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Thèse de doctorat de l’Université Paris-Saclay
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“Let’s not quarrel about it, Narcissus. You don’t see all my struggles either. And I don’t know
whether or not you are able to understand how I feel when I think that this work will soon
be finished, that it will be taken away and set in its place. Then I will hear a few praises and
return to a bare workroom, depressed about all the things that I did not achieve in my work,
things you others can’t even see, and inside I’ll feel as robbed and empty as the workshop.”

“That may be so,” said Narcissus. “Neither of us can ever understand the other completely
in such things. But there is one realization all men of good will share: in the end our works
make us feel ashamed, we have to start out again, and each time the sacrifice has to be made
anew.”

Narcissus and Goldmund, Herman Hesse
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Chapter 1

Introduction: the springiness of
polymers and membranes

Ut tensio, sic vis 1. So wrote Robert Hooke, almost three hundred years ago, to de-
scribe the proportionality between the restoring force of a spring and its elongation.
Hooke also coined the term “cell” 2, inspired by the observation of plant cells under
the microscope. Could Hooke imagine that cells’ constituents were as springy as his
springs? In this thesis, we use the elastic deformation of cells’ constituents in the same
way as we would use the elongation of a spring in a dynamometer: to read out forces.

Biological assemblies often owe their stability and evolution to inter-molecular
forces on which we have poor prior knowledge. Maybe the main difficulty in mod-
eling such forces is their sensitivity to the chemical composition of the interacting
molecules, as well as of their surrounding environment. However, the biological role
of inter-molecular forces may be due to just few of their features, that emerge from the
underlying chemical complexity. If these forces are critically involved in the deforma-
tion of biological matter, we can infer these features by reconciling the deformation
geometry with simple mechanical models. We adopt this approach to investigate two
such inter-molecular forces. In the rest of this chapter, we provide an outline of the the-
sis and introduce basic notions on the elasticity of polymers and membranes, which
we extensively resort to in the manuscript.

In the first part of the thesis, we investigate the forces exerted by DNA helices onto
each other (for a detailed introduction, see Ch. 2). DNA is a negatively charged poly-
mer [Fig. 1.1a], implying that its units tend to repel each other. However, in the pres-
ence of multivalent cations, negatively charged DNA helices can attract each other.
Attraction between DNA helices is a fascinating phenomenon, whose physical origin
is still not completely clear [Ch. 3]. Inter-helical attraction is fundamental to compen-
sate DNA resistance to bending when packing large quantities of DNA in compara-
tively small environments, such as the nuclei of sperm cells. We study the competition
between inter-helical attraction and DNA bending rigidity by looking at the geome-
try of dense DNA toroidal bundles [Ch. 4], which spontaneously form, in vitro, when
DNA is in the presence of multivalent cations. Like physiological DNA assemblies,
DNA toroids are both tightly packed and curved. Interestingly, geometrical data on
DNA toroids show that the more helices are curved, the less tightly packed they are.

1Robert Hooke, De Potentia Restitutiva, or of Spring. Explaining the Power of Springing Bodies, London,
1678.

2Robert Hooke, Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses
: with observations and inquiries thereupon, London, 1667.
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To rationalize this experimental evidence, we develop a simple mechanical model in
which inter-helical attraction compensates for DNA bending rigidity [Ch. 5]. Our find-
ings suggest that curvature weakens inter-helical attraction [Ch. 6]. To the best of our
knowledge, this aspect was overlooked in the previous literature and we think it may
be relevant in physiological DNA packings.

What is the energy cost of bending DNA? There are several contributions to DNA
stiffness. Base pairs, for instance, are stacked by means of covalent bonds that get
stretched as soon as DNA gets bent. Moreover, the charges distributed on DNA sur-
face get closer when DNA gets bent, which costs further energy. Possibly more com-
plicated microscopic contributions could be named. However, when bending happens
at much larger scales than the DNA helical pitch (' 3 nm, Fig. 1.1a), meaning that the
radius of curvature r of the DNA central axis satisfies r � 3 nm, the elastic response
of DNA can be approximated with that of a thin isotropic rod. In this limit, we only
need to consider the curvature c = 1/r of the rod [Fig. 1.1b]. All bending directions
are equivalent for isotropic rods, implying that bending energy is even in c. For small
deformations, the local cost of bending is thus proportional to c2, and we denote the
proportionality coefficient by kb/2. The bending stiffness kb is generally expressed in
terms of the so-called persistence length `p = kb/kBT, where kB is Boltzmann’s constant
and T is temperature.

Persistence length is the typical DNA length above which thermal agitation can
significantly bend the chain. To be more precise, imagine having a DNA chain of
length S and constant radius of curvature r. When S ≈ `p, the thermal energy kBT can
pay the energy cost of giving the chain a radius of curvature r ≈ S ≈ `p,

kBT =
kbS
2r2 ≈

kb`p

2`2
p

(1.1)

yielding a dependence of `p on kb and kBT consistent with its definition. In solution,
a DNA segment much shorter than `p behaves as a rigid stick, while a DNA segment
much larger than `p is very flexible.

Since entropy participates in DNA rigidity, one generally talks of bending free en-
ergy (rather than energy). For a chain of length S, arc length s and spatially varying
curvature, the bending free energy reads:

FWLC =
kBT`p

2

∫ S

0
ds[c(s)]2 (1.2)

where the subscript WLC stands for Worm Like Chain, the name of the model we just
derived [Phillips et al., 2012].

In the second part of the thesis, we turn to the binding force of a particular protein
complex, ESCRT-III, to cellular membranes. ESCRT-III proteins assemble into mem-
brane remodeling polymers that constrict and severe membrane necks from their inner
volume. To the best of our knowledge, ESCRT-III is involved in all known biological
processes that require such kind of event, ranging from HIV release from the plasma
membrane to the constriction of the cytokinetic bridge during cell division (for a de-
tailed introduction, see Ch. 7). Despite their ubiquity, it is still unclear how ESCRT-III
polymers shape and sever membrane necks. In vitro, ESCRT-III helical polymers can
grow helical tubular protrusions on the surface of spherical membrane vesicles [Ch. 8].
By means of simple mechanical models, we show that helical membrane tubes can re-
sult from the positioning of membrane-binding sites on the surface of ESCRT-III poly-
mers relative to their preferred curvature [Ch. 9]. Interestingly, our findings can rec-
oncile two previous models of ESCRT-III membrane remodeling mechanisms [Ch. 10].

9



Figure 1.1: Geometry of DNA and lipid bilayers. (a) DNA double helix. There is
one naked electron (1e−) in correspondence of each phosphate group (yellow). Axial
rise per base pair (' 0.3 nm) and helix diameter (' 2 nm) estimates from Mandelkern
et al. [1981]. Adapted from https://en.wikipedia.org/wiki/Nucleic_acid_
double_helix, authored by Mauroesguerroto and licensed under CC BY-SA 4.0. Labels
not present in the original version. (b) Local radius of curvature r of a space curve. (c)
Bilayer of phospholipids. Water is excluded from the tail region. (d) Local principal
radii of curvature, r1 and r2, of a surface.
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Furthermore, we estimate the membrane-binding force of ESCRT-III monomers by
feeding our model with geometrical data on the shape of helical membrane tubes.

What is the cost of deforming a membrane? To answer, we recall what makes
membranes stable in the first place. Cellular membranes are mainly composed of
phospholipids. Phospholipids are small amphiphilic molecules, meaning that they com-
prise a hydrophilic head and two hydrophobic tails. Due to this structure, in water,
phospholipids isolate their hydrophobic tails from the aqueous environment by spon-
taneously assembling into lipid bilayers [Fig. 1.1c]: the prototype of cell membranes.
Due to the cylindrical shape of phospholipids and their will to stay as laterally packed
as possible, bilayers are spontaneously flat. To bend a bilayer, one has to reduce local
lipid packing and pay the energy cost associated with the consequent tail exposure
to water. Similarly to what we did with DNA, we consider bending deformations at
much larger scales than the bilayer’s thickness (i.e., few nanometers), such that the
membrane surface can be approximated with an infinitely thin sheet. We can further
assume that the sheet is liquid, since phospholipids stick together mainly because of
their tails’ common dislike for water molecules, and are thus relatively mobile with re-
spect to each other. If we consider a membrane that is homogeneous, and symmetric
with respect to the middle plane between its two lipid layers, the lowest order of its
bending energy is proportional to the square of its total curvature 2H = 1/r1 + 1/r2,
where r1 and r2 are its principal radii of curvature [Fig. 1.1d]. We denote the propor-
tionality coefficient by κ/2. Since we only consider membrane deformations that do
not alter the surface topology and that do not involve membrane boundaries, Gaus-
sian curvature 1/r1r2 contributes a physically irrelevant constant to the free energy,
due to Gauss-Bonnet theorem.

To complete the elastic free energy of a membrane, we need a further contribution
related to local surface area variations. When a protrusion grows on the surface of
a membrane, like the tubular ones generated by ESCRT-III, the protrusion expands
mainly by importing lipids from the surrounding bilayer. This transfer requires work-
ing against the tension of the bilayer reservoir, and we denote by σ the energy cost per
unit area of the protrusion.

Summarizing, bending and surface energy contributions define the celebrated Hel-
frich [1973] free energy:

FHelfrich =
∫
A

dA
[κ

2
(2H)2 + σ

]
. (1.3)

Eqs. (1.2) and (1.3) constitute the standard results used to formulate the theories
presented in this thesis. To deal with the geometry of curves and surfaces, we some-
times resort to differential geometry. We suggest the book of Kreyszig [1991] as an
excellent reference on the subject.

Finally, we summarize our results and future perspectives in Ch. 11.
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Part I

DNA
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Chapter 2

A long chain in a small box

The nucleus of a human sperm cell can be thought of as a small box, with a linear size
of 5 µm [Fig. 2.1a]. This microscopic box, which could fit ten times in the width of a
human hair, can contain a 1 m long DNA chain! 2% of the box volume is occupied
by DNA [Phillips et al., 2012] [Fig. 2.1b]. The head (capsid) of a bacteriophage, a virus
that infects bacteria, is an even smaller box, one hundred times smaller than a sperm
cell nucleus [Fig. 2.1c]. 60% of a capsid volume is occupied by DNA [Phillips et al.,
2012], yielding DNA packings as dense as crystals [Fig. 2.1d]. These numbers become
even more impressive when one considers the two main energetic costs associated
with DNA packing. First of all, the surface of DNA is negatively charged, meaning
that its subunits would like to stay as far apart from each other as possible. Second,
it is not possible to pack a long DNA chain in a small box without bending it. The
DNA mechanical response becomes especially not negligible in phage capsids, since
their diameter is comparable to DNA persistence length. How does nature deal with
the formidable task of packing DNA in phage capsids and sperm cells?

Confining DNA in a phage capsid is a work of brute force: a molecular motor,
placed at a vertex of the capsid, consumes ATP to push the DNA inside [Smith et al.,
2001]. Once the whole viral genome is stored in the capsid, the hole from which it
entered closes by joining with the tail of the phage, which self-assembles separately
from the rest [Fig. 2.1c]. The mechanical and electrostatic pressure accumulated in the
packing process is then used to inject DNA in a bacterial victim organism, by expelling
DNA from the capsid and making it pass through the tail, which serves as the needle
of a syringe. DNA ejection starts when the phage “docks” on the outer membrane
of the bacterium, where cell-surface-exposed molecules (known as receptors) trigger
the opening of the hole from which DNA initially entered. The electrostatic pressure
in phage capsids is usually reduced by the presence of positive ions in physiologic
conditions, which screen the Coulombic repulsions between DNA helices. Examples
of ions found in T-even phages are the polyamines spermidine (3+) and putrescine (2+)
[Ames et al., 1958; Ames and Dubin, 1960; Tabor and Tabor, 1985].

The role of external positive charges is more dramatic in sperm cells, where re-
pulsions are not only screened, but over-screened, to the point that two negatively
charged DNA helices end up attracting each other. Stepping back from sperm cells,
we stress here that the physical mechanism by which cations drive inter-helical attrac-
tion is not yet fully understood. Probably, several kinds of interaction participate in
DNA condensation, some of which we will illustrate in Ch. 3. Now going back to sperm
cells, we know that in mammalians the positive charges responsible for DNA conden-
sation are provided by protamines, proteins with a high content of positively charged

13



Figure 2.1: DNA packing in bacteriophages and sperm cells. (a) Anatomy of a
sperm cell. DNA is conserved in the nucleus. (b) Cross fracture of human sperm
nuclei, imaged by freeze-etching technique in the electron microscope. Reprinted from
Koehler [1972], with permission from Elsevier. (c) Anatomy of a bacteriophage virus.
DNA is conserved in the capsid. Figure from https://en.wikipedia.org/wiki/
Bacteriophage, authored by Adenosine and licensed under CC BY-SA 3.0. Labels not
present in the original version. (d) CryoEM micrograph of DNA organization within a
phage capsid (dashed white contour). DNA helices appear as black dots (solid black
contours) when they are perpendicular to the page, or striations (dashed black con-
tour) when they are parallel to it. Local hexagonal packing can be recognized within
solid black contours. Adapted from Leforestier and Livolant [2009], with permission from
the authors.
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Figure 2.2: DNA toroidal bundles. CryoEM micrograph of two toroids made up
of multiple DNA helices condensed by spermine (4+). DNA comes from λ-phages,
whose empty capsids (green dashed contour) are dispersed in the sample, both around
the toroids and at their center. Courtesy of A. Leforestier and F. Livolant, Laboratoire de
Physique des Solides, CNRS, Université Paris Sud, Orsay, France.

amino-acids. In humans, between 85% and 95% of DNA is condensed by protamines,
and the rest of the work is left to histones [Balhorn, 2007]. Interestingly, altered concen-
tration of protamines correlates with infertility in mice and humans, suggesting that
protamines are key to the correct function of sperm cells [Oliva, 2006].

In this part of the thesis, we use experimental data on the geometry of DNA con-
densates to infer properties of cation-mediated inter-helical forces. Unfortunately,
high resolution imaging of DNA condensates is not possible in vivo, because the phys-
iological density of DNA in cells’ nuclei is too high (see, e.g. Koehler 1966, 1970, 1972;
Koehler et al. 1983) [Fig. 2.1b]. Hence, we use data from DNA condensates realized in
vitro. In vitro, one is free to choose among a set of DNA condensing agents, some
of the most commonly used being cobalt hexammine III (Co(NH3)3+

6 ), spermidine
(3+), spermine (4+) and protamines [Laemmli, 1975; Chattoraj et al., 1978; Widom
and Baldwin, 2004; Hud et al., 1993]. Interestingly, independently of the condensing
agent species, DNA generally condenses into hexagonally packed bundles, which can
be either toroidal [Fig. 2.2] or straight. Our study focuses on DNA toroidal bundles.
Although we do not know whether DNA toroids exist in vivo (for instance, in the nu-
clei of sperm cells) they have at least two features in common with physiological DNA:
tight packing and curvature. Therefore, we think that our results may be transferred
to biologically relevant cases.

Specifically, we investigate the correlation between DNA packing density and cur-
vature in DNA toroids. This correlation is supported by two recent experimental find-
ings. First, within a DNA toroid of inner radius Rin and outer radius Rout [Fig. 2.2],
inter-helical spacing decreases going from Rin to Rout. Second, average spacing is
larger in “small” toroids (Rout ≤ 40 nm) than in “giant” ones (125 nm ≤ Rout ≤
175 nm). We propose a simple mechanical model to interpret the first experimental
finding, in which the spacing dependence on position is connected to DNA local cur-
vature (hence, to its local elastic response) and inter-helical forces are assumed to be

15



Figure 2.3: DNA grooves’ correlation. (a) In straight bundles. (b) In toroidal bundles.
Adapted from Leforestier and Livolant [2009], with permission from the authors.

curvature independent. This model predicts that small toroids should be, on average,
more tightly packed than giant ones, in clear contradiction with the second experi-
mental finding. We speculate that this is due to a dependence of inter-helical forces on
curvature.

Why should curvature affect inter-helical forces? A DNA molecule has negative
surface charges distributed along its two phosphate helices. Due to this inhomoge-
neous charge distribution, the interaction between two parallel DNA molecules de-
pends on the spatial correlation between their grooves. High resolution images of
spermine-condensed DNA bundles from Leforestier and Livolant [2009] show that
curvature alters groove correlation between neighboring helices [Fig. 2.3]. In straight
bundles, the major grooves of each helix face the minor grooves of its neighbors
[Fig. 2.3b]. Conversely, in toroidal bundles, the major grooves of each helix face the
major grooves of its neighbors [Fig. 2.3a]. We think this certifies a non trivial influence
of curvature on inter-helical interactions.

In Ch. 3, we substantiate our intuition on the influence of groove correlation on
inter-helical forces by proposing a historical review of the microscopic theories that
have been developed to understand cation-mediated inter-helical forces. In Ch. 4,
we present the experiments that motivate our theoretical study. In Ch. 5, we present
our theoretical models. Finally, in Ch. 6, we discuss our results and propose future
perspectives.
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Chapter 3

The microscopics of inter-helical
adhesion

Contents
3.1 Some experiments: DNA arrays under osmotic pressure . . . . . . . 18
3.2 Hydration forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Electrostatic “zipper” . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 From Van der Waals attraction to Wigner crystal matching . . . . . 23
3.5 Ion bridging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Bottom line: the importance of being correlated . . . . . . . . . . . . 25

The goal of this chapter is to provide convincing arguments on the importance of
spatial (groove) correlation between neighboring DNA helices for their adhesion. We
briefly review the historical development of cation-mediated DNA condensation the-
ories and stress the role played by spatial correlations in each of them. Where possible,
we comment on the validity of old models in the light of more recent findings.

In Sec. 3.1, we present some important experiments, conducted between the late
eighties and the early nineties, in which inter-helical forces were probed by measuring
the response of DNA hexagonal bundles to controlled external pressures, at different
ionic conditions. The key finding was that inter-helical forces decay exponentially
with the distance at short enough inter-helical separations, with a decay length that is
independent of ionic conditions. An analogous behavior was observed between inter-
acting lipid bilayer surfaces, leading some authors think that the force probed in the
two cases had a common, non Coulombic origin. In Sec. 3.2, we detail an early theory
proposed to rationalize these experimental findings in terms of hydration forces. In
Sec. 3.3, we present a development of hydration theory in which the ability of DNA
helices to chemisorb positive ions onto their surface is considered. In Sec. 3.4, we illus-
trate how the modeling of Coulombic forces evolved to account for cation-mediated
inter-helical attraction, starting from Van der Waals like forces, due to the correlated
thermal fluctuations of cation clouds surrounding DNA helices, and arriving to the
modern theory of strong coupling. In Sec. 3.5, we present recent progress made in
the modeling of inter-helical forces mediated by dumbbell shaped cations. Finally,
in Sec. 3.6, we summarize the lessons learned from the review and comment on the
influence of spatial correlations on inter-helical forces.
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3.1 Some experiments: DNA arrays under osmotic pressure

Maybe the biggest obstacle in the development of predictive theories of DNA con-
densation is that different cation species behave differently. For example, the criti-
cal cation concentration at which DNA condenses is cation-specific, and it does not
correlate with valency in a way that we understand. Mono- and di- valent salts are
generally unable to condense double-stranded DNA, independently of their concen-
tration. Two exceptions are MnCl2 and MgCl2. The first can condense DNA at high
temperature or under external pressure [Rau and Parsegian, 1992b], while the second
can condense DNA in a solution of water and methanol [Rau and Parsegian, 1992a].

Fortunately, there are some features of the cation-mediated inter-helical forces are
not cation-specific, many of which emerged from pioneering experiments performed
by Parsegian and coworkers (see, e.g. Rau et al. 1984; Rau and Parsegian 1992a;
Todd et al. 2008). In their typical experiment, the forces between DNA helices un-
der different ionic conditions are probed by measuring the inter-helical spacing of
a DNA hexagonally packed phase under controlled osmotic pressure. In particular,
they leverage the fact that DNA phase separates in solutions where polyethylene gly-
col (PEG) is present. The resulting DNA phase is hexagonally packed, with long-range
bond orientational order at separations smaller than ' 32 Å or long-range cholesteric
order at larger separations [Podgornik et al., 1996]. Both water and DNA condensing
ions freely diffuse in both phases, such that the system can reach osmotic equilibrium.
At equilibrium, the distance between DNA helices depends on the ionic conditions, as
well as on the osmotic pressure exerted by PEG.

One can construct osmotic pressure vs. spacing curves by varying PEG concen-
tration at different ionic conditions, obtaining plots like those shown in Fig. 3.1. In
Figs. 3.1a and 3.1b, ionic conditions are such that DNA does not condense and inter-
helical forces are purely repulsive. In this case, inter-helical spacing increases in-
definitely with decreasing pressure. Conversely, in Fig. 3.1c, cations drive sponta-
neous DNA condensation and inter-helical forces are short-range repulsive and long-
range attractive. In this case, repulsions and attractions balance out at some cation-
specific inter-helical spacing, corresponding to the zero pressure spacings in the plot.
In Fig. 3.1d, we show an example of pressure-induced DNA condensation with diva-
lent salt MnCl2. At spacings larger than ' 30 Å, MnCl2 mediates purely repulsive
inter-helical forces and the pressure-spacing curve is similar to that obtained with
the monovalent salt NaCl. At ' 30 Å, something reminiscent of a first order phase
transition occurs and the pressure-spacing curve assumes a behavior similar to that
registered with cobalt hexammine III.

Notice that, at spacings smaller than ' 30 Å, pressure decays exponentially with
a decay length between 1.5 Å, when DNA is condensed, and 3 Å, when DNA is not
condensed [Figs. 3.1a, 3.1b, 3.1c]. Due to the weak dependence of this decay length on
cation valency and concentration, Rau et al. [1984]; Rau and Parsegian [1992a] argued
that the forces they probed were not standard electrostatic ones, because these were
predicted to decay with a screening length proportional to ionic strength by the elec-
trostatic double layer theory [Levin, 2002]. Hence, they proposed to rationalize their
findings in the framework of hydration forces.
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Figure 3.1: Pressure vs. inter-helical spacing in osmotic stress experiments on DNA
hexagonal arrays. (a,b) Cationic conditions in which DNA is not condensed. Decay
length at small separations is ' 3 Å independently of ionic species and concentration.
(a) Divalent cations. (@) 25 mM MgCl2. (E) 25 mM CaCl2. (A) 10 mM putrescine.
(b) Monovalent cations. 0.5 mM (E) LiCl, (A) NaCl, (E) CsCl. Reproduced from Rau
et al. [1984], with implicit permission from the National Academy of Sciences. (c) Cationic
conditions in which DNA is spontaneously condensed. Arrows indicate the spon-
taneous spacing at zero applied pressure. The decay length at small separations is
1.4± 0.1 Å at all ionic conditions. (E) Salmon protamine, 10 mM TrisCl (pH 7.5). (F)
2 mM spermine (3+), 0.1 M NaCl, 10 mM TrisCl. (@) 5 mM Co(NH3)6Cl3, 0.1 M NaCl,
10 mM TrisCl. (A) 150 mM Mn(ClO4)2, 10 mM TrisCl. Reprinted from Rau and Parsegian
[1992a], with permission from Elsevier. (d) Comparison of different ionic conditions. (A)
0.5 M NaCl, 10 mM TrisCl, 1 mM EDTA. DNA is not condensed, inter-helical forces are
purely repulsive. Decay length is 3 Å at small separations. (E) 5 mM Co(NH3)6Cl3,
0.1 M, 10 mM TrisCl. DNA is spontaneously condensed, inter-helical forces are at-
tractive at long distances. The arrow indicates spontaneous spacing at zero pressure.
Decay length is 1.5 Å at small separations. (p) 50 mM MnCl2, 10 mM TrisCl. DNA
is not spontaneously condensed. At low pressures, interactions are purely repulsive.
At high pressures, DNA condenses and interactions become attractive at large sepa-
rations. Reprinted from Rau and Parsegian [1992b], with permission from Elsevier.
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3.2 Hydration forces

The onset of exponential repulsions at separations shorter than 30 Å, with salt-independent
1− 3 Å decay lengths was also found between lipid bilayer surfaces separated by wa-
ter (for a review, see Rand and Parsegian 1989). This repulsion, first observed be-
tween zwitterionic lecithin bilayers [Leneveu et al., 1976], was also reported between
uncharged [McIntosh et al., 1989] and charged lipid membranes, overwhelming the
coulombic repulsion of these latter at small enough separations [Cowley et al., 1978].

These findings were first rationalized by Marčelja and Radić [1976], who suggested
that a repulsive non Coulombic interaction may originate from the ordering of wa-
ter molecules in the proximities of membrane polar surfaces. They supported their
hypothesis with a phenomenological model, that we detail below. Given the strik-
ing similarity between the behavior of membranes and DNA helices, Parsegian and
coworkers adapted Marc̆elja’s model to interpret their osmotic stress experiments on
DNA arrays [Rau and Parsegian, 1992a; Leikin et al., 1993].

Before presenting the details of Marc̆elja’s model, we explain its fundamental physics
in words. Bulk water molecules organize into a hydrogen bond network. A polar sur-
face, like that of DNA or a lipid bilayer, can perturb this network. In fact, suppose
a water molecule is close to one of the naked charges provided by DNA phosphate
groups. The slightly positively charged hydrogen atoms of water feel attracted to
DNA phosphates, resulting in a local polarization of water molecules. Notice that
naked electric charges are not required to structure water. DNA grooves’ base atoms,
for example, can form hydrogen bonds with water molecules, thus participating in
the water hydrogen bond network. Polarization is just one possible form local wa-
ter ordering. Other possibilities are, for example, the density, positional order and
tetrahedral coordination of water molecules. Atomistic simulations with explicit sol-
vent represent a particularly useful tool in the study of water structuring phenom-
ena [Zavadlav et al., 2017]. The perturbation in water structure generated by a polar
surface can propagate away from the surface, up to a certain distance, thanks to the
ability of water molecules to order each other by forming hydrogen bonds. What
happens when the perturbations emanating from two close-by polar surfaces over-
lap? There are two possibilities. If the perturbations weaken each other, then water
structuring mediates a repulsion between the polar surfaces. Conversely, if the two
perturbations reinforce each other, then water structuring mediates attraction. Inter-
estingly, some experiments supported the existence of attractive hydration forces both
between bilayers [Rand et al., 1988] and DNA helices [Rau and Parsegian, 1992a]. Two
recent simulations supported the emergence of water-structuring repulsions as strong
as Coulombic ones at short inter-helical spacings [Yoo and Aksimentiev, 2016; Zavad-
lav et al., 2017]. In particular, Zavadlav et al. [2017] reported a correlation between the
emergence of hydration repulsion and the structuring of water molecules in the inter-
stitial region between DNA helices, using different definitions of water order. None
of the simulations registered attractive hydration forces.

We now derive the hydration pressure between two planar parallel surfaces à la
Marčelja and Radić [1976]. We call x the axis normal to the planes, whose respec-
tive coordinates are x = −d/2 and x = d/2. We relegate all the information about
local water ordering to a scalar order parameter, η(x). This is obviously a simplify-
ing assumption, since one could introduce more complex vectorial or tensorial order
parameters instead [Zavadlav et al., 2017]. However, our current goal is to predict
a salt-independent exponential pressure with minimal assumptions on the order pa-
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rameter. We assume that the two surfaces impose the same ordering to the water
molecules they are in contact with, i.e. η(d/2) = −η(−d/2) = η0. For example, if η
represented water polarization along the x axis and the two surfaces had a naked neg-
ative charge, these boundary conditions would correspond to the slightly negatively
charged oxygen atoms of water molecules orienting away from the nearest surface.
Water structuring propagates in the bulk, up to some typical distance ξ0 from each
plate, which is the correlation length of η(x). We assume that water is weakly ordered
in the bulk, such that we can approximate the excess free energy ∆F due to the wa-
ter ordering with a Landau-like quadratic expansion in powers of η. With the proper
choice of units, we can write

∆F[η, η′] =
∫ d/2

−d/2
dx
{

η2 + ξ2
0
(
η′
)2

+O(η3)
}

, (3.1)

in which the prime denotes differentiation with respect to x. Notice that we can neglect
higher order derivatives by assuming that the order parameter has smooth spatial
variations. The stationarity of ∆F relative to η boils down to

η′′ = ξ−2
0 η, (3.2)

which is solved for

ηeq(x) = η0
sinh (x/ξ0)

sinh (d/2ξ0)
. (3.3)

At equilibrium, the pressure P(d) between the plates is

P(d) ∝ − ∂

∂d
∆Feq =

η2
0

sinh2 (d/2ξ0)
, (3.4)

where ∆Feq = ∆F[ηeq, η′eq] = 2ξ0η2
0 coth (d/2ξ0) is the excess free energy at equilib-

rium.
We have obtained a positive pressure, i.e. a net repulsive hydration force between

the two plates. Coherent with the experiments, the pressure decays exponentially at
large enough inter-surface separations, P(d � ξ0) ≈ e−d/ξ0 . The decay length is a
property of water only, and can be experimentally estimated as ξ0 ' 4 Å [Xie et al.,
1993]. This value of decay length is slightly larger than that measured in osmotic stress
experiments between DNA helices [Sec. 3.1]. However, Rau and Parsegian [1992a]
pointed out that such discrepancy may be just an effect of the DNA cylindrical geom-
etry, which generates a hydration pressure that is expressed in terms of Bessel func-
tions rather than simple exponentials. The fact that we obtain a repulsive hydration
interaction is a direct consequence of our choice of boundary conditions. In fact, the
choice η(d/2) = −η(−d/2) implies that the two perturbations emanating from the
plates have opposite sign, and therefore weaken each other. Conversely, if we choose
two complementary boundaries (η(d/2) = η(−d/2)), the theory above predicts a
negative pressure, i.e. an attractive hydration interaction.

How can the spatial correlation between neighboring helices affect their hydration
interaction? As we illustrated earlier in this section, the surface of DNA is inhomoge-
neous, since it is made of different solvated groups: e.g., negatively charged phosphates
and grooves’ base atoms. This inhomogeneity is arguably reflected in the perturbation
emanating from the helix, which we expect to vary along the helical axis. Depending
on how two neighboring helices are aligned, the overlap between emanating pertur-
bations can change, yielding mixed attractive and repulsive contributions (see, e.g.
Kornyshev and Leikin 1989).
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3.3 Electrostatic “zipper”

Disclaimer. This and the next sections deal with the crucial ability of DNA to trap some of the
positive charges dispersed in the environment within a thin layer close to its surface, by virtue
of its elevated surface charge density. We should stress that there are two kinds of positive
charges: those coming from the dissociation of DNA phosphate groups and those coming from
the dissociation of salt. Making analytical predictions of this phenomenon, known as Manning
condensation [Manning, 1969], proves particularly hard in the presence of salt (see, e.g. Trizac
and Téllez 2006). However, since salt is necessary for DNA condensation, we cannot pretend
it is absent in the following. We then keep the discussion to a qualitative level, relying more on
indications provided by experiments and simulations rather than by analytical models.

Marc̆elja’s theory yields a linear, second order differential equation for the order
parameter η that governs the equilibrium state [Eq. (3.2)]. Interestingly, a one-to-one
mapping exists between this and the renowned linearized Poisson-Boltzmann (PB),
or Debye-Hückel (DH), equation of screened electrostatics, in which the electrostatic
potential plays the role of η and the Debye length that of the correlation length ξ0.
Although built upon different physical mechanisms, both Marc̆elja’s and DH theory
rely on the existence of a mean field that mediates the relevant interaction.

Technically speaking, the conditions of validity of DH are not met in DNA ar-
rays. DH was developed for situations in which the electrostatic energy is weak com-
pared to thermal energy. While this is always true at large enough distances from any
charged surface, DNA surface charge density proves too high for DH to hold in the
typical range of inter-helical separations of DNA bundles.

One dramatic consequence of the elevated DNA surface charge density is that pos-
itive ions tend to dress the negatively charged helix by forming a dense cloud around
it. This is a nonlinear effect of PB theory, not predicted in the linear DH regime. In the
early days of DNA electrostatic theories, DH was corrected so as to account for ion
condensation around the helix [Oosawa, 1968]. In this approach, pioneered by Man-
ning [1969], the nonlinearity is relegated to a renormalization of DNA charge, which
is effectively reduced by the condensed ion cloud. The interaction between the DNA
helix with renormalized charge and non-condensed ions in the environment is then
modeled with DH.

From Manning’s perspective, it is for merely electrostatic reasons that some posi-
tive ions condense around the negatively charged DNA helix: keeping opposite charges
spatially separated would cost a lot of energy. However, DNA can also trap (chemisorb)
ions via hydrogen bonds. In fact, the highly valent cations that drive DNA condensa-
tion are often dressed by a cloud of water molecules (also said solvation shell), which
can form hydrogen bonds with DNA base atoms. This idea is supported by experi-
ments and simulations, from which it appears that different cation species have differ-
ent preferential binding sites along the DNA surface, some of which are located within
the electrically neutral grooves (for a review, see e.g. Egli 2002).

Kornyshev and Leikin [1999] have developed a theory of DNA condensation in
which helices adsorb positive ions essentially through chemisorption. In their model,
DNA molecules have a fixed distribution of negative and positive charges along their
backbone, from phosphates and chemisorbed cations respectively. In particular, ions
can chemisorb in three locations: along phosphate helices, in minor grooves or major
ones. The ion densities at each of these locations are free parameters of the theory.
Two DNA helices with chemisorbed positive ions can adhere by matching their charge
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distributions, forming what the authors call an electrostatic “zipper”. This theory is
thus all about inter-helical spatial correlations. Since the interaction between DNA
helices and any non chemisorbed charge is modeled with DH, Kornyshev’s model is
mathematically equivalent to Marc̆elja’s one. As a consequence, the two models make
qualitatively similar predictions (as Kornyshev and Leikin [1997] themselves pointed
out).

3.4 From Van der Waals attraction to Wigner crystal matching

In the model described at the end of the previous section, the ions condensed on the
surface of DNA are assumed to be static. However, we know that the cloud of con-
densed ions is a quite dynamic environment. Due to thermal agitation, ions have fi-
nite residence times at their binding positions [Egli, 2002; Yoo and Aksimentiev, 2016;
Zavadlav et al., 2017].

Correlated thermal fluctuations between the ion clouds of neighboring DNA he-
lices can generate attractions à la Van der Waals. In the context of rod-like macro-
molecules, this mechanism was first rationalized by Oosawa [1968], who modeled the
condensed ion clouds dressing DNA molecules as ideal gases, including their density
fluctuations as Gaussian corrections to a mean field (PB) theory. With his approach,
Oosawa obtained an attractive pair potential, suitable at large inter-helical separa-
tions, which is inversely proportional to the square of the separation and that increases
linearly with temperature for macromolecules of high enough surface charge. The
applicability of Oosawa’s result to DNA arrays was long debated. Podgornik and
Parsegian [1998] pointed out that the interactions resulting from correlated fluctua-
tions between ideal-gas like ion clouds are not pairwise additive in DNA arrays, due
to the long-range of Coulomb potential, except in the presence of high amounts of salt.

However, the mean field (PB) hypothesis of ion clouds behaving like ideal gases
was questioned with time. Simulations suggested that ion clouds around DNA he-
lices looked more like a correlated liquid (or even a crystal, at low enough tempera-
tures) than an uncorrelated gas [Rouzina and Bloomfield, 1996; Grønbech-Jensen et al.,
1997]. On this basis, it was proposed that the Coulombic repulsion between ions can
be much larger than thermal energy, creating the conditions for their crystallization
on the negative background provided by DNA (like in the jellium model of solid state
physics). The regime of temperature and ion valency in which ion-ion correlations
emerge is known in the literature as strong coupling (SC) regime. The opposite regime
is known as the weak coupling (WC) one, in which thermal agitation dominates ion-
ion Coulombic repulsions and the uncorrelated mean field (PB) approximation holds
(for a review, see Naji et al. 2013).

In a famous paper, Shklovskii [1999a] rationalized the behavior of Z-valent posi-
tive counter-ions within a maximum density bundle of parallel, cylindrical macroions
of radius r, length L � r, and linear charge density e/b, e being the electron charge.
He introduced the dimension-less parameter Zb/r and argued that two limiting cases
exist, depending whether Zb/r � 1 or� 1. When Zb/r � 1, i.e., cylinders are thin
and weakly charged, then sufficiently packed macroions create an uniform negatively
charged background, in which positive ions can form a three-dimensional Wigner crys-
tal [Wigner, 1934]. Since the crystal exists thanks to long-range inter-ion Coulombic
repulsions, the interactions responsible for the stability of the bundle are not pair-wise
additive in this case. When Zb/r � 1, macroions are thick and highly charged and
positive ions can crystallize on their surfaces. If the cylinders are uniformly charged,

23



Figure 3.2: Chemical structure of spermidine and spermine. Figures from National
Center for Biotechnology Information. PubChem Database. Spermidine, CID=1102 and Sper-
mine, CID=1103.

the result is a two-dimensional Wigner crystal lying on a cylinder. If the cylinders
have their negative charges located along helices, like the DNA phosphates, then the
positive ions condense onto the helices, forming one-dimensional Wigner crystals. In
both cases, two neighboring cylinders can adhere by matching their surface ion crys-
tals. In fact, an ion shared by two crystals is in a deeper potential well than an ion
belonging to a single crystal. By virtue of this surface-crystal matching mechanism,
the interactions responsible for the bundle stability are pairwise additive in this case.

Assuming DNA is a cylinder of radius 1 nm and homogeneous linear charge den-
sity 1/b = 1/(0.17 nm) [Fig. 1.1a], we have that ions with valency Z = 6 are required
for Zb/r ' 1. This implies that Zb/r � 1 is the relevant regime in DNA arrays,
in which inter-helical adhesion is thus expected to rely on the matching of surface ion
crystals, which requires precise inter-helical spatial correlations. On a cautionary note,
we should stress that Wigner crystals represent a zero-temperature ground state and
are not expected in real DNA condensates. Rather, one can expect ions to arrange into
two-dimensional correlated liquids in between DNA helices, which proves enough to
mediate attraction [Rouzina and Bloomfield, 1996; Shklovskii, 1999a,b]. Interestingly
the structuring of ions around DNA was predicted to overscreen its charge, giving it
an effective (renormalized) positive charge [Shklovskii, 1999b; Nguyen et al., 2000],
something that was later verified by measuring the electrophoretic mobility of con-
densed DNA [Besteman et al., 2007]. Charge inversion is not predicted by the earlier
theory of Manning [1969], which further underlines the important role of ion structur-
ing in the context of DNA condensation.

3.5 Ion bridging

So far, we mentioned DNA condensation theories based on the assumption that the
positive ions driving DNA condensation are point-like. Actually, some common DNA
condensing agents, like spermine (4+) and spermidine (3+), are elongated [Fig. 3.2].
Since such dumbbell-shaped cations have naked charges at their ends, they can bind
each of their ends to a different DNA molecule, thus mediating attraction by bridging.

If ion bridging were the major contribution to DNA condensation, one would
expect the equilibrium inter-helical spacing to strongly correlate with ion size. Al-
though such correlation seemed to be supported by an early X-ray diffraction study
performed by Schellman and Parthasarathy [1984] on DNA condensates stabilized
by dumbbell-shaped cations of variable size, Rau and Parsegian [1992a] have later
proposed two experimental arguments against ion bridging. The first argument was
based on the fact that, in a solution of water and methanol at 25% concentration,
Mg2+ can make DNA condense at an equilibrium spacing (32 Å) slightly larger than
that imposed by spermidine at the same methanol concentration (28 Å), regardless of
spermidine being a ' 10 Å long dumbbell and Mg2+ an atom. Moreover, the equi-
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librium spacing was shown to decrease of several angstroms at increasing methanol
concentrations for a given condensing ion. The second argument was that different
ion bridges should respond differently to external compression, whereas a common
' 1.5 Å exponential repulsion was registered with condensing agents of various na-
ture at inter-helical distances smaller than their equilibrium values [Fig. 3.1c].

Both arguments, especially the second one, seem to originate from the intuition
that the hypothetical ion bridges are perpendicular to the DNA helical axis. How-
ever, recent analytical and numerical studies have shed light on a more complex phe-
nomenology of elongated DNA condensing ions [Kim et al., 2008; Cha et al., 2018]. In
particular, dumbbell-shaped cations are predicted to serve as perpendicular bridges
in the WC regime, in which point-like ions would not mediate attraction because of
the absence of ion-ion correlations. In this case, the predicted equilibrium spacing be-
tween DNA helices is close to dumbbell size. Conversely, in the SC regime, dumbbells
orient parallel to the DNA axis and form a correlated liquid as point-like ions would.
In this case, the predicted equilibrium spacing between DNA helices is shorter than
dumbbell size.

Recent atomistic simulations of either spermine- or spermidine-condensed DNA
arrays have provided evidence in favor of ion bridging. Yoo and Aksimentiev [2016]
have shown that, in spermine-condensed DNA arrays, only those spermine molecules
found in the interstitial region between neighboring helices contribute to inter-helical
attraction, whereas those adsorbed onto the surface of one DNA molecule do not.
Zavadlav et al. [2017] have shown that, in spermidine-condensed DNA arrays, lat-
eral inter-helical correlations fluctuate much less than in the absence of spermidine.
In their simulation, lateral correlations can fluctuate either because of the rotation of
individual base pairs around the helical axis, either because of vertical translations of
the whole DNA helices. Weakened rotational fluctuations of DNA molecules around
their axis were interpreted as the effect of spermidine acting as an “azimuthal lock”
between neighboring DNA molecules. If this is true, then ion bridging implies a cer-
tain alignment of neighboring helices, yielding inter-helical spatial correlations.

3.6 Bottom line: the importance of being correlated

To conclude this chapter, we briefly summarize why inter-helical lateral correlations
can influence the strength of adhesive forces.

In Sec. 3.2, we show that water ordering in the interstitial space between two DNA
helices can, in principle, give rise to both attractive and repulsive interactions. In this
framework, the competition between attraction and repulsion depends on the overlap
between the perturbations to water ordering emanating from the two helices. Since
helices are composed of alternating solvated groups of different nature along their
length, the way two helices are aligned influences their net interaction.

In Sec. 3.3, we show that positive ions can chemisorb at specific sites along a DNA
helix. As a result, the surface charge of a DNA molecule can become a spatially peri-
odic pattern of positive and negative charges. Two DNA helices can adhere by form-
ing an electrostatic zipper, in which the positive charges of one helix face the negative
charges of the other. Clearly, this requires that the two helices are properly aligned
relative to each other.

In Sec. 3.4, we show that the DNA negative surface charge density is so high that
positive ions can condense in its vicinity and form a two- or one-dimensional corre-
lated liquid around a DNA helix. Two DNA helices can attract each other by matching
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the correlated ion liquids surrounding them. Since negative charges are not homoge-
neously distributed along the DNA surface, the ion liquid is probably more strongly
structured along the phosphates than far from them. Hence, once again, depending
on how two DNA helices are laterally correlated they can match their charge distribu-
tions more or less easily.

Finally, in Sec. 3.5, we show that dumbbell shaped condensing ions like spermidine
and spermine can mediate inter-helical adhesion by creating ionic bridges between
them. One can imagine that the ends of a dumbbell ion have preferred anchoring
sites on the surface of a DNA molecule. In fact, numerical simulations suggest that
such ion bridges can act as azimuthal locks, promoting spatial correlations between
bridged helices.
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Chapter 4

The geometry of DNA toroids
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In this chapter, we illustrate the experiments that motivate our research. Unless
stated otherwise, these were conducted by Amélie Leforestier and Françoise Livolant
at the Laboratoire de Physique des Solides in Orsay, France. The goal of these ex-
periments is to reconstruct the three-dimensional architecture of DNA toroids. The
condensing agent used in the experiments was spermine. To test the robustness of
our findings relative to ionic strength variations, experiments were performed at both
4 mM or 40 mM spermine concentration. For reasons that we clarify in the next section,
the following cation cocktail had to be present in the samples: 10 mM Tris, 100 mM
NaCl, 1 mM MgCl2, 1 mM CaCl2.

In Sec. 4.1, we present how DNA toroids of variable sizes can be generated by
using bacteriophage capsids. In Sec. 4.2, we illustrate known geometrical features of
DNA toroids, namely: the hexagonal packing of DNA helices, their collective twist
around the toroid center line and the lateral groove correlations between neighboring
helices. Finally, in Sec. 4.3, we present recent measurements pertaining the depen-
dence of inter-helical spacing on curvature in toroids.

The data in Secs. 4.1 and 4.3 are still unpublished, while those in Sec. 4.2 are avail-
able in Leforestier and Livolant [2009].

4.1 Generating toroids of controlled size

In a sample where multiple DNA helices are in the presence of spermine at high
enough concentration, multiple DNA toroids can form. DNA toroids tend to aggre-
gate into clusters, which limits the structural analysis of individual toroids under the
electron microscope. To prevent toroid clustering, Leforestier and Livolant [2009] pro-
posed the clever strategy of isolating individual toroids in phage capsids. The idea is
to use a capsid as a semipermeable cage, in which DNA is trapped while water and
ions are free to flow through its walls.

Additionally, this technique allows to generate toroids of variable size, either con-
fined in the capsids or outside them. In the presence of the phage protein receptor
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[Sec. 2], DNA is spontaneously ejected from the capsid. The ejection is primarily
driven by the pressure difference inside and outside the capsid. The presence of sper-
mine, which diffuses through the capsid, reduces the inner pressure, which is expected
to limit the amount of ejected DNA. However the ejected segment condenses into a
toroid outside the capsid that exerts a pulling force that drives the DNA transfer to
completion [De Frutos et al., 2005]. If DNAse is added, this external unprotected seg-
ment is degraded and the pulling force supressed. The ejection stops when the force
due to internal pressurization drops down to zero [De Frutos et al., 2005; Evilevitch
et al., 2003], leading to partially filled capsids. It is thus possible to dispose of popula-
tions of DNA toroids outside (fully transferred out) or inside (trapped in after partial
ejection) capsids, by adding or not DNAase at different times.

In the absence of DNAse, giant toroids form from many molecules ejected by a
group of phages [Fig. 4.1a]. These toroids tend to aggregate and form chains or even
large compact clusters at 4 mM spermine (not illustrated). This impedes a proper visu-
alisation of individual toroids that are more easily analyzed in the presence of 40 mM
spermine, where the aggregation is reduced. Giant toroids are relatively monodis-
perse. Their outer radius Rout varies from 125 to 175 nm (average value of 144 ±
15 nm). Toroids may be trapped with different orientations, allowing the visualiza-
tion of top [Figs. 4.1a, 4.1b] and side views [Fig. 4.1d]. Side views reveal that they are
generally not “true” tori with circular sections, but rather hollow cylinders, as already
reported by [Lambert et al., 2000], or cone-shaped barrels, whose heights vary from
130 to 250 nm (190± 30 nm) (not illustrated). In most cases, a viral capsid is found
within the toroid central hole and serves as a scaffold around which the toroid orga-
nizes. The internal radius Rin is therefore imposed by the capsid, whose “radius” is
40 nm for the T5 phages used in the experiments (leading to Rin = 42± 2.5 nm).

In the presence of DNAse, small toroids, confined within capsids [Fig. 4.1b], form
after partial ejection. These are made of a single DNA molecule, corresponding to a
segment of the phage genome trapped in the capsid. Here, the toroid outer radius Rout
is imposed by the capsid, leading to outer radii in the range of 36− 37 nm. Inner radii
vary from 7 to 20 nm.

It is thus possible to prepare toroids with a wide range of well defined sizes and
access curved DNA configurations with radii of curvature varying continuously from
7 to 175 nm. In giant toroids, the inner radius is fixed, while the outer one is free. The
reverse situation occurs in small confined toroids, where the inner radius is free, while
the outer one is fixed.

4.2 Hexagonal packing, twist and correlations

Looking at a toroid from the side, its cross-sections reveal local hexagonal packing
of neighboring helices [Fig. 4.1e]. Looking at a toroid from the top, we identify stri-
ated domains alternating with blurry ones [Fig. 4.1c]. Striated domains are expected
when the helices’ hexagonal lattice is favorably oriented relative to the direction of
observation. Blurred domains are expected when the lattice is not favorably oriented.
In theory, two kinds of striations could be observed, associated to the lattice vectors
θ2 [Fig. 4.1g] and T2 [Fig. 4.1h]. Imaging conditions in the experiments only allow
the observation of the T2 kind of striations. Blurry domains are thus associated to all
crystal orientations different from T2, meaning that the crystal undergoes a 60◦ rota-
tion within each blurry domain. The lattice rotates very little within striated domains,
because few degrees would be enough to lose the periodicity along the direction of
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Figure 4.1: General features of DNA toroids from cryoelectron microscopy. (a) Top
view of a giant toroid, with a viral capsid at its center. Scale bar, 50 nm. (b, c) Top
views of small toroids. Scale bars, 50 nm. (c) Striated domains are indicated by ar-
rows, blurred domains by asterisks and twist walls by dashed segments. (d) Side
view of a small toroid. The two cross-sections are visible. Scale bar, 50 nm. (e) Zoom
on a toroid cross-section. Each dot is a DNA helix pointing out of the page. Helices
are hexagonally packed. Scale bar, 10 nm. (f) Straight toroidal bundle, made of the
DNA ejected by several viral capsids, which are visible in the background. Striated
domains are indicated by arrows, blurred domains by asterisks. Scale bar, 20 nm. (g)
Expected striated domains when the direction of observation is θ2. (h) Expected stri-
ated domains when the direction of observation is T2. (i) Helical pitch (P) periodic
variation along the length (L) of a curved DNA helix, in a toroidal bundle. Figs. (c,f,i)
adapted from Leforestier and Livolant [2009], with permission from the authors.
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d± dSEM (nm)
4 mM spermine 40 mM spermine

Small toroids 2.61± 0.01 2.62± 0.01
Giant toroids 2.502± 0.003 2.51± 0.01

Table 4.1: Average striation spacing from FFTs. Expected values are averages of av-
erages from various datasets. Uncertainties are standard errors of means (SEMs).

observation, generating a blurry image. Therefore, most of the rotation was suggested
to be concentrated at the interfaces between striated and blurry domains, at so-called
twist walls [Fig. 4.1c, Leforestier and Livolant 2009]. Notice that striated and blurred
domains are found also in straight DNA bundles, meaning that they twist in the same
fashion [Fig. 4.1f].

In straight bundles, helices are aligned in such a way that major (minor) grooves on
one helix face minor (major) grooves on the neighboring helix. In toroids, the preferred
groove correlation depends on the toroid size, thus on curvature. In giant toroids,
helices seem to be aligned as in straight bundles 1. In small toroids, major (minor)
grooves on one helix face major (minor) grooves on the neighboring helix. This kind
of correlation is never observed in straight bundles, but it may be observed in the in-
nermost regions of giant toroids. If the pitch were constant, it would be impossible
to preserve groove correlations between helices belonging to neighboring striations,
due to their different curvature. In toroidal bundles, groove correlations are possi-
ble because the helical pitch is not constant along the length of individual helices,
where under-twisted regions alternate with over-twisted regions in a periodic fashion
[Fig. 4.1i].

4.3 Curvature correlates with inter-helical spacing

The average inter-helical distance aH is measured from FFTs of side views showing
hexagonal order [Figs. 4.2b, 4.2c] as well as from top views showing striated patterns
[Figs. 4.2d, 4.2e]. Notice that the striation spacing is d =

√
3/2× aH [Fig. 4.2f]. The

resulting average spacing is dsmall ' 2.6 nm in small toroids and dgiant ' 2.5 nm in
giant toroids, yielding asmall

H ' 3.0 nm and agiant
H ' 2.9 nm, consistent with previous

experiments [Raspaud et al., 2005]. This behavior suggests a dependence of spacing on
local curvature. Notice that spacing is hardly affected by spermine concentration. This
is expected in the presence of relatively high amounts of monovalent cations (100 mM
NaCl plus 10 mM Tris, notwithstanding 2 mM of divalent cations here) [Raspaud et al.,
2005].

Local spacing variations at different curvatures can be measured from the periodic
variation of contrast intensity along line profiles perpendicular to striated domains
[Figs. 4.2a, 4.2g]. Local spacing is inferred from peak to peak distances in the contrast
profile. To reduce noise, in giant toroids, local distance is measured by averaging over
three consecutive peaks (i.e., di = Di/3, i = 1, 2, 3 . . . in Fig. 4.2g). This is not possi-
ble in small toroids, where distances are measured individually. In giant toroids, no
measure is recorded within regions that have no free outer boundaries, i.e. wherever
there is a contact zone between aggregated neighbors (gray circular sector in Fig. 4.2a).

1A. Leforestier, private communication
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Figure 4.2: Measurement of inter-helical spacing. (a) Top view of a giant toroid.
Inner and outer boundary evidenced by a white dashed line. Example of profile over
which striation spacing is measured (cyan). No measurements taken in the direction
of boundary regions where two toroids collide (gray circular sector). (b) Hexagonal
packing from toroid side view. Scale bar 10 nm. (c) FFT of hexagonal packing from
side view. (d) Striated pattern from toroid top view. (e) FFT of hexagonal packing from
top view. (f) Projection of hexagonal lattice generating striations (cyan). (g) Contrast
intensity over cyan profile in (a). Measurements not taken over first and last peak
(green regions). Striated spacing averaged over three peaks (di = Di/3, i = 1, 2, 3 . . . ).
(h) Striation spacing dependence on position resulting from (g).
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Figure 4.3: Striation spacing datasets from various toroids. Error bars are standard
errors of means. Notice that the dataset corresponding to Toroid G40–5 is the one
presented in Fig. 4.2.

Several line profiles are recorded for each toroid and averaged (from 8 to 13 in giant
toroids, 3 to 6 in confined ones). The averaged d values are plotted as a function of
the radius r, with ri = ri−1 + di−1 [Fig. 4.2h]. Series of measurements are obtained
on six different giant toroids (six at 40 mM spermine, one at 4 mM) and five confined
ones (four at 4 mM spermine, one at 40 mM) [Fig. 4.3]. Data from small toroids are far
more noisy than from giant ones, on account of the impossibility of averaging mea-
surements over three peak-to-peak distances and of the smaller number of line profiles
per toroid there. These local measurements confirm and precise global ones obtained
on FFTs. In each toroid, spacing decreases with the distance from the center of the
assembly. Notice that this is a weak effect, relative spacing variations being limited to
less than 10% going from the inner to the outer radius.
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4.4 Summary

This chapter presents how DNA toroids of variable sizes can be generated in vitro
and their main geometrical features. Small toroids can be generated by making single
DNA molecules condense inside bacteriophage capsids. Giant toroids can be gener-
ated by making multiple DNA molecules, ejected from multiple bacteriophages, con-
dense outside the capsids. The resulting giant toroids generally exhibit a capsid in
their middle, which fixes their inner radius. From toroids side views, the hexagonal
packing of DNA helices emerges.

From toroids top views, different patterns emerge depending on the hexagonal lat-
tice orientation relative to the direction of observation. When the lattice is favorably
oriented, striated patterns reflecting its periodicity are observed. Striated patterns per-
sists as long as the lattice orientation deviates less than few degrees from the direction
of observation. When the deviation is too strong, periodicity is lost and blurry pat-
terns emerge. From striated patterns, it is possible to see how neighboring helices’
grooves laterally correlate. In small toroids, the major grooves of each helix face the
major grooves of its neighbors. In large toroids, the minor grooves of each helix face
the major grooves of its neighbors.

The average inter-helical spacing in toroids can be accessed from FFTs of side
views, which show that small toroids are, on average, less tightly packed than giant
ones. Local variations in inter-helical spacing can be accessed from striated patterns.
In every toroid, inter-helical spacing undergoes a≤ 10% decrease going from the inner
to the outer radius.
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Chapter 5

Theoretical modeling
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The goal of this chapter is to understand why inter-helical spacing decreases with
the distance from the inner radius of DNA toroids. We propose some simple theo-
retical arguments based on DNA elasticity and effective cation-mediated inter-helical
forces. By pursuing this goal, we also infer some information on the effective inter-
helical interaction potential.

Our intuition is that local spacing variations are related to DNA local elastic re-
sponse. Specifically, DNA bending rigidity penalizes every region of the toroid pro-
portionally to the DNA curvature it requires to be populated. Within striated regions,
DNA helices appear to be locally arranged as if they were arcs of concentric circles,
like a woolen thread in a spool. If this were true, then the curvature of DNA he-
lices would decrease going from the inner radius Rin to the outer radius Rout. This
geometry would support our intuition: DNA helices populate the inner regions the
least because their curvature is the highest there. But does DNA curvature actually
decrease going from Rin to Rout, as striated regions suggest? Since DNA toroids are
twisted, it is possible that curvature is not that easily distributed throughout the as-
sembly. If twist is strong enough, it may even be that DNA is less curved close to Rin
than to Rout.

In Sec. 5.1, we quantify how filaments’ curvature is distributed within a DNA
toroid, depending on the DNA rate of twist around the toroid center line. We show
that the experimental rate of twist is low enough that we can assume DNA helices be-
have as concentric circles around the toroid center, i.e. that DNA curvature increases
with the distance from the inner radius. In Sec. 5.2, we leverage this result to develop
a minimal two-dimensional model of DNA toroid, from which we investigate the me-
chanical equilibrium between DNA elasticity and effective inter-helical interactions.
In Sec. 5.3, we solve our model and predict that inter-helical spacing decreases with
the distance from the inner radius, in qualitative agreement with the experiments. In
Sec. 5.4, we fit our model to the data and infer the local interaction potential between
DNA helices.
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Figure 5.1: Modeling a twisted DNA toroid. (a) Covariant frame around the circular
center line of radius R. (b) Double-twist geometry around a straight center line (verti-
cal axis). Every filament is a helix with pitch 2π/Ω. Filaments are colored depending
on their distance from the vertical axis. Reproduced from Grason [2015], with permission
from APS and the author.

5.1 Preliminary: how twist redistributes filaments’curvature
in DNA toroids

In this section, we address the following question: how is filaments’ curvature dis-
tributed within a twisted DNA toroid? To answer, we parametrize the family of curves
describing the DNA helical backbones in a toroidal bundle and use this parametriza-
tion to calculate the local filaments’ curvature.

In Sec. 4.2, we have shown that the rate of twist in DNA toroids is not constant.
Most of the twist is concentrated at the boundaries between striated and blurry do-
mains [Fig. 4.1c]. Accounting for such a non-constant rate of twist goes beyond the
purpose of this section. Our current interest is limited to the effects of twist in striated
domains, where spacing measurements are taken, and where we assume the rate of
twist to be small and constant. Therefore, we parametrize a twisted toroidal bundle
with constant rate of twist around its center line.

We construct our twisted bundle as a continuous family of curves around a circu-
lar center line of radius R. We parametrize the center line by its arc length s ∈ [0, 2πR],
such that its position vector and unit tangent are R(s) = R R̂ and t̂0 = ∂sR, respec-
tively [Fig. 5.1a]. Notice that ∂s t̂0 = −R̂/R.

We introduce a system of orthogonal coordinates
{

t̂0, ρ̂, φ̂
}

that co-moves with the
center line [Fig. 5.1a], in which:

ρ̂(s, φ) = − cos φ R̂(s) + sin φ ẑ, (5.1a)

φ̂(s, φ) = ∂φ ρ̂(s, φ). (5.1b)

In these coordinates, the position vector of any point in space can be expressed in
terms of its distance ρ from the center line as x(s, ρ, φ) = R(s) + ρ ρ̂(s, φ).

Since we are constructing a countinuous family of curves, a filament passes through
any point (s, ρ, φ) in the toroid. Ultimately, we want to know what the local filaments’
curvature c(ρ, φ) is, depending on the bundle’s rate of twist. To calculate the curva-
ture of a filament, we need to know how its unit tangent vector varies along its own
direction. Therefore, we introduce the field of local unit tangents t̂(s, ρ, φ), and relate
it to the local filaments’ curvature as:

cn̂ =
(
t̂ ·∇

)
t̂, (5.2)
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Figure 5.2: Circulation of a filament around the toroid center line. A portion of
toroidal surface, with circular section of radius ρ, on which a quasi-helical filament
(cyan) lies. The filament makes a tilt angle θ(ρ, φ) with the tangent of the toroid center
line. The toroidal coordinates of three different points are denoted by three different
colors (green, purple and brown). Notice that gss = ∂sx · ∂sx = 1− ρ cos φ/R is equal
to 1 only at φ = ±π/2.

where n̂ is the filaments’ local unit normal and t̂ ·∇ is a derivative along the filaments’
direction.

At this point, we need to specify what t̂(s, ρ, φ) is. In a real DNA bundle, the
relative orientation of neighboring DNA molecules emerges from mechanical equilib-
rium. Because of their chiral architecture, two neighboring helices exert torques on
each other [Cherstvy, 2008]. Deriving a field of tangents t̂(s, ρ, φ) from the optimiza-
tion of a realistic torque field goes beyond our current purposes. Rather, we propose
an educated ansatz from empirical considerations.

To start, we prescribe a form of t̂(s, ρ, φ) that reproduces the macromolecular twist
observed in the experiments. If we think of a DNA bundle as a set of screw-like ob-
jects packed around a central one, a classical result of the theory of cholesteric liquid
crystals is that chiral interactions promote a so-called double-twist geometry [Wright
and Mermin, 1989; Grason, 2015]. We show an example of double-twist arrangement
around a straight central filament in Fig. 5.1b. There, every filament is a helix with
pitch 2π/Ω and tilt angle θ = arctan(Ωρ) relative to the vertical axis. We introduce
double-twist in our toroidal bundle by writing

t(s, ρ, φ) = cos[θ(ρ, φ)] t̂0(s) + sin[θ(ρ, φ)] φ̂(s, φ). (5.3)

Notice that, here, contrary to the straight double-twist, the tilt angle θ(ρ, φ) relative to
the center line also depends on the angular coordinate φ. In fact, a filament describing
a helical path on a toroidal surface around the centerline cannot twist at the same rate
throughout its length. For this reason, we refer to the filament geometry in this case
as quasi-helical. We define the local circulation rate ω(ρ, φ) around the toroid center
line of a quasi-helix with radius ρ as the variation of its angular coordinate φ relative
to the arc length s of the center line, i.e. ω = ∂φ/∂s [Atkinson et al., 2019]. We can
relate ω = ∂φ/∂s to the tilt angle θ(ρ, φ) with simple geometrical considerations and
with the aid of a schematic [Fig. 5.2]. In the figure, we have reproduced a portion
of toroidal surface with radius ρ, on which a quasi-helical filament (cyan) lies. We
call ds f the length of the filament arc connecting the points with coordinates (s, ρ, φ)
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and (s + ds, ρ, φ + dφ). Notice that the distance between the points with coordinates
(s, ρ, φ) and (s + ds, ρ, φ) is

√
gss ds, with gss = ∂sx · ∂sx = 1− ρ cos φ/R. Then, the

two relations

ds f sin θ = ρ dφ, (5.4a)

ds f cos θ =
√

gss ds, (5.4b)

imply

ω(ρ, φ) =
∂φ

∂s
=

√
gss

ρ
tan θ. (5.5)

Later in this section, we use Eq. (5.5) to set experimental bounds on θ(ρ, φ).
So far, we have built up a toroidal bundle that twists [Eq. (5.3)], effectively account-

ing for the chiral interactions between DNA helices by resorting to the double-twist
geometry. We now adapt θ(ρ, φ) so as to account for the tendency of neighboring he-
lices to stay at a fixed distance from each other, which is set by inter-helical forces. We
know from the experiments that inter-helical spacing varies very little throughout a
toroid, less than 10% [Sec. 4.2]. This suggests that a DNA bundle is an incompressible
material, a condition that we enforce by ruling out splay deformations in the tangent
field, which is the same as saying

∇ · t̂ = 0. (5.6)

To calculate the divergence above, we have to express the gradient ∇ and the
tangent t̂ in a common vector basis. From differential geometry [Kreyszig, 1991], we
know that the usual partial derivatives are the so-called covariant components of the
gradient, implying

∇ = gs∂s + gρ∂ρ + gφ∂φ. (5.7)

Here,
{

gs, gρ, gφ
}

is the so-called contravariant basis, which is the dual of the covariant
basis

{
gs, gρ, gφ

}
, defined as:

gs = ∂sx =
(

1− ρ

R
cos φ

)
t̂0; (5.8a)

gρ = ∂ρx = ρ̂; (5.8b)

gφ = ∂φx = ρφ̂. (5.8c)

The duality condition gi · g j = δ
j
i , where δ

j
i is the Kronecker delta and i, j = s, ρ, φ,

implies:

gs =
(

1− ρ

R
cos φ

)−1
t̂0; (5.9a)

gρ = ρ̂; (5.9b)

gφ =
1
ρ

φ̂. (5.9c)

We can use the contravariant basis to find the covariant components of the tangent
field [Eq. (5.3)], giving:

ts = t̂ · gs =
(

1− ρ

R
cos φ

)−1
cosθ; (5.10a)

tρ = t̂ · gρ = 0; (5.10b)

tφ = t̂ · gφ =
sin θ

ρ
. (5.10c)
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We can now explicit the splay-free (or vanishing divergence) condition Eq. (5.6) by
putting together Eqs. (5.10) and (5.7), such that

∇ · t̂ =
(

gs∂s + gρ∂ρ + gφ∂φ

)
·
(
tsgs + tρgρ + tφgφ

)
(5.11a)

= gs · tφ∂sgφ + ∂φtφ (5.11b)

=
sin θ sin φ

1− ρ cos φ/R
+

cos θ

ρ
∂φθ. (5.11c)

Notice that all the terms in Eq. (5.11a) that do not appear in Eq. (5.11b) are equal to
zero. One can verify that the right hand side of Eq. (5.11c) is zero for any θ(ρ, φ) of the
form [Kulić et al., 2004; Koning et al., 2014; Atkinson et al., 2019]

θ(ρ, φ) = arcsin
(

f (ρ)
1− ρ cos φ/R

)
, (5.12)

in which f (ρ) is an arbitrary function of ρ. Henceforth, we make the simplest linear
choice f (ρ) = Ωρ, coherent with previous studies on liquid crystalline toroidal pack-
ings [Kulić et al., 2004; Koning et al., 2014]. The coefficient Ω can be interpreted as the
bundle twist strength. It is related to the filaments’ circulation rate around the toroid
center line ω(ρ, φ) [Eq. (5.5)],

ω(ρ, φ) =

√
gs · gs

ρ
tan θ = Ω

[
1 +

(
Ωρ

1− ρ cos φ/R

)2
]−1/2

. (5.13)

Notice that, when Ω = 0, we have a bundle of circular filaments that do not twist.
We now estimate Ω thanks to the data collected in striated domains [Sec. 4.2]. We

consider here only small toroids confined in viral capsids, essentially because their
cross-sections are far more circular than those of giant toroids, allowing a clearer def-
inition of the tubular radius ρ. First, we estimate the experimental circulation ωexp in
a striated domain. The typical arc length of a striated domain is ∆sexp ' 10 nm. Over
a striated domain, the typical rotation of the DNA hexagonal lattice around the toroid
center line is limited to few degrees, certainly much less than the π/6 rotation associ-
ated with twist walls [Sec. 4.2]. We thus assume an average rotation of ∆φexp = π/60,
yielding ωexp = ∆φexp/∆sexp. Now, since our data are taken from DNA toroid top
views, our observations are made at φexp ' π/2 and on the outer layer of DNA he-
lices, i.e. at ρout

exp = Rexp/3 [Leforestier and Livolant, 2009], with Rexp ' 25 nm. From
Eq. (5.13), we get

ω(ρout
exp, φexp) = Ωexp[1 + (Ωexpρout

exp)
2]−1/2 =

∆φexp

∆sexp
, (5.14)

whose numerical solution yields Ωexp ' 0.13/Rexp.
We are all set to calculate the filaments’ curvature field c(ρ, φ) from Eq. (5.2). To

express the directional derivative operator t̂ ·∇, we use the contravariant components
of the tangent field [Eqs. (5.10)], such that

t ·∇ = tigi · gi∂i = cos θ
(

1− ρ

R
cos φ

)−1
∂s +

sin θ

ρ
∂φ, (5.15)
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Figure 5.3: Influence of twist on filaments’ local curvature. Heat maps of the squared
local curvature (c2) of filaments over the cross section of a twisted toroidal bundle,
at different values of the twist strength Ω. The toroid has radius R = 1 and tubular
radius ρmax = 1/(1 + Ω) (see text). The boundary of the cross-section corresponding
to the typical confined DNA toroid is drawn as a white dashed circle. Notice that
φ = 0 close to the center of the assembly [Fig. 5.1a].

where summation over repeated indices is implied. Applying the operator above to
the unit tangent field [Eq. (5.3)], Eq. (5.2) gives [c(ρ, φ)]2 = C2

1 + C2
2 + C2

3 , in which:

C1 =
cos2 θ cos φ

R− ρ cos φ
− sin2 θ

ρ
; (5.16a)

C2 =
∂φθ sin θ cos θ

ρ
− cos2 θ sin φ

R− ρ cos φ
; (5.16b)

C3 =
cos θ sin θ sin φ

R− ρ cos φ
−

∂φθ sin2 φ

ρ
. (5.16c)

In Fig. 5.3, we plot [c(ρ, φ)]2 over a toroidal cross-section for some values of Ω.
Notice that the section radius has an upper bound ρmax = 1/(Ω + 1/R), which comes
from the domain of the arcsin in the definition of θ(ρ, φ) [Eq. (5.12)]. The typical sec-
tion of confined DNA toroids is shown as a white dashed contour in Fig. 5.3. When
Ω = 0, filaments are circles and curvature is the highest where φ = 0, at the bound-
ary, i.e. close to the center of the toroid [Fig. 5.2]. As Ω increases, a zero curvature
region emerges from the center of the toroid. This curvature drop corresponds to a
local change in curvature sign. In fact, filaments go from winding around the z-axis
(positive curvature), when Ω = 0, to winding around the toroid center line (nega-
tive curvature), when Ω > 0. In other words, the filaments’ local normal goes from
pointing towards the center of the toroid to gradually pointing away from it.

We have quantified how twist redistributes curvature in a DNA toroid section.
Given the aspect ratio of confined DNA toroids, we see from Fig. 5.2 that the filaments’
curvature behaves qualitatively as in the Ω = 0 case even at Ω ≥ Ωexp ' 0.13.

5.2 A minimal model of DNA toroid: bending stiffness vs. in-
teractions

In this section, we develop a minimal mechanical model of DNA toroid. This model
qualitatively predicts the experimental dependence of inter-helical spacing on posi-
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Figure 5.4: Two-dimensional model of DNA toroid. Continuum description for a
dense set of concentric DNA circles (cyan). Two circles, that in the reference state are
located at r and r + dr, are spaced d0[1 + u′(r)] in the final state.

tion, relying on just two physical ingredients: effective interactions between neigh-
boring helices and DNA bending rigidity.

Motivated by the result of Sec. 5.1, we neglect all strictly three dimensional features
of DNA toroids. In particular, we neglect twist, which we have proven to be weak
enough to allow the approximation of a toroidal DNA bundle with a set of concentric
circular filaments [Sec. 5.1]. The smallest and biggest circles in the set have a radii
Rin and Rout, respectively, and coincide with the inner and outer radius of a DNA
toroid. Moreover, since the typical inter-helical spacing, ' 3 nm, is much smaller
than the extension Rout − Rin of the assembly (' 20 nm in small and ' 100 nm in
giant toroids), we take the continuum limit and model the set of circles as a CD-ROM
[Fig. 5.4], parametrized by the radial coordinate r ∈ [Rin; Rout].

We model DNA as a semi-flexible polymer with bending rigidity kb = `pkBT,
where `p is DNA persistence length, kB is Boltzmann’s constant and T is tempera-
ture. If DNA were a flexible polymer (i.e., kb = 0), inter-helical spacing would be
the same throughout the assembly, its value being fixed to some constant, d0, corre-
sponding to a minimum of the interaction potential between neighboring helices. Our
CD-ROM would be the continuum limit of a dense set of equally spaced circles, such
that the number of circles between r and r + dr would be dr/d0. Henceforth, we refer
to kb = 0 as the reference state. When kb > 0, DNA filaments resist bending by relaxing
local curvature, such that the local radius of curvature goes from r to r + u(r). The
radial displacement field, u(r), defines what we call the final state. In the final state,
inter-helical spacing can be written as d(r) = d0[1 + u′(r)], where the prime deontes
differentiation with respect to r [Fig. 5.4].

According to the data, spacing never decreases more than 10% going from Rin
to Rout [Sec. 4.3], meaning that u′(r) � 1, or, equivalently, that bending effects are
“weak” compared to interactions. We formalize this observation by introducing a di-
mensionless small parameter, ε, defined as the ratio between the typical energy scales
associated to bending and interactions, and such that u(r) ∝ ε. A convenient es-
timate of the bending energy scale is kbRc, where we have used the “radius” of a
viral capsid Rc ' 40 nm as a proxy to the typical radius of curvature of DNA he-
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lices. We estimate the typical interaction energy scale by observing that, since spacing
is close to d0 throughout the assembly, we can approximate the interaction potential
by Taylor expanding it around d0. To second order, this yields γ/2× [d(r)− d0]2 =
γ/2× d2

0[u
′(r)]2, where we denoted by γ the stiffness of the parabolic potential. Then,

interactions have a typical energy scale γd2
0Rc, where we used Rc as a proxy to the typ-

ical length of our system. Finally, we define the small parameter as ε = kb/γd2
0R2

c � 1.
We are all set to determine what displacement field u(r) enforces mechanical equi-

librium in the final state. Since toroids are fairly monodispersed in the experiments,
we work in the ensemble of fixed DNA length L, implying the conservation law

L =
∫ Rout

Rin

dr
d0

2π [r + u(r)] . (5.17)

Notice that the integral is performed in the reference state. Finally, we postulate the
free energy of deformation

F [u(r), Rin, Rout] =
∫ Rout

Rin

dr
d0

2π [r + u(r)]

{
kb

2
1

[r + u(r)]2
+

γ d2
0

2
[
u′(r)

]2 − µ

}
,

(5.18)

where the the first term is bending energy, the second is the interaction energy and the
third, µ, is a Lagrange multiplier that enforces Eq. (5.17). Dimensionally, µ is a force
and acts as a chemical potential difference between our toroid and a virtual DNA
reservoir. Notice that also the latter integral is performed in the reference state.

5.3 Perturbative solution of force-balance equations

In this section, we minimize the free energy functional Eq. (5.18) in the specific case of
giant toroids, whose internal radius is fixed by the radius of a viral capsid, Rin = Rc '
40 nm. Because the minimization procedure is almost identical for small toroids, with
the only difference that the fixed boundary would be the outer radius in that case, we
give the results for small toroids at the end of this section without going through the
derivation a second time.

Our plan is to solve force balance equations

δF [u(r), Rout]

δu(r)

∣∣∣∣∣
Rout, µ

= 0, (5.19a)

∂F [u(r), Rout]

∂Rout

∣∣∣∣∣
u(r), µ

= 0, (5.19b)

to leading order in the small parameter ε, obtaining expressions of u(r) and Rout in
terms of the Lagrange multiplier µ. Then, we plug these expressions into Eq. (5.17) so
as to find the dependency of µ on the input parameters Rc and L.

To set up the perturbative expansion in powers of ε, we first need to make all of
our quantities adimensional. We make the choice of units Rc = γd2

0 = 1, and define
the rescaled quantities

F̃ =
F

γd2
0Rc

, R̃out =
Rout

Rc
, r̃ =

r
Rc

, d̃0 =
d0

Rc
, ũ =

u
Rc

and µ̃ =
µ

γd2
0

. (5.20)
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Notice that, in these units, the bending stiffness kb is the small parameter ε. For
completeness, we give the expression of the non-dimensional free energy functional
[Eq. (5.18)]:

F̃
[
ũ (r̃) , R̃out

]
=
∫ R̃out

1

dr̃
d̃0

2π [r̃ + ũ (r̃)]

{
ε

2
1

[r̃ + ũ (r̃)]2
+

1
2
[
ũ′ (r̃)

]2 − µ̃

}
. (5.21)

We now turn to the solution of Eq. (5.19a). We say that O(µ̃) = O(ε), since in the
absence of deformation (i.e., ε = 0) the total DNA length is automatically conserved.
We expand the free energy [Eq. (5.21)] in powers of ε, such that F̃ = F̃1ε + F̃2ε2 +
O(ε3), with:

F̃1
(

R̃out
)
=
∫ R̃out

1
dr̃ 2π

(
1
2r̃
− µ̃r̃

)
; (5.22a)

F̃2
[
ũ (r̃) , R̃out

]
=
∫ R̃out

1
dr̃ 2π

{
− ũ (r̃)

2r̃2 +
r̃
2
[
ũ′ (r̃)

]2 − µ̃ũ (r̃)
}

. (5.22b)

Since F̃1 does not depend on ũ (r̃), the leading order to take into account in Eq. (5.19a)
is F̃2. To calculate the variational derivative δF̃2/δũ (r̃), we introduce a small pertur-
bation δũ (r̃) in the functional F̃2, getting

F̃2[ũ (r̃) + δũ (r̃) , Rout] = F̃2[ũ (r̃) , Rout] + δF̃2[ũ (r̃) , δũ (r̃) , Rout] +O
[
δũ (r̃)2

]
,

(5.23)

where δF̃2, also known as the first variation, reads

δF̃2 [ũ (r̃) , δũ (r̃) , Rout] =
∫ R̃out

1
dr̃′ 2π

[
−δũ (r̃)

2r̃2 + r̃ũ′ (r̃) δũ′ (r̃)− µ̃δũ (r̃)
]

. (5.24)

Integrating by parts the second term in Eq. (5.24), the first variation becomes

δF̃2 [ũ (r̃) , δũ (r̃) , Rout] =
[
r̃ũ′ (r̃) δũ (r̃)

]R̃out

1 +
∫ R̃out

1
dr̃′ 2π

{
− 1

2r̃2 −
[
r̃ũ′ (r̃)

]′ − µ̃

}
δũ (r̃) ,

(5.25)

meaning that the stationarity condition is a differential equation,

− 1
2r̃2 − µ̃− ũ′ (r̃)− r̃ũ′′(r̃) = 0, (5.26)

to be solved under two boundary conditions:

ũ(1) = 0, (5.27a)
ũ′(R̃out) = 0. (5.27b)

The fixed boundary condition [Eq. (5.27a)] indicates that the innermost DNA filament
sticks to the viral capsid. Notice that Eq. (5.27a) is equivalent to δũ(1) = 0, in the
sense that the choice of the perturbation δũ (r̃) is restricted to those functions that
satisfy Eq. (5.27a). The free boundary condition [Eq. (5.27b)] indicates that the toroid
is unconfined, implying zero stress (thus, strain) at the boundary. Finally, the solution
of Eq. (5.26) is

ũ (r̃) =
(r̃− 1) (1− 2r̃µ̃)

2r̃
−
(

1
2R̃out

− µ̃R̃out

)
log(r̃). (5.28)
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Turning to Eq. (5.19b), we call f (r, u(r), u′(r)) the integrand of the free energy func-
tional [Eq.(5.21)] and rewrite the left hand side of Eq. (5.19b) as

∂

∂R̃out

∫ R̃out

1
dr̃ f̃ (r̃, ũ (r̃) , ũ′ (r̃)) = f̃ (R̃out, ũ(R̃out), ũ′(R̃out)) (5.29)

Combining the equation above with Eq. (5.19b), and observing that ũ′(R̃out) = 0
[Eq. (5.27b)], this second force balance equation is

f̃ (R̃out, ũ(R̃out)) = 0. (5.30)

Once again, we solve this equation perturbatively, this time expanding the outer ra-
dius in powers of ε: R̃out = R̃0

out +O(ε). To leading (i.e., first) order in ε, Eq. (5.30)
reads 1/(2R̃0

out)− µ̃R̃0
out = 0, which is readily solved for

R̃0
out =

1√
2µ̃

. (5.31)

We now turn to the constraint equation [Eq. (5.17)], which we solve for µ. The
zeroth order in ε of the constraint equation is

L̃ =
∫ R̃0

out

1

dr̃
d̃0

r̃, (5.32)

yielding µ̃ = [2(d̃0L̃/π + 1)]−1. Plugging this solution into Eqs. (5.28) and (5.31),
we get the expressions of the displacement field and the outer radius at mechanical
equilibrium:

ũ (r̃) =
1
2r̃

(r̃− 1)

[
1− r̃(

R̃0
out
)2

]
; (5.33a)

R̃0
out =

√
d̃0L̃/π + 1. (5.33b)

We conclude this section by providing the expression of the strain field u′(r) in the
case of both giant and small toroids. The strain field of giant toroids is obtained from
Eq. (5.33a), and reads

u′giant(r) =
ε

2

(
R2

c
r2 −

R2
c(

R0
out
)2

)
. (5.34)

The strain field of small toroids can be obtained reproducing the minimization proce-
dure described in this section, with the only difference that, in small toroids, Rout = Rc
and Rin is free. This symmetry shows up in the final result, which is

u′small(r) =
ε

2

(
R2

c
r2 −

R2
c(

R0
in

)2

)
. (5.35)

In both cases, we predict that inter-helical spacing d(r) = d0 [1 + u′(r)] decreases
with r, in qualitative agreement with the experiments.
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Figure 5.5: Linear fit of collapsed datasets from small and giant toroids. Toroids at
(a-c) 40 mM and (d-f) 4 mM spermine. (a, d) Small and giant toroids in the same plot.
(b, e) Small toroids only. (c, f) Giant toroids only. The linear relation used in the fits
is d = d0(1 + εu′), with d0 and ε free parameters. Inferred parameters are provided
in Tab. 5.1. Notice that the the strain u′ is zero at R = Rc both in small toroids, where
Rout = Rc, and in giant ones, where Rin = Rc. Toroid labels from Fig. 4.3.
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4mM sp4+
d0 (nm) ε γ (pN nm−2)

Small toroids 2.65± 0.03 0.005± 0.004 0.81
Big toroids 2.49± 0.01 0.050± 0.010 0.09

40mM sp4+
d0 (nm) ε γ (pN nm−2)

Small toroids 3.30± 0.17 0.110± 0.030 0.02
Big toroids 2.46± 0.01 0.080± 0.020 0.06

Table 5.1: Inferred parameters. Four values of d0 and ε inferred from four linear fits
in Fig. 5.5. Corrisponding values of γ from γ = kb/εd2

0R2
c , with Rc = 40 nm and

kb = 40 nm× kBT.

5.4 Fitting the experimental data

In this section, we fit our model to the experimental data and infer the parameters of
the inter-helical interaction potential: the stiffness γ and the optimal spacing d0.

Notice that spacing d(r) depends linearly on u′giant(r) and u′small(r), defined in
Eqs. (5.34) and (5.35), respectively. This means that, in principle, the data points
from small and big toroids can be collapsed on the same straight line. This can be
done at fixed ionic conditions, because we know that cation-mediated interactions are
sensitive to cation concentration [Sec. 3.1]. In Figs. 5.5a and 5.5d, we group the data
in spacing vs. u′giant(r) (u′small(r)) plots, using the values of inner (R0

in) and outer (R0
out)

radius for each toroid from Fig. 4.3. We see that the points from small and big toroids
are not aligned, the first being systematically shifted upwards. This is a consequence
of small toroids being systematically less densely packed than big toroids, something
we already knew from the experiments [Sec. 4.3].

As the data from small and big toroids are not aligned, we fit them independently.
Our fitting parameters are d0 and ε = kb/γd2

0R2
c . We perform weighted least-square

fits, by associating with each point a weight equal to the inverse of its variance. In
this way, more precise points contribute more to the fit. We plot the best fit lines in
Figs. 5.5a–5.5f and present the numerical values of the fitted parameters in Tab. 5.1.
In calculating γ from ε, we take Rc = 40 nm and kb = 40 nm× kBT. On a cautionary
note, we stress that DNA persistence length may change by a factor of two because
of the ionic environment [Guilbaud et al., 2019]. Since we are pursuing an order-of-
magnitude estimate of γ here, we neglect this effect.
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Chapter 6

Discussion

We conclude this part of the thesis dedicated to DNA toroids by discussing our results
and proposing future perspectives.

In DNA toroids, inter-helical spacing correlates with curvature. In particular, he-
lices that are close to the center of the assembly are more spaced than those that are
far from it. We predict this behavior on the basis of a mechanical model, where DNA
bending stiffness competes with inter-helical adhesive interactions. While interactions
promote uniform spacing throughout the assembly, high curvature regions are ener-
getically penalized by DNA rigidity. As a consequence, high curvature regions are
less populated than low curvature ones, yielding higher local spacing in the former
with respect to the latter.

A similar behavior was predicted by Odijk and Slok [2003] for DNA toroids con-
fined in viral capsids in the absence of condensing cations, in which inter-helical forces
are purely repulsive. Like us, they studied the mechanical equilibrium configuration
resulting from the competition of elasticity and interactions. However, they used a
specific form of inter-helical interaction potential, derived from Debye-Hückel the-
ory, to predict the equilibrium inter-helical spacing dependence on position. Debye-
Hückel cannot account for the attractive forces stabilizing our DNA condensates and
we have no prior knowledge on the form of the attractive interaction potential in our
case. Our agnostic approach, based on the generic Taylor expansion around the min-
imum of the effective potential, allows us to do the opposite: to deduce interactions
from the knowledge on spacing spatial variations.

In some toroids, spacing decreases with the distance from the center up to a point
where it reaches a minimum, followed by a weak increase [Fig. 4.3]. One possible
explanation is that some of the data were taken in regions where the twist of DNA is
not negligible. In Sec. 5.1, we have shown that twist can redistribute local curvature,
making it vary non monotonically going from the inner to the outer radius of the as-
sembly and generating an analogous non monotonic spacing dependence on position.
The twisted toroid model developed in Sec. 5.1 can be used to extrapolate different
curvature distributions and enrich our model. Because this effect is weak and not
systematically detectable from the datasets, we do not think it affects the rest of our
conclusions.

We infer values of the inter-helical interaction potential stiffness γ between 10−2

and 1 pN nm−2, which do not show any apparent dependence on either curvature
or spermine concentration. These numbers can be compared with estimates obtained
from two previous experimental and numerical works [Todd et al., 2008; Yoo and Ak-
simentiev, 2016]. These two works infer inter-helical forces in agreement with each
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other, studying spermine-condensed DNA in the presence of Na+ concentrations sim-
ilar to ours, but in the absence of the divalent ions Mg2+ and Ca2+, which are present
in our experiments. These divalent ions are known to oppose DNA condensation
[Tongu et al., 2016], so we expect helices to adhere less strongly in our case. Yoo and
Aksimentiev [2016] estimate that the pair potential between two parallel DNA helices
has a stiffness of ≈ 10 pN nm−1 per helical turn, close to the equilibrium point (see
Fig. 4D in that article). If we approximate a DNA molecule as a chain of independent
rigid sticks, with length `p = 40 nm, we can say that two such sticks belonging to
parallel DNA molecules are connected by a spring with stiffness γ× `p ' 4 pN nm−1,
where we used γ ' 0.1 pN nm−2 from big toroids [Tab. 5.1]. Since a helical turn is
about 3 nm long, each rigid stick contains 40/3 ' 13 helical turns, yielding a stiff-
ness per turn γ`p/13 ' 0.3 pN nm−1. We infer a much softer stiffness than Yoo and
Aksimentiev [2016], as expected on account of the presence of Mg2+ and Ca2+ in our
experiments.

Although the presence of Mg2+ and Ca2+ can partially justify the soft adhesion
between our helices, our current estimate of γ proves quite small even for our exper-
iments. We can see this by asking whether the typical standard deviation of spacing
data, ' 0.04 nm in big toroids 1, is consistent with thermal fluctuations in a parabolic
trap with stiffness γ`p. To address this question, we first check whether room temper-
ature thermal fluctuations have the time to relax during the cooling process, required
to vitrify water and have the sample ready for the electron microscope. Samples are
cooled down from 300 K to 91 K with a speed of 105 K sec−1, yielding a cooling time
τcooling ' 10−3 sec. We now estimate the relaxation time of room temperature fluctua-
tions in the harmonic trap of stiffness γ`p. The spacing between two sticks is d0(1+ ε),
where ε ' 0.1 is the typical strain. Then, the typical force experienced by two inter-
acting sticks in a toroid is γ`pd0ε ' 1 pN. Combining this value with water viscosity
η = 10−3 Pa sec and a typical length of `p = 40 nm, we get a fluctuation relaxation
time τrelaxation = η × `p/γ`p ' 10−8 sec � τcooling, implying that room temperature
fluctuations do have the time to relax during the cooling process. We now estimate
what the typical length scale of inter-helical spacing thermal fluctuations is at 91 K.
This length scale is related to the ratio between thermal energy and the typical force
between two interacting DNA sticks through kBT/γ`pd0ε ' 1 nm. This value is much
higher than the typical standard deviation of our spacing data. One source of error
may be that the pressure felt by one helix is due to six neighbors rather than a single
one, given the hexagonal packing. This consideration reduces the previous estimate
to ' 0.2 nm, still quite high, suggesting that we may have slightly underestimated γ.

As we illustrated in Sec. 4.3, DNA helices are more spaced in small than in big
DNA toroids. This is the opposite of what we would expect on the basis of elasticity
only, because helices are more curved in small than in big toroids, and should there-
fore push against each other more strongly in the former than in the latter case. Let us
step back from the working hypothesis that the interaction potential is the same ev-
erywhere, independently of local curvature. In Sec. 4.2, we illustrated that the grooves
of neighboring DNA helices correlate in a very specific way in DNA bundles. This be-
havior can be interpreted on the basis of the microscopic theories of inter-helical adhe-
sive interactions [Ch. 3], that support the idea that helices need to be properly aligned
for their adhesion to be optimal. Correlations are so important for inter-helical ad-
hesion that, in toroidal bundles, helices exhibit a periodic over- and under-twist that
makes groove correlation possible in the curved geometry of the assembly [Leforestier

1This number comes from non raw datasets that are not included in the manuscript.
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and Livolant, 2009]. However, in Sec. 4.2 we have also shown that grooves correlate
differently in straight and toroidal bundles, as if inter-helical forces could re-adapt
depending on local curvature. In conclusion, given that groove correlation depends
on curvature, inter-helical forces should depend on curvature as well. It is possible
that the repulsive component of the interaction potential is more pronounced at high
curvature, making the equilibrium spacing d0 increase.

Our study paves the way for several possible future directions. A systematic study
of how the interaction between two helices depends on their curvature should be pos-
sible by using molecular dynamics simulations. These simulations could also reveal
how groove correlations adapt to curvature. Concerning groove correlations, progress
could be made by analyzing the existing datasets of toroid top views. In the past,
Leforestier and Livolant [2009] measured the variation of the helical pitch along the
length of one helix in a toroid. The pitch appeared to undergo periodic variations,
showing alternating under- and over-twisted helical segments [Fig. 4.1i]. This mea-
sure could be repeated for many helices at different positions in a toroid, so as to mea-
sure how such periodic pitch modulation depends on local curvature. We expect the
modulation amplitude to decrease as curvature decreases. It should also be possible
to rationalize curvature-induced pitch modulations by means of a minimal analytical
model. Our idea is to model a DNA helix as a chain of beads and springs, in which
beads model DNA minor and major grooves (whose size difference we neglect). Two
parallel DNA helices want to keep their grooves as in register as possible. If the chains
are curved, like those in a toroid, beads cannot be in register without locally deform-
ing the springs [Fig. 6.1]. Can the competition between the tendency of beads to align
and spring rigidity generate periodically compressed and stretched regions along each
chain, corresponding to the under- and over-twisted regions observed in DNA? How
does the stability of the system change with curvature? This simple model, which is
reminiscent of the Frenkel-Kontorova model of nonlinear physics [Chaikin and Luben-
sky, 1995], could predict quite a reach phenomenology.

In conclusion, we inferred cation-mediated forces between DNA helices from ge-
ometrical data on DNA toroidal bundles. We predict that curvature weakens inter-
helical adhesion, which may apply to physiological DNA condensates. We hope the
influence of curvature on inter-helical forces will be addressed in future studies, and
that experimental progress will allow to clarify the influence of curvature on groove
correlations.
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Figure 6.1: Curvature hinders beads’ alignment. The two chains are composed of
springs with the same resting length, x0. Curvature generates a mismatch δx/x0 =
(R + δR)/(R− δR)− 1 between the two helices, making it impossible to simultane-
ously align all the beads without deforming the springs.
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Part II

ESCRT-III
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Chapter 7

Membrane budding away from the
cytoplasm

The Endosomal Sorting Complexes Required for Transport (ESCRT) constitute an evo-
lutionary conserved protein machinery that catalyzes membrane fission from within
membrane necks in all known cellular processes requiring such kind of fission event,
in eukaryotes and archaea. For instance, ESCRT is involved in HIV release from the
plasma membrane [Cashikar et al., 2014], in the cytokinetic bridge constriction dur-
ing cell division [Guizetti et al., 2011] and in the formation of multivesicular bod-
ies (MVBs) [Babst et al., 2002] [Fig. 7.1a]. Excellent reviews on the ESCRT role and
functioning are Schöneberg et al. [2016]; Chiaruttini and Roux [2017]; Christ et al.
[2017]. The ESCRT machinery is composed of cytosolic protein complexes, labelled
as ESCRT-0, -I, -II and -III, which cooperate with accessory proteins to perform mem-
brane remodeling and severing. Notably, they cooperate with the ATPase Vps4, which
is involved in the disassembly of ESCRT-III [Mierzwa et al., 2017; Pfitzner et al., 2019].
ESCRT-III participates in all ESCRT-mediated processes and is arguably the most im-
portant complex for the membrane remodeling part of ESCRT action. The architecture
of ESCRT-III does not intuitively suggest how this complex catalyzes membrane re-
modeling and fission, which is currently under debate.

ESCRT-III is composed of four core subunits, which co-assemble into higher order
structures. The subunit names depend on the cell they live in. In yeast, these are called
Vps20, Snf7, Vps24 and Vps2. In mammalians, their respective names are CHMP6,
CHMP4, CHMP3 and CHMP2. ESCRT-III assembly can be nucleated by several pro-
teins, among which ESCRT-II, which recruits Vps20 (CHMP6). After Vps20 (CHMP6)
the other subunits are recruited in the order: Snf7 (CHMP4), Vps24 (CHMP3) and
Vps2 (CMP2) [Saksena et al., 2009].

ESCRT-III subunits form polymers of various shapes, like flat spirals [Figs. 7.2a,
7.2d], helices or conical helices [Figs. 7.2e]. Polymerization takes place both in solu-
tion [Lata et al., 2008; Henne et al., 2012; Shen et al., 2014] and on membrane sub-
strates [Chiaruttini et al., 2015; McCullough et al., 2015]. ESCRT-III polymers are of-
ten double-stranded: Snf7 spirals [Fig. 7.2d], CHMP1B/IST1 helices [Fig. 7.2e] and
Snf7/Vps24 heteropolymers [Banjade et al., 2019] are well characterized examples.

Can ESCRT-III polymers leverage their curvature to reshape membranes? Ten
years ago, Lenz et al. [2009] have proposed an elastic model to explain how Snf7 spi-
rals can tubulate flat lipid bilayers [Fig. 7.3]. This flat-to-tubular transition has been
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Figure 7.1: The ESCRT-III protein complex. Pictorial representation of some cellu-
lar phenomena where ESCRT-III (depicted as a blue helix) is known to be involved.
Reprinted from Christ et al. [2017], with permission from Elsevier.

observed in COS-7 cells1 overexpressing Snf7 in the presence of an ATP-hydrolysis
deficient mutant of Vps4 [Fig. 7.2b, Hanson et al. 2008]. The essential physical ingre-
dient here is that flat spirals are elastically unstable, and can relax by growing out
of plane, thus driving membrane tubulation. What makes spirals unstable? Experi-
ments suggest that Snf7 homopolymers have a preferred radius of curvature of 25 nm
[Chiaruttini et al., 2015]. In a spiral, the polymer segment close to the inner radius
ri is over-bent, while the segment close to the outer radius re is under-bent, leaving
the polymer optimal curvature only accessible halfway between ri and re [Fig. 7.3a].
As a consequence, a flat spiral stores elastic energy that can be released by growing
out of plane, shaping a membrane tube adapted to the preferred curvature of Snf7
[Figs. 7.3b, 7.3c].

The minimal model described above assumes no change in Snf7-membrane inter-
action during the buckling transition. We now discuss why this may be an oversim-
plifying assumption, that misses a crucial aspect of the ESCRT-III membrane remod-
eling ability. ESCRT-III polymers are usually equipped with a continuous membrane-
binding interface running along their length, consisting of exposed, positively charged
protein residues that attract negatively charged phospholipids [Tang et al., 2015]. De-
pending on the preferred direction of curvature relative to the positioning of the membrane-
binding interface along the surface of ESCRT-III polymers, various membrane shapes
can be induced. For example, Vps24 and Vps2 form helices that expose their membrane-
binding interface on their exterior, and are thus able to stabilize membrane bilayer
tubes by binding to their inner leaflet [Lata et al., 2008]. Similarly, Snf7/Vps4 or
CHMP4A helices stabilize membrane tubes from the lumen (i.e., from the tubes’ in-

1A cell derived from monkey kidney tissue.
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Figure 7.2: ESCRT-III shapes and shaped tubes. (a) Snf7 spirals on a flat membrane
substrate. Reproduced from Chiaruttini et al. [2015]. Figure licensed under CC BY-NC-ND
4.0. (b) Membrane tube protruding away from the cytoplasm in cells coexpressing
hSnf7-1 and an ATP-deficient mutant of VPS4B [VPS4B(E235Q)-GFP]. A spontaneous
tear along the membrane surface reveals the underlying polymer scaffold. Scale bar,
100 nm. Republished with permission of Rockefeller University Press, from Hanson et al.
[2008]; permission conveyed through Copyright Clearance Center, Inc. (c) Membrane tubes
protruding towards the cytoplasm in a cell expressing CHMP1B. Scale bar, 100 nm.
From McCullough et al. [2015]. Reprinted with permission from AAAS. (d) Snf7 spiral on
membrane substrate. Single-stranded and double-stranded domains are colored in
red and green, respectively. Reproduced from Chiaruttini et al. [2015]. Figure licensed
under CC BY-NC-ND 4.0. (e) Top and side view of a CHMP1B/IST1 conical helix. The
helix is double-stranded and there is a 21◦ rotation between individual subunits. From
McCullough et al. [2015]. Reprinted with permission from AAAS.
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Figure 7.3: Lenz model of ESCRT-mediated membrane buckling. (a) A polymer
spiral is over-bent (blue) close to its inner radius ri and under-bent (red) close to its
external radius re. (b, c) The spiral releases its bending energy by growing out of plane,
shaping a tube with radius compatible with the optimal curvature of the polymer
(yellow). Figures reproduced from Lenz et al. [2009], with permission from APS and the
authors.

ner volume) as well [Fig. 7.2b, Hanson et al. 2008]. This is thought to be the physio-
logical configuration of ESCRT-III polymers, which are only known to work from the
lumen of membrane necks. Strikingly, CHMP1B and IST1 assemble into helices that
expose their membrane-binding interface on their interior, and are thus able to stabi-
lize bilayer tubes by binding to their outer leaflet [Fig. 7.2c, McCullough et al. 2015].
Although this is a physiologically unexpected behavior, it proves a certain richness of
ESCRT-III membrane-deforming abilities.

What are the implications of the preferred membrane-binding direction of ESCRT-
III in the spiral-to-tubular transition described earlier? S̆arić and coworkers have re-
cently addressed this question, by using molecular dynamics simulations [Harker-
Kirschneck et al., 2019]. In their simulations, ESCRT-III polymerizes with a preferred
radius of curvature R and tilt angle α between its membrane-binding interface (col-
ored in blue) and its direction of curvature [Fig. 7.4a]. In Fig. 7.4b, we show the out-
come of a simulation that starts with an ESCRT-III flat spiral grown on a membrane
bilayer. Before describing the evolution of the simulation, we mention the two sources
of frustration that a flat spiral has in this model. One is the driver of tubulation in the
aforementioned model by Lenz et al. [2009], i.e. the locally under- and over-bent re-
gions along the spiral length. The other, unique to this model, is that a flat spiral can
only be realized at α = 0◦. At time zero in the simulation, this latter source of frus-
tration is turned off by setting the spontaneous α = 0. Interestingly, spirals grown
on flat bilayers with α = 0 do not lead to tubulation in these simulations. As soon
as the frustration is turned on, by setting the spontanous α 6= 0, the spiral can drive
tubulation. The sign of α determines whether the polymer stabilizes membrane necks
from their inner or outer leaflet [Fig. 7.4b].

Harker-Kirschneck et al. [2019] have also explored how dynamic structural tran-
sitions between non-tilted and tilted resting states can lead to membrane fission, a
process that has not been clarified by Lenz et al. [2009]. To do so, they have simulated
how ESCRT-III could drive the budding of a cargo from a membrane bilayer, which is
one of the services delivered by ESCRT in cells [Teis et al., 2010]. In their model sys-
tem, the cargo is a sphere whose surface adheres to the membrane, but not enough to
drive spontaneous budding. They grow an ESCRT-III spiral around the cargo, which
should mimic the physiological recruiting of ESCRT-III [Teis et al., 2010]. During the
recruiting process, the spiral has a α = 0 resting state. By transitioning to a α > 0 rest-
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Figure 7.4: S̆arić model of ESCRT-mediated membrane buckling. (a) ESCRT-III
monomers are modeled as triplets, with two membrane binding units (blue), that co-
polymerize with a spontaneous radius of curvature R and tilt angle α. (b) Molecular
dynamics simulation in which a flat spiral with α = 0◦ at time zero switches to α = 60◦

(left) or α = −40◦ (right), driving membrane tubulation in two different directions.
(c) Molecular dynamics simulation in which two consecutive shape transitions, flat
→ tilted → flat, drive cargo budding. Figures reproduced from Harker-Kirschneck et al.
[2019], with minor modifications to the labels. Figures licensed under CC BY-NC-ND 4.0.

ing state, the spiral stabilizes the neck of a membrane protrusion in which the cargo
is sequestered [Fig. 7.4c]. Strikingly, a further transition to the α = 0 resting state con-
stricts the neck enough for thermal fluctuations to drive its closure and complete the
cargo release.

In the field, there is more than one subscriber to the idea that dynamic shape transi-
tions are the secret behind ESCRT-mediated membrane scission. Chiaruttini and Roux
[2017] have suggested that an ESCRT-III polymer may undergo a dynamic shape tran-
sition if its subunits are dynamically exchanged, a job that the ATP-ase Vps4 seems to
be able to do [Mierzwa et al., 2017; Pfitzner et al., 2019]. In fact, earlier in this section
we have illustrated how different ESCRT-III subunits assemble into polymers with
different shapes and membrane-binding preferences.

In this part of the thesis, we present experiments that prove previously unexpected
membrane-binding capabilities of ESCRT-III. In Ch. 8, we show that three ESCRT-III
units: Snf7, Vps24 and Vps2 copolymerize into helices that stabilize helical membrane
tubes by binding to their outer lipid layer [Fig. 8.1g, 8.1i]. Helical tubes constitute an
unusual shape for membranes, because they cost more bending energy than the fairly
straight tubular protrusions discussed so far. However, differently than the ESCRT-
III helical polymers mentioned above, Snf7/Vps24/Vps2 helices never shape straight
membrane tubes. Why? We address this question in Ch. 9, where we show that the
mechanical stability of helical tubes can be explained by the existence of two separate
membrane-binding interfaces along Snf7/Vps24/Vps2 polymers (like in a more so-
phisticated version of Harker-Kirschneck et al. 2019). Specifically, we show that the
stability of helical tubes relies on the asymmetric membrane-binding energy between
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these two interfaces. Furthermore, we infer bounds on the bending and torsional
rigidities of Snf7/Vps24/Vps2 helices. Finally, in Ch. 10, we discuss some biologi-
cal implications of our findings, also in the context of the theoretical models proposed
above.
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Chapter 8

Experiments
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In this chapter, we present experimental results obtained by Joachim Moser Von
Filseck and Aurélien Roux at the University of Geneva, in collaboration with Nathaniel
Talledge, Isabel Johnson and Adam Frost from the University of California San Fran-
cisco. All figures are reproduced from our joint manuscript, Moser Von Filseck et al.
[2019]. We deliberately omit many details about the experiments in the following,
since these are not key to our analysis.

The ESCRT-III subunits available in the samples are Snf7, Vps24, Vps2. As we
illustrate, these three subunits co-assemble into helical polymers that are able to re-
shape membrane vesicles into helical tubes. For simplicity, we generically refer to
these polymers as Snf7/Vps24/Vps2. However, we cannot exclude that the different
polymers in the sample have different stoichiometry. Unfortunately, such information
is not accessible from the experiments presented here.

In Sec. 8.1, we show the helical tubes into which membrane vesicles are deformed
by the action of Snf7/Vps24/Vps2 helices. Two dimensional images of the samples are
obtained by either transmission electron microscopy (TEM), upon negative staining,
or Cryo-EM. Three-dimensional reconstructions of some helical tubes are obtained by
cryo-electron tomography (Cryo-ET). In Sec. 8.2, we show that Snf7/Vps24/Vps2 fil-
aments are double-stranded and spatially segregated on the outer surface of helical
tubes. Moreover, we illustrate that these filaments cluster into three groups, suggest-
ing that they are equipped with two different membrane-binding interfaces and can
be divided into two groups, that we call polar and equatorial. Finally, in Sec. 8.3 we
show the resting configuration of Snf7/Vps24/Vps2 helices when these are grown in
the absence of membrane tubes, which can be solubilized by a detergent.

8.1 ESCRT-III filaments stabilize helical membrane tubes

Vps24 and Vps2 are added to spherical bilayer vesicles incubated with Snf7 and dec-
orated by flat Snf7 spirals [Chiaruttini et al., 2015; Mierzwa et al., 2017]. Upon several
hours of incubation, a mixture of vesicles coated by flat spirals [Fig. 8.1a, 8.1d] and
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Figure 8.1: Helical tubulation of spherical membrane vesicles by ESCRT-III het-
eropolymers. (a, d) Electron micrographs showing undeformed large unilamellar
vesicles (LUVs), coated by flat Snf7 spirals. (b, c, e, f) Electron micrographs show-
ing helical membrane tubes coated by Snf7/Vps24/Vps2 on negatively stained (b, c)
and vitrified (e, f) samples. (g,h,i) Reconstructed cryo-ET volume of a helical mem-
brane tube, projected (g) and volume view (h-i), showing the organization of protein
filaments (cyan) along the helical membrane tube (gray). Scale bars, 100 nm.
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helical membrane tubes coated by helical filaments [Figs. 8.1b, 8.1c, 8.1e, 8.1f] is ob-
served. Helical membrane tubes only form in the presence of all three proteins, and
their number increases with incubation time. They exhibit a regular shape, with an
average tubular diameter of 23.9± 3.7 nm, outer diameter of 82.3± 6.1 nm and pitch
of 53.1± 7.6 nm, where uncertainties are standard deviations.

To visualize the ESCRT-III filament organization on the surface of the helical tubes,
cryogenic electron tomography (cryo-ET) on vitrified helical membrane tubes is per-
formed. Six to eight filaments running parallel to the tube axis and almost always
segregated on the outer region of the tube, far from the helical axis, are observed
[Figs. 8.1g, 8.1h, 8.1i]. The filaments’ thickness is compatible with that of negatively
stained, double-stranded Snf7/Vps24/Vps2 heteropolymers, 4.9 ± 0.5 nm [Mierzwa
et al., 2017].

8.2 Polar and equatorial filaments

The local structure of these filaments is reconstructed at 3.2 nm resolution by subto-
mogram averaging (STA), revealing three well separated filament clusters [Fig. 8.2a].
The central cluster, containing two filaments, covers a 13 nm wide region around the
equator of the tube (equatorial filaments, blue). Two additional filament clusters, each
containing 2 to 3 filaments, are shifted up and down from the equator, respectively,
(polar filaments, red) and appear wider (16 to 20 nm) [Figs. 8.2b – 8.2d]. The resolu-
tion of the polar filaments is limited, as their positions vary more with tube diameter
compared to the equatorial region. With further STA focused on the equatorial cluster,
each of the two equatorial filaments is shown to be made of two strands [Figs. 8.2e,
8.2g]. The filaments in the polar clusters, based on their thickness, could be double-
stranded as well, although it is not possible to resolve their substructure.

Overall, the architectures of equatorial and polar filaments appear to be similar:
both are composed of at least two double-stranded filaments, possibly bundled to-
gether as a helical ribbon along the surface of the tube. However, while polar fila-
ments curve perpendicular to their membrane-binding direction, equatorial filaments
curve towards their membrane-binding direction. In this respect, polar filaments
are reminiscent of the double-stranded spirals formed by Snf7 on flat membranes
[Fig. 7.2d, Chiaruttini et al. 2015] (α = 0◦ case in Figs. 7.4a, 7.4b), while equatorial fil-
aments are reminiscent of the double-stranded helices formed by IST1 and CHMP1B
around straight membrane tubes [Fig. 7.2e, McCullough et al. 2015] (α = −90◦ case in
Figs. 7.4a, 7.4b). This suggests that polar and equatorial filaments engage membrane
with a different interface and, as a consequence, bundle along a different direction
[Fig. 8.2h].

8.3 Tube-less helices

The mechanical equilibrium between membrane helical tubes and ESCRT-III filaments
relies on the balance between the tube’s tendency to straighten and the filaments’ abil-
ity to keep it helical. To analyze the preferred geometry of the helical filaments in the
absence of a membrane tube, Snf7/Vps24/Vps2 filaments are grown in the presence of
detergent, which removes membrane. Helical ribbons form without membrane tubes
during detergent removal. Most of these tube-less helical ribbons assembles into sharp
zigzag shapes [Fig. 8.3a], a smaller population appears sinusoidal [Fig. 8.3b], and
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Figure 8.2: ESCRT-III filament bundles form distinct clusters on the surface of he-
lical tubes. (a) Side view (left), top view (center) and cross-section (right) of a global
subtomogram average showing filaments following the tube axis, in the equatorial
(blue) and polar (red) binding mode, respectively. (b) Sum projection of a central
segment of the tube in (a) showing filaments on the outer surface of the helical tube,
organized as one equatorial and two polar clusters. Scale bar, 20 nm. (c) Equatorial
(blue) and polar (red) filament cluster highlighted on the thresholded image (b). (d)
Intensity profile of protein density in (c). (e) Projection of a refined map of the equa-
torial cluster showing that both filaments of the cluster are made of two strands each.
Scale bar, 10 nm. (f) Thresholded image of (e). (g) Intensity profile of protein density
in (e). (h) 3D model of two equatorial and four polar filaments, each double-stranded,
on a helical membrane tube (grey). All filaments are identical, except that equato-
rial and polar filaments bind the membrane through the cyan and orange interfaces,
respectively (insets). Filaments in the two hemispheres are shown as antiparallel.
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Figure 8.3: Organization of tube-less ESCRT-III filaments. (a, b, c) Electron micro-
graphs (scale bars, 100 nm) and (d, e, f) 2D class averages (scale bars, 10 nm) show-
ing different tube-less, helical ESCRT-III filament bundles formed upon detergent re-
moval. The majority of ribbons adopts a zigzag shape (a, d), others appear sinusoidal
(b, e) and a third set consists of helical ribbons with higher strand numbers (c, f). (g)
3D average of (a, d) shows that the center of the ribbon is a helical bicelle with its plane
perpendicular to the tube axis (gray). There are two anti-parallel double-stranded fil-
aments on both sides of the bicelle (red). (h) 3D average as in (a, c) that includes only
one double-stranded filament (red).
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Helical membrane tubes
r (nm) R (nm) P (nm)

12.1± 0.6 41.9± 1.6 8.5± 0.4

Table 8.1: Experimental parameters of membrane helical tubes. Tubular radius r,
radius R and pitch 2πP defined in Fig. 9.1. Uncertainties are standard deviations.

a third ribbon population displays significantly larger ribbons with varying strand
numbers and diameters [Fig. 8.3c]. 2D class averages of these tube-less helical protein
filament ribbons are determined [Figs. 8.3d – 8.3f].

Analysis of the more ordered “zigzag” filaments leads to a 3D reconstruction at
1.5 nm resolution. This structure reveals a helical ramp formed around a membrane
bicelle, i.e. a flat lipid bilayer whose perimeter is stabilized by detergents, with the
bicelle plane oriented perpendicular to the helix axis. On both sides of the bicelle, fila-
mentous polymers with dimensions consistent with other double-stranded ESCRT-III
structures [McCullough et al., 2015; Mierzwa et al., 2017; Banjade et al., 2019] are ob-
served. Considering the apparently anti-symmetric orientation of subunits lying on
opposite sides of the bicelle, the resulting filaments on the two sides of the bicelle
seem to have opposite polarity [Fig. 8.3g]. This is confirmed by a 3D reconstruction at
a higher resolution (1.1 nm) that was computed by focusing on one side of the bicelle
only [Fig. 8.3h]. The subunits appear to assemble into a double-stranded helical poly-
mer reminiscent of previously described ESCRT-III architectures. Both strands seem
to bind to the membrane and they curve perpendicular to their membrane-binding
direction. The zigzag tube-less ribbon’s architecture is compatible with the polar fila-
ments on helical tubes, and confirms that polar filaments are also double-stranded.

The overall appearance of sinusoidal ribbons [Figs. 8.3b, 8.3e] suggests that they
comprise multi-stranded filaments that could orient along a helical path similar to that
of the equatorial filaments bound to the helical membrane tubes.

8.4 Summary and relevant data

To conclude this chapter, we summarize the fundamental experimental findings that
are used in the course of the theoretical modeling, in the next chapter.

Snf7/Vps2/Vps24 polymers reshape initially spherical bilayer vesicles into helical
tubes. The average tubular radius, radius and pitch of helical tubes is provided in
Tab. 8.1. Helical tubes are stabilized by a scaffold comprising, on average, six double-
stranded helical filaments. The filamentous scaffold is subdivided into two clusters:
the equatorial one, comprising two filaments, and two polar ones, comprising four
filaments and located at symmetric sites above and below the equatorial cluster.

The resting configuration of Snf7/Vps2/Vps24 helices is revealed by growing them
in the absence of membrane tubes. Among the tube-less helices, those reproduc-
ing the polar membrane-binding configuration are fairly distinguishable, revealing a
3 nm inter-monomer spacing. Helices possibly reproducing the equatorial membrane-
binding configuration are also recognized, although with much less resolution. The
average radius and pitch of polar and (putative) equatorial helices is provided in
Tab. 8.2.
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Tube-less helices
Polar filaments Equatorial filaments

RR
0 (nm) PR

0 (nm) RB
0 (nm) PB

0 (nm)
23.4± 0.6 6.6± 0.2 17.1± 2.5 8.9± 1.4

Table 8.2: Experimental parameters of tube-less helices. Preferred helical radius and
pitch are denoted by R0 and 2πP0, respectively. Superscripts R (red) and B (blue)
denote polar and equatorial filaments, respectively (color code from Fig. 8.2h). Uncer-
tainties are standard deviations.
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Chapter 9

Theoretical modeling

In this chapter, we study the mechanical stability of helical membrane tubes scaffolded
by polymer helices, with the aim of addressing two questions emerging from the ex-
periments described in the previous chapter.

In Sec. 9.1, we derive some results on the differential geometry of helical tubes that
are used in the rest of the chapter.

Why do Snf7/Vps24/Vps2 helices systematically shape helical rather than straight
membrane tubes? In Sec. 9.2, we propose that the experimental realization of exclu-
sively helical tubes can be explained on the basis of an asymmetric membrane-binding
energy of polar and equatorial filaments [Sec. 8.2]. We derive a phase diagram, in
which the relative stability of straight and helical tubes scaffolded by Snf7/Vps24/Vps2
rigid helices are compared. From the phase diagram, we infer a lower bound on the
difference in membrane-binding energy per monomer between polar and equatorial
filaments.

How stiff are Snf7/Vps2/Vps24 helices? In Sec. 9.3, we answer this question by
developing an elastic model in which a helical tube is stabilized by a semi-flexible scaf-
fold of polar and equatorial Snf7/Vps24/Vps2 helices. By knowing from the exper-
iments how much Snf7/Vps24/Vps2 helices deviate from their resting configuration
when they stabilize helical tubes, we estimate a lower bound on the helices’ bending
rigidity from force balance equations. Furthermore, using a previous estimate of the
bending rigidity, we estimate the actual torsional stiffness of Snf7/Vps24/Vps2 he-
lices, as well as the actual membrane-binding energy difference between polar and
equatorial monomers.

9.1 Preliminary: differential geometry of helical tubes

We model membrane tubes by means of the Helfrich free energy [Eq. (1.3)],

FHelfrich =
κ

2

∫
A

dA(2H)2 + σA. (9.1)

Here, we parametrize a helical tube and obtain closed expressions for its differential
area dA and mean curvature H. At the end of this section, we compute the integral
appearing in Eq. (9.1).

We first parametrize the center line of the helical tube. This center line is a reg-
ular helix with radius R − r and pitch 2πP [Fig. 9.1]. Denoting by s ∈ [0, S =
2πn

√
(R− r)2 + P2] its arc length, where n is the number of turns around the z-axis,
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Figure 9.1: Schematic of a helical tubular surface. Center line is colored in orange.

its position vector is

h (s) = R

cos

 s√
(R− r)2 + P2

 x̂ + sin

 s√
(R− r)2 + P2

 ŷ

+
sP√

(R− r)2 + P2
ẑ.

(9.2)

To parametrize the tubular surface, we take advantage of the co-moving frame of the
curve h, generated by its unit tangent t̂, normal n̂ and binormal b̂ [Fig. 9.1]:

t̂ (s) = ∂sh; n̂ (s) =
1
c

∂s∂sh; b̂ (s) = t̂× n̂. (9.3)

where c = (R − r)/[(R − r)2 + P2] is the curvature of h(s). The vectors in the co-
moving frame are related through the Frenet – Serret formulas, ∂s t̂

∂sn̂
∂sb̂

 =

 0 c 0
−c 0 τ
0 −τ 0

 t̂
n̂
b̂

 , (9.4)

where τ = P/[(R− r)2 + P2] is the torsion of h(s).
We define the position vector of the surface as

Σ (s, θ) = h (s) + r
[
cos θ n̂ (s) + sin θ b̂ (s)

]
, (9.5)

where r is the tubular radius and θ ∈ [0, 2π] [Fig. 9.1]. Notice that the term in the
square brackets is also the local unit normal N̂ to the tubular surface,

N̂ (θ, s) =
∂θΣ× ∂sΣ

‖∂θΣ× ∂sΣ‖
= cos θ n̂ + sin θ b̂. (9.6)

We now proceed with the evaluation of the differential area dA of the membrane
surface. To do so, we introduce the covariant components of the metric tensor (also
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called the first fundamental form) associated with the helical tube Σ (s, θ). These com-
ponents are defined as gαβ = ∂αΣ · ∂βΣ, where the indices can be either s or θ, and
result in:

gss = (1− cr cos θ)2 + (τr)2; (9.7a)

gsθ = gθs = τr2; (9.7b)

gθθ = r2. (9.7c)

Denoting by g the determinant of the metric tensor, the differential area of the tubular
surface reads

dA =
√

g dθ ds = r [1− cr cos θ]dθ ds, (9.8)

yielding the total area

A =
∫ S

0
ds
∫ 2π

0
dθ
√

g = 2πrS . (9.9)

We now turn to the evaluation of the mean curvature H of the membrane surface.
To do so, we introduce the covariant components of the second fundamental form asso-
ciated with the membrane. These are defined as bαβ = ∂α∂βΣ · N̂, and read:

bss = (1− cr cos θ) c cos θ − rτ2 (9.10a)
bsθ = bθs = −rτ (9.10b)
bθθ = −r (9.10c)

The mean curvature is obtained by tracing the second fundamental form

H(θ) =
1
2

gαβbαβ =
1
2

(
−1

r
+

c cos θ

1− cr cos θ

)
, (9.11)

where summation over repeated indices is implied and the gαβ are the contravariant
components of the metric tensor, which are defined such that gαγgγβ = δα

β, where δα
β is

the Kronecker delta. The expression of the mean curvature in Eq. (9.11) is identical to
that of a torus with tubular radius r and center line radius 1/c. Notice that H(θ = 0)
diverges when r = 1/c, at which point the helical tube is too “fat” and self-intersects
at θ = 0. To avoid self-intersection, we restrict the tubular radius to 0 < r < 1/c in the
following.

Finally, we combine Eq. (9.8) and Eq. (9.11) to compute the bending energy integral
appearing in Eq. (9.1):∫

Σ
dA (2H)2 =

∫ S
0

ds
∫ 2π

0
dθ
√

g (2H)2 =
2πS

r
√

1− (cr)2
. (9.12)

Notice that the bending energy explodes at r = 0 and r = 1/c, and is thus bounded
from below.

9.2 Straight or helical? A phase diagram for membrane tubes

In this section, we develop a minimal mechanical model with the aim of explaining
why Snf7/Vps2/Vps24 helices systematically shape helical rather than straight mem-
brane tubes.
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Figure 9.2: Straight-to-helical tube transition via membrane tension. (a) Phase di-
agram showing the energetically more favored shape between straight and helical
tubes, as a function of the surface tension σ. The dashed gray line is the phase bound-
ary. (b) The equilibrium tubular radius of a helical tube decreases with increasing
surface tension.

We approximate the membrane scaffolding function of the filaments by a single,
effective outer helix that fixes the outer membrane radius [Fig. 9.2a]. Notice that this
effective helix includes all six double-stranded Snf7/Vps24/Vps2 filaments stabilizing
helical tubes in the experiments [Fig. 8.2h]. We moreover assume that this scaffold
is undeformable, consistent with the observation that Snf7/Vps24/Vps2 radius and
pitch [Tab. 8.2] change only by a modest amount when membrane is added to them
[Tab. 8.1]. The change is less than 30%, except for the radius of equatorial filaments,
which, however, constitute only one third of the scaffolding filaments [Fig. 8.2h].

In Sec. 9.2.1, we only include in this model the energetic contribution coming from
membrane elasticity. We show that the stability of helical over straight tubes can be
caused by a high enough membrane tension σ. We calculate the critical tension σc and
argue that the experimental tension σexp is below this critical value. Thus, we rule out
that helical tubes in the experiments are stabilized by membrane tension only.

In Sec. 9.2.2, we enrich the model by introducing an energy term due to poly-
mer membrane-binding. Specifically, we hypothesize an energy gain associated with
Snf7/Vps24/Vps2 filaments binding the membrane through their polar rather than
their equatorial interface. We show that such membrane-binding asymmetry between
polar and equatorial filaments can explain the systematic selection of helical over
straight tubes in the experiments. By using our estimate of experimental membrane
tension σexp from Sec. 9.2.1, we infer a lower bound for the binding energy difference
per monomer.

9.2.1 An instructive failure: helical tubes from high surface tension

In this section, we explain why helical tubes can be more stable than straight ones
relying on membrane elasticity only. We model membrane elasticity with the Helfrich
free energy [Eq. (9.1)], with κ ' 20 kBT and no prior knowledge of σ.

Before going through the calculation, we anticipate why the competition between
κ and σ can explain a straight-to-helical tube transition, in words. We can visualize
the transition by looking at Fig. 9.2a. A helical tube is always more curved than a
straight one. However, a thin enough helical tube may require less membrane area
than a straight one. Surface tension σ penalizes membrane area, and can therefore
compensate for the bending cost associated with a helical tube when the latter is thin
enough. At mechanical equilibrium, we expect that the tubular radius r of a heli-
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cal tube decreases with increasing membrane tension σ (proof below). Summing up,
there should be a critical tension σc above which a helical tube is energetically more
convenient than a straight one.

What is the critical surface tension σc? We compare the free energy of straight and
helical tubes for a fixed total length L of helical filament scaffold of radius R and pitch
2πP, such that L = 2πn

√
R2 + P2, where n is the number of helical turns around the

vertical axis. Approximating the straight tube to a cylinder, the membrane surface area
is Acylinder = 2πR× 2πP× n, its mean curvature is Hcylinder = −1/2R, and Eq. (9.1)
reduces to

Fcylinder

L =
2πRP√
R2 + P2

(
κ

2
1

R2 + σ

)
. (9.13)

Now considering the helical tube, we model the membrane as a tube of constant radius
r with a helical center line. Using the result Eq. (9.12), this geometry yields the free
energy

Fhelical (r)
L = 2π

[
P2 + (R− r)2

P2 + R2

]1/2
 κ

2r

1−
(

r (R− r)
P2 + (R− r)2

)2
−1/2

+ rσ

 .

(9.14)
Using R = 41.9 nm and P = 8.5 nm [Tab. 8.1], we numerically minimize Fhelical over r
to compare it to Fcylinder.

The minimization results in a relation between r and σ at mechanical equilibrium,
which we plot in Fig. 9.2b. Since surface tension penalizes the membrane area, r de-
creases with increasing σ. As σ → ∞, the scales of r and R separate (r � R) and we
recover the straight cylinder limit r =

√
κ/2σ [Lenz, 2010]. As σ → 0, r increases and

saturates before the tube self-intersects, thanks to the corresponding divergence of the
membrane bending energy [Eq. 9.12]. We can estimate the tension of helical tubes in
the experiments σexp by pinpointing the experimental tubular radius rexp = 12.1 nm
on the curve in Fig. 9.2b. We get σexp ' 6 × 10−4 N/m (a fairly high tension for a
membrane).

What is the critical tension σc? To answer, we solve Fhelical = Fcylinder numerically,
at mechanical equilibrium. We get σc ' 2× 10−3 N/m. Since σexp < σc, the exper-
imental tension is not high enough to justify the observation of helical tubes in the
experiments.

9.2.2 Asymmetric membrane binding of polar and equatorial monomers

In the previous section, we implicitly assumed that the Snf7/Vps2/Vps24 helical scaf-
fold binds equally well to straight and helical membrane tubes. Below, we argue that
this may be an oversimplifying assumption, given the peculiar architecture of these
polymers.

Why should the polymer-membrane interaction change going from straight to he-
lical tubes? Snf7/Vps2/Vps24 helices are equipped with two membrane-binding in-
terfaces [Sec. 8.2]. Depending on which of the two interfaces they use to bind helical
tubes, we label them as either polar or equatorial. To clarify this aspect, in Fig. 8.2h
we color in orange the polar interface and in light blue the equatorial one. Notice
that engaging the membrane with the equatorial interface requires that the filament
local normal n̂ and the surface local normal N̂ are parallel. Conversely, engaging the
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membrane with the polar interface requires that n̂ and N̂ are perpendicular. The po-
lar binding mode is thus exclusively accessible to Snf7/Vps2/Vps24 helices on helical
tubes, while the equatorial mode can be used to bind both straight cylinders or helical
tubes.

To account for the energy difference between binding modes, we introduce an en-
ergy gain −µ per unit length of polar filament (i.e., µ > 0 favors helical over straight
tubes) to the free energy of helical tubes Fhelical used in Sec. 9.2.1. What is total length
of polar filaments in our model? Since we have condensed 4 polar and 2 equatorial
(double-stranded) filaments [Fig. 8.2h] onto a single helix of fixed length L, the total
length of polar filaments is 4/(4 + 2) × L = 2/3× L. We call Fµ

helical the upgraded
free energy of helical tubes, that we write as

Fµ
helical
L =

Fhelical

L − 2
3

µ. (9.15)

Before discussing the straight-to-helical tube transition, we illustrate how µ is re-
lated to a binding energy difference per monomer. µ is defined as an energy gain
per unit length of model polar filament. How many real monomers are included in
such a unit length? Our model helix accounts for four Snf7/Vps24/Vps2 polar fila-
ments, each of which is double-stranded (i.e., made of two sub-filaments) [Fig. 8.2h].
Therefore, each unit length of model helix accounts for 4× 2 = 8 real sub-filaments.
From the experiments, we know that the typical monomer-monomer spacing within
sub-filaments is 3 nm [Sec. 8.4], yielding a membrane-binding energy difference per
monomer equal to µ× 1/8× 3 nm.

The parameter regions where either straight or helical tubes are more stable are
illustrated in Fig. 9.3. Differently than in the previous section, we find that helical
tubes can be more favorable than straight ones at σ < σc, provided µ is large enough.
The thickness of helical tubes at the transition depends on σ, following the r = r(σ)
relation derived in the previous section [Fig. 9.2b].

We can estimate the minimal µ required for the stability of helical tubes with ra-
dius rexp = 12.1 nm [Tab. 8.1] by pinpointing the µmin

s value corresponding to σexp on
the phase boundary [Fig. 9.3]. We get µ ≥ µmin

s = 26 pN, which corresponds to a bind-
ing energy difference of 2 kBT per monomer. This value is compatible with with the
previously estimated membrane-binding energy of Snf7 polymers alone, about 4 kBT
per monomer [Chiaruttini et al., 2015].

Interestingly the phase boundary curve has a maximum in proximity of σ = σexp.
We readily make sense of this coincidence by giving a further look at the relation be-
tween the helical tube radius r and tension σ plotted in Fig. 9.2b. When σ / σexp, r
decreases slowly with increasing σ. The corresponding decrease in surface area cannot
compensate for the increase of σ, making the surface energy of helical tubes increase
with σ in that region. As a consequence, an increasingly higher µ is required to tran-
sition, and the phase boundary curve increases with σ. When σ ' σexp, r decreases
more rapidly with increasing σ, shrinking the surface area enough to compensate for
the increase of σ and making the surface energy of helical tubes decrease with σ in
that region. Then, a decreasingly lower µ is required to promote the transition, and
the phase boundary curve decreases.

To conclude, a difference in membrane-binding energy between polar and equa-
torial filaments is required to justify the systematic observation of helical tubes in the
experiments.
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Figure 9.3: Phase diagram of the straight-to-helical transition. The solid purple line
is the phase boundary.

9.3 Bending and torsional rigidities of ESCRT-III filaments

Compared to an isolated Snf7/Vps24/Vps2 helix, adding a membrane of known rigid-
ity deforms the polymer into a larger helix [Tabs. 8.1, 8.2]. In this section, we use the
magnitude of such deformation to infer the bending and torsional rigidities of the
helix, as well as the difference in membrane binding energy between the polar and
equatorial filaments.

The model used here is more detailed than the one of Sec. 9.2, and takes into ac-
count the flexibility of the filaments. In the model, a helical membrane tube is bound
to two polar (red) and one equatorial (blue) model filaments [Fig. 9.4], such that ev-
ery model filament accounts for two double-stranded Snf7/Vps24/Vps2 filaments
[Fig. 8.2h]. The binding energy difference per unit length between the two types of
filaments is denoted by µ, as in Sec. 9.2.

Denoting the radius of the blue polymer by R and its pitch by 2πP, the total length
of red filaments is LR = 2× 2πn

√
(R− r)2 + P2 and the length of the blue filaments

is LB = 2πn
√

R2 + P2, where n denotes the number of turns around the vertical axis.
We consider the most energetically favorable configuration of the system at fixed total
polymer length L = LR + LB and membrane area A. Denoting by a = A/L the
membrane surface area per unit polymer length, we use the expression of A given in
Eq. (9.9) to write

a =
2πr× 2πn

√
(R− r)2 + P2

4πn
√
(R− r)2 + P2 + 2πn

√
R2 + P2

, (9.16)

which we invert to express the pitch 2πP as

P =

[
(2− 2πr/a)2 (R− r)2 − R2

1− (2− 2πr/a)2

]1/2

, (9.17)

where r is the radius of the membrane tube.
The free energy of the system is the sum of a membrane and a polymer contri-

bution: F = Fmembrane + Fpolymer. The membrane free energy is given by Eq. (9.1),
noting that the surface tension term only contributes a (physically irrelevant) constant
to the free energy due to the constraint of fixed A. We now write the polymer free
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energy and then comment on its parameters and their numerical prefactors below,

Fpolymer

L = `R
[

kb

2

(
cR − cR

0

)2
+

kt

2

(
τR − τR

0

)2
− µ

2

]
+ `B

[
kb/4

2

(
cB − cB

0

)2
+

kt

2

(
τB − τB

0

)2
]

.

(9.18)

The superscripts R and B denote quantities related to red (polar) and blue (equatorial)
filaments, respectively [Fig. 9.4]. Here `R = LR/L, `B = LB/L and c0 = R0/(R2

0 + P2
0 )

and τ0 = P0/(R2
0 + P2

0 ) denote the spontaneous curvature and torsion of the filaments,
and are given by the radius R0 and pitch 2πP0 of the tube-less helices [Tab. 8.2]. The
values of curvature and torsion of the deformed filaments are given as

cR =
R− r

(R− r)2 + P2
, cB =

R
R2 + P2 , τR =

P

(R− r)2 + P2
and τB =

P
R2 + P2 .

(9.19)
The differential binding energy per unit length µ is multiplied by 1/2, so that its def-
inition is the same as in Sec. 9.2, where one model filament accounted for four polar
Snf7/Vps24/Vps2 double-stranded filaments, whereas here one model filament ac-
counts for two double-stranded filaments. While both types of filaments have the
same torsional stiffness kt, in Eq. (9.18) the bending stiffness kb of the red filaments
is four times larger than that of the blue. Indeed, as we show in Fig. 8.2h, both red
and blue filaments consist of two parallel sub-filaments of comparable thickness, but
while red filaments bend along the sub-filaments’ binding direction, blue filaments
bend along the orthogonal direction. Just like it is much easier to bend a piece of
cooked tagliatelle pasta in its thin than its thick direction, bending the red filaments
is thus more costly than bending the blue ones. To express this notion quantitatively,
we approximate each double-stranded filament as an elastic rod with a rectangular
cross-section of aspect ratio equal to 2. Applying the classical result of Landau et al.
[1986] this implies a ratio of bending stiffnesses of 22 = 4.

We next express the conditions of mechanical equilibrium, which relate the helix’
mechanical parameters with its observed dimensions. We thus insert Eqs. (9.17) and
(9.19) into Eq. (9.18) to express the total free energy as a function of R and r only. The
two force balance equations are

∂F
∂R

= 0, (9.20a)

∂F
∂r

= 0. (9.20b)

Finally, we insert the numerical values of R = 41.9 nm, r = 12.1 nm, RB
0 = 17.1 nm,

PB
0 = 8.9 nm, RR

0 = 23.4 nm and PR
0 = 6.6 nm [Tab. 8.2], as well as a = 22.7 nm

obtained from Eq. (9.16) using P = 8.5 nm [Tab. 8.1]. This results in a set of two
equations relating the unknown parameters kb, kt and µ, which can be recast as:

kb

κ/cR
0
= −1.14 + 0.30× µ

κcR
0

(9.21a)

kt

κ/cR
0
= −0.32 + 0.02× µ

κcR
0

. (9.21b)

In Sec. 9.3.1, we infer lower bounds for the persistence length of Snf7/Vps2/Vps24
sub-filaments, as well as for the membrane-binding energy difference between po-
lar and equatorial monomers, by enforcing the the positivity of the torsional stiff-
ness kt ≥ 0 in Eq. (9.21). In Sec. 9.3.2, we estimate the actual torsional stiffness of
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Figure 9.4: Scheme of model used to estimate ESCRT-III bending and torsional
rigidities. A helical tube is stabilized by two polar (red) and one equatorial (blue)
model filament. Polar helices have radius R − r. Both polar and equatorial helices
have pitch 2πP.

Snf7/Vps2/Vps24 sub-filaments, as well as the membrane-binding energy difference
between polar and equatorial monomers, by assuming that the persistence length of
Snf7/Vps2/Vps24 sub-filaments is that of Snf7 filaments, measured in previous ex-
periments [Chiaruttini et al., 2015].

9.3.1 A lower bound for bending rigidity and membrane-binding asymme-
try

Since mechanical stability of polymer helices requires kt ≥ 0, Eq. (9.21b) further im-
plies that µ > µmin

k ' 52 pN, corresponding to a differential binding energy per
monomer bigger than µmin

k × 1/8 × 3 nm ' 5 kBT. Since µmin
k > µmin

s [Sec. 9.2.2],
helical tubes are more favorable than straight ones in the whole range of predicted
rigidities.

Together with Eq. (9.21a), the condition µ > µmin
k also implies kb > kmin

b ' 8×
10−27 J ·m. What bound does kmin

b impose on the persistence length `p for the of indi-
vidual Snf7/Vps24/Vps2 sub-filaments? To answer this question, we note that kb is
the bending rigidity of a model equatorial filament, which accounts for two double-
stranded Snf7/Vps24/Vps2 filaments [Figs. 9.4, 8.2h]. Hence, the bending stiffness of
one double-stranded Snf7/Vps24/Vps2 filament is 1/2 × kb. Notice that this is the
bending stiffness of the filament along the binding direction of its two sub-filaments
[Fig. 8.2h]. How is this bending stiffness related to that of one sub-filament? We
assume that a double-stranded filament responds to bending like an elastic rod of
rectangular section, with short side d and long side 2d, such that its bending stiffness
along its short side (i.e., along the binding direction of its sub-filaments) is ∝ (2d)3d/12
[Landau et al., 1986]. We further assume that sub-filaments respond to bending like
isotropic rods of square section with side d, such that their bending stiffness is ∝ d4/12
[Landau et al., 1986]. We get `p ≥ `min

p , with

`min
p × kBT

kmin
b

=
d4/12

2× (2d)3 d/12
, (9.22)

from which `min
p ' 114 nm. This value is compatible with a previous experimental

estimate of the persistence length of Snf7 homopolymers, `Snf7
p = 250 nm [Chiaruttini
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et al., 2015].

9.3.2 Realistic estimate of torsional rigidity and membrane-binding asym-
metry

We now estimate the torsional stiffness of Snf7/Vps24/Vps2 sub-filaments, as well as
the differential binding energy per monomer, by assuming that the persistence length
of Snf7/Vps24/Vps2 sub-filaments is that of Snf7, `Snf7

p = 250 nm [Chiaruttini et al.,
2015].

If sub-filaments have persistence length `Snf7
p , Eq. (9.22) implies kb = k∗b = 16 `Snf7

p kBT.
We call µ∗ the solution of Eq. (9.21a) for kb = k∗b , which yields a differential binding
energy per monomer of µ∗ × 1/8× 3 nm ' 15 kBT. This value is much larger than the
membrane-binding energy of Snf7 alone, about 4 kBT per monomer [Chiaruttini et al.,
2015], suggesting that Vps24 and Vps2 may be significant contributors of the binding
of ESCRT-III filaments to lipid membranes.

We denote by k∗t the solution of Eq. (9.21b) for µ = µ∗. How is k∗t related to the tor-
sional persistence length `t of Snf7/Vps2/Vps24 sub-filaments? To answer this ques-
tion, we note that k∗t is the torsional rigidity of a model filament, which accounts for
two double-stranded Snf7/Vps24/Vps2 real filaments [Figs. 9.4, 8.2h]. Hence, the tor-
sional stiffness of one double-stranded real filament is 1/2× k∗t . How is this torsional
stiffness related to that of one sub-filament? We assume that a double-stranded fila-
ment responds to torsion around its long axis like an elastic rod of rectangular section,
with short side d and long side 2d, such that its torsional stiffness is ∝ β2(2d)d3 [Lan-
dau et al., 1986], with β2 = 0.229 [Ugural and Fenster, 2012]. We further assume that
sub-filaments respond to torsion around their long axis like isotropic rods of square
section with side d, such that their torsional stiffness is ∝ β1d4 [Landau et al., 1986],
with β1 = 0.141 [Ugural and Fenster, 2012]. We get

`t × kBT
k∗b

=
β1d4

2× β2 (2d) d3 , (9.23)

yielding `t ' 45 nm. This value of torsional stiffness is comparable to that of DNA at
low tension [Kriegel et al., 2017].
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Chapter 10

Discussion

The key experimental finding presented here is that Vps24 and Vps2 endow initially
flat Snf7 spirals with spontaneous torsion and two membrane binding interfaces [Secs. 8.2,
8.3]. The appearance of spontaneous torsion supports the Lenz et al. [2009] hypothe-
sis that ESCRT-III tubulates membranes by growing out of plane [Fig. 7.3]. Moreover,
Snf7/Vps2/Vps24 are systematically double-stranded in the experiments [Secs. 8.2,
8.3], making them possibly stiffer than Snf7 homopolymers and promoting membrane
buckling via the curvature relaxation mechanism proposed by Lenz and coworkers.

The appearance of two membrane-binding interfaces upon Vps24 and Vps2 bind-
ing substantiates the membrane scission mechanism proposed by S̆arić and coworkers
[Harker-Kirschneck et al., 2019], in which the molecular origin of the hypothesized
ESCRT-III transitions between different membrane-binding states was not clarified.
Specifically, the assembly of Vps24 and Vps2 to Snf7 can be related to the flat→ out-
of-plane transition, while their disassembly from Snf7, possibly mediated by Vps4,
can be related to the out-of-plane→ flat transition.

The key theoretical finding is that there is a significant membrane binding energy
difference between the two Snf7/Vps24/Vps2 interfaces, on which the stability of he-
lical tubes relies [Sec. 9.2]. This energy difference (5 to 15 kBT) is predicted to be larger
than the membrane binding energy of Snf7 monomers alone (4 kBT), suggesting that
Vps24 and Vps2 contribute significantly to ESCRT-III membrane adhesion [Sec. 9.3].
In the language of Harker-Kirschneck et al. [2019], the membrane-binding interface
reminiscent of flat spirals, i.e. α = 0◦ in Fig. 7.4a, adheres to the membrane much
better than the interface reminiscent of the α = −90◦ case. A similar energy difference
between one interface at α = 0◦ and another at α ≥ 0◦ may help severing membrane
necks in the model of S̆arić and coworkers, by favoring the out-of-plane→ flat transi-
tion and discouraging its reverse.

We derived the straight-to-helical tube phase diagram in Fig. 9.3 assuming that the
membrane tube radius is constant along the membrane surface. For this reason, the
radius of our straight cylinders is fixed to that of the undeformable scaffold and they
have no way of reducing their surface. We thus neglected that the tube can modulate
its radius along the vertical axis, as in Fig. 10.1a, in a way that keeps the membrane
anchored to the helical scaffold. Such radial modulation can imply a reduction of the
tube surface area, making it more stable at high membrane tension with respect to
our estimate. Hence, we think that including this correction would increase σc and,
consequently, stretch rightwards the phase boundary in the phase diagram [Fig. 9.3].
However, we do not think this would affect our conclusions, since the straight-to-
tubular transition in the experiments happens at σ < σc, in a region of the phase
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Figure 10.1: Ribbon model of Snf7 homopolymers. (a) Tube radius variations with
helical symmetry in a straight membrane tube. Reproduced from McDargh and Deserno
[2018], with permission. c© 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
(b) Individual Snf7 protein. (c) Snf7 homopolymer architecture. Individual proteins
drawn with different colors and labeled by the indices i, i + 1, . . . . One α-helix from
the protein i + 1 (pink) interacts with two α-helices from the protein i (yellow). Figs.
(b,c) reproduced from Tang et al. [2015], and licensed under CC BY 4.0.

diagram that should be less sensitive to this correction.
We derived the bending and torsional stiffnesses of Snf7/Vps24/Vps2 sub-filaments

by assuming they behave as elastic rods made of isotropic material. The isotropic ma-
terial hypothesis implies that bending and torsional stiffnesses are related through the
Poisson’s ratio σ. In fact, given a rod with square section of side d made of isotropic
material of Young’s modulus E and shear modulus µ, its bending and torsional stiff-
nesses are Ed4/12 and µβ1d4, respectively [Landau et al., 1986; Ugural and Fenster,
2012]. Writing the bending and torsional stiffnesses in terms of the bending and tor-
sional persistence lengths, i.e. `p× kBT and `t× kBT, we get E = 12/d4× `p× kBT and
µ = 1/(β1d4)× `t × kBT. Furthermore, in isotropic materials, E and µ satisfy [Landau
et al., 1986]

E = 2µ(1 + σ). (10.1)

Plugging the relations obtained above for E and µ in Eq. (10.1), using `p = `Snf7
p and

`t = 45 nm [Sec. 9.3], we get that Snf7/Vps24/Vps2 heteropolymers have a Poisson’s
ratio σ ' 3.5, which is impossible since σ ∈ [−1; 1/2] due to mechanical stability
conditions (namely, positivity of bulk and shear moduli) [Landau et al., 1986]. This is
a clear sign that the internal structure of Snf7/Vps24/Vps2 heteropolymers is far from
isotropic. Specifically, our estimate of their torsional stiffness is too small compared to
the bending stiffness.

What could be the origin of the weak torsional rigidity of these polymers? It may
be instructive to look at how monomers are interlocked in an ESCRT-III chain. Our
most detailed knowledge on inter-monomer interactions comes from crystallographic
studies on Snf7 [Tang et al., 2015]. The experiments suggest that the adhesion between
two adjacent protein units relies on two pair-interactions between the α-helix (pink)
of one protein and two α-helices (yellow) of the next one [Fig. 10.1c, right]. The two
α-helices belonging to the same protein do not have adhesive interactions along their
length, but are hinged at one of their ends [Fig. 10.1b]. One could argue that only
this intra-protein hinge responds to weak torsional deformations along the polymer
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axis, the two inter-protein adhesive interactions being free to rotate around the poly-
mer axis. Conversely, a weak bending deformation would tilt the interacting α-helices
relative to their preferred configuration, generating a possibly stronger response. In
a future study, it would be interesting to put numbers into this argument and check
whether this would actually lead to a difference between bending and torsional stiff-
ness similar to what we find.

In postulating the free energy of membrane tubes, we neglected osmotic and hy-
drostatic pressure gradients through membrane bilayers. This choice is motivated by
two experimental observations 1. First, no significant difference in chemical composi-
tion is expected inside and outside membrane tubes. Even assuming there were such
a difference at the early stages of helical tubes formation, measurements were taken
after several hours of incubation, which should be enough for chemical potential equi-
libration inside and outside tubes. Second, a significant decrease in surface-to-volume
ratio is observed during the formation of helical tubes, suggesting that water perme-
ates the bilayers enough to rule out hydrostatic pressure gradients.

We modeled the straight-to-helical tube transition in the simplified case where the
scaffolding function of multiple helical polymers is condensed into a single model
filament. How does the transition picture change if the helical scaffold comprises
multiple filaments? The ability of a multifilament scaffold to stabilize straight and he-
lical tubes critically involves its filaments’ spatial arrangement. A scaffold of helices
that are homogeneously spaced along the vertical axis is suited for straight membrane
tubes. Conversely, a scaffold of helices that are condensed into a helical ribbon is
suited for both straight and helical membrane tubes [Fig. 10.2], and the relative sta-
bility of either shape depends on other factors, like membrane tension. We can thus
predict a straight-to-helical tube transition driven by the spatial condensation of mul-
tiple scaffolding helical filaments, possibly due to thermal fluctuations. Notice that
condensation requires that filaments’ surface density be not too high, i.e. that fila-
ments be few and their pitch-to-radius ratio be large enough. We are currently work-
ing on this theory, to extend our understanding of membrane tubes stabilized by he-
lical filaments beyond the specific case of ESCRT-III. In fact, membrane helical tubes
are observed also in ciliate mitochondria [Allen, 1995; Mühleip et al., 2016]. These
helical tubes (cristae) are stabilized by a stiff helical scaffold of F0F1 ATP-ase dimers,
which are segregated on the outer surface of the tube (as in the bottom right panel of
Fig. 10.2). In the same organism, straight membrane tubes are found in the contractile
vacuole complex (CVC), this time stabilized by a stiff helical scaffold of V0V1 ATP-ase
dimers [Allen, 1995]. Differently than F0F1 helices, which segregate on the membrane
surface, V0V1 helices homogeneously cover the membrane surface (as in the left panel
of Fig. 10.2).

In conclusion, we inferred the membrane binding force of ESCRT-III from geomet-
rical data on the shape of ESCRT-stabilized helical tubes. We contribute to the current
debate on ESCRT-mediated membrane remodeling by proposing that Snf7/Vps24/Vps2
helices have two membrane-binding interfaces available to them, whose positioning
on the polymers’ surface allows them to engage membranes with previously unex-
pected curvatures. Furthermore, we make predictions on the asymmetric binding
force of these two interfaces, as well as on the rigidities of Snf7/Vps24/Vps2 helices.
We hope that the theoretical framework proposed here can help clarifying the me-
chanical stability of other helical and straight membrane tubes found in cells, like in
ciliate mitochondria and in the contractile vacuole complex.

1Moser Von Filseck, private communication.

76



Figure 10.2: Straight-to-helical transition from filaments’ segregation. Helical fila-
ments can diffuse on the surface of a membrane tube. The more filaments’ density is
homogeneous, the more a straight tube is stable. If filaments spatially segregate, the
straight tube can transition to a helical one depending on various factors. For instance,
membrane tension would favor helical tubes, similarly to what we found in Sec. 9.2.
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Chapter 11

Conclusion

In this thesis, we deduce inter-molecular forces from the elastic deformations they im-
pose on biological matter. This method of investigation is well suited in those cases
where forces can hardly be predicted from microscopic principles, due to their sensi-
tivity to complicated chemical or physical factors. We focus on two such forces.

We start from the attractive force exerted by DNA helices onto each other in the
presence of multivalent cations. Cation-mediated inter-helical attraction is key to com-
pensate DNA bending stiffness when packing large amounts of DNA in compara-
tively small environments, such as the nuclei of sperm cells. The physical origin of
inter-helical attractive forces is still under debate. Several theories were proposed to
predict them, all of which suggest that helices need to properly align in order to op-
timize attraction. We infer inter-helical attractive forces from geometrical data on the
distribution of DNA helices in dense toroidal bundles, which DNA spontaneously
forms in the presence of multivalent cations, in vitro. The experiments show that the
helical packing density decreases with increasing curvature.

We propose that toroidal curvature weakens inter-helical adhesion by making it
harder for helices to optimize their lateral alignment. This idea is supported by further
experimental evidence, showing that the average spatial correlation between neigh-
boring DNA helices’ grooves is different in small and giant toroids: in the first, the
major grooves of each helix face the major grooves of its neighbors, whereas in the
latter the major grooves of each helix face the minor grooves of its neighbors. Groove
correlation between curved helices in DNA toroids is possible thanks to periodic vari-
ations in helical pitch along the backbone of each DNA helix, in which locally over-
and under-twisted segments alternate each other.

To the best of our knowledge, the dependence of inter-helical adhesion on cur-
vature was overlooked in previous studies, which mainly focused on the interaction
between straight DNA helices. Since physiological DNA is often strongly curved, we
think this aspect may be worth further investigation. To systematically investigate the
interaction between DNA helices at varying curvature, a molecular dynamics simula-
tive approach may prove the best tool. The emergence of pitch periodic modulation
and its dependence on curvature may also be observed in such simulations. Progress
in the understanding of periodic pitch modulation may also be done via a joint ex-
perimental and analytical approach. From the microscopy datasets used in this work,
further image analysis should allow to extrapolate pitch modulation along DNA he-
lices at varying local curvatures. We think the phenomenology of pitch modulation
along DNA helices in toroidal bundles may be captured by a customized version of
the Frenkel-Kontorova model of nonlinear physics.
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We then turn to the binding force of a specific protein complex, ESCRT-III, to cellu-
lar membranes. ESCRT-III proteins polymerize into membrane-deforming polymers
that are key to membrane neck severing from the lumen in all known biological pro-
cesses requiring this kind of fission event, ranging from HIV budding to cytokinesis.
Despite their ubiquity, it is still unclear how ESCRT-III polymers deform and severe
membrane necks. In vitro, ESCRT-III helical polymers can reshape spherical vesicles
into helical membrane tubes. We leverage geometrical data on helical tubes’ shape
to suggest that ESCRT-III polymers dispose of two separate membrane binding inter-
faces along their surface, whose positioning relative to the polymers’ preferred direc-
tion of curvature allows to stabilize helical membrane tubes. We argue that the system-
atic shaping of helical tubular protrusions in the experiments is the result of a signif-
icant binding energy difference between the two interfaces, comparable to ESCRT-III
polymers absolute membrane binding energy. Furthermore, we provide estimates for
ESCRT-III polymers’ bending and torsional stiffness.

Our findings support two previous models of ESCRT-mediated membrane remod-
eling. On the one hand, ESCRT-III polymers can form protrusions on the surface of
lipid bilayers by growing out of plane, thanks to their spontaneously helical shape. On
the other hand, ESCRT-III can engage membrane necks with different local curvatures
thanks to their multiple membrane binding interfaces.

We think the theoretical framework developed to rationalize the stability of ESCRT-
shaped helical tubes can be applied also to different cases in which membrane tubes
are stabilized by helical filaments, such as the helical tubular cristae found in ciliate
mitochondria or the straight tubules in the contractile vacuole complex.

In conclusion, throughout this thesis we tackle biological problems with a joint
experimental and theoretical effort. We deduce forces and physical mechanisms that
play important roles in cells by developing simple mechanical models. Our minimal
theoretical approach allows us to keep track of causes and effects, as well as to un-
tangle the intrinsic complexity of biological systems by focusing on just few physical
ingredients at a time. Our models can easily be enriched and, in some cases, adapted
to different biological systems. We hope our findings and suggestions will be helpful
to other researchers in the field.
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Chapter 12

Résumé de la thèse en français

Les assemblages biologiques doivent souvent leur stabilité et leur évolution à des
forces intermoléculaires sur lesquelles nous avons peu de connaissances préalables.
La principale difficulté dans la modélisation de ces forces est peut-être leur sensibilité
à la composition chimique des molécules en interaction, ainsi qu’à celle de leur en-
vironnement. Cependant, le rôle biologique des forces intermoléculaires peut être
dû à un petit nombre de leurs caractéristiques, qui émergent de la complexité chim-
ique sous-jacente. Si ces forces sont impliquées de façon critique dans la déformation
de la matière biologique, nous pouvons déduire ces caractéristiques en conciliant la
géométrie de déformation avec des modèles mécaniques simples. Nous adoptons
cette approche pour étudier deux de ces forces intermoléculaires.

Dans la première partie de la thèse, nous étudions les forces que les hélices d’ADN
exercent les unes sur les autres (pour une introduction détaillée, voir le chapitre 2).
L’ADN est un polymère chargé négativement [Fig. 1.1a], ce qui implique que ses
unités ont tendance à se repousser mutuellement. Cependant, en présence de cations
multivalents, des hélices d’ADN chargées négativement peuvent s’attirer mutuelle-
ment. L’attraction entre les hélices d’ADN est un phénomène fascinant, dont l’origine
physique n’est pas encore complètement claire [voir le chapitre 3].

L’attraction entre les hélices est fondamentale pour compenser la résistance de
l’ADN à la flexion lors du stockage de grandes quantités d’ADN dans des environ-
nements relativement petits, tels que les noyaux des spermatozoı̈des. En fait, le noyau
d’un spermatozoı̈de humain peut être considéré comme une petite boı̂te, avec une
taille linéaire de 5 µm [Fig. 2.1a]. Cette boı̂te microscopique, qui pourrait tenir dix fois
dans la largeur d’un cheveu humain, peut contenir une chaı̂ne d’ADN longue de 1 m !
Chez les mammifères, les charges positives responsables de la condensation de l’ADN
sont fournies par les protamines, protéines à haute contenu d’acides aminés chargés
positivement. Chez l’homme, entre 85% et 95% de l’ADN est condensé par les pro-
tamines, et le reste du travail est laissé aux histones [Balhorn, 2007]. Il est intéressant
de noter que la modification de la concentration de protamines est en corrélation avec
l’infertilité chez la souris et l’homme, ce qui suggère que les protamines sont essen-
tielles au bon fonctionnement des spermatozoı̈des [Oliva, 2006].

Nous utilisons des données expérimentales sur la géométrie des condensats d’ADN
pour déduire les propriétés des forces entre les hélices, médiées par les cations. Mal-
heureusement, il est impossible d’obtenir des images à haute résolution des conden-
sats d’ADN in vivo, car la densité physiologique de l’ADN dans les noyaux des cel-
lules est trop élevée (voir, par exemple, Koehler 1966, 1970, 1972; Koehler et al. 1983)
[Fig. 2.1b]. Par conséquent, nous utilisons les données de condensats d’ADN réalisés
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in vitro. In vitro, on est libre de choisir parmi un ensemble d’agents condensateurs
d’ADN, certains des plus couramment utilisés étant Co(NH3)3+

6 , spermidine (3+),
spermine (4+) et protamines [Laemmli, 1975; Chattoraj et al., 1978; Widom and Bald-
win, 2004; Hud et al., 1993]. Il est intéressant de noter que, indépendamment de
l’espèce de l’agent de condensation, l’ADN se condense généralement en faisceaux
hexagonaux, qui peuvent être soit toroı̈daux [Fig. 2.2] ou droits. Notre étude porte
sur les faisceaux toroı̈daux d’ADN condensés par la spermine (4+). Bien que nous
ne sachions pas s’il existe des tores à ADN in vivo (par exemple, dans le noyau des
spermatozoı̈des) ils ont au moins deux caractéristiques en commun avec l’ADN phys-
iologique : un emballage serré et une courbure. Par conséquent, nous pensons que
nos résultats peuvent être transférés à des cas biologiquement pertinents.

Dans le chapitre 4, nous décrivons les expériences qui motivent notre étude théorique.
Dans la section 4.1, nous présentons comment des toroı̈des d’ADN de tailles variables
peuvent être générés en utilisant des capsides de bactériophages. En particulier, de
petits toroı̈des peuvent être générés en laissant des molécules individuelles d’ADN
se condenser à l’intérieur des capsides, tandis que des toroı̈des géants peuvent être
générés en laissant des nombreuses molécules d’ADN se condenser a l’extérieur des
capsides. Dans la section 4.2, nous illustrons les caractéristiques géométriques con-
nues des tores d’ADN qui ne dépendent pas de leur taille, notamment : l’emballage
hexagonal des hélices d’ADN, leur rotation collective (torsion) autour de la ligne cen-
trale du toroı̈de et la corrélation latérale entre les sillons des hélices voisines. Enfin,
dans la section 4.3, nous présentons des mesures récentes concernant la dépendance
de l’espacement entre hélices de la courbure des tores, réalisées par Amélie Lefor-
estier et Françoise Livolant au LPS, à Orsay. Leur constatation principale est que, dans
chaque tore, l’espacement entre les hélices subit une diminution d’environ 10% en al-
lant du rayon intérieur vers le rayon extérieur du tore. De plus, elles observent que
les petits tores sont, en moyenne, moins compactés que les tores géantes.

Nous étudions la corrélation entre la densité de compactage de l’ADN et la cour-
bure des tores d’ADN. Notre intuition est que les variations d’espacement local sont
liées à la réponse élastique locale de l’ADN. Plus précisément, la rigidité de l’ADN
pénalise chaque région du tore proportionnellement à la courbure de l’ADN dont elle
a besoin pour être peuplée. D’après des vues de dessus des tores, les hélices d’ADN
semblent être disposées localement comme s’il s’agissait d’arcs de cercles concen-
triques, comme un fil de laine dans une pelote. Si cela était vrai, la courbure des hélices
d’ADN diminuerait en allant de l’intérieur vers l’extérieur du tore. Cette géométrie
supporterait notre intuition : les hélices d’ADN peuplent le moins les régions intérieures
parce que leur courbure est plus élevée dans ces régions. Mais est-ce que la courbure
de l’ADN diminue réellement en allant de l’intérieur vers l’extérieur du rayon, comme
le suggèrent les vues de dessus ? Étant donné que les toroı̈des d’ADN sont tordus, il
est possible que la courbure ne soit pas aussi facilement répartie dans l’assemblage. Si
la torsion est assez forte, il peut arriver même que l’ADN soit moins courbé près de
l’intérieur que de l’extérieur du tore.

Dans le chapitre 5, nous développons notre modèle théorique. Dans la section 5.1,
nous quantifions comment la courbure des filaments d’ADN est distribuée dans un
tore, selon le taux de torsion de l’ADN autour de la ligne centrale du tore. Nous mon-
trons que le taux de torsion expérimental est suffisamment faible pour supposer que
les hélices d’ADN se comportent comme des cercles concentriques autour du centre
du tore, i.e. que la courbure de l’ADN augmente avec la distance du rayon intérieur
du tore. Dans la section 5.2, nous utilisons ce résultat pour développer un modèle

81



bidimensionnel minimal de tore d’ADN, à partir duquel nous étudions l’équilibre
mécanique entre l’élasticité de l’ADN et les interactions entre les hélices. Dans la sec-
tion 5.3, nous résolvons notre modèle et prédisons que l’espacement entre les hélices
diminue avec la distance du rayon intérieur, en accord qualitatif avec les expériences.
Dans la section 5.4, nous adaptons notre modèle aux données et déduisons le potentiel
d’interaction locale entre les hélices d’ADN.

Dans le chapitre 6, nous discutons nos résultats et proposons des perspectives fu-
tures. Bien que notre modèle prévoie qualitativement la dépendance de l’espacement
entre les hélices en fonction de la position dans chaque tore, il ne peut prévoir que
les petits tores sont moins bien compactés que les grands tores. En fait, c’est le con-
traire de ce à quoi on pourrait s’attendre sur la seule base de l’élasticité, car les hélices
sont plus courbées dans les petits tores que dans les tores géantes, et donc devraient
se pousser l’un contre l’autre plus fort dans le premier que dans le dernier cas. Cela
donne à penser que les interactions adhésives entre les hélices sont plus faibles chez
les petits tores que chez les tores géants, i.e. que la courbure affaiblit l’adhésion entre
les hélices.

Pourquoi la courbure devrait-elle affecter les forces entre les hélices ? Une molécule
d’ADN a des charges négatives réparties le long de ses deux hélices de groupes phos-
phates. En raison de cette distribution de charge inhomogène, l’interaction entre deux
molécules d’ADN parallèles dépend de la corrélation spatiale entre leurs sillons. Des
images à haute résolution de faisceaux d’ADN condensés de spermine, obtenus par
Leforestier and Livolant [2009], montrent que la courbure modifie la corrélation des
sillons entre les hélices voisines [Fig. 2.3]. Dans les faisceaux droits, les sillons majeurs
de chaque hélice sont orientés vers les sillons mineurs de ses voisines [Fig. 2.3b]. Par
contre, dans les faisceaux toroı̈daux, les sillons majeurs de chaque hélice sont orientés
vers les sillons majeurs de ses voisines [Fig. 2.3a]. Nous pensons que cela certifie une
influence non négligeable de la courbure sur les interactions entre hélices. Ensuite,
puisque l’adhérence entre les hélices requiert des corrélations spécifiques entre les sil-
lons, nous en déduisons que la courbure doit affecter leurs adhérence.

Notre étude ouvre la voie à plusieurs perspectives d’avenir. Par exemple, une
étude systématique de la façon dont l’interaction entre deux hélices dépend de leur
courbure devrait être possible en utilisant des simulations de dynamique moléculaire.
Ces simulations pourraient également révéler comment les corrélations des sillons
s’adaptent à la courbure. De plus, en ce qui concerne les corrélations entre les sil-
lons, des progrès pourraient être réalisés en analysant les ensembles de données exis-
tants des vues de dessus des tores. Dans le passé, Leforestier and Livolant [2009] ont
mesuré la variation du pas tout au long d’une hélice dans un tore. Le pas semblait
subir des variations périodiques, montrant en alternance des segments hélicoı̈daux
sous-tordus et sur-tordus [Fig. 4.1i]. Cette mesure pourrait être répétée pour plusieurs
hélices à différentes positions dans les tores, afin de mesurer comment une telle mod-
ulation périodique de pas dépend de la courbure locale. Nous nous attendons à ce que
l’amplitude de la modulation diminue au fur et à mesure que la courbure diminue. Il
devrait également être possible de rationaliser les modulations de pas induites par la
courbure au moyen d’un modèle analytique minimal [voir le chapitre 6].

En conclusion, nous avons déduit des forces entre les hélices d’ADN, médiées par
des cations multivalents, à partir de données géométriques sur des faisceaux toroı̈daux
d’ADN. Nous prédisons que la courbure affaiblit l’adhérence entre les hélices, ce qui
peut se vérifier au niveau des condensats physiologiques d’ADN. Nous espérons que
l’influence de la courbure sur les forces entre hélices sera abordée dans les études fu-
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tures et que les progrès expérimentaux permettront de clarifier l’influence de la cour-
bure sur les corrélations des sillons.

Dans la deuxième partie de la thèse, nous nous intéressons à la force de liaison d’un
complexe protéique particulier, ESCRT-III, aux membranes cellulaires. Les protéines
ESCRT-III s’assemblent en polymères qui rétrécissent le diamètre des cols de mem-
brane, en agissant dans leur volume interne. A notre connaissance, ESCRT-III est im-
pliqué dans tous les processus biologiques connus qui nécessitent un tel événement
de fission membranaire, allant de la libération du VIH de la membrane plasmatique
à la constriction du pont cytokinétique pendant la division cellulaire (pour une intro-
duction détaillée, voir le chapitre 7). Malgré leur omniprésence, on ne sait toujours
pas comment les polymères ESCRT-III déforment et coupent le col des membranes.

Dans le chapitre 8, nous présentons des expériences qui prouvent des capacités
inattendues de liaison entre l’ESCRT-III et les membranes. Ces résultats ont été obtenus
par Joachim Moser Von Filseck et Aurélien Roux à l’Université de Genève, en collabo-
ration avec Nathaniel Talledge, Isabel Johnson et Adam Frost de l’University of Cali-
fornia San Francisco. Leur constatation principale est que trois unités ESCRT-III : Snf7,
Vps24 et Vps2 se copolymérisent en hélices qui stabilisent des tubes de membrane
hélicoı̈daux en se liant à leur couche lipidique externe [Fig. 8.1g, 8.1i]. Par souci de
simplicité, nous désignons ces polymères par le terme générique Snf7/Vps24/Vps2.
Cependant, nous ne pouvons exclure que les différents polymères de l’échantillon
aient une stoechiométrie différente. Malheureusement, ces informations ne sont pas
accessibles à partir des expériences présentées ici.

Dans la section 8.1, nous montrons les tubes hélicoı̈daux dans lesquels les vésicules
membranaires sont déformées sous l’action des hélices Snf7/Vps24/Vps2. Dans la
section 8.2, nous montrons que les filaments Snf7/Vps24/Vps2 sont à double brin et
se trouvent à la surface externe des tubes hélicoidaux. De plus, nous illustrons que
ces filaments se regroupent en trois groupes, ce qui suggère qu’ils sont équipés de
deux interfaces de liaison membranaire différentes et peuvent être divisés en deux
ensembles, appelés polaire et équatorial. Enfin, dans la section 8.3, nous montrons la
configuration de repos des hélices Snf7/Vps24/Vps2 lorsqu’elles sont produites en
absence de tubes de membrane, qui peuvent être solubilisées par un détergent.

Dans le passé, il a été observé que les polymères hélicoı̈daux ESCRT-III ne for-
maient que des protubérances tubulaires droites à la surface des vésicules. Les tubes
hélicoı̈daux constituent une forme inhabituelle pour les membranes, car ils coûtent
plus cher en énergie de courbure par rapport aux protubérances tubulaires relative-
ment droites qui ont été observées dans les expériences précédentes. Cependant, les
hélices Snf7/Vps24/Vps2 ne forment jamais des tubes de membrane droits. Pourquoi
? Nous abordons cette question dans le chapitre 9.

Tout d’abord, dans la section 9.1, nous dérivons quelques résultats sur la géométrie
différentielle des tubes hélicoı̈daux qui sont utilisés dans la suite du chapitre.

Pourquoi les hélices Snf7/Vps24/Vps2 forment-elles systématiquement des tubes
de membrane hélicoı̈daux plutôt que droits ? Dans la section 9.2, nous proposons que
la réalisation expérimentale de tubes exclusivement hélicoı̈daux puisse être expliquée
sur la base d’une énergie de liaison membranaire asymétrique des filaments polaires
et équatoriaux [section 8.2]. Nous en déduisons un diagramme de phase, dans lequel
la stabilité relative des tubes droits et hélicoı̈daux supportés par des hélices rigides
Snf7/Vps24/Vps2 est comparée. A partir du diagramme de phase, nous déduisons
une limite inférieure sur la différence d’énergie de liaison membranaire par monomère
entre les filaments polaires et équatoriaux.
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Quelle est la rigidité des hélices Snf7/Vps2/Vps24 ? Dans la section 9.3, nous
répondons à cette question en développant un modèle élastique dans lequel un tube
hélicoı̈dal est stabilisé par un échafaudage flexible d’hélices polaires et équatoriales
Snf7/Vps24/Vps2. En connaissant de ces expériences combien les hélices Snf7/Vps24/Vps2
s’écartent de leur configuration de repos lorsqu’elles stabilisent des tubes hélicoı̈daux,
nous estimons une limite inférieure sur la rigidité des hélices à partir des équations
d’équilibre des forces. De plus, en utilisant une estimation précédente de la rigidité,
nous estimons la rigidité en torsion des hélices Snf7/Vps24/Vps2, ainsi que la différence
en énergie de liaison à la membrane entre monomères polaires et équatoriaux.

Dans le chapitre 10, nous discutons nos résultats et proposons des perspectives fu-
tures. La principale conclusion théorique est qu’il existe une différence d’énergie de li-
aison membranaire significative entre les deux interfaces des hélices Snf7/Vps24/Vps2,
sur laquelle se fonde la stabilité des tubes hélicoidaux [section 9.2]. Cette différence
d’énergie (entre 5 et 15 kBT) est plus grande que l’énergie de liaison membranaire des
monomères Snf7 seuls (4 kBT, Chiaruttini et al. 2015), ce qui suggère que Vps24 et
Vps2 contribuent considérablement à l’adhésion des membranes ESCRT-III [section
9.3].

Nous avons modélisé la transition du tube droit au tube hélicoı̈dal dans le cas
simplifié où la fonction d’échafaudage de plusieurs polymères hélicoı̈daux est con-
densée en un seul filament. Comment la transition change-t-elle si l’échafaudage
hélicoı̈dal comporte plusieurs filaments ? La capacité d’un échafaudage composé de
plusieurs filaments à stabiliser des tubes droits et hélicoı̈daux est liée de façon cri-
tique à l’arrangement spatial des filaments sur la surface des tubes. Un échafaudage
d’hélices espacées de manière homogène le long de l’axe vertical convient aux tubes de
membranes droits [Fig. 10.2]. Inversement, un échafaudage d’hélices condensées en
un ruban hélicoı̈dal convient aussi bien aux tubes de membrane droits qu’hélicoı̈daux,
et la stabilité relative des deux formes dépend d’autres facteurs, comme la tension de
la membrane. On peut donc prédire une transition du tube droit à hélicoı̈dal entraı̂née
par la condensation spatiale de multiples filaments hélicoı̈daux de l’échafaudage, ce
qui peut être dû à des fluctuations thermiques. Il faut noter que la condensation exige
que la densité de surface des filaments ne soit pas trop élevée, i.e. que les filaments
soient peu nombreux et que leur rapport pas/rayon soit assez grand. Nous sommes
en train de travailler sur cette théorie, afin d’étendre notre compréhension des tubes
de membrane stabilisés par des filaments hélicoı̈daux au-delà du cas spécifique de
l’ESCRT-III. En fait, les tubes hélicoı̈daux de membrane sont également observés dans
les mitochondries ciliées [Allen, 1995; Mühleip et al., 2016]. Ces tubes hélicoı̈daux
(cristae) sont stabilisés par un échafaudage hélicoı̈dal rigide de dimères de ATPases
F0F1 qui sont disposés sur la surface extérieure des tubes (comme dans la partie inférieure
droite du schéma de la figure 10.2). Dans le même organisme, on trouve des tubes
à membrane droite dans le complexe vacuolaire contractile (CVC), cette fois-ci sta-
bilisé par un échafaudage hélicoı̈dal rigide de dimères de ATPases V0V1 [Allen, 1995].
Contrairement aux hélices F0F1, qui recouvrent de façon pas homogène la surface des
tubes, les hélices V0V1 recouvrent de façon homogène la surface (comme dans le pan-
neau gauche de la figure 10.2).

En conclusion, dans cette partie de la thèse nous déduisons la force de liaison en-
tre ESCRT-III et membrane à partir de données géométriques sur la forme des tubes
hélicoı̈daux stabilisés par l’ESCRT. Nous contribuons au débat actuel sur le remode-
lage des membranes à médiation ESCRT en proposant que les hélices Snf7/Vps24/Vps2
disposent de deux interfaces de liaison membranaire, dont le positionnement à la sur-
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face des polymères leur permet d’engager des membranes avec des courbures inat-
tendues auparavant. De plus, nous faisons des prédictions sur la force de liaison
asymétrique de ces deux interfaces, ainsi que sur les rigidités des hélices Snf7/Vps24/Vps2.
Nous espérons que le cadre théorique proposé ici pourra aider à clarifier la stabilité
mécanique d’autres tubes de membrane, hélicoı̈daux et droits, présents dans les cel-
lules, comme dans les mitochondries ciliées et dans le complexe vacuole contractile.

Tout au long de cette thèse, nous abordons des problèmes biologiques avec un ef-
fort expérimental et théorique conjoint. Nous déduisons des forces et des mécanismes
physiques qui jouent des rôles importants dans les cellules en développant des modèles
mécaniques simples. Notre approche théorique minimale nous permet de cerner les
causes et les effets, ainsi que de démêler la complexité intrinsèque des systèmes bi-
ologiques en nous concentrant sur un petit nombre d’ingrédients physiques en même
temps. Nos modèles peuvent facilement être enrichis et, dans certains cas, adaptés à
différents systèmes biologiques. Nous espérons que nos conclusions et nos sugges-
tions seront utiles à d’autres chercheurs dans ce domaine.
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Curie - Paris VI, 2010. URL https://tel.archives-ouvertes.fr/
tel-00541655Submitted.

M. Lenz, D. J. Crow, and J. F. Joanny. Membrane Buckling Induced by Curved Fil-
aments. Physical Review Letters, 103(3):1–4, 2009. ISSN 00319007. doi: 10.1103/
PhysRevLett.103.038101.

Y. Levin. Electrostatic correlations: From plasma to biology. Reports on Progress in
Physics, 65(11):1577–1632, 2002. ISSN 00344885. doi: 10.1088/0034-4885/65/11/201.

M. Mandelkern, J. G. Elias, D. Eden, and D. M. Crothers. The dimensions of DNA
in solution. Journal of Molecular Biology, 152(1):153–161, 1981. ISSN 00222836. doi:
10.1016/0022-2836(81)90099-1.

G. S. Manning. Limiting laws and counterion condensation in polyelectrolyte solu-
tions I. Colligative properties. The Journal of Chemical Physics, 51(3):924–933, 1969.
ISSN 00219606. doi: 10.1063/1.1672157.

89

https://tel.archives-ouvertes.fr/tel-00541655 Submitted
https://tel.archives-ouvertes.fr/tel-00541655 Submitted
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Titre: Déduire les forces à partir de la géométrie en biologie
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Résumé: Des forces intermoléculaires sur lesquelles
nous avons peu de connaissances préalables sont
souvent essentielles à la stabilité et à l’évolution des
assemblages biologiques. Dans cette thèse, nous
nous concentrons sur deux de ces forces qui sont
impliquées de façon critique dans la déformation
soit des biopolymères, soit des membranes. Nous
déduisons ces forces en conciliant la géométrie d’une
telle déformation avec des modèles mécaniques sim-
ples. Dans la première partie de la thèse, nous
examinons la force d’attraction entre les molécules
d’ADN médiées par des cations multivalents. Cette
attraction est nécessaire pour compenser la rigidité
de l’ADN lors du confinement de grandes quantités
d’ADN dans des environnements relativement petits,
tels que les noyaux des spermatozoı̈des. In vitro,
les cations multivalents causent la condensation de
l’ADN en faisceaux toroı̈daux denses. Grâce à des
données sur la géométrie de ces faisceaux, nous
pouvons étudier la compétition entre les forces at-

tractives et la rigidité de l’ADN. Nous inférons telles
forces et proposons que la courbure toroı̈dale affaib-
lisse l’adhésion entre les molécules d’ADN. Dans la
deuxième partie de la thèse, nous nous intéressons
à la force de liaison d’un complexe protéique de re-
modelage membranaire, ESCRT-III, aux membranes
cellulaires. Les protéines ESCRT-III s’assemblent en
polymères qui remodèlent la membrane au cours de
nombreux processus cellulaires, allant du bourgeon-
nement du VIH à la cytokinèse. Le mécanisme par
lequel les polymères ESCRT-III déforment les mem-
branes n’est toujours pas clair. In vitro, les polymères
ESCRT-III peuvent transformer des vésicules mem-
branaires sphériques en tubes hélicoı̈daux. Nous pro-
posons que les tubes hélicoı̈daux résultent du po-
sitionnement particulier des sites de liaison mem-
branaire sur la surface des polymères ESCRT-III. De
plus, nous déduisons la force de liaison entre les
monomères ESCRT-III et la membrane à partir de la
géométrie des tubes hélicoı̈daux.

Title: Inferring forces from geometry in biology

Keywords: DNA, ESCRT-III, Membrane, Elasticity, Biophysics

Abstract: Inter-molecular forces on which we have
poor prior knowledge are often essential for the sta-
bility and evolution of biological assemblies. In this
thesis, we focus on two such forces that are critically
involved in the deformation of either biopolymers or
membranes. We infer these forces by reconciling the
geometry of such deformation with simple mechani-
cal models. In the first part of the thesis, we consider
the attractive force between DNA molecules medi-
ated by multivalent cations. This attraction is required
to compensate DNA bending rigidity when packag-
ing large quantities of DNA in comparatively small
environments, such as the nuclei of sperm cells. In
vitro, multivalent cations drive DNA condensation into
dense toroidal bundles. Geometrical data on DNA
toroidal bundles give access to the competition be-
tween inter-helical attraction and DNA bending rigid-

ity. From these data, we infer inter-helical forces and
argue that the toroid curvature weakens the adhe-
sion between DNA molecules. In the second part
of the thesis, we turn to the binding force of a mem-
brane remodeling protein complex, ESCRT-III, to cel-
lular membranes. ESCRT-III proteins assemble into
membrane-remodeling polymers during many cellular
processes, ranging from HIV budding to cytokinesis.
The mechanism by which ESCRT-III polymers deform
membranes is still unclear. In vitro, ESCRT-III poly-
mers can reshape spherical membrane vesicles into
helical tubes. We argue that helical tubes result from
the peculiar positioning of membrane-binding sites on
the surface of ESCRT-III polymers. Furthermore, we
infer the binding force between ESCRT-III and mem-
brane from the geometry of helical tubes.
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