
HAL Id: tel-03019926
https://theses.hal.science/tel-03019926v1
Submitted on 15 Oct 2021 (v1), last revised 26 Nov 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Demixing phenomena in 2D bose gases
Edouard Le Cerf

To cite this version:
Edouard Le Cerf. Demixing phenomena in 2D bose gases. Quantum Gases [cond-mat.quant-gas].
Sorbonne Université, 2020. English. �NNT : 2020SORUS204�. �tel-03019926v1�

https://theses.hal.science/tel-03019926v1
https://hal.archives-ouvertes.fr


Thèse de doctorat de
Sorbonne Université

présentée par

Édouard Le Cerf

pour obtenir le grade de Docteur de Sorbonne Université
sur le sujet :

D E M I X I NG P H E NO M E NA I N
2 D B O S E G A S E S

préparé au Laboratoire Kastler-Brossel
sous la direction de Jérôme Beugnon et Jean Dalibard





CONTENTS

Introduction
Introduction xi

i the 2d bose gas: theory and experimental implementation
1 theoretical considerations 3

1.1 The uniform 2D Bose gas 3
1.1.1 Does Bose-Einstein condensation occur? 3
1.1.2 The Berezinskii-Kosterlitz-Thouless phase transition 5
1.1.3 Symmetries of the 2D Bose gas and consequences 9

1.2 Correlation functions 13
1.2.1 Theoretical basis 13
1.2.2 First order correlation function G1 15
1.2.3 Second order correlation function G2 20

2 the rb experiment 27
2.1 Production of 2D uniform gases 27

2.1.1 Electronic structure of 87Rb 27
2.1.2 Reaching 3D condensation 27
2.1.3 Going to 2D 29
2.1.4 Tailoring uniform potentials 29
2.1.5 Reaching 2D degeneracy 30
2.1.6 Juggling between hyperfine states: MW transfer 31
2.1.7 Juggling between hyperfine states: Raman transfer - intensity lock 33

2.2 Measurement of the gas’ properties 35
2.2.1 Measurement of the phase space density 35
2.2.2 Imaging the atoms 36
2.2.3 Calibration of the fudge factor 37

3 controlling the 2d atomic density 41
3.1 Implementation of the loop 42

3.1.1 Dithering algorithm 43
3.1.2 Feedback algorithm 44
3.1.3 Correction loop 46

3.2 Simulations 47
3.2.1 Protocol 47
3.2.2 First Tests 48
3.2.3 Effect of the photonic noise 51

3.3 Experimental results 51
3.3.1 Loop operation 51
3.3.2 Qualitative examples 52
3.3.3 Quantitative exemples 53

ii demixing phenomena in 2d uniform boxes
4 demixing phenomena: theoretical considerations 61

4.1 Role of instabilities in classical demixing phenomena 61
4.1.1 An example of immisicibility-induced dynamics 61
4.1.2 Example of hydrodynamical instability: the Rayleigh-Taylor instability 62

4.2 Theoretical description for ultracold atomic gases 64
4.2.1 Demixing criterion 64

iii



iv contents

4.2.2 Bogoliubov-de Gennes analysis 66
4.3 Ultracold demixing experiments 68

4.3.1 Examples in cold atom experiments 68
4.3.2 Parameters for our experiment 69

5 coupled gross-pitaevskii equations: numerical simulations 73
5.1 Simulation algorithm 73

5.1.1 Dimensionless Gross-Pitaevskii equations 73
5.1.2 Time-Splitting Algorithm 75
5.1.3 Choice of the grid’s geometry 75
5.1.4 Calculation of the ground state 76
5.1.5 Definition of the initial state 77

5.2 Preliminary tests 79
5.2.1 Choice of observables 79
5.2.2 Choice of the simulation parameters - PBC case 81
5.2.3 Condition on Ti - (S)SBC case 83

5.3 Results 84
5.3.1 Periodic boundary conditions 84
5.3.2 Strict boundary conditions 85
5.3.3 Semi Strict Boundary Conditions 90

6 demixing in ring geometries 95
6.1 Data taking and analysis strategy 95

6.1.1 Preparation of the atomic box 95
6.1.2 Initial state imprinting 96
6.1.3 Analysis strategy 96

6.2 Natural Demixing 97
6.2.1 Phase analysis 97
6.2.2 Individual mode analysis 98

6.3 Seeded Dynamics 100
6.3.1 Preliminary tests 100
6.3.2 Dispersion relation 102

7 demixing in square geometries 105
7.1 Natural demixing 106

7.1.1 Varying the atomic density 106
7.1.2 Varying the box’s size 109
7.1.3 Visibility analysis 110
7.1.4 Demixing in a T ‰ 0 system 110

7.2 Seeded demixing 111
7.2.1 Excitation protocol 111
7.2.2 Varying the density 112

Conclusion

Appendix
a appendix 127

Publications

Bibliography

bibliography 179







A beginning is the time for taking the most delicate care that
the balances are correct. This every sister of the Bene Gesserit
knows.

— Princess Irulan,Manual of Muad’Dib
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INTRODUCT ION

Cold atom physicists telling their relatives that they cool atoms with high power lasers are
often met with bewildered, or even suspicious looks. Instinctively, we tend to think that
light heats, and not cools, matter. This can however be better understood in a quantum

mechanical framework, where an atom absorbing a photon transitions to an excited state and
recoils towards the direction opposite to the light’s propagation. Upon spontaneous emission,
the atom will recoil again, in a random direction this time, so that in average, this second event
averages to zero. With the help of additional magnetic fields, one can then use three pairs of
lasers to confine an atomic cloud and reduce its temperature. The development of such methods
‘to cool and trap atoms with laser light’ by Steven Chu, Claude Cohen-Tannoudji, and William
D. Phillips, was rewarded by the 1997 Nobel Prize.
At very low temperature, quantum phenomena are brought into play. Atoms behave differ-

ently depending on their bosonic or fermionic nature. This gives rise to the famous Bose-Einstein
condensation phenomenon, first predicted by Einstein in 1925, and observed in 1938 for liquid
Helium by Pyotr Kapitsa, John Allen and Don Misener ([1, 2], Nobel Prize 1978), and in 1995
for dilute gases by Eric Cornell, Wolfgang Ketterle, and Carl Wieman ([3–5], Nobel Prize 2001).
In a Bose-Einstein condensate, the lowest quantum state is macroscopically populated, and
the system can be described by a single wave function, leading to unintuitive properties like
superfluidity.

The advent of techniques leading to condensation triggered a few years of intense exploration
of this new phase of matter ([6]). For instance, coherence properties were studied, and it
was shown that two Bose-Einstein condensates interfered as waves do ([7]), while long range
coherence was observed below the condensation point ([8]). Moreover, the superfluid behaviour
of such a system was demonstrated by the formation of vortices ([9]) and their organisation
into lattices ([10]).

Quickly, new tools enlarging the range of possibilities enabled the growing number of teams
working in this field to go from this weakly interacting regime, to a more complex one. Thanks
to the ability to tune the s-wave interaction strength with Feshbach resonances ([11, 12]), the
strong coupling regime could eventually be reached ([13]), with the ability to tune interactions
to both attractive and repulsive. However, with large interactions came large atomic losses,
thus limiting the sample’s lifetime. Another development, instead of tuning the interaction
strength, was thus to change the potential felt by the atoms. Techniques involving optical lattices
allowed researchers to reduce the dimensionality of their system, leading to the observation of
a Kosterlitz-Thouless phase transition in 2D ([14]), or to the study of a Tonks-Girardeau Bose gas
in 1D ([15, 16]). Finally, interactions are not necessarily limited to short range, and Bose-Einstein
condensates with large magnetic moment atoms, such as Chromium or Dysprosium, have also
been produced ([17, 18]). Using Feshbach resonances, the interplay between dipolar and contact
interactions could also be tuned to change the interaction’s nature and range ([19]).
Not only are ultracold atoms an interesting tool for fundamental physics advances, they

also have interesting applications in metrology or quantum simulations ([20]). Due to their
high degree of controllability, MW atomic clock have long been the standard for defining time;
however, the advent of more precise optical transitions based experiments have increased
sensitivity a great deal: today, the most precise atomic clock in operation reaches the 10´19

level for one hour of averaging time ([21]), while a range of new proposals taking advantage of
these progresses are proposed each year, like for instance the detection of gravitational waves
from space using optical lattice atomic clock ([22]). These breakthroughs have also been applied
to other metrological problems, like the search for possible time variation of fundamental
constants ([23]), or the construction of very precise gravimeters ([24]). As these systems provide

xi
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experimentalists with easily controllable, clean, and defect-free ensembles, these advances have
also been used in the realm of quantum simulations ([6, 25]), in particular in the study of the
Bose-Hubbard ([26]) or Fermi-Hubbard model ([27]).

The 2D Bose gas
As we have mentioned, low dimensional systems are no longer out of reach, and interesting

experiments have been conducted in order to explore their particular features. The case of
2D differs from the 3D case on several points. For an ideal 3D gas, what gives rise to the
condensation phenomenon is that below a certain critical temperature, the total population of
the excited states is limited, leading to an accumulation of bosons in the ground state. In 2D,
however, there is no saturation of the excited states’ population, and hence no condensation
in the thermodynamical limit ([28]). In terms of coherence, this translates into a vanishing
first order correlation function at long distances. However, the decay of this observable is
far slower below a certain critical point, which can be understood in the framework of the
Berezinskii–Kosterlitz–Thouless transition. As a matter of fact, a signature of this topological
transition is the proliferation of vortices above the critical temperature TBKT ([29, 30]), which in
turn causes the first order correlation function to decay exponentially fast, while this decay is
only algebraic below the transition point, where existing vortices of opposite circulations are
closely paired. In a realistic, finite-size system, this slow decrease permits to restore a semblance
of long range order, and the physics is essentially similar to what happens in the case of regular
3D condensation.

This transitionwas experimentally observed in [14], where authors trapped two atomic planes
in a vertical lattice before letting them interfere. At low temperatures, straight fringes were
observed, whereas conducting the same experiment at a higher T lead to the apparition of
dislocations among the fringes, which the authors attributed to the presence of vortices. More-
over, the algebraic behaviour of the first order correlation function below TBKT was measured
both for polaritons ([31–33]), dipolar excitons ([34]) and for cold atoms in a harmonic potential
([35–37]); however each of these experiments suffer from different limitations, and the measured
power-law exponent did not agree with theoretical predictions.

Moreover, the interest of the bidimensional system also resides in its scale invariance: for a
weakly interacting 2D Bose gas, the equation of state does not depend on the temperature T
and the chemical potential µ independently, but rather on the single parameter µ{kBT . This
equation of state has been studied experimentally for a 2D Bose gas in our group ([38, 39]);
in addition, the behaviour of the 2D Bose gas was predicted ([40]) and observed ([41]) to be
universal in the critical region. Other consequences on the system’s dynamical properties have
also been connected to hidden symmetries of the 2D Bose gas ([42]), and explored in our group
during my thesis ([43]).

Historically, most of the 2D experiments have been conducted in harmonic traps, which forced
the authors to use the so-called local density approximation to extrapolate their observations
for homogeneous systems. As a drawback, results obtained for these systems can be hard to
interpret: for instance, themeasurement of the first order correlation function g1 performedwith
cold atoms was ultimately limited by the harmonic confinement, which changed the behaviour
of g1 compared to the uniform case. Fortunately, new techniques to produce box potentials have
recently been implemented ([44, 45]), which paves the way for the production of degenerate
2D gases trapped in uniform horizontal planes. Finally, spatial light modulators, which can be
used to taylor the flat box’s walls, allow one to change the in plane confinement geometry at
will ([45, 46]).

Our system, merging these two techniques, is thus able to cool a 2D Bose gas down to
degeneracy and trap the cloud in a uniform box with an arbitrary shape, which makes it an
ideal setup for precise and controlled 2D physics experiments. While this path had not really
been pursued before I joined the team, we are also able to perform two-component experiments,
which opens the way to new and exciting possibilities. In particular, we can study the dynamics
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that emerge when a mixture of two immiscible species is produced and let to evolve. This is the
subject of this thesis.

Demixing phenomena
When two immiscible species aremixed together, they phase separate. Demixing dynamics are

present in many physical systems, classical hydrodynamics being the first example that usually
comes to mind. However, the fact that cold atom ensembles abide by hydrodynamical-like
equations shows that these phenomena are also relevant for such systems.

The versatility and tunability of cold atom experiments make them ideal to study demixing
phenomena. The first experiments to involve a two-component Bose-Einstein condensate was
performed by [47] and involved two hyperfine states of 87Rb. Swiftly, other experiments followed,
first with spinor condensates ([48, 49]), with mixtures of bosons and fermions ([50, 51]), and
later with mixtures of different atomic species ([52]).

In these systems, the miscibility parameter ∆ is usually determined by the values of the intra
and inter s-wave scattering lengths. As a consequence, this parameter has been tuned with the
help of Feshbach resonances ([52, 53]), where authors observed a clear spatial separation of the
two components on one side of the resonance, while the two condensates remained overlapped
on the other side of the resonance. Other ways of tuning this parameter exist, for instance by
adding a MW dressing field coupling the two components ([54–56]), which can also be used to
study a system close to a quantum critical point ([57]).

Spontaneous formation of spin domains have been observed when a miscible system is tuned
to immiscibility, for instance when part of a single component gas was transferred to another
state, immiscible with the first one ([58, 59]), or when a Feshbach resonance was used to tune
∆ from miscible to immiscible ([60]). The formation of these patterns is well explained by the
concept of hydrodynamical instability: in the immiscible regime, small population fluctuations
can be exponentially amplified, leading to the formation of well polarised spin domains. Amode
analysis of the spatial population fluctuations between the two components shows that only
a certain range of wave vectors k can actually grow, while in this naive picture, the emerging
patterns are set by the fastest growing mode ([61]). It can thus be interesting to study the growth
of these domains and see how this simple picture is modified in real systems.
Interestingly, once they have appeared, these spin domains can act as spin barriers and

prevent motion when a force is applied, effectively pinning the system down ([62]). Other
non equilibrium dynamics have also been explored, either by letting the system demix before
destabilising it ([63, 64]), or by looking at superfluid currents ([65]) or counterflow dynamics
([66]); in addition, it has been shown that spin droplets can also be stabilised by mean-field
effects ([67, 68]). Finally, numerical studies investigating various dynamical instabilities in these
systems have also been performed ([69–71]).

Then, what is left to do? Many of these experiments were carried out in harmonically trapped
clouds, which, as we have seen, can have non negligible differences with uniform systems. For
instance, in the first case, the instability leading to phase separation is triggered by the non-
homogeneity of the gas. Then, in a box potential, where does the modulation start? Moreover,
our total control over the geometry of the box’s walls enables us to vary the cloud’s in plane con-
finement from a 2D square shape to a 1D ring very easily, which might also have an interesting
influence of the observed dynamics. This is thus a good motivation to try implementing these
experiments in our ‘ideal’-like, 2D uniform system, and study comprehensively the instabilities
that appear when immiscible fluids are mixed.

Detailed outline of this thesis
Thismanuscript is organised into two independent parts: the first one deals with the necessary

tools, both theoretical and experimental, important to understand and produce a 2D degenerate
Bose gas; it also details an implementation of a correction method that can be used to taylor the
profile of a light beam and can be used to improve certain homogeneity defects that appear on
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the experiment, or help imprinting complex shapes on the atomic density. The second part is
devoted to demixing phenomena in 2D Bose gases, including a numerical study of this system,
and experimental data analysis. Here is a brief summary of each chapter’s content:

I. The 2D Bose gas: theory and experimental implementation

Chapter 1 is a theoretical presentation of the 2D Bose gas: it contains a description of the
BKT phase transition along with details about the symmetries of this system. Moreover, an
introduction to the behaviours of the first and second order correlation function is also presented.

Chapter 2 provides a general description of the experimental setup, from the production of
2D uniform gases, to the tools used to reach quantum degeneracy. The methods for measuring
the system’s parameters such as the phase space density or the atom number are also presented.

Chapter 3 introduces an iterative method using a grey-levelled spatial light modulator that
can be employed to taylor a laser profile. It can be used to control the 2D atomic density, for
instance by improving the homogeneity defects that inevitably appear in our system, or by
trapping atoms in complex potentials, or by imprinting complex shapes on the atomic density.

II: Demixing phenomena in 2D uniform boxes

Chapter 4 gives a general description of demixing phenomena, from classical hydrodynamics
to cold atom systems. It details the theoretical tools that will be used in the rest of the thesis,
and introduces the specific parameters that are relevant to our system.

Chapter 5 studies numerically a two-component Bose gas, and in particular details the
influence of the box’s geometry on the appearing dynamics. It deals with the two types of
demixing that are studied experimentally in the final chapters: natural demixing (the two species
are initially uniformly overlapped), and seeded demixing (a certain modulation is imprinted
on the initial system).

Chapter 6 presents experimental data taken in a system with periodic boundary conditions,
namely a 1D ring of atoms. The two previously mentioned cases, natural and seeded demixing,
are both studied.

Chapter 7 details the same kind of experiences, but performed in square 2D boxes, thus
adding edges to the system. The role of the temperature in the demixing dynamics is also briefly
discussed.
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The disc, being flat, has no real horizon. Any adven-
turous sailor who got funny ideas from staring at eggs
and oranges for too long and set out for the antipodes
soon learned that the reasonwhy distant ships sometimes
looked as though they were disappearing over the edge
of the world was that they were disappearing over the
edge of the world.

—Terry Pratchett, The Light Fantastic
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1
THEORET ICAL CONS IDERAT IONS

The effects of dimensionality on physical systems are well known. In particular, some ordered
phases of matter, like crystals for instance, are forbidden in dimensions 1 and 2. The same result
goes for Bose-Einstein condensation (BEC): for finite temperatures, long range order cannot exist
in 2D. However, we will show that a semblance of order can be restored at low temperature. We
will first see what phenomena take place in 2D for Bose gases instead of regular condensation.
Then, in order to better characterise the physics of this phase transition, we will examine the
behaviour of the first and second order correlation functions across the transition.

1.1 the uniform 2d bose gas

1.1.1 Does Bose-Einstein condensation occur?

1.1.1.1 Condensation of the 3D Bose gas

Historically, BECs have long stayed a Gedankenexperiment in quantum physics. While the idea of
bosonic condensation was first proposed by Einstein in 1925 following a paper by Bose, the
necessary technology to observe this state of matter simply did not exist for another 70 years.
Although the superfluidity of Helium 4 does correspond to a Bose-Einstein condensation, and
was indeed identified as such by London in the 40s, the large density of this system leads to high
repulsive interactions between particles, and only „ 10 % of atoms end up in the condensate
state. This situation is quite different from the ideal Bose gas textbook example, which we are
going to address now.
We remind here the basics of BEC physics in 3D. We take a box of volume V “ L3 with

periodic boundary conditions in which N bosons of massm evolve. The eigenfunctions of the
hamiltonian H “

p2

2m are well known:

φpprq “
1
?
V
eip¨r{~. (1.1)

Each wave function corresponds to a momentum p “ ~k “ 2πn~{L where n P Z3, and is an
eigenfunction of H for the eigenvalue εp “ p2{2m. We know that for bosons, the mean occupa-
tion of a state φp is given in the grand canonical ensemble by the Bose-Einstein distribution:

Np “
1

eβpεp´µq ´ 1
with β “ pkBT q

´1. (1.2)

For simplicity, we fix ε0 “ 0, which means µ ă 0. It is then tempting to write, for a large
occupation of the lowest state (N0 " 1):

N0 “
1

e´βµ ´ 1
ñ µ “ ´

1

β
ln

ˆ

1`
1

N0

˙

» ´
1

βN0
. (1.3)

We immediately understand that as µÑ 0, the population of the lowest state might diverge,
and that we should treat this state separately from the others. Let us consider the population
Ne “ N ´N0 of atoms in excited states. Introducing the fugacity z “ eβµ and the de Broglie
wavelength λT “ h{

?
2πmkBT , we have:

3



4 theoretical considerations

Ne “
ÿ

k‰0

1

eβp~2k2{2m´µq ´ 1

“
V

p2πq3

ż 8

0

1

z´1eβ
~2k2
2m ´ 1

4πk2 dk

“
V

λ3
T

Li3{2pzq where Lippzq “
8
ÿ

l“1

zl

lp
.

(1.4)

One should note that the replacement of the sum by an integral in eq. 1.4 is only valid if the
spacing between the eigenvalues ofH is negligible compared to thermal energy:βh2{2mV 2{3 ! 1.
Moreover, the fact that for z P r0, 1s, the polylog function Li3{2pzq saturates at z “ 1 (correspond-
ing to Li3{2p1q “ 2.612), yields the famous saturation of excited states: Ne possesses an upper
bound, which gives rise to an accumulation of atoms in the lowest energy state when one adds
atoms to the system. This of course, is the Bose-Einstein phase transition.

Considering now the phase space density of excited states De “
Ne
V λ

3
T “ Li3{2pzq, we have:

Dmax
e “ Li3{2p1q » 2.612 ñ Tc “

2π~2

mkB

ˆ

n

Li3{2p1q

˙2{3

. (1.5)

Below this temperature, the lowest level is macroscopically populated, and by setting µ “ 0
in Eq. 1.4, we have:

N0pT q “ N

«

1´

ˆ

T

Tc

˙3{2
ff

. (1.6)

1.1.1.2 Absence of condensation in 2D

It is important to note that in 2D, the derivation done in Eq. 1.4 no longer stands as the 3D
integration now has to be performed in 2D. In this case, one has:

De “
L2

p2πq2

ż 8

0

z

eβ
~2k2
2m ´ z

2πk dk “ ´ lnp1´ zq. (1.7)

We thus see thatDe is no longer bounded when z Ñ 1: there is no saturation of excited states
in 2D, and no proper Bose-Einstein condensation.

This is actually a particular case of the Mermin-Wagner theorem stating that in dimensions
lower or equal to 2 with short-range interactions, there can be no spontaneous breaking of
a continuous symmetry at finite temperature. This general result was proven independently
by Mermin and Wagner ([72]), taking the example of (anti-)ferromagnetism in 1D and 2D,
and by Hohenberg ([73]), who studied the properties of Bose liquids and Cooper pairs for
superconductors.

The destruction of order in 2D was already noted by Peierls in 1934 ([74, 75]): considering a
2D crystal in which the positions of atoms were affected by thermal fluctuations, he realised that
the knowledge about the position of atom n was transmitted to atom 0 via a chain comprising
more atoms in 3D than in 2D, and that it would take larger fluctuations (which decreased the
likelihood of such an event) to destroy the crystalline order in higher than in lower dimensions.
Quantitatively, he found that there was a ‘stacking’ of defects when increasing the distance
between two sites in 2D: 〈

`

xn ´ x
0
n

˘2
〉
9 T lnpnq, (1.8)

where xn is the position of an atom at site n and x0
n is its equilibrium position if no thermal

fluctuations are present. This stacking is absent in 3D.
In other words, in 2D, one can always find a distance at which the uncertainty in xn is

arbitrarily large, which means that thermal fluctuations kill the order at long distance. However,



1.1 the uniform 2d bose gas 5

we will see later that for cold enough samples, order is only destroyed at very large distances:
for a small enough sample, a semblance of order can be restored.

1.1.2 The Berezinskii-Kosterlitz-Thouless phase transition

1.1.2.1 Suppression of density fluctuations

A common way of describing a cold atomic gas in its ground state is the Gross-Pitaevskii
equation. The idea is to start from the Schrödinger equation, and to use a mean field treatment
to add interactions. Moreover, at low temperature, most of the atoms are in the condensate
phase, and we will replace the operator ϕ̂ by a classical field ϕ. In the general case, the operator
ϕ̂ describing a quantum system with two-body interactions fulfils the equation:

i~
Bϕ̂pr, tq

Bt
“

„

´
~2∇2

2m
` Vextpr, tq `

ż

ϕ̂:pr1, tqVintpr
1 ´ rqϕ̂pr1, tqdr1



ϕ̂pr, tq. (1.9)

Furthermore, in the case of a short range interaction potential (where the typical scale on
which ϕ varies is very large compared to the scattering length), one can replace the interaction
potential by a Dirac distribution: Vintpr1 ´ rq “ gδpr1 ´ rq. The coupling constant g is chosen
so that the pseudo-potential gδ gives the same low energy scattering properties as the real
potential Vint. Thus, the Gross-Pitaevskii equation reads:

i~
Bϕ

Bt
“

ˆ

´
~2

2m
∇2 ` V ` g|ϕ|2

˙

ϕ. (1.10)

For temperatures low enough so that only s-wave scattering processes are relevant for inter-
atomic interactions, Vint is entirely determined by the s-wave scattering length a, and a 3D
computation yields g “ 4πa~2{m. In 2D however, the movement is frozen along one axis,
that we denote z, and we can factorise the wave function: φpx, y, zq “ ψpx, yqχ0pzq. For a deep
vertical confinement, we will approximate the shape of the trap by a harmonic potential of
pulsation ωz . An integration along z yields:

i~
Bψ

Bt
“

ˆ

´
~2

2m
∇2 ` V `

~2

m
g̃|ψ|2

˙

ψ, (1.11)

where we have defined the dimensionless interaction strength:

g̃ “ 4πa

ż

|χ0pzq|
4 dz “

?
8π

a
a

~{mωz
. (1.12)

This 2D Gross-Pitaevskii equation characterises well the gas in the condensed regime, and
will be a major tool to characterise our low temperature gases. From this equation, we can
express the kinetic and interactions energies:

Ek “
~2

2m

ż

|∇ψ|2 d2r and Ei “
~2g̃

2m

ż

n2prq dr “
~2g̃

2m
L2xn2prqy, (1.13)

where we have normalised ψ to
ş

ψprqd2r “ N . Moreover, we see that if we keep the average
n0 “ xnprqy and g̃ fixed, the only way to minimise the interaction energy is to minimise:

p∆nq2 “ xn2prqy ´ n2
0. (1.14)

Additionally, we can see that the interaction energy per particle ei always dominate the thermal
energy kBT at low enough temperature:

ei
kBT

»

~2g̃
2mn0

kBT
“
g̃D

4π
. (1.15)

This means that at high enough degeneracy (g̃D " 4π), any significant deviation of nprq
with respect to its mean value will cost a lot of interaction energy compared to kBT : density
fluctuations are effectively suppressed. This is often referred to as the ‘quasi-condensate’ regime.
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1.1.2.2 Superfluidity

This suppression of density fluctuations has an interesting consequence: whenD is high enough,
the wave function can be approximated by a complex field of constant modulus and varying
phase:

ψ »
?
n0e

iθprq ñ Ek »
~2

2m
n0

ż

p∇θq2 d2r. (1.16)

This state with a frozen density and a fluctuating phase is usually called a ‘quasi-condensate’
state. The discrete version of this hamiltonianH 9

ş

p∇θq2 is the hamiltonian of the XY model,
which explains why this model is often used on the 2D Bose gas.

In this degenerate regime, most of the atoms are in the condensed fraction, and one can use
a Bogoliubov approach, where quantum operators are replaced by classical fields. The idea
is to use the order parameter ψ “

?
neiθ to describe the T “ 0 system and find the excitation

spectrum. This method might seem questionable as we know order to be destroyed in 2D;
however, this approach is justified by the fact that when D is high enough, only at very large
distances does the order vanish, while a local order parameter can still be defined. It should
be noted that this treatment is purely phononic and that as the computation develops θ into a
Fourier series, it does not take other excitations, like vortices, into account. A lengthy calculation
done in [28] shows that the dispersion relation of the system’s excitations follows the famous
Bogoliubov spectrum:

ωk “

d

~k2

2m

ˆ

~k2

2m
`

2gn0

~

˙

. (1.17)

This relation has two interesting limits, with a crossover around k “
?
g̃n0:

• the small k limit where ω » c0kwith c0 “
a

gn0{m, which corresponds to the propagation
of phonons,

• the high k regime, where ~ωk “ ~2k2
2m ` gn0, where we find the free particle spectrum

shifted by the interaction energy.

We see immediately that according to the Landau criterion, the system should be superfluid
for v ă c0. Thus, even if there is no proper condensation in 2D, we recover a state with superfluid
behaviour at high enough D, as in 3D. At T “ 0, neglecting the quantum depletion due to (our
weak) interactions, we have ns “ n0 where ns is the superfluid density, and the whole system
is in the superfluid phase. We will see in the next section that as T is increased to the critical
temperature of the Berezinksii-Kosterlitz-Thouless phase transition Tc, the superfluid fraction
continuously decreases, and then jumps to 0 at the transition.

Interestingly, we have studied the speed of such excitations for 2D Bose gases duringmy thesis
(more details in [76, 77]). A thorough analysis shows that at T ă Tc, as two fractions (superfluid
and non superfluid) exist, there are two modes of sound propagation, usually referred to as
first and second sounds. The second sound mode is the one we expect to see when creating
a density perturbation at T ă Tc: its speed is directly related to the superfluid density, and
should thus jump to 0 (no second sound) above the transition. In [77], we created a perturbation
that propagated in our uniform atomic box. By integrating the density along one direction and
measuring the displacement of the perturbation with time, we were able to measure the speed
of sound in our gas. An image of our protocol is given in Fig. 1.1. At low temperature, we found
c “ c0, in good agreement with the expected Bogoliubov spectrum. For a higher temperature,
however, our observations departed from the theoretical predictions; in particular, we did not
see a jump of c at the transition. An explanation for this is the fact that above the transition, the
physics is more complex as the simple two-fluid model breaks down. In the normal phase, the
gas may not follow the hydrodynamical predictions, which could explain our observations.
Our paper is reproduced at the end of this thesis.
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Figure 1.1: Excitation of sound waves. An extra potential step is added on our uniform gas, creating a
perturbation that is free to propagate in the atomic box (a). By integrating the atomic density
along x for different times (b), one can monitor the displacement of the wave front, and
measure the speed of sound. Figure taken from [77].

1.1.2.3 Vortex proliferation

We have seen that the relevant Hamiltonian for our system is related to the one of the XY
model. In 2D, this model possesses a phase transition called the Berezinksii-Kosterlitz-Thouless,
or BKT phase transition, for which a proliferation of isolated vortices destroy phase coherence
above a certain critical temperature Tc ([29, 30]). However, the model used in the previous
section is purely phononic, and does not take the existence of vortices into account. We attempt
here to include these phenomena.
A vortex is defined as a zero of the wave function ψ; as ψ must be single valued, the phase

winding around such a point has to be a multiple of 2π:
¿

∇θprq ¨ dl “ 2πm, m P Z. (1.18)

The numberm is called the charge of the vortex. It is a topological invariant: a vortex with
m ‰ 0 cannot be spontaneously created or destroyed within the sample. Two mechanisms are
possible for the emergence of such vortices: a vortex can be created on the edge of the gas,
where ψ goes to zero, or a pair of vortices with opposite charges can be created on a zero of ψ
where no phase winding initially exists.

We intuitively understand that the apparition of such vortices is detrimental to the long range
order. A way to understand this is to note that for a single charged vortex, the phase of the
field between two points A and B goes from φ to φ` π when a vortex is created between A and
B. If the vortices are randomly distributed in the gas, the length on which the cloud is phase
coherent can only be smaller than the mean distance between two vortices.

As the field of velocities created by a vortex is orthoradial, we will here place ourselves in a
cylindrical geometry. We consider a disk of radius R uniformly filled withN atoms, and having
one single vortex in its centre. We can take a simplified model for the vortex density, and write
both density and velocity fields as:

nprq “ n0p1´ χr0,ξsprqq and vprq “
~
mr

eφ, (1.19)

where we have introduced the healing length ξ “ 1{
?

2g̃n0, the indicator function χr0,ξsprq of
r0, ξs (being 1 in this interval and 0 elsewhere), and eφ “ ez ˆ r{r. We can then compute the
kinetic energy of a fluid having one vortex:

Ek “
1

2
m

ż

nprqvprq2 d2r »
1

2
mn0

~2

m2

ż R

ξ

1

r2
2πr dr “ π

~2n0

m
lnpR{ξq. (1.20)
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Moreover, since n0 is increased fromN{πR2 toN{πpR2 ´ ξ2q, there must be a corresponding
increase of Ei by:

ε0 “
~2g̃

2m

«

ˆ

N

πpR2 ´ ξ2q

˙2

πpR2 ´ ξ2q ´

ˆ

N

πR2

˙2

πR2

ff

»
π

4

~2n0

m
. (1.21)

At this point, we should note two things. The first one is that the kinetic energy of such a gas
diverges when its size goes to infinity, even though the single change that we have made is the
apparition of a microscopic defect. This divergence is independent of the exact shape that we
have taken for n: a smoother cancellation of ψ, for instance, will simply add a constant. The
second one is that the increase of interaction energy ε0, on the other hand, is constant when the
disk’s size goes to infinity. We can thus neglect this contribution for an isolated vortex; it will
however not be the case for a vortex-antivortex pair, a situation in which the contribution of Ek
is greatly diminished.

Let us now use a thermodynamical approach: now that we know the energetic contribution
of a vortex, can we have an idea of when such a defect is created? We can write the free energy
of the system:

F “ E ´ TS, (1.22)

and we can approximate the energy E » Ek. As this energy is linked to the phase stiffness of
the gas, we will replace n0 by the superfluid density ns. Here, S is the entropy associated to
the vortex configuration. As the state of the gas is essentially determined by the position of the
vortex, which has a size πξ2, we haveW “ πR2{πξ2 different possibilities for our gas. Writing
that S “ kB lnpW q, we have:

F “

ˆ

π
~2ns
m

´ 2kBT

˙

lnpR{ξq ñ
F

kBT
“

1

2
pDs ´ 4q lnpR{ξq, (1.23)

where we have introduced the superfluid phase space density Ds “ nsλ
2
T . We immediately

see that for Ds ă 4, it is energetically favourable to have a vortex, while this is not the case for
Ds ą 4. Actually, starting from a case where Ds ă 4, i.e. where F is large and negative, the
creation of a vortex will reduce ns, which will in turn decrease F and make the appearance of a
second vortex even easier. There will thus be an avalanche of vortices that will bring ns to 0. This
proliferation of vortices is one of the signatures of the BKT phase transition. One can actually
show that when Ds ą 4, vortices appear in closely bound pairs, while when Ds is decreased,
these pairs tend to be less and less bound, until the two elements of the pair dissociate and
form isolated vortices, which destroy the long range order. As the location of these vortices
becomes random, two points of the gas will see their phase become less and less correlated,
until phase coherence is entirely lost. The value Dc

s “ 4 appears thus as the critical phase space
density for the BKT transition.

Interestingly, the previous argument shows thatDs can either be equal to 0 (no superfluidity),
or bigger than 4 (and the system exhibit some superfluidity, even ifDs ă D at finite temperature).
Values ofDs between 0 and 4, however, are forbidden: this is the famous jump of the superfluid
fraction at the BKT phase transition. Experimentally, this jump has been measured with torsion
pendula placed in liquid Helium ([78]). When the transition is crossed, the moment of inertia
of the the system pendulum + Helium is dramatically reduced (see Fig. 1.2).
It should be noted that if the relation ncspλcT q2 “ 4 is universal (it does not depend on g̃), it

does not give any information on the link between n and T at the critical point. In other words,
it is an equation that involves ncs and Tc, but not nc and Tc. Monte-Carlo simulations performed
in [79] actually show that one can write:

Dc “ ln

ˆ

ξD
g̃

˙

and
ˆ

µ

kBT

˙

c

“ ln

ˆ

ξµ
g̃

˙

where ξD “ 380˘ 3 and ξµ “ 13.2˘ 0.4. (1.24)



1.1 the uniform 2d bose gas 9

Figure 1.2: Measurement of the superfluid jump. When the temperature is decreased below the critical
temperature, some superfluid fraction appears, which reduces the moment of inertia of the
system torsion pendulum + Helium. Figure taken from [78].

Interestingly, we see that the critical point is determined by the ratio µ{kBT alone, and does
not depend on µ and kBT independently. This is a consequence of scale invariance, as we will
see in the next section.

1.1.3 Symmetries of the 2D Bose gas and consequences

1.1.3.1 Scale invariance

Scale invariance is a powerful concept used in many different fields of physics. The basic idea is
that when there is no characteristic scale in a system, the laws governing this system do not
change if certain variables such as length, time, or energy, are multiplied by a common factor.
In our case, we will see that the adimensionality of g̃ in the 2D case, and the lack of a length
scale associated with Ei thereof, makes the equation of state only depend on µ{kBT and not on
µ and T independently, as in the 3D or 1D case. The scale invariant nature of the 2D Bose gas
has been previously studied in our group ([38, 39]).
In our case, we can show ([80]) that the transformations where ` is replaced by λ` and t is

replaced by λ2t, that we note:
`Ð λ` and t Ð λ2t, (1.25)

imply that the energy scales are transformed as:

E Ð
1

λ2
E. (1.26)

In addition, let us note that this transformation also implies that pÐ p{λ.
First, let us assume that we have such a system. In this case, one can compute the equilibrium

average density n̄pT, µq in the thermodynamic picture: we have N bosons with positions triu
and impulsions tpiu; we can thus write:

n̄pT, µq “
ÿ

N

ż

PpN, triu, tpiuq npN, triu, tpiuq

N
ź

i“1

dri dpi, (1.27)

where P represents the Boltzmann weight of a given configuration: P “ e
´
E´µN
kBT . We then

perform the transformation:

T Ð T {λ2 “ T 1, µÐ µ{λ2 “ µ1. (1.28)

In order to compute n̄pT 1, µ1q, one can operate the change of variables r1i “ ri{λ and p1i “ λpi.
Eq. 1.26 implies that P remains unchanged, while n, being the inverse square of a length, is
transformed into n{λ2. Writing the definition of D and using the scaling on n, this yields:
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D̄pT {λ2, µ{λ2q “
h2

2πmkB

n̄pT {λ2, µ{λ2q

T {λ2
“

h2

2πmkB

n̄pT, µq

T
“ D̄pT, µq. (1.29)

Then, taking λ2 “ T immediately gives Dpµ, T q “ Dp1, µ{T q, which proves that D does
indeed only depend on the ratio µ{T . This is a particular case of a wider result: for a scale
invariant system, if a quantity F possesses a scaling FÐ F{λ2ν , then it can be written:

FpT, µq “ pkBT q
νf

ˆ

µ

kBT

˙

. (1.30)

In our previous example, we have applied this result to F “ nprqwith ν “ 1.
Now, let us prove that we have such a scaling. In our case, the hamiltonian of the system can

be written as:

Ĥ “
~2

2m

ż

∇Ψ̂:prq ¨∇Ψ̂prq d2r `
1

2

ĳ

V pr´ r1qΨ̂:prqΨ̂:pr1qΨ̂pr1qΨ̂prq d2r d2r1, (1.31)

where V pr´ r1q “ ~2
m g̃δ

2pr´ r1q, and where Ψ̂ annihilates a particle in r:

Ψ̂prq “
ÿ

α

ψαprqâα, (1.32)

with tψαu being an orthonormal basis, and âα being the annihilation operator of a particle in ψα.
Moreover, we note that as length scales are rescaled, we also have to rescale the wave functions
ψα in order to keep them normalised:

ψαprq Ð
1

λ
ψα

´ r

λ

¯

. (1.33)

We then immediately see that this expression abides by a Ĥ Ð 1
λ2
Ĥ scaling, implying that

we do also have E Ð 1
λ2
E.

1.1.3.2 SOp2, 1q symmetry

We summarise here the main results of [43]. The whole article is reproduced at the end of this
thesis. The results that we are discussing here are reproduced in Fig. 1.3.

Let us consider two systems:

• N weakly interacting free bosons confined in 2D,

• the same system with the addition of an in-plane harmonic trap.

It has been shown ([42]) that the Lie groups of both systems’ symmetries have the structure of
SOp2, 1q. This means that when determining the transformations that leave the action of these
systems invariant, and determining the generators L1, L2, L3 of these transformations, one has:

rL1, L2s “ iL3,

rL2, L3s “ ´iL1,

rL3, L1s “ ´iL2.

(1.34)

In other words, these generators have commutation relations characteristic of the Lie algebra
of the group SOp2, 1q. A first consequence of this fact is the periodicity of the system’s poten-
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Figure 1.3: Left: periodic evolution of the potential energy of our system (a), with a fit performed by
a cosine function and an additional linear slope to account for atomic losses. Note that
ψ is not periodic at all (b). The black line represents 10 µm. Right: example of a breather.
A uniformly filled equilateral rectangle reforms itself with periodicity T {2 (a). The scalar
product between the density at time t and the initial one (red square) is shown in (b). The
dashed lines correspond to times t “ pT {2, p P N. Figures taken from [81].

tial energy for harmonically trapped bosons. Indeed, noting ω the pulsation of the trap, the
generators Li can be written under the form:

L1 “
i

2
cosp2ωtqp1` r ¨∇q ´ 1

2ω
sinp2ωtq

ˆ

mω2r2

~
´ i

B

Bt

˙

,

L2 “ ´
1

2ω
cosp2ωtq

ˆ

mω2r2

~
´ i

B

Bt

˙

´
i

2
sinp2ωtqp1` r ¨∇q,

L3 “ ´
i

2ω

B

Bt
.

(1.35)

Using these generators, one can write the operator mω2r2{2 associated with the potential
energy per particle:

1

2
mω2r2 “ ´~ωpL3 ` cosp2ωtqL2 ` sinp2ωtqL1q. (1.36)

Moreover, one can write:

B

Bt

〈
1

2
mω2r2

〉
“

〈„
B

Bt
,
1

2
mω2r2

〉
“ ´2~ω2ixrL3, L3 ` cosp2ωtqL2 ` sinp2ωtqL1sy. (1.37)

Iterating this process, one eventually finds:

B2

Bt2

〈
1

2
mω2r2

〉
“ ´4ω2

〈
1

2
mω2r2

〉
, (1.38)

whose solution is, when the gas is initially prepared in a steady state of the trapping potential
so that 9Epp0q “ 0:

Epptq “
1

2
Etot `

1

2
∆E cospωtq, (1.39)

where Etot is the total energy of the system and ∆E “ 2Epp0q ´ Etot.
As these two systems (free and harmonically trapped) are linked by a shared algebra, one

can actually compute a mapping of solutions from one system to another. More generally, in
the hydrodynamic regime where the healing length is small compared to the size L of the
gas, a solution ψpr, tq of a Gross-Pitaevskii equation characterised by the triplet pω, g̃N, Lq
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can be mapped onto another solution ψ1pr1, t1q of an equation with pω1, g̃1N 1, L1q1. In the non
hydrodynamic case, only the mapping for different ω, but same g̃N and L, would hold. This
very powerful tool is used in order to calibrate the gas’ atom number, which will be treated in
the next chapter.
Of course, the fact that Ep is periodic does not imply that ψ is. In fact, the Gross-Pitaevskii

equation governing the system being non linear, it is not expected for ψ to be periodic. However,
we found two counterexamples to this statement. When let to evolve in a harmonic trap, we
observed that a uniformly filled equilateral triangle had a periodic behaviour, and that the
initial shape would reform with a fixed periodicity of T {2, with T the period of the harmonic
trap. This was also true for a uniformly filled disk, with a periodicity 2T . We did not find
an analytical proof that these ’breathers’ should exist in a harmonic potential, but we could
convincingly reproduce their behaviour with Gross-Pitaevskii numerical simulations.

1.1.3.3 Equation of state in 2D

As stated above, scale invariance has a very strong consequence on the equation of state: while
in 1D and 3D, the phase space density (PSD) depends on both µ and T , it only depends on the
ratio µ{kBT in 2D. If there is no general expression for Dpβµq “ D pµ{kBT q, there is, however,
two interesting limits in which an analytical form exists.

• The Hartree-Fock regime describes a gas far away from degeneracy. For an ideal gas, one
has:

D “
Nλ2

T

L2
“
λ2
T

L2

ż

ρpεqfBEpεq dε “ ´ ln
´

1´ eβµ
¯

, (1.40)

where we have introduced the Bose-Einstein function fBEpεq “ 1
eβpε´µq´1

and the 2D
density of states ρpεq “ mL2

2π~2 . An approximation for weakly interacting gases consists in
replacing the chemical potential µ by its mean field equivalent µ´ 2gn. This amounts to
taking g2p0q “ 2, g2 being the normalised second order correlation function. This yields:

βµ “
g̃D

π
´ ln

´

1´ e´D
¯

(1.41)

• The Thomas-Fermi regime describes the gas in a very degenerate case. In this regime, the
kinetic energy of the gas is small compared to its chemical potential, and one can write
µ “ gn. Inputing this in D “ nλ2

T , one finds:

βµ “
g̃D

2π
. (1.42)

In this regime, the gas obeys hydrodynamic-like equations that support Bogoliubov
excitations. A derivation done in [82] shows that when one considers that these excitations
are thermally occupied, one gets for the next term:

βµ “
g̃D

2π
´

g̃

2π
ln

ˆ

g̃D

π

˙

. (1.43)

Monte Carlo simulations performed in [40] have also determined the total equation of state
for a 2D weakly interacting Bose gas. Their result is in agreement with the two aforementioned
limits, as shown in Fig. 1.4. We will use the results of these simulations to determine an
interpolating function in order to measure the PSD D of our gas. This point is detailed in the
next chapter.

1 Throughout this section, we restrict ourselves to two solutions having the same geometry: with this method, a
square can be mapped on an another square, but non on a circle, for instance.
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Figure 1.4: Equation of state of the 2D weakly interacting Bose gas, with g̃ “ 0.16. The blue points are the
results of Monte Carlo simulation performed in [40], and agree well with both Hartree-Fock
and Thomas-Fermi limits.

1.2 correlation functions

We aim here at gaining a fuller understanding of the BKT transition, in particular through the
coherence behaviour of the 2D Bose gas across the transition. To do so, we will calculate the
two first correlation functions of our system. We will also explain how to measure them, and
briefly summarise the attempts that have been made in this matter. Unless otherwise specified,
we suppose the gas to be uniform.

1.2.1 Theoretical basis

1.2.1.1 Introduction

In optics, correlation functions are of great use in order to characterise a source. In most cases,
only first and second order correlation functions are studied. For a classical, stationary electric
field Eptq, one can define:

g1pτq “
xE˚ptqEpt` τqy

x|Eptq|2y
and g2pτq “

xIptqIpt` τqy

xIptqy2
, with Iptq “ |Eptq|2. (1.44)

Here, the two correlation functions have been normalised. The first order correlation function
measures whether E can interfere with itself at a later time; as such, it is a measure of the field’s
coherence. The second order correlation function characterises the temporal coherence, not in
amplitude, but in intensity.

In order to study the spatial coherence instead of the temporal one, these two functions can
also be defined with variables of space and not of time: in this case, g1 typically represents the
contrast of the interference created by two different areas of the source, while g2 can be used to
characterise the spatial fluctuations in intensity, the speckle for instance.

In the context of ultracold atoms, the same two functions can be used to study a quantum field.
In 3D, a Bose-Einstein condensation phenomenon can be observed below a certain temperature,
which implies a total phase coherence over the whole sample. Nevertheless, we have seen in the
previous section that there can be no long range order in 2D at finite temperature as thermal
fluctuations always end up destroying order at large enough distances. However, a local order
can be restored when D is high enough: the idea is that if the phase coherence tends to 0 at
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large distances when T ‰ 0, this decay might be slow. A good observable to quantify these
different behaviours is the first order correlation function.

The second order correlation function, however, does not deal with the coherence of the field,
but rather with density correlations. As such, it can be used to measure (anti-)bunching effects
created by quantum statistics, like in the Hanbury Brown and Twiss experiment. As bosons
(resp. fermions) have a tendency to cluster together (resp. to avoid each other), the probability
to detect a particle in the vicinity of another particle is increased (resp. decreased) compared to
the classical case. This corresponds to an increase (resp. decrease) of g2p0q.

1.2.1.2 Definitions in first quantisation

We use here the first quantisation approach in order to define the first and second order
correlation functions. As the system has a translational symmetry, both functions G1pr, r

1q, and
G2pr, r

1q only depend on r´ r1 and we will usually simplify: Gipr, 0q “ Giprq.

The first order correlation function can be defined as follows:

G1pr, r
1q “ xr|ρ̂1|r

1y , (1.45)

where ρ̂1 is the one body density operator. Taking advantage of the translation symmetry of
our system, we can write, in dimension d:

Nppq “ xp|ρ̂1|py “

ż

xp|ryG1pr, r
1q xr1|pyddr ddr1 “

ż

e´ir¨p{~G1prq ddr. (1.46)

It thus appears that the functions Nppq and G1prq are reciprocally Fourier transforms. This
general result holds in any dimension, whether the gas is ideal or not. We will use this property
later.

The second order correlation function can be defined as follows:

G2pr, r
1q “ xr, r1|ρ̂2|r, r

1y , (1.47)

where we have introduced the two-body density operator ρ2. It can be seen as the first order
correlation function in density.

The normalised corresponding correlation functions, which have the advantage of being
independent of N , can also be defined:

g1pr, r
1q “

G1pr, r
1q

a

G1pr, rq
a

G1pr1, r1q
and g2pr, r

1q “
G2pr, r

1q

G1pr, rqG1pr1, r1q
. (1.48)

1.2.1.3 Definitions in second quantisation

Depending on the case, it might be useful to either use first or second quantisation for computing
G1 or G2. Let us here introduce the quantum field operators that we use for this approach:

ψ̂prq “
ÿ

i

φiprqâi and ψ̂:prq “
ÿ

i

φ˚i prqâ
:

i , (1.49)

where âi and â:i respect the usual commutation relations: râi, â:js “ δij , and δij is the Kronecker
symbol. We will here use the system’s translational invariance. In the case where the tφiprqu
are plane waves, one has xâ:i âjy “ δijxâ

:

i âiy. One can then show that in the language of second
quantisation, eq. 1.45 is equivalent to:
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G1pr, r
1q “ xψ̂:prqψ̂pr1qy “

ÿ

i

φ˚i prqφipr
1qxâ:i âiy. (1.50)

Let us give here an interpretation of G1 in terms of phase coherence. If we take a uniform
system where only the phase fluctuates (for instance a 2D Bose gas in the very degenerate
regime), we have: ψpr, tq » ?n0e

iθpr,tq, which yields, for a random gaussian variable:

G1prq » n0xe
ipθprq´θp0qqy » n0e

´xpθprq´θp0qq2y{2. (1.51)

It is thus easy to understand that G1 represents the phase coherence of the sample: if there is
no fluctuation of phase, G1 “ n0, while any loss of coherence will decrease G1.

ForG2, adapting eq. 1.47 to second quantisation gives the following expression for the second
order correlation function:

G2pr, r
1q “ xψ̂:prqψ̂:pr1qψ̂pr1qψ̂prqy “

ÿ

ijkl

φ˚i prqφ
˚
j pr

1qφkpr
1qφlprqxâ

:

i â
:

j âkâly. (1.52)

1.2.2 First order correlation function G1

1.2.2.1 The 3D ideal gas

We have seen with eq. 1.46 that G1prq and Nppq are Fourier transforms from one another. Thus,
we can obtain G1 by taking the inverse Fourier transform of Nppq. By developing Nppq into an
infinite series, we obtain:

Nppq “
8
ÿ

l“1

zle´
βlp2

2m ñ G1prq “
1

h3

ż

eip¨r{~Nppq d3p “
N0

L3
`

1

λ3
T

8
ÿ

n“1

zn

n3{2
e´πr

2{nλ2T , (1.53)

where we have separated the p “ 0 term from the p ‰ 0 contribution in the integral as it can be
macroscopically populated and would otherwise be omitted.

For a very non-degenerate gas, we have nλ3
T ! 1, hence, no condensate fraction, and we can

neglect the term in N0 in the previous equation. Moreover, in this Boltzmann regime, as z ! 1,
we only keep the first term of the sum. This yields:

G1prq »
N

L3
e
´πr2

λ2
T . (1.54)

We see that G1 goes to zero on a typical length scale λT {
?
π: there is no phase coherence for

large distances above the transition.

For a gas that has reached condensation, we have z “ 1, and we have to separate the
condensed and non condensed contributions:

G1prq “
N0

L3
`Gc1prq where Gc1prq “

1

λ3
T

8
ÿ

n“1

1

n3{2
e´πr

2{nλ2T . (1.55)

When the density keeps increasing, Gc1prq, which corresponds to the excited states, does not
change. What changes is the value of the offset N0{L

3, and G1 does no longer vanish at infinity.
This means that for a condensed gas, the coherence length is infinite.

The behaviour of these two cases is summarised in Fig. 1.5.
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(a) (b)
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Figure 1.5: First order correlation function for the 3D ideal case. Non condensed gas (left), and gas that
has reached condensation (right). In the first case, g1 goes to zero on a typical distance given
by the de Broglie wavelength and there is no global phase coherence. For a condensed gas,
however, the condensed fraction gives a global offset to g1 and the function saturates atD0{D

at high distance: a global phase coherence emerges. Figure inspired from [83].

1.2.2.2 The 2D ideal gas

As stated before, the Fourier link between G1 and Nppq is a general result and holds is any
dimension. We can thus still use it here:

G1prq “
1

h2

ż

eip¨r{~Nppqd2p “
1

λ2
T

8
ÿ

n“1

zn

n
e´πr

2{nλ2T . (1.56)

In the low degenerate case, the gaussian shape of Nppq implies that G1 is also gaussian:

Nppq “
1

eβpεp´µq ´ 1
» ze´p

2{2mkBT ñ G1prq » ne´πr
2{λ2T . (1.57)

In this case, the spatial extent of coherence is also given by the de Broglie wavelength.

In the very degenerate case (z » 1), we have two contributions in N :

• for low momenta p2

2m ă kBT , we can linearise the denominator of the Bose-Einstein
distribution:

Nppq »
kBT

p2

2m ` |µ|
“

4π~2

λ2
T

1

p2 ` p2
c

with pc “
a

2m|µ| !
a

2mkBT . (1.58)

• for higher momenta p2

2m ą kBT , we can neglect the bosonic amplification term. We then
find a Boltzmann distribution:

Nppq » e´p
2{2mkBT . (1.59)

One can actually compute the contribution of both terms and find that the gaussian term is
negligible. As the Fourier transform of a 2D lorentzian is proportional to the modified Bessel
functionK0 whose asymptotic behaviour is:

K0pxq „
rÑ8

c

π

2x
e´x, (1.60)

we will have the following asymptotic behaviour:

G1prq „
rÑ8

1
?
r
e´r{` where ` “

~
pc
»

λT
?

4π
eD{2. (1.61)



1.2 correlation functions 17

(a) (b)

Figure 1.6: First order correlation function for ideal Bose gases in the 3D case (a) and in the 2D case (b),
calculated with the sums up to n “ 104 in eq. 1.53 and 1.56. We see that above Dc » 2.612, g1
saturates in 3D; the level of its offset is dictated by the population of the condensed fraction.
In 2D, however, and even if g1 decreases more slowly when D increases, the function tends
to 0 for large distances.

We see that in both cases, G1 goes to 0 when r goes to infinity, which satisfies the Mermin-
Wagner theorem. However, for a very degenerate gas, phase coherence is only lost on a scale of `.
This means that finite size effects can still play a significant role. In effect, when ` Á L, i.e.when
D Á lnp4πL2{λ2

T q, we can neglect the decay of the phase coherence. For cold atoms experiments,
one typically has λT » 1 µm, which, for D around 30, gives ` „ 1 m. In this case, the variations
of the phase over the whole sample can be neglected, and the physics is essentially the same as
for a true Bose-Einstein condensate. A comparison between the 2D and 3D case is shown in Fig.
1.6.

Finally, it should be noted that this discussion corresponds to an ideal gas, which is not the
case for our experiment. The presence of interactions will change the behaviour of G1, as we
will see in the next section.

1.2.2.3 The 2D weakly interacting case

We will now review the weakly interacting case. The main difference between this section and
the previous one is the suppression of density fluctuations in the quasi-condensate regime.

For a gas above the BKT transition, we have seen that vortices proliferate, which destroys
the phase coherence. This means that one cannot have phase coherence between two points of
the gas if the probability to find a vortex in between these two points is non negligible. As a
consequence, G1 cannot be long range, and one can show that it decays exponentially in this
region:

G1prq 9 e´r{`. (1.62)
Moreover, when approaching the transition from the T ą Tc side, this correlation length `
diverges:

` 9 λT exp

˜

c

ζTBKT

T ´ TBKT

¸

, (1.63)

where ζ is a model dependant constant.

For a gas that has crossed the BKT transition, one can write the wave function as a sole
function of θ: ψ “ ?n0e

iθprq. A lengthy calculation done in [80] gives:

xθprq ´ θp0qy »
2

nsλ2
T

lnpr{λT q. (1.64)
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Finally, we can compute the first order correlation function:

G1prq “ xψprqψ
˚p0qy » nsxe

ipθprq´θp0qqy » nse
´xpθprq´θp0qq2y{2

» ns

ˆ

λT
r

˙α

where α “
1

nsλ2
T

.
(1.65)

We thus see an important difference between the ideal gas and the weakly interacting case
below the BKT critical temperature. For the first one, G1 was decaying exponentially, while
adding weak interactions renders the decay algebraic. This corresponds to a much slower decay,
even if G1 still vanishes at infinity, as this would otherwise violate Mermin-Wagner’s theorem.
We have also seen that in the superfluid region, we always haveDs > 4, which means that the
decay should always be slower than r´1{4. At the transition, Dc

s “ 4 and we thus expect the
critical exponent to be equal to 0.25.

It can be useful to have a comparison between the cases with and without interactions. To
keep things simple, we will take n “ ns “ 50 µm´2 and T “ 100 nK, which are values that
we typically have on our experiment. This gives D » 18 (very degenerate gas), λT » 0.6 µm
and ` » 1 mm. In a box of side L “ 50 µm, g1pLq is typically equal to 0.04 for the ideal gas and
0.71 for the interacting one. We see that in this system, the phase coherence is totally destroyed
for the first case; for the second one, however, the two sides of the gas are still highly phase
correlated.

Moreover, it is important to note that as ` diverges at the transition, there is a temperature Tf
above Tc where ` ą L and a significant condensed fraction appears. An estimate of Tf{Tc ´ 1 is
typically in the 5-20 % range ([28]).

1.2.2.4 Measurement of G1 for a weakly interacting gas

Properly measuring the decay of G1 is a complicated task. There have been several attempts,
some with polaritons ([31–33]), some other with ultracold atoms in an in-plane harmonic
confinement ([35–37]). A recent study with dipolar excitons also showed interesting results
([34]).

Although the experiments with polaritons see a decay ofG1 compatible with a power law, the
decay exponents do not agree with the theoretical predictions. Moreover, as polaritons typically
have similar thermalisation and life times, these systems have to be continuously driven: these
non equilibrium systems can therefore have very different properties from closed systems at
equilibrium.
Ultracold atoms, on the other hand, have thermalisation times of typically a few ms, but

life times in the second range, and are thus more faithful to the picture of a system in ther-
mal equilibrium. The aforementioned experiments with ultracold atoms also measured an
algebraic decay below a certain critical temperature; however, the harmonic trapping changes
the behaviour of G1 compared to the uniform case, and the measured decay exponents were
significantly bigger than the predicted one (the experiments typically measured an exponent
above 0.5 while we expect 0.25 at Tc).
Finally, while s´wave collisions are in many cases the only relevant two-body interactions

for ultracold atomic gases, interesting collective phenomena arise when one considers gases
with dipolar interactions. Moreover, excitons systems have stronger dipolar interactions, and
can be realised in layers of semiconductors. A recent publication performed in such a system
([34]) observed an algebraic decay of G1 below the transition point in the 2D case. The authors
obtained an exponent for this decay compatible with the theoretical value of 0.25, although the
precise measured value was limited by the inhomogeneity of the experimental system.

This pushed us to try to measure the decay of G1 in our system. During my PhD, we actually
did two attempts at measuring G1: both these attempts are described in more details in [81].
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We have seen thatG1 and the distribution in momentumNppq are linked via Fourier transfor-
mations. Our first attempt tried to use this result. We prepared the cloud at various degeneracies,
and let it evolve for a quarter of a period in an in-plane harmonic confinement created by a
quadrupole field. This operation transforms the spatial distribution at time T {4 into the initial
momentum distribution:

ψ
´

r, t “
π

2ω

¯

“ ψppp “ mωr, t “ 0q, (1.66)

where ω “ 2π{T is the in-plane trapping frequency. As this result holds only for non-interacting
clouds, we removed the vertical confinement in order to let the atoms expand in this direction
(and thus lower the interactions). We then let the cloud evolve in the harmonic trap. Only a thin
slice of these atoms were repumped and imaged in order to keep the signal in focus with our
imaging system.
However, due to experimental limitations coming in part from the residual interactions

between atoms which tended to influence the measured size of the cloud, we could not properly
conclude. Notably, we could not properly assign the shape of G1 to be either exponential or
algebraic, as both expressions fitted equally well our data. We however measured two things.

• If we assume an algebraic decay for G1, then the corresponding exponent is below 0.3 for
T ă Tc, which is in agreement with the BKT theory. This exponent dramatically increases
when T is increased above Tc, which reflects the loss of coherence when the transition is
crossed.

• If we assume an exponential decay forG1, then the characteristic length of this exponential
is bigger than the size of our sample for T ă Tc (we have a fully coherent sample), and
decreases when leaving the superfluid regime. This is also in agreement with the BKT
theory according to which this length scale diverges at the transition.

We then turned to another method. The idea was to use an interferometric measurement
by letting two parts of the cloud interfere with one another. We used Raman beams to select
two lines of our initial cloud, while the other atoms were expelled from the trap. After a 2D
time of flight, the two lines were made to interfere with each other, and by repeating the same
experiment several times, we could extract the average contrast of the interference pattern,
which at the centre of the cloud, is proportional to G1pdq, d being the initial distance between
the two lines. An example of our protocol is given in Fig. 1.7. It is important to note that
even for a thermal cloud, two lines will always yield a non-zero contrast; however, without
phase coherence, the phase of the appearing pattern will be random and the contrast will be
washed out when an average is performed. By varying the distance between the two lines, we
could measure G1prq at a certain phase space density. Repeating the experiment with different
phase-space densities gave us information on the phase coherence across the transition.

At the time when this thesis was written, the analysis of this set of data was still being carried
out, and definitive results were not available. We give here preliminary results. Our method has
limitations: the inherent size of our sample (L “ 40 µm) limits the range of distances on which
we can measure G1; this in turn restricts us in our determination of its exact shape, and we
are still not able to discriminate between an exponential and an algebraic behaviour. However,
below Tc, assuming an algebraic decay, we get decay exponents very close to what the theory
predicts; in particular, we are around 1/4 at the transition, which is in agreement with the BKT
prediction of Dc

s “ 4. Above the transition, G1 decreases dramatically faster than at T ă Tc.
Assuming an exponential behaviour, we find that the characteristic length scale associated with
this decay increases when T is brought closer to Tc. In conclusion, these results are compatible
to the ones yielded by the first method, and give a more accurate measurement of the decay
exponent that is brought into play during the BKT phase transition.
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Figure 1.7: Measurement of g1 with an interferometric method. Two lines (b) are selected from the initial
cloud (a) and interfere (c). Averaging (c) over different iterations and extracting the central
interference contrast enables us to measure G1pdlq. The black line represents 10 µm. Figure
taken from [81].

1.2.3 Second order correlation function G2

Contrarily toG1, the second order correlation function is not connected to phase coherence, but
rather to the density distribution of the gas. As density fluctuations are largely suppressed for
2D highly degenerate bosons, G2 can be an important parameter to describe the state of the gas
at various temperatures. A natural question would then be to investigate wether G2, like G1,
also has specificities in 2D, and to know in particular how G2 evolves across the BKT transition.
Nevertheless, predicting or measuring the exact variation of this function across the critical
point is hard, and literature on the topic is scarce. This is a good motivation for measuring g2

at various T {Tc, as we are currently doing at the time when this thesis is written. We will first
present the general characteristics ofG2 that can be found in literature, then give a small review
of some measurement that have been done on that topic.

1.2.3.1 Ideal gas

We start by looking at the ideal case, and use eq. 1.52 in order to compute G2. We follow here
computations done for 3D in [84].

For temperatures above Tc, there is no condensed fraction, and we can use Wick’s theorem2:

xâ:i â
:

j âkâly “ xâ
:

i âkyxâ
:

j âly ` xâ
:

i âlyxâ
:

j âky. (1.67)

Using the system’s translational invariance, we also have xâ:i âjy “ δijxâ
:

i âjy. This yields:

G2prq “ xψ̂
:prqψ̂prqyxψ̂:p0qψ̂p0qy ` |xψ̂:p0qψ̂prqy|2

`
ÿ

m

|φmprq|
2|φmp0q|

2
`

xâ:mâ
:
mâmâmy ´ 2xâ:mâmyxâ

:
mâmy

˘

“ G1p0q
2 ` |G1prq|

2 and hence,
g2prq “ 1` |g1prq|

2.

(1.68)

We immediately see two things:

• as lim
rÑ8

g1prq “ 0, we have lim
rÑ8

g2prq “ 1;

• as g1p0q “ 1, we also have g2p0q “ 2. This is the famous bunching effect that appears for
bosons.

The behaviour of g2 in this case is plotted in Fig. 1.8.

2 Wick’s theorem is only applicable in the grand canonical ensemble, which can lead to non physical results for an
ideal condensed system, for instance the computation of atom number fluctuations.
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Figure 1.8: Behaviour of g2prq for an ideal gas above the condensation threshold: the value of the function
is 2 in 0, and decays to 1 in a scale set by λT .

For temperatures below Tc, one has to separate the condensed and the non condensed parts.
For condensed bosons, the grand canonical ensemble predicts huge condensate fluctuations;
in this case, one has to resort to treating the condensate part with the canonical ensemble. In
this case, Wick’s theorem can no longer be applied. For a very degenerate gas, however, the
thermal part can be treated in the grand canonical ensemble, the condensate playing the role of
a never-empty reservoir ([84]).

We can then approximate ψprq “
b

xâ:0â0yφ0prq, which yields:

G2prq “ G1p0q
2 ` |G1prq|

2 ´ |ψprq|2|ψp0q|2, (1.69)

or, equivalently,

g2prq “ 1` |g1prq|
2 ´

|ψprq|2|ψp0q|2

G1p0q2
. (1.70)

We can again examine the two following limits:

• in the limit r Ñ8, the value of g2prq remains 1,

• in 0, we have:

g2p0q “ 2´

ˆ

|ψp0q|2

G1p0q

˙2

. (1.71)

For a very degenerate gas, we have G1p0q » np0q “ |ψp0q|2, which means that we will
have g2p0q “ 1.

Let us stress this important result: for a thermal gas, we have g2p0q “ 2, and we observe the
bunching effect caused by the Bose statistics. For a very degenerate gas, g2p0q goes to 1, and
the density fluctuations decrease. This is compatible with the image of a gas whose density
fluctuations are frozen ((quasi-)condensate regime). Moreover, while g2 can be expressed as a
sole function of g1 for a non degenerate gas, this does not correspond to a general case, and the
expression below the transition involves the modulus of the wave function.

1.2.3.2 Interacting gas

For interacting gases, the story is a bit different. In particular, the quantity g2p0q is ill-defined
and diverges when r Ñ 0 in 2D and 3D. It is then safer to examine Tan’s contact instead, which
is a parameter that can be used to describe the short range interactions of an ultracold gas :
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C “
8πma2

~2

BE

Ba
, (1.72)

E denoting the gas’ internal energy. Thanks to the Hellmann–Feynman theorem, one can write:

BE

Ba
“

A

BĤint
Ba

E

“
2π~2

m

A

ĳ

ψ̂:prqψ̂:pr1qδ̂pr´ r1qψ̂pr1qψ̂prq dr dr1
E

. (1.73)

In the case where the contact potential does not need to be regularised, one finds:

C “ C0“g2p0q” with C0 “ 16π2a2n̄N. (1.74)

In this case, we find that C is proportional to g2p0q. For an ideal gas, we have seen in the
previous section that g2p0q goes from 1 in the very degenerate regime to 2 when D ! Dc, and
we thus also expect here a variation of C by a factor of 2.

Oppositely, when the contact interaction needs to be regularised, it is safer to work with C
only, which remains regular. One can show that for an interacting system, the zero-temperature
part of g2p0q diverges ([85]), but one can still relate the contact to the thermal contribution of g2:

C

C0
“ 1` gT‰0

2 p0q. (1.75)

A project that was conducted towards the end of my thesis consisted in measuring the
variation of the contact with degeneracy using Ramsey spectroscopy ([85]). Moreover, this
project also provided us with a measurement of our system’s s´wave scattering lengths aij
([86]). This is discussed in more details in the Outlook section.

1.2.3.3 Examples of noise correlation measurements

Historically, the first experiment to measure a bunching effect in bosons was the Hanbury
Brown and Twiss experiment ([87]). The goal was initially to measure the angular diameter
of a star using an interferometric method, but first, a test on a mercury lamp was carried out.
A measure of the temporal coherence of the source was performed by separating the beam
coming from the source on two different paths and counting the number of photons arriving on
two detectors placed on each path. Hanbury Brown and Twiss found that while there was no
correlation when the two paths had very different lengths, it was not the case when the lengths
were equal. They observed that there was a ‘bunching’ of photons for equal paths, meaning
that the photons had a tendency to be found in pairs.

The same kind of experiment was then reproduced for massive particles, first for an atomic
beam ([88]), then for atoms trapped in an optical lattice ([89, 90]). In [88], the authors realised
a continuous atomic beam falling under the effect of gravity on a detector. The temporal
correlations of the arrival of atoms on the detector were then recorded. In order to enhance
the coherence of this source, the authors used an electric lens to select one class of velocities.
When no selection was made, there was no bunching effect. When the lens was added, however,
an increase of the correlations at 0 delay time was observed. Their result is presented in Fig.
1.9. Similar experiments measuring the absence of bunching for condensed bosons ([91]), or
comparing the correlations between bosons and fermions ([92]) have also been performed.

In [89], the authors prepared an ultracold Bose gas in a 3D optical lattice in the Mott insulator
phase, and then released the cloud and imaged it. The density fluctuations were then analysed
and the density-density correlator:

Cpdq “

ż

xnpx` d{2qnpx´ d{2qyd2x
ż

xnpx` d{2qyxnpx´ d{2qyd2x

, (1.76)
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Figure 1.9: Left: measurement of temporal correlations in falling Neon atoms. The top figure is a scheme
of their apparatus. The authors measured no correlation in the arrival time (middle), but
a bunching effect (bottom) appeared when a velocity selection was made, increasing the
coherence of the source. Figures taken from [88]. Right: experiment in a 3D optical lattice
performed for bosons (top) and fermions (bottom). Figures (a) show an absorption image
taken after a TOF, while (c) show the corresponding calculated density-density correlator.
Figures (b) and (d) are cuts of (a) and (c), respectively. We see clear peaks for bosons, and
dips for fermions, corresponding to respectively bunching and anti-bunching phenomena.
Figures taken from [89] and [90].

was computed. Here, n is a column density obtained from an absorption image, and the notation
x¨y refers to ensemble averages over different images. They observed peaks with Cp0q ą 1 as
expected for bosons. The same experience was also performed for fermions ([90]), and authors
measured Cp0q ă 1, confirming the impact of the particle’s nature on the density correlations.
Their result is also presented in Fig. 1.9.

While these experiments clearly show a bunching effect for bosons, they do not treat the
dependance of this effect with the interaction strength. A measurement of the nature of these
fluctuations was performed in [93] and [94] for 1D gases, by looking at in situ images. Instead
of computing a correlator, the authors looked at the fluctuations of the mean atom number
xδN2y in a pixel, and binned the values of xδN2y corresponding to the same values of xNy. This
quantity is related to the density fluctuations correlation function:

νprq “ xδnprqδnp0qy “ n̄δprq ` n̄2pg2prq ´ 1q. (1.77)

In 1D, g2p0q remains a pertinent quantity and does not diverge. For an ideal non-degenerate
gas, we know that g2p0q “ 2, giving rise to super-Poissonian fluctuations. Increasing the density
increases the degeneracy and thus decreases g2p0q to 1, translating into a decrease of xδN2y. For
interacting gases, the story is similar, and one can even have g2p0q ! 1 in the strongly interacting
regime, thus yielding sub-Poisonnian fluctuations.
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Figure 1.10: Variance of atom number fluctuations for different mean atom number in a weakly inter-
acting gas (left) and close to the strongly interacting regime (right). The parameters t and
γ correspond to an adimensioned temperature: t “ 2~2kBT {mg2 and an adimensioned
interaction strength: γ “ mg{~2n. In the weakly interacting case, the fluctuations go from
super to sub-Poissonian when the density is increased and the quasi-condensate regime is
reached. In the strongly interacting case, the super-Poissonian fluctuations are suppressed
even at small densities. The Yang-Yang prediction is shown as a solid line, the ideal Bose gas
prediction as a short dashed one, and the quasi-condensate prediction as dashed-dotted
one. The long dashed line corresponds to Poissonian fluctuations. Figure taken from [94].

The authors observed three different regimes. For an ideal gas, they indeed find xδN2y bigger
than shot noise fluctuations. When increasing the atom number, they eventually reach the quasi
condensate regime, in which xδN2y is lower than the ideal gas case. Finally, preparing the gas
in the strongly interacting regime (g2p0q ! 1), the authors observe sub-Poissonian fluctuations,
with super-Poissonian fluctuations suppressed even at low densities. Their results are presented
in Fig. 1.10.

In higher dimensions, one has to resort to dropping the variable g2p0q, and using Tan’s contact
C instead. A way of measuring C can then be the use of a spectroscopic method ([95]). The
exact value of the transition’s frequency between two hyperfine levels is influenced by mean
field effects and depends explicitly on C. By measuring the frequency of a clock transition for
various degeneracies, we can hope to see the value of C being divided by 2 between high and
low temperatures. Such a method will be developed in the Outlook section.

conclusion

In conclusion, we have exploredwhat happens for a 2D Bose gas across the BKT phase transition.
At the critical point of this transition, unpaired vortices proliferate, giving rise to an exponential
decay of G1 for weakly interacting gases, while this decay is algebraic below Tc. This slow
decrease coupled with finite size effects are sufficient to create a situation where the physics
is essentially similar to what happens in the case of regular 3D condensation. Moreover, the
value of g2p0q is an interesting signature of the appearance of a condensed fraction: for an
ideal gas, it goes from 2 in the thermal regime to 1 in the condensed one. For interacting gases,
this quantity is ill-defined in 2D; however, on can instead measure Tan’s contact across the
superfluid transition, which will be the subject of a future publication.







2
THE RB EXPER IMENT

When my PhD started, the experiment was already built and working on a daily basis. Thanks
to the expertise of the builders and the quality of the set-up, we seldom (a few times a year)
need to realign optics and fix problems. However, there was still room for improvement, and
we will detail in the next chapter one of the tools that I have implemented during my PhD. Even
if details of the experimental set-up have been covered extensively by my predecessors ([96],
[97], [76], [81]), we will give a quick overview of the steps that routinely allow us to create 2D
degenerate Bose gases.

2.1 production of 2d uniform gases

2.1.1 Electronic structure of 87Rb

Rubidium is an alkali atom, and as such only has one electron on the outermost shell. Its
transitions are easy to access with commercial lasers; it is one of the most used atoms in the
community. The low-energy electronic structure of 87Rb is summarised in Fig. 2.1. In brief, the
ground state of 87Rb is 2S1{2 and its first excited state has two fine levels: 2P1{2 (corresponding
to the so called D1 line), and 2P3{2 (corresponding to the D2 line). Each of these states has in
turn a hyperfine structure due to the coupling between the nucleus’ spin and the electron’s
total angular momentum. The transition that we use for the cooling procedure and the imaging
scheme is the 2S1{2 Ñ

2P3{2 one. During the sequence, the atoms are usually prepared in the
|F “ 1,mF “ 0y state, and evolve in the |F “ 1, 2y ground-state manifolds. These levels are also
subdivided into different Zeeman states, whose exact energies depend on the ambient magnetic
field. A magnetic field of about 1 G is kept at all times in order to lift the degeneracy between
different Zeeman states. In the following, if not stated otherwise, we always note |n,my the
state |F “ n,mF “ my.

2.1.2 Reaching 3D condensation

We need about 25 s to obtain a 3D BEC, and since we absorption image it (and hence destroy it),
we need to run the following sequence and recreate a BEC for each point we take. To obtain
one, we follow a standard procedure.
The sequence starts with a commercial 2D MOT with which we cool atoms loaded from an

oven in two directions. A push beam, resonant with the D2 line and orthogonal to the cooling
directions then pushes the atoms to the main science cell, about 30 cm away.
About 1 ˆ 109 atoms are loaded from the 2D MOT to a 3D MOT at about 250 µK. The

compression of the 3D MOT, followed by a molasses stage, leaves us with 6 ˆ 108 atoms at
around 15 µK. At this stage, our atoms have been optically pumped into the F “ 1 state.
The atoms are then loaded into a quadrupole trap and evaporatively cooled by an RF ramp

down to 2.5 MHz. As only atoms in |1,´1y are trapped in the quadrupole, we lose two thirds
of the atoms during the loading stage. At the end of the evaporation, we have approximately
2.5ˆ 107 atoms at 20 µK.

Finally, the atoms are transferred into a far-red detuned (attractive) optical dipole trap located
50 µm below the zero of the quadrupole. This trap is produced by two lasers at 1064 nm. The
power in each arm at the level of the atoms is of about 3 W, with waists of 30 and 90 µm along
the vertical and horizontal direction. This anisotropy will help us load the atoms into 2D during
the next section. While the power is ramped down, we further evaporate the cloud. At this

27
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Figure 2.1: Electrical level of 87Rb. We work with the D2 line. The cooling transition is indicated in blue
and the imaging one in green. We also have a repumper beam depicted in red.
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point, we have obtained an almost pure 3D BEC of typically 3ˆ 105 atoms at about 200 nK. A
magnetic field of 1 G maintains the |1,´1y polarisation.

2.1.3 Going to 2D

In order to reach a 2D regime, we need to compress the gas to a point where transverse degrees
of freedom are frozen out. This is realised by adding an optical trap in order to create a strong
vertical confinement. It can be done, for instance, by using a Hermite-Gaussian TEM01 beam
and using the minimum of intensity in the beam profile to trap the atoms ([98]). Another
method makes use of a lattice; the atoms are then trapped between its fringes. However, if the
lattice’s spacing is too small (which is the case for an usual lattice), the atomic cloud can end
up being loaded on several fringes, and split into distinct clouds. In order to avoid that, we
use an accordion, i.e. a lattice whose interfringe is adjustable and can go up to several µm. The
interfringe is then decreased after loading the cloud.
In order to implement this accordion, we follow a scheme initially proposed in [99]. Other

similar approaches have been implemented in [100] and [101]. We separate a single 532 nm beam
into two parallel beams that are later recombined with a small angle and interfere. The light is
blue-detuned, which means that the optical field will act as a repulsive potential. The lattice
spacing can be tuned by changing the angle between the two interfering beams. In practice,
this is done thanks to a motorised translation stage: the initial beam passes through two cubes
that separate it on two paths (see Fig. 2.2a). The position at which the beam enters the first
cube determines the distance between the two paths after the cubes. As these two paths then
pass through a lens, this distance determines the angle of interference, and thus the lattice
spacing. The relative phase between the two beams, which determines the absolute position of
the fringes, is controlled by a piezoelectric stack glued on the mirror reflecting the top beam.
We can this way load and then compress the gas into one fringe of the accordion. The apparatus
is presented in more details in [46].

Strictly speaking, the potential created by the accordion is sinusoidal. However, if the lattice is
deep enough, we can approximate its minimum by a parabola, and atomswill mostly experience
a harmonic potential of frequency:

ωz “

c

2π2U

md2
, (2.1)

where U is the maximum height of the lattice, m is the atomic mass, and d is the lattice’s
interfringe. When compressing the accordion, d decreases from 11 µm to 2 µm, and ωz increases
from 0.7 to 4 kHz, for a power of 0.75 W. As the relevant thermal (kBT ) and interaction energy
scales (Eint) are smaller than the vertical confinement frequency ~ωz , the only state of the vertical
potential that the atoms can reach is the lowest one. The vertical direction is frozen out and the
system is effectively 2D.

2.1.4 Tailoring uniform potentials

Finally, we want to create a uniform in-plane trapping potential. For this purpose, we use
a Digital Micro-mirror Device (DMD, Vialux DLP7000) consisting of an array of 1024 ˆ 784
square mirrors whose orientations can be set in two states: either reflecting light towards the
atomic cloud, or not. The same 532 nm laser1 used for the accordion is used for sending some
light (typically 0.7 W) on the DMD, which then propagates vertically to the atoms. We use the
DMD in direct imaging: the pattern displayed on the DMD is directly imaged on the atomic
plane, and the DMD only modulates the amplitude of the light. The image of the DMD on the
atoms is done with a microscope objective of numerical aperture NA = 0.45, which enables us

1 We use AOMs in order to shift the beams frequencies to avoid interferences.
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Figure 2.2: Left: optical accordion: by changing the impact position on the bottom right mirror, we can
vary the interfringe from 11 µm to 2 µm. Figure taken from [76]. Right: absorption images of
clouds for different boxes created by our DMD. The white lines represent 10 µm.

to reach optical resolutions of the order of the µm. This image creates the vertical repulsive
walls of the box we trap our gas in. In total, we have 3 DMDs that we label:

• DMD1, the one used in this section to tailor box potentials,

• DMD2, also working at 532 nm and with around 0.2 W; we use it to add additional
potentials on the atoms, for thermometry (see section 2.2.1) or for homogeneity corrections
(chapter 3) for instance,

• DMD3, working with light between the D1 and D2 transition. We use it for Raman
transitions in order to locally and coherently transfer atoms from |1, 0y to |2, 0y.

There is a 1/70 magnification between the DMD and the atoms. One pixel of the DMD being
13.7 µm, this represents about 0.2 µm on the atoms, well below our imaging resolution of
typically „ 1 µm. This means that pixellation effects on the atoms are negligible. Moreover,
since we can independently chose the state of each mirror, we can basically draw any box we
want, as long as this box is made out of 0 and 1. This is later referred to as our ‘green box’: the
potential experienced by the cloud is flat inside the box (corresponding to the 0s of the DMD),
and most of the atoms are too cold to reach the region of high potential created by the 1s of the
DMD: the border between the two regions thus acts like a hard wall. Some examples are shown
in Fig. 2.2b. A protocol for drawing more complex shapes will be discussed in chapter 3.

2.1.5 Reaching 2D degeneracy

Once the gas is loaded into the green box, two successive MW pulses transfer the atoms from
|1,´1y to |2, 0y and then to |1, 0y, in which we conduct most of the experiments that we do: it is
magnetic insensitive, which means that we can ignore magnetic gradients acting on the atoms,
and has a longer lifetime than |2, 0y (tens of ms scale versus second scale). A detailed procedure
for going from state to state is given in section 2.1.6.
The power of the green beams is then decreased to further evaporate the cloud. At this

stage, we have a degenerate gas of about 1ˆ 105 atoms at 50 nK trapped in a 40ˆ 40 µm2 box
(n2D » 70ˆ 1012 m´2). This corresponds to a PSD of about 50, well above the critical PSD of
the BKT transition introduced in chapter 1 (Dc “ 7.8).
We can vary degeneracy and density by changing the evaporation level in the green box.

A complementary possible procedure is to ‘blast’, i.e. remove some atoms. This is done by
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transferring a certain fraction from |1, 0y to |2, 0ywith a MW pulse, and then flashing the imager
beam. The |2, 0y atoms, which are resonant with the light, acquire a momentum due to the
absorption of several photons, and get kicked out of the trap. We then let the remaining fraction
thermalise for typically 0.5 s.

2.1.6 Juggling between hyperfine states: MW transfer

2.1.6.1 When we need to perform two transitions

In order to create a 2D degenerate gas, we need to be able to freely transfer atoms from one
internal state to the other. The internal states that we manipulate are usually the |1, 0y, |2, 0y,
and |1,´1y states. We present here the setup that allows us to juggle between these three states.
We use a MW antenna close to the atoms to perform these transitions. The output of a 6.8

GHz source (Nexyn NXPLOS 0680-02778) is mixed by an I-Q mixer (Pulsar IMOH 03-458) with
a „ 34 MHz signal coming from a function generator (Rigol DG4162). The signal generator
sends two components in quadrature, so that only one sideband is produced. The resulting
„ 6.834 GHz signal is then amplified by a 10 W amplifier (Kuhne PA 7000) and sent to the
antenna.
We usually perform at least two different MW transitions, and hence need several signals

with different frequencies around 34 MHz. In practice, we use two generators to drive inde-
pendently the two transitions |1,´1y Ñ |2, 0y (frequency f1) and |2, 0y Ñ |1, 0y (frequency f2):
the aforementioned Rigol (DG4162), and a Tektronix (AFG3052 2C). The instructions about the
frequency, amplitude, and other such parameters of the signal we want to deliver are sent to
the generators at the beginning of our sequence. At this moment, Cicero2, the software that
we use to control the experiment, sends the relevant information via a virtual RS232 port to a
small Python script. As Cicero does not support USB communication, a virtual port was needed.
This port is created with a program called com0com3. The python script then communicates
with the generators via an USB cable, and the generators start delivering the signal. Finally,
RF switches placed between the generators and the amplifier wait for a trigger, given later by
Cicero, to irradiate the atoms with the MW. A scheme of this MW chain is presented in Fig.
2.3a.

2.1.6.2 When we need to perform four transitions

We often use more than these two frequencies. At one point of the sequence, the magnetic fields
have to be changed to the final values needed for imaging, and this change is usually done
during the evaporation of atoms in |1, 0y. In some experiments, we need a magnetic sensitive
state (see section 2.2.3 for instance), which means that we have to transfer atoms back to |1,´1y
after evaporation. However, as the magnetic fields have changed, f1 and f2 cannot perform
the transitions back to |1,´1y, and we cannot change them as we only communicate with the
generators at the beginning of the sequence. To solve this problem, we use the sweep function
of the generators which change f1 into f 11 and f2 into f 12. Since the second transition only feels a
quadratic Zeeman shift, we have |f 12 ´ f2| ! |f

1
1 ´ f1|. In the case where we want to go back to

|1,´1y, let us note tp
1q

i the irradiation times associated to f p
1q

i and corresponding to π´pulses.
We thus have 4 frequencies to deliver with 2 generators. The scheme is the following one, and
is represented in Fig. 2.3b.

• Communication is done with the generators when the sequence starts. All relevant infor-
mation about the next steps (f1, f2, f

1
1, f

1
2, for instance) is given now. We start in state

|1,´1y. In our example, the Rigol generator operates the first and fourth transition, while
the Tektronix generator operates the second and third ones.

2 A free software for atomic physics experiments, see http://akeshet.github.io/Cicero-Word-Generator/.
3 A free virtual port emulator, see http://com0com.sourceforge.net/.

http://akeshet.github.io/Cicero-Word-Generator/
http://com0com.sourceforge.net/
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Figure 2.3: Left: scheme of the MW chain: each generator delivers two signals in quadrature that are
mixed by an IQ mixer. Two switches S1 and S2 let either one or the other generator access to
the IQ mixer. This is mixed with a 6.8 GHz source in order to create a signal at „ 6.834 GHz,
which is then amplified and sent to the atoms. Right: scheme to perform 4 transitions: we first
operate f1 with Rigol and f2 with Tektronix in order to arrive to |1, 0y. The two generators are
then swept to the new relevant frequencies f 11 and f 12 while the magnetic fields are changed
to their final values. Then, Tektronix transfers atoms back to |2, 0y and Rigol transfers them
back to |1,´1y.

• A first trigger is sent to the generators, which makes them deliver sinusoidal signals at
frequency f1 and f2. Two additional switches after each generators prevent the atoms
from being irradiated by the MW.

• The switches open the Rigol channel for a time t1 in order to realise a π´pulse, and then
switch it back off. The atoms are now in state |2, 0y. They then open the Tektronix channel
for a time t2 to transfer atoms to |1, 0ywith a π´pulse.

• A second trigger instructs the generators to sweep to frequencies f 11 and f 12. We have found
that the minimal sweeping time is 5 ms. Below this time, the generators may not have
the necessary time to sweep, and the next step will not work. We also vary the magnetic
fields to their final values.

• Now that the outputs are sinusoidal signals at f 11 and f 12, we open the Tektronix channel
for a time t12 to transfer atoms back to |2, 0y with a π´pulse. The Rigol channel is then
open for a time t11 to transfer them back to |1,´1ywith a π´pulse.

2.1.6.3 When we need to perform more than four transitions

In cases where we need to operate more transitions than we have available, the trick is to add
a magnetic field in order to bring the magnetic sensitive state on resonance with one of the
frequencies already used. To do this, we have several pairs of coils at our disposal. Some of
these coils are used for cooling stages, some in order to create additional biases. We have:

• a pair of anti-Helmholtz coils that produce a gradient of 22 G/cm in plane; it is used for
the MOT stage,

• a pair of anti-Helmholtz coils that produce a gradient of 240G/cm in the vertical directions;
it is used for our quadrupole trap,

• three pairs of Helmholtz coils along the three directions of space that produce biases of
a few G, typically used for polarisation maintaining and/or MW transfer, as previously
described.
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This trick allows us to manipulate the internal state of atoms from the typical state we trap
our atoms in initially (|1,´1y) to non-magnetic sensitive states (|1, 0y, |2, 0y). Again, other states
than these 3 are seldom used.

2.1.7 Juggling between hyperfine states: Raman transfer - intensity lock

As the radiation used in the MW scheme and described in the previous section has a centimetric
wavelength far larger than the sample’s size, it can only perform uniform transfers. This can
be a limitation for some of the experiments we want to conduct. For instance, the demixing
experiments discussed in Chapters 6 and 7 use protocols involving localised transfers. To
implement this, Raman beams coherently transferring atoms from |1, 0y to |2, 0y were installed
during my PhD. This setup has been covered extensively in [81]; let us simply say that a laser
beam is split in two, each path being slightly detuned by an AOM (one arm also has an EOM).
The total detuning is equal to the |1, 0y Ñ |2, 0y transition frequency, which enables us to transfer
atoms from one state to the other. Moreover, this scheme also performs a momentum transfer,
which we can vary over a large range of momenta. This includes no momentum transfer at all,
which will be the case throughout this thesis. In order to locally address the transition, the two
beams are shone upon a DMD to spatially modulate the light, and the tailored profile is then
sent onto the atoms.
Initially, the Raman beams’ intensities were not locked. This proved to be an issue as the

Raman π pulse was slowly drifting. In order to solve this problem, we decided to compensate
for the fluctuations of the beams’ powers using an mbed NXP LPC1768 (a programmable
microcontroller), acting as a PID. The idea is not exactly to lock the beams’ powers, but rather
to counteract the long-time drifts typically caused by temperature changes along the day.
To do so, we added two control photodiodes (one on each arm of the Raman setup), which

created the input signal of the loop, while the PID output was sent to the AOMs’ drivers.
For the loop’s set point, a simple DC power supply was used. Each AOM has an individual
downstream shutter, which acts as an extra security measure to prevent light from going to the
atoms when the AOM’s TTL is off. These shutters open 15 ms before the AOM switches on, and
close immediately after it has been switched off.

As the duration of the Raman pulse is typically in the 10 µs range , while an mbed is a discrete
system operating at a 50 µs cycle, an mbed acting as a conventional PID would not work as
the available bandwidth for locking the beams would be too small. In order to circumvent this
problem, we chose to lock the Raman power during a 5 ms window, 15 ms before actually
sending light on the atoms. Figure 2.4 shows a sketch of the locking scheme that we use. The
sequence is the following one:

• Initial state: no light anywhere. The AOMs’ TTLs and the shutters’ TTLs are off.

• Locking stage: light on the photodiodes in order to lock, but no light on the atoms. The
AOM’s TTL switches on during 5 ms. We lock the two beams independently with two
mbeds.

• Memory stage: no light anywhere. The AOM’s TTL switches back off, and the shutter’s
TTL switches on for 15 ms. The mbeds remember the last output e1,2 they had to deliver
at the end of the locking stage.

• Raman stage: light on the atoms. The AOM’s TTL gets back to the on position and light is
diffracted on the atoms for tRaman. As the time lapse between the locking stage and the
Raman stage is relatively short (15 ms), we can expect e1,2 to still be relevant, and the
voltages measured on the photodiodes to still be very close to the target.

Indeed, we find that this method works very well. Fig. 2.4 shows the drift over 90 minutes
(locked beams) and 10 hours (unlocked beams) of the values measured by the photodiodes
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Figure 2.4: Top and middle: scheme of the intensity lock (a-d); for clarity, only 1 AOM is shown, but the
scheme presented here is duplicated for the second AOM. At first, the AOM does not diffract
and the shutter is closed (a). We make the AOM diffract during 5 ms during which we lock
the intensity with a PID (b). At the end of this step, the output of the PID is frozen, and new
information is not corrected. The AOM is then switched off while we take 15 ms to open the
sutter (c). The AOM is then switched on for a time tRaman and light goes to the atoms. Bottom
(e-f): effect of the locking on the beams’ intensities. Photodiode traces taken with lock for 90
minutes (e) and without lock for 10 hours (f). The set points are represented in dashed lines.
We observe a clear improvement with the lock.



2.2 measurement of the gas’ properties 35

with and without the loop. Without correction, we observe a typical amplitude of fluctuation
of 7 % for the first channel, and 2% for the second one, while these values are decreased to 0.8%
with the lock. There is small constant shift between the set point (dashed line) and the trace,
but as long as this shift remains constant (it does), it should not prove to be a problem.

2.2 measurement of the gas’ properties

2.2.1 Measurement of the phase space density

We have seen in the previous section that we could freely vary the degeneracy of our gas.
We now want to measure how degenerate it is. The old Rubidium experiment used to create
harmonically trapped 2D Bose gases, and measured their PSD by fitting the wings of the
distribution in an in situ image. This of course, is not possible for uniform samples.
The typical way of measuring temperatures in 3D cold atoms experiments is to release the

cloud from all trapping potentials and try to fit the wings of the thermal distribution after a
time of flight. For condensed samples, one has to separate the condensed and the thermal part.
It is then a good approximation to fix the chemical potential µ to 0: the shape of the saturated
Bose function, used to fit the wings, depends thus only on T .

However, there is no saturation of the Bose function in 2D, which means that the shape of the
wings will depend on both T and µ. Moreover, the size of our condensates is usually quite big,
which requires longer TOF (and gives lower signals) than for harmonically trapped samples,
where typical cloud sizes are smaller. These issues typically yield unreliable results.

However, other protocols are possible. Our group uses a method inspired by [102]. The idea
is to add an extra potential of variable height with which we press on a small area of the cloud.
The response of the atoms to this potential, or in other words, the OD4 of this dip, gives us
information on the degeneracy of the cloud. All that leaves to be done is to find a relation
between the dip OD, which is related to the phase space density D, and the extra potential,
which is related to the chemical potential µ via the local density approximation. In other terms,
we have to find a way to express the gas’ equation of state.

As discussed in the previous chapter, there are two regimes (D " 1 and D ! 1) in which the
equation of state is known analytically, but there is no analytical expression of the full equation
of state. There are, however, Monte-Carlo simulations ([40]) from which we can interpolate it.
We can, from these points, construct a fitting function f that we use on our data.

Experimentally, we trap our atoms in a square of side 40 µmwith DMD1 and add an extra
potential V with DMD2 on a small disk of radius 5 µm. This size was chosen to be big enough
to have signal, but to be small enough so that the perturbation remains negligible on the scale
of the cloud. The local density approximation states that on this small zone, µloc “ µ0 ´ V . We
separately calibrated the relationship between µ and the power of DMD2, which is common to
all PSD measurements. We then plot the density n of the dip as a function of µ, and find the
best rescaling parameter T so thatD “ nh2{2πmkBT as a function of βµ “ µ{kBT is best fitted
by f . A typical example of this procedure is given in Fig. 2.5. Importantly, we have seen in the
previous chapter that because our system is scale invariant, D depends only on µ{kBT and not
on µ and T independently. It thus seems counter intuitive to extract T and not T {Tc, and this is
possible only because we have previously calibrated µ.

Moreover, while both T and Tc depend on the atom number calibration, T {Tc does not, which
makes its determination more reliable than the one of T . As the system is scale invariant, the
PSD is only determined by T {Tc, and in most cases, so is the physics. When a measure of T is
needed, however, it is important to have an exact calibration of the atomic density. This point is
the topic of section 2.2.3.

4 See eq. 2.2 for a definition of the optical density.
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Figure 2.5: Left: absorption images of the cloud. At high DMD2 power (b), the dip created by the extra
excitation is almost totally depleted, which is not the case at lower DMD2 power (a). The
white line represents 10 µm. Middle: example of the fitting procedure (black dotted line)
described above. For this example, we find T {Tc “ 0.43 and T “ 125 nK. Right: Same thing
but the axis OD and DMD Power have been converted to D and βµ, respectively.

2.2.2 Imaging the atoms

Imaging is done via an absorption imaging process. The imager beam is resonant with the
F “ 2 Ñ F 1 “ 3 transition and collectively addresses all Zeeman states in F “ 2. We usually
image the atoms along two directions: the horizontal one (with a Pixelfly (pco.pixelfly usb)),
and the vertical one (with a Princeton (Pixis 1024)). Typical absorption images are shown in Fig.
2.6.
According to the Beer-Lambert law, I{I0 decreases exponentially with the thickness of the

cloud. More precisely, accounting for the background intensity and defining the optical density
OD, we have:

OD fi ´ ln

ˆ

I ´ Ibgd

I0 ´ Ibgd

˙

“

ż

σn3D dz “ σn2D (2.2)

where we have defined the scattering cross section σ.
It is important to note that one of the hypothesis of Beer-Lambert’s law is that the number of

scattered photons per atom is proportional to I . This approximation is valid if I remains very
low compared to the saturation intensity Isat “

~ωΓ
2σ0

, where ω “ 2πc{λ, c is the speed of light,
and Γ is the width of the excited level. This means that in order to trust the measured atom
number, we need to always have I ! Isat. Experimentally, we always use I ă 0.2Isat. Moreover,
we also place ourselves in the regime where OD À 1, otherwise, the light field might excite
collective excitations of the gas, which can lead to a wrong result ([103],[104]). To abide by this
condition, only some atoms are transferred from |1, 0y (invisible state) to |2, 0y (visible state)
and imaged in order to avoid saturation.
The exact value of σ depends on a lot of factors: the polarisation of the imaging beam, the

transitions involved, the magnetic fields present during the imaging step, and the detuning of
the imaging beam. On resonance, we theoretically have σ “ 7

15
3λ2

2π , where the factor 7/15 is an
average of the Clebsch-Gordon coefficients for the transitions involved, and λ is the imaging
wavelength. However, absorption images do not usually give accurate measurements of atom
number, and previous independent measurements ([77], [43]) have shown that an extra ‘fudge
factor’ F had to be added. We define it by nreal “ Fnobs and usually have F » 1.5. The
calibration of F is the topic of the next section.



2.2 measurement of the gas’ properties 37

(b)(a)

(c)
HI

VI

⊗
~g

↓~g

Figure 2.6: Imaging setup (a). HI stands for horizontal imaging (and gives image (b)), VI for vertical
imaging (corresponding to (c)). The two microscope objectives are depicted in black, the
accordion is depicted in green, and the atomic cloud is shown as a blue pancake.

2.2.3 Calibration of the fudge factor

The exact atom number calibration in cold atom experiments is usually complex, and people
often introduce fudge factors in order to match absorption theory and experimental results.
Typically, in our setup, this fudge factor mostly depends on magnetic fields present during
imaging. Different sequences require different kinds of state manipulations, which in turn leads
to different magnetic fields during the imaging procedure.

Our calibration is based on two results. The first one is the fact that for a 2Dweakly-interacting
Bose gas in a harmonic potential of pulsation ω, one has:

:Ep “ 2ω2 pEk ` Ei ´ Epq ñ Epptq “
E

2
`∆E cosp2ωtq (2.3)

where we have introduced Ep, Ek, Ei, and E, the respectively potential, kinetic, interaction,
and total energies, and where ∆E “ pEpp0q ´ Ekp0q ´ Eip0qq{2. This remarkable result is a
consequence of the SO(2,1) symmetry of this particular system, and has been treated in more
details in [81] and [43]. This means, of course, that the potential energy of the system is periodic.
However, for certain specific initial clouds, not only is Epptq periodic, but ψpr, tq also has non
trivial properties. In the case where the gas initially occupies an equilateral homogeneous
triangle, for instance, the triangle reforms perfectly into another equilateral triangle at times
`T {4, ` P N, where T “ 2π{ω. For even `, we regain the initial triangle. For odd `, the triangle is
inverted, and its size depends on g̃N , where N is the number of atoms in the triangle and g̃ the
interaction parameter of the gas. This is the second result that we use for our calibration.
If we assume that the gas is in the Thomas-Fermi regime (meaning Ei " Ek), we have

at t “ T {4:

EppT {4q “
E

2
´∆E » Eip0q. (2.4)
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Figure 2.7: An equilateral triangle (a) gets transformed into another, inverted, scaled triangle (b), (c), (d)
after a quarter of oscillation in a harmonic trap. The size of the inverted triangle depends on
the initial triangle’s parameter

?
g̃N . Here

?
g̃N = 75.1 (a) and (d), 45.6 (b) and 53.6 (c). The

white line represents 10 µm.

Knowing that we start in a homogeneously filled equilateral triangle T of side Li, and noting
the side of the triangle we end up in Lf , we can then write:
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2
f . (2.5)

This atom number only depends on parameters pω, g̃, Li,f qwhich we can access indepen-
dently and with a good accuracy. In our case, the harmonic confinement is performed by the
quadrupole trap whose zero is shifted by z0 » 0.5 mm along the vertical direction z. If we
remain at distances r from the vertical axis such that r ! z0, the trapping potential is indeed
harmonic:

V px, yq “ ´gFµB|Bpx, yq| »
µBb0z0

2
`
µBb0
16z0

r2 “ V0 `
1

2
mω2r2, (2.6)

where we have introduced the Landé factor gF , Bohr’s magneton µB and the vertical gradient b0
created by the quadrupole at the level of the coils’ axis. In order to measure ω precisely, we place
a small cloud of atoms close to the centre of the trap andmonitor its evolution. Often, frequencies
in both directions differ by a few Hz (out of typically 20 Hz). We correct this anisotropy by
adding a small gradient with the MOT coils.
The interaction parameter g̃ is measured via parametric heating. We modulate the power

of the accordion at a certain frequency. We then monitor the total number of atoms: when
the modulation frequency f reaches two times the frequency of the vertical trapping fz, we
observe a dramatic loss of atoms. This way, we can calibrate the trapping frequency for different
accordion powers, an deduce g̃ “ 4πa

b

mfz
~ , with a being the scattering length.

Finally, L is measured directly on the absorption images by integrating the OD along one
direction and fitting it with a line. The magnification between the atomic plane and the camera
planeM2 is calibrated by first loading the atoms in a lattice created by the DMD: this gives
M1 ˆM2, whereM1 is the magnification between the DMD plane and the atomic plane. Then,
we compare this result with a measurement of an atomic TOF after a lattice has been flashed on
the atoms: this Bragg diffraction experiment givesM2{M1. This point is treated in more details
in [76].
In order to actually calibrate the fudge factor, we need magnetic sensitive states that can

experience the magnetic harmonic confinement. Atoms in states F “ 2 have a shorter lifetime
than those in F “ 1, so we chose the state |1,´1y. Then, the exact procedure reads as follows.

• Following the scheme explained in section 2.1.6, we start with atoms in |1, 0y.

• We remove a variable amount of atoms and we let the remaining fraction thermalise for
typically 0.5 s.
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• During this time, the magnetic fields are changed to the particular parameters used for
the cloud’s dynamics.

• We transfer the atoms back to |1,´1y.

• The green box is switched off and atoms can evolve in the harmonic potential. The vertical
confinement remains on, but we usually decrease its strength in order to minimise defects
created by the accordion.

• After a quarter of oscillation, we repump the atoms to |2, 0y and absorption image them.
We typically take 5-10 images for each value of the atomic density.

When this is done for the chosen magnetic fields, we can multiply by a fudge factor F the
observed atom number Nobs. Doing the same experiment with different magnetic fields might
yield a different Nobs, and can simply perform a rule of three to compute the total fudge factor.

conclusion

In conclusion, we have explained how we go from a 3D thermal gas of 87Rb to a 2D uniform
degenerate sample. The internal state of the atoms is controlled with MW transitions, and the
shape of the cloud itself is chosen at whim thanks to the DMD creating the box walls. The
cloud’s phase space density is measured thanks to the addition of an extra potential that lets us
travel on the gas’ equation of state, and we use a method based on the dynamical symmetries
of the harmonically trapped 2D Bose gas to calibrate the atomic number of our system.

Of course, using a DMD for designing the trap has limitations: we can only create potentials
tailored with 0 and 1, and we can suffer from homogeneity defects, especially at low atomic
density. However, the next chapter is devoted to overcoming these issues.
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Historically, harmonic confinements have been the norm in most cold atom experiments due to
their ease of implementation. In this case, the BEC phase transition is a local phase transition,
and the condensate fraction will emerge where the density peaks, i.e. at the centre of the trap.
This makes measurement of certain BEC features, for instance phase coherence between two
points, harder and less reliable. With the advent of new uniform trappingmethods, experiments
in flat potentials were made possible without having to resort to only probing small portions of
the cloud or using the local density approximation ([105]). An example of one such method
is the use of an axicon to create a hollow tube of light, which creates cylindrical walls for the
atoms. Two more planes of light have then to be added to create a 3D uniform cylindrical box
([44]).

Another method consists in using Spatial Light Modulators, or SLMs, instead of an axicon
([45, 106]). Liquid crystals (LC) SLMs typically modulate the phase of a beam with a resolution
depth of 8-12 bits, which is far superior than the 1 bit that a DMD can offer. However, they
suffer from a very low (10-200 Hz) refresh rate, when a DMD can typically reach tens of kHz
([107]).

An SLM can be used as a phase or intensity modulator. An interesting feature of phase
modulation is the ability to holographically correct unavoidable optical aberrations, which
greatly improves the quality of the trapping ([108, 109])). For instance, in [109], authors have
been able to reduce the aberrations from several λ to λ{50. Complex geometries of micro-traps
([110]) and arbitrary potential landscapes ([109]) have been created with this method. Both
LC SLMs and DMD SLMs can be used for phase modulation, but the diffraction efficiency
is dramatically lower for the second ones due to the inherent grating nature of DMDs that
distribute power among several diffraction orders.

Our set-up, on the other hand, uses intensity modulation. Blue-detuned (repulsive) light is
shone on a DMD whose pixels are set to deflect light in a certain region, thus creating a flat
box potential. Nevertheless, as the DMD’s pixels can only be set to 0 or 1, this method has
limitations for tailoring more complex potentials.
In that regard, some teams make use of time-averaged potentials by periodically switching

on and off pixels of different zones at different duty cycles [111]. If the main frequency is
high compared to the other relevant frequency scales, the atoms will average the action of
the potential and what is originally a discrete process will in effect be continuous. This is less
relevant in 2D where one usually has a very high frequency trapping (several kHz) along one
of the axis, invalidating this condition.
Some other teams use dithering algorithms ([112–114]) for the same purpose: the idea is to

generate zones with different balances of 0 and 1 that locally average to zones with different
tones of grey. This works if the effective size of the DMD pixels in the atomic plane is small
enough so that the pixels are not resolved by the atoms; in this case, the potential is then
averaged in space and not in time.
Alongside dithering, iterative methods are often implemented. For instance, in order to

create an eighth-order super-Lorentzian flat-top beam, the algorithm used in [112] and [113]
deterministically removes and adds pixels in regions of extremal intensity. By identifying at
each step the regions containing the maximum and minimum of intensity, it retroacts on these
regions by switching on and off pixels in order to flatten the general potential landscape. The
protocol used in [115] is slightly different as it tries to retroact on all regions that differ from the

41
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target, and not only on the most extremal ones. Finally, other algorithms consisting of random
pixel changes also lead to interesting results, but need bigger computational power ([116]).

Precisely shaping the intensity of our beam is of great importance. One possible application
is the ability to correct the homogeneity of our cloud. At low density, the gas is more sensitive
to various optical defects present on the experiment, and the quality of the gas’ homogeneity is
worse. By retroacting on the light profile in order to have a very flat beam, we can circumvent
this problem. Another possible application of precise beam shaping is the printing of a phase
on the atoms. By flashing a potential U on the cloud, one transforms the wavefunction ψpx, yq
into:

ψ1px, tq “ ψpx, tq ˆ eiUpx,yqτ{~, (3.1)

where the flashing light τ is chosen small enough to prevent density excitations. By choosing a
phase winding profile for U , one can hope to create a vortex ([117]). Finally, we could also use
this beam shaping method in order to precisely control the shape of the zone that we transfer
with the Raman DMD. We could, for instance, print a spin bubble with a solitonic shape and
examine if its profile evolves with time.
We will first describe how our feedback works by presenting some general concepts about

dithering and proportional-integral-derivative (PID) correction, and by introducing the nota-
tions that we use. We will then turn to simulations we made in order to better understand the
operation of the loop and its limits. Finally, we will present the data that we took and discuss
the limits of our system.

3.1 implementation of the loop

Originally, we did not try to correct the homogeneity of the atomic cloud and only used DMD1
to create the box walls. This works very well at relatively high 2D densities (n2D ě 50 at/µm2

typically) but imperfections and defects in the optical field tend to create inhomogeneities in the
density distribution when decreasing n2D. This is mostly believed to be caused by our vertical
confinement: changing the power of the accordion beams dramatically affects the homogeneity
of the gas.
In order to fix this issue, we have implemented a simple correction loop. We use DMD2 to

add light on certain regions of the box in order to reach the desired landscape. For flat targets,
this method compensates for optical defects by flattening high density regions, improving
the homogeneity of the cloud. This protocol also allows us to create more arbitrary potentials
(swimming pool bottoms, harmonic potential...), and corrects for defects that would appear in
these landscapes.

We need two ingredients for this: a dithering algorithm, and a feedback loop. Theoretically, a
loop is not a necessity: one could simply calculate what needs to be put on DMD2 to attain the
target density. In real life, however, extra potentials created by optical fields (either intricate
effects of coherent light like speckle, or defects due to imperfections of the beam) have to be
precisely accounted for. The precise propagation of the dithered DMD plane on the atomic
one is also hard to accurately calculate. Moreover, a one-step method assumes that a precise
calibration of the DMD’s effect on the atomic density has been performed. On the other hand,
an iterative loop is easy to implement, and in the case of a PID loop, its parameters do not have
to be chosen very precisely for the correction to work.
In our case, the dithering algorithm will be used to transform the image sn outputted by

the loop (with pixels continuously ranging from 0 to 1) to an image displayable on the DMD2
(with pixels being only 0 or 1). The feedback will correct the residual errors due to experimental
defects and act on the pattern displayed on DMD2 so that the density distribution converges
towards the chosen target.
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3.1.1 Dithering algorithm

Dithering is a technique often used in image processing when one has to convert the colour
palette of an image to a different, more limited one. The idea is to create the illusion of a colour
depth by using the fact that the human eye groups neighbouring pixels together and interprets
the local hue as an ‘average’ of the initial pixels. This way, one can simulate more colours than
one actually has available. As our final image can only have black and white pixels, the dithered
result will be referred as the ‘grey level image’ in the following.
Several type of ditherings exist. We will review three of the most used type of algorithms

here.

A simple threshold operation is the easiest type of dithering one can imagine. Under this
protocol, a pixel with value lower than the threshold is assigned to the value 0. In the other case,
it is assigned to 1. The simplicity of this algorithm is counterbalanced by a big loss of contrast
and contouring: for example, an underexposed (resp. overexposed) zone will be transformed
into a black (resp. white) zone, resulting in detail loss.

Ordered ditheringmakes use of a ‘dither matrix’. In this version, pixels remain independent
from one another, and zones of the image are individually compared to a certain matrix. More
precisely, a dithering matrixM of size n has to be defined. The original image A is divided into
subzones Ap of size nˆ n. These subzones are then compared toM : if Appi, jq ăMpi, jq, the
pixel pi, jq is assigned to value 0. Otherwise, it goes to 1. For instance, if we define:

M “
1

4

˜

0 2

3 1

¸

, (3.2)

we will have to compare each 2ˆ 2 zone Ap of A toM , pixel by pixel. If Appi, jq ąMpi, jq, then
we put a 1 in position pi, jq of the dithered image; otherwise, we put a 0. This method is quicker
to implement than other type of ditherings where one pixel influences its neighbours (like error
diffusion, for instance), but it usually creates unwanted periodic patterns due to the shape of
the dithering matrix.

Error diffusion dithering diffuses the quantisation error made on one pixel to its neighbours,
with variable weights. Different types of error diffusion algorithms exist. First, one has to choose
a kernel of weights used to spread the error. In the case of the Floyd-Steinberg dithering, the
kernel is defined as:

M “

˜

– ‹ 7
16 ¨ ¨ ¨

¨ ¨ ¨ 3
16

5
16

1
16 ¨ ¨ ¨

¸

. (3.3)

We browse the matrix from top to bottom and from left to right. For each pixel pi, jq (repre-
sented with a star), we compute the quantisation error εpi, jq defined as the difference between
the original value and the closest value available in our palette scale. Each of the neighbouring
pixels is then updated: for instance: Api, j ` 1q Ð Api, j ` 1q ` 7

16εpi, jq. This tends to reduce
the global error that is made, but results in longer computation time.
A comparison between these three methods is shown in Fig. 3.1. As expected, threshold

operation comes with a big loss of information. Ordered dithering creates repeatable patterns
that we might want to avoid. Error diffusion, on the other hand, seems to give satisfactory result.

We can also have a look at the statistics of the dithered pixels. In order to avoid having only 2
possible values (0 and 1), we smoothen the dithered images by convolving it with a gaussian
function. For this example, we take the gaussian width to be 15 pixels, for which the original
image is still recognisable, and details have not been totally blurred out. Fig. 3.2 shows that
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Figure 3.1: Result of dithering for different protocols. From left to right: original image, threshold dither-
ing, ordered dithering (with the same matrix as described in the text), and error diffusion
dithering (using a Floyd-Steinberg algorith). The threshold method loses a lot of information,
while the ordered dithering one creates unwanted patterns. The error diffusion result, on
the other hand, is quite pleasing to the eye (dithering might only appear if you zoom in). All
images are of size 1920 ˆ 1280 pixels.

both threshold and ordered dithering suffer from peaks in the pixels’ value distribution. That is
because these two methods only apply (local) thresholds on the images: a large overexposed
zone, e.g. the ‘shade’ of the windows on the wall, will be deterministically brought to the same
value, which will peak in the histogram. Threshold dithering only offer 2 tones, and thus has
two peaks around 0 and 1. Ordered dithering, using the matrix defined above, offers 4 different
tones, and thus has 4 such peaks. While the first one fails at reproducing the initial distribution,
the second one is better but struggles with low-values pixels. On the other hand, error diffusion
tends to lower the quantisation error, and therefore addresses all regions more satisfactorily.

In conclusion, the error diffusion algorithm is an efficient way to reproduce an image with a
more limited palette choice. In the rest of this work, we will stick to the Floyd-Steinberg error
diffusion algorithm. As stated above, more recent and elaborate methods also exist: for instance,
some methods based on random pixel changes perform better than error diffusion but need
bigger computational power ([116]). However, we will see in the experimental section that the
choice of an error diffusion algorithm is not the limiting factor for our setup.

3.1.2 Feedback algorithm

In order to compute what should be put on the DMD, we drew inspiration on PID controllers.
This kind of feedback is widely used in control systems due to its simplicity and efficiency.
Its mode of operation for a discrete case is defined as follows. Defining a set point T and a
measured value en that we want to bring to the value T , we define the error as being εn “ en´T .
Setting the derivative part to 0, the output of the controller is then:

sn`1 “ Kpεn`1 `Kiτ
n`1
ÿ

k“0

εk “ sn `Kppεn`1 ´ εnq `Kiτεn`1. (3.4)

PID controllers usually assume that the sampling time of the loop is fast compared to the
response time. In our case, however, the response time of the system is instantaneous compared
to the sample time, and the term εn`1 ´ εn can lead to oscillations. To better understand why,
let us imagine an example where most of the convergence is done during one action of the loop.
This means that |ε1|, the error during the first step, is big compared to |ε2|. Putting this into
equation, we have:
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Figure 3.2: Statistics of dithered pixels for different algorithms. All the images have been convolved with
a gaussian of width 15 pixels before being analysed. Left: histogram for original image, filtered
threshold, filtered ordered, and filtered error diffusion ditherings. Right: enlarged version of
the previous histogram. Threshold dithering is a method based on one threshold, and as such,
produces two peaks on the histogram. Ordered dithering, with the previous matrix, is based
on 3 thresholds, and thus creates four distinctive peaks on the histogram. Error-diffusion
dithering, on the other hand, reproduces more faithfully the original distribution.
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Figure 3.3: Scheme of the loop. We define a target imTarget, to which the absorption image at rank n
imLocn is compared. The difference between these two images gives the error εn at rank n.
An output sn is then computed. This output is dithered into Sn and put on DMD2. We then
measure the new absorption image imLocn`1.

s1 “ pKp `Kiτq ˆ ε1,

s2 “ s1 `Kiτε2 `Kppε2 ´ ε1q.
(3.5)

We see that as |ε2| ă |ε1|, the integral termwill be small compared to the negative proportional
term, and the correction attained during step 1 will regress during step 2. The next step will try
to overcorrect that, and the next one after this one will regress again. Therefore, for values ofKp

close to values ofKiτ , the system oscillates. An easy solution to this is to removeKp altogether.
This is somewhat different from the PID textbook example where one addsKp, and thenKi to

the system. However, only keeping theKi term in Eq. 3.4 actually makes sense in instantaneous
systems: at rank n` 1, we take the output sn of the loop at rank n, and add it to what is left to
correct at rank n` 1 (modulo a multiplicative factor). As a consequence, we chose the following
correction for our loop:

sn`1 “ sn `Kεn`1. (3.6)

We will keep these notations for the rest of this chapter.

3.1.3 Correction loop

We now have our two main ingredients to correct the atomic density: a feedback loop that tries
to bring the cloud to a specific target, and a dithering algorithm that translates the output of
this loop into an image that can be used by DMD2.
An important limitation of our method is the fact that we can only decrease OD. To better

understand this, let us take the case where we want a uniform cloud, but where we observe a
bit more atoms on the left. DMD1 is usually set to a basic, non-grey level image (a disk or a
square mask, typically). This means that in a perfect world, there is already no light hitting the
atoms on the left: all the mirrors inside the box are already off. Therefore, our only knob is to
remove atoms in zones where the density is higher than average (here, on the left) by shining
some light on these areas. As a consequence, the target’s ‘OD’ has to be reasonably lower than
the original ‘OD’.

We then have four parameters that we need to define at each rank n of the loop:

• a target imTarget,

• an input imLocn, here the absorption images that we take at the beginning of each loop
iteration,

• an error εn “ imLocn ´ imTarget, the difference between the input and the target,
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• an output sn, that is dithered into Sn and fed to DMD2 in order to retroact on the input.

A scheme of the feedback is presented in Fig. 3.3. In order to quantify the effect of the loop,
we also define a normalised figure of mérite F:

Fn “

c〈
pimLocn ´ imTargetq2

〉

ă imTarget ą
. (3.7)

Ideally, F should tend towards 0 when the loop has converged. We usually see that with
a reasonable gain, F reaches a steady-state after 5-10 loop steps. This steady state is never
exactly 0 and depends in part on the number Nr of images taken at each iteration. An example
of the behaviour of F versus Nr is shown in Fig. 3.13. However, F is not only limited by this
experimental noise. More fundamental limitations (on the DMD pixel size or the imaging
resolution, for instance) also prevent F from going to zero. Understanding these limitations is
one of the motivations for doing the simulations that we present next.

3.2 simulations

It was not clear, at first, what exact type of feedback we would have to use, and to which level of
accuracy this would bring us. The behaviour of our loopwas also not so straightforward initially,
and some simulations helped us to get a better understanding of our loop and of its limitations.
These simulations are based on the local density approximation: adding light linearly translates
into losing atoms.

3.2.1 Protocol

We first simulated the loop in a very basic manner. We did not take into account the gaussian
nature of the beams, or the specific orientations of each different DMD that we use in the lab.
We simply specified an atomic box of fixed size (about the one we experimentally have), on
which a certain number of DMD pixels would retroact. The zone used on DMD2 to correct the
atomic density was fixed to the one we use experimentally, but we varied the size ` of the DMD
pixels. In other words, we fixed the size of the atomic box and varied the number p “ 1{`2 of
DMD pixels available for each box pixel. Every length here is expressed in terms of atomic box
pixels (1 pixel = 1.15 µm).

The atomic box that we defined was a square of side L`6 pixels. Here, we took L “ 30 pixels,
which is the experimental size of the atomic box. Two rows and lines on each side were filled
with zeros. This leaved us with a gas occupying a square of side L` 2. In order to avoid border
effects, we took a subimage of side L of this zone on which we retroacted.

Because the loop outputwas only computed on this sizeL2, we needed to continuously extend
it on a grid of size pL ` 6q2 in order to retroact on the full box. We obtained this continuous
extension by using Matlab’s interp2 function. This samples our output on the grid of size L2

and finds an extrapolation of this sample up to a grid of size pL` 6q2.
When this was done, we resized this output to the size of the area used on the DMD (a

square of side pL` 6q{` pixels where ` “ 1{
?
p ă 1 is the size of a DMD pixel in terms of box

pixels), and ‘shone’ it on the atoms. This resizing was implemented to mimic what happens
experimentally: we have a magnification of approximately 70 on the setup, and this transforms
DMD pixels of size 14 µm to pixels of size 0.2 µm on the atomic plane. As one camera pixel is
about 1.15 µm in this plane, we have typically ` “ 0.17 pixels, which means p “ 33.
A typical iteration of the loop works as follows.

• We started by looking at the pL` 6q2-sized image ImTotn measured at rank n. In order
to avoid border effects, we took a subimage imLocn of imTotn. It was of size L2 and was
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Figure 3.4: Example of a typical loop; here, the target is a flat cloud. We define an original image (a) that
we try to compensate with the loop. This image has two rows of zeros and we only act on a
subimage of side L. Once we have computed the output of the loop sn on the dashed square
and convolved it by a gaussian of fixed width, we continuously extend it on a square of side
L` 6 pixels (b). We then resize it and compute its dithered image (c). For this example, we
used a very high gain in order to see some white pixels on the figure. An actual image usually
has about 6 times less white pixels than here. Convolving (c) by a gaussian to mimic light
propagation gives (d). Removing (d) from (a), we get the light corrected image (e).

the input of our loop at rank n. The initial non corrected images were noted ImTot0 and
imLoc0.

• We then defined the output sn (size L2) of the loop at rank n. Error-diffusion usually adds
some high-frequency noise to the dithered image. To avoid such artefacts being amplified
iteration after iteration, we convolved sn by a gaussian of width 1.5 pixel. This value was
chosen to smoothen details without losing too much information.

• Taking the continuous extension of the convolved output to a size pL` 6q2, we got scn.

• We resized scn to a size
`

L`6
`

˘2 and took its dithered image Sn.

• Wedefined SGn , the convolution of Sn by a gaussian of standard deviation σ{` pixel, in order
to mimic the propagation of light from the DMD plane to the atoms. The experimental
value of σ should be around 0.4. This corresponds to a low pass filter.

• We resized imTot (size pL` 6q2) to ImTot (size
`

L`6
`

˘2).

• Finally, we simulated the action of the light by using the local density approximation and
stating that in the Thomas-Fermi regime, we had:

ImTotn “ ImTot0 ´ αS
G
n . (3.8)

• We then resized ImTotn to pL` 6q2 pixels, and started a new iteration.

The operations described above are illustrated in Fig. 3.4. The factor α represents the effect
of the light on the atoms. It depends on the power of the light hitting the DMD and was
experimentally calibrated to α “ 15. We will use this value in our simulations. A scheme of the
whole loop is shown in Fig. 3.5. Compared to Fig. 3.3, it adds some convolution to the output of
the loop, continuously extends it, and resizes it in order to fit the DMD size.

3.2.2 First Tests

We first simulated a simple flat target. The initial state of the box was a matrix of average 1
and standard deviation 0.2 obtained by adding some random noise on a uniform matrix and
convolving it by a gaussian to get something smooth. We wanted to bring this image to a
uniform target of value 0.7.

We computed 20 steps of the loop, varying the size ` of the pixels on the DMD, but keeping
the number of pixels in the atomic box constant. Here, ` was varied between 0.09 and 0.35. For
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Figure 3.5: Scheme of the loop. The left part is identical to Fig. 3.3. Once the output sn is calculated, it is
convolved by a gaussian of width 1.5 pixels, continuously extended to retroact on the whole
cloud, resized to fit the DMD size, and then dithered. This dithered image is put on DMD2.
We then ‘measure’ the new ‘absorption image’ imLocn`1.

the experimental results of the next section, ` “ 0.17. In order to propagate the effect of the
DMD on the atoms, we also convolve the output of the loop by a gaussian of standard deviation
σ. Typically, on the experiment, we have σ “ 0.5 µm “ 0.4 pixels.

At first, we did not consider any measurement noise. In other words, we did not simulate the
photonic noise that we had on the experiment, which of course impacts the steady-state values
of F in real life. The results of this section are presented in Fig. 3.6.
In a first round of simulations, we varied the gain K of the loop, keeping the convolution

parameter σ and the DMD pixel size ` at the experimental level. The steady state value of F
seems to be more or less independent of the gain. By removing the dithering, and then the
convolution from the simulations, we estimated that about two thirds of the residual error could
be attributed to the use of a dithering algorithm, while one third was due to the convolution
losing some information.

The optimal gain,K “ 0.05, was then chosen for the rest of the simulations. For lower gains,
the convergence is very slow, and for larger gains, the system tends to be unstable. This is not
so clear when looking at F, where one only has the impression that the convergence is slower
for higher gain. When looking at the OD, however, we clearly see oscillations. In effect, what
happens is that for high gains, the system overshoots (the density is lower than the target) once
every two times, and to compensate that, undershoots (the density is higher than the target)
the remaining times. This distance between these two states and the target is approximately the
same, meaning that this phenomenon does not lead to a big change in F.
Mathematically, adding the pure dithered image (setting σ “ 0 for the convolution) must

lead to an increase of noise. This means that at too low σ, F should increase. However, a too
large σ must lead to a blurring of the details that the loop is trying to correct. Thus, there
must be an optimal σ which which the noise is kept at a decent level, but with which the loop
corrects details with a relevant spatial scale. Experimentally, this convolution corresponds to a
certain spatial filtering that is always done by the limited numerical aperture of the microscope
objective. In other words, the question we are asking here is whether it is relevant to add an
iris on the experiment to filter more (increase σ) than what we already do. In the end, we see
in Fig. 3.6 that increasing σ, i.e. adding an iris, seems to improve F, although the change is
not dramatic. Here, we limited ourselves to a reasonable value of σ; a more complete study,
however, should take into account the optimisation of this parameter.

Finally, keeping the optimal valueK “ 0.05 and the expected experimental value σ “ 0.4, we
turned ourselves to simulating a change of DMD resolution. As expected, F decreases when `
decreases.
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Varying Ki Varying σ Varying `

(a) (b) (c)

Figure 3.6: Evolutions of F (top) and mean ‘OD’ (bottom). The black lines correspond to the target ‘OD’.
Except for (a), all the ‘OD’ plots are superimposed. Left: we varyK while we fix σ “ 0.4 pixel
and ` “ 0.17. Middle: we keep ` “ 0.17, fixK to its optimum of 0.05, and vary σ. Right: we
keepK “ 0.05 and fix σ “ 0.4 pixel while we vary `. The images below the graphs are the 6
first simulated images, left to right, for the minimum (top) and maximum (bottom) varied
parameter. For instance, the top left row corresponds toK “ 0.01 and the bottom one to 0.13.
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3.2.3 Effect of the photonic noise

We now take into account the detection shot noise. In other words, at rank n, we will duplicate
imLocn Nr times, add some noise to each of theNr images, and average these images to compute
the error and the output of the loop. Experimentally, this amounts to takingNr different images
and using the mean to feed the correction loop.

In order to determine the amplitude of the noise we should add, we follow the computations
done in Laura Corman’s thesis ([96]). Experimentally, we use an imaging beam in the low
saturating regime: I ! Isat “ 1.6 mW/cm2. We typically have a saturation parameter s “
I{Isat “ 0.2, with an imaging pulse of duration τ “ 10 µs. For the D2 transition of 87Rb, a
camera pixel size of 1.15 µm, and taking into account the optical losses, this amounts to a
number of counts per pixel N0 “ 120.

Moreover, neglecting the background intensity, we can write, for one pixel:

OD “ ln

ˆ

N0

N

˙

, (3.9)

where N and N0 correspond respectively to the number of counts received per pixel on the
image with atoms and without atoms. As bothN andN0 follow a Poisson distribution, we have
std(N0q “ dN0 “

?
N0, and the same goes forN . Moreover,N “ e´ODN0, so dN “

?
e´OD dN0.

We can now propagate the incertitude:

dOD “

d

ˆ

dN

N

˙2

`

ˆ

dN0

N0

˙2

“

d

1` eOD

N0
.

(3.10)

This typically gives dOD = 0.16 which is the value that we use. To implement this on the
simulations, we simply replace ImTotn in Eq. 3.8 by:

ImTotn “
〈
ImTot0 ´ αS

G
n ` dODˆR

〉
Nr

(3.11)
where R is a normally distributed random matrix of average 0 and standard deviation 1 and we
average on Nr events. Increasing Nr amounts to giving a more precise picture of the needed
correction to the loop, while decreasingNr blurs the information and expectedly leads to poorer
results. For N0 » 120, normal and Poisson distribution are very close, hence the choice of a
normal law.

We kept a gain ofK “ 0.05, which was the optimum gain found in the previous section, and
used the experimental parameters σ “ 0.4 pixel and ` “ 0.17. We then simulated the effect of
varying Nr for four different values: Nr “ 4, 6, 25 and 100. Results are presented in Fig. 3.7.
As expected, F decreases with Nr. Plotting the result found in the last section, we see that
it is comparable to the results at Nr “ 25 and Nr “ 100. In other words, above Nr “ 25, the
detection noise is negligible, and we are limited by the same issues that arose in the last section,
the resolution of the DMD for instance.

We will use Nr “ 4 and Nr “ 6 in the next section ; let us just note that for our experimental
parameters, we expect FNr“4,6 » 0.17 for the steady state regime.

3.3 experimental results

3.3.1 Loop operation

To operate the loop, we followed the steps detailed in the previous section. The value of each
DMD2 pixel was determined by the grey-level algorithm, and we iterated this process until
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(a) (b) (c)

Figure 3.7: Simulations taking into account the detection noise. (a) We first compute F for the target
image. This represents the lowest achievable F taking the measurement noise into account.
(b) Then, we vary the number of fictive measurements between 4 and 100 and compute F.
The coloured lines are the values taken from (a) and reported for the corresponding Nr. We
see that we never reach this level. The black line is the result of the previous section and
corresponds to Nr “ 1 but without photonic noise. (c) We also plot the evolution of the ‘OD’
for each parameter. The black line on the right plot represents the target OD. The images
below the graphs are the first 19 simulated images for Nr “ 4 (top) and Nr “ 100 (bottom).

we reached an acceptable result. We realised that due to the finite size of the beam incident on
DMD2, the correction was sometimes too weak on the edges of the cloud (where there was less
available light). To fix this issue, we chose the gains of the loop to be inverse gaussian matrices
rather than constants:

Kpx, yq “ K0 ˆ e2
px´x0q

2`py´y0q
2

w2 , (3.12)

where w “ 28 µm is the measured width of the DMD2 beam in the atomic plane. This way, the
correction had more or less an equal action on all pixels, even the ones far away from the centre.

Concerning the numberNr of images we take for each loop step, we typically hadNr “ 5´10.
We experimentally needed around 20 loop steps, so for Nr “ 10, this corresponded to almost 2
hours of data taking. Moreover, as the atomic box moves by about 2 pixels during the day due
to thermal drifts, we also had to sometimes redefine the region of interest. Apart from that, we
followed the steps described in section 3.2.2. An example of a typical loop is shown in Fig. 3.8.

3.3.2 Qualitative examples

All the images shown here were realisedK around 0.1. Concerning the target image, we could
almost chose it at whim, which offers a certain flexibility for tailoring arbitrary potentials. There
were three main limitations: the target OD, the minimal typical length scale, and the resolution
in terms of modulation depth:

• We could always remove atoms, which means that we could freely chose the target atomic
density as long as it was reasonably lower than the initial one.

• In terms of spatial frequency, we were limited by our PSF. Typically, we could not hope to
print details at the submicronic scale.
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(a) (b) (c)

(d)

Figure 3.8: Example of a typical loop. The images shown are taken from the first iteration of the loop,
and the target is a uniform density. With (a), we take an image imTotn slightly bigger than
the box. In (b), we take a subimage imLocn of (a) in order to avoid border effects. We then
compute the output sn shown in (c); note that in order to compensate for the gaussian shape
of the beam, the gain is higher on the edges than in center, resulting in an output also higher
on the edges. Finally, we resize everything and create a grey-level image (d) that we load on
the DMD. We can then reiterate.

• The available modulation depth mostly depended on the resolution of the DMD, so a
higher resolution improved the number of grey tones we could use.

Fig. 3.9 shows some examples of such possibilities. Overall, the results are quite close to the
targets.

3.3.3 Quantitative exemples

Quantitatively, we can compare F for corrected and non corrected clouds. The idea is to set a
target OD and compare two protocols:

• we blast a fraction of the atoms away to reach this target density, and do not try to correct
the homogeneity of the cloud,

• we use the grey level loop to reach this target density ; hopefully, the defects that appear
get corrected along the way. In this case, we take F at the end of the loop, when it has
reached a steady state.

The first protocol was tried for different targets, the second one was tried at a target close to
maximumdensity. The result is shown in Fig. 3.10.We took the same number of images pNr “ 6q
for each of the two protocols, in order to be able to compare their respectiveF. For the grey-level
correction, we findF “ 0.19, which is very close to the simulated value ofF “ 0.17. We can see
in Fig. 3.10 that for this target, the grey-level correction does more or less the same thing than
the blasting protocol. If this efficiency is independent of the target OD, this would represent a
two fold decrease ofF for low targets. However, this study does not look at the images’ spectra,
which could be used to quantify the efficiency of the correction. A more detailed study could
look at the noise’s typical length scale in order to compare the two protocols: we suspect that
the grey level procedure adds a lot of high frequency noise compared to the blasting method.
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Figure 3.9: Exemples of images realised thanks to the correction algorithm. All these images are averaged
over typically 7 iterations. The white line represents 10 µm. From top to bottom: target image,
loop corrected image, and mean OD along the two directions for corrected image (radial and
azimuthal average for the Hanoi towers and phase winding pattern respectively).

Figure 3.10: Homogeneity parameter for different non corrected blastings (blue), and what we reach
after the loop (black).



3.3 experimental results 55

We will now focus on the swimming pool pattern, and we will analyse the convergence of
the loop by looking at F. As the actual value of this parameter depends on the number Nr of
images that we take to compute a mean image, we limit ourselves toNr “ 4 to keep the duration
of the optimisation reasonable. At the end of one of the loops, we tried to vary Nr up to 16, and
computed, for this step of this loop, the values of FpNrq as a function of Nr. As expected, we
see a decrease of F with Nr: Fig. 3.13 also displays a fit of the data by a square-root function.
Moreover, the steady-state values that we find for F are quite close to the simulated ones.
Nr being fixed, we tried 5 different integral gains:K “ 0.05, 0.1, 0.15, 0.20 and 0.25. Fig. 3.11

shows an example of the evolution of the atomic density along the loop for different gains.
As expected, increasing the gain speeds up the convergence (iteration 3 has hardly changed
compared to iteration 1 for the lowest gain), but leads to oscillations. This is very clear in Fig.
3.11: forK “ 0.25, the algorithm removes too many atoms at iteration 3 and tries to correct this
by removing too few atoms at iteration 4, only to remove too many atoms again at iteration 5.
Fig. 3.12 shows the whole evolution of the run with the highest gain.
Fig. 3.13 shows the convergence of the loop for 5 gains between 0.05 and 0.25. We can

quantitatively see the effect of the gain on the speed of convergence. The optimal gain seems
to be K “ 0.10 as it combines fastest convergence speed and lowest steady state F. We also
see that the steady-state value of F depends on the gain. This counterintuitive result can be
explained by the persistence of long lived local density oscillations. For instance, for the highest
gain, we can see in Fig. 3.12 that as the loop overshoots and undershoots repeatedly, some zones
exchange atoms with a period of 2 loop steps. As the distance that we use involves squares
and the two processes are symmetric around the target, F does not change significantly from
iteration 3 onwards. This however hides two positive terms:

F “ F8 `Fosc, (3.13)

where F8 is the optimal reachable F while Fosc depicts the effect of the local oscillations. For
higher gains, there tends to be more local oscillations, which increase Fosc, and in turn change
the steady state value of F. One could look at local Fs within different regions of an image in
order to detect such oscillations; however, these phenomena correspond to high gain regimes
which we did not explore too much, and a further analysis of these oscillations was deemed
unnecessary.

conclusion

In conclusion, we have explained howwe canmitigate the inhomogeneity defects that inevitably
appear at relatively low densities. The use of a dithering algorithm, in parallel with a feedback
loop, allows us to greatly improve the flatness of out cloud. This method can also be used in
order to tailor specific potentials that might be of use for other kind of experiments: vortex
imprinting, or solitonic bubbles shaping, for instance.
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Ki = 0.05

Ki = 0.15

Ki = 0.25

n = 1 n = 3 n = 4 n = 5 n = 18

Figure 3.11: Examples of swimming pool potentials realised with gainsK “ 0.25 (top), 0.15 (middle top)
and 0.05 (middle bottom). The bottom row is an average along both space directions for the
run with lowest gain. All these images are averaged over typically 4 iterations. The white
lines represent 10 µm. From left ro right, the images are: cloud at iteration 1 (no correction),
3, 4, 5, and 18 (optimum for these 3 runs). Convergence is slow for the middle bottom row,
and too fast for the top one, leading to local oscillations of density.

Figure 3.12: Evolution of the atomic density along the loop, forK “ 0.25. Iterations are going from left
to right, then from top to bottom. We see that even ifF seems to have reached a steady state
at iteration 3, in effect, some regions overshoot and some others undershoot, leading to a
more or less constant F.
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Figure 3.13: Left: decrease ofF with the numberNr of images taken. The dashed line is a square-root fit.
Right: figures of mérite correponding to gainsK “ 0.05´ 0.25.





The seed is strong.
—Jon Arryn
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4
DEMIX ING PHENOMENA : THEORET ICAL CONS IDERAT IONS

introduction

Demixing is an everyday life phenomenon that takes place when different species with strong
enough repulsive interactions are brought together: because the mixed state is unstable, a
hydrodynamical instability develops, which tends to spatially segregate the two immiscible
species. From the separation of oil and vinegar in a vinaigrette, to the tears of wine observable
in a glass filled with alcohol, hydrodynamical instabilities are encountered in many mundane
situations. However, the description of cold atoms gases by hydrodynamic-like equations shows
that these phenomena are also relevant for such systems. In this chapter, we will first introduce
the concept of hydrodynamical instability in classical physics, then apply it to quantum gases.
Finally, we will review the state of the research in this field, and give some numerical results
for our system.

4.1 role of instabilities in classical demixing phenomena

4.1.1 An example of immisicibility-induced dynamics

Mixtures are ubiquitous in physics, and are observed in day to day life. A mixture of two species
1 and 2 can either be miscible (1 and 2 can coexist in the same phase), or immiscible (in which
case 1 and 2 phase separate, and the system demixes). Ultimately, the miscibility of two species
has energetic origins: if it is energetically more favourable to create domains (for instance if the
inter species repulsion is stronger than the intra species one), the two components will spatially
separate.
In this case, the steady state of the system is expected to have two well separated phases,

for instance species 1 at the centre and species 2 forming a shell around it. This steady-state
vision can however be quite far from what happens experimentally when an overlapping
mixture is prepared and let to evolve. For instance, in a vinaigrette, when the stirring stops, the
homogenous system will quickly form phase separated droplets, but one will not immediately
end up with only two domains.

An interesting example of dynamics induced by immiscibility can be found in [118, 119]. As
anyone knows, oil and water do not mix. Because of surface tension, a drop of water deposited
on a bath of oil takes a curved shape like the one of a convex lens, and does not expand. Alcohol
and oil, however, do mix: a drop of alcohol will quickly expand on an oil surface, followed by a
quick evaporation. Then, what happens with a mixture of alcohol and water deposited on the
same surface?
Of course, the result depends on the balance between alcohol and water. Above a certain

alcohol threshold, the oil surface is wettable by the mixture, and the droplet starts expanding.
However, alcohol quickly evaporates and the mixture eventually crosses the threshold: the
droplet stops expanding. One would then expect the system to come back to the initial lenticular
shape. Instead, the receding front leaves on its border a multitude of droplets (see Fig. 4.1).
This is caused by an accumulation of liquid on the edge of the droplet, in turn creating a
Plateau-Rayleigh-like instability that breaks up this bulge into several smaller droplets. This
process continues until the alcohol has totally evaporated.

Thus, in order to grasp the dynamics of phase separation, and the characteristic scales of the
domains created, it is crucial to correctly understand the physics of hydrodynamical instabilities.

61
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Figure 4.1: Oil and water are immiscible (left). However, when alcohol is added to water in sufficient
quantity (right), the situation changes dramatically: such a droplet quickly expands over the
oil surface, before receding due to alcohol evaporation. As the layer is thicker in the centre, the
alcohol tends to evaporate faster on the edge. This translates into a gradient of surface tension
towards the rim, which causes an accumulation of liquid there. Due to a Plateau-Rayleigh-like
instability, this bulge collapses into a multitude of small droplets, whose exact size depends
on the concentration of alcohol in the mixture. Figure taken from [118].

This is the topic of the next section. This framework of thinking is general and will also be
applied to ultracold atomic gases.

4.1.2 Example of hydrodynamical instability: the Rayleigh-Taylor instability

The formation and growth of domains in an unstable mixture is well explained by the study of
hydrodynamical instabilities, and is a classical example in hydrodynamic lectures. A whole
zoology of instabilities exists: the Rayleigh-Taylor instability, for instance, describes the deforma-
tion of an interface between a heavier fluid placed above a lighter one. In this example, one finds
that the points where the heavier fluid penetrates the other can initially form an approximately
periodic pattern (see Fig. 4.2). The periodicity of the interface’s deformation is a general result
for hydrodynamical instabilities.

Other types of instabilities exist, like the Rayleigh-Plateau or the Kelvin-Helmholtz instabili-
ties, both shown in Fig. 4.2. The first one describes how a stream of fluid breaks into several
periodically spaced domains when the typical extension of the stream reaches a critical value,
and is observed in water running from a faucet, for instance. The second one occurs between
two layers of fluids travelling at different speeds: this creates specific periodic deformations at
the interface and describes, for instance, how waves are created at the surface of the ocean. Its
manifestation for clouds can also be observed, although it is rarer.

As can be seen, the deformation of an interface caused by a hydrodynamical instability creates
periodic patterns that are, at first glance, quite counter intuitive. Where does this periodicity
come from? We reproduce here a simple argument given in [120] to explain this phenomenon.
In the case of the Rayleigh-Taylor instability, the deformation of the interface is ultimately

caused, as in many cases in physics, by the competition between two effects. While gravity
tends to push the heavier fluid down, the surface tension opposes any penetration of one fluid
into the other, as this would increase the interface area.
Let us consider a thin film of initial thickness e0 placed in an unstable configuration. For

instance, the experiment can consist in creating a film of glycerol on a surface, and then flipping
this surface upside down so that the denser fluid (the glycerol) is placed above the lighter one
(the air). For simplicity, we will here perform a 1D analysis, and will not take into account
what happens in the transverse dimension, where the size of the sample is w. Let us examine
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Figure 4.2: Top: Example of a Rayleigh-Taylor instability: the droplets can be formed by condensation or
destabilisation of a liquid film (figure taken from [120]). Bottom left: example of a Rayleigh-
Plateau instability where water forms droplets on a cobweb (photo via Ensnaria). Bottom
right: example of a Kelvin-Helmholtz instability seen in clouds above New York state (photo
via Paul Chartier).

⊗
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x
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~g glycerol

airλ

e0
2δe

Figure 4.3: A dense fluid (here, glycerol) is placed on top of a less dense fluid (air in this example). The
interface deforms and we examine how a modulation of the thickness e “ e0 ` δe cospkxq
evolves. Here, k “ 2π{λ.
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how a modulation of the thickness e “ e0 ` δe cospkxq, with δe ! e0, evolves with time (see
Fig. 4.3 for notations). We note v the velocity of an element of volume of the fluid, and p the
dynamic pressure applied on that same element of volume. For our film, the velocities involved
in the problem cannot be very large, and one can write the Navier-Stokes equation for an
incompressible fluid, neglecting the inertial term:

η
B2v

Bz2
“
Bp

Bx
, (4.1)

where we have introduced the fluid’s dynamical viscosity η. The velocity goes from 0 on the
solid surface to v at the fluid/air interface, and one typically has:

η
v

e2
0

„
Bp

Bx
, while Q “ e0wv ñ Q „

e3
0

η
w
Bp

Bx
, (4.2)

where we have introduced the fluid’s flow rate Q. In our case, one can show that the exact
numerical factor is 1/3.

Now, wewant to see how e deformswith time. One can use the volume conservation equation:

BQ

Bx
“ ´w

Be

Bt
. (4.3)

In our case, Bp{Bx has two components: the element related to the hydrostatic pressure ρg Be
Bx ,

and the force induced by the surface curvature ´γ B3e
Bx3

. This yields:

9δe “ δe
γe3

0

3η
k2pκ2 ´ k2q, (4.4)

where we have introduced the capillary length of the denser fluid κ´1 “
a

γ{ρg. Interestingly,
for k ă κ, the solutions of this equation grow exponentially, and the patterns form at a rate:

τ´1
k “

γe3
0

3η
k2pκ2 ´ k2q “ τ´1

0

ˆ

k

κ

˙2
«

1´

ˆ

k

κ

˙2
ff

where τ´1
0 “

γe3
0κ

4

3η
. (4.5)

The maximum of τ´1
k is reached for a certain λf “ 2π

?
2{κ, as shown in Fig. 4.4. This means

that while there is a whole range of unstable ks, there is one mode kf that will grow faster than
the others, and that will imprint its pattern on the system, which explains why the observed
deformations are periodic and quasi-monomode. We will see that the same kind of argument
will be used for patterns arising in ultracold atomic gases. Of course, it should be noted that δe
cannot physically diverge. At one point, this perturbative analysis ceases to be valid, and the
dynamics will stop following this simple prediction.

Quantum gases also abide by hydrodynamical equations, and we will now apply the same
kind of arguments to this field in order to predict the typical length and time scales of two
ultracold demixing gases.

4.2 theoretical description for ultracold atomic gases

4.2.1 Demixing criterion

We have mentioned that for classical fluids, the miscibility of two species, or lack thereof, is
governed by the nature of interactions between the two components. In an ultracold atomic gas,
this role is played by the inter and intracomponent s-wave scattering lengths aij . We aim here
at finding a quantitative criterion for when demixing happens.

Let us take two species 1 and 2 with repulsive interactions. We suppose that T “ 0 and that
the system is uniform. We reproduce here a simple energy argument developed in [121]: we
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uf = 1√
2

ωf = 1
4

Figure 4.4: Evolution of the normalised rate ω “ τ0{τk versus the normalised wave vector u “ k{κ. The
maximum is reached in puf , ωf q.

take the naive picture where the gas separates into two parts, 1 to the centre, 2 forming a shell
around 1 (the right image of Fig. 4.5, for instance). The N1 atoms of 1 occupy a volume αV
while theN2 other atoms take the remaining space, i.e. p1´αqV , V being the size of the system.
Among these two parts, the density is uniform, and drops at the border on a length scale of the
order of the healing length ξ. The surface kinetic and interaction energies are thus negligible in
the thermodynamical limit compared to the volume interaction energy:

Eint “
N2

1 g1

2αV
`

N2
2 g2

2p1´ αqV
with gi “

4π~2

m
aii. (4.6)

When minimising this energy over α, we find that the demixed configuration has an energy:

Edemix “
1

2V

`

N2
1 g1 `N

2
2 g2 ` 2N1N2

?
g1g2

˘

. (4.7)

The spatially uniform configuration, however, has an energy:

Eunif “
1

2V

`

N2
1 g1 `N

2
2 g2 ` 2N1N2g12

˘

with g12 “
4π~2

m
a12. (4.8)

Hence, if g12 ą
?
g1g2, the demixed configuration has a lower energy than the overlapping

system. Demixing is thus expected to happen for such interaction parameters. One should keep
in mind that this criterion assumes a T “ 0 uniform system. The relevant criterion for when the
two species phase separate might be different for non uniform systems where it might depend
on atom number ([122]), while the finite temperature could lead to large modifications of spin
dynamics and to the appearance of a phase transition ([123]).
Another important point is that in the work we present later, we do not investigate this

equilibrium state. Rather, we quench the system into a mixture of immiscible spin states that
are initially overlapping. While the totally separated phase configuration is expected to be the
system’s ground state, what happens en route to this ground state is not described by this
simple energy argument. This will be the focus of the next section.

Finally, it should be noted that the energy difference per particle between the two aforemen-
tioned configurations is extremely small. Considering a mixture with equal number of atoms:
N1 “ N2 “ N{2, and a total density of n “ 70 µm´2, one has:

∆E “ npg12 ´
?
g1g2q » kB ˆ 1.5 nK ! kBT, (4.9)

which makes the obtention of this equilibrium hard to observe experimentally.
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miscible immiscible

g2
12

g1g21

Figure 4.5: Phase diagram: the relative strength of interactions will render the system either miscible
or immiscible. State 2 is represented in light blue, state 1 in green (a miscible mixture is
represented in dark blue). The expected ground state of the system is shown for different
parameters of ∆ “ g212{g1g2: in the immiscible case, the atoms of 1 and 2 are totally separated.

4.2.2 Bogoliubov-de Gennes analysis

In this section (mostly based on [61]), we want to discuss the dynamics of demixing phenomena.
We previously had a glimpse of what the stationnary state of a demixed systemwas, but we have
not discussed its dynamics. What actually happens is that when the mixture is quenched out of
the miscible regime, an instability develops and separates the system into different domains. As
for the classical case, we investigate the existence of unstable modes, and look for a maximum
rate of formation for such modes.
Let us consider a BEC with two components 1 and 2. For the sake of simplicity, our calcula-

tions are done in a 3D infinite uniform system. Let us note ϕj the wave functions of our two
condensates. Unless specified otherwise, j will be either 1 or 2 here. In order to go beyond last
section’s simple energy argument, we have to take into account the system’s kinetic and chemi-
cal energy, and link them to its time evolution. For this purpose, we use the Gross-Pitaevskii
equation that gives the temporal evolution of a weakly interacting Bose gas’ wave functions.
We add an inter-species interaction term and obtain:

$

’

’

’

&

’

’

’

%

i~ 9ϕ1 “ ´
~2

2m
∇2ϕ1 ` g1|ϕ1|

2ϕ1 ´ µ1ϕ1 ` g12|ϕ2|
2ϕ1,

i~ 9ϕ2 “ ´
~2

2m
∇2ϕ2 ` g2|ϕ2|

2ϕ2 ´ µ2ϕ2 ` g12|ϕ1|
2ϕ2,

(4.10)

where µj is the chemical potential of component j. We now want to study small perturbations
of ϕj compared to its non perturbed value and we write:

ϕjpr, tq “
b

njpr, tqe
iθjpr,tq “ ϕ0

j pr, tq ` δϕjpr, tq. (4.11)

We equivalently have:

$

’

&

’

%

njpr, tq “ n0
j ` 2δnjpr, tq with δnj ! n0

j ,

θj “ θ0
j ` δθjpr, tq with δθj ! θ0

j .

(4.12)
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Noting that ϕj « ϕ0
j p1` δnj{n

0
j ` iδθjq, we obtain:

i~
„

δ 9n1

n0
1

` iδ 9θ1



“ ´
~2

2m

„

1

n0
1

∇2δn1 ` i∇2δθ1



` 2g1δn1 ` 2g12δn2. (4.13)

We can then identify real and imaginary parts in order to obtain the equations for density
and phase fluctuations:

$

’

’

’

&

’

’

’

%

~δ 9n1 “ ´n0
1

~2

2m
∇2δθ1,

´~δ 9θ1 “ ´
~2

2m

1

n0
1

∇2δn1 ` 2g1δn1 ` 2g12δn2,

(4.14)

of which we can take the time derivative:

$

’

’

’

’

&

’

’

’

’

%

~2δ:n1 “ ´

ˆ

~2

2m

˙2

∇4δn1 ` 2
~2

2m

“

g1n
0
1∇2δn1 ` g12n

0
1∇2δn2

‰

,

~2δ:θ1 “ ´

ˆ

~2

2m

˙2

∇4δθ1 ` 2
~2

2m

“

g1n
0
1∇2δθ1 ` g12n

0
2∇2δθ2

‰

.

(4.15)

In order to find how different modes k behave, we then develop the density and phase
perturbations on a plane wave basis:

#

δnjpr, tq “ Ajpkqe
ipk¨r´ωpkqtq ` c.c.

δθjpr, tq “ Bjpkqe
ipk¨r´ωpkqtq ` c.c.

(4.16)

We now want to find an equation on ω. We can inject eq. 4.16 into eq. 4.15 and its counterpart
for species 2:

$

’

’

’

&

’

’

’

%

ω2A1pkq “
k2

2m

„ˆ

~2k2

2m
` 2g1n

0
1

˙

A1pkq ` 2g12n
0
1A2pkq



,

ω2A2pkq “
k2

2m

„ˆ

~2k2

2m
` 2g2n

0
2

˙

A2pkq ` 2g12n
0
2A1pkq



,

(4.17)

$

’

’

’

&

’

’

’

%

ω2B1pkq “
k2

2m

„ˆ

~2k2

2m
` 2g1n

0
1

˙

B1pkq ` 2g12n
0
2B2pkq



,

ω2B2pkq “
k2

2m

„ˆ

~2k2

2m
` 2g2n

0
2

˙

B2pkq ` 2g12n
0
1B1pkq



.

(4.18)

For non trivial solutions to exist, each system determinant must be 0, which brings the same
condition for both systems:

Ω2
˘pkq “

ω2
1 ` ω

2
2

2
˘

1

2

b

pω2
1 ´ ω

2
2q

2 ` 4g2
12k

4n0
1n

0
2{m

2, (4.19)

where we have defined ~2ω2
j “

~2k2

2m

ˆ

~2k2

2m
` 2gjn

0
j

˙

, which is the single-component Bogoli-

ubov dispersion relation. We can rewrite this expression by defining:

c2
˘ “

1

2
pc2

1 ` c
2
2q ˘

1

2

b

pc2
1 ´ c

2
2q

2 ` 4g2
12c

2
1c

2
2{pg1g2q, (4.20)
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where c2
j “ gjn

0
j{m are the Bogoliubov speeds. We can thus rewrite this dispersion relation

with a more compact form:

Ω2
˘ “ k2c2

˘ `

ˆ

~k2

2m

˙2

. (4.21)

We see that c2
´ ă 0 for g2

12 ą g11g22, which is the same criterion found in the last section. In
this case, there is a range of k for which Ω2

´ ă 0, meaning that Ω´ P iR. As a consequence, these
modes will correspond to unstable modes, while the other modes will be dynamically stable.
Let us take the case where Ajpkq P R (i.e. δn P R). Using eq. 4.16, we see that an imaginary Ω´
indeed corresponds to unstable, exponentially growing modes:

δnjpr, tq “ Ajpkqe
ipk¨r´Ω´tq ` c.c. “ 2Ajpkq cospk ¨ rq ˆ e|Ω´|t, (4.22)

while this equation shows that if Ω´ P R, δnj simply oscillates with a fixed amplitude.
It is then easy to take the derivative of eq. 4.21 with respect to k in order to find that the

maximum growth rate is reached for kf “
?

2m|c´|{~, and corresponds to a typical time
τf “ |Ω´,kf |

´1 “ ~{pm|c´|2q. According to the argument developed in section 4.1.2, we thus
expect to see a pattern of wavelength λf “ 2π{kf emerging after a typical time τf .

Finally, the relative amplitudes Aj,˘ and Bj,˘ can also be determined:

A2,˘ “ A1,˘
mc2

˘ ´ g1n
0
1

g12n0
1

“ A1,˘
g12n

0
2

mc2
˘ ´ g2n0

2

and B1,˘ “ ´i
A1,˘

n0
1

2mω˘
~k2

. (4.23)

We can now see how this model applies to cold atomic systems, what has been done in the
field, and what time and length scale we can expect for the states of 87Rb that we use.

4.3 ultracold demixing experiments

4.3.1 Examples in cold atom experiments

Thanks to their high versatility, cold atomic systems are ideal candidates for studying mixtures
physics. The first experiment that involved mixtures of two cold atoms species was realised in
[47] and involved two hyperfine states of 87Rb, where the repulsion between these two states
was observed thanks to a displacement of the condensed part of species 1 when species 2 was
present. When species 2 was absent, there was no repulsive force exerted and condensate 1
occupied the centre of the thermal cloud. Other experiments then quickly followed, involving
different hyperfine levels ([124]), spinor condensates ([48, 49]), and later, mixtures of different
atomic species ([52]), or mixtures of bosons and fermions ([125]).

In such systems, the miscibility parameter, which depends on the scattering lengths of both
species, can often be controlled via Feshbach resonances ([52, 53]), or by the addition of a
dressing MW field that couples both states ([54–56]). These very powerful tools are then used
to study the different behaviours of the system in the miscible and immiscible regimes.
In the immiscible regime, spontaneous pattern formations have been reported when half

of a single component gas was transferred to another state immiscible with the first one ([58,
59]), or when the miscibility parameter was tuned from miscible to immiscible with a Feshbach
resonance ([60]). Usually, these experiments first observe a regime of quick initial pattern
growth ([58, 126]), followed by a regime where the patterns do not evolve anymore and a steady
state has been reached. For instance, in [58], the authors initially prepared a quasi 1D gas of
87Rb in an equal superposition of states |Óy “ |F “ 1,mF “ ´1y and |Òy “ |F “ 1,mF “ 1y.
This superposition is dynamically unstable and slowly evolves into separated spin domains
in typically 1 s (see Fig 4.6). At longer times, the BEC starts losing atoms and domains can no
longer maintain a full spin polarisation. This enables domains of state |Òy to cross into domains
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of state |Óy to coalesce with other domains of state |Òy (and vice versa), thus decreasing the
number of domains.
Interestingly, the formation of such domains in a 1D elongated gas can pin the system and

prevent it from moving when anmF -dependent magnetic gradient is applied: if the system is
given time to phase separate, and then a magnetic gradient is applied, the gradient will have
very little effect on the gas, while the species easily flow and separate in the other case ([62]).

Figure 4.6: Left: a quasi 1D BEC of 87Rb is initially prepared in an equal superposition of the 2 immiscible
spin states |F “ 1,mF “ ˘1y. The number of spin domains quickly increases, before slowly
decreasing (see right): because of atomic losses, eventually, small domains cannot maintain a
total polarisation and they coalesce into bigger domains. Right: number of domains with time.
The red points are the experimentally observed values (typical uncertainty plotted on the
leftmost point), the red line is an exponential fit, the blue line is a Gross-Pitaevskii simulation
(with uncertainties denoted by the blue band), and the grey points correspond to the ratio
Rz{2ξ whereRz is the Thomas-Fermi radius of the gas, and ξ the healing length. Considering
that the system is of total size 2Rz and that the domains have a typical size of 4ξ, this ratio
gives an estimate of the number of domains present in the system. Both figures are taken
from [58].

There are other ways to prepare a metastable state: in [63] for instance, the authors let
the system reach a phase separated state before applying a state-selective force displacing
the domains and forcing them to re-equilibrate; while in [64], the authors let an immiscible
system demix for a certain time before transferring one component to another state in order
to get a miscible system. Other experiments include the study of superfluid currents ([65]),
counterflow dynamics ([66]), the stabilisation of droplets by beyond mean field effects ([67,
68]), or the propagation of sound ([127]). Finally, there is a variety of articles numerically
studying instabilities in these systems: reference [71] showed the appearance of Rayleigh-Taylor
instabilities when the interatomic interaction or the trap frequency is varied, while authors in
[69, 70] studied Kelvin-Helmholtz and counter-superflow instabilities at an interface of two
condensates moving relative to each other.

4.3.2 Parameters for our experiment

In order to be insensitive to stray magnetic fields, the immiscible states that we use are the
|1, 0y (state 1) and |2, 0y (state 2) hyperfine states of 87Rb. This corresponds to s-wave scattering
lengths of a1 “ 100.9 a0, a2 “ 94.9 a0, and a12 “ 98.9 a0 where a0 is Bohr’s radius (in this
chapter, we use values for the aij taken from [128]; there are, however, several other estimates
([129, 130]) for these parameters). This gives a miscibility parameter of ∆ “ a2

12{a1a2 “ 1.022:
we are slightly immiscible. As shown in Fig. 4.7, Ω´ is quite sensitive to a small change of a12: a
good determination of the interspecies scattering lengths is thus very important.
There is no Feshbach resonance between the states that we use, which prevents us from

tuning the miscibility parameter at whim. There are, however, other knobs that we can act upon
in order to change the emerging pattern’s characteristics. To do so, we can vary the atomic
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Figure 4.7: Left: evolution Ω´pkqwith a12 for a balanced mixture while the density is fixed at 50 µm´2.
Notice that Ω´ is extremely sensitive to a small change in a12.The solid line represents the
zone where Ω´ P iR (any seed gets exponentially amplified), while the dashed line is the
zone where Ω´ P R (any seed simply oscillates). Right: corresponding appearing wavelength
λf and characteristic growth time τf . The small squares represent the value that we take for
a12.

Figure 4.8: Left: evolution Ω´pkq with ntot for a balanced mixture while a12 is fixed at 98.9 a0. As before,
Ω´ is purely imaginarywhere the line is solid and realwhen it is dashed. Right: corresponding
appearing wavelength λf and characteristic growth time τf .
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Figure 4.9: Left: evolution ofΩ´pkqwithαwhile ntot and a12 are fixed at 50 µm´2 and 98.9 a0, respectively.
As before, Ω´ is purely imaginary where the line is solid and real when it is dashed. Right:
corresponding appearing wavelength λf and characteristic growth time τf .

density ntot, which impacts the Bogoliubov speeds c1 and c2, which in turn change τf and λf .
The behaviour of Ω´, τf , and λf versus ntot is shown in Fig. 4.8. For instance, for a typical value
of ntot “ 75 µm´2, we expect that the appearing pattern will be set by the fastest growing mode
(k » 0.35 µm´1) and will grow with a typical rate of„ 44.5 Hz. We thus expect to see a periodic
pattern of period „ 18 µm arise in typically „ 22 ms. A lower density results in slower growth,
and in patterns with larger wavelengths.
Another possibility is to change the relative population between components 1 and 2. If we

note n1 “ αntot and n2 “ p1´ αqntot, we can express Ω´ as a function of α. The behaviour of
Ω´, τf , and λf versus α is shown in Fig. 4.9. In particular, we see that the curves of τf and λf as
functions of α are extremely flat. For instance, in order to observe a growth twice slower than
at α “ 1{2, one needs to go at α » 0.14 or α “ 0.85, which implies a very small signal to noise
ratio. Note that the curves are not exactly symmetric with respect to α “ 1{2 due to the small
differences between the ai.
A last possibility could be to change the geometry of the system. All the calculations above

were done for a 3D infinite system. However, it is easily understandable that strict boundary
conditions must have an effect on the symmetry of the spin domains. We will see in the
following chapters that this is actually the case: demixing in a square box gives rise to patterns
with a square geometry, while the same experiment in a ring produces patterns with a circular
symmetry.

conclusion

In this chapter, we have derived a criterion that determines the miscibility of an ultracold
atomic mixture: if g12 ą

?
g1g2, then, the system is immiscible, and an initial overlap of the two

species will result in the rise of a hydrodynamical instability that will phase separate the system.
A Bogoliubov analysis shows that when this criterion is met, the solutions of the dispersion
relation take purely imaginary values for a certain range of wave vectors. Any seed with such k
will be exponentially amplified; for a random seed, we expect to see a periodic pattern emerge
corresponding to the wave vector for which the appearing rate is maximal. Moreover, we can
study this kind of phenomena with a balanced mixture of Rb atoms in |1, 0y and |2, 0y: this will
be the topic of the next three chapters.





5
COUPLED GROSS - P I TAEVSK I I EQUAT IONS : NUMER ICAL
S IMULAT IONS

Simulations are a powerful tool to better understand a physical system. After some preliminary
experimental tests, we turned to numerics to help us get a better grip on the dynamics of
demixing. In particular, we wanted to check the dispersion relation calculated in [61] and see
how it was modified in a box. In this chapter, part of a 2D gas initially in component |1, 0y (state
1) is suddenly transferred into another component |2, 0y (state 2), immiscible with the first one.
In order to mimic what will be done experimentally, the transfer can either be uniform (‘natural
demixing’) or localised (‘seeded demixing’):

• in the first case, half of the atoms are suddenly and uniformly transferred to the other
state, typically with a MW pulse,

• in the second case, the transfer is non uniform andwe seed a pattern on the atomic density,
using our Raman beams. This seed is always a monochromatic periodic perturbation.

In order to benchmark our simulations with the prediction from [61], we performed simula-
tions for a 2D box with periodic boundary conditions (PBC). However, in order to compare the
numerical results with the experimental data, we also ran simulations for the same box with
strict boundary conditions (SBC). An interesting way to merge these two aspects of the problem
is, as we will do in chapter 6, to work with rings: in addition of having a 1D system with PBC,
we also get access to more modes for the same used area. For this purpose, we also ran some
simulations for rings (Semi-Strict Boundary Conditions, or SSBC). A table summarising the
different type of demixings (natural or seeded), and different type of simulations (PBC, SBC, or
SSBC) is presented on Table 5.1. A similar table completed with a summary of this chapter’s
main results is presented on Table 5.2. We will first expose the principle of the algorithm that
we use, and then compare our results with the 3D infinite theory developed in Chapter 4.

5.1 simulation algorithm

5.1.1 Dimensionless Gross-Pitaevskii equations

We aim here at simulating the evolution of a system of wave functions pϕ1, ϕ2q following
coupled Gross-Pitaevskii equations. We use a Ng ˆ Ng 2D grid to simulate our system, and
unless specified, the total density of the system under scrutiny is ntot.
We first define some parameters in order to render the Gross-Pitaevskii equations dimen-

sionless:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

t0 “ mL2

~N2
g
,

x0 “ L
Ng
“ n

´1{2
0 ,

V0 “ ~2n0
m .

(5.1)

These parameters have respectively the dimensions of a time, a distance, and an energy. This
allows us to work with dimensionless variables:

73
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PBC SBC SSBC

Natural

Seeded

Table 5.1: Summary of the different type of simulations. Represented in each case is the initial density of
atoms in state 2.
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rt “ t{t0,

r∇ “ x0∇,

rϕi “ x0ϕi,

rV “ V {V0,

(5.2)

Thus, the coupled Gross-Pitaevskii equations read:

$

’

’

’

&

’

’

’

%

i 9rϕ1 “

ˆ

´
1

2
r∇2 ` rV ` rg1|rϕ1|

2

˙

rϕ1 ` rg12|rϕ2|
2
rϕ1,

i 9rϕ2 “

ˆ

´
1

2
r∇2 ` rV ` rg2|rϕ2|

2

˙

rϕ2 ` rg12|rϕ1|
2
rϕ2,

(5.3)

where rgij “
?

8πaij{lz as defined in chapter 11. Throughout this chapter, the wave functions
are normalised to their respective atomic number:

ĳ

|rϕi|
2 drx dry “ Ni. (5.4)

We will drop the r notation in the following for clarity.

1 Throughout this chapter, we take the same values as in [131] andwe fix a1 “ 100.9 a0, a2 “ 94.9 a0, and a12 “ 98.9 a0,
with a0 the Bohr’s radius. The exact values of these parameters is not important here; we mostly want to compare
the Bogoliubov analysis found in [61] to what happens when the system is trapped in a box.
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5.1.2 Time-Splitting Algorithm

An interesting scheme to solve this kind of equations is the time-splitting technique ([132, 133]).
As there is no common basis in which we can compute the kinetic part on one hand, and the
interaction and potential parts on the other hand, the idea is to split the two contributions by first
applying the kinetic part of the hamiltonian in Fourier space where it is diagonal, and then the
interaction and potential parts in real space. This method relies on separating exponentials of
operators, and neglects all termswith commutators appearing in the Baker-Campbell-Hausdorff
formula:

eÂeB̂ “ eẐ with Ẑ “ X̂ ` Ŷ `
1

2

”

X̂, Ŷ
ı

`
1

12

”

X̂,
”

X̂, Ŷ
ıı

´
1

12

”

Ŷ ,
”

X̂, Ŷ
ıı

` . . . (5.5)

It is thus only valid if dt is small enough. In other words, in order to solve the equation:

Bϕ

Bt
“ Âϕ` B̂ϕ (5.6)

one approximates the solution ϕptl ` dtq “ epÂ`B̂qdtϕptlq by ϕptl ` dtq “ eÂdteB̂dtϕptlq. This
assumption is thus valid if 1{dt is typically larger than any energy scale appearing in the
problem.

For the the kinetic part of the hamiltonian, we first solve:

$

’

’

&

’

’

%

i 9ϕ1 “ ´
1

2
∇2ϕ1, for tl ă t ď tl ` dt

i 9ϕ2 “ ´
1

2
∇2ϕ2,

(5.7)

with initial condition ϕiptlq being the result ϕli of iteration l and i “ 1, 2. Going to Fourier space
replaces the ∇2 by a diagonal term which enables us to solve this set of equations exactly. The
second step is then to Fourier inverse these solutions and to solve:

$

’

&

’

%

i 9ψ1 “
`

V ` g1|ψ1|
2
˘

ψ1 ` g12|ψ2|
2ψ1, for tl ă t ď tl ` dt

i 9ψ2 “
`

V ` g2|ψ2|
2
˘

ψ2 ` g12|ψ1|
2ψ2,

(5.8)

with initial condition ψiptlq “ ϕiptl`1q. The solution of these equations is then the result ϕl`1
i of

iteration l ` 1.

5.1.3 Choice of the grid’s geometry

Throughout this chapter, we chose to simulate our system on a 2D square grid with Ng sites on
each side. While this choice is natural for PBC and SBC, it might not be optimal for simulations
of a ring-shaped cloud, where a lot of the grid area is occupied with zero-valued pixels. A
possibility could be to simulate the system on a rectangular thin grid, with SBC on the long
sides, and PBC on the short ones. However, for simplicity and because the gain in time was
not so important, we decided to keep a 2D grid for this case. Moreover, unwrapping the ring
on a rectangular grid suppresses possible curvature effects. These effects might be of small
magnitude for the size of rings that we use, but subtle effects might still emerge.

For these reasons, it was deemed more reasonable to keep a 2D grid even for ring geometries.
In effect, what is changed between SBC and SSBC is simply the shape of the potential in which
the cloud evolves, as we will see in the next section (this potential is set to 0 for PBC). For PBC
and SBC, the physical size of the box was fixed at 38 µm, while it was set at the slightly higher
value of 45 µm for SSBC in order to accommodate the whole ring.
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5.1.4 Calculation of the ground state

In order to simulate the time evolution of a system, one has first to choose the initial state in
which one places the system. Either for natural or seeded demixing, and in order to mimic
the experimental sequence, we first need to compute the ground state of the one-component
system before the transfer: all the atoms then share the same wave function.

To calculate the system’s ground state, a widespread method consists in applying an imagi-
nary time evolution to the system: in the general case, starting from a Schrödinger equation
with hamiltonian H , one can write:

Bϕ

Bti
“ ´Ĥϕ. (5.9)

where we have introduced ti “ it{~. Interestingly, for an eigenfunction ϕp of Ĥ associated to
the energy Ep, one has:

Bϕp
Bti

“ ´Ĥϕ “ ´Epϕp ñ ϕpptq “ ϕp0qe´tiEp . (5.10)

Decomposing ϕ on the ϕp, and ordering the ϕp so that E0 is the lowest energy state (we assume
that the ground state is not degenerate), one thus has:

ϕptiq “
ÿ

p

cpϕpptiq “
ÿ

p

e´Epticpϕpp0q 9 c0e
´tiE0ϕ0p0q. (5.11)

In other words, excited states decaymore rapidly than the ground state, and for a long enough
imaginary time evolution, ϕptiq is to a good approximation and up to a renormalisation factor,
the state of the system with the lowest energy. This means that we can imaginary time evolve
an ansatz in order to compute the system’s ground state: we simply need to replace t by it in
the algorithm detailed in the previous section; in particular, we will use the same value for
dt. The number of iterations Nim is chosen so that the computed wave function is to a good
approximation the system’s ground state; the exact number of iterations needed to do so is
discussed in section 5.2.3. The ansatz that we choose must be relatively ‘close’ to the real ground
state for fast convergence, and we thus opt for a homogeneous matrix of real value

a

n{n0

everywhere:

ϕ0
im “

c

n

n0
. (5.12)

5.1.4.1 Case of a box geometry

We can either work with SBC, in which case the wavefunction vanishes at the edge of the grid,
or with PBC, where it does not. In the PBC case, we set V “ 0: eq. 5.12 is already the ground
state of the system, and no imaginary time evolution is needed. For SBC, V ‰ 0, and the ground
state’s profile is affected by the exact shape that we take for V . We settle for a double erf function,
which is represented in Fig. 5.1b:

V “ 2V0
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˘

2
`
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´
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l

¯
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˛

‚

fi

fl , x, y P r0, Ls, (5.13)

where l represents the typical length scale on which the potential varies an is set by the imaging
resolution of the system. We can approximate our point spread function by a gaussian of
standard deviation 0.5 µm, which in terms of erf function, corresponds to typically l “ 4x0

(x0 “ 0.15 µm for Ng “ 256). We settle on this value for every simulation run presented here.
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(a) (b) (c)

Figure 5.1: Values of the potential V for the PBC scheme (a), the SBC scheme (b), and the SSBC scheme
(c). In the first case, the potential is zero everywhere, while it varies on a length scale l for
(S)SBC.

As for V0, it is the typical height of the potential on the edges, corners excepted2, and we choose
V0 “ 5Eint. The box potential is represented in Fig. 5.1.
After having imaginary time evolved the ansatz defined on eq. 5.12, we have obtained a

matrix ϕim: for PBC, this result is totally uniform (and thus the specific parameters that we
chose for the imaginary time evolution are not very relevant), while for SPC, ϕim goes to zero
on a scale of a few pixels. This physically corresponds to the healing length ξ on which the
wavefunction varies3, or to l if l Á ξ.

5.1.4.2 Case of a ring geometry

For a ring, the same procedure applies, and the only change is the exact shape of V . To mimic
the experimental data, we chose to work with an annulus of inner and outer radii r1 “ 15 µm
and r2 “ 20 µm, respectively. The definition of V is then chosen as:

V “
2` erf

`

r´r2
l

˘

´ erf
`

r´r1
l

˘

2
V0, r P

„

0,
L

2



. (5.14)

The box potential is represented in Fig. 5.1c.

5.1.5 Definition of the initial state

5.1.5.1 Natural demixing

Here, we are interested in what happens when a uniform superposition of two immiscible
states is created, i.e. a situation with no seed. We define the initial state as a superposition of
states 1 and 2, sharing the same spatial wavefunction ϕim:

2 The value of the function defined in eq. 5.13 is twice as big on the 4 corners of the box than on its straight edges.
3 As a1, a2 and a12 are very close to each other, so are the different healing lengths involved. As this length scale

mostly appears as an order of magnitude, the exact choice of a for the calculation of ξ does not really matter. To fix
things, we will consider here that ξ “ 1{

?
2g1n.
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$

’

&

’

%

ϕ0
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ϕim

ϕ0
2 “ 1?

2
ϕim

(5.15)

It should be noted that while the result of the imaginary time evolution is a ground state of
the system before the transfer (up to the convergence of the algorithm), the new state is not a
ground state of the superposition as it is not phase separated and our two states are immiscible.
For instance, for SBC, the difference between a1 and a2, and the addition of an inter-component
interaction term a12 changes the lengths on which each ϕ0

i vanishes on the edges of the box,
and as we will see, this difference in ξ is a motor for the demixing dynamics.

5.1.5.2 Seeded demixing

Here, we suppose that we do seed the system with a monomode perturbation of wave vector k,
which we also represent by its mode number m “ kmL{2π (m “ R̄km for SSBC, R̄ being the
average radius of the ring). The idea is to see whether this perturbation grows with time (i.e. is
dynamically unstable), or simply oscillates at a fixed amplitude (dynamically stable). In order
to seed an eigenmode of the system, we define ϕ0

i using eq. 4.16 of the previous chapter: we
write ϕ0

i “ ϕimp1` δϕiq “ ϕimp1` δni{ni ` iδθiq, with:

#

δnjprq “ Ajpkqe
ipk¨rq ` c.c.

δθjprq “ Bjpkqe
ipk¨rq ` c.c.

(5.16)

Choosing a normalised, dimensionless perturbation amplitude δA, we can write the coeffi-
cients Ai and Bi as:

$

’

’

&

’

’

%

A1 “ δA

A2 “ A1
m2pc2´´c

2
1q

g12~2
ntot
2

$

’

&

’

%

B1 “
´2imΩ´pkq

~k2 A1

B2 “
´2imΩ´pkq

~k2 A2

(5.17)

We then use the matrix ϕim:
$

’

&

’

%

ϕ0
1 “ 1?

2
ϕim p1`A1f ` iB1fq ,

ϕ0
2 “ 1?

2
ϕim p1`A2f ` iB2fq .

(5.18)

For PBC and SBC4, the function f is defined as f “ 1
2 pcospkxq ` cospkyqq, while for SSBC, it

is f “ cospmθqpH ´ V q{H , with θ the azimuthal angle. An example of initial states is shown
for each case in Fig. 5.2.

These equations do not exactly correspond to equation 5.16. For instance, in the SBC case, the
form taken by equation 5.16 orders the modulation patterns diagonally, which is incompatible
with the square box’s geometry. Moreover, f creates patterns along two directions, while
equation 5.16 only creates lines. The choice of this shape for f stems from the fact that we
intuitively wanted to seed modes that looked like what happened for natural demixing, and
thus, that had the same symmetry as the box (see Fig. 5.10 for instance). A more thorough
justification of this choice is given in Appendix A; overall, this does not change the prediction
from [61].

4 The exact value of k is changed between PBC and SBC in order to take into account the real size of the atomic cloud,
which is affected by the healing length and is thus a bit smaller than L for SBC.
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(a) (b) (c)

Figure 5.2: Initial density in state 2 for δA “ 0.1 for the PBC scheme (a), the SBC scheme (b), and the
SSBC scheme (c). The seeded mode is m “ 4 for the 3 cases, however, at this density, this
corresponds to a stable km for (a) and (b), while it is unstable for (c).

We can now perform numerical simulations and compare them to theoretical results. To do
so, we first need to define the observables that we will use. Moreover, it can be reassuring to
run some tests in order to explore for which parameters our algorithm gives a physical result.
This is the aim of the next section.

5.2 preliminary tests

5.2.1 Choice of observables

The idea here is to understand in which range of the simulation parameters (dt or Ng typically)
do the numerics give a physical result. One can check this by varying these parameters and see
when the results deviate from the physical expected behaviour for a simple case. The idea is
for instance to seed a certain mode in the system (δA ‰ 0) and compare the mode’s oscillation
period (if the mode is stable) or its growth time (if it is unstable) to the theoretical prediction.

To do a simple test, we chose here to simulate the evolution of a seeded density perturbation
corresponding to the mode 4 of the box. We will work at ntot “ 30 µm´2, in PBC, and keeping
other parameters constant, we:

• vary the time step dt,

• vary the number of grid sites Ng,

• vary the total imaginary time evolution Ti (if this simulation is conducted in (S)SBC,
where the initial ansatz and the limit of the algorithm are different).

We are then interested in the value of each of these parameters that minimises computation
time, while still giving an accurate result. For instance, we look at the minimum value of Ng

that we can use before the simulations start missing details at too small length scale, where the
computation outcome becomes flawed.

5.2.1.1 Observables in a box geometry

As for the choice of an observable, mode 4 is supposed to be stable at this density. We can thus
look at the population of this mode, and fit its oscillatory behaviour to extract a period. This
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Figure 5.3: Example of our procedure for box geometries. The images shown here do not correspond to
numerical simulations. Left: we start from a matrix representing an atomic density. Middle:
we then compute the modulus square of its Fourier transform (zoom in the central part; the
original matrix has 256 ˆ 256 pixels). Right: we finally compute a radial sum of this quantity
(zoom to the low k region). The mode that we observe on the left is approximately the mode
4 of the box (4 maxima), and thus, we observe a peak in the Fast Fourier Transform (FFT) 5
pixels away from the centre, and on the 5th element of |pn|2 .

period is then compared to the prediction from [61]. To compute our observable, we look at the
density of atoms in state 25:

npx, y, tq “ |ϕ2px, y, tq|
2, (5.19)

of which we take the Fourier transform pn. The derivation from [61] only uses the modulus k
of the appearing perturbation, and we thus need to define an observable which adresses all
modes pkx, kyq with a constant modulus. We chose to work with the radial sum of all elements
being at distance k of the continuous: we define the operator ¨ acting on a matrixM in the
following way:

M “

ż k`dk

k
M d2k. (5.20)

In other words, M is a 1D vector with element 1 corresponding to the sum of all elements
within a certain radius dk, while element 2 corresponds to the sum of all elements in an annulus
rdk, 2dks, and so on. A scheme of this procedure is shown in Fig. 5.3.

As pn is a complex quantity, we chose to look at |pn|2 pkm, tq: for a fixed km, this should either
oscillate or grow exponentially with time, and we will fit it by either tÑ AeΩt (unstable mode)
or by t Ñ A cospΩt ` φq (stable mode). Thus, even if we plot the Ωs for stable and unstable
modes on the same graph, it physically corresponds to two different things: either a growth
rate, or a period.

Finally, due to the squaring, all timescales will be doubled: an oscillation at τ actually means
that the original signal oscillates at 2τ . In the results that we show here, this has already been
taken into account: all the timescales that we present on this thesis’ figures have been divided by

5 The choice of |2, 0y instead of |1, 0y, or of |2, 0y ´ |1, 0y, is a bit arbitrary. It is however motivated by the fact that
experimentally, we usually only take images of |2, 0y. Thus, this definition will enable us to compare simulations
and experimental data. Moreover, except on the edges of the box, the densities in |1, 0y and |2, 0y have, to a good
approximation, a constant sum everywhere, as can be seen in Fig. 5.10, meaning that there is the same information
in both components.
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dθ

Figure 5.4: Example of our procedure for ring geometries. Left: we start from a 2D matrix withm “ 4.
Middle: for each cone rθ, θ`dθs, we compute an average of all pixels present in the cone. Pixels
outside of the annulus are excluded from the average. The position of two of the maxima in
(a) are reported on (b). Right: we finally compute the FFT of this azimuthal sum (zoom to the
low k region). The mode that we observe on the left is approximately the mode 4 of the ring
(4 maxima), and thus, we observe a peak in the FFT 5 pixels away from the centre.

two. This, however, is not the case whenwe show plots of |pn|2 ptq. For instance, in Fig. 5.8, the top
row shows the evolution of the bare |pn|2 ptq, without any corrective factors. The observed period,
T “ 22.3 ms, corresponds to an actual period of TR “ 44.6 ms, which gives Ω´ “ 2π{TR » 141
Hz, as can be seen on the bottom row of Fig. 5.8.

5.2.1.2 Observables in a ring geometry

For the SSBC case, since the geometry of the system is different, it is more convenient to first
transform the 2D matrix into a 1D vector before performing a Fourier transform. This is done
with an azimuthal average comparable to what is done with the radial sum procedure. First,
one defines a region of interest (ROI) in which the atomic density is non zero. Then, an average
of all pixels of this ROI between angles rθ, θ ` dθs is performed. In other terms, we define the
operator ¨ as:

M “

ż θ`dθ

θ
M d2k

ż θ`dθ

θ
d2k

. (5.21)

We obtain an oscillatory signal, which we Fourier transform in order to extract a frequency.
A scheme of the whole procedure is shown in Fig. 5.4.

5.2.2 Choice of the simulation parameters - PBC case

For the simulations to give reliable results, there are conditions that dt andNg have to fulfil. For
this section, we fix δA “ 10´3; we will see later that with this choice, non linear effects caused
by the fact that we look at the square quantity of eq. 5.18 should be negligible.

Conserved quantities: It is sometimes hard to be sure that the result of a simulation corresponds
to the question that was asked. The parametersmight bewrong, or theremight be somemistakes
in the code. An easy way to eliminate possible errors is to check for the conservation of some
conserved physical quantities. In our case, we check that the total atom number N and the
total energy E of the system are conserved throughout the time evolution simulation. Due to
numerical rounding errors, it is never exactly the case, but with relative variations of 10´10

for E and 10´13 for N in the case of periodic boundary conditions (see Fig. 5.5), we can safely
assume that this is not an issue.
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Figure 5.5: Variations of E (left) and N (right) during the real time evolution for varyious dt (top) and
Ng (bottom) (PBC, ntot “ 30 µm´2). Both observables are normalised to their first values and
compared to one. Note the 1010 and 1013 prefactors.

Figure 5.6: Left: Evolution of |pn|2 pkm, tq form “ 4, dt “ 0.05,Ng “ 256, and δA “ 10´3 (the red line is a
cosine fit). The function looks very monochromatic, and the same thing goes for all the other
dt and Ng that were explored. Middle: From the fit, we extract a pulsation Ω that we plot
versus dt. The same thing is done for Ng on the right graph. The dashed black lines are the
prediction from [61]. Note the values on the y-scale.
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Nim = 331 Nim = 3 315

Nim = 33 154 Nim = 331 544

(a) (b)

Figure 5.7: Evolution of the calculated ground state for different number of imaginary time steps Nim
ranging from„ 70 to„ 7ˆ105: (a), modulus of the difference in ϕim between two consecutive
parametersNn

im andNn´1
im in the SBC case (the SSBC case is similar); (b): sum of all pixels value

of (a) for SBC (blue squares) and SSBC (red disks). There is no real change fromNim “ 3ˆ104

onwards, and we fix Nim “ 33 154 for the rest of discussion.

Condition on dt: as stated above, this method works if dt is small enough, as this technique
separates the different parts of the hamiltonian and neglects the commutators. For the time
evolution to be exact, one must have 1{dt large compared to the energy scales involved in the
system. This corresponds to k2dt{2 ! 1, V dt ! 1 and g|ϕ|2dt ! 1. For a typical atomic density of
30 µm´2, the first term is preponderant and this corresponds to typically dt ! 0.2. For periodic
boundary conditions, we actually observe no significant change for dt ă 0.25 (see Fig. 5.6).
Above dt “ 0.3, however, a numerical problem arises during the simulation and E and N are
no longer conserved. We fix dt “ 0.05 for the rest of the discussion.

Condition on Ng: in order to have a good spatial resolution on the spin dynamics, we need
the grid step to be small compared to the spin healing length ξs „ 1.3 µm. When working
with strict boundary conditions, the gas’ healing length ξ „ 0.3 µm should also be resolved,
but this more stringent condition comes with a big computational cost. In the end, we settle
for Ng “ 256, except when stated otherwise. For periodic boundary conditions, we actually
observe no significant effect of Ng (see Fig. 5.6).

5.2.3 Condition on Ti - (S)SBC case

For PBC, the ansatz defined in eq. 5.12 is already a ground state and no imaginary time evolution
is needed. For SBC however, this is not the case, and one needs to evolve this ansatz for a certain
number of iterations Nim.
To choose Nim, we kept Ng “ 256, set dt “ 10´2, and we varied the total number of steps

time Nim from „ 70 to „ 7 ˆ 105. The idea is to stop when the wave function has reached a
steady state, while minimising the computation time.

The results are shown in Fig. 5.7. We look at the absolute difference in wave function between
two consecutive parameters (Fig. 5.7a), and to the sum of this absolute difference (Fig. 5.7b).
The result quickly drops above 7 000 steps, and above 33 000 steps, it has reached a plateau. We
thus fix Nim » 33 000 for SBC runs.

Now thatwe have isolated the parameters forwhichwe have a good accuracy and a reasonable
computation time, we want to compare the modes’ evolution times to what is predicted in [61].
Unless stated otherwise, dt and Ng are set to the aforementioned values.
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Figure 5.8: Left: we seed the mode 4 of the box (PBC, ntot “ 30 µm´2) and look at |pn|2 pk4, tq, normalised
to its initial value, for different amplitudes: δA “ 10´3 (bottom), δA “ 0.1 (middle), and
δA “ 0.6 (top). We then fit this signal to extract a period showed on the right graph (for
the first two graphs, the red line is a cosine fit). When the seed’s amplitude becomes too
large, non-linearities start appearing, which lead to a non monomode signal. The 3D infinite
prediction is shown in dashed lines.

5.3 results

5.3.1 Periodic boundary conditions

For this section, there is no need for imaginary time evolution and we fix Nim “ 0.

5.3.1.1 Natural demixing

We first do a simple test: we compute the numerical evolution of a seedless system. In this case,
nothing happens, and there is no demixing: this underlines the importance of inhomogeneities
(box edges, seed, noise...) as a trigger of the dynamics that we see experimentally. Even if the
mixed state is unstable, without a seed, played for instance by the imbalance created by the
difference in ξ for SBC, the system’s dynamics are frozen.

5.3.1.2 Seeded demixing

We want to investigate the influence of the seed’s amplitude on the measured period. Indeed,
the theoretical model found in [61] assumes that the modulation depth is negligible compared
to 1. As a consequence, this model must fail for relatively large seed amplitudes. We can explore
the limits of δA for which the model is still applicable by varying this value from 10´5 to 0.6 (δA
close to 1 corresponds to a full contrast, although the exact value depends on Ω´pkq because
of the weights Bi). The effect of various δA on the measured period of oscillation is shown in
Fig. 5.8. In the end, we fix δA “ 10´3 for this section, for which non linear effects should be
negligible. We then seed several modes at an amplitude δA “ 10´3, at two different densities.
We recover perfectly the 3D infinite prediction (see Fig. 5.9).
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Figure 5.9: Left: example of the time evolution for a stable (top,m “ 4) and an unstable (bottom,m “ 1)
mode. The red lines are respectively a cosine and an exponential fit. Right: |Ω´| for different
k at two different atomic densities (PBC, δA “ 10´3). The regions where Ω´ P iR are
represented with solid lines, while the regions where Ω´ P R are in dotted lines.

In conclusion, the PBC case strictly follows the theoretical prediction, at least for small
seeds. As there is no more physical ingredient in [61] than in the Gross-Pitaevskii code, this is
somewhat expected. However, this remains an important benchmark for our simulations, and
we can now confidently look at the SBC case. As the seeded modes are no longer eigemodes of
the system in this case, the naive prediction from [61] will probably no longer apply, but the
numerical study will give us some insight on what happens experimentally.

5.3.2 Strict boundary conditions

5.3.2.1 Natural demixing

In a box, the edges are where the demixing starts. This is due to the difference in scattering
lengths between the two states, which translates into a small difference in healing length. As we
compute the ground state for state 1 only, upon transfer to 2, the corresponding wave function
tries to adapt its shape and starts showing differenceswithϕ1 on the edges. This small imbalance
is sufficient to trigger the demixing dynamics that then progress from the box edges towards
its centre. A typical time evolution is presented in Fig. 5.10. We clearly see wavelets appearing
at the limit of the cloud, increasing in amplitude and decreasing in k as times increases: while
for n “ 30 µm´2, the mode present at t “ 20 ms is approximately m “ 4, this decreases to
m “ 2 after 50 more ms. This cascade effect is particular to SBC and will also be observed on
the experimental data.
As we now have some pixels outside the atomic cloud, we need to exclude them from our

observables as to not pollute the signal by adding high frequency artefacts. As a consequence,
we chose to remove 10 pixels in each direction starting from the box borders, and we work on
the corresponding submatrix, which is totally immersed in the atomic box. Interestingly, the
observed behaviour of the different mode populations is no longer exponential or oscillatory,
and all modes initially start growing, even those that the 3D infinite model predicts to be stable.
Nevertheless, at a k-dependent point that happens quicker for higher k than smaller ones, the
modes stop growing, collapse, and further oscillate. Such behaviour is shown in Fig. 5.11.

In order to analyse the typical mode that appears in our system, it is thus practical to look to
the average mode present at each time:
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n1

n2

n2 −n1

n2 +n1

0 ms 7.2 ms 14.5 ms 21.7 ms 29 ms 38.6 ms 48.3 ms 67.6 ms 82.1 ms 96.6 ms

n1

n2

n2 −n1

n2 +n1

(a)

(b)

Figure 5.10: Demixing simulation in a box with no seed for ntot “ 30 µm´2 (a) and ntot “ 100 µm´2 (b).
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ntot = 30 µm−2 ntot = 100 µm−2

Figure 5.11: Simulation of demixing in a box with no seed. Top: evolution of each mode population
|pn|2 pkm, tq versus time for ntot “ 30 µm´2 (left) and ntot “ 100 µm´2 (right), form P r1, 6s.
The data is shown in semilog scale, while the insets show the same data in a linear scale.
Bottom: evolution of k̄ptq (left) and ∆kptq (right) in dimensionless units for the same two
runs (the insets are the same non-zoomed data). The 3 first graphs show a cascade from
high k to smaller k during time evolution, which is also visible in Fig. 5.10.
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We also define the standard deviation of the distribution of k:
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However, for a non perfect signal, this definition suffers from a pollution from high values
of

b

k2
i ` k

2
j : because of noise, the contributions from these areas are non negligible, and on

experimental images, we observed that k̄ could be up to quadrupled. We thus chose to ignore
all values in |pnij |2 lower than a tenth of its maximum. The average and standard deviation of k
with time are presented in Fig 5.11, where the cascade effect is very clear.

5.3.2.2 Seeded demixing

We seem to have lost the simple exponential and oscillatory behaviours when we added a
potential. There is a way, however, to recover some of the simple predictions of the previous



88 coupled gross-pitaevskii equations: numerical simulations

m = 1

m = 4

δA = 0 δA = 0.001 δA = 0.1 δA = 0.3 δA = 0.6

Figure 5.12: Population of the seeded mode for different amplitudes of seed (ntot “ 30 µm´2, SBC).
Top row: we seedm “ 1 and vary δA from 0 to 0.6. We recover an exponential behaviour
for a large enough seed, but this behaviour is lost again when δA is increased too much
(the graphs are in semi-log scale). Bottom row: same thing form “ 4. For too small a seed
(δA “ 0.001 for instance), the modulation is amplified before collapsing (see the (linear)
scale), but this behaviour is quite different from the oscillatory nature observed for larger
δA.

model. For a seed with a large enough δA, the other modes lose of their importance and the
seeded mode behaves as expected. The corresponding growth rate or oscillation period does
not follow exactly the 3D infinite prediction, even if the prediction gives the correct order of
magnitude.
We show in Fig. 5.12 two such examples. For ntot “ 30 µm´2, mode 1 is supposed to grow

exponentially. If the seed is too small (δA ă 0.01 typically), its effect is negligible. If it is too
large (δA ą 0.3), there is not more ‘space’ left to grow in, and the mode population stagnates
or can even decrease with time. In between the two, we recover an exponential growth with a
growth rate of the same order of magnitude as the 3D infinite prediction, although the exact rate
depends on the seed’s amplitude. Something similar happens for mode 4, which is supposed to
be stable: if the seed is too small, the natural demixing is preponderant and this mode (along
with all others) starts growing; otherwise, we are able to observe oscillations with about the
right time scale. The other modes also grow, but up to the time that we looked (100 ms), the
seeded mode remained the most populated one.
Fig. 5.14 sums up the differences between SBC and PBC. For PBC, we took the values from

Fig. 5.9: we seed modesm “ 1´ 6 at an amplitude δA “ 0.001 and extract Ω´pkmq. For SBC,
we chose to work at δA “ 0.1, an amplitude where exponential and oscillatory behaviour are
recovered for most modes. However, for modes with small |Ω´| (typically those close to the
stable/unstable border), this amplitude is not large enough to recover a clear-cut behaviour
(see Fig. 5.13): the time scale of evolution for these modes is too small compared to the natural
demixing time, and it is not possible to extract Ω´. This is the case for mode 2 at ntot “ 30 µm´2,
and for modes 3 and 4 at ntot “ 100 µm´2: they were not fitted and the corresponding points
do not appear on Fig 5.14. For other modes, we recover something close to the 3D infinite
prediction.

In conclusion, the SBC case differs from the PBC case on various points: first, the edges play
an important role as they trigger the dynamics that then propagate to the centre. In contrast
with the PBC case, all modes initially start growing, and the physics is totally multimode. While
these dynamics are richer than in the PBC case, this of course complicates the analysis as we
lose the previous exponential and oscillatory behaviours. Secondly, seeding the box with a
predetermined mode can be used to recover an approximately monomode system, but the
amplitude of the seed needs to be sufficiently large to counterbalance the edges dynamics which
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m = 2 m = 3 m = 4

ntot = 30 µm−2 ntot = 100 µm−2

Figure 5.13: For modes too close to the stable/unstable border, the associated evolution time is large
compared to the demixing time, and natural demixing takes over. Left: seeding ofm “ 2
for ntot “ 30 µm´2; this mode is supposed to oscillate. Middle: seeding of m “ 3 for
ntot “ 100 µm´2; this mode is supposed to grow exponentially. Right: seeding ofm “ 4 for
ntot “ 100 µm´2; this mode is supposed to oscillate.

Figure 5.14: Comparison of Ω´pkq between PBC (circles, δA “ 0.001) and SBC (squares, δA “ 0.1) at
two different densities. For SBC, the mode 2 at ntot “ 30 µm´2 and the modes 3 and 4
at ntot “ 100 µm´2 were excluded as their behaviour was neither really exponential nor
oscillatory. The error bars, determined by the fitting procedure, are too small to be seen.
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0 ms 7.4 ms 14.2 ms 21.7 ms 29.1 ms 38.6 ms 48.1 ms 67.7 ms 81.9 ms 96.8 ms

n1

n2

n2 −n1

n2 +n1

Figure 5.15: Simulation of demixing in SSBC with no seed for ntot “ 30 µm´2. Only radial dynamics
with small amplitudes take place up to 100 ms.

would otherwise prevail. Of course, the next question that comes to mind is to know whether
the SSBC system is more PBC-like or SBC-like.

5.3.3 Semi Strict Boundary Conditions

5.3.3.1 Natural demixing

We have seen that in the PBC case, nothing happens for natural demixing as there is no seed
on which the instability can grow, while for SBC, the instability starts at the edges of the box
and propagates towards the centre. For SSBC, we could be tempted to use the same argument
and predict a radial demixing phenomenon consisting of concentring rings. Nevertheless, the
annulus only has a width of 5 µm, while the expected demixing length scales are typically6
λf “ 28 µm and λf “ 16 µm at ntot “ 30 and 100 µm´2, respectively. This means that the
corresponding instability simply does not have enough space to grow in this direction, and that
radial demixing is essentially frozen.
As can be seen in Fig. 5.15, some radial dynamics do develop a bit, but simply do not reach

the same amplitude as what happens for SBC. Without the help of an additional trigger (noise,
in the experimental case), nothing more happens, and there is no azimuthal demixing.

5.3.3.2 Seeded demixing

We can now try to seed different modes in a ring and see if we recover the theoretical dispersion
relation. We first check at what amplitude we can seed the system. It appears that while there
is no lower limit for stable modes, an unstable mode seeded with too low an amplitude only
grows marginally, and way slower than what is expected (see Fig. 5.16). The reason for this is
not very clear. Moreover, for stable modes, there is a small discrepancy between the theoretical
prediction and the observed period (see Fig. 5.17). This is likely to be due to an ambiguity in
the definition of km “ m{R̄: for R̄, we took the average of the inner and the outer radii, i.e.
R̄ “ 17.5 µm. However, the actual size involved might not be exactly that one. The typical error
in Ω is 5 %, while the change in R̄ necessary to recover the theoretical prediction is 0.35 µm. This
effect is more visible for largem, which might explain why it is more pronounced for stable
modes (see Fig. 5.18).

6 The length scale λf and time scale tf of the instability are the ones defined in the previous chapter.
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δA = 10−5 δA = 10−4 δA = 10−3 δA = 0.1

Figure 5.16: For unstable modes, below typically δA “ 10´4, the seed only grows marginally, with a
growth rate lower than what is expected. Here, we seedm “ 4 and look at its population
with time. Because of the radial edges, the seed is not exactly an eigenmode of the system,
and the initial growth is not exactly exponential as the system needs some time to adjust.
When the growth has become exponential (here, when the graph looks like a line), we see
that the growth rate for δA “ 10´5 (the slope of the curve at long times) is much lower than
for δA “ 10´3.

Figure 5.17: Left: we seed mode 10 for δA “ 10´3 (bottom), δA “ 0.1 (middle), and δA “ 0.6 (top). For
stable modes, there is no minimal excitation threshold, and we recover something very
similar to the PBC case. Right: effect of δA on Ω´. The theoretical prediction is shown in
black for R̄ “ 17.5 µm, and in red for R̄ “ 17.85 µm. The discrepancy between what we
expect and what we observe is typically 5 %.



92 coupled gross-pitaevskii equations: numerical simulations

Figure 5.18: Comparing Ω´pkq between PBC (filled circles, δA “ 0.001), SBC (filled squares, δA “ 0.1),
and SSBC (open circles, δA “ 0.1) at two different densities. For SBC, the mode 2 at ntot “
30 µm´2 and the modes 3 and 4 at ntot “ 100 µm´2 were excluded as their behaviour was
neither really exponential nor oscillatory.

In the end,we chose to keep δA “ 0.1, wherewe should to a good extent recover the prediction
from [61]. We then seed the system with modes m “ 1 ´ 17 at the two usual densities. We
mostly recover the theoretical prediction, up to a few percents.

conclusion

In conclusion, we are able to recover the 3D infinite prediction for periodic boundary conditions
at relatively low seeding amplitudes. For strict boundary conditions, however, the edges of the
box take a more important role. For natural demixing, we observe patterns appearing at the
edges of the box that propagate towards its centre; this is associated with a cascade of both
k̄ and ∆k that will be observed experimentally in the next chapters. For seeded demixing, a
very small seed has basically no impact, but we recover an exponential or oscillatory behaviour
for important δA. However, the associated time scale deviates from the theoretical prediction.
Finally, in the SSBC case, nothing is observed azimuthally for natural demixing, while seeded
dynamics abide, to a good extent, by the theoretical prediction. A summary is presented on
Table 5.2.
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PBC ­: |n̂|2 SBC ­: |n̂|2 SSBC ­: | n̂ |2

Natural

Y: ; Y: - All k grow
- Growth 6= exp

Y: - Radial dynamics
- ; Azimuthally

Seeded

Y: - Exp if unstable
- Osc if stable

Y: - Exp/osc is δA large
enough

Y: - Exp if δA > δAcrit
- Osc ∀ δA

Table 5.2: Summary of the different type of simulations, with ­ standing for the chosen observable and
Y for what is observed.





6
DEMIX ING IN R ING GEOMETR IES

We have seen in Chapter 4 that in the case of an immiscible mixture, a system phase separates
with a certain length and time scale predicted in [61]. However, this model assumes an infinite
systemwith periodic boundary conditions, which is of course hard to implement experimentally.
In order to realise periodic boundary conditions, we confine our atoms on a ring, and look at
what happens for both natural demixing and seeded dynamics. This also has the advantage of
involving larger length scales for a given surface in the atomic plane, which in turn means that
we have access to lower k. We will first describe the preparation of our sample, then treat the
case of natural demixing, and then finish with the seeded case.

6.1 data taking and analysis strategy

6.1.1 Preparation of the atomic box

In order to have a good atomic density, simply flashing a ring pattern on DMD1was not optimal,
and we used a movie to increase the loading efficiency of the ring. To do so, we created N
different images and had DMD1 flash them one after the other, with a time dt between two
images. The first image was a disk of radius Ri, and from the second image onward, we created
a hole in the centre of the disk that would increase in size, while Ri would decrease to reach
the final value Rf that we wanted. If dt is small enough (basically if the ‘speed’ of the disk front
is small compared to the speed of sound), the atoms see a continuous change and adapt to
the decreasing box size by increasing their density. As the green box’s potential is kept at a
low value during this process, any excess of energy is dissipated through evaporation, and the
temperature remains constant. In the end, we chose N “ 20 and dt “ 10 ms. The images that
were used to compose the movie are shown in Fig. 6.1.

We tried different values ofRi and settled on the one that maximised the final OD. This value
depends on the desired radius Rf ; an example for Rf “ 20 µm showing the optimisation of Ri
is depicted in Fig. 6.1.

Ri

R f

Figure 6.1: Left: images used for the movie: a disk of initial radius Ri is transformed into a ring of outer
radius Rf “ 20 µm (the inner radius here is 15 µm). Right: effect of Ri on the ring’s loading:
we vary Ri and compute in each case the sum of all the pixels’ OD. We find that for this Rf ,
it is maximal for Ri “ 30 µm.
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We worked with 3 kind of ‘shapes’ for this chapter: small ring, large ring, and cut ring. The
large ring had external and internal radii of 20 and 15 µm, while they were 15 and 10 µm for
the small one. As for the cut ring, it was a large ring open by 4 µm on one side. We used it to see
what happened when we reintroduced strict boundary conditions in the system: this cut, which
acted as a seed for the demixing dynamics, basically set the phase of the appearing patterns, as
we will see later.

6.1.2 Initial state imprinting

For these experiments, we tried two different protocols. We could either let the system demix
naturally by performing a 50/50 MW transfer, or seed the system with a certain wave vector k
using our Raman beams. In order to spatially modulate the Raman transfer, we used a grey-
levelled DMD3 to modulate the light intensity that we sent on the atoms, and thus the fraction
transferred from |1, 0y to |2, 0y.

As we have done during the previous chapter, we would like to imprint a density modulation:

npx, yq “ ntot

ˆ

1

2
`A cospmθq

˙

, where θ “ argpx` iyq and m P N. (6.1)

Moreover, the transferred fraction can be written as F px, yq “ sin
´

π
2

tR
T px,yq

¯2
with tR the

time during which the Raman are flashed, and T the time necessary for a π-pulse. This time
is inversely proportional to the intensity sent by the DMD, so that with a pattern P px, yq on
DMD3:

P px, yq “
2

π
asin

˜

c

1

2
`A cospθmq

¸

, (6.2)

we end up with the desired density modulation.
It is important to note that here, we cannot seed an eigenmode as defined in eq. 5.18 as we

have no control over the phase of the wave function. This corresponds to taking Bi “ 0 and
A1 “ ´A2 in eq. 5.18. Moreover, we can only define a modulation in density here, and not in
wave function, as was the case for the previous chapter. In particular, we defined δA as:

ϕi “ ϕ0
i p1` δAfq ñ ni “ ntot

ˆ

1

2
` δAf `

δA2

2
f2

˙

, (6.3)

where ni is the atomic density of component i but ntot “ n1 ` n2 represents the total atomic
density. For small modulations, this leads to δA » A, but to this relation does not stand at larger
ones. In the rest of this thesis, we choose to work with the experimental parameter A, instead of
the theoretical parameter δA.
In the end, we conducted experiments for various densities ranging from typically 10 to 80

µm´2, for different amplitudes (A “ 0 to A “ 0.5), and for different seeded modes (m “ 3 to
m “ 12, defined as modes of wave vectors km “ 2πm{L̄ “ m{R̄, where L̄ and R̄ correspond
respectively to the annulus’ average circumference (the ring’s middle line) and to the average
radius (average of the inner and outer radii)).

6.1.3 Analysis strategy

For each demixing time, we typically have 10 different iterations, which we would naturally
like to average. For non-cut rings, however, we cannot start by taking the mean of the different
shots as the patterns are not phase-locked and do not always appear at the same position. We
thus need an intermediate operation.

We opted for the following procedure for each run (cut or non cut): first, we need to transform
our OD matrix (mostly non-zero on a ring) into a 1D vector that we can Fourier-analyse. As for



6.2 natural demixing 97

the previous chapter, we thus start by azimuthally averaging our OD1 matrix. Each point of
this vector n corresponds to the average of a ‘ring arc’ of extension dθ “ 2π{Nb, where Nb is
the number of bins used.
We then take the squared modulus of the Fourier transform’s of n, and average this |pn|2

over different iterations for better signal to noise ratio. We finally look at the evolution of each
mode population x|pn|2ypkm, tqwith time (we will drop the x¨y notation from now on).

t = 0 ms t = 16 ms t = 36 ms t = 44 ms t = 55 ms t = 70 ms t = 100 ms

(a)

(b)

(c)

Figure 6.2: Examples of natural demixing experiments in rings of inner and outer radii 10 and 15 µm
(top), and 15 and 20 µm (middle/bottom). The bottom ring is cut on its left side. No average
has been performed as the blob’s locations are not fixed for the top and middle row.

Now that we have defined our observables, the easiest experiment that comes to mind is to
prepare an atomic ring and simply let it demix. In this case, we have seen that no demixing
happens in a perfect T “ 0 system. However, we can see in Fig. 6.2 that this is clearly not the
case here, meaning that here, the demixing is triggered by the noise present in the system.
Moreover, we can wonder whether the dynamics are different when we reintroduce strict
boundary conditions. In other words, do open rings and closed ones behave differently?

6.2 natural demixing

In this section,we create a 50/50mixturewithMW.Raman beams are not used at all.We typically
varied the atomic density between 15 and 80 µm´2 and looked at the density dependence of
the appearing mode.

6.2.1 Phase analysis

As seen in Chapter 5, the role of edges is important in demixing: the dynamics start there and
then propagate towards the centre. In a thin ring, however, the system has no edge2, and the
position of the pattern will be set by small, randomly located density defects. On the other
hand, in a cut ring, the dynamics start at the cut and propagate like waves towards the point
symmetrically opposed to it. This sets the pattern’s phase.

1 Throughout this chapter, we only look at the density n of atoms in |2, 0y. We seldom image |1, 0y as this doubles the
time needed for data taking; however, we did check on several occasions that a maximum of |2, 0y do correspond to
a minimum in |1, 0y, and vice versa.

2 The radial edges do not count that much as the thickness of the ring is smaller than the typical appearing length
scale, which prevents radial demixing. In this sense, the radial dynamics are essentially frozen and everything
happens azimuthally.
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Figure 6.3: Phase distribution for non cut (left) and cut (right) rings. The density of the ring is ntot »
38 µm´2. The time of observation is chosen so that the patterns are the most visible, in this
case t “ 70 ms. We plot the results in two different fashions: the top row shows the Fourier
component of the largest populated mode drawn in the complex plane. If the pattern’s phase
is truly random, we expect to see a ring: we see that this is more or less the case for a non cut
ring (although the distribution is not totally uniform as some constant ring inhomogeneity
always seed the dynamics), while for a cut ring, the points are way more localised, illustrating
the role played by the borders. The bottom row displays the same data as a phase histogram:
we can see that the width of the distribution is far larger in the non cut case than in the cut
one.

This can be seen by choosing the time where the pattern is the most visible and accumulating
data about the blobs’ locations for a cut and a non cut ring. More precisely, we let a ring with
ntot » 38 µm´2 demix for a time t “ 70 ms before imaging it, and we accumulate 200 images
for each configuration. At this time, the most populated mode is the modem “ 7´ 8 for the
non cut ring. We can thus look at pnpkmq: if the locations of the blobs are not fixed, the phase of
this number should be random, and we should see an annulus of equally distributed points in
the complex plane. If, however, the phase is set by some constraints, like an opening in the ring,
the cloud of points should be more localised.
This can be seen in Fig. 6.3: for a non cut ring, the cloud’s distribution is more random

than for a cut one, although there is a lack of points in the top left corner. This is due to a
residual inhomogeneity of the ring: that day, there was always a bit more atoms on the top
of the ring, which broke the symmetry of the system. To remedy this problem, we tried to
go to smaller disks, where such problems might be less preponderant, and we also tried to
lower the power of the vertical confinement, whose defects were believed to be the origin of the
inhomogeneity. This, however, did not really give more satisfying results. Nevertheless, even
with these homogeneity issues, the result of Fig. 6.3 remains very clear, and shows that having
edges in the azimuthal direction does result in a spatially locked pattern.

6.2.2 Individual mode analysis

We now try to recover the exponential behaviour discussed in the previous chapters, and we
look at |pn|2pk, tq. Fixing k, we can perform exponential fits on our observables, and extract a
characteristic growth time scale for each mode (see Fig 6.4). As modes do not indefinitely grow
and eventually collapse, the fits should be stopped at a certain time. However, the signal can be
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m = 1 m = 2 m = 3

m = 4 m = 5 m = 6 m = 7

m = 8 m = 9 m = 10 m = 11

Figure 6.4: Example for the highest density run performed in a large ring. We fit each |pn|2pkm “ m{R̄, tq,
withm P N, by an exponential (in red), and extract a characteristic time scale. In this example,
only modes 7-10 get significantly populated.

a bit noisy, and it is not always obvious where to stop. To have an unbiased choice, we chose to
smoothen our signals by performing a moving average on 3 pixels, and by defining the stoping
point as the time when this smoothed vector reached its maximum. The fits are then performed
on the original, non smoothed vectors.
Performing the aforementioned transformations and looking at the growth rates for each

k and for each run, we summarise in Fig. 6.5 our results for each configuration (large, small,
or cut rings). As we can see, there are discrepancies between the model and the data: for
instance, modes that should be stable still grow marginally, especially for cut rings. This is not
a surprise as a result from the previous chapter was that edges usually complicate the simple
PBC prediction, and that even stable modes tend to grow in this case.
Moreover, the exact position of |Ωmax| is not very well predicted, even if its value shows

the correct behaviour. This is particularly true for cut rings, where a lot of ‘stable’ modes still
grow. This would tend to designate the cut, creating the aforementioned demixing ‘waves’, as
responsible for this discrepancy.
We can also extract the maximal growth rates for each run. The result is presented in Fig.

6.6, along with the prediction from [61]. On the left, we plot the theoretical prediction with
the values from [131] for the s-wave scattering lengths: a11 “ 100.9 a0, a22 “ 94.9 a0, and
a12 “ 98.9 a0. However, the agreement with the data is not optimal. Keeping a11 and a22 fixed,
and extracting the slope of |Ωmax|pnqwith a linear fit, yields a12 “ 99.3 a0. As one can see, the
difference between the value from [131] and what this method gives is relatively small.

Now that we know what mode naturally appears, we want to see if we can force another
mode to be populated instead. As for the previous chapter, the idea is to seed a certain mode
and see how it evolves with time.
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(a) (b) (c)

Figure 6.5: Summary of the growth rates for the natural demixing experiments. Figure (a) treats of
the large rings case, (b) of the small rings, and (c) of the cut rings. As usual, the solid line
represents the theoretical prediction (no free parameter, values from [131]) whenΩ´ P iR, and
the dashed line corresponds to Ω´ P R. All the experimental points showed here represent
exponential fits: no oscillatory behaviour for the region where Ω´ P R were detected. For
clarity, the plots are shifted vertically by 50 Hz each, and the base line is indicated in black
dashed lines; the blue plots are not shifted at all.

Figure 6.6: Maximum growth rates vs atomic density with the value from [131] (left), and with a fit on
the value of a12 (right), fixing a11 and a22 to the values from [131]. This fit yields a12 “ 99.3 a0.
The black dashed line represents the theoretical prediction. For each plot, a large circular
marker represents a run taken for a large ring; a small marker represents a small ring; a red
cross represents a cut ring.

6.3 seeded dynamics

6.3.1 Preliminary tests

6.3.1.1 Unstable modes

For this section, we only worked with large rings at one density, n » 24˘ 5 at/µm2. We first
chose to investigate the effect of the seeding amplitude on the evolution of the seeded mode.
Typically, numerical simulations performed in the previous chapter showed that for unstable
modes, there exists a threshold under which the seeded modulation is not strong enough to
drive the system. This minimal amplitude is typically in the 10´4 range. Except for A “ 0, we
are always above it, and should not expect to observe such an effect, while the presence of noise
should anyway make this prediction inapplicable.

By seeding mode 4 (an unstable mode at this density), we can check whether A has an effect
on the mode’s growth rate. The results are shown in Fig. 6.7, where the amplitude A is varied
from 0 to 0.5.
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m = 3

m = 4

Figure 6.7: Left: Initial mode population for different values of the seedA. The curves for modesm ‰ 4 is
quite flat, and loosely populated, in opposition with them “ 4 case: the perturbation that we
seed is quite monomode. Middle: time evolution of the modes’ populations for different seeds
A. Only mode 4 gets macroscopically populated. From this graph, we can extract a growth
rate plotted on the right row: on the explored range, |Ω| seems more or less independent of A
for the seeded mode. The black dashed lines correspond to the prediction from [61] with the
values from [131].

First, we see that the seeding is quite monomode, as seedingm “ 4 does not populate other
m (m “ 3 for instance): while the initial population of mode 4 increases as we increase A, the
initial population of mode 3 is essentially constant.

Second, when measuring the growth rate of mode 4 for different seeds (see right row), we see
that the results are more or less independent of the seed’s amplitude: having a large seed merely
gives a head start for mode 4, without influencing its growth rate. This is also the case for A “ 0.
The absence of a threshold in this case can be explained by the fact that the experimental system
presents some inherent noise absent from the simulations, which can help start the dynamics.
As the result does not really depend on the seed’s amplitude, we will fix an intermediate value
of A “ 0.1 when working with unstable modes.

6.3.1.2 Stable modes

For stable modes, the story is a bit different. As can be seen in Fig. 6.8, below a certain amplitude,
the seeded mode does not oscillate and simply collapses. For higher A, we recover a small
revival, whichwe can try to fit by a cosine function. However, for large amplitudes, the excitation
is no longer monomode, and we also seed neighbouring modesm˘ 1, which oscillate at their
own frequencies. Because this oscillation is often even clearer than the one from the seeded
mode, we also fit the evolution of these neighbouring modes to extract their periods.

This difference between what we observe and numerical simulations is probably, again, due
to the presence of noise. In a noisy system, all modes are initially seeded with a non-zero
amplitude, and the most unstable mode (mode 4, here), will rapidly take over. To be able to
oscillate, a seed needs to be stronger than mode 4 and get a head start, explaining the need for
a large A.
We conclude that we need an amplitude around 0.5 to detect the oscillation of the seeded

mode: below this, the oscillation of the seeded mode is almost invisible, and anyways not
exploitable. We thus fix A “ 0.5 for the rest of the chapter when dealing with stable modes.



102 demixing in ring geometries

δA = 0.5

δA = 0.1

m = 7 m = 8 m = 9

Figure 6.8: We seed modem “ 8, which is supposed to oscillate at this density, and observe the popula-
tions of modesm “ 7, 8, 9 for A “ 0.1 (top) and A “ 0.5 (bottom). For the lowest amplitude,
we simply observe a collapse of the seeded mode, its energy being redistributed to other
modes. When increasing A, we observe some oscillations for the main and the neighbouring
modes, that we fit by a cosine function (red) to extract the growth rate.

6.3.2 Dispersion relation

We can now seed each mode independently and look at their growth rate (for unstable modes)
or oscillation periods (for stable ones). As mentioned above, we fix A “ 0.1 for unstable modes
(here corresponding to modesm “ 1´ 6) and A “ 0.5 for stables ones (m ą 6). The result is
presented in Fig. 6.9. Because each run has a slightly different density, there is an uncertainty
on this parameter, translating into an uncertainty on |Ω|, corresponding to the shaded area. In
particular, mode 6 is at the border between the stable and the unstable regions. Experimentally,
we saw it grow, and we thus decided to analyse it as such.

Figure 6.9: Dispersion relation for seededmodes 3-12 at typically ntot “ 24 µm´2. The left graph’s theoret-
ical prediction is plotted for a12 “ 98.9 a0 (value from [131]), while the right one’s correspond
to a12 “ 99.3 a0 (coming from a fit of Fig. 6.6). The shaded areas indicate the uncertainty in
density. The shaded red (blue) region indicates the zone where Ω´ P iR (Ω´ P R). Points in
red behaved as unstable modes and were fitted with exponentials, while points in blue and
black behaved as stable ones and were fitted with a cosine. The black points represent the
seeded modes, which give a poor signal. For high A, however, neighbouring modes are also
seeded. These modes correspond to the blue points. The uncertainties represented here are
the 95 % uncertainties given by the fitting procedure.

For stable modes, we plot both the seeded mode m (in black), and the two neighbouring
modesm˘ 1 (in blue). As the signal is clearer on these modes, and the fits more accurate, it
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can be tempting not to take into account the black points. In this case, we recover something
very close to the theoretical prediction. The results from the previous chapter tend to show that
at this amplitude, there should not be a large gap between the observed values and the model
from [61]. The discrepancies that we see could be explained by errors in the density calibration,
or in the value of a12 used, as we have seen in Chapter 4 that Ω´pkq is extremely sensitive to
this parameter. Moreover, the applicability of [61] is debatable here: we do not have an infinite
system, and the presence of thermal noise complicates the analysis.

conclusion

In conclusion, we have studied the case of natural and seeded demixing in ring geometries.
This geometry is interesting as the demixing dynamics take place in the azimuthal direction,
with periodic boundary conditions in the case of a non-cut ring.

Although we do not exactly recover the result from [61], the qualitative predictions are
respected: we observe growing modes for low k, oscillatory ones for high k, and the associated
timescales vary as expected with density.

It should be noted that the choice of a12 can impact a lot the agreement with the model found
in [61]. While [131] gives a value of a12 “ 98.9 a0, the value 99.3 a0 gives more accurate results.
This is not to much of a stretch; however, a spectroscopy measurement that we performed more
recently ([86]) yields a22 “ 93.9 a0 and a12 “ 100.3 a0, assuming a11 “ 100.9 a0, as is detailed
in the Outlooks. With these values, and although the mismatch is on the order of the %, the
agreement with [61] is very poor. It is not exactly clear where this difference stems from.

Interestingly, the numerical study in the case of a non seeded SSBC system does not predict
azimuthal demixing, and we are here in the case where the dynamics are entirely triggered by
density noise. Although this has not been tested, an interesting idea would thus be to look at
the effect of T on the demixing, or to try to inject additional density noise with the help of a
DMD to see how the dynamics are changed.
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introduction

The 1D case treated during the last chapter was interesting as it enforced PBC in an experimental
system. We now want to turn to a more complex system, namely a 2D box. As we have seen
in Chapter 5, the physics for this system is fundamentally multimode, and the model from
[61] does not easily apply. In this richer system, the analysis that we can conduct is essentially
qualitative. However, we will try to outline some general ideas that connect with the naive
model.
One of this model’s main result is the density’s influence on the demixing length and time

scales, and we can first check whether this prediction is also verified for a finite box. As the
model is written in an infinite system, it can also be interesting to investigate a possible influence
of the box’s finite size on the appearing dynamics. Finally, all the data presented up to now
was essentially taken at zero temperature. While demixing is expected to happen when the
temperature’s effect is negligible, the scale of the demixing energy remains very small compared
to kBT , and the importance of the phase separation dynamics is supposed to fade in a hotter
system.

In order to explore these effects, we will first examine the influence of both density and box’s
size on natural demixing. As there is no simple observable for the natural demixed system, we
will try to synthesise the effect of each of these parameters on the appearing pattern, using an
average mode number analysis. We will then explore the T ‰ 0 case before turning to seeded
demixing.

4 ms 10 ms 14 ms 18 ms 24 ms 30 ms 40 ms 50 ms 80 ms 100 ms

|1,0〉

|2,0〉

|1,0〉

|2,0〉

Figure 7.1: The top rows correspond to experimental data and show average images of population |1, 0y
and |2, 0y for a total density initial ntot “ 67 µm´2. The box’s size is 40 µm ˆ 40 µm. We see
that the two populations are complementary; as a consequence, we will only work with |2, 0y
from now on. Bottom rows: simulation images performed for the same density show a very
similar behaviour up to typically 50 ms. After that time, the demixing in the experimental
system fades away due to both thermal noise and atomic losses.
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Figure 7.2: Evolution of the OD in |2, 0y with time for atoms in an initial 50/50 superposition of |1, 0y and
|2, 0y (red), and for atoms initially in |2, 0y only (blue). In both cases, the OD is normalised to
its first value. The dashed lines are two-body loss fits (tÑ p1` t{τq´1), yielding respectively
τ “ 345 and 230 ms. As one can see, the atomic losses depend on the initial density in |2, 0y ,
and thus vary from run to run.

7.1 natural demixing

7.1.1 Varying the atomic density

Experimentally, the easiest parameter to vary is the atomic density. In this case, [61] predicts
that increasing ntot results in a higher k appearing at an earlier time. Is this also the case for an
experimental finite box?
In this section, we varied the total atomic density from 17 to 88 µm´2, while the box’s side

L was fixed at 40 µm. We worked at the lowest temperature possible, which in our case was
typically T “ 90 nK (the exact value varied from run to run). This corresponds to T {Tc ranging
from 0.16 to 0.86.

4 ms 10 ms 14 ms 18 ms 24 ms 30 ms 40 ms 50 ms 80 ms 100 ms

67 µm−2

36 µm−2

17 µm−2

Figure 7.3: Average images of |2, 0y populations for total atomic densities ntot “ 67 (top), 36 (middle),
and 17 µm´2 (bottom). The box’s size is 40 µmˆ40 µm, while T is typically set at 90 nK. We
see that the higher the density, the faster the patterns appear, and the higher the mode.

As we have seen in Chapter 5, in the case of a box with strict boundary conditions, we do
not expect the prediction from [61] to stand, and instead of having one well defined mode, we
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should observe a multimode system with many modes present, and a cascade of k from higher
to lower values.
Some experimental shots are visible in Fig. 7.1 and 7.3. The first figure shows very clearly

four things.

• All the images shown here are averages over typically 10 iterations, and yet, the patterns
are very clear. In other words, the blobs do not move from shot to shot, and as for rings,
having hard edges locks the position of the patterns.

• Second, as seen with the numerical simulations, the demixing dynamics first appear on
the box’s borders, and then propagate towards the centre.

• Third, a maximum of |1, 0y corresponds to a minimum of |2, 0y and vice-versa: imaging
one state or the other gives the same information. In the following, and except if stated
otherwise, we only use the density in |2, 0y .

• Fourth, upon apparition, the typical mode number present in the system decreases with
time; for instance, the |2, 0y density displays approximatelym “ 4 at 40 ms, while this
has decayed tom “ 3 at 50 ms andm “ 2 at 80 ms. This cascade effect is observed for all
parameters.

Overall, the agreement between the observed and simulated densities is very good up to
t » 50 ms. After this time, the noise present in the experimental system starts to kick in, while
the simulations, being conducted at T “ 0, keep evolving undisturbed. There is also another
effect at play: the numerical study conducted in Chapter 5 does not take into account any effect
related to atomic losses. However, the lifetime of atoms in |2, 0y is smaller than in |1, 0y , leading
to a typical loss of 30 % of the atoms after 100 ms (see Fig. 7.2). This also plays a role in the decay
of the demixing contrast, explaining the increasing discrepancy between data and simulations
after 50 ms.
Fig. 7.3 shows the time evolution for atoms in |2, 0y for different densities. We observe that

when the density is increased, the apparition time decreases, while the mean mode number
that initially appears increases. This is in agreement with the naive picture where:

kf “
?

2m|c´|{~, and τf “ ~{m|c´|2 with c´ 9
a

gn{m. (7.1)

This simplemodel, however, does not explain the observed cascade effect, which is a signature
of the system’s multimode nature, as observed in the numerical simulations. In this case, many
modes initially start growing, which is related to the fact that the patterns only appear on the
edges initially, indicating a large k̄. The modes then collapse one by one, as can be seen in Fig.
7.4. Modes with larger k collapse faster, so that overall, a cascade of modes, from high k to low
k is observed. We can still try to fit each mode’s growth by an exponential, however, we find
that there is a large difference between the obtained Ωpkq and the infinite system prediction,
as was found in the numerical study. It is thus more convenient to drop the individual mode
analysis and focus on a mean mode one.
In this picture, we compute for each time and each iteration i the average wave vector k̄i

present in the system, along with its standard deviation ∆ki, using the matrix |n̂piqpq |2 as a weight
(pq represent the elements of the matrix)1:

k̄i “

ÿ

pq

b

k2
p ` k

2
q |pn

piq
pq |

2

ÿ

pq

|pnpiqpq |
2

and ∆ki “

g

f

f

f

f

f

f

e

ÿ

pq

´b

k2
p ` k

2
q ´ k̄i

¯2

|pnpiqpq |
2

ÿ

pq

|pnpiqpq |
2

. (7.2)

1 This is equivalent to what has been done in the numerical study with i “ 1.
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Figure 7.4: Left: evolution of each mode’s population |pn|2 pkm, tq for ntot “ 67 µm´2, and L “ 40 µm. As
can be seen in Fig. 7.1, each mode grows before collapsing. Modes with a higher k collapse
before modes with lower ones, causing a cascade of k on experimental images. Right: we can
try to fit these modes’s growths with exponentials; however, in this case, the obtained Ωpkq
is very different from what is expected in an infinite system (blue line). This naive picture
is no longer applicable, and in order to better understand the system’s important features,
we decide to focus on a simpler observable: we look at the pattern’s average mode number
instead of performing this individual mode analysis.

Figure 7.5: Evolution of the mean wave vector k̄ present in the system (left), and its standard deviation
∆k (right) with time, for boxes of sides L “ 40 µm and various densities. Each value is
averaged over typically 10 iterations; the error bars are the resulting standard deviations over
these » 10 iterations.

We then take the averages of k̄i and ∆ki over typically 10 iterations to define our observables
k̄ and ∆k:

k̄ “ xk̄iyi and ∆k “ x∆kiyi. (7.3)

The uncertainty on these observables is defined as the corresponding standard deviation over
the 10 iterations.
The evolutions of k̄ and ∆k with time are presented in Fig. 7.5. Overall, we do observe the

expected cascade, up to a certain point: after a time corresponding to the time t˚ where ∆k is
minimal, k̄ starts growing again.
This can be explained by the presence of noise in the system. At t˚, the demixing dynamics

have reached their apex, and a well defined mode has emerged, explaining the minimum of ∆k.
After that time, the fact that the cloud is not at T “ 0 becomes preponderant and the system
slowly lapses back to a patternless configuration. In order to correctly reconstruct the system,
a lot of modes are needed, which explains why k̄ increases again. For smaller densities, this
happens at longer times, and for some runs, we even stopped taking data before t˚.
Finally, it should be noted that the lower the density, the lower the chemical potential, and

the more homogeneity problems we have. This is not an issue for high density runs; however,
this effect is more pregnant for low densities. For instance, on the bottom row of Fig. 7.3, these
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fluctuations in n seed the dynamics on the box’s top left and bottom right corners, producing a
pattern slightly twisted. We will also see this effect when the temperature is increased.

7.1.2 Varying the box’s size

Aswe have seen in the numerical study, the effect of the box’s edges are of paramount importance
as they are the features where the demixing starts in a finite system. It is then natural to wonder
whether L plays an important role in the observed dynamics. Particularly, does k̄ depend on L?

In this section, we kept the density and the temperature constant and varied the box’s side L
between2 20 µm and 40 µm. We typically have ntot “ 82 µm´2.

4 ms 10 ms 14 ms 18 ms 24 ms 30 ms 40 ms 50 ms 80 ms 100 ms

L = 20 µm

L = 29 µm

L = 40 µm

Figure 7.6: Time evolution of the |2, 0y density for L “ 20, 29, and 40 µm. All the densities are close to
each other (typically 82 µm´2). We observe more or less equivalent k at equivalent times.

Figure 7.7: Evolution of the mean wave vector k̄ present in the system (left), and its standard deviation
∆k (right) with time, for boxes of sides L “ 20, 29, ans 40 µm. The total density is typically
80 µm´2. Each value is averaged over typically 10 iterations; the error bars are the resulting
standard deviations over these 10 iterations.

Fig. 7.6 shows the patterns’ evolution in each box, while Fig. 7.7 shows the variations of k̄
and ∆k with time. We observe small differences between the three runs which might be due to
small density variations or experimental noise. Typically, the smallest box having the highest
density, it is the one that displays the fastest dynamics, while as expected, for the biggest box,
as n is decreased, the dynamics are a bit slower. Overall, the differences seem small and we can
conclude that the box’s size has a negligible effect: even though the number of lobes observed
is different, the emerging k is more or less the same.

2 We also tried a box with L “ 55 µm; however, the box’s filling was less optimal in that case, leading to density
typically halved. In order to study the effect of L alone, we chose not to take this run into account here.
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7.1.3 Visibility analysis

As the physics is now multimode and as the prediction from [61] has failed, there is no naive
length or time scale that we can naturally define. The idea is thus to define a parameter replacing
τf and λf in order to synthesise our previous results.
In order to measure the changes in the dynamics due to variations of the experimental

parameters, we could look at the time t˚ for which ∆k is minimal, and the associated k˚ “ k̄pt˚q.
This choice is motivated by the fact that while τf is not a relevant parameter here, t˚ is still a
typical time associated with the apparition of demixing, while k˚ represents the most visible
mode. In the dynamical instability picture, this would correspond to the most unstable mode
associated to the wave vector kf . In the case when t˚ is the last time observed, we do not take
the corresponding run into account as we cannot be sure whether ∆k would keep on decreasing
after t˚ or not.
The evolution of t˚ and k˚ with density is presented in Fig. 7.8, along with the tf and kf

related to an infinite system (throughout this chapter, we use the values from [131] for the aij).
Although, t˚ and k˚ are not the scales associated with the demixing dynamics in PBC, one can
see that they still follow the PBC tendencies.

Figure 7.8: Evolution of t˚ (left) and k˚ (right) for various densities. The blacked dashed lines represent
the prediction from [61] for 1{tf and kf . Runs at the coldest temperature performed in a
L “ 40 µmbox (corresponding to section 1.1) are shown as blue circles, and runs at the coldest
temperature performed in box with various L (section 1.2) are shown as green squares.

7.1.4 Demixing in a T ‰ 0 system

All the data presented so far corresponded to the T “ 0 case. As has been noted in Chapter 4,
the typical difference in energy between the phase separated configuration and the uniform
one is extremely small:

∆E “ npg12 ´ g1g2q » kB ˆ 1.5 nK ! kBT. (7.4)

This points at the fact that demixing dynamics can only be a transient phenomenon in a
real physical system: if T ‰ 0, the temperature will ultimately destroy the appearing patterns.
Of course, one can then wonder at what happens when the temperature is varied: can we
completely kill the demixing dynamics by increasing T ?

In this section, we vary the cloud’s temperature T between typically 78 et 415 nK (correspond-
ing to T {Tc between 0.3 and 1.35). The box’s size is fixed at L “ 40 µm while the density for
runs considered in this section is in average ntot “ 58˘ 5 µm´2. As for the low density case, we
have an increasing density noise when T is increased, which makes the last run’s signal a bit
worse than the others.

As can be seen in Fig. 7.9 and 7.10, increasing the temperature causes a smallerm to appear,
although the typical appearance time seems less sensitive to a variation of T . The naive model
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10 ms 20 ms 30 ms 35 ms 40 ms 50 ms 60 ms 70 ms 80 ms 100 ms

78 nK

105 nK

179 nK

415 nK

Figure 7.9: Time evolution of the |2, 0y density for T “ 78, 105, 179, and 415 nK, while the total density
is kept at about 58 µm´2. For these pictures, L “ 40 µm. As the temperature is increased, the
number of lobes created decreases, although the time of appearance is more or less constant.

Figure 7.10: Evolution of the mean wave vector k̄ present in the system (left), and its standard deviation
∆k (right) with time, for a box of side L “ 40 µm and temperatures T “ 78, 105, 179, and 415
nK. The total density is typically 58 µm´2. Each value is averaged over typically 10 iterations;
the error bars are the resulting standard deviations over these » 10 iterations.

from [61], being conducted in a T “ 0 system, does not give any insight of possible temperature
effects. However, for this density, the most unstable mode in the infinite system is aroundm “ 2.
It is possible that the noise added by the increased temperature simply prevents other weaker
modes to grow, shortcutting the cascade to let only kf appear. We indeed see in Fig. 7.11 that
while we started afar from kf for the coldest sample, we approach this value when increasing
T .

Although this system exhibits richer physics that what the infinite model suggests, we have
seen in Chapter 5 that a way to approximately recover the naive prediction was to seed the
system with a large enough amplitude. We now turn to seeded dynamics to see what happens
in this case.

7.2 seeded demixing

7.2.1 Excitation protocol

For the rest of the discussion, we setL “ 40 µmandwe go to the smallest temperature accessible.
We have seen in the previous chapter that in order to imprint a stable mode, the seed needs
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Figure 7.11: Evolution of k˚ for temperatures ranging from 78 to 415 nK. The blue arrow denotes the
coldest point, and the red arrow the hottest one. The dashed black line represents the
prediction from [61] for kf . We see that in this case, increasing T decreases significantly k˚.

to be relatively important as otherwise, natural demixing takes over. This is no different here:
as can be seen in Fig. 7.12, seeding too low an amplitude does not yield an oscillation for a
stable mode. On the other hand, seeding an unstable mode with too high an initial population
makes it only grow marginally as it is already close to its acme, and it then quickly collapses.
Of course, this makes the extraction of a characteristic growth rate more delicate.
As a consequence, we will work with A “ 0.05 for unstable modes, and A “ 0.5 for stable

ones. When this condition is enforced, we see that modes behave as they should, as can be seen
in Fig. 7.13: unstable modes grow with time, while stable modes simply oscillate. We can then
extract a growth time in the first case, and a period in the second, in order to extract Ωpkq.

7.2.2 Varying the density

For this section, we took data at three different total densities : around 32, 23 and 12 µm´2. Due to
drifts in the atomic density, each run has a slightly different ntot; the deviation is typically˘15 %.
For each density, we seeded modes 1-5 with an amplitude corresponding to their (un)stable
behaviour. The result is presented in Fig. 7.14.

Overall, the agreement with [61] is quite good, especially for stable modes, and we are again
in the case where we can recover the infinite system prediction by forcing an oscillation with
a large enough seed. The picture is a bit different for unstable modes, where the growth rate
deviated from the one observed in an infinite system, indicating that in this case, the seed’s
growth is hindered by the natural demixing.

In particular, for the densest sample, mode 3 is supposed to be stable. However, we observe a
growing behaviour, and no oscillations. While the difference in growth rates predicted by [61]
and the observed ones can be explained by the nature of our system which is not infinite, the
(un)stable character of a mode is usually well predicted by the naive model. However, mode 3
is not too far from the stable/unstable border, and a mistake in aij or in the density calibration
might lead to an important shift of this border, without changing too much the high k part of
the dispersion relation, as this part is less sensitive to experimental parameters.

conclusion

In conclusion, and as the numerical study suggested, demixing in a square box is richer than in
an infinite system. For natural demixing, the system is totally multimode, and one has to shift
from an individual mode analysis to a mean mode one, for which a decay of k̄ptq is observed
for every density, temperature, or box’s size under scrutiny. Even if the naive model can no
longer apply, the appearance time and length scales still follow the expected tendencies. As for
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Figure 7.12: Behaviour of |pn|2 pkm, tq for different seeds. Top: we seedm “ 1, which is an unstable mode
for this density. For too large a seed, the mode only marginally grows before collapsing,
making it hard to extract reliably a growth rate. Bottom: we seedm “ 4, which is a stable
mode at this density. Below A “ 0.5, we hardly see any oscillation. This incited us to use
large Awhen seeding a stable mode, and small A for unstable ones.

1D systems, there is a way to recover the naive prediction: to counterbalance natural demixing,
one has to seed the system with a non-zero amplitude. Typically, for stable modes, the seed
needs to be strong in order to observe oscillations. When this condition is met, the finite system
has a behaviour close to the infinite one.

Some experimental issues, typically homogeneity or imprinting problems, limit the quality of
the signal. Although this was not tried, we could use the grey-level loop presented in Chapter
3 to correct either of this defects. In particular, this might improve the signal in the unstable
part of the spectrum, where one is typically more vulnerable to random noise triggering other
modes than the seeded one. We might this way enhance the quality of the data, especially for
runs presenting an inherent high noise, like low density or high temperature runs.
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Figure 7.13: Time evolution of two seeded modes of different nature. Top: we seed m “ 2 at a low
amplitude pA “ 0.05q as this mode, for this density, is unstable. The initial perturbation
grows with time. Bottom: we seedm “ 4 with a large amplitude (A “ 0.5) as for this density,
this mode is stable. We see the pattern oscillate: the density perturbation vanishes around
10 ms before reappearing, inverted, around 20 ms. We typically observe a full cycle before
the signal disappears.

ntot = 32 µm−2ntot = 23 µm−2ntot = 12 µm−2

Figure 7.14: Dispersion relations for three different densities : 12 µm´2 (left), 23 µm´2 (middle) and 32
µm´2 (right). We seed modes 1-5 withA “ 0.05 for unstable modes (red points) andA “ 0.5
for stables ones (blue points). The prediction for an infinite system is shown in red when
Ω´ P iR and in blue when Ω´ P R. Each run has a slightly different density (the standard
deviation in density within each graph is typically 15 % of the mean), which gives rise to
the corresponding shaded areas.
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CONCLUS ION

In this thesis, we have explored the physics of 2D Bose gases: we have detailed the production of
bidimensional uniform clouds, and explored the demixing dynamics that occur in an immiscible
mixture of such fluids.
The first part of this manuscript detailed the specifics of our experimental setup, including

an iterative procedure that can be used to control the cloud’s homogeneity, or more generally,
the profile in intensity of a laser beam. This is a very powerful tool as it can be used to correct
for homogeneity defects that inevitably appear in the gas, and more importantly, can also be a
way to improve the Raman imprinting that is used on several projects. For instance, with this
procedure, we could transfer a spatially-shaped solitonic bubble from |1, 0y to |2, 0y and see
how this impurity evolves with time. The evolution of such bubbles with gaussian shapes is an
ongoing project in our team, where we observe the gaussians to expand below a certain critical
atom number Nc, and contract above. However, this gaussian shape is not the system’s ground
state, and even when the atom number is very close to Nc, we do not observe a stabilised,
stationary bubble. Being able to correctly and accurately imprint a solitonic ground state was,
without this correction loop, beyond our reach. We can now hope for a better imprinting, and
hopefully, an observation of a stationary state.
The second part of this manuscript presented a study of demixing in 2D Bose gases, first

from a numerical point of view, and then with experimental data. Demixing phenomena have
previously been observed in 3D and/or harmonically trapped system, but comprehensive
studies in 2D uniform systems are rare. With our setup, we could compare a Bogoliubov
approach ([61]), first to simulations, and then to experimental data. The numerics showed
that although the model could be applied to a system with periodic boundary conditions, the
presence of edges complicated a lot this naive picture, since in the case of an initially uniform
superposition, demixing waves would start there and then propagate towards the centre. Thus,
for a system naturally demixing in a box, the physics was multimode, and all k, not only those
that [61] deemed unstable, initially grew; moreover, this growth had a different behaviour than
what was predicted for an edgeless system. This result was then verified for an experimental
system, where the prediction from [61] effectively failed.

Another possibility was then to operate a spatially dependant transfer, where a certain mode
would be seeded in the system, and let to evolve. Overall, for this evolution to be compliant with
the naive model, the seed’s amplitude needed to be relatively large in order to prevent natural
demixing from happening. For stable modes, we could neatly recover the dispersion relation
found in [61]; for unstable modes, however, the numerics abided by the model from ([61]), but
the experimental agreement was relatively poor. These differences could in part be attributed to
small mismatches in the chosen scattering lengths values, andmore importantly, to the probable
inapplicability of the simple model in a real experimental system: due to the presence of edges,
the studied modes are no longer eigenmodes of the system, and the multimode character of the
system renders this model irrelevant.

Some leads that were not or little explored during this thesis include the temperature depen-
dance of these dynamics, and the fundamental role of noise in our experiments. The numerical
study showed that in the case of a ring, for instance, radial dynamics are frozen by the thinness
of the system, and there is no real demixing. Nevertheless, this is not the case for a real system,
where we did see azimuthal demixing when performing the experiment. This tends to show
that the presence of noise in the system is critical in getting the dynamics started. Adding some
extra noise, with the help of a DMD for instance, could thus have an influence on the observed
modes’ growths, while simulations on this issue could help intuiting the exact mechanics that
trigger the demixing. Additionally, performing experiments at different temperatures can also
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lead to interesting results: the difference in energy between the phase separated and the uniform
configuration is on the order of the nK, far smaller than the temperature of the system. Thus, at
high temperature, the transient demixing dynamics that we observe should totally disappear.
Although we did not see this effect up to typically 400 nK, this could be an interesting path to
follow.

Outlook

Spectroscopy of the clock transition
As we have seen, a small mismatch in the values of the inter and intraspecies scattering

lengths involved in the problem can lead to dramatic changes. In the case of demixing dynamics,
this is due to the fact that all the aij are close to one another, while tf and kf are set by variables
depending on their difference. This prompted us to accurately measure these parameters with
a spectroscopic measurement.

In the mean-field picture, single-particle levels of energy are shifted when dealing with more
than one atom: for a one component system, the shift in energy is known to be proportional to
gn̄. For two components, one also has to add the interspecies contribution, and for a 2D T “ 0
gas, one ends up with a shift of the transition frequency compared to the single atom case ([95]):

∆ν 9 n̄
`

a22 ´ a11 ` p2a12 ´ a11 ´ a22qf
˘

, (7.5)

where n̄ is the average 2D density, and f is the imbalance between the two states: f “ pn1 ´

n2q{pn1 ` n2q. When T ‰ 0, ∆ν can be expressed with the help of a ‘normalised’ Tan’s contact:

C

C0
9
BE

Ba
9

1

n̄

∆ν

∆a
, (7.6)

where E is the gas’s internal energy. As we have seen in Chapter 1, under certain conditions,
this quantity is related to g2p0q. For an ideal gas, g2p0q varies from 2 to 1 when one goes from
D ! Dc to D " Dc, and one thus expects a similar variation of C across the transition. For an
interacting gas, however, g2p0q is ill-defined as its T “ 0 contribution is singular ([85]). One can
however relate the contact to the thermal contribution of g2:

C

C0
“ 1` gT‰0

2 p0q. (7.7)

Interestingly, this variation of the contact with degeneracy can be observed using Ramsey
interferometry. As the shift in energy is typically of the order of the Hz, it can only reasonably
be performed on our clock transition, and we chose to work with the magnetic insensitive states
|1, 0y and |2, 0y.
With this scheme, we could observe the contact go from 1 in the very degenerate regime to

„ 1.7 atD » 5, i.e. above the critical point ([85]). Additionally, we also measured a11´a22 “ 7 a0

and a11 ´ a12 “ 3.4 a0 for a magnetic field perpendicular to the atomic plane. The value found
for a12 is slightly larger than what is expected and comes from a correction due to magnetic
dipole-dipole interactions between the two species ([86]).

Vortex generation
As we have seen in Chapter 1, the decrease of g2p0q to 1 at large degeneracies is associated to

a reduction of density fluctuations, leading to a frozen density with phase fluctuations, and
translating into a superfluid gas. An interesting feature of superfluid systems is their ability
to create vortices when injected with angular momentum, instead of simply rotating, as usual
fluids do. These vortices have been observed for a 3D superfluid ([9]), and their arrangements
into lattices have also been investigated ([10]).
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Figure 7.15: variation ofC{C0 with the phase-space densityD, the non-superfluid regime corresponding
to the grey area. The different densities that were used are n̄ “ 10.4, 21, 31.5, and 42 µm´2,
and correspond respectively to violet disks, blue squares, green diamonds, and orange
pentagons. The black line is a Bogoliubov prediction. Figure taken from [85].

In situ Ω= 11.1 Hz Ω= 12.5 Hz Ω= 14.3 Hz Ω= 16.7 Hz

Figure 7.16: Left: stirring created by DMD2 (in situ image). The four teeth rotate at certain frequency in
order to inject angular momentum in the cloud. Right: after 10 turns, we image the vortices
with a time of flight measurement. The number of vortices grows as we increase the injected
angular momentum. The white lines represent 10 µm.

Our goal in revisiting these experiments was the perspective to study Fractional Quantum
Hall Effect physics, using the fact that a rotation of neutral particles essentially simulates the
effect of an artificial magnetic field on electrons. To do so, we needed to study the system’s
ground state at large rotation speeds, and we expected to see a nice vortex lattice.
In order to perform these experiments, we took a very cold sample and stirred it with a

small perturbation produced by DMD2. We set this DMD output to be the negative image of
a gearwheel (see Fig. 7.16), and had the four teeth rotate at a set frequency for a certain time
before performing the time of flight measurement. In the end, we could reproduce the historical
experiments in our flat bottom system, but we did not manage to have a nice vortex lattice (see
Fig. 7.16). This topic is for themoment an ongoing study, as we are still trying to understandwhy
we do not see a periodic arrangement of the vortices. This might be due an excess of entropy,
possibly related to our experimental protocol which could create some unwanted excitations;
we plan on investigating this in the near future.
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Future projects
A last path our team could pursue in the future would be to go from our weakly interacting

regime to a strongly interacting one, using dipole-dipole interactions between Rydberg states
to reach the desired regime. We could then trap our bosons in custom shaped clouds and
investigate interesting transport properties. This might be explored in the following years.
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A
APPENDIX

In this appendix, we aim at explaining the differences between the chosen shape for the
density and phase modulations, and the theoretical one, defined by the eq. 5.16 in Chapter 5:

#

δnjprq “ Ajpkqe
ik¨r ` c.c.

δθjprq “ Bjpkqe
ik¨r ` c.c.

(A.1)

Choosing a normalised, dimensionless perturbation amplitude δA, we wrote the coefficients
Ai and Bi as:

$

’

’

&

’

’

%

A1 “ δA,

A2 “ A1
m2pc2´´c
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,

$

’

&

’

%

B1 “
´2imΩ´pkq

~k2 A1,

B2 “
´2imΩ´pkq

~k2 A2.

(A.2)

Let us first note that for δA P R, eq. A.2 shows that A2 P R. Moreover, for stables modes,
Bi P iR while for unstable ones, Bi P R. This makes the phase modulation defined in A.1
sometimes a cos, and sometimes a sin, while the density modulation is always a cos. To makes
things simpler, we wanted to replace these two functions by a unique real one. The non trivial
point is then to go from the shape taken by eq. A.1 to the one that we chose:

$

’

&

’

%

ϕ0
1 “ ϕ0

1 p1` δn1 ` iδθ1q “ ϕ0
i p1`A1f ` iB1fq ,

ϕ0
2 “ ϕ0

2 p1` δn2 ` iδθ2q “ ϕ0
i p1`A2f ` iB2fq ,

(A.3)

with f “ 1
2 pcospkxq ` cospkyqq for PBC and SBC, and f 9 cospmθq, for SSBC, with θ the

azimuthal angle.
We treat here the SBC case. The SSBC case is its 1D equivalent. The demonstration is based

on the fact that one can choose different shapes for the modulation defined in eq. A.1 without
changing the dispersion relation or eq. A.2. Indeed, any function verifying :f “ ´ω2f and
∇2f “ ´k2f will give the same dispersion relation, and the same weights Ai and Bi. In
particular, choosing eik¨r ` c.c., or cospk ¨ rq for both δn and δθ is equivalent in that regard.

However, a modulation in cospk ¨ rq does not respect the symmetry of our square box, since it
creates diagonally ordered maxima as can be seen in Fig. A.1. Moreover, we intuitively wanted
to recreate something close to the natural demixing patterns that we observed experimentally,
which ordered spin domains in a 2D ‘Manhattan’ fashion. The demonstration of the equivalence
of these two forms is based on the linearity of our equations, and on the infinite, isotropic
character of the model.
As the theoretical model describes an infinite system, we can freely rotate the perturbation

without consequence: all the modulations shown in Fig. A.2 share the same k and grow the
same way. Moreover, since we have linearised the Gross-Pitaevskii equations to obtain the
dispersion relation, the sum of the two modulations also grows the same way. It then suffices to
compute this sum to find the desired pattern, as is shown in Fig. A.3. This is exactly the shape
taken by f .
In conclusion, the initial modulation given by eq. A.1 and the final one that is obtained in

Fig. A.3 are totally equivalent in the eyes of the dispersion relation, and we can freely use one
definition or the other.

127



128 appendix

Figure A.1: Left: shape taken by a cospk ¨rqmodulation. Right: instead of diagonally ordered patterns, we
want something that respects the symmetry of the box, has a modulation in both directions,
and resembles what happens for natural demixing: we thus use the shape given by f .

= =

Figure A.2: As the system is infinite, we can rotate the modulation given by Fig. A.1 to get vertical and
horizontal stripes with the same k: each of these perturbations grows the same way.

+ =

Figure A.3: It then suffices to add the vertical and the horizontal modulations to get the desired shape.
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In superfluid systems several sound modes can be excited, such as, for example, first and second sound
in liquid helium. Here, we excite running and standing waves in a uniform two-dimensional Bose gas and
we characterize the propagation of sound in both the superfluid and normal regimes. In the superfluid
phase, the measured speed of sound is in good agreement with the prediction of a two-fluid hydrodynamic
model, and the weak damping is well explained by the scattering with thermal excitations. In the normal
phase we observe a stronger damping, which we attribute to a departure from hydrodynamic behavior.
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Propagation of sound waves is at the heart of our
understanding of quantum fluids. In liquid helium, the
celebrated two-fluid model was confirmed by the obser-
vation of first and second sound modes [1,2]. There, first
sound stands for the usual sound appellation, namely, a
density wave for which normal and superfluid fractions
oscillate in phase. Second sound corresponds to a pure
entropy wave with no perturbation in density (normal
and superfluid components oscillating out of phase),
and is generally considered as conclusive evidence of
superfluidity.
Sound wave propagation is also central to the study of

dilute quantum gases, providing information on thermo-
dynamic properties, relaxation mechanisms, and superfluid
behavior. In ultracold strongly interacting Fermi gases, the
existence of first and second sound modes in the superfluid
phase was predicted [3] and observed in experiments [4,5],
with a behavior similar to liquid helium. In three-dimen-
sional (3D) weakly interacting Bose-Einstein condensates
(BECs), one still expects two branches of sound with
speeds cð1Þ > cð2Þ but the nature of first and second sound is
strongly modified because of their large compressibility
[6]. At zero temperature the gas is fully superfluid and the
only relevant mode corresponds to Bogoliubov excitations,
i.e., density oscillations. At nonzero temperature, an
isothermal density perturbation is expected to excite mostly
the second sound mode, propagating at a velocity approx-
imately proportional to the square root of the superfluid
fraction [6,7]. This contrasts to the usual picture for liquid
helium where second sound is excited via local heating
[1,2]. Sound waves in an elongated 3D BEC were observed
in Refs. [8–10] in a regime where the sound speed remains
close to the Bogoliubov sound speed.
The study of sound propagation can be very insightful

for two-dimensional (2D) Bose fluids, where superfluidity
does not result from a Bose-Einstein condensation, but
occurs instead via a Berezinskii-Kosterlitz-Thouless (BKT)

transition [11]. This transition is associated with a jump of
the superfluid density but as the transition is of infinite
order, the jump cannot be revealed by the thermodynamic
properties of the fluid. However, the presence of a super-
fluid component is predicted to lead to two distinct sound
modes, whose velocities cð1ÞHD and cð2ÞHD were calculated
within a hydrodynamic model in Refs. [12,13]. These
velocities are functions of the superfluid density and thus
both exhibit a discontinuity associated with the superfluid
jump at the critical point. In particular, the second sound
velocity is expected to remain nonzero just below the
critical point of the superfluid to normal transition and to
disappear just above. Experimentally, 2D Bose fluids were
first realized with liquid helium films adsorbed on a
substrate [14]; in this case the presence of the substrate
blocks the motion of the normal component and thus
prevents the investigation of such phenomena.
In this Letter, we report on the first observation of sound

propagation in a 2D Bose fluid. We observe a single density
sound mode both in the superfluid and normal regimes.
Deep in the superfluid regime, the measured sound speed
agrees well with the Bogoliubov prediction. We measure a
weak damping rate compatible with Landau damping, a
fundamental mechanism for the understanding of collective
modes of superfluids at finite temperature [15]. For higher
temperatures, we observe a decrease of the sound velocity
consistent with the second sound speed variation predicted
in Ref. [12] from two-fluid hydrodynamics. The damping
of sound increases with temperature and, above the critical
point, we still observe strongly damped density waves with
no discernable discontinuity at the critical point. The
discrepancy with the two-fluid model predictions could
be due to a departure from hydrodynamic behavior.
Our experimental setup has been described in

Refs. [16,17] and more details can be found in
Ref. [18]. Briefly, we confine 87Rb atoms in the jF ¼
1; m ¼ 0i ground state into a 2D rectangular box potential
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of size Lx × Ly ¼ 30ð1Þ × 38ð1Þ μm [see Fig. 1(a)]. The
confinement along the vertical z direction can be appro-
ximated by a harmonic potential of frequency
ωz=ð2πÞ ¼ 4.59ð4Þ kHz. We always operate in the
quasi-2D regime where interaction and thermal energies
are smaller than ℏωz. The gas is characterized by the
effective coupling constant g¼ℏ2g̃=m¼ðℏ2=mÞ ffiffiffiffiffiffi

8π
p

as=lz,
where as is the s-wave scattering length, lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðmωzÞ
p

,
and m the atomic mass [11]. We operate here in the weakly
interacting regime: g̃ ¼ 0.16ð1Þ. In the quasi-2D regime
and for a given g̃, the equilibrium state of the cloud is
only characterized by a dimensionless combination of T
and n2D, thanks to an approximate scale invariance [11].
In the following we use the ratio T=Tc, where Tc ¼
2πn2Dℏ2=½mkB lnð380=g̃Þ� is the calculated critical temper-
ature for the BKT phase transition [25]. In this work, we
study Bose gases from the highly degenerate regime
(T=Tc ≈ 0.2) to the normal regime (T=Tc ≈ 1.4).
We first investigate propagating waves which we excite

by a density perturbation. Prior to evaporative cooling in
the box potential, we apply to the cloud a repulsive
potential, which creates a density dip on one side of the
rectangle [see Fig. 1(a)]. The extension of this dip is about
1=4 of the length of the box and its amplitude is chosen so
that the density in this region is decreased by a factor of
1=3. After equilibration, we abruptly remove the additional
potential and monitor the propagation of this density dip.
We show in Fig. 1(b) a typical time evolution of the density
profile integrated along the transverse direction to the
perturbation for a strongly degenerate gas. In this regime,
the density perturbation propagates at constant speed
and bounces several times off the walls of the box.
Using the calibrated size of the box, we extract a speed
c ¼ 1.49ð3Þ mm=s. This value is slightly lower than the
Bogoliubov sound speed cB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gn2D=m
p ¼ 1.6ð1Þ mm=s

expected at zero temperature for the measured density
n2D ¼ 29ð3Þ μm−2. The measured speed is also close to the

second sound mode velocity cð2ÞHD ¼ 1.4ð1Þ mm=s, esti-
mated from two-fluid hydrodynamics at our experimental
value of T=Tc ¼ 0.37ð12Þ [12]. The first sound, expected

to propagate at a much higher speed cð1ÞHD ¼ 3.3ð3Þ mm=s
[12], does not appear in our measurements that feature a
single wave front only. The absence of first sound in our
experiments can be explained by its very small coupling to
isothermal density excitations in a weakly interacting
gas [12].
In order to probe the role of the cloud degeneracy on the

sound wave propagation, we vary both n2D and T. For each
configuration, we excite the cloud with the protocol
described above, while adjusting the intensity of the
depleting laser beam to keep the density dip around 1=3
of nonperturbed density. At lower degeneracies, sound
waves are strongly damped and the aforementioned mea-
surements of the density dip position become inadequate.
We thus focus on the time evolution of the lowest-energy
mode [26]. We decompose the density profiles integrated
along x as

nðy; tÞ ¼ n̄þ
X

∞

j¼1

AjðtÞ cosðjπy=LyÞ; ð1Þ

where n̄ is the average density along y and the Aj are the
amplitudes of the modes. The choice of the cosine basis
ensures the cancellation of the velocity field on the edges of
the box. Our excitation protocol mainly couples to the
lowest energy modes. We keep the excitation to a low value
to be in the linear regime while still observing a clear signal
for the lowest-energy mode, which in return provides a too
weak signal for a quantitative analysis of higher modes
[27]. For each duration of the evolution, we compute the
overlap of the atomic density profile with the lowest-energy
mode. Examples of the time evolution of the normalized
amplitude Ã1ðtÞ ¼ A1ðtÞ=A1ð0Þ for different degrees of
degeneracy are shown in Fig. 2. We observe damped
oscillations with a damping rate increasing with T=Tc.
We fit the experimental data by an exponentially damped
sinusoidal curve e−Γt=2½Γ=2ω sinðωtÞ þ cosðωtÞ� to deter-
mine the energy damping rate Γ and the frequency ω [28].
We then determine the speed of sound c ¼ Lyω=π and the
quality factor of this mode Q ¼ 2ω=Γ.
We consolidate all our measurements of speed of sound

and quality factors in Fig. 3. To facilitate comparison with
theory, we show in Fig. 3(a) the values of c normalized to
cB. The non-normalized results are reported in Ref. [18] for
completeness. In the temperature range T ≲ 0.9Tc, we
measure weakly damped density oscillations, correspond-
ing to a well-defined sound mode (Q≳ 10). In this regime,
we observe a significant decrease by about ≈25% of
the sound velocity for increasing values of T=Tc. The

(a) (b)

FIG. 1. Experimental protocol and observation of propagating
waves. (a) Absorption image of the cloud perturbed by a local
additional potential. The excitation is delimited by the horizontal
dashed line and depletes the atomic density by a factor around
1=3. (b) Example of time evolution of the variation of the density
profile n2D with respect to its spatial mean value (integrated along
x) obtained after abruptly removing the additional potential. For
this example T=Tc ¼ 0.37ð12Þ and n2D ¼ 29ð3Þ μm−2. The
position of the dip is fitted by a triangle function (black solid
line) which gives, c ¼ 1.49ð3Þ mm=s.
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measured velocities agree well with the prediction from
two-fluid hydrodynamics [12] combined with the equation
of state of the 2D Bose gas [29]. According to the analysis
of Ref. [12] for weakly interacting gases, the change of
speed of sound is mainly due to the variation of the
superfluid fraction fs from ≈1 at T ¼ 0 to ≈0.5 close to
T ¼ Tc with the approximate scaling cð2ÞHD ∝ f1=2s [13]. We
note the absence of a discernable discontinuity of sound
velocity at Tc, in disagreement with the two-fluid hydro-
dynamic approach.
In order to explain this disagreement, we first note that

collective excitations in ultracold Bose gases can be of
different nature depending on the relative amplitude of
mean-field effects and collisions between particles
[9,31,32]. In the very degenerate regime T ≪ Tc, the
system is naturally described within quantum hydrody-
namics [33], where interactions between particles occur via
a mean-field energy Eint. This is valid for ω ≪ Eint=ℏ,
which is satisfied for our setup. In this regime we expect
sound waves propagating at cB, as observed in the experi-
ment. For larger temperatures, but still below Tc, the normal
fraction becomes significant. In order to use an hydro-
dynamic two-fluid model in that case, the local equilibrium
condition also requires ω ≪ Γcoll, where Γcoll ¼
ℏg̃2n=ð2mÞ is the collision rate [34]. The same condition
holds for the single fluid case above Tc. The opposite
“collisionless” regime has been recently studied in
Refs. [35,36]. It also leads to the existence of a sound
mode, originating solely from mean-field interactions

described, e.g., by a Landau-Vlasov kinetic equation.
For T ≳ Tc this collisionless sound mode has a velocity
notably smaller than the hydrodynamic result and close to
the prediction of Ref. [12] for the second sound velocity at
Tc. For our data above Tc we estimate Γcoll=ω to be in the
range 1.6–3.4, which indicates that we are in a crossover
between these limiting hydrodynamic and collisionless
regimes.
The distinction between the quantum hydrodynamics

regime and the crossover regime (Γcoll ∼ ω) is supported by
the study of the measured quality factors [see Fig. 3(b)]. For
T ≪ Tc, damping can be described at first order by the
decay of low-lying collective excitations via scattering on
thermal excitations [15,37], the so-called Landau damping

(a)

(b) (c)

FIG. 2. Time evolution of the normalized amplitude of the
lowest-energy mode for (a) T=Tc ¼ 0.21ð11Þ, (b) T=Tc ¼
0.95ð5Þ, (c) T=Tc ¼ 1.38ð18Þ. The solid line is a fit of an
exponentially damped sinusoidal oscillation. For (b) and
(c) graphs, each data point is the average of three measurements
and the error bars represent the associated standard deviation. In
(a) each point corresponds to a single measurement.

(a)

(b)

FIG. 3. Speed of sound and quality factor. (a) Measured speed
of sound c normalized to cB. The vertical dashed line shows the
position of the critical point. The solid line shows the result from
the two-fluid hydrodynamic model applied to the 2D Bose gas
[12]. A fit to the data points below Tc by this hydrodynamic
model with a free multiplicative factor shows that the measure-
ments are globally 3% above the theoretical prediction. This
could correspond to a 6% systematic error in the calibration of
n2D used to determine cB ∝ n1=22D . Our estimated uncertainty on
n2D is on the order of 11% (see Ref. [18]) and our measurements
are thus compatible with the predicted value of the speed of

second sound cð2ÞHD. (b) Quality factor Q ¼ 2ω=Γ of the lowest-
energy mode. The solid line is the prediction for Landau damping
[30] (continued as a dashed line for T > Tc). For both graphs, the
error bars represent the statistical uncertainty extracted from the
fitting procedures used to determine c, Γ and T=Tc.
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mechanism. It predicts an increase of the quality factor
when decreasing temperature due to the reduction of the
number of thermal excitations available for scattering with
the sound mode [38]. This perturbative approach is mean-
ingful for large enough quality factors and does not take
into account interactions between phonon modes. The solid
line in Fig. 3(b) corresponds to Landau prediction for a 2D
system [30]. It shows an overall good agreement with our
data, even close to Tc, where it gradually looses its validity.
Finally, above Tc, we measured low quality factors,
showing that the observed sound mode is strongly damped,
in agreement with the predictions of the collisionless sound
mode [35].
In the highly degenerate regime, the low damping rate

allows us to observe standing waves. To study them, we
modulate sinusoidally the amplitude of the potential
creating the dip of density on one edge of the box [39].
After ≈1 s we extract, for each frequency ν of the
excitation, the amplitude of the (time-dependent) density
modulation induced on the cloud (see Ref. [18] for details).
We show in Fig. 4 the contribution of the three lowest-
energy modes to the amplitude of the modulation as a
function of the excitation frequency. For each mode j we
observe a clear resonance peak centered at a frequency νj.
We display in the insets the resonance frequencies and
width of the modes. The νj’s are equally spaced, as
confirmed by the linear fit. In addition, the right inset
shows the widths of the peaks. They also increase approx-
imately linearly with j [40], meaning that the quality factor

associated with these peaks is almost the same, as expected
for Landau damping.
We focus in this work on a weakly interacting Bose gas

which features a large compressibility compared to liquid
helium or strongly interacting Fermi gases. A natural
extension of this work would thus be to investigate second
sound propagation for increasing interactions [13]. It would
also be interesting to investigate first sound, e.g., by
applying a localized temperature excitation [5]. During
the completion of this work we were informed that a related
study with a homogeneous 3D Fermi gas was currently
performed at MIT [41].
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A fluid is said to be scale invariant when its interaction and kinetic energies have the same scaling in a
dilation operation. In association with the more general conformal invariance, scale invariance provides a
dynamical symmetry which has profound consequences both on the equilibrium properties of the fluid and
its time evolution. Here we investigate experimentally the far-from-equilibrium dynamics of a cold two-
dimensional rubidium Bose gas. We operate in the regime where the gas is accurately described by a
classical field obeying the Gross-Pitaevskii equation, and thus possesses a dynamical symmetry described
by the Lorentz group SO(2,1). With the further simplification provided by superfluid hydrodynamics, we
show how to relate the evolutions observed for different initial sizes, atom numbers, trap frequencies, and
interaction parameters by a scaling transform. Finally, we show that some specific initial shapes—
uniformly filled triangles or disks—may lead to a periodic evolution corresponding to a novel type of
breather for the two-dimensional Gross-Pitaevskii equation.

DOI: 10.1103/PhysRevX.9.021035 Subject Areas: Atomic and Molecular Physics,
Nonlinear Dynamics, Superfluidity

I. INTRODUCTION

Symmetries play a central role in the investigation of a
physical system. Most often, they are at the origin of
conserved quantities, which considerably simplify the
study of the equilibrium states and the evolution of the
system. For example, spatial symmetries associated with
translation and rotation lead to the conservation of linear
and angular momentum. More generally, it is interesting to
determine the dynamical (or hidden) symmetries of the
system under study, which can lead to more subtle con-
served quantities. These symmetries are described by the
group of all transformations of space and time that leave the
action, therefore, the equations of motion, invariant.
A celebrated example is the 1=r potential in three dimen-
sions, where there exists a dynamical symmetry described
by the group Oð4Þ for the bounded orbits [1]. When treated
by classical mechanics, it leads to the conservation of the
Laplace-Runge-Lenz vector from which one deduces that
the bounded orbits are actually closed trajectories.
Among the systems that display rich dynamical

symmetries are the ones whose action is left invariant
by a dilation transformation of space and time. Such

scale-invariant systems were initially introduced in particle
physics to explain scaling laws in high-energy collisions
[2]. We consider here the nonrelativistic version of scale
invariance, which applies to the dynamics of a fluid of
particles. We consider the simultaneous change of length
and time coordinates of each particle according to the
scaling

r → r=λ; t → t=λ2: ð1Þ

In this dilation, the velocity of a particle is changed as
v → λv. Therefore, the kinetic energy of the fluid scales as
Ekin → λ2Ekin, which ensures that the corresponding part of
the action (∝

R
Ekindt) remains invariant in the transforma-

tion (1). If the interaction energy has the same scaling
Eint → λ2Eint, the total action of the fluid is invariant in the
dilation. The simplest example of such a fluid is a
collection of nonrelativistic particles, either noninteracting
(Eint ¼ 0) or with pairwise interactions described by a 1=r2

potential. A scale-invariant fluid possesses remarkably
simple thermodynamic properties: For example, its equa-
tion of state depends only on the ratio of chemical potential
to temperature instead of being an independent function of
these two variables.
Most physical systems exhibiting scale invariance also

possess a more general conformal invariance, where time and
space are modified by conformal transformations instead of
the simple dilations given in Eq. (1) [3]. In the nonrelativistic
domain, this conformal invariance exists for the Schrödinger
equation describing themotion of the two systemsmentioned
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above, free particles [4,5] and particles interactingwith a 1=r2

potential [6]. In both cases, the dynamical symmetry group
associated with this scale and conformal invariance is the
Lorentz group SO(2,1). This is also the case for the three-
dimensional pseudo-spin-1=2 Fermi gas in the unitary regime
(for a review, see, e.g., Ref. [7]). There, the scattering length
between the two components diverges, ensuring the required
disappearance of a length scale related to interactions. In
addition to the existence of a universal equation of state, this
dynamical symmetry leads to a vanishing bulk viscosity
[8,9] and also to general relations between the moments
of the total energy and those of the trapping energy in a
harmonic potential [10].
In this article, we consider another example of a scale-

and conformal-invariant fluid with the SO(2,1) dynamical
symmetry, the “weakly interacting” two-dimensional (2D)
Bose gas. The concept of “weak interaction” means in this
context that the state of the gas is well described by a
classical field ψðr; tÞ. This field is normalized to unity
(
R jψ j2d2r ¼ 1) so that the density of the gas reads
nðr; tÞ ¼ Njψðr; tÞj2 where N is the number of particles.
In the scaling of positions, the 2D matter-wave field
changes as ψðrÞ → λψðλrÞ, which guarantees that the norm
is preserved and that the dynamical part of the action
∝ iℏ

R
dt

R
d2rψ�∂tψ is invariant. The interaction energy

of the gas then reads for contact interaction

Eint ¼
N2ℏ2

2m
g̃
Z

jψðrÞj4d2r; ð2Þ

where m is the mass of a particle, and g̃ the dimensionless
parameter characterizing the strength of the interaction.
One can immediately check that Eint obeys the λ2 scaling
required for scale invariance, which can be viewed as a
consequence of the dimensionless character of g̃. The
classical field description used here is valid if one restricts
to the case of a small coupling strength g̃ ≪ 1 [11]. This
restriction is necessary because of the singularity of the
contact interaction ðℏ2=mÞg̃δðrÞ in 2D when it is treated at
the level of quantum field theory. Note that the condition
g̃ ≪ 1 does not constrain the relative values of the inter-
action and kinetic energies. Actually, in the following we
often consider situations where Eint ≫ Ekin (Thomas-Fermi
regime).
So far, the scale and conformal invariance of the weakly

interacting 2D Bose gas has been mainly exploited to
measure its equation of state [12,13]. Also, one of its
dynamical consequences in an isotropic 2D harmonic
potential of frequency ω has been explored: The frequency
of the breathing mode was predicted to be exactly equal to
2ω for any g̃ [14–16], as tested in Refs. [17,18]. Note that in
the presence of a harmonic potential, the whole system is
not scale invariant anymore, but it still possesses a
dynamical symmetry described by the group SO(2,1), as

shown in Ref. [15]. Recently, deviations from this pre-
diction for g̃≳ 1, an example of a quantum anomaly [19],
have been observed [20,21].
The purpose of our work is to go beyond static properties

of the weakly interacting 2D Bose gas and its single-mode
oscillation in a harmonic potential and to reveal more
general features associated with its dynamical symmetry.
To do so, we study the evolution of the gas in a 2D
harmonic potential of frequency ω, starting from a uni-
formly filled simple area (disk, triangle, or square). Here,
we use g̃ ≤ 0.16 so that the classical field description is
legitimate. We first check (Sec. II) the prediction from
Ref. [15] that Ekin þ Eint should have a periodic evolution
in the trap with the frequency 2ω. We then investigate the
transformations linking different solutions of the equations
of motion. These transformations are at the heart of the
dynamical symmetry group SO(2,1). In practice, we first
link the evolution of clouds with the same atom number and
homothetic initial wave functions in harmonic potentials
with different frequencies (Sec. III). Then, restricting to the
case where superfluid hydrodynamics is valid, we derive
and test a larger family of transformations that allows one to
connect the evolutions of two initial clouds of similar
shapes with different sizes, atoms numbers, trap frequen-
cies, and interaction strengths (Sec. IV). Finally, in Sec. V
we explore a property that goes beyond the symmetry
group of the system and that is specific to triangular and
disk-shaped distributions in the hydrodynamic limit: We
find numerically that these distributions evolve in a
periodic manner in the harmonic trap, and we confirm this
prediction over the accessible range for our experi-
ment (typically, two full periods of the trap 4π=ω).
These particular shapes can therefore be viewed as two-
dimensional breathers for the Gross-Pitaevskii (nonlinear
Schrödinger) equation in the hydrodynamic limit [22].
They also constitute a novel example of universal dynamics
in a quantum system prepared far from equilibrium
[23–25].

II. EVOLUTION OF POTENTIAL ENERGY

Our experiment starts with a 3D Bose-Einstein conden-
sate of 87Rb that we load around a single node of a vertical
(z) standing wave created with a laser of wavelength
532 nm. The confining potential along z is approximately
harmonic with a frequency ωz=ð2πÞ up to 4.9 kHz. The
interaction parameter is g̃ ¼ ffiffiffiffiffiffi

8π
p

as=lz, where as is the 3D
s-wave scattering length and lz ¼ ðℏ=mωzÞ1=2. The inter-
action energy per particle and the residual temperature are
both smaller than ℏωz so that the vertical degree of freedom
is effectively frozen [26]. The initial confinement in the
horizontal xy plane is ensured by “hard walls” made with a
light beam also at 532 nm. This beam is shaped using a
digital micromirror device (DMD), and a high-resolution
optical system images the DMD pattern onto the atomic

R. SAINT-JALM et al. PHYS. REV. X 9, 021035 (2019)

021035-2



plane [27], creating a box potential on the atoms. The cloud
fills uniformly this box potential, and it is evaporatively
cooled by adjusting the height of thewalls of the box. For all
data presented here, we keep the temperature low enough to
operate deep in the superfluid regime with T=Tc < 0.3,
where Tc is the critical temperature for the Berezinskii-
Kosterlitz-Thouless transition. At this stage, the atoms are
prepared in the F ¼ 1, mF ¼ 0 hyperfine (ground) state,
which is insensitive to magnetic field.
Once the gas reaches equilibrium in the 2D box, we

suddenly switch off the confinement in the xy plane and
simultaneously transfer the atoms to the field-sensitive state
F ¼ 1, mF ¼ −1 using two consecutive microwave tran-
sitions. Most of the experiments are performed in the
presence of a magnetic field that provides the internal state
F ¼ 1, mF ¼ −1 with an isotropic harmonic confinement
in the xy plane, with ω=2π around 19.5 Hz. We estimate the
anisotropy of the potential to be ≲2%. We let the cloud
evolve in the harmonic potential for an adjustable time
before making an in situmeasurement of the spatial density
nðrÞ ¼ NjψðrÞj2 by absorption imaging.
The measurement of nðrÞ gives access to both the

interaction energy (2) and the potential energy in the
harmonic trap

Epot ¼
N
2
mω2

Z
r2jψðrÞj2d2r: ð3Þ

Since the gas is an isolated system, we expect the total
energy Etot ¼ Ekin þ Eint þ Epot to be conserved during the
evolution, where the kinetic energy Ekin reads

Ekin ¼
Nℏ2

2m

Z
j∇ψ j2d2r: ð4Þ

The SO(2,1) symmetry for a 2D harmonically trapped
gas brings a remarkable result: Ekin þ Eint and Epot should
oscillate sinusoidally at frequency 2ω [15]. More precisely,
using the 2D Gross-Pitaevskii equation, one obtains the
relations

dEpot

dt
¼ −

dðEkin þ EintÞ
dt

¼ ωW; ð5Þ

dW
dt

¼ 2ωðEkin þ Eint − EpotÞ; ð6Þ

where we define W ¼ ωm
R
r · vnd2r and the velocity field

vðrÞ ¼ ðℏ=mÞIm½ψ�ðrÞ∇ψðrÞ�=jψðrÞj2. Initially, the gas is
prepared in a steady state in the box potential so that v ¼ 0;
hence, Wð0Þ is also null. Therefore, the potential energy
evolves as

EpotðtÞ ¼
1

2
Etot þ ΔE cosð2ωtÞ; ð7Þ

where ΔE ¼ 1
2
½Epotð0Þ − Ekinð0Þ − Eintð0Þ� can be positive

or negative. A similar result holds for the sum Ekin þ Eint
(with ΔE replaced by −ΔE) but not for the individual
energies Ekin or Eint.
We show in Fig. 1(a) the evolution of the potential

energy per particle for an initially uniformly filled
square. Although the density distribution is not periodic
[see Fig. 1(b)], the potential energy Epot evolves periodi-
cally and is well fitted by a cosine function with a period
that matches the 2ω prediction and the expected zero initial
phase. For a better adjustment of the data, we add a (small)
negative linear function to the fitting cosine. Its role is
likely to account for the residual evaporation rate of atoms
from the trap (approximately 0.1 s−1).
This simple dynamics can be viewed as a generalization

of the existence of the undamped breathing mode at
frequency 2ω that we mention in the Introduction
[14,15]. We emphasize that this result is a consequence
of the SO(2,1) symmetry and does not hold for the Gross-
Pitaevskii equation in 1D or 3D.
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FIG. 1. Time evolution of the potential energy per particle of a 2D
gas of 87Rb atoms in an isotropic harmonic potential of frequencyω
for a square of side length 27.6ð5Þ μm with 4.1ð2Þ × 104 atoms.
(a) Evolution of the potential energy per particle. Each point is an
average of seven to ten realizations, and the error bars indicate the
standard deviation of these different realizations. The frequency of
the trap is measured with the oscillation of the center of mass:
ω=2π ¼ 19.3ð1Þ Hz.The oscillations ofEpot are fittedwith a cosine
function and an additional linear slope (continuous line). This slope
is −0.25ð4Þ Hz=ms and accounts for the loss of particles from the
trap. The fitted frequency is 38.5(1) Hz, which is compatible with
ω=π, as predicted by the SO(2,1) symmetry of the gas. (b) Density
distribution of an initially uniform gas after the evolution in a
harmonic potential at timesωt ¼ 0, π, 2π, 3π, 4π, corresponding to
the first periods of the potential energy indicated by the labels from1
to 5. The horizontal black lines represent 10 μm.
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III. GENERAL SCALING LAWS

An important consequence of the dynamical symmetry
of the 2D Gross-Pitaevskii equation is the ability to link two
solutions ψ1;2 of this equation corresponding to homothetic
initial conditions: One can relate ψ1ðr; tÞ and ψ2ðr0; t0Þ,
provided they evolve with the same parameter g̃N and the
same trap frequency ω1 ¼ ω2. By using a simple scaling on
space and time, this link can be further extended to the
case ω1 ≠ ω2.
The general procedure is presented in the Appendix, and

we start this section by summarizing the main results.
Consider a solution of the Gross-Pitaevskii equation
ψ1ðr; tÞ for the harmonic potential of frequency ω1:

iℏ
∂ψ1

∂t ¼ −
ℏ2

2m
∇2ψ1 þ

ℏ2g̃N
m

jψ1j2ψ1 þ
1

2
mω2

1r
2ψ1: ð8Þ

Using scale and conformal invariance, we can construct a
solution ψ2ðr0; t0Þ of the Gross-Pitaevskii equation with the
frequency ω2 ¼ ζω1 using

ψ2ðr0; t0Þ ¼ fðr; tÞψ1ðr; tÞ; ð9Þ

where space is rescaled by r0 ¼ r=λðtÞ with

λðtÞ ¼
�
1

α2
cos2ðω1tÞ þ α2ζ2sin2ðω1tÞ

�
1=2

; ð10Þ

and the dimensionless parameter α is the homothetic
ratio between the initial states. The relation between the
times t and t0 in frames 1 and 2 is

tanðω2t0Þ ¼ ζα2 tanðω1tÞ; ð11Þ

and the multiplicative function f is

fðr; tÞ ¼ λðtÞ exp
�
−i

m_λr2

2ℏλ

�
; ð12Þ

where _λ≡ ½ðdλÞ=ðdtÞ�. The two solutions ψ1;2ðtÞ corre-
spond to the evolution of two clouds with the same
parameter g̃1N1 ¼ g̃2N2. At t ¼ 0, these two wave func-
tions correspond to the ground states of the Gross-
Pitaevskii equation in the box potentials with characteristic
lengths L1;2, with L2 ¼ αL1. Both initial wave functions
ψ1;2ð0Þ can be chosen real, and the scale invariance of the
(time-independent) 2D Gross-Pitaevskii equation ensures
that they are homothetic: αψ2ðαr; 0Þ ¼ ψ1ðr; 0Þ. For exam-
ple, in the limit Eint ≫ Ekin, ψð0Þ corresponds to a uniform
density in the bulk and goes to zero at the edges on a scale
given by the healing length ξ≡ ½Nℏ2=ð2mEintÞ�1=2. For
two box potentials of homothetic shapes filled with the
same number of particles, the ratio ξ2=ξ1 is equal to the
ratio L2=L1.

We explore experimentally this mapping between two
evolutions in the particular case L1 ¼ L2 and ω1 → 0, i.e.,
α ¼ 1 and ζ → þ∞. We thus compare the evolution of
clouds with the same shape and the same size either in a
harmonic potential or in free (2D) space. The choice of the
initial shape is arbitrary; here we start from a uniform
triangle of side length 40.2ð3Þ μm with 3.9ð3Þ × 104 atoms
and let it evolve either in a harmonic potential of frequency
ω2=ð2πÞ ¼ 19.7ð2Þ Hz or without any potential (ω1 ¼ 0).
In both cases, we record images of the evolution, examples
of which are given in Figs. 2(a) and 2(b). These two
evolutions should be linked via Eq. (9). The relation (11)
between t and t0 reads

tanðω2t0Þ ¼ ω2t; ð13Þ

and the relation (10) becomes

λðtÞ ¼ ð1þ ω2
2t

2Þ1=2: ð14Þ

The relation (13) indicates that the scaling transformation
maps the first quarter of the oscillation period in the
harmonic trap ω2t0 ≤ π=2 onto the ballistic expansion from
t ¼ 0 to t ¼ ∞. In the absence of interactions, this result
has a simple physical interpretation: After the ballistic
expansion between t ¼ 0 to t ¼ ∞, the asymptotic position
distribution reveals the initial velocity distribution of the
gas, whereas the evolution in the harmonic trap during a
quarter of oscillation period exchanges initial positions and
initial velocities. We emphasize that the mapping (13) also
holds for an interacting system as a consequence of the
SO(2,1) symmetry underlying the 2D Gross-Pitaevskii
equation [28].
In order to reconstruct the scaling laws (13) and (14)

from the measured evolutions, we compare each image
n1ðr; tÞ for the free evolution with the set of images
n2ðr0; t0Þ obtained for the in-trap evolution. More precisely,
we start by defining the overlap O½n1; n2� between two
images in the following way:

(i) We introduce the scalar product ðn1jn2Þ between two
images

ðn1jn2Þ ¼
Z

n1ðrÞn2ðrÞd2r ð15Þ

and the norm of an image kn1k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn1jn1Þ
p

.
(ii) In order to relate two images that differ by a spatial

scaling factor λ, we introduce the quantity

p½n1; n2; λ� ¼
ðnðλÞ1 jn2Þ
knðλÞ1 kkn2k

; ð16Þ

where nðλÞ1 ðrÞ ¼ λ2n1ðλrÞ is the image rescaled from
n1ðrÞ by the factor λ, with the same atom number:
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N1 ¼
R
n1ðrÞd2r ¼

R
nðλÞ1 ðrÞd2r. Note that the

definition of the norm given above entails knðλÞ1 k ¼
λkn1k. By construction, the quantity p½n1; n2; λ� is
always smaller or equal to 1, and it is equal to 1 only

when the image nðλÞ1 is identical to n2 up to a
multiplicative factor.

(iii) Finally, for a couple of images ðn1; n2Þ, we vary λ
and define their overlap as

O½n1; n2� ¼ max
λ

p½n1; n2; λ�: ð17Þ

In practice, for each image n1ðtÞ acquired at a given time t,
we determine the time t0opt where the overlap between n1ðtÞ
and n2ðt0Þ is optimal. We denote ΛðtÞ as the value of the
scaling parameter λ for which the valueO½n1ðtÞ; n2ðt0optÞ� is
reached (see the Supplemental Material [30] for more
details). Since the center of the images may drift during
the evolution, we also allow for a translation of n2 with
respect to n1 when looking for the optimum in Eqs. (16)
and (17).
The result of this mapping between the two evolutions is

shown in Figs. 2(c) and 2(d). In Fig. 2(c), we plot t0opt as a
function of t. The prediction (13) is shown as a continuous
line and is in good agreement with the data. In Fig. 2(d), we
show the variation of the corresponding optimal scaling
parameter ΛðtÞ. Here again, the prediction (14) drawn as a
continuous line is in good agreement with the data. The
overlap between the density distributions at the correspond-
ing times is shown in the inset of Fig. 2(d) and is always
around 0.95, confirming that these density distributions

have very similar shapes. Indeed, the overlap between two
images averaged over a few experimental realizations taken
in the same conditions ranges from 0.98 to 0.99 due to
experimental imperfections.
Finally, we note that here we connect solutions of the

Gross-Pitaevskii equation (8) with the same atom number
N1 ¼ N2. Actually, the results derived above also apply to
pairs of solutions with g̃1N1 ¼ g̃2N2, since only the product
g̃N enters in the Gross-Pitaevskii equation (8).

IV. SCALING LAWS IN THE
HYDRODYNAMIC REGIME

In the previous section, we link the evolution of two
clouds with the same atom number N (or the same g̃N). We
show now that it is also possible to link evolutions with
different N’s and g̃’s, provided we restrict to the so-called
hydrodynamic (or Thomas-Fermi) regime, where the heal-
ing length ξ is very small compared to the size of the gas.

A. General formulation

The Gross-Pitaevskii equation (8) can be equivalently
written in terms of the density and the velocity fields as

∂tnþ ∇ · ðnvÞ ¼ 0; ð18Þ

m∂tvþ ∇
�
1

2
mv2 þ ℏ2

m
g̃nþ 1

2
mω2r2 þ PðnÞ

�
¼ 0; ð19Þ

where PðnÞ ¼ −ℏ2=2mð∇2
ffiffiffi
n

p Þ= ffiffiffi
n

p
is the so-called quan-

tum pressure. When the characteristic length scales over

(a) (b) (c) (d))()(

FIG. 2. Evolution of a gas with triangular shape [side length 40.2ð3Þ μm, 3.9ð3Þ × 104 atoms] for two different values of the harmonic
trapping frequency. (a),(b) Averaged images of the density distribution after a variable evolution time in the harmonic potential of
frequency ω1 ¼ 0 and ω2=2π ¼ 19.7ð2Þ Hz, respectively. The images are an average over five to ten realizations, and the horizontal
black lines represent 10 μm. Pairs of images with approximately corresponding evolution times are shown. (c) Optimal time t0optðtÞ for
which the overlap between images of the first and the second evolutions is maximum. (d) Optimal rescaling factor between the
corresponding images n1ðtÞ and n2ðt0optÞ. In the two graphs (c) and (d), the solid lines are the theoretical predictions given by Eqs. (13)
and (14). The inset of (d) presents the overlap between the corresponding images of the two series. In (c) and (d), the error bars indicate
the confidence intervals within 2 standard deviations of the fits used to reconstruct the scaling laws.
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which the density and velocity vary are much larger than
the healing length ξ, one can neglect the contribution of the
quantum pressure in Eq. (19):

m∂tvþ ∇
�
1

2
mv2 þ ℏ2

m
g̃nþ 1

2
mω2r2

�
¼ 0: ð20Þ

This approximation corresponding to the Thomas-Fermi
limit leads to the regime of quantum hydrodynamics for the
evolution of the density n and the irrotational velocity
field v [31]. It enriches the dynamical symmetries of the
problem, as we see in the following. For our experimental
parameters, this approximation is legitimate since the
healing length is a fraction of a micrometer only, much
smaller than the characteristic size of our clouds (tens of
micrometers).
We consider two homothetic shapes, e.g., two boxlike

potentials with a square shape, with sizes L1;2 and filled
with N1;2 atoms. We assume that we start in both cases with
the ground state of the cloud in the corresponding shape so
that the initial velocity fields are zero. Note that contrary to
the case of Sec. III, the ratio between the healing lengths
ξ2=ξ1 is not anymore equal to L2=L1 so that the initial wave
functions are not exactly homothetic, but this mismatch
occurs only close to the edges over the scale of ξ1;2 ≪ L1;2.
As before, at time t ¼ 0we switch off the potential creating
the shape under study and switch on a harmonic potential
with frequency ω1;2. Our goal is to relate the two evolutions
with parameters ðg̃1N1; L1;ω1Þ and ðg̃2N2; L2;ω2Þ.
The general transformation involves three dimensionless

constant parameters μ, α, ζ:

g̃2N2 ¼ μ2g̃1N1; L2 ¼ αL1; ω2 ¼ ζω1; ð21Þ

and reads

g̃2n2ðr0; t0Þ ¼ λ2μ2g̃1n1ðr; tÞ; ð22Þ

v2ðr0; t0Þ ¼ λμv1ðr; tÞ − μ_λr ð23Þ

with _λ ¼ ½ðdλÞ=ðdtÞ�. The spatial variables are rescaled as
r0 ¼ r=λðtÞ with the function λ now given by

λðtÞ ¼
�
1

α2
cos2ðω1tÞ þ

�
ζα

μ

�
2

sin2ðω1tÞ
�
1=2

; ð24Þ

and the relation between the times t and t0 in frames 1
and 2 is

tanðω2t0Þ ¼
ζα2

μ
tanðω1tÞ: ð25Þ

With a calculation similar to that detailed in the Appendix,
one can readily show that if ðn1; v1Þ is a solution of the
hydrodynamic equations (18) and (20) for the frequency

ω1, then ðn2; v2Þ is a solution for the frequencyω2. If μ ¼ 1,
these equations also apply beyond the Thomas-Fermi limit,
as we show in Sec. III. More strikingly, they show that in
the quantum hydrodynamic regime, the evolution of any
cloud is captured by a universal dynamics that depends
only on its initial geometry.

B. Connecting evolutions with a fixed trap frequency,
a fixed size, and different g̃N

We present here the experimental investigation of the
scaling described above, focusing on the case L1 ¼ L2 and
ω1 ¼ ω2, i.e., α ¼ ζ ¼ 1. In other words, we compare the
evolution of two clouds with the same initial shape and
density distribution, different atom numbers, and different
interaction strengths in a given harmonic trap. For sim-
plicity, we consider the result of the evolution at times t and
t0 such that ω1t ¼ ω2t0 ¼ π=2, which satisfies the con-
straint (25). In this case, λðtÞ ¼ 1=μ so that the general
scaling (22) reads

g̃2n2ðμr; t0π=2Þ ¼ g̃1n1ðr; tπ=2Þ: ð26Þ

We start with a cloud in a uniform box potential with the
shape of an equilateral triangle of side length
L ¼ 38.2ð3Þ μm. At t ¼ 0, we transfer the atoms in the
harmonic trap of frequency ω=2π ¼ 19.6 Hz and remove
the box potential. At t ¼ π=ð2ωÞ, we image the cloud. We
perform this experiment for different values of g̃ (and
slightly different atom numbers) corresponding to the
product g̃N between 200 and 4000. This leads to a ratio
ξ=L always smaller than 0.03, ensuring that we stay in the
quantum hydrodynamic regime. The variation of g̃ is
achieved by changing the intensity I of the laser beams
creating the vertical confinement with g̃ ∝ I1=4. The values
of g̃ are obtained from the measurement of the vertical
frequency ωz (see Supplemental Material [30]).
We analyze the series of images using the same general

method as in Sec. III. We select arbitrarily one image as a
reference point (here, the one corresponding to g̃N ≈ 2000
shown as a red square on Fig. 3). Then, we calculate the
best overlap between this reference point and all other
images obtained for different g̃N’s, and extract an optimal
scaling parameter Λ. The results of this analysis are
displayed on Fig. 3. The inset shows that the overlap is
close to 1 for all values of g̃N, indicating that the clouds all
have the same shape, as expected from Eq. (26). On the
main graph of Fig. 3, we show the variations of Λ−2 with
g̃N. The scaling law (24) predicts that Λ−2 ¼ μ2 ∝ g̃N,
which is indicated by the solid line passing by the origin
and the reference point. Here again, this prediction is in
excellent agreement with the data, apart from the point for
the largest g̃N. We attribute this discrepancy to the fact that
the local defects of the vertical confinement play a more
significant role at larger powers of the vertical confining
laser beam.
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Interestingly, the shape for t0 ¼ π=ð2ωÞ, i.e., t ¼ ∞ for
an evolution without any trap, is close to a uniformly filled
triangle but inverted compared to the initial one (see insets
of Fig. 3). The emergence of such a simple form after time-
of-flight is reminiscent of the simple diamondlike shape
obtained for the 3D expansion of a uniform gas initially
confined in a cylindrical box [32]. Note that we also
observe such a diamondlike shape at t ¼ π=ð2ωÞ starting
from a square box, albeit with a nonuniform density (see
Supplemental Material [30]).

C. Connecting evolutions with a fixed trap frequency,
different sizes, and different g̃N

Finally, we compare the evolution of two clouds with
homothetic shapes and α, μ ≠ 1, ζ ¼ 1, which means
clouds with different initial sizes, different atom numbers,
and evolving in the same harmonic trap. We perform an
experiment where the initial shape is a square with a
uniform density. The first cloud has a side length
L1 ¼ 27.0ð5Þ μm, contains N1 ¼ 3.7ð3Þ × 104 atoms,
and its initial density distribution is shown on Fig. 4(a).
The second one has a side length L2 ¼ 36.8ð5Þ μm and
contains N2 ¼ 5.4ð3Þ × 104 atoms [Fig. 4(b)]. The ratio
ξ=L is around 0.01 for these two clouds. We let them evolve
in the same harmonic potential described above and with
the same interaction parameter g̃ and take pictures after

different evolution times. We expect that the two evolutions
n1ðr; tÞ of the first cloud and n2ðr0; t0Þ of the second cloud
are linked via Eqs. (22), (24), and (25), with parameters
α ¼ L2=L1 ¼ 1.36ð4Þ and μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2=N1

p ¼ 1.21ð8Þ. We
analyze the two series of images with the same procedure as
in Sec. III and determine the scaling laws that link the two
evolutions one to the other. The best overlaps between the
images of the first and second series are shown in Fig. 4(c).
They are all above 0.97, indicating that the two evolutions
are indeed similar. The relation between the time t0 of the
second frame and the corresponding time t of the first frame
is shown on Fig. 4(d), and the best scaling factor ΛðtÞ is
shown on Fig. 4(e). The solid lines show the theoretical
predictions (25) and (24), which are in very good agree-
ment with the experimental data.
With the three experiments described in Secs. III and IV,

the scaling laws (22)–(25) are tested independently for the
three parameters α, μ, and ζ, demonstrating that in the
quantum hydrodynamic regime, the evolution of a cloud
initially at rest depends only on its initial shape, up to
scaling laws on space, time, and atom density.

V. TWO-DIMENSIONAL BREATHERS

In Sec. II, we have shown that due to the SO(2,1)
symmetry, the evolution of the potential energy Epot is

FIG. 3. Scaling factor at ωt ¼ π=2 for different values of g̃N.
(a) Initial density distribution of the cloud. (b)–(d) Density
distributions of the cloud after an evolution during t ¼ π=ð2ωÞ
in the harmonic trap for different values of g̃N. For (a)–(d), the
horizontal black lines represent 10 μm. Main graph: Best scaling
factor Λ−2 as a function of g̃N. The red square corresponds to the
reference image and its ordinate is fixed to 1. The solid line
represents the prediction (26). The shaded area represents its
uncertainty due to the one in the atom number of the reference
point. The vertical error bars represent the precision at 2 standard
deviations of the fit that determines Λ−2. (e) Value of the overlap
between the density distributions and the reference point. The
error bars due to the fit are smaller than the black points.

(a) (d)

(e)

(b)

(c)

)
(

)
(

FIG. 4. Mapping between two clouds with the same shape,
different sizes, and different atom numbers. (a),(b) Initial density
distribution of the two clouds. The horizontal black lines represent
10 μm. (c) Best overlap between each image of the first series of
images and the images of the second one. (d) Optimal time t0opt of
the second evolution as a function of the time t of the first
evolution. (e) Optimal scaling factor ΛðtÞ between the first and
second evolutions. In (d) and (e), the solid lines are the predictions
(25) and (24) where the values of the parameters α and μ are
measured independently. The uncertainty of these values is
represented as a shaded area. In (d), this area is too narrow to
be discernable. In (c)–(e), the error bars indicate the confidence
intervals within 2 standard deviations of the fit that we use to
reconstruct the scaling laws. They are too small to be seen on (d).
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periodic with period T=2≡ π=ω for an arbitrary initial state
ψðr; 0Þ [see Eq. (7)]. Of course, the existence of this
periodicity does not put a strong constraint on the evolution
of ψðr; tÞ itself. Because of the nonlinear character of the
Gross-Pitaevskii equation, the evolution of ψ is not
expected to be periodic, as illustrated in Fig. 1(b) for a
square initial shape. When looking experimentally or
numerically at various initial shapes like uniformly filled
squares, pentagons, or hexagons, we indeed observe that
even though EpotðjT=2Þ ¼ Epotð0Þ for integer values of j,
the shapes nðrÞ ¼ NjψðrÞj2 at those times are notably
different from the initial ones. We find two exceptions to
this statement, which are the cases of an initial equilateral
triangle and a disk. This section is devoted to the study of
these very particular states that we call “breathers”.
In the present context of a fluid described by the Gross-

Pitaevskii equation, we define a breather as a wave function
ψðr; tÞ that undergoes a periodic evolution in an isotropic
harmonic trap of frequency ω (for a generalization to
different settings, see, e.g., Refs. [22,33]). According to
this definition, the simplest example of a breather is a
steady-state ψSðrÞ of the Gross-Pitaevskii equation, e.g.,
the ground state. Other breathers are obtained by super-
posing ψS with one eigenmode of the Bogoliubov–de
Gennes equations resulting from the linearization of the
Gross-Pitaeveskii equation around ψS. In principle (with
the exception of the breathing mode [15]), the population of
this mode should be vanishingly small to avoid damping
via nonlinear mixing. Extending this scheme to the super-
position of several modes in order to generate more
complex types of breathers seems difficult. Indeed, the

eigenmode frequencies are, in general, noncommensurable
with each other; therefore, the periodicity of the motion
cannot occur as soon as several modes are simultaneously
excited [34]. Note that for a negative interaction coefficient
g̃ in 1D, a bright soliton forms a stable steady state of the
Gross-Pitaevskii equation (even for ω → 0) and thus also
matches our definition. In that particular 1D case, a richer
configuration exhibiting explicitly the required time perio-
dicity is the Kuznetsov-Ma breather, which is obtained by
superposing a bright soliton and a constant background
(see, e.g., Ref. [37] and references therein).
Here, we are interested in 2D breathers that go well

beyond a single-mode excitation, and we start our study
with the uniform triangular shape. In this case, for experi-
ments performed with a gas in the Thomas-Fermi regime,
we find that the evolution of the shape is periodic with
period T=2 within the precision of the measurement. As an
illustration, we show in Fig. 5(a) four images taken
between t ¼ 0 and T=2. The scalar product ðnð0ÞjnðtÞÞ
between the initial distribution and the one measured at
times T=2, T, 3T=2, and 2T shown in Fig. 5(b) is indeed
very close to 1. We can reproduce the same result for
various initial atom numbers.
We did not find an analytical proof of this remarkable

result, but we can confirm it numerically by simulating the
evolution of a wave function ψðr; tÞ with the Gross-
Pitaevskii equation [38]. We show in Fig. 6(a) a few
snapshots of the calculated density distribution and in
Fig. 6(b) the evolution of the modulus of the (usual) scalar
product jhψð0ÞjψðtÞij between the wave functions at times
0 and t. The calculation is performed on a square grid of

(a) (c)

(d)(b)

)
(

)
(

FIG. 5. (a) Density distributions of an initially triangular-shaped cloud at t=T ¼ 0, t=T ¼ 0.08, t=T ≈ 1=4, and t=T ≈ 1=2. The first
and last distributions are close to each other. (b) Scalar product between the initial density distribution of a triangular-shaped cloud (red
square) and the density distributions during its evolution in the harmonic trap. The first point is fixed at 1. The dashed lines indicate
where t=T is a multiple of 1=2. The shape seems to be periodic of period T=2. (c) Density distributions of an initially disk-shaped cloud
at t=T ¼ 0, t=T ≈ 2=7, t=T ≈ 1, and t=T ≈ 2. The first two and the last distributions are close to each other. (d) Scalar product between
the initial density distribution of a disk-shaped cloud (red square) and the density distributions during its evolution in the harmonic trap.
The first point is fixed at 1. The dashed lines indicate where t=T is a multiple of 2=7. The shape seems to be periodic of period 2=7. In (a)
and (c), the horizontal black lines represent 10 μm. In (b) and (d), the black arrows indicate the point corresponding to density
distributions shown in (a) and (c), respectively. The error bars represent the statistical error of the measurement.
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size Ns × Ns with Ns ¼ 512. The initial wave function is
the ground state of a triangular box with the side length
Ns=2 centered on the grid, obtained by imaginary time
evolution for g̃N ¼ 25 600. Note that by contrast to the
“scalar product between images” introduced above, the
quantity jhψð0ÞjψðtÞij is also sensitive to phase gradients of
the wave functions. Its evolution shows clear revivals
approaching unity for t close to multiples of T=2.
We show in Fig. 7(a) the finite-size scaling analysis

of the value of the first maximum of this scalar product
occurring at tmax ≈ T=2 for increasing grid sizes
Ns ¼ 64;…; 1024. The product g̃N is adjusted such that
the healing length ξ ¼ ½Nℏ2=ð2mEintÞ�1=2 ¼ al, where l is
the grid spacing and a2 ¼ 0.5, 1, 2, 4, 8. The condition
a ≪ Ns ensures that ξ is much smaller than the size of the
triangle (Thomas-Fermi regime), while having a≳ 1 pro-
vides an accurate sampling of the edges of the cloud. The
overlap between jψð0Þi and jψðtmaxÞi increases with the
grid size and reaches 0.995 for the largest grid.
In the simulation, the trapping frequency ω is adjusted

such that jΔEj ≪ Etot in Eq. (7); the cloud then keeps an
approximately constant area over time, which is favorable
for the numerics. Note that this choice does not restrict the
generality of the result, since the scaling laws seen in
Sec. III allow one to connect the evolution of a given
ψðr; t ¼ 0Þ in traps with different frequencies. In particular,
if the evolution starting from ψðr; 0Þ in a trap of frequency
ω1 is periodic with period π=ω1, the evolution in another
trap with frequency ω2 will be periodic with period π=ω2

[see Eq. (11)].
Two simulations with the same ratio a=Ns ∝ ξ=L, where

L ¼ lNs=2 is the size of the initial cloud, describe the same

physical system with a better accuracy as a and Ns are
increased. For the results in Fig. 7(a), increasing the
number of pixels Ns for a fixed a=Ns makes the scalar
product closer to 1. If this result could be extended as such
to arbitrary large values of Ns, this would demonstrate that
the ground state of a triangular box evolves periodically in a
harmonic potential. However, a closer look at the results of
this finite-size scaling analysis seems to indicate that a
should either be kept constant or increased at a slower rate
than Ns to have the scalar product approaching 1 in an
optimal way. Of course this conjecture deduced from our
numerical analysis needs to be further explored with ana-
lytical tools, which is out of the scope of the present paper.

(a) (c)

(d)(b)

FIG. 6. (a) Calculated density distributions at times t=T ¼ 0, 1=8, 1=4, 1=2 and (b) calculated time evolution of jhψð0ÞjψðtÞij starting
from the ground state in a triangular box. The numerical integration of the Gross-Pitaevskii equation is performed on a 512 × 512 grid.
The triangle is centered on the grid, with a side length equal to half the grid size. We choose g̃N ¼ 25 600 corresponding to an initial
healing length ξ ≈ l, where l is the grid step. (c) Calculated density distributions at times t=T ¼ 0, 2=7, 1, 2 and (d) calculated time
evolution of jhψð0ÞjψðtÞij starting from the ground state in a disk-shaped box. The numerical integration of the Gross-Pitaevskii
equation is performed on a 512 × 512 grid. The disk is centered on the grid, with a diameter equal to half the size of the grid. We choose
g̃N ¼ 12 800 leading to an initial healing length ξ ≈ 2l, where l is the grid step. In (b) and (d), the black arrows indicate the times
corresponding to the snapshots presented in (a) and (c).

(a) (b)

FIG. 7. Finite-size scaling for the numerical simulations.
(a) Scalar product jhψð0ÞjψðT=2Þij for an initial triangular shape.
The size of the grid Ns and the sampling of the healing length
a≡ ξ=l are varied. The highest value is 0.9953 obtained for
Ns ¼ 1024, a ¼ 1. (b) Scalar product jhψð0Þjψð2TÞij for an
initial disk shape. The highest value is 0.9986 obtained for
Ns ¼ 1024, a ¼ 2.8. On both figures, the black dots indicate the
highest value of the scalar product for each line.
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The requirement for the Thomas-Fermi regime
(ξ=L ≪ 1) is necessary for obtaining a periodic evolution
of the shape with period T=2. Indeed, in the ideal gas case
(g̃ ¼ 0), the evolution over T=2 corresponds to an inversion
of the initial shape with respect to the origin, i.e., a triangle
pointing upwards for the case of interest here [Fig. 5(a)].
One may then wonder about the existence of a periodicity T
for the triangular shape, irrespective of the product g̃N.
Indeed this periodicity holds in both limiting cases g̃ ¼ 0
(ideal gas) and g̃N large (Thomas-Fermi regime). However,
numerical simulations show unambiguously that the evo-
lution is not periodic in the intermediate case.
We also run the same simulations for other simple

regular polygons (square, pentagons, hexagon). We do
not observe a similar revival of the initial wave function
over the time period ð0; 5TÞ (see Supplemental Material
[30] for details).
Finally, we turn to the case of a disk-shaped initial cloud

[Fig. 5(c)]. The experiment is performed with a cloud
prepared such that jΔEj ≪ Etot in Eq. (7), so that the
potential energy is approximately constant over time.
In this particular case, the experimental result shown in
Fig. 5(d) seems to indicate a periodicity of approximately
2T=7 for the evolution of the overlap between nðr; 0Þ and
nðr; tÞ. To illustrate this, Fig. 5(c) displays four density
distributions at times between 0 and 2T. Let us assume that
this periodicity 2T=7 is exact when ΔE ¼ 0. For a disk-
shaped initial distribution with any value of ΔE, the
evolution cannot be 2T=7 periodic. Indeed, the potential
energy of the cloud is only T=2 periodic, which is not a
submultiple of 2T=7. However, all the disk-shaped clouds
should have a 2T periodicity, which is the least common
multiple of T=2 and 2T=7. As we show now, this 2T
periodicity is well supported by a numerical analysis.
We show in Fig. 6(c) snapshots of the calculated density

distribution and in Fig. 6(d) the time evolution of the
overlap jhψð0ÞjψðtÞij starting from the ground state in a
disk-shaped box potential centered on a 512 × 512 grid.
The disk diameter is chosen equal to half the grid size, and
the simulation is run for g̃N ¼ 12 800. This simulation
shows that the overlap between ψðr; 0Þ and ψðr; tÞ indeed
recovers values close to 1 at times close to multiples of
2T=7, as observed experimentally.
A closer inspection of Fig. 6(d) indicates that the time

evolution of the overlap is in good approximation periodic
with period 2T, with a symmetry around t ¼ T as well as
around t ¼ 2T. If the evolution is effectively periodic with
period 2T, the symmetry around these points is expected.
Indeed, the wave function is chosen real for t ¼ 0, and will
thus be real also at 2T (up to a global phase). Therefore, the
evolution must be symmetric around those points thanks to
time-reversal symmetry. On the other hand, this symmetry
does not show up around the other local maxima j2T=7
(j ¼ 1;…; 6), indicating that one does not expect a full
overlap with the initial state for those points.

In order to investigate further the revival around 2T, we
run a finite-size scaling analysis for the same grid sizes as
for the triangles and for a2 ¼ 1, 2, 4, 8, 16 [Fig. 7(b)]. We
find that the numerical results are compatible with a full
recovery of the initial wave function at time 2T, with a
scalar product between the wave functions at times 0 and
2T attaining a maximum of 0.9986 for the largest grid size
Ns ¼ 1024 and a2 ¼ 8. In this case, the optimal value of a
for a given Ns (marked with a dot in Fig. 7) increases with
Ns; note that the optimal ratio a=Ns ∝ ξ=L decreases when
Ns increases, which guarantees that the cloud remains in
the Thomas-Fermi regime.
To conclude this section, we emphasize that the phe-

nomenon described here is notably different from the
existence of a breathing mode at frequency 2ω [14,15]
that we mention in the Introduction and explore in Sec. II.
Here, we observe a periodic motion of the whole cloud not
just of the second moment hr2i of the position. We also note
that the observed phenomenon is a genuine nonlinear
effect, which cannot be captured by a linearization of
the motion of the cloud around an equilibrium position.
Indeed, the state of the gas at an intermediate time may
dramatically differ from the state at initial time or after a full
period both in terms of size and shape. A proper analysis of
these breathers may require a multimode approach, with the
observed phenomenon resulting from a mode synchroni-
zation effect via nonlinear couplings.

VI. SUMMARY AND OUTLOOK

In this paper, we investigate experimentally some
important consequences of the dynamical symmetries of
the two-dimensional Gross-Pitaevkii equation describing
the evolution of a weakly interacting Bose gas in a
harmonic potential. First, we show that the SO(2,1)
symmetry leads to a periodic evolution of the potential
energy and to scaling laws between the evolution of clouds
with the same atom number and the same interaction
parameter. Second, we show that in the quantum hydro-
dynamic regime, more symmetries allow one to describe
the evolution of the gas by a single universal function
irrespective of its size, atom number, trap frequency, and
interaction parameter g̃. This universal evolution depends
only on the initial shape and velocity field of the cloud.
Third, we identify two geometrical boxlike potentials,
equilateral triangle and disk, which lead to a periodic
motion of the wave function when one starts with a gas
uniformly filling these shapes and releases it in a harmonic
potential of frequency ω. The periods of these breathers are
π=ω and 4π=ω for the triangles and the disks, respectively.
This result is confirmed by a numerical simulation for a
cloud initially in the Thomas-Fermi regime of the boxlike
potential, giving an overlap between the initial state and the
state after one period larger than 0.995 and 0.998 for the
triangle and the disk, respectively.

R. SAINT-JALM et al. PHYS. REV. X 9, 021035 (2019)

021035-10



The existence of these breathers raises several interesting
questions. First, it is not immediate that their existence is a
direct consequence of the dynamical symmetries of the
system. If this is the case, such breathers could appear also
for other systems exhibiting the SO(2,1) symmetry, like a
three-dimensional unitary Fermi gas or a cloud of particles
with a 1=r2 interaction potential. Remarkably, the latter
case can be approached using classical (Newton) equations
of motion; a preliminary numerical analysis with up to 105

particles indicates that an initial triangular (resp. disk)
shape with uniform filling also leads to an approximate
periodic evolution in a harmonic potential with same period
T=2 (resp. 2T) as the solution of the Gross-Pitaevskii
equation. We also note that in the 1D case, the spectrum of
the Hamiltonian of a gas of particles interacting with a
repulsive 1=r2 potential is composed of evenly spaced
energy levels, ensuring a periodic evolution of the system
for any initial state [39,40].
The allowed shapes for such breathers is also an

intriguing question. In our exploration (both experimental
and numerical), we find this behavior only for triangles and
disks, but one cannot exclude that complex geometrical
figures can show a similar phenomenon. Another issue is
related with thermal effects. For all studies reported here,
we operate with a gas deeply in the degenerate regime,
which is well approximated by the zero-temperature Gross-
Pitaevskii formalism. A natural extension of our work is
therefore to study to which extent the present findings will
subsist in the presence of a significant nonsuperfluid
component. For our experimental setup, this will require
a significant increase in the vertical trapping frequency so
that the vertical degree of freedom remains frozen for the
thermal component of the gas.
Finally, we recall that the SO(2,1) symmetry is only an

approximation for the description of a two-dimensional
Bose gas. It is valid when the gas can be modeled by a
classical field analysis, hence, for a small interaction
parameter g̃ ≪ 1. For stronger interactions, one has to turn
to a quantum treatment of the fluid. This breaks the scale
invariance and the SO(2,1) symmetry that exist at the
classical field level, providing an example of a “quantum
anomaly” [19,41,42]. For example, the frequency of the
breathing mode of a gas in a harmonic potential then differs
from its classical value 2ω. It remains to be understood if a
similar quantum anomaly shows up for the breathers
described in this work.
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APPENDIX: SYMMETRY GROUPS OF THE
SCHRÖDINGER AND 2D GROSS-PITAEVSKII

EQUATIONS

For completeness, we summarize in this Appendix the
main properties of the transformations that leave invariant
the Schrödinger equation (i) for a free particle and (ii) for a
particle confined in a harmonic potential. The ensemble of
these transformations forms a group called the maximal
kinematical invariance group, which is parametrized in the
2D case by eight real numbers. In what follows, we are
interested only in the subgroup that is relevant for scale and
conformal invariance. For example, in the case of a free
particle, five parameters are related to space translations,
changes of Galilean frame, and rotations, which do not play
a role in our study. We are then left with three parameters
corresponding to time translations, dilations, and special
conformal transformations. These transformations also
leave the 2D Gross-Pitaevskii equation invariant. In the
following, we identify their generators and show that they
obey the SO(2,1) commutation algebra. We follow closely
the approach of Refs. [5,43], which was developed for the
Schrödinger equation describing the motion of a single
particle but also applies with little modifications to the
case of the nonlinear Gross-Pitaevskii equation. In this
Appendix, we set ℏ ¼ 1 to simplify the notations.

1. Free particles

Although we are interested ultimately in the case where
the particles evolve in a harmonic potential, we start by a
brief summary of the free-particle case, for which the
algebra is slightly simpler, while involving transformations
of a similar type. In Ref. [5], it was shown that in addition
to space translations, rotations, and Galilean transforma-
tions, the three following transformations leave invariant
the free-particle Schrödinger equation:

(i) The translations in time

r → r; t → tþ β; ðA1Þ
since the Hamiltonian has no explicit time
dependence.

(ii) The dilations

r → r=λ; t → t=λ2 ðA2Þ

already introduced in Eq. (1) of the main text.
(iii) The so-called “expansions”

r →
r

γtþ 1
; t →

t
γtþ 1

; ðA3Þ

which correspond to a special conformal transfor-
mation for the time.

The combination of these transformations forms a three-
parameter group with the most general transformation
written as
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r → gðr; tÞ≡ r
γtþ δ

; ðA4Þ

t → hðtÞ≡ αtþ β

γtþ δ
; ðA5Þ

with the constraint αδ − βγ ¼ 1. The dilation (A2) is
obtained by setting β ¼ γ ¼ 0, δ ¼ λ, and αδ ¼ 1.
Let us consider a function ψ1ðr; tÞ which is a solution of

the Gross-Pitaevskii equation in free space:

P0½ψ1; r; t� ¼ 0 ðA6Þ

with

P0½ψ ; r; t�≡ i
∂ψ
∂t þ

1

2m
∇2
rψ −

g̃N
m

jψ j2ψ : ðA7Þ

Starting from ψ1ðr; tÞ, we define the function ψ2ðr0; t0Þ as

ψ2ðr0; t0Þ ¼ fðr; tÞψ1ðr; tÞ ðA8Þ

with r0, t0 set as

r0 ¼ gðr; tÞ; t0 ¼ hðtÞ ðA9Þ

and

fðr; tÞ ¼ ðγtþ δÞ exp
�
−i

mγr2=2
γtþ δ

�
: ðA10Þ

With a tedious but straightforward calculation, one can
check that ψ2ðr0; t0Þ is also a solution of the Gross-
Pitaevskii equation

P0½ψ2; r0; t0� ¼ 0 ðA11Þ

for any value of the parameters α, β, γ, δ with the constraint
αδ − βγ ¼ 1. The group of transformations (A4) and (A5)
thus allows one to generate an infinite number of solutions
of the Gross-Pitaevskii equation. We could pursue this
analysis by determining the generators associated with the
action of these transformations on the wave functions
ψðr; tÞ, but we postpone it to the case of a harmonically
confined system which is more relevant for our physical
system. The two studies are anyway very similar, and the
symmetry groups of the two systems have the same Lie
algebra [5,43].

2. Particles in a harmonic trap

In the presence of an isotropic harmonic potential of
frequency ω, the general transformations on position and
time leaving invariant the Schrödinger equation are also
defined by a set of four numbers ðα; β; γ; δÞ with the
constraint αδ − βγ ¼ 1 [43]. Setting

η ¼ tanðωtÞ; η0 ¼ tanðωt0Þ; ðA12Þ

the change in position is

r → r0 ¼ gðr; tÞ≡ r
λðtÞ ðA13Þ

with

λðtÞ ¼ ½½α sinðωtÞ þ β cosðωtÞ�2
þ ½γ sinðωtÞ þ δ cosðωtÞ�2�1=2; ðA14Þ

while the transformation on time t → t0 ¼ hðtÞ reads

η0 ¼ αηþ β

γηþ δ
: ðA15Þ

Note that the time translations belong to this set of
transformations, as expected for a time-independent
problem. They are obtained by taking α ¼ δ ¼ cosðωt0Þ
and β ¼ −γ ¼ sinðωt0Þ.
We start with a solution ψ1 of the Gross-Pitaevskii

equation in the trap

Pω½ψ1; r; t� ¼ 0 ðA16Þ

with

Pω½ψ ; r; t� ¼ P0½ψ ; r; t� −
1

2
mω2r2ψ : ðA17Þ

Using this group of transformations, we can generate
another function ψ2ðr0; t0Þ satisfying

Pω½ψ2; r0; t0� ¼ 0 ðA18Þ

following the definitions (A8) and (A9) with now

fðr; tÞ ¼ λðtÞ exp
�
−i

m_λr2

2λ

�
: ðA19Þ

The fact that ψ2 is a solution of the Gross-Pitaevskii
equation was proven for the noninteracting case in
Ref. [43], and one can check that the contribution of the
interaction term proportional to jψ j2ψ cancels in the 2D
case thanks to the scaling f ∝ λ.
In the main text, we use a specific version of the

transformation ðr; tÞ → ðr0; t0Þ that (i) maps the time
t ¼ 0 onto the time t0 ¼ 0, and (ii) is such that _λð0Þ ¼ 0
since we want to relate a real solution ψ1 onto another real
solution ψ2 (ψ1 and ψ2 are both ground-state wave
functions in a boxlike potential). These two conditions,
in association with αδ − βγ ¼ 1, impose β ¼ γ ¼ 0 and
δ ¼ 1=α, hence,
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λðtÞ ¼
�
α2sin2ðωtÞ þ 1

α2
cos2ðωtÞ

�
1=2

ðA20Þ

and

tanðωt0Þ ¼ α2 tanðωtÞ: ðA21Þ

Finally, we note that the simple dilation transformation
r0 ¼ r=

ffiffiffi
ζ

p
, t0 ¼ t=ζ allows one to relate a solution of the

Gross-Pitaevskii equation ψ1ðr; tÞ in a trap with frequency
ω1 to a solution

ψ2ðr0; t0Þ ¼
ffiffiffi
ζ

p
ψ1ðr; tÞ ðA22Þ

in a trap with frequency ω2 ¼ ζω1:

Pω1
½ψ1; r; t� ¼ 0 ⇒ Pω2

½ψ2; r0; t0� ¼ 0: ðA23Þ

We can thus combine this dilation with the transformation
(A20) and (A21) in order to obtain the transformation that
links two (initially real) solutions ψ1ðr; tÞ and ψ2ðr0; t0Þ of
the Gross-Pitaevskii equation for a given g̃N obtained in
harmonic traps with frequencies ω1;2 and starting with
homothetic initial conditions with characteristic lengths
L1;2. This transformation reads

r0 ¼ r
λðtÞ ; tanðω2t0Þ ¼ ζα2 tanðω1tÞ ðA24Þ

with

λðtÞ ¼
�
α2ζ2sin2ðω1tÞ þ

1

α2
cos2ðω1tÞ

�
1=2

ðA25Þ

and α ¼ L2=L1, ζ ¼ ω2=ω1. This transformation corre-
sponds to the scaling (10) used in the main text.

3. Generators and SO(2,1) symmetry

We now look for the infinitesimal generators of the
transformation ψ1 → ψ2 in the presence of a harmonic
potential (Appendix Sec. II) and show that they fulfill the
commutation algebra characteristic of the SO(2,1) group.
We focus here on the transformation (A13)–(A15) which
relates solutions of the Gross-Pitaevskii equation for
the same nonlinear coefficient g̃N and the same trap
frequency ω.
We first note that the set of four numbers ðα; β; γ; δÞ with

the constraint αδ − βγ ¼ 1 actually forms a set of three
independent parameters for the free-particle case
(Appendix Sec. I). To this set of numbers, we can associate
a matrix

M ¼
�
α β

γ δ

�
ðA26Þ

of the group SLð2; RÞ. In order to simplify our discussion,
we consider the following three subgroups of SLð2; RÞ,
each parametrized by a single parameter sj, j ¼ 1, 2, 3:

�
es1=2 0

0 e−s1=2

�
;

�
coshðs2=2Þ sinhðs2=2Þ
sinhðs2=2Þ coshðs2=2Þ

�
; ðA27Þ

and

�
cosðs3=2Þ − sinðs3=2Þ
sinðs3=2Þ cosðs3=2Þ

�
: ðA28Þ

We obtain three independent generators by considering a
small displacement from the unit matrix for each subgroup
(jsjj ≪ 1). In all three cases, we write the passage from ψ1

to ψ2 as

ψ2ðr; tÞ ≈ ½1̂ − isjL̂jðtÞ�ψ1ðr; tÞ; ðA29Þ

where we introduce the time-dependent generator L̂jðtÞ.
The goal is to determine explicitly these operators and their
commutation relation in order to check that they satisfy the
SO(2,1) algebra.
(a) Generator associated with s1. We have in this case

M ≈ 1̂þ s1
2
σ̂z; ðA30Þ

where the σ̂j, j ¼ x, y, z are the Pauli matrices. We
first get λðtÞ ¼ 1 − ðs1=2Þ cosð2ωtÞ so that

fðr;tÞ¼1−
s1
2
cosð2ωtÞ− is1

mωr2

2
sinð2ωtÞ; ðA31Þ

and the infinitesimal changes in r, t are

gðr;tÞ≈ r

�
1þs1

2
cosð2ωtÞ

�
; hðtÞ¼ tþ s1

2ω
sinð2ωtÞ:

ðA32Þ

These expressions allow one to determine the passage
from ψ1 to ψ2 as in Eq. (A29) with

L̂1ðtÞ ¼ −
i
2
cosð2ωtÞð1þ r · ∇Þ

þ 1

2ω
sinð2ωtÞðmω2r2 − i∂tÞ: ðA33Þ

(b) Generator associated with s2. We find

M ≈ 1̂þ s2
2
σ̂x: ðA34Þ

In this case, λðtÞ ¼ 1þ ðs2=2Þ sinð2ωtÞ, and
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fðr; tÞ¼ 1þ s2
2
sinð2ωtÞ− is2

mωr2

2
cosð2ωtÞ: ðA35Þ

It also provides the transformation of space and time
coordinates:

gðr; tÞ ≈ r

�
1 −

s2
2
sinð2ωtÞ

�
;

hðtÞ ¼ tþ s2
2ω

cosð2ωtÞ: ðA36Þ

This corresponds to a transformation similar to the one
considered above in Eq. (A32) with the time trans-
lation t → tþ π=ð4ωÞ. The associated operator for the
passage from ψ1 to ψ2 is thus

L̂2ðtÞ ¼
1

2ω
cosð2ωtÞðmω2r2 − i∂tÞ

þ i
2
sinð2ωtÞð1þ r · ∇Þ: ðA37Þ

(c) Generator associated with s3. Finally, we have for the
third case,

M ≈ 1̂ −
s3
2
iσ̂y: ðA38Þ

We simply have λðtÞ ¼ 1, fðr; tÞ ¼ 1, and this case
corresponds to the time translations mentioned above,
for which we have

gðr; tÞ ¼ r; hðtÞ ¼ t − s3=2ω: ðA39Þ

The operator L̂3ðtÞ is thus

L̂3ðtÞ ¼
i
2ω

∂t: ðA40Þ

From the expressions of the three generators L̂j, we
easily find the commutations relations valid at any time

½L̂1;L̂2�¼−iL̂3; ½L̂2;L̂3�¼ iL̂1; ½L̂3;L̂1�¼ iL̂2; ðA41Þ

which are characteristic of the Lorentz group SO(2,1). As
explained in Ref. [15], this set of commutation relations
allows one to construct, in particular, families of solutions
with an undamped breathing motion.
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Tan’s contact is a quantity that unifies many different properties of a low-temperature gas with
short-range interactions, from its momentum distribution to its spatial two-body correlation func-
tion. Here, we use a Ramsey interferometric method to realize experimentally the thermodynamic
definition of the two-body contact, i.e. the change of the internal energy in a small modification of
the scattering length. Our measurements are performed on a uniform two-dimensional Bose gas of
87Rb atoms across the Berezinskii–Kosterlitz–Thouless superfluid transition. They connect well to
the theoretical predictions in the limiting cases of a strongly degenerate fluid and of a normal gas.
They also provide the variation of this key quantity in the critical region, where further theoretical
efforts are needed to account for our findings.

The thermodynamic equilibrium of any homogeneous
fluid is characterized by its equation of state. This equa-
tion gives the variations of a thermodynamic potential,
e.g. the internal energy E, with respect to a set of ther-
modynamics variables such as the number of particles,
temperature, size and interaction potential. All items
in this list are mere real numbers, except for the interac-
tion potential whose characterization may require a large
number of independent variables, making the determina-
tion of a generic equation of state challenging.

A considerable simplification occurs for ultra-cold
atomic fluids, when the average distance between par-
ticles d is much larger than the range of the potential
between two atoms. Binary interactions can then be de-
scribed by a single number, the s-wave scattering length
a. Considering a as a thermodynamic variable, one can
define its thermodynamic conjugate, the so-called Tan’s
contact [1–9]

C ≡ 8πma2

~2
∂E

∂a
, (1)

where the derivative is taken at constant atom number,
volume and entropy, and m is the mass of an atom. For a
pseudo-spin 1/2 Fermi gas with zero-range interactions,
one can show that the conjugate pair (a,C) is sufficient to
account for all possible regimes for the gas, including the
strongly interacting case a & d [10, 11]. For a Bose gas,
the situation is more complicated: formally, one needs to
introduce also a parameter related to three-body interac-
tions, and in practice this three-body contact can play a
significant role in the strongly interacting regime [12–14].

Since the pioneering experimental works of [15, 16],
the two-body contact has been used to relate numerous
measurable quantities regarding interacting Fermi gases:
tail of the momentum distribution, short distance behav-
ior of the two-body correlation function, radio-frequency
spectrum in a magnetic resonance experiment, etc. (see
[17, 18] and refs. in). For the Bose gas case of inter-
est here, experimental determinations of two- and three-
body contacts are much more scarce, and concentrated

so far on either the quasi-pure BEC regime [19, 20] or the
thermal one [19, 21]. Here, we use a two-pulse Ramsey
interferometric scheme to map out the variations of the
two-body contact from the strongly degenerate, super-
fluid case to the non-degenerate, normal one.

We operate with a uniform, weakly-interacting two-
dimensional (2D) Bose gas where the superfluid tran-
sition is of Berezinskii–Kosterlitz–Thouless (BKT) type
[22, 23]. For our relatively low spatial density, effects
related to the three-body contact are negligible and we
focus on the two-body contact. It is well known that
for the BKT transition, all thermodynamic functions are
continuous at the critical point, except for the superfluid
density [24]. Our measurements confirm that the two-
body contact is indeed continuous at this point. We also
show that the (approximate) scale invariance in 2D al-
lows us to express it as a function of a single parameter,
the phase-space density D = nλ2, where n is the 2D den-
sity, λ = (2π~2/mkBT )1/2 the thermal wavelength and
T the temperature. Our measurements around the criti-
cal point of the BKT transition provides an experimental
milestone which shows the limits of the existing theoret-
ical predictions in the critical region.

RESULTS

Accessing Tan’s contact for a planar geometry. Our
ultra-cold Bose gas is well described by the Hamiltonian
Ĥ, sum of the kinetic energy operator, the confining po-
tential, and the interaction potential Ĥint = aK̂ with

K̂ =
2π~2

m

∫∫
ψ̂†(r) ψ̂†(r′) δ̂(r − r′) ψ̂(r′) ψ̂(r) d3r d3r′.

(2)

Here δ̂(r) is the regularized Dirac function entering in the
definition of the pseudo-potential [25] and the field oper-

ator ψ̂(r) annihilates a particle in r. Using Hellmann–
Feynman theorem, one can rewrite the contact defined in
Eq. (1) as C = 8πma2〈K̂〉/~2.



2

In our experiment, the gas is uniform in the horizon-
tal xy plane, and it is confined with a harmonic poten-
tial of frequency ωz along the vertical direction. We
choose ~ωz larger than both the interaction energy and
the temperature, so that the gas is thermodynamically
two-dimensional (2D). On the other hand, the extension
of the gas az = (~/mωz)1/2 along the direction z is still
large compared to the scattering length a, so that the
collisions keep their 3D character and Eq. (2) remains
relevant [26]. Suppose first that the zero-range potential

δ̂(r−r′) appearing in (2) does not need to be regularized.
Then, after integration over z, C can be related to the
in-plane two-body correlation function g2:

C

C0

?
= g2(0), C0 ≡ 4(2π)3/2

a2n̄N

az
, (3)

where we introduced the average in normal order:

g2(r) =
1

n̄2
〈: n̂(r)n̂(0) :〉, (4)

with n̂(r) the operator associated with the 2D density,
n̄ its average value and N the atom number. For an
ideal Bose gas, the value of g2(0) varies from 2 to 1 when
one goes from the non-condensed regime to the fully con-
densed one [27], so that C0 sets the scale of Tan’s contact.

However, it is well known that g2(0) is generally an
ill-defined quantity for an interacting fluid. For example
in a Bose gas with zero-range interactions, one expects
g2(r) to diverge as 1/r2 in 3D and (log r)2 in 2D when
r → 0 [12, 13]. On the other hand, when one properly

regularizes the zero-range potential δ̂ in Eq. (2), Tan’s
contact is well-behaved and measurable. Here, we ap-
proach it by measuring the change in energy per atom
h∆ν = ∆E/N when the scattering length is changed by
the small amount ∆a. Replacing ∂E/∂a by ∆E/∆a in
the definition (1), we obtain

C

C0
≈
√

2π
maz
~n̄

∆ν

∆a
. (5)

To measure the energy change h∆ν resulting for a
small modification of the scattering length, we take ad-
vantage of a particular feature of the 87Rb atom: All scat-
tering lengths aij , with (i, j) any pair of states belong-
ing to the ground-level manifold, take very similar val-
ues [28]. For example, Ref. [29] predicts a11 = 100.9 a0,
a22 = 94.9 a0 and a12 = 98.9 a0, where the indices 1
and 2 refer to the two states |1〉 ≡ |F = 1,mz = 0〉
and |2〉 ≡ |F = 2,mz = 0〉 used in this work and a0
is the Bohr radius. For an isolated atom, this pair of
states forms the so-called clock transition at frequency
ν0 ' 6.8 GHz, which is insensitive (at first order) to the
ambiant magnetic field. Starting from a gas at equilib-
rium in |1〉, we use a Ramsey interferometric scheme to
measure the microwave frequency required to transfer all
atoms to the state |2〉. The displacement of this fre-
quency with respect to ν0 provides the shift ∆ν due to the
small modification of scattering length ∆a = a22 − a11.
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FIG. 1. Example of an interferometric Ramsey signal showing
the optical density of the fraction of the gas in state |2〉 after
the second Ramsey pulse, as a function of the microwave fre-
quency ν. These data were recorded for n̄ ≈ 40 atoms/µm2

and T ∼ 22 nK, τ1 = 10 ms. Here, τ2 has been increased to
1 ms to limit the number of fringes for a better visibility. In-
set. Filled black disks (resp. open red circles): central fringe
for atoms in |2〉 (resp. |1〉) in the “standard” configuration
τ2 = 0.1 ms. The density in |1〉 is obtained by applying a
microwave π-pulse just before the absorption imaging phase.
Blue squares: single-atom response measured during the bal-
listic expansion of the cloud by imaging atoms in |2〉. The
lines in the inset are sinusoidal fits to the data. The vertical
error bars of the inset correspond to the standard deviation
of the 3 repetitions made for this measurement.

Ramsey spectroscopy on the clock transition. The
Ramsey scheme consists in two identical microwave
pulses, separated by a duration τ1 = 10 ms. Their dura-
tion τ2 ∼ 100 µs is adjusted to have π/2 pulses, i.e. each
pulse brings an atom initially in |1〉 or |2〉 into a coher-
ent superposition of these two states with equal weights.
Just after the second Ramsey pulse, we measure the 2D
spatial density n̄ in state |2〉 in a disk-shaped region of
radius 9 µm and using the absorption of a probe beam
nearly resonant with the optical transition connecting |2〉
to the excited state 5P3/2, F

′ = 3. We infer from this
measurement the fraction of atoms transferred into |2〉
by the Ramsey sequence, and we look for the microwave
frequency νm that maximises this fraction.

An example of spectroscopic signal is shown in Fig. 1.
In order to determine the “bare” transition frequency ν0,
we also perform a similar measurement on a cloud in bal-
listic expansion, for which the 3D spatial density has been
divided by more than 100 and interactions play a negli-
gible role. The uncertainty on the measured interaction-
induced shift ∆ν = νm − ν0 is on the order of 1 Hz. In
principle, the precision of our measurements could be in-
creased further by using a larger τ1. In practice however,
we have to restrict τ1 to a value such that the spatial dy-
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namics of the cloud, originating from the non-miscibility
of the 1−2 mixture (a212 > a11a22), plays a negligible role
[30]. Another limitation to τ1 comes from atom losses,
mostly due to 2-body inelastic processes involving atoms
in |2〉. For τ1 = 10 ms, these losses affect less than 5% of
the total population and can be safely neglected.

We see in Fig. 1 that there indeed exists a frequency
νm for which nearly all atoms are transferred from |1〉
to |2〉, so that E(N, a22) − E(N, a11) = N h(νm − ν0)
(see [31] for details). We note that for an interacting
system, the existence of such a frequency is by no means
to be taken for granted. Here, it is made possible by the
fact that the inter-species scattering length a12 is close
to a11 and a22. We are thus close to the SU(2) symmetry
point where all three scattering lengths coincide. The
modeling of the Ramsey process detailed in [31] shows
that this quasi-coincidence allows one to perform a Taylor
expansion of the energy E(N1, N2) (with N1 +N2 = N)
of the mixed system between the two Ramsey pulses, and
to expect a quasi-complete rephasing of the contributions
of all possible couples (N1, N2) for the second Ramsey
pulse. The present situation is thus quite different from
the one exploited in [21] for example, where a11 and a12
were vanishingly small. It also differs from the generic
situation prevailing in the spectroscopic measurements
of Tan’s contact in two-component Fermi gases, where
a microwave pulse transfers the atoms to a third, non-
interacting state [15].

Resonance shift ∆ν and contact C. We show in Fig. 2
our measurements of the shift ∆ν for densities ranging
from 10 to 40 atoms/µm2, and temperatures from 10 to
170 nK. Since ~ωz/kB = 210 nK, all data shown here are
in the thermodynamic 2D regime kBT < ~ωz. More pre-
cisely, the population of the ground state of the motion
along z, estimated from the ideal Bose gas model [32], is
always & 90 %. All shifts are negative as a consequence
of a22 < a11: the interaction energy of the gas in state |2〉
is slightly lower than in state |1〉. For a given density, the
measured shift increases in absolute value with tempera-
ture. This is in line with the naive prediction of Eq. (3),
since density fluctuations are expected to be an increas-
ing function of T . Conversely for a given temperature,
the shift is (in absolute value) an increasing function of
density.

For the lowest temperatures investigated here, we
reach the fully condensed regime in spite of the 2D
character of the sample, as a result of finite size ef-
fects. In this case, the mean-field prediction for the shift
reads ∆ν = n̄ ~∆a/(

√
2πmaz) [i.e. C = C0 in Eq. (5)].

Our measurements confirm the linear variation of ∆ν
with n̄, as shown in the inset of Fig. 2 summarizing the
data for T = 22 nK. A linear fit to these data gives
∆a/a0 = −5.7 (1.0) where the error mostly originates
from the uncertainty on the density calibration. In the
following, we use this value of ∆a for inferring the value
of C/C0 from the measured shift at any temperature, us-
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FIG. 2. Variations of the shift ∆ν with temperature for var-
ious 2D spatial densities. Violet disks: n̄ = 10.4 (2) µm−2,
blue squares: n̄ = 21.0 (3) µm−2, green diamonds: n̄ =
31.5 (3) µm−2, orange pentagons: n̄ = 42.0 (1) µm−2. The
horizontal error bars represent the statistical uncertainty on
the temperature calibration, except for the points at very low
temperature (10-22 nK). These ultracold points are deeply in
the Thomas-Fermi regime, where thermometry based on the
known equation of state of the gas is not sensitive enough.
The temperature is thus inferred from an extrapolation with
evaporation barrier height of the higher temperature points.
The error on the frequency measurement is below 1 Hz and
is not shown in this graph. Inset: Variations of the shift ∆ν
with density at low temperature T ∼ 22 nK, i.e. a strongly
degenerate gas. The straight line is the mean-field prediction
corresponding to ∆a = −5.7 a0.

ing Eq. (5). We note that this estimate for ∆a is in good
agreement with the prediction ∆a/a0 = −6 quoted in
[29], as well as with our recent measurement [33] which
is independent of the density calibration. The first cor-
rections to the linear mean-field prediction were derived
(in the 3D case) by Lee, Huang and Yang in [34]. For our
densities, they have a relative contribution on the order
of 5 % of the main signal (∆ν . 1 Hz) [31], and their
detection is borderline for our current precision.

We summarize all our data in Fig. 3, where we show the
normalized contact C/C0 defined in Eq. (5) as a function
of the phase-space density D. All data points collapse on
a single curve within the experimental error, which is a
manifestation of the approximate scale invariance of the
Bose gas, valid for a relatively weak interaction strength
g̃ . 1 [37, 38].

DISCUSSION

We now compare our results in Fig. 3 to three theoret-
ical predictions. The first one is derived from the Bogoli-
ubov approximation applied to a 2D quasi-condensate
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FIG. 3. Variations of the normalized Tan’s contact C/C0 with
the phase-space density D. The encoding of the experimental
points is the same as in Fig. 2. The colored zone indicates the
non-superfluid region, corresponding to D < Dc ≈ 7.7. The
continuous black line shows the prediction derived within Bo-
goliubov approximation. Inset: Zoom on the critical region.
The dashed blue line is the prediction from [35], resulting
from a virial expansion for the 2D Bose gas. The dotted red
line shows the results of the classical field simulation of [36].

[39]. This prediction is expected to be valid only for D
notably larger than the phase-space density at the critical
point Dc (see methods), but it gives a fair account of our
data over the whole superfluid region. Within this ap-
proximation, one can also calculate the two-body correla-
tion function and write it as g2(r) = gT=0

2 (r)+gthermal
2 (r).

One can then show the result [31]

C

C0
= 1 + gthermal

2 (0), (6)

which provides a quantitative relation between the con-
tact and the pair correlation function, in spite of the
already mentioned singularity of gT=0

2 (r) in r = 0.
For low phase-space densities, one can perform a sys-

tematic expansion of various thermodynamic functions
in powers of the (properly renormalized) interaction
strength [35], and obtain a prediction for C (dashed blue
line in the inset of Fig. 3). By comparing the 0th, 1st
and 2nd orders of this virial-type expansion, one can esti-
mate that it is valid for D . 3 for our parameters. When
D → 0, the result of [35] gives C/C0 → 2, which is the ex-
pected result for an ideal, non-degenerate Bose gas. The
prediction of [35] for D ∼ 3 compares favourably with
our results in the weakly-degenerate case.

Finally we also show in Fig. 3 the results of the classi-
cal field simulation of [36] (red dotted line), which are in
principle valid both below and above the critical point.
Contrary to the quantum case, this classical analysis does
not lead to any singularity for 〈n2(0)〉, so that we can

directly plot this quantity as it is provided in [36] in
terms of the quasi-condensate density. For our interac-
tion strength, we obtain a non-monotonic variation of
C. This unexpected behavior, which does not match
the experimental observations, probably signals that the
present interaction strength g̃ = 0.16 (see Methods) is
too large for using these classical field predictions, as al-
ready suggested in [36].

Using the Ramsey interferometric scheme on a many-
body system, we have measured the two-body contact of
a 2D Bose gas over a wide range of phase-space den-
sities. We could implement this scheme on our fluid
thanks to the similarities of the three scattering lengths
in play, a11, a22, a12, corresponding to an approximate
SU(2) symmetry for interactions. Our method can be
generalized to the strongly interacting case aij & az, as
long as a Fano-Feshbach resonance allows one to stay
close to the SU(2) point. One could then address si-
multaneously the LHY-type corrections at zero tempera-
ture [40, 41], the contribution of the three-body contact
[13, 14], and the breaking of scale invariance expected
at non-zero temperature. Finally we note that even for
our moderate interaction strength, classical field simu-
lations seem to fail to reproduce our results, although
they could properly account for the measurement of the
equation of state itself [37, 38]. The semi-classical treat-
ment of Ref. [42] and quantum Monte Carlo approaches
of Refs. [43, 44] should provide a reliable path to the mod-
elling of this system. This would be particularly interest-
ing in the vicinity of the BKT transition point where the
usual approach based on the XY model [45], which ne-
glects any density fluctuation, does not provide a relevant
information on the behavior of Tan’s contact.

METHODS

Preparation of the two-dimensional gas. The prepa-
ration and the characterization of our sample have been
detailed in [46, 47] and we briefly outline the main prop-
erties of the clouds explored in this work. In the xy
plane, the atoms are confined in a disk of radius 12 µm
by a box-like potential, created by a laser beam properly
shaped with a digital micromirror device. We use the in-
tensity of this beam, which determines the height of the
potential barrier around the disk, as a control parameter
for the temperature. The confinement along the z di-
rection is provided by a large-period optical lattice, with
a single node occupied and ωz/(2π) = 4.41 (1) kHz. We
set a magnetic field B = 0.701 (1) G along the vertical
direction z, which defines the quantization axis. We use
the expression Dc = ln(380/g̃) for the phase-space den-
sity at the critical point of the superfluid transition [48].
Here, g̃ =

√
8π a11/az = 0.16 is the dimensionless inter-

action strength in 2D, leading to Dc = 7.7. We study
Bose gases from the normal regime (D = 0.3Dc) to the



5

strongly degenerate, superfluid regime (D > 3Dc).
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Supplementary Material

Ramsey interferometry in a many-body system close
the SU(2) symmetry point

In this section, we explain why the vicinity of the SU(2)
symmetry point where all three scattering lengths are
equal (a11 = a12 = a22) allows one to reach a full transfer
from |1〉 to |2〉 in the Ramsey sequence, in spite of the
interactions between the particles. We first explore a
two-particle model before turning to the general N -atom
case.

The two-particle toy model

The analysis of a system with two particles only, which
was pioneered by [49], is often used to gain insight in the
N -body case, see e.g. [21, 50] in the context of microwave
spectroscopy. Here we consider a pair of atoms each with
two internal states |1〉 and |2〉 (Fig.4). The initial state
of the two-particle system is

|11〉 ⊗ |ψ0〉, (7)

where |ψ0〉 describes the external state of the pair and is
symmetric by exchange of the two (bosonic) particles.

The two-body state just after the first π/2 pulse of the
Ramsey sequence is

[
1

2
|A〉+

1√
2
|B〉+

1

2
|C〉
]
⊗ |ψ0〉. (8)

Here we have introduced the three states

|A〉 = |11〉 |B〉 =
1√
2

(|12〉+ |21〉) |C〉 = |22〉
(9)

−4 −2 0 2 4

0
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/
h̄
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FIG. 4. Energy levels of the relative motion of zero angular
momentum for a two-particle system in a 3D harmonic trap
of frequency ω, as function of the scattering length. To model
properly the experimental situation, the characteristic length
az =

√
~/mω is chosen equal to the interparticle distance d =

n̄−1/2 (d ∼ az ∼ 160 nm for n̄ = 40 µm−2, i.e. ~ω = ~2n̄/m.
Therefore the spacing ∼ 2~ω between adjacent levels is large
compared to the interaction energy per particle, ∼ ~2n̄g̃/m,
since g̃ � 1. The initial state |ψ0〉 considered in the text is
marked as • and the two other relevant states |φ0〉 and |χ0〉
are marked as ◦. All three scattering lengths a11, a12, a22 are
close to each other (figure not to scale for actual Rb values).

which correspond to the triplet states, resulting from the
coupling of the two internal states viewed as pseudo-spins
1/2.

The time evolution is described by three operators
Ûij(t) and the state of the system reads at time t:

1

2
|A〉 ⊗

(
Û11(t)|ψ0〉

)
+

1√
2
|B〉 ⊗

(
Û12(t)|ψ0〉

)

+
1

2
|C〉 ⊗

(
Û22(t)|ψ0〉

)
. (10)

The action of the second π/2 pulse at time t reads:

|1〉 → 1√
2

(
|1〉+ eiα|2〉

)
|2〉 → 1√

2

(
|2〉 − e−iα|1〉

)
,

(11)
where α = 2πνt is the phase of the microwave at this
time. After the second pulse, we find the fraction f2(t)
transferred to internal state |2〉:

f2(t, α) =
1

2
+

1

4
<
[
eiα
(
〈Û†12Û11〉+ 〈Û†22Û12〉

)]
, (12)

where the averages are taken in state |ψ0〉.
The contact is calculated as the derivative with respect

to the scattering length of the energy of the system (here
the pair of atoms) at constant entropy and in thermal
equilibrium. Therefore we can suppose that |ψ0〉 is an
eigenstate of the two-particle system for the scattering
length a11 and eventually perform a statistical average
over |ψ0〉 at the end of the analysis.
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To calculate the various matrix elements 〈Û†ijÛkl〉 en-
tering in the expression (12) of the Ramsey signal, we
introduce the eigenbases of the two-particle system for
the scattering lengths a12 and a22, denoted respectively
{|φn〉} and {|χn〉}. For 87Rb, the three scattering lengths
a11, a12, a22 are close to each other (5% difference at
most). This means that essentially one state contributes
to the expansion of |ψ0〉 on the basis {|φn〉} or {|χn〉}:

|ψ0〉 ≈ |φ0〉 ≈ |χ0〉. (13)

This validates the assumption of constant entropy needed
for the calculation of the contact: the populations of the
eigenstates of the external motion of the two-particle sys-
tem are quasi-unchanged by the Ramsey pulses (Fig.4).

With this assumption, we find

〈Û†12Û11〉 ≈ ei(E12−E11)t/~, 〈Û†22Û12〉 ≈ ei(E22−E12)t/~

(14)
where Eij includes both the single atom energy ±hν0/2
and the interaction energy of the atom pair. The Ramsey
signal now reads:

f2(t) ≈ 1

2
+

1

4
cos [α+ (E12 − E11)t/~]

+
1

4
cos [α+ (E22 − E12)t/~] . (15)

It is maximal for

2hν = E22 − E11 (16)

as announced in the main text, and it reaches f2 = 1
when a12 is equal to the arithmetic mean of a11 and a22.
These conclusions are unchanged when one subsequently
performs a statistical average over |ψ0〉.

Achieving a full transfer in the N-body Ramsey
sequence

We consider a collection of N two-level atoms with
internal states |1〉, |2〉, and we assume that the initial
state for the Ramsey sequence corresponds to having all
atoms in the internal state |1〉:

|Ψ0〉 =
1√
N !

(
â†1

)N
|0〉, (17)

with a given external many-body state |ψ0〉.
After the first π/2 pulse, the collective internal state

is

|Ψ1〉 =
1√

2N N !

(
â†1 + â†2

)N
|0〉

=
1√

2N N !

N∑

N1=0

(
N

N1

)(
â†1

)N1
(
â†2

)N2

|0〉. (18)

We denote E(N1, N2) the energy of the system with N1

particles in |1〉 and N2 = N −N1 particles in |2〉. After
the evolution for a duration t, the state becomes:

1√
2N N !

N∑

N1=0

(
N

N1

)
e−iE(N1,N2)t/~

(
â†1

)N1
(
â†2

)N2

|0〉.

(19)
The second π/2 pulse at time t corresponds to

â†1 →
1√
2

(
â†1 + eiαâ†2

)
, â†2 →

1√
2

(
â†2 − e−iαâ†1

)
,

(20)
where α = 2πνt is the phase of the microwave at time t.

In the binomial expansion (18), only the terms
(N1, N2) that are close to (N/2, N/2) contribute signifi-
cantly. Therefore we perform a Taylor expansion of the
energy of each term at first order in q = (N1 −N2)/2:

E

(
N

2
+ q,

N

2
− q
)
≈ E

(
N

2
,
N

2

)
+ (µ1 − µ2)q (21)

where

µ1 =

(
∂E

∂N1

)

N2

, µ2 =

(
∂E

∂N2

)

N1

. (22)

With this approximation, each term in the sum (19) has
a phase that is proportional to (N1−N2)t and we expect
a full transfer to level |2〉 after the second Ramsey pulse
for :

hν = µ1 − µ2. (23)

Validity of the expansion (21). In order to give a nec-
essary condition on the parameters of the problem for
(21) to hold, we consider the T = 0 case and use the
expression for the mean-field energy:

E(N1, N2) =
1

2
(N2 −N1)hν0 + (24)

~2

2mL2

(
g̃11N

2
1 + 2g̃12N1N2 + g̃22N

2
2

)
,

where L2 is the area of the box confining the gas. One
then has the exact result:

E

(
N

2
+ q,

N

2
− q
)

= E

(
N

2
,
N

2

)
(25)

+

[
−hν0 +

~2

2m
(g̃11 − g̃22)n̄

]
q

+
~2

2mL2
(g̃11 + g̃22 − 2g̃12)q2.

In practice, we operate the Ramsey scheme in the regime

~t
2m
|g̃11 − g̃22|n̄ ∼ 1 (26)

to obtain a good precision on the determination of
g̃11 − g̃22. Using the fact that for the binomial distri-
bution, 〈q2〉 = N/4, we deduce that the contribution of
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the last line of (25) [which was omitted in Eq. (21)] can
be neglected if:

1

4
|g̃11 + g̃22 − 2g̃12| . |g̃11 − g̃22| (27)

meaning that the interspecies scattering length a12 has
to be close to the average of the intraspecies ones, a11
and a22. This condition is well fulfilled for 87Rb.

Using the approximate SU(2) symmetry

We have seen above that provided the inequality (27)
is satisfied, one can achieve a full transfer from |1〉 to
|2〉 in the Ramsey sequence operating in the regime (26),
provided the microwave frequency is chosen such that

hν =

(
∂E

∂N1

)

N2

−
(
∂E

∂N2

)

N1

. (28)

Here, the energy E is calculated for the parameters N1 =
N2 = N/2 and the 3 scattering lengths a11, a12 and a22.
Suppose now that all three scattering lengths are close
to each other, so that we can expand:

E(N1, N2, a11, a12, a22) ≈ E(N1, N2, a, a, a) +

(a12 − a11)
∂E

∂a12
+ (a22 − a11)

∂E

∂a22
(29)

where we have set a ≡ a11. The SU(2) symmetry is exact
at the point in parameter space where a12 = a22 = a.

We note that:

∂2E

∂N1 ∂a12

(
N

2
,
N

2
, a, a, a

)
=

∂2E

∂N2 ∂a12

(
N

2
,
N

2
, a, a, a

)

(30)
so that the term ∝ (a12 − a11) does not contribute to
(28). This leads to

h∆ν = (a22−a11)

[
∂2E

∂N1 ∂a22
− ∂2E

∂N2 ∂a22

](
N

2
,
N

2
, a, a, a

)
.

(31)
Now, the Hamiltonian of the binary system for a reg-

ularized zero-range potential is

Ĥ = Ĥ0 +
∑

i,j

aijK̂ij (32)

where

K̂ij =
2π~2

m

∫∫
ψ̂†i (r) ψ̂†j (r

′) δ̂(r−r′) ψ̂j(r′) ψ̂i(r) d3r d3r′.

(33)
Hellmann–Feynman theorem thus leads to:

h∆ν ≈ (a22−a11)

[
∂〈K̂22〉
∂N1

− ∂〈K̂22〉
∂N2

](
N

2
,
N

2
, a, a, a

)

(34)

At the SU(2) point, we can connect the two-component
system with the single component system with the same
scattering length:

〈K̂22〉 =
N2

2

(N1 +N2)2
〈K̂〉 (35)

We then find:

N h∆ν ≈ (a22 − a11) 〈K̂〉, (36)

which also reads, setting ∆a = a22 − a11:

C =
16π2ma2N

~
∆ν

∆a
, (37)

and which coincides with the expressions (3,5) of the
main text.

Contact and two-body correlation within
Bogoliubov approach

Bogoliubov operators and contact

We consider a 2D Bose gas confined in a square box
L × L with periodic boundary conditions. We denote
âk the operator that annihilates a particle with momen-
tum ~k. We assume that the temperature is low enough
so that most of the particles accumulate in the ground
state of the box k = 0. Since the confining box has a
finite size, this does not violate Mermin-Wagner theo-
rem, which holds for a gas in the thermodynamic limit.
Note that instead of assuming a macroscopic population
of k = 0, one may also use another version of the Bogoli-
ubov approach in terms of phase and density fluctuations
(see e.g. [39]). In that approach, which leads to the same
results as the one used here, one assumes that the density
fluctuations are small and that the phase fluctuations can
be expanded as a Fourier series (no isolated vortex).

The Bogoliubov Hamiltonian is diagonalized by intro-
ducing the bosonic operators b̂k = ukâk − vkâ†−k with

uk, vk = ±
[

k2 + 2g̃n̄

2k(k2 + 4g̃n̄)1/2
± 1

2

]1/2
, (38)

and the energy of the Bogoliubov modes

εk =
~2k
2m

[
k2 + 4g̃n̄

]1/2
. (39)

The Bogoliubov Hamiltonian reads:

Ĥ = E0 +
∑

k

εk b̂
†
kb̂k. (40)

In the case studied in the paper, where the thickness az
of the gas is large compared to the scattering length, the
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ground-state energy E0 can be estimated by averaging
the mean-field 3D result:

E
(3D)
0 =

2π~2a
m

n(3D)N (41)

over the Gaussian density profile n(3D)(z) =

n̄ e−z
2/a2z/

√
πa2z along the z direction:

E0 =

∫
E

(3D)
0 (z) n(z) dz∫

n(z) dz
=

~2g̃
2m

n̄N (42)

The thermal averages are 〈b̂k〉 = 0 and 〈b̂†kb̂k′〉 =
δk,k′ Nk, where Nk is the Bose–Einstein distribution

Nk =
[
eεk/kBT − 1

]−1
. (43)

The internal energy in thermal equilibrium thus reads:

E = E0 +
∑

k

εkNk. (44)

The contact is by definition proportional to the derivative
of this energy with respect to a at constant entropy, i.e.
at constant populations Nk of the modes, which gives:

C = CT=0 + Cthermal (45)

with

CT=0 =
8πma2

~2
∂E0

∂a
= C0 (46)

and

Cthermal =
8πma2

~2

[∑

k

∂εk
∂a
Nk
]

= C0
2

N

∑

k

k√
k2 + 4g̃n̄

Nk. (47)

Density fluctuations

Average density. The average density of the gas is
calculated from n̄ = 〈n̂(r)〉 with n̂(r) = ψ̂†(r)ψ̂(r), and
it can be split into a T = 0 and a thermal component:

n̄T=0 =
N0

L2
+

1

L2

∑

k 6=0

v2k (48)

and

n̄thermal =
1

L2

∑

k 6=0

(u2k + v2k) Nk. (49)

Density correlations. We start from the 4-field cor-
relation function written in normal order G2(r) =

〈ψ̂†(0)ψ̂†(r)ψ̂(r)ψ̂(0)〉, which we expand up to first or-
der in nthermal/n̄:

G2(r) =
N2

0

L4
+

N0

L4
× (50)

∑

k 6=0

eik·r
(
〈â−kâk〉+ 〈â†−kâ

†
k〉+ 2〈â†kâk〉

)
+ 2〈â†kâk〉

We can then calculate the g2 function used in the main
text:

g2(r) =
G2(r)

n̄2
= gT=0

2 (r) + gthermal
2 (r) (51)

and we find by at first order in (n̄− n̄0)/n̄ [see e.g. [39]]:

gT=0
2 (r) = 1 +

2

N

∑

k 6=0

eik·rvk(uk + vk) (52)

and

gthermal
2 (r) =

2

N0

∑

k 6=0

eik·r (uk + vk)
2 Nk. (53)

We notice that

(uk + vk)2 =
k√

k2 + 4g̃n̄
(54)

which shows the relation (6) of the main text:

Cthermal

C0
= gthermal

2 (0). (55)

On the other hand, the integral giving gT=0
2 in r = 0 is

UV divergent since vk ∝ 1/k2 and uk+vk ∼ 1 at infinity.

Lee-Huang-Yang (LHY) correction [34]

In 3D and at zero-temperature, the first beyond-mean-
field correction to the contact is (see e.g. Eq.(2) in [19])

δC

C
=

5

2
× 128

15
√
π

√
n(3D)a3. (56)

In our setup, the average 3D density is n(3D) =
n̄/(az

√
2π). For a 2D density n̄ = 40 atoms/µm2 and

az = 160 nm, this gives n̄(3D) ≈ 1.0×1014 atoms/cm3 and
δC/C ≈ 4.7 %. For this n̄, the mean-field contribution to
the contact corresponds to a shift ∆ν = −22 Hz (Fig. 2 of
the main text), and the LHY correction is ≈ 1 Hz, within
the uncertainty of our measurements. Note that a more
precise theoretical estimate of the LHY correction for our
planar geometry should start from the general expression
of the ground-state energy of a 2D Bose gas [40, 41, 51]
and the relation between the 2D scattering length and
the 3D one [26].
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Estimate for the contribution of the 3-body contact

Using the transition rates derived in [12], Fletcher et
al. [21] have shown that the contribution of the 3-body
contact to the many-body resonance shift is related to
the shift due to the 2-body contact by:

∆ν3
∆ν2

= 5.0π2 a
C3

C2
. (57)

Now an estimate of C3/C2 for a dilute BEC is provided
by [14]:

C3

C2
∼ 0.02 n(3D)a2 (58)

so that the contribution of the 3-body contact is reduced
by a factor ∼ n(3D)a3 ∼ 10−5 with respect to the contri-
bution of the 2-body contact. Even though the 2D nature
of the thermodynamics of our gas may bring some sig-
nificant corrections to this crude estimate, we can safely
assume that effects related to the 3-body contact cannot
be detected with our experimental protocol.

Virial expansion for a 2D Bose gas

In [35], H.c Ren gives the result of perturbative ther-
modynamics applied to a regularized contact potential in
2D. Strictly speaking, this is not a virial expansion, i.e.
an expansion in powers of density or fugacity, since the
author takes exactly into account all powers of n̄ in the
ideal gas case.

Starting from the 2D scattering length a2, Ren intro-
duces the dimensionless coupling

α(T ) =
1

ln
(

λ2

2πa22

)
+ γ

(59)

where λ(T ) is the thermal wavelength and γ the Euler
constant, which is related to g̃ by g̃ ≈ 4πα. He then per-
forms a systematic expansion of various thermodynamic
functions in powers of α. Note that the T dependence of
α explicitly breaks the scale invariance of the problem,
as expected after regularization of the contact interaction
in 2D. However for our experimental parameters, this T -
dependence plays a negligible role.

The value of the free energy F reads at order 2 in α:

F (N,L2, T, a2) = F0(N,L2, T ) + α
4π~2N2

mL2

− α2 8πL2~2

mλ4
φ
[
1− e−Nλ

2/L2
]
,(60)

where F0 is the ideal Bose gas result and where the func-
tion φ(z) is defined by:

φ(z) = B(z) +
1

2
D(z) (61)

with

B(z) =
∞∑

r,s,t=1

zr+s+t√
rs(r + t)(s+ t)

ln

√
(r + t)(s+ t) +

√
rs√

(r + t)(s+ t)−√rs
(62)

and

D(z) =
∞∑

r,s=1

zr+s

rs
ln

2rs

r + s
. (63)

Tan’s contact

C =
8πma2

~2

(
∂F

∂a

)

N,L2,T

(64)

can then be calculated using (59) together with the link
between the 2D (a2) and 3D (a) scattering lengths and
the size of the ground state along the z direction (az)
[26, 52]

a2 ≈ 2.092 az exp

(
−
√
π

2

az
a

)
. (65)

The result is plotted in Fig. 3 of the article.
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C. Weitenberg, S. Nascimbene, J. Beugnon, and J. Dal-
ibard, Nat. Commun. 6, 6162 (2015).

[33] Y.-Q. Zou, B. Bakkali-Hassani, C. Maury, E. Le Cerf,
S. Nascimbene, J. Dalibard, and J. Beugnon, arXiv:2007.
(2020).

[34] T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106,
1135 (1957).

[35] H.-c. Ren, Journal of statistical physics 114, 481 (2004).
[36] N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. A 66,

043608 (2002).
[37] C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin, Nature

470, 236 (2011).
[38] T. Yefsah, R. Desbuquois, L. Chomaz, K. J. Günter, and

J. Dalibard, Phys. Rev. Lett. 107, 130401 (2011).
[39] C. Mora and Y. Castin, Phys. Rev. A 67, 053615 (2003).
[40] C. Mora and Y. Castin, Phys. Rev. Lett. 102, 180404

(2009).
[41] S. Fournais, M. Napiorkowski, R. Reuvers, and J. P.

Solovej, Journal of Mathematical Physics 60, 071903
(2019).

[42] L. Giorgetti, I. Carusotto, and Y. Castin, Phys. Rev. A
76, 013613 (2007).

[43] M. Holzmann and W. Krauth, Phys. Rev. Lett. 100,
190402 (2008).
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In atomic systems, clock states feature a zero projection of the total angular momentum and thus
a low sensitivity to magnetic fields. This makes them widely used for metrological applications like
atomic fountains or gravimeters. Here, we show that a mixture of two such non-magnetic states
still display magnetic dipole-dipole interactions. Using high resolution spectroscopy of a planar gas
of 87Rb atoms with a controlled in-plane shape, we explore the effective isotropic and extensive
character of these interactions and demonstrate their tunability. Our measurements set strong
constraints on the relative values of the s-wave scattering lengths aij involving the two clock states.

Quantum atomic gases constitute unique systems to
investigate many-body physics thanks to the precision
with which one can control their interactions [1, 2]. Usu-
ally, in the ultra-low temperature regime achieved with
these gases, contact interactions described by the s-wave
scattering length dominate. In the recent years, non-
local interaction potentials have been added to the quan-
tum gas toolbox. Long-range interactions can be medi-
ated thanks to optical cavities inside which atoms are
trapped [3]. Electric dipole-dipole interactions are rou-
tinely achieved via excitation of atoms in Rydberg elec-
tronic states [4]. Atomic species with large magnetic mo-
ments in the ground state, like Cr, Er or Dy, offer the
possibility to explore the role of magnetic dipole-dipole
interactions (MDDI) [5]. The latter case has led for in-
stance to the observation of quantum droplets [6], roton
modes [7], or spin dynamics in lattices with off-site inter-
actions [8–10].

For alkali-metal atoms, which are the workhorse of
many cold-atom experiments, the magnetic moment is
limited to . 1 Bohr magneton (µB) and in most cases,
MDDI have no sizeable effect on the gas properties [11].
However, some paths have been investigated to evidence
their role also for these atomic species. A first route con-
sists in specifically nulling the s-wave scattering length
using a Feshbach resonance [12, 13], so that MDDI be-
come dominant. A second possibility is to operate with a
multi-component (or spinor) gas [14], using several states
from the ground-level manifold of the atoms. One can
then take advantage of a possible coincidence of the var-
ious scattering lengths in play. When it occurs, the spin-
dependent contact interaction is much weaker than the
spin-independent one, and MDDI can have a significant
effect [15], e.g. on the generation of spin textures [16, 17]
and on magnon spectra [18]. In all instances studied
so far with these multi-component gases, each compo-
nent possesses a non-zero magnetic moment and creates
a magnetic field that influences its own dynamics, as well
as the dynamics of the other component(s).

In this Letter, we present another, yet unexplored,
context in which MDDI can influence significantly the
physics of a two-component gas of alkali-metal atoms.

(a) (b)

|2〉

|1〉
F = 1

F = 2

x

z B

Θ

(c) (d)

FIG. 1. (a) Level diagram of the hyperfine ground-level man-
ifold showing the two states relevant to this work |1〉 ≡ |F =
1,m = 0〉 and |2〉 ≡ |F = 2,m = 0〉. (b) Image of the atomic
cloud obtained through absorption imaging along the direc-
tion perpendicular to the atomic plane. Atoms are confined
in the xy plane in a disk of radius 12 µm. The orientation of
the magnetic field B is tuned in the xz plane. (c) Schemat-
ics of atoms prepared in the state |1〉, with no MDDI in this
case. MDDI are also absent when all atoms are in |2〉. (d)
Significant MDDI occur for atoms in a linear superposition of
|1〉 and |2〉.

We operate with a superposition of the two hyperfine
states of 87Rb involved in the so-called hyperfine clock
transition, |1〉 ≡ |F = 1,mZ = 0〉 and |2〉 ≡ |F =
2,mZ = 0〉, where the quantization axis Z is aligned
with the uniform external magnetic field (Fig. 1a). For
a single-component gas prepared in one of these two
states, the average magnetization is zero by symmetry
and MDDI have no effect. However, when atoms are si-
multaneously present in these two states, we show that
magnetic interactions between them are non-zero, and
that the corresponding MDDI can modify significantly
the position of the clock transition frequency.

Our work constitutes a magnetic analog of the obser-
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vation of electric dipole-dipole interactions (EDDI) be-
tween molecules in a Ramsey interferometric scheme [19].
There, in spite of the null value of the electric dipole mo-
ment of a molecule prepared in an energy eigenstate, it
was shown that EDDI can be induced in a molecular
gas by preparing a coherent superposition of two rota-
tional states. Both in our work and in [19], the coupling
between two partners results in a pure exchange inter-
action, with one partner switching from |1〉 to |2〉, and
the other one from |2〉 to |1〉. This exchange Hamiltonian
also appears for resonant EDDI between atoms prepared
in different Rydberg states [20].

In spite of their different origin, the physical manifes-
tations of MDDI in our setup are similar to the stan-
dard ones. Here, we study it for a 2D gas using high-
resolution Ramsey spectroscopy (Fig. 1b) and we explic-
itly test two important features of DDI in this planar
geometry: their effect does not depend on the in-plane
shape of the cloud (isotropy), nor on its size (extensivity).
More precisely, we recast the role of MDDI as a modifi-
cation of the s-wave inter-species scattering length a12,
and show the continuous tuning of a12 by changing the
orientation of the external magnetic field with respect to
the atom plane. We obtain in this way an accurate infor-
mation on the relative values of intra- and inter-species
bare scattering lengths of the studied states.

We start with the restriction of the MDDI Hamilto-
nian to the clock state manifold [21], using the magnetic
interaction between two electronic spins ŝA and ŝB with
magnetic moments mA,B = 2µBsA,B

V̂dd(r,u) =
µ0µ

2
B

πr3
[ŝA · ŝB − 3(ŝA · u)(ŝB · u)], (1)

where r is the distance between the two dipoles and u
is the unit vector connecting them. The calculation de-
tailed in [22] shows that MDDI do not modify the in-
teractions between atoms in the same state |1〉 or |2〉,
but induce a non-local, angle-dependent, exchange inter-
action (Figs. 1cd). The second-quantized Hamiltonian of
the MDDI for the clock states is thus:

Ĥ
(1,2)
dd =

µ0µ
2
B

4π

∫∫
d3rA d3rB

1− 3 cos2 θ

r3
Ψ̂†2(rA) Ψ̂†1(rB) Ψ̂2(rB) Ψ̂1(rA), (2)

where the Ψ̂i(rα) are the field operators annihilating a
particle in state |i〉 at position rα and r = |rA − rB |.

We now investigate the spatial average value of Ĥ
(1,2)
dd .

We note first that for a 3D isotropic gas, the angular in-

tegration gives 〈Ĥ(1,2)
dd 〉3D = 0, as usual for MDDI [5].

We then consider a homogeneous quasi-2D Bose gas con-
fined isotropically in the xy plane with area L2. We as-
sume that the gas has a Gaussian density profile along the
third direction z, n1,2(z) = N1,2e

−z2/`2z/
√
π`zL

2, where

`z =
√

~/mωz is the extension of the ground state of the

harmonic confinement of frequency ωz. One then finds
[23–25]:

〈Ĥ(1,2)
dd 〉2D =

µ0µ
2
BN1N2

3
√

2π`zL2
(3 cos2 Θ− 1), (3)

where Θ is the angle between the external magnetic field
B and the direction perpendicular to the atomic plane.
This energy is maximal and positive for B perpendicular
to the atomic plane (Θ = 0), and minimal and negative
for B in the atomic plane (Θ = π/2). Eq. (3) shows that
the energy per atom in state |1〉 depends only on the
spatial density N2/L

2 of atoms in state |2〉, which proves
the extensivity.

In 2D, the Fourier transform of the dipole-dipole
Hamiltonian possesses a well-defined value at the ori-
gin k = 0 [23]. Consequently, for a large enough sam-

ple (typically L � `z), the average energy 〈Ĥ(1,2)
dd 〉2D,

evaluated by switching the integral (2) to Fourier space,
is independent of the system shape. This contrasts
with the 3D case, for which the MDDI energy changes
sign when switching from an oblate to a prolate cloud
[5, 26]. Considering the effective isotropy of the MDDI
in this 2D configuration, it is convenient to describe
their role as a change δa12 of the inter-species scatter-

ing length with respect to its bare value a
(0)
12 . In 2D,

interspecies contact interactions lead to 〈Ĥ(1,2)
contact〉2D =√

8π a12 ~2N1N2/(m`zL
2) and we deduce

δa12(Θ) = add
(
3 cos2 Θ− 1

)
, (4)

where add = µ0µ
2
Bm/(12π~2).

We now tackle the experimental observation of this
modification of the inter-species scattering length in a
quasi-2D Bose gas. The experimental setup was de-
scribed in [27, 28]. Basically, a cloud of 87Rb atoms in
state |1〉 is confined in a 2D box potential: A “hard-wall”
potential provides a uniform in-plane confinement inside
a 12 µm radius disk, unless otherwise stated. The vertical
confinement can be approximated by a harmonic poten-
tial with frequency ωz/2π = 4.4(1) kHz, corresponding
to `z = 160 nm. We operate in the weakly interacting
regime characterized by the dimensionless coupling con-
stant g̃ =

√
8π a11/`z = 0.16(1), where a11 is the s-wave

scattering length for atoms in |1〉. The in-plane density
of the cloud is n̄ ≈ 95/µm2 and we operate at the lowest
achievable temperature in our setup T < 30 nK. A ≈ 0.7
Gauss bias magnetic field B with tunable orientation is
fixed during the experiment.

Spectroscopy is performed thanks to a Ramsey se-
quence similar to [29]. Atoms initially in |1〉 are coupled
to state |2〉 with a microwave field tuned around the hy-
perfine splitting of 6.8 GHz. A first Ramsey pulse with a
typical duration of a few tens of µs creates a superposi-
tion of the two clock states with a tunable weight. After
an “interrogation time” TR = 10 ms, a second identical
Ramsey pulse is applied [30]. After this second pulse,
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FIG. 2. (a-b) Normalized Ramsey oscillations measured for B
perpendicular (Θ = 0◦) or parallel (Θ = 90◦) to the atomic
plane. For both cases, we show the transferred population
as a function of detuning δ to the single-atom resonance.
In each case the resonance is marked by a vertical dashed
line. The circles (resp. squares) correspond to a balanced
(resp. unbalanced) mixture f = 0 (resp. f ≈ 0.95). Verti-
cal error bars represent the standard deviation from the 2
measurements realized for each points. (c) Variation of the
frequency shift ∆ν with the transferred fraction f . We re-
strict to positive imbalances, for which the population in |2〉
remains small enough to limit the role of two-body relaxation
and spin-changing collisions. For each angle, the solid line is
a linear fit to the data.

we perform absorption imaging to determine the popu-
lation in |2〉. We measure the variation of this popu-
lation as a function of the frequency of the microwave
field, see Figs. 2ab. We fit a sinusoidal function to the
data, so as to determine the resonance frequency of the
atomic cloud. All frequency measurements ∆ν are re-
ported with respect to reference measurements of the
single-atom response that we perform on a dilute cloud.
The typical dispersion of the measurement of this single-
atom response is about 1 Hz, and provides an estimate
of our uncertainty on the frequency measurements. We
checked that the measured resonance frequencies are in-
dependent of TR in the range 5 to 20 ms. Shorter delays
lead to a lower accuracy on the frequency measurement.
For longer delays, we observe demixing dynamics [31]
between the two components and a modification of the

resonance frequency.
In the following, we restrict to the case of strongly de-

generate clouds [32] described in the mean-field approxi-
mation. Consider first the case of a uniform 3D gas. The
resonant frequency ∆ν can be computed by evaluating
the difference of mean-field shifts for the two components
[29]:

∆ν =
~
M
n [a22 − a11 + (2a12 − a11 − a22)f ] . (5)

Here the aij are the inter- and intra-species scattering
lengths, n = n1 + n2 is the total 3D density of the cloud
where each component i has a density ni after the first
Ramsey pulse and f = (n1 − n2)/(n1 + n2) describes the
population imbalance between the two states.

It is interesting to discuss briefly two limiting cases of
Eq. (5). In the low transfer limit f ≈ 1, the first Ramsey
pulse produces only a few atoms in state |2〉, imbedded
in a bath of state |1〉 atoms. Interactions within pairs of
state |2〉 atoms then play a negligible role, so that the
shift ∆ν does not depend on a22. It is proportional to
(a12−a11), hence sensitive to MDDI. In the balanced case
f = 0, the Ramsey sequence transforms a gas initially
composed only of atoms in state |1〉 into a gas composed
only of atoms in state |2〉. The energy balance between
initial and final states then gives a contribution ∆ν ∝
(a22 − a11), which is insensitive to MDDI.

It is important to note that the validity of Eq. (5) for
a many-body system is not straightforward and requires
some care [33, 34]. We discuss in Ref. [35] the applica-
bility of this approach to our experimental system, and
show that it relies on the almost equality of the three
relevant scattering lengths aij of the problem. Note also
that in our geometry, even if the gas is uniform in plane,
the density distribution along z is inhomogeneous and
the spectroscopy measurement is thus sensitive to the in-
tegrated density n̄(x, y) =

∫
dz n(x, y, z).

We now discuss the measurement of the frequency shift
∆ν as a function of the imbalance f for different orien-
tations of the magnetic field with respect to the atomic
plane, see Fig. 2c. For each orientation, we confirm the
linear behaviour expected from Eq. (5). The variation of
the slope d∆ν/df for different orientations reflects the
expected modification of a12 with Θ of Eq. (4). More
quantitatively, we fit a linear function to the data for
each Θ. The ratio of the slope to the intercept of this
line is R(Θ) = (a22 + a11 − 2a12(Θ))/(a22 − a11). Inter-
estingly, this ratio is independent of the density calibra-
tion and is thus a robust observable.

The evolution of the measured ratio for different angles
is shown in Fig. 3. For Θ = 0◦ and 90◦, we also show the
ratio measured for a density approximately twice smaller
than the one of Fig. 2. These two points overlap well
with the main curve, which confirms the insensitivity of
R with respect to n̄. We fit a sinusoidal variation Θ 7→
α+β cos(2Θ) to R(Θ) from which we extract α = 0.53(1)
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FIG. 3. Variation of the ratio R(Θ) determined from the
data of Fig. 2c with the magnetic field orientation Θ. Blue
circles (resp. red squares) correspond to the measurement
at maximum density (resp. half density). The variation of
this ratio is well fitted by a cosine variation compatible with
the prediction for MDDI. The amplitude and offset of this
variation allow one to determine accurately relative values
of the scattering lengths. Vertical error bars represent the
uncertainty obtained from the fitting procedure of the data
in Fig.2. The uncertainty on the determination of the angles is
limited by the geometrical arrangement of the coils generating
the field B, estimated here at the level of 1◦.

and β = 0.30(1). We then determine a22−a11 = −3add/β

and a
(0)
12 − a11 = add(3α− 3− β)/(2β). Using add =

0.70 a0, with a0 the Bohr radius, we find a22 − a11 =

−7.0(2) a0 and a
(0)
12 − a11 = −2.0(1) a0. These results

are in good agreement with the values predicted in [36],

a11 = 100.9 a0, a22 − a11 = −6.0 a0 and a
(0)
12 − a11 =

−2.0 a0.
All experiments described so far have been realized

with a fixed disk geometry. As stated above, the descrip-
tion of the contribution of MDDI as a modification of
the inter-species scattering length relies on the effective
isotropy of the interaction in our 2D system. We inves-
tigate this issue by measuring the frequency shift of the
clock transition for an in-plane magnetic field orientation
(Θ = 90◦), which breaks the rotational symmetry of the
system. We operate with a fixed density (n̄ ≈ 80/µm2)
and a varying elliptical shape. We choose a large imbal-
ance f ≈ 0.95 to have the highest sensitivity to possible
modifications of a12. We define an anisotropy parameter
η = (Ry −Rx)/(Rx +Ry) for the ratio of the lengths Rx
and Ry of the two axes of the ellipse. We report in Fig. 4
the measured shifts as a function of η and confirm, within
our experimental accuracy, this (counter-intuitive) inde-
pendence of the MDDI energy with respect to the cloud
shape. We have also investigated the influence of the size
of the cloud on ∆ν (inset of Fig. 4). Here we choose a
disk-shaped cloud and a magnetic field perpendicular to
the atomic plane. We observe no detectable change of ∆ν
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FIG. 4. Interaction shift ∆ν as a function of the anisotropy
parameter η. For a fixed density and an in-plane magnetic
field, we vary the anisotropy of the elliptically-shaped 2D
cloud. No dependence on the shape of the cloud is observed,
in agreement with the expected isotropic character of MDDI
in 2D when Rx,y � `z. Vertical error bars represent the esti-
mated 1 Hz accuracy on the determination of the single-atom
resonance frequency. Inset: Interaction shift as a function of
the size of the cloud, for B normal to the atom plane.

when changing the disk radius from 8 to 18 µm , which
confirms the absence of significant finite-size effects.

In conclusion, thanks to high resolution spectroscopy
we revealed the non-negligible role of magnetic dipolar
interactions between states with a zero average mag-
netic moment. We observed and explained the modi-
fication of the inter-species scattering length in a two-
component cloud. Because of the smallness of MDDI
in our case, we did not observe any modification of the
global shape of the cloud. This contrasts with the case
of single-component highly-magnetic dipolar gases where
the shape of a trapped gas has been modified with a static
[37–39] or time-averaged-field [11, 40]. Nevertheless, the
effect observed here provides a novel control on the dy-
namics of two-component gases, for instance to tune their
miscibility or to engineer spin textures. In addition, one
can exploit the non-local character of MDDI by confin-
ing the atoms in a deep lattice at unit filling, where the
exchange coupling evidenced here will implement the so-
called quantum XX model [41] without requiring any tun-
neling between lattice sites. The extreme sensitivity of
the clock transition and its protection from magnetic per-
turbations will then provide a novel, precise tool to detect
the various phases of matter predicted within this model.
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[4] R. Löw, H. Weimer, J. Nipper, J.B. Balewski,
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B. Naylor, E. Maréchal, O. Gorceix, A.M. Rey, L. Vernac,
and B. Laburthe-Tolra, “Out-of-equilibrium quantum
magnetism and thermalization in a spin-3 many-body
dipolar lattice system,” Nat. Commun. 10, 1–9 (2019).

[11] S. Giovanazzi, A. Görlitz, and T. Pfau, “Tuning the
dipolar interaction in quantum gases,” Phys. Rev. Lett.
89, 130401 (2002).

[12] M. Fattori, G. Roati, B. Deissler, C. D’Errico, M. Za-
ccanti, M. Jona-Lasinio, L. Santos, M. Inguscio, and
G. Modugno, “Magnetic dipolar interaction in a Bose-
Einstein condensate atomic interferometer,” Phys. Rev.
Lett. 101, 190405 (2008).

[13] S.E. Pollack, D. Dries, M. Junker, Y. P. Chen, T.A. Cor-
covilos, and R.G. Hulet, “Extreme tunability of inter-
actions in a 7Li Bose-Einstein condensate,” Phys. Rev.
Lett. 102, 090402 (2009).

[14] D.M. Stamper-Kurn and M. Ueda, “Spinor Bose gases:
Symmetries, magnetism, and quantum dynamics,” Rev.
Mod. Phys. 85, 1191–1244 (2013).

[15] S. Yi, L. You, and H. Pu, “Quantum phases of dipolar
spinor condensates,” Phys. Rev. Lett. 93, 040403 (2004).

[16] M. Vengalattore, S.R. Leslie, J. Guzman, and D.M.
Stamper-Kurn, “Spontaneously modulated spin textures

in a dipolar spinor Bose-Einstein condensate,” Phys. Rev.
Lett. 100, 170403 (2008).

[17] Y. Eto, H. Saito, and T. Hirano, “Observation of dipole-
induced spin texture in an 87Rb Bose-Einstein conden-
sate,” Phys. Rev. Lett. 112, 185301 (2014).

[18] G.E. Marti, A. MacRae, R. Olf, S. Lourette, F. Fang,
and D.M. Stamper-Kurn, “Coherent magnon optics in
a ferromagnetic spinor Bose-Einstein condensate,” Phys.
Rev. Lett. 113, 155302 (2014).

[19] B. Yan, S.A. Moses, B. Gadway, J.P. Covey, K.R.A. Haz-
zard, A.M. Rey, D.S. Jin, and J. Ye, “Observation of
dipolar spin-exchange interactions with lattice-confined
polar molecules,” Nature 501, 521–525 (2013).
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SUPPLEMENTAL MATERIAL

Restriction of the dipole-dipole interaction to the
clock state manifold

In this section, we evaluate the action of the mag-
netic dipole-dipole interaction inside the two-level man-
ifold relevant for the clock transition. First, using the
general expression for the coupling between a spin 1/2
(here the outer electron) and a spin i (here the 87Rb nu-
cleus with i = 3/2), we obtain the decomposition of the
clock states on the basis |sZ , iZ〉:

|1〉 ≡ |F = 1,mZ = 0〉

=
1√
2

(
−| − 1

2
; +

1

2
〉 + |+ 1

2
;−1

2
〉
)

(6)

and

|2〉 ≡ |F = 2,m = 0〉

=
1√
2

(
| − 1

2
; +

1

2
〉 + |+ 1

2
;−1

2
〉
)
. (7)

The magnetic interaction operator for two electronic
spins ŝA and ŝB with magnetic moments mA,B =
2µBsA,B is given by

V̂dd(r,u) =
µ0µ

2
B

πr3
[ŝA · ŝB − 3(ŝA · u)(ŝB · u)], (8)

where r is the distance between the two dipoles and
u is the unit vector connecting them. We calcu-
late the matrix elements of this operator in the basis
{|11〉, |12〉, |21〉, |22〉}, restricting to elastic interactions
which are the only relevant ones for the experimental
time scale. This leaves us with four different matrix
elements to compute: V1111, V2222, V1212 = V2121 and
V1221 = V2112, where Vijkl = 〈kl|V̂dd|ij〉. The calculation
in the basis (6,7) leads to

ŝZ |1〉 =
1

2
|2〉, ŝZ |2〉 =

1

2
|1〉 (9)

The operators ŝX and ŝY couple states with different mF

values and the associated matrix elements Vijkl inside the
clock state manifold are zero. The magnetic interaction
operator in Eq. (8) thus simplifies to

V̂dd(r, θ) =
µ0µ

2
B

πr3
(1− 3 cos2 θ) ŝZ,A ŝZ,B . (10)

We deduce that among the four matrix elements men-
tioned above, only

V1221 = V2112 =
µ0µ

2
B

4πr3
(1− 3 cos2 θ) (11)

is non-zero, where θ is the angle between u and the quan-
tization axis. This shows that MDDI do not modify the
interactions between atoms in the same state |1〉 or |2〉,
but induce a non-local, angle-dependent, exchange inter-
action. The second-quantized Hamiltonian of the MDDI
for the clock transition is thus:

Ĥ
(1,2)
dd =

µ0µ
2
B

4π

∫∫
d3rA d3rB

1− 3 cos2 θ

|rA − rB |3
× Ψ̂†2(rA) Ψ̂†1(rB) Ψ̂2(rB) Ψ̂1(rA), (12)

where the Ψ̂i(rα) are the field operators annihilating a
particle in state |i〉 at position rα.

Calculation of δa12

We consider a gas with a density distribution
n(x, y, z) = ρ(x, y)e−z

2/`2z/(`z
√
π) subject to a magnetic

field B = B(cos Θuz +sin Θux) which defines the quan-
tization axis Z for the spin states. We compute the mean-
field energy associated to magnetic dipole-dipole interac-
tions following Ref. [23]. In Fourier space, we express the
mean-field energy as

〈Hdd〉 =
1

2

1

(2π)3

∫
d3k ñ(k) Ṽdd(k) ñ(−k) (13)

where Ṽdd(k) = 3µ0µ
2
B [cos2 α− 1/3] is the Fourier trans-

form of the dipole-dipole interaction with α the angle
of the wavevector k with respect to B. The Fourier
transform of the density distribution is given by ñ(k) =

ek
2
z`

2
z/4ρ̃(kx, ky). Introducing k = |k|, we have cos(α) =

(kz cos Θ + kx sin Θ)/k and we get

〈Hdd〉 =
µ0µ

2
B

3
√

2π`z

{
1

(2π)2

∫
d2k ρ̃(kx, ky) ρ̃(−kx,−ky)

[
(3 cos2 Θ− 1) +

(
k2x
k2⊥

sin2 Θ− cos2 Θ

)
F(k⊥`z)

]}
, (14)

where we have introduced k⊥ =
√
k2x + k2y and F(k⊥`z) = 3

√
π/2k⊥`zek

2
⊥`

2
z/2 erfc(k⊥`2z/

√
2). For a
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uniform system, ρ(kx, ky) = δ(kx)δ(ky) and we recover
Eq.(3). Consider now the case of spins aligned along the
x axis corresponding to Θ = π/2, as in Fig. 4 of the main
text. For a cloud shape with typical length scales larger
than `z, the influence of the shape of the cloud via the

integration over kx and ky scales with F(k⊥`z) ∼ k⊥`z,
which is a small parameter in the 2D case considered
here. Thus, the mean-field shift is expected to be inde-
pendent of the in-plane geometry of the cloud.
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