models correctly learn to stop asking questions when
using greedy sampling; it results in a well-distributed dialogue length over the games. Noticeably, the
beam-search heuristic discards the<stop> since it induces short questions that are heavily penalized.
However, the policy gradient models completely unlearn to stop. In the current setting, the reward
signal does not favor short dialogues over long ones, and the agents learn that prematurely stopping
the game may hurt the final performance. A potential solution is to add a small negative reward after
each question, as shown by (Shekhar et al., 2018; Zhang et al., 2018a). Yet, this reward shaping
induces an extra-engineering layer that does not exist in the supervised framework, and may have
unexpected effects on the final policy (Ng et al., 1999).

Question length We observe that the supervised beam-search models generate longer questions
(7.1 tokens on average) compared to the policy gradient models (4.0 tokens on average). It suggests
that the RL agents produce questions with poor semantic structures since four words neither allow
for compositionality nor elaborate descriptions. This qualitative difference is visible in the bottom
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examples of 8.2, e.g., the supervised model produces precise questions "Is it the one of the far right"
while the RL agent remains vague "is it in left?". In other words, the RL agents fail to grasp the
composition of language, and therefore simplify the questions to their most basic forms to better
compose them throughout the dialogue.

Vocabulary Size We compute the vocabulary size and observe that the number of words dramati-
cally collapses after finetuning the model with policy gradients. While the initial vocabulary contains
unique 4.9k words, the supervised models only output around 500 words with greedy sampling, and
the policy gradient agents use fewer than a hundred words. More precisely, the higher is the perfor-
mance, the smaller is the vocabulary size at training time. We assume that it is easier for the agent
to over-optimize on a small portion of the environment by slowly discarding the words. In other
words, policy gradient converges to highly peaky policies when dealing with large action spaces; it
thus reduces the exploration space and eases policy improvement.

Strategy diversity We then explore the vocabulary distribution to grasp which strategies are favored
by the policy gradient agents; we display the most frequent words as a cloud word in Fig. 8.4. As first
observed in Tab. 8.2, both RL agents either use categorical or spatial words while asking questions.
Numbers, colors, genders, or spatial prepositions are discarded from the vocabularies of the agents.
When the QGen are trained by interacting with the simple environment, it is somehow expected that
the agent tailors its strategy towards such specific features. Indeed, the oracle and guesser baselines
do not have access to the image; they only rely on spatial and categorical information of the objects.
Therefore, the models are missing key reasoning modalities such as the shape or the colors. However,
when the QGen are trained by interacting with the Multi-hop FiLM oracle and guesser, the three
models have access to the full spectrum of modalities. It is thus surprising (and disappointing) that
the QGen does not take advantage of the new dialogue strategy opportunities. We formulate several
hypotheses that are left to future works. For instance, the current strategy involves asking for the most
likely object categories before splitting the image into six parts (right/left/middle and top/down), and
the agent may quickly degenerate to this unsatisfying but good policy. As previously mentioned, RL
agents tend to reduce optimization difficulty by reducing the exploration space, and once the modality
is lost, the agent is unlikely to recover it. Therefore, applying an entropy regularization, applying
negative rewards on key spatial words, or performing other exploration strategies may force the RL
agents to assimilate other modalities correctly. Differently, the Multi-hop FiLM oracle and guesser
may be too good at answering categorical and spatial information, naturally biasing the QGen learning
toward this specific direction. As an interesting experiment, we can remove hand-crafted object
features from the input models. It would increase the errors towards related question-answer pairs,
forcing the QGen to use additional visual cues to become robust to the new environment mistakes. On
the long run, we expect diverse language strategies to naturally emerge by adapting new RL methods
to the language constraint while concurrently improving the environments.

Grammatical Drift As observed in Tab 8.2, the RL agents may produce ill-formatted questions
with intriguing anomalies. For instance, one of the RL agents alternates between producing questions
with "is it in front ?", "is it front front ?" and "is it front front front ?", suggesting subtle differences
between the three formulations. We also observe that determinant, pronouns and grammatical struc-
ture are vanishing along the training, leading to question such as "Is it middle", "Is it dog?". Although
these inconsistencies are likely induced by overfitting, they also reveal that policy gradient may disre-
gard syntax as long as the core semantics is preserved. As RL aims to optimize the task completion,
there is no signal towards preserving grammar structure, and linguistic safeguards must be injected in
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(a) Human Generated (b) Pretrained network (c) RL + Baseline environment

Figure 8.4: Word cloud of GuessWhat?! vocabulary with each word proportional to its frequency. Words are
colored based on a hand-crafted clustering. Uninformative words such as "it", "is" are manually removed. The
RL + advanced environment cloud of words is removed as it has a similar to (c).

the training process. Otherwise, if we assumed the strategy diversity to be fixed, we may end produc-
ing questions such as "red suitcase left blue" instead of "Is it the red suitcase on the left of the blue
one?".

8.5 Related Works

Outside of the dialogue literature, RL methods have been applied to encoder-decoder architectures
in machine translation (Bahdanau et al., 2017; Paulus et al., 2018; Ranzato et al., 2016) and image
captioning (Liu et al., 2017). In those scenarios, the BLEU score (and its variants) is used as a
reward signal to fine-tune a network trained with a cross-entropy loss. However, the BLEU score is a
surrogate for human evaluation of naturalness, so directly optimizing this measure does not guarantee
an improvement in the translation/captioning quality. In contrast, our reward function encodes task
completion, and optimizing this metric is what we aim for. In other words, the BLEU score enforces
the word alignment independently of the task at hand. Finally, the BLEU score can only be used
in a batch setting because it requires the ground-truth labels from the dataset. In GuessWhat?!, the
computed reward is independent of the human generated dialogue.

Schatzmann et al. (2006) already reported that RL agents tend to overfit to their environment
in goal-oriented dialogues. However, the authors mainly report occurrences over simple simulated
users and did not explore natural language generation. In this chapter, we tend to alleviate the first
constraint by pretraining the environment over a large dataset, allowing our models to generalize to a
large variety of dialogues, whereas previous attempts often use hand-crafted bots that are more prone
to overfitting.

Following this work, Zhu et al. (2017b) examine the impact of jointly train the GuessWhat?!
models with policy gradient by sharing the reward signal among the agents. The authors observe that
the QGen accuracy would skyrocket while the generated dialogues would become meaningless. In
a second step, they analyze whether the oracle’s answers are consistent whenever the question can
be deciphered, but they observe that the answers seems too erratic. In light of the high accuracy,
Zhu et al. (2017b) assume that the oracle successfully encodes the object location within its answers,
allowing the guesser to solve the game. In the end, the authors demonstrate further the requirement
to constraint the training process to avoid some language drifting, as it results in the emergence
of non-understandable communication protocol. Similar results were concurrently observed in other
tasks (Lewis et al., 2017), and would lead to the study of language drift in machine learning (Lee et al.,
2018a). In this emergent line of research, Zahavy et al. (2018) explore how to reduce the vocabulary
degenerescence by dynamically tailoring the word space with contextual bandits. Agarwal et al.
(2019) examine how a multi-agent setting may reduce language drift in visually grounded dialogue
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tasks. Finally, (Shekhar et al., 2019) excellently points out the limitation of purely optimizing tasks
completions on GuessWhat?!. The authors introduce original diversity, and quality metrics that are
relevant to study further new QGen models.

8.6 Conclusion

In this chapter, we propose to use policy gradient as a novel approach to train deep generative conver-
sational agents, and to examine whether interactive learning may impact visually grounded language
generation. We evaluate our approach by casting GuessWhat?! as a reinforcement learning problem,
and we observe encouraging improvement over supervised baselines. On the one hand, we notice the
emergence of a consistent and efficient dialogue strategy, but on the other hand, the agents tend to
produce grammatically mediocre questions and fail to take advantage of the multimodal nature of the
task. We then identify several training pitfalls, e.g., vocabulary degenerescence and grammar drift,
and that must be fixed first before further assessing visually grounded language understanding.
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Discussion

«Because every Ph.D manuscripts needs its XKCD. »

Ph.D Students
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I am part of the second generation of deep (reinforcement) learning Ph.D. that followed ILSVRC
(Krizhevsky et al., 2012) and DQN (Mnih et al., 2013). While the first generation matured deep learn-
ing methods alongside the spread of large scale datasets, GPUs, and open-source libraries, our second-
generation benefited from their breakthroughs towards exploring new machine learning boundaries.
In this thesis, we advocate shifting from unimodal and domain-specific models to multimodal and in-
teractive agents for the betterment of machine understanding. We motivate this perspective in several
ways: we pinpoint the limitation and error artifacts of neural networks, we provide correspondences
with cognitive science and philosophy, we study new multimodal neural architecture for visual rea-
soning, and explore reinforcement learning for language.

9.1 Thesis Summary

In Chapter 5, we described the GuessWhat?! game as a support for exploring our research directions,
and it perfectly fulfilled its primary purpose: it highlighted the limitation of historical multimodal
learning networks and uncovered reinforcement learning pitfalls while generating language. Hence,
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it made us reconsider the neural fusing mechanisms that independently process each modality before
projecting them in a joint representation. In Chapter 3, we thus formalized the conditioning levels
to better take into account the hierarchical nature of deep neural networks, and we demonstrated the
power of interleaving sensory inputs from the lowest neural processing levels up to the uppermost
layers in Chapter 5. To do so, we introduced CBN to modulate a pretrained ResNet to extract multi-
modal representation for visual question answering. After this initial proof of concepts, we tailored
the newly introduced modulation concept and proposed the FiLM layer as a scalable and straightfor-
ward transformation for middle-conditioning in Chapter 6. As a key contribution, FiLM has slowly
become a standard new module in the deep learning toolbox. In Chapter 7, we significantly im-
proved the GuessWhat?! models with Multi-hop FiLM by better balancing the computational burden
between the visual and linguistic modules. Later, we assembled a multimodal GuessWhat?! envi-
ronment to apply reinforcement learning for training a conversational agent in a self-play fashion in
Chapter 8. Although we showed that the agent could learn an effective strategy and the feasibility of
our approach, we also uncovered several forms of language degenerescence by learning through in-
teraction. As a result, we could not benefit from the advance in multimodal knowledge representation
developed during the thesis, but we opened new research perspectives for the upcoming years.

In the end, we believe in having provided the following answers during this thesis:

• We obtain higher quality multimodal representation when taking advantage of the hierarchical
nature of deep networks

• Interactive conversational agents learn more efficient (albeit unsatisfactory) strategies by inter-
acting with their environment rather than solely generalizing from datasets.

Other questions remain unsolved such as the symbol grounding problem. It is still an open-issue
whether multimodal and interactive artificial agents can correctly ground concepts towards appre-
hending the complexity of the world. Although, we have not yet assess this statement, we hope that
our contributions are among the many necessary milestones towards validating (or rebutting) this
research direction.

9.2 Future directions

Machine understanding is a large and transverse problem, and we explore some of its many com-
ponents in this thesis: multimodal and interactive learning. We here list several research directions
that naturally follow from this manuscript towards assessing our research goal. They are more or less
sorted from the low-hanging fruit proposals to long term research perspectives.

Keep Improving Modulation After the release of attention layers, a large literature emerged to
improve this mechanism. The new variants either focus on looking more effective attention mod-
ules (Luong et al., 2015), extending attention to new modalities (Xu et al., 2015), or designing origi-
nal neural architectures (Hudson and Manning, 2018; Sukhbaatar et al., 2015). Similar work could be
pursued with modulation: we could use a dynamic stack of modulated ResBlocks, alter it to deal with
graph networks, combining it with transformers (Vaswani et al., 2017), assessing with new modali-
ties (Nguyen et al., 2019) etc. As a practical example, most of the state-of-the-art models for visual
question answering combine R-CNN features with attention mechanisms (Anderson et al., 2018b),
yet, there was no tentative to apply modulation to extract R-CNN features.
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Adapting Reinforcement Learning for Language The current NLP literature rely on basic vanilla
policy gradient algorithms for tuning generative language models (Das et al., 2017b; Ranzato et al.,
2016; Strub et al., 2017b). However, it exists many works that reduce the policy gradient vari-
ance (Mnih et al., 2016), enforce stronger policy regularization or smooth policy updates (Schulman
et al., 2015, 2017) or the policy exploration (Fortunato et al., 2018; Osband et al., 2016). We believe
that a rigorous benchmark over language setting could dramatically improve the current state-of-the-
art. As a next step, we could examine how to better integrate the latent structure of language into RL
algorithms: classic RL environments are designed to perform well on small action spaces with long-
term planning (Bellemare et al., 2013; Mnih et al., 2013), whereas conversational agent can produce
short sequences of words within a large vocabulary space. Another interesting problem to tackle is
the language drift that occurs while performing self-play. In every cases, linguistic properties could
be used to alleviate the training (and exploration) difficulties: syntax encodes a hierarchical struc-
ture over language which can be used for Monte-Carlo Tree Search (MCTS), pragmatic is a form of
goal conditioning and word2vec enforces distance between actions. In other words, we believe that
injecting inductive language bias in the RL algorithms may ease the training of generative language
models. On the other hand, language properties, e.g., compositionality, compactness, can be use as a
backbone to alleviate policy training.

Virtual embodiment The development of advanced artificial agents is likely to come in pair with
the sophistication of tasks to solve. In this thesis, we shift from pure unimodal and static training
procedure to multimodal and partially interactive scenarios. However, visually grounded dialogues
are still far from the physical reality stated in the embodiment theories (Barsalou, 2008). Ideally, we
want to extend machine learning to actual agents such as robots, but the machine learning algorithms
are not yet matured, e.g., they are not sample-efficient, and actual robots may either be too limited,
too expensive or too hard to program. As an intermediate compromise Kiela et al. (2016), we advo-
cate for developing artificial worlds where multimodal interactions may occur. Such virtual embodied
worlds would incorporate basic physics, sounds, visual cues with multiple agents, and various objec-
tives. For instance, we designed Household Multimodal Environment (HoME) as a comprehensive
platform to include these features. Other interactive embodied tasks have also blossomed in the past
years (Anderson et al., 2018c; Chen et al., 2018; Das et al., 2017b, 2018a; de Vries et al., 2018; Gor-
don et al., 2018; Hermann et al., 2017; Juliani et al., 2019; Mirowski et al., 2018; Qi et al., 2019;
Xia et al., 2018) in physically simulated environments such as DeepMind Lab (Beattie et al., 2016),
Baidu XWorld (Yu et al., 2018a), Matterport3D (Chang et al., 2017), GIBSON (Xia et al., 2018),
MINOS (Savva et al., 2017), AI2-THOR (Kolve et al., 2017), StreetLearn (Mirowski et al., 2018), AI
Habitat (Manolis Savva and Batra, 2019), Unity (Juliani et al., 2018). Although such open-worlds
are unarguably necessary in the long-run, it is still unclear whether current virtual worlds are fertile
ground for new algorithms, or if we are merely limited to engineer complex ad-hoc agents on artificial
toy tasks (Das et al., 2018d; Oh et al., 2017; Wijmans et al., 2019).

Dialogues as Markov Games Goal oriented-dialogues are often designed as two-player coopera-
tive games by casting the training as either an MDP or Partially Observable Markov Decision Process
(POMDP) (Williams and Young, 2007). This design choice dramatically eases the underlying theo-
retical complexity; however, it requires to keep one of the conversational agent statics. For instance,
the ticket booking scenario involves training a ticket seller (Weston et al., 2016), GuessWhat?!, and
Visual Dialog optimize the question generator (Das et al., 2017b; de Vries et al., 2017), etc. However,
this approach quickly becomes limited as it ignores the potential co-adaptation between the conversa-
tional agents (Chandramohan et al., 2012), it limits the training to two agents, and it enforces specific
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reward structures. In practice, natural dialogues may entail numerous agents (Bard et al., 2019), which
can be partially co-operative (El Asri et al., 2014) and keep evolving. In this manuscript, we have been
promoting interactive learning by pointing out the limitation of controlled environments. Therefore, it
is a natural follow-up to enhance the interactive framework for language learning. Following Barlier
et al. (2015), we thus advocate to explore general Markov Games (MG) as a training framework for
conversational agents (Littman, 1994). MGs may involve multiple players with unstructured rewards,
and look for individual strategies toward reaching different equilibria, e.g., Nash Equilibrium. On
the other hand, this equilibrium search is far more difficult to reach, e.g., value-function methods are
insufficient to find a stationary Nash Equilibrium in MG (Zinkevich et al., 2006), and there is no clear
consensus about the equilibrium to reach (Shoham et al., 2007). In this line of research, we explore
how to learn an Epsilon Nash Equilibrium in General Markov Games1 from batch data (Pérolat et al.,
2016) as a potential extension for training RL conversational agent from past dialogues (Pietquin
et al., 2011). However, there exist few deep extensions of MG algorithms (Heinrich and Silver, 2016;
Lanctot et al., 2017; Pérolat et al., 2018), and this research topic is still in its early days.

Rethinking Transfer Learning As discussed in Chapter 5, transfer learning usually involves ex-
tracting unimodal features from pretrained networks. Hence, we reduce the computational footprint
of embedding large deep networks while training more complex multimodal networks. However, bio-
logical visual systems have never been solely trained on unimodal inputs, but jointly evolve alongside
other stimuli by counterbalancing each other’s defects (Dominy et al., 2004); every human sensor
is even interconnected at several perceptive levels (Boutonnet and Lupyan, 2015; Huth et al., 2016),
suggesting that we cannot solely rely on late-conditioning to perform transfer learning. Should uni-
modal transfer learning be avoided? Despite our best efforts, we may not be able to train a model
from a single holistic task where the agent may develop its sensors from ground up. We here ad-
vocate to smartly compose with independent pretrained network blocks, and slowly rewired them
together to increase the model capacity. We may develop internal connections between pretrained
unimodal models (Moon et al., 2015), finetuning specific constituents, design non-intrusive neural
residual adapters (De Vries* et al., 2017; Rebuffi et al., 2017). In the end, we would like to retrieve
unimodal blocks (if possible) after they are being enhanced with multimodal and interactive learning.
After reading between the lines, it may require to perform multitask learning as a finetuning proce-
dure. In other words, instead of stacking blocks to solve one specific task, we should be merging
blocks for solving multiple problems. We acknowledge the resulting computational issues, but it may
be the price for improving the final agent representation.

Final words We would like to thank the brave reader for reaching this final sentence!

1An Epsilon Nash Equilibrium is a Nash Equilibrium, where none of the agents can improve its expected reward by an
epsilon margin
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Appendix A

Contributions

As this thesis include joint works, we here provide some estimate to point out my involvement in
the research papers justly. The underlying goal is to not claim the work of our colleagues by better
highlighting the workload. To do so, we first enumerate some research contributions aspects and
roughly score my involvement over them. Again, those are very ad-hoc and subjective scores, and
they should be taken with caution. The other co-authors have also validated those estimates. In the
end, we come up with the following contribution facets:

• Brainstorming: it defines the impact over the initial reflection step before initiating the research
work

• Codebase: it defines the amount of code that has been implemented to run the baselines and com-
plementary experiments.

• Experiments: it defines the time spend on running experiments, tuning the hyperparameters, etc.
• Analysis: it defines the amount of analysis, experience proposals that have been done, and how this

reflection has been maintained in final work.
• Writing: it defines the amount of text that has been written in the published paper.

In rare cases, complementary aspects have been added to provide a better overview of the workload.
Each contribution facet is scored between 1 and 5, where 1 stands for minor involvement, and 5

stands for being the core contributor. When several authors unarguably shared the contributions, the
maximum score is automatically clipped to be 4. As a piece of intuition, the scores may be roughly
described as follows:

5. Sole contributor: run all the experiments, write most of the paper, write most of the codebase,
initiate the research direction, etc.

4. Principal and joint contributor:. run a large set of experiments, write several sections, write
large portions of code, co-initiate the research directions, etc.

3. Active and decisive contributions: code and/or run complementary experiments present in the
paper, write at least one section, impact the research directions, etc.

2. Active but non-decisive contributions: run complementary experiments not present in the paper,
reformulate paper sections, refactor some code, alter some research conclusions, etc.

1. Minor contributions and reviews: code review, fix paper typos, provide research remarks, etc.

Note that the scores does not sum to 5 if we combine all authors’ contributions! These scores
reflect the degree of involvement, and many authors can be equally involved in one contribution!



II Appendix A. Contributions

Codebase
(Website)

BrainstormingWriting

Experiments
(Baseline)

Experiments
(Dataset)

Dataset
Collection

GuessWhat?! Visual object discovery through
multimodal dialogue (de Vries, Strub, Chandar,
Pietquin, Larochelle, and Courville, 2017)

Codebase

Brainstorming

Writing

Analysis

Experiments

End-to-end optimization of goal-driven and
visually grounded dialogue systems. (Strub,
De Vries, Mary, Piot, Courville, and Pietquin,
2017b)

Codebase

Brainstorming

Writing

Analysis

Experiments

Modulating early visual processing by lan-
guage. (De Vries*, Strub*, Mary, Larochelle,
Pietquin, and Courville, 2017)

Codebase

Brainstorming

Writing

Analysis

Experiments

FiLM: Visual reasoning with a general condi-
tioning layer. (Perez, Strub, De Vries, Dumoulin,
and Courville, 2018)

Codebase

Brainstorming

Writing

Analysis

Experiments

Visual reasoning with multi-hop feature mod-
ulation. (Strub, Seurin, Perez, De Vries, Mary,
Preux, Pietquin, and Courville, 2018b)
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Appendix B

List of Acronyms

A3C Asynchronous Actor-Critic Agents. 32

Adam Adaptive Moment estimation. 24, 77, 109, 127

AI Artificial Intelligence. 1, 33, 34, 40, 50

ASVR Audio-Visual Speech Recognition. 50, 51

Bagging Bootstrap aggregating. 21

BFGS Broyden-Fletcher-Goldfarb-Shanno. 14

Bi-RNN Bidirectional Recurrent Networks. 20

BLEU BiLingual Evaluation Understudy. 43, 45, 58, 149

BN Batch Normalization. 21–23, 95–97, 99, 126

BSearch Beam Search. 45

CBN Conditional Bacth Normalization. 94, 95, 97, 99–101, 114, 121, 152

CE Cross-Entropy. 12

CMM Cascaded Mutual Modulation. 111

CNN Convolution Neural Network. 18, 20–23, 34, 52, 58, 107–109, 111, 119

CPU Central Processing Unit. 17

CV Computer Vision. 33, 34, 36, 40, 48

DL Deep Learning. 16

DP Dynamic Programming. 26–28

DPG Deep Deterministic Policy Gradients. 32

DQN Deep Q-Networks. 30, 151



IV List of Acronyms

FFNN Feed-forward Neural Networks. 14

FiLM Feature Wise Linear Modulation. 100, 106–119, 121–124, 126, 129, 131, 152

GAN Generative Adversarial Networks. 45, 50, 82, 101, 118

GLIE Greedy in the Limit with Infinite Exploration. 29, 30

GPU Graphics Processing Unit. 16, 97, 151

GRU Gated-Recurrent Unit. 19, 20, 44, 57, 108, 126, 127, 141

HoME Household Multimodal Environment. 153

HRED Hierarchical recurrent encoder decoder. 79, 80

ILSVRC ImageNet Large Scale Visual Recognition Challenge. 34–36, 43, 151

LN Layer Normalization. 22, 23, 126

LSTM Long Short-Term Memory. 19, 20, 44, 77, 79, 97, 111, 140, 141, 144

MAC Memory,Attention, and Composition. 56, 61, 111, 118, 131

MAttNet Modular Attention Network. 62, 127

MCB Multimodal Compact Bilinear. 55, 98, 99

MCTS Monte-Carlo Tree Search. 153

MDP Markov Decision Process. 25–27, 29, 142, 143, 153

MG Markov Games. 154

MLB Multimodal Low-rank Bilinear. 55, 98, 99, 126, 127

MLP Multi-Layer Perceptron. 14–19, 21, 23, 55, 77–79, 96, 97, 108, 109, 112, 122, 129, 141, 142,
144

ModeRn MODulatEd ResNet. 94, 95, 97–103, 119

MSE Mean Square Error. 12, 16, 144

Multi-hop FiLM Multi-hop FiLM. 111, 121

NLP Natural Language Processing. 33, 34, 40–43, 46, 48, 138, 153

NLVR Natural Language Visual Reasoning. 62

NMN Neural Module Network. 60, 82, 111, 118

NTM Neural Turing Machine. 130, 131

POMDP Partially Observable Markov Decision Process. 153
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List of Acronyms V

POS Tagger Part-Of-Speech Tagger. 42

PPO Proximal Policy Optimization. 32

ReLU Rectified Linear Unit. 14, 23, 35, 37, 55, 97, 108, 109, 126, 141

ResBlock Residual Block. 37, 109, 111, 113, 115, 123, 126, 152

ResNet Residual Neural Network. 35–37, 46, 60, 94–101, 103, 106, 126, 152

RGB Red, Green and Blue. 17

RL Reinforcement Learning. 25–27, 30, 81, 82, 138, 139, 142–149, 153, 154

RNN Recurrent Neural Network. 18–23, 25, 44–46, 52, 54, 56–58, 60, 62, 79, 94, 106, 114, 119,
121–123, 126, 141

SAC Soft-Actor Critic. 32

SAN Stacked Attention Networks. 55, 111

Seq2Seq Sequence-to-Sequence. 44–46, 58

SGD Stochastic Gradient Descent. 14–16, 21, 23, 24, 145

TRPO Trust Region Policy Optimization. 32

t-SNE t-Distributed Stochastic Neighbor Embedding. 100, 102, 103, 112, 113

VGGNet Visual Geometry Group Network. 35, 46, 60, 72, 77–80, 98, 140

VQA Visual Question Answering. 51, 56, 58–62, 71, 73, 81, 82, 94, 95, 97–100, 103

WMT Workshop on Statistical Machine Translation. 43
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Appendix C

List of symbols

a is the answer of some arbitrary question. In GuessWhat?!, an answer is either yes, no or not-
applicable.. 76, 125

C is the number of channel in a feature map F . 17, 140

D is a GuessWhat?! dialogue composed of J question-answer pairs (q,a)j≤. 76, 125, 140, 142

F is a 3-dimensional tensor that encodes some feature map of dimensions W ×H × C.. 37

γ is the discount parameter in a MDP. 25, 142, 143

H is the height of an Image I or feature map F where each vertical spatial location is indexed by h.
17, 125, 140

I is the number of words in a sentence where each word is indexed by i. In a dialogue D, Ij can be
conditioned on the current question J . 140

I is an arbitrary RGB image of dimension H ×W × 3. 17, 76–78, 98, 125, 140–142

J is the number of questions in a dialogue D where each question is indexed by j. 76, 78, 140

K is the number of objects in a GuessWhat?! game where each object is indexed by k. 76, 125, 140

K is the number of resblock or layers in stack of neural modules where each layer/resblock is indexed
by κ. 123

S is segmented mask for object.. 76, 125, 140

O is a list of objects O = [o1, . . . , oK ] within an image I. Each object can be defined by some
features such as his category, his spatial location etc. 76, 78, 125, 140, 142

q is a question. A question is composed of I words q = [w0, . . . , wi, . . . , wI ] where each word
comes from a predefined vocabulary V . 76

V is some vocabulary. It consists of finite set of tokens or words.. 76, 140, 142



VIII List of Symbols

W is the width of an Image I or feature map F where each horizontal spatial location is indexed by
w. 17, 125, 140
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