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Titre: Invariants polynomiaux et structures algébriques d’objets combinatoires

Résumé: Dans la première moitié de ce mémoire, nous étudions les invariants polynomi-
aux définis par Aguiar et Ardila dans arXiv:1709.07504 dans le contexte des monoïdes de
Hopf. Nous donnons d’abord une interprétation combinatoire de ces polynômes pour les
monoïdes de Hopf des permutaèdres généralisés et des hypergraphes, sur les entiers naturels
et négatifs. Nous en déduisons ensuite des interprétations similaires sur d’autres objets
combinatoires (graphes, complexes simpliciaux, building sets, etc). Dans la seconde moitié
de ce mémoire, nous proposons une nouvelle façon de définir et d’étudier des opérades de
multigraphes et d’objets similaires. Nous étudions en particulier deux opérades obtenues
avec cette méthode. La première est une généralisation directe de l’opérade Kontsevich-
Willwacher, qui peut être considérée comme une opérade canonique sur les multigraphes
et possède de nombreuses sous-opérades intéressantes. La seconde est une extension na-
turelle de l’opérade pré-Lie et a aussi un lien avec l’opérade précédente. Nous présentons
également divers résultats sur certaines sous-opérades finiment enegendrées et établissons
des liens entre elles et les opérades commutative et commutative magmatique.
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by Aguiar and Ardila in arXiv:1709.07504 in the context of Hopf monoids. We first give
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particular two operads obtained with our method. The former is a direct generalization
of the Kontsevich-Willwacher operad. This operad can be seen as a canonical operad
on multigraphs, and has many interesting sub-operads. The latter operad is a natural
extension of the pre-Lie operad in a sense developed here and it is related to the multigraph
operad. We also present various results on some of the finitely generated sub-operads of
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Résumé
Le sujet de cette thèse est l’étude d’invariants et de structures algébriques d’objets combi-
natoires. Nos contributions principales se divisent en deux parties : une étude des invari-
ants polynomiaux définis par Aguiar et Ardila sur les monoïdes de Hopf et la définition et
l’étude d’opérades de graphes.

En combinatoire, les structures de Hopf sont un cadre algébrique idéal pour travailler
avec des opérations de fusion (produit) et de division (co-produit) d’objets combinatoires.
La notion d’algèbre de Hopf est bien connue et utilisée en combinatoire depuis plus de 30
ans, elle a prouvé sa grande force en répondant à diverses questions (voir par exemple [26]).
En particulier, elle permet de définir et calculer des invariants polynomiaux sur différents
objets combinatoires (voir [3], [9], [21] ou [33] pour divers exemples). Plus récemment,
Aguiar et Mahajan ont défini une notion de monoïde de Hopf [4],[5] apparentée à la notion
d’algèbre de Hopf et fondée sur la théorie des espèces de Joyal [31]. Comme dans le cas
des algèbres de Hopf, c’est une notion utile pour travailler avec des invariants combina-
toires. Ceci a été particulièrement mis en lumière par le récent et vaste article d’Aguiar et
Ardila [2] où ils donnent notamment un théorème permettant de générer divers invariants
polynomiaux. Ils retrouvent ainsi le polynôme chromatique sur les graphes, le polynôme
de Billera-Jia-Reiner sur les matroïdes et le polynôme d’ordre strict des posets. En outre,
ils fournissent également les outils nécessaires pour calculer ces invariants sur les entiers
négatifs, et récupérer ainsi différents théorèmes de réciprocité. Dans la première moitié de
ce manuscrit, nous appliquons les théorèmes d’Aguiar et Ardila au monoïde de Hopf des
permutaèdres généralisés et au monoïde de Hopf des hypergraphes définis dans [2]. Nos ré-
sultats sont en extension directe avec ceux d’Aguiar et d’Ardila. Dans [2], après avoir donné
une bonne expression pour l’antipode des permutaèdres généralisés, ils l’utilisent pour dé-
duire des expressions similaires d’antipodes d’autres monoïdes de Hopf. Nous suivons le
même processus avec leurs invariants polynomiaux χζ . Nous obtenons une description
combinatoire de tous les invariants χζ aussi bien sur les entiers positifs que négatifs. De
plus, notre description ne se limite pas au cas où ζ est un caractère dit “basique”, c’est-à-
dire reconnaissant les objets triviaux, et nos formules généralisent de nombreux résultats
existants dans la littérature.

Dans la deuxième partie de ce mémoire nous étudions les opérades. Les opérades sont
des structures mathématiques d’abord apparues en topologie et qui ont ensuite connu un
essor en algèbre [36] mais aussi en combinatoire [16] —voir par exemple [40, 25] pour des
références générales sur les opérades symétriques et non symétriques, les opérades ensem-
bliste et linéaire etc au travers de la théorie des espèces. Au cours des dernières décennies,
plusieurs opérades sur les arbres ont été définies, parmi elles, les plus étudiées sont l’opérade
pré-Lie PLie [17] et l’opérade permutative non associative NAP [35]. Il semble alors na-
turel de se demander s’il est aussi possible de définir des opérades intéressantes sur les
graphes et quelles sont leurs propriétés. La nécessité de définir des opérades de graphe
appropriées vient de la combinatoire, où les graphes sont tout comme les arbres, des objets
naturels à étudier. Elle vient aussi de la physique, où il a été récemment proposé d’utiliser
des opérades de graphes afin d’encoder la combinatoire de la renormalisation des graphes
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de Feynman en théorie quantique des champs [34]. Des opérades de graphes ont déjà été
définies, par exemple dans [32, 45, 40, 24, 38]. Dans la seconde moitié de ce manuscrit,
nous allons plus loin dans cette direction et définissons une nouvelle classe d’opérades de
graphes. Nous étudions deux opérades de cette classe en particulier : nous établissons un
lien avec l’opérade pré-Lie mentionnée ci-dessus, et nous étudions quelques sous-opérades
finiment engendrées d’intérêt.

Ce manuscrit s’organise comme suit. Dans la section 2 nous présentons les préliminaires
nécessaires aux sections suivantes. Ceux-ci consistent en une brève introduction à la théorie
des espèces et une présentation des divers objets combinatoires considérés ici. Dans la
section 3, nous donnons nos résultats sur les monoïdes de Hopf et dans la Section 4 ceux
sur les opérades. Nous concluons avec la section 5 où nous mentionnons certains résultats
qui non présentés ici ainsi que diverses pistes de recherche dans la continuité des travaux
menés durant ces trois années de thèse.

Espèces

Les espèces ont été introduites par Joyal dans [31] et sont le cadre idéal pour travailler
avec des objets étiquetés. Une espèce linéaire S est la donnée de :

• un espace vectoriel S[V ] pour chaque ensemble fini V ,

• un isomorphisme S[σ] : S[V ]→ S[W ] pour chaque bijection σ : V → W .

Ces bijections doivent de plus être compatibles avec la composition: S[σ ◦ τ ] = S[σ] ◦ S[τ ]
et S[Id] = Id.

Un point fort de la théorie des espèces sont les multiples opérations permettant de
construire de nouvelles espèces à partir d’espèce déjà existante. Étant données deux espèces
ensemblistes R et S on définit ainsi les espèces suivantes:

Somme (R + S)[V ] = R[V ]⊕ S[V ], P roduit R · S[V ] =
⊕

V1tV2=V

R[V1]⊗ S[V2],

P roduit de Hadamard (R× S)[V ] = R[V ]⊗ S[V ]

Dérivée S ′[V ] = S[V + {∗}] où ∗ 6∈ V , Pointée S•[V ] = S[V ] · V.

Si de plus S est positive (i.e. S[∅] = {0}) on peut aussi définir la composition

R(S)[V ] =
⊕

P partition de V

R[P ]
⊗
Pi∈P

S[Pi].
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Monoïdes de Hopf et invariants polynomiaux

Un monoïde de Hopf M est une espèce linéaire telle que M [∅] = K munie d’un produit et
d’un co-produit

µV1,V2 : M [V1]⊗M [V2]→M [V1 t V2], ∆V1,V2 : M [V1 t V2]→M [V1]⊗M [V2],

x⊗ y 7→ x · y z 7→
∑

z1 ⊗ z2.

Ces deux morphismes sont sujets à des axiomes de naturalité, d’unitarité, d’associativité
et de compatibilité. Tout monoïde de Hopf M est muni d’un antipode S : M → M qui
est une application qui joue un rôle d’inverse dans la théorie. Un caractère d’un monoïde
de Hopf M , est une collection de formes linéaires ζV : M [V ] → K naturelle et compatible
avec le produit.

Les invariants polynomiaux qui nous intéressent dans cette partie sont ceux définis dans
le théorème suivant :

Théorème 0.1 (Proposition 16.1 et Proposition 16.2 dans [2]). Soit M un monoïde de
Hopf et ζ un caractère de M . Alors pour tout x ∈ M [V ], il existe un polynôme χ(x) tel
que

1. χ(x)(1) = ζ(x),

2. χ(x · y)) = χ(x)χ(y),

3. χ(x)(−n) = χ(S(x))(n) pour tout entier naturel n.

Nous fournissons d’abord une interprétation combinatoire, pour les entiers positifs et
négatifs, de ces polynômes sur le monoïde de Hopf des permutaèdres généralisés. Les
permutaèdres généralisés sont une famille de polytopes vérifiant certaines contraintes et
jouant un rôle majeur dans la théorie des monoïdes de Hopf. Étant donné un polytope
P ⊂ RV , Q l’une de ses faces et n un entier naturel, on définit les cônes ouvert et fermé :

N o
P (Q)n =

{
c ∈ [n]V |Pc = Q

}
NP (Q)n =

{
c ∈ [n]V |Q est une face de Pc

}
,

où Pc = {p ∈ P | c(p) ≥ c(q) pour tout q ∈ P}. Les éléments de N o
P (Q)n et NP (Q)n sont

respectivement appelés les colorations (avec [n]) strictement compatibles avec Q et les
colorations (avec [n]) compatibles avec Q.

Notre premier résultat s’exprime alors ainsi, où KGP est l’espèce des permutaèdres
généralisés :

Théorème 0.2. Soit ζ un caractère de KGP , V un ensemble fini et P un permutaèdre
généralisé. Alors

χζV (P )(n) =
∑
Q≤P

ζ(Q)|N o
P (Q)n|,

χζV (h)(−n) =
∑
P≤Q

(−1)|V |−dimQζ(Q)|NP (Q)n|.
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De plus, si ζ prend des valeurs dans {0, 1}, χζV (P )(n) est le nombre de paires strictement
compatibles (Q, c) où Q est une face de P non annulée par ζ et c une coloration avec
[n]. De même, χζV (P )(−n) est le nombre de telles paires compatibles. En particulier,
(−1)|V |χζ(P )(−1) est le nombre de faces de P non annulées par ζ.

Ce résultat s’obtient assez directement en utilisant les outils développés par Ardila et
Aguiar dans [2].

Nous nous intéressons ensuite au monoïde de Hopf KHG des hypergraphes. Un hyper-
graphe sur V est un multi-ensemble de parties de V . On définit une notion d’orientation
acyclique sur ces objets ainsi qu’une notion de (stricte) compatibilité entre les orientations
acycliques et les colorations. Pour h un hypergraphe, f ∈ Ah une orientation acyclique de
h et n un entier naturel, on note Ch,f,n et Ch,f,n les ensembles de colorations strictement
compatibles et compatibles avec f .
Théorème 0.3. Soit ζ un caractère de KHG, V un ensemble fini et h un hypergraphe.
Alors

χζV (h)(n) =
∑
f∈Ah

ζ(f(h))|Ch,f,n|,

χζV (h)(−n) =
∑
f∈Ah

(−1)cc(f(h))ζ(f(h))|Ch,f,n|.

De plus, si ζ prend des valeurs dans {0, 1}, χζV (h)(n) est le nombre de paires strictement
compatibles (f, c) où f est une orientation acyclique de h telle que f(h) ne soit pas annulé
par ζ et c une coloration avec [n]. De même, χζV (h)(−n) est le nombre de telles paires
compatibles. En particulier, (−1)|V |χζ(h)(−1) est le nombre d’orientation acycliques telles
que ζ(f(h)) 6= 0.

Nous démontrons ce résultat de deux façons différentes. Une première approche est
directe ; elle consiste à d’abord exprimer les polynômes |Ch,f,n| et |Ch,f,n| en terme de
polynômes de Faulhaber généralisés—que l’on introduit dans ce mémoire— puis d’exploiter
le bon comportement de ces polynômes sur les entiers négatifs à l’aide d’un lemme technique
sur des sommes alternées. La deuxième approche repose sur le Théorème 0.2 : il y a
une bijection entre les hypergraphes et les polytopes hypergraphiques, qui forment un
sous monoïde de Hopf de KGP . Il s’agit ensuite de montrer que sous cette bijection
les orientations acycliques d’un hypergraphe sont équivalentes aux faces d’un polytope
hypergraphique.

Le reste de cette partie s’appuie sur une propriété intéressante des polynômes χ :
Proposition 0.4. Soit M et N deux monoïdes de Hopf, ζM et ζN des caractères de ces
monoïdes de Hopf et fM → N un morphisme de monoïdes de Hopf tel que ζN ◦ f = ζM .
Alors χN,ζN ◦ f = χM .

En exploitant cette proposition ainsi que le Théorème 0.3 on obtient des résultats
analogues aux Théorèmes 0.2 et 0.3 sur les monoïdes de Hopf des hypergraphes simples, des
graphes, des complexes simpliciaux, des building sets, des graphes simples, des partitions
et des ensembles de chemins.
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Opérades

Une opérade est une espèce linéaire positive O munie d’une composition partielle ◦∗ : O′ ·
O → O vérifiant des axiomes de naturalité, d’associativité, de commutativité et d’unitarité.
Le premier résultat de cette section est la définition d’une structure d’opérade sur KMG,
l’espèce des multigraphes (i.e. graphes avec répétition d’arêtes et boucles). Pour g1 et g2

deux multigraphes, on définit g1 ◦∗ g2 comme la somme de tous les graphes obtenus de la
façon suivante.

• Prendre l’union disjointe de g1 et g2.

• Enlever le sommet ∗ de g1. On a alors des bouts d’arêtes libres.

• Recoller chaque bout d’arête libre sur n’importe quel sommet de g2.

On montre ensuite qu’il existe une lien non trivial entre cette opérade et l’opérade pré-Lie
sur les arbres enracinés. Soit ψ : KMG→ KMG• le morphisme qui envoie un multigraphe
sur la somme de toutes les façons de le pointer. Il existe alors une opérade O telle que le
diagramme suivant commute:

KT PLie ∩ O PLie

KMGc O KMG×PLie

ψ

Dans la deuxième partie de cette section, on s’intéresse à quatre sous opérades finiment
engendrées de KMG:

{ a b } , { a b } , { a b , a b } et

{
a

, a b

}
.

On les note respectivement G∅, Seg, SP et LP. On montre que G∅ est isomorphe à
l’opérade commutative Com et que Seg est isomorphe à l’opérade commutative magma-
tique ComMag. Pour ce deuxième résultat, on utilise notamment la fonction ψ définie
précédemment et le résultat [14]. On montre ensuite que SP est binaire quadratique et
Koszul et on donne son dual de Koszul. Afin de montrer la Koszulité, on se réfère aux
travaux [20] de Dotsenko et Khoroshkin sur les bases de Gröbner pour les opérades. On
finit cette section en montrant que LP est une sous opérade stricte de KMG en utilisant
des outils de calcul formel pour montrer que le multigraphe

a b c

n’est pas dans LP.
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1 Introduction
The topic of this thesis is the study of invariants and algebraic structures of combinatorial
objects. Our main contributions can be separated in two parts: a study of polynomial
invariants over Hopf monoids, and a study of operad structures over graphs and related
objects.

In combinatorics, Hopf structures give an algebraic framework to deal with operations
of merging (product) and splitting (co-product) combinatorial objects. The notion of Hopf
algebra is well known and used in combinatorics for over 30 years, and has proved its great
strength in answering various questions (see for example [26]). In particular, they are useful
to define and compute polynomial invariants (see [3], [9], [21] or [33] for various examples).
More recently, Aguiar and Mahajan defined a notion of Hopf monoid [4],[5] akin to the
notion of Hopf algebra and built on Joyal’s theory of species [31]. Such as in the case of
Hopf algebras, they are useful when working with polynomial invariants, as was showed by
the seminal paper of Aguiar and Ardila [2]. In particular they give a theorem to generate
various polynomial invariants and use it to recover the chromatic polynomial of graphs,
the Billera-Jia-Reiner polynomial of matroids and the strict order polynomial of posets.
Furthermore, Aguiar and Ardila also give a way to compute these polynomial invariants
on negative integers hence also recovering the different reciprocity theorems associated to
these combinatorial objects.

In the first half of this dissertation, we apply Aguiar and Ardila’s theorem to the Hopf
monoid of generalized permutahedra and the Hopf monoid of hypergraphs defined in [2].
Our results are a direct extension to Aguiar and Ardila’s results: from their expression
of the antipode for the generalized permutahedra they deduced formulas for the antipode
of many different Hopf monoids. We follow the same process but with their polynomial
invariant χζ instead. We obtain a combinatorial description for the all the invariants χζ
for both the non negative and negative integers. We do not restrict ourselves to the basic
characters for ζ and our results generalize many existing results in the literature.

In the second part of this dissertation, we study operads. Operads are mathematical
structures which have been intensively studied in the context of topology, algebra [36] but
also of combinatorics [16] —see for example [40, 25] for general references on symmetric
and non-symmetric operads, set operads through species, etc. In the last decades, several
interesting operads on trees have been defined. Amongst these tree operads, maybe the
most studied are the pre-Lie operad PLie [17] and the nonassociative permutative operad
NAP [35]. It seems natural to ask what kind of operads can be defined on graphs and what
are their properties? The need for defining appropriate graph operads comes from com-
binatorics, where graphs are, just like trees, natural objects to study. It comes also from
physics, where it was recently proposed to use graph operads in order to encode the com-
binatorics of the renormalization of Feynman graphs in quantum field theory [34]. Other
graph operads have been defined for example in [32, 45, 40, 24, 38]. In this dissertation, we
go further in this direction and we define, using the combinatorial species setting [12], new
graph operads. Moreover, we investigate several properties of these operads: we describe
an explicit link with the pre-Lie operad mentioned above, and we study interesting (finitely

10



generated) sub-operads.

This dissertation is organized as follow. In Section 2 we give some preliminaries to
the following sections. These consist in a brief introduction to the theory of species and
a presentation of diverse combinatorial objects used in this dissertation. In Section 3 we
present our results on Hopf monoids and in Section 4 those on operads. We conclude with
Section 5 where we mention some results which were not presented it in this dissertation
as well as some future directions naturally arising from the research we conducted during
these three years of thesis.
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2 Species
In this first section we present the notion of species, which will be the framework of the next
two sections, along with some examples of species of particular interest in this dissertation.

In all this dissertation, V will always denote a finite set and V1 and V2 two disjoint sets
such that V = V1 t V2. The letter n always denotes a non negative integer and we denote
by [n] the set {1, . . . , n} and by Sn the group of permutations over [n]. All vector spaces
appearing in this dissertation are defined over a field of characteristic 0 denoted by K.

2.1 Basic theory of species

Species were first introduced by Joyal in [31] and are a very useful tool to manipulate
labelled structures. We present here a few basic definitions and properties which will be
of use to define Hopf monoids and operads in sections 3 and 4. We refer the reader to [12]
for a more involved approach to the theory of species.

2.1.1 Set species

A set species S consists of the following data:

• for each finite set V , a set S[V ],

• for each bijection of finite sets σ : V → V ′, a bijection S[σ] : S[V ] → S[V ′]. These
maps should be such that S[σ1 ◦ σ2] = S[σ1] ◦ S[σ2] and S[Id] = Id.

Furthermore if |S[∅]| = 0, S is said to be positive. Beware that with our definition, S[V ] is
not necessarily finite unlike the usual convention.

One should think of S[V ] as a set of combinatorial objects labelled with V and of S[σ]
as a relabelling operation. For example, for G the set species of graphs (whatever is a
graph for now), G[V ] is the set of graphs with vertex set V and G[σ] is the relabelling of
vertices.

Example 2.1. For σ : {1, 2, 3} → {a, b, c} the bijection which sends 1 to a, 2 to b and 3
to c, G[σ] acts as follow:

1

2

3 a

b

c

G[σ]

As shown in this example, in practice the maps S[σ] are often very natural and we do
not need to explicitly give them when describing the species S.

We now give a list of example of species that we use through all this dissertation.

Example 2.2. 1. We denote by X the set species defined by X[V ] = V if V is a
singleton and X[V ] = ∅ else.

12



2. The singleton set species E defined by E[V ] = {V } is not a positive species but the
identity set species Id defined by Id[V ] = V is one.

3. A decomposition of V is a finite sequence of pairwise disjoint sets (V1, . . . Vn) such
that tiVi = V . We denote by l(V1, . . . , Vn) = n the length of a decomposition. A
composition of V is a decomposition of V where all elements are non empty. We
denote this by (V1, . . . , Vn) � V . A partition of V is a set {P1, . . . , Pk} of disjoint non
empty sets such that tiPi = V . We respectively denote by Dcomp, Comp and Π the
set species of decompositions, compositions and partitions.

4. We denote by Pol+ the positive set species of polynomials with null constant coeffi-
cient in K, i.e. Pol+[V ] is the infinite set (not the vector space) of polynomials with
variables in V and null constant coefficient when V 6= ∅ and Pol+[V ] = ∅ else.

As with any algebraic structure, set species also have notions of set sub-species and
morphisms. Let R and S be two set species. The set species R is a set sub-species of S if
R[V ] ⊆ S[V ] for every finite set V and R[σ] = S[σ] for every bijection of finite sets σ. A
morphism of set species from R to S is a collection of maps fV : R[V ] → S[V ] such that
for each bijection σ : V → V ′, we have fV ′ ◦R[σ] = S[σ] ◦ fV . For the sake of reducing the
notations, we will often forget the index V and only write f for any of the maps fV .

Example 2.3. 1. The set species of compositions is a set sub-species of the set species
of decompositions and X is a set sub-species of Id.

2. For a set species S and an integer n, we denote by Sn+ the set sub-species of S defined
by Sn+[V ] = S[V ] if |V | ≥ n and Sn+[V ] = ∅ else. We also denote by S+ = S1+.

3. The collection of maps fV : Id[V ] → Pol+[V ] which maps the element v onto the
polynomial of degree one v is a morphism of set species Id→ Pol+.

4. We have two natural morphisms from E+ to Pol+: one which sends {V } onto the
monomial

∏
V =

∏
v∈V v and one which sends V onto

⊕
V =

⊕
v∈V v. We prefer

to use the symbol ⊕ for the addition of polynomials instead of the usual + which we
keep for the addition of vectors in vector spaces (see Example 2.4).

In combinatorics, we are usually interested in counting the objects we use and this is
often done through the notion of generating series. In the context of species we use the
name of Hilbert series: if S is a set species such that S[V ] is always a finite set, the Hilbert
series of S is the formal power series HS defined by: HS(x) =

∑
n≥0

|S[[n]]|
n!

xn. Note that
since we are working on labelled sets, we have a 1

n!
coefficient which comes from the action

of the symmetric group. The set species E, Id and X defined in Examples 2.2 and 2.3
have simple Hilbert series: HE(x) = exp(x), HId(x) = x exp(x), and HX(x) = x.

13



2.1.2 Linear species

Informally, linear species are identical to set species but within the context of linear algebra.
A linear species S consists of the following data:

• For each finite set V , a vector space S[V ],

• For each bijection of finite sets σ : V → V ′, a linear map S[σ] : S[V ]→ S[V ′]. These
maps should be such that S[σ1 ◦ σ2] = S[σ1] ◦ S[σ2] and S[Id] = Id.

Furthermore if dimS[∅] = 0, S is said to be positive.
Let R and S be two linear species. The linear species R is a linear sub-species of S

if R[V ] is a sub-space of S[V ] for every finite set V and R[σ] = S[σ] for every bijection
of finite sets σ. A morphism of linear species from R to S is a collection of linear maps
fV : R[V ]→ S[V ] such that for each bijection σ : V → V ′, we have fV ′◦R[σ] = S[σ]◦fV . As
with set species, we will often forget the index V . We denote by Sn+ the linear sub-species
of S which is equal to S on |V | ≥ n and equal to {0} else.

The linearization functor
L : Set→ Vec

is the functor from the category of sets and functions to the category of vector spaces which
sends a set to the vector space with basis the given set. Composing a set species S with
this functor gives us a linear species L◦S which we denote by KS. This procedure enables
us to see any set species as a linear species. We call such linear species linearized species.
In this dissertation all linear species will be linearized species and we will often refer to
’species’ without specifying whether we consider set species or linearized species which will
be clear from the context. We also do not make any difference between a morphism of set
species and its linearization.

Example 2.4. 1. When considering KPol+ one has to take into consideration the fact
that we need to differentiate the plus of polynomials and the addition of vectors.
We will thus denote by ⊕ the former and keep + for the latter and we will denote
by 0V ∈ Pol+[V ] the polynomial constant to 0 and keep the notation 0 for the null
vector. For example, ab⊕ c is an element of Pol+[{a, b, c}], but a⊕ b+ c is a vector
in KPol+[{a, b, c}].

2. There is a natural morphism of linear species from KE+ to KPol+ which sends the
singleton {V } onto

∑
V =

∑
v∈V v. Note that this map is not linearized.

3. In the same way we have a morphism from Π to Comp which sends a partition onto
the sum over all the ways of ordering it.

We have the same definition of Hilbert series on linear species by replacing cardinalities
by dimension: for S a linear species such that S[V ] is of finite dimension for every finite
set V , we have HS(x) =

∑
n≥0

dimS[[n]]
n!

xn.
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2.1.3 Constructions over species

One strong point of set species and linear species is the different operations on them which
enable to construct new set/linear species from existing ones. Let R and S be two set
species. We can then construct new set species which are defined as follows:

Sum (R + S)[V ] = R[V ] t S[V ], P roduct R · S[V ] =
⊔

V1tV2=V

R[V1]× S[V2],

Hadamard product (R× S)[V ] = R[V ]× S[V ]

Derivative S ′[V ] = S[V + {∗}] where ∗ 6∈ V , Pointing S•[V ] = S[V ]× V.

Furthermore if S is positive we can also define the composition of R and S by:

R(S)[V ] =
⊔

P∈Π[V ]

R[P ]
∏
Pi∈P

S[Pi],

where
∏

Pi∈P S[Pi] = (S[P1]× · · · × S(Pk))Sk
should be seen as an unordered product.

We also have the same definitions on linear species by replacing unions by sums and
Cartesian products by tensor products. Note that these constructions are compatible with
both the linearization functor: L ◦ (R+ S) = L ◦R+L ◦ S, L ◦ (R · S) = L ◦R · L ◦ S etc,
and, when defined, the Hilbert series: HS′ = H′S, HR(S) = HR(HS) etc.

Example 2.5. • The elements of the pointing of a species S should be interpreted as
elements of S with a distinguished vertex. For example, with S = G the species of
graphs and V = {a, b, c}, the element ({{a, c} , {c, b}} , c) ∈ G[{a, b, c}]×{a, b, c} will
be represented by changing the shape of the vertex c:

c

a

b

=

 c

a

b

, c

 (1)

• While most of these constructions are quite straightforward, the operation of compo-
sition is more involved. The species R(S) must be thought as elements of R labelled
with elements of S. We provide some examples. The set species Π is isomorphic to
the set species E+(E+). The elements of G(E+)[V ] are graphs for which the vertices
are subsets of V forming a partition of V . The elements of Pol+(G+) are polynomials
with graphs on distinct vertex sets as variables. The set species X acts as a unit for
the composition: S+(X) ∼= S+

∼= X(S+).

• We already observed the compatibility of the product with the Hilbert series in
section 2.1.1: HX(x)HE(x) = x exp(x) = HId(x) and, when V is not empty, we
indeed have the isomorphism⊔

V1tV2=V

X[V1]× E ∼=
⊔
v∈V

{v} × {V \ {v}} ∼= V. (2)
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Remark 1. In the definition of the derivative we introduce an element ∗ which should not
appear in V . This notation is not enough when multiple derivatives appear in the same
species, for example in S(2) = S ′′ or R′ · S ′. Our convention when considering such species
is given by the general following notation:

R(r) · S(s)[V ] =
⊔

V1tV2=V

R[V1 + {∗1, . . . , ∗r}]× S[V2 + {∗r+1, . . . , ∗r+s}] (3)

The elements ∗1, . . . , ∗r+s are called ghost vertices.

2.1.4 Enriched Schröder trees

A particularly interesting species we can construct using the composition of positive species
is the species of Schröder trees enriched with another species. We define enriched Schröder
trees for set species as in [40]. Let S be a positive species such that S = X + S2+ . The
species of Schröder trees enriched with S is the set species SS satisfying the following
equation:

SS = X + S2+(SS). (4)

If V = {v} then SS[V ] = X[V ] = {v}. Else, the elements of SS[V ] are the trees decorated
with elements of S. More formally, these trees can be defined as follows.

• Each element of V is the label of exactly one leaf. For v ∈ V a leaf, we denote by Bv

the singleton {v}

• To each internal node u associate the set Bu of the labels of the leaves that are
descendent of u.

• An internal node w is then labelled with an element of S2+ [πw], where πw is the
partition {Bu |u is a child of w} of Bw.

In this context, the elements of S are identified with the corollas of SS.
We obtain the definition of enriched Schröder trees over linear species by replacing X

by KX in equation (4). The description of the elements of SS[V ] is then the same as above
by replacing elements by vectors. In particular, we have that SKS = KSS.

Example 2.6. Here is an example of an element in SS[[4]] where S is a set species with
an element x of size 3 and an element y of size 2.

x12,3,4

y1,2
4

3

1
2

(5)
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2.2 Combinatorial objects

In this subsection we present in more details some species mentioned previously as well as
other species of interest in this dissertation. The reader may treat this section as a short
glossary and skip it to come back to it when necessary.

2.2.1 Multisets

While multisets are not objects in which we are particularly interested in, we need to give
some formalism on multisets in order to properly introduce the different notions of graph
in the next subsubsection. We chose to define multisets as equivalence classes of tuples.

A multiset m of V is an equivalence class of V n under the natural action of Sn
1 where

n is called the cardinal or size of m. For m a multiset of V , we call the multiplicity of v
in m and denote by m(v) the cardinality of {i |πi(m) = v} where m is any representative
element of m and πi is the projection on the i-th coordinate. For V = {v1, . . . , vk},

we denote by

{
n1 times︷ ︸︸ ︷
v1, . . . , v1, . . . ,

nk times︷ ︸︸ ︷
vk, . . . , vk

}
the multiset which is the equivalence class of

(

n1 times︷ ︸︸ ︷
v1, . . . , v1, . . . ,

nk times︷ ︸︸ ︷
vk, . . . , vk).

As this notation suggests, many notions and operations on sets generalize to multisets.
Let us describe them along with other notions proper to multisets. Let m and m′ be two
multisets of V .

• We call domain of m and denote by D(m) the set {v ∈ V |m(v) > 0}.

• We write that an element v is in the multiset m and denote by v ∈ m if v ∈ D(m).

• We write that m′ is a sub-multiset of m and denote by m′ ⊆ m if m′(v) ≤ m(v) for
all v ∈ V .

• We call empty multiset and denote by ∅ the unique multiset of size 0.

• The disjoint union of m and m′ is the multiset m tm′ with domain D(m) ∪ D(m′)
defined by (m tm′)(v) = m(v) +m′(v).

• The intersection of m and m′ is the multiset m ∩ m′ with domain D(m) ∩ D(m′)
defined by (m ∩m′)(v) = min (m(v),m′(v)).

• If m′ is a sub-multiset of m, the complement of m′ in m is the multiset m\m′ defined
by (m \m′)(v) = m(v)−m′(v).

• The intersection of m with W ⊆ V is the multiset m|W defined by (m|W )(v) = m(v)
if v ∈ W and (m|W )(v) = 0 else. Remark that it is not equal to the intersection of
m with W while considering W a multiset instead of a set.

1σ · (v1, . . . , vn) = (vσ(1), . . . , vσ(n))
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A map f : m → m′ between two multisets m and m′ of V is the data of a multiset
fv ⊆ m′ of size m(v) for each v ∈ m. We will use the notation f(v) to designate any of the
elements in fv.

We denote byM the set species of multisets. We denote byM(V ) the set of multisets
of V , preferring parentheses to the brackets of the definition of species. We also denote by
Mk(V ) the set of multisets of size k of V and byM(V )+ the set of non empty multisets
of V .

2.2.2 Graphs and related objects

Let P(V ) denote the set of parts of V , Pk(V ) the set of parts of V of size k and P(V )+

the set of non empty parts of V .

Definition 2.7. Let V be a finite set.

• A simple graph over V is a subset of P2(V ).

• A simple hypergraph over V is a subset of P(V )+.

• A simple multigraph over V is a subset ofM2(V ).

• A simple multi-hypergraph over V is a subset ofM(V )+.

• A graph over V is a multiset with domain in P2(V ).

• A hypergraph over V is a multiset with domain in P(V )+.

• A multigraph over V is a multiset with domain inM2(V ).

• A multi-hypergraph over V is a multiset with domain inM(V )+.

We respectively denote by SG, SHG, SMG, SMHG, G, HG, MG and MHG the set
species associated to these objects.

Example 2.8. We respectively represented a multi-hypergraph, a hypergraph, a multi-
graph and a graph over the same set of vertices:

d f

eb

a ,

d f

eb

a ,

d f

eb

a ,

d f

eb

a . (6)

The multi-hypergraph represented here corresponds to the multi-hypergraph with domain
composed of the edges {a}, {a, a}, {a, a, b, d}, {d, f}, {b, e} and {e, f}. All the edges are
of multiplicity 1 except {d, f} which is of multiplicity 2.

One can obtain the simple counterparts of these objects by forgetting one of the edges
between d and f .
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Remark 2. When working only with hypergraphs, we will prefer different ways of drawing
the edges depending on the context. The same edge {a, b, c} can thus be drawn in the
three following ways:

a

bc

,

a

b

c

,

a b

c

. (7)

These set species are related by the following commutative diagram:

MG MHG

G HG

SMG SMHG

SG SHG

(8)

where the downward arrows are given by the domain map D : g 7→ D(g) and the arrows from
species defined over multisets to species over sets are the maps {e1, . . . , ek} 7→ [(e1, . . . , ek)].
The remaining arrows are inclusions.

We now give the usual definitions over graphs. In all that follows, S is any species
defined as above and g an element of S.

• Edges, vertices and ends. We call edges the elements of g and we call V the set
of vertices of g, which we also denote by V (g). We call ends of e the elements of an
edge e. Any vertex which is not an end is said to be an isolated vertex. We denote
by I(g) the set of isolated vertices of g and by NI(g) = V (g) \ I(g) =

⋃
e∈g e the

set of vertices of g which belong to an edge. Note that with this definition, a vertex
which does not share an edge with any other vertex is not necessarily isolated.

• Paths, connectedness and cycles. A path of g is a sequence e1, . . . , ek of distinct
edges satisfying ei∩ei+1 6= ∅ for 1 ≤ i < k. A path is cycle if furthermore ek∩e1 6= ∅.
A connected component of g is either an isolated vertex or a maximal (multi) subset
of edges such that for every two vertices v, v′ in it, their exists a path e1, . . . , ek such
that v ∈ e1 and v′ ∈ ek. We say that g is connected if it has only one connected
component and we denote by Sc the set sub-species of connected elements of S.

• Forests and trees. A forest is an element of SG with no cycle. We denote by F the
species of forest. A connected forest is called a tree and we denote by T the species
of tree. We call rooted trees the elements of T • and for (t, v) ∈ T •[V ], we call v the
root of t.
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• Orientations. An orientation of g is any map f on g such that f(e) ⊆ e for every
edge e ∈ g. We call f(e) the targets or exits of e for the orientation f , and we call
sources or entries of e for the orientation f its complement in e. We denote by fs(e)
the entries of e for f . An orientation is said to be admissible if f(e) 6= ∅ for every
edge e and discrete if |f(e)| = 1 for every edge e. By a slight abuse of notation, we
consider discrete orientations as maps from g to V . For f an admissible orientation
of g, we denote by f(g) the object in the same species and with same vertices than
g defined by {f(e) | e ∈ g}.

• Directed paths and cycles. A directed path in an orientation f is a sequence of
distinct edges e1, . . . , ek such that for each 1 ≤ i < k either f(ei) ∩ fs(ei+1) 6= ∅ or
∅ ( f(ei) ∩ ei+1 ( f(ei+1). That is to say we can enter in an edge e′ from an edge e
either if an exit of e is also an entry of e′ or if e′ share an exit with e but not all of
them. In the particular case of discrete orientation this is reduced to f(ei) ∈ fs(ei+1)
and to f(ei) = fs(ei+1) when working with graphs. A directed cycle is a directed
path with f(ek)∩ fs(e1) 6= ∅. We only impose this condition here and not the second
one: we want a directed cycle to at least have one entry. An acyclic orientation is an
admissible orientation with no cycles. We denote by Ag the set of acyclic orientations
of g.

Example 2.9. We represent here a hypergraph with two different orientations. One
is cyclic and the other is discrete and acyclic.

a

b

c

d

e

a

b

c

d

e

cyclic orientation acyclic discrete orientation

(9)

• Oriented objectsWe define the set species Sor as the set species of oriented elements
of S, i.e. its elements are pairs of an element in S and an orientation of it. This
pair is said to be a directed element if the orientation is discrete orientation. It
is furthermore acyclic if the orientation is. On the particular case of graphs, these
definitions coincide with the standard definitions of same name and a directed acyclic
graph defined as such is indeed the classical notion of DAG in the literature. We also
consider direct graph as sets of ordered pairs of vertices.

Let us finish this presentation of graphs and related objects by mentioning that there
is an isomorphism between the set species MHG and Pol+. It is defined as follows:

• the empty graph ∅V ∈MHG[V ] is sent on the null polynomial 0V ,
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• an edge e is sent on the monomial
∏

v∈e v
e(v),

• an element h ∈MHG[V ] is sent on the polynomial
⊕

e∈h e.

This identification will be very useful in subsection 4.3 to do computations on multi-
hypergraphs since it is easier to formally write operations on polynomials than on graphs.
With this identification, hypergraphs can be seen as polynomials where each variable ap-
pears at most once in each monomial and multigraphs as homogeneous polynomials of
degree 2.

Example 2.10. With this identification, the multi-hypergraph in Example 2.8 writes
a⊕ a2 ⊕ a2bd⊕ be⊕ ef ⊕ df ⊕ df .

2.2.3 Decomposition and compositions

We briefly presented the species of decompositions and compositions in Example 2.2. We
give here more details on these objects.

Canonical bijection. Let V be a finite set. A coloring of V with [n] is a map from V
to [n] and a part ordering of V is a surjective map with domain V and a co-domain of the
form [n].

A first and very important observation, is that there exists a canonical bijection between
decompositions and colorings. In section 3 we want to seamlessly pass from one notion to
the other, so we give a few explanations on this bijection. Given an integer n, the canonical
bijection between decompositions of V of size n and colorings of V with [n] is given by:

bV,n : {f : V → [n]} → {P ∈ Dcomp[V ] | l(P ) = n}
f 7→ (f−1(1), . . . , f−1(n)).

(10)

If it is clear from the context what are V and n, we will write b instead of bV,n. If P is a
partition we will also refer to b−1(P ) by P so that instead of writing “i such that v ∈ Pi”
and “i and j such that v ∈ Pi, v′ ∈ Pj and i < j ” we can just write P (v) and P (v) < P (v′).
Similarly, if P is a function we will refer to b(P ) by P so that Pi = P−1(i). Remark that
bV,n induces a bijection between compositions and part orderings.

Usual operations. Let us now give some usual operations and definitions over decompo-
sitions and compositions.

Let V and W be two disjoint sets and P = (P1, . . . , Pl) � V and Q = (Q1, . . . , Qk) � W
be two compositions. We call product of P and Q and we denote by P ·Q the composition
(P1, . . . , Pl, Q1, . . . Qk). We call shuffle product of P and Q the set sh(P,Q) defined by
sh(P,Q) =

{
R | (b−1(R))|V = b−1(P ) and (b−1(R))|V ′ = b−1(P ′)

}
, where for f a map with

domain V and W ⊆ V , the map f|W is defined by f|W (v) = f(v) for all v ∈ W .
Let P ′ = (P1,1, . . . , P1,k1 , P2,1, . . . , P2,k2 , . . . , Pl,kl) be another composition of V . We say

that P ′ refines P and write P ′ ≺ P if Pi =
⋃ki
j=1 Pi,j for 1 ≤ i ≤ l.
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Example 2.11. On the set [6] we have (16, 4, 3, 5, 2) ≺ (146, 35, 2).

Over integers. There are similar notions of decomposition, composition and partition
over integers. Let us briefly present them.

Let n be a non negative integer. Then a decomposition of n is a finite sequence of
positive integers summing to n and composition of n is a finite sequence of non negative
integers summing to n. A partition of n is a decreasing sequence of non negative integers
summing to n. We denote by Dcompn, Compn and Partn the sets of decompositions,
compositions and partitions of n and we denote by p � n for p a composition of n. In fact
these sets are the set of isomorphism classes of the set Dcomp[[n]], Comp[[n]] and Π[[n]]
under the natural action of Sn.

We do not need much more than just these definition in this section, and we will just
introduce the notion of refinement of composition. We say that a composition q refine a
composition p and denote by q ≺ p if the elements of p are sums of consecutive elements
of q: p = (p1, . . . , pl), q = (q1,1, . . . , q1,k1 , q2,1, . . . , q2,k2 , . . . ql,kl) and pi =

∑
1≤j≤ki qi,j.
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3 Polynomial invariants over Hopf monoids
The notion of Hopf monoid was defined by Aguiar and Mahajan in [4],[5] and is akin to the
notion of Hopf algebra and built on species theory. As in the case of Hopf algebras, a useful
application of Hopf monoids is to define and compute polynomial invariants, as was shown
by the recent and extensive paper of Aguiar and Ardila [2]. We use their results in order
and provide combinatorial interpretations to many polynomial invariants. In particular,
we generalize in this section the results from [8] to all Hopf monoids characters.

This section is organized as follow. In Subsection 3.1 we provide general definitions on
Hopf monoids as well as the main results from [2] which interest us. In Subsection 3.2 and
Subsection 3.3, we give a combinatorial interpretation to the polynomial invariants of the
Hopf monoid of generalized permutahedra and the Hopf monoid of hypergraphs. Finally we
use our results in Subsection 3.4 to derive similar expressions for the polynomial invariants
of other Hopf monoids.

3.1 Hopf monoids

The general goal of this subsection is to give a presentation of Hopf monoids as well as
to introduce the necessary tools for the rest of this section. Part 3.1.1 contains standard
definitions on Hopf monoids. In part 3.1.2 we present the main theorems on polynomial
invariants from [2] and finally in part 3.1.3, following [2], we introduce the Hopf monoid of
generalized permutahedra from [2].

3.1.1 Definitions

We give here basic definitions on Hopf monoids. The interested reader may refer to [5] for
more information on this topic. Readers familiar with Hopf algebras will notice a strong
resemblance with these objects. We refer them to [4] for a better understanding of these
similarities.

While reading the following definition, the reader must keep in mind that in the same
way that Hopf algebras formalize the notion of merging and splitting non labeled objects,
Hopf monoids do the same for labeled objects.

A connected Hopf monoid in linear species is a linear species M where M [∅] = K and
which is equipped with a product and a co-product:

µV1,V2 : M [V1]⊗M [V2]→M [V1 t V2], ∆V1,V2 : M [V1 t V2]→M [V1]⊗M [V2], (11)

x⊗ y 7→ x · y z 7→
∑

z|V1 ⊗ z/V1

with V1 and V2 disjoint sets. The notation
∑
z|V1 ⊗ z/V1 is used to indicate an element in

M [V1]⊗M [V2] and z|V1 and z/V1 may not be individually defined. However ∆V1,V2 is often
a pure tensor z|V1 ⊗ z/V1 in which case z|V1 and z/V1 do define some elements in M [V1] and
M [V2] and we call z|V1 the restriction of z to V1 and z/V1 the contraction of V1 from z.

The product and the co-product satisfy the following axioms.
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• Naturality. The structure maps µ : M ·M →M and ∆ : M →M ·M are morphisms
of linear species.

• Unitality. For x ∈M [V ]:
x · 1K = x = 1K · x (12)

i.e. merging with the unit does not change our objects.

• Co-unity.
∆V,∅ = Id⊗ 1K ∆∅,V = 1K ⊗ Id (13)

i.e. splitting on the empty set does not change our objects. This axiom may also be
stated as saying that ∆V,∅ and ∆∅,V are always pure tensors and x|V = x = x/∅, i.e
restricting on the whole set or contracting the empty set does not change our objects.

• Associativity. For x ∈M [V1], y ∈M [V2], z ∈M [V3]:

x · (y · z) = (x · y) · z. (14)

i.e. the results of merging three objects does not depend on the order in which we
merge them.

• Co-associativity.

∆V1,V2 ⊗ Id ◦∆V1tV2,V3 = Id⊗∆V2,V3 ◦∆V1,V2tV3 . (15)

i.e. the result of splitting an object in three does not depend in the order in which
we split it. In the case were the co-product is a pure tensor, this axiom can also be
written as, for x ∈M [V1, V2, V3]:

(x|V1tV2) |V1 = x|V1 (x|V1tV2)/V1 = (x/V1)|V2 (x/V1tV2)/V1 = (x/V1)/V2 . (16)

• Compatibility. Let V = V1 t V2 = V3 t V4 and for i ∈ {1, 2} and j ∈ {3, 4} denote by
Vij the set Vi ∩ Vj. Then we have the following commutative diagram:

M [V1]⊗M [V2] M [V ] M [V3]⊗M [V4]

M [V13]⊗M [V14]⊗M [V23]⊗M [V24] M [V13]⊗M [V23]⊗M [V14]⊗M [V24]

µV1,V2

∆V13,V14
⊗∆V23,V24

∆V3,V4

τ

µV13,V23⊗µV14,V24 .

(17)
i.e. merging and splitting is the same than splitting and merging. In the case where
the co-product is a pure tensor, this axiom can also be written as, for x ∈M [V1] and
y ∈M [V2]:

(x · y)|V3 = x|V13 · y|V23 (x · y)/V3 = x/V13 · y/V23 . (18)

We use the term Hopf monoid to refer to a connected Hopf monoid in linear species.

24



Example 3.1. • Let L be the set species of lists, that is L[V ] is the set of total orders
over V . Then KL has a Hopf monoid structure with l1 · l2 the concatenation of l1 and
l2 and l 7→ l|V1 ⊗ l|V2 where l|Vi is the restriction of the total order to Vi.

• For any of the species S from Definition 2.7, the product µ : g1⊗g2 7→ g1tg2 and the
co-product ∆ : g 7→ gV1 ⊗ gV2 , with gV1 = {e ∈ g | e ⊂ V1} gives KS a Hopf monoid
structure. For example, with S = G we have:

µ{a,b,c},{d,e} : c

a

b

⊗
d

e

7→ c

a

b
d

e

(19)

∆{a,b,c},{d,e} :
c e

db

a 7→
c

b

a ⊗
e

d

. (20)

Furthermore all the maps and inclusions of species of the commutative diagram (8)
are compatible with these structures and hence are also morphisms and inclusions of
Hopf monoids.

Remark 3. A straightforward but important observation one can make from these defini-
tions, is that axioms of associativity (14) and co-associativity (15) make it so that we can
naturally extend the definitions of the structure maps over any decomposition of V . For
V1, . . . , Vn a decomposition of V :

µV1,...,Vn : M [V1]⊗ · · · ⊗M [Vn]→M [V ] ∆V1,...,Vn : M [V ]→M [V1]⊗ · · · ⊗M [Vn], (21)

are respectively defined by iterating any kind of maps of the form Id⊗k ⊗ µVi,Vi+1
⊗ Id⊗l

and of the form Id⊗k ⊗∆Vi,Vi+1
⊗ Id⊗l, as long as the domains and co-domains coincide.

As was the case with species, we also have natural notions of Hopf sub-monoid and
morphism. A Hopf sub-monoid of a Hopf monoid M is a sub-species of M stable under
the product and co-product maps. A morphism of Hopf monoids is a morphism of linear
species which preserves the products, co-products and unit 1K.

Let us end this subsubsection with the definition of co-opposite Hopf monoid. The
co-opposite Hopf monoid of a Hopf monoid M is the Hopf monoid M cop over the same
species than M and with the product and co-product defined by: µM

cop

V1,V2
= µMV1,V2 and

∆Mcop

V1,V2
= ∆M

V2,V1
.

3.1.2 Aguiar and Ardila polynomial invariant

We give in this subsubsection some central results from [2] on polynomial invariants over
Hopf monoids on which relies most of the work done in subsection 3.2 and subsection 3.3.
Before stating these results we first need to recall the definitions of characters and antipode
of a Hopf monoid.

A character ζ of a Hopf monoid M is a collection of linear maps {ζV : M [V ]→ K}V
compatible with the product and sending the unit on the unit:
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• ζW ◦M [σ] = ζV for any bijection σ : V → W

• ζV (x · y) = ζV1(x)ζV2(y) and

• ζ∅ = IdK.

We say that a character is a characteristic function if it takes values in the set {0, 1}.
A discrete element of a Hopf monoid M is an element which can be obtained as a product
of elements of size 1. i.e. x ∈ M [V ] is discrete if V = {v1, . . . , vn} and there exists
x1 ∈M [{v1}], . . . , xn ∈M [{vn}] such that x = µ{v1},...,{vn}x1⊗· · ·⊗xn. The basic character
of any Hopf monoid M is then the characteristic function of discrete elements of M . We
will denote it by ζ1.

Example 3.2. The objects defined in Definition 2.7 are discrete if all their edges are of size
at most one. This corresponds to the notion of discrete defined above for any Hopf monoid
structure over these objects where the product is the disjoint union, as in Example 3.1.
The basic character ζ1 is then defined by ζ1(g) = 1 if g is discrete and ζ1(g) = 0 else.

Definition 3.3. The antipode of a Hopf monoid M is the species morphism S : M → M
defined by S∅ = Id and for V 6= ∅,

SV (x) =
∑

V1,...,Vn�V

(−1)nµV1,...,Vn ◦∆V1,...,Vn(x). (22)

Formula (22) is known as Takeuchi’s formula. This formula contains a lot of canceling
and grouping terms and the search for a canceling-free grouping-free formula is a major
question of the theory which was solved for a major family of Hopf monoids by Aguiar and
Ardila in [2].

Definition 3.4. Let M be a Hopf monoid and ζ a character on M . For x ∈ M [V ] define
the map

χ
(M,ζ)
V (x)(n) =

∑
V=V1t···tVn

ζV ◦ µV1,...,Vn ◦∆V1,...,Vn(x). (23)

Depending on how clear it is from the context, we will not specify ζ and/or M and
use the notations χM , χζ or χ to designate the map thus defined. These maps have very
interesting properties as shown in the following theorem and proposition.

Theorem 3.5 (Proposition 16.1 and Proposition 16.2 in [2]). Let M be a Hopf monoid, ζ
a character on M and χ(M,ζ) be the collection of maps of Definition 3.4. Then χ(M,ζ)

V (x) is
a polynomial invariant in n such that:

1. χ(M,ζ)
V (x)(1) = ζ(x),

2. χ(M,ζ)
∅ = 1 and χ(M,ζ)

V1tV2(x · y)) = χ
(M,ζ)
V1

(x)χ
(M,ζ)
V2

(y),

3. χ(M,ζ)
V (x)(−n) = χ

(M,ζ)
V (SV (x))(n).
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Example 3.6. Let ζ1 be the basic character of KSG as defined in Example 3.2. Then χ(g)
is the chromatic polynomial of g.

Proposition 3.7 (Proposition 16.3 in [2]). LetM and N be two Hopf monoids, ζM and ζN
be two character on these Hopf monoids and φ : M → N be a morphism of Hopf monoids
compatible with the characters: ζN ◦ φ = ζM . Then χN ◦ φ = χM .

3.1.3 The Hopf monoid of generalized permutahedra

We finish this subsection with the particularly important example of the Hopf monoid of
generalized permutahedra as was put to light in [2]. We refer the reader interested in the
general theory of polytopes to [37], for example, for more extended literature.

Polytopes. Let us begin with some basic definitions over polytopes. For V a set we
denote by RV the free R-vector space over V and for A a subset of RV we denote by
conv(A) the convex hull of A. A (convex) polytope in RV is a subset P of RV of the
form P = conv(A). The dimension dimP of a polytope is the dimension of the smallest
sub-space of RV containing P .

Example 3.8. Let V be the set {e1, e2, e3} such that the vectors e1, e2 and e3 form the
canonical orthonormal basis of R3 ∼= RV and let W be the set {e1, e2, e3, e4} such that the
vectors e1, e2, e3 and e4 form the canonical orthonormal basis of R4 ∼= RW . We represent
here a polytope over V and a polytope over W .

(1, 2, 0) (2, 1, 0)

(2, 0, 1)

(1, 0, 2)(0, 1, 2)

(0, 2, 1)

(1, 1, 0, 0) (1, 0, 1, 0)

(2, 0, 0, 0)

(1, 0, 0, 1)

(0, 0, 1, 1)

⊂ RV ⊂ RW .

(24)

Remark that while these polytopes are respectively of dimension 2 and 3, they respectively
live in the hyperplane x1 + x2 + x3 = 3 of R3 and in the hyperplane x1 + x2 + x3 + x4 = 4
of R4.

We call the elements of the dual (RV )∗ = RV the directions (of RV ). For P a polytope
of RV and y a direction in RV , we call maximum face of P in the direction y or y-maximum
face of P the polytope Py = {p ∈ P | y(p) ≥ y(q) for all q ∈ P}. In particular, the faces of
dimension 1 are the edges of P .

Example 3.9. Let V be the set {e1, e2, e3} and denote by e∗i the dual of ei in (R3)∗. Let
y1 = 4e∗1 + 2e∗2 + 2e∗3 and y2 = 4e∗1 + 2e∗2 + 1.5e∗3 be two directions in (RV )∗.
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Then with P the polytope in RV defined in Example 3.8 we have:

P =

(1, 2, 0) (2, 1, 0)

(2, 0, 1)

(1, 0, 2)(0, 1, 2)

(0, 2, 1) Py1 =

(2, 1, 0)

(2, 0, 1)

Py2 = {(2, 1, 0)} . (25)

To see this remember that P is in the hyperplane x1 + x2 + x3 = 3, hence maximizing
y1(x) or y2(x), is done by distributing a charge of 3 between x1, x2 and x3. Since x1 has
the greatest coefficient in both y1(x) = 4x1 + 2(x2 + x3) and y2(x) = 4x1 + 2x2 + 1.5x3, we
first search to maximize x1. This is done on the edge with ends (2, 1, 0) and (2, 0, 1) where
x1 is constant equal to 2. Since x1 is constant equal to 2 on this edge, we are left with a
charge of 1 to distribute between x2 and x3. This means that x2 + x3 is constant equal to
1 on this edge and y1 is constant and maximal on this edge. In order to maximize y2, since
x2 has a greater coefficient that x3 we must put all the remaining charge on x2 and hence
we are left with the point (2, 1, 0).

We denote by Q ≤ P for Q a face of P and Q < P if additionally Q 6= P . We denote
by L(P ) the face lattice of P , which is the poset of faces of P ordered with the previously
defined order. We denote by [Q;P ] the interval {P ′ |Q ≤ P ′ ≤ P} and by [Q;P [ the same
interval but with strict inequality on the right side.

For each face Q of P define the normal cones as:

N o
P (Q) =

{
y ∈ RV |Py = Q

}
NP (Q) =

{
y ∈ RV |Q is a face of Py

}
.

(26)

Example 3.10. Let V be the set {e1, e2, e3} and P , Q1, Q2 be the polytopes over V of
Example 3.9:

P =

(1, 2, 0) (2, 1, 0)

(2, 0, 1)

(1, 0, 2)(0, 1, 2)

(0, 2, 1) Q1 =

(2, 1, 0)

(2, 0, 1)

Q2 = {(2, 1, 0)} . (27)

With the same kind of reasoning that in Example 3.9, we can find that the cones of P on Q1

are N o
P (Q1) = {ae∗1 + be∗2 + ce∗3 | a > b = c} and NP (Q1) = {ae∗1 + be∗2 + ce∗3 | a ≥ b = c}

and the cones of P on Q2 are N o
P (Q2) = {ae∗1 + be∗2 + ce∗3 | b > c > a} and NP (Q2) =

{ae∗1 + be∗2 + ce∗3 | b ≥ c ≥ a}.

28



We finish this short introduction with the definition of Minkowski sum. The Minkowski
sum of two polytopes P and Q is the polytope P +Q defined by

P +Q = {p+ q | p ∈ P, q ∈ Q} . (28)

Example 3.11. A Minkowski sum of two simple polytopes.

+ = (29)

Generalized Permutahedra. We are interested in the Hopf monoid structure of gener-
alized permutahedra and we will not present more than what we need on this notion. The
interested reader is referred to the vast literature on the subject (see for example [41], [23],
[37]).

A generalized permutahedron in RV is a polytope in RV whose edges are parallel to the
vectors v− v′ for v, v′ ∈ V . We denote by GP the set species of generalized permutahedra.

Example 3.12. The two polytopes of Example 3.8 are a generalized permutahedra. In-
deed, the difference of the coordinates of the vertices of an edge is always a vector with
one coordinate equal to 1, one equal to -1 and the rest equal to 0. Hence, it is parallel to
one of the vectors ei − ej with 1 ≤ i 6= j ≤ 4.

Proposition 3.13 (Theorem 3.15 in [23]). Let V be a finite set, W ⊆ V and P be a
generalized permutahedra in RV . Denote by 1W the direction defined by 1W (v) = 1 if
v ∈ W and 1W (v) = 0 if v ∈ V \W . Then there exists two generalized permutahedra P |W
in RW and P/W in RV \W such that P1W

= P |W + P/W .

Theorem 3.14 (Theorem 5.3 in [2]). The set species KGP as a Hopf monoid structure
given by

µV1,V2 : GP [V1]⊗GP [V2]→ GP [V ] ∆V1,V2 : GP [V ]→ GP [V1]⊗GP [V2] (30)
P ⊗Q 7→ P +Q P 7→ P |V1 ⊗ P/V1 .

Remark that colorings of V as defined in subsubsection 2.2.3 are direction of RV as
defined here. Also recall from 2.2.3 that decompositions of V can be seen as colorings of
V . One has:

Proposition 3.15 (Proposition 5.4 in [2]). Let V be a finite set, P a generalized permu-
tahedron in RV and D = D1, . . . , Dn be a decomposition of V . Then the D-maximum face
of P is given by PD = µD ◦∆D(P ).

The Hopf monoid KGP has the following formula for the antipode:

Theorem 3.16 (Theorem 7.1 in [2]). The antipode of GP is given by the cancellation-free
and grouping-free formula:

SV (P ) =
∑
Q≤P

(−1)|V |−dimQQ. (31)
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A very useful application of this formula is lemma 17.2 of [2].

Lemma 3.17 (Lemma 17.2.1 in [2]). Let V be finite set, P be a generalized permutahedra
in RV and y be a direction of RV . We then have∑

Q≤P

(−1)dimQQy =
∑

Q≤P−y

(−1)dimQQ. (32)

Hypergraphic polytopes. Let us end this subsubsection by presenting a Hopf sub-
monoid of KGP . For V a set denote by ∆V = conv(v | v ∈ V ) the standard simplex of RV .
A hypergraphic polytope is a Minkowski sum of standard simplices. We denote by HGP
the set species of hypergraphic polytopes.

Example 3.18. The two polytopes of Example 3.8 are hypergraphic. The first one is
equal to the sum ∆e1,e2 + ∆e2,e3 + ∆e1,e3 and the second one to the sum ∆e1,e2,e3 + ∆e1,e4 .

Proposition 3.19 (Proposition 19.5 in [2]). The species KHGP is a Hopf sub-monoid of
KGP .

An important property of hypergraphic polytopes is that they are in bijection with
hypergraphs. Indeed for h ∈ HG[V ] a hypergraph, denote by ∆h the Minkowski sum∑

e∈h ∆e. Then the map ∆ : h 7→ ∆h clearly is a species isomorphism from HG to HGP .

3.2 Polynomial invariants and reciprocity theorems on the Hopf
monoid of generalized permutahedra

Using Aguiar and Ardila’s results in [2], we give here an explicit combinatorial interpre-
tation of the polynomial invariant in Definition 3.4 and its reciprocity theorem over the
Hopf monoid of generalized permutahedra. The two theorems of this subsection are direct
generalizations of Proposition 17.3 and 17.4 [2].

Let us begin with the interpretation of χ over non negative integers. Most definitions
necessary to state our theorem were given in subsubsection 3.1.3, but we still need to
introduce two simple notions. Let P ∈ GP [V ] be a generalized permutahedron.

• For ζ a character of KGP , P is a ζ-face if ζ(P ) 6= 0.

• For Q a face of P and c a coloring of V , Q and c are said to be strictly compatible
if Pc = Q. They are said to be compatible if Q ≤ Pc. We respectively denote by
N o
P (Q)n = [n]V ∩ N o

P (Q) and NP (Q)n = [n]V ∩ NP (Q) the set of colorings with [n]
strictly compatible with Q and compatible with Q.

Theorem 3.20. Let ζ be a character of KGP , V be a finite set and P ∈ GP [V ] a
generalized permutahedra. Then

χζV (P )(n) =
∑
Q≤P

ζ(Q)|N o
P (Q)n|. (33)
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In particular, if ζ is a characteristic function, then χζV (P )(n) is the number of strictly
compatible pairs of ζ-faces of P and colorings with [n].

Proof. This theorem is an application of Proposition 3.15. We have:

χζV (P )(n) =
∑

V=V1t···tVn

ζV ◦ µV1,...,Vn ◦∆V1,...,Vn(P )

=
∑

D coloring of V with [n]

ζV ◦ µD ◦∆D(P )

=
∑

D coloring of V with [n]

ζV (PD)

=
∑
Q≤P

∑
D coloring of V with [n]

PD=Q

ζV (Q)

=
∑
Q≤P

ζV (Q)|N o
P (Q)n|.

(34)

Example 3.21. Let ζ be the characteristic function of graphic polytopes i.e. polytopes
which can be written as a Minkowski sum of standard simplices of dimension 1. Let
P = ∆e1,e2,e3 + ∆e1,e4 be second polytope of Example 3.8:

P =

(1, 1, 0, 0) (1, 0, 1, 0)

(2, 0, 0, 0)

(1, 0, 0, 1)

(0, 0, 1, 1)

, (35)

where the hidden point is of coordinate (0, 1, 0, 1). From Theorem 3.20 we know that
χζ(P )(3) is the number of strictly compatible pairs of ζ-faces of P and colorings with [2].
The ζ-faces of P are its three rectangular faces which correspond to the sums ∆e1,e2 +∆e1,e4 ,
∆e1,e3 +∆e1,e4 and ∆e2,e3 +∆e1,e4 . Each of these faces is strictly compatible with exactly one
coloring with [2]. These colorings are respectively 2e∗1 +2e∗2 +e∗3 +2e∗4, 2e∗1 +e∗2 +2e∗3 +2e∗4
and e∗1 + 2e∗2 + 2e∗3 + e∗4. Hence we have χζ(P )(2) = 3.

The basic character ζ1 of GP is equal to 1 on points and 0 elsewhere. There is a
particular interpretation for this character which is presented in [2]. For P ∈ GP [V ] a
generalized permutahedra and y a direction in RV , y is said to be P -generic if Py is a
point.

Corollary 3.22 (Theorem 9.2 (v) in [30] and Proposition 17.3 in [2]). Let V be a finite set
and P ∈ GP [V ] a generalized permutahedra. Then χζ1(P )(n) is the number of P -generic
colorings of V with [n].
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Proof. By definition the ζ1-faces are the points and a coloring c is strictly compatible with
a face Q if Pc = Q. χζ1(P ) is then counting the number of colorings c such that Pc is a
point i.e. the number of P -generic colorings.

We now give the reciprocity theorem associated with these polynomials. A character ζ
of GP is said to be even if the ζ-faces are of even dimension.

Theorem 3.23. Let ζ be a character of GP , V be a finite set and P ∈ GP [V ] a generalized
permutahedra then

χζV (h)(−n) =
∑
Q≤P

(−1)|V |−dimQζ(Q)|NP (Q)n|. (36)

Furthermore if ζ is an even characteristic function then (−1)|V |χζ(P )(−n) is the number
of compatible pairs of ζ-faces of P and colorings with [n]. In particular, (−1)|V |χζ(P )(−1)
is the number of ζ-faces.

Proof. First remark from Lemma 3.17 that for any direction y we have:∑
Q≤P

(−1)dimQζ(Qy) =
∑

Q≤P−y

(−1)dimQζ(Q). (37)

Beginning with Theorem 3.16 and Theorem 3.5.3 we have:

χ(P )(−n) = χ(S(P ))(n) = χ(
∑
Q≤P

(−1)|V |−dimQQ)(n)

=
∑
Q≤P

(−1)|V |−dimQχ(Q)(n)

=
∑
Q≤P

(−1)|V |−dimQ
∑
R≤Q

ζ(R)|N o
Q(R)n|

=
∑
Q≤P

(−1)|V |−dimQ
∑
R≤Q

ζ(R)
∑

y:V→[n]
Qy=R

1

=
∑
Q≤P

(−1)|V |−dimQ
∑

y:V→[n]

ζ(Qy)

=
∑

y:V→[n]

(−1)|V |
∑
Q≤P

(−1)dimQζ(Qy)

=
∑

y:V→[n]

(−1)|V |
∑

Q≤P−y

(−1)dimQζ(Q)

=
∑
Q≤P

(−1)|V |−dimQζ(Q)
∑

y:V→[n]
Q≤P−y

1

=
∑
Q≤P

(−1)|V |−dimQζ(Q)|NP (Q)n|,

(38)
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where the last equality comes from the fact that P−y = Pn+1−y and n+ 1− y as co-domain
[n] is and only if y has co-domain [n].

Example 3.24. The character ζ of Example 3.21 is not even but the ζ-faces of the polytope
P of Example 3.21 are of even dimension hence (−1)4χζ(P )(−2) is equal to the number of
compatible pairs of ζ-faces of P and colorings with [2]. For each rectangular face of P , its
compatible colorings with [2] are the one given in Example 3.21 along with the colorings
e∗1 + e∗2 + e∗3 + e∗4 and 2e∗1 + 2e∗2 + 2e∗3 + 2e∗4. Hence χζ(P )(−2) = 9.

Corollary 3.25 (Theorem 6.3 and Theorem 9.2 (v) in [30] and Proposition 17.4 in [2]).
Let V be a finite set and P ∈ GP [V ] a generalized permutahedra. Then, we have:

(−1)|V |χζ1(P )(−n) =
∑

c:V→[n]

|vertices of Pc|. (39)

Proof. From Theorem 3.23 we have that (−1)|V |χζ1(P )(−n) is the number of compatible
pairs of points and coloring with [n]. Since the points compatible with a coloring c are by
definition the points in Pc, formula (39) follows.

3.3 Polynomial invariants and reciprocity theorems on the Hopf
monoid of hypergraphs

As in the previous section, we give here an explicit combinatorial interpretation of the
polynomial invariant and its reciprocity theorem over the Hopf monoid of hypergraphs
defined in [2]. We expand more on this Hopf monoid and give two proofs of both the
combinatorial interpretation of χ over positive and non negative integers. One of these
proofs is self contained and the other one uses the results of the previous subsection.

Recall from Definition 2.7 that a hypergraph over V is a multiset h of non empty
parts of V called edges; and that in this context the elements of V are called vertices of
h. The set species of hypergraphs is denoted by HG. Note that two hypergraphs over
different sets can never be equal, e.g {{1, 2, 3}, {2, 3, 4}} ∈ HG[[4]] is not the same as
{{1, 2, 3}, {2, 3, 4}} ∈ HG[[4] ∪ {a, b}]. This is illustrated in the following figure.

1 2 3

4

1 2 3

4a b

Two hypergraphs with same edges but over different sets.

(40)

The Hopf monoid structure on KHG studied here is different from the one given in
Example 3.1. While the product is still the disjoint union and the co-product is still a pure
tensor, the restriction of h to V and the contraction of V from h are now given by:

h|V = {e ∈ h | e ⊆ V } and h/V = {e ∩ V c | e * V } . (41)
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Example 3.26. For V = [5], V1 = {1, 2, 5} and V2 = {3, 4}, we have the following co-
product:

1 2 3

45

7→
1 2

5

⊗
3

4

(42)

The Hopf structure defined here is also different from the one defined and studied in
[10] but there are similar results in both this dissertation and [10]. This is due to the fact
that the notion of acyclic orientations plays a huge role when working on hypergraphs.
Up to some minor subtleties, our notion of acyclic orientations is the same as the one in
[10]: we trade the notion of flats for acyclic orientations where every vertex of an edge
can be a target, as defined in Subsection 2.2.2. We preferred to define them as maps over
hypergraphs with certain properties while they are defined as compositions of edges which
induce directed acyclic graphs. We will point out the common results when they appear.

While the proofs using results of the previous section are rather short, the self con-
tained proofs are more involved. Subsubsection 3.3.1 presents some preliminary results.
The combinatorial interpretations of χ(n) and χ(−n) and their self contained proofs are
in subsubsection 3.3.2 and subsubsection 3.3.3. The proof using the previous section is
presented in subsubsection 3.3.4.

3.3.1 Generalized Faulhaber’s polynomials

As stated in Theorem 3.5, for any character ζ and any hypergraph h, χζ(h)(n) is a polyno-
mial in n. The objects introduced here are useful tools to show and exploit this polynomial
dependency.

Let p = (p1, p2, . . . , pt) be a finite sequence of positive integers. We define the generalized
Faulhaber polynomial over p, Fp, the function over the integers given by, for n ∈ N:

Fp(n) =
∑

0≤k1<···<kt≤n−1

kp11 · · · k
pt
t . (43)

Note that if t > n, then Fp(n) =
∑
∅ · · · = 0.

As their names suggest, these functions are polynomials.

Proposition 3.27. Let p1, p2, . . . , pt be integers and define dk =
∑k

i=1 pi+k for 1 ≤ k ≤ t.
Then Fp1,...,pt is a polynomial of degree dt whose constant coefficient is null and whose
(dt − i)-th (for i < dt) coefficient is given by

min(jt,dt−1−1)∑
jt−1=0

min(jt−1,dt−2−1)∑
jt−2

· · ·
min(j2,d1−1)∑

j1=0

t∏
k=1

(
dk − jk−1

jk − jk−1

)
Bjk−jk−1

dk − jk−1

, (44)

where jt = i and j0 = 0, and the Bj numbers are the Bernoulli numbers with the convention
B1 = −1/2.
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Proof. We show this by induction on t. For t = 1 the expression of the coefficients gives
us the well-known Faulhaber’s formula Fp(n) =

∑p
i=0

(
p+1
i

)
Bi

p+1
np+1−i. Hence the result is

true for t = 1. Suppose now the result is true for t ≥ 1 and let p1, p2, . . . , pt+1 be t + 1
integers. Denote by ai the (dt − i)-th coefficient of Fp1,...,pt(n). We then have:

Fp1,...,pt+1(n) =
∑

0≤k1<···<kt+1≤n−1

kp11 · · · k
pt+1

t+1 =
n−1∑

kt+1=0

k
pt+1

t+1

∑
0≤k1<···<kt≤kt+1−1

kp11 · · · k
pt
t

=
n−1∑
k=0

kpt+1Fp1,...,pt(k)

=
n−1∑
k=0

kpt+1

dt−1∑
j=0

ajk
dt−j

=
dt−1∑
j=0

aj

n−1∑
k=0

kpt+1+dt−j =
dt−1∑
j=0

aj

n−1∑
k=0

kdt+1−1−j

=
dt−1∑
j=0

ajFdt+1−1−j(n)

=
dt−1∑
j=0

aj

dt+1−1−j∑
i=0

(
dt+1 − j

i

)
Bi

dt+1 − j
ndt+1−j−i

=
dt−1∑
j=0

dt+1−1−j∑
i=0

aj

(
dt+1 − j

i

)
Bi

dt+1 − j
ndt+1−j−i

=
dt−1∑
j=0

dt+1−1∑
i=j

aj

(
dt+1 − j
i− j

)
Bi−j

dt+1 − j
ndt+1−i

=

dt+1−1∑
i=0

min(i,dt−1)∑
j=0

aj

(
dt+1 − j
i− j

)
Bi−j

dt+1 − j

ndt+1−i.

(45)

This concludes this proof.

Remark 4. These polynomials also generalize Stirling numbers of the first kind: denote
by F1k(n) the generalized Faulhaber polynomial associated to the sequence of size k with
all elements equal to 1. F1k(n) =

∑
0≤k1<···<kt≤n−1

∏
ki is indeed the absolute value of the

coefficient of xn−k in x(x− 1) · · · (x− n+ 1) and hence F1k(n) = s(n, k).

Lemma 3.28. Let p be a sequence of positive integers of length t. We then have

Fp(−n) = (−1)dt
∑
p≺q

Fq(n+ 1), (46)

where dt is defined in the same way as in Proposition 3.27.
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Proof. Remark that
∑

p≺q Fq(n + 1) can also be written as
∑

0≤k1≤···≤kt≤n k
p1
1 · · · k

pt
t . We

now proceed by induction on t. For t = 1, we have

Fp(−n) =

p∑
i=0

(
p+ 1

i

)
Bi

p+ 1
(−n)p+1−i

=
(−1)p+1

p+ 1
np+1 − 1

2
(−1)pnp + (−1)p+1

p∑
i=2

(
p+ 1

i

)
Bi

p+ 1
np+1−i

= (−1)p+1

(
1

p+ 1
np+1 +

1

2
np +

p∑
i=2

(
p+ 1

i

)
Bi

p+ 1
np+1−i

)
= (−1)p+1(Fp(n) + np) = (−1)p+1Fp(n+ 1),

(47)

where the second equality comes from the fact that Bi = 0 when i is an odd number
different from 1. Suppose now our proposition is true up to t. In the proof of Proposition
2 we showed that Fp1,...,pt+1(n) =

∑dt−1
j=0 ajFdt+1−1−j(n) where aj is the dt − j coefficient of

Fp1,...,pt(n). This gives

Fp1,...,pt+1(−n) =
dt−1∑
j=0

aj(−1)dt+1−j
n∑
k=0

kdt+1−1−j = −
dt−1∑
j=0

aj

n∑
k=0

(−k)pt+1+dt−j

= −
n∑
k=0

(−k)pt+1

dt−1∑
j=0

aj(−k)dt−j = (−1)pt+1+1

n∑
k=0

kpt+1Fp1,...,pt(−k)

= (−1)pt+1+1

n∑
kt+1=0

k
pt+1

t+1 (−1)dt
∑

0≤k1≤···≤kt≤kt+1

kp11 · · · k
pt
t

= (−1)dt+1

∑
0≤k1≤···≤kt+1≤n

kp11 · · · k
pt+1

t+1

= (−1)dt+1

∑
p≺q

Fq(n+ 1),

(48)

where the fifth equality is our induction hypothesis.

3.3.2 Chromatic polynomials of hypergraphs

Before stating our results on χ in Theorem 3.35, recall from subsubsection 2.2.3 that a
coloring of V with [n] is a map from V to [n] and that there is a canonical bijection
between decompositions and colorings.

Definition 3.29. Let h be a hypergraph over V and c be a coloring. For v ∈ e ∈ h, we
say that v is a maximal vertex of e (for c) if v is of maximal color in e and we call the
maximal color of e (for c) the color of a maximal vertex of e. We say that a vertex v is a
maximal vertex (for c) if it is a maximal vertex of an edge and that a color is a maximal
color (for c) if it is the maximal color of an edge.
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IfW ⊆ V is a subset of vertices, the order of appearance ofW (for V ) is the composition
forget∅(c ∩ W ) where c ∩ W = (c1 ∩ W, . . . , cl(c) ∩ W ) and the map forget∅ sends any
decomposition to the composition obtained by dropping the empty parts.

Remark 5. Since the set of colorings of V with [n] is [n]V ⊂ RV , colorings can be seen as
particular directions of RV as defined in 3.1.3.

When working with colorings, by a slight abuse of notation, for W a set of vertices of
the same color for c, we will denote by c(W ) their color. This extends c to a map from
monochromatic sets of vertices to [n].

Example 3.30. We represent a hypergraph along a coloring on V = {a, b, c, d, e, f} with
{1, 2, 3, 4}:

e c f

dba

e1
e2 e3

e4

(49)

The maximal vertex of e1 is a and the maximal vertices of e3 are c and d. The maximal
color of e2 is 3. The order of appearance of {a, c, d, e} is ({e}, {c, d}, {a}).

Recall now from 2.2.2 that an admissible orientation f of h is a map from h to P(V )+

such that f(e) ⊆ e for every edge e. It is an acyclic orientation if there is no sequence
of distinct edges e1, . . . , ek such that: f(ei) ∩ fs(ei+1) 6= ∅ or ∅ ( f(ei) ∩ ei+1 ( f(ei+1)
for 1 ≤ i < k and f(ek) ∩ fs(e1) 6= ∅, where fs(e) = f(e) \ f(e). Given a hypergraph
h and f an admissible orientation of h, the image of h by f , f(h) is also a hypergraph:
f(h) = {f(e) | e ∈ h}.

Definition 3.31. Let h be a hypergraph over V and f an admissible orientation of h.

• For c coloring of V , c and f are said to be compatible if for every edge e the elements
of f(e) are maximal in e for c. They are said to be strictly compatible if f(e) is exactly
the set of maximal elements of e for c. We denote by Ch,f,n the set of colorings of V
with [n] compatible with f and by Ch,f,n the set of those with strict compatibility.

• For ζ a character of KHG, f is said to be a ζ-orientation of h if ζ(f(h)) 6= 0.

Example 3.32. • The coloring given in Example 3.30 has three compatible acyclic
orientations: both send e1 on a, e2 on c and e4 on b, but e3 can be either sent over c,
d or {c, d}. Among these three only the last one is strictly compatible.

Here is an example of an acyclic orientation of a hypergraph with a compatible
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coloring and a strictly compatible coloring with {1, 2, 3}:

a

b

c

d

e

a

b

c

d

e

compatibility strict compatibility

(50)

• Let ζ be the characteristic function of hypergraphs which connected components are
either of size 3 or an isolated vertex. The preceding orientation is not a ζ-orientation
since the image of the hypergraph by this orientation is the hypergraph

a

b

c

d

e

. (51)

Here is an example of a ζ-orientation and the image of the hypergraph by it:

a

b

c

d

e

7→

a

b

c

d

e

. (52)

Remark that with these definitions, given a coloring c and a hypergraph h, there is a
unique orientation of h strictly compatible with c, which is defined by
f(e) = {v ∈ e | c(v) = max(c(e))}. Furthermore, this orientation is necessarily acyclic.
Indeed, suppose e1, . . . , ek is a directed cycle in f . then f(ek) ∩ fs(e1) 6= ∅ implies
that c(f(ek)) < c(f(e1)) and for 1 ≤ i < k either f(ei) ∩ fs(ei+1), which would imply
c(f(ei)) < c(f(ei+1)) or f(ei) ∩ f(ei+1) 6= ∅ which would imply c(f(ei)) = c(f(ei+1)). This
then gives us c(f(ei)) < c(f(e1)) which is absurd. We will denote by maxc this orientation.

With the same kind of reasoning, any coloring compatible with a cyclic orientation must
be monochromatic on directed cycles. The study of Ch,f,n and Ch,f,n is hence more interest-
ing when f is acyclic and we have an expression of Cf,h,n in terms of generalized Faulhaber
polynomials. Recall that for every hypergraph h over V , we have a decomposition of V in
the set of isolated vertices and vertices in an edge: V = I(h) tNI(h).
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Proposition 3.33. Let h be a hypergraph over V , f be an acyclic orientation of h. Define
Ph,f and P ′h,f as the set of compositions P � f(h) such that for e and e′ two edges of h,

• if f(e) ∩ f(e′) 6= ∅ then P (f(e)) = P (f(e′)),

• else if f(e)∩fs(e′) 6= ∅ then P (f(e)) < P (f(e′)) for P ∈ Ph,f and P (f(e)) ≤ P (f(e′))
for P ∈ P ′h,f .

We then have

|Ch,f,n| = n|I(h)|
∑

P∈Ph,f

Fp1,...,pl(P )
(n) and

|Ch,f,n| = n|I(h)|
∑

P∈P ′h,f

Fp1,...,pl(P )
(n+ 1),

(53)

where for every composition P , pi = |P̃i| and P̃i = NI(f(h))c ∩
(⋃

e∈f−1(Pi)
e
)⋂

j<i P̃j
c
.

Example 3.34. To prove the formula for |Ch,f,n| we will show that there is a bijection
between the set of strictly compatible colorings and the set⊔

P∈Ph,f

⊔
0≤k1<k2<···<kl(P )≤n−1

∏
1≤i≤l(P )

[ki]
P̃i . (54)

We give here an example of how this bijection will work. LetH, F and C be the hypergraph,
the acyclic orientation and the strictly compatible coloring with {1, 2, 3, 4, 5, 6} represented
here:

a b

cd

e

f

g

h

i j

. (55)

The image of C is obtained in the following way:

• P = (d, ij, ab) ∈ PH,F is the relative order of the maximal vertices for C,

• k1 = 1 ,k2 = 4 and,k3 = 5 are the colors of the vertices in P shifted by −1, the
vertices in Pi being of color ki + 1,
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• we then have P̃1 = {f}, P̃2 = {c, g, h} and P̃3 = {e} and the image of C is the triplet
(f1, f2, f3) defined by

f1 : {f} → {1} (56)
f 7→ 1

f2 : {c, g, h} → {1, 2, 3, 4} (57)
c 7→ 3

g 7→ 3

h 7→ 4

f3 : {e} → {1, 2, 3, 4, 5} (58)
e 7→ 2.

Proof. We first prove the formula for |Ch,f,n|. The term n|I(h)| in the formula is trivially
obtained and we hence consider that h has no isolated vertices.

Informally, the formula can be obtained by the following reasoning. To choose a coloring
strictly compatible with f , one can proceed in the following way:

1. choose a part ordering of the sets of maximal vertices: P ∈ Ph,f ,

2. choose the color of these vertices: k1 + 1, . . . , kl(P ) + 1,

3. choose the colors of the yet uncolored vertices which are in the same edge than
vertices of minimal color in f(h): k|P̃1|

1 ; then those in the same edge than a vertices
of second minimal color in f(h): k|P̃2|

2 ), etc.

More formally, we show that there exists a bijection between the set of strictly compatible
colorings and the set ⊔

P∈Ph,f

⊔
0≤k1<k2<···<kl(P )≤n−1

∏
1≤i≤l(P )

[ki]
P̃i , (59)

where [ki]
P̃i is the set of maps from P̃i to [ki].

For any subset A of N, we denote by bijA the unique increasing bijection from A to
[|A|]. Let c be a strictly compatible coloring, that is to say, f = maxc. We begin by
constructing its image by the announced bijection. Recall that c extends to a map with
domain monochromatic set of vertices and hence c(f(h)) is the set of maximal colors of c.
Define:

• the part ordering of the set f(h) of maximal vertices: P = bijc(f(h)) ◦ c. Here again
we consider c as a map from monochromatic set of vertices to [n].

• The colors of the maximal vertices: ki = c(Pi)− 1 for 1 ≤ i ≤ l(P ).

• The remaining vertices: P̃i = NI(f(h))c ∩
(⋃

e∈f−1(Pi)
e
)⋂

j<i P̃j
c
for 1 ≤ i ≤ l(P ).
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The part ordering P is in Ph,f because the strict compatibility of c with f implies that
if f(e) ∩ f(e′) 6= ∅ then c(f(e)) = c(f(e) ∩ f(e′)) = c(f(e′)) and else if f(e) ∩ fs(e′) 6= ∅
then c(f(e)) < c(f(e′)) and bijc(f(h)) is increasing by definition. The sequence k1, . . . , kl(P )

is increasing since c(Pi) = c(bijc(f(h)) ◦ c)−1(i) = bij−1
c(f(h))(i) and bij−1

c(f(h)) is increasing by
definition. The vertices in P̃i are the vertices which share an edge with a set of vertices in
Pi (

⋃
e∈f−1(Pi)

e) but which are not maximal (NI(f(h))c). Since the set of vertices in Pi

are of color c(Pi) = ki + 1, the colors of the vertices in P̃i are necessarily in [ki]. Hence the
map c|P̃i

, that is to say c restricted to P̃i is indeed of co-domain [ki]. We then define the
image of c as the tuple (c|P̃1

, . . . , c|P̃l(P )
).

Let us now consider the other direction of the bijection. Let be a partition P ∈ Ph,f ,
a sequence of integers 1 ≤ k1 < · · · < kl(P ) and (c1, . . . cl(P )) ∈

∏
1≤i≤l(P )[ki]

P̃i . Define
c : V → [n] by c|P̃i

= ci and c|f(h)(v) = bij−1

{k1+1,...,kl(P )+1}(P (f(e))) for v ∈ f(e); this is well

defined since if v ∈ f(e) ∩ f(e′) then f(e) ∩ f(e′) 6= ∅ ⇒ P (f(e)) = P (f(e′)). This map c
has indeed domain V since (P̃1, . . . , P̃l(P ), NI(f(h))) is a partition of V .

Let us show that c is a coloring strictly compatible with f . If v, v′ are two vertices in
f(e) then by definition c(v) = c(v′). Let now be v ∈ e \ f(e).

• If v ∈ f(e′) then necessarily f(e) ∩ f(e′) = ∅ because otherwise e′, e, e′ would be a
directed cycle. Indeed, v is an exit of e′ and an entry of e and f(e)∩ f(e′) 6= ∅ would
imply that e′ share an exit with e, but not all (not v). Hence, by definition of Ph,f ,
P (f(e′)) < P (f(e)) and so c(v) < c(f(e)).

• If v 6∈ f(h) then v ∈ P̃i with i ≤ P (f(e)) and we do have the desired inequality:
c(v) = ci(v) ≤ ki < ki + 1 ≤ kP (f(e)) + 1 = c(f(e)).

We conclude this first part of the proof by remarking that the two previous constructions
are inverse functions.

The proof for the formula of |Ch,f,n| is the same except that we now show a bijection
with ⊔

P∈P ′h,f

⊔
0≤k1≤k2≤···≤kl(P )≤n

∏
1≤i≤l(P )

[ki]
P̃i , (60)

and that to do so the only change with what precedes is choosing ki = c(Pi) instead of
ki = c(Pi)− 1.

We now state the first theorem of this subsection:

Theorem 3.35. Let ζ be a character of KHG, V be a finite set and h ∈ HG[V ] a
hypergraph. Then

χζV (h)(n) =
∑
f∈Ah

ζ(f(h))|Ch,f,n|. (61)

In particular, if ζ is a characteristic function, then χζ(h)(n) is the number of strictly
compatible pairs of acyclic ζ-orientations of h and colorings with [n]. In this case we call
χζ the ζ-chromatic polynomial of h.
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Proof. Recall the definition of χζ from (3.4):

χζV (h)(n) =
∑

D∈Dcomp[V ],l(D)=n

ζV ◦ µD ◦∆D(h). (62)

The bijection b defined at (10) provides a bijection between the decomposition of size n of
V and the colorings of V with [n]. To prove our theorem, we just need to show that for D
a coloring of V , maxD(h) = µD ◦∆D since we would then have

χζV (h)(n) =
∑

D∈Dcomp[V ],l(D)=n

ζV ◦ µD ◦∆D(h)

=
∑

D coloring of f with [n]

ζV (max
D

(h))

=
∑
f∈Ah

ζV (f(h))|Ch,f,n|.

(63)

We prove this by induction over n. Let D = (D1, D2) be a decomposition of V of size 2.
Then µD ◦∆D(h) = h|D1 t h/D2 = {e ∈ h | e ⊆ D1} t {e ∩D2 | e ( D1}. We then need to
show that maxD(e) = e when e ⊆ D1 and maxD(e) = e ∩ D2 else. If e ⊆ D1, then that
means that all the vertices in e are maximal in e of color 1, and hence maxD(e) = e. If
e ( D1, then the maximal vertices of e are of the one of color 2 i.e. maxD(e) = e ∩ D2.
This concludes the case n = 2.

Suppose now that this statement is true for n − 1 and let D be a decomposition of V
of size n. Denote by W the set V \Dn and by D|W = (D1, . . . , Dn−1) the restriction of D
to W (as a map). By induction we have that

µD ◦∆D(h) = µW,Dn ◦ µD|W ⊗ Id ◦∆D|W ⊗ Id ◦∆W,Dn(h)

= µW,Dn ◦max
D|W
⊗Id ◦∆W,Dn(h)

= µW,Dn ◦max
D|W
⊗Id ◦ h|W ⊗ h/W

= max
D|W

(h|W ) t h/W ,

(64)

and hence we must show that maxD(e) = maxD|W (e) when e ⊆ W and maxD(e) = e ∩Dn

otherwise. The first assertion is straightforward by definition of the restriction and the
second assertion is proven in an analogous way that the case n = 2. This concludes this
proof.

It is clear that connected hypergraphs play the role of prime elements in HG. This
means that every hypergraph can be uniquely written as a product of connected elements,
up to the order. When defining a character, we hence only need to define it on the
connected hypergraphs. In particular, we only define characteristic functions by specifying
the connected hypergraphs with value 1.
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Example 3.36. Let ζe3 be the characteristic function of edges of size three and isolated
vertices. Then χζe3 counts the colorings such that there is exactly three maximal vertices
by edge and edges do not share maximal vertices.

Let now ζ3 be the characteristic function of connected hypergraphs over three vertices
and isolated vertices. Then χζ3 counts the number of colorings such that reducing each
edge to its maximal vertices gives us a hypergraph where connected components are either
either of size 3 or an isolated vertex.

Of the three following colorings with {1, 2, 3}, the first two are counted by χζe3 but not
the third. None of them are counted by χζ3 .

e c f

dba

,

e c f

dba

,

e c f

dba

. (65)

Recall that the basic character ζ1 is the characteristic function of discrete hypergraphs.
We have a particular interpretation of χζ1 .

Corollary 3.37 (Theorem 18 in [8]). Let V be a finite set and h ∈ HG[V ] a hypergraph.
Then χζ1(h)(n) is the number of colorings of V such that every edge of h has only one
maximal vertex.

Proof. This proof is straightforward: the ζ1-orientations are exactly the discrete orienta-
tions and the colorings compatible with such orientations are colorings where each edge
has exactly one maximal vertex.

Example 3.38. The coloring given in Example 3.30 is not counted in χζ1V (h)(4) since e3

has two maximal vertices. However by changing the color of d to 2 we do obtain a coloring
where every edge has only one maximal vertex.

Let g be the hypergraph {{1, 2, 3}, {2, 3, 4}} ∈ HG[[4]] represented in Figure 40. We
then have χζ1[4](h)(n) = n4− 8

3
n3 + 5

2
n2− 5

6
n and we verify that, for example, χ[4](h)(2) = 3.

3.3.3 Reciprocity theorem

We now give the reciprocity theorem which gives us an expression of χζ over negative
integers as well as a combinatorial interpretation when possible. A character ζ of HG is
odd if ζ(h) = 0 for every h with a connected component with an even number of vertices.
This can also be expressed by stating that the only connected hypergraphs on which ζ is
not null have odd number of vertices.

Denote by cc(h) the number of connected components of h.

Theorem 3.39. Let ζ be a character of KHG, V be a finite set and h ∈ HG[V ] a
hypergraph then

χζV (h)(−n) =
∑
f∈Ah

(−1)cc(f(h))ζ(f(h))|Ch,f,n|. (66)
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Furthermore, if ζ is an odd characteristic function then (−1)|V |χζ(h)(−n) is the number
of compatible pairs of acyclic ζ-orientations of h and colorings with [n]. In particular we
have in this case that (−1)|V |χζ(h)(−1) is the number of acyclic ζ-orientations of h.

Corollary 3.40 (Theorem 24 in [8]). Let V be a finite set and h ∈ HG[V ] a hypergraph.
Then (−1)|V |χζ1(h)(−n) is the number of compatible discrete acyclic orientation of h and
colorings with [n]. In particular, we have now that (−1)|V |χζ1(h)(−1) is the number of
discrete acyclic orientations of h.

Example 3.41. For any any hypergraph h over V and any odd character ζ of HG, we have
χV (h)(n) ≤ (−1)|V |χV (h)(−n). This comes from the fact that any strictly compatible pair
is a compatible pair. This is observed for ζ = ζ1 and h = {{1, 2, 3}, {2, 3, 4}} ∈ HG[[4]]:

χ[4](h)(n) = n4 − 8

3
n3 +

5

2
n2 − 5

6
n < n4 +

8

3
n3 +

5

2
n2 +

5

6
n = (−1)4χ[4](h)(−n). (67)

We also verify that h does have χ[4](h)(−1) = 7 acyclic discrete orientations (3× 3 orien-
tations minus the two cyclic orientations).

As announced at the beginning of this section, we give here a self-contained proof
which uses our previous results on generalized Faulhaber’s polynomials and on compatible
colorings. To give this proof, we first need some preliminary lemmas. We begin by recalling
two classical combinatorial results.

Proposition 3.42. Let m and n be two integers. Then the number of surjections Sm,n
from [m] to [n] is given by:

Sm,n =
n∑
k=0

(−1)n−k
(
n

k

)
km. (68)

Proof. This formula can be obtained by the inclusion-exclusion principle.

Corollary 3.43. For m and n two integers such that m < n and P a polynomial of degree
at most m, we have:

n∑
k=0

(−1)n−k
(
n

k

)
P (k) = 0. (69)

Proof. The statement above is a direct consequence of the fact that Sm,n = 0 form < n.

We will use these two results to prove Lemma 3.44 which is the central point of this
proof. Recall from subsubsection 2.2.3 the classical definitions over compositions: product,
shuffle product and refinement.

Lemma 3.44. Let V be a set and P � V a composition of V . We have the identity:∑
Q≺P

(−1)l(Q) = (−1)|V |. (70)
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Furthermore, let g be a directed acyclic graph on V and consider the constrained set
C(g, P ) = {Q ≺ P | ∀(v, v′) ∈ g,Q(v) < Q(v′)}. We have the more general identity:∑

Q∈C(g,P )

(−1)l(Q) =

{
0 if there exists (v, v′) ∈ g such that P (v′) < P (v),

(−1)|V | if not. (71)

Proof. Since
∑

Q≺P (−1)l(Q) =
∏l(P )

i=1

∑
Q�Pi

(−1)l(Q) we only need to show that∑
Q�V (−1)l(Q) = (−1)|V | to prove the first identity. Since the compositions of V of size n

and the surjections from V to [n] are in bijection, we have that:

∑
Q�I

(−1)l(Q) =

|V |∑
n=1

(−1)nS|V |,n =

|V |∑
n=1

(−1)n
n∑
k=1

(−1)n−k
(
n

k

)
k|V |

=

|V |∑
k=1

(−1)k

 |V |∑
n=k

(
n

k

) k|V | =

|V |∑
k=1

(−1)k
(
|V |+ 1

k + 1

)
k|V |

= (−1)|V |
|V |−1∑
k=0

(−1)k
(
|V |+ 1

k

)
(|V | − k)|V |

= (−1)|V |(1 +

|V |+1∑
k=0

(−1)k
(
|V |+ 1

k

)
(|V | − k)|V |)

= (−1)|V |.

(72)

Note that the last equality is a direct consequence of Corollary 3.43.
To show the second identity first remark that the case where the sum is null is straight-

forward: if there exists (v, v′) ∈ g such that P (v′) < P (v), then C(g, P ) = ∅ and so the sum
is null. From now on we only consider non empty summation sets. In this case we have
that

∑
Q∈C(g,P )(−1)l(Q) =

∏l(P )
i=1

∑
Q∈C(g∩Pi

2,(Pi))
(−1)l(Q) and we only need to show that∑

P∈C(g)(−1)l(P ) = (−1)|V | where C(g) = C(g, (V )). We denote by S(g) the sum∑
P∈C(g)(−1)l(P ) from now on.
If g is not connected let V = V1 t V2 and g = g1 t g2 where V (gi) = Vi. Let P ∈ C(g1)

and Q ∈ C(g2) and suppose without loss of generality that m = l(Q) < l(P ) = M . To
choose R in sh(P,Q) we can first choose its length; then which indices are going to have a
part of Q; and finally which indices among them are also going to have a part of P . This

45



leads to: ∑
R∈sh(P,Q)

(−1)l(R) =
m+M∑
k=M

(−1)k
(
k

m

)(
m

M − (k −m)

)

=
m∑
k=0

(−1)k+M

(
M + k

m

)(
m

k −m

)
= (−1)M

m∑
k=0

(−1)m−k
(
M +m− k

m

)(
m

k

)
=

(−1)M

m!

m∑
k=0

(−1)m−k
(
m

k

)
(m+M − k)!

(M − k)!

=
(−1)M

m!

m∑
k=0

(−1)m−k
(
m

k

)
(−k)m

=
(−1)m+M

m!

m∑
k=0

(−1)m−k
(
m

k

)
km

=
(−1)m+M

m!
Sm,m = (−1)m+M = (−1)l(P )+l(Q),

(73)

where the fifth equality follows from Corollary 3.43. This shows that S(g) is multiplicative
(with the product being the disjoint union) and so we can restrict ourselves to showing that
S(g) = (−1)|V |, for g a connected graph. We will prove this by induction on the number
of edges of g.

Suppose now that g is connected. If g has no edge then g is reduced to a single
vertex and the result is trivial. Thus let be (v, v′) be an edge of g. We say that the
edge (v, v′) is superfluous if there exists a sequence of vertices v0, v1, ..., vk+1 ∈ V such
that v = v0, v′ = vk+1 and (vi, vi+1) ∈ g for all i ∈ [k]. If (v, v′) is superfluous then
C(g) = C(g \ (v, v′)) and so S(g) = S(g \ (v, v′)) = (−1)|V | by induction. Otherwise we
have C(g\(v, v′)) = C(g)+C(t(v,v′)(g))+C(g\(v, v′))∩{P � V |P (v) = P (v′)}, where t(v,v′)
sends g on g \ (v, v′)∪ (v′, v). By induction, we know that S(g \ (v, v′)) = (−1)|V | and since
C(g \ (v, v′))∩{P � V |P (v) = P (v′)} = C

(
g ∩ (V/v′)2 ∪

⋃
(w,v′)∈g\(v,v′)(w, v) ∪

⋃
(v′,w)∈g(v, w)

)
,

we also have by induction that
∑

P∈C(g\(v,v′))∩{P�V |P (v)=P (v′)}(−1)l(P ) = (−1)|V |−1. Hence,
we have the equality S(g) = S(t(v,v′)(g)).

Let e1, . . . , ek be a sequence of edges such that for every i, gi = tei ◦ · · · ◦ te1(g) does
not have a directed cycle. If g has a cycle, we can choose this sequence such that gk has
a superfluous edge and hence S(g) = S(gk) = (−1)|V |. If g does not have any cycle then
any sequence e1, . . . , el of edges satisfies the conditions “gi does not have a directed cycle”
and so S(g) = (−1)|V | as long as there exists a directed graph g′ with the same underlying
non-oriented graph than g such that S(g′) = (−1)|V |. Given a non-oriented connected
graph g′, we can always find a directed graph g on it with only one vertex v such that for
every w ∈ V (G), (w, v) 6∈ g. We then have that C(g) = ({v}) · C(g ∩ (V (g)− v)2), which
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leads to: S(g) = −S(g ∩ (V (G)− v)2) = (−1)|V (g)|. This concludes the proof.

While we interpreted Lemma 3.44 as a result on graphs and partitions, it can also be
seen as a result on posets and linear extensions.

We can now give our first proof to Theorem 3.39.

Proof of Theorem 3.39. From Theorem 3.35, Proposition 3.33 and Lemma 3.28, we have
that:

χζV (h)(−n) = (−n)|I(h)|
∑
f∈Ah

ζ(f(h))
∑

P∈Ph,f

(−1)
∑l(P )

i=1 pi+l(P )
∑

(p1,...,pl(P ))≺q

Fq(n+ 1). (74)

Let P be a composition. We then have:

•
∑l(P )

i=1 pi = |NI(h)| − |NI(f(h))|, since (P̃1, . . . P̃l(P ), NI(f(h))) is a partition of
NI(h).

• The map

φ : {Q � f(h) |P ≺ Q} →
{
q � (|NI(h)| − |NI(f(h))|) | (p1, . . . , pl(P )) ≺ q

}
Q 7→ (|Q̃1|, . . . , |Q̃l(Q)|)

(75)

is a bijection (Q̃i is defined in the same way that P̃i in Proposition 3.33). Indeed, the
two sets have same cardinality

∑l(P )−1
k=0

(
l(P )
k

)
: in both cases we choose the number

k + 1 of elements of the composition and then which consecutive elements of the
composition to merge:

(
l(P )
k

)
. Furthermore the map φ is a surjection, since the

composition (q1, . . . , qk) with qi =
∑ki

j=ji
pj is the image of the compositionQ1, . . . , Qk

with Qi = tkij=jiPj. This comes from the fact that for any two disjoint sets of sets
A,B we have

⋃
e∈AtB e =

⋃
e∈A e∪

⋃
e∈B e =

⋃
e∈A et

(⋃
e∈B e

)
∩
(⋃

e∈A e
)c and that

the sets f−1(Pi) are pairwise disjoint.

These two remarks lead to:

χζV (h)(−n) = n|I(h)|
∑
f∈Ah

(−1)|V |−|NI(f(h))|ζ(f(h))
∑

P∈Ph,f

(−1)l(P )
∑
P≺Q

Fφ(Q)(n+ 1)

= n|I(h)|
∑
f∈Ah

(−1)|V |−|NI(f(h))|ζ(f(h))
∑
Q�f(h)

 ∑
P≺Q
P∈Ph,f

(−1)l(P )

Fφ(Q)(n+ 1).

(76)

Let g be the graph with vertices the connected components of f(h) and with an oriented
edge from a connected component h1 to another connected component h2 if there is e1 ∈ h1

and e2 ∈ h2 such that f(e1) ∩ fs(e2) 6= ∅. Since f is acyclic, g is a directed acyclic graph.
We can see the compositions in Ph,f and P ′h,f (Proposition 3.33) as compositions over
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connected components of f(h) since for such compositions, two edges of f(h) with a non
empty intersection must be in the same part by definition. Remarking then that with this
point of view {P ≺ Q |P ∈ Ph,f} = C(g,Q), Lemma 3.44 leads to:

χV (h)(−n) = n|I(h)|
∑
f∈Ah

(−1)|V |−|NI(f(h))|ζ(f(h))
∑
P�f(h)

P (v)≤P (v′)∀(v,v′)∈g

(−1)cc(f(h))−|I(f(h))|Fφ(P )(n+ 1)

= n|I(h)|
∑
f∈Ah

(−1)|V |−|NI(f(h))|−|I(f(h))|+cc(f(h))ζ(f(h))
∑

P∈P ′h,f

Fp1,...,pl(P )
(n+ 1)

= n|I(h)|
∑
f∈Ah

(−1)cc(f(h))|Cf,h,n|,

(77)

where the last equality is Proposition 3.33.
To complete this proof, note that when ζ is odd, ζ(f(h)) 6= 0 implies that |V |−cc(f(h))

is even since each connected component h′ of f(h) participate for V (h′) − 1 which is
even.

3.3.4 Alternative proof

Let us now give the second proof. As announced this proof is shorter and we will prove
both Theorem 3.35 and Theorem 3.39 at the same time. Recall from subsection 3.1.3
that there is a bijection ∆ : h 7→ ∆h between hypergraphs and hypergraphic polytopes.
We further extend the similarities of hypergraphs and hypergraphic polytopes with the
following lemma.

Lemma 3.45. Let V be a finite set and h a hypergraph over V . Then the faces of ∆h

are exactly the hypergraphic polytopes ∆f(h) for f ∈ Ah. Furthermore, for f an acyclic
orientation of h, Ch,f,n = N o

∆h
(∆f(h))n and Ch,f,n = N∆h

(∆f(h))n.

Remark 6. This lemma is equivalent to Theorem 2.18 of [10]. Our approach and notations
being different than in [10], we preferred to give an alternative proof of this lemma.

Proof. Let be f ∈ Ah. We first show that ∆f(h) is indeed a face of ∆h. Let c be a coloring
strictly compatible with f i.e. f = maxc. We show that ∆f(h) is the c-maximum face of
∆h. Let p be a point in ∆h. Then by definition of ∆h, p can be written as

∑
e∈h
∑

v∈e ae,vv
where for each edge e the ae,v are positive real numbers summing to one:

∑
v∈e ae,v = 1.

We then have that,

c(p) =
∑
e∈h

∑
v∈e

ae,vc(v)

=
∑
e∈h

c(f(e))
∑
v∈f(e)

ae,v +
∑

v∈fs(e)

ae,vc(v)

 ,

(78)
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which is maximum when ae,v = 0 for every edge e and every v ∈ fs(e). This implies
that the c-maximum face of ∆h is the set of points of the form

∑
e∈h
∑

v∈f(e) ae,vv with∑
v∈f(e) ae,v = 1. This is exactly ∆f(h).
Let now Q be a face of ∆h. For P a polytope and y a direction, the y-maximum face

Py does not depend on the exact values of y but only on the induced order v < v′ if
y(v) < y(v′). Let hence be c a coloring with value in [n] such that Q = Pc. Then by what
precedes, Q = ∆maxc(h).

The equalities between the sets of compatible colorings and the cones directly follow
from the preceding.

This lemma together with Proposition 3.7 is enough to give the desired proof.

Proof of Theorem 3.39. Let ζ be a character of KHG and define ζ ′ the character of GP
defined by ζ ′(P ) = ζ(h) if P = ∆h is a hypergraphic polytope and ζ ′(P ) = 0 else. Let
h be a hypergraph over V . Then, applying Proposition 3.7, Theorem 3.20 and finally
Lemma 3.45, we have:

χKHG,ζ
V (h)(n) = χKGP,ζ′

V (∆h)(n) =
∑
Q≤∆h

ζ ′(Q)|N o
∆h

(Q)n|

=
∑
f∈Ah

ζ(f(h))|N o
∆h

(∆f(h))n|

=
∑
f∈Ah

ζ(f(h))|Ch,f,n|.

(79)

The formula over non positive integers is obtained analogously.

Remark 7. As a corollary from Lemma 3.45 and Theorem 3.16, we have that the antipode
of KHG is given by the cancellation-free and grouping-free expression

SV (h) =
∑
f∈Ah

(−1)cc(f(h))f(h). (80)

While this expression express the antipode only in term of acyclic orientations, faces of
polytopes have much more apparent structure than acyclic orientations and are easier and
more intuitive to work with.

3.4 Other Hopf monoids

In this subsection we use Theorem 3.35 and Theorem 3.39 to obtain similar results on
other Hopf monoids, more precisely the Hopf monoids from sections 19 to 25 of [2]. The
general method used here is to use the fact that these Hopf monoids can be seen as
sub-monoids of (most of the times) the Hopf monoid of simple hypergraphs, and then
present an interpretation of what is an acyclic orientation on these particular Hopf monoids.
More precisely, Proposition 3.7 tells us that if we have a morphism φ : M → SHG
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then χM,ζ◦φ = χKSHG,ζ ◦ φ for ζ any character of SHG. Since φ will be injective in
our cases, restricting its co-domain to is image makes it an isomorphism. We then have
χM,ζ = χKSHG,ζ◦φ−1 ◦ φ for ζ any character of M . What remains is to find a combinatorial
interpretation of acyclic orientations on the objects of M .

Remark 8. Note that this is exactly how we obtained our second proof of the combinatorial
interpretation of χKHG. Here, since we are only working on purely combinatorial objects,
the morphism φ is simpler than in the case of ∆ : HG→ HGP .

Not only the results of this subsection generalize a lot of other results, but they are
also obtained with a uniform approach. We provide details at the beginning of each sub-
subsection on the links between our results and already existing ones.

3.4.1 Simple hypergraphs

Recall from Definition 2.7 that a simple hypergraph over V is a set h of non empty parts
of V . KSHG admits a similar Hopf monoid structure to KHG. In fact its structure maps
can be defined in the same way

µV1,V2 : SHG[V1]⊗ SHG[V2]→ SHG[V ] ∆V1,V2 : SHG[V ]→ SHG[V1]⊗ SHG[V2] (81)
h1 ⊗ h2 7→ h1 t h2 h 7→ h|V1 ⊗ h/SV2,

where we also have h|V = {e ∈ h | e ⊆ V } and h/V = {e ∩ V c | e * V }. The difference with
HG is that here we are working with sets instead of multisets. So even if two edges e1 and
e1 are such that e1 ∩ V = e2 ∩ V = e, there will only be one edge e in h/V .

As this structure is very similar to the one over hypergraphs, it is of no surprise that
the polynomial invariants also have similar expression.

Proposition 3.46. Let ζ be a character of KSHG, V be a finite set and h ∈ SHG[V ] a
simple hypergraph. We then have:

χζV (h)(n) =
∑
f∈Ah

ζ(f(h))|Ch,f,n|,

χζV (h)(−n) =
∑
f∈Ah

(−1)cc(f(h))ζ(f(h))|Ch,f,n|.

If ζ is a characteristic function, then χζ(h)(n) is the number of strictly compatible pairs of
acyclic ζ-orientations of h and colorings with [n]. Furthermore, if ζ is odd (−1)|V |χζV (h)(−n)
is the number of compatible ones. In particular, (−1)|V |χζV (h)(−1) is the number of acyclic
ζ-orientations of h.

Proof. Let mult be the species morphism from SHG to HG which sends a simple hyper-
graph on the same hypergraph. It is the right inverse of D which sends a hypergraph to its
domain. Let ζ be a character of SHG, and remark that D is a morphism of Hopf monoids
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so ζ ◦D is a character of KHG. Then Proposition 3.7 with φ = D gives us, for h a simple
hypergraph

χKHG,ζ◦D(mult(h))(n) = χKSHG,ζ(D(mult(h)))(n) = χKSHG,ζ(h)(n). (82)

The result follows, since Amult(h) = Ah. Moreover, the same goes with (strictly) compatible
colorings.

Corollary 3.47. Let V be a finite set and h ∈ SHG[V ] a hypergraph. Then χζ1(h)(n) is
the number of colorings of V such that every edge of h has only one maximal vertex and
(−1)|V |χζ1(h)(−n) is the number of compatible discrete acyclic orientation of h and color-
ings with [n]. In particular, (−1)|V |χζ1(h)(−1) is the number of discrete acyclic orientations
of h.

3.4.2 Graphs

Recall from Definition 2.7 that a graph over V is a hypergraph whose edges are all of
cardinality 2. The species KG is not stable under the restriction in KHG but it still admits
a close Hopf monoid structure which was given in Example 3.1. The structure maps are
given by

µV1,V2 : G[V1]⊗G[V2]→ G[V ] ∆V1,V2 : G[V ]→ G[V1]⊗G[V2] (83)
g1 ⊗ g2 7→ g1 t g2 g 7→ g|V1 ⊗ g/V2 ,

where g/V2 is defined in the same way as in KHG and g|V1 = {e ∈ g | e ⊆ V1} is the
contraction of V2 to g as a hypergraph i.e. g|V1 = g/V2 .

Usually an orientation of a graph is what we call here a discrete orientation. We hence
introduce the notion of partial orientation of a graph which we think is more intuitive than
the notion of admissible orientation in the case of graphs. A partial orientation of a graph g
is a discrete orientation of a sub-graph h of g. The partial orientations of g are in bijection
with the admissible orientations of g by the map κ which sends a partial orientation f on
the admissible orientation κf defined by κf (e) = f(e), if f(e) is defined, and κf (e) = e
else. For f a partial orientation of g, we denote by f(g) the sub-graph of g formed of the
non-oriented edges. One can think of it as if we followed the oriented edges while erasing
them behind us. This is the same than the graph obtained by leaving aside the edges of
size 1 in κf (e). A partial orientation is acyclic if it is trivial (no edge is oriented) or it is
not possible to complete it in order to obtain a cycle. It is equivalent to say that its image
by κ is acyclic and we will consider Ag as the set of acyclic partial orientations on g in the
rest of this subsubsection.

A coloring c of V is strictly compatible (resp compatible) with a partial orientation f of
g if f(e) = maxc(e) (resp f(e) ⊆ maxc(e)) when f(e) is defined and the rest of the edges
are monochromatic, maxc(e) = e.

51



Example 3.48. We represent here a cyclic partial orientation and a coloring with {1, 2}
along its strictly compatible partial orientation.

a c

b d

a c

b d

A cyclic partial orientation A coloring and its strictly compatible partial orientation

(84)

For ζ a character of KG, a ζ-partial orientation of g is a partial orientation f such that
ζ(f(g)) 6= 0. A character ζ is odd if the connected graphs on which it is not null have an
odd number of vertices.
Remark 9. In the literature, the preferred notion is that of pairs of flats F and discrete
acyclic orientations of the quotient graph g/F . A flat F of a graph g is a sub-graph of g
of the form µD ◦∆D(g) = g|D1 t · · · t g|Dn for D � g. The quotient g/F is then the graph
obtained by deleting the edges in F and merging all the vertices which shared a connected
component in F . The bijection with acyclic orientations of g is again easy to see: send a
pair (F, a) of a flat and a discrete acyclic orientation of g/F on the acyclic orientation f
defined by f(e) = a(e) if e 6∈ F and f(e) = e else.

We preferred the notion of acyclic partial orientation which is more coherent in our
context. All our results over hypergraphs were expressed in terms of acyclic orientations
and not pairs of flat and acyclic orientation, as is done in [10]. Still, we also give our result
in term of flats for the sake of completeness. For ζ a character of KG, a ζ-flat of g is a flat
on which ζ is not null.

Proposition 3.49. Let ζ be a character of KG, V be a finite set and g ∈ G[V ] a graph.
We then have:

χζV (g)(n) =
∑
f∈Ag

ζ(f(g))|Cg,f,n| =
∑

F∈Flats(g)

∑
a∈Ag/F

ζ(F )|Cg/F,a,n|,

χζV (g)(−n) =
∑
f∈Ag

(−1)cc(f(g))ζ(f(g))|Cg,f,n| =
∑

F∈Flats(g)

∑
a∈Ag/F

ζ(F )|Cg/F,a,n|.
(85)

If ζ is a characteristic function, then χζ(g)(n) is the number of strictly compatible pairs
of acyclic ζ-partial orientations of g and colorings with [n]. Furthermore, if ζ is odd
(−1)|V |χζV (g)(−n) the number of compatible ones. In particular, (−1)|V |χζV (g)(−1) is the
number of acyclic ζ-partial orientations of g.

Proof. Let HG≤2 be the set sub-species of HG of hypergraphs with edges of size at most
2. The species KHG≤2 is stable under product and co-product and is hence a Hopf sub-
monoid. Let s : HG≤2 → G be the set species morphism which forget edges of size 1. Then
s : KHG≤2 → G is a morphism of Hopf monoid. Let ζ be a character of G. Proposition 3.7
gives us, for g a graph,

χKHG≤2,ζ◦s(g)(n) = χKG,ζ(s(g))(n) = χKG,ζ(g). (86)

This concludes the proof.
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A proper coloring of a graph is a coloring such that no edge has its two vertices of the
same color. The chromatic polynomial of a graph g is the polynomial Tg such that Tg(n)
is the number of proper colorings with n colors.

Corollary 3.50 (Proposition 18.1 in [2]). Let g be a graph. Then χKG,ζ1(g)(n) = Tg(n).

Proof. From Corollary 3.37 we know that χKG,ζ1(g)(n) is the number of colorings with [n]
such that each edge has a unique maximal vertex. In the case of a graph, this is equivalent
to saying that no edge has its two vertices of the same color, i.e. it is a proper coloring.

In particular, by evaluating χKG,ζ1 on non positive integers, we recover the classical
reciprocity theorem of Stanley [44].

Remark 10. As was the case for simple hypergraphs and hypergraphs, the polynomial
invariants of the Hopf sub-monoid of simple graphs KSG of KSHG admit the same formulas
than the polynomial invariants defined there.

3.4.3 Simplicial complexes

In [11] Benedetti, Hallam, and Machacek constructed a combinatorial Hopf algebra of
simplicial complexes. In particular they obtained results over some polynomial invariant
which we generalize in this subsubsection.

An abstract simplicial complex, or simplicial complex, on V is a collection C of subsets
of V , called faces, such that any non empty subset of a face is a face i.e. I ∈ C and
∅ ( J ⊂ I implies J ∈ C. We denote by SC the set species of simplicial complexes.
Proposition 21.1 of [2], states that the linear species KSC of simplicial complexes is a
sub-monoid of KSHG.

Let us now give a simple lemma which will be useful in this subsubsection and the next
one, see Figure 87 for an example of what this lemma is about.

Lemma 3.51. Let V be finite set, h ∈ SHG[V ] be a simple hypergraph and f an acyclic
orientation of h. Let and e and e′ two edges of h of size at least 2 such that e′ ⊂ e. Then
if f(e) ∩ e′ 6= ∅, necessarily f(e) ∩ e′ = f(e′).

a

b

c

a

b

c

(87)

Two counter examples of Lemma 3.51. We see that we have a cycle in both cases.
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Proof. Let e and e′ be two such edges. Suppose there exists v ∈ f(e′) such that v 6∈ f(e)∩e′.
Then f(e′) ∩ fs(e) 6= ∅ and since f(e) ∩ e′ 6= ∅, we have either f(e) ∩ fs(e′) 6= ∅ or the
strict inclusions ∅ ( f(e) ∩ f(e′) ( f(e′). This makes the sequence e′, e a cycle. Hence
f(e′) ⊆ f(e)∩e′. Suppose now there exists v ∈ f(e)∩e′ such that v 6∈ f(e′). Then similarly
to the previous case, f(e) ∩ fs(e′) 6= ∅ and either f(e′) ∩ fs(e) or ∅ ( f(e′) ∩ f(e) ( f(e).
Hence f(e) ∩ e′ ⊆ f(e′) and so f(e′) = f(e) ∩ e′.

The 1-skeleton of a simplicial complex is the simple graph formed by its faces of cardi-
nality 2.

Lemma 3.52. Let be V a finite set, C ∈ SC[V ] and g the 1-skeleton of C. Then AC ∼= Ag.

Proof. The fact that every acyclic orientation of C gives rise to an acyclic orientation of g
is clear: if f ∈ AC then a cycle in f|g is also a cycle in f and hence it is not possible. This
is a bijection because from Lemma 3.51 an orientation of a simplicial complex only needs
to be defined on its faces of size 2.

For C a simplicial complex and f an acyclic orientation of its 1-skeleton, we will also
denote by f the image of f by this bijection.

Proposition 3.53. Let ζ be a character of KSC, V be a finite set, C ∈ SC[V ] be a
simplicial complex and g be the 1-skeleton of C. We then have:

χζV (C)(n) =
∑
f∈Ag

ζ(f(C))|Cg,f,n|;

χζV (C)(−n) =
∑
f∈Ag

(−1)cc(f(g))ζ(f(C))|Cg,f,n|.
(88)

If ζ is a characteristic function, then χζ(C)(n) is the number of strictly compatible pairs of
acyclic ζ-orientations of C and colorings with [n]. Furthermore, if ζ is odd (−1)|V |χζV (C)(−n)
is the number of compatible ones. In particular, (−1)|V |χζV (C)(−1) is the number of acyclic
ζ-orientations of C.

Proof. This is just a direct application of Lemma 3.52. We just observe that while we do
have CC,f,n = Cg,f,n, CC,f,n = Cg,f,n and cc(f(C)) = cc(f(g)), we do not have f(C) = f(g),
f(g) being the 1-skeleton of f(C). Hence we can not replace ζ(f(C)) and ζ-orientation of
C with ζ(f(g)) and ζ-orientation of g.

We say that a character ζ of KSC is downward compatible if ζ(C) = ζ(g) for any
simplicial complex C and g its 1-skeleton. The map which add to a graph all the edges of
size 1 is an injective map from SG to SHG. We consider SG as a set sub-species of SHG
under this map.

Corollary 3.54. Let ζ be a downward compatible character of KSC, C ∈ SC[V ] be a
simplicial complex and g be the 1-skeleton of C. Then χKSHG,ζ

V (C)(n) = χKSG,ζ
V (g)(n).

Corollary 3.55 (Corollary 28 in [8]). Let V be a finite set, C ∈ SC[V ] be a simplicial
complex and g be the 1-skeleton of C. Then χζ1V (C) is the chromatic polynomial of g.
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3.4.4 Building sets

Building sets and graphical building sets have been studied in a Hopf algebraic context by
Grujić in [27] where he gave results in link with the one obtained here.

Building sets were independently introduced by De Concini and Procesi in [19] and by
Schmitt in [42]. A building set on V is collection B of subsets of V , called connected sets,
such that if I, J ∈ B and I ∩ J 6= ∅ then I ∪ J ∈ B and for all v ∈ V , {v} ∈ B. We denote
by BS the set species of building sets. By Proposition 22.3 of [2] the linear species KBS
of building sets is a sub-monoid of KSHG.

Definition 3.56 ([22] [41]). Let V be a finite set and B a building set on V . Let F be
a forest of rooted trees whose vertices are labelled by the elements of a partition π of V .
We denote by ≤ the relation “is a descendent of” over π implied by F and we denote by
F≤p =

⊔
q≤p q for p ∈ π. The forest F is then a B-forest if it satisfies the three following

conditions.

1. If r is a root of F , then F≤r is the set of vertices of the connected component
containing r.

2. For any node p, F≤p ∈ B.

3. For any k ≥ 2 and pairwise incomparable nodes p1, . . . , pk,
⋃
Fpi 6∈ B.

We denote by B -F the set of B-forest of B and call B-trees the B-forests of B when B is
a connected.

Lemma 3.57. Let V be a finite set and B a connected building set on V . Then the
B-trees also admit the following inductive definition.

• The unique B-tree of the building set on a singleton {v} is the rooted tree with only
its root {v}.

• If V is not a singleton, let r be a subset of V and denote by V1, . . . , Vk the maximal
connected component of B which does not intersect with r. For 1 ≤ i ≤ k let Bi be
the connected building set associated to Vi, which is defined by Bi = {e ∈ B | e ⊂ Vi}
and let Ti be a Bi-tree. Then the tree rooted on r obtained by doing the disjoint
union of the Ti and adding an edge between r and the roots of the Ti is a B-tree.

Remark 11. This lemma is in a way the same as saying that there is a bijection between
B-forest and nested sets of B ([22], [41]). The formulation given here is more adapted to
what we need in the sequel.

Proof. We begin by showing that the tree defined in such a way are indeed B-trees. We
do this by induction over |V |. If V is a singleton then it is obvious. Suppose now V is not
a singleton and let r, V1, . . . , Vk and B1, . . . , Bk be as defined in the lemma.
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1. To show the first item, we prove that V1, . . . , Vk is a partition of V \ r because then,
by denoting by ri the root of Ti,

T≤r = tp≤rp = r tp<r p = r ti tp≤ri = r ti Ti,≤ri = r t Vi = V, (89)

where the fourth equality is obtained by induction. Suppose Vi ∩ Vj 6= ∅. Then since
B is a building set, Vi ∪ Vj ∈ B, and since neither Vi nor Vj intersect with r, their
union does not either. This contradicts the maximality of Vi and Vj and it is hence
not possible. Let now be v ∈ V \ r then since {V } ∈ V , there exists a maximal edge
connected component not intersecting V which contains v.

2. We already showed the second case in the case of r. Let p 6= r be a node of T . Then
there exists i such that p is a node of Ti and hence by induction T≤p ∈ Bi ⊂ B.

3. Let be l ≥ 2 and p1, . . . , pl be pairwise incomparable nodes of T . Suppose that⋃
pi ∈ B. Then if there exists j such that all the pi are in Tj, all the pi would be

subset of Vj and we would have
⋃
pi ∈ Bj which is not possible by induction. So

there is at least two indices i, j such that pi ∈ Tki and pj ∈ Tkj (the pis can not be
equal to r since r is comparable to every node). Then

⋃
pi is in B but in no Bi and

hence it intersects with r by definition. This is not possible since no pi intersects
with r. This shows that

⋃
pi 6∈ B

Let now T be a B-tree, r be its root, T1, . . . , Tk be its direct sub-trees and r1, . . . , rk
be their respective roots. For 1 ≤ i ≤ k, let Vi = T≤ri = Ti,≤ri and Bi be the connected
building set associated to Vi. Then by definition of B-trees, for 1 ≤ i ≤ k, Ti is a Bi-tree.
We only need to show that the Vi are the maximal connected sets which do not intersect r
to conclude. Clearly they do not intersect r since they are union of nodes and all nodes are
pairwise disjoint. Suppose W is a connected set not intersecting r and such that Vi ( W
for one of the Vis. Since V1, . . . , Vk forms a partition of V \ r, W must intersect with
some Vj1 , . . . , Vjl , jm 6= i for 1 ≤≤ l. Suppose without loss of generality that jm = m and
i = l + 1. Then W

⋃
1≤j≤l Vj ∈ B since B is a building set. But this is not possible since

this is also equal to
⋃

1≤j≤l+1 Vj =
⋃

1≤j≤l+1 T≤rj and the rj are pairwise incomparable.
Hence the Vi are maximal.

Example 3.58. We represented here an induction step of the construction of a B-tree.
The set W is in red and the connected sets in blue are the maximal connected sets not
intersecting W .

a b c d e f g h i j

. (90)
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We also represent a B-tree obtained by beginning with the above choice:

fc ga b e id h j
.

Let V be a set, F a rooted forest on V and c a coloring of V . We say that F and c are
(strictly) compatible if c is a (strictly) increasing map on F . Respectively denote by CF,n
and CF,n the set of colorings strictly compatible and compatible with F .

Lemma 3.59. Let V be a finite set and B a building set on V . Then there is a bijection
AB ∼= B -F which preserves (strict) compatibility with colorings.

Proof. First remark that for B and B′ two building sets over two disjoint sets we have
ABtB′ = AB × AB′ and B t B ’-F = B -F × B ’-F , so it is sufficient to prove this lemma
on connected building sets and B-trees.

We construct a bijection b between AB and B -F by induction on |V |. If V is a singleton
then there is a unique B-tree possible and a unique acyclic orientation possible and the
bijection is trivial. Suppose now V is not a singleton. Let f be an acyclic orientation of
B. Let V1, . . . Vk be the maximal connected sets not intersecting f(V ) and B1, . . . , Bk their
associated connected building sets. Then for i ∈ [k], f|Vi is an acyclic orientation of Bi and
Ti = b(f|Vi) is a Bi-tree for 1 ≤ i ≤ k. Define b(f) as the rooted tree in f(V ) obtained by
doing the disjoint union of the Ti and adding an edge between f(V ) and the roots of the
Tis. Then b(f) is a B-tree by Lemma 3.57.

Let now T be a B-tree and r, V1, . . . , Vk and B1, . . . , Bk as defined in Lemma 3.57.
Let B0 be the set of edges intersecting with r and let b−1(T ) be the orientation defined
by b−1(T )(e) = b−1(Ti)(e) if e ∈ Bi and b−1(T )(e) = r if e ∈ B0. Suppose there exists
e1, . . . , ek a cycle in b−1(T ). Since r, V1, . . . , Vk is partition of V , this cycle must be entirely
contained in one of the Bi. Since by induction this cycle can not be entirely in a Bi, it
must be contained in B0. But for every edge in e ∈ B0 b

−1(f)(e) = r. Hence b−1(f) is
acyclic.

The fact that in the two preceding constructions the root of the B-tree is the im-
age of the connected component along with the induction hypothesis enable us to con-
clude that the b and b−1 thus defined are indeed inverse functions. It also gives us
that b preserves (strict) compatibility with colorings, since for a (strictly) compatible
coloring c of f the color c(f(V )) is necessarily the maximal color: f(V ) = maxc(V ) =
{v ∈ V | c(v) is maximal in V }.

Let B be a building set and F be a B-forest. The F -induced building set is the build-
ing set whose connected sets are obtained by taking the non empty intersection of each
connected set with the maximum node possible in F . We denote it by B ∩ F . For ζ a
character of KBS we say that F is a ζ-B-forest if ζ(B ∩ F ) 6= 0.
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Proposition 3.60. Let ζ be a character of KBS, V be a finite set and B ∈ BS[V ] be a
building set. We then have:

χζV (B)(n) =
∑

F∈B-F

ζ(B ∩ F )|CF,n|,

χζV (B)(−n) =
∑

F∈B-F

(−1)cc(B∩F )ζ(B ∩ F )|CF,n|.
(91)

If ζ is a characteristic function, then χζ(B)(n) is the number of strictly compatible pairs
of ζ-B-forests and colorings with [n]. Furthermore, if ζ is odd (−1)|V |χζV (B)(−n) is the
number of compatible ones. In particular, (−1)|V |χζV (B)(−1) is the number of ζ-B-forest.

Proof. Again, this is a direct application of the previous lemma. We just need to remark
from the construction of the bijection of Lemma 3.59 that with our definition of B ∩F we
have B ∩ F = b−1(F )(B).

3.4.5 Graphs, ripping and sewing

The linear species KSG of simple graphs admits another Hopf monoid structure than
the one given in Example 3.1 and subsubsection 3.4.2. This Hopf monoid is defined in
Definition 23.2 of [2] and its structure maps are given by

µV1,V2 : SG[V1]⊗ SG[V2]→ SG[V ] ∆V1,V2 : SG[V ]→ SG[V1]⊗ SG[V2] (92)
g1 ⊗ g2 7→ g1 t g2 g 7→ g|V1 ⊗ g/V1 ,

where g|V1 is the sub-graph of g induced by V1 and g/V1 is the simple graph on V2 with an
edge between v and v′ if there is a path from v to v′ in which all the vertices which are
not ends are in V1. These two operations are respectively called ripping out V1 and sewing
through V1.

Here is an example of co-product with the set V = {a, b, c, d, e, f} and V1 = {b, c, e}
and V2 = {a, d, f}:

c

a

b

d

e

f

7→
c

b

e

⊗ a

d

f

(93)

Definition 3.61 (Definition 23.1 in [2]). Let be g ∈ SG[V ]. A tube is a subset W ⊆ V
such that g|W is connected. The set of tubes of g is a building set called graphical building
set of g and which we denote tubes(g).

By Proposition 23.3 of [2] we know that g 7→ tubes(g) is a Hopf monoid morphism from
KSG to KBS.

58



Definition 3.62. Let be V be a finite set and g ∈ SGc[V ] a connected simple graph.
A partitioning tree of g is a rooted tree whose vertices are labelled by the elements of a
partition of V and which is inductively defined by the following.

• If V is a singleton, then the unique partitioning tree is the trivial tree with V as sole
vertex.

• Else choose W ⊂ V and a partitioning tree for each connected component of gV \W .
The tree with root W and direct sub-trees these partitioning trees is then a parti-
tioning tree of g.

If g is not connected anymore, a partitioning forest of g is the disjoint union of partitioning
trees of each connected component of g. We denote by PF(g) the set of partitioning forest
of g.

Let g be a simple graph and F be a partitioning forest of g. The graph ripped and
sewed through F is the graph gT obtained by the following process. Begin with gT = ∅ and
iteratively repeat the following: for each leaf V of F , add gV to gF and sew g through V .
Delete all the leaves of F and repeat the previous operation. The process terminates when
F is empty. For ζ a character of KSG, we say that F is a ζ-partitioning forest if ζ(gF ) 6= 0.

Proposition 3.63. Let ζ be a character of KSG, V be a finite set and g ∈ SG[V ] be a
simple graph. We then have:

χζV (g)(n) =
∑

F∈PF(g)

ζ(gF )|CF,n|,

χζV (g)(−n) =
∑

F∈PF(g)

(−1)cc(gF )ζ(gF )|CF,n|.
(94)

If ζ is a characteristic function, then χζ(g)(n) is the number of strictly compatible pairs of ζ-
partitioning forests of g and colorings with [n]. Furthermore, if ζ is odd (−1)|V |χζV (g))(−n)
is the number of compatible ones. In particular, (−1)|V |χζV (g)(−1) is the number of ζ-
partitioning forests of g.

Proof. Since χKSG,ζ(g)(n) = χKBS,ζ◦tubes−1 ◦ tubes(g)(n), we only must verify that the
partitioning forest of g are the tubes(g)-forest and that tubes(gF ) = tubes(g) ∩ F . We do
this in the case where g is connected, the other case being a direct consequence from this
one. This is quite straightforward: in the definition of a partitioning tree, the set W is a
subset of V = tubes(g) and if V1, . . . , Vk are the set of vertices of the connected components
of gV \W , then there are the maximal connected sets of tubes(g) which does not intersect
with g. This and Lemma 3.57 show that the definition of partitioning trees of g is the same
than that of tubes(g)-trees and hence they are the same objects.

Let us now show that tubes(gT ) = tubes(g) ∩ T . Let V1, . . . , Vk be the nodes of T
starting with the leaves and going the way up until the root. Denote by D the partition
V1, . . . , Vk. Then by definition of gT , gT = µD ◦ ∆D(g). Since tubes is a Hopf monoid
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morphism, we have that tubes(muD ◦∆D(g)) = µD ◦∆D(tubes(g)) = maxD(tubes(g)) =
b(T )(tubes(g)) = tubes(g) ∩ T , where maxD is the unique strictly compatible orientation
of D and b is the bijection defined in Lemma 3.59.

We have a particular interpretation of this proposition for the basic character.

Corollary 3.64 (Corollary 34 in [8]). Let V be a finite set and g ∈ SG[V ] a simple graph.
Then χζ1V (g)(n) is the number of colorings of V with [n] such that every path in g with
ends of the same color has a vertex of color strictly greater than the colors of the ends.

Proof. Again we only show this in the case of g connected. Since ζ1 is the characteristic
function of discrete elements, the ζ1-partitioning trees are the trees where every node is a
singleton. Let T be a partitioning tree of g and c a coloring strictly compatible with T .
Let {v} and {v′} be two nodes of T of the same color. Then they are incomparable by
definition of strict compatibility. Let {a} be their lowest common ancestor and A the set
of strict ancestors of a (a 6∈ A). Again by definition of strict compatibility, a has a color
strictly greater than v and v′. Every path from v to v′ must pass by a since v and v′ are
in two different connected components of gV \A∪{a} be in a same connected component of
gV \A.

Let now c be a coloring of V such that every path in g with ends of the same color has
a vertex of color strictly greater than the colors of the ends. Then there is a unique vertex
in c which is of maximal color: else, since g is connected, we would have a path between
two of them and hence a vertex with a color strictly greater. Let v be the unique vertex
of maximal color. Then each connected component of gV \v must also have one vertex of
maximal color. Hence we have an inductive way to construct a tree strictly compatible
with c. Since this way coincides with the definition of partitioning tree whose vertices are
singletons, this concludes the proof.

3.4.6 Partitions

Recall that a partition of V is a set {P1, . . . , Pk} of disjoint non empty sets, called parts,
such that tiPi = V . The linear species KΠ admits a Hopf monoid structure with structure
maps:

µV1,V2 : Π[V1]⊗ Π[V2]→ Π[V ] ∆V1,V2 : Π[V ]→ Π[V1]⊗ Π[V2] (95)
π1 ⊗ π2 7→ π t π2 π 7→ π|V1 ⊗ π|V2 ,

where for π = {P1, . . . , Pk}, π|V1 is the partition of V1 obtained by taking the intersection
with V1 of each part Pi and forgetting the empty parts.

A cliquey graph is a simple graph which is the disjoint union of cliques. The species
morphism which sends a partition {P1, . . . , Pk} on the cliquey graph composed of the cliques
on P1, . . . , Pk. By Proposition 24.2 of [2], this is a Hopf monoid morphism KΠ → KSGcop

with the ripping and sewing Hopf structure on KSG.
We say that a partition τ refines a partition π, and denote τ ≺ π is the parts of π

are the unions of the parts of τ . For D a decomposition, denote by π(D) the partition
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obtained by forgetting the order and the empty parts of D. We say that a decomposition
D is induced by π is π(D) ≺ π For ζ a character of KΠ, we say that a decomposition D is
a ζ-decomposition if ζ(π(D)) 6= 0.

Proposition 3.65. Let ζ be a character of KΠ, V be a finite set and π ∈ Π[V ] be a
partition. We then have:

χζV (π)(n) =
∑
τ≺π

ζ(τ)`(τ)!

(
n

`(τ)

)
(96)

If ζ is a characteristic function, then χζ(π)(n) is the number of ζ-decomposition of size n
induced by π.

Proof. As done in the previous section, since χ is multiplicative we only need to look at
the trivial partition π = {V }. Let g be the image of π by the previously defined morphism
i.e. g is the cliquey graph over V . For W ⊂ V , it is clear that gV \W is the cliquey graph
over V \W and the partitioning trees of g are then chain trees. These are in bijection with
compositions of V . By definition of gT , for T = T1, . . . , Tk such a tree/decomposition, gT
is the disjoint union of the cliquey graphs over V1, . . . , Vk. A coloring strictly compatible
with a line tree with k vertices is an increasing map from [k] to [n]. This is equal to

(
n
k

)
and is the number of decomposition of size n which reduce to the line tree when forgetting
the empty parts. Hence we have χζV ({V })(n) =

∑
P�V ζ(π(P ))

(
n

`(P )

)
which is equal to the

desired formula grouping by partitions τ such that π(P ) = τ .

We do not give the formula for the negative integers here since the formula for the non
negative ones is sufficiently explicit and the objects are simple enough that the notion of
compatible colorings is not particularly revealing.

3.4.7 Set of paths

A word on V is a total ordering of V . The paths on V are the words on V quotiented by
the relation w1 . . . w|V | ∼ w|V | . . . w1. A set of paths α of V is a partition {V1, . . . , Vk} of V
with a path si on each part Vi and we will write α = s1| . . . |sl. We denote by Path the set
species of set of paths. The linear species KPath of sets of paths admits a Hopf monoid
structure with structure maps

µV1,V2 : Path[V1]⊗ Path[V2]→ Path[V ] ∆V1,V2 : Path[V ]→ Path[V1]⊗ Path[V2] (97)
α1 ⊗ α2 7→ α1 t α2 α 7→ α|V1 ⊗ α/V1

where if α = s1| . . . |sl, α|V1 = s1 ∩ S| . . . |sl ∩ S forgetting the empty parts and α/V1 is
the set of paths obtained by replacing each occurrence of an element of V1 in α by the
separation symbol | and removing the multiplicity of |.

Example 3.66. For V = {a, b, c, d, e, f, g} and V1 = {b, c, e} and V2 = {a, d, f, g}, we
have:

∆V1,V2(bfcg|aed) = bc|e⊗ f |g|a|d. (98)
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For α = s1| . . . |sl a set of path, denote by l(α) the simple graph whose connected
components are the paths induced by s1, . . . , sl. By Proposition 25.1 of [2] we know that
α 7→ l(α) is a morphism of Hopf monoids from KPath to KSGcop.

Example 3.67. For V = {a, b, c, d, e, f, g} and α = bfcg|aed, l(α) is the following graph:

a

b c

de

f g

. (99)

We only give the interpretation for χζ1 here.

Proposition 3.68 (Corollary 38 in [8]). Let V be a finite set and α ∈ Path[V ] be a
path on V . Then χζ1V (α)(n) is the number of strictly compatible pairs of binary trees with
|V | vertices and colorings with [n] and χζ1V (α)(−n) is the number of compatible pairs of
binary trees with |V | vertices and colorings with [n]. In particular χζ1V (α)(−1) = C|V | where
Cn = 1

n+1

(
2n
n

)
is the n-th Catalan number.

Proof. First remark that by definition of χ, we have χKSGcop
= χKSG and so

χKPath,ζ1
V (α)(n) = χKSG,ζ1

V (l(α))(n). Fix one of the two total orderings of V induced by
α so that we can consider the left and the right of a vertex v of l(α). Then each vertex
of l(α) is totally characterised by the number of vertices on its left (and on its right) and
hence the partitioning trees of l(α) with singletons for vertices are exactly the binary trees
with |V | vertices.
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4 Operads on graphs
In the last decades, several interesting operads on trees have been defined. Amongst
these tree operads, maybe the most studied are the pre-Lie operad PLie [17] and the
nonassociative permutative operad NAP [35]. We aim in this section to generalize the
operadic structure of PLie and NAP to any kind of graph-like object, as defined in
Definition 2.7. This section is a replica of the article [6] which is a collaboration of the
author with Jean-Christophe Aval, Adrian Tanasa and Samuele Giraudo. The results
presented here can also be found in [7], the extended abstract of [6] for FPSAC 2020.

This section is organized as follows. In Subsection 4.1 we give the definitions of operads
as well as classical results on these objects. In Subsection 4.2 we propose new ways of
constructing species and operads. We use these new constructions in Subsection 4.3 to
define and study the main operads of interest of this section. Finally, in Subsection 4.4 we
investigate several properties of these operads: we describe an explicit link with the pre-Lie
operad mentioned above, and we study interesting (finitely generated) sub-operads.

All the species considered in this section are positive and we will just write species for
positive species. For KB a vector space with basis B and v =

∑
b∈B abb ∈ KB, we call

support of v the elements of b ∈ B such that ab 6= 0.

4.1 Operads

We give here basic definitions and results of the theory as well as some classical examples.
We refer the reader to [40] and [36] for a more general approach to the theory of operads.
The reader may note some similarities between the definition of an operad and the monoid
part of a Hopf monoid. Moreover, we refer the reader to [4] for an in depth study of
monoids in monoidal categories.

4.1.1 Definitions and examples

In Example 2.5 we described the elements of the composition of two species R(S) as
elements of R labelled with elements of S. It is thus natural to wonder if from one element
of S(S), one can recover an element of S. We already provided an example with E+

by noting that E+(E+) is isomorphic to the species of partitions, which are indeed sets.
A straightforward example is Pol+(Pol+), where we can recover a polynomial by doing
the classical composition of polynomials. Moreover, this polynomial composition is such
that we can consider elements of the form P (Q,R) and P (Q(R)) without ambiguity, and
the trivial polynomial x behaves as the unity for the composition. Operads are a general
solution to this question. In the following definitions, while the composition does not
appear in the axioms, the axioms do translate what we want: the elements ∗,∗1 and ∗2 are
to be thought as the “variables” where we compose.

A symmetric linear operad is a positive linear species O equipped with an unity e :
KX → O and a morphism of linear species ◦∗∗ : O′ · O → O called partial composition,
such that the following diagrams commute
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O′′ · O2 O′ · O O′ · O′ · O O′ · O

O′ · O O O′ · O O

◦∗1

◦∗2◦Id·τ ◦∗2

◦∗1 ·Id

Id·◦∗2 ◦∗2
◦∗1 ◦∗1

O′ · KX O′ · O KX ′ · O

O

O′·e

p ◦∗

e′·O

∼=

where τ : x⊗ y 7→ y ⊗ x and pV : x⊗ v 7→ O[σ](x) with σ is the bijection that sends ∗ on
v and is the identity on V \ {v}.

We refer to symmetric linear operads as operads. Note that while we only used partial
compositions over ghost vertices in our definition, we can consider them over any element
v ∈ V .

A sub-operad of an operad O is a sub-species of O containing the image of e and stable
under partial composition. For O an operad, the sub-operad of O generated by a set E
of elements of O is the smallest sub-operad of O containing E. A morphism of operads
f : O1 → O2 is a morphism of species stable under the structure maps: f ◦ e = e and
f(x ◦∗ y) = f(x) ◦∗ f(y).

In practice the map e is often trivial and we do not mention it. Let us now give a series
of examples of operads.

Com. The species KE+ has a natural operad structure given by the partial composition
{V1 + ∗} ◦∗ {V2} = {V1 + V2}. This operad is called the commutative operad and
denoted by Com. For instance, we have:

a

b

c

∗ ◦∗
1

2

=
a

b

c

1

2

. (100)

In this context we denote by µV = {V } the basis element of Com[V ] so that
Com[V ] = KµV .

Perm. The species KId has a natural operad structure given by v ◦∗ w = v|∗←w which
is equal to w if v = ∗ and equal to v else. This operad is called perm operad or
commutative diassociative operad and denoted by Perm.

Polynomials. As announced, the species KPol+ has a natural partial composition given
by the composition of polynomials: for p1(v1, . . . , vk, ∗) and p2(v′1, . . . , v

′
l) two poly-

nomials over disjoint sets of variables,

(p1 ◦∗ p2)(v1, . . . , vk, v
′
1, . . . , v

′
l) = p1|∗←p2 = p1(v1, . . . , vk, p2(v′1, . . . , v

′
l)). (101)
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One can directly check that this partial composition satisfies the commutative dia-
grams of Definition 4.1.1. This turns KPol+ into an operad where the units are the
singleton polynomials v ∈ Pol+[{v}].
The injective species morphism of Example 2.3.2 from Id to Pol+ defined by v 7→ v
is an operad morphism from KId to KPol+ and hence makes KId a sub-operad of
KPol+. The three morphisms of linear species from Com to KPol+ respectively given
by µV 7→

∏
v∈V v, µV 7→

⊕
v∈V v and µV 7→

∑
v∈V v are all operad morphisms and

give three ways to see KE+ as a sub-operad of KPol+.

NAP. Let be t1 and t2 be two rooted trees and let t1 ◦∗ t2 be the rooted tree obtained by
the following operation.

1. Remove the vertex ∗ from t1 and take the union of the resulting forest with t2.

2. Add an edge between the parent of ∗ in t1 and the root of t2.

3. Add an edge between each child of ∗ in t1, and the root of t2.

This operation is a partial composition and turns the species KT • of rooted trees into
an operad. This operad is called non associative permutative operad [35] (or NAP for
short) and is denoted by NAP. For instance, by depicting the roots by squares, we
have:

∗

a

b

◦∗ c d =

a

b

c d . (102)

PreLie. Let be t1 and t2 be two rooted trees and let t1 ◦∗ t2 be the sum over all rooted
trees obtained by the following operation.

1. Remove the vertex ∗ from t1 and take the union of the resulting forest with t2.

2. Add an edge between the parent of ∗ in t1 and the root of t2.

3. For each child of ∗ in t1, add an edge between this vertex and any vertex of t2.

This operation is a partial composition and turns the species KT • into an operad.
This operad is called pre-Lie operad [17] and is denoted by PLie. Remark that the
partial composition of t1 and t2 as elements of NAP is always in the support of the
partial composition of t1 and t2 as elements of PLie. For instance, we have:

∗

a

b

◦∗ c d =

a

b

c d +

a

b

c d . (103)

Hadamard product. If O1 and O2 are two operads, then the species O1 ×O2 is also an
operad with partial composition: (x1 ⊗ x2) ◦∗ (y1 ⊗ y2) = (x1 ◦∗ y1)⊗ (x2 ◦∗ y2).
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4.1.2 Free operad, generators and relations

In all the above examples, we defined operads by explicitly describing the vector spaces
O[V ] and the partial compositions. There is another way to present an operad which is as
a quotient of a free operad.

Let S be a positive linear species such that S = KX + S2+ . Recall from subsubsec-
tion 2.1.4 that SS is the species whose elements are trees decorated with S. This species has
a natural operad structure given by the grafting of trees. For t1 ∈ S ′

S[V1] and t2 ∈ SS[V2],
the partial composition t1 ◦∗ t2 is the tree obtained by grafting t2 on the leaf ∗ of t1 and
relabeling the nodes of t1 accordingly. This operad is called free operad over S and we
denote it by FreeS.

Example 4.1. We give here an example of partial composition in a free operad over a
species with an element x of size 3 and y of size 2.

x12,∗,3

y1,2 ∗
3

1
2

◦∗
y4,5

4

5
=

x12,45,3

y1,2 y4,5

4

5

3

1
2

(104)

In the case of linearized species KS, we also denote by FreeS = SS so that we have
KFreeS = FreeKS.

Remark 12. In the sequel, we consider free operads over species which are sub-species of an
operad O. When this happens, we denote by ◦ξ∗ the partial composition in the free operad
in order to not confuse it with the partial composition in O.

Example 4.2 (ComMag). Let sym2 be the set species over one symmetric element
of size 2. More formally, it is the set species defined by sym2[V ] = ∅ if |V | 6= 2 and
sym2[{a, b}] = {sab} else. The action of the transposition (ab) is then necessarily trivial:
sba = (ab) · sab = sym2[(ab)](sab) = sab. The operad KFreesym2 is then an operad structure
over abstract binary trees. This operad is called commutative magmatic operad [14] and is
denoted by ComMag.

An ideal of an operad O is a sub-species I such that the image of the products O′ · I
and I ′ · O by the partial composition maps are in I. The quotient species O/I defined by
(O/I)[V ] = O[V ]/I[V ] is then an operad with the natural partial composition and unit
: [x] ◦∗ [y] = [x ◦∗ y] where [x] is the equivalence class of x. For G a species, if R is a
sub-species of FreeG, we denote by (R) the smallest ideal of FreeG containing R and write
that (R) is generated by R.

Denote by Free
(2)
G the sub-species of FreeG of trees with two internal node.
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Definition 4.3. Let G be a species and R be a sub-species of FreeG. We denote by
Ope(G,R) = FreeG/(R) the operad generated by G and with relation R. The operad
Ope(G,R) is binary if the species G of generators is concentrated in cardinality 2 (i.e.
for all n 6= 2, G[[n]] = {0}). This operad is quadratic if the species R of relations is a
sub-species of Free(2)

G .

For S a species and E a set of elements of S, the species generated by E is the smallest
sub-species of S containing E.

Example 4.4. The operad Com is the quotient of the free operad over one symmetric
element of size two by the associativity relation. More formally, denote by R the sub-
species of ComMag(2) generated by the associativity relation sa∗ ◦∗ sbc − sc∗ ◦∗ sab. Then
Com = Ope(Ksym2,R). This operad is hence binary and quadratic.

4.1.3 Koszul duality

For S a linear species, we denote by S∗ the dual species of S which is defined by S∗[V ] =
S[V ]∗ and S∗[σ](f) = f ◦S[σ−1]. We denote by S∨ a species defined by S∨[V ] = S∗[V ] and
S∨[σ](f) = sign(σ)f ◦ S[σ−1], where sign(σ) is the signature of σ. It is indeed a species
and not the since this does not define the maps S[σ] when σ is a bijection between two
different sets. This is not a problem and any of the possible species will do. For the sake
of simplicity, we will specify how certain maps act when necessary (see Example 4.6).

Definition 4.5. Let O = Ope(G,R) be a binary quadratic operad. Define the linear form
〈− |−〉 on Free

(2)
G∨ × Free

(2)
G by

〈f1 ◦∗ f2 |x1 ◦∗ x2〉 = f1(x1)f2(x2), (105)

The Koszul dual of O is then the operad O! = Ope(G∨,R⊥) where R⊥ is the orthogonal
of R for 〈− |−〉.

Example 4.6. Let α, β ∈ A = {a, b, c . . . , z, ∗} be two letters in the Latin alphabet plus ∗,
such that α appears before β (∗ appears after z). We then denote by s∨αβ ∈ (Ksym2)∨[{α, β}]
the dual of s = sαβ = sβα ∈ sym2[{α, β}] and for σ a bijection with domain {α, β} and co-
domain in A we denote by sσ(α)σ(β) = (Ksym2)∨[σ](sαβ). In particular we have sβα = −sαβ.

For this example, also denote [a, b] = s∨ab. The Lie operad Lie is the quotient of the free
operad over one antisymmetric generator by the Jacobi relation. More formally, let R be
the sub-species of Free(2)

(Ksym2)∨ generated by the Jacobi relation [a, [b, c]]+[c, [a, b]]+[b, [c, a]

(one can check that this is indeed stable under the action of Sa,b,c and hence R is indeed a
species). Then Lie = Ope((Ksym2)∨,R). This operad is the Koszul dual of Com. Indeed,

67



we have, for example:

〈s∨a∗ ◦∗ s∨bc + s∨c∗ ◦∗ s∨ab + s∨b∗ ◦∗ s∨ca | sa∗ ◦∗ sbc − sc∗ ◦∗ sab〉
= 〈s∨a∗ ◦∗ s∨bc | sa∗ ◦∗ sbc〉+ 〈s∨c∗ ◦∗ s∨ab | sa∗ ◦∗ sbc〉+ 〈s∨b∗ ◦∗ s∨ca | sa∗ ◦∗ sbc〉
− 〈s∨a∗ ◦∗ s∨bc | sc∗ ◦∗ sab〉 − 〈s∨c∗ ◦∗ s∨ab | sc∗ ◦∗ sab〉 − 〈s∨b∗ ◦∗ s∨ca | sc∗ ◦∗ sab〉
= s∨a∗(sa∗)s

∨
bc(sbc) + s∨c∗(sa∗)s

∨
ab(sbc) + s∨b∗(sa∗)s

∨
ca(sbc)

− s∨a∗(sc∗)s∨bc(sab)− s∨c∗(sc∗)s∨ab(sab)− s∨b∗(sc∗)s∨ca(sab)
= 1 + 0 + 0− 1− 0− 0 = 0.

(106)

4.1.4 Koszul operads

Koszulity is an important aspect of operad theory. In the sequel, we show that a particular
operad is Koszul. Since this is our only reason for introducing Koszulity, we only give here
a very quick overview of Koszulity and Gröbner bases for operads which hides a lot of the
theory. We do not give the general results but only restricted versions which suffice for
our use. We refer the reader to the literature; for a broader approach of the topic, see for
example [36], [40], [28] and [20]. In particular, all the examples presented here come from
[20].

In order to give the characterisation which interests us, we need to introduce the con-
cepts of L -species, shuffle operads and Gröbner bases. Informally, we can see these objects
as the same as species and operads, except with a total order on every set of vertices.

L -species
A set (resp linear) positive L -species consists of the following data:

• for each finite set V and total order l on V , a set (resp vector space) S[V, l], such
that S[∅, ∅] = ∅ (resp {0}).

• For each increasing bijection σ : (V, l)→ (V ′, l′), a (resp linear) map S[σ] : S[V, l]→
S[V ′, l′]. These maps should be such that S[σ1 ◦ σ2] = S[σ1] ◦ S[σ2] and S[Id] = Id.

In the sequel, we write order to designate a total order and L -species to designate
positive L -species. As for species, we can compose a set L -species S with the linearization
functor in order to obtained a linearized L -species KS. For S an L -species and l an order
on V , we also denote by S[l] = S[V, l]. We can do this since the data of V is included in l.

Example 4.7. • We denote by X the L -species defined X[V, l] = ∅ if V is not a
singleton and X[{v} , v] = v else.

• The L -species of shuffle compositions Compsh is defined as follows: the elements
Compsh[V, l] are compositions P = P1, . . . , Pk of V such that, for every 1 ≤ i < j ≤ k,
minl Pi < minl Pj.

As in the case of classical species, L -species also have constructions on them, but
before giving them, let us give some notations on orders.
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• For l an order on V and W ⊆ V a subset of V , we denote by lW the order on W
induced by l.

• For l = l1 . . . ln an order on a set V of size n, i ∈ [n] and ∗ 6∈ V , we denote by l i← ∗
the order l1 . . . li−1 ∗ li . . . ln on V + ∗.

• For l1, . . . , lk k order on pairwise disjoint sets V1, . . . , Vk, we denote by sh(l1, . . . , lk)
the set {w |wVi = li} of shuffles of l1, . . . , lk. Note that this is an “associative oper-
ation” in the sense that for l1, l2, l3 three orders, the union of the shuffles of l1 with
the elements of sh(l2, l3) is exactly sh(l1, l2, l3).

Let R and S be two linear L -species and l a total order on V . Denote by n = |V | and
let be i ∈ [n]. We define the following operations.

Product R · S[V, l] =
⊕

l∈sh(l′,l′′)

R[l′]⊗ S[l′′],

i-thDerivative Si[V, l] = S[V + ∗, l i← ∗],

Composition R(S)[V, l] =
⊕

P∈Compsh[V,l]

R[{P1, . . . , Pk} , P ]⊗ S[P1, lP1 ]⊗ · · · ⊗ S[Pk, lPk
].

Since we have the L -species KX and the notion of composition, we can define Schröder
tree on L -species in the same way as for species. In this case, for S a set L -species, the
set SS[V ] have the same description as for a set species except that the trees are now
planar instead of abstract. This is because of the orders: instead of having a partition πw
for each internal node w, we have a shuffle composition πw .

For S a L -species and l an order on V , the fact that we have an order enables us an
easier notation of the elements of SS[V, l] as operations e.g. α(l1, . . . , ln).

Example 4.8. Let S be the set L -species defined by S[V, l] = ∅ when |V | 6= 2 and
S[V, l] = [n] else. Then the elements of S sh

S [[3], 123] are the trees

x

y

1 2

3 ,

x

y

1 3

2 and

x

y1

2 3

, (107)

where 1 ≤ x, y ≤ n. This is because the only shuffle compositions of size 2 of [3] are (12, 3),
(13, 2) and (1, 23). These trees can be denoted in a more compact way by µx(µy(1, 2), 3),
µx(µy(1, 3), 2) and µx(1, µy(2, 3)).
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Let us end this brief presentation of L -species by giving their link to classical species.
Let F be the forgetful functor which send a species S on the L -species SF defined by:

• for l an order on V , SF [V, l] = S[V ].

• For σ : (V, l)→ (V ′, l′) an increasing bijection, SF [σ] is given by

SF [V, l] = S[V ]
σ→ S[W ] = SF [W, l′]. (108)

• For f : S → R a species morphism, fF is the L -species morphism given by

fF
V,l : SF [V, l] = S[V ]

f→ R[V ] = RF [V, l]. (109)

This is a forgetful functor in the sense that we forget the action σV on S[V ]. We have the
following fundamental proposition from [20].

Proposition 4.9 (Proposition 3 in [20]). Let S and R be two species. Then

(R(S))F = RF (SF ). (110)

Shuffle operads
We would like to define shuffle operads as L -species satisfying the same axioms that a

linear species must satisfy to be an operad. For now we can not do this because we do not
have the notion of derivative of a shuffle operad O′. Fortunately, there is a way to make
sense of the different species appearing in the diagrams (4.1.1).

For l an order on V and v ∈ V , denote by arglv the index of v in l: larglv = v. For R
and S two L -species we define the L -species R′ · S and R′′ · S2 as follow:

R′ · S[V, l] =
⊗

l∈sh(l1,l2)

Rargll21 [l1]⊗ S[l2],

R′′ · S2[V, l] =
⊗

l∈sh(l1,l2,l3)

R[V1 + {∗1, ∗2} , l1+]⊗ S[V2, l
2]⊗ S[V3, l

3],
(111)

where l1+ is the total order obtained by replacing l21 by ∗1 and l31 by ∗2 in lV1+{l21,l31}.
A shuffle operad is then a L -species O with a unity e and a partial composition ◦sh∗

such that the diagrams (4.1.1) commutes. For S a L -species, the free shuffle operad over
S is denoted by FreeshS and defined in the same way as the free operad over a species. The
same goes with the ideal of a shuffle operad and the notation Opesh(G,R).

Remark 13. With the notations of elements of the free operad as operations, the partial
composition of the free operad is then the composition of operation: µx(. . . , ∗, . . . ) ◦ξ∗
µy(. . . ) = µx(. . . , µy(. . . ), . . . ).

We have the following corollary from Proposition 4.9.
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Theorem 4.10 (Corollary 1 in [20]). Let G be a linear species. The image by F of the free
operad generated by G is isomorphic to the free shuffle operad generated by F (G). For R
a sub-species of FreeG, the image by F of the operad ideal generated by R is isomorphic
to the shuffle operad ideal generated by F (R). This writes as FreeF

G
∼= FreeshGF and

(R)F = (RF ).
Hence Ope(G,R)F ∼= Opesh(GF ,RF ).

Admissible order
Let S be a set L -species. In order to define the notion of Gröbner bases, we need

to introduce an order on the trees of FreeS[V, l]. Instead of giving the broader notion of
admissible order defined in [20], we only give a small variation of the path-lexicographic
ordering.

First for every order l on V , fix an order on the elements of S[l] such that for every
x < y ∈ S[l] and σ : l → l′ we have σ · x < σ · y. That is to say, the order does not
depend on the labels (but it can depend on their relative order). Given this order, we also
have an order on the words on elements of S given by the lexicographic order. Let now be
t ∈ FreeS[l1 . . . ln]. For all i ∈ [n], there is a unique path from li to the root of t. Denote
by ai the word composed, from left to right, of the labels of the nodes of this path, from
the root to the leaf. We associate to t the sequence (a1, . . . , ai, w), where w is the word
obtained by reading the leaves of t from left to right.

For two trees t, t′ ∈ S, with associated sequences (a1, . . . , an, w) and (b1 . . . , bn, w
′) we

then compare t and t′ by lexicographicaly comparing a1 with b1 then a2 with b2 etc and
reverse lexicographicaly comparing w with w′ if ai = bi for all i.

Example 4.11. The sequences attached to the trees from Example 4.8 are respectively
(xy, xy, x, 123), (xy, x, xy, 132) and (x, xy, xy, 123). We have

x

y

1 2

3 >

x′

y′

1 3

2 (112)

if x > x′ or x = x′ and y > y′ or x = x′ and y = y′.

Now that we have an order on FreeS, for x ∈ KFreeS the leading term of x is the
maximal element in its support and denote it by lt(x).

Divisibility and S-polynomials
Let S be a set L -species. A tree t of FreeshS is divisible by another tree t′ of FreeshS if

t′ is a sub-tree of t. Here a sub-tree must also conserve the order of the leaves. A tree u
of FreeshS is a small common multiple of two tree t and t′ if it is divisible by both t and t′
and its number of vertices is less than the total number of vertices of t and t′.
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Example 4.12. Let S be a set L -species and l = l1, . . . ln an order. Then the el-
ement α(β(l1, l3), γ(β(l2, l6), l4, l5)) of FreeshS has among its divisors α(β(l1, l3), l2) and
γ(β(l1, l4), l2, l3) but not γ(β(l1, l3), l2, l4).

If t is divisible by t′, then there exists trees α and β1, . . . , βk such that
t = α(. . . , t′(β1, . . . , βk), . . . ). We denote by mt,t′ the operation on any tree with same
number of leaves than t′ which associate to a tree u the tree α(. . . , u(β1, . . . , βk), . . . ). Let
now V be a finite set, l an order on V and x, y ∈ KFreeF

S [V, l]. Assume lt(x) and lt(y)
have a small common multiple u. Then we have mu,lt(x)(lt(x)) = u = mu,lt(y)(lt(y)). We
call S-polynomial of x and y (corresponding to u) the element

su(x, y) = mu,lt(x)(x)− cx
cy
mu,lt(y)(y), (113)

where cx and cy are the respective coefficients of the leading terms of x and y.

Gröbner bases and Koszulity
We can finally give the definition of a Gröbner bases and a Koszul operad.

Definition 4.13 (Definition 13 in [20]). Let G be a set L -species and R be a L -sub-
species of FreeshG . Let B be basis of R. We say that B is a Gröbner bases of R if for every
x ∈ (R), the leading term of x is divisible by the leading term of one element in B.

Definition 4.14 (Corollary 3 in [20]). Let G be a set L -species and R be a quadratic
L -sub-species of FreeshG . We say that Opesh(G,R) is Koszul if R admits a Gröbner bases.

Let G be a set species and R be a quadratic sub-species of FreeshG . We say that
Ope(G,R) is Koszul if Opesh(GF ,RF ) is Koszul.

When O is a Koszul symmetric operad, it admits a Koszul dual O!. In this case the
Hilbert series of O and O! are related by the identity:

HO(−HO!(−t)) = t. (114)

Let us finish by a characterisation of Gröbner bases.

Proposition 4.15 (Theorem 1 in [20]). Let G be a set L -species and R be a L -sub-
species of FreeshG . Let B be basis of R. Then B is a Gröbner bases if and only if for all
pair of elements in B, their S-polynomials are congruent to zero modulo B (i.e. they are
in (R)).

4.2 Some constructions on species and operads

The goal of this subsection is to define some constructions on species and operads. We
define three constructions: the augmentation, the semi-direct product and the maps from
a set to an operad.
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Definition 4.16. Let A be a set and S be a set (resp linear) species. An A-augmentation
of S is a set (resp linear) species A-S such that A-S[V ] ∼= S[A× V ] for every finite set V .

Example 4.17. Let A be a set.

• Instead of considering an A-augmented multi-hypergraph on V as a multi-hypergraph
on V × A, we consider them as multi-hypergraphs on V where the ends of the
edges are labelled with elements of A. In particular, the species of oriented multi-
hypergraphs MHGor is in bijection with the species of {s, t}-augmented multi-
hypergraphs {s, t} -MHG. For h ∈ MHG and f an orientation of h, the pair
h, f is sent on the multi-hypergraph obtained by respectively labeling by t and s the
targets f(e) and sources fs(e) of each edge e.

• Instead of seeing the elements in A-Pol+[V ] as polynomials with set of variables
the couples (v, a) ∈ V × A, we consider them as polynomials with set of variables
{va | v ∈ V, a ∈ A} of elements of V indexed by elements of A.

Remark 14. For S and R any two species and f : R → S a morphism, f extends to
a morphism between any two A-augmentation of R and S by A-R[V ] ∼= R[A × V ]

f→
S[A × V ] ∼= A-S. In particular the bijection MHG ∼= Pol+ given in subsubsection 2.2.2
extends to a bijection which sends an edge e on the monomial

∏
(v,a)∈e v

e(v,a)
a .

In the following proposition, we give an operad structure to a Hadamard product S×O
where S is a species and O is an operad.

Proposition 4.18. Let S be a linear species and O an operad. Let ϕ be a morphism from
S ′ · (S ×O) to S and denote by x ◦f∗ y = ϕ(x ⊗ y ⊗ f). Suppose ϕ satisfies the following
hypotheses.

Commutativity. For x an element S ′′ and y ⊗ f and z ⊗ g two elements of S ×O,

(x ◦f∗1 y) ◦g∗2 z = (x ◦g∗2 z) ◦f∗1 y. (115)

Associativity. For x an element of S ′, y⊗ f an element of (S×O)′ and z⊗h an element
of S ×O,

(x ◦f∗1 y) ◦g∗2 z = x ◦f◦∗2g∗1 (y ◦g∗2 z). (116)

Unity. There exists a map e : KX → S such that

x ◦eO(v)
∗ e(v) = S[σ](x) and e(∗) ◦f∗ x = x, (117)

where eO is the unit of O and σ is the bijection which sends ∗ on v and is the identity
on the rest of the set on which x is defined.
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Then the partial composition ◦ϕ∗ defined by

◦ϕ∗ : (S ×O)′ · S ×O → S ×O
(x⊗ f)⊗ (y ⊗ g) 7→ x ◦g∗ y ⊗ f ◦∗ g

(118)

makes S ×O an operad with unit e. We call this operad the semi-direct product of S and
O over ϕ and we denote it by S nϕ O.

Proof. We must verify that the three diagrams (4.1.1) commutes.

• Let V1, V2, V3 be three disjoint sets and x⊗ f ∈ (S ×O)′′[V1], y ⊗ g ∈ S ×O[V2] and
z ⊗ h ∈ S ×O[V3]. We then have(

(x⊗ f) ◦ϕ∗1 (y ⊗ g)
)
◦ϕ∗2 (z ⊗ h) =

(
(x ◦g∗1 y) ◦h∗2 z

)
⊗
(
(f ◦∗1 g) ◦∗2 h

)
=
(
(x ◦h∗2 z) ◦g∗1 y

)
⊗
(
(f ◦∗2 h) ◦∗1 g

)
=
(
(x⊗ f) ◦ϕ∗1 (z ⊗ h)

)
◦ϕ∗2 (y ⊗ g),

(119)

where the second equality follows from (115) and the fact that O is an operad.

• Let V1, V2, V3 be three disjoint sets and x ⊗ f ∈ (S × O)′[V1], y ⊗ g ∈ (S × O)′[V2]
and z ⊗ h ∈ S ×O[V3]. We then have(

(x⊗ f) ◦ϕ∗1 (y ⊗ g)
)
◦ϕ∗2 (z ⊗ h) =

(
(x ◦g∗1 y) ◦h∗2 z

)
⊗
(
(f ◦∗1 g) ◦∗2 h

)
=
(
x ◦g◦∗1h∗1 (y ◦h∗2 z)

)
⊗ f ◦∗1 (g ◦∗2 h)

)
= (x⊗ f) ◦ϕ∗1

(
(y ⊗ g) ◦ϕ∗2 (z ⊗ h)

)
,

(120)

where the second equality follows from (116) and the fact that O is an operad.

• Let be x⊗ f ∈ (S ×O)′[V ] and v 6∈ V . We then have

(x⊗ f) ◦ϕ∗ (e(v)⊗ eO(v)) = x ◦eO(v)
∗ e(v)⊗ f ◦∗ e(v) = S[σ](x⊗ f) (121)

where σ is the bijection which sends ∗ to v and is the identity on V . The last equality
follows from the first equality from (117) and the fact that O is an operad. Let now
be x⊗ f ∈ S ×O[V ]. Then

(e(∗)⊗ eO(∗)) ◦∗ (x⊗ f) = e(∗) ◦f∗ x⊗ eO(∗) ◦∗ f = x⊗ f (122)

where the last equality comes from second equality from (117) and the fact that O
is an operad.

When it is clear from the context, we do not mention ϕ and just write semi-direct
product of S and O and denote it by S nO. In practice, the operad structure O of S nO
is transparent and we are just interested in what happens on S, that it is to say the “pseudo
partial composition” x ◦g∗ y.
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Example 4.19. Let C be a finite set and also denote by C the trivial species given by
C[V ] = C for all set V . We would like to provide KC with a trivial operad structure
c1 ◦∗ c2 = c1 but this would not satisfy the existence of a unity. Instead, we define the
linear species C = KX + KC2+ which has an operad structure close to what we want. The
partial composition is defined by, for c1 ∈ C ′[V1] and c2 ∈ C[V2]: c1 ◦∗ c2 = c1 if V1 6= ∅ and
∗ ◦∗ c2 = c2 when V1 = ∅ and ∗ ∈ X[{∗}].

Let FC = X+FC2+ be the set species of maps with co-domain C: FC [V ] = {f : V → C}
for |V | > 1. We define a semi-direct product structure KFCnϕC. Let V1, V2 be two disjoint
sets and suppose that |V1 +{∗} |, |V2| > 1. Let be f ∈ FC [V1 +{∗}] and g⊗x ∈ FC×C[V2].

We then have f ◦c∗ g = 0 if f(∗) 6= c and f ◦c∗ g(v) =

{
f(v) if v ∈ V1

g(v) if v ∈ V2
else. When V1 = ∅

or V2 is a singleton, the action of ϕ is implied by the unit hypothesis.
We call this operad the C-coloration operad. When this operad is considered alone,

one can see an element of (f, c) ∈ KFCKnC[V ] as a corolla on V with its root colored by
c and its leaves v ∈ V colored by f(v). The partial composition consists then in grafting
two corollas if the root and the leaf on which it must be grafted share the same colors. For
instance we have, by representing the elements of C with colors:

a
b ∗

c ◦∗
1

2

= 0 and (123)

a
b ∗

c ◦∗
1

2

=

 a
b ∗

c

1
2
 = a

b
1

2
c

(124)

A way to define colored operads (see [46] for more details on the theory of colored operads)
is then to define them as any Hadamard product of a C-coloration operad with another
operad.

Let us now define our last construction.

Definition 4.20. Let A be a set and S be a species. The set species of functions from A
to S is defined by FSA[V ] = {f : A→ S[V ]}.

The following proposition then tells us that if O has an operad structure, it naturally
reflects on FOA .

Proposition 4.21. If O is an operad with unit e, KFOA has an operad structure with
the elements ev : A → {e(v)} ∈ FOA [{v}] as units and partial composition defined by
f1 ◦∗ f2(a) = f1(a) ◦∗ f2(a).

Proof. We must verify that the diagrams (4.1.1) are indeed commutative.
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• Let be f1 ∈ (FOA )′′[V1], f2 ∈ FOA [V2] and f3 ∈ FOA [V3]. Then for all a ∈ A, we have(
(f1 ◦∗1 f2) ◦∗2 f3

)
(a) = (f1 ◦∗1 f2(a)) ◦∗2 f3(a)

=
(
f1(a) ◦∗1 f2(a)

)
◦∗ f3(a)

= f1(a) ◦∗2 f3(a) ◦∗ f2(a)

= (f1 ◦∗2 f3(a)) ◦∗1 f2(a)

=
(
(f1 ◦∗2 f3) ◦∗1 f2

)
(a),

(125)

where the third equality follows from the fact that O is an operad. Hence, we have
(f1 ◦∗1 f2) ◦∗2 f3 = (f1 ◦∗2 f3) ◦∗1 f2.

• Let be f1 ∈ (FOA )′[V1], f2 ∈ (FOA )′[V2] and f3 ∈ FOA [V3]. Then for all a ∈ A:(
(f1 ◦∗1 f2) ◦∗2 f3

)
(a) = (f1 ◦∗1 f2(a)) ◦∗2 f3(a)

= f1(a) ◦∗1 f2(a) ◦∗ f3(a)

= f1(a) ◦∗2 f3(a) ◦∗ f2(a)

= (f1 ◦∗2 f3(a)) ◦∗1 f2(a)

=
(
(f1 ◦∗2 f3) ◦∗1 f2

)
(a),

(126)

where the third equality comes from the fact that O is an operad. Hence, we have
(f1 ◦∗1 f2) ◦∗2 f3 = (f1 ◦∗2 f3) ◦∗1 f2.

• Let be f ∈ (FOA )′[V ] and v 6∈ V . Then for all a ∈ A, we have the equalities
f ◦∗ ev(a) = f(a) ◦∗ e(v) = O[σ](f(a)) and so f ◦∗ ev = O[σ](f), where σ is the
bijection which sends ∗ to v and is the identity over V . If now f ∈ FOA , we have for
all a ∈ A: e∗ ◦∗ f(a) = e(∗) ◦∗ f(a) = f(a) and so e∗ ◦∗ f = f .

Note that if A is a singleton then FOA ∼= O. Let A,B,C,D four sets such that A and B
are disjoint and f : A → C and g : B → D two maps. We denote by f ] g the map from
A tB to C ∪D defined by f ] g(a) = f(a) for a ∈ A and f ] g(b) = g(b) for b ∈ B.

Proposition 4.22. Let A and B be two disjoint sets and O1 and O2 be two operads. Then
the species KFO1,O2

A,B defined by FO1,O2

A,B [V ] =
{
f ] g | f ∈ FO1

A , g ∈ FO2
B

}
is an operad with

same partial composition than in Proposition 4.21.

Proof. We remark that since A and B are disjoint, f1] f2 ◦∗ g1] g2 = (f1 ◦∗ g1)] (f2 ◦∗ g2).
To conclude we apply what was already shown in the proof of Proposition 4.21.

4.3 Graph insertion operads

We now use the construction of the previous subsection to define operad structures on
graphs. The goal of this subsection is to give a general construction of operads on graphs
and related objects where the partial composition of two elements g1 ◦∗ g2 is given by:
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1. take the disjoint union of g1 and g2,

2. remove the vertex ∗ from g1,

3. connect independently each loose ends of g1 to g2 in a certain way.
What we mean by independently is that the way of connecting one end does not depend
on how we connect the other ends. Note that the “certain way” in which an end can be
connected may include duplication of edges and augmentation of the number of vertices of
edges. This is done in the following theorem.

Recall from Remark 14 that there is a bijection between A-MHG and A-Pol+. We now
make use of this bijection and consider the elements of A-MHG as both multi-hypergraphs
and polynomials. Let p ∈ KPol+[V ] be a sum of polynomials whose variables are not
indexed. Then for A a set and a ∈ A, we denote by pa ∈ A-Pol+ the sum of polynomials
obtained by indexing all the variables in p by a. Let now p be any polynomial and x1, . . . , xn
a subset of its variables. Then for q1, . . . , qn n polynomials, we denote by p|{xi←qi} the
polynomial resulting from the composition

(
. . . ((p1 ◦x1 q1)◦x2 q2) . . .

)
◦xn qn. We generalize

this notation to sum of polynomials by considering that the multiplication and addition of
polynomials are bilinear maps (recall from Example 2.4 that we distinguish the addition
of polynomials ⊕, and the addition of vectors +). Note that the order in which we do the
compositions does not matter because of the first commutative diagram in the definition
of an operad: for O an operad, V1, V2, V3 three pairwise disjoint sets and x ∈ O′′[V1],
y ∈ O[V2] and z ∈ O[V3] we have (x ◦∗1 y) ◦∗2 z = (x ◦∗2 z) ◦∗1 y.
Example 4.23. For A the singleton {a} and p the polynomial xy⊕x2+zy ∈ Pol+[{x, y, z}]
we have pa = xaya⊕ x2

a + zaya. Let now be p = x⊕ yz, q1 = u+ v and q2 = x1⊕ x2. Then

p|x←q1,y←q2 = q1 ⊕ q2z = (u+ v)⊕ (x1 ⊕ x2)z

= u⊕ x1z ⊕ x2z + v ⊕ x1z ⊕ x2z.
(127)

Theorem 4.24. Let A be a set and ϕ be the morphism from KA-MHG · (A-MHG ×
FKMHG
A ) to KA-MHG given by

h1 ◦f∗ h2 = h1|{∗a←f(a)a} ⊕ h2. (128)

Then ϕ satisfies the hypotheses of Proposition 4.18 and we can consider the semidirect
product of KA-MHG and FKMHG

A over ϕ.
Proof. We need to check that ϕ satisfies the three hypotheses of Proposition 4.18. The
first two are simply computations over polynomials.
Commutativity. Let h1 be an element of A-MHG′′ and h2 ⊗ f and h3 ⊗ g two elements

of A-MHG×FKMHG
A . Then

(h1 ◦f∗1 h2) ◦g∗2 h3 = (h1|{∗1a←f(a)a} ⊕ h2)|{∗2a←g(a)a} ⊕ h3

= h1|{∗1a←f(a)a}|{∗2a←g(a)a} ⊕ h2 ⊕ h3

= h1|{∗2a←g(a)a}|{∗1a←f(a)a} ⊕ h3 ⊕ h2

= (h1|{∗2a←g(a)a} ⊕ h3)|{∗1a←f(a)a} ⊕ h2

= (h1 ◦g∗2 h3) ◦f∗1 h2.

(129)
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Associativity. Let h1 an element of A-MHG′, y⊗ f an element of (A-MHG×FKMHG
A )′

and z ⊗ h an element of A-MHG×FKMHG
A . Then

(h1 ◦f∗1 h2) ◦g∗2 h3 = (h1|{∗1a←f(a)a} ⊕ h2)|{∗2a←g(a)a} ⊕ h3

= h1|{∗1a←f(a)a}|{∗2a←g(a)a} ⊕ h2|{∗2a←g(a)a} ⊕ h3

= h1|{∗1a←f(a)a|{∗2a←g(a)a}} ⊕ h2|{∗2a←g(a)a} ⊕ h3

= h1|{∗1a←f◦∗2g(a)a} ⊕ h2|{∗2a←g(a)a} ⊕ h3

= h1 ◦
f◦∗1g
∗1 (h2 ◦g∗2 h3).

(130)

Unity. Let e : KX → KA-MHG be defined by e(v) = ∅{v} and let eF the unit of FKMHG
A .

Let be h ∈ A-MHG′[V ] and v 6∈ v. Then

h ◦eF (v)
∗ e(v) = h|{∗a←eF (v)(a)a} ⊕ ∅{v}

= h|{∗a←va} = A-MHG[σ](h),
(131)

where σ is the bijection which sends ∗ to v and is the identity over V . If now
h ∈ A-MHG, then

e(∗) ◦f∗ h = ∅{∗}|{∗a←f(a)a} ⊕ h = h. (132)

In all the following we only consider this semi-direct, albeit not exactly on A-MHG
and FKMG

A , and we will hence omit the ϕ index. We call graph insertion operad any operad
which can be written with this semi-direct product.
Remark 15. This notion of graph insertion operad is different than the one mentioned in
[34], in the context of Feynman graph insertions in quantum field theory.

As mentioned above, this construction is supposed to encode partial compositions of the
form: take the disjoint union, forget the vertex on which we compose, and independently
reconnect loose edges. Let h1 ⊗ f1 and h2 ⊗ f2 be two elements of A-MHGnFKMG

A . The
ends of h1 are labelled by elements of A. When considering h1 ◦f2∗ h2, the map f2 is there
to tell us how we should connect the loose ends obtained by forgetting ∗: each end labelled
with a will be connected to the elements of f2(a).

Let us give two simple examples of operads which can be defined using this semi-direct
product. Recall from Example 2.3.4 and Example 2.4.2 that we have a natural embedding
of Id in Pol+, two natural embeddings of E+ in Pol+ one natural embedding of KE+ in
KPol+.

Example 4.25. KG• has a natural operad structure given by G• ∼= G×Id ∼= {0} -GnFKId
{0} .

For (g1, v1) and (g2, v2) two pointed graphs, the partial composition (g1, v1) ◦∗ (g2, v2) is
then equal to (g3, v1|∗←v2) where g3 is the graph obtained by connecting all the ends on ∗
to v2. More formally,

(g1, v1) ◦∗ (g2, v2) = (g1|∗←v2 ⊕ g2, v1|∗←v2)
= (G[σ](g1)⊕ g2, v1|∗←v2),

(133)
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where σ is the bijection which sends ∗ on v2 and which is the identity on the rest of its
domain. For instance, we have:

∗

a

b

◦∗ c d =

a

b

c d . (134)

Remark that the operad NAP [35] is a sub-operad of the operad above and hence is a
graph insertion operad.

Example 4.26. KG has a natural operad structure given by G ∼= G×E+
∼= {0} -GnFKE+

{0} ,
where we consider here the embedding {V } 7→

⊕
V . For g1 and g2 two graphs, the partial

composition g1 ◦ g2 is then the graph obtained by adding an edge between each neighbour
of ∗ and each vertex of g2. More formally, for g1 ∈ G′[V1] and g2 ∈ G[V2]:

g1 ◦∗ g2 = g1|∗←⊕
V2 ⊕ g2

= g1|V1 ⊕
⊕

n(∗)
⊕

V2 ⊕ g2

= g1|V1 ⊕
⊕

n(∗)V2 ⊕ g2,

(135)

where g1|V1 = {e ∈ g | e ⊂ V1}, n(∗) is the set of neighbours of ∗ and for A and B two
sets, we denote by AB = A · B the set of product of elements in A with elements in B:
AB = {ab | a ∈ A, b ∈ B}. Let us explain how one should interpret this formula. The term
g1|V1 means that we leave aside the vertex ∗ in g1, the term

⊕
n(∗)V2 means that we add

an edge between any element in n(∗) and any element in V2, and finally the term g2 means
that we keep all the edges of g2. For instance, we have:

∗

a

b

◦∗ c d =

a

b

c d . (136)

We now give two other graph insertion operads which are similar to our two examples
but much more interesting. Let V1 and V2 be two disjoint sets. For any multigraphs
g1 ∈MG′[V1] and g2 ∈MG[V2], define a partial composition of g1 and g2 as the sum of all
the multigraphs of MG[V1 t V2] obtained by the following:

1. Take the disjoint union of g1 and g2;

2. Remove the vertex ∗. We then have some edges with one (or two if ∗ has loops) loose
end(s);

3. Connect each loose end to any vertex in V2.
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For instance, we have:

a ∗ ◦∗ b c = a b c + a b c + 2 a b c

+ 2 a b c + 2 a b c + 4 a b c

+ a b c + a b c + 2 a b c .

(137)

Theorem 4.27. The species KMG, endowed with the preceding partial composition, is
an operad.

Proof. This is the operad structure on KMG given byMG ∼= MG×E+
∼= {0} -MGnFKE+

{0}
when considering the embedding of KE+ in KPol+, {V } 7→

∑
V .

One notes that the species KSG and KMGc are sub-operads of KMG, that KSGc a
sub-operad of KSG, and that KT is a sub-operad of KSGc. In particular, this structure on
KSG is known as the Kontsevich-Willwacher operad [38]. This partial composition can be
formally written as follows. For any g1 ∈MG′[V1] and g2 ∈MG[V2]:

g1 ◦∗ g2 = g1|∗←∑
V2 ⊕ g2

= g1|V1 ⊕
⊕

n(∗)(
∑

V2)⊕ ((
∑

V2)2)⊕g1(∗∗) ⊕ g2

=
∑

f :n(∗)→V2

∑
l:[g1(∗∗)]→V2V2

g1|V1 ⊕
⊕
v∈n(∗)

vf(v)⊕
g1(∗∗)⊕
i=1

l(i)⊕ g2,

(138)

where n(∗) is the multiset of neighbours of ∗ in g1 and g1(∗∗) is the number of loops on ∗ in
g1. The term

⊕
n(∗)(

∑
V2) must be understood as “for all vertices in n(∗), sum over the

ways of connecting it to g2” and the term ((
∑
V2)2)⊕g1(∗∗) as “for each loop over ∗, add an

edge between any two elements of V2”. This partial composition reformulates in a simpler
way on KSG. For any g1 ∈ SG′[V1] and g2 ∈ SG[V2]:

g1 ◦∗ g2 = g1|∗←∑
V2 ⊕ g2

= g1|V1 ⊕
⊕

n(∗)(
∑

V2)⊕ g2

=
∑

f :n(∗)→V2

g1|V1 ⊕
⊕
v∈n(∗)

vf(v)⊕ g2,

(139)

where n(∗) is now the set of neighbour of ∗ in g1. For instance, we have:

a

∗

b

◦∗ c d =

a

b

c d +

a

b

c d +

a

b

c d +

a

b

c d . (140)
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In particular, we observe that all the graphs appearing in g1 ◦∗ g2 have 1 as coefficient.
Let us turn to the oriented case. Let V1 and V2 be two disjoint sets. For any rooted

(i.e. pointed) oriented multigraphs (g1, v1) ∈ (MG•or)
′[V1] and (g2, v2) ∈ MG•or[V2], define

a partial composition of (g1, v1) and (g2, v2) as the sum of all the rooted multigraphs of
MG•or[V1 t V2] obtained by the following:

1. Take the disjoint union of g1 and g2;

2. Remove the vertex ∗. We then have some edges with a loose end;

3. Connect each loose source end to v2;

4. Connect each loose target end to any vertex in V2;

5. The new root is v1 if v1 6= ∗ and is v2 otherwise.

For instance, we have:

∗

a

b

◦∗ c d =

a

b

c d +

a

b

c d . (141)

Theorem 4.28. The species KMG•orc, endowed with the preceding partial composition, is
an operad.

Proof. Recall from Example 4.17 that we have a bijection MGor
∼= {s, t} -MG. The

isomorphism MG•or
∼= {s, t} -MG × Id × E+

∼= {s, t} -MG n F Id,E+

{s},{t}, give the desired
operad structure on KMG•or when considering the embedding of µV 7→

∑
V of KE+ in

KPol+.

It is straightforward to note that the subspecies of connected components KMG•orc and
the species KSG•or are sub-operads of KMG and that KSG•orc is a sub-operad of KSG•or.

In a rooted tree, each edge has a parent end and a child end. Given a rooted tree t with
root r, denote by tr the oriented tree where the targets are the parent ends and the sources
are the child ends. Then the monomorphism T • ↪→ SG•orc which sends each ordered pair
(t, r), where t is a tree and r is its root, on (tr, r) induces an operad structure on the species
of rooted trees which is exactly the operad PLie. Hence PLie is a graph insertion operad.

4.4 Applications

We now analyse in more detail the operad structure on KMG given by Theorem 4.27. We
first obtain results on some of its natural sub-operad (KMGc, KSG, KT etc) and then we
study some of its finitely generated sub-operads.
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4.4.1 The KMG operad

We study here in more detail the operad structure on KSG implied by the one on KMG
given in Theorem 4.27. We will see that while KSG itself has an involved operadic structure,
it has many interesting sub-operads.

We first search for a smallest family of generators of KSG, a minimal set E of elements
of KSG such that there is no strict sub-operad of KSG containing E. The search for
such a family is computationally hard. Using computer algebra, we obtain a family which
generates simple graphs of arity less than 5:

, , , , , , ,

, , , , , , , , , ,

, , , , .

(142)

Due to the symmetric group action on KSG, only the knowledge of the shapes of the
graphs is significant. While (142) does not provide to us any particular insight on a
possible characterisation of the generators, it does suggest that any graph with “enough”
edges must be a generator. This is confirmed by the following lemma. We say that a simple
graph g ∈ SG is generated by a set E of graphs if g is in the sub-operad generated by E.

Lemma 4.29. Let {Vi}i∈I be a family of non empty finite sets, {gi}i∈I be a family of
graphs such that gi ∈ SG[Vi], and let g be a graph in SG[V ] with at least

(
n−1

2

)
+ 1 edges,

where n = |V |. Then g is generated by {gi}i∈I if and only if g = gi for some i ∈ I.

Proof. Suppose that g 6∈ {gi}i∈I . It is sufficient to show that g cannot appear in the
support of any vector of the form g1 ◦∗ g2 for any g1 and g2 different of g. Hence let V1

and V2 be two disjoint finite sets such that V1 t V2 = V , g1 ∈ SG′[V1] and g2 ∈ SG[V2],
and denote by e1 the number of edges of g1 and by e2 the number of edges of g2. Then the
graphs in the support of g1 ◦∗ g2 have e1 + e2 edges. This is maximal when g1 and g2 are
both complete graphs and is then equal to

(
x
2

)
+
(
n+1−x

2

)
= x2 − (n + 1)x +

(
n+1

2

)
where

1 ≤ x = |V1| ≤ n.
If x = 1 then necessarily g1 = ∅∗ and g ∈ Supp(g1 ◦∗ g2) = Supp(g2) if and only

if g = g2. This is impossible, hence x 6= 1. Similarly we have x 6= n. The expression
x2− (n+ 1)x+

(
n+1

2

)
is then maximal for x = 2 or x = n− 1 and is equal in both cases to(

n−1
2

)
<
(
n−1

2

)
+ 1. This implies that g can not be in the support of g1 ◦∗ g2. This concludes

the proof.

Proposition 4.30. The operad KSG is not free and has an infinite number of generators.
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Proof. The fact that KSG has an infinite number of generators is a direct consequence of
Lemma 4.29. Moreover, the relation

a ∗ ◦∗ b c + c ∗ ◦∗ b a − b ∗ ◦∗ a c − 2 a b c

= a b c + b c a + c b a + b a c

− b a c − a c b − 2 a b c

= 0

(143)

shows that KSG is not free.

As a consequence of Proposition 4.30, it seems particularly involved to further investi-
gate the structure of KSG. Let us then restrict further to its sub-operad KT of trees. A
family of generators of KT with arity less than 6 is:

, , , , , . (144)

This operad KT has a non trivial link with the pre-Lie operad PLie [17]. This link is given
by the following result.

Recall from Example 4.1.1 that PLie can be seen as an operad structure on KT •.

Proposition 4.31. The monomorphism of species ψ : KT → KT • defined by, for any tree
t ∈ T [V ],

ψ(t) =
∑
r∈V

(t, r), (145)

is a monomorphism of operads from KT to PLie.

Before giving the proof of this proposition, we illustrate it on an example:

ψ

(
a

b

∗

)
◦∗ ψ

(
c

d

)
=

(
a

b

∗
+

a

b

∗
+

a

b

∗

)
◦∗
(

c

d
+

c

d
)

=
a

b

∗
◦∗
(

c

d
+

c

d
)

+
a

b

∗
◦∗
(

c

d
+

c

d
)

+
a

b

∗
◦∗
(

c

d
+

c

d
)

= a

b

c

d

+ a

b

d

c

+ a

b

c

d

+ a

b

d

c

+ a

b

c

d

+ a

b

d

c

+ a

b

d

c

+ a

b

c

d

=

 a

b

c

d

+ a

b

c

d

+ a

b

c

d

+ a

b

c

d

+

 a

b

d

c

+ a

b

d

c

+ a

b

d

c

+ a

b

d

c


= ψ

 a

b

c

d

+ a

b

d

c

 = ψ

(
a

b

∗
◦∗

c

d

)
.

(146)

We can note that the case when ∗ is the root plays a particular role.
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Proof. Let t ∈ T [V ] be a tree and r, v ∈ V . Recall that tr is the oriented tree where the
targets are the parent ends and the sources are the child ends. Denote by nt(v) the set of
neighbours of v in t and denote by ct,r(v) the set of children of v in tr. If r 6= v, further
denote by pt,r(v) the parent of v in tr.

Let V1 and V2 be two disjoint sets and t1 ∈ T ′[V1] and t2 ∈ T [V2]. We now make full
use of the correspondence between graphs and polynomials:

ψV1(t1) ◦∗ ψV2(t2) =
∑

r1∈V1+{∗}

(t1, r1) ◦∗
∑
r2∈V2

(t2, r2)

=
∑

r1∈V1+{∗}

∑
r2∈V2

(t1, r1) ◦∗ (t2, r2)

=
∑
r1∈V1

∑
r2∈V2

(
t1|V1 ⊕ pt1,r1(∗)r2 ⊕ t2 ⊕

⊕
ct1,r1(∗)

(∑
V2

)
, r1

)
+
∑
r2∈V2

(
t1|V1 ⊕ t2 ⊕

⊕
ct1,∗(∗)

(∑
V2

)
, r2

)
=
∑
r1∈V1

(
t1|V1 ⊕ pt1,r1(∗)

(∑
V2

)
⊕ t2 ⊕

⊕
ct1,r1(∗)

(∑
V2

)
, r1

)
+
∑
r2∈V2

(
t1|V1 ⊕ t2 ⊕

⊕
ct1,∗(∗)

(∑
V2

)
, r2

)
=

∑
r∈V1+V2

(
t1|V1 ⊕

⊕
nt1(∗)

(∑
V2

)
⊕ t2, r

)
=

∑
r∈V1+V2

(
t1|∗←∑

V2 ⊕ t2, r
)

= ψV1+V2(t1 ◦∗ t2)

(147)

A natural question to ask is how to extend this morphism to KSGc and KMGc. Let
us introduce some notations in order to answer this question. For g ∈ MGc[V ], r ∈ V ,
and t ∈ T [V ] a spanning tree of g, let −→g (t,r) ∈ MGorc

∼= {s, t} -MGc be the oriented
multigraph obtained by labelling the edges of g in t in the same way as the edges of tr, and
by labelling as targets all the other ends. More formally, we have −→g (t,r) = tr ⊕ ιG(g \ t),
where ι : KMG → KMGor sends a multigraph to the oriented multigraph obtained by
labelling all the ends as targets.

Define KO2 ⊂ KO1 ⊂ KST (ST standing for “spanning tree”) three subspecies of
KMG•orc by

ST[V ] =
{

(−→g (t,r), r) : g ∈MGc[V ], r ∈ V and t a spanning tree of g
}
, (148)
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O1[V ] =

{∑
r∈V

(−→g (t(r),r), r) : g ∈MGc[V ] and for each r, t(r) a spanning tree of g

}
,

(149)

O2[V ] =
{

(−→g (t1,r), r)− (−→g (t2,r), r) : g ∈MGc[V ], r ∈ V,
and t1 and t2 two spanning trees of g} . (150)

Example 4.32. Let V = {a, b, c, d}. We give example of elements in ST[V ], O1[V ] and
O2[V ]. For the sake of an easier reading, instead of representing the orientation of the
edges, we just colored the spanning trees in red. The blue edges should have both ends
with an arrow shape and the red edges only the end nearest the root.

a

b

c

d

∈ ST[V ] (151)

a

b

c

d

+ a

b

c

d

+ a

b

c

d

+ a

b

c

d

∈ O1[V ] (152)

a

b

c

d

− a

b

c

d

∈ O2[V ] (153)

Lemma 4.33. The following properties hold:

(i) KST is a sub-operad of KMG•orc isomorphic to KMG×PLie,

(ii) KO1 is a sub-operad of KST,

(iii) KO2 is an ideal of KO1.

Proof. Before proving these three items, we first give two equalities which will help us
for the two last items. Let U : KMGor → KMG be the forgetful functor which sends an
oriented graph on the graph obtained by forgetting the orientation. Let V1 and V2 be two
disjoint sets, g1 ∈MG′c[V1] and g2 ∈MGc[V2] be two connected multigraphs, t a spanning
tree of g1 and for each v ∈ V2, t(v) a spanning tree of g2. When ∗ is the root of the
spanning tree t, all the ends pointing to ∗ are targets. Since the target ends in an oriented
graph behave the same than the normal ends in a non-oriented graph, the forgetful functor
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preserves the partial composition. For example we have:

U × Id

 ∗

a

b

◦∗ c d


=U × Id

 a

b

c d +

a

b

c d +

a

b

c d +

a

b

c d


=

a

b

c d +

a

b

c d +

a

b

c d +

a

b

c d

= ∗

a

b

◦∗ c d = U × Id

 ∗

a

b

 ◦∗ U × Id ( c d ) .

(154)

More formally, for r ∈ V2, we have:

U × Id
(
(−→g1

(t,∗), ∗) ◦∗ (−→g2
(t(r),r), r)

)
=
(
g1|V1 ⊕

⊕
n(∗)

(∑
V2

)
⊕ ((

∑
V2)2)⊕g1(∗∗) ⊕ g2, r

)
= (g1 ◦∗ g2, r).

(155)

Let now r be a vertex in V1. Denote by p the parent of ∗ in tr, by c(∗) the children of
∗ in tr, by ng1\t(∗) the multiset of neighbours of ∗ in g1 \ t and by n(∗) the multiset of
neighbours of ∗ in g1, so that n(∗) = ng1\t(∗) ∪ c(∗) ∪ {p}. We then have

U × Id

(
(−→g1

(t,r), r) ◦∗
∑
v∈V2

(−→g2
(t(v),v), v)

)
=
∑
v∈V2

U × Id
(
(−→g1

(t,r), r) ◦∗ (−→g2
(t(v),v), v)

)
=
∑
v∈V2

(
g1|V1 ⊕ pv ⊕

⊕
c(∗)

(∑
V2

)
⊕
⊕

ng1\t(∗)
(∑

V2

)
⊕ ((

∑
V2)2)⊕g1(∗∗) ⊕ g2, r

)
=
(
g1|V1 ⊕ p

(∑
V2

)
⊕
⊕

c(∗)
(∑

V2

)
⊕
⊕

ng1\t(∗)
(∑

V2

)
⊕ ((

∑
V2)2)⊕g1(∗∗) ⊕ g2, r

)
=
(
g1|V1 ⊕

⊕
n(∗)

(∑
V2

)
⊕ ((

∑
V2)2)⊕g1(∗∗) ⊕ g2, r

)
= (g1 ◦∗ g2, r).

(156)

Proof of i. The linear species morphism from KMG × PLie to KMG•orc given by
(g, (t, r)) 7→ (−→g (t,r), r) is an operad morphism and hence its image ST is a sub-operad of
KMG•orc.
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a

b

c

d

⊗ a

b

c

d

7→ a

b

c

d

Figure 1: An example of the isomorphism of item i.

Proof of ii. Let V1 and V2 be two disjoint sets, g1 ∈MG′c[V1] and g2 ∈MGc[V2] be two
connected multigraphs and for each v ∈ V1 + {∗}, t(v) a spanning tree of g1 and for each
v ∈ V2, t(v) a spanning tree of g2. We have∑

r1∈V1+{∗}

−→g1
(t(r1),r1) ◦∗

∑
r2∈V2

−→g2
(t(r2),r2) =

∑
r1∈V1+{∗}

∑
r2∈V2

−→g1
(t(r1),r1) ◦∗ −→g2

(t(r2),r2)

=
∑

r1∈V1+{∗}

∑
r2∈V2

(−→g1
(t(r1),r1)|∗s←r2s, ∗t←(

∑
V2)t ⊕−→g2

(t(r2),r2), r1|∗←r2
)
.

(157)

Then from (155) and (156) we know that applying U × Id to the preceding sum gives us:∑
r∈V1+V2

(g1 ◦∗ g2, r). (158)

To conclude note that KO1[V ] is the reciprocal image of K{
∑

v∈V (g, v) | g ∈ MGc[V ]} by
U × Id : KST→ KMG•.

Proof of iii. It is easy to see that KO2 is a left ideal of KST and hence of KO1. Let V1

and V2 be two disjoint finite sets, g1 ∈ MG′c[V1] and g2 ∈ MGc[V2], r ∈ V1, t a spanning
tree of g1 and for every v ∈ V2, t(v) a spanning tree of g2. Then from (155) and (156) we
know that U × Id(−→g1

(t,r) ◦∗
∑

v∈V2
−→g2

(t(v),v)) is of the form (g1 ◦∗ g2, r) if r 6= ∗, and of the
form

∑
v∈V2(g1 ◦∗ g2, v) otherwise. In both cases it does not depend on t. This concludes

this proof since KO2[V ] is the kernel of (U × Id)V : KST[V ]→ KG•c [V ].

We can see PLie as a sub-operad of ST by the monomorphism (t, r) 7→ (tr, r). The
image of the operad morphism ψ of Proposition 4.31 is then KO1∩PLie and we have that
KO2 ∩PLie = {0} and hence KO1 ∩PLie/KO2 ∩PLie = KO1 ∩PLie.

Proposition 4.34. The operad isomorphism ψ : KT → PLie∩KO1 extends into an operad
isomorphism ψ : KMGc → KO1/KO2 satisfying, for any g ∈MGc[V ],

ψ(g) =
∑
r∈V

−→g (t(r),r), (159)

where for each r ∈ V , t(r) is a spanning tree of g. Furthermore, this isomorphism restricts
itself to an isomorphism KSGc → KO1 ∩ KSG•orc/KO2 ∩ KSG•orc.

Proof. This statement is a direct consequence of Lemma 4.33 and its proof.
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The last results are summarized in the following commutative diagram of operad mor-
phisms.

KT PLie ∩ KO1/KO2 PLie ∩ KO1 PLie

KSGc KO1 ∩ KSG•orc/KO2 ∩ KG•orc KSG•orc ∩ KO1 KSG•orc ∩ KST

KMGc KO1/O2 KO1 KMG×PLie

∼

∼

∼

(160)

4.4.2 Finitely generated sub-operads

Let us now focus on finitely generated sub-operads of KMG. In particular we will study
the operads generated by:

1. { a b } which we denote by G∅ and which is isomorphic to Com,

2. { a b } which we denote by Seg and which is isomorphic to ComMag,

3. { a b , a b } which we denote by SP,

4.
{

a
, a b

}
which we denote by LP.

First, note that the sub-operad G∅ generated by { a b } is isomorphic to the commu-
tative operad Com. Indeed, recall from Example 4.4 that Com is the quotient of the free
operad over one symmetric element of size two, Ksym2 by the associativity relation. By
definition G∅ is also generated by one symmetric element of size 2, and furthermore we
have:

a ∗ ◦∗ b c = a b c = ∗ c ◦∗ a b , (161)

which is the associativity relation. Hence G∅ ∼= Com. This could also be observed from the
fact that we clearly have G∅[V ] = K∅V and hence the map ∅V 7→ µV implies an isomorphism
from G∅ to Com.

The other three cases are more involved.

Proposition 4.35. The sub-operad Seg of KG generated by { a b } is isomorphic to
ComMag.

Proof. We know from Proposition 4.31 that Seg is isomorphic to the sub-operad of PLie
generated by {

a

b
+

b

a

}
(162)

Then [14] gives us that the map which sends the above element to sab ∈ sym2[{a, b}] induces
an isomorphism between the sub-operad and ComMag. This concludes the proof.
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The isomorphisms Com ∼= KG∅ and ComMag ∼= Seg allow us to see Com and
ComMag as disjoint sub-operads of KG and hence gives us a natural way to define the
smallest operad containing these two as disjoint sub-operads. Denote by G the set sub-
species of G generated by { a b , a b } and SP the sub-operad of KG generated by these
two elements. This operad has some interesting properties. Recall from Remark 12 that
we use the notation ◦ξ∗ for the grafting of tree in a free operad and that we denote the
equivalence class of x by [x].

Proposition 4.36. The operad SP is isomorphic to the operad Ope(KG, R) where R is
the subspecies of KFreeG generated by

c ∗ ◦ξ∗ a b − a ∗ ◦ξ∗ b c , (163a)

and

a ∗ ◦ξ∗ b c − c ∗ ◦ξ∗ a b − b ∗ ◦ξ∗ a c . (163b)

Therefore, SP is binary and quadratic.

Proof. The element [ a b ] of Ope(G,R) is symmetric of size 2 and follows the associativity
relation (163a). Hence the sub-operad of Ope(G,R) generated by [ a b ] is equal to Com.
This implies that all the trees in FreeG with V as leaves and whose labels are all empty
graphs over two points are in the same equivalence class of Ope(G,R). We will denote by
µV this equivalence class. In the same way, the element [ a b ] of Ope(G,R) is symmetric
of size 2 and do not follow any relation involving only itself, hence the sub-operad of
Ope(G,R) generated by [ a b ] is equal to ComMag. We denote by sab ∈ sym2[{a, b}]
the equivalence class of the segment.

There is a natural epimorphism φ from KFreeG to SP which is the identity on a b

and a b and which sends a partial composition g1◦ξ∗g2 on the partial composition g1◦∗g2.
We already proved by (161) that the vector (163a) is in the kernel φ. The case of (163b)
is also straightforward:

a ∗ ◦∗ b c = a b c + a c b

= c ∗ ◦∗ a b + b ∗ ◦∗ a c .
(164)

To conclude; we must now show that for any w ∈ Ope(KG,R)[V ], φ(w) = 0 implies
w = 0. Because of (163b), we have that the vector

[
a ∗ ◦ξ∗ b c

]
is equal to the vector[

b ∗ ◦ξ∗ a c
]

+
[
c ∗ ◦ξ∗ a b

]
in Ope(G,R). Hence, by iterating this process, we get

that all elements of Ope(G,R) can be written as a sum of equivalence classes of trees where
no segment vertex has a points vertex as descendent. This means that Ope(G,R)[V ] has
the following generating family (cf Figure 166 for an example):{[

(. . . ((T ◦ξ1 t1) ◦ξ2 t2) . . . ) ◦ξk tk
]
|T ∈ Ap[[k]], ti ∈ As[Vi]

}
{V1,...Vk} partition of V

, (165)

where Ap[V ] is the set of trees with set of leaves V and only points vertices and At[V ]
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p

p

1 2

3 ◦ξ1
t

a b

 ◦
ξ
2 c

 ◦
ξ
3

t

t

d e

f =

p

p

c

3

t

a b

t

t

d e

f

(166)

Figure 2: An element in the generating family of Ope(G,R)[{a, b, c, d, e, f}]. The labels p
represent the empty graph over two points and the labels s the segment graph.

those with only segment vertices. An element of this family rewrites then:[
(. . . ((T ◦ξ1 t1) ◦ξ2 t2) . . . ) ◦ξk tk

]
= (. . . (([T ] ◦ξ1 [t1]) ◦ξ2 [t2]) . . . ) ◦ξk [tk]

= (. . . ((µ[k] ◦ξ1 t1) ◦ξ2 t2) . . . ) ◦ξk tk,
(167)

where in the second line the elements ti are this time in Freesym2 [Vi]. SinceSk acts trivially
on µ[k], all the elements obtained by permuting the ti in in (167) are equal. The generating
family (165) can hence be reduced to{

µ[k] ◦ξ (t1, t2 . . . tk) | ti ∈ Freesym2 [Vi]
}
{V1,...Vk} partition of V , (168)

where by µ[k] ◦ξ (t1, t2 . . . tk) we denote any of the equal trees (. . . (µ[k] ◦ξ1 tσ(1)) . . . ) ◦ξk tσ(k)

for σ a permutation of [k].
Let now be w of the form

∑l
i=1 aiwi where for each 1 ≤ i ≤ l, ai ∈ K and there is a

partition of Pi = {Vi,1, . . . , Vi,ki} of V such that wi = (. . . (µ[ki| ◦ξ (ti,1 . . . ti,ki) with ti,j in
Freesym2 [Vi,j].

For i an index in [l], the image of µ[ki] by φ is the empty graph over [ki], and so the
image of wi is equal to:

ki⊕
i=1

φ(ti,j) =

ki⊔
j=1

φ(ti,j). (169)

Hence, for i 6= j two indices, if Pi 6= Pj the support of φ(wi) and φ(wj) are disjoint. We
can then restrict ourselves to the case where all the wi are on the same partition of V i.e.
Pi = {V1, . . . , Vk} for all indices i.
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Denote by G[V1, . . . , Vk] the set {g1 ⊕ · · · ⊕ gk | gi ∈ G[Vi]}. Then there is an isomor-
phism from KG[V1, . . . , Vk] to KG[V1] ⊗ · · · ⊗ KG[Vk] defined by g1 ⊕ · · · ⊕ gk 7→ g1 ⊗
· · · ⊗ gk. This isomorphism sends φ(w) on

∑l
i=1 ai

⊗ki
j=1 φ(ti,j). Since for all 1 ≤ i ≤ k

Freesym2 [Vi] is a free family in ComMag[Vi] ⊂ G[Vi] (by definition of a basis), the family
{(v1 ⊗ · · · ⊗ vk)Sk

| vi ∈ Freesym2 [Vi]} is also free and hence φ(w) = 0 implies ai = 0 for
all 1 ≤ i ≤ k. This shows that the epimorphism φ is also a monomorphism and hence an
isomorphism. This concludes the proof.

A further consequence of Proposition 4.36 is that the generating family (168) is a basis
and hence the operad SP is isomorphic to Com(ComMag).

From now on we denote by pab = a b and by sab = a b . We now exhibit the Koszul
dual of SP. We use the same convention as in Example 4.6 for the notation p∨αβ and s∨αβ
for α, β ∈ A .

Proposition 4.37. The operad SP admits as Koszul dual the operad SP! which is iso-
morphic to the operad Ope((KG)∨, R) where R is the subspecies of FreeKG∨ generated by

a ∗ ∨ ◦ξ∗ b c
∨, (170a)

a ∗ ∨ ◦ξ∗ b c
∨ + c ∗ ∨ ◦ξ∗ a b

∨ + b ∗ ∨ ◦ξ∗ a c
∨, (170b)

a ∗ ∨ ◦ξ∗ b c
∨ + c ∗ ∨ ◦ξ∗ a b

∨ + b ∗ ∨ ◦ξ∗ c a
∨. (170c)

Proof. Let us respectively denote by r1 and r2 and r′1, r′2, and r′3 the vectors (163a), (163b),
(170a), (170b), and (170c). Denote by I the operad ideal generated by r1 and r2. As a
vector space, I[[{a, b, c}]] is then the linear span of the set

{r1, (ab) · r1, r2, (abc) · r2, (acb) · r2} , (171)

where · is the action of the symmetric group, e.g r1 · (ab) = FreeG[(ab)](r1). This space is
a sub-space of dimension 5 of FreeG[{a, b, c}], which is of dimension 12. Hence, since as a
vector space we have

KFreeG∨ [{a, b, c}] ∼= KFreeG∗ [{a, b, c}] ∼= KFreeG[{a, b, c}], (172)

we conclude that I⊥[{a, b, c}] must be of dimension 7.
Denote by J the ideal generated by r′1, r′2 and r′3. As a vector space ,J [{a, b, c}] is then

the linear span of the set

{r′1, (ab) · r′1, (ac) · r′1, r′2, (abc) · r′2, (acb) · r′2, r′3} . (173)

This vector space is of dimension 7. To conclude, we need to show that for any elements
f of J [{a, b, c}] and x of I[{a, b, c}] we have 〈f |x〉 = 0. Among the 21 cases to check, we
have for example:

〈r′1 | r1〉 = 〈s∨a∗ ◦ξ∗ s∨bc | p∗,c ◦ξ∗ pab − pa∗ ◦ξ∗ pbc〉
= 〈s∨a∗ ◦ξ∗ s∨bc | p∗,c ◦ξ∗ pab〉 − 〈s∨a∗ ◦ξ∗ s∨bc | pa∗ ◦ξ∗ pbc〉
= s∨a∗(p∗,c)s

∨
bc(pab)− s∨a∗(pa∗)s∨bc(pbc) = 0,

(174)
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and

〈(abc) · r′2) | r2〉 =

〈p∨b∗ ◦ξ∗ s∨ca + s∨a∗ ◦ξ∗ p∨bc + s∨c∗ ◦ξ∗ p∨ab | sa∗ ◦∗ pbc − pc∗ ◦∗ sab − pb∗ ◦∗ sca〉
= p∨b∗(sa∗)s

∨
ca(pbc)− p∨b∗(pc∗)s∨ca(sab)− p∨b∗(pb∗)s∨ca(sca)

+ s∨a∗(sa∗)p
∨
bc(pbc)− s∨a∗(pc∗)p∨bc(sab)− s∨a∗(pb∗)p∨bc(sca)

+ s∨c∗(sa∗)p
∨
ab(pbc)− s∨c∗(pc∗)p∨ab(sab)− s∨c∗(pb∗)p∨ab(sca)

= −1 + 1 = 0.

(175)

We leave the verification of the 19 remaining cases as an exercise to the interested reader.

In order to compute the Hilbert series of SP! we need to use identity (114) and hence
to prove that the operad SP is Koszul.

Proposition 4.38. The operad SP is Koszul.

Proof. Let R be the species defined as in Proposition 4.36 so that SP ∼= Ope(KG,R).
Denote by p(a, b) and s(a, b) the elements of GF [{a, b} , ab]. Then the following vectors
form a basis B of RF [{a, b, c} , abc]:

v1 = p(p(a, b), c)− p(a, p(b, c)) , v2 = p(p(a, c), b)− p(a, p(b, c)) (176)
v′1 = s(p(a, b), c)−p(s(a, c), b)− p(a, s(b, c)) (177)
v′2 = s(p(a, c), b)−p(s(a, b), c)− p(a, s(b, c)) (178)
v′3 = s(a, p(b, c))−p(s(a, b), c)− p(s(a, c), b). (179)

We need to show that it is a Gröbner bases of (RF ). Let now consider the path-lexicographic
ordering presented in subsubsection 4.1.4 with s > p. Then the leading terms of v1,
v2, v′1, v′2 and v′3 are respectively p(p(a, b), c), p(p(a, c), b), s(p(a, b), c), s(p(a, c), b) and
s(a, p(b, c)). We conclude with Proposition 4.15. Indeed, it is shown in [20] that the S-
polynomials of pairs of elements in {v1, v2} are congruent to zero modulo B. We show
for example that the S-polynomial of v1 and v′1 corresponding to c = s(p(p(a, b), c), d) ∈
FreeshG [{a, b, c, d} , abcd] is congruent to zero. We have

mc,lt(v1)(v1) = c− s(p(a, p(b, c)), d)

mc,lt(v′1)(v
′
1) = c− p(s(p(a, b), d), c)− p(p(a, b), s(c, d)),

(180)

which gives us

sc(v1, v
′
1) = p(s(p(a, b), d), c) + p(p(a, b), s(c, d))− s(p(a, p(b, c)), d). (181)
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Let us look how each of the terms of sc(v1, v
′
1) reduces modulo B:

p(s(p(a, b), d), c) ≡v′1 p(p(s(a, d), b), c) + p(p(a, s(b, d)), c)

≡v1 p(s(a, d), p(b, c)) + p(a, p(s(b, d), c),

p(p(a, b), s(c, d)) ≡v1 p(a, p(b, s(c, d)),

s(p(a, p(b, c)), d) ≡v′1 p(s(a, d), p(b, c)) + p(a, s(p(b, c), d))

≡v′1 p(s(a, d), p(b, c)) + p(a, p(s(b, d), c)) + p(a, p(b, s(c, d))).

(182)

Putting this together in (181) gives us that sc(v1, v
′
1) reduces to 0 modulo B. We leave

the verification of the other cases to the interested reader.

Proposition 4.39. The Hilbert series of SP! is given

HSP!(x) =
(1− log(1− x))2 − 1

2
. (183)

Proof. The Hilbert series of ComMag is HComMag(x) = 1 −
√

1− 2x hence the Hilbert
series of SP ∼= Com(ComMag) is HSP(x) = e1−

√
1−2x − 1, where the −1 comes from the

fact that we consider positive species. We deduce the Hilbert series of SP! from HSP and
the identity (114).

The first dimensions dimSP![[n]] for n ≥ 1 are

1, 2, 5, 17, 74, 394, 2484, 18108, 149904. (184)

This is sequence A000774 of [43]. This sequence is in particular linked to some pattern
avoiding signed permutations and mesh patterns.

Before ending this section let us mention the sub-operad LP of KMG generated by{
a

, a b

}
. (185)

This operad seems particularly interesting to us since its two generators can be considered
as minimal elements in the sense that a partial composition with the two isolated vertices
adds exactly one vertex and no edge, while a partial composition with the loop adds exactly
one edge and no vertex. A natural question to ask at this point concerns the description
of the multigraphs generated by these two minimal elements.

Proposition 4.40. The following properties hold:

• the operad SP is a sub-operad of LP;
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• the operad LP is a strict sub-operad of KMG. In particular, the multigraph

a b c (186)

is in KMG but is not in LP.

Proof. • The following identity shows that a b is in LP[{a, b}] and hence that SP
is a sub-operad of LP:

∗
◦∗ a b −

a
−

b
= 2 a b . (187)

• Using computer algebra, one generates all vectors in LP[{a, b, c}] with three edges
and shows that the announced multigraph is not a linear combination of these.
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5 Conclusion and perspectives
We presented in this dissertation the main results obtained during our three years of
PhD. Our contribution to Hopf monoid theory is a natural continuation of Aguiar and
Ardila’s paper [2] and brings together a lot of similar results thorough the literature. Our
contribution to operad theory is a combinatorial approach to the study of operads on graphs
and related objects. Many other results obtained during this PhD were not presented in
this dissertation, either because they were not advanced enough or because they were in
great part covered by already existing literature. Let us cite them here along with some
research direction naturally arising from this dissertation.

The study of the coefficient of the polynomial invariant of [2]. Let M be a Hopf
monoid, ζ be a character of M and x ∈ M [V ] and element of M . What can we say
on the coefficients of χM,ζ

V (x)(n) ? More precisely, if this polynomial writes
∑
akn

k,
is the sequence a1, . . . , a|V | alternating, unimodular and log-concave ? The sequence
being alternating is not a too difficult question and we managed to prove it for χKHG,ζ1

and hence for any χM,ζ1 where M is any of the Hopf monoid we studied except GP .
We do not think the more general study of χKGP,ζ , for any ζ, to be more complicated.
On the other hand, the question about unimodularity and log-concavity are much
more involved. The paper [29] provides a general answer for matroids and hence for
graphs (since graphs can be seen as graphic matroids, a particular type of matroids).

The Duchamp et. al. construction of polynomial invariants. In [21], the authors
provide a way to construct polynomial invariant over Hopf algebra. They apply it to
the Hopf algebra of multigraphs with a contraction deletion co-product and recover
the Tutte polynomial. We applied their method to other Hopf algebras but the
obtained polynomials were too simple to be of interest. It seems their method is
interesting in the particular case were the Hopf algebra have two primitive elements
of size 1.

Terminal element of the category of combinatorial Hopf monoids. A combinato-
rial Hopf monoid is a pair (M, ζ) of a Hopf monoid and a character on this Hopf
monoid. There is a Hopf monoid structure over the species Comp of compositions
such that (Comp, ζ1) is a terminal element in the category of Hopf monoid. While we
proved this fact, this was already proven in the case of co-commutative Hopf monoid
and Π in [39]. The proof are nearly identical.

Weighted graphs and chromatic function. We studied the chromatic function of
weighted variations of graphs, oriented graphs and posets. Our results are in great
part covered by [18] and [1]. Nevertheless, our approach to the link between weighted
object and contraction-deletion is more general and our research on this subject is
still ongoing.

Generalizing species. As is put to light with L -species in subsubsection 4.1.4, changing
the domain category of a species can lead to very interesting objects. An important
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project of ours, is to generalize species this way. One of our main lead is the definition
of a notion of co-monoidal category. It was planned to discuss the feasibility and
interest of this project with François Bergeron but this was canceled because of the
covid19 epidemic. Our research on this topic is however still ongoing.

Link with the universal Tutte polynomial. In [15], O.Bernardi et al. give a general-
ization of the Tutte polynomial to hypergraphs. As they asked in [15], is it possible
to see the ζ1 chromatic polynomial of hypergraphs defined here as a specialization of
their universal Tutte polynomial?

Various questions about graph insertion operads. Are their other interesting graph
insertion operads than the one studied here? Is there a characterisation of the gen-
erators the operads KMG and its sub-operads? How to describe LP[V ]? And does
any of SP,SP!,LP provide an interesting type of algebra?

A sub-species of LP. Denote by p the operation which adds a vertex to a graph, and by
l the operation which sends a graph on the sum of graphs obtained by adding an edge
between two vertices of g. The vectors obtained by consecutively composing l and p
form a sub-species of LP. We studied this sub-species which have some interesting
links with paths with steps (1, 1) and (1,−1). Unfortunately, this study did not help
in the comprehension of LP.

The SP! operad. Does the operad SP! translate in a natural operad structure over the
families counted by the sequence A000774 of [43] ?

Factorizing PLie. Do the morphisms ComMag ↪→ KT ↪→ PLie provide some insight
in the search of an operad O such that PLie = O(ComMag) as conjectured in [13]
?
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