
HAL Id: tel-03018107
https://theses.hal.science/tel-03018107

Submitted on 22 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Representing and computing with types in dynamically
typed languages

Jim Newton

To cite this version:
Jim Newton. Representing and computing with types in dynamically typed languages. Symbolic
Computation [cs.SC]. Sorbonne Université, 2018. English. �NNT : 2018SORUS440�. �tel-03018107�

https://theses.hal.science/tel-03018107
https://hal.archives-ouvertes.fr

L’École Doctorale Informatique, Télécommunications et Électronique,
EDITE de Paris

Representing and Computing with Types in
Dynamically Typed Languages

Extending Dynamic Language Expressivity to Accommodate Rationally Typed
Sequences

i

Presented and defended to the public and before distinguished members of the jury:
Reporter Pr. Robert Strandh Université Bordeaux / LaBRI / UMR 5800
Reporter Dr. Pascal Costanza Imec
Jury member Dr Barbara Jobstmann École Polytechnique Fédérale de Lausanne (EPFL)
Jury member Dr. Jean Bresson IRCAM / CNRS / Sorbonne Université
Jury member Dr. Chrisophe Rhodes Goldsmiths University of London
Director Pr. Thierry Géraud EPITA/LRDE
Advisor Dr Didier Verna EPITA/LRDE

Jim Edward Newton

20 November 2018

Abstract

In this report, we present code generation techniques related to run-time type checking of heterogeneous se-
quences. Traditional regular expressions [HMU06, YD14] can be used to recognize well defined sets of character
strings called rational languages or sometimes regular languages. Newton et al. [NDV16] present an extension
whereby a dynamic language may recognize a well defined set of heterogeneous sequences, such as lists and
vectors.

As with the analogous string matching regular expression theory, matching these regular type expressions
can also be achieved by using a finite state machine (deterministic finite automata, DFA). Constructing such
a DFA can be time consuming. The approach we chose, uses meta-programming to intervene at compile-time,
generating efficient functions specific to each DFA, and allowing the compiler to further optimize the functions
if possible. The functions are made available for use at run-time. Without this use of meta-programming, the
program might otherwise be forced to construct the DFA at run-time. The excessively high cost of such a
construction would likely far outweigh the time needed to match a string against the expression.

Our technique involves hooking into the Common Lisp type system via the deftype macro. The first
time the compiler encounters a relevant type specifier, the appropriate DFA is created, which may be a Ωp2nq
operation, from which specific low-level code is generated to match that specific expression. Thereafter, when
the type specifier is encountered again, the same pre-generated function can be used. The code generated is
Θpnq complexity at run-time.

A complication of this approach, which we explain in this report, is that to build the DFA we must calculate
a disjoint type decomposition which is time consuming, and also leads to sub-optimal use of typecase in
machine generated code. To handle complication, we use our own macro optimized-typecase in our machine
generated code. Uses of this macro are also implicitly expanded at compile time. Our macro expansion uses
BDDs (Binary Decision Diagrams) to optimize the optimized-typecase into low level code, maintaining the
typecase semantics but eliminating redundant type checks. In the report we also describe an extension of
BDDs to accomodate subtyping in the Common Lisp type system as well as an in-depth analysis of worst-case
sizes of BDDs.

1

Résumé

Cette thése prèsente des techniques de gènèration de code lièes à la vèrification dynamique de types de sèquences
hètèrogénes mais règuliéres. Nous gènèralisons les expressions rationnelles classiques aux expressions rationnelles
de type, en adaptant leur surface syntaxique, reprèsentation interne, calcul, optimisation, et sèrialisation (gènèra-
tion de code). Nous comparons la forme native basèe sur des S-Expressions avec une reprèsentation par Di-
agrammes de Dècision Binaire, enrichis pour reprèsenter les opèrations boolèennes dans un treillis de types
prenant en charge le sous-typage. Nous introduisons alors la notion de Dècomposition Maximale en Types
Disjoints, nous prouvons l’existence et l’unicitè d’une telle dècomposition, et nous explorons plusieurs solutions
algorithmiques pour calculer celle-ci. La Dècomposition Maximale en Types Disjoints est utilisèe pour gènèrer
un automate fini et dèterministe reprèsentant une expression rationnelle de type. Cet automate est utilisè à la
compilation pour gènèrer à son tour du code de vèrification dynamique de type. Le code ainsi gènèrè ne tient
a priori pas compte d’èventuelles redondances dans les vèrifications de type. Nous ètudions donc ces problémes
plus en dètail et utilisons à nouveau la thèorie des Diagrammes de Dècicion Binaire afin d’èliminer les calculs
redondants et de produire ainsi du code optimisè. Le travail prèsentè dans cette thése s’attache à traiter des
problémes de représentations et de calcul sur des types dans les langages dynamiques.

2

Dedication

À Serge, en remerciement de son amour et de son soutien durant ces douze dernières années.
Il y a trois ans et demi, sous forme de boutade, il me disait: «ça ne serait pas mal d’être marié à un

docteur»...
Sans lui, je ne me serais jamais lancé dans cette aventure...souvent excitante, parfois stressante, mais jamais

insurmontable. Et cela je le dois à Serge qui a toujours su être un excellent soutien.

3

Acknowledgments

I want to express my appreciation to all the people who helped me in contribution to this PhD project. Unques-
tionable thanks go to Didier Verna and Theo Geraud for giving me the idea and the chance to pursue this PhD
and for the many times they challenged my ideas leading to more thorough research and a better understanding
of my research topic. In a literal sense, without Didier and Theo, this PhD project would never have been
possible.

I would like to convey my esteemed gratitude to my steering committee, Robert Strandh and Carlos Argon
for the frank feedback, valuable guidance, and insightful perspective they gave leading up to and during my
yearly follow up reviews.

Sincere appreciation goes to Pascal Costanza for his help many times during this PhD project, for discussions,
for reviewing articles in the very early, chaotic stages, and for generously agreeing to be an official reviewer of
my thesis.

Thank you in anticipation to all the jury not already mentioned, for the valuable feedback on my thesis:
Barbara Jobstmann, Christophe Rhodes, and Jean Bresson.

Due recognition goes to all of my colleagues at LRDE for their contributions in various ways to my research
project: to Clément Démoulins for all his help with the LRDE compute cluster without which my computation
would still be running; to Guillaume Tochon for his patient and enthusiastic help with many statistics related
questions; to Alexandre Duret-Lutz and Maximilien Colange for our white board discussions, sometimes silly,
but too many to recount; to Akim Demaille for his technical input, especially early on in the area of regular
languages which turned out to have a significant influence on the technical direction of my research. Also thanks
to Daniella Becker for her help with the French language and administration and so many other things without
which I would have been lost so many times, and also to Daniella for so often lending a willing ear to hear my
complaints.

Appreciation to Priti Singh for her meticulous proofreading of the manuscript and for suggesting many
corrections in terms of grammar, clarity, vocabulary, and page formatting.

Thanks to several acquaintances on comp.lang.lisp for helping to resolve technical and historical questions:
Pascal Bourguignon, Lieven Marchand, Barry Margolin, Kent M. Pitman, Doug Katzman, and Jeff Barnett.
Thanks also to Jean Éric Pin, Yann Régis-Gianas for assisting me in resolving several technical issues. Thanks
as well to Giuseppe Castagna for kindly helping me many times to gain perspective, for our conversations and
for his publications, which were invaluable and inspiring, and also introducing me to Mariangiola Dezani who
gladly provided me with more useful historical perspective and context.

And special thanks to Robert Strandh and Kathleen Callaway for their encouragement many times during
the past three years of this interesting and enjoyable project.

4

Contents

I Regular Sequences in Common Lisp 11

1 Overview 13
1.1 Introduction . 13
1.2 Background . 14
1.3 Typed heterogeneous sequences . 15
1.4 Finite automata . 16
1.5 Optimized code generation . 17
1.6 Binary Decision Diagrams . 19
1.7 Source Available . 19

2 Common Lisp Type System 20
2.1 Types in Common Lisp . 20
2.2 Semantics of type specifiers . 22
2.3 Computation details regarding types . 23
2.4 Unanswerable question of the subtype relation . 23
2.5 Type specifier manipulation . 25
2.6 Type reduction using s-expressions . 26
2.7 Function types . 27

2.7.1 Semantics of function types . 27
2.7.2 Function types in Common Lisp . 28
2.7.3 The Induced Subtype Rule (ISR) . 29
2.7.4 Degenerate function types . 30
2.7.5 Intuition of function type intersection . 32
2.7.6 Calculation of function subtype relation is underspecified 33
2.7.7 Run-time type check of functions considered harmful . 33
2.7.8 A historical perspective . 34

2.8 Related work . 34
2.9 Perspectives . 35

3 Rational Languages 37
3.1 Theory of rational languages . 37
3.2 Rational expressions . 41
3.3 Regular expressions . 41
3.4 Finite automata . 42
3.5 Equivalence of rational expressions and finite automata . 43
3.6 The rational expression derivative . 43
3.7 Computing the automaton using the rational derivative . 46
3.8 Related work . 47

4 Type-Checking of Heterogeneous Sequences in Common Lisp 48
4.1 Introduction . 48
4.2 Heterogeneous sequences in Common Lisp . 49

4.2.1 The regular type expression . 49
4.2.2 Clarifying some confusing points about regular type expressions 52

4.3 Application use cases . 53
4.3.1 Use Case: RTE-based string regular expressions . 53
4.3.2 Use Case: Test cases based on extensible sequences . 54
4.3.3 Use Case: DWIM lambda lists . 55
4.3.4 Use Case: destructuring-case . 57

5

4.4 Implementation overview . 64
4.4.1 Pattern matching a sequence . 65
4.4.2 Type definition . 65
4.4.3 Constructing a DFA representing a regular type expression 67
4.4.4 Optimized code generation . 69
4.4.5 Sticky states . 71
4.4.6 The overlapping types problem . 72
4.4.7 Rational type expressions involving satisfies . 73
4.4.8 Known open issue . 75
4.4.9 RTE performance vs hand-written code . 77
4.4.10 RTE performance vs CL-PPCRE . 77
4.4.11 Exceptional situations . 78

4.5 Alternatives: Use of cons construct to specify homogeneous lists 79
4.6 Related work . 81
4.7 Conclusions and perspectives . 81

II Binary Decision Diagrams 83

5 Reduced Ordered Binary Decision Diagrams 85
5.1 BDD reduction . 85

5.1.1 Initial construction step . 86
5.1.2 Reduction rules . 88

5.2 ROBDD Boolean operations . 91
5.3 ROBDD construction . 94

5.3.1 Common Lisp ROBDD implementation . 94
5.3.2 BDD object serialization and deserialization . 96
5.3.3 BDD retrieval via hash table . 98

5.4 Common Lisp implementation of ROBDD Boolean operations . 98
5.5 ROBDD operations with multiple arguments . 99
5.6 Generating randomly selected ROBDD of n variables . 102
5.7 Conclusions and perspectives . 104

6 Numerical Analysis of the Worst-Case Size of ROBDDs 105
6.1 Worst-case ROBDD size and shape . 105

6.1.1 Process summary . 105
6.1.2 Experimental analysis of worst-case ROBDD Size . 106
6.1.3 Statistics of ROBDD size distribution . 106
6.1.4 Sufficiency of sample size . 112
6.1.5 Measuring ROBDD residual compression . 134
6.1.6 Shape of worst-case ROBDD . 136
6.1.7 Worst-case ROBDD size . 137
6.1.8 The threshold function θ . 140
6.1.9 Plots of |ROBDDn| and related quantities . 148
6.1.10 Limit of the residual compression ratio . 149

6.2 Programmatic construction of a worst-case n-variable ROBDD 150
6.3 Related work . 153
6.4 Conclusion . 154
6.5 Perspectives . 155

7 Extending BDDs to Accommodate Common Lisp Types 156
7.1 Representing Boolean expressions . 156
7.2 Representing types . 156
7.3 Representing Common Lisp types . 157
7.4 Canonicalization . 157

7.4.1 Equal right and left children . 157
7.4.2 Caching BDDs . 157
7.4.3 Reduction in the presence of subtypes . 157
7.4.4 Reduction to child . 158
7.4.5 More complex type relations . 158
7.4.6 Optimized BDD construction . 158

6

7.5 Related work . 160
7.6 Perspectives . 160

III The Type Decomposition and Serialization Problems 162

8 Maximal Disjoint Type Decomposition 164
8.1 Motivation . 165
8.2 Rigorous development . 166

8.2.1 Unary set operations . 166
8.2.2 Partitions and covers . 168
8.2.3 Sigma algebras . 169
8.2.4 Finitely many Boolean combinations . 171
8.2.5 Disjoint decomposition . 178
8.2.6 Maximal disjoint decomposition . 181

8.3 Related work . 182

9 Calculating the MDTD 183
9.1 Baseline set disjoint decomposition . 184
9.2 Small improvements in baseline algorithm . 186
9.3 Type disjoint decomposition as SAT problem . 188
9.4 Set disjoint decomposition as graph problem . 189

9.4.1 Graph construction . 191
9.4.2 Strict subset . 194
9.4.3 Relaxed subset . 195
9.4.4 Touching connections . 196
9.4.5 Loops . 198
9.4.6 Discovered empty set . 199
9.4.7 Recursion and order of iteration . 202

9.5 Type decomposition using BDDs . 203
9.5.1 Improving the baseline algorithm using BDDs . 204
9.5.2 Improving the graph-based algorithm using BDDs . 204

9.6 The Baker subtypep implementation . 205

10 Performance of MDTD Algorithms 206
10.1 Overview of the tests . 206
10.2 Pools of type specifiers used in performance testing . 207

10.2.1 Pool: Subtypes of number . 208
10.2.2 Pool: Subtypes of condition . 208
10.2.3 Pool: Subtypes of number or condition . 209
10.2.4 Pool: Real number ranges . 209
10.2.5 Pool: Integer ranges . 209
10.2.6 Pool: Subtypes of cl:t . 209
10.2.7 Pool: Subtypes in SB-PCL . 209
10.2.8 Pool: Specified Common Lisp types . 210
10.2.9 Pool: Intersections and Unions . 210
10.2.10Pool: Subtypes of fixnum using member . 210

10.3 MDTD algorithm implementations . 211
10.4 Tuning the BDD hash mechanism . 211
10.5 Tuning the BDD-based graph algorithm . 213
10.6 Analysis of performance tests . 218
10.7 Analysis of performance tests with Baker functions . 220
10.8 Analysis of profile tests . 222
10.9 Profiler graphs of MDTD algorithms by pool . 224
10.10Profiler graphs of MDTD algorithms by function . 239
10.11Related work . 249
10.12Conclusion and perspectives . 249

7

11 Strategies for typecase Optimization 251
11.1 Introduction . 251
11.2 Type specifier approach . 252

11.2.1 Reduction of type specifiers . 253
11.2.2 Order dependency . 254
11.2.3 Mutually disjoint clauses . 255
11.2.4 Comparing heuristically . 256
11.2.5 Reduction with automatic reordering . 256

11.3 Decision diagram approach . 257
11.3.1 An ROBDD compatible type specifier . 257
11.3.2 BDD construction from type specifier . 260
11.3.3 Serializing the BDD into code . 261
11.3.4 Emitting compiler warnings . 262

11.4 Related work . 262
11.5 Conclusion and perspectives . 263

12 Conclusion 265
12.1 Contributions . 265
12.2 Perspective . 266

12.2.1 Common Lisp . 266
12.2.2 Heterogeneous sequences . 266
12.2.3 Binary decision diagrams . 266
12.2.4 Extending BDDs to accommodate Common Lisp types . 267
12.2.5 MDTD . 267
12.2.6 Optimizing typecase . 267
12.2.7 Emergent issues . 268

A Code for reduce-lisp-type 269
A.1 Fixed-point based type specifier simplification . 269
A.2 Bottom-up, functional style, type specifier simplification . 271

B Code for s-expression baseline algorithm 274

C Code for BDD baseline algorithm 275

D Code for graph-based algorithm 276
D.1 Support code for graph decomposition . 276
D.2 Entry Point Functions . 276
D.3 Graph Construction . 277
D.4 Disjoining Nodes . 277
D.5 Green Line functions . 278
D.6 Blue Arrow Functions . 278
D.7 Strict Subset . 278
D.8 Relaxed Subset . 279
D.9 Touching Connections . 279
D.10 Breaking the Loop . 279
D.11 S-expression based graph algorithm . 281
D.12 BDD based graph algorithm . 282

E Subclasses of function using Clos 283

F Running the graph-based algorithm on an example 284

8

Nomenclature

rn,ms Integer interval Notation 3.2, page 37.

B Index of the belt row of a worst-case ROBDD Definition 6.9, page 136.
Ş

Unary intersection operator. Definition 8.8, page 167.
Ť

Unary union operator. Definition 8.7, page 167.
Ů

Mutually disjoint union. Notation 8.60, page 180.

K Lattice Bottom Notation 2.6, page 21.
rV Distributed complement Definition 8.34, page 172.

∆2MHnpxq Histogram difference function Definition 6.6, page 113.

‖ The set disjoint relation Notation 2.2, page 20.

Erat Rational expressions Notation 3.22, page 41.

η Boolean formula variable density. Definition 5.23, page 100.

F Distributed intersection Definition 8.43, page 174.
MHnpxq Sampled histogram function Notation 6.3, page 108.

Hnpxq Histogram function Definition 6.1, page 106.

Hnpxq Normalized histogram function Definition 6.2, page 108.

D Disjunctive closure Definition 8.33, page 171.

C Conjunctive closure Definition 8.32, page 171.

rxs The ceiling function Notation 6.28, page 143.

txu The floor function Notation 6.27, page 143.

}∆MHn}2 L2 norm of histogram difference function Notation 6.7, page 113.

LΣ Rational languages Notation 3.20, page 40.

∦ Not disjoint Notation 2.3, page 20.

νprq nullable Definition 3.26, page 43.

PpSq Set of pairs Notation 6.41, page 151.

BwL Rational derivative Definition 3.27, page 44.

m2 Number of order pairs of m items Notation 6.12, page 137.

φ Probability distribution function Notation 6.5, page 112.

PpUq The power set of U . Definition 8.11, page 167.

ψ Real valued threshold function Definition 6.26, page 143.

ρn Residual compression ratio Definition 6.8, page 134.

9

nri Size of k’th row, viewed top down Notation 6.17, page 139.
nRk Size of k’th row, views bottom up Notation 6.13, page 138.

JrK Language generated by expression Notation 3.21, page 41.

BpV q Sigma Algebra Definition 9.1, page 183.

Σ alphabet Definition 3.1, page 37.

Σ˚ Set of all finite length words Notation 3.8, page 38.

Σ1 The set of single letter words Notation 3.7, page 38.

σn Standard deviation given a histogram Notation 6.4, page 111.
nSk Sum on nodes in rows k ` 1 to n Definition 6.14, page 138.

Ă Strict subset or equal Notation 2.5, page 21.

θ The threshold function Definition 6.25, page 142.

J Lattice Top Notation 2.7, page 21.

|UOBDDn| Size of unreduced ordered BDD Notation 5.3, page 88.

ε empty word Notation 3.5, page 38.

}f}µ Average norm Definition 10.6, page 214.

}f}1 Averaged L1 norm Definition 10.7, page 215.

}f}rms Averaged RMS norm Definition 10.8, page 215.

‘ Exclusive or, symmetric difference Notation 5.6, page 91.

A ¨B Concatenation of languages Definition 3.12, page 39.

A˚ Kleene closure of language A Definition 3.18, page 40.

An Language concatenated with itself multiple times. Definition 3.14, page 39.

nodepq ROBDD node constructor Notation 6.39, page 151.

r` match a rational expression one or more times Notation 3.29, page 45.

rowba Nodes in a range of rows Notation 6.40, page 151.

u ¨ v Concatenation of words Definition 3.10, page 38.

Z Student score Definition 10.9, page 215.

AÑ Y Function type Definition 2.16, page 28.

congruent Congruent BDD nodes Definition 5.5, page 88.

DFA Deterministic Finite Automaton Definition 3.25, page 42.

language in Σ A set of words Definition 3.6, page 38.

Lisp function type Lisp function type Definition 2.20, page 29.

NDFA Non-Deterministic Finite Automaton Definition 3.24, page 42.

ordered BDD Ordered Binary Decision Diagram Definition 5.2, page 87.

Product size Size of input times size of output Definition 10.1, page 206.

Rational language Definition 3.19, page 40.

symmetric Symmetric BDD node Definition 5.4, page 88.

type Common Lisp type Definition 2.1, page 20.

type specifier An object which denotes a type. Definition 2.8, page 21.

UOBDD Unreduced Ordered Binary Decision Diagram Definition 5.1, page 86.

word a sequence of characters from an alphabet Definition 3.3, page 37.

10

Part I

Regular Sequences in Common Lisp

11

Figure 1: Me, not yet thinking about whether I want to write a thesis.

This PhD research project takes a look at a particular problem in some modern dynamic programming
languages. Many modern programming languages support a feature that allows sequences to be dynamic and
heterogeneous, meaning that the types of the content may not be fully known until run-time, and different
types of objects may be contained in the same sequence. We provide a way to make available to the compiler
certain information not about the explicit types but rather about regular patterns of types within the sequences.
Further, this report describes a problem that seems to have an elegant solution, but when this apparent solution
is investigated, several hard problems are revealed. Herein, solutions to these problems are proposed and certain
performance aspects of these problems are analyzed.

In Part I, we start in Chapter 1 with a high-level overview of the problem. In Chapter 4 we look at extending
the Common Lisp type system to accommodate regular sequence types. Before diving into Chapter 4, we first
introduce the Common Lisp type system in Chapter 2 and rational languages in Chapter 3.

12

Chapter 1

Overview

In this chapter, we summarize a technique for writing functions which recognize sequences of heterogeneous
types in Common Lisp. The technique employs machine generated sequence recognition functions which are
generated at compile time, and evaluated at run-time. The technique we demonstrate extends the Common
Lisp type system, exploiting the theory of rational languages, BDDs (Binary Decision Diagrams), and the
Turing complete macro facility of Common Lisp. The resulting system uses meta-programming to move a
Ωp2nq complexity1 operation from run-time to a Ωp2nq compile-time operation, leaving a highly optimized Θpnq
complexity2 operation for run-time. We refer the reader to Wegener [Weg87, Section 1.5] for a discussion of Ω
notation.

1.1 Introduction
There seems to be a trend that functional programming is becoming more popular, looking at the number of
publications e.g., about functional languages [Saj17, SGC15] and functional programming [Cuk17, Wam11].
This apparent rise may be due to the need for distributed computing. The functional paradigm provides tools
for avoiding certain problems encountered in distributed algorithms. Scala Spark [KKWZ15] is an example of
a powerful and popular functional interface for implementing Big Data computation. Even languages that are
not purely functional can take advantage of a functional paradigm. Haveraaen et al. [HMR`15] describe the use
of functional techniques in modern Fortran in high performance computing. Swaine [Swa17] illustrates blatant
and subtle functional properties in several popular scripting languages like Clojure, Elixer, Scala, Swift, and
Lua. Hughes [Hug89] reports that the modularity provided by functional languages enables programs to express
results rather than computing by side effect, thus eliminating a source of bugs.

An introduction to functional programming can take any of various paths. For a seasoned Lisp programmer
it makes sense to start by looking at the untyped lambda calculus [Chu41, Pie02] to understand the elegant
model based on evaluation. Steele and Gabriel [SG93] suggest that Lisp languages are concerned more with
expressiveness than anything else. Indeed, the expressiveness which Lisp in general offers is closely related to
its underpinnings in the lambda calculus, i.e. the evaluation-based model and the use of functions to express
composition of computation. However, to manage larger problems, the programmer needs more weaponry of
abstraction. The Common Lisp [Ans94] programming language offers an arsenal of paradigms, enabling the
programmer to use functional style when appropriate, and also enables object orientation [BDG`88, Kee89],
meta object programming [Pae93, KdRB91], macro programming [Hoy08] and many others.

Another kind of abstraction which the student of functional languages encounters is the type system in the
form of the typed lambda calculus [Pie02]. Types in programming languages bring at least three genres of capa-
bilities to the respective languages, to different degrees depending on the programming language: (1) enabling
the compiler to choose data representations and optimizations [THFF`17], to calculate allocation size, and to
perform pointer arithmetic (like in the C language [KR88]); (2) detecting or eliminating certain programmer
errors such as argument compatibility between definition and call-site (such as in gradually typed [CL17] func-
tional languages and in C++ using generic programming paradigm [LGN12, LGN10]) allowing programmers
to write type safe programs and allowing compilers to safely make certain optimizations, and (3) allowing the
programmer to make run-time decisions based on dynamic types of run-time data.

The Common Lisp type system [Ans94, Section 4.2 Types] provides information to the compiler for memory
allocation and space requirements, for detection of certain types of programmer errors, and for for certain
optimizations. The type system may also be exploited to make run-time decisions based on type of information.
This ability to make run-time decisions based on type of data adds expressive power to programs, and allows

1We use Ωp2nq to mean that the complexity is bounded below by an exponential.
2We use Θpnq to denote that the complexity is bounded above and below by a linear function.

13

the concept of type to be extended from a structural distinction to a semantic distinction. Castagna [CF05]
reports that extending the concept of type to a semantic distinction enables the use of set theory on the type
algebra. In fact, Common Lisp defines a type simply as a set of objects. Many kinds of run-time type checks
incur penalties in terms of execution speed. Nevertheless, the cost of such run-time decisions can be mitigated
by eliminating the redundant calculations or even moving such calculations to compile-time in certain cases.

In this research work, we have exploited the expressive ability of the Common Lisp programming language
in terms of sequence types. This report describes the current state of research, including a high-level view
of the problem of incorporating rational sequences into the Common Lisp type system, surface syntax, and
conversion to internal representation. Certain issues of optimizing performance are also discussed concerning
type checking calculations at run time. Some expensive calculations can be moved to compile time. The thesis
focuses on compile time calculation, proving the correctness of algorithms, performance measurement of various
approaches, and experimenting with different data structures.

This work will be beneficial to large number of users beyond the narrow audience of Lisp programmers. With
the growing popularity of functional languages and even new Lisp dialects such as Clojure, different features
of Common Lisp are explored in other languages. Certainly much of the historically unique power of Common
Lisp comes from its dynamic nature, modern languages seek to access much of this flexibility in statically
typed languages, which are sometimes disguised as gradually typed [CL17]. An example of such a language
is Scala [OSV08, CB14]. This language attempts to make type declarations optional except in certain cases,
allowing the programmer to write code which looks, in many cases, like a dynamic language. The compiler
adds type declarations and assertions where needed, and thereafter it seeks to completely remove run-time type
checks. We suggest that such languages may also benefit from some of the results of our work.

Recently, several languages have introduced tuple types (C++ [Str13, Jos12], Scala [OSV08, CB14],
Rust [Bla15]). Our work provides similar capability of such tuple types for a dynamic programming language.
The Shapeless [Che17] library allows Scala programmers to exploit the type-level programming capabilities
through heterogeneous lists.

We also believe that as more work is done in programming languages which support heterogeneously typed
tuples and sequences, especially in languages which also have type systems supporting set theoretical operations
such as union and intersection [FCB08b, CF05], that the need will naturally arise to express patterns of types
in those sequences.

1.2 Background
Common Lisp is a programming language defined by its specification [Ans94] and, with several implementa-
tions, including both open source and commercial. For the research explained in this report we have used
SBCL [New15] as implementation of choice. All implementations share the common specified core of function-
ality, and each implementation extends that functionality in various ways.

Two Common Lisp features which we exploit are its macro system and its type system. The following is a
very high-level summary of Common Lisp types and macros.

The Common Lisp macro system [Gra96, Section 10.2] allows programmers to write code which writes code.
A macro may be defined using defmacro and such macros are normally expanded at compile time into code
which is compiled and made available for execution at run time. Thanks to the homoiconicity [McI60, Kay69]
of the Common Lisp language, macros take arguments which are Lisp objects (symbols, strings, numbers, lists
etc.), and return program fragments which are also Lisp objects. Programmers writing macros may use any
feature of the language in the macros themselves. There are several well understood caveats associated with
Common Lisp macros. Costanza [CD10] explores the most notable of these—hygienic issues. Costanza extends
the work of Clinger [CR91] who claims that Common Lisp suffers from problems that make it impossible to write
macros that work correctly. Expert Common Lisp programmers understand these difficulties and restrictions
and normally write macros exploiting the package system and the gensym function to avoid name conflicts.

The Common Lisp type system [Ans94, Section 4] can be understood by thinking of types as sets of objects.
Subtypes correspond to subsets. Supertypes correspond to supersets. The empty type, called nil, corresponds
to the empty set. The system comes with certain predefined types, such as number, fixnum, rational and many
more. Additionally programmers may compose type specifiers which are syntax for expressions of types in terms
of other types. These types are intended to be both human and machine readable. For example, (or number
string) expresses the union of the set of numbers with the set of strings. Likewise type specifiers may use the
operators and, not, member, and satisfies respectively for conjunction, complementation, enumeration, and
definition by predicate.

Common Lisp allows types to be used in variable and function declaration, slot definitions within objects,
and element definition with arrays. These declarations are normally considered during program compilation. In
addition Common Lisp provides several other built-in macros and functions for type-based run-time reflection,
e.g., typep, typecase, subtypep, check-type. The programmer may associate new type names with composed

14

types by using deftype whose syntax is similar to that of defmacro.

1.3 Typed heterogeneous sequences
While the Common Lisp programmer can specify a homogeneous type for all the elements of a vector [Ans94,
Section 15.1.2.2], or the type for a particular element of a list, [Ans94, System Class CONS], two notable
limitations, which we address in this report, are 1) that there is no standard way to specify heterogeneous types
for different elements of a vector, 2) neither is there a standard way to declare types (whether heterogeneous or
homogeneous) for all the elements of a list.

A model for typing heterogeneous sequences is inspired from the theory of rational languages such as pre-
sented by Hopcroft [HMU06]. A rational language, which we formally define in Chapter 3 is a set of finite
sequences which essentially obey certain language-specific pattern. A rational expression characterizes or spec-
ifies that pattern.

Example 1.1 (A rational expression denoting a rational language). The rational expression pa ¨ b˚ ¨ cq defines
the set of all sequences of characters which begin with the character ’a’, end with the character ’c’, and interpose
zero or more (but finitely many) occurrences of character ’b’. Such sequences include the strings "ac", "abc",
and "abbbbc", but not the string "bc". The set of all such strings is called the rational language of pa ¨ b˚ ¨ cq.

In a programming language such as Common Lisp which supports arbitrary collections of objects into
sequences, we can easily think of the types of those objects as obeying patterns similar to rational expressions.
A rational type expression, addressed in Chapter 4, abstractly denotes the pattern of types within such sequences.
The concept is envisioned to be intuitive to the programmer in that it is analogous to patterns described by
regular expressions.

As addressed in Chapter 2, the Common Lisp language models types as sets. We can therefore think of
rational languages not only as sets but equivalently as types.

Example 1.2 (The type associated with a rational type expression). This example is completely analogous to
Example 1.1.

The rational type expression pstring¨number˚ ¨symbolq denotes the set (and thus the type) of finite sequences
which begin with an object of type string, end with an object of type symbol, and interpose zero or more (but
finitely many) objects of type number. Such sequences include vectors like #("hello" 1 2 3 world) and lists
like ("hello" world), but not the list (3 four). The set of all such sequences is the type identified by the
rational type expression pstring ¨ number˚ ¨ symbolq.

Rational expressions match character constituents strings according to a character equality predicate. By
contrast, rational type expressions match elements of sequences by element type membership predicates.

A rational type expression is a mathematical expression composed of symbols, superscripts, and infix oper-
ators. To denote a rational type in the Common Lisp programming language, we abide by the Lisp tradition
and define a surface syntax based on ASCII characters and prefix operators. This machine friendly s-expression
based syntax, we call regular type expression.

We have integrated regular type expressions into the Common Lisp language by extending the type system
with a user-defined type (see Section 4.4.2). We have implemented a parameterized type named rte (regular
type expression), via deftype. The call-by-name argument of rte is a regular type expression whose grammar
is detailed in Figure 4.1 in Section 4.2.1. The members of such type are all sequences matching the given regular
type expression.

Example 1.3 (Example uses of the rte type specifier).

(defclass C ()
((point :type (and list

(rte (: cat number number))))
...))

(defun F (X Y)

15

(declare (type (rte (:* (cons number)))
Y))

...)

(typecase object
((rte (:* (: cat string (:* number) symbol))

...)
...))

As with all user defined types, the rte type can be used anywhere Common Lisp expects a type specifier.
Example 1.3 illustrates some use cases. The point slot of the class C, is declared as being a list of exactly two
numbers. The function F expects an argument, Y, which is a sequence of lists, where each list has a number as
its first element.

1.4 Finite automata

0 1symbol

2number

3

string

symbol

number

symbol

string

Figure 1.1: Finite state machine (DFA) (of rational type expression psymbol ¨ pnumber` ` string`qq`

In Section 1.3 we gave a high-level introduction to rational type expressions including how they can be
used in a Common Lisp program to add expressivity to the type system. In this section, we take a look into
the implementation. This implementation includes application of standard automata theory and the discovery
of several interesting and challenging problems. The investigations and proposed solutions of these problems
comprise the body of this report.

A standard mechanism for implementing rational expressions is with finite automata. The surface syntax,
the regular expression, is parsed and converted into a finite state machine. This work must be done once per
regular expression encountered in the program, typically with exponential complexity [Hro02]. Thereafter, a
candidate string can be matched against a regular expression simply by executing the state machine, with linear
complexity.

In implementing the rational type expressions, we follow this standard approach. The Common Lisp-friendly
surface syntax is converted into an internal representation. This representation is converted directly into a
deterministic finite automata (DFA), using a technique closely modeled after the Brzozowski rational derivative
as described in Section 3.6.

We deviated from the Brzozowski rational derivative presented by Owens [ORT09a] because of the challenge
posed by potentially overlapping types (see Section 4.4.6). In order to guarantee that the automaton be
deterministic, we must decompose the set of types mentioned in a regular type expression into a larger set of
non-intersecting types. This problem is referred to as Maximal Disjoint Type Decomposition (MDTD) and is
discussed in Chapters 8 and 9.

16

1.5 Optimized code generation

Example 1.4 (Code generated to match regular type expression).

(lambda (sequence)
(tagbody

L0
(when (null sequence)

(return nil)) ; rejecting
(optimized-typecase (pop sequence)

(symbol (go L1))
(t (return nil)))

L1
(when (null sequence)

(return nil)) ; rejecting
(optimized-typecase (pop sequence)

(number (go L2))
(string (go L3))
(t (return nil)))

L2
(when (null sequence)

(return t)) ; accepting
(optimized-typecase (pop sequence)

(number (go L2))
(symbol (go L1))
(t (return nil)))

L3
(when (null sequence)

(return t)) ; accepting
(optimized-typecase (pop sequence)

(string (go L3))
(symbol (go L1))
(t (return nil)))))

At runtime, determining whether a given sequence matches a rational type expression amounts to executing
the automaton. There are two traditional ways of doing this. The first approach is to have a general purpose
matching function which takes an automaton and candidate sequence as arguments. The function then executes
the automaton as if it were a virtual machine, with instructions coming from the candidate sequence. The second
approach, which we chose to use, is to compile the automaton directly into code on the target architecture,
and execute that code at run-time to match a candidate sequence. In our case we compile the automaton into
Common Lisp code, and allow the Common Lisp compiler to generate architecture-specific code. Example 1.4
shows what such Common Lisp code might look like.

One thing to note about the complexity of this function is that the number of states encountered when the
function is applied to a sequence is equal to or less than the number of elements in the sequence. Thus the time
complexity is linear in the number of elements of the sequence and is independent of the number of states in
the DFA. Since we are able to generate this code at compile time (or load time in some cases) this means that
whatever the complexity for generating the automaton is, the run-time complexity is linear.

Example 1.5 (Composed Common Lisp type specifier).

(or (not number)
(eql 42)
(and fixnum (not unsigned))
(and unsigned (not fixnum)))

In generating the code such as in Example 1.4, we treat each of the states in the automaton.
Each state corresponds to a label in the resulting code. With each label there is an invocation of a
macro named optimized-typecase, and each transition in the automaton corresponds to a clause in the
optimized-typecase. Another challenging problem involved in this code generation is the question of which
order to list these clauses. In some cases the types mentioned are highly composed involving union, intersection,
and complement types, as illustrated in Example 1.5. Choosing the best execution order of the clauses could be
important. We address this problem in Chapter 11, and in addressing this problem we explain our technique
to transform code such as in Example 1.6

17

Example 1.6 (Example of optimized-typecase with intersecting types).

(optimized-typecase object
((and unsigned

(not (eql 42)))
body-forms-1 ...)

((eql 42)
body-forms-2 ...)

((and number
(not (eql 42))
(not fixnum))

body-forms-3 ...)
(fixnum

body-forms-4 ...))

The technique is to convert such a typecase invocation into a type specifier, by substituting appropriate
pseudo-predicates in place of the various body forms. For example the typecase in Figure 1.6 is converted to
the type specifier in Figure 1.7.

Example 1.7 (Type specifier equivalent to typecase from Figure 1.6).

(or (and (and unsigned (not (eql 42)))
(satisfies P1))

(and (eql 42)
(not (and unsigned (not (eql 42))))
(satisfies P2))

(and (and number (not (eql 42)) (not fixnum))
(not (and unsigned (not (eql 42))))
(not (eql 42))
(satisfies P3))

(and fixnum
(not (and unsigned (not (eql 42))))
(not (eql 42))
(not (and number

(not (eql 42))
(not fixnum)))

(satisfies P4)))

After the type specifier as shown in Example 1.7 has been generated, we convert the type specifier into a
binary decision diagram and thereafter into the Common Lisp code in Example 1.8 which is run-time equivalent
to the optimized-typecase based code in Example 1.6.

Example 1.8 (Code expansion equivalent derived from Example 1.6).

(lambda (object)
(tagbody

L1 (if (typep object 'fixnum)
(go L2)
(go L4))

L2 (if (typep object 'unsigned-byte)
(go L3)
(go P4))

L3 (if (typep object '(eql 42))
(go P2)

18

(go P1))
L4 (if (typep object 'number)

(go L5)
(return nil))

L5 (if (typep object 'unsigned-byte)
(go P1)
(go P3))

P1 (return (progn body-forms-1 ...))
P2 (return (progn body-forms-2 ...))
P3 (return (progn body-forms-3 ...))
P4 (return (progn body-forms-4 ...))))

1.6 Binary Decision Diagrams
A significant part of the work in manipulating Common Lisp types via BDDs was spent in investigation of BDDs
themselves. Our work concentrated on a particular flavor of BDDs called ROBDD (Reduced Ordered Binary
Decision Diagram). As mentioned already and as discussed in detail in Chapter 7, we intended the theory of
BDDs to accomodate the Common Lisp type system. In Chapter 5 we present a pedagogical introduction to
BDDs which should be instructional for the computer scientist unfamiliar with the subject. In that chapter, we
also present some of our findings related to a Common Lisp implementation of ROBDDs, including Common
Lisp implementations of certain ROBDD operations. We pay special attention to our technique for generating
a randomly chosen ROBDD of n Boolean variables, from a space of size 22n . These techniques enable our
investigation of typical size and shapes of large ROBDDs in Chapter 6.

Chapter 6 focuses on a numerical and statistical analysis of certain size related properties of ROBDDs.
In our investigation, we report the size and shape of typical and worst-case ROBDDs in relation to to the
amount of memory allocation needed to represent them. We investigate size and shape, first through random
sampling using techniques described earlier. This sampling seems to imply certain properties and tendencies
about ROBDDs in general. Second, we follow that intuitive investigation by rigorously proving some of these
intuitions. These derivations include formulas to predict worst-case size of an ROBDD of n Boolean variables.
We introduce a concept called residual compression ratio which measures the storage efficiency of ROBDDs
compared to raw truth table based storage. We follow this theoretical development with an explicit algorithm
for generating a worst-case ROBDD for a given number of Boolean variables. We say “a worst-case ROBDD”
because there are multiple ROBDDs which exhibit this worst-case size, and the algorithm makes this ambiguity
explicit.

1.7 Source Available
All the source code presented in this report and the code used during the research is
available as open source. It may be found and downloaded from the LRDE GitLab at
https://gitlab.lrde.epita.fr/jnewton/regular-type-expression. The tagged commit from 14
October 2018 is version-1.1.4. The code has also been made available to quicklisp, but as of 14 october
2018, it was not yet available. The code is covered by the following license.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

19

Chapter 2

Common Lisp Type System

In this chapter, we briefly summarize the Common Lisp type system including a definition of types and type
specifiers. We give a high-level profile of some fundamental Common Lisp functions which operate on types
at run-time. This chapter provides background information on the Common Lisp type system necessary to
comprehend the theoretical and experimental applications explained in the chapters which follow.

An expressive feature of the Common Lisp type system is the ability to ask the question whether two specified
types are in a subset relation. Although this question may be unanswerable in some situations, the fact that it
is sometimes calculable, via the subtypep function, enables many of the other developments explained in this
report. In particular:

1. The subtypep function is a critical component used in determinizing the finite state machine necessary
for efficiently recognizing regular patterns in the types of heterogeneous sequences in Chapter 4.

2. The subtypep function is requisite in Chapter 7 where we extend Binary Decision Diagrams to model
Common Lisp type specifiers.

3. And finally, the subtypep function is also indispensable in the kind of typecase optimization we explain
in Chapter 11.

2.1 Types in Common Lisp

Definition 2.1. In Common Lisp, a type is a (possibly infinite) set of objects at a particular point of time
during the execution of a program [Ans94].

In Common Lisp, types and functions may be redefined. Also an object of a particular class may be victim to
the change-class function. Both of these situations as well as several others may cause a type to change its
members while a program is running.

Notation 2.2. We use the symbol ‖ to indicate the disjoint relation between sets. I.e., we take A ‖ B to mean
AXB “ H.

The notation, ‖, is in no way standard notation. In fact we could not find any notation for this relation
which is recognized by a majority of mathematicians. We chose this notation because it resembles the parallel
relation of geometric lines. The mental image is that a line is a particular set of points, and parallel lines are
such sets with no element (point) in common. Likewise, disjoint sets have no element in common.

Notation 2.3. We also say A ∦ B to mean AXB ‰ H.

20

Example 2.4 (Disjoint and non-disjoint sets). t1, 3, 5u ‖ t2, 4u, and t1, 3, 5u ∦ t2, 3u.

Notation 2.5. We use the notation, A Ă B, (A Ą B) to indicate that A is either a strict subset (superset) of
B or is equal to B. When we wish to designate a strict subset (superset) relation, we denote A (B (A) B).

In type theory it is customary to use the symbols J and K to represent respectively the supertype of all
types and the subtype of all types.

Notation 2.6. The symbol, K, represents the Boolean false value, in a Boolean algebra context; the empty
type, in a type system context; or the empty set, H, in a set theoretical context.

Notation 2.7. The symbol, J, represents the Boolean true value, in a Boolean algebra context; the universal
type, in a type system context; or the universal set, in a set theoretical context.

As illustrated in Figure 2.1, Common Lisp programmers may take many ideas about types from the intuition
they already have from set algebra. Two given types might be intersecting such as the case of unsigned-byte
and fixnum in the figure, punsigned-byte ∦ fixnumq. Types may be disjoint such as float and fixnum, pfloat ‖
fixnumq. Types may have a subtype relation such as fixnum and number, pfixnum Ă numberq. Types may have
more complicated relations such as

`

bit Ă pfixnumX unsigned-byteq Ă rational
˘

.

unsigned-byte
bit

fixnum

rational

float

number

Figure 2.1: Some example Common Lisp types showing their intersection and subset relations
An object can belong to more than one type. Types are never explicitly represented as objects by Common

Lisp. Instead, they are referred to indirectly by the use of type specifiers.

Definition 2.8. From the Common Lisp specification [Ans94], a type specifier is an expression that denotes a
type.

21

Example 2.9 (Type specifiers). Example taken from the Common Lisp specification [Ans94]. The symbol
random-state, the list (integer 3 5), the list (and list (not null)), and the class named standard-class
are type specifiers.

A further discussion of type specifiers may be found in the specification [Ans94, Section 4.2.3].
New type specifiers can be defined using deftype, defstruct, defclass, and define-condition. But type

specifiers indicating compositional types are often used on their own, such as in the expression (typep x ’(or
string (eql 42))), which evaluates to true either if x is a string, or is the integer 42.

Two important Common Lisp functions pertaining to types are typep and subtypep. The function typep,
a set membership test, is used to determine whether a given object is of a given type. The function subtypep,
a subset test, is used to determine whether a given type is a recognizable subtype of another given type. The
function call (subtypep T1 T2) distinguishes three cases:

That T1 is a subtype of T2,

That T1 is not a subtype of T2, or

That subtype relationship cannot be determined.

Section 2.4 discusses situations for which the subtype relationship cannot be determined.

2.2 Semantics of type specifiers
There is some disagreement among experts as to how to interpret certain semantics of type specifiers in Common
Lisp. To avoid confusion, we state explicitly our interpretation.

The situation that the user may specify a type such as (and fixnum (satisfies evenp)) is particularly
problematic, because the Common Lisp specification contains a dubious, non-conforming example in the spec-
ification of satisfies. The problematic example in the specification says that (and integer (satisfies
evenp)) is a type specifier and denotes the set of all even integers. This claim contradicts the Common Lisp
specification in at least two ways.

Bourguignon [Bou17] explains the first violation that evenp is not a conforming argument of satisfies.
The argument of satisfies must designate a predicate, which is a function (not a partial function) which
returns a generalized Boolean as its first value. A function which may fail to return is not a predicate. In
particular (evenp nil) does not return, but instead signals an error.

The second reason that (and fixnum (satisfies evenp)) is non-conforming is that the specification of the
AND type specifier states that (and A B) is the intersection of types A and B and is thus the same as (and B A).
This presents a problem, because (typep 1.0 ’(and fixnum (satisfies evenp))) evaluates to nil while
(typep 1.0 ’(and (satisfies evenp) fixnum)) signals an error. We implicitly assume, for optimization
purposes, that (and A B) is the same as (and B A). Specifically, we interpret the AND and OR types as being
commutative with respect to their operands. Consequently, if certain type checks have side-effects (errors,
conditions, changing of global state, IO, interaction with the debugger), then optimized code does not guarantee
that those side-effects occur in the expected order, nor that they even occur at all. Therefore, in our treatment
of types we consider that type checking with typep is side-effect free, and in particular that it never signals an
error. This assumption allows us to reorder the checks as long as we do not change the semantics of the Boolean
algebra of the AND, OR, and NOT specifiers.

Admittedly, that typep never signal an error is an assumption we make knowing that it may limit the
usefulness of our results, especially since some non-conforming Common Lisp programs may happen to perform
correctly absent our optimizations. That is to say, our optimizations may result in errors in some non-conforming
Common Lisp programs. The specification clearly states that certain run-time calls to typep even with well-
formed type specifiers must signal an error, such as if the type specifier is a list whose first element is values
or function. Also, as mentioned above, an evaluation of (typep object ’(satisfies F)) will signal an
error if (F object) signals an error. One might be tempted to interpret (typep object ’(satisfies F)) as
(ignore-errors (if (F object) t nil)), but that would be a violation of the specification which is explicit
that the form (typep x ’(satisfies p)) is equivalent to (if (p x) t nil).

We assume, for this report, that no such problematic type specifier is used in the context of typecase.

22

2.3 Computation details regarding types
The Common Lisp language has flexible type calculus which makes type related computation possible by using
human readable type specifiers. Even with certain limitations, s-expressions are an intuitive data structure for
programmatic manipulation of type specifiers in analyzing and reasoning about types.

If T1 and T2 are Common Lisp type specifiers, then the type specifier (and T1 T2) designates the intersection
of the types. Likewise (and T1 (not T2)) and (and (not T1) T2) are the two type differences. Furthermore,
the Common Lisp function subtypep can be used to decide whether two given types are equivalent or disjoint,
and nil designates the empty type [Bak92]. See Figure 2.10 for definitions of the Common Lisp functions
type-intersection, type-relative-complement, types-disjoint-p, and types-equivalent-p.

Implementation 2.10 (Definition of type calculus helper functions).

(defun type-intersection (T1 T2)
`(and ,T1 ,T2))

(defun type-relative-complement (T1 T2)
`(and ,T1 (not ,T2)))

(defun type-null-p (T1)
`(subtypep ,T1 nil))

(defun types-disjoint-p (T1 T2)
(type-null-p (type-intersection T1 T2)))

(defun types-equivalent-p (T1 T2)
(multiple-value-bind (T1 <=T2 okT1T2) (subtypep T1 T2)

(multiple-value-bind (T2 <=T1 okT2T2) (subtypep T2 T1)
(values (and T1 <=T2 T2 <=T1) (and okT1T2 okT2T2)))))

The function types-disjoint-p works because a type is empty if it is a subtype of nil. The function
types-equivalent-p works because two types (sets) contain the same elements if each is a subtype (subset) of
the other.

The definition of types-equivalent-p while correct is not written as efficiently as it could be. In particular
there is no need to evaluate (subtypep T2 T1) in the case that (subtypep T1 T2) has already returned nil.

2.4 Unanswerable question of the subtype relation
There is an important caveat. The subtypep function is not always able to determine whether the named
types have a subtype relationship or not [Bak92]. In such a case, subtypep returns nil as its second argument.
This situation occurs most notably in the cases involving the satisfies type specifier. Consider Example 2.11
using the types (satisfies evenp) and (satisfies oddp). The first problem we face is that an attempt to
test type membership using such a predicate may be met with errors, such as when the argument of the oddp
function is not an integer, as shown in Example 2.11.

Example 2.11 (Problems with satisfies.).

(typep 1 '(satisfies oddp))
==> T
(typep 0 '(satisfies oddp))
==> NIL
(typep "hello" '(satisfies oddp))

The value "hello" is not of type INTEGER .
[Condition of type TYPE-ERROR]

23

Even though usage of satisfies with the predicate oddp is in violation of the Common Lisp specification
(according to our interpretation explained in Section 2.2), such usage seems to be fairly common in real-
world Common Lisp programs. For example the Google corporate Common Lisp coding Style Guide[BF,
Sec Pitfalls] recommends using the human readable form as shown in Example 2.12 as well as assuring the
function prime-number-p “MUST accept objects of any type”. Additionally, the Google style guide requires
that the predicate be callable at compile time.

We also note here that the example in the Google corporate Style Guide violates the advise of Norvig and
Pitman [NP93, p 13] in its usage of when as a two-branch expression.

Example 2.12 (Google Common Lisp Style Guide advice about satisfies.).

(deftype prime-number () (satisfies prime-number-p)) ; Bad
(deftype prime-number () (and integer (satisfies prime-number-p)) ; Better

(eval-when (: compile-toplevel : load-toplevel : execute)
(defun prime-number-p (n)

(when (integerp n) ; Better
(let ((m (abs n)))

(if (<= m * prime-number-cutoff *)
(small-prime-number-p m)
(big-prime-number-p m))))))

Because of the error demonstrated in Example 2.11 it becomes a little easier if we define two types odd and
even using deftype. Implementation 2.13 shows the initial type definitions which will be improved later. We
see very quickly that the system has difficulty reasoning about these types.

Implementation 2.13 (Initial version of type definitions of odd and even).

(deftype odd ()
'(and integer (satisfies oddp)))

==> ODD

(deftype even ()
'(and integer (satisfies evenp)))

==> EVEN

(subtypep 'odd 'even)
==> NIL , NIL

(subtypep 'odd 'string)
==> NIL , NIL

The subtypep function returns nil as its second value, indicating that SBCL is unable to determine whether
odd is a subtype of even. Similarly, SBCL is not able to determine that odd is not a subtype of string. This
behavior is conforming. According to the Common Lisp specification, the subtypep function is permitted to
return the values false and false (among other reasons) when at least one argument involves type specifier
satisfies [Ans94].

SBCL cannot know whether two arbitrary functions might return true given the same argument. The
human can see that the types odd and even are non-empty and disjoint, and thus neither is a subtype of the
other.

Notice also that (subtypep ’odd ’string) returns nil as second value indicating that it was unable to
determine whether odd is a subtype of string. At a glance it would seem that (and integer (satisfies
oddp)) is definitely not a subset of string, because (and integer (satisfies oddp)) is a subset of integer
which is disjoint from string. But there’s a catch. The system does not know that odd and even are non-
empty. If a type A is empty, then in fact (and integer A) is a subtype of string because integerXA “ H Ă

string [Kat15].

24

2.5 Type specifier manipulation
Common Lisp programs which manipulate type specifiers have traditionally used s-expressions as the program-
matic representations of types, as described in the Common Lisp specification [Ans94, Section 4.2.3]. Such
choice of internal data structure offers advantages such as homoiconicity [McI60, Kay69], making the internal
representation human readable in simple cases, and making programmatic manipulation intuitive, as well as
enabling the direct use of built-in Common Lisp functions such as typep and subtypep. However, this approach
presents some challenges. Such programs often make use of ad-hoc logic reducers—attempting to convert types
to canonical form. These reducers can be complicated and difficult to debug. In addition run-time decisions
about type equivalence and subtyping can suffer performance problems as Baker [Bak92] explains.

The Maximal Disjoint Type Decomposition (MDTD) will be introduced in Chapter 8. To correctly im-
plement the MDTD by either strategy described in Chapter 9, we need operators to test for type-equality,
type disjoint-ness, subtype-ness, and type-emptiness. Given a subtype predicate, the other predicates can be
constructed. The emptiness check: A “ H ðñ A Ă H; the disjoint check: A ‖ B ðñ A X B Ă H; type
equivalence A “ B ðñ A Ă B and B Ă A.

As another example of how the Common Lisp programmer might manipulate s-expression based type spec-
ifiers, consider the following problem. In SBCL 1.3.0, the expression (subtypep ’(member :x :y) ’keyword)
returns nil,nil, rather than t,t. Although this is conforming behavior, the result is unsatisfying, because
clearly both :x and :y are elements of the keyword type. The function defined in Implementation 2.14 manip-
ulates the given type specifier s-expressions to augment the built-in version of subtypep to better handle this
particular case. Regrettably, the user cannot force the system to use this smarter version internally.

Implementation 2.14 (smarter-subtypep).

(defun smarter-subtypep (t1 t2)
(multiple-value-bind (T1 <=T2 OK) (subtypep t1 t2)

(cond
(OK

(values T1 <=T2 t))
;; (eql object) or (member object1 ...)
((typep t1 '(cons (member eql member)))

(values (every #'(lambda (object)
(typep object t2))

(cdr t1))
t))

(t
(values nil nil)))))

As mentioned above, programs manipulating s-expression based type specifiers can easily compose type
intersections, unions, and relative complements as part of reasoning algorithms. Consequently, the resulting
programmatically computed type specifiers may become deeply nested, resulting in type specifiers which may
be confusing in terms of human readability and debuggability. The programmatically generated type specifier
shown in Example 2.15 is semantically correct for programmatic use, but confusing if it appears in an error
message, or if the developer encounters it while debugging.

Example 2.15 (Programmatically generated type specifier).

(or
(or (and (and number (not bignum))

(not (or fixnum (or bit (eql -1)))))
(and (and (and number (not bignum))

(not (or fixnum (or bit (eql -1)))))
(not (or fixnum (or bit (eql -1))))))

(and (and (and number (not bignum))
(not (or fixnum (or bit (eql -1)))))

(not (or fixnum (or bit (eql -1))))))

25

This somewhat obfuscated type specifier is semantically equivalent to the more humanly readable form (and
number (not integer)). Moreover, it is possible to write a Common Lisp function to simplify many complex
type specifiers to simpler form.

There is a second reason apart from human readability which motivates reduction of type specifiers to
canonical form. The problem arises when we wish to programmatically determine whether two s-expressions
specify the same type, or in particular when a given type specifier specifies the nil type. Sometimes this
question can be answered by calls to subtypep as in (and (subtypep T1 T2) (subtypep T2 T1)). However,
as mentioned earlier, subtypep is allowed to return nil,nil in some situations, rendering this approach futile
in many cases. If, on the other hand, two type specifiers can be reduced to the same canonical form, we can
conclude that the specified types are equal.

2.6 Type reduction using s-expressions
As mentioned in Section 2.5, our implementations of the MDTD algorithm depend heavily on calculating
type intersections and relative complements. We found that s-expression based solutions performed poorly
when they were naïvely coded using the type-intersection and type-relative-complement functions in
Implementation 2.10. The problem is that as a rule of thumb, the size of the type specifier grows exponentially
on each call to type-intersection or type-relative-complement. We determined that some amount of
simplification was necessary as part of type-intersection and type-relative-complement.

We have implemented such a type simplification function, reduce-lisp-type. It does a good job of reducing
the given type specifier toward a canonical form. The strategy of the function is to recursively descend the
type specifier s-expression, re-writing sub-expressions, as shown in Figure 2.2. This recursive process repeats
until a fixed point is reached, the fixed point being a type specifier in a disjunctive normal form, i.e. an OR of
ANDs such as (or (and (not a) b) (and a b (not c))). The simplification procedure follows the models
presented by Sussman and Abelson [AS96, p. 108] and Norvig [Nor92, ch. 8].

We use the idiom toward a canonical form because this algorithm does not always succeed in reducing two
equivalent type specifiers to equal s-expressions. For example, the operations in Figure 2.2 will not rewrite the
type specifiers (or A B) and (or B A) to a common form, nor will they simplify (or (and A B E) (not E))
and (or (and A B) (not E)) to a common form. Either of these two pairs of equivalent types could be sim-
plified further by enhancing the reduce-lisp-type function to handle more cases in its algebraic manipulation.
However, no amount of symbolic manipulation would be able to simplify (and string fixnum) to nil nor to
reduce (or number fixnum) to number. To recognize these kinds of expressions, the simplification function
would have to exploit the subtypep function. In particular it would need to perform Opn2q searches on every
occurrence of and and or to find pairs which have disjoint or subset relations. As Baker [Bak92] predicts, this
can be slow.

Input expression Output expression
(and A (and B C)) (and A B C)
(or A (or B C)) (or A B C)
(and A nil) nil
(and A B t) (and A B)
(and A B C (not B)) nil
(and A) A
(and) t
(or A t) t
(or A B nil) (or A B)
(or A) A
(or) nil
(or A B C (not B)) t
(and A (or B C) D) (or (and A B D) (and A C D))
(not t) nil
(not nil) t
(not (not A)) A
(not (or A B)) (and (not A) (not B))
(not (and A B)) (or (not A) (not B))

Figure 2.2: Some s-expression based operations for simplifying a Common Lisp type specifier.
We found, not surprisingly, that s-expression based type specifier rewriting is a computationally intensive

operation, not only theoretically but also in practice. The problem seems to be exacerbated in several ways:
first, by the fact that given a type specifier, our implementation of reduce-lisp-type cannot know whether it
has already been reduced. Figuring out whether it needs to be reduced, is as complex as actually reducing it.

26

The second factor which seems to slow the computation of simplification is that subtypep sometimes returns
nil as second argument (as explained in Section 2.4), indicating the subtype relation was not determined.
The consequence is that the simplification function is forced to assume the worst case and maintain redundant
information in the type specifier. Each such additional component increases the computation time quadratically,
at least locally for the type specifier being considered.

Still a third reason it is difficult to implement a good s-expression based type simplification function is
that optimizations in the function for one Common Lisp implementation, such as SBCL, may turn out to
be pessimizations for another Common Lisp implementation, such as Allegro CL. We do not mean this as
a reproach against any implementation or vendor, but it seems that micro-optimizations at the level of the
application programmer, may have unintended and surprising performance penalties when later trying to make
code portable.

As mentioned above, optimizations can be made in our algorithm resulting in better canonicalization, com-
putation, or allocation. However, each such optimization risks making the code more difficult to understand
and maintain. We have also observed cases where optimizations which speed the computation in SBCL have
a pessimization effect in other Lisp implementations. One advantage of the ROBDD data structure, which we
present in Chapter 5, is that it maintains canonical form by design, so an ROBDD need never be reduced once
it has been allocated.

In any such s-expression based type reduction, one must find a balance between how much computation
time is dedicated to the task vs. how good a reduction is needed.

The Common Lisp code implementing the s-expression based type reduction function can be found in
Appendix A.

2.7 Function types
In Chapters 4, 7, 9, 10, and 11 we discuss certain computations based on Common Lisp type specifiers. Each of
these computations depends on the ability to consistently determine whether there is a subset relation between
two specified types, and moreover, to make that determination based on the syntax of the type specifiers and
the rules of the type system. In each of the chapters, we ignore the question of the subset relation between
subtypes of the function type. This area needs additional research. In this section (Section 2.7) we explain
some of our findings which should be considered in any such future research.

1. Function type specifiers do not explicitly describe sets of values, but rather valid code transformations
(Section 2.7.2).

2. Function type specifiers in Common Lisp seem to violate the Induced Subtype Rule (ISR) (Section 2.7.3).

3. The Common Lisp specification does not explicitly explain how to compute subset relations between
function types (Section 2.7.6).

4. Common Lisp programs are forbidden from making certain run-time function subtype checks (Sec-
tion 2.7.7).

2.7.1 Semantics of function types
Many approaches to type theory assign semantics to what we sometimes call arrow types, denoted AÑ Y . The
symbol A Ñ Y carries the intuition of the set of functions mapping domain A to range Y , but the specifics
vary depending on the particular type-theoretical approach taken. As we address in Section 2.7.2, the meaning
of arrow types in Common Lisp is different from that in other common treatments.

Pierce [Pie02, Ch 9] defines the arrow type formally with a syntax and rewriting (evaluation) semantics,
such as

Γ, x : T1 $ t2 : T2

Γ $ λx : T1 . t2 : T1 Ñ T2
[Abstraction] (2.1)

Γ $ t1 : T11 Ñ T12 Γ $ t2 : T11

Γ $ t1 t2 : T12
[Application] . (2.2)

The meaning of these algebraic symbols is beyond the scope of this report, but suffice it to say that it defines
exactly in which contexts arrow types may appear in a program, and exactly what effects they have on program
evaluation. That is, rules (2.1) and (2.2) define exactly how arrow types behave in the type system of Pierce
without relying on any intuition.

Castagna et al. [FCB08a, Sec 2.6] summarize the constraints of defining arrow types consistently. In a one
to one interview, when posed the question, “What does A Ñ Y mean?” Dr. Castagna responded, “It means

27

whatever you want it to mean for the type system you are trying to define, as long as you are consistent.” He
continued by giving an example of on-going work in which he defines arrow types for a lazy language[ACPZ18]
in which certain terms may diverge as long as they are never evaluated.

Definition 2.16. If A and Y denote types, we take A Ñ Y to mean the set of all unary functions mapping
every element of type A to an element of type Y .

If we take Definition 2.16 to be the definition of arrow types, then we explicitly define the type to exclude
functions which diverge or loop forever, even though it is impossible to distinguish the two programmatically.
The code in Example 2.17 defines such a function, which is not in integer Ñ integer according to Definition 2.16,
because there exist integers, namely 0 and 1, for which the function fails to return an integer.

Example 2.17 (Function with divergent behavior).

(defun strange-function (x)
(declare (type integer x))
(case x

((0)
(loop :while t)) ; loop forever

((1)
(error "some error"))

(t
(1+ x))))

2.7.2 Function types in Common Lisp
In our research into the MDTD problem, we make heavy use of the subtypep function. It is natural to ask
under which conditions there is a subtype relation between two given arrow types. Common Lisp provides two
mechanisms for specifying subtypes of function. The first is by using the Metaobject Protocol (MOP) [Pae93,
KdRB91, Cos]. With this approach, we use the object system, Clos, to define classes which inherit from the
function class, and simultaneously from other mix-in classes to extend the behavior of function objects. When
function subclasses are defined this way, Common Lisp updates the type lattice with new types corresponding
to these classes, which behave as one would expect with regard to subtypep. An example is provided in
Appendix E.

The second way the Common Lisp type system provides for describing subtypes of function is with a
particular type specifier syntax. This syntax specifies a subtype of function which depends on the types
of parameters and return value. An s-expression such as (function (arg-types) return-type) designates
a subtype of function. Although the Common Lisp syntax allows specifying multiple arguments as well as
optional arguments and multiple return values, it is sufficient for our purpose to limit our discussion to unary
functions with a single return value.

The explanation of the function type in the Common Lisp specification is vague. Rather than a clear
statement of what (function (A) Y) means in terms of types A and Y, [Ans94, Section FUNCTION] gives an
explanation which is neither a necessary condition nor a sufficient condition for a function to be an element of
such a type:

Claim 2.18. Every element of type (function (A) Y) is a function that accepts arguments of type A and
returns values of type Y .

The specification further explains that if F has type (function (A) Y), the consequences are undefined if
F is called with an element not of type A. The specification does not indicate exactly what “a function that
accepts arguments of type A” means; i.e. it is unclear whether this means that only elements of A are valid
arguments of the function, that every element of A is valid argument of the function, or that some elements

28

of A are valid arguments of the function.1 However, it does clarify that if the argument is not in A, then the
result is not guaranteed to be in Y .

Rather than directly defining the semantics of the type (function (A) Y), the specification says:

Claim 2.19 (Call-site rewriting rule).
If a function F is declared of type (function (A) Y), then any call such as (F x) may be replaced with the
transformed code (the Y (F (the A x))).

Because of Claim 2.19, we infer Definition 2.20, which we did not find anywhere explicitly stated in the
Common Lisp specification.

Definition 2.20. The type (function (A) Y) is the largest set of functions which has the following property:
if F is in the set, then every call site of the form (F x) can be replaced with (the Y (F (the A x))), without
changing the evaluation of the call site.

The Common Lisp specification (still in [Ans94, Section FUNCTION]) states that an ftype declaration for
a function describes calls to the function, not the actual definition of the function. The exact set-theoretical
properties of calls to functions are still unclear, and as we will discuss in Section 2.7.6, the definition was
also up for debate during the Common Lisp specification process. For this reason (and others which we describe
in the following sections), we omit considerations of function types from the type specifier discussions in the
following chapters.

2.7.3 The Induced Subtype Rule (ISR)
The subtyping consequence, Corollary 2.21 follows from Definition 2.16.

Corollary 2.21. If arrow types are defined as in Definition 2.16, then whenever B Ă A, we have pA Ñ Y q Ă
pB Ñ Y q.

Proof. We can see this by taking an f P AÑ Y , and showing that necessarily f P B Ñ Y .
Suppose B Ă A, and take β P B. Since all elements of B are in A, we have β P A so pfβq P Y .

Section 2.7.5 explains that this consequence does not apply to the Common Lisp type system.
This discrepancy is mentioned in the X3J13 cleanup issue FUNCTION-TYPE-ARGUMENT-TYPE--
SEMANTICS:RESTRICTIVE [vR88] that function argument type semantics are different from what users
expect. One might wonder what would happen if we considered function type specifiers as behaving like other
Common Lisp types specifiers with regard to set semantics. Under such an assumption, we would be able to
reason about the semantics of such types using the semantics of sets. What we find, however, is that some
familiar intuitions fail. In this section (Section 2.7.3) we see that a principle known as ISR (Claim 2.22) fails,
and in Section 2.7.6 we see that certain intuitions regarding type intersection fail.

Claim 2.22 (Induced subtype rule (ISR)).
If A Ă B and X Ă Y , then B Ñ X is a subtype of AÑ Y , denoted pB Ñ Xq Ă pAÑ Y q.

Claim 2.22 is not actually a principle supported in Common Lisp rather it is an assumption some users
make as is further discussed in Section 2.7.8. The claim, which is a generalization of Corollary 2.21, is basically
saying that function types are (should be) covariant with respect to return type and contravariant with respect
to argument type. Castagna [Cas16, Section 2.2] provides a proof of this claim and for a weaker version of its
converse.

Since function type specifiers are valid arguments to the subtypep function, we can test Claim 2.22 using
SBCL 1.4.10 as in Examples 2.23 and 2.24. In Example 2.23, we see results which agree with the ISR. We see

1A restaurant may accept credit cards, but may at the same time not accept American Express.

29

that since fixnum Ă number, then subtypep considers (function (T) fixnum) to be a subtype of (function
(T) number), and (function (T) number) not to be a subtype of (function (T) fixnum).

Example 2.23 (Function type specifiers with covariant return types).

CL-USER > (subtypep '(function (t) fixnum) '(function (t) number))
T
T

CL-USER > (subtypep '(function (t) number) '(function (t) fixnum))
NIL
T

In contrast to Example 2.23, in Example 2.24 we see that subtypep does not respect ISR with respect to
contravariance of function arguments. The subtype function, at least in SBCL, believes pfixnum Ñ Jq Ă

pnumber Ñ Jq and pnumber Ñ Jq Ć pfixnumÑ Jq.

Example 2.24 (Function type specifiers with contravariant argument types).

CL-USER > (subtypep '(function (number) t) '(function (fixnum) t))
NIL
T

CL-USER > (subtypep '(function (fixnum) t) '(function (number) t))
T
T

2.7.4 Degenerate function types
In this section, we take a brief look at arrow types composed of J and K. We see that Common Lisp, in
particular SBCL, supports these degenerate arrow types even thought they seem to violate the definition of
arrow types from Definition 2.20. First we derive a property of types J Ñ K and K Ñ J in Corollary 2.26,
then test the predictions in Example 2.27.

A consequence of Claim 2.22 is shown in Theorem 2.25, and we can test the predictions of the theorem as
shown in Example 2.27.

Theorem 2.25. Given types A, B, X, and Y ,
`

pAYBq Ñ pX X Y q
˘

Ă pAÑ Y q Ă
`

pAXBq Ñ pX Y Y q
˘

.

Proof. Since A Ă AYB and Y XX Ă Y by ISR we can conclude that

ppAYBq Ñ pX X Y qq Ă pAÑ Y q .

Since AXB Ă A and Y Ă X Y Y , then by ISR we can conclude that

pAÑ Y q Ă
`

pAXBq Ñ pX Y Y q
˘

.

So together we have
`

pAYBq Ñ pX X Y q
˘

Ă pAÑ Y q Ă
`

pAXBq Ñ pX Y Y q
˘

.

30

In this section we take a brief look at the degenerate cases of Theorem 2.25.

Corollary 2.26. pJ Ñ Kq Ă pK Ñ Jq.

Proof. Let B “ A and X “ Y , and apply Theorem 2.25.

In Example 2.27 we test Corollary 2.26. We see that SBCL does not respect the ISR. According to SBCL
pJ Ñ Kq is not a subtype of pK Ñ Jq. In fact neither is a subtype of the other.

Example 2.27 (Testing Corollary 2.26 in SBCL).

CL-USER > (subtypep '(function (t) nil) '(function (nil) t))
NIL
T

CL-USER > (subtypep '(function (nil) t) '(function (t) nil))
NIL
T

The correspondence of J Ñ K and K Ñ J to Common Lisp types is difficult to grasp. We see in the
Example 2.28, that neither (function (nil) t) nor (function (t) nil) is empty as neither is a subtype of
nil.

Example 2.28.

CL-USER > (subtypep '(function (nil) t) nil)
NIL
T

CL-USER > (subtypep '(function (nil) t) t)
T
T

CL-USER > (subtypep '(function (t) nil) t)
T
T

CL-USER > (subtypep '(function (t) nil) nil)
NIL
T

We further see in Example 2.29 that the two types, (function (nil) t) and (function (t) nil), are
non-disjoint (i.e. intersecting) types.

Example 2.29.

CL-USER > (subtypep '(and (function (nil) t) (function (t) nil)) nil)
NIL
T

31

By Definition 2.20, (function (nil) t) is the set of functions F such that (F x) can be replaced ev-
erywhere with (F (the nil x)). Likewise, (function (t) nil), is the set of functions G such that (G x)
can be replaced with (the nil (G x)). According to the subtypep implementation in SBCL, those are two
distinct, intersecting, non-empty sets of functions. Exactly which two sets of functions are specified by these
type specifiers is not clear.

Before leaving the discussion of degenerate arrow types in Common Lisp, we look briefly at K Ñ K and
J Ñ J. Example 2.30 shows that in Common Lisp we have K Ñ K (J Ñ J, a strict subset relation.

Example 2.30 (subtypep with degenerate arrow types).

CL-USER > (subtypep '(function (nil) nil) '(function (t) t))
T
T

CL-USER > (subtypep '(function (t) t) '(function (nil) nil))
NIL
T

CL-USER > (subtypep '(function (nil) nil) '(function (t) nil))
T
T

CL-USER > (subtypep '(function (t) nil) '(function (nil) nil))
NIL
T

The strict subset relation between K Ñ K and J Ñ J makes sense according to Definition 2.20. (function
(t) t) is the set of unary functions which either diverge or not, i.e. the set of functions F for which (F
x) can be replaced by (the t (F (the t x))); while (function (nil) nil) contains only functions which
diverge, i.e. (F x) can be replaced with (the nil (F (the nil x))). It is, however curious to note that
(function (nil) nil) does not contain all divergent unary functions, because, as Example 2.30 also shows,
K Ñ K (J Ñ K, i.e. a strict subset relation.

2.7.5 Intuition of function type intersection
The examples and results shown in Sections 2.7.3 and 2.7.4 may come as a surprise to some readers, as they
seem in violation of ISR. The theory of semantic subtyping [FCB08b] is a branch of computer science which
attempts to put consistent semantics on types and subtypes to intuitively align with set theoretical semantics.
As we explain in more detail in Section 2.8, at the time Common Lisp was being specified, the theory of semantic
subtyping was not yet well understood. The Common Lisp specification does not explain explicitly how the
subtypep function should behave given function type specifiers.

To illustrate the failing intuition of intersection, consider the stringify function in Example 2.31.

Example 2.31 (Stringify function).

(defun stringify (x)
(format nil "~A" x))

The function stringify certainly maps all ratios to string. According to Claim 2.18 we might be tempted
to think that the function stringify is an element of the type (function (ratio) string), and since the
function also maps integers to strings, we might be tempted to think that it is an element of type (function
(integer) string). Furthermore, since the function is in both types, it must be an element of the intersection
of the two types. Such an interpretation of Claim 2.18 would be erroneous according to the call-site rewriting
rule (Claim 2.19). If the function stringify were a member of (function (ratio) string) then we would
be able to rewrite any call-site, even (stringify 3.1416), by the call-site rewriting rule. But we know that

32

(stringify 3.1416) is not equivalent to (the string (stringify (the ratio 3.1416))), as 3.1416 is not
an element of the type ratio.

Similarly, staying with our erroneous intuition, if a function is in the intersection of the two types: (function
(ratio) string) and (function (integer) string), i.e., if that function maps both ratios and integers to
strings, then that function maps all (or ratio integer) to strings.2 From this logic, and in keeping with
the intuitions of semantic type theory, one would conclude that the intersection of the two types was simply
(function ((or ratio integer)) integer) “ (function (rational) integer). One would infer the rule
pA Ñ Y q X pB Ñ Y q “ AYB Ñ Y . However, as explained in Section 2.7.6, the Common Lisp type system
works differently in relation to function type intersection.

2.7.6 Calculation of function subtype relation is underspecified
Section System Class FUNCTION of the Common Lisp specification does not specify how to compute the
intersection of two function types of the same arity, but it does specify what rule the compiler may apply
whenever a function is simultaneously declared to be in two function types. We state the rule restricted to
unary function with a single return value. If the two type declarations for function F are in effect:
(function (A) X)
(function (B) Y)

then within the shared scope of the declarations, calls to F can be treated as if F were declared as the following:
(function ((and A B)) (and X Y))

We restate here the Common Lisp definition of function type intersection using arrow notation.

Claim 2.32 (Intersection induced subtype relation). If A, B, X, and Y are types, then the following relation
holds with regard to intersections:

pAÑ Xq X pB Ñ Y q Ă pAXBq Ñ pX X Y q

Doel [hd] points out that the two are not in explicit contradiction. However, the intersection in Claim 2.32
is different from what we would guess from the ISR (Claim 2.22), which says that pA Ñ Y q X pB Ñ Y q Ă
pAYBq Ñ Y . We also find no description in the Common Lisp specification for answering subtype questions
about unions and complements of functions or functions of unions and complements.

2.7.7 Run-time type check of functions considered harmful
At run-time a program is allowed to use typep to check whether an object is of type function, but only in the
most simple form. An expression such as (typep object ’function) is permitted. However, the specification
explicitly forces any run-time call to typep to signal an error as in Example 2.33, if a function type such as
(function () t) is given.

Example 2.33 (Error signaled if using function type at run-time).

CL-USER > (typep (lambda () 42) 'function)
T

CL-USER > (typep (lambda () 42) '(function () fixnum))

Function types are not a legal argument to TYPEP:
(FUNCTION NIL (VALUES FIXNUM &REST T))

[Condition of type SIMPLE-ERROR]

On the contrary, it is not clear from the specification what should occur with a run-time call to subtypep
with the list form of a function type specifier. The specification contains what some people might interpret as
contradictory information. It says, “The list form of the function type-specifier can be used only for declaration

2In Common Lisp the name given to (or ratio integer) is rational.

33

and not for discrimination.” A call to subtypep is arguably neither declaration nor discrimination, at least
not object discrimination. Even so, a run-time call to subtypep is not a declaration. We might reasonably
conclude, based on that statement, that subtypep is not allowed to be called with the list form of a function
type specifier, but that conclusion would be premature.

On the other hand, the specification for subtypep has a non-definitive clarification. It says “subtypep
is permitted to return the values false and false only when at least one argument involves one of these type
specifiers: and, eql, the list form of function, member, not, or, satisfies, or values.” Even though only
when does not mean if, we nevertheless interpret this statement to mean that a call to subtypep with function
type specifiers is allowed.

Although we would have liked the MDTD algorithms to be applicable to function types, we currently
consider this problem beyond the scope of the Common Lisp subtypep function for the reasons explained in
Sections 2.7.3, 2.7.6, and 2.7.7. The problem of these inconsistencies seems to imply that programs should not
rely on the return value of subtypep when dealing with function types. We thus ignore function types in the
rest of this report.

It would seem that at least one of the contributors to the X3J13 cleanup issue, FUNCTION-TYPE--
ARGUMENT-TYPE-SEMANTICS:RESTRICTIVE [vR88] shared our view, at least to some extent. We find
a remark in the final paragraph of the cleanup issue, that the notion of “subtype” does not make sense in
conjunction with the list form of function types because it is different from most type specifiers.

2.7.8 A historical perspective
It would appear that the architects of Common Lisp were not oblivious to the question of whether ISR should
apply to Common Lisp function types. As mentioned briefly above, there is an X3J13 cleanup issue named
FUNCTION-TYPE-ARGUMENT-TYPE-SEMANTICS:RESTRICTIVE [vR88]. This issue discusses the prob-
lem that the function argument type semantics are different from what users expect. It is mentioned that
CLtL [Ste90, pp 47-18] requires the cons function be type (function (t t) cons) and also of type (function
(float string) list). If this requirement is interpreted this according to ISR, then the author is suggesting
that (function (float string) list) is a subtype of (function (t t) cons) with covariant return value,
list Ă cons; but contravariant arguments, float Ă J and string Ă J.

According to the accepted Common Lisp specification (rather than that proposed in the cleanup issue), the
cons function is not of type (function (float string) list), because (cons t nil) is a valid call to cons
but (the list (cons (the float t) (the string nil))) is not.

There is also a discussion in the X3J13 email archive [Gab90, Bar87] initiated by Jeff Barnett where he
suggests and explains the ISR (of course without using that name) in what he called “PROBLEM II”. His
argument is that if T1 Ă T2 Ă T3, then pT3 Ñ T1q Ă pT2 Ñ T2q and pT1 Ñ T3q Ć pT2 Ñ T2q. Barnett demands
that the subtypep function “must reverse the order of its arguments when checking argument types—original
order is used when value types are checked.” His reasoning was that most Common Lisp implementations
included incremental compilation. And if a function is edited and recompiled in a way which narrowed its type
(new type is a subtype of previous type) the compiler need not warn about call-sites. However, if the function
type was changed in any other way, call sites might or might not be invalid.

Barnett’s comments were motivated [Bar18] by experience with the CRISP [BP74, Bar10, Bar09] language
from the early 1970s which was part of a speech understanding systems in which run time efficiency was highly
important. The CRISP language was specified to be a strongly typed Lisp dialect, which defined types and
in particular function types in a way compatible with what we now call ISR. The CRISP language defined a
type [BP74, p. 49] as a collection of objects.

Unfortunately, the only follow-up response to “PROBLEM II” was by Nick Gall [Gab90, Gal87], who made
a dubious claim which was never challenged. He claimed “The type specifier (FUNCTION ...) is not acceptable
to TYPEP (pg. 47), therefore it is not acceptable to SUBTYPEP (pg. 72).” According to an interview with
Nick Gall, he clarified that page 47 and 72 are referring to CLtL [Ste84] edition 1 (not 2). Contrary to the
Gall’s claim, however, we could not find anywhere in the Common Lisp specification where run-time calls to
subtypep are prohibited.

2.8 Related work
Tobin et al. [THFF`17] argue that during the 1990s and later, developers preferred languages such as Lisp, Ruby,
Python, and Perl because the statically typed languages which existed at the time lacked the flexibility they
needed. The authors present a system for migrating programs incrementally by declaring types within Racket
programs which were previously implemented exploiting the flexibility of a language lacking type declarations.

Castagna et al. [CL17] argue as well that many programmers prefer the flexibility and development speed
of dynamically typed languages, but that, nevertheless, compilers may infer types from the program if certain

34

language constructs exist. The authors explore gradual typing in laguages which support set-theoretical types–
languages whose types support union, intersection, and complementation. In particular they argue that adding
such set theoretical operations to a type system facilitates a smooth transition from dynamic typing to static
typing while given even more control to the programmer.

Around the time Common Lisp was under development, other programming language researchers were
experimenting with set semantics for types. We have not been able to determine how much of this research
influenced Common Lisp development or vice versa. Dunfield [Dun12] discusses works related to intersection
types, but omits explicit references to the Common Lisp type system. He does mention the Forsythe [Rey96]
programming language developed in the late 1980s, which provides intersection types, but not union types.
Dunfield claims that intersections were originally developed in 1981 by Coppo et al. [CDCV], and in 1980 by
Pottinger [Pot80] who acknowledges discussions with Coppo and refers to Pottinger’s paper as forthcoming.
Work on union types began later, in 1984 by MacQueen et al. [MPS84].

As in Common Lisp, languages which support intersection and union types [CL17, CF05, Pea17], should
also be consistent with respect to subtype relations. Frisch et al. [FCB08b] referred to this concept as semantic
subtyping. In particular, the union of types A and B should be a supertype of both A and B, the intersection
of types A and B should be a subtype of both A and B, and if A is a subtype of B, then the complement of
B should be a subtype of the complement of A. While Coppo and Dezani [CD80] discuss intersection types
in 1980, according to a private conversation with one of the authors, Mariangiola Dezani, theoretical work on
negation types originates in Castagna’s semantic subtyping.

The theory of intersection types seems to have some influence on modern programming language extensions,
at least in Java and Scala. Bettini et al. [BBDC`18] (including Dezani, mentioned above) discuss the connection
of Java λ-expressions to intersection types.

The Scala language [OSV08] supports a type called Either which serves much of the purpose of a union type.
Either[A,B] is a composed type, but has no subtype relation neither to A nor to B. Sabin [Sab11] discusses user
level extensions to the Scala type system to support intersection and union types. Scala-3 [Ami16, RA16, dot18]
promises to fully support intersection and union types in a type lattice, but not complementary types.

As in Common Lisp, which supports sequences of heterogeneously typed objects, several languages have
started to introduce tuple types (C++ [Str13, Jos12], Scala [OSV08, CB14], Rust [Bla15]). Our work provides
similar capability of such tuple types for a dynamic programming language. The Shapeless [Che17] library
allows Scala programmers to exploit the type-level programming capabilities through heterogeneous lists.

We commented in Section 2.6 that when subtypep is unable to determine the subtype relation, the con-
sequence is a quadratic growth in computation time of the type specifier simplification function. The work of
Valais [Val18] may be useful in addressing this problem. Even if the Baker subtypep algorithm which Valais
has implemented is slower than cl:subtypep by a linear factor, the fact that it never returns nil as second
argument beyond the case of satisfies, could potentially improve the performance of type reduction.

In Section 2.7 we gave special attention to questions about the (function (...) ...) type in Common
Lisp, with particular attention to the ISR. The section explains some of the historical perspectives which lead
us to believe that the Common Lisp specification does not respect3 ISR. The specification, in our opinion,
should either have an explicitly defined way to calculate the subtype relation for function types, or it should
prohibit their usage in conjunction with subtypep. We realize our opinion may be controversial. The opinion
of Bourguignon and others may be found in [New18]. Finally, the Scala language [OSV08, RL17], allows
programmers to decide within function and class declaration, which parameters are covariant, contravariant, or
invariant.

2.9 Perspectives
For a better historical perspective, we would like to continue the investigation of the origins of the Common
Lisp type system. We see several ideas in the Common Lisp type system which were areas of research outside
the Lisp community during the time period that Common Lisp was being developed. However, we have not
been able to find references between the two research communities. For instance Common Lisp defines type
as a set of objects; similarly Hosoya and Pierce [Hos00, HP01] simplify their model of semantic subtyping by
modeling a type as a set of values of the language.

We discovered quite late in this project that a bottom-up approach to converting a Common Lisp type
specifier to DNF form was in many cases much better performing than the fixed point approach discussed in
Section 2.6. The code for this approach, type-to-dnf-bottom-up is also shown in Appendix A after the code for
type-to-dnf. Without this alternative bottom-up approach we found that some of our test cases never finished
in Allegro CL, and with this additional optimization the Allegro CL performance was very competitive with

3RESPECT. RIP Aretha Louise Franklin, (March 1942 to August 2018) whose passing coincides closely with the submission of
this thesis manuscript. She improved the world around her with her music, her activism, and her grace. Likewise, may our actions
make the world a better place.

35

SBCL. On the other hand, we found that some of the performance tests in SBCL (as discussed in Chapter 10)
exhausted the memory and we landed in the LDB (low level SBCL debugger). We believe there is merit in
developing a correct, portable, high performance type simplifier; however we believe this is a matter where more
research and experimentation are needed.

36

Chapter 3

Rational Languages

In Chapter 2 we discussed the Common Lisp type system, concentrating primarily on types of atomic values.
We would like to introduce, in Chapter 4, a way to use the Common Lisp type system to describe sequences of
objects whose types follow regular patterns. Before we can do that we describe, in the current chapter, what
regular patterns are. We introduce the theory of rational languages which formalizes these patterns. The theory
provides notation for describing the patterns mathematically as well as programmatically. The theory further
provides an algorithm which uses finite state machines to convert the programmatic syntax into a decision
algorithm for efficiently recognizing appropriate sequences of characters.

In the current chapter, we present character based regular expressions so that in Chapter 4 we may extend
them to accommodate type sequences in Common Lisp.

3.1 Theory of rational languages

Definition 3.1. An alphabet is defined as any finite set, the elements of which are defined as letters. We
generally denote the letters of an alphabet by Latin letter symbols. E.g., Σ “ ta, b, cu.

Notation 3.2. An Integer interval from n to m including the boundaries.

rn,ms “ tx P Z | n ď x ď mu

Definition 3.3. Given an alphabet, Σ, a word of length n P N is a sequence of n characters from the alphabet.
This can be denoted as a function, mapping the set r1, ns Ñ Σ. We denote the sequence in an intuitive way,
simply as a juxtaposed sequence of characters.

Example 3.4 (A rational expression as function on an integer interval). For example aabc denotes the following
function aabc : r1, 4s Ñ Σ

aabcpnq “

$

’

’

&

’

’

%

a if n “ 1
a if n “ 2
b if n “ 3
c if n “ 4

37

Notation 3.5. There is a word of zero length, called the empty word. It is denoted ε. The empty word is
indeed a function ε : H Ă NÑ Σ.

Definition 3.6. A language is defined as a set of words; more specifically a language in Σ is a set of words
each of whose letters are in Σ.

Notation 3.7. The set of all words of length one whose letters come from Σ is denoted Σ1.

Notation 3.8. The set of all possible words of finite length made up exclusively of letters from Σ is denoted
Σ˚.

Example 3.9 (Languages of an alphabet). Examples of languages of Σ “ ta, bu are H, Σ, ta, aa, aaa, aaaau,
and tε, ab, aaba, ababbb, aaaabababbbbu.

Definition 3.10. If A, and B are a languages with alphabet Σ, and a P A, b P B, then we define the
concatenation of a and b as the sequence of letters comprising a followed immediately by the sequence of
characters comprising b. Such a concatenation of words is denoted either by a juxtaposition of symbols or using
the ¨ operator: i.e., ab or equivalently a ¨ b.

Precisely, if a : r1, `as Ñ Σ and b : r1, `bs Ñ Σ, then u ¨ v : r1, p`a ` `bqs Ñ Σ, such that:

pa ¨ bqpnq “

"

apnq if 1 ď n ď `a
bpn´ `aq if `a ` 1 ď n ď `a ` `b

.

Theorem 3.11. The concatenation operation defined in Definition 3.10 is associative.

Proof. Let A, B, and C be languages. Take

a P A with a : r1, `as Ñ Σ
b P B with b : r1, `bs Ñ Σ
c P C with c : r1, `cs Ñ Σ .

Then we have,

`

pa ¨ bq ¨ c
˘

pnq “

"

pa ¨ bqpnq if 1 ď n ď `a ` `b
cpn´ `a ´ `bq if `a ` `b ` 1 ď n ď `a ` `b ` `c

“

$

&

%

apnq if 1 ď n ď `a
bpn´ `aq if `a ` 1 ď n ď `a ` `b
cpn´ `a ´ `bq if `a ` `b ` 1 ď n ď `a ` `b ` `c

“

"

apnq if 1 ď n ď `a
pb ¨ cqpn´ `a ´ `bq if `a`b ` 1 ď n ď `a ` `b ` `c

“
`

a ¨ pb ¨ cq
˘

pnq

38

Definition 3.12. If A and B are languages, then A ¨B “ tu ¨v | u P A and v P Bu. As a special case, if A “ B,
we denote A ¨A “ A2. When it is unambiguous, we sometimes denote A ¨B simply as AB.

Theorem 3.13. The language concatenation operator is associative.
If A, B, and C are languages with alphabet Σ, then

pA ¨Bq ¨ C “ A ¨ pB ¨ Cq .

Proof. Take any word w P
`

pA ¨ Bq ¨ C
˘

. w can be expressed in the form ppa ¨ bq ¨ cq where a P A, b P B, and
c P C. By Definition 3.3, there exist `a, `b, `c P N such that a : r1, `as Ñ Σ, b : r1, `bs Ñ Σ, and c : r1, `cs Ñ Σ.
By Theorem 3.11,

`

pa ¨ bq ¨ c
˘

pnq “
`

a ¨ pb ¨ cq
˘

pnq P
`

A ¨ pB ¨ Cq
˘

.

So
`

pA ¨Bq ¨ C
˘

Ă
`

A ¨ pB ¨ Cq
˘

.
Now take w P

`

A ¨ pB ¨ Cq
˘

. w can be expressed in the form pa ¨ pb ¨ cqq where a P A, b P B, and c P C.
By Definition 3.3, there exist `a, `b, `c P N such that a : r1, `as Ñ Σ, b : r1, `bs Ñ Σ, and c : r1, `cs Ñ Σ. By
Theorem 3.11,

`

a ¨ pb ¨ cq
˘

pnq “
`

pa ¨ bq ¨ c
˘

pnq P
`

pA ¨Bq ¨ C
˘

.

So
`

pA ¨Bq ¨ C
˘

Ą
`

A ¨ pB ¨ Cq
˘

.

Definition 3.14. If A is a language, and n ě 0 is an integer, then An is defined as follows:

An “

"

tεu if n “ 0
A ¨An´1 if n ą 0 .

Now we effectively have two definitions for A2; i.e. A2 “ A ¨A, and also A2 “ A ¨A1. Corollary 3.17 shows
that these two definitions define the same set.

Theorem 3.15. If p “ n`m, then Ap “ An ¨Am.

Proof. By induction on p:
If p “ 0, then n “ m “ 0. A0 “ tεu “ tε ¨ εu “ tεu ¨ tεu “ A0 ¨A0.
Assume true for p “ k, and show true for p “ k ` 1. I.e., assume that if k “ m` n then Ak “ An ¨Am.
Take m` n “ k ` 1, then m` n´ 1 “ k, so

Am`n “ A ¨Am`n´1 by Definition 3.14
“ A ¨Apm´1q`n

“ A ¨ pAm´1 ¨Anq by inductive assumption
“ pA ¨Am´1q ¨An by Theorem 3.13
“ Am ¨An . by Definition 3.14

Corollary 3.16.
Am ¨An “ An ¨Am

39

Proof. This follows from Theorem 3.15.

Am ¨An “ Am`n “ An`m “ An ¨Am .

Corollary 3.17.
A1 “ A

Proof. By Definition 3.14 A1 “ A ¨A0.
Take w1 P A

1. So there exists w P A and w0 P A
0 such that w1 “ w ¨ w0. But the only element in A0 is ε,

making w0 “ ε. w1 “ w ¨ ε “ w P A. So A1 Ă A.
Now, take w P A. Since w “ w ¨ ε, and ε P A0 “ tεu, we have w P A ¨A0 “ A1. So A Ă A1.
A1 Ă A and A Ă A1; thus A1 “ A.

Definition 3.18. If A is a language, then A˚, the Kleene closure of A [HMU06], denotes the set of words w
such that w P An for some n P N.

We emphasize here that even though Σ, the set of letters, and Σ1 the set of all single-letter words are defined
separately, they are clearly isomorphic. It is common in the literature to abuse the notation and simply refer
to letters as single-letter words— to claim Σ1 “ Σ and consequently Σ Ă Σ˚ (Notation 3.8). However, when
implementing in a programming language the distinction may be important in terms of programmatic types of
the objects. Σ is a set of characters, while Σ1 is a set of single character strings. The type of Σ and the type of
Σ1 are different, but the mapping between them is trivial.

Also note that ε P Σ˚, ε R Σ1, and Σ1 Ă Σ˚. Some languages have finite cardinally, while others have
countably infinite cardinally.

Definition 3.19. A rational language is defined by a recursive definition: The two sets H and tεu are rational
languages. For each letter of the alphabet, the singleton set containing the corresponding one letter word is
rational language. In addition to these base definitions, any set which is the union or concatenation of two
rational languages is a rational language. The Kleene closure of a rational language is a rational language.

Notation 3.20. Let LΣ denote the set of all rational languages.

In light of Definition 3.19 and Notation 3.20, the definition of rational language can be restated by:

1. H P LΣ.

2. tεu P LΣ.

3. tau P LΣ @ a P Σ1.

4. pAYBq P LΣ @ A,B P LΣ.

5. pA ¨Bq P LΣ @ A,B P LΣ.

6. A˚ P LΣ @ A P LΣ.

While not part of the definition as such, it can be proven that if A,B P LΣ then A X B P LΣ and AzB P

LΣ [HMU06].

40

3.2 Rational expressions
The definition of rational language given in Section 3.1 provides a top-down mechanism for identifying regular
languages. I.e., languages are rational if they can be decomposed into other rational languages via certain set
operations such as union, intersection, and concatenation. Conversely, new rational languages can be discovered
by combining given rational languages in well defined ways.

Another way to identify rational languages is a bottom-up approach. This approach is based on the letters,
rather than the sets. Rational expressions allow us to specify pattern based rules for determining which words
are in a given language. We will say that a rational expression generates a language.

A rational expression is an algebraic expression, using the intuitive algebraic operators. A rational expression
generates a language.

Notation 3.21. The notation L “ JrK, means that the rational expression, r generates the language L.

Notation 3.22. We denote the set of all rational expressions as Erat.

JHK “ H JεK “ tεu @a P Σ1, JaK “ tau
Jr ` sK “ JrKY JsK Jr˚K “ JrK˚ JrsK “ Jr ¨ sK “ JrK ¨ JsK Jr X sK “ JrKX JsK

This abuse of notation is commonplace in rational language theory. The same symbol a is used to denote a
letter, a P Σ, a word of length one, a P Σ1, and a rational expression, a s.t.JaK “ tau Ă Σ˚. Analogously, the
symbol ε is abused to denote both the empty word, ε P Σ˚, and a rational expression ε s.t. JεK “ tεu Ă Σ˚.
Further, H Ă Σ˚ denotes the empty language, and also the rational expression, H s.t. JHK “ H Ă Σ˚.

We have proven (Theorems 3.11 and 3.13) that ¨ is associative. It can also be proven that the operation ` is
associative [HMU06], which means that without ambiguity we may write pa`b`cq and pa¨b¨cq omitting additional
parentheses. However, we must define a precedence order to give an unambiguous meaning to expressions such
as a˚b`c¨d˚. The precedence order from highest precedence to lowest is defined to be (˚, ¨,`), so that a˚b`c¨d˚
unambiguously means ppa˚q ¨ bq ` pc ¨ pd˚qq.

As an example, let Σ be a language and ta, b, c, d, e, fu Ă Σ; the rational expression a ¨ pb ¨ d˚ ` c ¨ e˚q ¨ f ,
or equivalently apbd˚ ` ce˚qf , can be understood to be a rational expression generating the set (language) of
words which start with exactly one a, end with exactly one f , and between the a and f is either exactly one b
followed by zero or more d’s or exactly one c followed by zero or more e’s.

The definition trivially implies that

@r P Erat DR P LΣ | JrK “ R P LΣ ,

and conversely,
@R P LΣDr P Erat | JrK “ R .

3.3 Regular expressions
We would like to avoid confusion between the terms regular expression and rational expression. We use
the term regular expression to denote programmatic implementations such as provided in grep and Perl.
We assume the reader is familiar with UNIX-based regular expressions.

By contrast, we reserve the term rational expression to denote the algebraic expressions as described in
Section 3.2.

There are regular expression libraries available for a wide variety of programming languages. Each im-
plementation uses different ASCII characters to denote the rational language operations, often equipped with
additional operations which are eventually reducible to the atomic operations shown above, and whose inclusion
in the implementation adds expressivity in terms of syntactic sugar.

One of the oldest applications of regular expressions was in specifying the component of a compiler called a
“lexical analyzer”. The UNIX command lex allows the specification of tokens in terms of regular expressions
in UNIX style and associates code to be executed when such a token is recognized [HMU06].

The same style regular expressions are built into several standard UNIX utilities such as grep, egrep, sed
and several other programs. These implementations provide useful notations such as shown in Example 3.23.

41

Example 3.23 (Regular expression notation).

symbol regular meaning
expression

+ "ab+c" one or more times, is equivalent
to a ¨ b ¨ b˚ ¨ c

? "ab?c" zero or one time, is equivalent to
a ¨ pb` εq ¨ c

. "a.c" any single character, is equiva-
lent to a ¨ Σ1 ¨ c

3.4 Finite automata
Finite automata provide a computational model for implementing recognizers for rational languages [ORT09b].

Definition 3.24. A NDFA (Non-Deterministic Finite Automaton) A is a 5-tuple A “ pΣ, Q, I, F, δq where:

Σ is an alphabet, (an alphabet is finite by definition)

Q is a finite set whose elements are called states

I Ă Q is a set whose elements are called initial states

F Ă Q is a set whose elements are called final states

δ Ă Qˆ ΣˆQ is a set whose elements are called transitions.

Definition 3.25. In the special case that for each pa, q0q P Σ ˆ Q there is at most one q1 P Q such that
pq0, a, q1q P δ, then the NDFA is referred to as a Deterministic Finite Automaton.

One might reasonably object to the terminology because despite the name, not all NDFAs are explicitly non-
deterministic. Although the definitions are somewhat confusing, they are standard. Every DFA is an NDFA,
but some NDFAs are not a DFA.

I0 P1a

P2
b

P3

c

d

F1f

e

F2f

Figure 3.1: DFA recognizing the rational expression, a ¨ pb ¨ d˚ ` c`q ¨ f

42

Each transition can be denoted α
a
ÝÑ β for α, β P Q and a P Σ. Figure 3.1 shows a deterministic finite

automaton. It has initial state I “ tI0u, final states F “ tF1, F2u, and the following transitions:

δ “ tI0
a
ÝÑ P1, P1

b
ÝÑ P2, P2

d
ÝÑ P2, P2

f
ÝÑ F1, P1

c
ÝÑ P3, P3

e
ÝÑ P3, P3

f
ÝÑ F1 .

3.5 Equivalence of rational expressions and finite automata
It has been proven [HMU06] that the following statements are equivalent.

1. L P LΣ

2. Dr P Erat | L “ JrK

3. L Ă Σ˚ is recognizable by a finite automaton

In fact, Figure 3.1 illustrates a finite automaton which recognizes the regular expression a(bd*+ce*)f.

3.6 The rational expression derivative
In 1964, Janusz Brzozowski [Brz64] introduced the concept of the Rational Language Derivative, and provided a
theory for converting a regular expression to a DFA. Additional work was done by Scott Owens et al. [ORT09b]
which presented the algorithm in easy to follow steps.

To understand what the rational expression derivative is and how to calculate it, first think of a rational
expression in terms of its language, i.e. the set of sequences the expression generates. For example, the language
of ppa|bq ¨ c˚ ¨ dq is the set of words (finite sequences of letters) which begin with exactly one letter a or exactly
one letter b, end with exactly one letter d and between contain zero or more occurrences of the letter c.

The derivative of the language with respect to a given letter is the set of suffixes of words which have the
given letter as prefix. Analogously, the derivative of the rational expression is the rational expression which
generates that language, e.g., Bappa|bq ¨ c˚ ¨ dq “ pc˚ ¨ dq.

The Owens [ORT09b] paper explains a systematic algorithm for symbolically calculating such derivatives.
The formulas listed in Figure 3.3 detail the calculations which must be recursively applied to calculate the
derivative.

There are several algorithms for generating a finite automaton from a given rational expression. One very
commonly used algorithm was inspired by Ken Thompson [YD14, Xin04] and involves straightforward pattern
substitution. While this algorithm is easy to implement it has a serious limitation. It is not able to easily
express automata resulting from the intersection of two rational expressions.

Because of this limitation, we have chosen to use the algorithm based on regular expression derivatives. This
algorithm was first presented in 1964 by Janusz Brzozowski [Brz64]. While Brzozowski’s result was applied to
digital circuits, Scott Owens et al. [ORT09b] extended the principle to generalize regular pattern recognition
for sequences of characters.

We will define the derivate later, but we find it useful to first define nullability. As will be seen below,
to calculate the derivative of some rational expressions, we must calculate whether the rational expression is
nullable.

Definition 3.26. A rational language is said to be nullable if it contains the empty word; i.e., a language
L Ă Σ˚ is nullable if ε P L. Likewise, a rational expression r is nullable if JrK nullable.

The function ν (the Greek letter nu) calculates nullability.

ν : Erat Ñ tH, εu Ă Σ˚

as defined according to the recursive rules in Figure 3.2. If νprq “ ε then r is nullable. If νprq “ H then r is
not nullable.

It may be worth reëmphasizing here that the symbol ε in Definition 3.26 is the rational expression ε not the
empty word. As mentioned in Section 3.2 this abuse of notation is commonplace in the literature pertaining to
rational language theory. This notational abuse comes up again in the proof of Lemma 3.31.

43

νpHq “ H (3.1)
νpεq “ ε (3.2)
νpaq “ H @ a P Σ, a ‰ ε (3.3)

νpr ` sq “ νprq ` νpsq (3.4)
νpr ¨ sq “ νprq X νpsq (3.5)

νpr X sq “ νprq X νpsq (3.6)
νpr˚q “ ε (3.7)

Figure 3.2: Recursive rules defining the nullability function ν

Definition 3.27. Given a language L Ă Σ˚ and a word w P Σ˚, the derivative of L with respect to w denoted
BwL is a language

BwL “ tv | w ¨ v P Lu .

If JSK “ L, and w P L, then a derivative of S with respect to w is denoted BwS. Moreover, BwS P Erat and
JBwSK “ BwL. Otherwise stated, we can speak of either the derivative of the language L or the derivative of a
rational expression.

Example 3.28 (Rational derivative). For example, suppose L “ tthis, that, those, fredu, then BthL “

tis, at, oseu. Basically take the words which start with the given prefix, and remove the prefix.

It can be proven that if L P LΣ, then BwL P LΣ @ w P Σ˚ [ORT09b]. However, it is not implied nor is it
true in general that BwL Ă L.

Given a rational expression, we would like to calculate the rational expression representing its derivative.
To do this, the reduction rules shown in Figure 3.3 can be recursively applied.

BaH “ H (3.8)
Baε “ H (3.9)
Baa “ ε (3.10)
Bab “ H for b ‰ a (3.11)

Bapr ` sq “ Bar ` Bas (3.12)
Bar ¨ s, if νprq “ H (3.13)

Bapr ¨ sq “

$

’

&

’

%

Bar ¨ s` Bas, if νprq “ ε (3.14)
Bar ¨ s` νprq ¨ Bas, in either case (3.15)

Bapr X sq “ Bar X Bas (3.16)
Bapr

˚q “ Bar ¨ r
˚ (3.17)

Bεr “ r (3.18)
Bu¨vr “ BvpBurq (3.19)

Figure 3.3: Rules for the Brzozowski derivative

Note that (3.15) is useful for theoretical and hand calculation but is problematic for algorithmic calculation.
In the case that νprq is H, (3.15) is equivalent to (3.13), but special attention is required because a naïve
implementation of Bas may result in an infinite recursion. To avoid such an error, (3.13) (3.14) should be used
instead of (3.15).

44

Notation 3.29. For any rational expression r, we use the notation r` to mean exactly r ¨ r˚

In Section 4.4.3 we will need expressions for Bar` and νpr`q, so we derive them now.

Theorem 3.30. r` and r˚ have the same derivative.

Bar
` “ Bar

˚

Proof. By Notation 3.29 we have,
Bar

` “ Bapr ¨ r
˚q .

There are two cases possible: either νprq “ H or νprq “ ε.

If νprq “ H:

Bapr ¨ r
˚q “ pBarq ¨ r

˚by (3.13)

If νprq “ ε:

Bapr ¨ r
˚q “ pBarq ¨ r

˚ ` Bar
˚ by (3.14)

“ pBarq ¨ r
˚ ` Bar ¨ r

˚ by (3.17)
“ pBarq ¨ r

˚

So in either case
Bapr ¨ r

˚q “ pBarq ¨ r
˚ “ Bar

˚ .

Lemma 3.31.
νprq X ε “ νprq

Proof. There are two cases possible νprq P tH, εu. If νprq “ H, then νprqXε “ HXH “ H “ νprq. If νprq “ ε,
then νprq X ε “ εX ε “ ε “ νprq. In either case νprq X ε “ νprq.

In the proof of Lemma 3.31 we refer to expressions such as εX ε, by which we mean tεuXtεu, ε in the latter
case being the empty word ε P Σ˚.

Theorem 3.32. r` is nullable if and only if r is nullable.

νpr`q “ νprq

Proof.

νpr`q “ νpr ¨ r˚q By Notation 3.29
“ νprq X νpr˚q By (3.5)
“ νprq X ε By (3.7)
“ νprq By Lemma 3.31

45

3.7 Computing the automaton using the rational derivative
To compute the automaton corresponding to a rational expression [ORT09b], use Algorithm 1. The algo-
rithm assumes the existence of constructor functions State (which creates a state given a rational expression),
Transition (which creates a transition given two states, the origin and destination, and an element of the
alphabet to serve as label), and Automaton (which creates an automaton as described in Definition 3.25).

Brzozowski argued that this procedure terminates because there is only a finite number of derivatives possible,
modulo multiple equivalent algebraic forms. Eventually all the expressions encountered will be algebraically
equivalent to the derivative of some other expression in the set.

Algorithm 1: Computes an automaton using the rational derivative
Input: r : a rational expression
Input: Σ : alphabet
Output: An automaton as defined in Definition 3.25

1.1 begin
1.2 F ÐH // set of final states
1.3 q Ð Stateprq
1.4 if νprq then
1.5 F Ð F Y tqu
1.6 I Ð tqu // set of initial states
1.7 QÐ tqu // set of states
1.8 W Ð tqu // set of TODO work states
1.9 while W ‰ H do

1.10 q0 Ð any element from W
1.11 W ÐW ztq0u

// Iterate over all the possible 1-letter words
1.12 for a P Σ1 do
1.13 r Ð q0.expression // the expression associated with the state
1.14 dÐ Bar
1.15 Reduce d to canonical form
1.16 if d “ H then
1.17 Nothing
1.18 else if Dq P Q such that q.expression “ d then
1.19 δ Ð Transition(q0, q, a)
1.20 else
1.21 q Ð Statepdq
1.22 δ Ð Transition(q0, a, q)
1.23 W ÐW Y tqu
1.24 QÐ QY tqu
1.25 if νpdq then
1.26 F Ð F Y tqu

1.27 return Automaton(Σ,Q,I,F ,δ)

There are a couple of useful optimization steps.
If the derivative is H, there is really no reason to explicitly add the a null state to the automaton. Doing so

would clutter the graphical representation with arrows leading to this state.
It is not necessary that there will be 1:1 correspondence between the non-trivial derivatives and the states.

The problem is that reducing the rational expressions to a canonical form is a hard problem, since many
rational expressions may generate the same rational language. Even so, one would expect that there might be
one canonical reduced expression which could be arrived at, given a finite set of identities such as H`L “ L “
L `H, ε ¨ L “ L “ L ¨ ε, pL˚q˚ “ L˚, L ` K “ K ` L, etc. In fact, there is no finite set of identities which
permits to deduce all identities between rational expressions [Pin15].

It suffices to allow the same derivative in two different algebraic forms to be represented by multiple states as
long as it is a reasonable number. There must be some reduction step in the derivative calculation to limit the
number of forms expressed, but the reduction need not actually reduce every expression to a unique, canonical
form.

46

3.8 Related work
There are many sources of information on rational language theory, a few are [HMU06, YD14].

The PCRE (Perl Compatible Regular Expressions) [Haz] library available in many languages such as C,
SKILL [Bar90] represent the rational expression shown above as "a(bd*|cd*)f". An implementation of PCRE
for Common Lisp is available and in wide usage, CL-PPCRE [Wei15].

Even though we chose the algorithm based on Brzozowski derivatives, there is another commonly used
algorithm, presented by Yvon and Demaille [YD14] for constructing a DFA which was inspired by Ken Thomp-
son [YD14, Xin04]. This alternate algorithm involves decomposing a rational expression into a small number
of cases such as base variable, concatenation, disjunction, and Kleene star, then following a graphical template
substitution for each case. While this algorithm is easy to implement, it has a serious limitation. It is unable to
easily express automata resulting from the intersection or complemention of rational expressions. We rejected
this approach as we would like to support regular type expressions (Section 4.2.1) containing the keywords :and
and :not, such as in (:and (:* t integer) (:not (:* float t))).

47

Chapter 4

Type-Checking of Heterogeneous
Sequences in Common Lisp

In this chapter we extend the work from Chapters 2 and 3. In Chapter 2 we introduced types in the Common
Lisp language, primarily concentrating on atomic objects. In Chapter 3 we summarized the theory of rational
languages, including an algorithm to construct a finite state machine which recognizes sequences of characters
in a given rational language.

In this chapter, we extend both theories to accommodate regular sequences of Common Lisp types. We do so
by extending the Common Lisp type system to accommodate rational type expressions. These expressions allow
us to express patterns of types within heterogeneous sequences. We present the Common Lisp implementation
of regular type expressions including some analysis of their performance against other reasonable approaches.

The theoretical work we present in this chapter is sound, although an initial implementation reveals several
challenges of representation and efficient execution. Correct conversion of a rational type expression into a
deterministic finite state machine requires, first, decomposing a set of types into an equivalent partition of
types (the MDTD, maximal disjoint type decomposing, problem), and second, serializing this decomposition
into Common Lisp code. In Chapters 8 and 9 we describe algorithms and performance analysis of the MDTD
problem. In Chapter 11 we describe solutions to the serialization problem.

Rather than jumping directly from Chapter 4 to Chapter 8 we first develop a computation tool, the Binary
Decision Diagram, which we use both in the MDTD problem and also the serialization problem. We introduce
this data structure in Chapter 5, examine many of its properties in Chapter 6, and extend it to accommodate
Common Lisp types in Chapter 7 before proceeding on to attacking the MDTD problem.

4.1 Introduction
As explained in Section 2.1, a type in Common Lisp [Ans94] is identically a set of (potential) values at a particular
point in time during the execution of a program [Ans94, Section 4.1]. Information about types provides clues for
the compiler to make optimizations such as for performance, space (image size), safety or debuggability [New15,
Section 4.3] [Ans94, Section 3.3]. Application programmers may as well make explicit use of types within their
programs, such as with typecase, typep, the, type-of, check-type, etc.

Using the existing Common Lisp type system, the programmer can specify a homogeneous type for all the
elements of a vector [Ans94, Section 15.1.2.2], or the type for a particular element of a list [Ans94, System
Class CONS]. Two notable limitations which we address in this report are: 1) that there is no standard way
to specify heterogeneous types for different elements of a vector; 2) neither is there a standard way to declare
types (whether heterogeneous or homogeneous) for all the elements of a list. See Section 4.5 for a vain attempt.

The small code snippet in Example 4.1 shows the Common Lisp notation for allocating a one dimensional
array of 10 elements, each of which are integer, and a one dimensional array of 256 elements each of which may
be either a string or a number.

Example 4.1 (Creating a one dimensional array object with declared element type).

(make-array '(10) : element-type 'integer)
(make-array '(256) : element-type '(or string number))

48

We introduce the concept of rational type expression for abstractly describing patterns of types within
sequences. The concept is envisioned to be intuitive to the programmer in that it is analogous to patterns
described by regular expressions, which we assume the reader is already familiar with.

Just as the characters of a string may be described by a rational expression such as pa ¨ b˚ ¨ cq, which
intends to match strings such as "ac", "abc", and "abbbbc", the rational type expression pstring ¨ number˚ ¨
symbolq is intended to match vectors like #("hello" 1 2 3 world) and lists like ("hello" world). Rational
expressions match character constituents of strings according to character equality. Rational type expressions
match elements of sequences by element type.

We further introduce an s-expression based syntax, called regular type expression to encode a rational type
expression. This syntax replaces the infix and postfix operators in the rational type expression with prefix
notation based s-expressions. The regular type expression (:cat string (:* number) symbol) corresponds
to the rational type expression pstring ¨number˚ ¨symbolq. In addition, we provide a parameterized type named
rte, whose argument is a regular type expression. The members of such a type are all sequences matching the
given regular type expression. Section 4.2.1 describes the syntax.

As the Lisp programmer would expect, the rte type may be used anywhere within a Lisp program where a
type specifier is expected, as suggested in Example 4.5. See section 4.3.4 for more details of list destructuring.
See Section 4.3 for several examples.

While we avoid making claims about the potential utility of declarations of such a type from the compiler’s
perspective [com15], there would be numerous and obvious challenges posed by such an attempt. At run-time,
cons cells may be freely altered because Common Lisp does not provide read-only cons cells. There is a large
number of Common Lisp functions which are allowed to modify cons cells, thus violating the proposed type
constraints if left unchecked. Additionally, if declarations were made about certain lists, and thereafter other
lists are created (or modified) to share those tails, it is not clear which information about the tails should be
maintained.

Nevertheless, we do suggest that a declarative system to describe patterns of types within sequences (vectors
and lists) would have great utility for program logic, code readability, and type safety.

A discussion of the theory of rational languages on which our research is grounded, may be found in [HMU06,
Chapters 3,4].

4.2 Heterogeneous sequences in Common Lisp
The Common Lisp language supports heterogeneous sequences in the form of sequentially accessible lists and
several arbitrarily accessible vectors. A sequence is an ordered collection of elements, implemented as either a
vector or a list [Ans94]. The Lisp reader recognizes syntax supporting several types of sequence. Several are
shown in Example 4.2.

Example 4.2 (Some Common Lisp sequences).

"a string is a sequence of characters "
(list of 9 elements including " symbols " " strings and" a number)
#(vector of 9 elements including " symbols " " strings and" a number)

4.2.1 The regular type expression
We have implemented a parameterized type named rte (regular type expression), via deftype. The argument
of rte is a regular type expression. Some specifics of the implementation are explained in Section 4.4.

Definition 4.3. A regular type expression is defined as either a Common Lisp type specifier, such as number,
(cons number), (eql 12), or (and integer (satisfies oddp)), or a list whose first element is one of a
limited set of keywords shown in Figure 4.2, and whose trailing elements are other regular type expressions.

The grammar of a regular type expressions is given in Figure 4.1.

49

xregular-type-expressiony |ù xcl-type-specifiery | xliteraly | xcompoundy (4.1)
xliteraly |ù :empty-word | :empty-set (4.2)

xcompoundy |ù xcompound-1-argy | xcompound-var-argsy (4.3)
xcompound-1-argy |ù (x1-arg-opy xregular-type-expressiony) (4.4)

xcompound-var-argsy |ù (x1-arg-opy xexprsy) (4.5)
xvar-args-opy |ù :cat | :and | :or (4.6)
x1-arg-opy |ù :* | :+ | :? | :not (4.7)
xexprsy |ù xrational-type-expressiony | xrational-type-expressiony xexprsy (4.8)

Figure 4.1: Regular type expression grammar

Example 4.4 (Not a valid rte type specifier). As a counter example, (rte (:cat (number number))) is
invalid because (number number) is neither a valid Common Lisp type specifier, nor does it begin with a
keyword from Figure 4.2.

There is an additional syntax not explained in the grammar in Figure 4.1. Normally the :*, :+ and :?
regular type expression keywords take a single argument such as (rte (:* number)). However, if they are
used with multiple arguments such as (rte (:* symbol number)), (rte (:+ p symbol number)), or (rte
(:? symbol number)), they are interpreted internally with an implicit :cat inserted, such as (rte (:* (:cat
symbol number))), (rte (:+ (:cat symbol number))), and (rte (:? (:cat symbol number))).

Example 4.5 (Declaring a function which a declared argument of type plist).

(assert (typep my-list '(rte (: cat mytype number))))

(deftype plist ()
`(rte (:* symbol t)))

(defun F (object plist list-of-int)
(declare (type plist plist)

(type (and list (rte (:* integer))) list-of-int))
(typecase object

((rte (: cat symbol (:* number)))
(destructuring-bind (name &rest numbers) object

...))
((rte (: cat symbol list (:* string)))

(destructuring-bind (name data &rest strings) object
...))))

Example 4.6 declares a class whose point slot is a list of two numbers. A subtlety to note is that rte is a
subtype of sequence not of list. This means that the type (rte (:cat number number)) includes not only
the list (1 2.0) but also the vector #(1 2.0).

Example 4.6 (Declaring a class with point slot declared as an rte type).

(defclass F ()
((point :type (and list (rte (: cat number number))))

#| ... |#))

50

Keyword Description Example
:* Match zero or more times. The ex-

ample matches a sequence of zero or
more objects of type string. e.g.,
(), ("abc"), or ("abc" "xyz"),
but not ("abc" "xy" 1.2).

(:* string)

:cat Concatenate zero or more regular
type expressions. The example
matches a sequence of number fol-
lowed by string followed by list.

(: cat number string list)

:empty-set Does not match any words.
:empty-set is the identity ele-
ment for :or, and is useful for
internal representations. Not really
useful for the end user.

:empty-word The empty word is a standard con-
cept in rational languages. It is use-
ful in combinations with :or and
:cat. The example matches a se-
quence of one or two strings.

(: cat string
(:or string : empty-word))

:or Match any of the regular type ex-
pressions. The example matches a
sequence which consists either of all
strings or all symbols.

(:or (:* string) (:* symbol))

:and Match all of the regular type ex-
pressions. The example matches
a sequence which starts with two
strings, and also ends with two
strings.

(: and (: cat string string (:* t))
(: cat (:* t) string string))

:not Match a sequence which does NOT
match the given regular type expres-
sions. The example matches any se-
quence except one which is one or
more repetition of keyword string.

(: not (:+ (: cat keyword string)))

:+ Match one or more times. The
example matches ("1" 2 (3)) but
not the empty list.

(:+ string number list)

:? Match zero or one time. The ex-
ample matches () and ("abc" 1.2
(a b c)), but not ("abc" 1.2 (a
b c) "xyz" 3 ()).

(:? (: cat string number list))

Figure 4.2: Regular type expression keywords

51

Example 4.7 is the definition of a function whose second argument must be a list of exactly 2 strings or 3
numbers.

Example 4.7 (Declaration of function whose second argument is declared via rte).

(defun F (X Y)
(declare (type Y (and list

(rte (:or (: cat number number number)
(: cat string string))))))

#| ... |#)

In Example 4.8 we declare types named point-2d, point-3d, and point-sequence which can be used in
other declarations:

Example 4.8 (Definitions of point-2d and point-3d).

(deftype point-2d ()
"A list of exactly two numbers ."
'(and list (rte (: cat number number))))

(deftype point-3d ()
"A list of exactly three numbers ."
`(and list (rte (: cat number number number))))

(deftype point-sequence ()
"A list or vector of points , each point may be 2d or 3d."
'(rte (:or (:* point-2d) (:* point-3d))))

Example 4.9 (Examples of syntax using rte).

(rte (:cat number number number))
corresponds to the rational type expression pnumber ¨number ¨numberq and matches a sequence of exactly
three numbers.

(rte (:or number (:cat number number number)))
corresponds to pnumber ` pnumber ¨ number ¨ numberqq and matches a sequence of either one or three
numbers.

(rte (:cat number (:? number number)))
corresponds to pnumber ¨ pnumber ¨numberq?q and matches a sequence of one mandatory number followed
by exactly zero or two numbers. This happens to be equivalent to the previous example.

(rte (:* cons number))
corresponds to pcons ¨numberq˚ and matches a sequence of a cons followed by a number repeated zero or
more times, i.e., a sequence of even length.

4.2.2 Clarifying some confusing points about regular type expressions
There are a couple of potentially confusing points to note about the syntax of the regular type expression.

The argument of rte is a regular type expressions, which may be either Common Lisp specifier or another
regular type expression. Consider Example 4.10 with the cons type specifier. In Common Lisp an object of
type cons is a non-nil list. An object of type (cons number) is a list whose first element is of type number.

52

Example 4.10 (rte using cons).

(rte (:cat cons number)) — A sequence of length 2 whose respective elements are a non-empty list and a
number.

(rte (cons number)) — A sequence of length 1 whose element is a list whose first element is a number.

(rte (:cat (cons number))) — Same as (rte (cons number)).

Another potentially confusing point about the syntax is that and and :and (similarly or and :or) may both
be used but have different meanings in most cases. The Common Lisp type specifiers, and and or match exactly
one object. For example: (or string symbol) matches one object which must either be a string or a symbol.
The operands of and and or are Common Lisp type specifiers. For example (and (:* string) (:* number))
is not valid because (:+ string) and (:* number) are not valid Common Lisp type specifiers.

Contrast that with the regular type expression keywords :and and :or whose operands are regular type
expressions, which may happen to be type specifiers. For example (rte (:or (:+ string) (:* number))) is
valid, and so is (:or string number).

Additionally, regular type expressions may reference Common Lisp type specifiers. For example: (rte (:or
(:+ string) (and list (not null)))), which matches either a non-empty sequence of strings, or a singleton
sequence whose element is a non-empty list.

To avoid confusion, we emphasize the difference between (:cat number symbol) and (rte (:cat number
symbol)). We refer to a form such as (:cat number symbol) as a regular type expression, and the correspond-
ing Common Lisp type is specified by (rte (:cat number symbol)). In fact (rte (:cat number symbol))
can be used, within Common Lisp code, anywhere a Lisp type specifier is expected. However, (:cat number
symbol) is not a Common Lisp type specifier; it may only be used as a parameter to the rte type.

A subtle point worth repeating is that any Common Lisp type specifier is a valid regular type expression
(but not vice versa). So (rte (:cat number symbol)) may also be used where a regular type expression is
expected, including being used recursively within another regular type expression. Compare the expressions in
Example 4.11

Example 4.11 (Using rte recursively).

(rte (:cat number (rte (:cat symbol symbol)))) — matches a sequence of length exactly two, whose
first element is a number, and whose second element is a sequence of exactly two symbols. E.g., (1.1 (a
b))

(rte (:cat number (:cat symbol symbol))) — matches a sequence of length exactly three whose first ele-
ment is a number, and whose next two elements are symbols. E.g., (1.1 a b)

4.3 Application use cases
The following subsections illustrate some motivating examples of regular type expressions.

4.3.1 Use Case: RTE-based string regular expressions
Since a string in Common Lisp is a sequence, the rte type may be used to perform simple string regular
expression matching. Our tests have shown that the rte based string regular expression matching is about
35% faster than CL-PPCRE [Wei15] when restricted to features strictly supported by the theory of rational
languages, thus ignoring CL-PPCRE features such as character encoding, capture buffers, recursive patterns,
etc.

The call to the function remove-if-not in Example 4.12, filters a given list of strings, retaining only those
that match an implicit regular expression "a*Z*b*". The function, regexp-to-rte converts a string regular
expression to a regular type expression.

53

Example 4.12 (Expansion of rte representing conventional string regular expression).

(regexp-to-rte "(ab)*Z*(ab)*")
==>

(: cat (:* (member #\a #\b))
(:* (eql #\Z))
(:* (member #\a #\b)))

(remove-if-not
(lambda (str)

(typep str
`(rte ,(regexp-to-rte "(ab)*Z*(ab)*"))))

'("baZab"
" ZaZabZbb "
" aaZbbbb "
" aaZZZZbbbb "))

==>
("baZab"

" aaZbbbb "
" aaZZZZbbbb ")

The regexp-to-rte function does not attempt the daunting task of fully implementing Perl compatible
regular expressions as provided in CL-PPCRE. Instead regexp-to-rte implements a small but powerful subset
of CL-PPCRE whose grammar is provided by [Cam99]. Starting with this context free grammar, we use
CL-Yacc [Chr09] to parse a string regular expression and convert it to a regular type expression.

4.3.2 Use Case: Test cases based on extensible sequences
Climb [LSCCDV12] is an image processing library implemented in Common Lisp. It represents digital images
in a variety of internal formats, including as a two dimensional array of pixels, or what conceptually serves
the function of a 2D array. The image may be populated with pixel values such as RGB objects or gray-scale
scalars, but may also have image-boundary (place-holder) elements which are not required to be valid pixel
values. Certain image processing functions are expected to calculate new images. For testing purposes we
would like to make assertions about rows and columns of the 2D arrays; e.g., we’d like to assert that the row
vectors and column vectors of a given image (excluding the border elements) are indeed RGB (red-green-blue)
values, and that the row and column vectors in the calculated image are gray-scale values. Unfortunately,
Common Lisp 2D arrays are not of type sequence, so 2D image arrays in the Climb platform, are not natively
compatible with regular type expression based matchers.

To solve this problem, we exploit a feature of SBCL called Extensible Sequences [New15, Rho09]. The
extensible sequence protocol requires an application like Climb, to implement Clos [Ans94] methods on generic
functions such as length, elt, and (setf elt) specializing on application specific classes such as row-vector
and column-vector shown in Implementation 4.13. The application specific classes in this case, row-vector
and column-vector, allow vertical and horizontal slices a 2D array to be viewed as a sequence.

Implementation 4.13.

(defclass 2 d-array-sequence (sequence
standard-object)

((2 d-array : initarg :2 d-array
: reader 2 d-array)))

(defclass row-vector (2 d-array-sequence)
((row :type fixnum

: initarg :row
: accessor row)))

(defclass column-vector (2 d-array-sequence)

54

((column :type fixnum
: initarg : column
: accessor column)))

(defmethod sequence : length
((seq column-vector))

(array-dimension (2 d-array seq) 0))

(defmethod sequence :elt ((seq column-vector)
row)

(aref (2 d-array seq) row (column seq)))

(defmethod (setf sequence :elt)
(value

(seq column-vector)
row)

(setf (aref (2 d-array seq) row (column seq))
value))

The unit tests for Climb are implementing using Lisp-Unit [Rie]. The code in Example 4.14 shows such
a test which loads an RGB image named "lena128.bmp" and makes some assertions about the format of the
internal Lisp data structures. In particular it views the image as a sequence of row-vectors, the first and last of
which may contain any content (rte (:* t)), but the rows in between are of the form (rte t (:* rgb) t).

Example 4.14 (Unit test asserting types for row vectors).

(define-test io/2 d-array-b
(let* ((rgb-image (image-load " lena128 .bmp")))

(seq (make-vector-of-rows rgb-image)))

(assert-true
(typep seq

'(rte sequence
(:* (rte t (:* rgb) t))
sequence)))))

4.3.3 Use Case: DWIM lambda lists
In this section we look briefly at Do-What-I-Mean (DWIM) lambda lists. As a complex yet realistic example
we use a regular type expression to test the validity of a Common Lisp lambda list, which are sequences which
indeed are described by a pattern.

lambda-list := (var*
[& optional {var | (var [init-form [supplied-p-parameter]])}*]
[& rest var]
[& key {var | ({ var | (keyword-name var)}

[init-form [supplied-p-parameter]]) }*
[& allow-other-keys]]

[& aux {var | (var [init-form])}*]
)

Figure 4.3: CLHS Syntax of ordinary lambda list

Common Lisp specifies several different kinds of lambda lists, used for different purposes in the language.
E.g.., the ordinary lambda list is used to define lambda functions, the macro lambda list is for defining macros,
and the destructuring lambda list is for use with destructuring-bind. Each of these lambda lists has its own

55

syntax, the simplest of which is the ordinary lambda list (Figure 4.3). The code in Example 4.15 shows examples
of ordinary lambda lists which obey the specification but may not mean what you think.

Example 4.15 (Functions with dubious lambda lists).

(defun F1 (a b &key x &rest other-args)
...)

(defun F2 (a b &key ((Z U) nil u-used-p))
...)

The function F1, according to careful reading of the Common Lisp specification, is a function with three
keyword arguments, x, &rest, and other-args, which can be referenced at the call site with a bizarre function
calling syntax such as (F1 1 2 :x 3 :&rest 4 :other-args 5). What the programmer probably meant was
one keyword argument named x and an &rest argument named other-args. According to the Common Lisp
specification [Ans94, Section 3.4.1], in order for &rest to have its normal rest-args semantics in conjunction
with &key, it must appear before, not after, the &key lambda list keyword. The specification makes no provision
for &rest following &key other than that one name a function parameter and the other have special semantics.
This issue is subtle. In fact, SBCL considers this such a bizarre situation that it diverges from the specification
and flags a SB-INT:SIMPLE-PROGRAM-ERROR during compilation: misplaced &REST in lambda list: (A B
&KEY X &REST OTHER-ARGS)

The function F2 is defined with an unconventional &key parameter which is not a symbol in the keyword
package but rather in the current package. Thus the parameter U must be referenced at the call-site as (F2 1
2 ’Z 3) rather than (F2 1 2 :Z 3).

Implementation 4.16 (deftype var).

(deftype var ()
`(and symbol

(not (or keyword
(member t nil)
(member ,@lambda-list-keywords)))))

Implementation 4.17 (dwim-ordinary-lambda-list).

(deftype dwim-ordinary-lambda-list ()
(let* ((optional-var '(:or var (: and list (rte (: cat var

(:? t
(:? var)))))))

(optional `(: cat (eql & optional) (:* ,optional-var)))
(rest '(: cat (eql &rest) var))
(key-var '(:or var

(: and list
(rte (:or var (cons keyword

(cons var null)))
(:? t

(:? var))))))
(key `(: cat (eql &key)

(:* ,key-var)
(:? (eql & allow-other-keys))))

(aux-var '(:or var (: and list (rte (: cat var (:? t))))))
(aux `(: cat (eql &aux) (:* ,aux-var))))

`(rte

56

(:* var)
(:? ,optional)
(:? ,rest)
(:? ,key)
(:? ,aux))))

0

T5

6

T1

4

T2

2T3

1T4

T5,T9

T1

T5,T7 5
T8

3T5

T1

T2

T3

T5,T6

T1

T2

T1

Transition Regular type expression
label
T1 (eql &aux)
T2 (eql &key)
T3 (eql &rest)
T4 (eql &optional)
T5 var
T6 (and list (rte var (:? t (:? var))))
T7 (and list (rte (:or var (cons keyword (cons var null))) (:? t (:? var))))
T8 (eql &allow-other-keys)
T9 (and list (rte var (:? t)))

Figure 4.4: DFA recognizing conventional ordinary lambda list

These situations are potentially confusing, so we define what we call the dwim ordinary lambda list. Imple-
mentation 4.17 shows an implementation of the type dwim-ordinary-lambda-list. A Common Lisp program-
mer might want to use this type as part of a code-walker based checker. Elements of this type are lists which are
indeed valid lambda lists for defun, even though the Common Lisp specification allows a more relaxed syntax.
Figure 4.4 showing the corresponding DFA gives a vague idea of the complexity of the matching algorithm.

The dwim ordinary lambda list differs from the ordinary lambda list, in the aspects described above and also
that it ignores semantics the particular Lisp implementation may have given to additional lambda list keywords.
It only supports semantics for: &optional, &rest, &key, &allow-other-keys, and &aux.

4.3.4 Use Case: destructuring-case

Example 4.18 (typecase using rte clauses).

57

(defun F3 (object)
(typecase object

((rte (: cat symbol (:+ (eql :count) integer)))
(destructuring-bind (name &key (count 0)) object

...))
((rte (: cat symbol list (:* string)))

(destructuring-bind (name data
&rest strings) object

...))))

Notice in the code above that each rte clause of the typecase includes a call to destructuring-bind which is
related and hand coded for consistency. The function F3 is implemented such that the object being destructured
is certain to be of the format expected by the corresponding destructuring lambda list.

We provide a macro destructuring-case which combines the capability of destructuring-bind and
typecase. Moreover, destructuring-case constructs the rte type specifiers in an intelligent way, taking
into account not only the structure of the destructuring lambda list but also any given type declarations.

Example 4.19 (Using destructuring-case including type discrimination).

(defun F4 (object)
(destructuring-case object

((name &key count)
(declare (type symbol name)

(type integer count))
...)

((name data &rest strings)
(declare (type name symbol)

(type data list)
(type strings

(rte (:* string))))
...)))

This macro is able to parse any valid destructuring lambda list and convert it to a regular type expression.
Supported syntax includes &whole, &optional, &key, &allow-other-keys, &aux, and recursive lambda lists
such as:

Example 4.20 (Lambda list with multiple lambda list keywords).

(& whole llist a (b c)
&key x ((:y (c d)) '(1 2))
& allow-other-keys)

An important feature of destructuring-case is that it can construct regular type expressions much more
complicated than would be practical by hand. Consider the following example which includes two destructuring
lambda lists, whose computed regular type expressions pretty-print to about 20 lines each. An example of
the regular type expression matching Case-1 of Example 4.21 is shown in Example 4.22. The regular type
expression for Case-2 of Example 4.21 is shown in Example 4.23.

Example 4.21 (Using destructuring-case with complex lambda lists).

58

(destructuring-case data

;; Case-1
((& whole llist

a (b c)
&rest keys
&key x y z
& allow-other-keys)

(declare (type fixnum a b c)
(type symbol x)
(type string y)
(type list z))

...)

;; Case-2
((a (b c)

&rest keys
&key x y z)
(declare (type fixnum a b c)

(type symbol x)
(type string y)
(type list z))

...))

Example 4.22 (Regular type expression matching destructuring lambda list Case-1 of Example 4.22).

(: cat (: cat fixnum (: and list (rte (: cat fixnum fixnum))))
(: and

(:* keyword t)
(:or

(: cat (:? (eql :x) symbol (:* (not (member :y :z)) t))
(:? (eql :y) string (:* (not (eql :z)) t))
(:? (eql :z) list (:* t t)))

(: cat (:? (eql :y) string (:* (not (member :x :z)) t))
(:? (eql :x) symbol (:* (not (eql :z)) t))
(:? (eql :z) list (:* t t)))

(: cat (:? (eql :x) symbol (:* (not (member :y :z)) t))
(:? (eql :z) list (:* (not (eql :y)) t))
(:? (eql :y) string (:* t t)))

(: cat (:? (eql :z) list (:* (not (member :x :y)) t))
(:? (eql :x) symbol (:* (not (eql :y)) t))
(:? (eql :y) string (:* t t)))

(: cat (:? (eql :y) string (:* (not (member :x :z)) t))
(:? (eql :z) list (:* (not (eql :x)) t))
(:? (eql :x) symbol (:* t t)))

(: cat (:? (eql :z) list (:* (not (member :x :y)) t))
(:? (eql :y) string (:* (not (eql :x)) t))
(:? (eql :x) symbol (:* t t))))))

Example 4.23 (Regular type expression matching destructuring lambda list Case-2 of Example 4.22).

(: cat (: cat fixnum (: and list (rte (: cat fixnum fixnum))))
(: and (:* keyword t)

(:or
(: cat (:? (eql :x) symbol (:* (eql :x) t))

(:? (eql :y) string (:* (member :y :x) t))

59

(:? (eql :z) list (:* (member :z :y :x) t)))
(: cat (:? (eql :y) string (:* (eql :y) t))

(:? (eql :x) symbol (:* (member :x :y) t))
(:? (eql :z) list (:* (member :z :x :y) t)))

(: cat (:? (eql :x) symbol (:* (eql :x) t))
(:? (eql :z) list (:* (member :z :x) t))
(:? (eql :y) string (:* (member :y :z :x) t)))

(: cat (:? (eql :z) list (:* (eql :z) t))
(:? (eql :x) symbol (:* (member :x :z) t))
(:? (eql :y) string (:* (member :y :x :z) t)))

(: cat (:? (eql :y) string (:* (eql :y) t))
(:? (eql :z) list (:* (member :z :y) t))
(:? (eql :x) symbol (:* (member :x :z :y) t)))

(: cat (:? (eql :z) list (:* (eql :z) t))
(:? (eql :y) string (:* (member :y :z) t))
(:? (eql :x) symbol (:* (member :x :y :z) t))))))

Examples 4.22 and 4.23 show two machine generated regular type expressions. The DFAs of those regular
type expressions are illustrated in Figures 4.6 and 4.7 respectively. The two DFAs have striking similarities.
This is not surprising as the lambda lists from the destructuring-case which generates them differ only by the
inclusion of &allow-other-keys in Case-1 of Example 4.21. Figure 4.5 itemizes the labels for the transitions
in Figures 4.6 and 4.7.

Transition label Regular type expression
T1 t
T2 list
T3 fixnum
T4 symbol
T5 keyword
T6 string
T7 (and list (rte (:cat fixnum fixnum)))
T8 (eql :x)
T9 (eql :y)
T10 (eql :z)
T11 (member :x :y)
T12 (member :x :z)
T13 (member :y :z)
T14 (member :x :y :z)
T15 (and keyword (not (eql :x)))
T16 (and keyword (not (eql :y)))
T17 (and keyword (not (eql :z)))
T18 (and keyword (not (member :x :y)))
T19 (and keyword (not (member :x :z)))
T20 (and keyword (not (member :y :z)))

Figure 4.5: Transition types for Case-1 Figure 4.6 and Case-2 Figure 4.7

60

0
1

T3
2

T7

16
T2
1

17
T8

3
T9

25

T1
0

T1

18

T4

4
T6

26

T3

5
T1
9

6

T8

12

T1
0

T1

7

T4

13

T3

8
T1
7

9
T1
0

T1

10

T3

11
T5T1

14
T1
5

15

T8T1

T4

19

T2
0

20
T9

21

T1
0

T1

T6

22

T3

23
T1
6

24

T9T1

T6

27
T1
8

28
T8

29
T9 T1

T4 T6

Fi
gu

re
4.
6:

D
FA

re
co
gn

iz
in
g
th
e
de

st
ru
ct
ur
in
g
la
m
bd

a
lis
t
C
as
e-
1

61

0
1

T3
2

T7

3

T8

16
T9

24
T1
0

4

T4

17

T6

25
T2

15

T8

11

T9

5
T1
0

T1

12

T1

6

T1
7

T9

10
T1
2

8

T1
T1

9
T1
4

T1

13
T1
0

14

T1
1

T1

T1

22
T8

23
T9

18
T1
0

T1

T1

19
T1

20

T8

21
T1
3

T1

T1

26
T8

27

T9

28
T1
0

T1 T1

T1

Fi
gu

re
4.
7:

D
FA

re
co
gn

iz
in
g
th
e
de

st
ru
ct
ur
in
g
la
m
bd

a
lis
t
C
as
e-
2

62

There is a caveat to be aware of when using destructuring-case. We do not attempt to solve the problem
presented if the actual type of the default value of an optional argument does not match the declared type. We
believe this problem to be unsolvable in general, because the extreme case is equivalent to the halting problem.
However, it could be solved for a wide range of special cases. An attempt at a partial solution might make it
more confusing, as the user would be able to easily know if his case is one of those special cases.

Example 4.24 (Example destructuring-case use case).

(destructuring-case '(42)
((a &key (count (foo))) ; case-1

(declare (type number a count))
...)

((a) ; case-2
(declare (type number a))
...))

Example 4.24 shows the general unsolvable case. Here the default value for the count key variable is
the return value of the function foo. The issue is that we cannot know whether foo will return a value
which is of type number as per the declaration. If foo returns a number, the list (42) matches the first
destructuring clause, case-1; otherwise (42) matches the second destructuring clause, case-2. We cannot know
this by examining the given data (42), and we cannot build a state machine (nor any algorithm) which can
make this decision without calling the function foo, and thus suffering its side-effects, even if it turns out to
not match.

We could, however implement some very common special cases, but we are not sure doing so would enhance
the general usability.

Take the simplest special case for example, the case where no explicit default is specified for the &key
variables (similar for &optional variables). We know that the default value in this case is specified as nil, and
we know that nil is not of type number. Thus in (42) does not match case-1.

Example 4.25, if DATA=’(42), then case-2 is satisfied. If DATA=’(42 :count 3) then case-1 is satisfied.

Example 4.25 (Special case of destructuring-case).

(destructuring-case DATA
((a &key count) ; case-1

(declare (type number a count))
...)

((a) ; case-2
(declare (type number a))
...))

Similarly if there IS a default given which is a literal (literal string, quoted symbol, number, etc.) we can
figure out (at compile time) whether that literal matches the declared value, in order to determine whether
:count is actually required or optional in the destructured list.

Example 4.26, if DATA=’(42), then case-2 is satisfied. If DATA=’(42 :count 3) then case-1 is satisfied.
Case-3 is redundant.

Example 4.26 (Special case of destructuring-case).

(destructuring-case '(42)
((a &key (count "hello")) ; case-1

(declare (type number a)
(type string count))

...)

63

((a &key (count 0)) ; case-2
(declare (type number a count))
...)

((a) ; case-3
(declare (type number a))
...))

If the default for the &key variable is a symbol which is declared a constant, it reduces to the special case in
Example 4.26. However, it is unclear whether it is possible to know at macro expansion time whether a symbol
names a constant.

Example 4.27, if DATA=’(42), then case-1 is satisfied. Case-2 is redundant.

Example 4.27 (Special case of destructuring-case).

(defconstant +ZERO+ 0)

(destructuring-case '(42)
((a &key (count +ZERO +)) ; case-1

(declare (type number a count))
...)

((a) ; case-2
(declare (type number a))
...))

For these reasons we don’t attempt to implement any of these special cases. One additional argument
is that SBCL warns against such usage anyway. Example 4.28 shows warnings issued at compile time that
the default value, nil, does not match the declared type. The same warning appears in the corresponding
destructuring-case because it expands to destructuring-bind.

Example 4.28 (Warnings from dubious destructuring-bind).

(destructuring-bind (a &key count) DATA
(declare (type number count))
...)

; in: DESTRUCTURING-BIND (A &KEY COUNT)
; (IF (NOT (EQL #: G685 0))
; (CAR (TRULY-THE CONS #: G685)))
; ==>
; NIL
;
; caught STYLE-WARNING :
; The binding of COUNT is not a NUMBER :
; NIL
; See also:
; The SBCL Manual , Node " Handling of Types"

4.4 Implementation overview
Using an rte involves several steps. The following subsections describe these steps.

1. Convert a parameterized rte type into code that will perform run-time type checking.

64

2. Convert the regular type expression to DFA (deterministic finite automaton, sometimes called a finite
state machine).

3. Decompose a list of type specifiers into disjoint types.

4. Convert the DFA into code which will perform run-time execution of the DFA.

4.4.1 Pattern matching a sequence
The function match–sequence, can be used to determine whether a given sequence matches a given pattern.

Implementation 4.29 (match-sequence).

(defun match-sequence (input-sequence pattern)
(declare (type list pattern))
(when (typep input-sequence 'sequence)

(let ((sm (or (find-state-machine pattern)
(remember-state-machine (make-state-machine pattern)

pattern))))
(some #' state-final-p

(perform-transitions sm input-sequence)))))

This function takes an input sequence such as a list or vector, and a regular type expression, and returns
true or false depending on whether the sequence matches the regular type expression. It works as follows:

1. If necessary it builds a finite state machine by calling make-state-machine, and caches it to avoid having
to rebuild the state machine if the same pattern is used again.

2. Next, it executes the machine according to the input sequence.

3. Finally, it asks whether any of the returned states are final states.

4.4.2 Type definition
The rte type is defined by deftype.

Implementation 4.30 (deftype rte).

(deftype rte (pattern)
`(and sequence

(satisfies ,(compute-match-function
pattern))))

As in this definition, when the satisfies type specifier is used, it must be given a symbol naming a globally
callable unary function. In our case compute-match-function accepts a regular type expression, such as (:cat
number (:* string)), and computes a named unary predicate. The predicate can thereafter be called with
a sequence and will return true or false indicating whether the sequence matches the pattern. Notice that
the pattern is usually provided at compile-time, while the sequence is provided at run-time. Furthermore,
compute-match-function ensures that given two patterns which are EQUAL, the same function name will be
returned, but will only be created and compiled once.

The definition of the rte parameterized type is a bit more complicated that we’d like. We’d actually like
to define it as a type using satisfies of a function which closes over, or even embeds the given pattern, but
neither of these is possible. In fact the argument of satisfies must be a symbol naming a global function; a
function object is not accepted as argument of satisfies. Example 4.31 shows two invalid definitions.

65

Example 4.31 (Invalid rte type definitions).

;; first INVALID type definition
(deftype rte (pattern)

`(and sequence
(satisfies ,(lambda (input-sequence)

(match-sequence input-sequence pattern)))))

;; second INVALID type definition
(deftype rte (pattern)

`(and sequence
(satisfies `(lambda (input-sequence)

(match-sequence input-sequence ,pattern)))))

The rte type definition, from Implementation 4.30, has a return value (a type expansion) and several side
effects.

1. creates an intermediate function which closes over the given pattern
(lambda (input-sequence) (match-sequence input-sequence pattern))

2. creates a function name unique for the given pattern.

3. uses (setf symbol-function) to define a function whose function binding is that intermediate function

4. the deftype expands to (and sequence (satisfies that-function-name))

Example 4.32 (3-D point type definition).

(deftype 3- d-point ()
`(rte (: cat number number number)))

Example 4.32 should make it clearer. The type 3-d-point invokes the rte parameterized type definition
with argument (:cat number number number). The deftype of rte assures that a function is defined as in
Implementation 4.33.

Implementation 4.33.

(defun rte ::|(: cat number number number)|
(input-sequence)

(match-sequence input-sequence
'(: cat number number number)))

The function name, |(:cat number number number)| even if somewhat unusual, is so chosen to improve
the error message and back-trace that occurs in some situations. The |...| notation is the Common Lisp
reader syntax to denote a symbol containing spaces or other delimiters characters. E.g., |(a b)| is a symbol
whose print-name is "(a b)". The following back-trace occurs when attempting to evaluate a failing assertion.

Example 4.34 (Error message on failed rte type assertion).

66

CL-USER > (the 3- d-point (list 1 2))

The value (1 2)
is not of type

(OR (AND #1=(SATISFIES |(: cat NUMBER NUMBER NUMBER)|)
CONS)

(AND #1# NULL) (AND #1# VECTOR)
(AND #1# SB-KERNEL : EXTENDED-SEQUENCE)).

[Condition of type TYPE-ERROR]

Restarts :
0: [RETRY] Retry SLIME REPL evaluation request .
1: [* ABORT] Return to SLIME 's top level.
2: [ABORT] abort thread (#< THREAD " repl-thread " RUNNING {1012 A80003 }>)

Backtrace :
0: ((LAMBDA ()))
1: (SB-INT : SIMPLE-EVAL-IN-LEXENV (THE 3- D-POINT (LIST 1 2)) #< NULL-LEXENV >)
2: (EVAL (THE 3- D-POINT (LIST 1 2)))

-- more--

It is also assured that the DFA corresponding to (:cat number number number) is built and cached, to
avoid unnecessary re-creation at run-time. Finally, the type specifier (rte (:cat number number number))
expands to the following.

Example 4.35 (Expansion of rte type specifier).

(and sequence
(satisfies |(: cat number number number)|))

4.4.3 Constructing a DFA representing a regular type expression
In order to determine whether a given sequence matches a particular regular type expression, we conceptually
execute a DFA with the sequence as input. Thus we must convert the regular type expression to a DFA. This
need only be done once and can often be done at compile time. The flow involves the Brzozowski algorithm,
explained in Section 3.6.

The set of sequences of Common Lisp objects is not a rational language, because for one reason, the per-
spective alphabet (the set of all possible Common Lisp objects) is not a finite set.1 Even though the set of
sequences of objects is infinite, the set of sequences of type specifiers is a rational language, if we only consider
as the alphabet, the set of type specifiers explicitly referenced in a regular type expression. With this choice of
alphabet, sequences of Common Lisp type specifiers conform to the definition of words in a rational language.

There is a delicate matter when mapping a sequence of objects to a sequence of type specifiers: the mapping
is not unique, and may lead to a non-deterministic finite automata (NDFA). We would like to avoid NDFAs, be-
cause the algebra associated with DFAs is simpler, especially when involving intersection and complementation.
We ignore this issue for the moment, but return to it Section 4.4.6.

Consider the rational type expression

P0 “ psymbol ¨ pnumber
` Y string`qq` . (4.9)

We wish to construct a DFA which recognizes sequences matching this pattern. Such a DFA is shown in
Figure 4.8. As the first step in this construction, we create a state P0 corresponding to the given rational type
expression, (4.9).

Next, we proceed to calculate the derivative with respect to each type specifier mentioned in P0. Actually,
as will be seen, it suffices to differentiate with respect to the type specifiers which are permissible as the first

1The computation model of Common Lisp assumes infinite memory. In reality the memory is finite, but as far as theoretical
considerations we assume the memory, and thus the set of all potential objects is infinite.

67

0 1

2

3

symbol

number

string

symbol

number

symbol

string

Figure 4.8: Example DFA implementing the rational type expression: psymbol ¨ pnumber` Y string`qq`

element of the sequence. For example, the first element of the sequence is neither allowed to be a string nor a
number. This is equivalent to saying that the corresponding derivatives are H.

BstringP0 “ H

BnumberP0 “ H

Thus, as far as P0 is concerned, we need only calculate one derivative: BsymbolP0. To help understand this
calculation, we show the steps explicitly.

BsymbolP0 “ Bsymbol
`

psymbol ¨ pnumber` ` string`qq`
˘

By (4.9)
“ Bsymbol

`

symbol ¨ pnumber` ` string`q
˘

¨
`

symbol ¨ pnumber` ` string`q
˘˚ By Theorem 3.30

“
`

Bsymbolsymbol ¨ pnumber
` ` string`q

` νpsymbolq ¨ Bsymbolpnumber
` ` string`q

˘

¨
`

symbol ¨ pnumber` ` string`q
˘˚ By (3.14)

“
`

ε ¨ pnumber` ` string`q `H ¨ Bsymbolpnumber
` ` string`q

˘

¨ psymbol ¨ pnumber` ` string`qq˚ By (3.10) and (3.3)
P1 “ pnumber

` ` string`q ¨
`

symbol ¨ pnumber` ` string`q
˘˚ (4.10)

Since there is not yet a state in the automaton labeled with this expression, we create one named P1. We
also create a transition P0

symbol
ÝÝÝÝÑ P1. This transition is labeled with symbol because BsymbolP0 “ P1. The

transition corresponds to the arrow on the graph in Figure 4.8 from P0 to P1 labeled symbol. We now proceed
to calculate the derivatives of P1.

P2 “ BnumberP1

“ Bnumber
`

pnumber` ` string`q ¨
`

symbol ¨ pnumber` ` string`q
˘˚˘ By (4.10)

“ number˚ ¨ psymbol ¨ pnumber` ` string`qq˚ (4.11)

We add a state P2 to the automaton with a transition P1
number
ÝÝÝÝÝÑ P2.

P3 “ BstringP1

“ string˚ ¨ psymbol ¨ pnumber` ` string`qq˚ (4.12)

We add a state P3 to the state machine with a transition P1
string
ÝÝÝÝÑ P3.

If we continue calculating the derivatives, we find that we again obtain expression we have already obtained
in earlier steps.

68

BsymbolP1 “ P1

BnumberP2 “ P2

BstringP3 “ P3

BsymbolP2 “ P1

BsymbolP3 “ P1

From these derivatives we create the following transitions thus completing the transitions in the state machine
(Figure 4.8): P1

symbol
ÝÝÝÝÑ P1, P2

number
ÝÝÝÝÝÑ P2, P3

string
ÝÝÝÝÑ P3, P2

symbol
ÝÝÝÝÑ P1, and P3

symbol
ÝÝÝÝÑ P1.

Now, we have created all the states in the automaton, and we have labeled all the transitions between states
with the type specifier which was used in the derivative calculation between those states. We have ignored
transitions from any state to the H state.

Finally, we label the final states. To determine which states are final states, we must determine which of
the rational expressions are nullable. The final states are P2 and P3 because only those two states are nullable.
We know this intuitively, because

ε P pnumber˚ ¨ psymbol ¨ pnumber` Y string`qq˚q

can match the empty sequence, and so can

ε P pstring˚ ¨ psymbol ¨ pnumber` Y string`qq˚q .

νpP0q “ νppsymbol ¨ pnumber` ` string`qq`q By (4.9)
“ νpsymbol ¨ pnumber` ` string`qq By Theorem 3.32
“ HX νpnumber` ` string`q By (3.5)
“ H So P0 is not nullable.

νpP1q “ νppnumber` ` string`q ¨ psymbol ¨ pnumber` ` string`qq˚q By (4.10)
“ νpnumber` ` string`q X νppsymbol ¨ pnumber` ` string`qq˚q By (3.5)
“ νpnumber` ` string`q X ε By (3.7)
“ νpnumber` ` string`qBy Lemma 3.31
“ νpnumber`q ` νpstring`q By (3.4)
“ νpnumberq ` νpstringq By Theorem (3.32)
“ H`H By (3.3)
“ H So P0 is not nullable.

In similar manner we find that no other of the expressions is nullable.

νpP2q “ ν
`

number˚ ¨ psymbol ¨ pnumber` ` string`qq˚
˘

By (4.11)
“ νpnumber˚q X ν

`

psymbol ¨ pnumber` ` string`qq˚
˘

By (3.5)
“ εX ε By (3.7)
“ ε So P2 is nullable.

νpP3q “ ν
`

string˚ ¨ psymbol ¨ pnumber` ` string`qq˚
˘

By (4.12)
“ νpstring˚q X ν

`

psymbol ¨ pnumber` ` string`qq˚
˘

By (3.5)
“ εX ε By (3.7)
“ ε So P3 is nullable.

4.4.4 Optimized code generation
In section 4.4.1 we saw a general purpose implementation of an NDFA (non-deterministic finite state machine).
There are several techniques which can be used to improve the run-time performance of this algorithm. First
we discuss some of the optimizations we have made, and in section 4.4.9 there is a discussion of the performance
results.

69

One thing to notice is that although the implementation described above is general enough to support non-
deterministic state machines, the development made in sections 4.4.6 and Chapters 8 and 9 obviate the need
for this flexibility. In fact although each state in a state machine recognizing a rational type expression has
multiple transitions to next states, we have assured that maximally one such is ever valid as each transition
is labeled with a type disjoint from the other transitions from the same state. The result is that to make a
state transition in the DFA case, type membership tests must be made only until one is found which matches,
whereas in the NDFA case all type membership tests must be made from each state, and a list of matching next
states must be maintained.

Another thing to notice is that rather than traversing the state machine to match an input sequence, we
may rather traverse the state machine to produce code which can later match an input sequence. The generated
code will be special purpose and will only be able to match a sequence matching the particular regular type
expression. There are three obvious advantages of the code generation approach. 1) There will be much less
code per regular type expression to execute at run time, that code being specifically generated for the specific
pattern we are attempting to match. 2) We can avoid several function calls in the code by making use of
tagbody and go. 3) The Lisp compiler can be given a chance to optimize the more specific (less generic) code.

The result of these three considerations is that the code no longer makes use of the potentially costly call
to match-sequence. In its place, code is inserted specifically checking the regular type expression in question.
Implementation 4.36 shows a sample body of such a function which recognizes the regular type expression ((:+
(:cat symbol (:or (:+ number) (:+ symbol))))). The corresponding rational type expression is psymbol ¨
pnumber` ` string`qq`. The DFA can be seen in Figure 4.8. The code contains two sections, one for the case
that the given sequence, sequence is a list and another if the sequence is a vector. The purpose of the two
sections is so that the generated code may use more specific accessors to iterate through the sequence, and also
so the compiler can have more information about the types of structure being accessed.

Each section differs in how it iterates through the sequence and how it tests for end of sequence, but the
format of the two sections is otherwise the same. Each section contains one label for each state in the state
machine. Each transition in the DFA is represented as a branch of a typecase and (go ...) (the Common
Lisp GOTO).

Implementation 4.36 (Machine generated pattern matcher for recognizing an RTE).

(lambda (sequence)
(declare (optimize (speed 3) (debug 0) (safety 0)))
(block check

(typecase sequence ; OUTER-TYPECASE
(list

(tagbody
0

(when (null sequence)
(return-from check nil)) ; rejecting

(typecase (pop sequence) ; INNER-TYPECASE
(symbol (go 1))
(t (return-from check nil)))

1
(when (null sequence)

(return-from check nil)) ; rejecting
(typecase (pop sequence) ; INNER-TYPECASE

(number (go 2))
(string (go 3))
(t (return-from check nil)))

2
(when (null sequence)

(return-from check t)) ; accepting
(typecase (pop sequence) ; INNER-TYPECASE

(number (go 2))
(symbol (go 1))
(t (return-from check nil)))

3
(when (null sequence)

(return-from check t)) ; accepting
(typecase (pop sequence) ; INNER-TYPECASE

(string (go 3))

70

(symbol (go 1))
(t (return-from check nil)))))

(simple-vector ...)
(vector ...)
(sequence ...)
(t nil))))

The mechanism we chose for implementing the execution (as opposed to the generation) of the DFA was to
generate specialized code based on typecase, tagbody, and go. As an example, consider the DFA shown in
Figure 4.8. The code in Implementation 4.36 was generated given this DFA as input.

The code is organized according to a regular pattern. The typecase, commented as OUTER-TYPECASE
switches on the type of the sequence itself. Whether the sequence, sequence, matches one of the carefully
ordered types list, simple-vector, vector, or sequence, determines which functions are used to access the
successive elements of the sequence: svref, incf, pop, etc.

The final case, sequence, is especially useful for applications which wish to exploit the SBCL feature of
Extensible sequences [New15, Section 7.6] [Rho09]. One of our rte based applications uses extensible sequences
to view vertical and horizontal slices of 2D arrays as sequences in order to match certain patterns within row
vectors and column vectors.

While the code is iterating through the sequence, if it encounters an unexpected end of sequence, or an
unexpected type, the function returns nil. These cases are commented as rejecting. Otherwise, the function
will eventually encounter the end of the sequence and return t. These cases are commented accepting in the
figure.

Within the inner section of the code, there is one label per state in the state machine. In the example, the
labels P0, P1, P2, and P3 are used, corresponding to the states in the DFA in Figure 4.8. At each step of the
iteration, a check is made for end-of-sequence. Depending on the state either t or nil is returned depending
on whether that state is a final state of the DFA or not.

The next element of the sequence is examined by the INNER-TYPECASE, and depending on the type of the
object encountered, control is transferred (via go) to a label corresponding to the next state.

There is a potential efficiency problem in the order of the clauses of this typecase. We return to this issue
in Chapter 11.

One thing to note about the complexity of this function is that the number of states encountered when the
function is applied to a sequence is equal or less than the number of elements in the sequence. Thus the time
complexity is linear in the number of elements of the sequence and is independent of the number of states in
the DFA.

In some cases the same type may be specified with either the rte syntax or with the Common Lisp native
cons type specifier. For example, a list of three numbers can be expressed either as (cons number (cons
number (cons number null))) or as (rte (:cat number number number)).

Should the rte system internally exploit the cons specifier when possible, thus avoiding the creation of finite
state machines? We began investigating this possibility, but abandoned the investigation on discovering that it
lead to significant performance degradation for long lists. We measured roughly a 5% penalty for lists of length
5. The penalty grew for longer lists: 25% with a list length of 10, 40% with a list length of 20.

4.4.5 Sticky states

P0

P1

symbol

number P2string

t

Figure 4.9: DFA with sticky state

71

Consider the DFA shown in Figure 4.9. If the state machine ever reaches state P2 it will remain their until
the input sequence is exhausted, because the only transition is for the type t, and all objects of this type. This
state is called a sticky state. If the state machine ever reaches a sticky state which is also a final state, it is no
longer necessary to continue examining the input string. The matching function can simply return true.

This type of pattern is fairly common such as (:cat (:* symbol number) (:* t)).
We have incorporated this optimization into both the generic DFA version (based on matchsequence) and

also the auto-generated code version. To understand the consequence of this optimization consider a list of
length 1000 which begins with a symbol followed by a number. With the sticky state optimization, checking
the pattern against the sequence would involve:

• one check of (typep object symbol),

• one check of (typep object number), and

• 998 checks of (typep object t), all of which are sure to return true.

When this optimization is in effect, 1000 type checks are reduced to 2 type checks.

4.4.6 The overlapping types problem
In the example in Section 4.4.3, all the types considered (symbol, string, and number) were disjoint. If the same
method is naïvely used with types which are intersecting, the resulting DFA will not be a valid representation of
the rational expression. Consider the rational expression involving the intersecting types integer and number:

P0 “
`

pnumber ¨ integerq Y pinteger ¨ numberq
˘

.

The sequences which match this expression are sequences of two numbers, at least one of which is an integer.
Unfortunately, when we calculate BnumberP0 and BintegerP0 we arrive at a different result.

rclBnumberP0 “ Bnumber
`

pnumber ¨ integerq ` pinteger ¨ numberq
˘

“ Bnumberpnumber ¨ integerq Y Bnumberpinteger ¨ numberq

“ pBnumbernumberq ¨ integer Y pBnumberintegerq ¨ number

“ ε ¨ integer YH ¨ number

“ integer YH

“ integer

Without continuing to calculate all the derivatives, it is already clear that this result is wrong. If we start
with the set of sequences of two numbers one of which is an integer, and out of that find the subset of sequences
starting with a number, we get back the entire set. The set of suffixes of this set is not the set of singleton
sequences of integer as this naïve calculation of BnumberP0 predicts.

The problem is that if a rational type expression is treated blindly as an ordinary rational expression, then
number ‰ integer end of story. But if we wish to create a DFA which will allow validation of Common Lisp
sequences of objects, we must extend the theory slightly to accommodate intersecting types.

To address this problem, we augment the algorithm of Brzozowski with an additional step. Rather than
calculating the derivative at each state with respect to each type mentioned in the regular type expression,
some of which might be overlapping, instead we calculate a disjoint set of types. More specifically, given a
set A of potentially overlapping types, we calculate a set B which has the properties: Each element of B is a
subtype of some element of A, any two elements B are disjoint from each other, and YA “ YB. We refer to
this deconstruction as the Maximal Disjoint Type Decomposition (MDTD) problem, and we discuss it in depth
in Chapters 8 and 9.

P0

P2

P3

P1

integer

number X integer integer

number

Figure 4.10: Example DFA with disjoint types

72

Figure 4.10 illustrates a deterministic finite automata (DFA) whose transitions are based on such a disjoint
union. The set of overlapping types A “ tnumber, integeru has been replaced with the set of disjoint types
B “ tnumber X integer, integeru.

This extra step has two positive effects on the algorithm. 1) it ensures that the constructed automaton is
deterministic, i.e., we ensure that all the transitions leaving a state specify disjoint types, and 2) it forces our
treatment of the problem to comply with the assumptions required by the Brzozowski/Owens algorithm.

The troublesome rule, introduced in Figure 3.3, is equation (3.11). It indicates that Bab “ H for b ‰ a.
The rules in Figure 4.11 show derivatives of type expressions with respect to particular types. Most notably,
Figure 4.11 augments Figure 3.3 in the case disjoint types.

BAB “ ε if A “ B (4.13)
BAB “ H if AXB “ H (4.14)
BAB is undefined otherwise.

Figure 4.11: Rules for derivative of regular type expressions

Proof. Arguments justifying (4.13) and (4.14).
Let Bseq be a non empty set of sequences of length one, each of whose first elements is an object of type

Btype. BAB by definition is a particular possibly empty subset of the set of suffixes of Bseq. Call that subset S.
Now, BAB “ Suff tSu. Since every element of Bseq has length one, every suffix and consequently every element
of S has length zero. The unique zero length sequence is denoted ε. Thus BAB is either ε2 or H. In particular
if S “ H then BAB “ H; if S ‰ H then BAB “ ε. What remains is to determine for which cases (4.13) and
(4.14) is S empty.

(4.13) Since A “ Btype, S “ Bseq. Since S is not empty, BAB “ ε.

(4.14) S Ă Bseq is a set of singleton sequences each of whose element is of type A. Bseq is a set of sequences
whose first element is of type Btype. Since no element of type A is an element of Btype, S must be empty.
Thus BAB “ H.

To use these differentiation rules, we note that BAB is undefined when A and B are partially overlapping.
Practically this means we must only differentiate a given rational expression with respect to disjoint types. Fig-
ure 4.10 shows an automaton expressing the rational expression P0 “ ppnumber ¨ integerq X pinteger ¨numberqq
but only using types for which the derivative is defined. P3 “ BintegerP0 and P1 “ Bpand number pnot integerqqP0.
Figure 4.10 does show transitions from P3

number
ÝÝÝÝÝÑ P2 and P1

integer
ÝÝÝÝÝÑ P2 using intersecting types. This is not,

however, a violation of the rules in Figure 4.11 because P3 and P1 are different states.
We need an algorithm (in this case implemented in Common Lisp) which takes a list of type specifiers, and

computes a list of disjoint sub types, such that union of the two sets of types is the same. E.g., given the list
(integer number) returns the list (integer (and number (not integer))). Chapter 9 explains how this
can be done.

Algorithms for decomposing a set of types into a set of disjoint types are discussed in Chapters 8 and 9. At the
inescapable core of each algorithm is the Common Lisp function subtypep [Bak92]. This function is crucial not
only in type specifier simplification, needed to test equivalence of symbolically calculated Brzozowski derivatives,
but also in deciding whether two given types are disjoint. For example, we know that string and number are
disjoint because (and string number) is a subtype of nil. See Sections 2.3 and 2.4 for computation details
of type intersection, type disjointness, and type equivalence and concerns about whether it is at all possible to
determine the subtype relation programmatically.

4.4.7 Rational type expressions involving satisfies

This section discusses some challenges introduced by the satisfies type. Despite the system’s inability to peer
into the types specified by satisfies, we may nevertheless use such types in rational type expressions. Doing
so we, get correct but sub-optimal results.

Consider the rational type expression:3 ppstring ` oddq? ¨ evenq˚ which corresponds to the regular type
expression:

2Recall the abuse of notation that ε denotes both the empty word and the set containing the empty word.
3In this case we use the notation of a super-scripted ? to indicate an optional expression. Such notation is common in literature

relating to regular language theory.

73

0

T2

1

T1

2

T3

T4

T2
T1

3

T3T2
T1

T3

Transition label Regular type expression
T1 (or string (and (satisfies oddp) (not (satisfies evenp))))
T2 (and (not (satisfies oddp)) (satisfies evenp))
T3 (and (satisfies oddp) (satisfies evenp))
T4 (satisfies evenp)

Figure 4.12: DFA in the case of satisfies type

(:* (:? (:or string
(satisfies oddp)))

(satisfies evenp))

The corresponding DFA is shown in Figure 4.12. Although the results are technically correct, they are more
complicated than necessary. In particular, transition label T1, (or string (and (satisfies oddp) (not
(satisfies evenp)))) is equivalent to (or string (satisfies oddp)). In addition, consider the transi-
tion labels T2 and T4, (and (not (satisfies oddp)) (satisfies evenp)) and even respectively. These
correspond to the same type.

Furthermore, consider state 3. This state is only reachable via transitions 2 T3
ÝÑ 3 and 3 T3

ÝÑ 3. The
transition label, T3 corresponds to type (and (satisfies oddp) (satisfies evenp)), which we know is an
empty type; no value is both even and odd. Since transition 2 T3

ÝÑ 3 will never be taken at run-time, state 3 is
not accessible, and can thus be eliminated.

We can improve the result. Recall the human knows that (satisfies oddp) is not a subtype of string,
but that the Lisp system does not. The difficulty is that Lisp does not know that (satisfies oddp) and
(satisfies evenp) are non-empty and disjoint. We can improve the situation by defining types, odd and
even, as in Implementation 4.37.

0

even

1

(or odd string)

even

Figure 4.13: DFA with good deftype

74

Implementation 4.37 (Final version of type definitions of odd and even).

(deftype odd ()
`(and integer

(not (satisfies evenp))
(satisfies oddp)))

==> ODD

(deftype even ()
`(and integer

(not (satisfies oddp))
(satisfies evenp)))

==> EVEN

(subtypep 'odd 'even)
==> NIL , T

(subtypep 'odd 'string)
==> NIL , T

Given the definitions of the types even and odd in Implementation 4.37, the disjoint-types-p function is
able to figure out that types such as string and odd are disjoint.

With these final type definitions, the state machine representing the expression (:* (:? (:or string
odd)) even) is shown in Figure 4.13.

It is perhaps worth repeating that the state machines in Figures 4.12 and 4.13 recognize the same sequences.
The type specifiers marking the transitions of the former are correct, but less efficient than those in the latter.
Additionally, the number of states has been reduced in the latter to two states. However, to achieve this minimal
state machine, we supplied redundant information in the type definitions.

4.4.8 Known open issue
With the current state of implementation of rte there is a known serious limitation with respect to the com-
pilation semantics. During each expansion of the rte deftype, the implementation notices whether this is the
first time the given regular type expression has been encountered, and, if so, it creates a named function to
check a sequence against the pattern. This flow is explained earlier in Section 4.4. After the named function has
been created, the deftype expands to something like (and sequence (satisfies rte::|(:* number)|)),
which is what is written to the fasl file being compiled. So the compiler replaces expression such as (typep
object ‘(rte (:* number))) with something like (typep object ’(and sequence (satisfies rte::|(:*
number)|))). And that’s what goes into the fasl file.

The problem occurs the next time Lisp restarts, and the fasl file is loaded. The loader encounters this
expression (typep object ’(and sequence (satisfies rte::|(:* number)|))) and happily reads it. But
when the call to typep is encountered at run-time, the function rte::|(:* number)| is undefined. It is
undefined because the closure which was setf’ed to the symbol-function existed in the other Lisp image, but
not in this one.

Apparently, according to [Pit03], it is a known limitation in the Common Lisp specification. Certain file,s
which use rte based types, can be compiled but cannot be re-loaded from the compiled file.

If only there were a way to indicate which files should be loaded from source, allowing others to be compiled
and loaded from the compiled file. One might think ASDF [Bar15] could be used for this purpose. Unfortunately
it probably cannot be. There is no facility in ASDF to mark some files as load-from-source and others as load-
from-compiled [Bar15, Section 16.6.6].

Declaration based solution

In order to force the definition of the missing function to be compiled into the fasl file, the declaration macro
defrte may be used. To use this approach, declare any regular type expression with defrte before it appears
within a function definition. Moreover, the text of the regular type expression must be EQUAL to the text
declared by defrte.

75

Implementation 4.38 (defrte).

(defrte (:* number number))

(defun F (a b)
(declare (type (rte (:* number number)) a b))
...)

This usage does indeed seem redundant, but is a pretty easy work-around for this insidious problem.

ASDF based solution

This solution allows the ASDF [Bar15] COMPILE-OP operation to create an auxiliary file parallel to the fasl file
in the compile directory. The file will have a .rte extension but the same base file name. Later when the fasl
file is loaded via an ASDF LOAD-OP operation, the .rte file will be loaded before the fasl file.

There are several steps to follow to effectuate this workaround.

1. Include the :defsystem-depends-on keyword in the asdf:defsystem, to register a dependency on :rte.
Use :defsystem-depends-on rather than simply depends-on, otherwise ASDF won’t be able to under-
stand the use of :rte-cl-source-file which follows.

2. In the components section, use :file to declare any file which should be compiled and loaded normally,
but use :rte-cl-source-file to register a file which contains a problematic regular type expression.

Example 4.39 shows such a defsystem which uses :rte-cl-source-file.

Implementation 4.39 (ASDF based solution using :rte-cl-source-file).

(asdf: defsystem : rte-test
: defsystem-depends-on (: rte)
: depends-on (: rte-regexp-test

:2 d-array
(: version : lisp-unit "0.9.0")
:2 d-array-test
: ndfa-test
: lisp-types-test)

: components
((: module "rte"

: components
((: file " test-rte ")

(: file " test-list-of ")

;; CREATE and LOAD a .rte file
(: rte-cl-source-file " test-re-pattern ")

(: file " test-destructuring-case-1 ")
(: file " test-destructuring-case-2 ")
(: file " test-destructuring-case ")
(: file " test-ordinary-lambda-list ")))))

There are a few subtle points with this implementation. The keyword :rte-cl-source-file within the
:components section of the ASDF system definition triggers a custom compilation and loading procedure, gov-
erned by the Clos class asdf-user:rte-cl-source-file which inherits directly from asdf:cl-source-file.
This class asdf-user:rte-cl-source-file is defined in the :rte package whose loading is triggered by the
:defsystem-depends-on (:rte) option in the system definition.

There are two methods specializing on the class asdf-user:rte-cl-source-file shown in Implementa-
tion 4.40.

76

Implementation 4.40 (Methods required by ASDF).

(defmethod asdf: perform : around ((operation asdf: compile-op)
(file asdf-user :: rte-cl-source-file))

...)

(defmethod asdf: perform : before ((operation asdf: load-op)
(file asdf-user :: rte-cl-source-file))

...)

The asdf:perform :around method intercepts the asdf:compile-op operation to determine which rte
types and which rte patterns get defined by compiling the source file via (call-next-method). Once this list
is calculated, the :around method writes a .rte file along side the fasl file whose text defines pattern definition
functions. The :before method simply loads this .rte from source; i.e. the .rte file is loaded from source
before the fasl is loaded. This procedure guarantees that the functions created as a side effect of compilation
are also loaded when the fasl is loaded even if the fasl has already been compiled in another Lisp image.

4.4.9 RTE performance vs hand-written code
A natural question to ask is how the state-machine approach to pattern matching compares to hand written
code. That is to say: what is the cost of the declarative approach?

To help answer this question, consider the function check-hand-written in Implementation 4.41. It is a
straightforward handwritten function to check for a list matching the regular type expression (:* symbol
number).

Implementation 4.41 (Hand-written pattern checking).

(defun check-hand-written (object)
(or (null object)

(and (cdr object)
(symbolp (car object))
(numberp (cadr object))
(check-hand-written (cddr object)))))

The test we constructed was to attempt to match 200 samples of lists of length 8000. The handwritten code
was able to do this in roughly 11ms of CPU time. The generic state machine code to do this took about 879ms,
ignoring the initial cost of building the state machine. Using the optimization described in Section 4.4.4, this
time dropped to about 22ms.

Version CPU time (sec) Penalty
Hand written 0.011 1x
Generic DFA 0.879 77.5x
Generated Code 0.022 2x

4.4.10 RTE performance vs CL-PPCRE
The rte type can be used to perform simple string regular expression checking. A generally accepted Common
Lisp implementation of regular expressions for strings is CL-PPCRE [Wei15].

The following example is similar to the one shown in section 4.3.1.
We would like to count the number of strings in a given list which match a particular regular expression.

To analyze the performance we used two approaches: using CL-PPCRE and rte. In particular, we implemented
the following two function count-matches-ppcre and count-matches-rte respectively shown in Implementa-
tion 4.42.

77

Implementation 4.42 (String regular expression performance testing).
(defvar *data* '(" ababababzabab "

" ababababzabababab "
" ababababzabababab "
" ababababzzzzabababab "
" abababababababzzzzzzabababab "
" ababababababababababzzzzzzabababab "
" ababababababababababababababzzzzzzabababab "
" ababababzzzzzzababababababababzzzzzzabababab "
))

(defvar * test-scanner * (cl-ppcre : create-scanner "^(ab)*z*(ab)*$"))

(defun count-matches-ppcre ()
(count-if (lambda (str)

(cl-ppcre :scan * test-scanner * str))
*data *))

(defun count-matches-rte ()
(count-if (lambda (str)

(typep str `(rte ,(regexp-to-rte "(ab)*z*(ab)*"))))
*data *))

The performance difference is significant. A loop executing each function one million times, shows that the
rte approach runs about 35 % faster, as shown in the output in Example 4.43

Example 4.43 (Timing of rte vs CL-PPCRE).

RTE > (time (dotimes (n 1000000) (rte :: count-matches-rte)))
Evaluation took:

6.185 seconds of real time
6.149091 seconds of total run time (6.089164 user , 0.059927 system)
99.42% CPU
14 ,808 ,087 ,438 processor cycles
32 ,944 bytes consed

NIL
RTE > (time (dotimes (n 1000000) (rte :: count-matches-ppcre)))
Evaluation took:

8.425 seconds of real time
8.334411 seconds of total run time (7.750325 user , 0.584086 system)
98.92% CPU
20 ,172 ,005 ,693 processor cycles
768 ,016 ,656 bytes consed

NIL

4.4.11 Exceptional situations
In Common Lisp, defclass creates a class and a type of the same name. Every valid class name is simultaneously
a type specifier. The type is the set of instances of that named class, which includes instances of all sub-classes
of the class. Classes can be redefined, especially while an application is being developed and debugged. The
implementation described in this report memoizes certain calculations for reuse later. For example, given the
rational expression; i.e., the argument list of rte, a finite automaton is generated, and cached with the rational
expression. The generation of this automaton makes some assumptions about subtype relationships. If classes
are redefined later, these relationships may no longer hold; consequently, the memoized automata may no longer
be correct.

78

The Common Lisp Metaobject Protocol [Pae93, KdRB91] (MOP) provides a mechanism, called dependent
maintenance protocol, designed to handle this kind of situation. The protocol allows applications to attach
observers called “dependents” to classes. Thereafter, whenever one of these classes changes, an application
specific method is called.

We exploit the dependent maintenance protocol to purge the cache of state machines that have potentially
become invalid as a consequence of a Clos class redefinition.

4.5 Alternatives: Use of cons construct to specify homogeneous lists
One simple and straightforward way to define types representing fixed types of homogeneous lists is illustrated
in Example 4.44.

Example 4.44 (Simple attempt to define types).

(defun list-of-fixnum (data)
(every #'(lambda (n) (typep n 'fixnum))

data))

(deftype list-of-fixnum ()
`(and list (satisfies list-of-fixnum)))

Using this approach the developer could define several types for the various types of lists used the program
under development.

The cons type construct can be used to declare the types of the car and cdr of a cons cell, e.g., (cons
number (cons integer (cons string null))). The cons construct may be used any finite number of times
explicitly, e.g. (cons number (cons number (cons number null))) declares a list of exactly three numbers.

The syntax of the cons construct can be tedious, especially for lists of length more than two or three. For
example, to specify a list of four numbers, we would use (cons number (cons number (cons number (cons
number null)))). It is easy to define an intermediate type to simplify the syntax, as show in Implementa-
tion 4.45.

Implementation 4.45 (deftype cons*).

(deftype cons* (& rest types)
(cond

((cddr types)
`(cons ,(car types)

(cons* ,@(cdr types))))
(t

`(cons ,@types))))

Using the newly defined cons* type we can specify a list of four numbers as (cons* number number number
number null).

One might ask whether the rte implementation might benefit by recognizing lists of fixed length and
simply expanding to a Common Lisp type specifier using cons. We did indeed consider this question during
the development, but found it caused a performance penalty. Admittedly, we only investigated this potential
optimization with SBCL, but experimentation showed a roughly 5% penalty for lists of length 5. Moreover, the
penalty seems to grow for longer lists: 25% with a list length of 10, 40% with a list length of 20.

Another disadvantage of the approach of using the cons specifier is that it is not possible to combine the
two approaches above to generalize homogeneous list types of arbitrary length. One might attempt in vain to
define a type for homogeneous lists recursively as shown in Implementation 4.46, in order to specify a type such
as (list-of number).

79

Implementation 4.46 (Vain attempt of deftype list-of).

(deftype list-of (type)
`(or null (cons ,type (list-of ,type))))

But this self-referential type definition is not valid [Mar15], because of the Common Lisp specification of
deftype which states: Recursive expansion of the type specifier returned as the expansion must terminate,
including the expansion of type specifiers which are nested within the expansion. [Ans94, Section DEFTYPE]

An attempt to use such an invalid type definition will result in something like the output in Example 4.47.

Example 4.47 (Attempt to use recursive type specifier from Implementation 4.46).

CL-USER > (typep (list 1 2 3) '(list-of fixnum))
INFO: Control stack guard page unprotected
Control stack guard page temporarily disabled : proceed with caution

debugger invoked on a SB-KERNEL :: CONTROL-STACK-EXHAUSTED in thread
#< THREAD "main thread " RUNNING {1002 AEC673 }>:

Control stack exhausted (no more space for function call frames).
This is probably due to heavily nested or infinitely recursive function
calls , or a tail call that SBCL cannot or has not optimized away.

PROCEED WITH CAUTION .

Type HELP for debugger help , or (SB-EXT :EXIT) to exit from SBCL.

restarts (invokable by number or by possibly-abbreviated name):
0: [ABORT] Exit debugger , returning to top level.

(SB-KERNEL :: CONTROL-STACK-EXHAUSTED-ERROR)
0]

A caveat of using rte is that the usage must obey the restriction explained above, posed by the Common
Lisp specification [Ans94, Section DEFTYPE].

As an example of this limitation, in Example 4.48, is a failed attempt to implement a type which matches
a unary tree, i.e. a type whose elements are 1, (1), ((1)), (((1))), etc.

Example 4.48 (Attempt to use recursive type definition involving an rte type).

CL-USER > (deftype unary-tree ()
`(or (eql 1)

(rte unary-tree)))
UNARY-TREE
RTE > (typep '(1) 'unary-tree)
Control stack exhausted (no more space for function call
frames). This is probably due to heavily nested or
infinitely recursive function calls , or a tail call that
SBCL cannot or has not optimized away.

PROCEED WITH CAUTION .
[Condition of type SB-KERNEL :: CONTROL-STACK-EXHAUSTED]

80

4.6 Related work
Attempts to implement destructuring-case are numerous. We mention three here. R7RS Scheme provides
case-lambda [SCG13, Section 4.2.9] which appears to be syntactically similar construct, allowing argument
lists of various fixed lengths. However, according to the specification, nothing similar to Common Lisp style
destructuring is allowed.

The implementation of destructuring-case provided in [Dom] does not have the feature of selecting the
clause to be executed according to the format of the list being destructured. Rather it uses the first element of
the given list as a case-like key. This key determines which pattern to use to destructure the remainder of the
list.

The implementation provided in [Fun13], named destructure-case, provides similar behavior to that which
we have developed. It destructures the given list according to which of the given patterns matches the list.
However, it does not handle destructuring within the optional and keyword arguments as in Example 4.49.

Example 4.49 (destructuring-case with keyword arguments).

(destructuring-case '(3 :x (4 5))
((a &key ((:x (b c))))

(list 0 a b c)) ;; this clause should be taken
((a &key x)

(list 2 a x))) ;; not this clause

In none of the above cases does the clause selection consider the types of the objects within the list be-
ing destructured. Clause selection also based on type of object is a distinguishing feature of the rte based
implementation of destructuring-case.

The rte type along with destructuring-bind and type-case as mentioned in Section 4.3.4 enables some-
thing similar to pattern matching in the XDuce language [HVP05]. The XDuce language allows the programmer
to define a set of functions with various lambda lists, each of which serves as a pattern available to match par-
ticular target structure within an XML document. Which function gets executed depends on which lambda list
matches the data found in the XML data structure.

XDuce introduces a concept called regular expression types which indeed seems very similar to regular type
expressions. In [HVP05] Hosoya et al. introduce a semantic type approach to describe a system which enables
their compiler to guarantee that an XML document conform to the intended type. The paper deals heavily
with assuring that the regular expression types are well defined when defined recursively, and that decisions
about subtype relationships can be calculated and exploited.

A notable distinction of the rte implementation as opposed to the XDuce language is that our proposal
illustrates adding such type checking ability to an existing type system and suggests that such extensions might
be feasible in other existing dynamic or reflective languages.

The concept of regular trees is more general than what rte supports, posing interesting questions regarding
apparent shortcomings of our approach. The limitation that rte cannot be used to express trees of arbitrary
depth as discussed in Section 4.4.2 seems to be a significant limitation of the Common Lisp type system.
Furthermore, the use of satisfies in the rte type definition, seriously limits the subtypep function’s ability
to reason about the type. Consequently, programs cannot always use subtypep to decide whether two rte types
are disjoint or equivalent, or even whether a particular rte type is empty. Neither can the compiler dependably
use subtypep to make similar decisions to avoid redundant assertions in function declarations.

It is not clear whether Common Lisp could provide a mechanism whereby application programs which define
new type specifiers via deftype might extend the behavior of subtypep. Having such a capability would
allow such an extension for rte. Rational language theory does provide a well defined algorithm for deciding
such questions, given the relevant rational expressions [HMU06, Sections 4.1.1, 4.2.1]. According to a private
conversation with Pascal Costanza, there is some precedent in ContextL [CH05] for using anonymous classes
created at run-time. These anonymous classes may be useful in coaxing subtypep into calculating subtype
relations between rte based types. More research and experimentation are needed to determine whether this
technique may be useful.

4.7 Conclusions and perspectives
In this chapter we presented a Common Lisp type definition, rte, which implements a declarative pattern-
based approach for declaring types of heterogeneous sequences illustrating it with several motivating examples.

81

We further discussed the implementation of this type definition and its inspiration based in rational language
theory. While the total computation needed for such type checking may be large, our approach allows most
of the computation to be done at compile time, leaving only an Opnq complexity calculation remaining for
run-time computation.

Our contributions are:

1. recognizing the possibility to use principles from rational theory to address the problem of dynamic type
checking of sequences in Common Lisp,

2. adapting the Brzozowski derivative algorithm to sequences of Lisp types by providing an algorithm to
symbolically decompose a set of Lisp types into an equivalent set of disjoint types,

3. implementing an efficient Opnq algorithm to pattern match an arbitrary Lisp sequence, and

4. implementing concrete rte based algorithms for recognizing certain commonly occurring sequence pat-
terns.

The Common Lisp specification limits how much we can extend the type system. For example, it seems from
the specification that a Common Lisp implementation is forbidden from allowing self-referential types, even in
cases where it would be possible to do so. For future extensions to this research, we would like to experiment
with extending the subtypep implementation to allow application level extensions, and therewith examine run-
time performance when using rte based declarations within function definitions. As mentioned in Section 4.6,
it may be possible to use anonymous classes or other features of the Metaobject Protocol [Pae93, KdRB91] to
extend the behavior of subtypep. Similarly, we mentioned in Section 4.4.11, another use of the Metaobject
Protocol and its dependent maintenance protocol, with which we detect and react to certain changes in the
type lattice, primarily changes in Clos classes during debugging (but potentially also while running deployed
applications). It is unclear at this point, which kinds of such run-time changes in the type lattice can be
detected. For example, class-name is a reader in ANSI CL, but an setf-able accessor Metaobject Protocol,
which means that classes may be renamed at run-time. The impact on rte of such renaming is unknown. Can
rte types be made to reference anonymous classes whose behavior might change at run-time? It is not known
at this point how much such extension the Common Lisp specification and the MOP allow.

Another topic we would like to investigate is whether the core of this algorithm can be implemented in other
dynamic languages, and to understand more precisely which features such a language would need to have to
support such implementation.

For future extensions to this research we would like to experiment with extending the subtypep implemen-
tation to allow application level extensions, and therewith examine run-time performance when using rte-based
declarations within function definitions.

Another topic we’d like to research is whether the core of this algorithm can be implemented in other
dynamic languages, and to understand more precisely which features such a language needs to have to support
such implementation.

Several open questions remain:
As Section 4.4.8 explains, there are some known bootstrapping issues involved in creating global functions as

a side effect of deftype expansion. While Section 4.4.8 explains our ASDF extensions for working around these
issues, the Google Common Lisp Style Guide [BF, Sec Pitfalls] suggests a different, and more robust solution.
The solution is to use asdf-finalizers:eval-at-toplevel instead. We only discovered this ASDF feature
late in our research and have not yet investigated whether it can be retro-fitted into the rte implementation.

Can regular type expressions be extended to implement more things we would expect from a regular expres-
sion library? For example, some regular expression libraries have a syntax for grouping subexpressions, and
referring back to them later such as in regexp-search-and-replace? Additionally, would such a search and
replace capability be useful?

Can this theory be extended to tackle unification? Can rte be extended to implement unification in a way
which adds value?

One general problem in general with regular expressions is that if you use them to find whether a string
(sequence in our case) does or does not match a pattern. We would often like to know why it fails to match.
Questions such as “How far did it match?” or “Where did it fail to match?” would be nice to answer. It is
currently unclear whether the rte implementation can at all be extended to support these features.

82

Part II

Binary Decision Diagrams

83

Figure 4.14: Me (center) with my brother and my cousin at Granny’s house, eating watermelon. I was not yet
interested in Boolean equations and apparently wasn’t very interested in the watermelon.

The BDD data structure has countless applications to problems involving Boolean algebra. In the Art of
Computer Programming [Knu09, Page iv], Donald Knuth writes, “[BDDs] have become the data structure of
choice for Boolean functions and for families of sets, and the more I play with them the more I love them. For
eighteen months I’ve been like a child with a new toy, being able now to solve problems that I never imagined
would be tractable.”

In Part II we recount a pedagogical development of Binary Decision Diagrams in Chapter 5, and we look
in depth at questions of size of certain Binary Decision Diagrams in Chapter 6. In Chapter 7 we note that the
subtype relation provides a challenge when representing the Boolean algebra of the Common Lisp type system
using ROBDDs. In Chapter 7 we extend the ROBDDs to accommodate the Common Lisp type system.

84

Chapter 5

Reduced Ordered Binary Decision
Diagrams

In Chapter 4 we described a procedure for recognizing heterogeneous sequences of objects according to regular
type patterns. We noted that an initial implementation reveals several challenges of representation and efficient
execution. The problems of efficient execution will be addressed in later chapters. In the current chapter we
examine a data structure called the Binary Decision Diagram (BDD), which we will extend in Chapter 7 to
accommodate this representational challenge.

The decision diagram has been defined in several different flavors in currently available literature.
Colange [Col13, Section 2.3] provides a succinct historical perspective, including the BDD [Bry86], the Multi-
Valued Decision Diagram (MDD) [Sri02], Interval Decision Diagram (IDD) [ST98], the Multi-Terminal Binary
Decision Diagram (MTBDD) [CMZ`97], the Edge-Valued Decision Diagram (EVDD) [LS92], and the Zero-
Suppressed Binary Decision Diagram (ZBDD) [Min93].

The particular decision diagram variant which we investigate in this report is the Reduced Ordered Binary
Decision Diagram (ROBDD). When we use the term ROBDD we mean, as the name implies, that the BDD
has its variables Ordered as described in Section 5.1.1 and has been fully Reduced by the rules presented in
Section 5.1.2. It is worth noting that there is variation in the terminology used by different authors. For
example, Knuth [Knu09] and Bryant [Bry18] both use the unadorned term BDD for what we are calling an
ROBDD.

Section 5.1 provides illustrations of ROBDD constructing from the point of view of reduction operations.
An equation of Boolean variables can be represented by a BDD [Bry86, Bry92, Ake78, FTV16] [Knu09,

Section 7.1.4] [Col13, Section 2.3]. Andersen summarizes many of the algorithms for efficiently manipulating
BDDs [And99]. Not least important in Andersen’s discussion is how to use a hash table and dedicated con-
structor function to eliminate any redundancy within the same BDD or elsewhere within a forest of BDDs.
Giuseppe Castagna [Cas16] introduces the connection of BDDs to type theoretical calculations, and provides
straightforward algorithms for implementing set operations (intersection, union, relative complement) of types
using BDDs.

Using the BDD data structure along with the algorithms described in [NVC17] we can efficiently repre-
sent and manipulate Common Lisp type specifiers. We may programmatically represent Common Lisp types
largely independent of the actual type specifier representation. Moreover, unions, intersections, and relative
complements of Common Lisp type specifiers can be calculated using the reduction BDD manipulation rules as
well.

5.1 BDD reduction
We do not provide a formal definition of BDD here. Instead the interested reader is invited to consult any of
the literature cited above. Instead we focus here on understaning implementation issues, with special emphasis
on our BDD implementation in Common Lisp.

BDDs can be implemented easily in a variety of programming languages with only a few lines of code.
The data structure provides a mechanism to manipulate Boolean expressions elegantly. Operations such as
intersection, union and complement can be performed resulting in structures representing Boolean expressions
in canonical form [Bry86]. The existence of this canonical form makes it possible to implement the equality
predicate for Boolean expressions, either by straightforward structural comparison, or by pointer comparison
depending on the specific BDD implementation. Some programming languages model types as sets [HVP05,
CL17, Ans94]. In such programming languages, the BDD is a potentially useful tool for representing types and
for performing certain type manipulations [Cas16, NVC17, NV18c].

85

Z1

Z2

Z3 Z3

T⊥

Figure 5.1: BDD for pZ1 ^ Z2q _ pZ1 ^ Z2 ^ Z3q _ p Z1 ^ Z3q

Figure 5.1 shows an example of a BDD which represents a particular function of three Boolean variables:
Z1, Z2, and Z3. The BDD in the figure is actually an ROBDD; we will define more precisely what that means
later. When the Boolean function is expressed in Disjunctive Normal Form (DNF), it contains three terms, each
of which corresponds to a path in the BDD from the root node, Z1, to the leaf node, K. Paths from the root
to the K leaf must be ignored when serializing the DNF. The variables in each term are logically negated (i.e.
 Zi) if the path exits node Zi via its dashed red exit arrow, and are not negated (i.e. Zi) if the path follows
the solid green exit arrow.

In order to avoid confusion, when this report is printed in black and white, we hereafter refer to the red
dashed arrow as the negative arrow and the green solid arrow as the positive arrow. Respectively, we refer to
the nodes which the arrows point to as the negative and positive children.

There are several conventions used in literature for graphically representing a Boolean expression as a BDD.
Some conventions indicate the false (logically negated) case as an arrow exiting the node on the bottom left
and the true case as an arrow exiting the node on the left. We found that such a convention forces BDDs
to be drawn with excessively many crossing lines. In order to allow the right/left arrows within the BDDs to
be permuted, thus reducing the number of line crossings, we avoid attaching semantic information to left and
right arrows, and instead use red dashed arrows for the false (negative) case and solid green arrows for the true
(positive) case.

Casually generating a set of sample BDDs for randomly chosen Boolean expressions quickly reveals that a
BDD may have redundant subtrees. It seems desirable to reduce the memory footprint of such a tree by reusing
common subtrees (sharing pointers) or eliminating redundant nodes. Here, we introduce one such approach:
first, we start with a complete binary tree (Section 5.1.1), and then, we transform it into a reduced graph by
applying certain reduction rules to its nodes (Section 5.1.2). The process is intended to be intuitive, conveying
an understanding of the topology of the resulting structure. On the contrary, this construction process is not
to be construed as an algorithm for efficiently manipulating BDDs programmatically.

In addition to significantly reducing the memory footprint of a BDD, the optimization strategy described
here also enables certain significant algorithmic optimizations, which we won’t discuss in depth in this report.
In particular, the equality of two Boolean expressions often boils down to a mere pointer comparison [NVC17].

5.1.1 Initial construction step
One way to understand the (RO)BDD representation of a Boolean expression is by first representing the truth
table of the Boolean expression as decision diagram. Consider this Boolean expression of four variables: ppA^
Cq _ pB ^ Cq _ pB ^Dqq. Its truth table is given in Figure 5.3, and its BDD representation in Figure 5.2.

Definition 5.1. When a BDD is a tree corresponding exactly to the truth table of its Boolean function (which
is not necessarily true), the BDD is referred to as an UOBDD, an unreduced ordered BDD.

86

A

B B

C C

D D

⊥ ⊥ ⊥ T

D D

⊥ ⊥ T T

C C

D D

⊥ ⊥

D D

T T T T⊥ T

Figure 5.2: UOBDD for F “ ppA^Cq _ pB ^Cq _ pB ^Dqq. The highlighted path of nodes corresponds to
the highlighted row of the truth table in Figure 5.3.

A B C D F
J J J J K

J J J K K

J J K J K

J J K K J

J K J J K

J K J K K

J K K J J

J K K K J

K J J J K

K J J K K

K J K J K

K J K K J

K K J J J

K K J K J

K K K J J

K K K K J

Figure 5.3: Truth table for F “ ppA ^ Cq _ pB ^ Cq _ pB ^ Dqq. The highlighted row of the truth table
corresponds to the path of highlighted nodes in Figure 5.2.

Each non-leaf node of the UOBDD represents the appearance of a Boolean variable in the expression. Each
path from the root node A to a leaf node represents one row of the truth table. For example, the highlighted
path in Figure 5.2 corresponds to the highlighted row in Figure 5.3.

Definition 5.2. A BDD is said to be ordered if there is some ordering of the variables tv1, v2, ..., vnu, such that
whenever there is an arrow from vi to vj then i ă j.

Some authors such as Gröpl et al. [GPS98, GPS01] and Langberg et al. [LPR03], when exploring a BDD
variant called qOBDD, consider the further restriction that arrows only connect vi with vi`1. We do not make
such a restriction in our treatment of ROBDDs. For UOBDDs having not yet undergone any reduction, being
ordered implies that every branch from the root to a leaf contains exactly the same variables in the same order.
In Figure 5.2 for example, every path from the root to a leaf contains exactly A,B,C,D in that order. On
the contrary, and as in Figure 5.1, some of these paths contain fewer nodes than others. Nevertheless, the
nodes visited by each path remain ordered. For the extent of this paper we will use the natural lexicographical
orderings: A ă B ă C ă D, and Z1 ă Z2 ă ... ă Zn.

87

5.1.2 Reduction rules
The diagram in Figure 5.2 is an ordered BDD, but not an ROBDD, because the BDD has not yet been reduced.
Systematic application of the three reduction rules described in this section will convert the ordered BDD into
an ROBDD.

Given its UOBDD, it is straightforward to evaluate an arbitrarily complex Boolean expression of n variables,
simply descend the tree in n steps according to the values of the n variables. This is equivalent to tracing across
the corresponding row of the truth table (see the highlighting in Figure 5.3). However, the size of the tree grows
exponentially with the number of variables. The UOBDD representing a Boolean expression of n variables has
UOBDD number of nodes as indicated in Equation 5.1.

Notation 5.3.

|UOBDDn| “ 2n`1 ´ 1 (5.1)

Fortunately, it is possible to reduce the allocated size of the UOBDD by taking advantage of certain redun-
dancies. There are three rules which can be used to guide the reduction. Andersen and Gröpl [And99, GPS98]
also explain the merging and deletion rules, so we will dispense with many of the details. However, we consider
an extra rule, the terminal rule, which is really a special case of the merging rule.

⊥ T

A

B B

C C

D DD D

C C

D D DD

Figure 5.4: BDD after applying Terminal rule

Definition 5.4. If any node X in an ROBDD is such that its positive and negative children are the same node
Y , then X is said to be symmetric.

Definition 5.5. If any two nodes U and V corresponding to the same Boolean variable are such that their
positive children are both nodeX and negative children are both node Y , then U and V are said to be congruent.

Terminal rule: The only possible leaf nodes are J and K, so these nodes can be represented by two singleton
objects, allowing pointers to them to be shared.

Deletion rule: If node X is symmetric (Definition 5.4) and has Y as a child, node X can be deleted and arrows
previously pointing to it may be promoted to point to Y directly.

88

Merging rule: If nodes U and V are congruent (Definition 5.5) they may be merged. Any arrow pointing to U
may be updated to point to the V , and U may be removed (or the other way around).

Applying the Terminal rule reduction cuts the number of nodes roughly by half, as shown in Figure 5.4.
Figure 5.6 illustrates reductions in the graph as a result of applying the deletion rule multiple times. In this

case the graph shrinks from 17 nodes to 10 nodes after two applications of the rule.
Figure 5.7 illustrates reductions in the graph as a result of applying the merging rule multiple times. In the

figure the two nodes marked D are congruent, and can thus be reduced to a single D node. Thereafter, the two
highlighted C nodes are seen to be congruent, and can thus be merged. In this case the graph shrinks from 10
nodes to 8 nodes after two applications of the rule.

Application of the three rules results in the ROBDD shown in Figure 5.5. In this case the graph shrinks
from 31 nodes in Figure 5.2 to 8 nodes in Figure 5.5.

C

⊥

D

C

T

A

B B

Figure 5.5: BDD after applying Terminal, Deletion, and Merging rules. This diagram is an ROBDD logically
equivalent to the UOBDD shown in Figure 5.2.

89

B

C C

B

CC

D DD D DDD D

⊥ T

A

⊥ T

A

B B

C C C C

D D

Before 1st application of deletion rule. After 1st application of deletion rule.

⊥ T

A

B B

C C C C

D D

⊥ T

B

C C C

B

D D

A

Before 2nd application of deletion rule. After 2nd application of deletion rule.

Figure 5.6: Examples of Deletion Rule. The highlighted nodes are symmetric. Such nodes are deleted.

⊥ T

B

C C C

B

D D

A

⊥ T

C

D

C C

A

B B

Before 1st application of merging rule. After 1st application of merging rule.

⊥ T

C

D

C C

A

B B

C

⊥

D

C

T

A

B B

Before 2nd application of merging rule. After 2nd application of merging rule.

Figure 5.7: Examples of Merging Rule. The highlighted nodes in the left hand-column are congruent. One is
deleted, one remains, as shown in the right-hand column.

90

5.2 ROBDD Boolean operations

Notation 5.6. In an abstract Boolean algebraic context

A‘B “ pA^ Bq _ p A^Bq .

In a set theoretical context
A‘B “ pAzBq Y pBzAq .

In this section we discuss the algorithms for computing the ROBDD representing the Boolean combination
of two given ROBDDs. In Equation (5.2) we state the concise formula in terms of the components of the
two given ROBDDS. Equation (5.2) holds for the commutative operations of conjunction (^), disjunction (_),
symmetric difference which may also be referred to as exclusive-or (‘), and also for the non-commutative
relative complement (z) operation.

As an illustration, Example 5.7 shows the Boolean-or of the two ROBDDs representing pZ1^Z2_ Z1^ Z2q
and pZ1 ^ Z2 ^ Z3q. And Example 5.8 shows the Boolean-not operation applied to the ROBDD representing
Z1 ^ Z2 _ Z1 ^ Z2 _ Z1 ^ Z2 ^ Z3.

Example 5.7 (Boolean-or of two ROBDDs).

pZ1 ^ Z2 _ Z1 ^ Z2q _ pZ1 ^ Z2 ^ Z3q “ Z1 ^ Z2 _ Z1 ^ Z2 _ Z1 ^ Z2 ^ Z3

Z1

Z2 Z3

T ⊥

ł

Z1

Z2

⊥

Z3

T

“

Z1

Z2

Z3

T

Z3

⊥

Example 5.8 (Boolean-not of an ROBDD effectively swaps the terminal nodes.).

 pZ1 ^ Z2 _ Z1 ^ Z2 _ Z1 ^ Z2 ^ Z3q “ Z1 ^ Z2 ^ Z3 _ Z1 ^ Z3

91

Z1

Z2

Z3

T

Z3

⊥

“

Z1

Z2

Z3

⊥

Z3

T

The general recursive algorithms for computing the BDDs which represent the common Boolean algebra
operators are straightforward.

xrobdd-nodey |ù xinternal-nodey | xterminal-nodey
xinternal-nodey |ù Node(xvary xrobdd-nodey xrobdd-nodey)

xvary |ù any variable name label
xterminal-nodey |ù K | J

Figure 5.8: Notation for ROBDDs including Node constructor syntax.
Let B, B1, B2, C1, C2, D1, and D2 denote ROBDDs, with B1 “ Nodepv1 C1 D1q and B2 “ Nodepv2 C2 D2q,

and let v1 and v2 denote variable names. For the following Equations (5.2) and (5.3) to be valid, it is necessary
that v1 and v2 represent variable names that are order-able. We would eventually like the labels to accommodate
Common Lisp type specifiers, but this is not immediately possible. This extension to Common Lisp types is
discussed in Chapter 7 in Section 7.3.

Castagna [Cas16] presents Equations (5.2) and (5.3) in a form which is slightly different syntactically. The
formulas for pB1 _B2q, pB1 ^B2q, pB1 ‘B2q, and pB1 z B2q are similar to each other. If ˝ P t_,^,‘, zu, then

B1 ˝ B2 “

$

’

&

’

%

Nodepv1 pC1 ˝ C2q pD1 ˝ D2qq for v1 “ v2

Nodepv1 pC1 ˝ B2q pD1 ˝ B2qq for v1 ă v2

Nodepv2 pB1 ˝ C2q pB1 ˝ D2qq for v1 ą v2

(5.2)

 B “ JzB (5.3)

As J or K do not have children, there are several special cases which apply if either J or K appear as
one of the operands of the operation. Another special case is when B1 “ B2, no recursive call need be made.
Figure 5.9 details these special cases. The first three of these rules serve as termination conditions for the
recursive algorithms.

92

^ Operations _ Operations ‘ Operations z Operations Reduce to
J_B J

B _J
K^B B ‘B BzJ K

B ^K
B ^B B _B K‘B BzK
J ^B K_B B ‘K B
B ^J B _K

B ‘J JzB
J‘B

JzNodepB B1 B2q NodepB pJzB1q pJzB2qq

Figure 5.9: Special cases for ROBDD Boolean operations. When either argument is J or K or both arguments
are the same. Note that ^, _, and ‘ are commutative operations, but z is not.
We include exclusive-or even though it is not normally a fundamental operation. One might alternatively

compute ‘ by either of the following identities:

B1 ‘B2 “ pB1zB2q _ pB2zB1q (5.4)
B1 ‘B2 “ pB1 _B2qzpB1 ^B2q . (5.5)

Such a definition would indeed be semantically correct, although the number of operations in such a com-
putation would often be higher than if (5.2) were used.

5 10 15

10´2

10´1

100

101

102

103

Number of Boolean variables n

tim
e
(s
ec
on

ds
)

A ‘ B

pAzBq _ pBzAq

pA _ BqzpA ^ Bq

Figure 5.10: Comparison of execution time of three proposed implementations of the ROBDD xor, ‘ operator.
The plot shows that calculating ‘ is usually faster using Equation (5.2) as opposed to Equation (5.4) or (5.5)
We performed experiments to compare the run-time performances of the computation of Equations (5.2),

(5.4), and (5.5). Sections 5.3.1, 5.4, and 5.5 show Common Lisp implementations of the bdd class and functions
to manipulate its objects, including an implementation of the Boolean functions. Figure 5.10 shows a plot
of computation times of the three equations applied to randomly generated ROBDDs. As an example on a
MacBook AirTM with 1.8 GHz Intel Core i5 processor and 8 GB 1600 MHz DDR3 memory, calculation of
exclusive-or of two 12-variable ROBDDs took an average of 3.5ms using the algorithm from Equation (5.2)
compared to 8.8ms using pAzBq _ pBzAq and 7.9ms using pA_BqzpA^Bq.

93

5.3 ROBDD construction
Section 5.1.1 may serve as a pedagogical explanation of how to construct an ROBDD. However, a much more
efficient mechanism, a memory function, was presented by Bryant [Bry86]. Brace et al. [BRB90] made this
procedure explicit in what they called the ite (if-then-else) algorithm. Finally Andersen [And99] presented an
easy to follow set of guidelines. Algorithm 2 is based closely on Andersen’s presentation.

Algorithm 2: BddNode Efficient ROBDD construction
Input: var Boolean variable
Input: nodepos Positive child node
Input: nodeneg Negative child node
Input: H a mutable mapping of pvariable, node, nodeq Ñ node
Output: A node representing the constructed node

2.1 if nodepos “ nodeneg then
2.2 return nodepos // enforce deletion rule
2.3 else if lookup Hrvar, nodepos, nodenegs then
2.4 return Hrvar, nodepos, nodenegs // enforce merging rule
2.5 else
2.6 nodenew Ð NewNodepvar, nodepos, nodenegq
2.7 Hrvar, nodepos, nodenegs Ð nodenew
2.8 return nnew

The management of the mapping, H, in Algorithm 2 deserves special discussion. In our implementation, in
Common Lisp, we chose to use a dynamically scoped hash table. An alternative approach which we did not
investigate would have been to store the hash table as a slot in the bdd object.

One problem which arises at run-time, especially during prolonged calculations is that this hash table may
become large. Its purpose, according to Bryant and Brace, is to efficiently reduce needless reallocation, and
by doing so, to enforce the merging rule as indicated on line 2.4 of Algorithm 2. However, as is discussed
in Chapter 6, the space of all possible ROBDDs, and thus of all possible ROBDD nodes, is many orders of
magnitude larger than the number of nodes actually allocated in a program. The resulting risk of this massive
size difference is that a program may create a large number of entries in the hash table, but rarely look them
up again.

The problem of ever growing hash table can be mitigated somewhat. We have implemented several strategies
to address this problem. They are explained in Section 5.3.3. The performance differences of the strategies is
discussed in Section 10.5 and illustrated in Figure 10.3.

5.3.1 Common Lisp ROBDD implementation
Implementation 5.9 shows the Clos definition of the base class bdd which is used as the parent class for terminal
nodes and internal nodes defined respectively in Implementations 5.10 and 5.11. The class, bdd contains a slot
named ident which is a positive integer uniquely identifying each node. We exploit this slot and in a print-object
method used in debugging. This slot would not be absolutely necessary if we were attempting to minimize the
memory footprint.

Implementation 5.9 (CLOS definition of bdd base class).

(defvar * bdd-node-count * 1)
(defclass bdd ()

((ident : reader bdd-ident
:type unsigned-byte
: initarg :ident
: initform (incf * bdd-node-count *))

(label : reader bdd-label
: initarg :label)))

Implementation 5.10 shows the class definitions and singleton object definitions of *bdd-true* and
bdd-false. All applications using these classes are required to voluntarily use *bdd-true* and *bdd-false*
rather than allocating new objects; the terminal rule (Section 5.1.2) will be implicitly enforced. We forego any

94

further discussion of techniques for enforcing singleton classes in Clos and refer the reader to the discussion by
Marchand et al. [Mar98].

Implementation 5.10 (CLOS definition of bdd leaf/terminal nodes).

(defclass bdd-leaf (bdd) ())

(defclass bdd-true (bdd-leaf)
((ident : initform 1)

(label : initform t)))

(defclass bdd-false (bdd-leaf)
((ident : initform 0)

(label : initform nil)))

(defvar * bdd-true * (make-instance 'bdd-true))
(defvar * bdd-false * (make-instance 'bdd-false))

Implementation 5.11 is the class definition for internal nodes. Each such nodes has a positive and negative
child, each of which may be another internal node, or a leaf node, so we have included a type declaration for
these slots: (or bdd-node bdd-leaf). Notice that a leaf node, bdd-leaf, has no children.

Implementation 5.11 (CLOS definition of bdd-node class, used for internal non-terminal nodes).

(defclass bdd-node (bdd)
((positive :type (or bdd-node bdd-leaf)

: initarg : positive
: reader bdd-positive)

(negative :type (or bdd-node bdd-leaf)
: initarg : negative
: reader bdd-negative)))

(defmethod print-object ((bdd bdd-node) stream)
(print-unreadable-object (bdd stream :type nil : identity nil)

(format stream "bdd [~D]->" (bdd-ident bdd))
(format stream "- >[+~S ,-~S]" (bdd-ident (bdd-positive bdd))

(bdd-ident (bdd-negative bdd))))

Implementation 5.20 calls a function named bdd-node. We show the definition of this function in Imple-
mentation 5.12. This implementation follows the model presented in Algorithm 2.

Implementation 5.12 (bdd-node: Retrieve or allocate a new bdd-node object with the given variable name
and children.). (defmethod bdd-node (var-name (positive-bdd bdd) (negative-bdd bdd))

(check-type * bdd-hash * 'hash-table
"* bdd-hash * must be dynamically bound to a hash-table ")

(cond
((eq positive-bdd negative-bdd)

positive-bdd)
((gethash * bdd-hash * (list var-name positive-bdd negative-bdd)))
(t

(setf (gethash * bdd-hash * (list var-name positive-bdd negative-bdd))
(make-instance 'bdd-node :label var-name

: positive positive-bdd
: negative negative-bdd)))))

95

The function bdd-node should only be called from within the dynamic extent of bdd-with-new-hash as
shown in Example 5.13. The example shows the calculation of the following Boolean expression:

px1 ^ x2q _ x2 .

Example 5.13 (Call to bdd-node within bdd-call-with-new-hash.).

(bdd-with-new-hash
(bdd-or

(bdd-and (bdd-node 'x1 * bdd-true * * bdd-false *)
(bdd-not (bdd-node 'x2 * bdd-true * * bdd-false *)))

(bdd-node 'x2 * bdd-true * * bdd-false *)))

The code in Example 5.13 references the functions bdd-or, bdd-and, and bdd-not which are discussed in
Section 5.4; a discussion of bdd-with-new-hash can be found in Section 5.3.3.

5.3.2 BDD object serialization and deserialization
While Example 5.13 is semantically correct, we would much rather be able to specify the bdd object representing
px1 ^ x2q _ x2 via an s-expression such as (or (and x1 (not x2)) x2).

In order to serialize an ROBDD into a Boolean expression in DNF (disjunctive normal form) we can simply
walk the bdd object from root to leaf (traversing every such path). Each time *bdd-true* is reached, collect
the path, with appropriate variable inversions. The function bdd-to-dnf in Implementation 5.14 shows one
such procedure. The function could of course be further optimized to eliminate singleton and/or expressions,
so as to generate (OR X1 X1) rather than (OR (AND X1) (AND X2)).

Implementation 5.14 (bdd-to-dnf: Serialize a bdd object into an s-expression denoting the DNF of the
Boolean expression.).

(defun bdd-to-dnf (bdd)
(let (or-terms)

(labels ((partial-dnf (node and-term)
(typecase node

(bdd-true
(push (cons 'and (reverse and-term)) or-terms))

(bdd-false nil)
(bdd-node

(bdd-label node)
(partial-dnf (bdd-positive node)

(cons (bdd-label node) and-term))
(partial-dnf (bdd-negative node)

(cons `(not ,(bdd-label node)) and-term))))))
(partial-dnf bdd nil)
(cons 'or or-terms))))

We see how bdd-to-dnf is used in Example 5.15. In the example, we see that the Boolean expression:
px1 ^ x2q _ x2 is printed as the s-expression (OR (AND (NOT X1) X2) (AND X1)) which is equivalent to the
Boolean expression p x1 ^ x2q _ x1. The reader can easily verify that

p x1 ^ x2q _ x1 “ px1 ^ x2q _ x2 .

Example 5.15 (Example call to bdd-to-dnf.).

96

CL-USER > (bdd-with-new-hash
(bdd-to-dnf

(bdd-or (bdd-and (bdd-node 'x1 * bdd-true * * bdd-false *)
(bdd-not (bdd-node 'x2 * bdd-true * * bdd-false *)))

(bdd-node 'x2 * bdd-true * * bdd-false *))))

(OR (AND (NOT X1) X2) (AND X1))

The function which takes an s-expression representing a Boolean expression is simply called bdd rather than
bdd-dnf-to-bdd, because it is capable of converting any valid such Boolean expression, not limited to DNF.
We include the operators and-not and xor which are discussed in Sections 5.4 and 5.20.

Implementation 5.16 (bdd: convert any Boolean expression into a bdd object.).

(defun bdd (expr)
(typecase expr

((eql t)
* bdd-true *)

((eql nil)
* bdd-false *)

(symbol
(bdd-node expr * bdd-true * * bdd-false *))

((not list)
(error " invalid expression ~A" expr))

(t
(apply

(case (car expr)
((not) #' bdd-not)
((and) #' bdd-and-list)
((or) #' bdd-or-list)
((and-not) #' bdd-and-not-list)
((xor) #' bdd-xor-list)
(t (error " invalid expression ~A" expr)))

(mapcar #'bdd (cdr expr))))))

Using the bdd function, shown in Implementation 5.16, we can simplify the expression from Example 5.15.
The reformulated call is shown in Example 5.17.

Example 5.17 (Simplified version of Example 5.15, and other Boolean expressions.).

CL-USER > (bdd-with-new-hash
(bdd-to-dnf (bdd '(or (and x1 (not x2))

x2))))

(OR (AND (NOT X1) X2)
(AND X1))

CL-USER > (bdd-with-new-hash
(bdd-to-dnf (bdd '(xor (or (and x1 (not x2))

(and-not x2 (or (not x2)
x1)))))))

(OR (AND X1 (NOT X2))
(AND (NOT X1) X2))

97

5.3.3 BDD retrieval via hash table
Section 5.3 introduced a commonly used technique of maintaining a mapping (in our case, a hash table) to
avoid multiple allocation of BDDs. Additionally we included an assertion for the non-vacuity of *bdd-hash*
in the method definition of bdd-node in Implementation 5.12. Implementation 5.18 defines the macro
bdd-with-new-hash. All manipulations of bdd objects must be performed within the dynamic extent of a
call to bdd-call-with-new-hash which this macro enforces.

Implementation 5.18 (bdd-with-new-hash: Provide dynamic extent to allocate bdd objects.).

(defvar * bdd-hash * nil "The default value of * bdd-hash * is NOT a hash table")

(defun bdd-call-with-new-hash (thunk)
(let ((* bdd-hash * (make-hash-table :test #'equal)))

(funcall thunk)))

(defmacro bdd-with-new-hash (& body body)
`(bdd-call-with-new-hash (lambda () ,@body)))

The code in Implementation 5.18 is shown because it is easy to understand, but there are several ways
to optimize this code, which have a noticeable effect on performance. Chapter 10 deals with several different
performance issues, and Section 10.4 presents some alternative implementations of bdd-call-with-new-hash.

5.4 Common Lisp implementation of ROBDD Boolean operations
In this section we show a high-level overview of the Common Lisp implementation of the ROBDD Boolean
operators whose Common Lisp names are: bdd-or, bdd-and, bdd-xor, and bdd-and-not. The binary functions,
shown in Implementation 5.19, are implemented according to the same pattern, as a conditional with two
branches. The consequence branch of each conditional handles the case of equal arguments (as indicated in
Figure 5.9). The alternative branch of each condition is a call to bdd-op which implements Equation (5.2). The
Common Lisp code for bdd-op can be found in Implementation 5.20.

Implementation 5.19 (ROBDD Boolean operations).

(defmethod bdd-or ((b1 bdd-node) (b2 bdd-node))
(if (eq b1 b2)

b1
(bdd-op #' bdd-or b1 b2)))

(defmethod bdd-xor ((b1 bdd-node) (b2 bdd-node))
(if (eq b1 b2)

* bdd-false *
(bdd-op #' bdd-xor b1 b2)))

(defmethod bdd-and ((b1 bdd-node) (b2 bdd-node))
(if (eq b1 b2)

b1
(bdd-op #' bdd-and b1 b2)))

(defmethod bdd-and-not ((b1 bdd-node) (b2 bdd-node))
(if (eq b1 b2)

* bdd-false *
(bdd-op #' bdd-and-not b1 b2)))

(defmethod bdd-not ((b bdd-node))
(bdd-and-not * bdd-true * b))

98

The code in Implementation 5.20 makes a call to the function bdd-cmp whose responsibility it is to compare
the labels on the two given nodes. Recall that an ROBDD has ordered variables, which means that bdd-cmp
returns a consistent value which is transitive in the sense that

v1 ă v2 and v2 ă v3 implies v1 ă v3 .

In bdd-op, if the labels (Boolean variable names) are found to be equal, then the same operation is called
recursively twice, once on the two positive branches, and once on the two negative branches. The function
bdd-node is called with the values returned from the two recursive call, along with the common label. It is the
job of bdd-node to either allocate a new internal node, or to retrieve a node from the cache if one already exists
with the given label, positive child, negative child.

In the case that labels are found not to be equal, bdd-op performs the recursive call twice either with the
same first argument or with the same second argument depending on whether the two given nodes were found
to be in increasing or decreasing order, thereafter making a single call to bdd-node with the lesser of the two
labels, and the two new children generated by the recursive calls. The bdd-op function takes care never to
reverse the order of the arguments to the recursive call, as the given operation may not be commutative, as in
fact the bdd-and-not operation is not commutative. See Implementation 5.20 for the exact details.

Implementation 5.20 (ROBDD Generic Boolean operation).

(defun bdd-op (op bdd-1 bdd-2)
(let ((lab-1 (bdd-label bdd-1))

(positive-1 (bdd-positive bdd-1))
(negative-1 (bdd-negative bdd-1))
(lab-2 (bdd-label bdd-2))
(positive-2 (bdd-positive bdd-2))
(negative-2 (bdd-negative bdd-2)))

(ecase (bdd-cmp lab-1 lab-2)
((=)

(bdd-node lab-1 (funcall op positive-1 positive-2)
(funcall op negative-1 negative-2)))

((<)
(bdd-node lab-1 (funcall op positive-1 bdd-2)

(funcall op negative-1 bdd-2)))
((>)

(bdd-node lab-2 (funcall op bdd-1 positive-2)
(funcall op bdd-1 negative-2))))))

5.5 ROBDD operations with multiple arguments
Section 5.4 explains the implementation of the ROBDD Boolean binary operations. It is a fairly common
situation to want to calculate these Boolean operations with multiple arguments. A common such case occurs
when constructing an ROBDD from a sum-of-products formula, such as the one shown in Example 5.21.

Example 5.21 (Boolean expression in the form of sum of products).

F “ x1 ^ x2 ^ x3 ^ x4

_ x1 ^ x2 ^ x3 ^ x4

_ x1 ^ x2 ^ x3 ^ x4

_ x1 ^ x2 ^ x3 ^ x4

_ x2 ^ x3 ^ x4

A natural approach to calculating the ROBDD corresponding to Example 5.21 is with a fold operation which
is a common higher-order function in many functional languages [Hut99]. There are two flavors of fold which
we will examine: linear fold, and tree-like fold.

99

We examine the two flavors of fold here because we found the result surprising. We were not able to explain
the results. We had some anecdotal evidence from previous experiments that tree-like fold would be faster
when performing multiple-argument ROBDD Boolean operations. However, on constructing the explicit tests
detailed in this section, we were unable to duplicate our previous results. We present the explanation here and
invite others to falsify out results.

Consider the second term in Example 5.21, x1 ^ x2 ^ x3 ^ x4. Since the ^ operation is associative,
this expression may be viewed in two different ways. Equation 5.6 represents the diagram of the linear fold
computation, while Equation 5.7 represents the tree-like fold computation.

 x1 ^ x2 ^ x3 ^ x4 “ ^

^

^

^

J x1

 x2

x3

 x4

linear fold (5.6)

“ ^

^

^

J x1

^

 x2 x3

 x4

tree-like fold (5.7)

The Common Lisp reduce function [Ste90, Chapter 14.2] implements a linear fold, and we have provided
the tree-like fold in Implementation 5.22.

Implementation 5.22 (bdd-reduce).

(defun tree-fold (op bdd-list unit)
(labels ((compactify (stack)

(if (null (cdr stack))
stack
(destructuring-bind ((depth1 bdd1) (depth2 bdd2) &rest tail) stack

(if (= depth1 depth2)
(compactify (cons (list (1+ depth1) (funcall op bdd1 bdd2))

tail))
stack))))

(finish-stack (acc stack)
(if (null stack)

acc
(finish-stack (funcall op acc (cadr (car stack)))

(cdr stack)))))
(destructuring-bind ((depth bdd) &rest tail)

(reduce (lambda (stack bdd)
(compactify (cons (list 1 bdd) stack)))

bdd-list
: initial-value (list (list 1 unit)))

(finish-stack bdd tail))))

Definition 5.23. If a Boolean function of n is expressed as DNF, i.e. as a sum of m products, denote the
number of variables used in the i’th product as `i. The density of the formula is

η “
1
m

m
ÿ

i“1
`i .

100

I.e., η measures the average number of variables per DNF term.

The density is a function only of the representation of the Boolean function, not of the Boolean function
itself. There may well be many different formulas for the same Boolean function with different densities.

A sum of minterms has η “ 100% as every minterm contains all the Boolean variables either complemented
(xi) or non-complemented.

While these two forms of folding are semantically the same for any given associative binary function, it turns
out that in terms of computation, they may be different. Figure 5.11 compares the construction times using
both approaches. It is not surprising that as η decreases, the computation time decreases. We also observe from
the plots in Figure 5.11, that the linear fold (based on the built-in Common Lisp reduce function) performs
marginally better than our implementation of tree-fold, and in the case of η “ 22% the linear fold performs
much better for n ą 10. This is curious, and somewhat counter-intuitive. More research is needed to explain
this result.

5 10 15
10´5

10´4

10´3

10´2

10´1

100

101

102

Number of Boolean variables n

tim
e
(s
ec
on

ds
)

linear-fold η “ 1.0

tree-fold η “ 1.0

linear-fold η “ 0.22

tree-fold η “ 0.22

linear-fold η “ 0.05

tree-fold η “ 0.05

Figure 5.11: Comparison of ROBDD construction time using linear and tree-like fold operations. The times are
plotted for various values of η.

Implementation 5.24 (Var-args versions of BDD operations, and, or, xor, and-not).

(defun bdd-xor-list (& rest bdd-list)
(reduce #' bdd-xor bdd-list : initial-value * bdd-false *))

(defun bdd-or-list (& rest bdd-list)
(reduce #' bdd-or bdd-list : initial-value * bdd-false *))

(defun bdd-and-list (& rest bdd-list)
(reduce #' bdd-and bdd-list : initial-value * bdd-true *))

(defun bdd-and-not-list (bdd1 &rest bdd-list)
(bdd-and-not bdd1

(apply #' bdd-and-list bdd-list)))

101

5.6 Generating randomly selected ROBDD of n variables
Minterm x4 x3 x2 x1 F Minterm

index
0 0 0 0 0 1 p x1 ^ x2 ^ x3 ^ x4q
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 1 px1 ^ x2 ^ x3 ^ x4q
4 0 1 0 0 0
5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 1 px1 ^ x2 ^ x3 ^ x4q
10 1 0 1 0 0
11 1 0 1 1 0
12 1 1 0 0 0
13 1 1 0 1 0
14 1 1 1 0 0
15 1 1 1 1 0

Figure 5.12: 4-Variable truth table representing 52110 “ 00000010000010012. To interpret a binary integer as a
truth table, enter the bits in order with least significant bit at the top and most significant bit at the bottom.
Bits which are 1 correspond to minterms 0, 3, and 9.

In Section 6.1.3 we discuss an experiment we made of measuring properties of randomly selected ROBDDs.
In this section (5.6) we discuss the algorithm we use for generating a randomly selected ROBDD of n variables.

Any Boolean function of n variables is uniquely determined by a truth table having 2n rows. To randomly
select such a Boolean function, we need only choose a random number having 2n bits; i.e. a number between 0
and 22n ´ 1. As shown in Example 5.25, the 1’s in that number determine which minterms are present in the
DNF.

Example 5.25 (Randomly selected DNF, determining a Boolean function of n variables.).
For example, 0 ď 521 ă 224

“ 65536. So the integer

52110 “ 1 ¨ 20 ` 1 ¨ 23 ` 1 ¨ 29 “ 00000010000010012

represents the truth table shown in Figure 5.12. From this truth table we generated the Boolean expression

pp x1 ^ x2 ^ x3 ^ x4 ^ x5q _ px1 ^ x2 ^ x3 ^ x4 ^ x5q _ px1 ^ x2 ^ x3 ^ x4qq ,

having minterms 0, 3, and 9.

From the DNF of the Boolean expression, we generated the corresponding ROBDD as explained in Sec-
tion 5.5.

An optimization which we make is that when we need only the ROBDD, and neither the explicit truth
table nor the full DNF, we may generate the integer lazily; i.e. we may generate a lazy stream of 2n bits, and
maintain a count of the index of the minterm. When 1 is read from the stream, generate the minterm, and use
a fold operation [Hut99] as explained in Section 5.5. As long as the random number generator is sufficient, the
optimization is valid.

We are assuming that generating 2n bits with 2n successive calls to (random 2) generates effectively the
same distribution as extracting the bits from an integer generated from a single call to (random (expt 2 (expt
2 n))). SBCL (version 1.4.3) uses the MT19937 prng (pseudo random number generator) algorithm [MN98]
for generating pseudo random numbers. The period of the random number generator is 219969 ´ 1 [Bou18],
which means we would need to call random 1000 times per second for much longer than the age of the universe
(1.8ˆ 10303 seconds.) to exhaust its period.

In Section 6.1.3 we discuss the algorithm of generating multiple ROBDDs and counting their nodes in order
to obtain an estimate for the size distribution of the set of all n-variable ROBDDS. As mentioned above, this
process is parallelizable. In performing such an experiment we took care to detect whether two compute nodes

102

(two machines in the compute cluster) select the same integer. Such an occurrence could skew the distribution
measurements.

If integers are chosen at random in the space from 0 ď i ă 22n , the chances of choosing the same number
twice are minuscule to the point of being negligible, even on separate processes on separate machines, assuming
the program is bug-free. However, we had a bug in an early version of our program where we neglected to seed
the random number generator appropriately. Because of this bug, we generated the exact same sequence of
integers on every node in the cluster. Because of this experience, we thereafter became arguably overly cautious.

In order to assure we never count the same ROBDD twice, each process creates a log file with three columns:
n, measured node count of the ROBDD, and the base 36 encoded integer representing the truth table. The
reason we chose base 36 is because the Common Lisp function, format, can easily generate such a representation,
and the Common Lisp read function can easily parse it. Example 5.26 shows Common Lisp code for reading
and writing base 36.

Example 5.26 (Reading and writing base 36 integers).

(with-output-to-string (stream)
(format stream "~36R ;" 415558567100094532))

;; returns the string "35 NR7U935D1G ;"

(let ((* read-base * 36))
(with-input-from-string (stream "35 NR7U935D1G ")

(read stream)))
;; returns the integer 415558567100094532

We terminate each line with a semicolon in order to detect prematurely terminated lines. A line might be
incomplete in the case that the compute cluster manager1 has automatically killed our process after a time-out
is reached. In the case that the Common Lisp process is terminated during a call to format, we may encounter
such a log file where the base 36 integer was not completely written. Granted, this is unlikely in the case of
n “ 8, but the length of the printed representation of an integer i ą 0 (in any base b, including base 36) is
bounded by an upper limit proportional to logb i. If 0 ă i ă 22n , then

log36 i ă log36 22n “ 2n ¨ log36 2 .

This means that a base 36 representation of the truth table of an 18-variable Boolean formula may have
219 ¨ log36 2 « 101, 411 characters. It is indeed conceivable that the cluster manager might kill the process while
it is busy writing a 100 kilobyte line.

Another advantage of terminating each line with a semicolon is that a program which only wishes to read
the first two values of each line (i.e., n and the corresponding ROBDD size) may skip the rest of the line simply
by reading characters until a semicolon is reached, thus obviating the need to allocate a large bignum.

Example 5.27 (File logging the discovered sizes of several 8-variable ROBDDs).

8 76 3HYKNOKIES210SIUF8EDK73P345TMJIEHAMM4SU1377EE6MZ2C ;
8 77 3FPE2XYQEDV5P8RUJIVANLR0DX920RAD8MKFJMEF6SOS6TUB0R ;
8 75 1NIYCE4MQBCFI6F07F3WIFLUOB0PN1WF5SS12BZBZ4VI72NWN6 ;
8 77 D6S407RY5ST4SNIUV8CIGEOI2TTGVXGSGIO4RQITCM7VN91QJ ;
8 76 6868C2K8WMXDT5WM1YR4DG698VRS0ZC9HFCU6J4U8RY0IKYK8D ;
8 72 644R0NLW7O9FPNRP9U60NC4N8X7BK7DQ2M0D880NECAN36P7UB ;
8 74 TH4WLQZPMWYWUDRNYBAPQARM5BP9IP5PXHSN9BEME8KS5Q8P ;
8 75 2LHRTNM41J7MFQZI6A4O9GQJJUZJ3U3ZPETONZEV3EEILH7B3N ;
8 75 4QJG869771XXQ4PTMK1MQ5J58RWF5HWO35QUGZ6G9P76LKEV2I ;
8 72 4WCY1O43GHSP153B2RV5HBS5ZPBTAQWC6ZXIXG5X6NBSS8FJD ;

1The cluster manager is a program which runs on the cluster with administrator rights. It manages scheduling and starting jobs
requested by all the users. Each job submitted is accompanied by an estimate of the maximum time required. If the job runs for
more than that time-limit, the cluster manager eventually abruptly kills the job.

103

We might have also considered base 64 encoding which would have reduced the file size by an additional
14%. While the integer 2219 requires 101+ kilobytes to print in base 36, it only requires 87+ kilobytes to print
in base 64. If x ą 0,

log64x

log36x
« 0.863 « 1´ 14% .

We chose base 36, because it is the maximum base supported by the Common Lisp format function. We could
have used an external library, or implemented our own base 64 encoding, but chose not to do so.

After multiple parallel processes have finished and produced their log files as in Example 5.27 it remains to
remove duplicates. Each individual file can be uniqified using the UNIX sort program:

sh> mv file-1 tmp
sh> sort -u -T $PWD tmp > file-1

And once all the individual files have been sorted and are free of duplicates, they can be combined with
another call to sort using the -m option. The -m option instructs sort to simply merge the input files which
are assumed to already be sorted. Such a merge is an Opnq operation whereas sort is normally Ωpn logpnqq. (We
refer the reader to Wegener [Weg87, Section 1.5] for a discussion of Ω notation.)

sh> sort -m -u -T file-1 file-2 file-3 ... > file-combined

5.7 Conclusions and perspectives
In Section 5.4 we explained two flavors of the fold operation for use in multiple-argument ROBDD Boolean
operations. We mentioned that the results were surprising.

In situations where the size of the ROBDD grows during the fold operation, intuition would lead us to believe
that performing more operations on small ROBDDs is faster than few operations on large ROBDDs, especially
in extreme situations where sizes are growing exponentially. In such situations, once intermediate operations
are finished, their memory resources could be returned to the system via garbage collection. We believe more
investigation is needed to characterize the situations in which each strategy is more effective.

104

Chapter 6

Numerical Analysis of the Worst-Case
Size of ROBDDs

In Chapter 5 we introduced a special flavor of Binary Decision Diagram called the ROBDD, examining its
construction, some of its properties, and discussed its usefulness in Boolean algebra. We intend to extend the
theory in Chapter 7 to provide a data structure for representing Common Lisp types, and thereafter proceed
by using it to improve the solutions to the problems introduced in Chapter 4. Before looking at the relation
of ROBDDs to Common Lisp types, we first wish, in the current chapter, to examine some of the size-related
properties of the ROBDD.

Even though the ROBDD is a lightweight data structure to implement (i.e., it can be easily implemented
programmatically), some of its behavior regarding the amount of necessary memory allocation may not be
obvious in practice. In this report we convey an intuition of expected sizes and shapes of ROBDDs from several
perspectives.

Section 6.1.2 examines worst-case sizes of ROBDDs: first, we look exhaustively at cases involving a small
number of variables; then, we examine experimentally the average and worst-cases sizes for several cases involving
more variables. Section 6.1 examines the shapes of the graphs of the worst-cases sizes. In Section 6.1.7, we use
an intuitive understanding to derive an explicit formula to calculate the worst-case size for a given number of
variables. Finally, in Section 6.2, we provide an algorithm for generating a worst-case sized ROBDD for a given
number of Boolean variables.

6.1 Worst-case ROBDD size and shape
The BDD shown in Figure 5.2 is a 31 nodes UOBDD, reduced in Figure 5.5 to an 8 nodes ROBDD, thanks to
the three reduction rules presented in Section 5.1.2. We may naturally ask whether this reduction process is
typical.

The size and shape of a reduced BDD depends on the chosen variables ordering [Bry86]. Finding the best
ordering is coNP-Complete [Bry86]. In this report, we do not address the questions of choosing or improving
the variable ordering. Given a particular variables ordering however, the size and shape of the ROBDD depends
only on the truth table of the Boolean expression. In particular, it does not depend on the chosen representation
for the expression. For example, pA _ Bq ^ C has the same truth table as pA ^ Cq _ pB ^ Cq, so these two
expressions are equivalent and will be reduced to the exact same ROBDD. In a practical sense, the ROBDD
serves as a canonical form for Boolean expressions.

The best-case size (in terms of node count) for a constant expression is obviously one, i.e., a Boolean
expression which is identically J or K. But what is the worst-case size of an ROBDD of n variables? We
examine this question both experimentally and theoretically in the following sections.

6.1.1 Process summary
We start by showing all possible ROBDDs for the 1- and 2-variable cases. Then, we address the question of
the worst-case size by looking at the exhaustive list of ROBDDs up to the 4-variable case, extrapolating from
random samples thereafter. The way we do random sampling is also explained.

Given the above data, we observe that the difference between the worst-case size and the average size
becomes negligible as the number of Boolean variables increases. At this stage however, this observation is only
a conjecture, and we would like to prove it formally. We define a quantity called residual compression ratio
which measures the effectiveness of the ROBDD representation, as compared to the size of the truth table. We
note from experimental data that this ratio decreases, but to which value is unclear.

105

We continue by deriving a formula for the worst-case ROBDD size, based on the number of nodes in each
row, and holding for any number of variables. This derivation is motivated by images of sample worst-case
ROBDDs as the number of variables increases. The derivation is obtained as follows.

First, we introduce a threshold function which represents the competition between an increasing exponential
and a decreasing double exponential. We are able to express the worst-case ROBDD size in terms of this
threshold. Then, we argue that natural number thresholds are non-decreasing, and that real number thresholds
are strictly increasing. We then derive bounds on the threshold function, and use them to provide an algorithm
for computing threshold values, usually within one or two iterations.

Ultimately, we use those bounds to show that the residual compression ratio indeed tends to zero.

6.1.2 Experimental analysis of worst-case ROBDD Size
We saw above that, given a variable ordering, every truth table of n variables corresponds to exactly one
ROBDD. Otherwise stated, there is a one–to–one correspondence from the set of n-variable truth tables to the
set of n-variable ROBDDs. However, for any given truth table, there are infinitely many equivalent Boolean
expressions. An n-variable truth table has 2n rows, and each row may contain a J or K as the expression’s
value. Thus, there are 22n different n-variable truth tables.

For small values of n it is reasonable to consider every possible ROBDD exhaustively, to determine the
maximum possible size. However, it becomes impractical to do so for large values. For example, there are 2210

ą

1.80 ˆ 10308 ROBDDs of 10 variables. In our analysis, we treat the 1- through 4-variable cases exhaustively,
and use extrapolated results (explained below) otherwise.

No. ROBDD and ROBDD and
Nodes Boolean Boolean

Expression Expression

1

T ⊥

J K

3

Z1

T ⊥

Z1

⊥ T

Z1 Z1

Figure 6.1: All ROBDDs of one variable

Figure 6.1 shows all the possible ROBDDs of a single variable. We see that only 4 ROBDDs are possible
(22n “ 221

“ 4). Two of the ROBDDs have one node, and the other two have two nodes. By convention, we
consider an n-variable expression as an expression having n or fewer variables. We use this convention because
some Boolean expressions of n-variables can be reduced to equivalent expressions having fewer variables. For
example, A_ pA^ Bq, a 2-variable expression, is in fact equivalent to just A. Figure 6.2 shows an exhaustive
list of the possible ROBDDs of 2 variables. Here, the worst-case node count is 5, occurring twice out of a total
of 22n “ 222

“ 16 possible expressions.

6.1.3 Statistics of ROBDD size distribution

Definition 6.1. Let us defineHnpxq as the number of Boolean functions of n-variables whose ROBDD contains
exactly x nodes. If there are no n-variable ROBDD with exactly x nodes (including when x is not an integer),
then we define Hnpxq by straightforward interpolation. I.e., let x0 be the maximum integer, x0 ă x, such that
there exists an n-variable Boolean equation whose ROBDD has exactly x0 nodes; and let x1 be the minimum
integer, x1 ą x, such that there exists an n-variable Boolean equation whose ROBDD has exactly x1 nodes;
then

Hnpxq “Hnpx0q `
Hnpx1q ´Hnpx0q

x1 ´ x0
¨ px´ x0q .

106

No. ROBDD and ROBDD and ROBDD and ROBDD and
Nodes Boolean Boolean Boolean Boolean

Expression Expression Expression Expression

1
T ⊥

J K

3

Z1

T ⊥

Z1

⊥ T

Z2

T ⊥

Z2

⊥ T

Z1 Z1 Z2 Z2

4

Z1

Z2

⊥ T

Z1

Z2

⊥ T

Z1

⊥

Z2

T

Z1

⊥

Z2

T

pZ1 ^ Z2q pZ1 ^ Z2q p Z1 ^ Z2q p Z1 ^ Z2q

4

Z1

Z2

T ⊥

Z1

Z2

T ⊥

Z1

T

Z2

⊥

Z1

T

Z2

⊥

ppZ1 ^ Z2q ppZ1 ^ Z2q pp Z1 ^ Z2q pp Z1 ^ Z2q
_ Z1q _ Z1q _Z1q _Z1q

5

Z1

Z2 Z2

⊥ T

Z1

Z2 Z2

T ⊥

ppZ1 ^ Z2q ppZ1 ^ Z2q
_p Z1 ^ Z2qq _p Z1 ^ Z2qq

Figure 6.2: All ROBDDs of two variables

107

1 1.5 2 2.5 3

2

Node count for n=1, M=4

H
1p
x
q

1 2 3 4 5
2

4

6

8

Node count for n=2

16
H

2p
x
q

1 2 3 4 5 6 7
0

2

4

6

8

Node count for n=3

25
6 H

3p
x
q
ˆ

10

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

Node count for n=4

65
53

6 H
4p
x
q
ˆ

10
4

Figure 6.3: Histograms illustrating size distributions of ROBDDs from 1 to 4 Boolean variables. The histograms
are based on exhaustive data.

Definition 6.2. H denotes the histogram function normalized by the total number of Boolean functions which
exist for the given number of variables.

Hnpxq “
Hnpxq

22n

Note that Hn differs from the actual histogram in two subtle ways: (1) A histogram is a discrete function of
integers to integers, whereas Hn is a continuous function of reals to reals; and (2) in the case that there are no
ROBDDs of size x, the value of the histogram would be 0, but the value of Hn is interpolated from the closest
nearby values by the formula indicated in Definition 6.1.

Figure 6.3 is a plot of H1 through H4. In Figure 6.3, we exhaustively counted the possible sizes of each
ROBDD for 1 to 4 variables. Since H4p11q is the right-most point on the plot, the worst case for 4 variables is
11 nodes. We can estimate from Figure 6.3 that of the 65536 different Boolean functions of 4 variables, only
about 12000 of them (18%) have node size 11, H11 « 1200. The average size is about 10 nodes.

When n ą 4, we will estimate the plots of H by extrapolation. We take a large number, M , of samples of
randomly chosen Boolean functions. In such case, we use the following notation:

Notation 6.3. We denote MHnpxq to indicate that the histogram, Hnpxq, has been estimated by M unique
samples. In the case that M “ 22n we have MHn “Hn.

In Figure 6.4, we have extrapolated from random sampling the 5 through 10-variable cases as described
below.

108

6 8 10 12 14 16 18 20
0

0.5

1

Node count for n=5

14
99

99
H

5p
x
q
ˆ

10
9

16 18 20 22 24 26 28 30 32
0

1

2

3

4

Node count for n=6
23

00
00
H

6p
x
q
ˆ

10
18

34 36 38 40 42 44 46 48
0

2

4

6

8

Node count for n=7

23
00

00
H

7p
x
q
ˆ

10
37

64 66 68 70 72 74 76 78 80
0

0.5

1

1.5

2

2.5

Node count for n=8

23
00

00
H

8p
x
q
ˆ

10
76

120 125 130 135 140
0

0.5

1

1.5

2

Node count for n=9

23
00

00
H

9p
x
q
ˆ

10
15

3

220 230 240 250
0

0.5

1

1.5

Node count for n=10

25
00

00
H

10
px
q
ˆ

10
30

7

Figure 6.4: Histograms illustrating size distributions of ROBDDs from 5 to 10. The histograms are based on
extrapolations from sampled data. The plots show y “ MHn vs x “ ROBDD size, for 5 ď n ď 10, and in each
case with the maximum value of M from our experiments.

109

400 410 420 430 440
0

0.5

1

1.5

2

2.5

Node count for n=11

25
00

00
H

11
px
q
ˆ

10
61

5

710 720 730 740 750
0

2

4

6

8

Node count for n=12

10
00

00
H

12
px
q
ˆ

10
12

31

1,255 1,260 1,265 1,270 1,275 1,280
0

0.5

1

1.5

Node count for n=13

15
00

00
H

13
px
q
ˆ

10
24

65

2,280 2,290 2,300
0

0.5

1

1.5

Node count for n=14

13
85

00
H

14
px
q
ˆ

10
49

31

4,280 4,295 4,310 4,325
0

2

4

6

8

10

Node count for n=15

19
75

00
H

15
px
q
ˆ

10
98

62

8,260 8,280 8,300 8,320 8,340
0

2

4

6

Node count for n=16

85
50

0 H
16
px
q
ˆ

10
19

72
6

1.61 1.61 1.62 1.62
¨104

0

2

4

6

8

Node count for n=17

80
00

0 H
17
px
q
ˆ

10
39

45
4

3.1 3.11 3.12
¨104

0

0.5

1

1.5

2

Node count for n=18

90
64

9 H
18
px
q
ˆ

10
78

91
1

Figure 6.5: Histograms illustrating size distributions of ROBDDs from 11 to 18. The histograms are based on
extrapolations from sampled data. The plots show y “ MHn vs x “ ROBDD size, for 11 ď n ď 18, and in each
case with the maximum value of M from our experiments.

110

No. No. No.
Variables Samples Unique

pnq (M) Sizes
5 149,999 13
6 230,000 15
7 230,000 14
8 230,000 15
9 230,000 24
10 250,000 36
11 250,000 46
12 100,000 38
13 150,000 24
14 138,500 29
15 197,500 53
16 85,500 93
17 80,000 163
18 90,649 289

Figure 6.6: Number of samples, M , used for generating the plots in Figures 6.4 and 6.5. The table also shows
the number of unique ROBDD sizes which were detected for each value of n.

We generated the data in Figure 6.4 for 5 through 8 Boolean variables, by randomly selecting truth tables
in the manner described in Section 5.6, counting the nodes in the ROBDD, and multiplying by a factor to
compensate for the sample size. We did the computation work in Common Lisp [Ans94] using the SBCL [New15]
Common Lisp compiler.

The number of samples we take while constructing the plots in Figure 6.4, is constrained by the computation-
time at our disposal. Construction of such large ROBDDs is compute intensive but parallelizable. We have
shared access to a cluster of Intel XeonTM E5-2620 2.00GHz 256GB DDR3 machines. Consequently, we tried
to achieve a reasonably large sample size with the resources available.

Figure 6.6 lists the number of samples per value of n. See Section 6.1.4 for the discussion of how we
determined which number of samples to use. Figure 6.7 consolidates the data from Figures 6.3 and 6.4 into
a single plot but normalized, so that the total number of Boolean functions in each curve is 100%. This
normalization allows us to interpret a point px, yq on the curve corresponding to n variables as meaning that
a randomly selected Boolean expression of n-variables has probability y of having an ROBDD which contains
exactly x nodes.

Each point, pn, σnq, in the plot in Figure 6.9 was calculated from a corresponding curve Cn of Figure 6.7 by
the formula in Notation 6.4.

Notation 6.4. The standard deviation of a distribution defined by a histogram is calculated by the formula:

σn “

d

ÿ

px,yqPCn

y ¨ px´ µnq2 , with µn “
ÿ

px,yqPCn

x ¨ y .

It is not clear from Figure 6.7, whether the spread of ROBDD size grows with the number of variables.
However, from the standard deviation plot in Figure 6.9, the spread seems to grow in absolute terms. Despite
this apparent spread, the average (expected size), median, and worst-case sizes summarized in Figure 6.8 give
the impression that the distinction between average size and worst-case size becomes negligible as the number
of variables increases. Otherwise stated, it appears that for large values of n, |ROBDDn| becomes a good
approximation for average size, an observation which seems related to the Shannon effect as discussed by Gröpl
et al. [GPS98].

The plot in Figure 6.7 gives the impression that the distribution of possibles ROBDD sizes for a given
number of variables, is clustered around the average such value. The standard deviation plot in the same figure
gives an impression of how tight this clustering is. In this report, we don’t present a formula for this standard
deviation as a function of n, but from observing the plot, one would suspect that it grows faster than linearly.

One might be tempted to assume that the data represented in Figure 6.4, and consequently in Figure 6.7,
follows a normal distribution, as the curves have a bell-like shape. However, the distribution is not Gaussian.
In particular, each of the curves extend left to the point p1, 2q because there are always two constant functions

111

of N variables, namely, f “ J and f “ K. On the other hand, we did not see any case in our experimentation
where the curves extended to the right any considerable distance beyond the peak. Later, we show what the
actual maximum size of an ROBDD of N variables is (see Figure 6.33), and in each case, the rightmost points
in Figure 6.7 agree impeccably with Figure 6.33.

If we believed the data followed a Gaussian distribution, we could interpret the standard deviation more
strictly. But for any distribution where we can calculate the mean and standard deviation, we can interpret
the standard deviation according to the Chebyshev inequality. The standard deviation plot (Figure 6.9) can
be interpreted according to the Chebyshev inequality [Als11], with X being the size of a randomly selected
ROBDD.

Prp|X ´ µ| ą k ¨ σq ď
1
k2 Chebyshev’s inequality

If the standard deviation of the probability function (Figure 6.7) for n Boolean variables is σn and the
average ROBDD size is µn, then for a given real number, k ě 1 (k ą 1 in practice), the probability of a
randomly selected ROBDD of n-variables having more than µn ` k ¨ σn nodes or less than µn ´ k ¨ σn nodes, is
less than 1

k2 . As an example of using the plots in Figures 6.8 with the Chebyshev inequality, taking k “ 2:

µ8 “ 75.0 from Figure 6.8
σ8 “ 1.89 from Figure 6.9
k “ 2

1
k2 “

1
22 “ 25%

µ8 ´ k ¨ σ8 “ 71.22
µ8 ` k ¨ σ8 “ 78.78 .

This means that given a randomly selected 8-variable ROBDD, there is a 100% ´ 25% “ 75% chance that it
has between 71 and 79 nodes.

6.1.4 Sufficiency of sample size
In Section 6.1.3, we discussed the approximation of ROBDD size histograms by a method of extrapolation based
on a random sample. The size of any such sample is bound to be miniscule compared to the size of the space
of Boolean functions. For example, there are 2210

“ 1.8 ˆ 10308 Boolean functions of 10 variables. In order to
sample just 1% of this space, even at a rate of 1000 per second, we need 1.8ˆ 10303 seconds. Assuming the age
of universe is 13.8 billion years that comes out to only 4.4 ˆ 1017 seconds. Knowing that we cannot sample a
significant number of Boolean functions, how can we know that whether we have sampled a sufficient amount,
to have confidence that the histograms in Figures 6.4 and 6.5 are good approximations?

To answer this question, we once again take a look at the Chebyshev inequality. Our confidence in its results
is limited by our confidence that the approximated average, µn, and standard deviation, σn, are close to the
actual result. I.e., if we increased the sample size, µn and σn would change significantly?

For illustration, we will precisely examine the plots in Figures 6.4 and 6.5. Figures 6.10, through 6.15 show
some of the corresponding plots, but illustrated considering fewer samples. We observe, not surprisingly, that
as the number of samples increases (approximately doubles with each successive plot), the distribution curve
tends to become smoother. That the distribution curve tends to smoothen as M (the sample size) increases
suggests that the sequence of curves is converging to some limiting curve as M increases. We do not explicitly
assume this but the general shape of the curves suggests that this limit curve is a normal distribution function.

Notation 6.5.

φpµ, σ2
q “

M
?

2πσ2e
´
x´µ

2σ2 .

To investigate how closely the sampled curves approximate a normal distribution, we must extract the mean
and standard deviation (µ and σ). Of course the calculated values of µ and σ will certainly depend on the
actual samples which have been chosen randomly.

Figure 6.16 shows the mean values (µn with n selected from 5 to 18) and the corresponding standard
deviations (σn), both as function of M , the number of samples taken. We observe that the mean values (i.e.

112

the average ROBDD size for n Boolean variables) and the standard deviations do not seem to converge to any
asymptotic values, but neither µn nor σn vary significantly. Figure 6.16 shows that for the samples we made,
the total excursion of µ is less than 1% and the total excursion of σ is less than 4%.

For a visual illustration of how closely each of the plots in Figures 6.10 through 6.15 agree with the theoretical
normal distribution, we present Figures 6.18 through 6.22 which superimpose the sampled curves over the normal
distribution whose µ and σ values are also shown in the respective figures. Also, as a summary, Figure 6.16
shows averages and standard deviations associated with each population size M.

While the method of superimposing the sampled curves over the corresponding Gaussian distributions gives a
visual illustration with which to measure the sufficiency of the sample size, it does not seem to help numerically.
Figures 6.23 through 6.27 illustrate the histogram difference functions.

Definition 6.6. The following denotes the arithmetic difference between two histograms, MHn, of successive
sample sizes, M and 2M .

∆2MHnpxq “
2MHnpxq ´

MHnpxq

The figures also show, the L2 norm of the difference function calculated between successive samples.

Notation 6.7.

}∆MHn}2 “

d

ż |ROBDDn|

1

`

MHnpxq ´
M
2 Hnpxq

˘2
dx

“

d

ż |ROBDDn|

1

`

∆MHnpxq
˘2
dx

We observe (Figures 6.23 through 6.27) that in most cases the value of the integral trends downward towards
zero. This supports our supposition that the sequence of functions is Cauchy, and is thus convergent.

113

0 20 40 60 80

0

0.2

0.4

BDD Size

P
ro

b
ab

il
it

y

H2

H3

H4

H5

H6

H7

H8

100 101 102 103 104

0

0.2

0.4

BDD Size

P
ro

b
ab

il
it

y

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

H13

H14

H15

H16

H17

H18

Figure 6.7: Normalized histograms of size distribution probability functions for ROBDDs of 2 to 10 variable
Boolean expressions, based on exhaustive data for 2, 3 and 4 variables, and on randomly sampled data for 5
and more variables.

114

1 2 3 4 5 6 7 80

20

40

60

80

Number of variables

RO
BD

D
siz

e

Worst case

Average

Median

0 5 10 15
100

101

102

103

104

Number of variables
RO

BD
D

siz
e

Worst case

Average

Median

Figure 6.8: Expected and worst-case ROBDD size from 1 to 10 variables, exhaustively determined for 1 through
4 variables, experimentally determined for 5 and more variables.

1 2 3 4 5 6 7 8

1

1.2

1.4

1.6

1.8

Number of variables

St
an

da
rd

de
vi
at
io
n

0 5 10 15

100

101

Number of variables

St
an

da
rd

de
vi
at
io
n

Figure 6.9: Standard deviations for each of the curves shown in Figure 6.7 and whose averages are shown in
Figure 6.8.

115

12 14 16 18
0

0.5

1

5-var ROBDD size

11
76
H

5p
x
q
ˆ

10
9

12 14 16 18
0

0.5

1

5-var ROBDD size

23
47
H

5p
x
q
ˆ

10
9

12 14 16 18
0

0.5

1

5-var ROBDD size

46
90
H

5p
x
q
ˆ

10
9

10 12 14 16 18
0

0.5

1

5-var ROBDD size

93
77
H

5p
x
q
ˆ

10
9

8 10 12 14 16 18 20
0

0.5

1

5-var ROBDD size

18
75

1 H
5p
x
q
ˆ

10
9

8 10 12 14 16 18 20
0

0.5

1

5-var ROBDD size

37
50

0 H
5p
x
q
ˆ

10
9

8 10 12 14 16 18 20
0

0.5

1

5-var ROBDD size

74
99

9 H
5p
x
q
ˆ

10
9

8 10 12 14 16 18 20
0

0.5

1

5-var ROBDD size

14
99

99
H

5p
x
q
ˆ

10
9

Figure 6.10: Histograms illustrating size distributions of successively larger samples for 5 variables. Each plot
shows y “ MH5 for successively larger values of M vs. x “ ROBDD size.

116

70 72 74 76 78
0

1

2

8-var ROBDD size

17
99
H

8p
x
q
ˆ

10
76

68 70 72 74 76 78 80
0

1

2

8-var ROBDD size

35
95
H

8p
x
q
ˆ

10
76

68 70 72 74 76 78 80
0

1

2

8-var ROBDD size

71
88
H

8p
x
q
ˆ

10
76

66 68 70 72 74 76 78 80
0

1

2

8-var ROBDD size

14
37

5 H
8p
x
q
ˆ

10
76

66 68 70 72 74 76 78 80
0

1

2

3

8-var ROBDD size

28
75

0 H
8p
x
q
ˆ

10
76

66 68 70 72 74 76 78 80
0

1

2

3

8-var ROBDD size

57
50

0 H
8p
x
q
ˆ

10
76

66 68 70 72 74 76 78 80
0

1

2

8-var ROBDD size

11
50

00
H

8p
x
q
ˆ

10
76

64 66 68 70 72 74 76 78 80
0

0.5

1

1.5

2

2.5

8-var ROBDD size

23
00

00
H

8p
x
q
ˆ

10
76

Figure 6.11: Histograms illustrating size distributions of successively larger samples for 8 variables. Each plot
shows y “ MH8 for successively larger values of M vs. x “ ROBDD size.

117

410 415 420 425 430 435
0

1

2

3

11-var ROBDD size

19
54
H

11
px
q
ˆ

10
61

5

405 410 415 420 425 430 435 440
0

1

2

3

11-var ROBDD size

39
07
H

11
px
q
ˆ

10
61

5

410 420 430 440
0

1

2

3

11-var ROBDD size

78
13
H

11
px
q
ˆ

10
61

5

410 420 430 440
0

1

2

3

11-var ROBDD size

15
62

5 H
11
px
q
ˆ

10
61

5

410 420 430 440
0

1

2

3

11-var ROBDD size

31
25

0 H
11
px
q
ˆ

10
61

5

400 410 420 430 440
0

1

2

3

11-var ROBDD size

62
50

0 H
11
px
q
ˆ

10
61

5

400 410 420 430 440
0

1

2

11-var ROBDD size

12
50

00
H

11
px
q
ˆ

10
61

5

400 410 420 430 440
0

0.5

1

1.5

2

2.5

11-var ROBDD size

25
00

00
H

11
px
q
ˆ

10
61

5

Figure 6.12: Histograms illustrating size distributions of successively larger samples for 11 variables. Each plot
shows y “ MH11 for successively larger values of M vs. x “ ROBDD size.

118

2,280 2,285 2,290 2,295 2,300
0

0.5

1

1.5

14-var ROBDD size

10
83
H

14
px
q
ˆ

10
49

31

2,280 2,285 2,290 2,295 2,300
0

0.5

1

1.5

14-var ROBDD size

21
65
H

14
px
q
ˆ

10
49

31

2,280 2,285 2,290 2,295 2,300
0

0.5

1

1.5

14-var ROBDD size

43
29
H

14
px
q
ˆ

10
49

31

2,280 2,285 2,290 2,295 2,300
0

0.5

1

1.5

14-var ROBDD size

86
57
H

14
px
q
ˆ

10
49

31

2,280 2,285 2,290 2,295 2,300
0

0.5

1

1.5

14-var ROBDD size

17
31

3 H
14
px
q
ˆ

10
49

31

2,2752,2802,2852,2902,2952,300
0

0.5

1

1.5

14-var ROBDD size

34
62

5 H
14
px
q
ˆ

10
49

31

2,2752,2802,2852,2902,2952,300
0

0.5

1

1.5

14-var ROBDD size

69
25

0 H
14
px
q
ˆ

10
49

31

2,2752,2802,2852,2902,2952,300
0

0.5

1

1.5

14-var ROBDD size

13
85

00
H

14
px
q
ˆ

10
49

31

Figure 6.13: Histograms illustrating size distributions of successively larger samples for 14 variables. Each plot
shows y “ MH14 for successively larger values of M vs. x “ ROBDD size.

119

8,280 8,300 8,320

2

4

6

8

10

16-var ROBDD size

67
2 H

16
px
q
ˆ

10
19

72
6

8,280 8,300 8,320
0

2

4

6

8

10

16-var ROBDD size

13
39
H

16
px
q
ˆ

10
19

72
6

8,280 8,300 8,320 8,340
0

2

4

6

8

10

16-var ROBDD size

26
74
H

16
px
q
ˆ

10
19

72
6

8,280 8,300 8,320 8,340
0

2

4

6

8

16-var ROBDD size

53
45
H

16
px
q
ˆ

10
19

72
6

8,280 8,300 8,320 8,340
0

2

4

6

8

16-var ROBDD size

10
68

8 H
16
px
q
ˆ

10
19

72
6

8,260 8,280 8,300 8,320 8,340
0

2

4

6

8

16-var ROBDD size

21
37

5 H
16
px
q
ˆ

10
19

72
6

8,260 8,280 8,300 8,320 8,340
0

2

4

6

8

16-var ROBDD size

42
75

0 H
16
px
q
ˆ

10
19

72
6

8,260 8,280 8,300 8,320 8,340
0

2

4

6

16-var ROBDD size

85
50

0 H
16
px
q
ˆ

10
19

72
6

Figure 6.14: Histograms illustrating size distributions of successively larger samples for 16 variables. Each plot
shows y “ MH16 for successively larger values of M vs. x “ ROBDD size.

120

3.1 3.1 3.11 3.11
¨104

0.5

1

1.5

2

2.5

3

18-var ROBDD size

71
0 H

18
px
q
ˆ

10
78

91
1

3.1 3.1 3.11 3.11
¨104

0.5

1

1.5

2

2.5

18-var ROBDD size

14
18
H

18
px
q
ˆ

10
78

91
1

3.1 3.1 3.11 3.11
¨104

0

0.5

1

1.5

2

2.5

18-var ROBDD size

28
34
H

18
px
q
ˆ

10
78

91
1

3.1 3.1 3.11 3.11
¨104

0

0.5

1

1.5

2

2.5

18-var ROBDD size

56
66
H

18
px
q
ˆ

10
78

91
1

3.1 3.1 3.11 3.11 3.12 3.12
¨104

0

0.5

1

1.5

2

18-var ROBDD size

11
33

1 H
18
px
q
ˆ

10
78

91
1

3.1 3.1 3.11 3.11 3.12 3.12
¨104

0

0.5

1

1.5

2

18-var ROBDD size

22
66

2 H
18
px
q
ˆ

10
78

91
1

3.1 3.1 3.11 3.11 3.12 3.12
¨104

0

0.5

1

1.5

2

18-var ROBDD size

45
32

4 H
18
px
q
ˆ

10
78

91
1

3.1 3.1 3.11 3.11 3.12 3.12
¨104

0

0.5

1

1.5

2

18-var ROBDD size

90
64

9 H
18
px
q
ˆ

10
78

91
1

Figure 6.15: Histograms illustrating size distributions of successively larger samples for 18 variables. Each plot
shows y “ MH18 for successively larger values of M vs. x “ ROBDD size.

121

103 104 105
15.45

15.5

15.55

15.6

Sample size M for n=5

Av
er
ag
e
µ

5

103 104 105

1.32

1.34

1.36

1.38

Sample size M for n=5

St
an

da
rd

D
ev
ia
tio

n
σ

5

104 105

26.1

26.15

Sample size M for n=6

Av
er
ag
e
µ

6

104 105
1.56

1.58

1.6

1.62

1.64

Sample size M for n=6

St
an

da
rd

D
ev
ia
tio

n
σ

6

104 105
74.9

74.95

75

75.05

75.1

Sample size M for n=8

Av
er
ag
e
µ

8

104 105

1.8

1.82

1.84

1.86

Sample size M for n=8

St
an

da
rd

D
ev
ia
tio

n
σ

8

104 105
237.1

237.2

237.3

237.4

237.5

Sample size M for n=10

Av
er
ag
e
µ

10

104 105

3.95

4

4.05

4.1

Sample size M for n=10

St
an

da
rd

D
ev
ia
tio

n
σ

10

103 104 105

732.9

733

733.1

733.2

733.3

Sample size M for n=12

Av
er
ag
e
µ

12

103 104 105

4.55

4.6

4.65

Sample size M for n=12

St
an

da
rd

D
ev
ia
tio

n
σ

12

103 104 105

2,290.8

2,290.9

2,291

2,291.1

Sample size M for n=14

Av
er
ag
e
µ

14

103 104 105

3.35

3.4

3.45

3.5

Sample size M for n=14

St
an

da
rd

D
ev
ia
tio

n
σ

14

103 104 105

8,305.8

8,306

8,306.2

8,306.4

8,306.6

Sample size M for n=16

Av
er
ag
e
µ

16

103 104 105

11.1

11.2

11.3

Sample size M for n=16

St
an

da
rd

D
ev
ia
tio

n
σ

16

103 104 105

31,076.01

31,078

31,080

Sample size M for n=18

Av
er
ag
e
µ

18

103 104 105

36.5

37

37.5

Sample size M for n=18

St
an

da
rd

D
ev
ia
tio

n
σ

18

Figure 6.16: Averages (µn) and Standard deviations (σn) of the 5, 6, 8, 10 ,12, 14, 16, and 18 variable distribu-
tions vs. sample size, M.

122

n µnmax´µnmin
µnfinal

ˆ 100% σnmax´σnmin
σnfinal

ˆ 100%

5 15.611´15.461
15.539 “ 0.96% 1.377´1.319

1.377 “ 4.22%

6 26.187´26.067
26.108 “ 0.46% 1.651´1.566

1.615 “ 5.23%

7 44.106´43.987
44.014 “ 0.27% 1.663´1.610

1.660 “ 3.20%

8 75.089´74.916
74.992 “ 0.23% 1.857´1.794

1.857 “ 3.38%

9 132.189´131.904
132.040 “ 0.22% 2.743´2.659

2.743 “ 3.05%

10 237.501´237.133
237.292 “ 0.16% 4.101´3.954

4.062 “ 3.61%

11 422.500´422.002
422.241 “ 0.12% 5.153´5.002

5.153 “ 2.92%

12 733.351´732.917
733.123 “ 0.06% 4.670´4.541

4.670 “ 2.77%

13 1270.825´1270.513
1270.664 “ 0.02% 2.843´2.754

2.843 “ 3.12%

14 2291.158´2290.801
2290.979 “ 0.02% 3.499´3.322

3.427 “ 5.17%

15 4311.760´4311.308
4311.482 “ 0.01% 6.135´5.967

6.135 “ 2.75%

16 8306.637´8305.756
8306.104 “ 0.01% 11.360´11.037

11.360 “ 2.85%

17 16118.608´16116.970
16117.526 “ 0.01% 20.893´20.376

20.893 “ 2.47%

18 31080.736´31075.063
31078.967 “ 0.02% 37.566´36.230

37.246 “ 3.59%

Figure 6.17: Variation of Average, µn, and Standard deviation, σn, of histograms for various number of Boolean
variables.

123

103 104 105
15.45

15.5

15.55

15.6

Sample size M for n=5

Av
er
ag
e
µ

5

103 104 105

1.32

1.34

1.36

1.38

Sample size M for n=5

St
an

da
rd

D
ev
ia
tio

n
σ

5

6 8 10 12 14 16 18 20

´1

0

1

2

¨10´2

5-variable ROBDD size

∆
14

99
99
H

5

103 104 105
0.2

0.4

0.6

0.8

1

1.2

¨10´3

M Number of points

}∆
M
H

5}
2

10 12 14 16 18
0

0.5

1

5-var ROBDD size

93
77
H

5p
x
q
ˆ

10
9

8 10 12 14 16 18 20
0

0.5

1

5-var ROBDD size

18
75

1 H
5p
x
q
ˆ

10
9

8 10 12 14 16 18 20
0

0.5

1

5-var ROBDD size

37
50

0 H
5p
x
q
ˆ

10
9

8 10 12 14 16 18 20
0

0.5

1

5-var ROBDD size

74
99

9 H
5p
x
q
ˆ

10
9

8 10 12 14 16 18 20
0

0.5

1

5-var ROBDD size

14
99

99
H

5p
x
q
ˆ

10
9

Figure 6.18: Histograms (from Figure 6.10) illustrating size distributions of successively larger samples for 5
variables, shown along with the theoretical normal distribution having the same µ5 and σ5. This figure also
shows (top left) the plots of y “ µ5 and y “ σ5 vs. x “ node count for successively larger values of M . The
plot in top right shows the difference function y “ ∆MH5 for the maximum sample size taken, M . Also shown
in the plot of y “ }∆MH5}2 for successively larger values of M which serves as an indicator of convergence of
the H5 curves.

124

104 105
74.9

74.95

75

75.05

75.1

Sample size M for n=8

Av
er
ag
e
µ

8

104 105

1.8

1.82

1.84

1.86

Sample size M for n=8

St
an

da
rd

D
ev
ia
tio

n
σ

8

64 66 68 70 72 74 76 78 80

´1

´0.5

0

0.5

1

1.5
¨10´2

8-variable ROBDD size

∆
23

00
00
H

8

104 105

0.2

0.4

0.6

0.8

1

1.2
¨10´3

M Number of points

}∆
M
H

8}
2

66 68 70 72 74 76 78 80
0

1

2

8-var ROBDD size

14
37

5 H
8p
x
q
ˆ

10
76

66 68 70 72 74 76 78 80
0

1

2

3

8-var ROBDD size

28
75

0 H
8p
x
q
ˆ

10
76

66 68 70 72 74 76 78 80
0

1

2

3

8-var ROBDD size

57
50

0 H
8p
x
q
ˆ

10
76

66 68 70 72 74 76 78 80
0

1

2

8-var ROBDD size

11
50

00
H

8p
x
q
ˆ

10
76

64 66 68 70 72 74 76 78 80
0

0.5

1

1.5

2

2.5

8-var ROBDD size

23
00

00
H

8p
x
q
ˆ

10
76

Figure 6.19: Histograms (from Figure 6.11) illustrating size distributions of successively larger samples for 8
variables, shown along with the theoretical normal distribution having the same µ8 and σ8. This figure also
shows (top left) the plots of y “ µ8 and y “ σ8 vs. x “ node count for successively larger values of M . The
plot in top right shows the difference function y “ ∆MH8 for the maximum sample size taken, M . Also shown
in the plot of y “ }∆MH8}2 for successively larger values of M which serves as an indicator of convergence of
the H8 curves.

125

104 105

422

422.1

422.2

422.3

422.4

422.5

Sample size M for n=11

Av
er
ag
e
µ

11

104 105

5

5.05

5.1

5.15

Sample size M for n=11

St
an

da
rd

D
ev
ia
tio

n
σ

11

400 410 420 430 440 450

´4

´2

0

2

4

6

¨10´3

11-variable ROBDD size

∆
25

00
00
H

11

104 105

1

2

3

4
¨10´4

M Number of points

}∆
M
H

11
} 2

410 420 430 440
0

1

2

3

11-var ROBDD size

15
62

5 H
11
px
q
ˆ

10
61

5

410 420 430 440
0

1

2

3

11-var ROBDD size

31
25

0 H
11
px
q
ˆ

10
61

5

400 410 420 430 440
0

1

2

3

11-var ROBDD size

62
50

0 H
11
px
q
ˆ

10
61

5

400 410 420 430 440
0

1

2

11-var ROBDD size

12
50

00
H

11
px
q
ˆ

10
61

5

400 410 420 430 440
0

1

2

11-var ROBDD size

25
00

00
H

11
px
q
ˆ

10
61

5

Figure 6.20: Histograms (from Figure 6.12) illustrating size distributions of successively larger samples for 11
variables, shown along with the theoretical normal distribution having the same µ11 and σ11. This figure also
shows (top left) the plots of y “ µ11 and y “ σ11 vs. x “ node count for successively larger values of M . The
plot in top right shows the difference function y “ ∆MH11 for the maximum sample size taken, M . Also shown
in the plot of y “ }∆MH11}2 for successively larger values of M which serves as an indicator of convergence of
the H11 curves.

126

103 104 105

8,305.8

8,306

8,306.2

8,306.4

8,306.6

Sample size M for n=16

Av
er
ag
e
µ

16

103 104 105

11.1

11.2

11.3

Sample size M for n=16

St
an

da
rd

D
ev
ia
tio

n
σ

16

8,260 8,280 8,300 8,320 8,340 8,360

´2

0

2

¨10´3

16-variable ROBDD size

∆
85

50
0 H

16

103 104

0

0.5

1

¨10´3

M Number of points

}∆
M
H

16
} 2

8,280 8,300 8,320 8,340
0

2

4

6

8

16-var ROBDD size

53
45
H

16
px
q
ˆ

10
19

72
6

8,280 8,300 8,320 8,340
0

2

4

6

8

16-var ROBDD size

10
68

8 H
16
px
q
ˆ

10
19

72
6

8,260 8,280 8,300 8,320 8,340
0

2

4

6

8

16-var ROBDD size

21
37

5 H
16
px
q
ˆ

10
19

72
6

8,260 8,280 8,300 8,320 8,340
0

2

4

6

8

16-var ROBDD size

42
75

0 H
16
px
q
ˆ

10
19

72
6

8,260 8,280 8,300 8,320 8,340
0

2

4

6

16-var ROBDD size

85
50

0 H
16
px
q
ˆ

10
19

72
6

Figure 6.21: Histograms (from Figure 6.14) illustrating size distributions of successively larger samples for 16
variables, shown along with the theoretical normal distribution having the same µ16 and σ16. This figure also
shows (top left) the plots of y “ µ16 and y “ σ16 vs. x “ node count for successively larger values of M . The
plot in top right shows the difference function y “ ∆MH16 for the maximum sample size taken, M . Also shown
in the plot of y “ }∆MH16}2 for successively larger values of M which serves as an indicator of convergence of
the H16 curves.

127

103 104 105

31,076.01

31,078

31,080

Sample size M for n=18

Av
er
ag
e
µ

18

103 104 105

36.5

37

37.5

Sample size M for n=18

St
an

da
rd

D
ev
ia
tio

n
σ

18

3.09 3.1 3.11 3.12
¨104

´1

0

1

2
¨10´3

18-variable ROBDD size

∆
90

64
9 H

18

103 104

0

0.5

1

1.5

¨10´3

M Number of points

}∆
M
H

18
} 2

3.1 3.1 3.11 3.11
¨104

0

0.5

1

1.5

2

2.5

18-var ROBDD size

56
66
H

18
px
q
ˆ

10
78

91
1

3.1 3.1 3.11 3.11 3.12 3.12
¨104

0

0.5

1

1.5

2

18-var ROBDD size

11
33

1 H
18
px
q
ˆ

10
78

91
1

3.1 3.1 3.11 3.11 3.12 3.12
¨104

0

0.5

1

1.5

2

18-var ROBDD size

22
66

2 H
18
px
q
ˆ

10
78

91
1

3.1 3.1 3.11 3.11 3.12 3.12
¨104

0

0.5

1

1.5

2

18-var ROBDD size

45
32

4 H
18
px
q
ˆ

10
78

91
1

3.1 3.1 3.11 3.11 3.12 3.12
¨104

0

0.5

1

1.5

2

18-var ROBDD size

90
64

9 H
18
px
q
ˆ

10
78

91
1

Figure 6.22: Histograms (from Figure 6.15) illustrating size distributions of successively larger samples for 18
variables, shown along with the theoretical normal distribution having the same µ18 and σ18. This figure also
shows (top left) the plots of y “ µ18 and y “ σ18 vs. x “ node count for successively larger values of M . The
plot in top right shows the difference function y “ ∆MH18 for the maximum sample size taken, M . Also shown
in the plot of y “ }∆MH18}2 for successively larger values of M which serves as an indicator of convergence of
the H18 curves.

128

103 104 105
0.2

0.4

0.6

0.8

1

1.2

¨10´3

M Number of points

}∆
M
H

5}
2

8 10 12 14 16 18 20

´1

0

1

¨10´2

5-variable ROBDD size

∆
23

47
H

5

8 10 12 14 16 18 20

´5

0

5

¨10´3

5-variable ROBDD size

∆
46

90
H

5

8 10 12 14 16 18 20

´5

0

5

¨10´3

5-variable ROBDD size

∆
93

77
H

5

6 8 10 12 14 16 18 20

´5

0

5

¨10´3

5-variable ROBDD size

∆
18

75
1 H

5

6 8 10 12 14 16 18 20

´1

0

1

¨10´2

5-variable ROBDD size

∆
37

50
0 H

5

6 8 10 12 14 16 18 20
´2

´1

0

1

¨10´2

5-variable ROBDD size

∆
74

99
9 H

5

6 8 10 12 14 16 18 20

´1

0

1

2

¨10´2

5-variable ROBDD size

∆
14

99
99
H

5

Figure 6.23: Difference functions for n “ 5

129

104 105

0.2

0.4

0.6

0.8

1

1.2
¨10´3

M Number of points

}∆
M
H

8}
2

66 68 70 72 74 76 78 80

´5

0

5

¨10´3

8-variable ROBDD size

∆
35

95
H

8

66 68 70 72 74 76 78 80

´2

0

2

4

6

8

¨10´3

8-variable ROBDD size

∆
71

88
H

8

66 68 70 72 74 76 78 80

´4

´2

0

2

¨10´3

8-variable ROBDD size

∆
14

37
5 H

8

66 68 70 72 74 76 78 80

´5

0

5

¨10´3

8-variable ROBDD size

∆
28

75
0 H

8

64 66 68 70 72 74 76 78 80

´1.5

´1

´0.5

0

0.5

¨10´2

8-variable ROBDD size

∆
57

50
0 H

8

64 66 68 70 72 74 76 78 80
´2

´1

0

1

¨10´2

8-variable ROBDD size

∆
11

50
00
H

8

64 66 68 70 72 74 76 78 80

´1

´0.5

0

0.5

1

1.5
¨10´2

8-variable ROBDD size

∆
23

00
00
H

8

Figure 6.24: Difference functions for n “ 8

130

104 105

1

2

3

4
¨10´4

M Number of points

}∆
M
H

11
} 2

410 420 430 440

´5

0

5

¨10´3

11-variable ROBDD size

∆
39

07
H

11

410 420 430 440

´4

´2

0

2

4
¨10´3

11-variable ROBDD size

∆
78

13
H

11

400 410 420 430 440
´4

´2

0

2

4
¨10´3

11-variable ROBDD size

∆
15

62
5 H

11

400 410 420 430 440
´8

´6

´4

´2

0

2

¨10´3

11-variable ROBDD size

∆
31

25
0 H

11

400 410 420 430 440
´1

´0.5

0

¨10´2

11-variable ROBDD size

∆
62

50
0 H

11

400 410 420 430 440

´5

0

5

¨10´3

11-variable ROBDD size

∆
12

50
00
H

11

400 410 420 430 440 450

´4

´2

0

2

4

6

¨10´3

11-variable ROBDD size

∆
25

00
00
H

11

Figure 6.25: Difference functions for n “ 11

131

103 104

0

0.5

1

¨10´3

M Number of points

}∆
M
H

16
} 2

8,260 8,280 8,300 8,320 8,340

´1

´0.5

0

0.5

¨10´2

16-variable ROBDD size

∆
13

39
H

16

8,260 8,280 8,300 8,320 8,340

´0.5

0

0.5

1

¨10´2

16-variable ROBDD size

∆
26

74
H

16

8,260 8,280 8,300 8,320 8,340
´4

´2

0

2

4
¨10´3

16-variable ROBDD size

∆
53

45
H

16

8,260 8,280 8,300 8,320 8,340
´6

´4

´2

0

2

4

¨10´3

16-variable ROBDD size

∆
10

68
8 H

16

8,260 8,280 8,300 8,320 8,340
´6

´4

´2

0

2

4

¨10´3

16-variable ROBDD size

∆
21

37
5 H

16

8,260 8,280 8,300 8,320 8,340 8,360
´6

´4

´2

0

2

4

¨10´3

16-variable ROBDD size

∆
42

75
0 H

16

8,260 8,280 8,300 8,320 8,340 8,360

´2

0

2

¨10´3

16-variable ROBDD size

∆
85

50
0 H

16

Figure 6.26: Difference functions for n “ 16

132

103 104

0

0.5

1

1.5

¨10´3

M Number of points

}∆
M
H

18
} 2

3.1 3.1 3.11 3.11 3.12 3.12
¨104

´5

0

5

¨10´3

18-variable ROBDD size

∆
14

18
H

18

3.1 3.1 3.11 3.11 3.12 3.12
¨104

´4

´2

0

2

4

¨10´3

18-variable ROBDD size

∆
28

34
H

18

3.1 3.1 3.11 3.11 3.12 3.12 3.13
¨104

´2

0

2

¨10´3

18-variable ROBDD size

∆
56

66
H

18

3.09 3.1 3.11 3.12
¨104

´2

0

2

¨10´3

18-variable ROBDD size

∆
11

33
1 H

18

3.09 3.1 3.11 3.12
¨104

´2

´1

0

1

2
¨10´3

18-variable ROBDD size

∆
22

66
2 H

18

3.09 3.1 3.11 3.12
¨104

´2

´1

0

1

¨10´3

18-variable ROBDD size

∆
45

32
4 H

18

3.09 3.1 3.11 3.12
¨104

´1

0

1

2
¨10´3

18-variable ROBDD size

∆
90

64
9 H

18

Figure 6.27: Difference functions for n “ 18

133

6.1.5 Measuring ROBDD residual compression
In Section 5.1.2, a 31 node UOBDD of 4 Boolean variables was reduced to an equivalent ROBDD with 8 nodes,
meaning a residual compression ratio of 8{31 « 25.8%. The question arises how typical this reduction is?
Figure 6.28 shows a plot of the worst-case, average, and median sizes divided by the size of the UOBDD. The
figure shows the residual compression ratio, ρn, for sizes n “ 1 through n “ 10 Boolean variables.

Definition 6.8. The residual compression ratio is defined as

ρn “
|ROBDDn|
|UOBDDn|

. (6.1)

The residual compression ratio quantifies which portion of the original size remains after converting a
UOBDD into an ROBDD. The closer to zero, the better the compression.

To calcualte a point in the plot, starting with a number from Figure 6.8 and dividing it by the size of the
corresponding UOBDD. A UOBDD of n Boolean variables (as well as a full binary tree of n levels and 2n leaves)
has |UOBDDn| “ 2n`1 ´ 1 nodes. It appears from the plot that the residual compression ratio improves (the
percentage decreases) as the number of variables increases. It is not clear from the plot what the asymptotic
residual compression ratio is, but it appears from experimental data to be less than 15%. It would also appear
that whether the residual compression ratio is measured using the average size or worst-case size, the difference
becomes negligible as the number of variables increases.

2 4 6 8 10 12 14 16 18 20

10´1

100

Number of variables

R
es
id
ua

lc
om

pr
es
sio

n
ra
tio

Worst case

Average

Median

Figure 6.28: Residual compression ratio of ROBDD as compared to UOBDD

In Section 6.1.7, we derive a formula for the worst-case ROBDD size as a function of the number of Boolean
variables. In order to do that, we need to understand the topology of such ROBDDs. What are the connectivity
invariants which control the shape? In this section, we examine some example worst-case ROBDDs. Section 6.2
discusses an algorithm for constructing such ROBDDs.

Figure 6.29 shows examples of worst-case ROBDD for 1 through 7 variables. Those ROBDDs have 3, 5, 7,
11, 19, 31, and 47 nodes respectively.

134

Z1

T ⊥

Z1

Z2 Z2

⊥ T

Z1

Z2 Z2

Z3 Z3

T ⊥

Z1

Z2Z2

Z3 Z3Z3Z3

Z4 Z4

T ⊥

3 nodes 5 nodes 7 nodes 11 nodes
for 1 variable for 2 variables for 3 variables for 4 variables

Z1

Z2Z2

Z3 Z3Z3Z3

Z4Z4 Z4 Z4Z4Z4Z4Z4

T ⊥

Z5 Z5

Z1

Z2Z2

Z3Z3Z3 Z3

Z4 Z4Z4Z4 Z4Z4 Z4Z4

Z5Z5 Z5 Z5Z5 Z5Z5 Z5Z5 Z5 Z5Z5

T⊥

Z6 Z6

19 nodes 31 nodes
for 5 variables for 6 variables

Z1

Z2 Z2

Z3 Z3Z3Z3

Z4 Z4 Z4 Z4Z4 Z4Z4Z4

Z5 Z5 Z5Z5 Z5 Z5 Z5 Z5Z5Z5 Z5Z5Z5 Z5Z5Z5

Z6 Z6 Z6Z6 Z6 Z6Z6Z6 Z6 Z6Z6 Z6

T ⊥

Z7Z7

47 nodes
for 7 variables

Figure 6.29: Shapes of worst-case ROBDDs for 1 to 7 variables

135

The 2-variable ROBDD represents the Boolean expression ppZ1^ Z2q_p Z1^Z2qq, which is the xor function.
We did not recognize any obvious pattern in the Boolean expressions for the cases of 3 variables or more. As
will become clear in Section 6.2 and in Algorithm 4, the worst-case ROBDD is not unique. There is considerable
flexibility in constructing it. One may naturally wonder whether there is some underlying pattern within the
Boolean expressions corresponding to these worst-case ROBDDs. We have not investigated this question yet,
and leave it open for further investigation.

6.1.6 Shape of worst-case ROBDD

Top Part

Belt

Bottom Part
Leaves

Z1

Z2 Z2

Z3 Z3 Z3 Z3

Z4 Z4 Z4 Z4Z4 Z4 Z4Z4

Z5 Z5 Z5Z5 Z5 Z5Z5Z5 Z5 Z5Z5 Z5

T ⊥

Z6Z6

Figure 6.30: Example shape of a worst-case ROBDD. This figure shows 6-variable ROBDD with top & bottom
parts marked. The figure also highlights the belt and leaves. Section 6.2 explains the construction of this
ROBDD. In particular the leaves, bottom part, belt and top part are specifically constructed in Algorithms 4
and 5. The formula for the row index of the belt is given in Equation (6.29)

Even if there is no obvious pattern among the closed form Boolean expressions, we do notice a general
pattern in the overall shapes of the worst-case ROBDDs, as we increase the number of variables. We will make
this pattern explicit in Section 6.1.7, but intuitively as shown in Figure 6.30, it seems that the shapes expand
from the top (root node) to somewhere close to mid-way down and thereafter contract toward the bottom,
always ending with two rows having exactly two nodes each.

This shape makes sense because the maximum possible expansion (top toward bottom) occurs when each
row contains twice as many nodes as the row directly above it. Each node in the ith row corresponding to
variable Zi has two arrows (one positive and one negative) pointing to children of variable Zi`1. If the ith row
is to have the maximum number of nodes possible, then no node may be symmetric, otherwise the node could
be eliminated by the Deletion rule. Furthermore, no two nodes may be congruent, otherwise one of the nodes
could be eliminated by the Merging rule.

As shown in Figure 6.30, the top part of the worst-case ROBDD comprises rows which successively double
in size. However, this exponential expansion is limited by other factors as seen in Figure 6.30. The expansion
terminates at the belt, defined in Definition 6.9.

136

Definition 6.9. In a worst-case ROBDD the rows from top, downward each have twice the number of nodes
as the row above. We define B, the belt, as the maximum index for which this holds. I.e., row B has twice as
many nodes as row B ´ 1, but row B ` 1 does not.

A formula for B is given in Equation (6.29) in Section 6.2.
Notice that sometimes, the B row is the widest row in the ROBDD, such as in the 7-variable case, and other

times the B ` 1 row is the widest row as in the 6-variable case. These two cases are illustrated in Figure 6.29.
One fact that limits the top-down exponential expansion is that the bottommost row must contain exactly

two leaf nodes in worst case, corresponding to J, and K.

Theorem 6.10. If m ą 1, the bottommost row of an m-row ROBDD has exactly two nodes.

Proof. By contradiction. Suppose row had only one of J or K. Any node in the second to last row (row m´ 1)
would be symmetric, having its positive and negative arrows pointing to this same leaf node in row m. Such
a node would be eliminated by the Deletion rule. Row m ´ 1 would be empty. Thus, the ROBDD would not
have m rows. Contradiction.

Theorem 6.11. If m ą 1, the second to last row, m´ 1 has no more than 2 nodes.

Proof. We know from Theorem 6.10 that the bottommost row has exactly two leaves. That being the case, if the
second to last row had any symmetric node, such a node would be removed by the Deletion rule. Furthermore, if
any two nodes in the row were congruent, one of the nodes would be eliminated by the Merging rule. Therefore,
as worst case, there may be only as many nodes in the second to last row as there are ordered parings of the
leaf nodes. There are only two such ordered pairs: pJ,Kq and pK,Jq. The second to last row has no more than
two nodes.

The second to last row is limited to two nodes, by Theorem 6.11. So the worst-case ROBDD has exactly
two nodes in the second to last row.

A similar argument limits the third to last row, and the rows above it. In each such case, the number of
nodes in the row is limited by the number of ordered pairs which can be formed by all the nodes below it, having
no symmetric node and no congruent nodes. This implies a combinatorial expansion from bottom toward the
top.

As argued above, there is an exponential growth from the topmost node downward, and there is a combi-
natorial growth from the bottommost node upward. At some point, the widest part of the graph, these two
growth rates meet.

6.1.7 Worst-case ROBDD size
In Section 6.1.2, we saw the worst-case sizes of ROBDDs for different numbers of Boolean variables. We observed
an exponential top-down growth rate, a bottom-up combinatorial one, and a point somewhere in between where
these two growths meet. In this section, we derive explicit formulas for these observations, and from them,
derive the worst-case size |ROBDDn|.

As can be seen in Figure 6.29, the number of nodes per row (per variable), looking from the top-down, is
limited by 2i where i is the index of the variable. The number of nodes per row follows the sequence 20 “ 1,
21 “ 2, 22 “ 4, ...2k.

The row corresponding to the last variable has two nodes, one with children positive “ K, negative “ J
and one with positive “ J, negative “ K. In the worst case, each row above the bottom has the number of
nodes necessary for each node to uniquely connect its positive and negative arrows to some unique pair of nodes
below it.

Notation 6.12. The number of ordered pairs of m items is m2 (read m raised to the second power descending,
notice the underscore under the superscript). Recall that ma “ m!

pm´aq! which, for the special case of a “ 2,
becomes m2 “ m!

pm´2q! “ m ¨ pm´ 1q.

137

nRn`1 “ 2
nSn “

nRn`1 “ 2
nRn “

nSn
2
“ 2 ¨ 1 “ 2

nSn´1 “
nRn`1 `

nRn “ 4
nRn´1 “

nSn´1
2
“ 4 ¨ 3 “ 12

nSn´2 “
nRn`1 ` ...`

nRn´1 “ 16
nRn´2 “

nSn´2
2
“ 16 ¨ 15 “ 240

nSn´3 “
nRn`1 ` ...`

nRn´2 “ 256
nRn´3 “

nSn´3
2
“ 256 ¨ 255 “ 65280

nSn´k “
n`1
ÿ

i“n´pk´1q

nRi

nRn´k “
nSn´k

2 (6.2)

Figure 6.31: The two interrelated sequences nSi and nRi.

Notation 6.13. If k ą B, we denote the size of the kth row of the worst-case ROBDD of n variables as nRk

Definition 6.14. If k ą B, we define nSk to be the total number of nodes of rows k ` 1 through n. In other
words, nSk is the number of nodes in the rows strictly below row k.

nSn´k “
n`1
ÿ

i“n´pk´1q

nRi

Viewed from the bottom-up, the sequence of rows have sizes nRn´1,
nRn´2,

nRn´3, etc.. The number of nodes
in row i is a function of the sum of the number of nodes in the rows below it, namely nRi “

nSi
2
“ nSi ¨ p

nSi´1q.
Notice that the bottom row of a non-trivial worst-case ROBDD has exactly 2 nodes, the J and K nodes,

thus nRn`1 “ 2. For each i, nSi can be calculated as the sum of the previous nRj for j “ n´ i, ..., n` 1. These
progressions are illustrated by the equations in Figure 6.31.

An interesting pattern emerges: nSn “ 220 , nSn´1 “ 221 , nS2 “ 222 , nS3 “ 223 , suggesting Lemma 6.15.

Lemma 6.15. Let
nSn´k “

n`1
ÿ

i“n´pk´1q

nRi ,

where
nRn`1 “ 2

and for k ą 1,
nRn´k “

nSn´k ¨ p
nSn´k ´ 1q .

Then for every positive integer k,
nSn´k “ 22k .

Proof. By Induction: The initial case, k “ 0 is that
nSn´k “

nSn´0

“ nRn`1 “ 2 “ 21 “ 220
“ 22k .

138

The only thing that remains is to be shown that for k ě 0, nSn´k “ 22k implies nSn´pk`1q “ 22k`1 . Assume

nSn´k “ 22k .

It follows that

nSn´pk`1q “
n`1
ÿ

i“n´k

nRi

“ nRn´k `
n`1
ÿ

i“n´pk`1q

nRi

“ nRn´k `
nSn´k

“ pnSn´kq ¨ p
nSn´k ´ 1q ` pnSn´kq

“ pnSn´kq ¨ p
nSn´k ´ 1` 1q

“ nSn´k ¨
nSn´k

“ pnSn´kq
2

“ p22kq2 “ 22¨2k “ 22k`1
.

Next, we show more concise forms for nRn´k and nRi. As a convention, we will use the variable i to index
rows and summations, when counting from the top (root) node down. By contrast, we will use the variable k
to index rows and summations, when counting from the bottom-up.

Lemma 6.16. If k ě 0, then
nRn´k “ 22k`1

´ 22k ,

and if i ď n,
nRi “ 22n´i`1

´ 22n´i .

Proof.

nRn´k “
nSn´k

2 by 6.2

“ p22kq ¨ p22k ´ 1q by Lemma 6.15

“ p22k ¨ 22kq ´ 22k

“ p22kq2 ´ 22k

“ 22¨2k ´ 22k

nRn´k “

#

22k`1
´ 22k if k ě 0

2 if k “ ´1

nRi “

#

22n´i`1
´ 22n´i if i ď n

2 if i “ n` 1

Notation 6.17. If i ď B, we denote the size of the ith row of the worst-case ROBDD of n variables as nri.

As explained already, nRi is the number of elements which would fit into row i, only taking into consideration
the combinatorial growth from the bottommost row up to row i. However, when we look from the topmost row
down, and we take only the exponential growth into account, we see the number of nodes in row i is given by

139

nri “ 2i´1 (6.3)
nrn´k “ 2n´k´1 . (6.4)

Each row within the worst-case ROBDD is limited in size by the two terms, nRi and nri. The precise number
of nodes in each row is the minimum of these two terms. The total number of nodes in a worst-case ROBDD
of n variables is the sum of the number of nodes in each of its rows, given by Equation 6.6 which holds when
n ą 1.

|ROBDDn| “ 2`
n
ÿ

i“1
mintnri, nRiu (6.5)

“ 2`
n
ÿ

i“1
mint2i´1, 22n´i`1

´ 22n´iu (6.6)

Theorem 6.18 is stated and proven now. This theorem is useful in the later discussion of Algorithm 4.

Theorem 6.18. Every row of a worst-case ROBDD, except the first row, has an even number of nodes.

Proof. The i’th row of an n-variable ROBDD has either nri nodes or nRi nodes. If i ą 1, then nri “ 2i´1 (by
Equation 6.3) is even. If 1 ă i ď n, then nRi “ 22n´i`1

´ 22n´i (by Lemma 6.16) is even. The final case is when
i “ n` 1, the row of terminal nodes, nRn`1 “ 2 which is even.

In Section 6.1.7 we derived the sizes of the rows of the worst-case ROBDD. We also derived Equation 6.6
which is easy to state but difficult to evaluate, which gives the value of |ROBDDn| in terms of the sum of the
row sizes. In this section we will build up to and prove Theorem 6.24 which makes a step forward in making
this value easier to calculate.

Corollary 6.19. A worst-case ROBDD has an odd number of nodes.

We could prove Corollary 6.19 by straightforward examination of Equation 6.6, and we would reach the
same conclusion as the following simpler argument.

Proof. The first row of any ROBDD (worst-case or not) has a single node. By Theorem 6.18 every row thereafter
of a worst-case ROBDD has an even number of nodes. Therefore, the total number of nodes is necessarily
odd.

There is a shortcut for calculating the sum in Equation 6.6. To make the shortcut more evident, first consider
the example where n “ 10, and calculate the size of row i “ 1. To calculate mint21´1, 2210´1`1

´ 2210´1
u “

mint20, 2210
´ 229

u “ 1, there is no need to calculate the 1024 digits of 2210
´ 229 , because 20 “ 1 is obviously

smaller. The trick is to realize that the summation (Equation 6.6) is the sum of leading terms of the form 2i,
plus the sum of trailing terms of the form 22n´i`1

´ 22n´i . How many leading and trailing terms may not be
obvious however. Theorem 6.24 shows the existence of the so-called threshold function, θ, which makes these
two sums explicit.

6.1.8 The threshold function θ

In this section, we prove the existence of the so-called threshold function, θ, and express |ROBDDn| in terms
of θ (Theorem 6.24). Before proving that lemma, we establish a few intermediate results to simplify later
calculations.

Lemma 6.20. If f : RÑ R is differentiable, then

d

dx
2fpxq “ 2fpxq ¨ ln 2 ¨ d

dx
fpxq

140

Proof.

d

dx
2fpxq “ d

dx
eln 2fpxq “

d

dx
efpxq¨ln 2

“ efpxq¨ln 2 ¨ ln 2 ¨ d
dx
fpxq

“ eln 2fpxq ¨ ln 2 ¨ d
dx
fpxq

“ 2fpxq ¨ ln 2 ¨ d
dx
fpxq

Lemma 6.21. If f : RÑ R is differentiable, then

d

dx
22fpxq

“ 2fpxq`2fpxq
¨ ln 4 ¨ d

dx
fpxq

Proof. Change of variables, let gpxq “ 2fpxq, and use Lemma 6.20 twice.

d

dx
22fpxq “

d

dx
2gpxq “ 2gpxq ¨ ln 2 ¨ d

dx
gpxq

“
d

dx
2fpxq ¨ ln 2 ¨ 22fpxq

“
`

2fpxq ¨ ln 2 ¨ d
dx
fpxq

˘

¨
`

ln 2 ¨ 22fpxq˘

“ 2fpxq`2fpxq ¨ ln 4 ¨ d
dx
fpxq

Even though Lemma 6.22 is trivial to prove, we provide it because it removes redundant steps in proving
Lemmas 6.23 and 6.29.

Lemma 6.22. If h : RÑ R, then 2hpxq`1`2hpxq`1
ą 2hpxq`2hpxq.

Proof.

hpxq ` 1 ą hpxq ùñ 2hpxq`1 ą 2hpxq

ùñ hpxq ` 1` 2hpxq`1 ą hpxq ` 2hpxq

ùñ 2hpxq`1`2hpxq`1
ą 2hpxq`2hpxq

Lemma 6.23. The function, fpxq “ 22n´x`1
´ 22n´x is decreasing.

Proof. To show that f is decreasing, we show that d
dxfpxq ă 0.

d

dx
fpxq “

d

dx

`

22n´x`1
´ 22n´x˘

“ 2n´x`1`2n´x`1
¨ ln 4 ¨ p´1q ´ 2n´x`2n´x ¨ ln 4 ¨ p´1q by Lemma 6.21

“
`

2n´x`1`2n´x`1
´ 2n´x`2n´x˘ ¨ ln 4 ¨ p´1q

“
`

2n´x`2n´x ´ 2n´x`1`2n´x`1˘
¨ ln 4

141

Letting hpxq “ n´ x, and applying Lemma 6.22, we have 2n´x`2n´x ă 2n´x`1`2n´x`1
. So

`

2n´x`2n´x
´ 2n´x`1`2n´x`1˘

¨ ln 4 ă 0 .

The following theorem proves the existence of the threshold function θ, without giving insight into how to
calculate it. See Section 6.1.8 for a discussion on how to calculate it.

Theorem 6.24. For each n ą 0, there exists an integer θ, such that

|ROBDDn| “ p2n´θ ´ 1q ` 22θ .

Proof. As i increases, so does nri “ 2i´1. By Lemma 6.23, nRi “ 22n´i`1
´ 22n´i is decreasing (as a function of

i). At i “ 0, 2i´1 ă 22n´i`1
´ 22n´i . So there necessarily exists a χn such that when i ă χn we have nri ă nRi,

and when i ě χn we have nri ě nRi.

|ROBDDn| “ 2`
n
ÿ

i“1
mintnri, nRiu by 6.5

“ 2`
χn´1
ÿ

i“1

nri `
n
ÿ

i“χn

nRi (6.7)

Definition 6.25. We define θn “ n´χn`1, i.e., the number of terms in the second summation of Equation 6.7.

We also adjust the iteration variable of the second summation to commence at 0. Finally, we apply
Lemma 6.16. Simply as a matter of notation, and to facilitate ease of reading, we will write θ rather than
θn.

|ROBDDn| “ 2`
n´θ
ÿ

i“1

nri `
n
ÿ

i“n´θ`1

nRi

“ 2`
n´θ
ÿ

i“1

nri `
θ´1
ÿ

k“0

nRn´k

“ 2`
n´θ
ÿ

i“1
2i´1

`

θ´1
ÿ

k“0
p22k`1

´ 22k
q

Notice that
řn´θ
i“1 2i´1 is a truncated geometric series whose sum is 2n´θ´1. Furthermore,

řθn´1
k“0 p22k`1

´22kq

is a telescoping series for which all adjacent terms cancel, leaving the difference 22θ ´ 220
“ 22θ ´ 2. Thus we

have the desired equality.

|ROBDDn| “ 2` p2n´θ ´ 1q ` p22θ
´ 2q

“ p2n´θ ´ 1q ` 22θ

This result makes sense intuitively. The p2n´θ ´ 1q term represents the exponential growth of the ROBDD
seen in the top rows, from row 1 to row n´ θ, as can be seen in the illustrations such as Figure 6.29. The 22θ

term represents the double-exponential decay in the bottom rows as can be seen in the same illustration.

142

Definition 6.26. The function ψ : R` ÞÑ R is the function such that

22ψpnq`1
´ 22ψpnq

“ 2n´ψpnq´1 . (6.8)

Notation 6.27. The largest integer less than x is denoted txu.

Notation 6.28. The smallest integer greater than x is denoted rxs.

Another way to think of θ is as follows. We define the integer sequence θn as the corresponding values of
the real valued function ψ defined in Definition 6.26

θn “ tψpnqu . (6.9)

Equation 6.8 is the real number extension of the integer equation nrθn “
nRθn . Clearly, θ and ψ are functions

of n, hence we denote them as such. We will, as before, dispense with the notation when it is clear, and simply
refer to θn as θ, and ψpnq as ψ.

Although we do not attempt to express θ in closed form as a function of n, we do know several things about
that function. For example we see in Theorem 6.30 that θ is non-decreasing. We also see in Theorems 6.32
and 6.33 that θ is bounded above and below by functions which themselves go to infinity. Thus, θ becomes
arbitrarily large (Equation 6.22).

That θ “ tψu, means that θ is the integer such that n´ θ is the maximum integer for which
nrn´θ ď

nRn´θ . (6.10)

If n´ θ is the maximum such integer, then
nrn´θ`1 ą

nRn´θ`1 . (6.11)

As an example, consider the case of n “ 3.
3r2 “ 2 ă 3R2 “ 12
3r3 “ 4 ą 3R3 “ 2

We see that 3r2 is the largest value of 3ri which is less than 3Ri. So we have n´ θ “ 3´ θ “ 2, or θ “ 1. If
we look at the case of n “ 2 we see why Inequality 6.10 is not a strict inequality.

2r1 “ 1 ă 2R1 “ 12
2r2 “ 2 ď 2R2 “ 2
2r3 “ 4 ą 2R3 “ 2

The equality case of Equation (6.10) can be seen in Figure 6.29, in which the worst-case ROBDD for n “ 2
has two nodes for Z2. There are two nodes for two reasons: because 22´1 “ 2 and also because 22 “ 2.

The threshold function is non-decreasing

This section establishes that θ (defined by Equation 6.9) is a non-decreasing sequence. In Section 6.1.8, we will
show by Theorems 6.32 and 6.33 that θ is bounded above and below by increasing functions. However, this
reasoning alone is not sufficient to show that θ itself is non-decreasing.

To show θ is non-decreasing (Theorem 6.30), we first show that ψ, as Definition 6.26, is strictly increasing
(Lemma 6.29). To prove Lemma 6.29, we need two identities, proven earlier in Lemmas 6.20 and 6.21.

143

Lemma 6.29. ψ : R` ÞÑ R is strictly increasing.

Proof. To show that ψ is increasing, we show that its derivative, d
dxψpxq, is strictly positive. We use x as the

variable of differentiation rather than n to emphasize that the domain of ψ is R` not N. Note that it is not
actually necessary to calculate the derivative of ψ in a form independent of ψ. Rather, it suffices to show that
the derivative is positive. We find an expression for d

dxψpxq in terms of ψpxq using implicit differentiation.

22ψpxq`1
´ 22ψpxq

“ 2x´ψpxq´1

d

dx
22ψpxq`1

´
d

dx
22ψpxq

“
d

dx
2x´ψpxq´1 (6.12)

For clarity, we calculate these three derivatives separately. Applications of Lemma 6.20 and Lemma 6.21 lead
to:

d

dx
22ψ`1

“ 2ψ`1`2ψ`1
¨ ln 4 ¨ dψ

dx
(6.13)

d

dx
22ψ

“ 2ψ`2ψ
¨ ln 4 ¨ dψ

dx
(6.14)

d

dx
2x´ψ´1

“ 2x´ψ´1
¨ ln 2 ¨ p1´ dψ

dx
q (6.15)

Substituting 6.13, 6.14, and 6.15 into 6.12, and solving for dψ
dx results in

dψ

dx
“

2x´ψ´1

ln 2 ¨ p2ψ`1`2ψ`1
´ 2ψ`2ψq ` 2x´ψ´1 . (6.16)

Since the right hand side of Equation 6.16 is a fraction whose numerator, 2x´ψ´1, is positive, and whose
denominator is the sum of two terms, the second of which, 2x´ψ´1, is positive, then it suffices to argue that
the first term in the denominator, ln 2 ¨ p2ψ`1`2ψ`1

´ 2ψ`2ψq, is positive. If we let hpxq “ ψpxq ` 1, then
Lemma 6.22 implies 2ψ`1`2ψ`1

ą 2ψ`2ψ . So since ln 2 ą 0, we conclude that ln 2¨p2ψ`1`2ψ`1
´2ψ`2ψq ą 0.

dψ

dx
“

ą0
hkkikkj

2x´ψ´1

ln 2
loomoon

ą0

¨ p2ψ`1`2ψ`1
´ 2ψ`2ψ

q
looooooooooomooooooooooon

ψ`1`2ψ`1 ą ψ`2ψ

` 2x´ψ´1
loomoon

ą0

ą 0 .

Theorem 6.30. θ : N ÞÑ N by θn “ tψpnqu is non-decreasing.

Proof. ψ : R` ÞÑ R is increasing (Lemma 6.29), implies that if m P N, then ψpm ` 1q ą ψpmq. Thus
tψpm` 1qu ě tψpmqu; i.e., θm`1 ě θm holds for all m P N.

Bounds for the threshold function

We showed in Theorem 6.24 that the function θ is well defined, but we didn’t say how to calculate it. We now
show that θ is bounded by two logarithmic functions. Using those bounds, we will then develop an efficient
algorithm for calculating it iteratively (Section 6.1.8). To do this, we first establish an inequality (Lemma 6.31)
to be used later.

144

Lemma 6.31. For any real number α ą 0, we have

22α
ă 22α`1

´ 22α .

Proof.

1 “ 20
ă 2α

2 “ 21
ă 22α

1 ă 22α
´ 1

“ 2p2´1q¨2α
´ 1

“ 22¨2α´2α
´ 1

“ 22α`1´2α
´ 1

22α

22α ă
22α`1

22α ´
22α

22α

22α
ă 22α`1

´ 22α

We now establish an upper bound for θ.

Theorem 6.32. For any n P N, we have
θn ă log2 n .

Proof.

nRn´θ`1 ă
nrn´θ`1 by 6.11

22θ`1
´ 22θ

ă 2n´θ

22θ
ă 22θ`1

´ 22θ
ă 2n´θ by Lemma 6.31

2θ ă n´ θ ă n

θ ă log2 n

We now establish a lower bound for θ.

Theorem 6.33. For any n P N, we have

log2pn´ 2´ log2 nq ´ 2 ď θ .

145

Proof.

ψ ´ 1 ď tψu “ θ ă log2 n

ψ ă 1` log2 n (6.17)
ψ ` 1 ă θ ` 2 (6.18)

2n´2´log2 n “ 2n´p1`log2 nq´1 by 6.4 and Lemma 6.16 (6.19)
ă 2n´ψ´1 by 6.17

“ 22ψ`1
´ 22ψ by 6.8

ă 22ψ`1

ă 22θ`2
by 6.18

2θ`2 ą n´ 2´ log2 n

θ ą log2pn´ 2´ log2 nq ´ 2 (6.20)

50 100 150 2000

1

2

3

4

5

6

7

8

Number of variables n

U
pp

er
an

d
lo
we

r
bo

un
ds

fo
r
θ

log2 n

θ

log2pn ´ 2 ´ log2 nq ´ 2

Figure 6.32: Upper and lower bounds for θ

As a consequence of Theorems 6.32 and 6.33, Corollary 6.34 defines upper and lower bounds for θ. The
continuous, real valued bounds are illustrated in Figure 6.32.

Corollary 6.34. For any n P N, we have

rlog2pn´ 2´ log2 nqs´ 2 ď θ ď tlog2 nu

Proof. From Theorems 6.32 and 6.33 we already have

log2pn´ 2´ log2 nq ´ 2 ď θ ď log2 n ,

but since θ is an integer, the inequality implies

rlog2pn´ 2´ log2 nqs´ 2 ď θ ď tlog2 nu

146

As is implied by Figure 6.32, and as proven in Theorem 6.35, θ Ñ8.

Theorem 6.35.
lim
nÑ8

θn “ 8

Proof. First note that for n " 0

log2 n ă
n

2 . (6.21)

Next, we have a lower bound for θ,

θn ě log2pn´ 2´ log2 nq ´ 2 by 6.20
lim
nÑ8

θn ě lim
nÑ8

log2pn´ 2´ log2 nq ´ 2

ě lim
nÑ8

log2pn´ 2´ n

2 q ´ 2 by 6.21

“ lim
nÑ8

log2p
n

2 ´ 2q ´ 2

“ 8 (6.22)

Corollary 6.36.
lim
nÑ8

ψpnq “ 8 .

Proof. Since
θn “ tψpnqu ď ψpnq ď rψpnqs ď 1` θn ,

then by application of Theorem 6.35 we have

8 “ lim
nÑ8

θn ď lim
nÑ8

ψpnq

ď lim
nÑ8

1` θn “ 8 .

So,

lim
nÑ8

ψpnq “ 8 . (6.23)

Computing the threshold function

For a given n, the value of θ can be found iteratively, as shown in Algorithm 3. Initializing θ to the upper bound
tlog2pnqu as initial guess, from Corollary 6.34, we continue to decrement θ as long as 22θ`1

´22θ ă 2n´θ´1. This
iteration usually seems to terminate after 2 iterations. When Algorithm 3 runs from n “ 2 to n “ 200001, it
terminates after 3 iterations 152 times, and after 2 iterations 199848 times (99.92%). Figure 6.33 shows the
values of θ for 1 ď n ď 21 as calculated by Algorithm 3.

Algorithm 3 terminates in about two iterations, which makes sense when Theorem 6.37 is considered. We
see in that theorem that for large n the difference of the upper and lower limits expressed in Corollary 6.34 is 2.
However, we see from experimentation that a small fraction of the time the algorithm terminates at 3 iterations.
This is because Algorithm 3 arranges that θ is always decremented once too many (except when n “ 1). This
is why θ ` 1 is returned on line 3.10 of Algorithm 3.

Theorem 6.37. For all sufficiently large n,

log2 n´ θn ă 2 .

147

n tlog2 nu θ 2n´θ ´ 1` 22θ n tlog2 nu θ 2n´θ ´ 1` 22θ

1 0 0 3 20 4 4 131,071
2 1 1 5 30 4 4 67,174,399
3 1 1 7 50 5 5 3.52ˆ 1031

4 2 1 11 100 6 6 1.98ˆ 1028

5 2 1 19 200 7 7 1.26ˆ 1058

6 2 2 31 500 8 8 1.28ˆ 10148

7 2 2 47 1000 9 9 2.09ˆ 10298

8 3 2 79 2000 10 10 1.12ˆ 10599

9 3 2 143 5000 12 12 3.45ˆ 101501

10 3 2 271 10,000 13 13 2.43ˆ 103006

11 3 3 511 20,000 14 14 2.42ˆ 106016

Figure 6.33: Worst-case ROBDD size, |ROBDDn|, in terms of number of variables, n. The table also shows θ
(the threshold) and tlog2 nu demonstrating that tlog2 nu serves both as an upper bound and as an initial guess
for θ. The table also shows the exponential term and the double-exponential term, whose sum is the worst-case
size.

Proof. We know that for n " 0, θn lies between the upper and lower bounds indicated in Theorems 6.32 and 6.33.
This means

log2 n´ θn ă log2 n´ plog2pn´ 2´ log2 nq ´ 2q .

∆bounds “ lim
nÑ8

´

upper bound
hkkikkj

log2 n ´
`

log2pn´ 2´ log2 nq ´ 2
˘

loooooooooooooooomoooooooooooooooon

lower bound

¯

“ 2` lim
nÑ8

log2
n

n´ 2´ log2 n

“ 2` log2 lim
nÑ8

n

n´ 2´ log2 n
“ 2` log2 lim

nÑ8

L’Hôpital’s rule
hkkkkkkkkkkkikkkkkkkkkkkj

d
dnn

d
dn pn´ 2´ log2 nq

“ 2` log2 lim
nÑ8

1
1´ 1

n

“ 2` log2 1 “ 2

Algorithm 3: FindTheta determine θ iteratively
Input: n: positive integer n ą 0, indicating the number of Boolean variables
Output: θ: minimum integer, θ such that nrn´θ ď nRn´θ; i.e., 2n´θ ď 22θ ´ 22θ´1

3.1 begin
3.2 if n “ 1 then
3.3 return 0
3.4 θ Ð tlog2 nu + 1
3.5 repeat
3.6 θ Ð θ ´ 1
3.7 r Ð 2n´θ´1

3.8 RÐ 22θ`1
´ 22θ

3.9 until R ă r
3.10 return θ + 1

6.1.9 Plots of |ROBDDn| and related quantities
Now that we can calculate θ, it is possible to plot |ROBDDn| as a function of n. The plots in Figure 6.34 show
the relative sizes of 2n´θ, 22θ , and their sum |ROBDDn|. The plot also shows 2n, which is intended to convey
intuition about relative sizes of the various quantities. In the plot on the right, it appears that 2n´θ becomes
a good approximation for |ROBDDn| for large values of n. However, the plot on the left shows that this is a
poor approximation for values of n below 15.

148

0 5 10 15
100

101

102

103

104

105

Number of variables

tiny2n
tiny2n´θ ´ 1

tiny22θ

tiny2n´θ ´ 1` 22θ

0 10 20 30 40 50
10´1

103

107

1011

1015

Number of variables

tiny2n
tiny2n´θ ´ 1

tiny22θ

tiny2n´θ ´ 1` 22θ

Figure 6.34: The plots show the relative sizes of 2n´θ, 22θ , and their sum |ROBDDn|.

6.1.10 Limit of the residual compression ratio
In Section 6.1.2, we introduced ρn, the ROBDD residual compression ratio (Equation 6.1). We also observed in
Figure 6.28 that ρn seems to decrease as n increases. Moreover, Figure 6.35 shows ρn calculated by Equation 6.1
for values of 1 ď n ď 21. The plot in Figure 6.35 shows the residual compression ratio for 1 ď n ď 200. In
this plot, it appears that the residual compression ratio tends to 0. This is in fact the case, as proven in
Theorem 6.38.

n |ROBDDn| ρn
1 3 100.000%
2 5 71.429%
3 7 46.667%
4 11 35.484%
5 19 30.159%
6 31 24.409%
7 47 18.431%
8 79 15.460%
9 143 13.978%
10 271 13.239%
11 511 12.479%
12 767 9.364%
13 1279 7.807%
14 2303 7.028%
15 4351 6.639%
16 8447 6.445%
17 16639 6.347%
18 33023 6.299%
19 65791 6.274%
20 131071 6.250%
21 196607 4.687%

0 50 100 150 200

10´2

10´1

100

Number of variables

R
es
id
ua

lc
om

pr
es
sio

n
ra
tio

Figure 6.35: Residual compression ratio of worst-case ROBDD, calculated from theoretical data as compared
to UOBDD, and shown in tabular graphical form.

Theorem 6.38.
lim
nÑ8

ρn “ 0 .

Proof. First, we establish a few helpful inequalities.

|UOBDDn| “ 2n`1 ´ 1 by 5.1
ą 2n for n " 0 (6.24)

149

22θ “ 22tψpnqu

ď 22ψpnq by 6.9

ă 22ψpnq`1
´ 22ψpnq by Lemma 6.31 (6.25)

“ 2n´ψpnq´1 by 6.8 (6.26)

|ROBDDn| “ 22θn ´ 2n´θn ´ 1 by Theorem 6.24
ď 2n´ψpnq´1 ´ 2n´θn ´ 1 by 6.26 (6.27)

ρn “
|ROBDDn|
|UOBDDn|

by 6.1

ă
|ROBDDn|

2n by 6.24

ď
2n´ψpnq´1 ´ 2n´θn ´ 1

2n by 6.27 (6.28)

Now, we can apply the limit to Inequality 6.28.

lim
nÑ8

ρn ď lim
nÑ8

2n´ψpnq´1 ´ 2n´θn ´ 1
2n

“ lim
nÑ8

2n´ψpnq´1

2n ´ lim
nÑ8

2n´θn
2n ´ lim

nÑ8

1
2n

“ lim
nÑ8

1
2ψpnq`1 ´ lim

nÑ8

1
2θn ´ lim

nÑ8

1
2n

ď 0´ 0´ 0 by 6.23 and 6.22
lim
nÑ8

ρn ď 0 .

Since for each n, ρn is the quotient of two positive numbers, we know that ρn ą 0. We can thus conclude
that

lim
nÑ8

ρn “ 0 .

6.2 Programmatic construction of a worst-case n-variable ROBDD
In the previous sections, we looked at various examples of ROBDDs of different sizes. During our experimen-
tation, we found it necessary to devise an algorithm for generating worst-case ROBDDs. Because worst-case
ROBDDs are not unique, any such algorithm has leeway in the manner it constructs them. In this section,
we discuss the algorithm we developed, i.e., an algorithm for constructing a worst-case ROBDD of n Boolean
variables, denoted Z1, Z2, ...Zn. The constructed ROBDDs resemble those shown in Figure 6.29.

Recall, from Section 6.1.7, that the worst-case ROBDD can be thought of as having two parts, which we will
call the top part and the bottom part. The top and bottom parts are illustrated in Figure 6.30. The top part
comprises the exponential expansion from the root node (corresponding to Z1) called row 0, and continuing
until row B. Recall the definition of B in Definition 6.9.

B “ n´ θ ´ 1 . (6.29)

This top part contains n´ θ number of rows. The bottom part comprises the double-exponential (i.e., 22i)
decay, starting at row n ´ θ, and continuing through row n for a total of θ ` 1 rows. The bottommost row is
row n which contains precisely the two singleton objects J and K. From this information and the following few
notational definitions, we are able to construct one of the many possible worst-case n-variable ROBDDs with
Algorithm 4.

150

Notation 6.39. An ROBDD node is denoted as nodepJq (true terminal node), nodepKq (false terminal node)
or nodepi, α, βq (non-terminal node on rowi with child nodes α and β.)

Notation 6.40. Let rowba denote the set of nodes in any of rows a to b.

Notation 6.41. If S is a set, with cardinality |S|, let

PpSq “ tpα, βq | α, β P S, α ‰ βu .

PpSq is the set of non-duplicate pairs chosen from S.

Notice that |PpSq| “ |S|
2.

Algorithm 4 generates an ROBDD represented as a vector of sets of nodes rrow0, row1, ..., rowns. Lines 4.4
through 4.6 generate the bottom part, and lines 4.8 through 4.11 generate the top part. Algorithm 5 generates
the belt as illustrated in Figure 6.30.

Algorithm 4: GenWorstCaseROBDD generates a worst-case ROBDD
Input: n, positive integer indicating the number of Boolean variables
Output: a vector of sets of nodes

4.1 θ Ð FindThetapnq // Algorithm 3
4.2 B Ð n´ θ ´ 1 // belt row index
4.3 // Generate the bottom part
4.4 rown Ð tnodepJq, nodepKqu // row of leaves
4.5 for i from n´ 1 downto B ` 1 do
4.6 rowi Ð tnodepi, α, βq | pα, βq P Pprowni`1qu // |rowi| “ nRi

4.7 // Generate the top part
4.8 rowB Ð GenBeltpn,B, rowq // Algorithm 5
4.9 for i from B ´ 1 downto 0, do

4.10 P Ð any partition of rowi`1 into ordered pairs // possible by Theorem 6.18, |P | “ |rowi`1|

2 “ 2i

4.11 rowi Ð tnodepi, α, βq | pα, βq P P u // |rowi| “ 2i

4.12 return rrow0, row1, ..., rowns // generated 1` pn´ B´ 1q ` 1` B “ n` 1 rows.

Algorithm 5: GenBelt generates the B row of the worst-case ROBDD
Input: n, positive integer indicating the number of Boolean variables
Input: B, between 0 and n, indicating the belt’s row number
Input: row, a vector which the calling function has partially populated. rowB`1...rown are each non-empty

sets of nodes.
Output: a set of 2B nodes intended to comprise rowB

5.1 pÐ |rowB`1| // calculate nRB`1

5.2 Pleft Ð any partition of rowB`1 into ordered pairs // possible by Theorem 6.18
5.3 Sleft Ð tnodepB, α, βq | pα, βq P Pleftu
5.4 if 2B

ă p ¨ pp´ 1q then // if wide belt
5.5 Pright Ð Pprownβ`1q

5.6 else // if narrow belt
5.7 Pright Ð Pprowβ`1q

// We want |rowB| “ 2B. So limit |Sright| to 2B ´
nRB`1

2 .
5.8 Sright Ð any

`

2B
´ |Sleft|

˘

sized subset of tnodepB, α, βq | pα, βq P PrightzPleftu
5.9 return Sleft Y Sright // |Sleft| ` |Sright| “

nRB`1
2 ` p2B ´

nRB`1
2 q “ 2B

For simplicity, we don’t specify how to perform the computations on lines 4.10, 5.2, and 5.8. Solutions may
vary, depending on the choice of programming language and data structures. Lines 4.10 and 5.2 call for a set

151

with an even number of elements to be partitioned into pairs. Such a partitioning can be done in many different
ways, one of those being

tnode1, node2...nodemu ÞÑ tpnode1, node2q, pnode3, node4q...pnodem´1, nodemqu

Line 5.8 calls for the generation of any subset of a given size, and given a specified superset. In particular
it asks for a subset,

Sright Ď tnodepB, α, βq | pα, βq P PrightzPleftu , such that |Sright| “ 2B ´ |Sleft| .

One way to generate such a subset might be to first generate the superset, then truncate it to the desired size.
A more clever way would be to start as if generating the superset, but stop once a sufficient number of elements
is reached.

In Algorithm 5, there are two cases to consider. The question posed on line 5.4 is whether it is possible to
generate p2 “ p ¨ pp´ 1q unique ordered pairs of nodes from rowB`1, possibly with some left over.

Wide Belt

Z1

Z2 Z2

Z3 Z3 Z3 Z3

Z4 Z4 Z4 Z4Z4 Z4Z4 Z4

T ⊥

Z5 Z5

Narrow Belt

T ⊥

Z1

Z2 Z2

Z3 Z3 Z3 Z3

Z4Z4 Z4 Z4Z4 Z4 Z4Z4

Z5 Z5Z5Z5 Z5 Z5Z5Z5 Z5 Z5Z5Z5

Z6 Z6

Figure 6.36: Belt connections of the ROBDD for 5 and 6 variables. The narrow belt only connects to the row
directly below it. The wide belt connects not only to the row below it, but also to other, lower rows.

152

Wide: 2B ą p ¨ pp´ 1q The belt is called wide because it touches not only the row directly below it, but others
as well.
The Wide Belt case is illustrated in Figure 6.36. In this case rowB is row3 (corresponding to Z4) which
has 23 “ 8 nodes. However, rowB`1, i.e. row4, (corresponding to Z5) has only two nodes. There is
an insufficient number of nodes in row4 to connect the nodes in row3. For this reason, connections are
made, not only to rowB`1, but also to some or all the nodes below it. Line 5.5 collects the set of all
ordered pairs of nodes coming from rowB`1 to rown, and we will later (on line 5.8) want to subtract
out those ordered pairs already collected in Pleft to avoid generating congruent nodes. This set of
ordered pairs might be large, so our suggestion is to generate a lazy set. Explanations of lazy data
structures are numerous (Okasaki [Oka98] and Slade [Sla98, Section 14.6], to name a few).

Narrow: 2B ď p ¨ pp´ 1q The belt is called narrow because unlike the wide belt, it only touches the row directly
below it.
The Narrow Belt case is illustrated in Figure 6.36. In the figure we see that row3, corresponding
to variable Z4, has 8 nodes, and 24 “ 16 arrows pointing downward. Since row4 does not contain
more than 16 nodes, it is possible to connect the belt to the bottom part simply by constructing the
connecting arrows exclusively between row3 and row4 (between Z4 and Z5).

The time complexity of Algorithm 4 may vary, depending on the types of data structures used, and also
according to which choices the programmers makes in implementing the set relative complement operation
and truncated subset operations on line 5.8. However, in every case, the algorithm must generate |ROBDDn|
number of nodes. The complexity, therefore, cannot be made better than Ωp2n´θ` 22θ q, (we refer the reader to
Wegener [Weg87, Section 1.5] for a discussion of Ω notation). The plots in Figure 6.34 convey an intuition of
the relative sizes of 2n´θ vs 22θ ; i.e. that for large n, 2n´θ ´ 1 becomes a good approximation for |ROBDDn|.
Thus we may approximate Ωp2n´θ ` 22θ q « Ωp2n´θq.

6.3 Related work
Newton et al. [NV18a] presented a preliminary discussion of these results but primarily limited to 10 Boolean
variables.

Newton et al. [NVC17] discuss calculations related to the Common Lisp type system. These calculations
are facilitated using ROBDDs, and there is an implication that Boolean expressions (describing Common Lisp
types in this case) are efficient with this choice of data structure. However, no quantification is made in that
work to justify the claim. In the current work we treat some of the questions relating to space efficiency using
this choice of data structure.

Butler et al. [SIHB97] discuss average and worst-case sizes of BDDs representing multiple-valued functions.
Miller et al. [MD03] also discusses the maximum size of discrete multiple-valued functions.

Bergman and Cire [BC16] discuss size bounds on data structures they call BDDs but which are defined
slightly differently than we do. Bergman’s data structures only support arcs connecting successive levels (which
we call rows). That is, whereas we allow nodes in row i to connect to nodes in any row below it, Bergman
only allows connections between rows i and i ` 1. Thus, in Bergman’s case, BDDs such as the 4, 5, 6, and 7
variable cases we illustrate in Figure 6.29 are not considered. Nevertheless, we do find that our approach is
similar to that of Bergman and Cire in that they both estimate the worst-case width of a row as the minimum
of an exponential and a double-exponential, and then proceed to find the threshold where the exponential and
double-exponential are equal.

The equation in Theorem 6.24 is similar to that provided by Knuth [Knu09, Section 7.1.4 Theorem U], and
that provided by Heap et al. [HM94]. The derivation we show here relies heavily on intuitions gleaned from
the shapes of worst-case ROBDDs, while the treatment of Knuth relies on a concept called beads which we do
not address. The treatment by Heap is indeed similar to our own, albeit less grounded in geometric intuition.
Heap’s Theorem 1 gives a formula for Rpnq which differs by a constant of 2 from our Theorem 6.24. That
difference is due to the fact that Heap does not include the two leaf nodes in his calculation as we do. Heap
argues that the threshold (his k, our θ) is precisely tlog2 nu or tlog2 nu ´ 1, which seems in keeping with our
experimental findings from Algorithm 3 and Figure 6.33.

Gröpl et al. [GPS01] improved on the work of Heap by explaining certain oscillations shown but not explained
in Heap’s work. We also see some variations, which we don’t attempt to explain, in size behavior such as in
Figure 6.9. These variations may be related to Gröpl’s oscillations. They are not apparent until we examine
ROBDDs of size more than 10 variables. Additional work by Gröpl et al. [GPS98] look again into size of

153

ROBDDs and discusses the Shannon effect, which explains the correlation between worst-case and average
ROBDD sizes.

Minato [Min93] suggests using a different set of reduction rules than those discussed in Section 5.1. The
resulting graph is referred to as a Zero-Suppressed BDD, or 0-Sup-BDDs (also referred to as ZDDs and ZBDDs
in the literature). Minato claims that this data structure offers certain advantages over ROBDDs in modeling
sets and expressing set-related operations, especially in sparse Boolean equations where the number of potential
variables is large but the number of variables actually used in most equations is small. Additionally, Minato
claims that 0-Sup-BDDs provide advantages when the number of input variables is unknown, which is the case
we encounter when dealing with Common Lisp types, because we do not have a way of finding all user defined
types.

Lingberg et al. [LPR03] consider sizes of ROBDDs representing the very special case of simple CNF (con-
junctive normal form) formulas, in particular the representation of CNF formulas consisting of max-terms, each
of which consists of exactly two variables, neither of which is negated. He does the majority of his development
in terms of QOBDDs and relates back to ROBDDs with his claim that |ROBDDn| lies between the max size
of a QOBDD and half that quantity.

Our work discusses the exponential worst-case ROBDD size of arbitrary Boolean functions of n variables.
One might ask whether certain subsets of this space of functions have better worst-case behavior in terms of
worst-case ROBDD size. Abío et al. [ANO`12] examine Pseudo-Boolean constraints which are integer functions
of the form

řn
i“1 aixi ď a0 where ai is an integer and xi is a Boolean variable. The solution space of such

inequalities may be represented by an ROBDD. Abío identifies certain families of Pseudo-Boolean constraints
for which the ROBDDs have polynomial size and others which have exponential size.

In our research we consider ROBDD sizes for a fixed variable order. Lozhkin et al. [LS10] extends the work
of Shannon [Sha49] in examining sizes when allowed to seek a better variable ordering.

In Section 6.1.5 we introduced the residual compression ratio. Knuth [Knu09, Section 7.1.4] discusses similar
ratios of sizes of BDDs vs ZDDs. Bryant [Bry18] introduces the operation of chain reduction, and discusses size
ratios of BDDs and ZDDs to their chain reduced counterparts.

Castagna [Cas16] mentions the use of a lazy union strategy for representing type expressions as BDDs.
Here, we have only implemented the strategy described by Andersen [And99]. The Andersen approach involves
allocating a hash table to memoize all the BDDs encountered in order both to reduce the incremental allocation
burden when new Boolean expressions are encountered, and also to allow occasional pointer comparisons rather
than structure comparisons. Castagna suggests that the lazy approach can greatly reduce memory allocation.
Additionally, from the description given by Castagna, the lazy union approach implies that some unions involved
in certain BDD-related Boolean operations can be delayed until the results are needed, at which time the result
can be calculated and stored in the BDD data structure.

Brace et al. [BRB90] demonstrate an efficient implementation of a BDD library, complete with details about
how to efficiently manage garbage collection (GC). We have not yet seen GC as an issue as our language of
choice has a good built-in GC engine which we implicitly take advantage of.

The CUDD [Som] developers put a lot of effort in optimizing their algorithms. Our BDD algorithm can
certainly be made more efficient, notably by using techniques from CUDD. The CUDD user manual mentions
several interesting and inspiring features. More details are given in Section 6.5.

The sequence an “ 22n´1
´ 22n´2 with a1 “ 1 appears in a seemingly unrelated work of Kotsireas and

Karamanos [KK04] and shares remarkable similarity to Lemma 6.16. The results of Kotsireas and Karamanos
are accessible on the On-Line Encyclopedia of Integer Sequences (OEIS).1 Using the OEIS we found that the
sequence nRn, nRn´1,

nRn´2, ... agrees with the Kotsireas sequence from a2 up to at least a9, which is a 78 digit
integer. This similarity inspired us to investigate whether it was in fact the same sequence, and lead us to
pursue the formal development we provide in Section 6.1.7.

6.4 Conclusion
We have provided an analysis of the explicit space requirements of ROBDDs. This analysis includes exhaustive
characterization of the sizes of ROBDDs of up to 4 Boolean variables, and an experimental random-sampling
approach to provide an intuition of size requirements for ROBDDs of more variables. We have additionally
provided a rigorous prediction for the worst-case size of ROBDDs of n variables. We used this size to predict
the residual compression the ROBDD provides. While the size itself grows unbounded as a function of n, the
residual compression ratio shrinks asymptotically to zero. That is, ROBDDs become arbitrarily more efficient
for a sufficiently large number of Boolean variables.

In order to perform our experiments, we had to design an algorithm for generating a worst-case ROBDD
for a given number of variables. We have described this algorithm here as well, as having a typical worst-case
ROBDD may prove to be useful for other applications than size predictions.

1The On-Line Encyclopedia of Integer Sequences or OEIS is available at https://oeis.org.

154

Our approach for this development is different from what we have found in current literature, in that while
it is mathematically rigorous, its development is highly based on intuitions gained from experiment.

6.5 Perspectives
There are several obvious shortcomings to our intuitive evaluation of statistical variations in ROBDD sizes as
discussed in Section 6.1.2. For example, we stated that judging from the small sample in Figure 6.8, it would
appear that for large values of n, |ROBDDn| is a good estimate for average size. We would like to continue
this investigation to better justify this gross approximation.

When using ROBDDs, or presumably 0-Sup-BDDs, one must use a hash table of all the BDDs encountered
so far (or at least within a particular dynamic extent). This hash table, mentioned in Section 5.1, is used to
assure structural identity. However, it can become extremely large, even if its lifetime is short. Section 6.1
discusses the characterization of the worst-case size of an ROBDD as a function of the number of Boolean
variables. This characterization ignores the transient size of the hash table, so one might argue that the size
estimations in 6.1 are misleading in practice. We would like to continue our experimentation and analysis to
provide ways of measuring or estimating the hash table size, and potentially ways of decreasing the burden
incurred. For example, we suspect that most of the hash table entries are never re-used. We would like to
experiment with weak hash tables: once all internal and external references to a particular hash table entry
have been abandoned, that hash table entry can be removed, thus potentially freeing up the child nodes as well.

As discussed in Section 6.3, Minato [Min93] claims that using the BDD variant called 0-Sup-BDD is well
suited for sparse Boolean equations. We see potential applications for this data structure in type calculations,
especially when types are viewed as sets, as in Common Lisp. In such cases, the number of types is large, but
each type constraint equation scantly concerns few types. We would like to experiment with 0-Sup-BDD based
implementations of our algorithms, and contrast the performance results with those found thus far.

It is known that algorithms using BDDs tend to trade space for speed. A question naturally arises: can
we implement a fully functional BDD which never stores calculated values. The memory footprint of such
an implementation would potentially be smaller, while incremental operations would be slower. It is not
clear whether the overall performance would be better or worse. Castagna [Cas16] suggests a lazy version
of the BDD data structure which may reduce the memory footprint, which would have a positive effect on
the BDD based algorithms. This approach suggests dispensing with the excessive heap allocation necessary
to implement Andersen’s approach [And99]. Moreover, our implementation (based on the Andersen model)
contains additional debug features which increase the memory footprint. We would like to investigate which
of these two approaches gives better performance, or allows us to solve certain problems. It seems desirable to
attain heuristics to describe situations which one or the other optimization approach is preferable.

Even though both Andersen [And99] and Minato [Min93] claim the necessity to enforce structural identity, it
is not clear whether in our case, the run time cost associated with this memory burden, outweighs the advantage
gained by structural identity. Furthermore, the approach used by Castagna [Cas16] seems to favor laziness over
caching, lending credence to our suspicion.

CUDD [Som] uses a common base data structure, DdNode, to implement several different flavors of BDD,
including Algebraic Decision Diagrams (ADDs) and ZDDs. We have already acknowledged the need to exper-
iment with other BDD flavors to efficiently represent run-time type based decisions such as the Common Lisp
run-time type reflection [NVC17, NV18c] in performing simplification of type-related logic at compile-time. We
wish to examine the question of whether the Common Lisp run-time type reflection can be improved by search-
ing for better ordering of the type specifiers at compile-time. The work of Lozhkin [LS10] and Shannon [Sha49]
may give insight into how much improvement is possible, and hence whether it is worth dedicating compilation
time to it.

In Section 6.1.4 we examine the question of determining how large a sample size is sufficient. The Engineering
Statistics Handbook [Nat10] presents the work of Chakravart et al. [Kar68, pp 392-394] who in turn explain
the Kolmogorov-Smirnov goodness of fit test. The test is designed to determined whether a sample in question
comes from a specific distribution. We would like to apply this test to the sequence of samples in Figures 6.18
through 6.22 to assign a quantitative confidence to the histograms. This is a matter for further research.

155

Chapter 7

Extending BDDs to Accommodate
Common Lisp Types

In Chapter 5 we introduced a data structure called the ROBDD which is useful in tackling many algorithmic
problems related to Boolean algebra. Computation dealing with the Common Lisp type system extensively
involves Boolean algebra; in particular, computations such as those involved in efficiently recognizing regularly
typed sequences introduced in Chapter 4. In the current chapter, we take a necessary step in facilitating those
computations. We present an extension of the ROBDD data structure which accommodates Common Lisp
types, thus enabling the computations needed in type simplification, type equivalence, and type vacuity checks,
among others. In Chapters 9 and 11 we look at solutions related to the MDTD problem and serialization
problems introduced in Chapter 4, and the ROBDD will be an important tool in that analysis.

Common Lisp types are most commonly represented in Common Lisp programs as s-expression based type
specifiers. In this chapter, we present an alternative internal representation: the Binary Decision Diagram
(BDD) [Bry86, Ake78]. BDDs have interesting characteristics such as representational equality; i.e. it can be
arranged so that equivalent expressions or equivalent sub-expressions are represented by the same object (eq).
While techniques to implement BDDs with these properties are well documented, an attempt to apply the
techniques directly to the Common Lisp type system encounters obstacles which we analyze and document in
this chapter.

We encounter a challenge when using s-expressions based algorithms to manipulate type specifiers. It often
occurs that after a programmatic manipulation, we need to reduce complex type specifiers to a canonical form.
This reduction can be computationally intense, and difficult to implement correctly. The presentation of BDDs
in this chapter, obviates much of the need to reduce to canonical form, because the BDD maintains a canonical
form by design. Before looking at how the BDD can be used to represent Common Lisp type specifiers, we
first look at how BDDs are used traditionally to represent Boolean equations. Thereafter, we explain how this
traditional treatment can be enhanced to represent Common Lisp types.

7.1 Representing Boolean expressions
Andersen [And99] summarized many of the algorithms for efficiently manipulating BDDs. Not least important
in Andersen’s discussion is how to use a hash table and dedicated constructor function to eliminate redundancy
within a single BDD and within an interrelated set of BDDs. The result of Andersen’s approach is that if you
attempt to construct two BDDs to represent two semantically equivalent but syntactically different Boolean
expressions, then the two resulting BDDs are pointers to the same object.

Figure 5.1 shows an example BDD illustrating a function of three Boolean variables: A1, A2, and A3. To
reconstruct the disjunctive normal form (DNF), collect the paths from the root node, A1, to a leaf node of 1,
ignoring paths terminated by 0. When the right child is traversed, the Boolean complement () of the label
on the node is collected (e.g. A3), and when the left child is traversed the non-inverted parent is collected.
Interpret each path as a conjunctive clause, and form a disjunction of the conjunctive clauses. In the figure the
three paths from A1 to 1 identify the three conjunctive clauses pA1^A2q, pA1^ A2^A3q, and p A1^ A3q.

7.2 Representing types
Castagna [Cas16] explains the connection of BDDs to type theoretical calculations, and provides straightforward
algorithms for implementing set operations (intersection, union, relative complement) of types using BDDs. The
general algorithms for these operations are presented in Section 5.2

156

7.3 Representing Common Lisp types
We have implemented the BDD data structure as a set of Clos classes. In particular, there is one leaf-level
Clos class for an internal tree node, and one singleton class/instance for each of the two possible leaf nodes,
true and false.

The label of the BDD contains a Common Lisp type name, and the logical combinators (and, or, and not)
are represented implicitly in the structure of the BDD.

A disadvantage BDDs present when compared to s-expressions as presented in Section 2.5 is the loss of
homoiconicity [McI60, Kay69]. Whereas, s-expression based type-specifiers may appear in-line in the Common
Lisp code, BDDs may not.

A remarkable fact about this representation is that any two logically equivalent Boolean expressions have
exactly the same BDD structural representation, provided the node labels are consistently, totally ordered.
Andersen [And99] provides a proof for this claim. For example, the expression from Figure 5.1, pA1 ^ A2q _
pA1 ^ A2 ^A3q _ p A1 ^ A3q is equivalent to pp A1 _ A2q ^ p A1 _A2 _ A3q ^ pA1 _A3qq. So they
both have the same shape as shown in the Figure 5.1. However, if we naïvely substitute Common Lisp type
names for Boolean variables in the BDD representation as suggested by Castagna, we find that this equivalence
relation does not hold in many cases related to subtype relations in the Common Lisp type system.

An example is that the Common Lisp two types (and (not arithmetic-error) array (not
base-string)) vs. (and array (not base-string)) are equivalent, but the naïvely constructed BDDs are

different:

arithmetic-error

nil array

base-string

nil t

nil

vs.
array

base-string

nil t

nil.

In order to assure the minimum number of BDD allocations possible, and thus ensure that BDDs which
represent equivalent types are actually represented by the same BDD, the suggestion by Andersen [And99] is to
intercept the BDD constructor function. This constructor should assure that it never returns two BDD which
are semantically equivalent but not eq.

7.4 Canonicalization
Several checks are in place to reduce the total number of BDDs allocated, and to help assure that two equivalent
Common Lisp types result in the same BDD. The following sections, 7.4.1 through 7.4.5 detail the operations
which we found necessary to handle in the BDD construction function in order to assure that equivalent Common
Lisp type specifiers result in identical BDDs. The first two come directly from Andersen’s work. The remaining
are our contribution, and are the cases we found necessary to implement in order to enhance BDDs to be
compatible with the Common Lisp type system.

7.4.1 Equal right and left children
An optimization noted by Andersen is that if the left and right children are identical then simply return one of
them, without allocating a new BDD [And99].

7.4.2 Caching BDDs
Another optimization noted by Andersen is that whenever a new BDD is allocated, an entry is made into a hash
table so that the next time a request is made with the exactly same label, left child, and right child, the already
allocated BDD is returned. We associate each new BDD with a unique integer, and create a hash key which
is a list (a triple) of the type specifier (the label) followed by two integers corresponding to the left and right
children. We use a Common Lisp equal hash table for this storage, although we’d like to investigate whether
creating a more specific hash function specific to our key might be more efficient.

7.4.3 Reduction in the presence of subtypes
Since the nodes of the BDD represent Common Lisp types, other specific optimizations are made. The cases
include situations where types are related to each other in certain ways: subtype, supertype, and disjoint types.
In particular, there are 12 optimization cases, detailed in Figure 7.1. Each of these optimizations follows a
similar pattern: when constructing a BDD with label X, search in either the left or right child to find a BDD,

Y

L R
. If X and Y have a particular relation, different for each of the 12 cases, then the Y

L R
BDD reduces

either to L or R. Two cases, 5 and 7, are further illustrated below.

157

Case Child to search Relation Reduction Implication

1 X.left X K Y Y Ñ Y.right implies 7, 10
2 X.left X K Y Y Ñ Y.left implies 9, 8
3 X.right X K Y Y Ñ Y.right implies 5, 12
4 X.right X K Y Y Ñ Y.left implies 6, 11

5 X.right X Ą Y Y Ñ Y.right implied by 3
6 X.right X Ą Y Y Ñ Y.left implied by 4
7 X.left X Ą Y Y Ñ Y.right implied by 1
8 X.left X Ą Y Y Ñ Y.left implied by 2

9 X.left X Ă Y Y Ñ Y.left implied by 2
10 X.left X Ă Y Y Ñ Y.right implied by 1
11 X.right X Ă Y Y Ñ Y.left implied by 4
12 X.right X Ă Y Y Ñ Y.right implied by 3

Figure 7.1: BDD optimizations

7.4.4 Reduction to child
The list of reductions described in Section 7.4.3 fails to apply in cases where the root node itself needs to be

eliminated. For example, since vector Ă array we would like the following reductions:
array

vector

t nil

nil Ñ
vector

t nil
.

The solution which we have implemented is that before constructing a new BDD, we first ask whether
the resulting BDD is type-equivalent to either the left or right child using the subtypep function. If so, we
simply return the appropriate child without allocating the parent BDD. The expense of this type-equivalence is
mitigated by the memoization. Thereafter, the result is in the hash table, and it will be discovered as discussed
in Section 7.4.2.

7.4.5 More complex type relations
There are a few more cases which are not covered by the above optimizations. Consider the following BDD:

integer

nil ratio

nil rational

t nil

This represents the type (and (not integer) (not ratio) rational), but in Common Lisp rational is
identical to (or integer ratio), which means (and (not integer) (not ratio) rational) is the empty
type. For this reason, as a last resort before allocating a new BDD, we check, using the Common Lisp function
subtypep, whether the type specifier specifies the nil or t type. Again this check is expensive, but the expense
is mitigated in that the result is cached.

7.4.6 Optimized BDD construction
The BDD constructor takes three arguments: a type specifier (also called a label), and two BDDs called the
left and right subtree. Several optimizations are in place to reduce the total number of trees. The most notable
optimization is that if the left and right subtrees are identical then simply return one of them, without allocating
a new tree [And99].

When the nodes of the BDD represent types, other optimizations can be made. The cases include situations
where types are related to each other in certain ways: subtype, supertype, and disjoint types. In particular
there are 12 optimization cases, some of which are implied by others. Each of the 12 optimizations follows a
similar pattern: when constructing a BDD with label X, search in either the left or right subtree to find a
subtree, Y

L R
, whose label is Y having left and right subtrees L and R. If X and Y have a particular relation,

then the Y

L R
tree reduces either to L or R. A summary of the optimizations can be found in Figure 7.1.

Case 1: If X X Y “ H and Y

L R
appears in leftpXq, then Y

L R
reduces to R.

158

For example: If X “ number and Y “ string, we have

number

A

C string

L R

B
Ñ

number

A

C R

B

because pnumber X string “ Hq.

Case 2: If X X Y “ H and Y

L R
appears leftpXq, then Y

L R
reduces to L.

For example: If X “ string and Y “ number, we have

string

A

C not-number

L R

B
Ñ

string

A

C L

B

because string X number “ H.

Case 3: If X X Y “ H and Y

L R
appears rightpXq, then Y

L R
reduces to R.

For example: If X “ number and Y “ string, we have

not-number

A B

string

L R

C
Ñ

not-number

A B

R C

because number X string “ H.

Case 4: If X X Y “ H and Y

L R
appears rightpXq, then Y

L R
reduces to L.

For example: If X “ string and Y “ number, we have

non-string

A B

not-number

L R

C
Ñ

non-string

A B

L C

because string X number “ H.

Case 5: If Y Ă X and Y

L R
appears in rightpXq, then Y

L R
reduces to R.

For example: If X “ number and Y “ integer, we have

number

A B

integer

L R

C
Ñ

number

A B

R C

because integer Ă number.

Case 6: If Y Ă X and Y

L R
appears in rightpXq, then Y

L R
reduces to L.

For example: If X “ number and Y “ integer, we have

number

A B

not-integer

L R

C
Ñ

number

A B

L C

because integer Ă number.

Case 7: If Y Ă X and Y

L R
appears in leftpXq, then Y

L R
reduces to R.

For example: If X “ string and Y “ integer, we have

string

A

C integer

L R

B
Ñ

string

A

C R

B

because integer Ă string.

Case 8: If Y Ă X and Y

L R
appears in leftpXq, then Y

L R
reduces to L.

For example: If X “ integer and Y “ number, we have

not-number

A

C not-integer

L R

B
Ñ

not-number

A

C L

B

because integer Ă number.

159

Case 9: If X Ă Y and Y

L R
appears in leftpXq, then Y

L R
reduces to L.

For example: If X “ integer and Y “ number, we have

integer

A

C number

L R

B
Ñ

integer

A

C L

B

because integer Ă number.

Case 10: If X Ă Y and Y

L R
appears in leftpXq, then Y

L R
reduces to R.

For example: If X “ integer and Y “ string, we have

integer

A

C string

L R

B
Ñ

integer

A

C R

B

because integer Ă string.

Case 11: If X Ă Y and Y

L R
appears in rightpXq, then Y

L R
reduces to L.

For example: If X “ not´ integer and Y “ number, we have

not-integer

A B

number

L R

C
Ñ

not-integer

A B

L C

because integer Ă number.

Case 12: If X Ă Y and Y

L R
appears in rightpXq, then Y

L R
reduces to R.

For example: If X “ integer and Y “ number, we have

not-integer

A B

not-number

L R

C
Ñ

not-integer

A B

R C

because integer Ă number.

7.5 Related work
Newton et al. [New17] presented a synopsis of this work at the 2017 European Lisp Symposium.

Maclachlan [Mac92] introduced Python, a Common Lisp compiler. He explains the elimination of if-if
constructions as part of the ICR (Implicit Continuation Representation) optimization. Maclachlan [Mac03]
explains this optimization as equivalent to the transform (if (if A B C) D E) ÞÑ (if A (if B D E) (if C
D E)). A potential advantage of this transformation is that the blocks D and E may be optimized differently in
the two branches.

On the contrary, a disadvantage is that the transformation grows the compiled code size exponentially,
roughly doubling it at each such transformation. The problem would be exacerbated by transformation such
as (not A) ÞÑ (if A nil t). The problem of exponential code growth is reminiscent of problem posed by the
UOBDD in Section 5.1.1. The solution in the case of UOBDD was to build the decision tree such that this
duplication of redundant nodes is avoided by construction.

Charniak et al. [CM85] present discrimination nets as a way of formalizing these decision procedures. Char-
niak notes that the nets may form trees in some cases but does not explore techniques to avoid tree explosion.

PCL (Portable Common Loops) [BKK`86] which is the heart of many implementations of the Clos (the
Common Lisp Object System) [Kee89, Ano87], in particular the implementation within SBCL, uses discrimi-
nation nets to optimize generic function dispatch.

7.6 Perspectives
There is a remaining area of research which is of concern. There are exotic cases where two differently structured
BDD’s may represent the same Common Lisp type; particularly the empty type may take many forms. We
are not sure if this problem can be fixed, or whether it is just a loophole in an overly ambitious theory. For a
comprehensive theory, we should completely characterize these situations. Our current recommendation is that
the “final” types of any computation, still need to be tested to be a subtype of the type nil using a call to
subtypep.

The loophole is something like the following. Assume the types under consideration are A, B, C, D, and E.
Then, for example, if E is a subtype of one of subtype of A, B, C, D, (not A), (not B), (not C), or (not D),

160

then the appropriate reduction and uniqueness is preserved in the BDD. But in the case that E is a subtype of
some Boolean combination, e.g., if E Ă pAYB YCq X pAYB YDq, then it may be possible to have multiple,
type-equivalent BDDs representing expressions of E. We suspect the problem is that if E is a subtype of any
subtree in the BDD, then we are safe, but if E is a subtype of some non-expressed combination, there uniqueness
is not guaranteed. I.e., if there is a subtree to eliminate, it can be eliminated, but if the subtype is not expressed
in an actual subtree, then Houston we have a problem.

161

Part III

The Type Decomposition and
Serialization Problems

162

Figure 7.2: Me (center) with my brother and my sister.

In Chapter 4 we presented an elaborate procedure for generating efficient code to recognize regular patterns
in heterogeneous sequences. This presentation pointed out two problems which we address in Part III. The type
decomposition problem is presented in Chapters 8 with algorithms addressing it in Chapter 9 and the relative
performance of those algorithms is analyzed in Chapter 10. Thereafter, we examine the second problem, that
of serialization, in Chapter 11.

163

Chapter 8

Maximal Disjoint Type Decomposition

In Chapter 4 we introduced the problem determinizing a finite state machine whose transitions represent Com-
mon Lisp type predicates. The state machine was deterministic only if no two transitions from any given state
contained intersecting types. In the current chapter, we look at the theoretical aspects of this problem. We
rigorously define the problem and prove that it has a unique solution. However, we do not attempt here to
present algorithms to find such a solution; such algorithms are presented in Chapter 9. In Chapter 10 we analyze
the performance of these algorithms.

The MDTD problem is that of using Boolean operations to decompose a set of partially overlapping regions
into a valid partition. In particular, given V “ tA1, A2, ..., AMu, suppose that for each pair pAi, Ajq, we can
ascertain whether one of the following is true: Ai Ď Aj , Ai Ě Aj , or Ai X Aj “ H. We would like to compute
the maximal disjoint decomposition of V . We define precisely what we mean by maximal disjoint decomposition
in Definition 8.63 of Section 8.2.6.

An illustration should help give an intuition of the problem. The Venn diagram in Figure 8.1 is an example
for V “ tA1, A2, ..., A8u. The maximal disjoint decomposition D “ tX1, X2, ..., X13u of V is shown in Figure 8.1
as a Venn diagram, and in Figure 8.3 as a set of Boolean equations. D is the largest possible set of pairwise
disjoint subsets of tA1YA2Y...YA8u, for which every element thereof can be expressed as a Boolean combination
of elements of V .

A1

A2 A3

A4

A5

A6

A7

A8

Figure 8.1: Venn Diagram of possibly overlapping sets. Each An is represented by a circle on this diagram.

164

X1

X2
X3

X4
X5

X6 X7

X8

X9

X10

X11

X12

X13

Figure 8.2: Venn Diagram after Decomposition.
Each Xi is represented by a region which does not
overlay any other region.

Disjoint Derived
Set Expression

X1 A1 XA2 XA3 XA4 XA6 XA8
X2 A2 XA3 XA4
X3 A2 XA3 XA4
X4 A3 XA2 XA4
X5 A2 XA3 XA4
X6 A2 XA4 XA3
X7 A3 XA4 XA2
X8 A4 XA2 XA3 XA8
X9 A5
X10 A6
X11 A7
X12 A8 XA4
X13 A4 XA8 XA5

Figure 8.3: Decomposition of Venn diagram in Fig-
ure 8.1. Each Xi is expressed as a Boolean combina-
tion of elements of tA1, ..., Anu.

The details in this chapter may not be useful to the casual reader. We invite such a reader to review
Section 8.1 which introduces the problem via illustrations, and then skip to Section 8.2.6 which states and
proves the claims of uniqueness.

8.1 Motivation
Newton et al. [NDV16] presented this problem when attempting to determinize automata used to recognize
rational type expressions. It was stated in that work that the algorithm employed there had performance
issues which needed to be addressed. Newton et al. showed such performance improvements in a follow-up
paper [NVC17].

Another potential application of this problem, which is still an open area of active research, is the problem
of re-ordering clauses in a typecase in Common Lisp [Ans94], or similar constructs in other programming
languages. The property to note is that, given an expression such as in Example 8.1,

Example 8.1 (typecase with independent clauses).

(typecase object
(number ...)
(symbol ...)
(array ...)
...)

the clauses can be freely reordered, provided the types are disjoint. Re-ordering the clauses is potentially
advantageous for computational efficiency if the type which is most likely to occur at run-time appears first.
Another reason to reorder is so that types can be simplified. Consider Example 8.2

Example 8.2 (typecase whose clauses contain disjoint types).

(typecase object
((and number (not integer)) E1)
(integer E2)
(array E3)
...)

165

The clauses of the typecase in Example 8.2 cannot be simplified as presented. However, we are allowed
to swap the first and second clause the typecase because the two types, (and number (not integer)) and
integer are disjoint. After swapping the clauses and simplifying, we end up with code as in Example 8.3.

Example 8.3 (typecase after re-ordering and simplification).

(typecase object
(integer E2)
(number E1)
(array E3)
...)

Thus, it may be interesting to compute a minimal disjoint type decomposition in order to express intermedi-
ate forms, which are thereafter simplified to more efficient carefully ordered clauses of intersecting types. This
topic is further discussed in Chapter 11.

Finally, still another reason for studying this problem is because it allows us to examine lower level algorithms
and data structures, the specifics of which may themselves have consequences which outweigh the type disjunc-
tion problem itself. There are several such cases in this technical report: including techniques and practices for
using BDDs to represent type specifiers (Section 9.5) and techniques for optimizing programs characterized by
heavy use of subtypep (Chapter 10).

8.2 Rigorous development
In this section, we define exactly what we mean by the term maximal disjoint decomposition. The main result of
this section is Theorem 8.67 which claims the existence and uniqueness of the maximal disjoint decomposition.
The reader who does not care about the rigorous treatment may skip most of this section, as long as he grasps
the definition of maximal disjoint decomposition (Definition 8.63) and the claims of its existence and uniqueness
(Theorem 8.67).

The presentation order used in this section is bottom-up; i.e., we attempt to define and prove everything
needed before it is actually used. This order may cause some difficulty to the reader, as it may not be clear
at each point why something is being introduced. We attempt to alleviate some of this problem by providing
motivational discussions as prelude to each section and by giving sufficiently many examples, so that even if the
reader does not foresee how something will be used later, exactly why it is being presented, at least the reader
can get a rigorous definition but also an intuitive feeling of the concept.

8.2.1 Unary set operations

Notation 8.4. We denote the cardinality of set A, i.e. the number of elements, by |A|. We say that an infinite
set has infinite cardinality; otherwise it has finite cardinality.

Example 8.5 (Cardinality of the empty set). |H| “ 0.

Example 8.6 (Misleading cardinality of set denoted by variables). If A “ tX,Y u, then 1 ď |A| ď 2; because
A is not empty, and it might be that X “ Y .

166

Definition 8.7. If V is a set of subsets of U , then we define the unary
Ť

operator as follows:

ď

V “

$

’

’

&

’

’

%

H if V “ H
X if |V | “ 1 and V “ tXu
Ť

XPV

X if |V | ą 1

Definition 8.8. If V is a set of subsets of U , then we define the unary
Ş

operator as follows:

č

V “

$

’

’

&

’

’

%

U if V “ H
X if |V | “ 1 and V “ tXu
Ş

XPV

X if |V | ą 1

Example 8.9 (Unary intersection and union operations). Let V “ tt1u, t1, 2u, t1, 2, 4u, t1, 3, 4, 5uu, then
č

V “ t1u X t1, 2u X t1, 2, 4u X t1, 3, 4, 5u “ t1u

and
ď

V “ t1u Y t1, 2u Y t1, 2, 4u Y t1, 3, 4, 5u “ t1, 2, 3, 4, 5u

Example 8.10 (Unary union of singleton set). Let X “ t12, 13, 14u, and let V “ tXu “ tt12, 13, 14uu, as in
the middle case of Definition 8.7. In this case |V | “ 1, and |

Ť

V | “ 3, because
ď

V “
ď

tXu “ X “ t12, 13, 14u .

Moreover, if V “ ttXuu “ ttt12, 13, 14uuu, then |V | “ 1 and |
Ť

V | “ 1, because
ď

V “
ď

ttXuu “ tXu “ tt12, 13, 14uu .

The values of
Ť

V and
Ş

V in the cases where |V | “ 0 and |V | “ 1 are defined as such so that the notation is
consistent and intuitive. In particular, the following identities hold:

ď

pV Y V 1q “ p
ď

V q Y p
ď

V 1q
č

pV Y V 1q “ p
č

V q X p
č

V 1q

Note that the definitions of
Ť

V and
Ş

V in no way make a claim or supposition about the cardinality of
V . We may use the same notation whether V is infinite or finite.

Definition 8.11. By PpUq we denote the power set of U , i.e. the set of subsets of U . Consequently we may
take V Ď PpUq to mean that V is a set of subsets, each begin a subset of U .

Example 8.12 (Power set). If U “ t1, 2, 3u, then PpUq “ tH, t1u, t2u, t3u, t1, 2u, t1, 3u, t2, 3u, t1, 2, 3uu. Notice
that |U | “ 3 and |PpUq| “ 23 “ 8. It holds in general that |PpUq| “ 2|U |.

167

8.2.2 Partitions and covers
In this report, we often refer to the relation of disjoint-ness or intersection between two sets. For this reason,
we introduce a notation which some readers may find non-standard. We remind the reader of Notations 2.2
and 2.3 for denoting the disjoint and non-disjoint relations.

Definition 8.13. Let D “ tX1, X2, ..., XMu, with Xi Ď U for 1 ď i ďM . If

Xi ‰ Xj ùñ Xi ‖ Xj ,

then D is said to be disjoined in U . I.e., a set disjoined in a given U is a set of mutually disjoint subsets of U .

Example 8.14 (Disjoined set and non-disjoined sets). The set tt1, 3, 5u, t0, 2u, t4, 6u,Hu is disjoined because
its elements are sets, none of which have a common element. By contrast, the set tt1, 2, 3u, t2, 4u, t5uu is not
disjoined as 2 is common to t1, 2, 3u and t2, 4u.

Note that if a set V is disjoined then
Ş

V “ H. However, from Example 8.14 we see that
Ş

V “ H does
not imply that V is disjoined.

Definition 8.15. If V Ď PpUq and C Ď PpUq, C is said to be a cover of V , or equivalently we say that C covers
V , provided

Ť

V Ď
Ť

C. Furthermore, if
Ť

V “
Ť

C we say that C is an exact cover of V or that C exactly
covers V .

Example 8.16 (Sets as covers). If
U “ tt1, 2, 3u, t3, 4uu

and
V “ tt1, 2, 3u, t2, 4, 6u,Hu ,

then V covers U , because
ď

U Ă
ď

V ;

in particular
and

ď

U “
ď

tt1, 2, 3u, t3, 4uu “ t1, 2, 3u Y t3, 4u “ t1, 2, 3, 4u “ t1, 2, 3u
ď

V “
ď

tt1, 2, 3u, t2, 4, 6u,Hu “ t1, 2, 3u Y t2, 4, 6u YH “ t1, 2, 3, 4, 6u .

And
t1, 2, 3, 4u Ă t1, 2, 3, 4, 6u .

However, V is not an exact cover of U because 6 P
Ť

V but 6 R
Ť

U , i.e.
Ť

V * U .

Definition 8.17. A partition of a set V is a disjoined set P with the property that
Ť

P “ V . Consequently,
a disjoined set may be said to partition its union.

168

Example 8.18 (A set which is a partition of a given set). The disjoined set D “ tt0u, t2, 4, 6, 8u, t1, 3, 5, 7, 9uu
is a partition of t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u, because the three sets (the elements of D) are mutually disjoint and

ď

D “ t0u Y t2, 4, 6, 8u Y t1, 3, 5, 7, 9u “ t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u

Example 8.19 (A set which is not a partition of a given set). The set V “ tt1u, t1, 2u, t2, 4u, t3, 4, 5uu from
Example 8.9 is not a partition of t1, 2, 3, 4, 5u because V is not disjoined; i.e., the elements of V are not mutually
disjoint. However, V does cover t1, 2, 3, 4, 5u.

8.2.3 Sigma algebras
The purpose of the next several definitions is to define the set BpV q which is intended to be the set of all
Boolean combinations of sets in a given set V . BpV q is defined in Definition 8.29, and is proved to exist and
be unique in Corollary 8.30.

The following lemma (Lemma 8.20) will be used in Example 8.26.

Lemma 8.20. If V is a set of subsets of U , and DX0 P V such that X P V ùñ X0 Ď X, then X0 “
Ş

V .

Proof. X P V ùñ X0 Ď X, therefore X0 Ď
Ş

V .

Case 1: p
Ş

V qzX0 “ H, therefore
Ş

V Ď X0

Case 2: p
Ş

V qzX0 ‰ H, so let α P p
Ş

V qzX0. This means α R X0, rather α P
Ş

V . α P
Ş

V means that
@X P V, α P X, which is a contradiction because X0 P V .

Intuitively, Lemma 8.20 says that given a set of subsets, if one of those subsets happens to be a subset of
all the given subsets, then it is in fact the intersection of all the subsets.

Example 8.21 (Example of Lemma 8.20). Let V “ tH, t1u, t2uu. Notice that there is an X0, namely X0 “ H,
which has the property that it is a subset of every element of V , i.e., X P V ùñ X0 Ď X. Therefore,
Ş

V “ X0 “ H.

Example 8.22 (Another example of Lemma 8.20). Let V “ tt1u, t1, 2u, t1, 2, 3u, t1, 2, 3, 4u, ..., t1, 2, 3, 4, ..., Nuu
for some N . Notice that there is an X0, namely X0 “ t1u, which has the property that it is a subset of every
element of V , i.e., t1u is a subset of every element of V , or X P V ùñ X0 Ď X. Therefore,

Ş

V “ t1u.

Definition 8.23. Let V Ď U , and let F be a set of binary functions mapping U ˆU ÞÑ U . A superset V 1 Ě V
is said to be a closed superset of V under F if α, β P V 1 and f P F ùñ fpα, βq P V 1.

Example 8.24 (Closed superset). If V “ t1u, and F “ t`u, then the set of integers Z is a closed superset of
V under F . Why, because V Ď Z, and α, β P Z ùñ α` β P Z.

169

Definition 8.25. Let V Ď U , and let F be a set of binary functions mapping U ˆ U ÞÑ U . The closure of V
under F , denoted closF pV q, is the intersection of all closed supersets of V under F .

Example 8.26 (Example of closF pV q). If V “ t1u, and F “ t`u, then closF pV q is the set of positive integers,
N.

Proof. To show this we argue that N is a closed superset of V and that if V 1 is a closed superset of V then
N Ď V 1.

1 P N so V Ď N. If α, β P N, then α` β P N, so N is closed.
Let V 1 be a closed superset of V . N Ď V 1 can be shown by induction. 1 P V 1 because 1 P V Ď V 1. Now

assume k P V 1. Is k ` 1 P V 1? Yes, because tku Y t1u “ tk, 1u Ď V 1 ùñ k ` 1 P V 1. Therefore N Ď V 1.
So by Lemma 8.20, N “ closF pV q.

In Definition 8.25 we defined something called the closure, but we need to prove that it is unique and closed,
thus deserving of its name. In Theorem 8.27 we argue the existence and uniqueness of this so-called closure,
and also argue that it is indeed closed according to Definition 8.23.

Theorem 8.27. If V Ď U , and if F is a set of binary functions defined on U , then there exists a unique
closF pV q, and it is closed under F .

Proof. First we show, by construction, that at least one closed superset of V exists. Define a monotonic sequence
tΦnu8n“0 of sets as follows:

• Φ0 “ V

• If i ą 0, then Φi “ Φi´1 Y
Ť

fPF

tfpx, yq | x, y P Φi´1u

By construction Φi Ď Φi`1. Define the set Φ “
8
Ť

i“0
Φi. We know that V “ Φ0 Ď

8
Ť

i“0
Φi. Next, let α P Φ, β P Φ,

f P F ; take n ě 0 such that α, β P Φn. By definition fpα, βq P Φn`1 Ď Φ. Thus Φ is closed under F .
Now that we know at least one such closed set exists, suppose Ψ is the set of all supersets of V which are

closed under F . Let Φ “
Ş

Ψ. Φ is uniquely defined because intersection is well defined even on infinite sets.
But the question remains whether Φ is closed under F .

We now show that Φ satisfies the definition of closed under F . V is a subset of every element of Ψ so
V Ď

Ş

Ψ “ Φ. Now, take α, β P Φ, and f P F . Since α P Φ, that means α is in every element of Ψ, similarly for
β, so fpα, βq is every element of Ψ, which means fpα, βq P

Ş

Ψ “ Φ. I.e. Φ “ closF pV q is closed under F .

Example 8.28 (Closure of set operations). Let V “ tt1, 2u, t2, 3uu, and F be the set containing the set-union
and set-intersection binary operations, denoted F “ tY,Xu. Then closF pV q “ tH, t1, 2u, t2u, t2, 3u, t1, 2, 3uu,
because if we take α, β P tH, t1, 2u, t2u, t2, 3u, t1, 2, 3uu, then both α Y β and α X β are also therein. This can
be verified exhaustively as in Figure 8.4.

Any smaller set would not fulfill the definition of closF pV q, which can also be verified exhaustively. In
particular, if either or t1, 2u or t2, 3u were omitted, then it would no longer be a superset of V , and if any of
tH, t2u, t1, 2, 3uu were omitted, then it would no longer be a closed superset of V . Finally, if any element were
added, such as V 1 “ V Y t3u, it would no longer fulfill the intersection requirement; i.e. V 1 Ć V so V 1 is not
the intersection of all closed supersets of V under F .

Definition 8.29. If V Ď PpUq, and F is the set of three primitive set operations union, intersection, and
relative complement, (F “ tY,X, zu) then we denote closF pV q simply by BpV q and call it the sigma algebra of
V . Moreover, each element of BpV q is called a Boolean combination of elements of V .

170

α β αY β αX β
H H H H

H t1, 2u t1, 2u H

H t2u t2u H

H t2, 3u t2, 3u H

H t1, 2, 3u t1, 2, 3u H

t1, 2u H t1, 2u H

t1, 2u t1, 2u t1, 2u t1, 2u
t1, 2u t2u t1, 2u t2u
t1, 2u t2, 3u t1, 2, 3u t2u
t1, 2u t1, 2, 3u t1, 2, 3u t1, 2u
t2u H t2u H

t2u t1, 2u t1, 2u t2u
t2u t2u t2u t2u
t2u t2, 3u t2, 3u t2u
t2u t1, 2, 3u t1, 2, 3u t2u
t2, 3u H t2, 3u H

t2, 3u t1, 2u t1, 2, 3u t2u
t2, 3u t2u t2, 3u t2u
t2, 3u t2, 3u t2, 3u t2, 3u
t2, 3u t1, 2, 3u t1, 2, 3u t2, 3u
t1, 2, 3u H t1, 2, 3u H

t1, 2, 3u t1, 2u t1, 2, 3u t1, 2u
t1, 2, 3u t2u t1, 2, 3u t2u
t1, 2, 3u t2, 3u t1, 2, 3u t2, 3u
t1, 2, 3u t1, 2, 3u t1, 2, 3u t1, 2, 3u

Figure 8.4: Closure under a set of operations

Corollary 8.30. If V Ď PpUq, BpV q exists and is unique.

Proof. Simple application of Theorem 8.27.

Example 8.31 (A Sigma algebra). Let V “ tt1, 2u, t2, 3uu as in Example 8.28.
BpV q “ tH, t1u, t2u, t3u, t1, 2u, t1, 3u, t2, 3u, t1, 2, 3uu. I.e., BpV q “ Ppt1, 2, 3uq.

8.2.4 Finitely many Boolean combinations
In this section, we provide a tedious proof which was used in the proofs of Corollary 8.54 and Corollary 8.55.
In particular, the main result, Theorem 8.51, is the claim that given a finite set V of sets, then the set of all
Boolean combinations of these sets is itself finite.

The reader may wish to skip the details of this section, and just concentrate on the main result, Theorem 8.51.

Definition 8.32. Given a finite set of sets V “ tD1, D2, ..., Dnu, the conjunctive closure of V, denoted CpV q,
is defined as follows:

CpV q “ t
č

S | S Ă V u .

171

Definition 8.33. Given a finite set of sets V “ tD1, D2, ..., Dnu, the disjunctive closure of V, denoted DpV q,
is defined as follows:

DpV q “ t
ď

S | S Ă V u .

An equivalent way of thinking about definitions 8.32 and 8.33 is that if S Ă V , then
Ş

S P CpV q and
Ť

S P DpV q. Consequently, if S1 is a collection of subsets of V , i.e., S1 Ă PpV q, then
ŞŤ

S1 P DpCpS1qq.

Definition 8.34. Given a finite set of sets V , the distributed complement of V , denoted rV is defined as

rV “ tp
ď

V qzδ | δ P V u .

Lemma 8.35 and 8.36 claim that CpV q andDpV q are both closed, and thus deserving of the names conjunctive
closure and disjunctive closure. The proofs follow immediately from definitions 8.32 and 8.33 respectively.

Lemma 8.35. If V is a finite set, then CpV q is closed under intersection.

Proof. Let a, b P CpV q. There exist A,B Ă V , such that a “
Ş

A and b “
Ş

B. Since A and B are both finite:

aX b “ p
č

Aq X p
č

Bq “
č

pAYBq

but AYB Ă V , so
Ş

pAYBq P CpV q.

Lemma 8.36. If V is a finite set, then DpV q is closed under union.

Proof. Let a, b P DpV q. There exist A,B Ă V , such that a “
Ť

A and b “
Ť

B. Since A and B are both finite:

aY b “ p
ď

Aq Y p
ď

Bq “
ď

pAYBq

but AYB Ă V , so
Ť

pAYBq P DpV q.

Example 8.37 (Examples of distributed complement and other sets). Let V “ tt1u, t1, 2u, t2, 3uu.
ď

V “ t1, 2, 3u
PpYV q “ tH, t1u, t2u, t3u, t1, 2u, t1, 3u, t2, 3u, t1, 2, 3uu
BpV q “ tH, t1u, t2u, t3u, t1, 2u, t1, 3u, t2, 3u, t1, 2, 3uu
PpV q “ tH, tt1uu, tt1, 2uu, tt2, 3uu,

tt1u, t1, 2uu, tt1u, t2, 3uu, tt1, 2u, t2, 3uu,
tt1u, t1, 2u, t2, 3uuu

rV “ tt1, 2, 3uzt1u, t1, 2, 3uzt1, 2u, t1, 2, 3uzt2, 3uu
“ tt2, 3u, t3u, t1uu

In this case BpV q “ PpYV q, but that is not true in general. Take for example V “ tt1, 2uu, in which case
BpV q “ tH, t1, 2uu, but PpYV q “ tH, t1u, t2u, t1, 2uu.

172

Example 8.38 (Calculating the conjunctive closure of a set). To calculate CpV q we must calculate the in-
tersection of each subset of V , i.e. to each element of PpV q. Some of these intersections are redundant; e.g.,
Ş

tt1uu “
Ş

tt1u, t1, 2uu “ t1u.

CpV q “ t
č

H,
č

tt1uu,
č

tt1, 2uu,
č

tt2, 3uu,
č

tt1u, t1, 2uu,
č

tt1u, t2, 3uu,
č

tt1, 2u, t2, 3uu,
č

tt1u, t1, 2u, t2, 3uuu
“ tH, t1u, t1, 2u, t2, 3u, t1u,H, t2u,Hu
“ tH, t1u, t2u, t1, 2u, t2, 3uu

Lemma 8.41 predicts that |CpV q| ď 2|V |, which is true as 5 ď 23. In addition, Lemma 8.35 predictions that
CpV q is closed under intersection. We see that this is the case; e.g.,

č

tt2u, t1, 2u, t1, 2, 3uu “ tt2u X t1, 2u X t1, 2, 3uu “ t2u P CpV q .

Example 8.39 (Calculating the disjunctive closure of a set). To calculate DpV q we must calculate the union
of each subset of V , i.e. to each element of PpV q. Some of these unions are redundant; e.g.,

Ş

tt1, 2u, t3uu “
Ş

tt1, 2u, t2, 3uu “ t1, 2, 3u.

DpV q “ t
ď

H,
ď

tt1uu,
ď

tt1, 2uu,
ď

tt2, 3uu,
ď

tt1u, t1, 2uu,
ď

tt1u, t2, 3uu,
ď

tt1, 2u, t2, 3uu,
ď

tt1u, t1, 2u, t2, 3uuu
“ tH, t1u, t1, 2u, t2, 3u, t1, 2u, t1, 2, 3u, t1, 2, 3u, t1, 2, 3uu
“ tH, t1u, t1, 2u, t2, 3u, t1, 2, 3uu

Example 8.40 (Calculating the disjunctive closure of a conjunctive closure). To calculate DpCpV qq we must
calculate the union of each subset of CpV q. There are 25 “ 32 subsets of CpV q, but when calculating their union
we find many redundancies.

DpCpV qq “ tH, t1u, t2u, t1, 2u, t2, 3u, t1, 2, 3uu

We see that DpCpV qq “ PpV q z tt3u, t1, 3uu, so in this case BpV q Ć DpCpV qq. However, if we see that
BpV q Ă DpCpV Y rV qq as predicted by Lemma 8.50. We also see that rV ‰ V .

V Y rV “ tt1u, t1, 2u, t2, 3uu Y tt2, 3u, t3u, t1uu
“ tt1u, t3u, t1, 2u, t2, 3uu

CpV Y rV q “ tH, t1u, t2u, t3u, t1, 2u, t2, 3uu
DpCpV Y rV qq “ tH, t1u, t2u, t3u, t1, 2u, t1, 3u, t2, 3u, t1, 2, 3uu

As a coincidence, in this case BpV q “ DpCpV Y rV qq “ PpYV q, but that is not true in general. Take for
example V “ tt1, 2uu, in which case BpV q “ tH, t1, 2uu, but PpYV q “ PpV q “ tH, t1u, t2u, t1, 2uu.

Lemma 8.41. If V is a finite set of sets, there are at most 2|V | elements of CpV q, i.e.,

|CpV q| ď 2|V | .

173

Proof. Each element of CpV q is the intersection of the elements of some element of the power set of V , i.e. if
m P CpV q then there exists S Ă V or S P PpV q, such that m “

Ş

S. |PpV q| “ 2|V |. Therefore

|CpV q| ď 2|V | .

Lemma 8.42. If V is a finite set of sets, there are at most 2|V | elements of DpV q, i.e.,

|DpV q| ď 2|V | .

Proof. Each element ofDpV q is the union of the elements of some element of the power set of V , i.e. ifM P DpV q
then there exists S Ă V or S P PpV q, such that M “

Ť

S. |PpV q| “ 2|V |. Therefore

|DpV q| ď 2|V | .

Definition 8.43. The distributed intersection of a set of sets is defined as follows. Let V be a set of subsets of
G; i.e., V Ă PpGq. Let F : PpPpV qq Ñ PpGq be defined as follows:

FpSq “
ď

tXs | s P Su

Example 8.44 (Calculating a distributed intersection). Let V and S be defined as follows:

V “ tt1u, t2u, t1, 2u, t2, 3u, t2, 4uu
S1 “ tt1u, t1, 2u, t1, 3uu
S2 “ tt2u, t1, 2uu
S “ tS1, S2u

“ ttt1u, t1, 2u, t1, 3uu, tt2u, t1, 2uuu .

Then,

FpSq “
ď

tXsi | si P Su

“
ď

X si | si P ttt1u, t1, 2u, t1, 3uu, tt2u, t1, 2uuu
(

“
ď

X tt1u, t1, 2u, t1, 3uu, Xtt2u, t1, 2uu
(

“
ď

t1u X t1, 2u X t1, 3u, t2u X t1, 2u
(

“
ď

t1u, t2u
(

“ t1u Y t2u
“ t1, 2u

One might be tempted to wonder whether FpSq
?
“

ŤŞ

S, but it is not in general. In the case where S is
defined as above, the two are equal.

ďč

S “
ďč

tS1, S2u

“
ď

`

č

tS1, S2u
˘

“
ď

pS1 X S2q

“
ď

tt1, 2uu
“ t1, 2u

174

However, if S3 “ tt2u, t1, 2, 3uu, then we see that FptS1, S3uq ‰
ŤŞ

tS1, S3u.

FptS1, S3uq “
ď

X tt1u, t1, 2u, t1, 3uu, Xtt2u, t1, 2, 3uu
(

“
ď

t1u X t1, 2u X t1, 3u, t2u X t1, 2, 3u
(

“
ď

t1u, t2u
(

“ t1u Y t2u
“ t1, 2u

ďč

tS1, S3u “
ď

`

č

tS1, S3u
˘

“
ď

pS1 X S3q

“
ď

`

tt1u, t1, 2u, t1, 3uu X tt2u, t1, 2, 3uu
˘

“
ď

H

“ H

Corollaries 8.45 and 8.45 follow immediately from the definitions C, D, and F. Nevertheless, they are
presented because they help simplify notation in the proof of Lemmas 8.47, 8.48, and 8.49.

Corollary 8.45. If V is a set of sets, and S Ă PpV q, then FpSq P DpCpV qq.

Proof. FpSq is a union of the intersections of particular subsets of PpV q. DpCpV qq is the set of all such unions.
Therefore FpSq P DpCpV qq.

Corollary 8.46. If V is a set of sets, and if x P DpCpV qq, then there exists an S P PpPpV qq, not necessarily
unique, such that FpSq “ x.

Proof. As it is defined, CpV q is precisely the set of all unions of subsets of V ; thus CpV q is exactly the image
of PpV q under

Ş

. Moreover, DpCpV qq is the set of all unions of elements of CpV q. Therefore, for an element x
to exist in DpCpV qq, there must be a set S of elements of PpV q, i.e., there must be an S P PpPpV qq such that
FpSq “ x.

Lemma 8.47. Let V be a finite set of sets. DpCpV qq is closed under union.

Proof. Take two elements a, b P DpCpV qq. By Corollary 8.46, there exist A,B Ă PpV q such that a “ FpAq and
b “ FpBq

aY b “ FpAq Y FpBq

“
ď

tXs | s P Au Y
ď

tXs | s P Bu

“
ď

tXs | s P pAYBqu

“ FpAYBq

Since each element of AYB is a subset of V , aY b “ FpAYBq P DpCpV qq by Corollary 8.45.

Lemma 8.48. Let V be a finite set of sets. DpCpV qq is closed under intersection.

175

Proof. For this case, we use the Boolean identity

pX Y Y q X pH YGq “ pX XHq Y pY XHq Y pY XHq Y pY XGq .

Take a, b P DpCpV Y rV qq. By Corollary 8.46, there exist A,B Ă PpV q such that a “ FpAq and b “ FpBq.
A,B Ă PpV Y rV q means that A and B are of the form

A “ tA1, A2, ..., A|A|u with Ai Ă V for each 1 ď i ď |A|

B “ tB1, B2, ..., B|B|u with Bi Ă V for each 1 ď i ď |B| ,

where

Ai “ tAi,1, Ai,2, ..., Ai,|Ai|u Ai,j P V for each 1 ď j ď |Ai|

Bi “ tBi,1, Bi,2, ..., Bi,|Bi|u Bi,j P V for each 1 ď j ď |Bi| .

Define the set S “ tSi,ju1ďiď|A|
1ďjď|B|

where

Si,j “ tAi,k | 1 ď k ď |Ai|u Y tBj,k | 1 ď k ď |Bj |u

Each Ai,k and each Bj,k is an element of V ; so each Si,j P PpV q and S Ă PpV q.
Now we can proceed to show aX b P DpCpV qq.

aX b “ FpAq X FpBq

“
ď

tXs | s P Au X
ď

tXs | s P Bu

“
`

č

A1 Y
č

A2 Y ...Y
č

A|A|
˘

X
`

č

B1 Y
č

B2 Y ...Y
č

B|B|
˘

“ p
č

A1 X
č

B1q Y p
č

A1 X
č

B2q Y ...Y p
č

A1 X
č

B|B|q

Y p
č

A2 X
č

B1q Y p
č

A2 X
č

B2q Y ...Y p
č

A2 X
č

B|B|q

Y ...

Y p
č

A|A| X
č

B1q Y p
č

A|A| X
č

B2q Y ...Y p
č

A|A| X
č

B|B|q

“
ď

1ďiď|A|
1ďjď|B|

`

č

Ai X
č

Bj
˘

“
ď

1ďiď|A|
1ďjď|B|

`

č

tAi,1, Ai,2, ..., Ai,|Ai|u X
č

tBj,1, Bj,2, ..., Bj,|Bj |u
˘

“
ď

1ďiď|A|
1ďjď|B|

`

pAi,1 XAi,2 X ...XAi,|Ai|q X pBj,1 XBj,2 X ...XBj,|Bj |q
˘

“
ď

1ďiď|A|
1ďjď|B|

č

Si,j

“
ď

tXs | s P Su

“ FpSq

Since S Ă PpV q and aX b “ FpSq, then by Corollary 8.45 aX b P DpCpV q.

Lemma 8.49. Let V be a finite set of sets. DpCpV Y rV qq is closed under relative complement.

Proof. For this case, we use the Boolean identity

pX Y Y qzpH YGq “ pXzHq Y pY zHq Y pY zHq Y pY zGq .

176

Since a, b P DpCpV Y rV qq, by Corollary 8.46, there exist A Ă PpV Y rV q and B Ă PpV Y rV q such that a “ FpAq

and b “ FpBq. A,B Ă PpV Y rV q means that A and B are of the form

A “ tA1, A2, ..., A|A|u with Ai Ă V Y rV for each 1 ď i ď |A|

B “ tB1, B2, ..., B|B|u with Bi Ă V Y rV for each 1 ď i ď |B| ,

where

Ai “ tAi,1, Ai,2, ..., Ai,|Ai|u Ai,j P V Y rV for each 1 ď j ď |Ai|

Bi “ tBi,1, Bi,2, ..., Bi,|Bi|u Bi,j P V Y rV for each 1 ď j ď |Bi| .

Now we show that azb P DpCpV Y rV qq.

azb “ FpAq z FpBq

“
ď

tXs | s P Auz
ď

tXs | s P Bu

“
`

č

A1 Y
č

A2 Y ...Y
č

A|A|
˘

z
`

č

B1 Y
č

B2 Y ...Y
č

B|B|
˘

“ p
č

A1z
č

B1q Y p
č

A1z
č

B2q Y ...Y p
č

A1z
č

B|B|q

Y p
č

A2z
č

B1q Y p
č

A2z
č

B2q Y ...Y p
č

A2z
č

B|B|q

Y ...

Y p
č

A|A|z
č

B1q Y p
č

A|A|z
č

B2q Y ...Y p
č

A|A|z
č

B|B|q

“
ď

1ďiď|A|
1ďjď|B|

`

č

Aiz
č

Bj
˘

“
ď

1ďiď|A|
1ďjď|B|

`

č

tAi,1, Ai,2, ..., Ai,|Ai|u z
č

tBj,1, Bj,2, ..., Bj,|Bj |u
˘

“
ď

1ďiď|A|
1ďjď|B|

`

pAi,1 XAi,2 X ...XAi,|Ai|q z pBj,1 XBj,2 X ...XBj,|Bj |q
˘

“
ď

1ďiď|A|
1ďjď|B|

`

pAi,1 XAi,2 X ...XAi,|Ai|q X pBj,1 YBj,2 Y ...YBj,|Bj |q
˘

“
ď

1ďiď|A|
1ďjď|B|

č

1ďpď|Ai|
1ďqď|Bj |

pAi,p YBj,qq

We know V Y rV Ă DpCpV Y rV q because every element of V Y rV is a trivial union of intersection of itself.
E.g., if α P V Y rV , then pαX αq Y pαX αq P DpCpV Y rV q.

Also, Ai,p, Bj,q P V Y rV Ă DpCpV Y rV qq. Since by Lemma 8.47, DpCpV Y rV qq is closed under union, we
know there exists a Xi,j,p,q P DpCpV Y rV qq such that Xi,j,p,q “ Ai,p YBj,q. So

azb “
ď

1ďiď|A|
1ďjď|B|

č

1ďpď|Ai|
1ďqď|Bj |

Xi,j,p,q .

Similarly, for each i, j, we know that
Ş

1ďpď|Ai|
1ďqď|Bj |

Xi,j,p,q, because by Lemma 8.48, DpCpV Y rV qq is closed under

intersection. Thus, there exists a Yi,j P DpCpV Y rV qq such that Yi,j “
Ş

1ďpď|Ai|
1ďqď|Bj |

Xi,j,p,q. So

azb “
ď

1ďiď|A|
1ďjď|B|

Yi,j .

Finally, since DpCpV Y rV qq is closed under union, azb P DpCpV Y rV qq

177

The following Lemma 8.50 claims that every element of BpV q can be expressed as a union of intersections
of elements from V or their complements.

Lemma 8.50. Let V “ tD1, D2, ..., Dnu be a finite set of sets, then BpV q Ă DpCpV Y rV qq.

Proof. By Structural induction: Let x P BpV q. We wish to show x P DpCpV Y rV qq.

Case 1: x P V : x “ Fpttxuuq P DpCpV Y rV qq.

Case 2: x P BpV qzV : By the inductive assumption, we claim a, b P DpCpV Y rV qq, such that x P taXb , aYb , azbu.
We need to show x P DpCpV Y rV qq.
If x “ aY b, then by Lemma 8.47, DpCpV Y rV qq is closed under union; so aY b P DpCpV Y rV qq.
If x “ aX b, then by Lemma 8.48, DpCpV Y rV qq is closed under intersection; so aX b P DpCpV Y rV qq.
If x “ azb, then by Lemma 8.49, DpCpV Y rV qq is closed under relative complement; so azb P DpCpV Y rV qq.

Finally, the grand result of this section is that BpV q is a finite set.

Theorem 8.51. If V is a finite set of sets, then BpV q has finite cardinality.

Proof. Let V “ tD1, D2, ..., Dnu be a finite set of sets, and let rV “ tD1, D2, ..., Dnu. BpV q Ă DpCpV Y rV qq by
Lemma 8.50. Since |V Y rV | ď 2n, we know |CpV Y rV q| ď 22n by Lemma 8.41, and |DpCpV Y rV qq| ď 222n by
Lemma 8.42. Finally |BpV q| ď 222¨|V | .

8.2.5 Disjoint decomposition
In this section, we define the notion of disjoint decomposition along with providing some examples. We also
present and prove two results; Lemma 8.56, which is used to prove Theorem 8.65, and Lemma 8.61, which is
used to prove Lemma 8.56. Lemma 8.56 in particular sheds light on how one might create an algorithm to
improve or refine a given disjoint decomposition.

Definition 8.52. Given a set of non-empty, possibly overlapping sets V Ď PpUq, set D is said to be a disjoint
decomposition of V , if D is disjoined,D Ď BpV q, and D exactly covers V .

Another way of thinking about Definition 8.52 is that if D is a disjoint decomposition of V , then D is a
partition of

Ť

V , and that every element of D is a Boolean combination of elements of V . We will see in
Theorem 8.65 that each of these Boolean combinations is an intersection with some element of V .

Example 8.53 (A disjoint decomposition). Let V “ tt1, 2u, t2, 3uu as in Example 8.28. D “ tt1u, t2, 3uu Ď
BpV q is a disjoint decomposition because t1u ‖ t2, 3u, and

Ť

D “ t1u Y t2, 3u “ t1, 2u Y t2, 3u “
Ť

V .

Corollary 8.54. If V Ď PpUq and |V | ă 8, a disjoint decomposition of V has finite cardinality.

Proof. A disjoint decomposition of V is a subset of BpV q, which has finite cardinality by Theorem 8.51.

178

Corollary 8.55. If V Ď PpUq with |V | ă 8, then there are only finitely many disjoint decompositions.

Proof. Each disjoint decomposition is a subset of BpV q which is finite by Theorem 8.51 in Appendix 8.2.4. This
means its power set, PpV q is finite. Thus there are only finitely many disjoint decompositions of V .

Lemma 8.56. Suppose D is disjoint decomposition of V , and suppose X P D. If there exist distinct α, β P
BpV q, both different from H such that tα, βu is a disjoint decomposition of tXu, then tα, βu Y DztXu is a
disjoint decomposition of V with cardinality |D| ` 1.

Proof. First we show that both α and β are disjoint from all elements of DzX. Proof by contradiction. Without
loss of generality take non-empty γ P DzX such that α ∦ γ. So H ‰ α X γ Ď DzX. So α X γ Ć X. But since
α Ď X we also have αX γ Ď X. Contradiction!

Since αY β “ X,
Ť

D “ αY β Y
Ť

DztXu. Thus tα, βu YDztXu is a cover of V .
Now since α and β are disjoint from all elements of DztXu and disjoint from each other, we know α R DzX

and β R DztXu, |tα, βu YDztXu| “ |tα, βu| ` |DztXu| “ 2` |D| ´ 1 “ |D| ` 1

A brief intuitive explanation of Lemma 8.56 may be useful. The lemma basically says that if we start with
a disjoint decomposition D and one of the elements, X, of that disjoint decomposition can itself be decomposed
into tα, βu Ď BpV q, then we can construct a better disjoint decomposition having exactly one additional
element, simply be removing X and adding back α and β. I.e. starting with D, if X is an element of D, and
X is decomposable into tα, βu, then a better disjoint decomposition is tα, βu YDztXu.

Example 8.57 (Using Lemma 8.56 to improve a disjoint decomposition).

Let V “ tt1, 2u, t2, 3uu as in Example 8.28.
Recall that BpV q “ tH, t1u, t2u, t3u, t1, 2u, t1, 3u, t2, 3u, t1, 2, 3uu.

D “ tt1u, t2, 3uu is a disjoint decomposition of V . Let X “ t2, 3u, α “ t2u, β “ t3u. Notice that
α “ t2u P BpV q and β “ t3u P BpV q, that t2u ‖ t3u, and that X “ t2, 3u “ t2u Y t3u “ αY β.

According to Lemma 8.56, tα, βu YDztXu is a disjoint decomposition of V with cardinality |D| ` 1. Is this
true? Yes!

D1 “ tα, βu YDztXu

“ tt2u, t3uu Y tt1u, t2, 3uuztt2, 3uu
“ tt1u, t2u, t3uu.

Moreover, |D| “ 2, whereas |D1| “ 3.

Lemma 8.58. If A Ď U and B Ď U , with |A| “ |B| ă 8 but A ‰ B, then AzB ‰ H and BzA ‰ H.

Proof. Proof by contradiction: If AzB “ BzA “ H then A Ď B and B Ď A; so A “ B. Contradiction! So
without loss of generality assume AzB “ H, and AzB ‰ H. We have |AzB| “ 0, and |BzA| ą 0.

A “ AzB YAXB
AzB ‖ AXB, so |A| “ |AzB YAXB| “ |AzB| ` |AXB| “ 0` |AXB| “ |AXB|.
B “ BzAYAXB.
BzA ‖ AXB, so |B| “ |BzAYAXB| “ |BzA| ` |AXB| ą |AXB|
|A| “ |B| ą |AXB| “ |A|. Contradiction!

Example 8.59 (Example of Lemma 8.58). Let A “ t1, 2, 3u, B “ t1, 2, 4u. A and B fulfill Lemma 8.58. In
particular |A| “ |B| “ 3 ă 8, and A ‰ B. The lemma claims that AzB ‰ H and BzA ‰ H, and this is in fact
the case. AzB “ t1, 2, 3uzt1, 2, 4u “ t3u ‰ H. BzA “ t1, 2, 4uzt1, 2, 3u “ t4u ‰ H.

179

Notation 8.60. We use the symbol
Ů

to indicate union of mutually disjoint sets. Moreover, if we write
Ů

Xn

then we claim or emphasize that i ‰ j ùñ Xi ‖ Xj .

Lemma 8.61. If D1 and D2 are disjoint decompositions of V such that D1 ‰ D2 and |D1| “ |D2|, then there
exists a disjoint decomposition of V with higher cardinality.

Proof. Let D1 and D2 be disjoint decompositions of V with equal cardinality, and let m “ |D1| “ |D2|. Denote
D1 “ tX1, X2, ..., Xmu and D2 “ tY1, Y2, ..., Ymu. By Lemma 8.58 we can take Yj P D2 such that Yj R D1, i.e.
Yj P D2zD1. Since Yj Ď

Ů

D2 “
Ů

D1, take Xi P D1 such that Yj ∦ Xi. Yj ∦ Xi ùñ Yj XXi ‰ H.

Case 1: Xi Ć Yj ùñ XizYJ ‰ H. Xi “ XizYj Y Xi X Yj , with XizYj ‖ Xi X Yj , so by Lemma 8.56,
tXizYj , Xi X Yju YD1ztXiu is disjoined and has cardinality m` 1.

Case 2: Xi “ Yj . Impossible since Xi P D1 while Yj P D2zD1.

Case 3: Xi (Yj ùñ YjzXi ‰ H. Yj “ YjzXi Y Xi X Yj , with YjzXi ‖ Xi X Yj , so by Lemma 8.56,
tYjzXi, Xi X Yju YD2ztYju is disjoined and has cardinality m` 1.

Example 8.62 (Using Lemma 8.61 to improve a disjoint decomposition).

Let V “ tt1, 2u, t2, 3uu as in Example 8.28. Let D1 “ tt1u, t2, 3uu and D2 “ tt1, 2u, t3uu. Notice that both
D1 and D2 are disjoint decompositions of V and that they fulfill the assumptions of Lemma 8.61. In particular,
D1 ‰ D2 and |D1| “ |D2| “ 2.

The lemma claims that there is therefore a disjoint decomposition with cardinality 3. Moreover, the proof of
Lemma 8.61 suggests a way to find such a disjoint decomposition. To do this we must take X P D1 and Y P D2
such that X ‰ Y , and X ∦ Y .

Let’s take X “ t2, 3u P D1

and Y “ t1, 2u P D2.

We can now construct two sets D11 and D12, and one of these or the other (or perhaps both) will be a disjoint
decomposition of cardinality 3.

D11 “ tXzY,X X Y u YD1ztXu

“ tt2, 3uzt1, 2u, t2, 3u X t1, 2uu Y tt1u, t2, 3uuztt2, 3uu
“ tt3u, t2uu Y tt1uu
“ tt1u, t2u, t3uu

D12 “ tY zX,X X Y u YD2ztY u

“ tt1, 2uzt2, 3u, t2, 3u X t1, 2uu Y tt1, 2u, t3uuztt1, 2uu
“ tt1u, t2uu Y tt3uu
“ tt1u, t2u, t3uu

We see, in this case, that both D11 and D12 are disjoint decompositions of cardinality 3.
It happens in this example that D11 “ D12. This equality is, however, not an immediate consequence of

Lemma 8.61.

180

8.2.6 Maximal disjoint decomposition

Definition 8.63. If D is a disjoint decomposition such that for any other disjoint decomposition D1 it holds
that |D| ě |D1|, then D is said to be a maximal disjoint decomposition.

We use |D| ě |D1| in Definition 8.63, rather than |D| ą |D1|, simply because we have not yet made a uniqueness
argument. For the moment we allow the possibility that two or more such sets exist. If D has the property
that any other decomposition is the same size or smaller, then D is a maximal disjoint decomposition. We will
argue for uniqueness in Theorem 8.67.

Even though we have not yet argued for the uniqueness of such a decomposition, the intuition here is that
the maximal disjoint decomposition of a given set V of subsets of U is the most thorough partitioning of

Ť

V
which is possible when we are only allowed to use Boolean combinations of the sets given in V . I.e., while it
might be possible to conceive of a better partitioning (more complete) and in fact, it may not even be possible
in general to find the most thorough partitioning in general, when restricted to using only Boolean combinations
of elements of V , we can think of the most thorough such partitioning.

We avoid using the term largest decomposition to avoid a potential confusion. By most thorough, we mean
the set, D “ tX1, X2, ..., Xmu of subsets for whichD has the maximum possible number of elements (maximizing
m), not such that the X’s themselves has as many elements as possible. I.e., we want a large collection of small
sets, rather than a small collection of large sets.

Example 8.64 (a maximal disjoint decomposition of a set). Let

V “ tt1, 2u, t2, 3, 4uu ;

and
BpV q “ tH, t1u, t2u, t1, 2u, t3, 4u, t1, 3, 4u, t2, 3, 4u, t1, 2, 3, 4uu .

Then
D “ tH, t1u, t2u, t3, 4uu

is the maximal disjoint decomposition of V .
Why? Clearly D is a disjoint decomposition of V . The only way to decompose further would be to consider

the set D1 “ tH, t1u, t2u, t3u, t4uu. However, D1 is not the maximal disjoint decomposition of V because
D1 Ć BpV q. Notice that t3u R BpV q (and neither is t4u). There is no way to produce the set t3u (nor t4u)
starting with the elements of V and combining them finitely many times using intersection, union, and relative
complement.

Theorem 8.65. If D is a maximal disjoint decomposition of V , then @X P D D A P V such that X Ď A.

Proof. Proof by contradiction: Let D be a maximal disjoint decomposition of V . Since
Ť

D “
Ť

V , let Y P V
such that X ∦ Y . By contrary assumption X Ć Y ùñ XzY ‰ H. So X “ XzY YX X Y , XzY ‖ X X Y , so
by Lemma 8.56, tXzY,X X Y uY

Ť

DzX is disjoint decomposition of V with greater cardinality than D, which
is impossible since D was assumed to be a maximal disjoint decomposition. Contradiction!

Theorem 8.65 basically says that every element of a maximal disjoint decomposition of V is a subset of
some element of V . This means that if we want to construct a maximal disjoint decomposition algorithmically,
an interesting strategy might be to start with the elements of V and look at cleverly constructed intersections
thereof. This is in fact the strategy we will apply in the algorithms explained in Section 9.1 and 9.4.

Example 8.66 (Maximal disjoint decomposition). As in Example 8.64, let V “ tt1, 2u, t2, 3, 4uu. D “

tH, t1u, t2u, t3, 4uu is the maximal disjoint decomposition of V . For each X P D we can find an A P V

181

such that X Ď A. Note, that A is not necessarily unique. In particular.

D s.t. H Ď t1, 2u P V
D s.t. t1u Ď t1, 2u P V
D s.t. t2u Ď t2, 3, 4u P V

D s.t. t3, 4u Ď t2, 3, 4u P V

Theorem 8.67. There exists a unique maximal disjoint decomposition.

Proof. Let D be the set of all disjoint decompositions of V . D is a finite set by Corollary 8.55. Let C be the
set of cardinalities of elements of D , each of which is finite by Corollary 8.54. C is a finite set of integers, let
M “ maxpCq. Let Dmax be the set of elements X P D such that |X| “M . We now show that |Dmax| “ 1.

Case |Dmax| “ 0: Impossible because there exists at least one decomposition, namely the trivial one: t
Ť

V u.

Case |Dmax| ą“ 2: Impossible because if α, β P Dmax, α ‰ β, then by Lemma 8.61 there exists another disjoint
decomposition, γ such that |γ| ą |α|, which would mean that α is not maximal.

Case |Dmax| “ 1: Since |Dmax| cannot be negative, 0, nor greater than 1, it must be equal to 1.

Thus there is exactly one disjoint decomposition whose cardinality is larger than any other disjoint decom-
position.

8.3 Related work
Newton et al. [NDV16, NV18b] presented this problem when attempting to determinize automata used to rec-
ognize rational type expressions. It was stated in that work that the algorithm employed there had performance
issues which needed to be addressed. Newton et al. showed such performance improvements in a follow-up
paper [NVC17].

We borrow the notation BpV q from measure theory [Str81, DS88], where it normally denotes Borel sets
which are particular sigma algebras. The sigma algebra of V is often denoted as σpV q in measure theory
literature. However, in our notation, we reserve the notation σpV q to denote the standard deviation. Hence, we
invent the non-standard notation BpV q to denote sigma algebra.

The Baker subtypep procedure [Bak92, Val18] seeks to find distinguishing representatives for the non-
numerical base types in the Common Lisp implementation. Baker proposes to order characteristic elements so
that the same indexes serve as bit positions in bit vectors. The bit vectors are then combined with bit-wise
Boolean operations in a manner similar to the set-wise Boolean operations shown in Figure 8.3. Baker argues
that these bit-wise operations lead to more efficient execution than the run-time logic necessary for answer
subset predicates using set-wise Boolean arithmetic.

182

Chapter 9

Calculating the MDTD

In Chapter 4 we introduced the problem of efficiently recognizing a sequence of object in Common Lisp given
a regular type expression. This problem lead to two challenges called the MDTD problem and the serialization
problem. In Chapter 11 we will look at the serialization problem. In the current chapter, we look at algorithms
for the finding solution of the MDTD problem, which we showed, in Chapter 8, to uniquely exist. We base
some of the strategies on s-expression based computation as presented in Chapter 2, and other strategies on the
ROBDD generalizations which were presented in Chapter 7. We will analyze the performance of the different
variations of the algorithms in Chapter 10.

Aside from presenting several MDTD algorithms, the current chapter uses the MDTD problem as a vehicle
for comparing performance characteristics of the two data structure approaches: i.e. s-expression based type
specifiers vs. ROBDDs.

We remind the reader of the MDTD problem. In the Venn diagram in Figure 8.1, V “ tA1, A2, ..., A8u. We
wish to construct logical combinations of the sets A1, A2, ..., A8, to form as many mutually disjoint subsets
as possible. We know, from Corollary 8.54, that it is not possible to construct infinitely many such Boolean
combinations. The resulting decomposition should have the same union as the original set. The maximal disjoint
decomposition D “ tX1, X2, ..., X13u of V is shown in Figure 8.3.

Definition 9.1. Let U be a set and V be a set of subsets of U . The Sigma Algebra of V , denoted BpV q, is
the (smallest) superset of V such that

α, β P BpV q ùñ tαX β, αX βu Ă BpV q .

Definition 9.2 (Maximal disjoint decomposition). Let U be a set, and let V and D be finite sets of non-
empty subsets of U . D is said to be a disjoint decomposition of V if the elements of D are mutually disjoint,
D Ă BpV q, and

Ť

XPD

X “
Ť

APV

A. If no larger set fulfills those properties then D is said to be the maximal

disjoint decomposition of V .

Definition 9.3 (The MDTD problem). Given a set U and a set of subsets thereof, let V “ tA1, A2, ..., AMu.
Suppose that for each pair pAi, Ajq, we know which of the relations hold: Ai Ă Aj , Ai Ą Aj , Ai ‖ Aj . We
would like to compute the maximal disjoint decomposition of V .

Implementing an algorithm to solve this problem is easy when we are permitted to look into the sets
and partition the individual elements. Such access makes it easy to decide whether two given sets have an
intersection and to calculate that intersection. In some programming languages, Common Lisp included, a
type can be thought of as a set of (potential) values [Ans94, Section Type], Definition 2.1. In this case, set
decomposition is really type decomposition. In general, we are not granted access to the individual elements,
and we are not allowed to iterate over the elements, as the sets may be infinite. For the algorithm to work, we
must have operators to test for set-equality, disjoint-ness and subset-ness (subtype-ness). It turns out that if

183

we have an empty type and binary subset predicate, then it is possible to express predicates for equality and
disjointness in terms of them.

When attempting to implement an algorithm to solve the MDTD problem, the developer finds it necessary
to choose a data structure to represent type specifiers. Which ever data structure is chosen to represent types,
the program must calculate intersections, unions, relative complements, equivalence checks, and vacuity checks.
As discussed in Section 2.5, s-expressions (i.e. lists and symbols) are a valid choice of data structure and the
aforementioned operations may be implemented as list constructions and calls to the subtypep predicate.

As introduced in Chapter 5, another choice of data structure is the BDD. Using the BDD data struc-
ture along with the algorithms described in Chapter 5, we can efficiently represent and manipulate Common
Lisp type specifiers. We may programmatically represent Common Lisp types largely independent of the ac-
tual type specifier representation. For example, the following two type specifiers denote the same set of values:
(or number (and array (not vector))) and (not (and (not number) (or (not array) vector))), and
both are represented by the BDD as shown in Figure 9.1. Moreover, unions, intersections and relative com-
plements of Common Lisp type specifiers can be calculated using the reduction BDD manipulation rules also
explained in Chapter 5.

array

vector

nil t

number

t nil

Figure 9.1: BDD representing (or number (and array (not vector)))

Newton et al. [NDV16] presented this problem along with a brute force solution, which we summarize here in
Algorithm 9.1. Newton et al. noted that the algorithm had performance issues and more research was needed
to improve it. In the current chapter we summarize our efforts to improve the algorithm. We tried several
approaches which are as follows:

• The original, baseline, algorithm, shown in Section 9.1.

• Small optimizations in the baseline algorithm, explained in Section 9.2.

• Alternative SAT-like approach,explained Section 9.3.

• Alternative graph-based approach, explained in Section 9.4.

• Alternative data structure, the ROBDD, explained in Section 9.5.

• Alternative implementation of subtypep, explained in Section 9.6.

We implemented several algorithms using the approaches mentioned above and then compared the resulting
computation times. Some results of the analysis can be seen in Chapter 10.

9.1 Baseline set disjoint decomposition
This section presents a conceptually simple disjoint set decomposition algorithm which we will refer to as the
baseline algorithm. It was first presented at in [NDV16], where it was noted to have performance problems,
and it was suggested that more research was needed. We address those performance concerns in the following
sections.

The baseline algorithm is shown as pseudocode in Algorithm 6. This brute force algorithm is straightfor-
ward [DL15]. It heavily depends on the Common Lisp subtype and the Common Lisp functions shown in
Figure 2.10. A compelling feature of this algorithm is that it easily fits in only 40 lines of Common Lisp code.

The code in Appendix B shows the actual implementation. The code follows that shown in Algorithm 6 but
with a few optimizations added. In particular the ‖ relation tested on lines 6.4 and 6.10 has been memoized.
Additionally, lines 6.13 through 6.18 have been merged into a single operation.

A light examination of Algorithm 6 reveals that the computational complexity risks being Opn3q, where n
is the size of the given set of sets. There are two sources of this complexity. Line 6.4 is an Opn2q search for all
the elements of U which are disjoint from all other elements of U . Line 6.10 is another Opn2q search for a pair
of sets which are not disjoint. And these two loops are repeated by the while loop on line 6.3. This complexity
can be reduced.

There is another source of complexity which is less obvious. This hidden complexity lies in the fact that
the variables, D and U , in the pseudocode (and corresponding variables in the Common Lisp code) represent
sets. This means that when elements are added to the sets, uniqueness must be maintained, which is an Opn2q
or Opn logpnqq operation depending how it is implemented. This Opn2q (or Opn logpnqq) operation may be a
significant computation depending on the comparison function, which may be a simple pointer comparison in
some cases, or a tree search in other cases as will be seen.

184

Algorithm 6: Baseline function to find the maximal disjoint decomposition
Input: A finite non-empty set U of sets
Output: A finite set D of disjoint sets

6.1 begin
6.2 D ÐH

6.3 while true do
6.4 D1 Ð tu P U | u1 P Uztuu ùñ u ‖ u1u
6.5 D Ð D YD1

6.6 U Ð UzD1

6.7 if U “ H then
6.8 return D
6.9 else

6.10 Find X P U and Y P U such that X ∦ Y
6.11 if X “ Y then
6.12 U Ð UztY u

6.13 else if X Ă Y then
6.14 U Ð UztY u Y tY zXu

6.15 else if Y Ă X then
6.16 U Ð UztXu Y tXzY u
6.17 else
6.18 U Ð UztX,Y u Y tX X Y,XzY, Y zXu

6.19 return D

Notes about Algorithm 6:

Line 6.4: We find the set D1 of all elements of U which are disjoint from all other elements of U . Notice
that in line 6.4, if U is a singleton set, then D1 Ð U , thus U ÐH on line 6.6.

Line 6.4: This is of course an Opn2q search, and it is repeated each time through the loop headed on
line 6.3; the search therefore has Opn3q complexity. Part of the motivation for the algorithm
in Section 9.4 is to eliminate this Opn3q search.

Line 6.8: If U “ H then we have collected all the disjoint sets into D.

Line 6.10: This search is Opn2q.

Line 6.10: It is guaranteed that X and Y exist because |U | ą 1, and if all the elements of U were mutually
disjoint, then they would have all been collected in line 6.4.

Line 6.13: The case analysis here does the following: U Ð tX X Y,XzY, Y zXu Y UztHu. However, some
elements of tX X Y,XzY, Y zXu may be H or in fact X or Y depending on the subset relation
between X and Y , thus the three cases specialize the possible subset relations.

Line 6.14: If X Ă Y , then X X Y “ X and XzY “ H. Thus update U by removing Y , and adding Y zX.

Line 6.16: If Y Ă X, then X X Y “ Y and Y zX “ H. Thus update U by removing X, and adding XzY .

Line 6.18: Otherwise, update U by removing X and Y , and adding X X Y , XzY , and Y zX.

185

9.2 Small improvements in baseline algorithm
Algorithm 7 is an attempted improvement over the baseline algorithm, eliminating the Opn2q operation on line
6.4 by selecting an arbitrary element A on line 7.4. A is either disjoint from all other elements of U , or there is
a non-empty set I of all the elements of U which intersect A. An Opnq iteration on lines 7.6 and 7.5 determines
two sets I and D1, either of which may be empty. If I is empty, the consequence on line 7.9 is simply to add A
to the output set D. However, if I is non-empty, then the Opnq iteration on lines 7.11, 7.12, and 7.13 calculates
certain subsets of A and each element of I to add to U .

186

Algorithm 7: Improved complexity of baseline algorithm
Input: A finite non-empty set U of sets
Output: A finite set D of disjoint sets

7.1 begin
7.2 D ÐH

7.3 while U ‰ H do
7.4 αÐ any element of U
7.5 D1 Ð tu P U | u ‖ α, u ‰ αu
7.6 I Ð pUzD1qztαu
7.7 U Ð D1

7.8 if I “ H then
7.9 D Ð D Y tαu

7.10 else
7.11 for β P I do
7.12 C Ð tαX β, αzβ, βzαu z tHu
7.13 U Ð U Y C

7.14 return D

Notes about Algorithm 7:

Line 7.4: Here we choose some element of U . If the data structure representing U is a list, then taking
the first element is sufficient. This operation may appear simply to be a loop over the elements
of U , but keep in mind that U is modified each time through the while loop.

Line 7.6: I and D1 can be calculated as a single loop through U as a partition based on the ‖ relation.
This operation effectively partitions U into three sets, the singleton tαu, the elements of U
which intersect α, and the elements of U which are disjoint from α. I.e., U “ tαu \ I \D1

Line 7.6: Note that, depending on the implementation language and the data structures used, the cal-
culation needed to determine whether two sets intersect might involve actually calculating the
intersection. If this is the case, it is a good idea to save these intersections because they will
be useful later on line 7.13.

Line 7.7: Remove α from U , and remove from U everything that is non disjoint from α, leaving only the
elements which are disjoint from α.

Line 7.9: Add α to D. It is possible that α P D already, either in the same syntactic form or in some other
equivalent form. Therefore, a membership check should be made to avoid duplicate elements
in D. The implementation of this membership check depends on the data structure used to
represent these sets, and thus this check may be expensive.

Line 7.12: The set tαX β, αzβ, βzαu is the same as the set tαX β, αzpαX βq, βzpαX βqu. Depending on
the data structures used, one of these representations may be easier to compute than the other.

Line 7.12: The set C “ tαXβ, αzβ, βzαu z tHu may have cardinality precisely 1, 2, or 3. |C| “ 3 only in
the case that αX β, αzβ and βzα are all different and non-empty. However, it can (and often
does) happen that αzβ “ H (if α Ă β), βzα “ H (if α Ě β), or αzβ “ βzα “ H (if α “ β).
In any of these cases |C| ă 3. We are sure that |C| ą 0, because by construction α X β ‰ H.
Thus |C| P t1, 2, 3u.

187

9.3 Type disjoint decomposition as SAT problem
This problem of how to decompose sets, like those shown in Figure 8.1, into disjoint subsets as shown in
Figure 8.3 can be viewed as a variant of the well known Satisfiability Problem, commonly called SAT [HMU06].
The problem is this: given a Boolean expression in n variables, find an assignment (either true or false) for each
variable which makes the expression evaluate to true. This problem is known to be NP-Complete.

The approach is to consider the correspondence between the solutions of the Boolean equation:
A1 ` A2 ` ... ` AM , versus the set of subsets of A1 Y A2 Y ... Y AM . Just as we can enumerate the
2M ´1 “ 255 solutions of A1`A2` ...`AM , we can analogously enumerate the subsets of A1YA2Y ...YAM .

discard 0000 0000 A1 XA2 XA3 XA4 X A5 XA6 XA7 XA8
1 1000 0000 A1 XA2 XA3 XA4 X A5 XA6 XA7 XA8
2 0100 0000 A1 XA2 XA3 XA4 X A5 XA6 XA7 XA8
3 1100 0000 A1 XA2 XA3 XA4 X A5 XA6 XA7 XA8

... ...
254 1111 1110 A1 XA2 XA3 XA4 XA5 XA6 XA7 XA8
255 1111 1111 A1 XA2 XA3 XA4 XA5 XA6 XA7 XA8

Figure 9.2: Correspondence of Boolean true/false equation with Boolean set equation

If we assume M “ 8 as in Figure 8.1, the approach here is to consider every possible solution of the Boolean
equation: A1 ` A2 ` ... ` A8. There are 28 ´ 1 “ 255 such solutions, because every 8-tuple of 0’s and 1’s is a
solution except 0000 0000. If we consider the enumerated set of solutions: 1000 0000, 0100 0000, 1100 0000,
... 1111 1110, 1111 1111. We can analogously enumerate the potential subsets of the union of the sets shown
in Figure 8.3: A1 Y A2 Y A3 Y A4 Y A5 Y A6 Y A7 Y A8. Each subset is a potential solution representing an
intersection of sets in tA1, A2, A3, A4, A5, A6, A7, A8u. Such a correspondence is shown in Figure 9.2.

The only thing that remains is to eliminate the intersections which can be proven to be empty. For example,
we see in 8.1 that A1 and A7 are disjoint, which implies H “ A1 X A7, which further implies that every
line of Figure 9.2 which contains A1 and A7 is H. This eliminates 64 lines. For example line 255: H “

A1 XA2 XA3 XA4 XA5 XA6 XA7 XA8, and 63 other such lines.
In this, as in all SAT problems, some of these 28 possibilities can be eliminated because of known constraints.

The constraints are derived from the known subset and disjoint-ness relations of the given sets. Looking at
the Figure 8.1 we see that A5 Ă A8, which means that A5 X A8 “ H. So we know that all solutions, where
A5 “ 1 and A8 “ 0, can be eliminated. This elimination by constraint A5 X A8 “ H and the previous one,
A1 X A7 “ H, are each represented in the Boolean equation as a multiplication (Boolean multiply) by A1A7

and A5A8: pA1 `A2 `A3 `A4 `A5 `A6 `A7 `A8q ¨A1A7 ¨A5A8.
There are as many as 8ˆ7

2 “ 28 possible constraints imposed by pair relations. For each tX,Y u Ă
tA1, A2, A3, A4, A5, A6, A7, A8u:

Subset If X Ă Y , multiply the by constraint XY “ pX ` Y q

Superset If Y Ă X, multiply by the constraint XY “ pX ` Y q

Disjoint If X X Y “ H, multiply by the constraint XY “ pX ` Y q.

Otherwise no constraint.

A SAT solver will normally find one solution. That’s just how they traditionally work. But the SAT flow
can easily be extended so that once a solution is found, a new constraint can be generated by logically negating
that solution, allowing the SAT solver to find a second solution. For example, when it is found that 1111 0000
(corresponding to A1XA2XA3XA4XA5XA6XA7XA8) is a solution, the equation can thereafter be multiplied
by the new constraint pA1 A2 A3 A4 A5 A6 A7 A8q, allowing the SAT solver to find yet another solution if such
exists.

The process continues until there are no more solutions.
As a more concrete example of how the SAT approach works when applied to Common Lisp types, consider

the case of the three types array, sequence, and vector. Actually, vector is the intersection of array and
sequence.

First the SAT solver constructs (explicitly or implicitly) the set of candidates corresponding to the Lisp
types.

188

(and array sequence vector)
(and array sequence (not vector))
(and array (not sequence) vector)
(and array (not sequence) (not vector))
(and (not array) sequence vector)
(and (not array) sequence (not vector))
(and (not array) (not sequence) vector)
(and (not array) (not sequence) (not vector))

The void one (and (not array) (not sequence) (not vector)) can be immediately disregarded.
Since vector is a subtype of array, all types which include both (not array) and also vector can be

disregarded: (and (not array) sequence vector) and (and (not array) (not sequence) vector). Fur-
thermore, since vector is a subtype of sequence, all types which include both (not sequence) and also
vector can be disregarded. (and array (not sequence) vector) and (and (not array) (not sequence)
vector) (which has already been eliminated by the previous step). The remaining ones are:

(and array sequence vector) = vector
(and array sequence (not vector)) = nil
(and array (not sequence) (not vector)) = (and array (not vector))
(and (not array) sequence (not vector)) = (and sequence (not vector))

array

vector

sequence

Figure 9.3: Relation of vector, sequence, and array. vector is identically the intersection of array and
sequence.
The algorithm returns a false positive. Unfortunately, this set still contains the nil, empty, type (and array

sequence (not vector)). Figure 9.3 shows the relation of the Common Lisp types: array, vector, and
sequence. We can see that vector is the intersection of array and sequence. The algorithm discussed above
failed to introduce a constraint corresponding to this identity which implies that arrayXsequenceXvector “ H.

It seems the SAT algorithm greatly reduces the search space, but is not able to give the minimal answer.
The resulting types must still be tested for vacuity. This is easy to do, just use the subtypep function to test
whether the type is a subtype of nil. E.g., (subtypep ’(and array sequence (not vector)) nil) returns
t. There are cases where the subtypep will not be able to determine the vacuity of a set. Consider the example:
(and fixnum (not (satisfies oddp)) (not (satisfies evenp))).

9.4 Set disjoint decomposition as graph problem
One of the sources of inefficiency of Algorithm 6 explained in Section 9.1 is that at each iteration of the loop,
an Opn2q search is made to find sets which are disjoint from all remaining sets. This search can be partially
obviated if we employ a little extra book-keeping. The fact to realize is that if X ‖ A and X ‖ B, then we know
a priori that X ‖ AXB, X ‖ AzB, X ‖ BzA. This knowledge eliminates some of the useless operations.

In this section we present two similar variations of the algorithm, Algorithm 8 and Algorithm 9. An example
run of the algorithm is detailed in Appendix F.

189

Node Boolean expression

7 2

3

4

1

8

5

6

1 A1

2 A2

3 A3

4 A4

5 A5

6 A6

7 A7

8 A8

Figure 9.4: State 0: Topology graph
This algorithm is semantically similar to the baseline algorithm from Section 9.1, but rather than relying on

Common Lisp primitives to make decisions about connectivity of sets/types, it initializes a graph representing
the initial relationships, and thereafter manipulates the graph maintaining connectivity information. This
algorithm is more complicated in terms of lines of code, 250 lines of Common Lisp code as opposed to 40 lines
for the baseline algorithm.

This more complicated algorithm is presented here for two reasons. (1) It has much faster execution times,
especially for larger sets types. (2) We hope that presenting the algorithm in a way which obviates the need
to use Common Lisp primitives makes it evident how the algorithm might be implemented in a programming
language other than Common Lisp.

Figure 9.4 shows a graph representing the topology (connectedness) of the Venn diagram shown in Figure 8.1.
Nodes 1 , 2 , ... 8 in Figure 9.4 correspond respective to X1, X2, ... X8 in the same figure.

The algorithm commences by constructing a graph from a given set of subsets (Section 9.4.1), and proceeds
by breaking the green and blue connections, one by one, in controlled ways until all the nodes become isolated.
Sometimes it is necessary to temporarily create new connections when certain connections are broken as is seen
below. There are a small number of cases to consider as are explained in detail in Sections 9.4.2, 9.4.3, 9.4.4,
and 9.4.5. Repeat alternatively applying both tests until all the nodes become isolated.

There are several possible flows for the algorithm. We start by two alternative basic flows in Algorithms 8
and 9. We discuss other variations of these flows in Section 10.5.

Algorithm 8: DecomposeByGraph-1
Input: U : A finite non-empty set of sets, i.e. U has no repeated elements and no empty elements.
Output: The maximal decomposition of U

8.1 begin
8.2 GÐ ConstructGraphpUq
8.3 while G.blue or G.green do
8.4 for pX Ñ Y q P G.blue do
8.5 BreakRelaxedSubsetpG,X, Y q;
8.6 for tX,Y u P G.green do
8.7 BreakTouchingpG,X, Y q;

8.8 return G.disjoint

190

Algorithm 9: DecomposeByGraph-2
Input: U : A finite non-empty set of sets, i.e. U has no repeated elements and no empty elements.
Output: The maximal decomposition of U

9.1 begin
9.2 GÐ ConstructGraphpUq
9.3 while G.blue or G.green do
9.4 for pX Ñ Y q P G.blue do
9.5 BreakStrictSubsetpG,X, Y q;
9.6 for tX,Y u P G.green do
9.7 BreakTouchingpG,X, Y q;
9.8 for pX Ñ Y q P G.blue do
9.9 BreakLooppG,X, Y q;

9.10 return G.disjoint

9.4.1 Graph construction
To construct this graph, first eliminate duplicate sets. I.e., if X Ă Y and X Ě Y , then discard either X or
Y . It is necessary to consider each pair pX,Y q of sets, which gives an Opn2q loop. Algorithm 10 describes the
graph construction and uses functions defined in Algorithms 12, 13, 14, and 15.

Sometimes the relation of two sets cannot be determined. Such cases must be interpreted as follows:

• A blue arrow between two nodes means a subset relation.

• Neither blue arrow nor green line between two nodes means the disjoint relation.

• A green line between two nodes means the sets may touch.

Algorithm 12: AddGreenLine
Input: G: a graph
Input: X: a node of G
Input: Y : a node of G
Side Effects: Modifies G adding a green line between X and Y

12.1 begin
12.2 Push tX,Y u onto G.green
12.3 Push X onto Y.touches
12.4 Push Y onto X.touches

Algorithm 13: DeleteGreenLine
Input: G, a graph
Input: X: a node of G
Input: Y : a node of G
Side Effects: Modifies G deleting the green line between X and Y . Perhaps extends G.disjoint and

shortens G.nodes.
13.1 begin
13.2 Remove tX,Y u from G.green
13.3 Remove X from Y.touches
13.4 Remove Y from X.touches
13.5 MaybeDisjointNodepG,Xq
13.6 MaybeDisjointNodepG, Y q

191

Algorithm 10: ConstructGraph
Input: A finite non-empty set U of sets, i.e. U has no repeated elements.
Output: A graph, G, in particular a set of blue ordered edges and green ordered edges. The nodes of

nodes of G are some (or all) of the elements of U
10.1 begin
10.2 G.blueÐH

10.3 G.greenÐH

10.4 G.nodesÐ set of labeled nodes, seeded from U
10.5 G.disjointÐH

10.6 for tX,Y u Ă U do
10.7 if X Ă Y then
10.8 AddBlueArrowpG,X, Y q
10.9 else if X Ě Y then

10.10 AddBlueArrowpG, Y,Xq
10.11 else if X ∦ Y then
10.12 AddGreenLinepG,X, Y q
10.13 else if X ‖ Y then
10.14 Nothing
10.15 else
10.16 AddGreenLinepG,X, Y q

10.17 for α P G.nodes do
10.18 MaybeDisjointNodepG,αq

10.19 return G

Notes about Algorithm 10:

Line 10.2: G.blue will contain the set of blue arrows between certain nodes. Each element of G.blue is an
ordered pair specifying the origin and destination of an arrow.

Line 10.3: G.green will contain the set of green lines between certain nodes. Each element of G.green is
an unordered pair (with set semantics) of nodes.

Line 10.4: G.nodes is a set of labeled nodes. Initially G.nodes is the set of all nodes in the graph.
The algorithm (or) continues until G.nodes is H. Each labeled node is a record with fields
tlabel, subsets, supersetsu. The label represents the Boolean expression for the subset in ques-
tion. Originally this label is identically the element coming from U , but at the end of the
algorithm, this label has become a Boolean combination of some elements of U .

Line 10.5: G.disjoint will contain the set of nodes, once they have become disjoint from all other nodes in
the graph. Initially G.disjoint is H but eventually, when G.nodes becomes H, G.disjoint will
have become the complete set of disjoint nodes.

Line 10.6: Notice that X ‰ Y because tX,Y u is a two element set.

Line 10.6: Notice that once tX,Y u has been visited, tY,Xu cannot be visited later, because it is the same
set.

Line 10.16: This final Else clause covers the case in which it is not possible to determine whether X Ă Y
or whether X ‖ Y . In the worst case, they are non-disjoint, so draw a green line between X
and Y .

192

Algorithm 11: MaybeDisjointNode
Input: G: a graph
Input: X: a node of G
Side Effects: Perhaps modifies G.nodes and G.disjoint.

11.1 begin
11.2 if X.label “ H then
11.3 Delete X from G.nodes

11.4 else if H “ X.touches “ X.supersets “ X.subsets then
11.5 Delete X from G.nodes
11.6 Push X onto G.disjoint

Notes about Algorithm 11:

Line 11.2: Section 9.4.6 explains in more detail, but here we simply avoid collecting the empty set.

Line 11.6: This push should have set-semantics. I.e., if there is already a set in G.disjoint which is
equivalent to this one, then do not push a second one.

Algorithm 14: AddBlueArrow
Input: G: a graph
Input: X: a node of G
Input: Y : a node of G
Side Effects: Modifies G adding a blue arrow from X to Y

14.1 begin
14.2 Push pX Ñ Y q onto G.blue
14.3 Push X onto Y.subsets
14.4 Push Y onto X.supersets

Algorithm 15: DeleteBlueArrow
Input: G: a graph
Input: X: a node of G
Input: Y : a node of G
Side Effects: Modifies G removing the blue arrow from X to Y . Perhaps extends G.disjoint and

shortens G.nodes
15.1 begin
15.2 Remove pX Ñ Y q from G.blue
15.3 Remove X from Y.subsets
15.4 Remove Y from X.supersets
15.5 MaybeDisjointNodepG,Xq
15.6 MaybeDisjointNodepG, Y q

This construction assures that no two nodes have both a green line and a blue arrow between them.
There is an important design choice to be made: How to represent transitive subset relationships? There

are two variations. We call these variations implicit-inclusion vs. explicit-inclusion.
The graph shown in Figure 9.4 uses explicit-inclusion. In the graph A5 Ă A8 Ă A1. The question is whether

it is necessary to include the blue arrow from 5 to 1 . Explicit inclusion means that all three arrows are
maintained in the graph: 5 to 8 , 8 to 1 and explicitly 5 to 1 . Implicit-inclusion means that the arrow
from 5 to 1 is omitted.

The algorithm which we explain in this section can be made to accommodate either choice as long as the
choice is enforced consistently. Omitting the arrow obviously lessens the number of arrows which have to be
maintained, but makes part of the algorithm more tedious.

As far as the initialization of the graph is concerned, in the variation of implicit-inclusion, it is necessary to
avoid creating arrows (or remove them after the fact) which are implicit.

193

9.4.2 Strict subset
Before After

0

Y

2

1

X

3 0

Y

2

1

X

3

Node Relabeled Boolean expression
X X
Y Y XX

Figure 9.5: Strict subset before and after mutation

Algorithm 16: BreakStrictSubset: Breaks a strict subset edge if possible
Input: G is a graph.
Input: X: a node in G
Input: Y : a node in G
Output: G
Side Effects: Possibly deletes a vertex and changes a label.

16.1 begin
16.2 if Y R X.supersets then
16.3 Nothing
16.4 else if X.subsets ‰ H then
16.5 Nothing
16.6 else if X.touches ‰ H then
16.7 Nothing
16.8 else
16.9 Y.labelÐ Y XX

16.10 DeleteBlueArrowpG,X, Y q

16.11 return G

As shown in Algorithm 16, blue arrows indicate subset/superset relations; i.e. they point from a subset to
a superset. A blue arrow from X to Y may be eliminated if the following conditions are met:

• X has no blue arrows pointing to it, and

• X has no green lines touching it.

These conditions mean that X represents a set which has no subsets elsewhere in the graph, and also that
X represents a set which touches no other set in the graph.

There are as many as 8¨7
2 “ 28 possible constraints imposed by pair relations. For each tX,Y u Ă

tA1, A2, A3, A4, A5, A6, A7, A8u:
Figure 9.5 illustrates this mutation. Node Y may have other connections, including blue arrows pointing

to it or from it, and green lines connected to it. However node X has no green lines connected to it, and no
blue arrows pointing to it; although it may have other blue arrows pointing away from it.

On eliminating the blue arrow, replace the label Y by Y XX.
In Figure 9.4, nodes 5 and 6 meet this criteria. A node, such as 5 may have multiple arrows leaving it.

Once the final such arrow is broken, the node becomes isolated.

194

X Y

0

Figure 9.6: Subtle case
The restriction, that the node X have no green line touching it, is subtle. Consider the graph in Figure 9.6.

If either the blue arrow from X to 0 or the blue arrow from Y to 0 is broken by the rule Strict subset, then
the other of the two arrows becomes incorrect. Therefore, we have the restriction for the Strict subset rule that
X and Y have no green lines connecting to them. The Relaxed subset condition is intended to cover this case.

In the variation of implicit-inclusion it is necessary to add all the superclasses of Y to become also superclasses
of X. This means for each blue arrow from Y to n in the graph, we must add blue arrows leading from X

to n . In the example 9.5, if we were using implicit-inclusion, the arrow from X to 2 would be missing, as it
would be implied by the other arrows. Therefore, the blue arrow from X to 2 would need to be added in the
After graph of Figure 9.5.

9.4.3 Relaxed subset
Before After

5 0 Y 1

2

4 X 3

5 0 Y 1

2

4 X 3

Node Relabeled Boolean expression
X X
Y Y XX

Figure 9.7: Relaxed subset before and after mutation. The blue arrow from X to Y has been eliminated, and
the blue arrow from 3 to Y has been converted to a green line because X and 3 are connected with a green line.

Algorithm 17 is similar to the Strict subset algorithm except that the subset node X is allowed to touch
other nodes. But special attention is given if X touches a sibling node; i.e. if X has a green line connecting it
to an intermediate node which also has a blue arrow pointing to Y . This case is illustrated in the Before graph
in Figure 9.7. This graph can be mutated to the After graph shown in Figure 9.7.

The node label transformations for this case are exactly the same as those for the Strict subset condition.
The only different consequence is that sometimes a blue arrow must be transformed into a green line. Each blue
arrow connecting a node to Y (such as one connecting 3 Ñ Y in before graph Before graph of Figure 9.7)
which is also connected to X by a green line must be transformed from a blue arrow to a green line as shown
in the After graph.

In the variation of implicit-inclusion it is necessary to add blue arrows representing all the transitive super-
class relations. This means in the graph, for each blue arrow from Y to n , we must add blue arrows leading
from X to n and also from 3 to n . In the example 9.7, if we were using implicit-inclusion, the arrows from
X to 2 and from 3 to 2 would be missing as they would be implied by the other arrows. Therefore, the blue
arrows from X to 2 and from 3 to 2 would need to be added in the After graph.

195

Algorithm 17: BreakRelaxedSubset Breaks a subset relation and some other subset relations to
the common superset
Input: G: a graph
Input: X: a node in G
Input: Y : a node in G
Output: G
Side Effects: Perhaps changes a label, and some blue vertices removed or converted to green.

17.1 begin
17.2 if Y R X.supersets then
17.3 Nothing
17.4 else if X.subsets ‰ H then
17.5 Nothing
17.6 else
17.7 Y.labelÐ Y XX
17.8 for α P pX.touchesX Y.subsetsq do
17.9 AddGreenLinepG,α, Y q

17.10 DeleteBlueArrowpG,α, Y q

17.11 DeleteBlueArrowpG,X, Y q

17.12 return G

Notes about Algorithm 17:

Line 17.8: α iterates over the intersection of X.touches and Y.subsets.

Line 17.10: Be careful to add and delete in that order. Reversing the order may cause the function
DeleteBlueArrow to mark the node as disjoint via a call to MaybeDisjointNode.

9.4.4 Touching connections
Before After

0 X Y

3

1

2

4

0 X

3

Y 1

2

Z

4

Node Relabeled Boolean expression
X X X Y
Y X X Y
Z X X Y

Figure 9.8: Touching connections before and after mutation
Green lines indicate partially overlapping sets. A green line connecting X and Y may be broken if the

following condition is met:

• Neither X nor Y has a blue arrow pointing to it; i.e. neither represents a superset of something else in
the graph.

Eliminating the green line separates X and Y . To do this X and Y must be relabeled and a new node must be
added to the graph. Algorithm 18 explains this procedure.

196

Algorithm 18: BreakTouching
Input: G: a graph
Input: X: a node in G
Input: Y : a node in G
Output: G
Side Effects: Perhaps removes some vertices from G, and adds new nodes and vertices.

18.1 begin
18.2 if Y R X.touches then
18.3 Nothing
18.4 else if X.subsets ‰ H then
18.5 Nothing
18.6 else if Y.subsets ‰ H then
18.7 Nothing
18.8 else
18.9 Z Ð G.AddNodepq

18.10 Z.labelÐ X X Y

18.11 pX.label, Y.labelq Ð pX X Y , Y XXq
18.12 for α P pX.supersetsY Y.supersetsq do
18.13 AddBlueArrowpG,Z, αq

18.14 for α P pX.touchesX Y.touchesq do
18.15 AddGreenLinepG,Z, αq

18.16 DeleteGreenLinepG,X, Y q
18.17 MaybeDisjointNodepG,Zq

18.18 return G

Notes about Algorithm 18:

Line 18.11: This is a parallel assignment. I.e., calculateXXY and Y XX before assigning them respectively
to X.label and Y.label.

Line 18.10: Introduce new node labeled X X Y .

Line 18.12: Blue union; draw blue arrows from this node, X X Y , to all the nodes which either X or Y
points to. I.e., the supersets of X X Y are the union of the supersets of X and of Y .

Line 18.14: Green Intersection; draw green lines from X X Y to all nodes which both X and Y connect to.
I.e. the connections to X X Y are the intersection of the connections of X and of Y .

Line 18.15: Exception, if there is (would be) a green and blue vertex between two particular nodes, omit
the green one.

Line 18.16: Be careful to add and delete in that order. Calling DeleteGreenLine before AddGreenLine
cause the function DeleteGreenLine to mark the node as disjoint via a call to
MaybeDisjointNode.

197

Figure 9.8 illustrates the step of breaking such a connection between nodes X and Y by introducing the
node Z .

9.4.5 Loops
Before After

X Y

3 6 4

2 5

1

X Y

3 6 4

2 Z 5

1

Node Relabeled Boolean expression
X X X Y
Y Y
Z X X Y

Figure 9.9: Graph meeting the loop condition
This step can be omitted if one of the previous conditions is met: either strict subset or touching connection.

The decision of whether to omit this step is not a correctness question, but rather a performance question which
is addressed in Section 10.5.

As is detailed in Algorithm 19, a green line connecting X and Y may be removed if the following conditions
are met:

• X has no blue arrow pointing to it.

• Y has at least one blue arrow pointing to it.

The rare necessity of this operation arises in graphs such as the green line connecting X and Y in Figure 9.9.
To eliminate this green line, proceed by splitting node X into two nodes: the part that is included in set Y
and the part that is disjoint from set Y . The result of the mutation is shown in the After graph.

• Remove the green line between X and Y .

• Create a new node Z copying all the green and blue connections from X .

• Create a blue arrow from Z to Y , because Z “ X X Y Ă Y .

• Create a blue arrow from Z to X , because Z “ X X Y Ă X.

• Z Ð X X Y ; i.e. label the new node.

• X Ð X X Y ; i.e. relabel X .

• For each node n , which is a parent of either X or Y (union), draw a blue arrow from Z to n .

This graph operation effectively replaces the two nodes X and Y with the three nodes X X Y , X X Y , and
Y . This is a reasonable operation because X Y Y “ X X Y YX X Y Y Y .

198

Algorithm 19: BreakLoop
Input: G: a graph
Input: X: a node in G
Input: Y : a node in G
Output: G
Side Effects: May remove some of its green vertices, and adds new nodes and blue vertices.

19.1 begin
19.2 if Y R X.touches then
19.3 Nothing
19.4 else if X.subsets ‰ H then
19.5 Nothing
19.6 else if Y.subsets “ H then
19.7 Nothing
19.8 else
19.9 Z Ð G.AddNodepq

19.10 Z.labelÐ X X Y

19.11 X.labelÐ X X Y
19.12 for α P X.touches do
19.13 AddGreenLinepG,Z, αq

19.14 for α P pX.supersetsY Y.supersetsq do
19.15 AddBlueArrowpG,Z, αq

19.16 AddBlueArrowpG,Z, Y q
19.17 AddBlueArrowpG,Z,Xq
19.18 DeleteBlueArrowpG,X, Y q

19.19 return G

9.4.6 Discovered empty set

Name Definition

2

3

1

A1 t1, 2, 3, 4u

A2 t1, 2, 3, 5u

A3 t1, 2, 3, 6u

Figure 9.10: Setup for Discovered Empty Set
During the execution of the algorithm, it may happen that derived sets are discovered to be empty. This

occurrence is a consequence of the semantics of the green lines and blue arrows. Recall that a green line
connecting two nodes indicates that the corresponding sets are not known to be disjoint. A consequence of this
semantic is that two nodes representing sets which are not yet known to be disjoint are connected by a green
line. When the intersection of the two sets is eventually calculated, the intersection will be found to be empty.

199

Before After

2

3

1 2

3

41

Node Relabeled Set
A1 “ t4u A3 XA2
A2 “ t5u A3 XA2
A3 “ t1, 2, 3, 6u A3
A4 “ t1, 2, 3u A1 XA2

Figure 9.11: Connection between disjoint sets
Before After

2

3

41 2 4

5

1

3

Node Relabeled Set
A1 “ t4u A1
A2 “ t5u A2 XA3
A3 “ t1, 2, 3, 6u A2 XA3
A4 “ t1, 2, 3u A4
A5 “ H A2 XA3

Figure 9.12: Discovered Empty Set

Example 9.4 (Discovered empty set). Consider the definitions and graph shown in Figure 9.10. If we break
the connection between node 1 and 2 , the configuration in Figure 9.11 results. The resulting graph shows
three green lines, connecting 1 and 3 , connecting 2 and 3 , and connecting 4 and 3 .

The next step does not cause a problem in the semantics of the representation, but rather it is a performance
issue. Figure 9.12 shows the result of breaking the green line connecting 2 and 3 . Node 2 becomes isolated
which correctly represents the set t5u, and 5 is derived which represents H.

The semantics are preserved because
5
Ť

n“1
An “ t1, 2, 3, 4, 5u, and the isolated nodes 2 and 5 represent

disjoint sets: t5u ‖ H. However, there is a potential performance issue, because it is possible that some of the
isolated sets are empty. At some point a vacuity check must be made on these derived sets.

200

Name Definition

2 3

1
A1 t1, 2, 3, 4u

A2 t1, 2, 3u

A3 t4u

Figure 9.13: Setup for Discovered Equal Sets

Another case where a set may be discovered to be empty is when the relative complement is performed
between a superset and subset. If the two sets are actually equal (recall that A “ B ùñ A Ă B) then the
relative complement is empty, (A “ B ùñ AXB “ H).

Before After

2 3

1

2 3

1

Node Relabeled Set
A1 “ t4u A1 XA2
A2 “ t1, 2, 3u A2
A3 “ t4u A3

Figure 9.14: Connection between equal sets
Before After

2 3

1

2 3

1

Node Relabeled Set
A1 “ H A1 XA3
A2 “ t1, 2, 3u A2
A3 “ t4u A3

Figure 9.15: Connection between equal sets

Example 9.5 (Situation leading to isolated nodes representing H.). Consider the definitions and graph shown
in Figure 9.13. In Figure 9.14 we break the blue arrow from 2 to 1 , then a blue arrow remains from 3 to 1 ,
which represents a set which is a subset of itself. As in Example 9.4, this is not an error in the semantics of
the representation, but rather a performance problem. In Figure 9.15 we break the connection from 3 to 1

resulting in three isolated nodes representing the sets H, t1, 2, 3u, and t4u which are three disjoint sets whose
union is t1, 2, 3, 4u, as expected.

Since intersection and relative complement operations may result in the empty set, as illustrated in Exam-
ples 9.4 and 9.5, the implementation of the set disjoint decomposition algorithm must take this possibility into

201

account. There are several possible approaches.

Late check: The simplest approach is to check for vacuity once a node has been disconnected from the
graph. Once a node has no touching nodes, no subset nodes, and no superset nodes, it
should be removed from the graph data structure, checked for vacuity, and then discarded,
if empty.

Correct label: Test for H each time a label of a node changes, i.e., it thereafter represents a smaller set
than before.

Correct connection: Each time the label of a node changes, i.e. it thereafter represents a smaller set than before,
all of the links to neighbors (green lines and blue arrows) become suspect. I.e., when a label
changes, re-validate all the touching, subset, and superset relationships and update the blue
arrows and green lines accordingly.

The choice of data structure used for the algorithm may influence how expensive the vacuity check is, and
thus may influence which approach should be taken.

X 1

2

3

Figure 9.16: Discovered empty set.
When a node, such as X in Figure 9.16, is discovered to represent the empty set, its connections must be

visited.

Touching node: A green line connecting the node to another node can be deleted, because the empty set is
disjoint from every set including from the empty set. In Figure 9.16 if X is discovered to
represent H, then the green line between X and 1 can simply be deleted.

Superset: A blue arrow from the node to another node may be deleted. In Figure 9.16 if X is discovered to
represent H, then the blue arrow from X to 2 can be deleted. This is because if we attempted
to relabel A2 as A2 XX we’d result again with A2 because A2zH “ A2.

Subset: A blue arrow from another node to the node in question can be removed, and the other node can
be inferred to represent the empty set. Thus the empty set reduction can be applied recursively
to that node. In Figure 9.16 if X is discovered to represent H, then we know that A3 Ă H and
thus A3 “ H. This means we can delete the blue arrow from 3 to X , and then recursively
apply the reduction to 3 .

9.4.7 Recursion and order of iteration
It is natural to wonder whether the order in which the nodes are visited may have an effect on the execution
time of the algorithm. The manner in which the traversal order affects the calculation performance has been
investigated and is explained in Section 10.5.

Our implementation represents nodes of the graph as objects, where each node object has three slots con-
taining lists of subset, superset, and touching nodes. Thus graph reduction, in our implementation, involves
iterations over the nodes until they loose all their connections.

An alternate implementation might as well represent connections as objects, thus allowing the reduction
algorithm to directly iterate over the connections until they are eliminated. We have not investigated this
approach.

Given that our algorithm is required to visit each node, there are several obvious strategies to choose the
order of iteration. This boils down to sorting the list of nodes into some order before iterating over it. We have
investigated five such strategies.

202

SHUFFLE: Arrange the list into random order.

INCREASING-CONNECTIONS: Sort the nodes into order of increasing number of connections; i.e., number of
touching nodes plus the number of subset nodes plus the number of superset
nodes.

DECREASING-CONNECTIONS: Sort the nodes into order of decreasing number of connections.

BOTTOM-TO-TOP: Sort into increasing order according to number of superset nodes. This sort as-
sumes supersets are explicitly represented in the connections, because a subset
node will also contain connections to the supersets of its direct supersets.

TOP-TO-BOTTOM: Sort into decreasing order according to number of superset nodes.

All of the graph operations described in Section 9.4 depend on a node not having subset nodes. An additional
detail of the strategy, which can be (and has been) employed in addition to the node visitation order, is whether
to recursively apply the reduction attempts to subset nodes before superset nodes. I.e., while iterating over
the nodes, would we recursively visit subset nodes? The hope is that a node is more likely to be isolate-able
if we attempt to break subclass relations directly when encountered, rather than treating the nodes when they
appear in the visitation order.

9.5 Type decomposition using BDDs
See Chapter 5 for a discussion of Binary Decision Diagrams.

Using BDDs in these algorithms allows certain checks to be made more easily than with the s-expression
approach. For example, two types are equal if they are the same object (pointer comparison, eq). A type is
empty if it is identically the empty type (pointer comparison). Finally, given two types (represented by BDDs),
the subtype check can be made using the function in Implementation 9.6.

Implementation 9.6 (bdd-subtypep).

(defun bdd-subtypep (bdd-sub bdd-super)
(eq * bdd-false *

(bdd-and-not bdd-sub bdd-super)))

This implementation of bdd-subtype should not be interpreted to mean that we have obviated the need for
the Common Lisp subtypep function. In fact, subtypep is still useful in constructing the BDD itself. However,
once the BDDs have been constructed and cached, subtype checks may at that point avoid calls to subtypep,
which, in some cases, might otherwise be more computationally intensive.

To decompose a set of types using the BDD approach we start with the list of type specifiers, eliminate the
ones which specify the empty type, and proceed as follows.

Seed the set, S, with one of the types. Iterate t1 through the remaining types, represented as BDDs. For
each t1, iterate t2 through the elements of S. Calculate a slice–set of at most three elements by calculating
tt1X t2, t1X t2, t1X t2uX tHu, discarding any that are the empty type and accumulating the non-empty types.
After t2 has traversed completely through S, replace S by the union of the slice–sets, and proceed with the
next value of t1. When calculating this union of slice–sets, it is important to guard against duplicate elements
as some slice–sets may contain common elements. After t1 finishes iterating through the given set of types, S
remains the type decomposition.

The Common Lisp function in Implementation 9.7 is coded elegantly using the reduce function.
There are a couple of subtle points about the algorithm. At NOTE-A, we ask whether the intersection of A

and B is the empty type (A ‖ B), because then we don’t need to calculate AzB and BzA as we know that
AzB “ A and BzA “ B. Thus we simply add B to the set being accumulated.

At NOTE-B, we have discovered that intersection of A and B is non empty (A ∦ B), so we augment the set
with at most 3 types. Looking at tA X B,AzB,BzAuztHu; we remove duplicates as some of them might be
equal. In this case we provide nil as the value for all-disjoint? in the next iteration of reduce, because
we’ve found something A is not disjoint with.

203

Implementation 9.7 (mdtd-bdd).

(defun mdtd-bdd (type-specifiers)
(let ((bdds (remove-if #' bdd-empty-type (mapcar #'ltbdd type-specifiers))))

(labels
((try (bdds disjoint-bdds &aux (bdd-a (car bdds)))

(cond
((null bdds)

disjoint-bdds)
(t

(flet
((reduction (acc bdd-b &aux (bdd-ab (bdd-and bdd-a bdd-b)))

(destructuring-bind (all-disjoint ? bdd-set) acc
(cond

((bdd-empty-type bdd-ab) ;; NOTE-A
(list all-disjoint ? (adjoin bdd-b bdd-set)))

(t ;; NOTE-B
(list nil

(union (remove-duplicates
(remove-if #' bdd-empty-type

(list bdd-ab
(bdd-and-not bdd-a bdd-ab)
(bdd-and-not bdd-b bdd-ab))))

bdd-set)))))))
(destructuring-bind (all-disjoint ? bdd-set)

(reduce #' reduction (cdr bdds) : initial-value '(t nil))
(try bdd-set

(if all-disjoint ?
(pushnew bdd-a disjoint-bdds)
disjoint-bdds))))))))

(try bdds nil))))

Using BDDs in this algorithm allows certain checks to be made easily. For example, two types are equal
if they are the same object (pointer comparison). A type is empty if it is identically the empty type (pointer
comparison). Two BDDs which share equal common subtrees, actually share the objects (shared pointers).

9.5.1 Improving the baseline algorithm using BDDs
We may revisit the algorithms described in Sections 9.1, 9.4, and 9.3, but this time use the BDD as the data
structure to represent the Common Lisp type specifications rather than using the s-expression.

The algorithm (see Appendix C) initializes one variable, U , to the given set of types, and another variable,
D, to the empty set. A loop is repeated until U is the empty set, at which time D is the set of disjoint types.

Each iteration through the loop involves a single call to Common Lisp reduce. Each call to reduce chooses
one fixed element, called A, and reduce iterates B over the rest of the set. At each iteration, the intersection
A X B is calculated. If A X B “ H, then V “ V Y tBu, else V “ V Y tA X B,AzB,BzAuztHu. If after the
iteration (i.e., after reduce returns), it is discovered that AXB was empty for each value of B, then accumulate
D “ D Y tAu. And in either case set U “ V and repeat the loop until U becomes empty.

9.5.2 Improving the graph-based algorithm using BDDs
We re-implemented the graph algorithm described in Section 9.4. The implementation is roughly 200 lines of
generic Clos Common Lisp code plus 30 lines of BDD specific code–roughly 5 times the size of the brute force
algorithm described in Section 9.1. No doubt, this algorithm could be written more concisely, but the Clos
implementation easily allows both the s-expression based and the BDD based code to use the same base code.
The differences exist only in the code pertaining to the classes sexp-node and sexp-graph in the case of the
s-expression based solution and node-of-bdd and bdd-graph in the case of the BDD based solution.

The skeleton of the code, mdtd-bdd-graph, is straightforward and is shown in Appendix D including sub-
section D.12.

204

9.6 The Baker subtypep implementation
Baker [Bak92] noted that some implementations of Common Lisp have inefficient implementations of the
subtypep [Ans94] function which are both slow and also fail to determine some subtype relations which are
computable. The subtypep function is permitted to return nil,nil in certain cases, indicating don’t-know.
The most obvious such case is when the subtype relation is genuinely uncomputable in some cases involving
satisfies; e.g., (subtype ’(satisfies F) ’(satisfies G)). However, some subtype questions involving
satisfies are computatable; e.g. (subtypep ’(and number (satisfies F)) ’(satisfies F)).

Another reason Common Lisp implementations chose to return don’t-know is when the calculation might
take an excessively long time to calculate. Such abuse is permitted by the Common Lisp specification in cases
involving and, eql, the list form of function, member, not, or, satisfies, or values.

Baker outlined an efficient procedure which he claims computes the subtype relation in every case where such
computation is possible. Valais [Val18] implemented a subset of the Baker procedure in SBCL. Even though the
implementation is incomplete, and not yet thoroughly tested, we made a very simple implementation function
for testing. The functions mdtd-bdd-graph-baker and mdtd-graph-baker implement the BDD and non BDD
version of the algorithm explained in Section 9.5.2. The only difference between the Baker and non-Baker
versions are the binding of the global variable *subtypep* to either baker:subtypep or cl:subtypep.

205

Chapter 10

Performance of MDTD Algorithms

In Chapter 9, Sections 9.1, 9.4, and 9.3 explained three different algorithms for calculating type decomposition.
Now we look at some performance characteristics of variants of the algorithms. Section 10.1 describes what
the tests include. Section 10.2 describes content and construction of data sets, which we call pools, used in
the tests. Section 10.4 describes experiments to determine which hash table strategy to use, based on the run-
time performance of each. Section 10.5 describes how the tuning parameters were selected for the optimized
BDD based graph algorithm. Section 10.6 describes the relative performance of the baseline algorithm from
Section 9.1 using (1) its s-expression based implementation and also (2) its BDD based implementation; the
graph based algorithm from Section 9.5.2 including (3) its s-expression based implementation, (4) its BDD
based implementation and (5) the SAT like algorithm from Section 9.3.

10.1 Overview of the tests
The performance tests start with a list of type specifiers, randomly selected from a pool, each time with a
randomly select number of type specifiers, and then call one or more of the functions to calculate the MDTD
and record the time of each calculation or, in some cases, record the profiler data. We have plotted results of
the runs which completed, as opposed to those which timed out. This omission of data points of timed-out
experiments does not, in any way, affect the presentation of which algorithms were the fastest on each test.

We have shared access to a cluster of Intel XeonTM E5-2620 2.00GHz 256GB DDR3 machines. The tests
were performed on this cluster, using SBCL 1.3.0 ANSI Common Lisp.

We attempted to plot the results many different ways: time as a function of input size, number of disjoint
sets in the input, number of new types generated in the output. The plot which we found heuristically to show
the strongest visual correlation was ’calculation time vs. the product size’.

Definition 10.1. When running a single MDTD algorithm to calculate a disjoint set of types of cardinality,
u, given a possibly overlapping set of type specifiers of cardinality v, we define the product size as the integer
product of the number of given input types multiplied by the number of calculated output types.

product size “ u ¨ v

Example 10.2 (Calculation of product size).
If an MDTD algorithm takes a list of v “ 5 type specifiers and computes u “ 3 disjoint types in 0.1 seconds,
the plot contains a point at pu ¨ v, 0.1q “ p15, 0.1q.

Although we don’t claim to completely understand why this particular plotting strategy shows better cor-
relation than the others we tried, it does seem that all the algorithms begin a Opn2q loop by iterating over the
given set of types which is incrementally converted to the output types. So the algorithms, in some sense, finish
by iterating over the output types. More research is needed to better understand the correlation.

The plots are generally subject to a high degree of noise, so in this report we have chosen to display
smoothened renditions of the plots. The plots in Figure 10.1 show an example of data actually measured and
the same data after the smoothing procedure was run. In these particular plots we display the calculation time

206

of five variants of the algorithms vs. product size (Definition 10.1). The given set of type specifiers are taken
from the pool, subtypes of number (Section 10.2.1).

101 102 103

10´4

10´3

10´2

10´1

100

Subtypes of NUMBER

101 102 103

10´4

10´3

10´2

10´1

Subtypes of NUMBER

Figure 10.1: Run-time performance of MDTD algorithms applied to the pool consisting of subtypes of num-
ber. The plots show the measured data (left) and smoothened data (right). Each plot is displayed with
y=‘Computation Time (seconds)’ vs. x=‘Product Size’.

The algorithm for smoothening is as follows. The y-coordinate of each point, px0, y0q is replaced by the
arithmetic mean of the y-coordinates of all the points whose x-coordinate, x is within the range x0

2 ď x ď 2 ¨x0,
as shown in Implementation 10.3.

Implementation 10.3 (smoothen).

(defun smoothen (xys &key (radius 2))
(flet ((mean (xs)

(/ (reduce #'+ xs : initial-value 0.0)
(float (length xs))))

(x-coord (point)
(car point))

(y-coord (point)
(cadr point)))

(loop :for xy :in xys
:for x0 = (car xy)
:for close = (loop :for pt :in xys

:when (<= (/ x0 radius)
(x-coord pt)
(* x0 radius))

: collect (y-coord pt))
: collect (list x0 (mean close)))))

Other types of means (such as a geometric mean) and other radii are, of course, possible. We did not
experiment with other approaches because we only use the smooth plots for display purposes. All meaningful
calculations pertaining to the plots were performed with the measured data.

10.2 Pools of type specifiers used in performance testing
In this section, Section 10.2, the reader may notice that although we consider many different kinds of Common
Lisp type specifiers, we conspicuously ignore function types such as (function (string) integer). This
omission is not accidental. In Section 2.7 we explain several issues related to function types in Common Lisp.

207

We made the explicit decision, in light of these problems, to omit consideration of function types from our
testing of the MDTD algorithms.

It has been observed that different sets of initial types evoke different performance behavior from the various
algorithms. Further research is needed to explain and characterize this behavior. It would be ideal if, from a
given set of types, it were possible to predict, with some amount of certainty, the time required to calculate the
type decomposition. Currently, this is not possible. What we have done instead is put together several sets of
types which can be used as pools or starting sets for the decomposition.

The pools used in the experiments and whose results are illustrated in Figure 10.8 are explained in the
following sections.

10.2.1 Pool: Subtypes of number

This pool contains the type specifiers for all the subtypes of cl:number whose symbol name comes from the
"CL" package:
(array-total-size float-radix ratio rational bit nil array-rank real

double-float bignum signed-byte float unsigned-byte
single-float char-code number float-digits fixnum complex)

In SBCL these are all type specifiers, even though they are not explicitly denoted as such in the Common
Lisp specification.

The list of type specifiers was determined using reflection. The function, valid-subtypes shown in Imple-
mentation 10.4 was used. A call to (valid-subtypes ’number) returns the list of type specifiers shown above.
The valid-subtypes relies on a helper function, valid-type-p also shown in Implementation 10.4.

Implementation 10.4 (Code for valid-subtypes).

(defun valid-subtypes (super &key (test (lambda (t1 t2)
(and (subtypep t1 t2)

(subtypep t2 t1)))))
(let (all-types)

(do-external-symbols (sym :cl)
(when (and (valid-type-p sym)

(subtypep sym super))
(push sym all-types)))

(remove-duplicates all-types :test test)))

(defun valid-type-p (type-designator)
" Predicate to determine whether the given object is a valid type specifier ."
#+ sbcl (handler-case (and (SB-EXT : VALID-TYPE-SPECIFIER-P type-designator)

(not (eq type-designator 'cl :*)))
(SB-KERNEL :: PARSE-UNKNOWN-TYPE (c) (declare (ignore c)) nil))

#+(or clisp allegro)
(ignore-errors (subtypep type-designator t))

#-(or sbcl clisp allegro)
(error " VALID-TYEP-P not implemented for ~A" (lisp-implementation-type))

)

10.2.2 Pool: Subtypes of condition

This pool contains the type specifiers for all the subtypes of cl:condition whose symbol name comes from the
"CL" package:
(simple-error storage-condition file-error control-error serious-condition

condition division-by-zero nil parse-error simple-type-error error
package-error program-error stream-error unbound-variable undefined-function
floating-point-inexact cell-error floating-point-overflow
floating-point-invalid-operation simple-warning print-not-readable type-error
floating-point-underflow style-warning end-of-file unbound-slot reader-error
simple-condition arithmetic-error warning)

This list was generated with a call to (valid-subtypes ’condition). The code for valid-subtypes can
be found in Implementation 10.4.

208

10.2.3 Pool: Subtypes of number or condition

This pool contains the type specifiers for all the subtypes of cl:number and all the subtypes of cl:condition
whose symbol name comes from the "CL" package. It is the union of the two sets from Section 10.2.1 and 10.2.2.

10.2.4 Pool: Real number ranges
This pool contains the type specifiers of ranges of real numbers. Each type specifier is a range of float, real,
or integer. In each case the lower or upper bound may be included or excluded. Example values are as follows:
((real 1/4 5/4) (real (1/4) 5/4) (real 1/4 (5/4)) (real (1/4) (5/4))

(real 62/33 41/20) (real (62/33) 41/20) (real 62/33 (41/20))
(float 63.6 98.51) (float (63.6) 98.51) (float 63.6 (98.51))
(float (63.6) (98.51)) (integer 20 98) (integer (20) 98)
(integer 20 (98)) (integer (20) (98))
...)

10.2.5 Pool: Integer ranges
This pool contains the type specifiers which are all ranges of integers, some fixnum and sum bignum. Example
values are as follows:
((integer (0) 72) (integer 75 (88)) (integer (45174) (334427))

(integer (445) 7536172) (integer (4013) (53830)) (integer (0) 69)
(integer (301) (1474407)) (integer (542801460681) 9207612574201)
(integer (925) 93734076688)

...)

10.2.6 Pool: Subtypes of cl:t

This pool contains the "CL" package symbols specifying a subtype of cl:t.
(simple-error storage-condition file-error array-total-size float-radix ratio

character restart package rational control-error t vector method
serious-condition atom generic-function condition bit readtable
division-by-zero nil parse-error null base-string base-char simple-type-error
synonym-stream error stream package-error array-rank pathname-host
standard-object simple-base-string keyword boolean program-error file-stream
stream-error unbound-variable sequence undefined-function real cons
floating-point-inexact double-float concatenated-stream bit-vector
standard-method cell-error floating-point-overflow hash-table
method-combination floating-point-invalid-operation simple-warning bignum
signed-byte compiled-function float array unsigned-byte single-float symbol
pathname-device char-code print-not-readable type-error function simple-array
floating-point-underflow simple-string number simple-bit-vector style-warning
standard-char echo-stream standard-class logical-pathname float-digits
structure-object pathname-version two-way-stream fixnum built-in-class
end-of-file unbound-slot extended-char reader-error string-stream pathname
random-state standard-generic-function simple-condition class list
structure-class arithmetic-error pathname-type broadcast-stream warning
complex simple-vector string)

This list was generated with a call to (valid-subtypes cl:t). The code for valid-subtypes can be found
in Implementation 10.4. As before, some of the symbols in this list, char-code and float-digits for example,
are indeed type specifiers in SBCL, even if they are not specified to be so in the to Common Lisp specification.

10.2.7 Pool: Subtypes in SB-PCL

This pool contains the type specifiers for all the types whose symbol is in the "SB-PCL" package:
(sb-mop : slot-definition sb-mop : standard-slot-definition sb-mop : specializer

sb-mop : funcallable-standard-class sb-mop : standard-reader-method
sb-mop : standard-writer-method sb-pcl : system-class sb-mop : eql-specializer
sb-mop : standard-accessor-method sb-mop : forward-referenced-class
sb-mop : standard-direct-slot-definition sb-mop : direct-slot-definition
sb-mop : effective-slot-definition sb-mop : funcallable-standard-object
sb-mop : standard-effective-slot-definition)

209

10.2.8 Pool: Specified Common Lisp types
This pool contains the symbols naming a Common Lisp specified type. These are the 97 types listed in
Figure 4-2. Standardized Atomic Type Specifiers from the Common Lisp specification [Ans94, Sec-
tion 4.2.3 Type Specifiers].
(arithmetic-error function simple-condition

array generic-function simple-error
atom hash-table simple-string
base-char integer simple-type-error
base-string keyword simple-vector
bignum list simple-warning
bit logical-pathname single-float
bit-vector long-float standard-char
broadcast-stream method standard-class
built-in-class method-combination standard-generic-function
cell-error nil standard-method
character null standard-object
class number storage-condition
compiled-function package stream
complex package-error stream-error
concatenated-stream parse-error string
condition pathname string-stream
cons print-not-readable structure-class
control-error program-error structure-object
division-by-zero random-state style-warning
double-float ratio symbol
echo-stream rational synonym-stream
end-of-file reader-error t
error readtable two-way-stream
extended-char real type-error
file-error restart unbound-slot
file-stream sequence unbound-variable
fixnum serious-condition undefined-function
float short-float unsigned-byte
floating-point-inexact signed-byte vector
floating-point-invalid-operation simple-array warning
floating-point-overflow simple-base-string
floating-point-underflow simple-bit-vector)

10.2.9 Pool: Intersections and Unions
This pool contains the type specifiers which are (and ...) and (or ...) combinations of the types in
Section 10.2.8. Starting from this list, we randomly generated type specifiers using and and or combinations of
names from this list such as the following:

(arithmetic-error function array sequence
(and arithmetic-error function) (or arithmetic-error function)
(or function array) (or function sequence)
...)

10.2.10 Pool: Subtypes of fixnum using member

This pool contains type specifiers of various subtypes of fixnum all of the same form, using the (member ...)
syntax.
((member 2 6 7 9) (member 0 2 7 8 9) (member 0 2 5 6) (member 2 4 5)

(member 0 1 2 4 6 8 10) (member 0 2 3 4 5 6 8 9) (member 1 2 3 4 5 6 10)
(member 3 5 6 7 8) (member 0 1 3 5 8 9) (member 1 2 4 5 8 10)
(member 0 2 5 6 8 9 10) (member 0 2 3 4) (member 1 4 5 6 7 9 10)
(member 0 2 3 4 5 7 9) (member 3 4 5 9) (member 1 3 6 7 8 9 10)
(member 0 1 2 3 6 10) (member 0 1 3 4 5 6 9 10) (member 1 2 8 10)
(member 1 3 6 7 8 10) (member 0 1 2 4 10) (member 0 1 2 3 4 6 7 9)
(member 0 1 2 4 5 6 7 8 10) (member 0 4 5 7 9 10) (member 1 3 4 6 9))

210

10.3 MDTD algorithm implementations
In the following sections we analyze the performance results of several functions which implement the MDTD
algorithm. Here is a summary of the functions by name.

Function name Algorithm Data Hash subtypep
structure strategy

mdtd-baseline baseline s-expr CL
mdtd-bdd-strong baseline BDD strong CL
mdtd-bdd-weak baseline BDD weak CL
mdtd-bdd baseline BDD dynamic CL
mdtd-rtev2 Algorithm 7 s-expr CL
mdtd-graph graph s-expr CL
mdtd-graph-baker graph s-expr Baker
mdtd-bdd-graph-weak graph BDD weak CL
mdtd-bdd-graph graph BDD dynamic CL
parameterized-mdtd-bdd-graph graph BDD dynamic CL
mdtd-bdd-graph-strong graph BDD strong CL
mdtd-bdd-graph-baker graph BDD dynamic Baker
mdtd-sat SAT s-expr CL

Figure 10.2: Various MDTD functions

10.4 Tuning the BDD hash mechanism
Section 5.3.3 presented a very basic procedure for establishing a dynamically scoped hash table which
is used by bdd object allocation. That section mentions that there are alternative implementations of
bdd-call-with-new-hash which can affect run-time performance. In this section (Section 10.4) we look at
some possible implementations and compare the performance of the MDTD algorithm on the pools described
in Section 10.2.

As mentioned in Section 5.3, a challenge posed by the Bryant/Brace [Bry86, BRB90] optimization is that
the size of hash table may become many orders of magnitude larger than the number of bdd nodes actually
used at any one time. The probability of a node in the hash table ever being reused is exceedingly small. The
number of nodes in an n-variable ROBDD is less than 2n`1, but the number of Boolean functions of n variables
is 22n . So the probability of reuse for large ROBDDs asymptotically approaches

2n`1

22n “ 21`n´2n´1
.

One way to optimize bdd-call-with-new-hash in Implementation 5.18 is to arrange that nodes which are
no longer referenced elsewhere, be subject to garbage collection. This would mean that, if the table gets large,
then nodes which are currently being referenced should remain in the table so as to enforce the merging rule;
however, other nodes should be expunged.

Some Common Lisp implementations, notably SBCL, provide such a hash table, called a
weak hash table. By default, a hash table is strong, meaning the garbage collector is inhib-
ited from discarding any of its entries. However, a call to make-hash-table with the argu-
ments :weakness :value creates a hash table which allows the garbage collector this special priv-
ilege. Implementation 10.5 shows three functions defined as: bdd-call-with-new-hash-strong,
bdd-call-with-new-hash-weak and bdd-call-with-new-hash-weak-dynamic. The function
bdd-call-with-new-hash-strong is the same as previously seen in Implementation 5.18, i.e. with a
strong hash table. The function bdd-call-with-new-hash-weak implements the weak hash table. The
function bdd-call-with-new-hash-weak-dynamic is a bit different from bdd-call-with-new-hash-weak
in recursive calls. If during the dynamic extent of a call to bdd-call-with-new-hash-weak, the same
function, bdd-call-with-new-hash-weak is called again, a new hash table is allocated and consequently,
new bdd nodes are sought and allocated in this one. However, during the entire dynamic extent of
bdd-call-with-new-hash-weak-dynamic, any successive call to bdd-call-with-new-hash-weak-dynamic
does not allocate any new hash table. This weak-dynamic capability allows several related ROBDD compu-
tations to be done using the same hash table, effectively implementing a forest of bdd nodes–many bdd top
nodes which share subtrees between them.

211

Implementation 10.5 (Alternative implementations of bdd-call-with-new-hash).

(defun bdd-call-with-new-hash-strong (thunk)
(let ((* bdd-hash * (make-hash-table :test #'equal)))

(funcall thunk)))

(defun bdd-call-with-new-hash-weak (thunk)
(let ((* bdd-hash * (make-hash-table :test #'equal

: weakness :value)))
(funcall thunk)))

(defun bdd-call-with-new-hash-weak-dynamic (thunk)
(if * bdd-hash *

(funcall thunk)
(bdd-call-with-new-hash-weak thunk)))

(defvar * bdd-call-with-new-hash * #' bdd-call-with-new-hash-weak-dynamic)

(defun bdd-call-with-new-hash (thunk)
(funcall * bdd-call-with-new-hash * thunk))

In the experiment, we tested several functions on the same pools of type specifiers. Descripions of these
functions can be found in Figure 10.2. The names of the functions indicate which strategy was used for
bdd-call-with-new-hash, and can also be found in the Hash strategy column of Figure 10.2.

The results are shown in Figure 10.3 were it can be seen that the best performing functions were those using
the weak dynamic approach: mdtd-bdd-weak-dynamic and mdtd-bdd-graph-weak-dynamic.

212

100 101 102 103 104

10´4

10´3

10´2

10´1

100

CL combinations

100 101 102 103

10´4

10´3

10´2

10´1

100

CL types

101 102 103

10´4

10´3

10´2

10´1

100

Integer ranges

101 102

10´4

10´3

10´2

10´1

100

MEMBER types

101 102 103

10´4

10´3

10´2

10´1

100

Real number ranges

101 102

10´4

10´3

10´2

OBJECT SYSTEM types

100 101 102 103

10´4

10´3

10´2

10´1

100

Subtypes of CONDITION

101 102 103

10´4

10´3

10´2

10´1

100

Subtypes of NUMBER or CONDITION

101 102 103

10´4

10´3

10´2

10´1

100

Subtypes of NUMBER

mdtd-bdd-graph-strong
mdtd-bdd-graph-weak
mdtd-bdd-graph-weak-dynamic
mdtd-bdd-strong
mdtd-bdd-weak
mdtd-bdd-weak-dynamic

Function Algorithm Hash
name strategy
mdtd-bdd-strong baseline strong
mdtd-bdd-weak baseline weak
mdtd-bdd-weak-dynamic baseline weak dynamic
mdtd-bdd-graph-strong graph strong
mdtd-bdd-graph-weak graph weak
mdtd-bdd-graph-weak-dynamic graph weak dynamic

Figure 10.3: Performance comparison using different hash table strengths. Each plot is displayed with
y=‘Computation Time (seconds)’ vs. x=‘Product Size’.

10.5 Tuning the BDD-based graph algorithm
Section 9.4 explains how we represent the problem of set decomposition as a graph problem. That section
explains how to construct the graph, and several deconstruction operations. What is, however, not explained is
how to deconstruct the graph efficiently in terms of execution time. In the current section we explain the process
we used in determining a reasonable way to combine the pieces into a coherent algorithm which performs well

213

on diverse pools. We do not claim our approach is ideal, but it does attempt to take many different concerns
into account and it provides a way to do a visual sanity-check of the final results.

From the abstract, high-level view, once the graph (such as Figure 9.4) has been constructed, the algorithm
proceeds by visiting each node and applying some of the set of possible operations. Section 9.4 does not make any
claim about which order of operations is better in terms of execution speed, other than to offer two algorithms
as alternatives: Algorithm 8 and Algorithm 9. The motivation for the need of alternative algorithms is that
the subset extraction operation has multiple variations, two of which are shown in Algorithm 16 (Section 9.4.2)
and Algorithm 17 (Section 9.4.3). Other variations are outlined here.

Break subset: strict vs. relaxed, explained in Sections 9.4.2 and 9.4.3.

Break loop: yes vs. no, explained in Section 9.4.5.

Iteration topology: @ node @ operation vs. @ operation @ node, explained in Section 9.4.7.

Recursive: yes vs. no, explained in Section 9.4.6 and 9.4.7

Node visitation order: "SHUFFLE", "INCREASING-CONNECTIONS", "DECREASING-CONNECTIONS",
"BOTTOM-TO-TOP", "TOP-TO-BOTTOM", explained in Section 9.4.7.

Inclusion: implicit vs. explicit, explained in Section 9.4.1.

Empty set: late-check, vs. correct-label vs. correct-connection, explained in Section 9.4.6.

The natural questions which arise are: what is the best way to assemble these pieces into an efficient
algorithm, and which of the variations of each operation are the best to use? In the current section we describe
some experimentation we did to determine a reasonable approach for a wide range of pools.

Section 10.2 details 10 pools which were constructed to test various aspects of the MDTD algorithm. We
have constructed test suites which run on each of the data pools testing the performance of the graph-based
algorithm as a function of each of the parameters described above, with the exception of inclusion and empty-set.
At this point in our experimentation we have not yet included these parameter in our performance testing.

Some of the parameter options don’t make sense together. For example, we cannot use break subset=relaxed
along with break loop=no because this would result in some graphs which cannot be reduced at all. Of the re-
maining possible combinations, we have constructed 45 different variations of the input parameters. Figure 10.6
shows the performance results in terms of calculation time vs. product size. The red curves indicate the default
performance of the algorithm (having been tuned by the analysis explained below). The black curves indicate
the minimum time (best possible) performance for each data pool. In the case that only red or only black is
visible, this means the two curves exactly coincide. (The following paragraphs explain what we mean by best
performance). The plots show that although the default parameters do not yield the best results on any one of
the pools, the results do seem reasonably good.

For each of the 10 test pools, 45 curves were plotted. In each case we wanted to determine the fitness of the
45 curves. There are potentially many different ways of judging the curves for fitness.

As all of our sampled data is positive (calculation time is always non-negative), we elected to derive a norm
for a curve. I.e., we can sort the curves from best to worst by order of increasing value of the norm. A small
norm means fast calculation time over the range sampled, and large norm means slow calculation time. But
even then, there are many ways of calculating a norm of sampled functions. A simple Google search of the
terms "metrics for sampled functions" found 726,000 results of scholarly papers.

Three possible norms were considered:

• }f}µ, Average value, i.e., sum of y-values divided by number of samples. Definition 10.6. This is the norm
we decided to use in our experiments.

• }f}1, Average value based on numerical integral divided by size of domain. Definition 10.7.

• }f}rms, RMS (root means square) distance from point-wise minimum over all the curves. Definition 10.8.

Definition 10.6. Suppose the curve C is the set of x-y pairs comprising a curve, and that |C| denotes the
number of points in the set. We define

}f} “
1
|C|

ÿ

px,yqPC

y .

214

Definition 10.7. Suppose that rpx0, y0q, px1, y1q...pxm, ymqs is the vector of x-y pairs comprising the curve. We
define

}f}1 “
1

xm ´ x0

m
ÿ

i“1

yi ` yi´1

2 ¨ pxi ´ xi´1q .

Definition 10.8. Denote the set of all 45 sampled functions for this pool as tfju45
j“1, such that fj is interpolated

linearly between the sampled points. Denote the set of all sampled x-values as txiuMi“0u with x0 ă x1 ă ... ă xM .
Denote the point-wise minimum function as

f̌ : txiuMi“0 Ñ R | f̌pxiq “ min

fjpxiq
(45
j“1

Now we define

}f}rms “
1

xM ´ x0

g

f

f

e

45
ÿ

i“2

“

fpxiq ´ f̌pxiq
‰2
¨ pxi ´ xi´1q .

We decided that the most reasonable of these for our needs is the }f}µ average. The other two norms were
dismissed because they don’t give equal weighting to all the samples. We found that the latter of the two norms
would give excessive weighting to large values of calculation time vs. sample size.

Definition 10.9. If µ is the average norm for a pool and σ is the standard deviation of the norms, then the
Student score [Gos08], Z, (sometimes called Z-score) is defined as:

Zpfq “
||f || ´ µ

σ
.

More information on this curious name, Student score, may be found in Section 10.11.
Once the norm of each curve is calculated, (45 for each pool, over 10 pools), we calculate a Student score for

each curve in the same pool. The smallest (most negative) Z indicates the best curve, i.e., the set of parameter
values resulting in the least calculation time within the pool. Using the Student score allows us to compare
results from different pools, as each score has already been normalized by the standard deviation of its respective
pool.

Once each curve had been scored (via the Student score), we proceeded to determine which sets of parameters
lead to the best Student score. We considered, one by one, each of the parameters, and for each possible value
of the parameter, we calculated the average Student score (across all 10 pools) of all the curves which use that
parameter value.

Parameter value
Break subset relaxed
Break loop no
Iteration topology operations per node
Recursive yes
Node visitation order BOTTOM-TO-TOP
Inclusion not tested
Empty set not tested

Figure 10.4: Experimentally determined best parameter values.

Example 10.10 (Experiment to determine best value of break subset).
There are two possible values of break subset: strict and relaxed. We collected the curves of all the functions

215

for which break subset = strict, and all the curves for which break subset = relaxed, and averaged the Student
scores of the two sets. The average Student score, as seen in Figure 10.5, for break subset=strict was 0.21279174
and for break sub=relaxed was -0.06591506. From this, we infer that relaxed is a better choice than strict.
Figure 10.4 shows the experimentally determined best values for the parameters of the graph based algorithm.

Ranking Results
Parameter Value Average Student Score

do-break-loop nil -0.101393685
t 0.05745659

do-break-sub
relaxed -0.06591506
strict 0.21279174

inner-loop
operation -0.043741602
node 0.1684451

recursive t -0.14755104
nil 0.06916463

sort-strategy

BOTTOM-TO-TOP -0.24243449
TOP-TO-BOTTOM -0.21874332
DECREASING-CONNECTIONS -0.14941746
INCREASING-CONNECTIONS -0.118050456
SHUFFLE 0.86358154

Figure 10.5: Summary of results from Figure 10.6. For each parameter, we display each possible value, and the
corresponding average Student score. The minimum (most negative) Student score indicates the best value for
the parameter in question.

Given this experimentally determined set of globally best values for the parameters, we have candidates for
optimum default values of those parameters. Therewith, we define the default function. These experimentally
tuned values are shown in Figure 10.5. The performance of this default function relative to the other possible
parameterizations can be seen in Figure 10.6. Each figure shows the performance of the default function (in
red) and the performance of the per-pool best function (in black) along with the 43 other functions for that
pool. As a visual sanity check of the plots, we observe that although the default parameters do not yield the
best results on all the pools, the results do seem very good; they coincide with the best curve in several of the
pools and are visibly close the best curves for the other pools.

216

101 102

10´4

10´3

10´2

Subtypes of NUMBER

100 101 102

10´4

10´3

10´2

10´1

Subtypes of CONDITION

101 102

10´4

10´3

10´2

10´1

Subtypes of NUMBER or CONDITION

101 102

10´4

10´3

10´2

10´1
Subtypes of T

101 102

10´4

10´3

10´2

OBJECT SYSTEM types

100 101 102 103

10´4

10´3

10´2

10´1

CL types

101 102 103

10´4

10´3

10´2

10´1

CL combinations

101 102

10´4

10´3

10´2

10´1

100

101

MEMBER types

Figure 10.6: Tuning graph-based algorithm with various pools. Each plot is displayed with y=‘Computation
Time (seconds)’ vs. x=‘Product Size’.

217

10.6 Analysis of performance tests
After tuning the hash table mechanism (Section 10.4) and the graph-based MDTD algorithm parameters (Sec-
tion 10.5), we were able to test several different algorithms against each other.

Figure 10.7 contains several graphs showing the performance of the functions on different pools. We find
several of the results surprising or even strange:

• No single one of the algorithms performs best in most cases. Even the algorithms which we guessed would
be slow, perform best in some cases.

• The function mdtd-sat does very well for small product size, even thought it has exponentially complexity.

• The baseline algorithm, mdtd-baseline, does very well with the MEMBER pool.

• The function mdtd-rtev2, which is supposed to be an improving over mdtd-baseline often performs
worse, such as in the CL combinations pool, CL types pool, and in the NUMBER pool for computations
exceeding 0.1 seconds.

There is no clear winner for small sample sizes. But it seems the tree based algorithms do very well on large
sample sizes. This is not surprising, as the graph-based algorithm was designed with the intent to reduce the
number of passes and take advantage of subtype and disjointness information.

Figure 10.8 contains several graphs contrasting some of the effective algorithms in terms of execution time
vs. sample size. The product size is the integer product of the number of input types multiplied by the number
of output types. This axis choice was chosen as it heuristically seems to be the best to demonstrate the relative
performance for the different pools. Each of the graphs shows how the same algorithms perform on different
pools, one pool per plot.

218

101 102 103 104

10´4

10´3

10´2

10´1

100

101

102

CL combinations

101 102 103 104

10´4

10´3

10´2

10´1

100

101

102

CL types

101 102 103 104

10´4

10´3

10´2

10´1

100

101

102

Integer ranges

101 102

10´4

10´3

10´2

10´1

100

MEMBER types

101 102 103 104

10´4

10´3

10´2

10´1

100

101

102

Real number ranges

101 102

10´4

10´3

10´2

10´1

100

101

OBJECT SYSTEM types

101 102 103

10´4

10´3

10´2

10´1

100

101

102

Subtypes of CONDITION

101 102 103 104

10´4

10´3

10´2

10´1

100

101

102

Subtypes of NUMBER or CONDITION

101 102 103

10´4

10´3

10´2

10´1

100

101

Subtypes of NUMBER

mdtd-baseline
mdtd-bdd
mdtd-bdd-graph
mdtd-graph
mdtd-rtev2
mdtd-sat
parameterized-mdtd-bdd-graph

Function name Algorithm Data Hash subtypep
structure strategy

mdtd-baseline baseline s-expr CL
mdtd-bdd baseline BDD dynamic CL
mdtd-graph graph s-expr CL
mdtd-bdd-graph graph BDD dynamic CL
parameterized-mdtd-bdd-graph graph BDD dynamic CL
mdtd-rtev2 Algorithm 7 s-expr CL
mdtd-sat SAT s-expr CL

Figure 10.7: Performance comparison over several pools using different algorithms. Each plot is displayed with
y=‘Computation Time (seconds)’ vs. x=‘Product Size’.

219

101 102 103

10´4

10´3

10´2

10´1

100

Integer ranges

100 101 102 103 104

10´4

10´3

10´2

10´1

100

CL combinations

101 102 103 104

10´4

10´3

10´2

10´1

100

CL types

101 102 103

10´4

10´3

10´2

10´1

100

Integer ranges

101 102

10´4

10´3

10´2

10´1

100

MEMBER types

101 102 103 104

10´4

10´3

10´2

10´1

100

Real number ranges

101 102

10´4

10´3

10´2

10´1

100

OBJECT SYSTEM types

100 101 102 103

10´4

10´3

10´2

10´1

100

Subtypes of CONDITION

101 102 103

10´4

10´3

10´2

10´1

Subtypes of NUMBER

mdtd-bdd
mdtd-bdd-graph
mdtd-graph
mdtd-rtev2
parameterized-mdtd-bdd-graph

Function name Algorithm Data Hash subtypep
structure strategy

mdtd-bdd baseline BDD dynamic CL
mdtd-bdd-graph graph BDD dynamic CL
mdtd-graph graph s-expr CL
mdtd-rtev2 Algorithm 7 s-expr CL
parameterized-mdtd-bdd-graph graph BDD dynamic CL

Figure 10.8: Performance comparison over several pools using best five algorithms. Each plot is displayed with
y=‘Computation Time (seconds)’ vs. x=‘Product Size’.

10.7 Analysis of performance tests with Baker functions
Section 9.6 introduces a Baker [Bak92] subtypep variant of the type decomposition functions. The plots shown
in Figure 10.9 show the very preliminary results of performance tests of our implementations of the functions
using cl:subtypep and baker:subtypep. We emphasize that these are preliminary results, because at the time
of this publication, Valais [Val18] has not yet released the code publicly; it has not yet been fully optimized;
and it is known to have some unresolved bugs at the time of the publication of this report. Nevertheless, we

220

believe the results are revealing in a couple of ways.

• In several of the pools the function mdtd-bdd-graph-baker is incomplete, not extending above about
twoˆ 10´2 seconds in the CL combinations, Subtypes of T, and Subtypes of number or condition pools.
We have not yet explained why this happens.

• The Baker subtypep implementation of mdtd-graph-baker does well in several pools: CL combinations,
Subtypes of T, Subtypes of condition, and Subtypes of number or condition. In these pools the Baker
based s-expression based graph algorithm outpaces the BDD counterparts, especially for large product
sizes.

100 101 102 103 104

10´4

10´3

10´2

10´1

100

CL combinations

101 102 103 104

10´4

10´3

10´2

10´1

100

Subtypes of T

101 102 103

10´4

10´3

10´2

10´1

100

Integer ranges

101 102

10´4

10´3

10´2

10´1

100

MEMBER types

101 102 103 104

10´4

10´3

10´2

10´1

100

Real number ranges

101 102

10´4

10´3

10´2

OBJECT SYSTEM types

100 101 102 103

10´4

10´3

10´2

10´1

100

Subtypes of CONDITION

101 102 103

10´4

10´3

10´2

10´1

100

Subtypes of NUMBER or CONDITION

101 102 103

10´4

10´3

10´2

10´1

100

Subtypes of NUMBER

mdtd-bdd-graph
mdtd-bdd-graph-baker
mdtd-graph
mdtd-graph-baker

Function Data subtypep
name structure
mdtd-bdd-graph BDD cl:subtypep
mdtd-graph s-expr cl:subtypep
mdtd-bdd-graph-baker BDD baker:subtypep
mdtd-graph-baker s-expr baker:subtypep

Figure 10.9: Performance comparison using different Baker algorithm Each plot is displayed with
y=‘Computation Time (seconds)’ vs. x=‘Product Size’.

221

10.8 Analysis of profile tests
The next series of tests were similar to those mentioned in Section 10.6. Again we made calls to various MDTD
algorithms on randomly selected sets of type specifiers from the various pools (Section 10.2). However, this time,
rather than simply measuring execution time, we ran each test in the SBCL deterministic profiler, to measure
how much time is being spent in each function. From these measurements we created plots of percentage of
time spent in each Lisp function as a function of total computation time for the call to the particular MDTD
function in question. We display those plots in two different ways.

Section 10.9 displays one grid of nine plots per MDTD function, i.e. one plot per pool for nine of the
pools. Figure 10.10 shows a nine-pool view of performance of the function parameterized-mdtd-bdd-graph;
Figure 10.11 shows a nine-pool view of performance of the function mdtd-bdd-graph-weak-dynamic. Each grid
of plots in Section 10.9 gives an impression of the run-time profile of one particular MDTD function.

Section 10.10 shows the same plots as Section 10.9 but grouped differently, showing one grid of plots per
pool. Each plot within the grid shows the profile of one particular MDTD function. Figure 10.25, for example,
shows the profiles of nine MDTD functions for the pool “Subtypes of NUMBER or CONDITION”.

At the time of this publication, the SBCL deterministic profiler does not have a programmatic interface to
its output. Rather than attempting to use internal APIs, we elected to parse the textual output of the profiler,
which looks something like the following.

seconds | gc | consed | calls | sec/call | name

1.314 | 0.000 | 763,854,800 | 14,718 | 0.000089 | RND-ELEMENT
0.974 | 0.967 | 0 | 10 | 0.097396 | GARBAGE-COLLECT
0.317 | 0.000 | 293,328 | 20 | 0.015849 | RUN-PROGRAM
0.007 | 0.000 | 360,448 | 10 | 0.000707 | CHOOSE-RANDOMLY
0.001 | 0.000 | 0 | 2,120 | 0.000000 | FIXED-POINT
0.000 | 0.000 | 0 | 520 | 0.000001 | CACHED-SUBTYPEP
0.000 | 0.000 | 0 | 520 | 0.000000 | ALPHABETIZE
0.000 | 0.000 | 0 | 840 | 0.000000 | CMP-OBJECTS
0.000 | 0.000 | 0 | 520 | 0.000000 | REDUCE-MEMBER-TYPE
0.000 | 0.000 | 0 | 10 | 0.000000 | BDD-RECENT-COUNT
0.000 | 0.000 | 1,622,880 | 1,040 | 0.000000 | CACHING-CALL
0.000 | 0.000 | 0 | 3,160 | 0.000000 | ALPHABETIZE-TYPE
0.000 | 0.000 | 0 | 520 | 0.000000 | DISJOINT-TYPES-P

2.618 | 0.967 | 766,131,472 | 26,699 | | Total

To obtain one data point in the plots shown in Sections 10.9 and 10.10, we evaluated a call to one of the
MDTD functions from Figure 10.2 given a list of type specifiers from the pool, and thereafter obtained the
profiler output text as shown above. The number of seconds shown in the first column was normalized by
dividing by the total time shown in the final line. For example, the rnd-element function took 1.314 seconds of
2.618 total, therefore we generate a point px, yq “ p 1.315

2.618 , 2.618q “ p50.23%, 2.618q for the curve rnd-element.
We collected such data points for all such functions in the profile output with positive run-times, and repeated
the process for many calls to the MDTD function with samples from the same pool.

The plot in the top left corner of Figure 10.10, representing the pool “CL combinations”, generated by 360
calls to the parameterized-mdtd-bdd-graph function, including 281 calls which timed out after 150 seconds,
and 79 calls which produced a type decomposition. This process consumed 10 hours of wall-time on a cluster
node, with 72.1ˆ 1012 processor cycles, according to the SBCL time function.

Evaluation took:
36093.120 seconds of real time
36019.964000 seconds of total run time (25130.400000 user, 10889.564000 system)
[Run times consist of 442.340 seconds GC time, and 35577.624 seconds non-GC time.]
99.80% CPU
1 form interpreted
384 lambdas converted
72,184,106,952,234 processor cycles
997,174,600,304 bytes consed

Each run generated points for some of the internal functions shown in the table: subtypep
(subtypep-wrapper is a thin wrapper which either calls cl:subtypep or baker:subtypep), fixed-point,
reduce-member-type etc. The plots were constructed for each curve simply by sorting the collected points in

222

increasing order of total run-time (x-value). For visualization purposes we only show the top four most active
functions per pool. This entire 10 hour (wall time) process was executed 150 times, as there are 10 pools and
15 MDTD functions tested.

The important thing we notice about the plots is that, as the computation time increases, a higher percentage
of that computation time is dedicated, in most cases, to subtypep. There seem to be two exceptions to this
trend. The first exception is that the graph-related functions, in some cases spend large percentage of their time
in the functions delete-green-line and add-green-line, i.e., in graph manipulation functions. The second
exception seems to be that the MDTD functions using baker:subtypep have a very different profile–their time
being mostly spent in the internals of baker:subtypep.

223

10.9 Profiler graphs of MDTD algorithms by pool

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

CL combinations

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

CL types

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

Integer ranges

10´4 10´3 10´2 10´1 100 101

0

20

40

60

MEMBER types

10´5 10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

100

Real number ranges

10´4 10´3 10´2 10´1

10

20

30

40

OBJECT SYSTEM types

10´4 10´3 10´2 10´1 100

0

20

40

60

80

Subtypes of CONDITION

10´4 10´3 10´2 10´1 100

0

20

40

60

Subtypes of NUMBER or CONDITION

10´4 10´3 10´2 10´1

0

10

20

30

40

Subtypes of NUMBER

subtypep-wrapper 2449.57 seconds 1,229,295,692 calls
cmp-objects 159.92 seconds 664,921,590 calls
fixed-point 141.94 seconds 208,945,603 calls
bdd-find 130.59 seconds 80,864,882 calls
type-to-dnf-bottom-up 42.35 seconds 112,509,333 calls
alphabetize-type 35.50 seconds 94,775,057 calls
bdd-cmp 28.20 seconds 37,245,652 calls
cached-subtypep-caching-call 26.54 seconds 46,589,278 calls
slow-disjoint-types-p 25.06 seconds 616,098 calls
cached-subtypep 20.50 seconds 29,846,551 calls
bdd-make-key 8.32 seconds 19,191,938 calls

Figure 10.10: Performance Profile of various pools on algorithm parameterized-mdtd-bdd-graph. Each plot
is displayed with y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

224

10´3 10´2 10´1 100 101

0

20

40

60

80

CL combinations

10´4 10´3 10´2 10´1 100 101

0

20

40

60

CL types

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80
Integer ranges

10´4 10´3 10´2 10´1 100 101

0

20

40

60

MEMBER types

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

100

Real number ranges

10´4 10´3 10´2

5

10

15

20

OBJECT SYSTEM types

10´4 10´3 10´2 10´1 100

0

20

40

60

Subtypes of CONDITION

10´4 10´3 10´2 10´1 100

0

20

40

60

Subtypes of NUMBER or CONDITION

10´4 10´3 10´2 10´1 100 101

0

20

40

Subtypes of NUMBER

delete-green-line 1132.54 seconds 4,118,677 calls
subtypep-wrapper 767.36 seconds 588,218,417 calls
fixed-point 283.37 seconds 325,732,134 calls
bdd-find 64.35 seconds 28,765,328 calls
type-to-dnf-bottom-up 55.37 seconds 88,749,302 calls
slow-disjoint-types-p 26.00 seconds 440,673 calls
alphabetize-type 24.31 seconds 39,794,123 calls
cached-subtypep 22.28 seconds 28,326,512 calls
bdd-ident 17.68 seconds 25,351,606 calls
bdd-hash 7.89 seconds 18,915,531 calls
remove-supers 4.62 seconds 236,156 calls
maybe-disjoint-node 3.71 seconds 707,858 calls
cmp-objects 2.92 seconds 35,063,003 calls

Figure 10.11: Performance Profile of various pools on algorithm mdtd-bdd-graph-weak-dynamic. Each plot is
displayed with y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

225

10´4 10´3 10´2 10´1 100 101 102

0

20

40

CL combinations

10´4 10´3 10´2 10´1 100 101 102

0

20

40

60

CL types

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

Integer ranges

10´4 10´3 10´2 10´1 100 101

0

20

40

60

MEMBER types

10´5 10´4 10´3 10´2 10´1 100 101

0

20

40

60

Real number ranges

10´4 10´3 10´2
0

10

20

30

40

OBJECT SYSTEM types

10´4 10´3 10´2 10´1 100

0

20

40

Subtypes of CONDITION

10´4 10´3 10´2 10´1 100

0

10

20

30

Subtypes of NUMBER or CONDITION

10´4 10´3 10´2 10´1

5

10

15

20

Subtypes of NUMBER

cached-subtypep-caching-call 3342.67 seconds 245,140,975 calls
subtypep-wrapper 256.06 seconds 74,825,642 calls
smarter-subtypep-caching-call 231.86 seconds 11,203,966 calls
bdd-find 182.64 seconds 98,612,308 calls
alphabetize-type 163.27 seconds 277,943,114 calls
fixed-point 130.82 seconds 97,174,155 calls
bdd-find-int-int 125.61 seconds 67,442,808 calls
slow-disjoint-types-p 118.71 seconds 7,281,882 calls
bdd-subtypep 52.27 seconds 48,236,919 calls
type-to-dnf-bottom-up 45.38 seconds 82,175,121 calls
type-to-dnf 17.44 seconds 4,903,808 calls
bdd-find-reduction 16.40 seconds 482,046 calls
bdd-cmp 12.65 seconds 26,446,345 calls
bdd-empty-type 7.51 seconds 3,989,956 calls
bdd-and-not 6.66 seconds 2,818,048 calls
bdd 1.89 seconds 536,666 calls

Figure 10.12: Performance Profile of various pools on algorithm mdtd-bdd-weak-dynamic. Each plot is displayed
with y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

226

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

CL combinations

10´3 10´2 10´1 100 101
0

20

40

60

80
CL types

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80
Integer ranges

10´3 10´2 10´1 100 101

0

20

40

60

MEMBER types

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

100

Real number ranges

10´3 10´2 10´1
0

10

20

30

40

OBJECT SYSTEM types

10´3 10´2 10´1 100

0

20

40

60

Subtypes of CONDITION

10´4 10´3 10´2 10´1 100

0

20

40

60

Subtypes of NUMBER or CONDITION

10´3 10´2 10´1 100 101

0

20

40

Subtypes of NUMBER

delete-green-line 1120.64 seconds 4,027,873 calls
subtypep-wrapper 1012.32 seconds 609,028,021 calls
add-green-line 797.24 seconds 4,032,594 calls
fixed-point 249.82 seconds 385,731,852 calls
alphabetize-type 62.63 seconds 224,374,955 calls
cached-subtypep-caching-call 25.82 seconds 44,761,487 calls
cmp-objects 16.89 seconds 53,942,298 calls
bdd-positive 13.93 seconds 20,916,073 calls
type-to-dnf-bottom-up 12.39 seconds 37,822,024 calls
bdd-find 12.24 seconds 8,973,048 calls
cached-subtypep 10.42 seconds 29,338,030 calls
alphabetize 6.55 seconds 13,371,548 calls
maybe-disjoint-node 3.24 seconds 419,396 calls
slow-disjoint-types-p 2.30 seconds 50,166 calls

Figure 10.13: Performance Profile of various pools on algorithm mdtd-bdd-graph-strong. Each plot is displayed
with y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

227

10´3 10´2 10´1 100

0

20

40

60

CL combinations

10´4 10´3 10´2 10´1
0

10

20

30

40

CL types

10´4 10´3 10´2 10´1 100 101

40

50

60

70

80

Integer ranges

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

MEMBER types

10´3 10´2 10´1 100 101

20

40

60

80

Real number ranges

10´3 10´2 10´1
0

10

20

30

40

50

OBJECT SYSTEM types

10´4 10´3 10´2 10´1 100 101

0

20

40

Subtypes of CONDITION

10´3 10´2 10´1

0

20

40

60

Subtypes of NUMBER or CONDITION

10´3 10´2 10´1 100 101 102

0

20

40

60

80

Subtypes of NUMBER

baker-subtypep 2653.89 seconds 36,140,878 calls
delete-green-line 747.33 seconds 3,436,654 calls
type/map-atomic-types 300.57 seconds 194,671,079 calls
literal-type-null? 96.26 seconds 10,565,089 calls
type-keep-if 64.86 seconds 178,457,128 calls
bdd-find 25.83 seconds 5,709,240 calls
split-type 22.67 seconds 8,653,008 calls
recursively-expand-type 8.97 seconds 8,737,201 calls
bdd-cmp 7.54 seconds 944,492 calls
maybe-disjoint-node 4.36 seconds 983,123 calls
subsets 2.82 seconds 327,680 calls

Figure 10.14: Performance Profile of various pools on algorithm mdtd-bdd-graph-baker. Each plot is displayed
with y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

228

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

CL combinations

10´3 10´2 10´1 100 101

0

20

40

60

CL types

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

Integer ranges

10´3 10´2 10´1 100 101

0

20

40

60

80
MEMBER types

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

100

Real number ranges

10´3 10´2 10´1
5

10

15

20

25

30

OBJECT SYSTEM types

10´3 10´2 10´1 100

0

20

40

60
Subtypes of CONDITION

10´3 10´2 10´1 100
0

20

40

60

Subtypes of NUMBER or CONDITION

10´3 10´2 10´1 100 101

0

20

40

Subtypes of NUMBER

delete-green-line 1134.36 seconds 3,914,784 calls
subtypep-wrapper 925.99 seconds 592,353,496 calls
fixed-point 289.94 seconds 420,095,926 calls
alphabetize-type 107.40 seconds 379,063,296 calls
cached-subtypep-caching-call 75.82 seconds 126,705,136 calls
type-to-dnf-bottom-up 14.68 seconds 64,425,113 calls
bdd-positive 10.24 seconds 8,859,825 calls
bdd-make-key 9.70 seconds 13,416,275 calls
alphabetize 8.74 seconds 10,346,733 calls
cached-subtypep 6.02 seconds 5,227,764 calls
add-green-line 3.84 seconds 127,087 calls
slow-disjoint-types-p 3.39 seconds 107,584 calls
cmp-objects 3.04 seconds 28,235,401 calls

Figure 10.15: Performance Profile of various pools on algorithm mdtd-bdd-graph-weak. Each plot is displayed
with y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

229

10´4 10´3 10´2 10´1 100 101

0

20

40

CL combinations

10´4 10´3 10´2 10´1 100

10

20

30

40

50

CL types

10´3 10´2 10´1 100 101
0

20

40

60

80

Integer ranges

10´2 10´1 100 101

0

20

40

60

80

MEMBER types

10´3 10´2 10´1 100 101

20

40

60

80

Real number ranges

10´4 10´3 10´2

10

20

30

40

50

OBJECT SYSTEM types

10´4 10´3 10´2 10´1
0

10

20

30

Subtypes of CONDITION

10´4 10´3 10´2 10´1 100 101

0

20

40

60

Subtypes of NUMBER or CONDITION

10´3 10´2 10´1 100 101

0

20

40

60

80
Subtypes of NUMBER

baker-subtypep 2094.19 seconds 81,274,042 calls
literal-type-null? 1185.88 seconds 134,837,810 calls
delete-green-line 1185.12 seconds 5,191,588 calls
type-keep-if 451.82 seconds 1,497,637,404 calls
type/map-atomic-types 232.60 seconds 358,603,456 calls
cached-subtypep-caching-call 93.53 seconds 22,873,615 calls
recursively-expand-type 91.97 seconds 197,041,930 calls
split-type 33.55 seconds 10,408,960 calls
alphabetize-type 12.63 seconds 16,515,314 calls

Figure 10.16: Performance Profile of various pools on algorithm mdtd-graph-baker. Each plot is displayed
with y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

230

10´4 10´3 10´2 10´1 100 101 102

0

10

20

30

40

50

CL combinations

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

CL types

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

Integer ranges

10´3 10´2 10´1 100 101

0

20

40

60

80

MEMBER types

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80
Real number ranges

10´4 10´3 10´2 10´1

5

10

15

20

25

OBJECT SYSTEM types

10´4 10´3 10´2 10´1 100 101
0

10

20

30

40

Subtypes of CONDITION

10´4 10´3 10´2 10´1 100 101

0

10

20

30

40

50
Subtypes of NUMBER or CONDITION

10´3 10´2 10´1

5

10

15

20

Subtypes of NUMBER

cached-subtypep-caching-call 4034.97 seconds 468,538,564 calls
smarter-subtypep-caching-call 384.37 seconds 19,379,929 calls
fixed-point 338.27 seconds 381,868,289 calls
subtypep-wrapper 162.75 seconds 35,428,011 calls
reduce-member-type 120.69 seconds 3,368,674 calls
bdd-find 96.04 seconds 50,847,858 calls
alphabetize-type 71.21 seconds 178,442,950 calls
slow-disjoint-types-p 52.04 seconds 3,081,716 calls
cached-subtypep 30.70 seconds 59,941,770 calls
alphabetize 27.20 seconds 16,469,600 calls
bdd-cmp 20.87 seconds 21,340,485 calls
type-to-dnf-bottom-up 20.71 seconds 50,127,911 calls
bdd-subtypep 7.68 seconds 1,441,792 calls
remove-supers 3.92 seconds 1,231,873 calls
bdd-dnf-wrap 3.53 seconds 297,928 calls

Figure 10.17: Performance Profile of various pools on algorithm mdtd-bdd-strong. Each plot is displayed with
y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

231

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

CL combinations

10´4 10´3 10´2 10´1 100 101

0

20

40

60

CL types

10´4 10´3 10´2 10´1 100 101
0

20

40

60

80

Integer ranges

10´4 10´3 10´2 10´1 100 101

0

20

40

60

MEMBER types

10´4 10´3 10´2 10´1 100 101

0

10

20

Real number ranges

10´4 10´3 10´2

2

4

6

8

10

OBJECT SYSTEM types

10´4 10´3 10´2 10´1 100

0

20

40

60

80

Subtypes of CONDITION

10´4 10´3 10´2 10´1 100
0

20

40

60

Subtypes of NUMBER or CONDITION

10´4 10´3 10´2 10´1 100 101

0

20

40

Subtypes of NUMBER

delete-green-line 1134.48 seconds 3,960,437 calls
subtypep-wrapper 413.81 seconds 294,832,294 calls
fixed-point 177.43 seconds 227,498,120 calls
type-to-dnf-bottom-up 57.64 seconds 142,812,982 calls
bdd-find 48.70 seconds 25,059,561 calls
cached-subtypep-caching-call 36.12 seconds 44,121,832 calls
alphabetize-type 31.66 seconds 60,034,917 calls
slow-disjoint-types-p 28.16 seconds 704,048 calls
cached-subtypep 18.87 seconds 23,371,840 calls
bdd-find-int-int 15.04 seconds 6,246,851 calls
nodes 13.06 seconds 4,947,104 calls
alphabetize 9.96 seconds 7,857,928 calls
remove-supers 6.69 seconds 3,020,083 calls
delete-blue-arrow 2.98 seconds 92,314 calls

Figure 10.18: Performance Profile of various pools on algorithm mdtd-bdd-graph. Each plot is displayed with
y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

232

10´4 10´3 10´2 10´1 100 101

20

40

60

CL combinations

10´4 10´3 10´2 10´1 100

20

30

40

50

60

CL types

10´4 10´3 10´2 10´1 100

0

20

40

60

80

100

Integer ranges

10´3 10´2 10´1

10

20

30

40

50

MEMBER types

10´4 10´3 10´2 10´1 100

0

20

40

60

80

100

Real number ranges

10´5 10´4 10´3 10´2 10´1 100 101
0

20

40

60

OBJECT SYSTEM types

10´4 10´3 10´2 10´1 100

0

20

40

60

Subtypes of CONDITION

10´4 10´3 10´2 10´1 100

20

40

60

Subtypes of NUMBER or CONDITION

10´4 10´3 10´2 10´1

0

20

40

60

Subtypes of NUMBER

cached-subtypep-caching-call 1231.84 seconds 1,373,797,082 calls
cached-subtypep 447.17 seconds 941,448,012 calls
subtypep-wrapper 206.31 seconds 97,061,766 calls
fixed-point 177.32 seconds 276,104,064 calls
alphabetize 50.20 seconds 44,761,388 calls
alphabetize-type 38.01 seconds 104,147,483 calls
cmp-objects 28.14 seconds 54,839,925 calls
type-to-dnf-bottom-up 27.26 seconds 53,800,960 calls
remove-supers 2.56 seconds 589,824 calls

Figure 10.19: Performance Profile of various pools on algorithm mdtd-baseline. Each plot is displayed with
y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

233

10´4 10´3 10´2 10´1 100 101 102

0

20

40

CL combinations

10´4 10´3 10´2 10´1 100 101

0

20

40

60

CL types

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80
Integer ranges

10´3 10´2 10´1 100 101 102

0

20

40

60

80

MEMBER types

10´4 10´3 10´2 10´1 100 101

0

20

40

60

Real number ranges

10´4 10´3 10´2 10´1
0

5

10

15

20

25

OBJECT SYSTEM types

10´4 10´3 10´2 10´1 100

0

10

20

30

40

50

Subtypes of CONDITION

10´4 10´3 10´2 10´1 100 101

0

10

20

30

40

Subtypes of NUMBER or CONDITION

10´3 10´2 10´1

5

10

15

Subtypes of NUMBER

cached-subtypep-caching-call 3997.29 seconds 343,970,542 calls
fixed-point 245.71 seconds 293,296,284 calls
alphabetize-type 163.99 seconds 354,143,661 calls
subtypep-wrapper 140.58 seconds 28,167,004 calls
cached-subtypep 119.99 seconds 180,421,514 calls
smarter-subtypep-caching-call 118.87 seconds 5,893,142 calls
bdd-find 83.11 seconds 48,542,792 calls
slow-disjoint-types-p 39.74 seconds 1,796,096 calls
cmp-objects 34.02 seconds 183,133,460 calls
type-to-dnf-bottom-up 23.87 seconds 44,726,268 calls
alphabetize 15.27 seconds 16,499,045 calls
%bdd-to-dnf 9.56 seconds 1,655,040 calls
bdd-subtypep 5.89 seconds 2,162,688 calls

Figure 10.20: Performance Profile of various pools on algorithm mdtd-bdd-weak. Each plot is displayed with
y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

234

10´4 10´3 10´2 10´1 100 101

0

20

40

60

CL combinations

10´4 10´3 10´2 10´1 100 101
0

20

40

60

CL types

10´5 10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

Integer ranges

10´4 10´3 10´2 10´1

0

10

20

30

40

50

MEMBER types

10´5 10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

Real number ranges

10´4 10´3 10´2 10´1 100 101

20

40

60

OBJECT SYSTEM types

10´4 10´3 10´2 10´1 100 101

0

20

40

60

Subtypes of CONDITION

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

Subtypes of NUMBER or CONDITION

10´4 10´3 10´2 10´1 100

0

20

40

60

Subtypes of NUMBER

cached-subtypep-caching-call 1784.38 seconds 1,429,850,466 calls
cached-subtypep 288.69 seconds 707,232,047 calls
subtypep-wrapper 244.45 seconds 61,218,726 calls
fixed-point 109.43 seconds 192,050,044 calls
alphabetize-type 65.12 seconds 203,745,752 calls
alphabetize 52.38 seconds 50,484,557 calls
cmp-objects 29.97 seconds 122,391,020 calls
type-to-dnf 13.31 seconds 4,194,304 calls
reduce-lisp-type-once 6.79 seconds 1,677,868 calls
type-to-dnf-bottom-up 5.63 seconds 8,716,288 calls
remove-supers 2.86 seconds 1,019,347 calls

Figure 10.21: Performance Profile of various pools on algorithm mdtd-rtev2. Each plot is displayed with
y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

235

10´4 10´3 10´2 10´1 100 101
0

10

20

30

40

CL combinations

10´4 10´3 10´2 10´1 100 101
0

20

40

60
CL types

10´4 10´3 10´2 10´1 100 101

0

20

40

60

Integer ranges

10´4 10´3 10´2 10´1 100

0

10

20

30

40

50
MEMBER types

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

Real number ranges

10´4 10´3 10´2

5

10

15

20

OBJECT SYSTEM types

10´4 10´3 10´2 10´1 100 101

0

20

40

Subtypes of CONDITION

10´4 10´3 10´2 10´1 100 101

0

20

40

Subtypes of NUMBER or CONDITION

10´4 10´3 10´2 10´1 100 101

0

20

40

Subtypes of NUMBER

cached-subtypep-caching-call 2343.29 seconds 1,915,482,241 calls
subtypep-wrapper 1222.57 seconds 606,139,238 calls
delete-green-line 965.91 seconds 3,799,933 calls
add-green-line 642.75 seconds 4,203,970 calls
alphabetize-type 131.15 seconds 470,398,011 calls
type-to-dnf-bottom-up 50.98 seconds 153,835,277 calls
fixed-point 44.42 seconds 25,739,264 calls
cached-subtypep 25.93 seconds 58,399,345 calls
extract-disjoint 18.47 seconds 928,332 calls
reduce-lisp-type-once 15.16 seconds 9,783,311 calls
(setf disjoint) 13.20 seconds 3,905,621 calls
call-with-subtype-hash 1.79 seconds 196,608 calls

Figure 10.22: Performance Profile of various pools on algorithm mdtd-graph. Each plot is displayed with
y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

236

10´5 10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

100

CL combinations

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

100

CL types

10´4 10´3 10´2 10´1 100 101 102

0

20

40

60

80

100

Integer ranges

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

MEMBER types

10´5 10´4 10´3 10´2 10´1 100 101 102

0

20

40

60

80

100

Real number ranges

10´4 10´3 10´2 10´1 100

0

20

40

60

80

OBJECT SYSTEM types

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

Subtypes of CONDITION

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

Subtypes of NUMBER or CONDITION

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

100

Subtypes of NUMBER

subtypep-wrapper 1296.87 seconds 1,049,588,444 calls
visit-min-terms 1139.58 seconds 2,725,469 calls
cached-subtypep-caching-call 331.00 seconds 585,164,199 calls
alphabetize-type 88.83 seconds 297,727,635 calls
cmp-objects 52.33 seconds 168,414,976 calls
slow-disjoint-types-p 25.99 seconds 3,019,869 calls
cached-subtypep 15.83 seconds 8,042,449 calls
alphabetize 13.90 seconds 28,263,169 calls
type-to-dnf-bottom-up 9.15 seconds 44,741,707 calls

Figure 10.23: Performance Profile of various pools on algorithm mdtd-sat. Each plot is displayed with y=’Profile
Percentage’ vs. x=’Computation Time (seconds).’

237

10´4 10´3 10´2 10´1 100 101 102

0

20

40

CL combinations

10´4 10´3 10´2 10´1 100 101 102

0

20

40

60
CL types

10´4 10´3 10´2 10´1 100 101

0

20

40

60

Integer ranges

10´4 10´3 10´2 10´1 100 101 102

0

20

40

60

80
MEMBER types

10´4 10´3 10´2 10´1 100 101

0

20

40

60

Real number ranges

10´4 10´3 10´2

0

10

20

30

40

OBJECT SYSTEM types

10´4 10´3 10´2 10´1 100 101

0

20

40

Subtypes of CONDITION

10´4 10´3 10´2 10´1 100 101

0

10

20

30

40
Subtypes of NUMBER or CONDITION

10´4 10´3 10´2 10´1

5

10

15

20

Subtypes of NUMBER

cached-subtypep-caching-call 3620.18 seconds 384,898,542 calls
smarter-subtypep-caching-call 267.60 seconds 12,262,527 calls
bdd-find 259.47 seconds 157,151,513 calls
bdd-find-int-int 223.12 seconds 135,691,492 calls
subtypep-wrapper 202.45 seconds 56,555,993 calls
fixed-point 120.39 seconds 130,501,261 calls
type-to-dnf-bottom-up 106.80 seconds 226,012,171 calls
slow-disjoint-types-p 92.80 seconds 5,004,407 calls
cached-subtypep 81.41 seconds 91,352,909 calls
bdd-subtypep 57.25 seconds 52,760,741 calls
bdd-empty-type 19.03 seconds 13,217,744 calls
bdd-and-not 8.37 seconds 4,837,888 calls
type-to-dnf 8.16 seconds 4,645,376 calls
bdd-find-reduction 4.58 seconds 677,063 calls

Figure 10.24: Performance Profile of various pools on algorithm mdtd-bdd. Each plot is displayed with y=’Profile
Percentage’ vs. x=’Computation Time (seconds).’

238

10.10 Profiler graphs of MDTD algorithms by function

10´4 10´3 10´2 10´1 100

20

40

60

mdtd-baseline

10´3 10´2 10´1

0

20

40

60

mdtd-bdd-graph-baker

10´4 10´3 10´2 10´1 100
0

20

40

60

mdtd-bdd-graph

10´4 10´3 10´2 10´1 100 101

0

10

20

30

40
mdtd-bdd

10´4 10´3 10´2 10´1 100 101

0

20

40

60

mdtd-graph-baker

10´4 10´3 10´2 10´1 100 101

0

20

40

mdtd-graph

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

mdtd-rtev2

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

mdtd-sat

10´4 10´3 10´2 10´1 100

0

20

40

60

parameterized-mdtd-bdd-graph

subtypep-wrapper 610.37 seconds 421,177,115 calls
cached-subtypep-caching-call 481.54 seconds 519,601,318 calls
fixed-point 389.31 seconds 475,652,506 calls
baker-subtypep 219.01 seconds 7,139,369 calls
delete-green-line 207.98 seconds 925,165 calls
cached-subtypep 119.01 seconds 223,358,784 calls
alphabetize-type 96.18 seconds 259,250,870 calls
visit-min-terms 76.96 seconds 32,970 calls
bdd-find 73.20 seconds 35,996,371 calls
type-keep-if 54.35 seconds 154,087,068 calls
slow-disjoint-types-p 38.66 seconds 3,450,639 calls
smarter-subtypep-caching-call 26.64 seconds 7,146,694 calls
alphabetize 21.82 seconds 39,594,264 calls
type-to-dnf-bottom-up 17.07 seconds 41,028,983 calls
type-to-dnf 12.76 seconds 3,959,296 calls
bdd-cmp 7.54 seconds 944,492 calls
bdd-empty-type 7.51 seconds 3,989,956 calls
recursively-expand-type 7.22 seconds 6,825,287 calls

Figure 10.25: Performance Profile of various MDTD functions for pool Subtypes of NUMBER or CON-
DITION. Each plot is displayed with y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

239

10´4 10´3 10´2 10´1 100

0

20

40

60

mdtd-baseline

10´4 10´3 10´2 10´1 100 101

0

20

40

mdtd-bdd-graph-baker

10´4 10´3 10´2 10´1 100

0

20

40

60

80

mdtd-bdd-graph

10´4 10´3 10´2 10´1 100 101

0

20

40

mdtd-bdd

10´4 10´3 10´2 10´1
0

10

20

30

mdtd-graph-baker

10´4 10´3 10´2 10´1 100 101

0

20

40

mdtd-graph

10´4 10´3 10´2 10´1 100 101

0

20

40

60

mdtd-rtev2

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

mdtd-sat

10´4 10´3 10´2 10´1 100

0

20

40

60

80

parameterized-mdtd-bdd-graph

cached-subtypep-caching-call 1623.89 seconds 1,201,597,418 calls
fixed-point 341.47 seconds 335,897,010 calls
subtypep-wrapper 338.70 seconds 312,578,279 calls
slow-disjoint-types-p 248.14 seconds 13,522,698 calls
baker-subtypep 191.18 seconds 16,450,412 calls
alphabetize-type 143.57 seconds 356,862,306 calls
bdd-find 95.59 seconds 43,864,743 calls
bdd-subtypep 51.78 seconds 35,928,219 calls
visit-min-terms 49.40 seconds 99,620 calls
cached-subtypep 43.94 seconds 84,484,722 calls
literal-type-null? 41.68 seconds 6,393,731 calls
split-type 39.08 seconds 11,794,752 calls
recursively-expand-type 24.74 seconds 71,276,088 calls
type-keep-if 21.30 seconds 86,135,128 calls
extract-disjoint 11.96 seconds 600,326 calls
type-to-dnf 8.99 seconds 2,247,552 calls
type-to-dnf-bottom-up 6.12 seconds 5,649,280 calls
bdd 1.89 seconds 536,666 calls

Figure 10.26: Performance Profile of various MDTD functions for pool Subtypes of CONDITION. Each
plot is displayed with y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

240

10´4 10´3 10´2 10´1

0

20

40

60

mdtd-baseline

10´3 10´2 10´1 100 101 102

0

20

40

60

80

mdtd-bdd-graph-baker

10´4 10´3 10´2 10´1 100 101

0

20

40

mdtd-bdd-graph

10´4 10´3 10´2 10´1

5

10

15

20

mdtd-bdd

10´3 10´2 10´1 100 101

0

20

40

60

80
mdtd-graph-baker

10´4 10´3 10´2 10´1 100 101

0

20

40

mdtd-graph

10´4 10´3 10´2 10´1 100

0

20

40

60

mdtd-rtev2

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

100

mdtd-sat

10´4 10´3 10´2 10´1

0

10

20

30

40

parameterized-mdtd-bdd-graph

delete-green-line 7197.76 seconds 27,448,449 calls
baker-subtypep 2125.18 seconds 15,867,004 calls
add-green-line 1437.40 seconds 7,925,836 calls
cached-subtypep-caching-call 695.34 seconds 897,725,197 calls
subtypep-wrapper 607.62 seconds 429,904,149 calls
bdd-find-int-int 282.38 seconds 171,966,286 calls
bdd-find 243.65 seconds 156,208,662 calls
type/map-atomic-types 233.22 seconds 141,406,750 calls
cached-subtypep 229.71 seconds 504,729,363 calls
alphabetize-type 130.73 seconds 301,715,942 calls
fixed-point 114.04 seconds 176,857,050 calls
type-to-dnf-bottom-up 107.82 seconds 228,020,374 calls
visit-min-terms 81.96 seconds 515,171 calls
remove-supers 11.14 seconds 3,621,315 calls

Figure 10.27: Performance Profile of various MDTD functions for pool Subtypes of NUMBER. Each plot is
displayed with y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

241

10´4 10´3 10´2 10´1 100

0

20

40

60

80

100
mdtd-baseline

10´4 10´3 10´2 10´1 100 101

40

50

60

70

80

mdtd-bdd-graph-baker

10´4 10´3 10´2 10´1 100 101
0

20

40

60

80

mdtd-bdd-graph

10´4 10´3 10´2 10´1 100 101

0

20

40

60

mdtd-bdd

10´3 10´2 10´1 100 101
0

20

40

60

80

mdtd-graph-baker

10´4 10´3 10´2 10´1 100 101

0

20

40

60

mdtd-graph

10´5 10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

mdtd-rtev2

10´4 10´3 10´2 10´1 100 101 102

0

20

40

60

80

100

mdtd-sat

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

parameterized-mdtd-bdd-graph

cached-subtypep-caching-call 2023.11 seconds 512,031,668 calls
subtypep-wrapper 899.19 seconds 580,984,545 calls
baker-subtypep 492.45 seconds 6,864,299 calls
fixed-point 182.48 seconds 177,900,614 calls
visit-min-terms 159.81 seconds 422,890 calls
cached-subtypep 114.34 seconds 200,924,808 calls
bdd-find 84.87 seconds 43,114,016 calls
type-to-dnf-bottom-up 69.41 seconds 122,030,540 calls
bdd-cmp 33.52 seconds 47,786,830 calls
alphabetize-type 29.44 seconds 64,562,959 calls
cmp-objects 17.21 seconds 17,248,589 calls
type-to-dnf 17.15 seconds 7,536,640 calls
bdd-subtypep 7.68 seconds 1,441,792 calls
reduce-lisp-type-once 7.17 seconds 2,752,512 calls
bdd-find-reduction 4.58 seconds 677,063 calls
add-green-line 3.84 seconds 127,087 calls

Figure 10.28: Performance Profile of various MDTD functions for pool Integer ranges. Each plot is displayed
with y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

242

10´4 10´3 10´2 10´1 100
0

20

40

60

mdtd-baseline

10´3 10´2

0

10

20

30

40

50

mdtd-bdd-graph-baker

10´4 10´3 10´2 10´1 100 101
0

20

40

60

80

mdtd-bdd-graph

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80
mdtd-bdd

10´4 10´3 10´2 10´1 100

20

40

60

mdtd-graph-baker

10´4 10´3 10´2 10´1 100 101

0

20

40

60

mdtd-graph

10´4 10´3 10´2 10´1 100 101

20

40

60

mdtd-rtev2

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

100

mdtd-sat

10´4 10´3 10´2 10´1 100 101
0

20

40

60

parameterized-mdtd-bdd-graph

cached-subtypep-caching-call 1142.17 seconds 897,406,579 calls
subtypep-wrapper 798.96 seconds 519,603,537 calls
literal-type-null? 326.83 seconds 23,187,333 calls
fixed-point 254.03 seconds 338,599,029 calls
baker-subtypep 201.16 seconds 16,610,923 calls
cached-subtypep 117.42 seconds 226,930,280 calls
smarter-subtypep-caching-call 117.13 seconds 4,771,886 calls
slow-disjoint-types-p 97.36 seconds 4,001,355 calls
visit-min-terms 95.67 seconds 316,202 calls
bdd-find 65.87 seconds 45,630,488 calls
type-keep-if 57.30 seconds 215,133,640 calls
type-to-dnf-bottom-up 56.91 seconds 138,338,496 calls
alphabetize-type 46.87 seconds 141,924,785 calls

Figure 10.29: Performance Profile of various MDTD functions for pool Subtypes of T. Each plot is displayed
with y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

243

10´4 10´3 10´2 10´1 100

0

20

40

60

80

100

mdtd-baseline

10´3 10´2 10´1 100 101

20

40

60

80

mdtd-bdd-graph-baker

10´4 10´3 10´2 10´1 100 101

0

10

20

mdtd-bdd-graph

10´4 10´3 10´2 10´1 100 101

0

20

40

60

mdtd-bdd

10´3 10´2 10´1 100 101

20

40

60

80

mdtd-graph-baker

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

mdtd-graph

10´5 10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

mdtd-rtev2

10´5 10´4 10´3 10´2 10´1 100 101 102

0

20

40

60

80

100

mdtd-sat

10´5 10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

100

parameterized-mdtd-bdd-graph

subtypep-wrapper 2762.24 seconds 1,343,320,914 calls
cached-subtypep-caching-call 1494.63 seconds 480,449,651 calls
baker-subtypep 826.46 seconds 9,184,127 calls
type/map-atomic-types 190.32 seconds 176,042,665 calls
visit-min-terms 126.97 seconds 364,835 calls
fixed-point 91.23 seconds 163,188,574 calls
type-to-dnf-bottom-up 50.64 seconds 82,310,760 calls
cmp-objects 33.20 seconds 51,746,888 calls
bdd-subtypep 27.86 seconds 29,255,416 calls
bdd-positive 24.17 seconds 29,775,898 calls
bdd-find 21.93 seconds 9,388,976 calls
cached-subtypep 20.50 seconds 31,908,677 calls
bdd-make-key 18.01 seconds 32,608,213 calls
alphabetize-type 12.27 seconds 42,197,202 calls
alphabetize 12.19 seconds 18,595,105 calls
(setf disjoint) 9.73 seconds 3,443,408 calls
remove-supers 4.62 seconds 236,156 calls
maybe-disjoint-node 3.24 seconds 419,396 calls

Figure 10.30: Performance Profile of various MDTD functions for pool Real number ranges. Each plot is
displayed with y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

244

10´4 10´3 10´2 10´1 100 101

20

40

60

mdtd-baseline

10´3 10´2 10´1 100

0

20

40

60

mdtd-bdd-graph-baker

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

mdtd-bdd-graph

10´4 10´3 10´2 10´1 100 101 102

0

20

40

mdtd-bdd

10´4 10´3 10´2 10´1 100 101

0

20

40

mdtd-graph-baker

10´4 10´3 10´2 10´1 100 101
0

10

20

30

40

mdtd-graph

10´4 10´3 10´2 10´1 100 101

0

20

40

60

mdtd-rtev2

10´5 10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

100

mdtd-sat

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

parameterized-mdtd-bdd-graph

cached-subtypep-caching-call 1305.77 seconds 353,914,420 calls
smarter-subtypep-caching-call 576.26 seconds 22,892,758 calls
subtypep-wrapper 461.75 seconds 338,014,869 calls
fixed-point 171.70 seconds 266,302,751 calls
literal-type-null? 143.54 seconds 13,970,322 calls
cached-subtypep 88.29 seconds 198,958,982 calls
baker-subtypep 80.39 seconds 5,721,862 calls
visit-min-terms 52.92 seconds 263,473 calls
bdd-find 44.11 seconds 29,014,187 calls
alphabetize-type 41.17 seconds 117,837,159 calls
recursively-expand-type 31.73 seconds 41,961,448 calls
slow-disjoint-types-p 13.24 seconds 415,709 calls
type-to-dnf-bottom-up 12.36 seconds 62,358,410 calls
type-keep-if 12.15 seconds 71,292,276 calls
reduce-lisp-type-once 6.79 seconds 1,677,868 calls
extract-disjoint 6.51 seconds 328,006 calls
(setf disjoint) 3.47 seconds 462,213 calls

Figure 10.31: Performance Profile of various MDTD functions for pool CL combinations. Each plot is
displayed with y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

245

10´5 10´4 10´3 10´2 10´1 100 101
0

20

40

60

mdtd-baseline

10´3 10´2 10´1
0

10

20

30

40

50

mdtd-bdd-graph-baker

10´4 10´3 10´2

2

4

6

8

10

mdtd-bdd-graph

10´4 10´3 10´2

0

10

20

30

40

mdtd-bdd

10´4 10´3 10´2

10

20

30

40

50

mdtd-graph-baker

10´4 10´3 10´2

5

10

15

20

mdtd-graph

10´4 10´3 10´2 10´1 100 101

20

40

60

mdtd-rtev2

10´4 10´3 10´2 10´1 100

0

20

40

60

80

mdtd-sat

10´4 10´3 10´2 10´1

10

20

30

40

parameterized-mdtd-bdd-graph

cached-subtypep-caching-call 899.97 seconds 750,511,837 calls
subtypep-wrapper 580.46 seconds 443,445,701 calls
literal-type-null? 499.85 seconds 75,249,056 calls
fixed-point 444.81 seconds 547,301,581 calls
visit-min-terms 387.20 seconds 158,416 calls
alphabetize-type 312.71 seconds 933,747,342 calls
type-keep-if 300.20 seconds 888,806,768 calls
baker-subtypep 276.90 seconds 18,413,272 calls
bdd-find 186.38 seconds 87,524,776 calls
cached-subtypep 116.12 seconds 219,997,577 calls
type/map-atomic-types 109.64 seconds 235,825,120 calls
type-to-dnf-bottom-up 106.57 seconds 295,853,952 calls
bdd-empty-type 19.03 seconds 13,217,744 calls
split-type 17.14 seconds 7,267,216 calls
nodes 13.06 seconds 4,947,104 calls
%bdd-to-dnf 9.56 seconds 1,655,040 calls
bdd-and-not 6.66 seconds 2,818,048 calls
remove-supers 4.89 seconds 2,239,812 calls
call-with-subtype-hash 1.79 seconds 196,608 calls

Figure 10.32: Performance Profile of various MDTD functions for pool OBJECT SYSTEM types. Each plot
is displayed with y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

246

10´4 10´3 10´2 10´1 100

20

30

40

50

60

mdtd-baseline

10´4 10´3 10´2 10´1
0

10

20

30

40

mdtd-bdd-graph-baker

10´4 10´3 10´2 10´1 100 101

0

20

40

60

mdtd-bdd-graph

10´4 10´3 10´2 10´1 100 101 102

0

20

40

60
mdtd-bdd

10´4 10´3 10´2 10´1 100

10

20

30

40

50

mdtd-graph-baker

10´4 10´3 10´2 10´1 100 101
0

20

40

60
mdtd-graph

10´4 10´3 10´2 10´1 100 101
0

20

40

60

mdtd-rtev2

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

100

mdtd-sat

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

parameterized-mdtd-bdd-graph

cached-subtypep-caching-call 1263.14 seconds 837,922,902 calls
subtypep-wrapper 691.21 seconds 537,065,913 calls
fixed-point 319.78 seconds 483,037,881 calls
baker-subtypep 317.02 seconds 21,130,787 calls
smarter-subtypep-caching-call 282.67 seconds 13,928,226 calls
literal-type-null? 270.23 seconds 26,602,457 calls
alphabetize-type 182.76 seconds 483,007,703 calls
cached-subtypep 152.02 seconds 354,115,905 calls
visit-min-terms 108.69 seconds 551,892 calls
type-keep-if 71.38 seconds 260,639,652 calls
type-to-dnf-bottom-up 45.33 seconds 134,863,662 calls
bdd-find 41.86 seconds 27,342,516 calls
recursively-expand-type 37.25 seconds 85,716,308 calls
bdd-ident 17.68 seconds 25,351,606 calls
slow-disjoint-types-p 16.81 seconds 712,138 calls
bdd-and-not 8.37 seconds 4,837,888 calls
delete-blue-arrow 2.98 seconds 92,314 calls

Figure 10.33: Performance Profile of various MDTD functions for pool CL types. Each plot is displayed with
y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

247

10´3 10´2 10´1

10

20

30

40

50

mdtd-baseline

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

mdtd-bdd-graph-baker

10´4 10´3 10´2 10´1 100 101

0

20

40

60

mdtd-bdd-graph

10´4 10´3 10´2 10´1 100 101 102

0

20

40

60

80
mdtd-bdd

10´2 10´1 100 101

0

20

40

60

80

mdtd-graph-baker

10´4 10´3 10´2 10´1 100

0

10

20

30

40

50
mdtd-graph

10´4 10´3 10´2 10´1

0

10

20

30

40

50

mdtd-rtev2

10´4 10´3 10´2 10´1 100 101

0

20

40

60

80

mdtd-sat

10´4 10´3 10´2 10´1 100 101

0

20

40

60

parameterized-mdtd-bdd-graph

cached-subtypep-caching-call 10013.88 seconds 580,732,969 calls
subtypep-wrapper 1550.59 seconds 396,617,722 calls
cmp-objects 276.81 seconds 1,241,946,196 calls
alphabetize 150.20 seconds 129,864,599 calls
reduce-member-type 120.69 seconds 3,368,674 calls
cached-subtypep 86.45 seconds 117,539,645 calls
bdd-find-int-int 81.39 seconds 37,414,865 calls
bdd-find 45.51 seconds 26,441,795 calls
bdd-subtypep 35.77 seconds 37,976,713 calls
bdd-cmp 28.20 seconds 37,245,652 calls
baker-subtypep 18.33 seconds 32,865 calls
bdd-find-reduction 16.40 seconds 482,046 calls
delete-green-line 14.63 seconds 76,332 calls
maybe-disjoint-node 8.06 seconds 1,690,981 calls
reduce-lisp-type-once 7.99 seconds 7,030,799 calls
bdd-hash 7.89 seconds 18,915,531 calls
bdd-dnf-wrap 3.53 seconds 297,928 calls
subsets 2.82 seconds 327,680 calls
add-green-line 2.59 seconds 310,728 calls

Figure 10.34: Performance Profile of various MDTD functions for pool MEMBER types. Each plot is
displayed with y=’Profile Percentage’ vs. x=’Computation Time (seconds).’

248

10.11 Related work
Zabell [Zab08] explains that the unusual name, Student score, is used because William Sealy Gosset, who intro-
duced the statistical techniques related to this quantity, published his results under the pseudonym, “Student.”
Gosset, who worked for Arthur Guinness, Son & Co., Ltd. in Dublin, Ireland (à la Guinness beer) in 1899,
pioneered the use of statistical methods of small samples as part of the responsibilities of his job. Employees
of Guinness were forbidden to publish, perhaps for fear of revealing trade secrets, but by enlightened contrast,
they were allowed to take leave for study. Gosset convinced Guinness to allow him to publish certain results,
as long as he didn’t reveal information of any practical use to competitors. There is some dispute as to why
Guinness demanded the pseudonym. Zabell claims that it is unknown whether Guinness did not want their
competitors to know that they hired statisticians, or whether the pseudonym was to protect Gosset’s identity
from other Guinness employees. Zabell cites Hotelling [Hot30] for these claims.

BDDs have been used in electronic circuit generation [CBM90], verification, symbolic model check-
ing [BCM`92], and type system models such as in XDuce [HVP05]. None of these sources discuss how to
extend the BDD representation to support subtypes.

Decision tree techniques are useful in the efficient compilation of pattern-matching constructs in functional
languages [Mar08]. An important concern in pattern-matching compilation is that finding the best ordering of
the variables is known to be coNP-Complete [Bry86]. However, when using BDDs to represent Common Lisp
type specifiers, we obtain representation (pointer) equality simply by using a consistent ordering; finding the
best ordering is not necessary for our application.

The average and worst cases of decision diagrams have been discussed in published works. For example Butler
et al. [SIHB97] discuss these measurements for symmetric multiple-valued functions. Bryant [Bry86] discusses
the effect of variable ordering on diagram sizes. Gröpl [GPS01] examines the worst case size of qOBDDs, which
are quasi-reduced BDDs; i.e. he omits some of the reduction steps which we use.

Castagna [Cas16] discusses the use of BDDs as a tool for type manipulation primarily in strictly typed (or
gradually typed [CL17]) functional languages. A principal motivation for our research was (is) to investigate
how these techniques might be useful when applied to a more pragmatic type system such as in Common Lisp.

The Common Lisp specification [Ans94] defines the term exhaustive partition which is a concept related to
the maximal disjoint decomposition. In terms of the definitions from Common Lisp, we may think of a disjoint
decomposition of V Ă PpUq as an exhaustive partition of

Ş

V . The distinction between the two concepts is
subtle. To find an exhaustive partition, we start with a single set and partition it into disjoint subsets whose
union is the original set. To find a disjoint decomposition, we start with a set of possibly overlapping subsets
of a given set, whose union is not necessarily the entire set, and we proceed by finding another set of subsets
which is pairwise disjoint and which has the same union as the given set of subsets.

The problem of finding the maximal disjoint decomposition is similar to the union find problem [PBM10,
GF64]. In union find, we are permitted to look into the sets and partition the elements. However, in MDTD
we wish to form the partition without knowledge of the specific elements; i.e. we are not permitted to iterate
over or visit the individual elements. Rather, we have knowledge of the subset, superset, disjointness relations
between any pair of sets.

The correspondence of types to sets and subtypes to subsets is a subject of ongoing research in computer
science. A brief synopsis of the history is given in Section 2.8.

There seems to be a connection between MDTD and ISOP (Irredundant Sum-Of-Products generation)
described by Minato [iM96]. More research is needed to categorize this connection.

10.12 Conclusion and perspectives
The results of the performance testing in this chapter lead us to believe that the BDD as data structure
for representing Common Lisp type specifiers is promising. However, there is still work to do, especially in
identifying heuristics to predict its performance relative to more traditional approaches.

It is known that algorithms using BDD data structure tend to trade space for speed; i.e., allocating more
space to get more speed. Castagna [Cas16] suggests a lazy version of the BDD data structure which may reduce
the memory footprint which, in turn, would have a positive effect on the BDD based algorithms. We have spent
only a few weeks optimizing our BDD implementation based on the Andersen’s description [And99], whereas
the CUDD [Som] developers have spent many years optimizing their algorithms. Certainly our BDD algorithm
can be made more efficient using techniques of CUDD or others.

A shortcoming of our research is the lack of formal proof for the correctness of our algorithms, most notably
the graph decomposition algorithm from Section 9.4.

It has also been observed that, in the algorithm explained in section 9.4, the convergence rate varies depending
on the order of the reduction operations. We do not have sufficient data yet to characterize this dependence.
Furthermore, the order to break connections in the algorithm in Section 9.4 may be important. It is clear that

249

many different strategies are possible, e.g., (1) break busiest connections first, (2) break connections with the
fewest dependencies, (3) random order, (4) closest to top of tree, etc. These are all areas of ongoing research.

We plan to investigate whether there are other applications of MDTD outside the Common Lisp type
system. We hope that some users of Castagna’s techniques [Cas16] of semantic subtyping will benefit from the
optimizations we have discussed.

A potential application with Common Lisp is improving the subtypep implementation itself, which is known
to be slow in some cases. Implementation 9.6 gave a BDD specific implementation of bdd-subtypep. We
intend to investigate whether existing Common Lisp implementations could use our technique to represent type
specifiers in their inferencing engines, and thereby make some subtype checks more efficient.

250

Chapter 11

Strategies for typecase Optimization

In Chapter 4 we introduced the problem of efficiently recognizing a sequence of objects in Common Lisp, given
a regular type expression. This problem lead to two challenges called the MDTD problem and the serialization
problem. In Chapter 9 we looked at solutions to the MDTD problem, and in Chapter 10 we analyzed the
performance characteristics of various strategies. In the current chapter we will look at the serialization problem.

11.1 Introduction
The typecase macro is specified in Common Lisp [Ans94] as a run-time mechanism for selectively branching as
a function of the type of a given expression. Example 11.1 summarizes the usage. The type specifiers used may
be simple type names such as fixnum, string, or my-class, but may also specify more expressive types such
as range checks (float -3.0 3.5), membership checks such as (member 1 3 5), arbitrary Boolean predicate
checks such as (satisfies oddp), or logical combinations of other valid type specifiers such as (or string
(and fixnum (not (eql 0))) (cons bignum)). A more detailed discussion of the semantics of type specifiers
can be found in Section 2.2.

Example 11.1 (Synopsis of typecase syntax).

(typecase keyform
(Type .1 body-forms-1 ...)
(Type .2 body-forms-2 ...)
(Type .3 body-forms-3 ...)
...
(Type.n body-forms-n ...))

In this chapter, we consider several issues concerning the compilation of such a typecase usage.

• Redundant checks1 — The set of type specifiers used in a particular invocation of typecase may have
subtype or intersection relations among them. Consequently, it is possible (perhaps likely in the case
of auto-generated code) that the same type checks be performed multiple times, when evaluating the
typecase at run-time.

• Unreachable code — The specification suggests but does not require that the compiler issue a warning if a
clause is not reachable, being completely shadowed by earlier clauses. We consider such compiler warnings
desirable, especially in manually written code.

• Exhaustiveness — The user is allowed to specify a set of clauses which is non-exhaustive. If it can be
determined at compile time that the clauses are indeed exhaustive, even in the absence of a t/otherwise
clause, then in such a case, the final type check may be safely replaced with otherwise, thus eliminating
the need for that final type check at run-time.

The etypecase macro (exhaustive type case according to [Ste90, Section 29.4.3]) promises to signal a run-
time error if the object is not an element of any of the specified types. We pose a different exhaustiveness

1Don’t confuse redundant check with redundancy check. In this report we address the former, not the latter. A type check is
viewed as redundant, and can be eliminated, if its Boolean result can determined by static code analysis.

251

question: can it be determined at compile time that all possible values are covered by at least one of the
clauses?

Assuming we are allowed to change the typecase evaluation order, we wish to exploit evaluation orders
which are more likely to result in faster run-time. Some type checks are slower than others. E.g. a satisfies
check may be arbitrarily slow. Under certain conditions, as will be seen, there are techniques to protect
certain type checks to allow reordering without changing semantics. Such reordering may consequently enable
particular optimizations such as elimination of redundant checks or the exhaustiveness optimization explained
above. Elimination of redundant type checks has an additional advantage that, apart from potentially speeding
up certain code paths, it also allows the discovery of unreachable code.

There is a statement in the typecase specification that each normal-clause be considered in turn. We
interpret this requirement not to mean that the type checks must be evaluated in order, but rather that
each type test must assume that type tests appearing earlier in the typecase are not satisfied. Moreover,
we interpret this specified requirement so as not to impose a run-time evaluation order and that, as long as
evaluation semantics are preserved, the type checks may be done in any order at run-time, and in particular,
that any type check which is redundant or unnecessary need not be performed.

In this chapter we consider different techniques for evaluating the type checks in different orders than that
which is specified in the code, so as to maintain the semantics but to eliminate redundant checks.

In the chapter we examine two very different approaches for performing certain optimizations of typecase.
First, we use a natural approach using s-expression based type specifiers (Section 11.2), operating on them
as symbolic expressions. In the second approach (Section 11.3) we employ Reduced Ordered Binary Decision
Diagrams (ROBDDs). We finish the chapter with an overview of related work (Section 11.4) and a summary
of perspectives (Section 11.5).

11.2 Type specifier approach
We would like to automatically remove redundant checks such as (eql 42), (member 40 41 42), and fixnum
in Example 11.2.

Example 11.2 (typecase with redundant type checks).
(typecase OBJECT

((eql 42)
body-forms-1 ...)

((and (member 40 41 42) (not (eql 42)))
body-forms-2 ...)

((and fixnum (not (member 40 41 42)))
body-forms-3 ...)

((and number (not fixnum))
body-forms-4 ...))

The code in Example 11.3 is semantically identical to that in Example 11.2, because a type check is only
reached if all preceding type checks have failed.

Example 11.3 (typecase after removing redundant checks).
(typecase OBJECT

((eql 42) body-forms-1 ...)
((member 40 41 42) body-forms-2 ...)
(fixnum body-forms-3 ...)
(number body-forms-4 ...))

In the following sections, we initially show that certain duplicate checks may be removed through a technique
called forward-substitution and reduction (Section 11.2.1). A weakness of this technique is that it sometimes
fails to remove particular redundant type checks. Because of this weakness, a more elaborate technique is
applied, in which we augment the type tests to make them mutually disjoint (Section 11.2.3). With these more
complex type specifiers in place, the typecase has the property that its clauses are reorderable, which allows

252

the forward-substitution and reduction algorithm to search for an ordering permitting more thorough reduction
(Section 11.2.5). This process allows us to identify unreachable code paths and to identify exhaustive case
analyses, but there are still situations in which redundant checks cannot be eliminated.

11.2.1 Reduction of type specifiers
There are legitimate cases in which the programmer has specifically ordered the clauses to optimize performance.
A production worthy typecase optimization system should take that into account. However, for the sake of
simplicity, the remainder of this chapter ignores this concern.

We introduce a macro, reduced-typecase, which expands to a call to typecase but with cases reduced
where possible. Latter cases assume previous type checks fail. This transformation preserves clause order, but
may simplify the executable logic of some clauses. In the expansion, in Example 11.4 the second float check
is eliminated, and consequently, the associated AND and NOT.

Example 11.4 (Simple invocation and expansion of reduced-typecase).
(reduced-typecase object

(float body-forms-1 ...)
((and number (not float)) body-forms-2 ...))

(typecase object
(float body-forms-1 ...)
(number body-forms-2 ...))

To illustrate how this reduction works, we provide a sightly more elaborate example. In Example 11.5, the
first type check is (not (and number (not float))). In order that the second clause be reached at run-time
the first type check must have already failed. This means that the second type check, (or float string (not
number)), may assume that object is not of type (not (and number (not float))).

Example 11.5 (Invocation and expansion reduced-typecase with unreachable code path).
(reduced-typecase object

((not (and number (not float))) body-forms-1 ...)
((or float string (not number)) body-forms-2 ...)
(string body-forms-3 ...))

(typecase object
((not (and number (not float))) body-forms-1 ...)
(string body-forms-2 ...)
(nil body-forms-3 ...))

The reduced-typecase macro rewrites the second type test (or float string (not number)) by a tech-
nique called forward-substitution. At each step, it substitutes implied values into the next type specifier and
performs Boolean logic reduction. Abelson et al. [AS96] discuss Lisp algorithms for performing algebraic reduc-
tion; however, in addition to the Abelson algorithm, reducing Boolean expressions representing Common Lisp
types involves additional reductions representing the subtype relations of terms in question. For example (and
number fixnum ...) reduces to (and fixnum ...) because fixnum is a subtype of number. Similarly, (or
number fixnum ...) reduces to (or number ...). Newton et al. [NVC17] discuss techniques of Common
Lisp type reduction in the presence of subtypes. Example 11.6 shows step-by-step reduction starting at the as-
sumption that (not (and number (not float))) is nil, and ending at (and float string (not number))
reducing to string.

253

Example 11.6 (Example of forward substitution).

(not (and number (not float))) “ nil

ùñ (and number (not float)) “ t

ùñ number “ t and
(not float) “ t

ùñ float “ nil

(or float string (not number)) “ (or nil string (not t))

“ (or nil string nil)

“ string

With this forward substitution, reduced-typecase is able to rewrite the second clause ((or float string
(not number)) body-forms-2...) simply as (string body-forms-2...). Thereafter, a similar forward sub-
stitution is made to transform the third clause from (string body-forms-3...) to (nil body-forms-3...).

Example 11.5 illustrates a situation in which a type specifier in one of the clauses is reduced to nil. In such
a case, we would like the compiler to issue warnings about finding unreachable code, and in fact it does (at least
when tested with SBCL2) because the compiler finds nil as the type specifier. The clauses in Example 11.7
are identical to those in Example 11.5 and consequently, the expressions body-forms-3... in the third clause
cannot be reached. Yet, contrary to Example 11.5, SBCL, AllegroCL3, and CLISP4 issue no warning at all that
body-forms-3... is unreachable code.

Example 11.7 (Invocation of typecase with unreachable code).

(typecase object
((not (and number (not float))) body-forms-1 ...)
((or float string (not number)) body-forms-2 ...)
(string body-forms-3 ...))

11.2.2 Order dependency
We now reconsider Examples 11.2 and 11.3. While the semantics are the same, there is an important distinction
in practice. The first typecase contains mutually exclusive clauses, whereas the second one does not. E.g., if
the (member 40 41 42) check is moved before the (eql 42) check, then (eql 42) will never match, and the
consequent code body-forms-2... will be unreachable.

For the order of the type specifiers given in Example 11.2, the types can be simplified, having no redundant
type checks, as shown in Example 11.3. This phenomenon is both a consequence of the particular types in
question and also the order in which they occur. As a contrasting example, consider the situation in Example 11.8
where the first two clauses of the typecase are reversed with respect to Example 11.2. In this case, knowing
that OBJECT is not of type (and (member 40 41 42) (not (eql 42))) tells us nothing about whether OBJECT
is of type (eql 42); so no reduction can be inferred.

Example 11.8 (Re-ordering clauses sometimes enable reduction).
(typecase OBJECT

((and (member 40 41 42) (not (eql 42)))
body-forms-2 ...)

((eql 42)
body-forms-1 ...)

((and fixnum (not (member 40 41 42)))

2We tested with SBCL 1.3.14. SBCL is an implementation of ANSI Common Lisp. http://www.sbcl.org/
3We tested with the International Allegro CL Free Express Edition, version 10.1 [32-bit Mac OS X (Intel)] (Sep 18, 2017 13:53).

http://franz.com
4We tested with GNU CLISP 2.49, (2010-07-07). http://clisp.cons.org/

254

body-forms-3 ...)
((and number (not fixnum))

body-forms-4 ...))

Programmatic reductions in the typecase are dependent on the order of the specified types. There are
many possible approaches to reducing types despite the order in which they are specified. We consider two such
approaches. Section 11.2.5 discusses automatic reordering of disjoint clauses, and Section 11.3 uses decision
diagrams.

As already suggested, a situation as shown in Example 11.8 can be solved to avoid the redundant type check,
(eql 42), by reordering the disjoint clauses as in Example 11.2. However, there are situations in which no
reordering alleviates the problem. Consider the code shown in Example 11.9. We see that some sets of types
are reorderable, allowing reduction, but for some sets of types such reordering is impossible. We consider in
Section 11.3 typecase optimization where reordering is futile. For now we concentrate on efficient reordering
wherever possible.

Example 11.9 (Re-ordering cannot always enable reduction).
(typecase OBJECT

((and unsigned-byte (not bignum))
body-forms-1 ...)

((and bignum (not unsigned-byte))
body-forms-2 ...))

11.2.3 Mutually disjoint clauses
As suggested in Section 11.2.2, to arbitrarily reorder the clauses, the types must be disjoint. It is straightforward
to transform any typecase into another which preserves the semantics but for which the clauses are reorderable.
Consider a typecase in a general form.

Example 11.10 shows a set of type checks equivalent to those in Example 11.1 but with redundant checks,
making the clauses mutually exclusive, and thus reorderable.

Example 11.10 (typecase with mutually exclusive type checks).
(typecase OBJECT

(Type .1
body-forms-1 ...)

((and Type .2
(not Type .1))

body-forms-2 ...)
((and Type .3

(not (or Type .1 Type .2)))
body-forms-3 ...))

...
((and Type.n

(not (or Type .1 Type .2 ... Type.n-1)))
body-forms-n ...))

In order to make the clauses reorderable, we make them more complex which might seem to defeat the
purpose of optimization. However, as we see in Section 11.2.5, the complexity can sometimes be removed after
reordering, thus resulting in a set of type checks which is better than the original. We discuss what we mean
by better in Section 11.2.4.

We proceed by first describing a way to judge which of two given orders is better, and with that comparison
function, we can visit every permutation and choose the best.

One might also wonder why we suffer the pain of establishing heuristics and visiting all permutations of the
mutually disjoint types in order to find the best order. One might ask, why not just put the clauses in the

255

best order to begin with. The reason is because in the general case, it is not possible to predict what the best
order is. As is discussed in Section 11.4, ordering the Boolean variables to produce the smallest binary decision
diagram is an coNP-Complete [Bry86] problem. The only solution in general is to visit every permutation. The
problem of ordering a set of type tests for optimal reduction must also be at least coNP-Complete, because if
we had a better solution, we would be able to solve the BDD coNP-Complete problem as a consequence.

11.2.4 Comparing heuristically
Given a set of disjoint, and thus reorderable clauses, we can now consider finding a good order. We can examine
a type specifier, typically after having been reduced, and heuristically assign a cost. A high cost is assigned
to a satisfies type, a medium cost to AND, OR, and NOT types which takes into account the cost of the types
specified therein, a cost to member types proportional to their length, and a low cost to atomic names and eql
type specifiers.

To estimate the relative goodness of two, given, semantically identical, typecase invocations, we can heuris-
tically estimate the complexity of each by using a weighted sum of the costs of the individual clauses. The
weight of the first clause is higher because the type specified therein will be always checked. Each type specifier
thereafter will only be checked if all the preceding checks fail. Thus the heuristic weights assigned to subsequent
checks is chosen successively smaller as each subsequent check has a smaller probability of being reached at
run-time.

11.2.5 Reduction with automatic reordering
Now that we have a way to heuristically measure the complexity of a given invocation of typecase we can
therewith compare two semantically equivalent invocations and choose the better one. If the number of clauses
is small enough, we can visit all possible permutations. If the number of clauses is large, we can sample the
space randomly for some specified amount of time or specified number of samples, and choose the best ordering
we find.

We introduce the macro, auto-permute-typecase. It accepts the same arguments as typecase and ex-
pands to a typecase form. It does so by transforming the specified types into mutually disjoint types as
explained in Section 11.2.3, then iterating through all permutations of the clauses. For each permutation of
the clauses, it reduces the types, eliminating redundant checks where possible using forward-substitution as
explained in Section 11.2.1, and assigns a cost heuristic to each permutation as explained in Section 11.2.4.
The auto-permute-typecase macro then expands to the typecase form with the clauses in the order which
minimizes the heuristic cost.

Example 11.11 shows an invocation and expansion of auto-permute-typecase. In this example
auto-permute-typecase does a good job of eliminating redundant type checks.

Example 11.11 (Invocation and expansion of auto-permute-typecase).
(auto-permute-typecase object

((and unsigned-byte (not (eql 42)))
body-forms-1 ...)

((eql 42)
body-forms-2 ...)

((and number (not (eql 42)) (not fixnum))
body-forms-3 ...)

(fixnum
body-forms-4 ...))

(typecase object
((eql 42) body-forms-2 ...)
(unsigned-byte body-forms-1 ...)
(fixnum body-forms-4 ...)
(number body-forms-3 ...))

As mentioned earlier, a particular optimization can be made in the situation where the type checks in the
typecase are exhaustive; in particular the final type check may be replaced with t/otherwise. Example 11.12
illustrates such an expansion in the case that the types are exhaustive. Notice that the final type test in the
expansion is t.

256

Example 11.12 (Invocation and expansion of auto-permute-typecase with exhaustive type checks).
(auto-permute-typecase object

((or bignum unsigned-byte) body-forms-1 ...)
(string body-forms-2 ...)
(fixnum body-forms-3 ...)
((or (not string) (not number)) body-forms-4 ...))

(typecase object
(string body-forms-2 ...)
((or bignum unsigned-byte) body-forms-1 ...)
(fixnum body-forms-3 ...)
(t body-forms-4 ...))

11.3 Decision diagram approach
In Section 11.2.5 we looked at a technique for reducing typecase based solely on programmatic manipulation
of type specifiers. Now we explore a different technique based on a data structure known as Reduced Ordered
Binary Decision Diagram (ROBDD).

Example 11.9 illustrates that redundant type checks cannot always be reduced via reordering. Example 11.13
is, however, semantically equivalent to Example 11.9. Successfully mapping the code from of a typecase to an
ROBDD will guarantee that redundant type checks are eliminated. In the following sections we automate this
code transformation.

Example 11.13 (Suggested expansion of Example 11.9).
(if (typep object 'unsigned-byte)

(if (typep object 'bignum)
nil
(progn body-forms-1 ...))

(if (typep object 'bignum)
(progn body-forms-2 ...)
nil))

The code in Example 11.13 also illustrates a concern of code size explosion. With the two type checks
(typep object ’unsigned-byte) and (typep object ’bignum), the code expands to 7 lines of code. If this
code transform is done naïvely, the risk is that each if/then/else effectively doubles the code size. In such an
undesirable case, a typecase having N unique type tests among its clauses, would expand to 2N`1 ´ 1 lines of
code, even if such code has many congruent code paths. The use of ROBDD related techniques allows us to
limit the code size to something much more manageable. Some discussion of this is presented in Section 11.4.

ROBDDs (Section 11.3.1) represent the semantics of Boolean equations but do not maintain the original
evaluation order encoded in the actual code. In this sense the reordering of the type checks, which is explicit
and of combinatorial complexity in the previous approach, is automatic in this approach. A complication is that
normally ROBDDs express Boolean functions, so the mapping from typecase to ROBDD is not immediate, as
a typecase may contain arbitrary side-effecting expressions which are not restricted to Boolean expressions.
We employ an encapsulation technique which allows the ROBDDs to operate opaquely on these problematic
expressions (Section 11.3.1). Finally, we are able to serialize an arbitrary typecase invocation into an efficient
if/then/else tree (Section 11.3.3).

ROBDDs inherently eliminate duplicate checks. However, ROBDDs cannot easily guarantee removing all
unnecessary checks as that would involve visiting every possible ordering of the leaf level types involved.

11.3.1 An ROBDD compatible type specifier
An ROBDD is a data structure used for performing many types of operations related to Boolean algebra. When
we use the term ROBDD, we mean, as the name implies, a decision diagram (directed cyclic graph, DAG)
whose vertices represent Boolean tests and whose branches represent the consequent and alternative actions.

257

unsigned-byte

bignum bignum

⊥(progn body-forms-2...) (progn body-forms-1...)

Figure 11.1: Decision Diagram representing irreducible typecase. This is similar to an ROBDD, but does not
fulfill the definition thereof, because the leaf nodes are not simple Boolean values.

unsigned-byte

bignum bignum

⊥

(satisfies P2) (satisfies P1)

T

Figure 11.2: ROBDD with temporary valid satisfies types

An ROBDD has its variables Ordered, meaning that there is some ordering of the variables tv1, v2, ..., vNu such
that whenever there is an arrow from vi to vj then i ă j. An ROBDD is deterministically Reduced so that
all common sub-graphs are shared rather than duplicated. The reader is advised to read the lecture notes of
Andersen [And99] for a detailed understanding of the reduction rules. It is worth noting that there is variation
in the terminology used by different authors. For example, Knuth [Knu09] uses the unadorned term BDD for
what we are calling an ROBDD.

A unique ROBDD is associated with a canonical form representing a Boolean function, or otherwise stated,
with an equivalence class of expressions within the Boolean algebra. In particular, intersection, union, and
complement operations as well as subset and equivalence calculations on elements from the underlying space of
sets or types can be computed by straightforward algorithms. We omit detailed explanations of those algorithms
here and, instead, we refer the reader to work by Andersen [And99] and Castagna [Cas16].

We employ ROBDDs to convert a typecase into an if/then/else diagram as shown in Figure 11.1. In
the figure, we see a decision diagram which is similar to an ROBDD, at least in all the internal nodes of the
diagram. Green arrows lead to the consequent if a specified type check succeeds. Red arrows lead to the
alternative. However, the leaf nodes are not Boolean values as we expect for an ROBDD.

We want to transform the clauses of a typecase as shown in Example 11.1 into a binary decision diagram.
To do so, we associate a distinct satisfies type with each clause of the typecase. Each such satisfies type
has a unique function associated with it, such as P1, P2, etc, allowing us to represent the diagram shown in
Figure 11.1 as an actual ROBDD as shown in Figure 11.2.

In order for certain Common Lisp functions to behave properly (such as subtypep) the functions P1, P2,
etc. must be real functions, as opposed to place-holder functions types as Baker [Bak92] suggests, so that
(satisfies P1) etc, have type specifier semantics. P1, P2, etc, must be defined in a way which preserves the
semantics of the typecase.

258

Ideally we would like to create type specifiers such as the following:
(satisfies (lambda (object)

(typep object '(and (not unsigned-byte)
bignum))))

Unfortunately, the specification of satisfies explicitly forbids this, and requires that the operand of
satisfies be a symbol representing a globally callable function, even if the type specifier is only used in
a particular dynamic extent. Because of this limitation in Common Lisp, we create the type specifiers as
follows. Given a type specifier, we create such a functions at run-time using the technique shown in the func-
tion define-type-predicate defined in Implementation 11.14, which programmatically defines function with
semantics similar to those shown in Example 11.15.

Implementation 11.14 (define-type-predicate).

(defun define-type-predicate (type-specifier)
(let ((function-name (gensym "P")))

(setf (symbol-function function-name)
#'(lambda (object)

(typep object type-specifier)))
function-name))

Example 11.15 (Semantics of satisfies predicates).
(defun P1 (object)

(typep object '(and (not unsigned-byte) bignum)))
(defun P2 (object)

(typep object '(and (not bignum) unsigned-byte)))

The define-type-predicate function returns the name of a named closure which the calling function can
use to construct a type specifier. The name and function binding are generated in a way which has dynamic
extent and is thus friendly with the garbage collector.

To generate the ROBDD shown in Figure 11.2 we must construct a type specifier equivalent to the entire
invocation of typecase. From the code in Example 11.1 we have to assemble a type specifier such as in
Example 11.16. This example is provided simply to illustrate the pattern of such a type specifier.

Example 11.16 (Type specifier equivalent to Example 11.1).
(let ((P1 (define-type-predicate 'Type .1))

(P2 (define-type-predicate
'(and Type .2 (not Type .1))))

(P3 (define-type-predicate
'(and Type .3 (not (or Type .1 Type .2)))))

...
(Pn (define-type-predicate

'(and Type.n (not (or Type .1 Type .2
... Type.n-1))))))

`(or (and Type .1
(satisfies ,P1))

(and Type .2
(not Type .1)
(satisfies ,P2))

(and Type .3
(not (or Type .1 Type .2))
(satisfies ,P3))

...
(and Type.n

259

fixnum

unsigned-byte

number

(eql 42)

(satisfies P4)

unsigned-byte

⊥

(satisfies P2)(satisfies P1)

T

(satisfies P3)

Figure 11.3: ROBDD generated from typecase clauses in Example 11.17

(not (or Type .1 Type .2
... Type.n-1))

(satisfies ,Pn))))

11.3.2 BDD construction from type specifier
Functions which construct an ROBDD need to understand a complete, deterministic ordering of the set of type
specifiers via a compare function. To maintain semantic correctness the corresponding compare function must
be deterministic. It would be ideal if the functions were able to give high priority to type specifiers which
are likely to be seen at run time. We might consider, for example, taking clues from the order specified in
the typecase clauses. We do not attempt to implement such decision making. Rather we choose to give high
priority to type specifiers which are easy to check at run-time, even if they are less likely to occur.

We use a heuristic similar to that mentioned in Section 11.2.4 except that type specifiers involving AND, OR,
and NOT never occur, rather such types correspond to algebraic operations among the ROBDDs themselves such
that only non-algebraic types remain. More precisely, the heuristic we use is that atomic types such as number
are considered fast to check, and satisfies types are considered slow. We recognize the limitation that the
user might have used deftype to define a type whose name is an atom, but which is slow to type check. Ideally,
we should fully expand user defined types into Common Lisp types. Unfortunately this is not possible in a
portable way, and we make no attempts to implement such expansion in implementation specific ways. It is not
even clear whether the various Common Lisp implementations have public APIs for the necessary operations.

A crucial exception in our heuristic estimation algorithm is that, to maintain the correctness of our technique,
we must assure that the satisfies predicates emanating from define-type-predicate have the lowest possible
priority. I.e., as is shown in Figure 11.2, we must avoid that any type check appear below such a satisfies
type in the ROBDD.

There are well known techniques for converting an ROBDD which represents a pure Boolean expression
into an if/then/else expression which evaluates to true or false. However, in our case we are interested
in more than simply the Boolean value. In particular, we require that the resulting expression evaluate to the
same value as corresponding typecase. In Example 11.1, these are the values returned from body-forms-1...,
body-forms-2..., ... body-forms-n.... In addition we want to assure that any side effects of those expressions
are realized as well when appropriate, and never realized more than once.

We introduce the macro bdd-typecase which expands to a typecase form using the ROBDD technique.
When the macro invocation in Example 11.17 is expanded, the list of typecase clauses is converted to a type
specifier similar to what is illustrated in Example 11.16. That type specifier is used to create an ROBDD as illus-
trated in Figure 11.3. As shown in the figure, temporary satisfies type predicates are created corresponding

260

to the potentially side-effecting expressions body-forms-1, body-forms-2, body-forms-3, and body-forms-4.
In reality these temporary predicates are named by machine generated symbols; however, in Figure 11.3 they
are denoted P1, P2, P3, and P4.

Example 11.17 (Invocation of bdd-typecase with intersecting types).
(bdd-typecase object

((and unsigned-byte (not (eql 42)))
body-forms-1 ...)

((eql 42)
body-forms-2 ...)

((and number (not (eql 42)) (not fixnum))
body-forms-3 ...)

(fixnum
body-forms-4 ...))

11.3.3 Serializing the BDD into code
The macro bdd-typecase emits code as in Example 11.18, but may just as easily output code as in Exam-
ple 11.19 based on tagbody/go. In both example expansions, we have replaced the more cryptic machine
generated, uninterned symbols such as #:l1070 and #:|block1066|, with more human-readable labels such as
L1 and block-1.

Example 11.18 (Macro expansion of Example 11.17 using labels).
((lambda (object-1)

(labels ((L1 () (if (typep object-1 'fixnum)
(L2)
(L7)))

(L2 () (if (typep object-1 'unsigned-byte)
(L3)
(L6)))

(L3 () (if (typep object-1 '(eql 42))
(L4)
(L5)))

(L4 () body-forms-2 ...)
(L5 () body-forms-1 ...)
(L6 () body-forms-4 ...)
(L7 () (if (typep object-1 'number)

(L8)
nil))

(L8 () (if (typep object-1 'unsigned-byte)
(L5)
(L9)))

(L9 () body-forms-3 ...))
(L1)))

object)

The bdd-typecase macro walks the ROBDD, such as the one illustrated in Figure 11.3, visiting each non-
leaf node therein. Each node corresponding to a named closure type predicate is serialized as a tail call to
the clauses from the typecase. Each node corresponding to a normal type test is serialized as left and right
branches, either as a label and two calls to go as in Example 11.19, or a local function definition with two tail
calls to other local functions as in Example 11.18.

Example 11.19 (Alternate expansion of Example 11.17 using tagbody/go).
((lambda (object-1)

261

(block block-1
(tagbody

L1 (if (typep object-1 'fixnum)
(go L2)
(go L7))

L2 (if (typep object-1 'unsigned-byte)
(go L3)
(go L6))

L3 (if (typep object-1 '(eql 42))
(go L4)
(go L5))

L4 (return-from block-1
(progn body-forms-2 ...))

L5 (return-from block-1
(progn body-forms-1 ...))

L6 (return-from block-1
(progn body-forms-4 ...))

L7 (if (typep object-1 'number)
(go L8)
(return-from block-1 nil))

L8 (if (typep object-1 'unsigned-byte)
(go L5)
(go L9))

L9 (return-from block-1
(progn body-forms-3 ...)))))

object)

11.3.4 Emitting compiler warnings
The ROBDD, as shown in Figure 11.3, can be used to generate the Common Lisp code semantically equivalent
to the corresponding typecase as already explained in Section 11.3.3, but we can do even better. There are
two situations where we might wish to emit warnings: (1) if certain code is unreachable, and (2) if the clauses
are not exhaustive. Unfortunately, there is no standard way to incorporate these warnings into the standard
compiler output. One might get tempted to simply emit a warning of type style-warning as is suggested by the
typecase specification. However, this would be undesirable since there is no guarantee that the corresponding
code was human-generated—ideally we would only like to see such style warnings corresponding to human
generated code.

The list of unreachable clauses can be easily calculated as a function of which of the P1, P2 ... predi-
cates are missing from the serialized output. As seen in Figure 11.3, each of body-forms-1, body-forms-2,
body-forms-3, and body-forms-4 is represented as P1, P2, P3, and P4, so no such code is unreachable in this
case.

We also see in Figure 11.3 that there is a path from the root node to the nil leaf node which does not pass
through P1, P2, P3, or P4. This means that the original typecase is not exhaustive. The type of any such value
can be calculated as the particular path leading to nil. In the case of Figure 11.3, (and (not fixnum) (not
number)), which corresponds simply to (not number), is such a type. I.e., the original bdd-typecase, shown
in Example 11.17, does not have a clause for non numbers.

11.4 Related work
In this chapter we examine a set of related optimizations of type simplification which seem to be missing from the
SBCL [Rho08] compiler. Maclachan [Mac92] echoes the concern of Brooks and Gabriel [BG84] as to whether
any Common Lisp compiler could ever implement all the optimizations which the Common Lisp committee
claim “any good compiler” can take care. Brooks laments that it is unlikely that any such compiler will ever
implement “a fraction of the tricks expected of it.”

This chapter refers to the functions make-bdd and bdd-cmp without showing their implementations. The
code is available via GitLab from the EPITA/LRDE public web page.5 That repository contains several things.
Most interesting for the context of BDDs is the Common Lisp package, LISP-TYPES.

5https://gitlab.lrde.epita.fr/jnewton/regular-type-expression.git, tagged version from 14 October 2018 is
version-1.1.4.

262

As there are many individual styles of programming, and each programmer of Common Lisp adopts an
individual and personal style, it is unknown how widespread the use of typecase is in practice, and consequently
whether optimizing it is effort well spent. A casual look at the code in the current public Quicklisp6 repository
reveals a rule of thumb. 1 out of 100 files, and 1 out of 1000 lines of code use or make reference to typecase.
When looking at the Common Lisp code of SBCL itself, we found about 1.6 uses of typecase per 1000 lines of
code. We have made no attempt to determine which of the occurrences are comments, trivial uses, or test cases,
and which ones are used in critical execution paths; however, we do loosely interpret these results to suggest
that an optimized typecase either built into the cl:typecase or as an auxiliary macro may be of little use
to most currently maintained projects. On the contrary, we suggest that having such an optimized typecase
implementation may serve as motivation to some programmers to make use of it in new projects, at least in
machine generated code such as explained by Newton et al. [NDV16, NV18b] explain. Since generic function
dispatch conceptually bases branching choices on Boolean combinations of type checks, one naturally wonders
whether our optimizations might be useful within the implementation of Clos [KdRB91].

Newton et al. [NDV16, NV18b] present a mechanism to characterize the type of an arbitrary sequence in
Common Lisp in terms of a rational language of the types of the sequence elements. The article explains how
to build a finite state machine and, from that, construct Common Lisp code for recognizing such a sequence.
The code associates the set of transitions existing from each state as a typecase. The article notes that such
a machine generated typecase could greatly benefit from an optimizing typecase.

The map-permutations function (Section 11.2.5) works well for small lists, but requires a large amount of
stack space to visit all the permutations of large lists. Knuth [Knu09] explores several iterative (not recursive)
algorithms using various techniques, in particular by plain changes [Knu09, Algorithm P, page 42], by cyclic
shifts [Knu09, Algorithm C, page 56], and by Erlich swaps [Knu09, Algorithm E, page 57]. A survey of these three
algorithms can also be found in the Cadence SKILL Blog7 which discusses an implementation in SKILL [Bar90],
another Lisp dialect.

There is a large amount of literature about Binary Decision Diagrams of many varieties [Bry86, Bry92,
Ake78, Col13, And99]. In particular Knuth [Knu09, Section 7.1.4] discusses worst-case and average sizes, which
we alluded to in Section 11.3. Newton et al. [NVC17] discuss how the Reduced Ordered Binary Decision Diagram
(ROBDD) can be used to manipulate type specifiers, especially in the presence of subtypes. Castagna [Cas16]
discusses the use of ROBDDs (he calls them BDDs in that article) to perform type algebra in type systems
which treat types as sets [HVP05, CL17, Ans94].

Common Lisp does not provide explicit pattern-matching [Aug85] capabilities, although several systems have
been proposed such as Optima8 and Trivia9.

Decision tree techniques are useful in the efficient compilation of pattern-matching constructs in functional
languages [Mar08]. An important concern in pattern-matching compilation is finding the best ordering of the
variables which is known to be coNP-Complete [Bry86]. However, when using BDDs to represent type specifiers,
we obtain representation (pointer) equality—simply by using a consistent ordering; finding the best ordering is
not necessary for our application.

In Section 11.2.1 we mentioned the problem of symbolic algebraic manipulation and simplification. Ableson et
al. [AS96, Section 2.4.3] discuss this with an implementation of rational polynomials. Norvig [Nor92, Chapter 8]
discusses this in a use case of a symbolic mathematics simplification program. Both the Ableson and Norvig
studies explicitly target a Lisp-literate audience.

11.5 Conclusion and perspectives
As illustrated in Example 11.11, the exhaustive search approach used in the auto-permute-typecase (Sec-
tion 11.2.5) can often do a good job removing redundant type checks occurring in a typecase invocation.
Unfortunately, as shown in Example 11.9, sometimes such optimization is algebraically impossible because of
particular type interdependencies. In addition, an exhaustive search becomes unreasonable when the number of
clauses is large. In particular there are N ! ways to order N clauses. This means there are 7! “ 5040 orderings
of 7 clauses and 10! “ 3, 628, 800 orderings of 10 clauses.

On the other hand, the bdd-typecase macro, using the ROBDD approach (Section 11.3.2), is always able
to remove duplicate checks, guaranteeing that no type check is performed twice. Nevertheless, it may fail to
eliminate some unnecessary checks which need not be performed at all.

It is known that the size and shape of a reduced BDD depend on the ordering chosen for the variables [Bry86].
Furthermore, it is known that finding the best ordering is coNP-Complete [Bry86], and in this chapter we do
not address questions of choosing or improving variable orderings. It would be feasible, at least in some cases,

6https://www.quicklisp.org/
7https://community.cadence.com/tags/Team-SKILL, SKILL for the Skilled, Visiting all Permutations
8https://github.com/m2ym/optima as of 14 October 2018.
9https://github.com/guicho271828/trivia as of 14 October 2018.

263

to apply the exhaustive search approach with ROBDDs. I.e., we could visit all orders of the type checks to find
which gives the smallest ROBDD. In situations where the number of different type tests is large, the development
described in Section 11.3.1 might very well be improved employing some known techniques for improving BDD
size though variable ordering choices [ATB94]. In particular, we might attempt to use the order specified in the
typecase as input to the sorting function, attempting, at least in the simple cases, to respect the user given
order as much as possible.

In Section 11.2.3, we presented an approach to approximating the cost of a set of type tests and commented
that the heuristics are simplistic. We leave it as a matter for future research, how to construct good heuristics,
which take into account the computational intensity of such manipulation.

We believe this research may be useful for two target audiences: application programmers and compiler
developers. Even though the observed use frequency of typecase seems low in the majority of currently
supported applications, programmers may find the macros explained in this report (auto-permute-typecase
and bdd-typecase) to be useful in rare optimization cases, but more often for their ability to detect certain
dubious code paths. There are, however, limitations to the portable implementation, namely the lack of a
portable expander for user defined types and inability to distinguish between machine generated and human
generated code. These shortcomings may not be significant limitations to the compiler implementer, in which
case the compiler may be able to better optimize user types, implement better heuristics in terms of costs of
certain type checks, and emit useful warnings about unreachable code.

264

Chapter 12

Conclusion

12.1 Contributions
The important contributions in this work are:

• Implementation of rational type expressions to efficiently recognize regular type patterns in Common Lisp
sequences.

• The extension of ROBDDs in Chapter 7 to accommodate the Common Lisp type system.

• Numerical analysis of ROBDD worst case sizes including introduction of residual compression ratio.

• Algorithm for generating a worst-case ROBDD of n Boolean variables.

• Techniques for generating randomly selected ROBDD of n Boolean variables.

• Optimization of Common Lisp typecase to eliminate redundant type checks.

• Release of several Common Lisp packages to the community.1

• Publication of Type-Checking of Heterogeneous Sequences in Common Lisp in proceedings of the 2016
European Lisp Symposium.

• Publication of Programmatic Manipulation of Common Lisp Type Specifiers in the proceedings of the 2017
European Lisp Symposium.

• Publication of Strategies for Typecase Optimization, in the proceedings of the 2018 European Lisp Sym-
posium.

• Publication of Recognizing Hetergeneous Sequences by Rational Type Expression, in the proceedings of the
SPLASH-2018, Meta’18: Workshop on Meta-Programming Techniques and Reflection

• Publication of A Theoretical and Numerical Analysis of the Worst-Case Size of Reduced Ordered Binary
Decision Diagrams in ACM journal Transactions on Computational Logic–publication date not yet known.

The following articles were published during the course of this research:

• Publication of Type-Checking of Heterogeneous Sequences in Common Lisp in proceedings of the 2016
European Lisp Symposium.

• Publication of Programmatic Manipulation of Common Lisp Type Specifiers in the proceedings of the 2017
European Lisp Symposium.

• Publication of Strategies for Typecase Optimization, in the proceedings of the 2018 European Lisp Sym-
posium.

• Publication of Recognizing Hetergeneous Sequences by Rational Type Expression, in the proceedings of the
SPLASH-2018, Meta’18: Workshop on Meta-Programming Techniques and Reflection

• Publication of A Theoretical and Numerical Analysis of the Worst-Case Size of Reduced Ordered Binary
Decision Diagrams in ACM journal Transactions on Computational Logic–publication date not yet known.

1The source code contained in this report and that used during the research may be found and downloaded from the LRDE GitLab
at https://gitlab.lrde.epita.fr/jnewton/regular-type-expression (tagged version from 14 October 2018 is version-1.1.4).

265

12.2 Perspective
As is the case with most research work, some open issues remain. We outline some of these issues here.

12.2.1 Common Lisp
For a better historical perspective, we would like to continue the investigation of the origins of the Common
Lisp type system. We see several ideas in the Common Lisp type system which were areas of research outside
the Lisp community during the period when Common Lisp was being developed. However, we have not been
able to find citations between the two research communities. For instance Common Lisp defines type as a set
of objects; similarly Hosoya and Pierce [Hos00, HP01] simplify their model of semantic subtyping by modeling
a type as a set of values of the language.

12.2.2 Heterogeneous sequences
It is not clear whether Common Lisp could provide a way for a type definition in an application program to
extend the behavior of subtypep. Having such a capability would allow such an extension for rte. Rational
language theory does provide a well defined algorithm for deciding such questions given the relevant rational
expressions [HMU06, Sections 4.1.1, 4.2.1]. It seems from the specification that a Common Lisp implementation
is forbidden from allowing self-referential types, even in cases where it would be possible to do so.

For future extensions to this research we would like to experiment with extending the subtypep implemen-
tation to allow application level extensions, and therewith examine run-time performance when using rte based
declarations within function definitions.

We would like continue the research into whether the core of this algorithm can be implemented in other
dynamic languages, and to understand more precisely which features such a language would need to possess to
support such implementation.

Several open questions remain:
Can regular type expressions be extended to implement more things we’d expect from a regular ex-

pression library? For example, could grouping somehow remember what was matched, and use that for
regexp-search-and-replace? Additionally, would such a search and replace capability be useful?

Can the theory leading to regular type expressions be extended to tackle unification in a way which adds
some sort of value?

One general problem with regular expressions is that if it is found that a sequence fails to match a given
pattern, then we may like to know why it failed. Questions such as “How far did it match?” or “Where did it
fail to match?” would be nice to answer. It is currently unclear whether the rte implementation can at all be
extended to support such debugging features.

12.2.3 Binary decision diagrams
There are several obvious shortcomings in our intuitive evaluation of statistical variations in ROBDD sizes as
discussed in Section 6.1.2. For example, we stated that judging from the small sample in Figure 6.8, it would
appear that for large values of n, |ROBDDn| is a good estimate for average size. We would like to continue
this investigation to better justify this gross approximation.

When using ROBDDs, or presumably 0-Sup-BDDs, one must use a hash table of all the BDDs encountered so
far (or at least within a particular dynamic extent). This hash table, mentioned in Section 5.1, is used to ensure
structural identity. However, it can become extremely large, even if its lifetime is short. Section 6.1 discusses
the characterization of the worst-case size of an ROBDD as a function of the number of Boolean variables. This
characterization ignores the transient size of the hash table, so one might argue that the size estimations in 6.1
are misleading in practice. More experimentation and analysis is needed to measure or estimate the hash table
size, and to decrease the burden incurred. For example, we suspect that most of the hash table entries are never
re-used.

As discussed in Section 6.3, Minato [Min93] claims that using the BDD variant called 0-Sup-BDD is well
suited for sparse Boolean equations. We see potential applications for this claim in type calculations, especially
when types are viewed as sets, as in Common Lisp. In such cases, the number of types is large, but each
type constraint equation scantly concerns few types. Further experimentation is needed into 0-Sup-BDD based
implementations of our algorithms, and contrast the performance results with those found thus far.

It is known that algorithms using BDDs achieve speed by allocating huge amounts of space. A question
naturally arises: can we implement a fully functional BDD which never stores calculated values. The memory
footprint of such an implementation would potentially be smaller, while incremental operations would be slower.
It is not clear whether the overall performance would be better or worse. Castagna [Cas16] suggests a lazy
version of the BDD data structure which may reduce the memory footprint, which would have a positive effect

266

on the BDD based algorithms. This approach suggests dispensing with the excessive heap allocation necessary
to implement Andersen’s approach [And99]. Moreover, our implementation (based on the Andersen model)
contains additional debug features which increase the memory footprint. We would like to investigate which
of these two approaches gives better performance, or allows us to solve certain problems. It seems desirable to
attain heuristics to describe situations in which one or the other optimization approach is preferable.

Even though both Andersen [And99] and Minato [Min93] claim the necessity of enforcing structural identity,
it is not clear whether, in our case, the run time cost associated with this memory burden outweighs the
advantage gained by structural identity. Furthermore, the approach used by Castagna [Cas16] seems to favor
laziness over caching, lending credence to our suspicion.

CUDD [Som] uses a common base data structure, DdNode, to implement several different flavors of BDD,
including Algebraic Decision Diagrams (ADDs) and ZDDs. We have already acknowledged the need to exper-
iment with other BDD flavors to efficiently represent run-time type based decisions such as the Common Lisp
run-time type reflection [NVC17, NV18c] in performing simplification of type-related logic at compile-time. We
wish to examine the question of whether the Common Lisp run-time type reflection can be improved by search-
ing for better ordering of the type specifiers at compile-time. The work of Lozhkin [LS10] and Shannon [Sha49]
may give insight into how much improvement is possible, and hence whether it is worth dedicating compilation
time to it.

In Section 6.1.4, we examine the question of determining a sufficient sample size. The Engineering Statis-
tics Handbook [Nat10] presents the work of Chakravart et al. [Kar68, pp 392-394] who in turn explain the
Kolmogorov-Smirnov goodness of fit test. The test is designed to determine whether a sample in question
comes from a specific distribution. We would like to apply this test to the sequence of samples in Figures 6.18
through 6.22 to assign a quantitative confidence to the histograms. This is a matter for further research.

12.2.4 Extending BDDs to accommodate Common Lisp types
As explained in Chapter 7, there is a remaining area of research which is of concern. There are exotic cases
where two differently structured BDDs may represent the same Common Lisp type, particularly the empty type
which may take many forms. We are not sure if this problem can be fixed, or whether it is just a weakness in an
ambitious theory. For a comprehensive theory, we should completely characterize these situations. Our current
recommendation is that the “final” types of any computation still need to be tested using a call to subtypep,
lest they be subtypes of the nil.

We suspect the problem is that if E is a subtype of any subtree in the BDD, then we are safe, but if E is a
subtype of some non-expressed combination, their uniqueness is not guaranteed.

12.2.5 MDTD
The results of the performance testing in Chapter 10 lead us to believe that the BDD as data structure for rep-
resenting Common Lisp type specifiers is promising. However, there is still work to do, especially in identifying
heuristics to predict its performance relative to more traditional approaches.

A shortcoming of our research is the lack of formal proofs of the correctness of our algorithms, most notably
the graph decomposition algorithm from Section 9.4.

It has also been observed that, in the algorithm explained in Section 9.4, the convergence rate varies depend-
ing on the order of the reduction operations. We do not yet have sufficient data to characterize this dependence.
Furthermore, the order of breaking the connections in the algorithm in Section 9.4 may be important. It is
clear that many different strategies are possible, e.g., (1) break busiest connections first, (2) break connections
with the fewest dependencies, (3) random order, (4) closest to top of tree, etc. These are all areas of ongoing
research.

We plan to investigate whether there are other applications of MDTD outside the Common Lisp type system.
We hope anyone using Castagna’s techniques [Cas16] on type systems with semantic subtyping may benefit from
the optimizations we have discussed.

A potential application with Common Lisp is improving the subtypep implementation itself, which is known
to be slow in some cases. Implementation 9.6 gave a BDD specific implementation of bdd-subtypep. We
intend to investigate whether existing Common Lisp implementations could use our technique to represent type
specifiers in their inferencing engines, and thereby make some subtype checks more efficient.

12.2.6 Optimizing typecase

It is known that the size and shape of a reduced BDD depend on the ordering chosen for the variables [Bry86].
Furthermore, it is known that finding the best ordering is coNP-Complete [Bry86], and in this chapter we
do not address questions of choosing or improving variable orderings. It would be feasible, at least in some
cases, to apply the exhaustive search approach with ROBDDs. I.e., we could visit all orders of the type checks

267

to find which gives the smallest ROBDD. In situations where the number of different type tests is large, the
development described in Section 11.3.1 might very well be improved employing some known techniques for
improving BDD size though variable ordering choices [ATB94]. In particular, we might attempt to use the
order specified in the typecase as input to the sorting function, attempting, at least in the simple cases, to
respect the user-given order as much as possible.

12.2.7 Emergent issues
We know that PCL (Portable Common Loops) [BKK`86], which is the heart of many implementations of
the Clos (the Common Lisp Object System) [Kee89, Ano87] in particular the implementation within SBCL,
uses decision trees in the form of discrimination nets to optimize generic function dispatch. Whether these
discrimination nets can be replaced or simplified using ROBDDs is unknown.

In this research we have looked at BDDs as a source of canonicalizing Boolean expressions representing types.
As we pointed out in Section 12.2.4, certain exotic cases are problematic. There are other normal forms which
might be considered: Another mechanism which may reportedly be used for Boolean formula canonicalization
is the Algebraic Normal Form (ANF) or Reed-Muller expansion [XAMM93].

We discovered very late in this project that a bottom-up approach to convert a Common Lisp type specifier to
DNF form was in many cases much better performing than the fixed point approach discussed in Section 2.6. The
code for this approach, type-to-dnf-bottom-up is also shown in Appendix A after the code for type-to-dnf.
Without this alternative bottom-up approach we found that some of our test cases never finished in Allegro
CL, and with this additional optimization the Allegro CL performance was very competitive with SBCL. On
the other hand, we found that some of the performance tests in SBCL (as discussed in Chapter 10) exhausted
the memory and we landed in the LDB (low level SBCL debugger). We believe there is merit to developing a
correct, portable, high performance type simplifier; however this is a matter where more research and further
experimentation is needed.

268

Appendix A

Code for reduce-lisp-type

The following Common Lisp code implements the algorithm explained in Section 2.6.

A.1 Fixed-point based type specifier simplification
Below is the implementation of the function type-to-dnf which is discussed in Section 2.6. The function is
referred to by the name reduce-lisp-type in Section 2.6.
(defun type´to´dnf (type)

(d e c l a r e (opt imize (speed 3) (debug 0) (compilat ion´speed 0) (space 0)))
(l a b e l s ((and? (obj)

(and (consp obj)
(eq ' and (car obj))))

(or ? (obj)
(and (consp obj)

(eq ' or (car obj))))
(not ? (obj)

(and (consp obj)
(eq ' not (car obj))))

(f l a t t e n (f type)
; ; (X a (X b c) d) ´ >́ (X a b c d)
(cons (car type) (mapcan (lambda (t1)

(i f (f u n c a l l f t1)
(copy´ l i s t (cdr t1))
(l i s t t1))) (cdr type))))

(again (type)
(cond

((atom type) type)
((member (car type) ' (or and no))

(cons (car type)
(mapcar #'type´to´dnf (cdr type))))

(t
type)))

(to´dnf (type)
(d e c l a r e (type (or l i s t symbol) type))
(when (and? type)

(when ∗reduce´member´type∗
(s e t f type (reduce´member´type type))))

(when (and? type)
; ; (and a b NIL c d) ´ >́ NIL
(when (member n i l (cdr type) : t e s t #'eq)

(s e t f type n i l)))
(when (and? type)

; ; (and a b n i l c d) ´ >́ (and a b c d)
(when (member t (cdr type) : t e s t #'eq)

(s e t f type (cons ' and (remove t (cdr type) : t e s t #'eq)))))
(when (and? type)

; ; (and) ´ >́ t
(when (n u l l (cdr type))

(s e t f type t)))

269

(when (and? type)
; ; (and a (and B C) d) ´ >́ (and a B C d)
(whi l e (some #'and? (cdr type))

(s e t f type (f l a t t e n #'and? type))))
(when (and? type)

; ; (and a (or B C) d) ´́ (or (and a B d) (and a C d))
(l e t ((h i t (f i n d´ i f #'or ? (cdr type))))

(when h i t
(s e t f type

(cons ' or
(mapcar (lambda (t1)

(cons ' and (mapcar (lambda (t2)
(i f (eq t2 h i t)

t1
t2))

(cdr type))))
(cdr h i t)))))))

(when (and? type)
; ; (and a b (not b) c) ´ >́ n i l
(when (e x i s t s t1 (cdr type)

(and (not ? t1)
(member (cadr t1) (cdr type) : t e s t #' equal)))

(s e t f type n i l)))
(when (and? type)

(s e t f type (cons ' and (remove´dupl icates (cdr type) : t e s t #' equal))))
(when (and? type)

; ; (and a) ´ >́ a
(when (and (cdr type)

(n u l l (cddr type)))
(s e t f type (cadr type))))

(when (or ? type)
; ; (or a b T c d) ´ >́ T
(when (member t (cdr type) : t e s t #'eq)

(s e t f type t)))
(when (or ? type)

; ; (or a b n i l c d) ´ >́ (or a b c d)
(when (member n i l (cdr type) : t e s t #'eq)

(s e t f type (cons ' or (remove n i l (cdr type) : t e s t #'eq)))))
(when (or ? type)

; ; (or) ´ >́ n i l
(when (n u l l (cdr type))

(s e t f type n i l)))
(when (or ? type)

; ; (or a (or b c) d) ´ >́ (or a b c d)
(whi l e (some #'or ? (cdr type))

(s e t f type (f l a t t e n #'or ? type))))
(when (or ? type)

; ; (or a b (not b) c) ´ >́ t
(when (e x i s t s t1 (cdr type)

(and (not ? t1)
(member (cadr t1) (cdr type) : t e s t #' equal)))

(s e t f type t)))
(when (or ? type)

(s e t f type (cons ' or (remove´dupl icates (cdr type) : t e s t #' equal))))
(when (or ? type)

; ; (or a) ´ >́ a
(when (and (cdr type)

(n u l l (cddr type)))
(s e t f type (cadr type))))

(when (equal type ' (not t))
; ; (not t) ´ >́ n i l
(s e t f type n i l))

(when (equal type ' (not n i l))
; ; (not n i l) ´ >́ t
(s e t f type t))

270

(when (not ? type)
; ; (not (not a)) ´ >́ a
(whi l e (and (not ? type)

(not ? (cadr type)))
(s e t f type (cadr (cadr type)))))

(when (not ? type)
; ; (not (and a b)) ´ >́ (or (not a) (not b))
(when (and? (cadr type))

(s e t f type (cons ' or (mapcar (lambda (t1)
(l i s t ' not t1)) (cdr (cadr type)))))))

(when (not ? type)
; ; (not (or a b)) ´ >́ (and (not a) (not b))
(when (or ? (cadr type))

(s e t f type (cons ' and (mapcar (lambda (t1)
(l i s t ' not t1)) (cdr (cadr type)))))))

(again type)))
(f ixed´point #'to´dnf

(a lphabet ize´type type)
: t e s t #' equal)))

A.2 Bottom-up, functional style, type specifier simplification
Below is the implementation of the function type-to-dnf-bottom-up which is discussed in Section 2.9.
(defun type-to-dnf-bottom-up (type)

(labels ((and? (obj)
(and (consp obj)

(eq 'and (car obj))))
(or? (obj)

(and (consp obj)
(eq 'or (car obj))))

(not? (obj)
(and (consp obj)

(eq 'not (car obj))))
(un-duplicate (zero operands)

(remove-duplicates (remove-duplicates (remove zero operands)
:test #'eq)

:test #' equal))
(make-op (op one zero operands

&aux (dup-free (un-duplicate zero operands)))
(cond

((null dup-free)
zero)

((null (cdr dup-free))
(car dup-free))

((or (exists x dup-free
(and (not? x)

(member (cadr x) dup-free :test #'eq)))
(exists x dup-free

(and (not? x)
(member (cadr x) dup-free :test #' equal))))

one)
(t

(cons op dup-free))))
(make-or (operands)

(make-op 'or
t ; one
nil ; zero
(remove-subs operands)))

(make-and (operands)
(if (exists t2 operands

(exists t1 operands
(and (not (eq t1 t2))

(cached-subtypep t1 (list 'not t2)))))
nil

271

(make-op 'and
nil ; one
t ; zero
(remove-supers operands))))

(do-and (a b)
(cond ((eq a nil)

nil)
((eq b nil)

nil)
((eq a t)

b)
((eq b t)

a)
((and? a)

(cond ((and? b)
(make-and (append (cdr a) (cdr b))))

((or? b)
(make-or (loop :for y :in (cdr b)

: collect (do-and a y))))
(t

(do-and a (list 'and b)))))
((or? a)

(cond ((and? b)
(make-or (loop :for x :in (cdr a)

: collect (do-and x b))))
((or? b)

(make-or (loop :for x :in (cdr a)
:nconc (loop :for y :in (cdr b)

: collect (do-and x y)))))
(t

(do-and a (list 'and b)))))
(t

(do-and (list 'and a) b))))
(do-or (a b)

;; The do-and and do-or functions are not duals , becasue
;; both arguments a and b are in dnf form. This means
;; (or (and ...)...) is a valid value of a or b but
;; (and (or ...) ...) is not.
(cond ((eq a t)

t)
((eq b t)

t)
((eq a nil)

b)
((eq b nil)

a)
((and? a)

(cond ((or? b)
(make-or (cons a (cdr b))))

(t
(make-or (list a b)))))

((or? a)
(cond ((or? b)

(make-or (append (cdr a) (cdr b))))
(t

(do-or a (list 'or b)))))
(t

(cond ((or? b)
(do-or (list 'or a) b))

(t
(make-or (list a b)))))))

(do-not (a)
(cond ((eq a t)

nil)
((eq a nil)

t)

272

((and? a)
(make-or (mapcar #' do-not (cdr a))))

((or? a)
(make-and (mapcar #' do-not (cdr a))))

((not? a)
(cadr a))

(t
(list 'not a)))))

(cond
((and? type)

(reduce #' do-and (mapcar #' type-to-dnf-bottom-up (cdr type))
: initial-value t))

((or? type)
(reduce #' do-or (mapcar #' type-to-dnf-bottom-up (cdr type))

: initial-value nil))
((not? type)

(do-not (type-to-dnf-bottom-up (cadr type))))
(t

type))))

273

Appendix B

Code for s-expression baseline
algorithm

The following Common Lisp code implements the algorithm explained in Section 9.1. The function has
been subject to some simple optimizations. Note, the local function disjoint? which uses a hash ta-
ble, known-intersecting, to mitigate the cost of the Opn2q search incurred by the location functions
remove-disjoint and find-intersecting.
(defun mdtd´baseline (t y p e´ s p e c i f i e r s)

; ; the l i s t o f d i s j o i n t t y p e´ s p e c i f i e r s
(l e t ((known´ intersect ing (make´hash´table : t e s t #' equal)) decompos it ion)

(l a b e l s ((d i s j o i n t ? (T1 T2 &aux (key (l i s t T1 T2)))
(multiple´value´bind (h i t found ?) (gethash key known´ intersect ing)

(cond
(found ? h i t)
(t (s e t f (gethash key known´ intersect ing)

(dis jo int´types´p T1 T2))))))
(remove´dis jo int (&aux (d i s j o i n t (s e t o f T1 t y p e´ s p e c i f i e r s

(f o r a l l T2 t y p e´ s p e c i f i e r s
(or (eq T2 T1)

(d i s j o i n t ? T1 T2))))))
(s e t f t y p e´ s p e c i f i e r s (s e t´d i f f e r e n c e t y p e´ s p e c i f i e r s d i s j o i n t

: t e s t #'eq))
(s e t f decomposit ion (union decompos it ion

(remove n i l ; ; don ' t remember the n i l type
(mapcar #'reduce´ l i sp´type d i s j o i n t))

: t e s t #'equivalent´types´p)))
(f i n d´ i n t e r s e c t i n g ()

(mapl (lambda (T1´tail &aux (T1 (car T1´tail)) (t a i l (cdr T1´tail)))
(d o l i s t (T2 t a i l)

(u n l e s s (d i s j o i n t ? T1 T2)
(return´from f i n d´ i n t e r s e c t i n g (va lue s t T1 T2)))))

t y p e´ s p e c i f i e r s)
n i l)

(f o r g e t (type)
(s e t f t y p e´ s p e c i f i e r s (remove type t y p e´ s p e c i f i e r s : t e s t #'eq)))

(remember (type)
(pushnew type t y p e´ s p e c i f i e r s : t e s t #'equivalent´types´p)))

(whi l e t y p e´ s p e c i f i e r s
(remove´dis jo int)
(multiple´value´bind (foundp T1 T2) (f i n d´ i n t e r s e c t i n g)

(when foundp
(f o r g e t T1)
(f o r g e t T2)
(remember `(and ,T1 ,T2))
(remember `(and ,T1 (not ,T2)))
(remember `(and (not ,T1) ,T2)))))

decomposit ion)))

274

Appendix C

Code for BDD baseline algorithm

The following Common Lisp code implements the algorithm explained in Section 9.5.1. The code uses several
terse variable names. This is both for formatting reasons, so that lines do not extend to far to the right, and
also to coincide well with the variable names in Algorithm 6.

U : The set of BDDs being treated. Initially this corresponds one to one with the given type specifiers, except
that those representing the empty type have been removed.

V : The set of BDDs during the call to REDUCE. Also used as a return value of REDUCE. V represents the refined
set of BDDs having some of the BDDs operated on by the intersection and relative complement operations.

A: Each call to REDUCE takes one pivot element, A.

B: Each iteration within the REDUCE treats one BDD, B.

AB: Each iteration within the REDUCE examines the intersection type AB “ AXB.

D: The set BDDs representing disjoint types. When the function finishes, this represents the complete set
of disjoint types. Note the call to (mapcar #’bdd-to-dnf ...) on the last line to calculate the type
specifier s-expressions from the BDDs.

(defun mdtd´bdd (t y p e´ s p e c i f i e r s)
(bdd´with´new´hash

(lambda (&aux (U (remove´ i f #'bdd´empty´type
(mapcar #'bdd t y p e´ s p e c i f i e r s))))

(l a b e l s ((t ry (U D &aux (A (car U)))
(cond

((n u l l U)
D)

(t
(f l e t ((r educt ion (acc B

&aux (AB (bdd´and A B)))
(destructur ing´bind (a l l´d i s j o i n t ? V) acc

(cond
((bdd´empty´type AB)

(l i s t a l l´d i s j o i n t ? (ad jo in B V)))
(t

(l i s t n i l
(union (remove´dupl icates

(remove´ i f #'bdd´empty´type
(l i s t AB

(bdd´and´not A AB)
(bdd´and´not B AB))))

V)))))))
(destructur ing´bind (a l l´d i s j o i n t ? V)

(reduce #' reduct ion (cdr U) : i n i t i a l´v a l u e ' (t n i l))
(t ry V

(i f a l l´d i s j o i n t ?
(pushnew A D)
D))))))))

(mapcar #'bdd´to´dnf (t ry U n i l))))))

275

Appendix D

Code for graph-based algorithm

The following is the Clos based Common Lisp code implementing DecomposeByGraph-1 and
DecomposeByGraph-2 functions as discussed in Section 9.4. The code of the s-expression based version and
BDD based versions are implemented in terms of Clos sublasses in Sections D.11 and D.12.

D.1 Support code for graph decomposition

(de fvar ∗node´num∗ 0)

(d e f c l a s s node ()
((id : type unsigned´byte : r eader id : i n i t f o r m (i n c f ∗node´num∗))

(l a b e l : i n i t a r g : l a b e l : a c c e s s o r l a b e l)
(touches : i n i t f o r m n i l : type l i s t : a c c e s s o r touches)
(subse t s : i n i t f o r m n i l : type l i s t : a c c e s s o r subse t s)
(s u p e r s e t s : i n i t f o r m n i l : type l i s t : a c c e s s o r s u p e r s e t s)))

(defmethod pr int´object ((n node) stream)
(pr int´unreadable´object (n stream : type t : i d e n t i t y n i l)

(format stream " ~D: ~A" (id n) (l a b e l n))))

(d e f g e n e r i c add´node (graph node))
(d e f g e n e r i c node´and (node1 node2))
(d e f g e n e r i c node´and´not (node1 node2))
(d e f g e n e r i c node´subtypep (node1 node2))
(d e f g e n e r i c node´empty´type (node))
(d e f g e n e r i c node´disjoint´types´p (node1 node2))

(d e f c l a s s graph ()
((nodes : type l i s t : a c c e s s o r nodes : i n i t a r g : nodes

: i n i t f o r m n i l)
(b lue : type l i s t : a c c e s s o r blue

: i n i t f o r m n i l)
(green : type l i s t : a c c e s s o r green

: i n i t f o r m n i l)
(d i s j o i n t : type l i s t : a c c e s s o r d i s j o i n t

: i n i t f o r m n i l)))

(d e f g e n e r i c e x t r a c t´d i s j o i n t (graph))
(d e f g e n e r i c decompose´graph´1 (g))
(d e f g e n e r i c decompose´graph´2 (g))

D.2 Entry Point Functions
Implementation of DecomposeByGraph-1 from Algorithm 8 and DecomposeByGraph-2 from Algorithm 9.
(defun decompose´by´graph´1 (u &key (graph´c lass ' sexp´graph))

(d e c l a r e (type l i s t u))
(decompose´graph´1 (construct´graph graph´c lass u)))

(defun decompose´by´graph´2 (u &key (graph´c lass ' sexp´graph))

276

(d e c l a r e (type l i s t u))
(decompose´graph´2 (construct´graph graph´c lass u)))

(defmethod decompose´graph´1 ((g graph))
(loop : whi l e (or (blue g) (green g))

: do (d o l i s t (x >́y (blue g))
(destructur ing´bind (x y) x >́y

(break´relaxed´subset g x y)))
: do (d o l i s t (xy (green g))

(destructur ing´bind (x y) xy
(break´touching g x y))))

(e x t r a c t´d i s j o i n t g))

(defmethod decompose´graph´2 ((g graph))
(loop : whi l e (or (blue g) (green g))

: do (d o l i s t (x >́y (blue g))
(destructur ing´bind (x y) x >́y

(break´ s t r i c t´ subset g x y)))
: do (d o l i s t (xy (green g))

(destructur ing´bind (x y) xy
(break´touching g x y)))

: do (d o l i s t (x >́y (blue g))
(destructur ing´bind (x y) x >́y

(break´ loop g x y))))
(e x t r a c t´d i s j o i n t g))

D.3 Graph Construction
Implementation of ConstructGraph from Algorithm 10.
(defun construct´graph (graph´c lass u)

(d e c l a r e (type l i s t u))
(l e t ((g (make´instance graph´c lass)))

(d o l i s t (l a b e l u)
(add´node g l a b e l))

(mapl (lambda (t a i l)
(l e t ((x (car t a i l)))

(mapc (lambda (y)
(cond

((node´subtypep x y)
(add´blue´arrow g x y))

((node´subtypep y x)
(add´blue´arrow g y x))

(t
(multiple´value´bind (d i s j o i n t t r u s t)

(node´disjoint´types´p x y)
(cond

((n u l l t r u s t)
; ; maybe i n t e r s e c t i o n types , not sure
(add´green´ l ine g x y))

(d i s j o i n t
n i l)

(t ; ; i n t e r s e c t i n g types
(add´green´ l ine g x y)))))))

(cdr t a i l)))) (nodes g))
(d o l i s t (node (nodes g))

(maybe´disjoint´node g node))
g))

D.4 Disjoining Nodes
Implementation of MaybeDisjointNode from Algorithm 11.
(defun maybe´disjoint´node (g node)

277

(d e c l a r e (type graph g) (type node node))
(cond

((node´empty´type node)
(s e t f (nodes g) (remove node (nodes g) : t e s t #'eq)))

((n u l l (or (touches node)
(s u p e r s e t s node)
(subse t s node)))

(s e t f (nodes g) (remove node (nodes g) : t e s t #'eq))
(pushnew node (d i s j o i n t g) : t e s t #'eq))))

D.5 Green Line functions
Implementation of AddGreenLine from Algorithm 12.
(defun sort´nodes (n1 n2)

(d e c l a r e (type node n1 n2))
(i f (< (id n1) (id n2))

(l i s t n1 n2)
(l i s t n2 n1)))

(defun add´green´ l ine (g x y)
(d e c l a r e (type graph g) (type node x y))
(pushnew (sort´nodes x y) (green g) : t e s t #' equal)
(pushnew x (touches y) : t e s t #'eq)
(pushnew y (touches x) : t e s t #'eq))

(defun de le te´green´ l ine (g x y)
(d e c l a r e (type graph g) (type node x y))
(s e t f (green g) (remove (sort´nodes x y) (green g) : t e s t #' equal)

(touches y) (remove x (touches y) : t e s t #'eq)
(touches x) (remove y (touches x) : t e s t #'eq))

(maybe´disjoint´node g x)
(maybe´disjoint´node g y))

D.6 Blue Arrow Functions
Implementation of AddBlueArrow from Algorithm 14.
(defun add´blue´arrow (g x y)

(pushnew (l i s t x y) (blue g) : t e s t #' equal)
(pushnew x (subse t s y) : t e s t #'eq)
(pushnew y (s u p e r s e t s x) : t e s t #'eq))

(defun delete´blue´arrow (g x y)
(d e c l a r e (type graph g) (type node x y))
(s e t f (b lue g) (remove (l i s t x y) (blue g) : t e s t #' equal)

(subse t s y) (remove x (subse t s y) : t e s t #'eq)
(s u p e r s e t s x) (remove y (s u p e r s e t s x) : t e s t #'eq))

(maybe´disjoint´node g x)
(maybe´disjoint´node g y))

D.7 Strict Subset
Implementation of BreakStrictSubset from Algorithm 16.
(defun break´ s t r i c t´ subset (g sub super)

(d e c l a r e (type graph g) (type node sub super))
(cond

((n u l l (member super (s u p e r s e t s sub) : t e s t #'eq))
n i l)

((subse t s sub)
n i l)

((touches sub)

278

n i l)
(t

(s e t f (l a b e l super) (node´and´not super sub))
(delete´blue´arrow g sub super)))

g)

D.8 Relaxed Subset
Implementation of BreakRelaxedSubset from Algorithm 17.
(defun break´relaxed´subset (g sub super)

(d e c l a r e (type graph g) (type node sub super))
(cond ((n u l l (member super (s u p e r s e t s sub) : t e s t #'eq))

n i l)
((subse t s sub)

n i l)
(t

(s e t f (l a b e l super) (node´and´not super sub))
(d o l i s t (alpha (i n t e r s e c t i o n (touches sub) (subse t s super)

: t e s t #'eq))
(add´green´ l ine g alpha super)
(delete´blue´arrow g alpha super))

(delete´blue´arrow g sub super)))
g)

D.9 Touching Connections
Implementation of BreakTouching from Algorithm 18.
(defun break´touching (g x y)

(d e c l a r e (type graph g) (type node x y))
(cond

((n u l l (member y (touches x) : t e s t #'eq))
n i l)

((subse t s x)
n i l)

((subse t s y)
n i l)

(t
(l e t ((z (add´node g (node´and x y))))

(p s e t f (l a b e l x) (node´and´not x y)
(l a b e l y) (node´and´not y x))

(d o l i s t (alpha (union (s u p e r s e t s x) (s u p e r s e t s y) : t e s t #'eq))
(add´blue´arrow g z alpha))

(d o l i s t (alpha (i n t e r s e c t i o n (touches x) (touches y) : t e s t #'eq))
(add´green´ l ine g z alpha))

(maybe´disjoint´node g z))
(de le te´green´ l ine g x y)))

g)

D.10 Breaking the Loop
Implementation of BreakLoop from Algorithm 19.
(defun break´ loop (g x y)

(d e c l a r e (type graph g) (type node x y))
(cond

((n u l l (member y (touches x) : t e s t #'eq))
n i l)

((subse t s x)
n i l)

((subse t s y)
n i l)

279

(t
(l e t ((z (add´node g (node´and x y))))

(s e t f (l a b e l x) (node´and´not x y))
(d o l i s t (alpha (touches x))

(add´green´ l ine g z alpha))
(d o l i s t (alpha (union (s u p e r s e t s x) (s u p e r s e t s y) : t e s t #'eq))

(add´blue´arrow g z alpha))
(add´blue´arrow g z y)
(add´blue´arrow g z x)
(delete´blue´arrow g x y))))

g)

280

D.11 S-expression based graph algorithm
The following is a Clos Common Lisp implementation of the algorithm described in Section 9.4. The algorithm
represents Common Lisp types as s-expressions which Common Lisp refers to as type specifiers.
(d e f c l a s s sexp´node (node)

((l a b e l : type (or l i s t symbol))))

(defmethod node´and´not ((x sexp´node) (y sexp´node))
(reduce´ l i sp´type `(and , (l a b e l x) (not , (l a b e l y)))))

(defmethod node´and ((x sexp´node) (y sexp´node))
(reduce´ l i sp´type `(and , (l a b e l x) , (l a b e l y))))

(defmethod node´empty´type ((node sexp´node))
(n u l l (l a b e l node)))

(defmethod node´subtypep ((x sexp´node) (y sexp´node))
(subtypep (l a b e l x) (l a b e l y)))

(defmethod node´disjoint´types´p ((x sexp´node) (y sexp´node))
(dis jo int´types´p (l a b e l x) (l a b e l y)))

(d e f c l a s s sexp´graph (graph)
())

(defmethod add´node ((g sexp´graph) t y p e´ s p e c i f i e r)
(l e t ((z (make´instance ' sexp´node : l a b e l t y p e´ s p e c i f i e r)))

(push z
(nodes g))

z))

(defmethod e x t r a c t´d i s j o i n t ((g sexp´graph))
(mapcar #' l a b e l (d i s j o i n t g)))

281

D.12 BDD based graph algorithm
The following is a Clos Common Lisp implementation of the algorithm described in Section 9.4. The algorithm
represents Common Lisp types BDDs as discussed in Section 9.5.2.
(d e f c l a s s node´of´bdd (node)

((l a b e l : type bdd)))

(defmethod node´and´not ((x node´of´bdd) (y node´of´bdd))
(bdd´and´not (l a b e l x) (l a b e l y)))

(defmethod node´and ((x node´of´bdd) (y node´of´bdd))
(bdd´and (l a b e l x) (l a b e l y)))

(defmethod node´empty´type ((node node´of´bdd))
(eq ∗ bdd´ fa lse ∗ (l a b e l node)))

(defmethod node´subtypep ((x node´of´bdd) (y node´of´bdd))
(bdd´subtypep (l a b e l x) (l a b e l y)))

(defmethod node´disjoint´types´p ((x node´of´bdd) (y node´of´bdd))
(va lue s (bdd´disjoint´types´p (l a b e l x) (l a b e l y))

t))

(d e f c l a s s bdd´graph (graph)
())

(defmethod add´node ((g bdd´graph) t y p e´ s p e c i f i e r)
(l e t ((z (make´instance ' node´of´bdd : l a b e l (bdd t y p e´ s p e c i f i e r))))

(push z
(nodes g))

z))

(defmethod e x t r a c t´d i s j o i n t ((g bdd´graph))
(mapcar #'bdd´to´dnf (mapcar #' l a b e l (d i s j o i n t g))))

(defmethod decompose´graph´1 ((g bdd´graph))
(bdd´call´with´new´hash

(lambda ()
(call´next´method))))

(defmethod decompose´graph´2 ((g bdd´graph))
(bdd´call´with´new´hash

(lambda ()
(call´next´method))))

282

Appendix E

Subclasses of function using Clos

In Common Lisp the user may create subtypes of function. As shown in Implementation E.1, this is useful
in implementing objects which have states like Clos objects, but may also be called as functions, using apply,
funcall, mapping functions etc.

Implementation E.1 (User defined subtype/subclass of function).

(defclass reflectable-function ()
((function : initarg : function :type function)

(lambda-list : initarg : lambda-list
: reader lambda-list
:type (or symbol list)))

(: metaclass funcallable-standard-class))

(defmethod initialize-instance
:after ((self reflectable-function) &key)

(closer-mop : set-funcallable-instance-function
self (slot-value self 'function)))

(defmacro (lambda-list &rest body)
`(make-instance 'reflectable-function

: function (lambda ,lambda-list ,@body)
: lambda-list ',lambda-list))

We see in Example E.2 that the user defined type reflectable-function is a subtype of function, and
behaves well with the subtypep.

Example E.2 (Using an instance of user defined subtype of function).

CL-USER > (mapcar (reflecting-lambda (x) (list x)) '(a b c))
((A) (B) (C))
CL-USER > (type-of (reflecting-lambda (x) (list x)))
REFLECTABLE-FUNCTION
CL-USER > (subtypep 'reflectable-function 'function)
T
T

283

Appendix F

Running the graph-based algorithm on
an example

In this section we continue the disucssion began in Section 9.4.
Node Boolean expression

5

4

8

1

6

2

3

1 A1

2 A2

3 A3

4 A4

5 A5

6 A6

7 A7

8 A8

Figure F.1: State 0: Topology graph
Nodes 5 and 6 in Figure F.1 meet the strict subset conditions, thus the arrow connecting them to their

supersets, 5 Ñ 1, 5 Ñ 4, 5 Ñ 8, and 6 Ñ 1 can be eliminated and the superset nodes relabeled. I.e. 8 relabeled
A8 ÞÑ A8XA5, 4 relabeled A4 ÞÑ A4XA5, and 1 relabeled A1 ÞÑ A1XA5XA6. The result of these operations
is that nodes 5 and 6 have now severed all connections, and are thus isolated. The updated graph is shown
in Figure F.2.

Node Boolean expression

2

43

1

8

1 A1 XA5 XA6

2 A2

3 A3

4 A4 XA5

5 A5

6 A6

7 A7

8 A8 XA5

Figure F.2: State 1: Topology graph, after isolating 5 and 6.
The green line between nodes as 2 and 4 in Figure F.2 meets the touching connections conditions. The

nodes can thus be separated by breaking the connection, deleting the green line. To do this we must introduce
a new node which represents the intersection of the sets 2 and 4 . The new node is labeled as the Boolean
intersection: A2 XA4 XA5, and is labeled 9 in Figure F.3.

284

Node Boolean expression

4

8

1

2 3

9

1 A1 XA5 XA6

2 A2 XA4 XA5

3 A3

4 A4 XA5 XA2

5 A5

6 A6

7 A7

8 A8 XA5

9 A2 XA4 XA5

Figure F.3: State 2: Topology graph after disconnecting 2 from 4
We must also introduce new blue lines from 9 to any node that either 2 points to or 4 points to, which

is 1 in this case.
In addition we must draw green lines to nodes which both 2 and 4 have green lines touching. In this cases

that is only the node 3 . So a green line is drawn between 9 and 3 .
The green line between 2 and 4 is deleted. The two nodes are relabeled: 2 : A2 ÞÑ A2 XA4 XA5 and 4 :

A4 XA5 ÞÑ A4 XA5 XA2.
These graph operations should continue until all the nodes have become isolated. Observing Figure F.3 we

see that several green lines meet the touching connections: 2 — 3 , 3 — 4 , 3 — 9 , and 4 — 8 . It is not
clear which of these connections should be broken next. I.e. what is the best strategy to employ when choosing
the order to break connections. This is a matter for further research; we don’t suggest any best strategy at this
time. Nevertheless, we continue the segmentation algorithm a couple more steps.

In Figure F.3, consider eliminating the green connection 4 — 8 . We introduce a new node 10 representing
the intersection, thus associated with the Boolean expression A4XA5XA2XA8XA5. The union of the supersets
of 4 and 8 , i.e. the union of the destinations of the arrows leaving 4 and 8 is just the node 1 , thus we must
introduce a blue arrow 10 Ñ 1 . There are no nodes which both 4 and 8 touch with a green line, so no green
lines need to be added connecting to 10 . We now relabel 4 and 8 with the respective relative complements.
8 ÞÑ 8X 4 and 4 ÞÑ 4X 8. The Boolean expressions are shown in Figure F.4.

Node Boolean expression

8

1

10

4

3

9 2

1 A1 XA5 XA6

2 A2 XA4 XA5

3 A3

4 A4 XA5 XA2 XA8 XA5

5 A5

6 A6

7 A7

8 A8 XA5 XA4 XA5 XA2

9 A2 XA4 XA5

10 A4 XA5 XA2 XA8 XA5

Figure F.4: State 3: Topology graph after disconnecting 4 from 8

Observing Figure F.4, we see it is possible to disconnect 8 from 1 and thereafter disconnect 10 from 1 .
Actually you may choose to do this in either order. We will operate on 8 and then on 10 , to result in the
graph in Figure F.5.

285

Node Boolean expression

9

3

1

4

2

1 A1 XA6

XA8 XA5 XA4 XA5 XA2

XA4 XA5 XA2 XA8 XA5

2 A2 XA4 XA5

3 A3

4 A4 XA5 XA2 XA8 XA5

5 A5

6 A6

7 A7

8 A8 XA5 XA4 XA5 XA2

9 A2 XA4 XA5

10 A4 XA5 XA2 XA8 XA5

Figure F.5: State 4: Topology graph after isolating 8 and 10
From Figure F.5 it should be becoming clear that the complexity of the Boolean expressions in each node

is becoming more complex. If we continue this procedure, eliminating all the blue arrows and green connecting
lines, we will end up with 13 isolated nodes (each time a green line is eliminated one additional node is added).
Thus the Boolean expressions can become exceedingly complex. A question which arises is whether it is better
to simplify the Boolean expressions at each step, or whether it is better to wait until the end. The data structure
shown in Section 9.5 promises to obviate that dilemma.

There are some subtle corner cases which may not be obvious. It is possible in these situations to end up
with some disjoint subsets which are empty. It is also possible also that the same subset is derived by two
different operations in the graph, but whose equations are very different.

This phenomenon is a result of a worst case assumption, green intersection in the algorithm. Consider a
case where nodes A , B , and C mutually connected with green lines signifying that the corresponding sets
touch (are not disjoint). If the connection A — B is broken, a new green line must be drawn between the new
node D and C . Why? Because it is possible that the set represented by A X B ∦ C. However, this it is not
guaranteed. It may very well be the case that both A ∦ C and B ∦ C while A X B ‖ C. Consider the simple
example A “ t1, 2u, B “ t2, 3u, C “ t1, 3u. A ∦ C, B ∦ C, but AXB “ t2u ‖ t1, 3u “ C.

This leads to the possibility that there be green lines in the topology graph which represent phantom
connections. Later on in the algorithm when the green line between D and C is broken redundant sets may
occur. Nodes C and D will be broken into three, C XD, C XD, and D X C. But C XD “ H, C “ C XD
and D “ D XD. If a similar phenomenon occurs between C and some other set, say E, then we may end up
with multiple equivalent sets with different names, and represented by different nodes of the topology graph:
C “ C XD “ C X E.

To identify each of these cases, each of the resulting sets must be checked for vacuity, and uniqueness. No
matter the programming language of the algorithm implementation, it is necessary to be implement these two
checks.

In Common Lisp there are two possible ways to check for vacuity, i.e., to detect whether a type is empty.
(1) Symbolically reduce the type specifier, e.g. (and fixnum (not fixnum)) to a canonical form with is nil
in case the specifier specifies the nil type. (2) Use the subtypep function to test whether the type is a subtype
of nil. To test whether two specifiers specify the same type there are two possible approaches in Common
Lisp. (1) Symbolically reduce each expression such as (or integer number string) and (or string fixnum
number) to canonical form, and compare the results with the equal function. (2) Use the subtypep function
twice to test whether each is a subtype of the other.

See Chapter 10 for a description of the performance of this algorithm.

286

Bibliography

[ACPZ18] Davide Ancona, Giuseppe Castagna, Tommaso Petrucciani, and Elena Zucca. Semantic subtyping
for non-strict languages. In 24th International Conference on Types for Proofs and Programs
(TYPES 2018), jun 2018.

[Ake78] S. B. Akers. Binary Decision Diagrams. IEEE Trans. Comput., 27(6):509–516, June 1978.

[Als11] Gerold Alsmeyer. Chebyshev’s Inequality, pages 239–240. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

[Ami16] Nada Amin. Dependent Object Types. page 134, 2016.

[And99] Henrik Reif Andersen. An introduction to binary decision diagrams. Technical report, Course
Notes on the WWW, 1999.

[Ano87] Anonymous. The Common Lisp Object Standard (CLOS), October 1987. 1 videocassette (VHS)
(53 min.).

[ANO`12] Ignasi Abío, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and Valentin
Mayer-Eichberger. A New Look at BDDs for Pseudo-Boolean Constraints. J. Artif. Intell. Res.,
45:443–480, 2012.

[Ans94] Ansi. American National Standard: Programming Language – Common Lisp. ANSI X3.226:1994
(R1999), 1994.

[AS96] Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer Programs.
MIT Press, Cambridge, MA, USA, 2nd edition, 1996.

[ATB94] Adnan Aziz, Serdar Taşiran, and Robert K. Brayton. BDD Variable Ordering for Interacting
Finite State Machines. In Proceedings of the 31st Annual Design Automation Conference, DAC
’94, pages 283–288, New York, NY, USA, 1994. ACM.

[Aug85] Lennart Augustsson. Compiling Pattern Matching. In Proc. Of a Conference on Functional
Programming Languages and Computer Architecture, pages 368–381, New York, NY, USA, 1985.
Springer-Verlag New York, Inc.

[Bak92] Henry G. Baker. A Decision Procedure for Common Lisp’s SUBTYPEP Predicate. Lisp and
Symbolic Computation, 5(3):157–190, 1992.

[Bar87] Jeff Barnett. Types in CL. Computer History Museum Sofware Preservation Group, December
1987.

[Bar90] T.J. Barnes. SKILL: a CAD system extension language. In Design Automation Conference, 1990.
Proceedings., 27th ACM/IEEE, pages 266–271, Jun 1990.

[Bar09] Jeff Barnett. The CRISP Programming Language System, An Historical Overview. Computer
History Museum Sofware Preservation Group, September 2009.

[Bar10] Jeff Barnett. Notes on SDC CRISP for IBM 370 Computers. Computer History Museum Sofware
Preservation Group, June 2010.

[Bar15] Daniel Barlow. ASDF User Manual for Version 3.1.6, 2015.

[Bar18] Jeff Barnett. searching for Jeff Barnett. conversation on comp.lang.lisp, August 2018.

[BBDC`18] Lorenzo Bettini, Viviana Bono, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Betti Ven-
neri. Java & Lambda: a Featherweight Story. Logical Methods in Computer Science, 2018. to
appear.

287

[BC16] David Bergman and Andre A. Cire. Theoretical Insights and Algorithmic Tools for Decision
Diagram-Based Optimization. Constraints, 21(4):533, 2016.

[BCM`92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic Model Checking:
1020 States and Beyond. Inf. Comput., 98(2):142–170, June 1992.

[BDG`88] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor Kiczales, and
David A. Moon. Common Lisp Object System specification. ACM SIGPLAN Notices, 23(SI):1–
142, 1988.

[BF] Robert Brown and coise-René Rideau Fran˙ Google Common Lisp Style Guide, Revision 1.28.
accessed 14 October 2018, 12h36 +0200.

[BG84] Rodney A. Brooks and Richard P. Gabriel. A Critique of Common Lisp. In LISP and Functional
Programming, pages 1–8, 1984.

[BKK`86] D. G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, Stefik, M., and F. Zdybel. Common Loops,
merging Lisp and object-oriented programming. j-SIGPLAN, 21(11):17–29, November 1986.

[Bla15] Jim Blandy. The Rust Programming Language: Fast, Safe, and Beautiful. O’Reilly Media, Inc.,
2015.

[Bou17] Pascal J. Bourguignon. I’m annoyed by the specification for satisfies. Thread on comp.lang.lisp,
January 2017.

[Bou18] Pascal J. Bourguignon. seeding random number generation different every time i run the program,
comp.lang.lisp, 2018.

[BP74] Jeff Barnett and D. L. Pintar. CRISP: A Programming language and System (draft), December
1974.

[BRB90] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a bdd package. In 27th
ACM/IEEE Design Automation Conference, pages 40–45, Jun 1990.

[Bry86] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, 35:677–691, August 1986.

[Bry92] Randal E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-decision Diagrams. ACM
Comput. Surv., 24(3):293–318, September 1992.

[Bry18] Randal E. Bryant. Chain Reduction for Binary and Zero-Suppressed Decision Diagrams. In Dirk
Beyer and Marieke Huisman, editors, Tools and Algorithms for the Construction and Analysis of
Systems, pages 81–98, Cham, 2018. Springer International Publishing.

[Brz64] Janusz A. Brzozowski. Derivatives of Regular Expressions. J. ACM, 11(4):481–494, October 1964.

[Cam99] Robert D. Cameron. Perl Style Regular Expressions in Prolog, CMPT 384 Lecture Notes, 1999.

[Cas16] Giuseppe Castagna. Covariance and Contravariance: a fresh look at an old issue. Technical
report, CNRS, 2016.

[CB14] Paul Chiusano and Rnar Bjarnason. Functional Programming in Scala. Manning Publications
Co., Greenwich, CT, USA, 1st edition, 2014.

[CBM90] Olivier Coudert, Christian Berthet, and Jean Christophe Madre. Verification of Synchronous
Sequential Machines Based on Symbolic Execution. In Proceedings of the International Workshop
on Automatic Verification Methods for Finite State Systems, pages 365–373, London, UK, UK,
1990. Springer-Verlag.

[CD80] Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality theory
for the λ-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, 1980.

[CD10] Pascal Costanza and Theo D’Hondt. Embedding Hygiene-Compatible Macros in an Unhygienic
Macro System. Journal of Universal Computer Science, 16(2):271–295, jan 2010.

[CDCV] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional Characters of Solvable Terms.
Mathematical Logic Quarterly, 27(2-6):45–58.

288

[CF05] Giuseppe Castagna and Alain Frisch. A Gentle Introduction to Semantic Subtyping. In
Proceedings of the 7th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming, PPDP ’05, pages 198–199, New York, NY, USA, 2005. ACM.

[CH05] Pascal Costanza and Robert Hirschfeld. Language Constructs for Context-oriented Programming:
An Overview of ContextL. In Proceedings of the 2005 Symposium on Dynamic Languages, DLS
’05, pages 1–10, New York, NY, USA, 2005. ACM.

[Che17] Tongfei Chen. Typesafe Abstractions for Tensor Operations. CoRR, abs/1710.06892, 2017.

[Chr09] Juliusz Chroboczek. CL-Yacc, a LALR(1) parser generator for Common Lisp, 2009.

[Chu41] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University Press, Princeton, New
Jork, 1941.

[CL17] G. Castagna and V. Lanvin. Gradual Typing with Union and Intersection Types. Proc. ACM
Program. Lang., (1, ICFP ’17, Article 41), sep 2017.

[CM85] Eugene Charniak and Drew McDermott. Introduction to Artificial Intelligence. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1985.

[CMZ`97] E. M. Clarke, K. L. Mcmillan, X. Zhao, M. Fujita, and J. Yang. Spectral Transforms for Large
Boolean Functions with Applications to Technology Mapping. Form. Methods Syst. Des., 10(2-
3):137–148, April 1997.

[Col13] Maximilien Colange. Symmetry Reduction and Symbolic Data Structures for Model Checking of
Distributed Systems. Thèse de doctorat, Laboratoire de l’Informatique de Paris VI, Université
Pierre-et-Marie-Curie, France, December 2013.

[com15] Declaring the elements of a list, discussion on comp.lang.lisp, January 2015.

[Cos] Pascal Costanza. Closer project.

[CR91] William Clinger and Jonathan Rees. Macros That Work. In Proceedings of the 18th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’91, pages 155–
162, New York, NY, USA, 1991. ACM.

[Cuk17] Ivan Cukic. Functional Programming in C++. Manning Publications, 2017.

[DL15] Alexandre Duret-Lutz. Conversations concerning segmentation of sets, November 2015.

[Dom] Public Domain. Alexandria implementation of destructuring-case.

[dot18] Dotty Documentation, 0.10.0-bin-SNAPSHOT, August 2018.

[DS88] J.D. DePree and C. Swartz. Introduction to real analysis. Wiley, 1988.

[Dun12] Joshua Dunfield. Elaborating Intersection and Union Types. SIGPLAN Not., 47(9):17–28,
September 2012.

[FCB08a] A. Frisch, G. Castagna, and V. Benzaken. Semantic Subtyping: dealing set-theoretically with
function, union, intersection, and negation types. Journal of the ACM, 55(4):1–64, 2008. Extends
and supersedes LICS ’02 and ICALP/PPDP ’05 articles.

[FCB08b] Alain Frischn, Giuseppe Castagna, and Véronique Benzaken. Semantic Subtyping: Dealing Set-
theoretically with Function, Union, Intersection, and Negation Types. J. ACM, 55(4):19:1–19:64,
September 2008.

[FTV16] Dror Fried, Lucas M. Tabajara, and Moshe Y. Vardi. BDD-Based Boolean Functional Synthesis. In
Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada,
July 17-23, 2016, Proceedings, Part II, pages 402–421, 2016.

[Fun13] Nobuhiko Funato. Public domain implementation of destructuring-bind, 2013. accessed 14 Octo-
ber 2018, 12h36 +0200.

[Gab90] Richard P. Gabriel. Common Lisp Email, August 1990.

[Gal87] Nick Gall. Re: Types in CL. Computer History Museum Sofware Preservation Group, December
1987.

289

[GF64] Bernard A. Galler and Michael J. Fisher. An improved equivalence algorithm. Commununication
of the ACM, 7(5):301–303, may 1964.

[Gos08] William Sealy Gosset. The Probable Error of a Mean. Biometrika, 6(1):1–25, March 1908.
Originally published under the pseudonym “Student”.

[GPS98] Clemens Gröpl, Hans Jürgen Prömel, and Anand Srivastav. Size and structure of random ordered
binary decision diagrams. In STACS 98, pages 238–248. Springer Berlin Heidelberg, 1998.

[GPS01] Clemens Gröpl, Hans Jürgen Prömel, and Anand Srivastav. On the evolution of the worst-case
OBDD size. Inf. Process. Lett., 77(1):1–7, 2001.

[Gra96] Paul Graham. ANSI Common Lisp. Prentice Hall Press, Upper Saddle River, NJ, USA, 1996.

[Haz] Philip Hazel. PCRE - Perl Compatible Regular Expressions.

[hd] Dan Doel (https://cs.stackexchange.com/users/93254/dan doel). how to deduce a function
subtype rule from a given function type definition. Computer Science Stack Exchange.
URL:https://cs.stackexchange.com/q/97342 (version: 2018-09-16).

[HM94] Mark A. Heap and M. R. Mercer. Least Upper Bounds on OBDD Sizes. 43:764–767, June 1994.

[HMR`15] Magne Haveraaen, Karla Morris, Damian Rouson, Hari Radhakrishnan, and Clayton Carson.
High-Performance Design Patterns for Modern Fortran. Scientific Programming, page 14, 2015.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2006.

[Hos00] Haruo Hosoya. Regular Expression Types for XML. PhD thesis, The University of Tokyo,
December 2000.

[Hot30] Harold Hotelling. British Statistics and Statisticians Today. 25(170):186–190, June 1930.

[Hoy08] Doug Hoyte. Let Over Lambda. Lulu.com, 2008.

[HP01] Haruo Hosoya and Benjamin Pierce. Regular Expression Pattern Matching for XML. SIGPLAN
Not., 36(3):67–80, January 2001.

[Hro02] Juraj Hromkovič. Descriptional Complexity of Finite Automata: Concepts and Open Problems.
J. Autom. Lang. Comb., 7(4):519–531, September 2002.

[Hug89] J. Hughes. Why Functional Programming Matters. Comput. J., 32(2):98–107, April 1989.

[Hut99] Graham Hutton. A Tutorial on the Universality and Expressiveness of Fold. J. Funct. Program.,
9(4):355–372, July 1999.

[HVP05] Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular Expression Types for XML.
ACM Trans. Program. Lang. Syst., 27(1):46–90, January 2005.

[iM96] Shin ichi Minato. Springer US, 1996.

[Jos12] Nicolai M. Josuttis. The C++ Standard Library: A Tutorial and Reference. Addison-Wesley
Professional, 2nd edition, 2012.

[Kar68] Marvin Karson. Handbook of Methods of Applied Statistics. Volume I: Techniques of Computation
Descriptive Methods, and Statistical Inference. Volume II: Planning of Surveys and Experiments.
I. M. Chakravarti, R. G. Laha, and J. Roy, New York, John Wiley; 1967, $9.00. Journal of the
American Statistical Association, 63(323):1047–1049, 1968.

[Kat15] Douglas Katzman. Thread on SBCL devel-list sbcl-devel@lists.sourceforge.net, December 2015.

[Kay69] Alan C. Kay. The Reactive Engine. PhD thesis, University of Utah, 1969.

[KdRB91] Gregor J. Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the Metaobject Protocol.
MIT Press, Cambridge, MA, 1991.

[Kee89] Sonja E. Keene. Object-Oriented Programming in Common Lisp: a Programmer’s Guide to
CLOS. Addison-Wesley, 1989.

290

[KK04] Ilias S. Kotsireas and Kostas Karamanos. Exact computation of the Bifurcation point B4 of the
logistic map and the Bailey-Broadhurst conjectures. I. J. Bifurcation and Chaos, 14(7):2417–2423,
2004.

[KKWZ15] Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia.
Learning Spark: Lightning-Fast Big Data Analytics. O’Reilly Media, Inc., 1st edition, 2015.

[Knu09] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks &
Techniques; Binary Decision Diagrams. Addison-Wesley Professional, 12th edition, 2009.

[KR88] Brian W. Kernighan and Dennis Ritchie. The C Programming Language, Second Edition.
Prentice-Hall, 1988.

[LGN10] Roland Levillain, Thierry Géraud, and Laurent Najman. Why and How to Design a Generic
and Efficient Image Processing Framework: The Case of the Milena Library. In Proceedings of
the IEEE International Conference on Image Processing (ICIP), pages 1941–1944, Hong Kong,
September 2010.

[LGN12] Roland Levillain, Thierry Géraud, and Laurent Najman. Writing Reusable Digital Topology
Algorithms in a Generic Image Processing Framework. In Ullrich Köthe, Annick Montanvert,
and Pierre Soille, editors, WADGMM 2010, volume 7346 of Lecture Notes in Computer Science,
pages 140–153. Springer-Verlag Berlin Heidelberg, 2012.

[LPR03] Michael Langberg, Amir Pnueli, and Yoav Rodeh. The ROBDD Size of Simple CNF Formulas.
In Correct Hardware Design and Verification Methods, 12th IFIP WG 10.5 Advanced Research
Working Conference, CHARME 2003, L’Aquila, Italy, October 21-24, 2003, Proceedings, pages
363–377, 2003.

[LS92] Y.-T. Lai and S. Sastry. Edge-valued Binary Decision Diagrams for Multi-level Hierarchical
Verification. In Proceedings of the 29th ACM/IEEE Design Automation Conference, DAC ’92,
pages 608–613, Los Alamitos, CA, USA, 1992. IEEE Computer Society Press.

[LS10] Sergei A. Lozhkin and Alexander E. Shiganov. High Accuracy Asymptotic Bounds on the BDD
Size and Weight of the Hardest Functions. Fundam. Inform., 104(3):239–253, 2010.

[LSCCDV12] Laurent Senta, Christopher Chedeau, and Didier Verna. Generic Image Processing with Climb.
In European Lisp Symposium, Zadar, Croatia, May 2012.

[Mac92] Robert Maclachlan. Python compiler for CMU Common Lisp. In ACM Sigplan Lisp Pointers,
pages 235–246, 01 1992.

[Mac03] Robert Maclachlan. Design of CMU Common Lisp. unpublished, 01 2003.

[Mar98] Lieven Marchand. Singleton pattern in CLOS. Thread on comp.lang.lisp, June 1998.

[Mar08] Luc Maranget. Compiling Pattern Matching to Good Decision Trees. In Proceedings of the 2008
ACM SIGPLAN Workshop on ML, ML ’08, pages 35–46, New York, NY, USA, 2008. ACM.

[Mar15] Barry Margolin. declaring the elements of a list. Thread on comp.lang.lisp, December 2015.

[McI60] M. Douglas McIlroy. Macro instruction extensions of compiler languages. Commun. ACM, 3:214–
220, April 1960.

[MD03] D. M. Miller and G. W. Dueck. On the size of multiple-valued decision diagrams. In 33rd
International Symposium on Multiple-Valued Logic, 2003. Proceedings., pages 235–240, May 2003.

[Min93] Shin-ichi Minato. Zero-suppressed BDDs for Set Manipulation in Combinatorial Problems. In
Proceedings of the 30th International Design Automation Conference, DAC ’93, pages 272–277,
New York, NY, USA, 1993. ACM.

[MN98] Makoto Matsumoto and Takuji Nishimura. Mersenne Twister: A 623-dimensionally Equidis-
tributed Uniform Pseudo-random Number Generator. ACM Trans. Model. Comput. Simul.,
8(1):3–30, January 1998.

[MPS84] David MacQueen, Gordon Plotkin, and Ravi Sethi. An Ideal Model for Recursive Polymor-
phic Types. In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL ’84, pages 165–174, New York, NY, USA, 1984. ACM.

291

[Nat10] Mary Natrella. NIST/SEMATECH e-Handbook of Statistical Methods. NIST/SEMATECH,
July 2010.

[NDV16] Jim Newton, Akim Demaille, and Didier Verna. Type-Checking of Heterogeneous Sequences in
Common Lisp. In European Lisp Symposium, Kraków, Poland, May 2016.

[New15] William H. Newman. Steel Bank Common Lisp User Manual, 2015.

[New17] Jim Newton. Analysis of Algorithms Calculating the Maximal Disjoint Decomposition of a Set.
Technical report, EPITA/LRDE, 2017.

[New18] Jim Newton. What does "argument types are not restrictive" mean? Thread on comp.lang.lisp,
August 2018.

[Nor92] Peter Norvig. Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 1992.

[NP93] Peter Norvig and Kent Pitman. Tutorial on Good Lisp Programming Style. aug 1993. Lisp User
and Vendors Conference.

[NV18a] Jim Newton and Didier Verna. A Theoretical and Numerical Analysis of the Worst-Case Size of
Reduced Ordered Binary Decision Diagrams. Transactions on Computational Logic, ACM, 2018.

[NV18b] Jim Newton and Didier Verna. Recognizing hetergeneous sequences by rational type expression.
In Proceedings of the Meta’18: Workshop on Meta-Programming Techniques and Reflection,
Boston, MA USA, November 2018.

[NV18c] Jim Newton and Didier Verna. Strategies for typecase optimization. In European Lisp Symposium,
Marbella, Spain, April 2018.

[NVC17] Jim Newton, Didier Verna, and Maximilien Colange. Programmatic Manipulation of Common
Lisp Type Specifiers. In European Lisp Symposium, Brussels, Belgium, April 2017.

[Oka98] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, New York, NY,
USA, 1998.

[ORT09a] Scott Owens, John Reppy, and Aaron Turon. Regular-expression Derivatives Re-examined. J.
Funct. Program., 19(2):173–190, March 2009.

[ORT09b] Scott Owens, John Reppy, and Aaron Turon. Regular-expression Derivatives Re-examined. J.
Funct. Program., 19(2):173–190, March 2009.

[OSV08] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A Comprehensive
Step-by-step Guide. Artima Incorporation, USA, 1st edition, 2008.

[Pae93] Andreas Paepcke. User-Level Language Crafting – Introducing the CLOS metaobject protocol.
In Andreas Paepcke, editor, Object-Oriented Programming: The CLOS Perspective, chapter 3,
pages 65–99. MIT Press, 1993. Downloadable version at url.

[PBM10] Md. Mostofa Ali Patwary, Jean R. S. Blair, and Fredrik Manne. Experiments on union-find algo-
rithms for the disjoint-set data structure. In Paola Festa, editor, Proceedings of 9th International
Symposium on Experimental Algorithms (SEA’10), volume 6049 of Lecture Notes in Computer
Science, pages 411–423. Springer, 2010.

[Pea17] David J. Pearce. Rewriting for sound and complete union, intersection and negation types. In
Proceedings of the 16th ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences, GPCE 2017, Vancouver, BC, Canada, October 23-24, 2017, pages
117–130, 2017.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st edition, 2002.

[Pin15] Jean-Éric Pin. Mathematical Foundations of Automata Theory. 2015.

[Pit03] Kent M. Pitman. Using closures with SATISFIES, comp.lang.lisp, 2003.

[Pot80] G. Pottinger. A type assignment for the strongly normalizable lambda-terms. In J. Hindley
and J. Seldin, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 561–577. Academic Press, 1980.

292

[RA16] Tiark Rompf and Nada Amin. Type Soundness for Dependent Object Types (DOT). SIGPLAN
Not., 51(10):624–641, October 2016.

[Rey96] John C. Reynolds. Design of the Programming Language Forsythe. Technical report, 1996.

[Rho08] Christophe Rhodes. SBCL: A Sanely-Bootstrappable Common Lisp. In Robert Hirschfeld and
Kim Rose, editors, Self-Sustaining Systems, pages 74–86, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[Rho09] Christophe Rhodes. User-extensible Sequences in Common Lisp. In Proceedings of the 2007
International Lisp Conference, ILC ’07, pages 13:1–13:14, New York, NY, USA, 2009. ACM.

[Rie] Chris Riesbeck. Lisp Unit. https://www.cs.northwestern.edu/academics/courses/325/
readings/lisp-unit.html.

[RL17] Marianna Rapoport and Ondřej Lhoták. Mutable Wadlerfest DOT. In Proceedings of the 19th
Workshop on Formal Techniques for Java-like Programs, FTFJP’17, pages 7:1–7:6, New York,
NY, USA, 2017. ACM.

[Sab11] Miles Sabin. Unboxed union types in Scala via the Curry-Howard isomorphism, June 2011.

[Saj17] Yogesh Sajanikar. Haskell Cookbook: Build functional applications using Monads, Applicatives,
and Functors. Packt Publishing Ltd, 2017.

[SCG13] Alex Shinn, John Cowan, and Arthur A. Gleckler. Revised 7 report on the algorithmic language
Scheme. Technical report, 2013.

[SG93] Guy L. Steele, Jr. and Richard P. Gabriel. The Evolution of Lisp. In The Second ACM SIGPLAN
Conference on History of Programming Languages, HOPL-II, pages 231–270, New York, NY,
USA, 1993. ACM.

[SGC15] Don Syme, Adam Granicz, and Antonio Cisternino. Expert F# 4.0. Apress, Berkely, CA, USA,
4th edition, 2015.

[Sha49] C. E. Shannon. The synthesis of two-terminal switching circuits. The Bell System Technical
Journal, 28(1):59–98, Jan 1949.

[SIHB97] Tsutomu Sasao, Robert J. Barton III, David S. Herscovici, and Jon T. Butler. Average and Worst
Case Number of Nodes in Decision Diagrams of Symmetric Multiple-Valued Functions. IEEE
Transactions on Computers, 46:491–494, 1997.

[Sla98] S. Slade. Object-oriented Common LISP. Prentice Hall PTR, 1998.

[Som] Fabio Somenzi. CUDD: BDD package, University of Colorado, Boulder.

[Sri02] A. Srinivasan. Algorithms for discrete function manipulation. In Computer-Aided Design, 1990.
ICCAD-90. Digest of Technical Papers., 1990 IEEE International Conference on, 2002.

[ST98] Karsten Strehl and Lothar Thiele. Symbolic Model Checking of Process Networks Using Inter-
val Diagram Techniques. In Proceedings of the 1998 IEEE/ACM International Conference on
Computer-aided Design, ICCAD ’98, pages 686–692, New York, NY, USA, 1998. ACM.

[Ste84] Guy L. Steele, Jr. Common LISP: The Language (1st Ed.). Digital Equipment Corporation,
1984.

[Ste90] Guy L. Steele, Jr. Common LISP: The Language (2nd Ed.). Digital Press, Newton, MA, USA,
1990.

[Str81] Karl R. Stromberg. An Introduction to Classical Real Analysis. Wadsworth International, Bel-
mont, CA, 1981.

[Str13] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Professional, 4th edition,
2013.

[Swa17] M. Swaine. Functional Programming: a PragPub Anthology: Exploring Clojure, Elixir, Haskell,
Scala, and Swift. Pragmatic programmers. Pragmatic Bookshelf, 2017.

293

https://www.cs.northwestern.edu/academics/courses/325/readings/lisp-unit.html
https://www.cs.northwestern.edu/academics/courses/325/readings/lisp-unit.html

[THFF`17] Sam Tobin-Hochstadt, Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Ben Greenman,
Andrew M. Kent, Vincent St-Amour, T. Stephen Strickland, and Asumu Takikawa. Migratory
Typing: Ten Years Later. In SNAPL, pages 17:1–17:17, 2017.

[Val18] Leo Valais. SUBTYPEP: An Implementation of Baker’s Algorithm. Technical report, EPITA/L-
RDE, July 2018.

[vR88] Walter van Roggen. Issue FUNCTION-TYPE-ARGUMENT-TYPE-SEMANTICS Writeup,
September 1988.

[Wam11] Dean Wampler. Functional Programming for Java Developers: Tools for Better Concurrency,
Abstraction, and Agility. O’Reilly Media, Inc., 2011.

[Weg87] Ingo Wegener. The Complexity of Boolean Functions. John Wiley & Sons, Inc., New York, NY,
USA, 1987.

[Wei15] Edmund Weitz. Common Lisp Recipes: A Problem-solution Approach. Apress, 2015.

[XAMM93] L. Xu, A. E. A. Almaini, J. F. Miller, and L. McKenzie. Reed-Muller universal logic module
networks. IEE Proceedings E - Computers and Digital Techniques, 140(2):105–108, March 1993.

[Xin04] Guangming Xing. Minimized Thompson NFA. Int. J. Comput. Math., 81(9):1097–1106, 2004.

[YD14] Francois Yvon and Akim Demaille. Théorie des Langages Rationnels. EPITA LRDE, 2014.
Lecture notes.

[Zab08] S. L Zabell. On Student’s 1908 Article “The Probable Error of a Mean”. Journal of the American
Statistical Association, 103(481):1–7, 2008.

294

	I Regular Sequences in Common Lisp
	Overview
	Introduction
	Background
	Typed heterogeneous sequences
	Finite automata
	Optimized code generation
	Binary Decision Diagrams
	Source Available

	Common Lisp Type System
	Types in Common Lisp
	Semantics of type specifiers
	Computation details regarding types
	Unanswerable question of the subtype relation
	Type specifier manipulation
	Type reduction using s-expressions
	Function types
	Semantics of function types
	Function types in Common Lisp
	The Induced Subtype Rule (ISR)
	Degenerate function types
	Intuition of function type intersection
	Calculation of function subtype relation is underspecified
	Run-time type check of functions considered harmful
	A historical perspective

	Related work
	Perspectives

	Rational Languages
	Theory of rational languages
	Rational expressions
	Regular expressions
	Finite automata
	Equivalence of rational expressions and finite automata
	The rational expression derivative
	Computing the automaton using the rational derivative
	Related work

	Type-Checking of Heterogeneous Sequences in Common Lisp
	Introduction
	Heterogeneous sequences in Common Lisp
	The regular type expression
	Clarifying some confusing points about regular type expressions

	Application use cases
	Use Case: RTE-based string regular expressions
	Use Case: Test cases based on extensible sequences
	Use Case: DWIM lambda lists
	Use Case: destructuring-case

	Implementation overview
	Pattern matching a sequence
	Type definition
	Constructing a DFA representing a regular type expression
	Optimized code generation
	Sticky states
	The overlapping types problem
	Rational type expressions involving satisfies
	Known open issue
	RTE performance vs hand-written code
	RTE performance vs CL-PPCRE
	Exceptional situations

	Alternatives: Use of cons construct to specify homogeneous lists
	Related work
	Conclusions and perspectives

	II Binary Decision Diagrams
	Reduced Ordered Binary Decision Diagrams
	BDD reduction
	Initial construction step
	Reduction rules

	ROBDD Boolean operations
	ROBDD construction
	Common Lisp ROBDD implementation
	BDD object serialization and deserialization
	BDD retrieval via hash table

	Common Lisp implementation of ROBDD Boolean operations
	ROBDD operations with multiple arguments
	Generating randomly selected ROBDD of n variables
	Conclusions and perspectives

	Numerical Analysis of the Worst-Case Size of ROBDDs
	Worst-case ROBDD size and shape
	Process summary
	Experimental analysis of worst-case ROBDD Size
	Statistics of ROBDD size distribution
	Sufficiency of sample size
	Measuring ROBDD residual compression
	Shape of worst-case ROBDD
	Worst-case ROBDD size
	The threshold function
	Plots of 69640972 ROBDDn 86418188 and related quantities
	Limit of the residual compression ratio

	Programmatic construction of a worst-case n-variable ROBDD
	Related work
	Conclusion
	Perspectives

	Extending BDDs to Accommodate Common Lisp Types
	Representing Boolean expressions
	Representing types
	Representing Common Lisp types
	Canonicalization
	Equal right and left children
	Caching BDDs
	Reduction in the presence of subtypes
	Reduction to child
	More complex type relations
	Optimized BDD construction

	Related work
	Perspectives

	III The Type Decomposition and Serialization Problems
	Maximal Disjoint Type Decomposition
	Motivation
	Rigorous development
	Unary set operations
	Partitions and covers
	Sigma algebras
	Finitely many Boolean combinations
	Disjoint decomposition
	Maximal disjoint decomposition

	Related work

	Calculating the MDTD
	Baseline set disjoint decomposition
	Small improvements in baseline algorithm
	Type disjoint decomposition as SAT problem
	Set disjoint decomposition as graph problem
	Graph construction
	Strict subset
	Relaxed subset
	Touching connections
	Loops
	Discovered empty set
	Recursion and order of iteration

	Type decomposition using BDDs
	Improving the baseline algorithm using BDDs
	Improving the graph-based algorithm using BDDs

	The Baker subtypep implementation

	Performance of MDTD Algorithms
	Overview of the tests
	Pools of type specifiers used in performance testing
	Pool: Subtypes of number
	Pool: Subtypes of condition
	Pool: Subtypes of number or condition
	Pool: Real number ranges
	Pool: Integer ranges
	Pool: Subtypes of cl:t
	Pool: Subtypes in SB-PCL
	Pool: Specified Common Lisp types
	Pool: Intersections and Unions
	Pool: Subtypes of fixnum using member

	MDTD algorithm implementations
	Tuning the BDD hash mechanism
	Tuning the BDD-based graph algorithm
	Analysis of performance tests
	Analysis of performance tests with Baker functions
	Analysis of profile tests
	Profiler graphs of MDTD algorithms by pool
	Profiler graphs of MDTD algorithms by function
	Related work
	Conclusion and perspectives

	Strategies for typecase Optimization
	Introduction
	Type specifier approach
	Reduction of type specifiers
	Order dependency
	Mutually disjoint clauses
	Comparing heuristically
	Reduction with automatic reordering

	Decision diagram approach
	An ROBDD compatible type specifier
	BDD construction from type specifier
	Serializing the BDD into code
	Emitting compiler warnings

	Related work
	Conclusion and perspectives

	Conclusion
	Contributions
	Perspective
	Common Lisp
	Heterogeneous sequences
	Binary decision diagrams
	Extending BDDs to accommodate Common Lisp types
	MDTD
	Optimizing typecase
	Emergent issues

	Code for reduce-lisp-type
	Fixed-point based type specifier simplification
	Bottom-up, functional style, type specifier simplification

	Code for s-expression baseline algorithm
	Code for BDD baseline algorithm
	Code for graph-based algorithm
	Support code for graph decomposition
	Entry Point Functions
	Graph Construction
	Disjoining Nodes
	Green Line functions
	Blue Arrow Functions
	Strict Subset
	Relaxed Subset
	Touching Connections
	Breaking the Loop
	S-expression based graph algorithm
	BDD based graph algorithm

	Subclasses of function using Clos
	Running the graph-based algorithm on an example

