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Abstract

Data mining is the art of discovering knowledge from databases. The user specifies the
type of patterns to be mined, and the miner uses techniques to find the required patterns.
Many techniques have been introduced for mining traditional patterns like frequent item-
sets, association rules, etc. However, mining patterns with additional properties remains
a bottleneck for specialists nowadays due to the algorithmic effort needed to handle these
properties.

Recently, researchers have taken advantage of the flexibility of constraint program-
ming to model various data mining problems. In terms of CPU time, constraint programming-
based methods have not yet competed with ad hoc algorithms. However, their flexibility
allows the modeling of complex user queries without revising the solving process.

In this thesis we propose to use constraint programming for modeling and solving
some well known data mining problems. Our first contribution is a constraint program-
ming model for mining association rules. To implement our model, we introduce a new
global constraint, CONFIDENT, for ensuring the confidence of rules. We prove that com-
pletely propagating CONFIDENT is NP-hard. We thus provide a non-complete propagator
and a decomposition for CONFIDENT. We also capture the minimal non-redundant rules,
a condensed representation of association rules, by introducing the global constraint GEN-
ERATOR. GENERATOR is used for mining itemsets that are generators. For this constraint,
we propose a complete polynomial propagator.

Our second contribution is a generic framework based on constraint programming to
mine both borders of frequent itemsets, i.e. the positive border or maximal frequent itemsets
and the negative border or minimal infrequent itemsets. One can easily decide which border
to mine by setting a simple parameter. For this, we introduce two new global constraints,
FREQUENTSUBS and INFREQUENTSUPERS, with complete polynomial propagators. We
then consider the problem of mining borders with additional constraints. We prove that
this problem is coNP-hard, ruling out the hope for the existence of a single CSP solving
this problem (unless coNP ⊆ NP).





Résumé

La fouille de données est l’art de découvrir des informations à partir de bases de don-
nées. L’utilisateur spécifie le type de motifs à extraire et le spécialiste utilise des techniques
pour trouver les motifs requis. De nombreuses techniques ont été introduites pour l’ex-
traction des motifs clasiques tels que les motifs fréquents, les règles d’association, etc. Ce-
pendant, l’extraction des motifs avec des propriétés supplémentaires restent un problème
pour les spécialistes car des efforts algorithmiques sont requises pour gérer ces propriétés.

Récemment, les chercheurs ont profité de la flexibilité de la programmation par contraintes
pour modéliser plusieurs problèmes de la fouille de données. En termes de temps d’exécu-
tion, les méthodes basées sur la programmation par contraintes ne sont pas encore concur-
rentes avec les algorithmes specialisées. Cependant, leur flexibilité permet la modélisation
des requêtes complexes sans la nécessité de réviser le processus de résolution.

Dans cette thèse, nous proposons d’utiliser la programmation par contraintes pour
résoudre des problèmes de la fouille de données. Notre première contribution est un mo-
dèle basé sur la programmation par contraintes pour l’extraction des règles d’association.
Pour mettre en œuvre notre modèle, nous introduisons une nouvelle contrainte globale,
CONFIDENT, pour assurer la confiance des règles. Nous prouvons que propager complète-
ment CONFIDENT est NP-difficile. Nous fournissons donc un propagateur non-complet et
une décomposition pour la contrainte CONFIDENT. Nous capturons également les règles
minimales non redondantes, une représentation condensée des règles d’association, en
introduisant la contrainte globale GENERATOR. GENERATOR est utilisé pour extraire des
motifs qui sont des générateurs. Pour cette contrainte, nous proposons un propagateur
polynomial complet.

Notre deuxième contribution est un model générique basé sur la programmation par
contraintes permettant l’extraction des deux frontières des motifs fréquents, à savoir la
frontière positive ou les motifs maximaux fréquents et la frontière négative ou les motifs
minimaux infréquents. Il est facile de choisir la frontière à extraire en fixant un simple para-
mètre. Pour cela, nous introduisons deux nouvelles contraintes globales, FREQUENTSUBS
et INFREQUENTSUPERS, avec des propagateurs polynomiaux complets. Nous examinons
ensuite le problème de l’extraction des frontières avec des contraintes supplémentaires.



vi Chapitre 0. Résumé

Nous prouvons que ce problème est coNP-difficile. Cela implique qu’il n’existe aucun
CSP représentant ce problème (sauf si coNP ⊆ NP).
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Introduction

Data mining is the process of transforming a raw data into useful information. Itemset
mining is one of the most studied problems in data mining. It was originally introduced
for sales transactions and products (Agrawal et al. [1993]). In a transaction dataset one
may look for significant regularities like "the product A is bought frequently" or "people buy-
ing A usually buy B with it".

Motivations

Many techniques have been developed for itemset mining problems including the
mining of frequent itemsets (Agrawal et al. [1993], Han et al. [2000]), mining association
rules (Agrawal et al. [1993], Szathmary et al. [2007a]), mining closed itemsets (Pasquier
et al. [1999]), mining high utility itemsets (Chan et al. [2003]) etc. These tasks become
easier and easier thanks to dedicated algorithms and thanks to the improvement of com-
puters performance. However, the number of extracted patterns 1 is often huge and can
easily exceed the size of the dataset itself. In this case the user faces an enormous number
of irrelevant patterns. However, most of the time the user is interested in patterns that sat-
isfy some specific properties. For instance, the user may ask for patterns containing/not
containing some specific items.

According to Wojciechowski and Zakrzewicz [2002], there are three ways to handle the
additional user’s constraints. We can use a pre-processing step that restricts the dataset
to only transactions that satisfy the constraints. Such a technique cannot be used on all
kinds of constraints. We can use a post-processing step to filter out the patterns violating
the user’s constraints. Such a brute-force technique can be computationally infeasible
when the problem without the user’s constraints has too many solutions. We can finally
integrate the filtering of the user’s constraints into the specialized data mining process in
order to extract only the patterns satisfying the constraints. Such a technique requires the
development of a new algorithm for each new problem with user’s constraints.

1. In this manuscript we restrict the use of pattern to itemsets and/or association rules.
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In a recent line of work, declarative approaches are used to solve various itemset min-
ing problems (Raedt et al. [2008], Khiari et al. [2010], Boudane et al. [2016], Lazaar et al.
[2016], Schaus et al. [2017], Bessiere et al. [2018]). In terms of CPU time, declarative meth-
ods have not yet competed with ad hoc algorithms. However, their flexibility allows the
modeling of complex user queries without revising the solving process. One of the most
powerful declarative approaches is constraint programming. In Constraint Programming
(CP) the user specifies his problem and the computer solvers it.

Contributions

In this thesis, we propose to use constraint programming techniques to solve some
itemset mining problems. We propose generic models, new global constraints with prop-
agators and we study their effectiveness. We also study problems of mining patterns in
the presence of additional constraints. The contributions of this thesis is fourfold.

1. Modeling: In this thesis, we propose constraint programming based models to
solve some itemset mining problems. We propose a constraint programming model
for mining association rules that are frequent and confident. Then, we show that
this model can be extended to mine only the Minimal Non-redundant Rules (MNRs),
a condensed representation for association rules. We propose a generic constraint
programming for mining borders of frequent itemsets, i.e. the positive border or
maximal frequent itemsets and the negative border or minimal infrequent itemsets. One
can easily decide which border to mine using a simple parameter. We show that
our model can be extended to consider additional user’s constraints.

2. Solving: In this thesis, we do not only model problems using existing constraints
but we also contribute at the solving part of constraint programming by introduc-
ing new global constraints with their filtering algorithms (aka, propagators). We
introduce a new global constraint CONFIDENT. CONFIDENT is used to ensure the
confidence of rules. We prove that completely propagating CONFIDENT is NP-hard.
Thus, we provide CONFIDENT with two different propagators. The first one uses
a non-complete filtering rule. The second one uses a decomposition using existing
constraints. We introduce a new global constraint GENERATOR for mining genera-
tor itemsets. This constraint can be used to mine MNRs. We provide GENERATOR
with a polynomial filtering algorithm. We prove that this algorithm is complete.
We introduce two new global constraints, (1) FREQUENTSUBS for mining itemsets
having only frequent subsets and (2) INFREQUENTSUPERS for mining itemsets hav-
ing only infrequent supersets. We provide both constraints with complete poly-
nomial propagators. These constraints are used in our generic model for mining
borders of frequent itemsets.
We show that existing propagators for the infrequency are not complete. Hence,
we propose a new global constraint INFREQUENT for mining infrequent itemsets
with a complete polynomial algorithm and we evaluate its efficiency.

3. Studying constrained patterns: In this thesis, we address the issue of mining pat-
terns in the presence of other constraints. As noticed in (Bonchi and Lucchese
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[2004]), mining borders under additional constraints has two interpretations, (1)
borders that, in addition, satisfy the set of constraints (2) borders of the itemsets sat-
isfying the constraints. The user is usually interested in mining itemsets w.r.t. the
second interpretation. This is true on positive/negative borders, but also on closed
or generator itemsets. We prove that it is coNP-hard to find maximal/minimal
itemsets among those satisfying a set of additional constraints, i.e. solve the prob-
lem w.r.t. the second interpretation. This implies that there does not exist any CSP
representing the problem of finding borders under additional constraints unless
coNP ⊆ NP.
This problem can occur also on mining MNRs with additional constraints. We
prove that in a specific case both interpretations (1 and 2) are equivalent.

4. Implementing: To evaluate their efficiency, we have implemented our models us-
ing the constraint solver Oscar. For this, we have used the already implemented
constraints and we have implemented the propagators of our new global con-
straints. Results can be found in the experiment sections in the contributions part.

Manuscript organisation

This manuscript is organised in two parts, Part I for the background and Part II for the
contributions. Every part is organised in chapters:

I Background:
— Chapter 1: In this chapter we present the basic methods and notations in itemset

mining. We introduce the different tasks in itemset mining, frequent itemsets
mining, condensed representations mining, association rules mining, etc. We
also give an overview on other tasks of data mining.

— Chapter 2: In this chapter we present the constraint programming paradigm.
We present some basic definitions and notations. We also present the two main
features of constraint solvers, i.e. the backtracking and the propagation pro-
cesses.

— Chapter 3: In this chapter we present some existing constraint-based methods to
solve itemset mining problems. We focus on the constraints based approaches,
i.e. the basic constraint programming model, global constraints and the SAT
approaches for itemset mining.

II Contributions:
— Chapter 4: In this chapter we introduce our first contribution, a constraint pro-

gramming model for mining association rules with a new global constraint
CONFIDENT. We show that this model can be easily extended to mine mini-
mal non-redundant rules using a new global constraint GENERATOR. We also
study the problem of combining minimal non-redundant rules with constraints.

— Chapter 5: Finally, we introduce our second contribution, a generic constraint
programming model for mining borders of frequent itemsets, i.e. the positive
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border or maximal frequent itemsets and the negative border or minimal infrequent
itemsets. For this we introduce two global constraints with complete polyno-
mial propagators, FREQUENTSUBS and INFREQUENTSUPERS. We also study the
problem of combining condensed representations with constraints.

List of publications

— Belaid et al. [2018]: In proceedings of the doctoral program at the international con-
ference on principles and practice of constraint programming 2018 in Lille, France.

— Belaid et al. [2019b]: In proceedings of the SIAM international conference on data
mining 2019 in Calgary, Canada.

— Belaid et al. [2019a]: In proceedings of the international joint conference on artificial
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Chapter 1: Itemset Mining

1.1 Introduction

Itemset mining is one of the most studied problems in data mining. It was originally
introduced for sales transactions and products (Agrawal et al. [1993]).

In this chapter, we introduce the basic concepts of itemset mining. We start with some
basic definitions in Section 1.2. In Section 1.3 we review some methods for mining fre-
quent and infrequent itemsets. Condensed representations are presented in Section 1.4.
Association rules mining, its methods and variants are presented in Section 1.5. We define
the problem of mining constrained itemsets in Section 1.6. A data compression technique
is presented in Section 1.7. Finally, sequence and uncertain data mining are presented in
Section 1.8.

1.2 Notations and Definitions

1.2.1 Itemset Mining

Let I = {1, . . . , n} be a set of n item indices and T = {1, . . . ,m} a set of m transac-
tion indices. An itemset P is a non empty subset of I. The transactional dataset D =
{{t1, . . . , tm}} is a multiset of itemsets, where for all i ∈ T , ti is an itemset. The cover
of an itemset P , denoted by cover(P ), is the set of transaction indices i for which ti con-
tains P . Given S a subset of T , item(S) is the set of items belonging to all transactions
whose index is in S. The frequency of an itemset P is the cardinality of its cover, i.e.
freq(P ) = |cover(P )|. Let s be some given constant called a frequency threshold. The item-
set P is frequent if freq(P ) ≥ s. P is infrequent (or rare) if freq(P ) < s. The closure of an
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itemset P is the set of items that belong to all transactions whose index is in cover(P ), i.e.
closure(P ) = item(cover(P )). P is closed iff closure(P ) = P . We denote by P f the itemset
P with frequency f .

Table 1.1 – Transaction dataset example with five items and five transactions. The standard repre-
sentation (left) and the binary representaiton (right).

trans. Items
t1 A B D E
t2 A C
t3 A B C E
t4 B C E
t5 A B C E

A B C D E
t1 1 1 0 1 1
t2 1 0 1 0 0
t3 1 1 1 0 1
t4 0 1 1 0 1
t5 1 1 1 0 1

Example 1.1. The dataset in Table 1.1 has 5 items, i.e. |I| = 5 and 5 transactions, i.e. |T | = 5.
The cover of CE is cover(CE) = {3, 4, 5}. Its frequency is the cardinality of its cover, i.e.
freq(CE) = |cover(CE)| = 3. We denote it CE3. With s = 3, the itemset BC is frequent
(freq(BC) = 3 ≥ 3). The itemset AD is infrequent (freq(AD) = 1 < 3). The closure of
AB is closure(AB) = ABE that is because cover(AB) = {1, 3, 5} and ABE belongs to all
transactions whose index is in cover(AB).

1.2.2 Association Rules

An association rule is an implication of the form X → Y , where X and Y are itemsets
such that X ∩Y = ∅ and Y 6= ∅. X represents the body of the rule and Y represents its head.
The frequency of a rule X → Y is the frequency of the itemset X ∪ Y , that is, freq(X →
Y ) = freq(X ∪ Y ). The confidence of a rule captures how often Y occurs in transactions
containing X , that is, conf(X → Y ) = freq(X→Y )

freq(X) . Given a minimum confidence c, a rule
X → Y is confident if conf(X → Y ) ≥ c. A rule X → Y is valid if it is frequent w.r.t. s
and confident w.r.t. c.

Example 1.2. Consider the transaction dataset presented in Table 1.1. With s = 3 and
c = 60%, B → C is a valid association rule because freq(B → C) = 3 ≥ s and conf(B →
C) = freq(B→C)

freq(B) = 75% ≥ c.

1.3 Frequent Itemsets

Mining frequent itemsets is the problem of listing the set of all itemsets with a fre-
quency above a given threshold. Mining frequent itemsets is essential for many data min-
ing tasks. It captures recurrent phenomena in a dataset. In this section we review some
well known algorithms for mining frequent itemsets. We then define the problems of min-
ing frequent itemsets with variable threshold. We study the negation of the problem of
mining frequent itemsets, i.e. mining infrequent itemsets. Finally, we review the problem
of mining frequent itemsets from incremental datasets.
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1.3.1 Methods for Mining Frequent Itemsets

Apriori principal

The APRIORI algorithm was first introduced in (Agrawal et al. [1993]) for mining as-
sociation rules. Since then many APRIORI based algorithms were proposed (Park et al.
[1995], Ye and Chiang [2006], Lin et al. [2012], Li et al. [2012]). The basic idea of APRIORI is
to generate frequent itemsets of length k + 1 from those of length k. Before the generation
APRIORI applies some pruning using the anti-monotony property of the frequency.

Proposition 1.1 (Anti-monotony property of the frequency). If the itemset X is infrequent,
then any itemset Y such that Y ) X , is infrequent too.

Proposition 1.1 implies that if X is frequent then any itemset Y such that Y ( X , is
frequent too.

APRIORI starts with items (k = 1) and generates itemsets of length 2 and so on until no
itemset is to be mined. Thanks to Proposition 1.1, infrequent items will not participate at
generating the itemsets of length 2.

Let Lk be the list of frequent itemsets of size k and Ck the list of candidate itemsets of
size k. At iteration k, APRIORI generates Ck from Lk−1 then prunes infrequent itemsets
to create the list of frequent itemsets of size k, i.e. Lk. This process is repeated until Lk

is empty. Finally, The set of frequent itemsets corresponds to the union of all lists, i.e.
∪n

k=0Lk.

Figure 1.1 – APRIORI on the dataset in Table 1.1 with s = 4.
Example 1.3. In Figure 1.1 the first scan generates the candidates of length 1, i.e. C1. The
item D is then pruned due its infrequency. As a result, D is not considered in further
generations thanks to Proposition 1.1 (no superset of D can be frequent). This results the
list of frequent 1-itemsets (L1) from which itemsets of length 2 are generated. The same
process is repeated for k = 2.

Despite the extensive pruning conducted by APRIORI, it has some limits. First, it is
costly to handle a huge number of candidate sets specially in terms of memory. If the
dataset has 104 items, one should generate more than 107 candidate itemsets for k = 2.
Second, APRIORI requires a scan of the dataset for every iteration, which can be tedious.
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FP-GROWTH algorithm

To get over APRIORI’s limits, the FP-GROWTH algorithm was proposed in (Han et al.
[2000]). FP-GROWTH claims that it is an algorithm for mining frequent itemsets without
candidates generation. FP-GROWTH uses a compact data structure called FP-tree (Fre-
quent Pattern tree) to mine frequent itemsets.
The first step of FP-GROWTH is to create the FP-tree data structure. Then one can use the
FP-tree to generate frequent itemsets. We illustrate both steps in the following example.

root

A

B

C

E

E E

C

B

C

1

1

11

1

4

3

2

2

Figure 1.2 – The FP-tree of the dataset in Table 1.1 with s = 3.

Example 1.4. In Figure 1.2 we present the FP-tree of the dataset in Table 1.1 with s = 3. The
item D is infrequent and hence not considered in the FP-tree creation. Usually the order
of the items is considered according to their frequencies. As all frequent items have the
same frequency, we consider the lexicographic order 〈A,B,C,E〉.

Step 1: FP-tree creation: We start by mapping the transaction t1 to the tree by con-
structing the path root → A1 → B1 → E1. The second transaction has the same prefix
as the first one (A). In this case, the frequency count is incremented for A and a node is
created for C (root → A2 → C1). The transaction t3 has the prefix AB that was already
created thanks to transaction t1. We simply increment the frequency counts for A and B
and create the nodes C and E with a frequency count of 1 (root→ A3 → B2 → C1 → E1).
The transaction t4 has no common prefix with the already created paths, in this case we
create the new path root → B1 → C1 → E1. The transaction t5 overlaps with an al-
ready existing path. We simply increment the frequency count for every node in this path
(root → A4 → B3 → C2 → E2). Finally, nodes with the same item are connected with
dashed arrows.

Step 2: Mining frequent itemsets using the FP-tree: Using the FP-tree, one can
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generate frequent itemsets by exploring the tree from the bottom. That is, we start with
nodes in an inverted order. For every node, a set of frequent itemsets is extracted. The
union of these sets is the set of all frequent itemsets.
From the node E one can generate the frequent itemsets ABE3, BCE3, BE4, CE3, AE3

and E4. The frequency of ABE, for instance, is identified by summing-up the frequency
counts of the two paths containingAB in the prefix ofE (root→ A4 → B3 → C2 → E2 and
root → A4 → B3 → E1), i.e. freq(ABE) = 1 + 2 = 3. The frequency of ACE is identified
by the single path which contains AC in the prefix of E (root → A4 → B3 → C2 → E2),
i.e. freq(ACE) = 2, i.e. ACE is infrequent.

1.3.2 Frequent Itemsets with Variable Threshold

Setting a single frequency threshold to a high value misses rare but important patterns.
On the other hand, set it to a low value could generate many meaningless patterns. For
instance, in a supermarket transaction data, buying a car is rare but very beneficial and
patterns containing the item car can be of high importance. One can set the threshold
to a low value to include this important event. However, this may include insignificant
patterns like buying milk with gum.

To solve this problem, a number of strategies were proposed. One possible solution
is to associate to every item a frequency threshold according to its nature. In this case an
itemset is frequent if its frequency exceeds the minimum among thresholds of its items
(Liu et al. [1999], Kiran and Reddy [2011]). Han and Fu [1995] associate to every level
(itemsets with a given size) a frequency threshold and an itemset of size k is frequent if its
frequency is no less than the threshold associated to the level k. In (Wang et al. [2000a])
frequency constraints are defined according to bins of items.

1.3.3 Infrequent Itemsets

Researchers have focused almost entirely on frequent itemset mining. However, in-
frequent itemsets can hold useful information in many real-world problems. Infrequent
itemsets can give insights into rare phenomena. For instance, in the security field, normal
behaviours are usually frequent, whereas suspicious behaviours are very rare. Infrequent
itemsets can be used in several domains such as biology, medicine and security (Lee and
Stolfo [1998], Masuda et al. [2002], Prati et al. [2003]). For example, in biology an expert
may be interested in identifying the causes of the cardiovascular diseases (CVD). A rare
pattern like "vegetarians, CVD" leads to the possible information "vegetarians are at a low
risk of having CVD".

Most proposed methods for mining infrequent itemsets are based on APRIORI (Koh
and Rountree [2005], Adda et al. [2007], Troiano et al. [2009]). In (Koh and Rountree [2005])
the authors present APRIORI-Inverse which prunes the search space by discarding all item-
sets above the maximum frequency threshold. AfRIM (APRIORI for Rare Itemset Mining)
(Adda et al. [2007]) uses the pruning principle of APRIORI by exploiting the monotonicity
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property of the frequency. Rarity (Troiano et al. [2009]) starts by the longest possible infre-
quent itemset in a dataset and moves down through the lattice until no infrequent itemset
is to be mined.

1.3.4 Mining Frequent Itemsets from Incremental Datasets

Mining frequent itemsets from an incremental dataset is the problem of mining fre-
quent itemsets when we allow an update of the original dataset (Cheung et al. [1996],
Ayad et al. [2001]). More formally, let D be the original dataset and Ls the list of frequent
itemsets inDw.r.t. s, the relative frequency threshold (s is in percentage). We denote byD′
the additional multiset of transactions. D ∪ D′ is then the updated dataset. This problem
consists in finding the set of frequent itemsets in D ∪D′, i.e. L′s, from Ls.

In (Cheung et al. [1996]) an algorithm called FUP (Fast UPdate) was proposed for min-
ing frequent itemsets from incremental datasets. FUP takes as input the frequency thresh-
old s, the original dataset D, D′ and Ls and returns as output L′s, the set of frequent item-
sets in D ∪ D′. FUP prunes losers (itemsets that are in Ls but become infrequent after the
update) and adds winners (those that are not in Ls but become frequent after the update).
The experiments showed the benefit of taking advantage of Ls for mining L′s comparing
to APRIORI which mines L′s directly from D ∪D′.

1.4 Condensed representations

The number of frequent/infrequent itemsets can be huge, making it hard even to print
the result. Hence, we often reduce the problem of mining frequent or infrequent itemsets
to the problem of mining the borders. The positive border is the set of frequent itemsets with
only infrequent supersets, i.e. Maximal Frequent Itemsets (MFIs). The negative border is
the set of infrequent itemsets with only frequent subsets, i.e. Minimal Infrequent Itemsets
(MIIs). The subsets of the MFIs and the supersets of the MIIs represent the frequent and
infrequent itemsets, respectively.

Given the set of MFIs/MIIs one can reproduce all the frequent/infrequent itemsets.
But it requires several scans of the data to identify their frequencies. The set of closed/generator
itemsets allows the reproduction of frequent or infrequent itemsets with their frequencies.
Closed (generator) itemsets are those maximal (minimal) w.r.t. a given frequency. In other
words, a closed itemset is an itemset that has no superset with the same frequency and a
generator is an itemset that has no subset with the same frequency.

Equivalence classes include itemsets that have the same frequency with an inclusion
relation between them. More formally, the itemsetsX and Y belong to the same equivalence
class iff closure(X) = closure(Y ). The maximal itemset within an equivalence class is
closed and the minimal is generator.
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Table 1.2 – Dataset with 5 items and 6 transactions (left) and associated prices for items (right)

a

trans. Items
t1 A B C D E
t2 B C
t3 B C D E
t4 A B C D
t5 A B C E
t6 B C D E

b

Item Price
A 19
B 18
C 2
D 4
E 14

1.4.1 Maximal Frequent Itemsets

Maximal frequent itemsets represent the smallest set possible from which all frequent
itemsets are reproduced. It is usually significantly smaller than the set of frequent item-
sets. In (Mannila and Toivonen [1997]) MFIs are referred to as positive border.

Definition 1.1 (Maximal Frequent Itemset (MFI)). An itemset is an MFI if it is frequent
and all its proper supersets are infrequent.

Example 1.5. With s = 3, the dataset in Table 1.2a has MFIs = {ABC3, BCDE3}. The dataset
is illustrated in Figure 1.3. The itemset ABC is frequent (freq(ABC) = 3 ≥ 3) and all its
proper supersets are infrequent (freq(ABCE) = 2 < 3 and freq(ABCD) = 2 < 3).

Several techniques have been introduced for mining MFIs (Jr. [1998], Gouda and Zaki
[2001], Burdick et al. [2001], Uno et al. [2004]). Most of these techniques adapt frequent
itemsets mining methods for mining only MFIs (APRIORI, FP-GROWTH, . . . ).

Using MFIs, one can reproduce all frequent itemsets. But, unfortunately it requires
several dataset scans to identify the frequency of every itemset. The set of MFIs is a subset
of the set of frequent closed itemsets, we now define the closed itemsets.

1.4.2 Closed Itemsets

Closed itemsets are those that do not have any superset with the same frequency. They
represent the maximal itemsets within equivalence classes.

Definition 1.2 (Closed itemset (Pasquier et al. [1999])). An itemset P is closed if and only
if there does not exist any itemset Q ) P such that freq(Q) = freq(P ).

Example 1.6. The itemset BC is closed, but BE is not as freq(BE) = freq(BCE) = 4. The
closed itemset of the equivalence class containing the itemsets D, CD, BD, BCD is the
itemset BCD.

Definition 1.3 (Closure extension). An non-empty itemset Y is a closure extension of X
iff cover(X ∪ Y ) = cover(X).
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{}

A B C D E

AB AC AD AE BC BD CD BE CE DE

ABC ABD ACD ACE ABE ADE BCD BCE BDE CDE

ABCD ACDE ABCE ABDE BCDE

ABCDE

3

6

4 4

3

1

22

Equavalence 
Class

Frequency

Closed Itemset

Generator Itemset

Frequency Border (s = 3)

MFI

MII

Figure 1.3 – Equivalence classes of the dataset in Table 1.2a

The closure extension is used for mining closed itemsets in (Wang et al. [2003]). In fact,
X cannot be closed if it has a closure extension Y .

Frequent closed itemsets are those closed and frequent in addition. Usually, frequent
itemsets mining is reduced to mining the closed frequent itemsets (Pasquier et al. [1999]).
Several methods for mining closed frequent itemsets have been introduced, and LCM
(Linear time Closed itemset Miner) (Uno et al. [2003, 2004, 2005]) is the most popular for
its efficiency.

1.4.3 Minimal Infrequent Itemsets

Minimal infrequent itemsets represent the smallest set possible from which all infre-
quent itemsets are reproduced. It is usually significantly smaller than the set of infrequent
itemsets. In (Mannila and Toivonen [1997]) MIIs are referred to as negative border.

Definition 1.4 (Minimal Infrequent Itemset (MII)). An itemset is an MII if it is infrequent
and all its proper subsets are frequent.

Example 1.7. With s = 3, the dataset in Table 1.2a has MIIs = {AD2, AE2}. AD is infre-
quent (freq(AD) = 2 < 3) and all its proper subsets are frequent (freq(A) = 3 ≥ 3 and
freq(D) = 4 ≥ 3).
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Several techniques have been introduced for mining MIIs (Szathmary et al. [2007b],
Haglin and Manning [2007], Szathmary et al. [2012]). It is obvious that the set of MIIs is
a subset of the set of generator itemsets. Most techniques take advantage of this to mine
MIIs.

1.4.4 Generator Itemsets

An itemset is a generator if there does not exists any subset with the same frequency.
Generators were first introduced in (Bastide et al. [2000b]) for efficiently mining frequent
itemsets. In (Szathmary et al. [2007a]) frequent generators are used for mining the minimal
non-redundant rules. For efficiently mining MIIs, generators are used in (Szathmary et al.
[2007b]).

Definition 1.5 (Generator (Bastide et al. [2000b])). A generator is an itemset P such that
there does not exist any itemset Q ( P such that freq(Q) = freq(P ).

Example 1.8. The itemset DE is generator because freq(DE) = 3 and none of its subsets
(∅, D, E) have the same frequency (freq(∅) = 6, freq(D) = freq(E) = 4). The itemset
BE is not a generator because it has the same frequency as one of its subsets: freq(BE) =
freq(E) = 4.

An interesting propriety on generators is that all supersets of a non-generator are non-
generators too.

Proposition 1.2 (Bastide et al. [2000b]). Given two itemsets P and Q, if P is not a frequent
generator and P ( Q, then Q is not a frequent generator either.

Proposition 1.2 holds on frequent generators but it could be generalized to all genera-
tors by simply setting the frequency threshold to 0. Proposition 1.2 is used in (Szathmary
et al. [2009]) for efficiently mining frequent generators, the algorithm is called TALKY-G.

1.4.5 The Dualization Problem

It is obvious that a duality exists between MFIs and MIIs. The problem of inferring
MFIs from the set of MIIs and vice versa is called the dualization. In (Mannila and Toivo-
nen [1997], Boros et al. [2003]) and (Nourine and Petit [2012]) this problem is reduced to
computing the minimal transversals of a hypergraph (Berge [1989]). In fact, MIIs corre-
spond to the minimal transversals of the hypergraph constructed by the complements of
the set of MFIs.

Given a hypergraph H = (V,E), a transversal of H is a subset of V that has non empty
intersection with every edge in E. A transversal is minimal if it has no subset which is a
transversal. We denote by Tr(H) the set of all minimal transversals of the hypergraph H .
We know from (Mannila and Toivonen [1997]) that MIIs = Tr(H), whereH is a hypergaph
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constructed by the complements of the set of MFIs. On the other hand, MFIs are the
complements of Tr(H) where H represents the set of MIIs.

D

B

A

C

1

2
E

3

Figure 1.4 – The hypergraph H (complements of MFIs)

Example 1.9. With s = 3, the dataset in Table 1.1 has MFIs = {ABE3, AC3, BCE3} and
MIIs = {ABC2, ACE2, D1}. Let H = (V,E) be a hypergraph represented in Figure 1.4. It
is constructed using the complements of the set of MFIs (e.g., the complement of ABE
is CD) where V = {A,B,C,D,E} and E = {1, 2, 3}. It is clear that MIIs = Tr(H) =
{ABC,ACE,D}.

1.5 Association Rules

Mining association rules aims at discovering interesting regularities between items in
large-scale datasets. Association rules (ARs) were originally introduced by Agrawal et al.
[1993] for sales transactions and products. An association rule captures an information of
the kind "if we have A and B, the chances to have C are high". Nowadays, a broad spectrum
of application domains ask for this kind of information with a variety of datasets.

A common strategy used by many algorithms for mining association rules is to pro-
ceed in two steps. This is by first generating frequent itemsets then generate confident
rules from the extracted frequent itemsets. The first step was presented in Section 1.3.
Next, we present the common strategy used for the second step.

1.5.1 Rules Generation Step

Rules generation step extracts confident rules from frequent itemsets. Unlike the fre-
quency, the confidence is neither anti-monotone nor monotone. A brute force strategy is
practically infeasible. For a frequent itemset of size k there are about 2k rules to test for
confidence. Luckily, using the following proposition helps pruning the search space.

Proposition 1.3. If a rule X → Y \X is not confident, then any rule X ′ → Y \X ′ such that
X ′ ( X , is not confident too.
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ABCE—> ø

BCE —> A  ACE —> B ABE —> C ABC —> E

CE —> AB AE —> BCBC —> AE BE —> AC AC —> BEAB —> CE

 ø —> ABCE

C —> ABE E —> ABC B —> ACE A —> BCE

Low confidence rules

Pruned rules

Figure 1.5 – Pruning of association rules on the dataset in Table 1.1 with s = 2 and c = 70%.

Example 1.10. The Figure 1.5 illustrates the pruning presented in Proposition 1.3 on the
dataset in Table 1.1. With s = 2 the itemset ABCE is frequent. The lattice in Figure
1.5 presents all the possible rules using ABCE. When testing the confidence of the rule
BCE → A we find that conf(BCE → A) = 66.66%. With c = 70% the rule BCE → A is
not confident. As a result the rules {CE → AB,BC → AE,BE → AC,C → ABE,E →
ABC,B → ACE, ∅ → ABCE} are pruned using Proposition 1.3.

1.5.2 Condensed Representations for Association Rules

In practice, the number of valid rules is often huge and can easily exceed the size
of the dataset itself. In this case the user faces an enormous number of irrelevant rules.
However, the user may also ask for some representative rules according to a condensed
representation. In this section, we present some well known condensed representations
for association rules.
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Representative rules

Representative association Rules (RRs) (Kryszkiewicz [1998a]) is a smaller set of rules
that covers all rules. It uses a rule cover operator to derive all association rules. We now
define the rule cover operator.

Definition 1.6 (Rule Cover Operator (Kryszkiewicz [1998a])). Given a rule r : X → Y , the
set of rules covered by r, denoted C(r), is defined as C(X → Y ) = {X ∪ Z → V | Z, V ⊆
Y, Z ∩ V = ∅, V 6= ∅}.

Example 1.11. The rule cover of A→ BCD is C(A→ BCD) = {A→ BCD,A→ BC,A→
BD,A→ CD,A→ B,A→ C,A→ D,AB → CD,AC → BD,AD → BC,AB → C,AC →
B,AD → B,AB → D,AC → D,AD → C,ABC → D,ABD → C,ACD → B}.

Mining the set of RRs allows the reproduction of all rules using the rule cover operator.
Let AR(s, c) be the set of association rules w.r.t. the thresholds s and c, and RR(s, c) the
corresponding representative rules.

Definition 1.7 (Representative Rules (Kryszkiewicz [1998a])). The set of RRs w.r.t. the
thresholds s and c, denoted RR(s, c), is RR(s, c) = {r ∈ AR(s, c) |6 ∃r′ ∈ AR(s, c) s.t r′ 6=
r, r ∈ C(r′)}.

Example 1.12. In the dataset in Table 1.1,RR(2, 50%) = {∅ → AC, ∅ → ABE, ∅ → BCE,A→
BCE,B → ACE,C → ABE,E → ABC}.

Minimum body maximum head

A stronger version of representative rules consists in looking for rules with minimum
body and maximum head (Kryszkiewicz [1998b]). A rule is Minimum body Maximum
head Rule (MMR) if it is valid and it has the minimum possible body and the maximum
possible head.

Definition 1.8 (Minimum body Maximum head Rule (Kryszkiewicz [1998b])). The set of
MMRs w.r.t. the thresholds s and c, denoted MMR(s, c), is MMR(s, c) = {r : X → Y ∈
AR(s, c) |6 ∃r′ : X ′ → Y ′ ∈ AR(s, c) s.t r′ 6= r, X ′ ⊆ X, Y ′ ⊇ Y }.

Example 1.13. In the dataset in Table 1.1, MMR(2, 50%) = {∅ → AC, ∅ → ABE, ∅ →
BCE,B → ACE,E → ABC}.

It is clear that the set of MMRs is a subset of the set of RRs. However, the set of MMRs
does not allow the reproduction of all valid association rules as shown in the following
example.

Example 1.14. From the previous example, the valid rule A→ BCE cannot be reproduced
using the rules in MMR(2, 50%).
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Minimal non-redundant association rules (MNRs)

The most common notion of representative rules are the minimal non-redundant associa-
tion rules (MNR) (Bastide et al. [2000a]). A rule is an MNR if there does not exist any other
rule with the same frequency and the same confidence that is obtained by removing items
from the body or adding items to the head.

Definition 1.9 (Rule dominance). We say that a rule r : X → Y dominates another rule
r′ : X ′ → Y ′ denoted by r � r′ iff X ⊆ X ′, Y ⊇ Y ′, freq(r′) = freq(r), conf(r′) = conf(r),
and r′ 6= r.

Example 1.15. In the dataset in Table 1.1, the rule D → ABE dominates the rule ADE → B
because D ⊆ ADE, ABE ⊇ B and freq(ADE → B) = freq(D → ABE) = 1 and
conf(ADE → B) = conf(D → ABE) = 100%.

Definition 1.10 (Minimal Non-redundant Rule (MNR) (Bastide et al. [2000a])). Given a
frequency threshold s and a confidence threshold c, a non-redundant association rule r is a
valid rule where there does not exist any rule r′ such that r′ � r .

Note that any valid rule is whether an MNR or it is dominated by an MNR.

Example 1.16. In the dataset in Table 1.1 with s = 1 and c = 100% the set of MNRs is {E →
B,D → ABE,CE → B,B → E,BC → E,AE → B,ACE → B,AB → E,ABC → E}.

There exists an interesting operational characterization of MNRs.

Proposition 1.4 (Bastide et al. [2000a]). An association rule X → Y is an MNR if and only
if: 

freq(X → Y ) ≥ s ∧ conf(X → Y ) ≥ c (1)
X is a generator (2)
X ∪ Y is closed (3)

Note that we can find a different kind of non-redunbdant rules in (Zaki [2004]) where
we ask for rules of minimal body and minimal head.

1.5.3 Variants of Association Rules

In real word problems, the user may ask for a different kind of rules comparing to the
classical definition. In the following, we review some variants of association rules.
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Rare association rules

Rare association rules are those infrequent but confident. A rare rule captures items
that rarely occur in the dataset but when they occur they occur together. To generate this
kind of rules one should generate infrequent itemsets w.r.t. s then generate confident rules
from those itemsets w.r.t. c.

The number of rare rules is usually huge making their enumeration infeasible. In (Sza-
thmary et al. [2010]) mining rare rules is reduced to mining a set of informative rules to
remove redundancy. This set is called Minimal Infrequent Generator Rules (MIGRs). In
addition of being infrequent and confident, MIGRs represent a smallest set from which all
rare rules can be reproduced.

Negative association rules

Negative association rules consider the absence of items in a transaction dataset (Wu
et al. [2004]). Negative association rules are of the form ¬X → Y , X → ¬Y or ¬X → ¬Y ,
meaning that the absence of X implies the presence of Y , the presence of X implies the
absence of Y and the absence of X implies the absence of Y , respectively.

Disjunctive association rules

A disjunctive association rule allows the disjunctive operator between itemsets (Nana-
vati et al. [2001]). Hence, we can have rules of the form X → Y ∨ Z or X ∨ Y → Z. These
kind of rules can express the following information for instance "People buying cake also
buy coffee or tea".

Fuzzy association rules

Fuzzy association rules (Kuok et al. [1998]) are introduced to deal with quantitative
attributes. Fuzzy rules are of the form "if X is A then Y is B" whereX and Y are attributes
and A and B are fuzzy sets of X and Y , respectively. Fuzzy sets represent qualitatively an
interval of an attribute. For instance we can represent the age from 25 to 55 as middle or a
salary from 4, 000 to 10, 000 as high. Then we can get the following kind of information "if
age is middle then salary is high" which is more understandable for human.

Weighted association rules

In contrary to the traditional association rules mining, for weighted association rules
the quantity of the item in a transaction is considered (Wang et al. [2000b]). For example,
a customer may purchase 6 bottles of soda and 5 backs of snacks. In this case a weighted
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association rule could be soda[4, 6]→ snack[3, 5] meaning that customers buying between
4 and 6 sodas are more likely to buy between 3 and 5 snacks. This can help a manager of a
supermarket to propose a promotion such as "if a customer buys 8 bottles of soda, he can
get two free bags of snacks".

Indirect association rules

An indirect association rule captures items that rarely occur together but frequently
occur with other items (Tan et al. [2000]). This can be used in some practical cases. For
instance, in a supermarket transaction data, the items a and b may represent two products
of competing companies A and B, respectively. The company B wants to convince people
buying the product a to buy the product b instead. A way to identify these people is to
look for those that rarely buy b, but may buy same items as people buying b. That is
because both communities (people buying a and those buying b) are interested in the type
of products produced by companies A and B.

1.5.4 ZART and ECLAT-Z for Mining Association Rules

ZART (Szathmary et al. [2007a]) and its closest brother ECLAT-Z (Szathmary et al.
[2009]) are known to be of high efficiency methods for mining association rules and MNRs.

ZART is a multifunctional itemset mining algorithm. Its basic idea is to find a link
between frequent generators and their closures. For this, ZART starts by mining frequent
itemsets using the counting inference as in (Bastide et al. [2000b]). The counting inference
allows the inferring of the frequency of non-generator itemsets without scanning the data.
In fact when an itemset P is not a generator its frequency equals to the frequency of one
of its subsets. We know that the frequency of an itemset is never larger than the frequency
of its subset. As a result the frequency of a non-generator is the minimum among the
frequencies of its subsets, i.e. freq(P ) = mini∈P (freq(P \ {i})). ZART also identifies
closed frequent itemsets. It starts by labelling all frequent itemsets with "closed", then the
label value changes to "not closed" for frequent itemsets having a superset with the same
frequency. Finally, ZART gathers frequent generators with their frequent closed itemset
in a single equivalence class and represents the inclusion relation between equivalence
classes with arrows (see Figure 1.6).

For mining association rules, ZART generates rules of the form X → Y where X is a
frequent generator and X ∪ Y is a frequent closed itemset. Rules generated using gener-
ators and their proper closed itemsets are called Generic Basis with a confidence of 100%.
Informative Basis are those generated using generators and closed itemsets of other equiv-
alence classes. The set of MNRs is then the union of Generic Basis and Informative Basis
rules.

Example 1.17. Figure 1.6 illustrates the result of ZART on the dataset in Table 1.1 with
s = 2. The inclusion relation is represented by arrows between equivalence classes. The
rule AB → E is Generic Basis, that is because it uses a closed itemset and a generator from
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Figure 1.6 – Result of ZART on the dataset in Table 1.1 with s = 2 (Szathmary et al. [2007a]).

the same equivalent class for its generation. Its confidence is obviously 100%. The rule
A → BE, on the other hand, is Informative Basis with a confidence of conf(A → BE) =
3
4 = 75%.

ECLAT-Z is a hybrid way to reach the same result as ZART. ECLAT-Z is a wedding be-
tween a depth-first algorithm (e.g., FP-GROWTH) and a levelwise algorithm (e.g., APRI-
ORI). ECLAT-Z uses a depth-first algorithm (i.e, ECLAT (Zaki [2000])) to mine frequent
itemsets. Then it filters frequent closed and generator itemsets among frequent itemsets
in a levelwise manner like ZART does.

1.5.5 Measures for Evaluating Association Rules

The frequency and the confidence are the most used measures for rules mining. How-
ever, in many real world problems they can be misleading. In this case more expressive
measures are required. For instance, the rule {Soda} → {Jus}may be considered interest-
ing for its high confidence of 80%. However, knowing that 90% of people are Jus drinkers
decreases the probability of a person who drinks Soda to drink Jus from 90% to 80%. The
lift can avoid these kind of misleadings. The lift is the fraction of the confidence on the rel-
ative frequency of the head. More formally, Lift(X → Y ) = conf(X→Y )

freq(Y )
|T |

. The lift represents
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the degree of correlation between X and Y . If Lift(X → Y ) = 1, X and Y are indepen-
dent, if Lift(X → Y ) < 1, X and Y are negatively correlated and if Lift(X → Y ) > 1, X
and Y are positively correlated.

Example 1.18. The rule A → BE in Table 1.1 has a lift of Lift(A → BE) = conf(A→BE)
freq(BE)

5
=

0.75
0.8 = 0.94. The lift being less than 1 means that the presence of A does not increase the

chance of having BE (the probability to have BE is reduced from 80% to 75%).

A number of measures can be found in the literature for evaluating rules. Some are
symmetric and others are asymmetric. Given a rule X → Y symmetric measures are
those that reason on the itemset X ∪ Y , items being in the body or in the head is not
important for these measures, i.e. Measure(X → Y ) = Measure(X ∪ Y ). An example of
symmetric measures is the frequency. Asymmetric measures, on the other hand, do take
in consideration the location of X and Y and Measure(X → Y ) does not necessary equal
Measure(Y → X). An example of asymmetric measures is the confidence.

1.6 Constrained Patterns

The interestingness of a pattern is evaluated through queries in inductive mining. The
theory of a dataset is the set of interesting patterns, i.e. patterns that satisfy a given query
(Mannila and Toivonen [1997]). For instance, mining frequent itemsets of at least a given
size can be represented using a query as follows. Mine all itemsets P such that freq(P ) ≥
s∧|P | ≥ lb, where s is the frequency threshold and lb is the lower-bound size of the itemset
P .

The strategy followed by specialists to compute the set of satisfied patterns is highly
influenced by the type of the query. The constraints can be monotone, anti-monotone,
succinct (Ng et al. [1998]), or loose anti-monotone (Bonchi and Lucchese [2005]).

Designing a special strategy for every constraint can be tedious specially when com-
bining traditional constraints with additional user’s constraints. Such user’s constraints
are handled by data mining researchers, whenever possible, with (i) a pre-processing step
reducing the dataset; (ii) a post-processing step to filter out the undesirable patterns; (iii)
a filtering integrated in the specialized algorithm.

For mining association rules, Ng et al. [1998] propose an architecture that allows an
interaction with the user. First, it generates itemsets according to the user’s defined con-
straints/thresholds. If the user does not like the returned result it has the chance to change
her constraints/thresholds. In this case, the process needs to be entirely revised to take in
consideration the user’s new constraints. Then, as soon as the user is satisfied, the pro-
cess moves to the extraction of rules from the validated itemsets by, again, considering the
user’s constraints.

Next, we address the problem of mining condensed representation in the presence of
additional queries (constraints).



18 Chapter 1. Chapter 1: Itemset Mining

1.6.1 Constrained Condensed Representations

As pointed out in (Bonchi and Lucchese [2004]), constraints can interfere with close-
ness (or maximality) when they are not monotone. Likewise, constraints can interfere with
minimality when they are not anti-monotone. In fact constraints on maximal/minimal
itemsets can be interpreted in two ways:

— I1: mine maximal/minimal itemsets that, in addition, satisfy the constraints.
— I2: mine itemsets that are maximal/minimal among those satisfying the constraints.
We are usually interested in mining itemsets w.r.t. the second interpretation.

For monotone constraints on the maximality (MFIs or closed itemsets) I1 is equivalent
to I2. Likewise, I1 is equivalent to I2 for anti-monotone constraints on the minimality
(MIIs or generators).

Definition 1.11 (A monotone constraint). We call c a monotone constraint on itemsets if:
∀P,Q ∈ I | Q ⊇ P : c(P ) is true =⇒ c(Q) is true.

Definition 1.12 (An anti-monotone constraint). We call c a anti-monotone constraint on
itemsets if: ∀P,Q ∈ I | Q ⊆ P : c(P ) is true =⇒ c(Q) is true.

Example 1.19. Figure 1.7 illustrates the set of itemsets from the dataset in Table 1.2a that
satisfy an anti-monotone constraint 1.7(a) or a monotone constraint 1.7(b), in addition to
the frequency (s = 3). The anti-monotone constraint cam ensures that

∑
i∈P price(i) ≤ 22

where P is an itemset. The monotone constraint cm ensures that
∑

i∈P price(i) ≥ 33. The
set of frequent closed itemsets that in addition satisfy cam are only BC, whereas the set of
frequent closed itemsets among those satisfying cam are AC, BC, BD, CD, CE and CDE.
The set of frequent generators is the same for both interpretations (see Figure 1.7(a)). No
frequent generator satisfies in addition cm, whereas the set of frequent generators among
those satisfying cm areAB,BCE andBDE. The set of frequent closed itemsets is the same
for both interpretations (see Figure 1.7(b)).

1.7 Data Compression

An entirely different strategy of itemset mining is not to extract a condensed represen-
tation of the set of frequent itemsets, but instead to look for frequent itemsets that yield to
a compression that minimizes the lossles of the dataset (Siebes et al. [2006]). The KRIMP
method (Vreeken et al. [2011]) uses MDL (Minimal Description Length) principle to find
frequent itemsets that, together, describe the dataset best. For MDL the best set of pat-
terns is the one that compresses the data best (Rissanen [1978], Grünwald [2004]). More
formally, MDL selects the hypothesis H that minimizes L(H) + L(D | H), where L(H) is
the length of H and L(D | H) is the length of the data D when encoding with H .

For the KRIMP method the hypothesis is a two-columns table called the Code Table
(CT), where the first column contains an itemset and the second one contains its associated
code. KRIMP then uses some heuristics to find an approximate solution, i.e. CT, that
minimizes L(CT ) + L(D | CT ).
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Figure 1.7 – Condensed representations with constraints
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1.8 Other Data Mining Problems

In this thesis, we focus on solving some itemset mining problems from datasets where
transactions are sets of items. But it is worthy mentioning that other types of data exist
in the literature. In this section we give a brief overview on some well known problems
other than itemset mining problems.

1.8.1 Sequence Mining

In sequence mining the dimension of time is considered (Agrawal and Srikant [1995]).
In this case, the order of items is important and repetition of symbols is allowed.

Let I be a set of items and T a set of transaction indices. A sequence S is an ordered
list of items, i.e. 〈S1 . . . Sk〉 where k is the sequence length. A sequence database SD is
a multiset of transactions ti, where ti is a sequence and i ∈ T . We say that a sequence
P = 〈P1 . . . Pm〉 is a sub-sequence of S = 〈S1 . . . Sn〉, denoted by P � S, if m ≤ n and if it
exist integers 1 ≤ k1 ≤ . . . ≤ km ≤ n such that Pi = Ski

. The cover of a sequence P , denoted
by cover(P ), is the set of transaction indices i for which P � ti, i.e. cover(P ) = {i ∈ T | P �
ti}. The frequency of a sequence is the cardinality of its cover, i.e. freq(P ) = |cover(P )|.
Given a frequency threshold s the problem of mining sequence patterns consists in finding
all sequence patterns P such that freq(P ) ≥ s.

Table 1.3 – Sequence database

trans. Sequence
t1 ABCBC
t2 BABCA
t3 ACBB
t4 CAABACB
t5 AC

Example 1.20. Table 1.3 represents a sequence database where I = {A,B,C} and T =
{1, 2, 3, 4, 5}. The sequence AC is a sub-sequence of BABCA. The cover of the sequence
BCB is cover(BCB) = {1, 4}. Its frequency is freq(BCB) = |cover(BCB)| = 2. Given
s = 3 the sequence AC is frequent (freq(AC) ≥ 3) but BCB is not.

1.8.2 Mining from Uncertain Data

In some real world data some attributes suffer from an uncertainty. Take symptoms
in a medical dataset for instance, their presence come from subjective observations. In
uncertain datasets the presence of an item in a trasaction is associated with a probability
(Chui et al. [2007]). The structure of the dataset is the same as in itemset mining. The only
difference is the additional dimension, i.e. the probability p(i, t) of the presence of an item
i in a transaction t. In uncertain datasets, the frequency of an itemset is defined as follows.
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Given a transaction dataset, the existential probability of an itemset P in a transaction t is
p(P, t) = ∏

i∈P p(i, t). The frequency of the itemset P is then freq(P ) = ∑
ti
p(P, ti).

Table 1.4 – An uncertain dataset with 5 items and 5 transactions

trans. Items
t1 A (0.8) B (0.9) D (1) E (0.5)
t2 A (0.6) C (0.3)
t3 A (0.2) B (0.4) C (0.6) E (0.5)
t4 B (0.8) C (0.7) E (0.9)
t5 A (0.9) B (0.6) C (0.6) E (0.3)

Example 1.21. In Table 1.4 we present an uncertain dataset with 5 transactions and 5 items.
The probability of presence of item A in transaction t1 is p(A, t1) = 0.8. the existential
probability of AB in t1 is p(AB, t1) = 0.8 × 0.9 = 0.72. Its frequency is freq(AB) =
0.72 + 0.08 + 0.54 = 1.34.

1.9 Conclusion

In this chapter we have presented some background in itemset mining. We have fo-
cused specially on presenting (i) existing methods for mining frequent itemsets and its
condensed representations (ii) existing methods for mining association rules and its vari-
ants. We have shown that specialized algorithms suffer from the lack of generality when
it comes to mining patterns with additional constraints.

In this thesis we propose to solve some of the presented problems using constraint
programming. Constraint programming allows a generic modeling of various problems.
The user in this case only needs to extend the model to take in consideration her additional
constraints and no revision of the solving process is required. In the next chapter we
present some background in constraint programming.
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Chapter 2: Constraint Programming

“Constraint Programming represents one of the closest approaches computer science has yet
made to the Holy Grail of programming: the user states the problem, the computer solves it.”
[Eugene Freuder]

2.1 Introduction

Constraint Programming (CP) is a powerful declarative paradigm. The user specifies
the problem and the computer solves it. Constraint programming is the art of writing
problems as models and solving them by finding solutions. Constraint programming
dates back in the sixties, when Golomb and Baumert [1965] have introduced "Backtracking
Programming".

In this chapter we give a brief background on constraint programming. We start with
some notations in Section 2.2. We describe the solving process conducted by constraint
solvers in Section 2.3. Global constraints are defined in Section 2.4. Finally, we define the
reified constraints in Section 2.5. Further details such as constraint optimisation problems,
soft constraints, numeric CSPs, dynamic CSPs, can be found in the handbook of constraint
programming (Rossi et al. [2006]).

2.2 Notations and Definitions

A CP model is a general parameterized description of a class of problems. An instance
of a CP model is associated with a constraint network.

A constraint network, N = (X,D,C), is specified by:
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• a finite set of variables X = {x1, . . . , xn}.
• a finite set of domains D = {dom(x1), . . . , dom(xn)}, where dom(xi) is the finite set

of possible values for xi.
• a finite set of constraints C = {c1, . . . , cm} on X . A constraint cj ∈ C is a relation

that specifies the allowed combinations of values for its variables X(cj). |X(cj)| is
called the arity of cj . cj is called a binary constraint if |X(cj)| = 2. A constraint
network is called a binary network if for all ci ∈ C, ci is a binary constraint.

An assignment (aka, instantiation) on a set Y ⊆ X of variables, denoted by A[Y ], is a
mapping from variables in Y to values, and a valid assignment is an assignment where all
values belong to the domain of their variables. A solution is an assignment on X , A[X],
satisfying all constraints.

The Constraint Satisfaction Problem (CSP) consists in deciding whether an instance of
a CP model has solutions (or in finding a solution).

Example 2.1. Consider the following instance of a CP model.

X = {x1, x2, x3}
D = {dom(x1), dom(x2), dom(x3)}where,

dom(x1) = {1, 2}, dom(x2) = {0, 1, 2, 3},
dom(x3) = {2, 3}

C = {c1(x1, x2), c2(x1, x2, x3)}where,
c1(x1, x2) : x1 > x2
c2(x1, x2, x3) : x1 + x2 = x3

This CSP admits the two solutions (x1 = 2, x2 = 0, x3 = 2) and (x1 = 2, x2 = 1, x3 = 3).

2.3 Constraint Programming Solver

A trivial way to solve a CSP is to test every assignment of X for satisfiability. Intu-
itively, this strategy can be infeasible in practice. Thus, the solving process in constraint
programming relies on two strategies, inference and search. The inference eliminates
values from D, the set of domains, by constraint propagation. The search, on the other
hand, explores values in D. Constraint solvers use backtracking search to explore the
search space of partial assignments. At each assignment, constraint propagation algo-
rithms prune the search space by enforcing local consistency properties such as domain
consistency.

2.3.1 Backtracking

The backtracking algorithm explores the domains of variables by incrementally select-
ing variables and instantiate them. At the root the assignment is empty, then variables are
instantiated one by one until A[var] is not valid then it backtracks or until var = X , i.e.
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the assignment is complete. More formally, a node nd in a search tree is an assignment
{x1 = v1, . . . , xi = vi}. nd is extended by selecting a variable xj and branch on it with a
selected value vk from dom(xj). In this case, nd is updated to nd ∪ {xj = vk}.

Example 2.2. Consider the search tree of the CSP in Example 2.3 represented in Figure 2.1.
The node nd corresponds to the assignment {x1 = 1}. It is extended to {x1 = 1, x2 = 2} by
branching on x2 with 2.

x1

x3x2

x3x3

x2 = 2

21

2 3

5 6 65

65

nd

Figure 2.1 – A search tree on Example 2.3

Heuristics of variables/values selection. During the resolution, the algorithm of back-
tracking should select variables that are not instantiated to branch on them. It should also
select a value from the domain of the selected variable to branch with. The order of the
variable/value selection can highly influence the resolution time.

The variable selection strategy can be static or dynamic. For the static strategy, the order
of variable selection is defined before the resolution starts (e.g., lexicographic order). For
the dynamic strategy the order of the variable selection is defined during the resolution
(e.g., select the variable with the smallest domain).

For the value selection strategy usually values of a given domain are selected in an
increasing/decreasing order.

To make the backtracking efficient we can use:
• Look back strategy which learns from fails to avoid them in further search (Dechter

[1990]).
• Look ahead strategy which anticipates fails by removing inconsistent values with

an already instantiated variable xi = vj . This method is called Forward Check-
ing and was first introduced under the name preclusion in (Golomb and Baumert
[1965]).

To make the solving process even stronger, constraint propagation eliminates incon-
sistent values by enforcing some consistency properties such as domain consistency (aka,
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arc consistency).

2.3.2 Propagation and Consistencies

Constraint propagation is a milestone in CP solvers. It is referred to with several names
in the literature such as filtering algorithms. Constraint propagation reduces the search
space by removing values from domains of some variables because a subset of constraints
cannot be satisfied otherwise. For instance, consider the constraint c : x1 + x2 ≤ 5, where
domains of x1 and x2 are integers from 1 to 10. Clearly, the constraint c forbids values
from 5 to 10 from both variables.

We say that a value v in dom(xi) has a support on the constraint c if there exists an as-
signment A[X(c)] with xi = v such that c is satisfied. We now define a domain consistent
constraint.

Definition 2.1 (Domain Consistency (DC)). A constraint c on X(c) is domain consistent,
if and only if, for every xi ∈ X(c) and every vj ∈ dom(xi), vj has a support on c.

Domain consistency helps filtering forbidden (i.e., inconsistent) values by removing
values that have no support on the constraint. We say that a filtering algorithm A (or a
propagator) ensures domain consistency on a constraint c if all values with no support on
c have been removed by A.

Example 2.3. Consider the constraint c(x1, x2, x3) : x1 + x2 = x3 with dom(x1) = {1, 2, 4},
dom(x2) = {2, 3, 5} and dom(x3) = {3, 8, 9}. Using a domain consistency filtering, we get
dom(x1) = {1, 4}, dom(x2) = {2, 5} and dom(x3) = {3, 9}. For instance, value 2 in dom(x1)
is removed because summing-up 2 with any value in dom(x2) is not equal to any value in
dom(x3).

Given a constraint network N = (X,D,C), if all constraints in C are domain consis-
tent, we say that the network N is domain consistent, but this does not mean that N has
solutions. We show this in the following example.

Example 2.4. Consider the following constraint network, N = (X,D,C).

X = {x1, x2, x3}
D = {dom(x1), dom(x2), dom(x3)}where,

dom(x1) = {1, 2}, dom(x2) = {1, 2},
dom(x3) = {1, 2}

C = {c1(x1, x2), c2(x1, x3), c3(x2, x3)}where,
c1(x1, x2) : x1 6= x2
c2(x1, x2) : x1 6= x3
c3(x2, x3) : x2 6= x3
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N is domain consistent, the constraints c1, c2 and c3 are domain consistent. Take the
constraint c1 : x1 6= x2 for instance, values 1 and 2 in dom(x1) have supports in dom(x2),
i.e. 2 and 1, respectively. But N has no solution.

AC3 (AC for Arc Consistency) is the most well known algorithm for ensuring domain
consistency on a network (Mackworth [1977a]). It was originally proposed for binary net-
works, then extended for arbitrary networks, i.e. GAC3 (G for Generalized) (Mackworth
[1977b]). GAC3 tests if a value v in dom(xi) has a support, if not it can be removed. To
avoid useless tests, GAC3 uses a list where it stores only candidate pairs (xi, cj). GAC3
has a time complexity of O(er3dr+1) and a space complexity of O(er) where e = |C|, r is
the greatest arity among constraints in C and d is the cardinality of the largest domain.

We find in the literature many attempts to improve the complexity of GAC3. GAC4 re-
duces the time complexity to O(erdr) by storing additional information leading to a space
complexity in O(erdr) (Mohr and Henderson [1986]). Bessiere [1994] proposes GAC6.
GAC6 is a compromise between GAC3 and GAC4. It keeps the worst-case time complex-
ity of GAC4, but it stops the search once a support is found as in GAC3. AC2001 improves
the average complexity (Bessiere and Régin [2001]).

Domain consistency is the strongest and most used consistency for achieving an ef-
ficient filtering. A weak kind of consisitency is the bound consistency (Lhomme [1993]).
Bound consistency is usually used in CSPs with continuous domains. Other consistencies
can be found in the literature (Debruyne and Bessiere [2001]).

Finally, constraint solvers combine the backtracking with constraint propagation tech-
niques such as GAC3 to reach a good performance in solving problems.

2.4 Global Constraints

Global constraints are constraints defined by a relation on a non-fixed number of vari-
ables. These constraints allow the solver to better capture the structure of the problem.
Examples of global constraints are ALLDIFFERENT, REGULAR, AMONG, etc. For instance,
the constraint ALLDIFFERENT(x1, . . . , xn) ensures that the variables from x1 to xn should
take different values where n can be any number in N∗ \ {1}.

Example 2.5. The CSP in Example 2.4 can be represented using the global constraint ALLD-
IFFERENT. ALLDIFFERENT(x1, x2, x3) ensures that x1, x2 and x3 should take different val-
ues. ALLDIFFERENT captures better the structure of the problem and detects that the
problem is inconsistent and no solution exists.

The generic DC algorithms such as GAC3 and GAC6 do not provide global constraints
with an efficient filtering. However, when the decomposition of a global constraint is
Berge-acyclic (Beeri et al. [1983]) (such as REGULAR) it preserves DC. On such constraints,
the generic algorithms perform well and are optimal. For other global constraints, it is not
possible to efficiently propagate them by generic DC algorithms because these algorithms
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are exponential in the number of variables of the constraint. Fortunately, for many global
constraints (such as ALLDIFFERENT), dedicated propagation algorithms can be designed
to achieve DC in time polynomial in the size of the input, that is, the domains and the
required extra parameters.

For ALLDIFFERENT, Régin [1994] proposes a polynomial filtering algorithm ensuring
DC. It uses the bipartite graph (the graph that links variables to their domains) to detect
inconsistency. A matching in a graph is a subset of edges with no vertex in common. If the
largest possible matching contains every vertex in X(c) then the constraint is consistent
and at least a solution exists.

2.5 Reified Constraints

In constraint programming, it exists a type of meta-constraint that associate a con-
straint with a truth variable to represent its satisfiability. A reified constraint b ⇐⇒ c
associates a Boolean variable b to the truth value of the constraint c (Apt [2003]). The
variable b is set to true (b = 1) if the constraint c is satisfied, to false (b = 0) otherwise.

The filtering conducted by such constraint is as follows:
• If the constraint c is satisfied then b = 1.
• If the constraint c is violated then b = 0.
• If b = 1 then the constraint c should be satisfied.
• If b = 0 then the constraint c should be violated.

Reified constraints are used to model several problems. It can be used to express that
a number of constraints should be satisfied.

Example 2.6. Consider the following model with reified constraints.

b1 ⇐⇒ c1 (1)

b2 ⇐⇒ c2 (2)

b1 + b2 ≥ 1 (3)

This model expresses that at least a constraint (c1 or c2) should be satisfied. Constraints
(1) and (2) are reified constraints and constraint (3) ensures that at least b1 or b2 is set to 1.

2.6 Conclusion

In this chapter we have presented some background in constraint programming, We
have shown how constraint solvers proceed in solving problems using backtracking and
constraint propagation. We also have presented some type of constraints such as global
constraints and reified constraints.
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Being expressive and flexible, constraint programming is used to solve data mining
problems. In the next chapter, we review some existing declarative approaches in itemset
mining.





III

Chapter 3: Declarative Itemset Mining

3.1 Introduction

In a recent line of work, declarative 1 approaches are used to solve various data mining
problems. We can find declarative approaches for itemset mining (Raedt et al. [2008],
Khiari et al. [2010], Boudane et al. [2016], Lazaar et al. [2016], Schaus et al. [2017], Bessiere
et al. [2018]), for sequence mining (Coquery et al. [2012], Kemmar et al. [2015], Aoga et al.
[2017]), for graph mining (Kemmar et al. [2018]), for mining from uncertain datasets (Dlala
et al. [2016]), for clustering (Dao et al. [2017], Chabert and Solnon [2017]). In terms of
CPU time, declarative methods have not yet competed with ad hoc algorithms. However,
their flexibility allows the modeling of complex user queries without revising the solving
process.

In this chapter we review existing declarative approaches for itemset mining problems.
We start by defining some notations in Section 3.2. We introduce the basic constraint pro-
gramming model for itemset mining in Section 3.3. The global constraints CLOSEDPAT-
TERN and COVERSIZE, constraints that are used in our models, are presented in Sections
3.4 and 3.5, respectively. Finally, we review some SAT models in itemset mining in Section
3.6.

3.2 Notations and Definitions

Most declarative methods use Boolean variables for representing patterns, where xi

represents the presence of the item i ∈ I in the pattern. x is a vector of Boolean variables,
(x1, . . . , x|I|) to represent the solution.

1. In this manuscript we focus on declarative approaches that are based on constraints (CP and SAT).
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Given a vector of Boolean variables x, we use the following notations:
— x−1(1) = {i ∈ I | dom(xi) = {1}}.
— x−1(0) = {i ∈ I | dom(xi) = {0}}.
— x−1(∗) = {i ∈ I | dom(xi) = {0, 1}}.

Note that x−1(1) ∪ x−1(0) ∪ x−1(∗) = I and x−1(1) ∩ x−1(0) ∩ x−1(∗) = ∅.

Example 3.1. Given a dataset with 4 items, i.e. I = {A,B,C,D}, the instantiation x =
[1, 0, 1, 0/1] corresponds to the sets x−1(1) = {A,C}, x−1(0) = {B} and x−1(∗) = {D}.

Given an integer variable p, we use the following notations:
— UB(p) is the upper-bound value of p.
— LB(p) is the lower-bound value of p.

Example 3.2. Given an integer variable p with dom(p) = {1, 2, 3}, its lower-bound is 1, i.e.
LB(p) = 1 and its upper-bound is 3, i.e. UB(p) = 3.

3.3 Basic Constraint Programming Model for Itemset Min-
ing

The first constraint programming model for itemset mining was intoduced in (Raedt
et al. [2008]). It is based on reified constraints to connect item variables to transaction
variables.

Variables. For this model, a Boolean variable xi is associated to every item i to repre-
sent the presence of the item i in the returned itemset. A transaction tj is associated with
a Boolean variable yj to represent if the returned itemset is in the transaction tj or not.

Constraints. We now present the constraints. We use Dji to represent the presence of
the item i in the transaction tj (see the binary representation of the dataset in Table 1.1).

∀j ∈ T : yj = 1↔
∑
i∈I

xi(1−Dji) = 0 (1)

The constraint (1) encodes the cover of an itemset. It ensures that the variable yj is set
to 0 if the itemset x−1(1) is absent from tj . That is, if only an item i ∈ x−1(1) is absent from
tj then xi(1−Dji) = 1 and the constraint

∑
i∈I

xi(1−Dji) = 0 is violated (i.e., yj = 0).

∑
j∈T

yj ≥ s (2)

The constraint (2) ensures that the itemset x−1(1) is frequent w.r.t. the threshold s.
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The model that combines the constraints (1) and (2) allows the mining of all frequent
itemsets. This model can be extended with other constraints to express other properties.
The closeness, for instance, can be encoded using the following constraint.

∀i ∈ I : xi = 1↔
∑
j∈T

yj(1−Dji) = 0 (3)

The constraint (3) ensures that the itemset x−1(1) is closed. If the item i is present in all
transactions tj such that yj = 1 then xi is set to one.

The maximality is encoded with the following constraint.

∀i ∈ I : xi = 1↔
∑
j∈T

yjDji ≥ s (4)

The constraint (4) ensures that the itemset x−1(1) is maximal. If the itemset x−1(1)∪{i}
is frequent we include item i in the itemset (i.e., xi = 1).

This model has some limits in terms of memory and scalability. It requires an im-
portant number of variables/constraints to encode only the frequency, i.e. (n + m) vari-
ables and (n + m) constraints where n is the number of items and m is the number of
transactions. On huge datasets the process of mining frequent itemsets became infeasible.
Take for instance the dataset Retail 2 which has 16, 470 items and 88, 162 transactions, it
requires more than 100, 000 variables and 100, 000 constraints to encode the problem of
mining frequent itemsets using the reified constraints. To ensure the closeness 16, 470 ad-
ditional constraints are required and 16, 470 more constraints are required to ensure the
maximality. That is why it may be interesting to capture some properties using global
constraints.

3.4 The Global Constraint CLOSEDPATTERN

The first global constraint proposed for itemset mining, CLOSEDPATTERN, was intro-
duced in (Lazaar et al. [2016]) for mining closed frequent itemsets. A global constraint
provides a better view of the structure of the problem to the solver. Lazaar et al. [2016]
propose a complete filtering algorithm for CLOSEDPATTERN.

Definition 3.1 (CLOSEDPATTERN). Let x be a vector of Boolean variables, s a support
threshold and D a dataset. The global constraint CLOSEDPATTERND,s(x) holds if and only
if x−1(1) is a closed frequent itemset w.r.t. the threshold s.

Example 3.3. On the dataset in Table 1.1 and with s = 3, given the instantiation x =
[1, 0, 0, 1, 0] we have x−1(1) = {A,D} and x−1(0) = {B,C,E}. The constraint CLOSEDPATTERND,3(x)
is not satisfied (freq(AD) = 1 < 3). With x = [0, 1, 0, 0, 1] the constraint CLOSEDPATTERND,3(x)
is satisfied, because x−1(1), i.e. BE is frequent and closed.

2. fimi.ua.ac.be/data/
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3.4.1 Propagator of CLOSEDPATTERN

In the following, we present the filtering rules of CLOSEDPATTERN. The first rule filters
0 from dom(xi) if {i} is a closure extension of x−1(1) (see Definition 1.3). The second rule
filters 1 from dom(xi) if the itemset x−1(1)∪ {i} is infrequent w.r.t. s. Finally, the third rule
filters 1 from dom(xi) if cover(x−1(1) ∪ {i}) is a subset of cover(x−1(1) ∪ {j}) where j is an
absent item, i.e. j ∈ x−1(0).

1. If |cover(x−1(1) ∪ {i})| = |cover(x−1(1))| ⇒ 0 6∈ dom(xi).
2. If |cover(x−1(1) ∪ {i})| < s⇒ 1 6∈ dom(xi).
3. If cover(x−1(1) ∪ {i}) ⊆ cover(x−1(1) ∪ {j}) ∧ j ∈ x−1(0)⇒ 1 6∈ dom(xi).

Example 3.4. On the dataset in Table 1.1 and with s = 2, consider the partial assignment
x−1(1) = {B}, x−1(0) = {A} and x−1(∗) = {C,D,E}. Thanks to rule 1, 0 is filtered from
dom(xE), because |cover(BE)| = |cover(B)|. Then, the rule 2 filters 1 from dom(xD) be-
cause freq(BDE) = 1 < 2. The value 1 can be filtered from dom(xD) by the rule 3 also.
That is because cover(BDE) ⊆ cover(ABE) and A is in x−1(0).

Complexity. The algorithm implementing the three filtering rules of CLOSEDPATTERN
has a time complexity in O(n2 × m) and a space complexity in O(n × m) where n is the
number of items and m is the number of transactions.

It is proven in (Lazaar et al. [2016]) that the filtering rules 1, 2 and 3 enforce domain
consistency on the constraint CLOSEDPATTERN.

Lazaar et al. [2016] propose a weak propagator for CLOSEDPATTERN by omitting the
expensive quadratic filtering rule, i.e. rule 3. Using this propagator speeds-up the solving
process in some cases despite its incompleteness.

3.5 The Global Constraint COVERSIZE

The global constraint COVERSIZE is introduced for computing the exact size of the
cover of an itemset (Schaus et al. [2017]). This offers more flexibility in modeling problems.
One can mine frequent (infrequent) itemsets by forcing the size of the cover to be greater
or equal (less than) a frequency threshold.

Definition 3.2 (COVERSIZE). Let x be a vector of Boolean variables, p an integer vari-
able and D a dataset. The global constraint COVERSIZED(x, p) holds if and only if p =
|cover(x−1(1))|.

Example 3.5. On the dataset in Table 1.1, given the instantiation x = [0, 0, 1, 0, 1] and p =
3 the constraint COVERSIZED(x, p) is satisfied because the frequency of x−1(1), i.e. CE
equals p, i.e. 3. The instantiation x = [1, 1, 1, 0, 0] and p = 3, on the other hand, does not
satisfy COVERSIZE because freq(ABC) = 2 6= p.
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Domain consistency on the constraint COVERSIZE is proven to be NP-hard (Schaus
et al. [2017]). As a result, the proposed propagator is not complete. We present next the
propagator of the constraint COVERSIZE.

3.5.1 Propagator of COVERSIZE

In the following, we present the filtering rules of COVERSIZE. The first two rules
update the bounds of p. The third rule filters 1 from dom(xi) if including the item i
would result a cover size that is bellow LB(p). Finally, the fourth rule filters 0 from
dom(xi) if excluding the item iwould result the increasing ofUB(p) knowing thatUB(p) =
|cover(x−1(1) ∪ x−1(∗))|.

1. If |cover(x−1(1))| < UB(p)⇒ UB(p) ≤ |cover(x−1(1))|.
2. If |cover(x−1(1) ∪ x−1(∗))| > LB(p)⇒ LB(p) ≥ |cover(x−1(1) ∪ x−1(∗))|.
3. If |cover(x−1(1) ∪ {i})| < LB(p)⇒ 1 6∈ dom(xi).
4. If UB(p) = |cover(x−1(1) ∪ x−1(∗))| ∧ |cover(x−1(1) ∪ x−1(∗))| < |cover(x−1(1) ∪
x−1(∗) \ {i})| ⇒ 0 6∈ dom(xi).

Example 3.6. On the dataset in Table 1.1, consider the partial assignment x−1(1) = {B},
x−1(0) = {D} and x−1(∗) = {A,C,E} and dom(p) = {0, 1, 2, 3, 4, 5}, i.e. LB(p) = 0 and
UB(p) = 5. The rule 1 updates the upper-bound of p to |cover(B)|, i.e. UB(p) = 4.
The rule 2 updates the lower-bound of p to |cover(ABCE)|, i.e. LB(p) = 2. Given the
partial assignment x−1(1) = {B}, x−1(0) = {C}, x−1(∗) = {A,D,E}, UB(p) = 4 and
LB(p) = 2, the rule 3 filters 1 from dom(xD) because |cover(BD)| = 1 < LB(p). Given
the partial assignment x−1(1) = {B}, x−1(0) = {C}, x−1(∗) = {A,D,E}, UB(p) = 2 and
LB(p) = 2, the rule 4 filters 0 from dom(xD) because UB(p) = freq(ABDE) = 2 and
freq(ABE) = 3 > freq(ABDE).

To enforce the frequency one can simply add the constraint p ≥ s and to enforce the
infrequency one can add the constraint p < s. The propagator of COVERSIZE enforces DC
on the frequency, but it does not on the infrequency. We can show this in an example.

Table 3.1 – Dataset

trans. Items
t1 A B
t2 A C
t3 B
t4 A B C

Example 3.7. On the dataset in Table 3.1 we want to mine infrequent itemsets with s = 3.
We can express this by the following model: COVERSIZED(x, p)∧p < 3. The constraint p <
3 updates the upper-bound of p to 2, i.e. UB(p) = 2. With the partial instantiation x−1(1) =
{B}, x−1(0) = {A} and x−1(∗) = {C} we have: UB(p) = 2 and LB(p) = |cover(BC)| = 1.
No filtering is conducted in this node, but value 0 for dom(xC) is not domain consistent
because with xC = 0 we have the complete instantiation x−1(1) = {B}, x−1(0) = {A,C}
and freq(B) = 3 6∈ dom(p).
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To efficiently compute the cover of an itemset, a new data-structure was introduced in
(Schaus et al. [2017]) called ReversibleSparseBitset. ReversibleSparseBitset allows the ignoring
of zero words in the cover computation.

As opposed to CLOSEDPATTERN, the closeness is encoded in (Schaus et al. [2017]) with
an independent global constraint, COVERCLOSURE. COVERCLOSURED(x) ensures that the
itemset x−1(1) is closed and not necessary frequent. It uses the same filtering rules as in
(Lazaar et al. [2016]) (rules 1 and 3).

3.6 SAT for Itemset Mining

A SAT problem (for SATisfiability) consists in deciding whether a formula in Conjunc-
tive Normal Form (CNF) admits a solution or not. A formula is in CNF if it is written as
a conjunction (∧) of clauses, where a clause is a disjunction (∨) of Boolean variables (aka,
literals).

SAT is extensively used in itemset mining. It is used for detecting symmetries (Jabbour
et al. [2013a]), for top-k itemsets mining (Jabbour et al. [2013b]), for association rules min-
ing (Boudane et al. [2016, 2017]), for closed frequent itemets mining (Dlala et al. [2018])
and for maximal frequent itemsets mining (Jabbour et al. [2018]).

3.6.1 SAT for Mining Maximal Frequent Itemsets

Jabbour et al. [2018] propose a SAT approach for mining MFIs. Jabbour et al. [2018]
extend a model for mining closed itemsets to mine MFIs (as an MFI is a closed itemset).

Variables. To model the SAT approach for mining MFIs two vectors of literals are
required, xi to represent the presence of the item i in the itemset, and pj to represent the
presence of the itemset x−1(1) in the transaction tj .

Constraints. We now present the set of constraints (aka, formulas).

∧
j∈T

(¬pj ↔
∨

i∈I\tj

xi) (1)

The formula (1) encodes the cover of x−1(1). It ensures that pj is set to false if it exists
at least an item in x−1(1) that is not in tj .

∑
j∈T

pi ≥ s (2)

The constraint (2) ensures that x−1(1) is frequent w.r.t. s. The constraint (2) corresponds
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to a cardinality constraint. To handle this kind of constraints in SAT, a transformation
to CNF is required. In the literature, several researchers have addressed this problem
(Warners [1998], Asín et al. [2011], Jabbour et al. [2014]). The challenge is to achieve a
good size of the CNF formula and to keep a good propagation on the constraint after
transformation.

∧
i∈I

((
∨
i 6∈tj

pj) ∨ xi) (3)

The formula (3) ensures that the itemset x−1(1) is closed. It encodes the fact that if
cover(x−1(1)) = cover(x−1(1) ∪ {i}) then the item i should be in x−1(1) (i.e., xi should be
set to true).

To capture the maximality, one can add the following constraint.

∨
i∈I
¬xi → (

∑
j∈T |i∈tj

yj < s) (4)

The constraint (4) is a cardinality constraint and needs to be transformed to CNF. This
transformation can generate a huge number of clauses making the mining of MFIs infea-
sible. That is why Jabbour et al. [2018] use blocking clauses instead. Blocking clauses
are clauses added during the search to block the solver from going further and lead it to
another level of the search tree.

The solver starts by setting item variables to true whenever x−1(1) is frequent. Every
time a solution is found, the blocking clause (5) is added to find MFIs that include other
items comparing to the previous solution.

∨
i∈I\x−1(1)

xi (5)

Note that this approach is sensitive to the value selection strategy. That is, any changes
in the strategy would interfere with the soundness of the model. As a result, this approach
cannot take additional constraints into consideration during the resolution.

3.6.2 SAT for Association Rules

Boudane et al. [2016] propose a SAT-CP hybrid approach for mining association rules.
It encodes some constraints in CNF and uses constraint propagation to handle cardinality
constraints. To show its flexibility, this SAT-CP model is extended to capture indirect rules.
Using the same model, Boudane et al. [2017] capture the set of MNRs. Next, we present
the SAT-CP model for mining association rules.
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Variables. To model the SAT-CP approach for mining association rules four vectors of
literals are required: xi to represent the presence of the item i in the body; yi to represent
the presence of the item i in the head; pj to represent the presence of the itemset x−1(1)
in the transaction tj ; and qj to represent the presence of the itemset x−1(1) ∪ y−1(1) in the
transaction tj .

Constraints. We now present the set of constraints (aka, formulas).

(
∨
i∈I

xi) ∧ (
∨
i∈I

yi) (1)

The formula (1) ensures that x−1(1) and y−1(1) are not empty (note that the SAT approach
does not allow the body to be empty).

∧
i∈I

(¬xi ∨ ¬yi) (2)

The formula (2) ensures that x−1(1) ∩ y−1(1) = ∅.

∧
j∈T

(¬pj ↔
∨

i∈I\tj

xi) (3)

The formula (3) is similar to formula (1) from Section 3.6.1. It encodes the cover of x−1(1).

∧
j∈T

(¬qj ↔ ¬pj ∨ (
∨

i∈I\tj

yi)) (4)

The formula (4) encodes the cover of x−1(1) ∪ y−1(1). It ensures that qj is set to false if pj is
set to false (x−1(1) absent from tj) or at least an item in y−1(1) is absent from tj .∑

j∈T
qj ≥ s (5)

The constraint (5) is similar to formula (2) from Section 3.6.1. It ensures that x−1(1)∪y−1(1)
is frequent w.r.t. s.

∑
j∈T qj∑
j∈T pj

≥ c (6)

Finally, the constraint (6) ensures that the rule x−1(1)→ y−1(1) is confident w.r.t. c.

The solutions to the SAT-CP model that combines the constraints from (1) to (6) are
the set of association rules. It encodes the constraints from (1) to (4) in CNF and uses
constraint propagation for the constraints (5) and (6).

Despite the cardinality part of the SAT-CP model, the size of the encoding of the for-
mulas from (1) to (4) may be huge. With n the number of items and m the number of
transactions, this approach requires (2n + 2m) literals and more than (2nm) clauses to
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encode the formulas from (1) to (4). This makes the charging of the CNF to the RAM in-
feasible on some datasets. For instance, the formulas from (1) to (4) on the dataset Retail
is encoded in a CNF file of size 63Gb.

SAT for MNRs

Boudane et al. [2017] propose to extend the SAT-CP model for association rules to
mine only MNRs (see Definition 1.10). For this, it is sufficient to force x−1(1)∪ y−1(1) to be
closed and x−1(1) to be a generator (see Proposition 1.4). The previously presented model
in extended using the following formulas.

∧
i∈I

((
∧

j∈T
qj → i ∈ tj)→ xi ∨ yi) (7)

The formula (7) is similar to formula (3) from Section 3.6.1. It ensures that the itemset
x−1(1)∪ y−1(1) is closed. It encodes the fact that if cover(x−1(1)∪ y−1(1)) = cover(x−1(1)∪
y−1(1) ∪ {i}) then the item i should be in x−1(1) ∪ y−1(1) (i.e., either xi or yi should be set
to true).

(
∧
i∈I

xi →
∨

(j∈T ,i 6∈tj)
(

∧
k 6∈tj∪{i}

¬xk)) ∨ (
∑
k∈I

xk = 1) (8)

The formula (8) ensures that the itemset x−1(1) is generator. It represents the fact that
if freq(x−1(1) → y−1(1)) = freq(x−1(1) \ {i} → y−1(1)) then i has to be excluded from
x−1(1). Finally, the constraint (∑

k∈I xk = 1) only ensures that x−1(1) is not empty, because
an empty-set is always generator.

Because of the closeness and generator constraints, the size of the formula to handle
the MNRs became even larger. For the dataset Retail we move from a formula of size
63Gb for mining association rules, to a formula of size 187Gb for mining MNRs.

3.7 Conclusion

In this chapter we have presented some existing declarative approaches for itemset
mining. We have presented the constraint programming and the SAT based approaches
for itemset mining. We have introduced the basic constraint programming model for item-
set mining and we have shown its limits. We have presented existing global constraints in
itemset mining, namely, CLOSEDPATTERN and COVERSIZE. We also have presented some
of the SAT models for itemset mining and we have shown that these models suffer from a
memory issue. Other than itemset mining, declarative approaches are used in data min-
ing including sequence mining, graph mining, mining from uncertain datasets, clustering,
etc.
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Recently, declarative approaches have shown interesting results in data mining. Hence,
developing declarative approaches to solve some data mining problems seems to be a
promising field. In the next part of this manuscript, we introduce our contributions in
declarative itemset mining.
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Chapter 4: Constraint Programming for
Association Rules

4.1 Introduction

Mining association rules is one of the most studied problems in data mining. It aims at
discovering interesting regularities between items in large-scale datasets. An Association
Rule (AR) captures an information of the kind "if we have A and B, the chances to have
C are high". Nowadays, a broad spectrum of application domains ask for this kind of
information on a variety of datasets.

In this chapter, we propose a full CP model for finding ARs. We use global constraints
to ensure frequency and confidence of the rules. We take the frequency global constraint
from existing literature (i.e., COVERSIZE constraint (Schaus et al. [2017])). For the confi-
dence we need to introduce a new global constraint CONFIDENT for ensuring the mini-
mum confidence of the extracted rules. We show that domain consistency on CONFIDENT
is NP-hard. We then propose a non-complete propagator and a decomposition for CONFI-
DENT. We show that our CP model can easily be extended for taking into account any kind
of user’s constraints, such as cardinality of the rule, mandatory or forbidden items in the
rule, etc. We show that our CP model is also able to capture the notion of MNR. For this,
we introduce a new global constraint GENERATOR for mining generators. We provide a
polynomial algorithm achieving domain consistency on GENERATOR. We then give a dis-
cussion on constrained MNRs. Experiments on several known large-scale datasets show
the effectiveness of our global constraints and CP model.

This chapter is organized as follows. Section 4.2 presents our CP model for computing
association rules. Section 4.3 defines the global constraint CONFIDENT, a global constraint
for ensuring the confidence of a rule. Section 4.4 presents the extension of our CP model
to compute MNRs. The global constraint GENERATOR, which is needed in that model, is
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defined and a propagator is proposed in Section 4.5. Section 4.6 shows how to extend our
CP model to compute association rules with various kinds of user’s constraints. We give
discussion on constrained MNRs in Section 4.7. Finally, before concluding this chapter,
Section 4.8 reports experiments.

4.2 A CP Model for Association Rules

In this section we present CP-RULE, a CP model for mining association rules. We
introduce three vectors x, y and z of n Boolean variables, where xi, yi and zi respectively
represent the presence of item i in the body of the rule, in the head of the rule, and in the
rule as a whole.

The model CP-RULE should be specified so that for any assignment on x, y, z that is a
solution, x−1(1)→ y−1(1) is a valid association rule.

CP-RULE involves five types of constraints:

CP-RULED,s,c(x, y, z) =



∀i ∈ I : ¬xi ∨ ¬yi (1)∨
i∈I yi (2)
∀i ∈ I : zi ⇐⇒ xi ∨ yi (3)
CONFIDENTD,c(x, y) (4)
FREQUENTD,s(z) (5)

The role of each type of constraint is the following:
(1) ensures that a given item cannot be both in the body and in the head of a rule;
(2) ensures that the head of a rule is not empty;
(3) is a channelling constraint ensuring that z−1(1) = x−1(1) ∪ y−1(1);
(4) is a global constraint that ensures that the rule x−1(1)→ y−1(1) is confident w.r.t. c;
(5) is a global constraint that ensures that z−1(1) is frequent w.r.t. s.
The constraint FREQUENTD,s has already been studied in the literature on itemset min-

ing (Raedt et al. [2008], Schaus et al. [2017]). The constraint CONFIDENTD,c, however, does
not exist yet. We define it in the next section.

4.3 The Global Constraint CONFIDENT

In this section, we present a new global constraint for ensuring the confidence of an
association rule. We prove that it is unfortunately NP-hard to enforce domain consistency
on this constraint. As a result, we propose a non-complete filtering algorithm for CONFI-
DENT, and a decomposition using existing constraints, which is semantically equivalent
to the CONFIDENT constraint.

Definition 4.1 (CONFIDENT constraint). Let x and y be two vectors of Boolean variables.
LetD be a dataset and c a minimum confidence threshold. The constraint CONFIDENTD,c(x, y)
holds if and only if conf(x−1(1)→ y−1(1)) ≥ c.
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Example 4.1. Consider the dataset in Table 1.1 with c = 80%.
CONFIDENTD,80%([0, 0, 0, 1, 0], [1, 1, 0, 0, 0]) is satisfied because the rule D → AB has a con-
fidence of 100% ≥ c. CONFIDENTD,80%([1, 0, 0, 0, 1], [0, 1, 0, 1, 0]) is not satisfied because the
rule AE → BD has a confidence of 66.66% < c.

We now prove that enforcing domain consistency on the constraint CONFIDENT in NP-
hard. This rules out the hope for a complete propagator for CONFIDENT.

Theorem 4.1. Enforcing domain consistency on the constraint CONFIDENTD,c is NP-hard.

Proof. From (Bessiere et al. [2007]) we know that if it is NP-complete to decide whether
there exists a valid assignment satisfying a global constraint, then, enforcing domain con-
sistency on this constraint is NP-hard. We then prove that it is NP-complete to decide if
there exists a valid assignment for CONFIDENTD,c.
Membership. Given the constraint CONFIDENTD,c(x, y) and a valid assignment on x and
y, we traverse the table D and compute the size of the covers of the itemsets x−1(1) and
x−1(1) ∪ y−1(1). This is linear in |D|. We then compute the ratio |cover(x−1(1)∪y−1(1))|

|cover(x−1(1))| and
compare it to c to decide if the assignment satisfies the constraint. This is linear in log|D|.
Completeness. We reduce 3SAT to the problem of deciding if there exists a valid assign-
ment satisfying CONFIDENTD,c(x, y). Given a 3SAT formula F on the set V = {v1, . . . , vn}
of Boolean variables, we construct the following instance of the constraint CONFIDENTD,c.
For clarity purpose, we denote the items in the transaction table D by pos1, neg1, · · · ,
posn, negn, z. Thus, x = {xpos1, xneg1, . . . , xposn, xnegn, xz} and y = {ypos1, yneg1, . . . , yposn, ynegn,
yz}. Domains are defined by dom(xposi) = {0, 1},∀i, dom(xnegi) = {0, 1},∀i, dom(xz) = {0},
dom(yposi) = {0},∀i, dom(ynegi) = {0},∀i and dom(yz) = {1}. We denote by All the set of
all items. The confidence ratio c is set to 0.5.

The transactions table D is:

1. All \ {z} (n times)
2. All \ {posi},∀vi ∈ V
3. All \ {negi},∀vi ∈ V
4. All \ {posi,negi,z},∀vi ∈ V (2 times)
5. All \ {it1, it2, it3,z}, for each clause cl in F , where iti = posj if the ith literal in cl

is vj , iti = negj if the ith literal in cl is ¬vj .

For instance, if F = {l1 ∨ ¬l2 ∨ l3}with n = 3, D is:

t1 pos1 |neg1 |pos2 |neg2 |pos3 |neg3 | |
t2 pos1 |neg1 |pos2 |neg2 |pos3 |neg3 | |
t3 pos1 |neg1 |pos2 |neg2 |pos3 |neg3 | |
t4 |neg1 |pos2 |neg2 |pos3 |neg3 | z |
t5 pos1 | |pos2 |neg2 |pos3 |neg3 | z |
t6 | |pos2 |neg2 |pos3 |neg3 | |
t7 | |pos2 |neg2 |pos3 |neg3 | |
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t8 pos1 |neg1 | |neg2 |pos3 |neg3 | z |
t9 pos1 |neg1 |pos2 | |pos3 |neg3 | z |
t10 pos1 |neg1 | | |pos3 |neg3 | |
t11 pos1 |neg1 | | |pos3 |neg3 | |
t12 pos1 |neg1 |pos2 |neg2 | |neg3 | z |
t13 pos1 |neg1 |pos2 |neg2 |pos3 | | z |
t14 pos1 |neg1 |pos2 |neg2 | | | |
t15 pos1 |neg1 |pos2 |neg2 | | | |
t16 |neg1 |pos2 | | |neg3 | |

Suppose a formula F is satisfiable. Let us denote by S a solution of F . We construct the
valid assignment on x, y such that xposi = 1 and xnegi = 0 for each i such that S[vi] = 1, and
xposi = 0 and xnegi = 1 for each i such that S[vi] = 0. Bear in mind that xz and y are already
assigned as they have a singleton domain. By construction of D, x−1(1) ∪ y−1(1) appears
in n transactions (2) and (3). By construction again, x−1(1) appears in the n transactions
where x−1(1) ∪ y−1(1) appears plus the n transactions (1). x−1(1) does not appear in any
transaction (4) because they all miss posi and negi for some i, whereas x−1(1) contains
posi or negi for all i. Finally, as S satisfies F , x−1(1) does not appear in any transaction
(5) because these transactions all miss at least the item of x−1(1) corresponding to the
literal satisfying the clause. As a result, the rule x−1(1) → y−1(1) has confidence n

2n
= 0.5,

and our assignment on (x, y) satisfies the constraint CONFIDENTD,c(x, y).

Suppose now thatA is a valid assignment on x, y satisfying the constraint CONFIDENTD,c(x, y).
Remember that y−1(1) necessarily contains z, so x−1(1) does not. Hence, x−1(1) appears
at least in the n transactions (1) where y−1(1) does not appear. Now, y−1(1) only appears
in transactions (2) and (3) because it contains z. Thus, x−1(1) must appear in at least n
transactions (2) and (3) to reach the confidence of 50%. For a given i, x−1(1) must con-
tain at least one among posi and negi, otherwise the two corresponding transactions (4)
would cover x−1(1) and not y−1(1), making confidence impossible to reach. Thus, x−1(1)
can (and must) appear in exactly n transactions (2) and (3), which means that for each i,
exactly one among posi and negi is in x−1(1). We then can build the mapping from the
assignment A on x, y to the instantiation S on v1, . . . , vn such that S[vi] = 1 if A[xposi] = 1,
and S[vi] = 0 if A[xnegi] = 1. We have n transactions (1-4) covering x−1(1) ∪ y−1(1) and 2n
covering x−1(1). As transactions (5) do not contain z, they must not cover x−1(1), other-
wise confidence cannot be reached. As a result, for every transaction (5), x−1(1) necessarily
contains at least one item (other than z) which is not in the transaction. By construction of
transactions (5) and thanks to the mapping from A to S, this item corresponds to the truth
value of a Boolean variable that satisfies the clause of F associated with the transaction.
Therefore, F is satisfiable.

Consequently, deciding if there exists a valid assignment satisfying the constraint CONFIDENTD,c

is NP-complete, and domain consistency on CONFIDENTD,c is NP-hard.

Theorem 4.1 tells us that we cannot efficiently enforce domain consistency on CONFIDENTD,c

unless P = NP . We thus propose weaker propagators for CONFIDENTD,c.

A propagation rule. We first propose a filtering rule for CONFIDENTD,c. The rule is
activated only if x is entirely instantiated.
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Proposition 4.1. Given a complete assignment on x and a partial assignment on y, for any
i ∈ y−1(∗), if conf(x−1(1)→ y−1(1) ∪ {i}) < c then we can remove value 1 from dom(yi).

Proof. We know that conf(x−1(1)→ y−1(1)) = |cover(x−1(1)∪y−1(1))|
|cover(x−1(1))| = 1

|cover(x−1(1))|×|cover(x
−1(1)∪

y−1(1))|. As x is entirely instantiated, 1
|cover(x−1(1))| is constant (let us call it k). Then

conf(x−1(1)→ y−1(1)) = k×|cover(x−1(1)∪y−1(1))| = k×freq(x−1(1)∪y−1(1)). We want to
mine confident rules, i.e. k×freq(x−1(1)∪y−1(1)) ≥ c. This is freq(x−1(1)∪y−1(1)) ≥ c/k.
Using the anti-monotone property of the frequency, if the itemset x−1(1) ∪ y−1(1) ∪ {i}
(yi = 1) is infrequent w.r.t. c/k then the item i is discarded (1 6∈ dom(yi)).

Example 4.2. Consider the dataset in Table 1.1 with c = 70%. Given the complete as-
signment on x, x−1(1) = {A}, x−1(0) = {B,C,D,E} and x−1(∗) = ∅, and the partial
assignment on y, y−1(1) = {B}, y−1(0) = {A} and y−1(∗) = {C,D,E}, the filtering rule in
Proposition 4.1 filters 1 from dom(yC) because the rule A → BC is not confident w.r.t. c
(conf(A→ BC) = 50% < c).

A decomposition. We also propose an incomplete propagation operated by a decom-
position of CONFIDENTD,c using the global constraint COVERSIZE (Schaus et al. [2017]),
which is able to capture the frequencies of x and z = x ∪ y. The decomposition of
CONFIDENTD,c is as follows.

CONFIDENTD,c(x, y) ≡


COVERSIZED(x, p)
COVERSIZED(x ∪ y, q)
q
p
≥ c

In this decomposition, p represents the frequency of x−1(1) and q represents the fre-
quency of z−1(1). The fraction q

p
represents the confidence of the rule x−1(1)→ y−1(1). We

simply ensure that the fraction q
p

is greater or equals the confidence threshold c using an
inequality constraint.

4.4 A CP model for computing MNRs

In this section we show how our CP-RULE model can be extended to return only
MNRs (see Definition 1.10). For this we use a global constraint that we define later.

According to Proposition 1.4, our CP-RULE model can be extended to a model able to
extract MNRs by adding two constraints:

MNRULED,s,c(x, y, z) =


CP-RULED,s,c(x, y, z) (1)
GENERATORD(x) (2)
CLOSEDD(z) (3)

where:



48 Chapter 4. Chapter 4: Constraint Programming for Association Rules

(1) CP-RULE ensures that the rule x−1(1)→ y−1(1) is valid;
(2) is a global constraint that ensures that the itemset x−1(1) is a generator;
(3) is a global constraint that ensures that the itemset z−1(1) is closed.
The constraint CLOSEDD has already been studied in the literature on itemset mining

(Lazaar et al. [2016], Schaus et al. [2017]). The constraint GENERATORD, however, does not
exist yet. We define it in the next section.

4.5 The Global Constraint GENERATOR

The new global constraint GENERATOR is introduced in this section. GENERATOR is
used to mine itemsets that are generator. We propose a complete polynomial algorithm
achieving DC on GENERATOR.

Definition 4.2 (GENERATOR constraint). Let x be a vector of Boolean variables and D be a
dataset. The global constraint GENERATORD(x) holds if and only if x−1(1) is a generator.

Example 4.3. Consider the dataset in Table 1.1. GENERATORD([1, 1, 0, 0, 0]) is satisfied be-
cause AB does not have any subset with the same frequency. GENERATORD([0, 1, 0, 0, 1])
is not satisfied because BE has a subset with the same frequency (freq(BE) = freq(B)).

The propagator we propose for the GENERATOR constraint is based on the property in
Proposition 1.2.

Algorithm. The propagator for the global constraint GENERATOR is presented in Algo-
rithm 1. Algorithm 1 takes as input the variables x. Algorithm 1 starts by computing the
cover of the itemset x−1(1) and stores it in cover (line 3). Then, for each item j ∈ x−1(1),
Algorithm 1 computes the cover of the subset x−1(1) \ {j}, and stores it in cov[j] (line 5).
Algorithm 1 checks if a subset has the same frequency as x−1(1), if so the constraint is
violated and a fail is returned (line 6). Algorithm 1 can then remove items i that cannot
belong to a generator containing x−1(1). To do that, we start by comparing the cover of
x−1(1)∪{i} (i.e., cover∩cover(i)) with the cover of x−1(1) (i.e., cover) (line 8). If they have
equal size (i.e., same frequency), we remove i from the possible items, that is, we remove
1 from dom(xi) and continue to the next item (line 9). Then, for every item j in x−1(1)∪{i},
we compare the cover of x−1(1)∪{i} (i.e., cover∩cover(i)) to the cover of x−1(1)∪{i}\{j}
(i.e., cov[j] ∩ cover(i)) (line 11). If they have equal size (i.e., same frequency), we remove i
from the possible items, that is, we remove 1 from dom(xi) and break the loop (line 12).

Example 4.4. Consider the dataset in Table 3.1. Given the partial assignment x−1(1) = {B},
x−1(0) = {D} and x−1(∗) = {A,C,E}, the Algorithm 1 filters 1 from dom(xE) because
freq(BE) = freq(B).

Theorem 4.2. The propagator in Algorithm 1 enforces domain consistency on the constraint
GENERATOR.
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Algorithm 1: Propagator for GENERATOR

1 InOut: x = {x1 . . . xn}: Boolean item variables;

2 begin
3 cover← cover(x−1(1));
4 foreach j ∈ x−1(1) do
5 cov[j]← cover(x−1(1) \ {j});
6 if |cover| = |cov[j]| then return failure ;

7 foreach i ∈ x−1(∗) do
8 if |cover ∩ cover(i)| = |cover| then
9 dom(xi)← dom(xi) \ {1}; continue;

10 foreach j ∈ x−1(1) do
11 if |cover ∩ cover(i)| = |cov[j] ∩ cover(i)| then
12 dom(xi)← dom(xi) \ {1}; break;

Proof. We first prove that the value 0 for a variable xi such that i ∈ x−1(∗) always belongs
to a solution of the constraint GENERATOR, and so cannot be pruned by domain consis-
tency. Suppose i ∈ x−1(∗). If x−1(1) is a generator, removing the value 0 from dom(xi)
increases x−1(1) to x−1(1) ∪ {i}, and then x−1(1) cannot be returned as a generator, which
contradicts the hypothesis. Suppose now that x−1(1) is not a generator. We know from
Proposition 1.2 that for any Q ) x−1(1), Q is not a generator. Thus, x−1(1) ∪ {i} cannot
belong to any generator, and value 0 cannot be pruned from dom(xi).

We now prove that Algorithm 1 prunes value 1 from dom(xi) exactly when i cannot
belong to a generator containing x−1(1). Suppose value 1 of xi is pruned by Algorithm 1.
This means that one of the tests in line 8 or 11 was true, that is, there exists a sub-itemset
of x−1(1) ∪ {i} with the same frequency as x−1(1) ∪ {i}. Thus, by definition, x−1(1) ∪ {i}
does not belong to any generator. Suppose now that value 1 of xi is not pruned. From
the lines 8 and 11, we deduce that there does not exist any subset of x−1(1) ∪ {i} with the
same frequency as x−1(1)∪{i}. Thus x−1(1)∪{i} is a generator and value 1 of xi is domain
consistent.

Theorem 4.3. Given a transaction datasetD of n items and m transactions, Algorithm 1 has
an O(n2 ×m) time complexity.

Proof. Computing the size of the cover of an itemset is in O(n × m). Line 5 is called at
most n times, leading to a time complexity of O(n2 ×m). The test at line 8 is done at most
n times. The cover of x−1(1) ∪ {i} is computed in O(m) thanks to cover. The test at line
11 is done at most n2 times. The covers of x−1(1) ∪ {i} and x−1(1) ∪ {i} \ {j} at line 11 are
computed inO(m) thanks to the cover and cov data structures. Thus, the time complexity
of lines 7-12 is bounded above by O(n2 ×m). As a result, Algorithm 1 has an O(n2 ×m)
time complexity.
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Note that without the use of the cov structure (that is, by recomputing cover(x−1(1) \
{j}) at each execution of the loop at line 7), the time complexity becomes O(n3 × m).
However, this version is less memory consuming and can be more efficient in practice.
This is especially true when the subset that has the same frequency as x−1(1) ∪ {i} is
x−1(1) (i.e., when the test at line 8 is true), which reduces the time complexity to O(n×m).

It is also important to stress that domain consistency on GENERATOR does not depend
on x−1(0). Thus, Algorithm 1 is not called during the solving process when a variable is
instantiated to zero.

4.6 On Constrained Association Rules

In many practical cases, the user asks for association rules satisfying extra constraints
in addition to frequency and confidence. Such user’s constraints are handled by data min-
ing researchers, whenever possible, with (i) a pre-processing step reducing the dataset; (ii)
a filtering integrated in the specialized algorithm; (iii) a post-processing step to filter out
the undesirable rules. In this section, we show how flexibly the CP-RULE model can be
augmented to express the kind of association rules the user is interested in. We illustrate
this flexibility on a few examples of constraints that are common properties of rules a user
may be interested in (Wojciechowski and Zakrzewicz [2002]).

4.6.1 Mandatory / forbidden items in a rule

The user may ask for rules that involve a particular setM of mandatory items in the
body (resp. in the head, or in the rule as a whole). With the CP approach, such constraint
can simply be added to the CP-RULE model as follows:

mandM(x) ≡ (∀i ∈M : xi = 1)

where x is respectively replaced by y or z if M must be in the head or in the rule as a
whole.

Similarly, the user may ask for rules that do not involve a set of forbidden items (F) in
the body (resp. in the head, or in the rule as a whole). In CP-RULE, we can express this
constraint as follows:

forbF(x) ≡ (∀i ∈ F : xi = 0)

where x is respectively replaced by y or z if F must be forbidden from the head or from
the rule as a whole.

For instance, the user can ask for rules with a head containing a set of items M and
a body not containing a set of items F . The two following constraints are added to the
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CP-RULE model:
forbF(x) ∧mandM(y)

.

4.6.2 Cardinality constraints

The user may also be interested in constraints on the cardinality of the body of the rule
(and/or the head, and/or the rule as a whole):

— atLeast constraint: A rule (body and/or head) contains at least lb items:

atLeastlb(x) ≡
∑
i∈I

xi ≥ lb

— atMost constraint: A rule (body and/or head) contains at most ub items:

atMostub(x) ≡
∑
i∈I

xi ≤ ub

— Exactly constraint: A rule (body and/or head) contains exactly v items:

Exactlyv(x) ≡
∑
i∈I

xi = v

where x is respectively replaced by y or z if the cardinality constraint is on the head or on
the rule as a whole.

For instance, when a user asks for ARs with a size of v, a body of at most ub and a head
of at least lb, the CP-RULE model is extended with the following constraints:

Exactlyv(z) ∧ atMostub(x) ∧ atLeastlb(y)

4.7 On Constrained MNRs

Constraints added to the model MNRULE can interfere with the maximality of x−1(1)∪
y−1(1) (i.e., x−1(1) ∪ y−1(1) being closed) and the minimality of x−1(1) (i.e., x−1(1) being
generator) (see Section 1.6.1).

At first glance, it seems that our CP model for mining MNRs cannot be extended with
anti-monotone constraints on the body of the rule because x−1(1) ∪ y−1(1) is closed and
the body is in x−1(1) ∪ y−1(1). But the body being generator guarantees the safety of our
model in taking in consideration anti-monotone constraints on the body and monotone
constraints on the head.

In this section we prove that anti-monotone constraints on the body and monotone
constraints on the head are safe on MNRULE. That is, there always exist MNRs satisfying
the constraints and dominating the satisfied rules (see Definition 1.9).
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Theorem 4.4. Given a valid non MNR rule r : X → Y satisfying c1 an anti-monotone
constraint on X and c2 a monotone constraint on Y , there always exists an MNR r′ : X ′ →
Y ′ satisfying c1(X ′) and c2(Y ′) such that r′ � r.

Proof. Suppose that r : X → Y is not MNR satisfying c1(X) an anti-monotone constraint
and c2(Y ) a monotone constraint. We prove that there always exists an MNR r′ domi-
nating r and satisfying c1 and c2. From the definition of MNRs we know that if r is not
MNR then there exists an MNR r′ : X ′ → Y ′ such that r′ � r, i.e. freq(r′) = freq(r) and
conf(r′) = conf(r) and X ′ ⊆ X , Y ′ ⊇ Y . As c1(X) is a satisfied anti-monotone constraint
and X ′ ⊆ X then c1(X ′) is satisfied too. Similarly, as c2(Y ) is a satisfied monotone con-
straint and Y ′ ⊇ Y then c2(Y ′) is satisfied too. Hence, the rule r′ is an MNR satisfying the
constraints and dominating the rule r.

4.8 Experimental Evaluation

We made several experiments to evaluate our constraints and our CP model for mining
pure and constrained association rules. We compared to the state of the art approaches.

4.8.1 Benchmark Datasets

We selected several real-sized datasets from the FIMI repository. 1 These datasets have
various characteristics representing different application domains. Table 4.1 reports for
each dataset the number of transactions |T |, the number of items |I|, the average size of
transactions |T |, the density ρ (i.e., |T |/|I|), and its application domain. The datasets are
presented by increasing size |I| × |T |. We selected datasets of various size and density.
Some datasets, such as Zoo and Chess, are very dense (resp. 44% and 49%). Others, such
as T10 and Retail, are very sparse (resp. 1% and 0.06%). The sizes of these datasets vary
from around 4, 000 to more than 109.

4.8.2 Experimental Protocol

The implementation of our CP models and constraint propagators were carried out in
the Oscar solver using Scala. 2 The code is publicly available. 3

For each dataset, an instance is characterized by its minimum frequency threshold (i.e.,
s). For instance, Zoo_5 denotes the instance of the Zoo dataset with a minimum frequency
threshold of 5.

1. fimi.ua.ac.be/data/
2. bitbucket.org/oscarlib/oscar/
3. gite.lirmm.fr/belaid/cp4ar
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Table 4.1 – Dataset Characteristics.

Dataset |T | |I| |T | ρ(%) Type of Data
Zoo 101 36 16 44 Animals data
Vote 435 48 16 33 Vote data
Anneal 812 93 42 45 Anneal data
Chess 3,196 75 37 49 Game steps
Mushroom 8,124 119 23 19 Species of mushrooms
Connect 67,557 129 43 33 Game steps
T10 100,000 1,000 10 1 Synthetic dataset
T40 100,000 1,000 40 4 Synthetic dataset
Pumsb 49,046 2,113 74 3 Census data
Retail 88,162 16,470 10 0.06 Retail market basket data

T10 = T10I4D100K T40 = T40I10D100K

All experiments were conducted on an Intel core i7, 2.2Ghz with a RAM of 8Gb and a
timeout of one hour.

4.8.3 Mining Frequent Generators

To evaluate the new global constraint GENERATOR, we compare our CP approach for
mining frequent generators with TALKY-G (Szathmary et al. [2009]). We used the imple-
mentation of TALKY-G publicly available in the CORON Data Mining Platform. 4 Our ap-
proach combines the constraint GENERATORD with COVERSIZED(x, p) and p ≥ s to ensure
the frequency. After a few preliminary tests, we decided to use smallest item frequency first
as variable ordering heuristic and largest value first as value ordering heuristic. We have
selected for every dataset frequency thresholds to have different numbers of frequent gen-
erators. The execution time for every approach and the number of frequent generators,
#FG, are reported in Table 4.2.

The first observation to notice, and as expected, TALKY-G outperforms the CP ap-
proach for mining frequent generators. However, CP is very competitive and even better
than TALKY-G on some instances (e.g., Zoo_1, T10_500 and Retail_45). This is specially
true when the number of frequent generators is small (i.e., less than 20K solutions).

Note that we are using the less memory version of our propagator presented in Algo-
rithm 1. This version is efficient in practice. On Anneal_244, for instance, all the filterings
of Algorithm 1 were conducted because of x−1(1) having the same frequency as x−1(1)∪{i}
(the test in line 8 of Algorithm 1 is true).

4. coron.loria.fr
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Table 4.2 – CP vs TALKY-G for mining frequent generators (time in seconds)

Instance CP TALKY-G #FG
Zoo_1 0.44 0.70 9,978

Vote_40 0.96 0.31 42,793
Vote_4 3.80 0.88 258,017

Chess_1918 2.90 0.42 98,419
Chess_959 152.78 29.29 5,601,829
Chess_640 968.60 333.58 25,031,186
Anneal_244 5.93 1.38 343,272
Anneal_41 35.93 25.56 3,510,475

Mushroom_82 2.73 0.45 69,966
Mushroom_9 8.43 1.28 234,231

Connect_47290 7.52 0.48 35,876
Connect_20268 114.39 5.24 460,357

T10_500 1.46 1.95 1,071
T10_10 324.64 78.12 307,467

T40_5000 0.47 0.53 317
T40_1000 30.74 3.99 65,237

Pumsb_39237 24.39 1.36 67,836
Pumsb_29428 1789.20 72.32 2,853,042
Retail_45 22.39 45.54 19,115
Retail_9 161.91 114.22 191,266

4.8.4 CONFIDENT: Dedicated Propagator vs Decomposition

For propagating the constraint CONFIDENT, we have implemented both propositions
presented in Section 4.3. In this section we compare two CP models for mining ARs. The
one that uses the filtering rule presented in Proposition 4.1 as propagator for CONFIDENT
(i.e., F-RULE) and the one that uses a decomposition using COVERSIZE (i.e., DECOMPO-
SITION). We have selected 3 datasets, small, middle and huge with a fixed frequency
threshold and we have variated the minimum confidence threshold, i.e. c. In Table 4.3
we report the execution time for both approaches. We also report the number of nodes to
evaluate the level of filtering conducted by each approach.

Clearly, the use of the decomposition provides us with a better resolution time due the
practical efficiency of the propagator of COVERSIZE. The level of filtering is also slightly
better. The number of nodes being the same for Vote_22 with c = 70%, DECOMPOSITION
outperforms F-RULE with 1, 276 nodes for Vote_22 with c = 100%. In fact, DECOMPOSI-
TION can filter 0 from all dom(xi) if that is the only way to ensure that q ≥ p × c. This
filtering occurs rarely but it explains the slight difference in the number of nodes.

Hence, for the next experiments we use the decomposition to replace the constraint
CONFIDENT in our model.
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Table 4.3 – DECOMPOSITION vs F-RULE (time in seconds)

Instances c(%) DECOMPOSITION FILTER
Time #Node T ime #Node

Vote_22
70 28.31 20,113,200 35.68 20,113,200
90 6.43 4,167,824 9.48 4,167,968

100 2.18 709,352 2.32 710,628

Mushroom_1500
70 8.02 2,934,558 16.28 2,934,628
90 6.11 2,054,332 11.15 2,054,428

100 4.23 1,362,110 8.32 1,362,318

T40_1300
70 16.40 323,382 39.77 323,382
90 13.16 218,690 31.83 218,734

100 8.21 18,416 21.06 20,062

4.8.5 Heuristic of Variable Selection for Mining Association Rules

In this section we compare the resolution time of our approach using different static
variable ordering heuristics. We have tested all the combinations 〈x, y, z〉 to decide the
order of vectors. The variables of a given vector are ordered in a lexicographic order and
we use smallest value first as value ordering heuristic.

Table 4.4 presents the time, in seconds, for every variable ordering heuristic on every
instance. For every dataset we have selected s to have a hard instance and we fixed c to
90%.

The first observation that we can draw from Table 4.4 is that the heuristics starting
with the same vector perform almost the same (e.g., 〈x, y, z〉 and 〈x, z, y〉). It is clear that
the heuristics starting with the body of the rule x outperform the others (the ones starting
with y or z). If we compare the heuristics starting with x we notice that 〈x, y, z〉 is slightly
better than 〈x, z, y〉 although 〈x, z, y〉 being competitive and even better on some instances
(e.g., Anneal_650). As a result, we use the variable ordering heuristic 〈x, y, z〉 in the rest of
our experiments.

Table 4.4 – Variable ordering heuristics (time in seconds)

Instances 〈x, y, z〉 〈x, z, y〉 〈z, x, y〉 〈z, y, x〉 〈y, x, z〉 〈y, z, x〉
Zoo_6 43.45 47.86 110.78 116.46 122.23 120.24

Vote_22 6.43 7.74 20.08 19.74 50.25 48.66
Anneal_650 208.87 193.96 224.82 275.86 310.43 344.83
Chess_1918 68.74 71.10 112.33 117.18 153.80 207.20

Mushroom_813 50.67 54.90 108.02 112.21 147.13 146.76
Connect_90 125.48 127.90 146.39 143.35 269.56 255.72

T10_20 63.35 62.52 82.08 82.72 340.66 278.65
T40_1000 134.64 134.23 173.43 167.53 410.14 386.49

Pumsb_39237 1567.72 1552.79 1627.22 1655.04 2522.13 2354.25
Retail_89 58.76 57.69 51.14 50.85 108.68 103.93
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4.8.6 Mining Association Rules

In this experiment we compare our CP approach to the ECLAT-Z specialized algorithm
for extracting ARs (Szathmary et al. [2007c]), and to a SAT-based approach (Boudane et al.
[2016]) (note that this approach is hybrid and it uses constraint propagation to handle
the cardinality constraints). We used the implementation of ECLAT-Z publicly available
in the CORON Data Mining Platform. 5 In all the instances presented in the following
experiments, the minimum confidence has been fixed to 90% so that we focus on highly
confident rules. For each dataset, an instance is characterized by its minimum frequency
threshold. For instance, Zoo_51 denotes the instance of the Zoo dataset with a minimum
frequency threshold of 51 (and always a minimum confidence of 90%). For each dataset,
we have selected three instances according to the number of solutions. The first instance
has less than 1, 000 ARs, the second instance has between 100, 000 and one million ARs,
and the third instance has more than one million ARs. The only exception is the very large
and sparse dataset Retail, for which we could not reach large number of solutions. Table
4.5 reports the CPU time, in seconds, for each approach on each selected instance. We also
report the total number of ARs (#TOT) for each instance. 6

The first observation that we can draw from Table 4.5 is that, as expected, the special-
ized algorithm ECLAT-Z performs very well. However, the CP approach is very competi-
tive too, and sometimes faster than ECLAT-Z (see the first instance of each dataset, where
only a few valid ARs exist). The explanation for this good behavior of CP is the strength of
constraint propagation to rule out inconsistent parts of the search space. On the contrary,
on an instance as loose as Pumsb_39237, with 49, 000 transactions, 2, 113 items, and around
20 million solutions, the CP solver is almost reduced to an enumerating process.

Concerning the SAT approach, on small and middle-sized datasets (i.e., from Zoo to
Connect), we observe that SAT performs reasonably well, although being slower than CP
on almost all the instances. On larger and larger datasets, the results of SAT become worse
and worse. On very large datasets, SAT reaches the one hour timeout for T10 and T40 in-
stances and out-of-memory on all the instances of Pumsb and Retail. The out-of-memory
state is due to the fact that SAT generates huge propositional formulas to represent the
dataset and the constraints (see Section 3.6.2). On the instances where we observe an
out-of-memory, SAT generates formulas of size ranging from 14Gb to 63Gb.

Finally, it is important to note that even when CP reaches the timeout, it returns solu-
tions on the fly before the timeout. This is because CP, as opposed to ECLAT-Z, does not
need to build any complex data structure before starting the search for ARs. On T40_100,
CP returns the first solution in only 1.25 seconds and returns more than 390 million so-
lutions before the timeout, whereas ECLAT-Z does not return any AR to the user before
having computed its whole structure, that is, no solution before the timeout on T40_100.

Our next experiment evaluates the behaviour of ECLAT-Z, CP and SAT when varying
the minimum confidence (c). Figure 4.1 illustrates the time, in seconds, for each approach
on each selected minimum confidence threshold on the instance Vote_22. From Figure 4.1

5. coron.loria.fr
6. This number is computed by releasing the timeout.
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Table 4.5 – ECLAT-Z vs SAT vs CP for extracting ARs (time in seconds)

Instances ECLAT-Z SAT CP #TOT

Zoo_51 0.07 0.02 0.04 292
Zoo_31 0.40 0.92 0.82 198,971
Zoo_5 24.99 106.52 59.09 30,792,317

Vote_153 0.04 0.32 0.05 244
Vote_44 1.81 255.52 1.79 419,204
Vote_22 5.66 1054.81 6.43 2,075,212

Anneal_780 0.08 0.19 0.06 798
Anneal_731 0.28 1.11 1.17 174,710
Anneal_650 93.96 467.83 208.87 84,589,753
Chess_3037 0.08 0.56 0.07 474
Chess_2557 0.62 5.97 2.16 349,298
Chess_1918 15.98 260.21 68.74 17,522,446

Mushroom_4062 0.10 3.78 0.10 469
Mushroom_1747 0.59 51.87 1.43 112,826
Mushroom_813 27.81 686.39 50.67 14,331,056
Connect_66882 0.64 26.90 0.04 70
Connect_63504 0.99 95.97 7.70 201,928
Connect_60802 3.03 1126.91 125.48 3,640,704

T10_500 0.29 TO 2.71 532
T10_100 1.63 TO 9.92 160,171
T10_20 15.12 TO 63.35 1,303,932

T40_1600 1.35 TO 5.36 648
T40_1300 1.73 TO 13.16 101,588
T40_100 TO TO TO > 7.109

Pumsb_47085 1.31 OOM 0.11 338
Pumsb_43651 2.07 OOM 8.39 135,677
Pumsb_39237 34.35 OOM 1567.72 19,749,382
Retail_441 1.59 OOM 0.52 37
Retail_265 1.74 OOM 2.27 75
Retail_89 2.53 OOM 58.76 255

TO: timeout OOM: out-of-memory

we can observe that our CP approach is the one that improves the most for mining highly
confident rules. From the instance where c = 10% to the instance where c = 100%, the
CPU time for CP is reduced by 98% (from 189.56 to 2.46 seconds), whereas for ECLAT-Z it
is reduced by 83% (from 28.75 to 4.61 seconds) and for SAT by only 36% (from 1578.35 to
1006.35 seconds). As a result, our CP approach is always better than SAT and becomes even
better than ECLAT-Z with c = 100%. This is due to the constraint propagation conducted
by the constraints in the decomposition of CONFIDENT which provides CONFIDENT with
an efficient filtering.
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Figure 4.1 – Vote_22: ECLAT-Z vs SAT vs CP

4.8.7 Mining MNRs.

This experiment compares ECLAT-Z (Szathmary et al. [2007c]) to SAT (Boudane et al.
[2017]) and CP for extracting MNRs. Table 4.6 reports the CPU time, in seconds, for each
approach on each selected instance. We also report the total number of MNRs (#TOT).

For the MNRULE model presented in Section 4.4, we have used the global constraint
GENERATOR presented in Section 4.5, and to ensure closeness, we have used the constraint
COVERCLOSURE introduced in (Schaus et al. [2017]).

SAT wins only on the smallest dataset (i.e., Zoo instances). For larger datasets, the
encoding of the MNR constraints in SAT can take three times more space than the encoding
of the original AR problem and then can lead to an out-of-memory state. For instance, SAT
encodes only the first constraints of the AR problem on a Retail instance with a formula
of 63Gb (see Section 3.6.2). When moving to the MNR problem, we reach 187Gb.

ECLAT-Z can take significantly more time to enumerate MNRs than ARs. On the
T10_20 instance, it is easier for ECLAT-Z to enumerate more than 1 million ARs (15.12
seconds) than to enumerate 257 thousand MNRs (1131.39 seconds). The opposite is ob-
served on CP. Such a performance is mainly due to the constraints GENERATOR and COV-
ERCLOSURE that provide the CP solving process with more propagation to remove more
inconsistent values in the search space. This is especially true when the number of non-
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solutions to prune is important. Nevertheless, the Retail instances contradict this trend.
This is explained by the fact that on Retail almost all ARs are MNRs whereas in average
on all our instances only 7% of the ARs are MNRs. Hence, on Retail the constraints GEN-
ERATOR and COVERCLOSURE are redundant to the model for ARs (CP-RULE). Thus, the
propagators of GENERATOR and COVERCLOSURE do not participate to the reduction of
the search space. They just waste time. For instance, CP explores exactly the same search
space (2, 750 nodes) on Retail_265 to extract ARs and MNRs (because all ARs are MNRs).

Again, on the timeout instance T40_100, CP returns its first solution in 1.23 seconds and
returns more than 160 million MNRs before the timeout. ECLAT-Z is not able to return any
MNR before the timeout.

Table 4.6 – ECLAT-Z vs SAT vs CP for extracting MNRs (time in seconds)

Instances ECLAT-Z SAT CP #TOT

Zoo_51 0.04 0.03 0.06 177
Zoo_31 0.39 0.08 0.17 2,261
Zoo_5 8.21 0.47 0.72 13,987

Vote_153 0.05 0.38 0.08 244
Vote_44 10.95 29.08 2.27 259,387
Vote_22 47.40 49.14 3.56 505,030

Anneal_780 0.05 0.39 0.03 104
Anneal_731 0.18 0.60 0.22 2,597
Anneal_650 5.70 1.48 1.05 47,220
Chess_3037 0.09 1.90 0.08 536
Chess_2557 0.92 7.64 1.82 191,656
Chess_1918 70.94 254.87 28.28 4,633,764

Mushroom_4062 0.09 30.57 0.06 109
Mushroom_1747 0.42 72.88 0.27 2,215
Mushroom_813 3.45 205.46 0.87 11,405
Connect_66882 0.62 828.00 0.07 70
Connect_63504 1.10 863.17 3.96 51,754
Connect_60802 7.28 1107.33 19.82 322,838

T10_500 0.53 OOM 5.96 532
T10_100 42.58 OOM 24.62 147,531
T10_20 1131.39 OOM 285.70 256,896

T40_1600 3.54 OOM 14.01 648
T40_1300 8.97 OOM 26.86 101,588
T40_100 TO OOM TO > 109

Pumsb_47085 1.44 OOM 0.19 277
Pumsb_43651 1.99 OOM 8.47 69,222
Pumsb_39237 71.96 OOM 370.58 3,668,125
Retail_441 2.07 OOM 3.47 37
Retail_265 2.01 OOM 10.64 75
Retail_89 12.67 OOM 156.86 250

TO: timeout OOM: out-of-memory
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4.8.8 Mining Constrained Association Rules.

In this section, we present experiments that show the expressiveness of our CP ap-
proach in taking into account user’s constraints, and the power of CP to solve such com-
binatorial problems. We illustrate with mandatory/forbidden-item constraints and with
cardinality constraints on the body or the head of the rule as a whole (see Section 4.6). We
compare our CP approach with SAT and ECLAT-Z-PP (ECLAT-Z with a post-processing
step filtering out the rules not satisfying the user’s constraints). We selected the instances
having more than one million ARs in Table 4.5 (i.e., #Tot ≥ 106).

Mining rules with constraints on items. The user can ask for rules with some specific
items in the rule, the body and/or the head. In the same way, a user can ask for rules not
involving a particular set of items. For instance, we may want to extract rules between
electronics and cleaning items only. Or to extract rules outside food items. We perform an
experiment on the following user query:

Q1 : Given two sets of items F andM, extract ARs not containing F in the body,
and containingM in the head.

Q1 can easily be expressed in CP with the following constraints:

CP-RULED,s,c(x, y, z) ∧ ForbF(x) ∧MandM(y)

For our experiment, we generate sets F andM of the same size. We randomly select a
pair of items and we put one in F and one inM. We repeat the process until the number
of solutions to Q1 falls under a very low threshold. Table 4.7 reports the penultimate step,
that is, the F andMwhere the number of solutions is the smallest above 10. We made an
exception with T10_20, that we will use to illustrate what happens on an instance with no
solution. Table 4.7 reports the CPU time of ECLAT-Z-PP, SAT and CP on Q1. We also report
the number of solutions to Q1 (#TOT).

The main observation is that the declarative approaches SAT and CP outperform ECLAT-
Z-PP. ECLAT-Z-PP extracts all ARs and filters out the rules the user is not asking for. For
Anneal_80, ECLAT-Z-PP spends 14 minutes to extract and save more than 84 million ARs.
The post-processing step spends 10 minutes to filter out this huge number of ARs and to
return the only 21 solutions of Q1. With SAT and CP, the 21 solutions are returned in less
than one second.

For the SAT approach, the forbidden and mandatory constraints can easily be encoded
with monomials (i.e., unit clauses) that reduce the search space and speed-up the resolu-
tion. However, when the size of the dataset increases, the performance of SAT decreases.
SAT cannot solve T40_100 within the time out. In addition, SAT faces again the problem of
the size of the formulas and reaches an out-of-memory state on Pumsb_39237.
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Table 4.7 – ECLAT-Z-PP vs SAT vs CP on Q1 (time in seconds)

Instances |F| |M| ECLAT-Z-PP SAT CP #TOT

Zoo_5 11 11 535.69 0.02 0.02 15
Vote_22 7 7 38.57 0.16 0.04 14

Anneal_650 12 12 1454.23 0.19 0.01 21
Chess_1918 9 9 292.59 0.54 0.07 32

Mushroom_813 10 10 263.93 19.82 0.02 21
Connect_60802 9 9 61.04 24.22 0.02 19

T10_20 10 10 84.04 TO 0.02 0
T40_100 10 10 TO TO 0.06 19

Pumsb_39237 12 12 765.67 OOM 0.02 23
TO: timeout OOM: out-of-memory

On the instance with no solution T10_20, SAT cannot prove that no solution exists
within the timeout. ECLAT-Z-PP spends more than 1 minute to extract more than 1 million
useless solutions and filter them out. CP proves the absence of solutions in 0.02s.

Mining rules with cardinality constraints. The user can also ask for rules with par-
ticular sizes of body or head. We performed an experiment with the following query:

Q2 : Extract ARs with a body not exceeding a size of ub and a head of a minimum size of lb.

Q2 can easily be expressed in CP with:

CP-RULED,s,c(x, y, z) ∧ atMostub(x) ∧ atLeastlb(y)

For each instance, we select a lower-bound lb and an upper-bound ub in order to have
at least 10 solutions to Q2. For that, we use two scenarios. The first scenario starts by
selecting the largest value for lb for which there exist at least 10 ARs with a head of mini-
mum size lb. Then, we take for ub the size of the smallest body for which there still exist
at least 10 solutions. The second scenario selects the smallest value for ub for which there
exist at least 10 ARs with a body not exceeding this value. Then, we take for lb the size of
the largest head for which there still exist at least 10 solutions. Again, for T10_20, we select
lb and ub in order to illustrate the case of no solution. Table 4.8 compares ECLAT-Z-PP, SAT
and CP acting on the query Q2. We report the CPU time, in seconds, for each instance. We
also report the total number of solutions (#TOT).

We observe that CP wins on all instances. SAT reaches the one hour timeout on two
instances whereas these two instances are solved by CP in less than 10 seconds. Once
again, SAT faces an out-of-memory state on Pumsb_39237.

When comparing CP to ECLAT-Z-PP we can observe that for the instances having more
than 10 million ARs we have a significant gap in terms of CPU time. CP on Anneal_650
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Table 4.8 – ECLAT-Z-PP vs SAT vs CP on Q2 (time in seconds)

Instances ub lb ECLAT-Z-PP SAT CP #TOT

Zoo_5 2 11 479.26 3.92 0.36 27
Zoo_5 1 9 491.48 0.17 0.06 12

Vote_22 4 8 37.69 282.25 0.66 13
Vote_22 1 2 38.49 1.41 0.05 23

Anneal_650 2 13 1567.48 1.14 0.26 76
Anneal_650 1 12 1622.19 0.53 0.15 73
Chess_1918 2 9 280.60 2.17 0.20 20
Chess_1918 1 8 284.22 1.07 0.08 24

Mushroom_813 1 11 249.00 47.52 0.07 14
Connect_60802 1 11 61.80 30.41 0.26 12

T10_20 1 11 84.47 TO 5.44 0
T40_100 1 11 TO TO 8.33 39

Pumsb_39237 1 12 741.49 OOM 0.34 32
TO: timeout OOM: out-of-memory

returns the 73 solutions in less than one second, whereas ECLAT-Z-PP spends 13 minutes
on the post-processing step.

For the instance with no solution T10_20, SAT cannot prove there is no solution before
the time out. ECLAT-Z-PP needs a post-processing of more than 1 minute to deal with the
1 million extracted ARs. CP proves there is no solution in less than 6 seconds.

We add a new cardinality constraint to Q2. In addition to Q2 with user’s constraints on
the body and the head of a rule, the user can also ask for rules of a given size:

Q3 : Extract ARs of a size of v with a body of size at most ub and a head of size at least lb.

Q3 is expressed using constraints as follows:

CP-RULED,s,c(x, y, z) ∧ Exactlyv(z)
∧ atMostub(x) ∧ atLeastlb(y)

As for Q2, we select lb, v and ub in order to have at least 10 solutions. Again, for T10_20,
we select lb, v and ub in order to illustrate the case of no solution.

Table 4.9 compares ECLAT-Z-PP, SAT and CP acting on the query Q3. We report the
CPU time, in seconds, for each instance. We also report the total number of solutions
(#TOT).

Again, the results reported on Q3 strengthen our previous observations. CP wins on all
instances. SAT reaches the one hour timeout on two instances and an out-of-memory state
on Pumsb_39237.
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ECLAT-Z needs a post processing of between 1 and 18 minutes to return the only few
interesting rules. ECLAT-Z is not able to solve the problem T40_100 due a timeout. Our
CP approach solves the problems in only between 0.13 and 4.37 seconds.

Again, For the instance with no solution T10_20, SAT cannot prove there is no solution
before the time out. ECLAT-Z-PP needs a post-processing of more than 1 minute to filter
all the 1 million extracted ARs. CP proves there is no solution in less than 4 seconds.

Table 4.9 – ECLAT-Z-PP vs SAT vs CP on Q3 (time in seconds)

Instances v ub lb ECLAT-Z-PP SAT CP #TOT

Zoo_5 15 3 12 479.92 6.61 0.16 17
Vote_22 13 5 7 38.49 756.95 1.50 18

Anneal_650 13 1 11 1542.12 0.79 0.13 69
Chess_1918 12 3 9 280.60 6.63 0.53 14

Mushroom_813 11 1 10 250.56 48.97 0.05 77
Connect_60802 12 1 11 61.22 24.22 0.23 12

T10_20 18 1 14 83.96 TO 3.46 0
T40_100 12 1 11 TO TO 4.37 37

Pumsb_39237 13 1 12 761.31 OOM 0.34 30
TO: timeout OOM: out-of-memory

4.8.9 Mining Constrained MNRs.

As pointed out in Section 4.7, anti-monotone constraints on the body and monotone
constraints on the head can be injected in our model for mining MNRs without problem.
In this section we compare the tree approaches in taking in consideration constraints in
addition to the MNR property. We want to mine MNRs w.r.t. Q4.

Q4 : Extract MNRs with a body not exceeding a size of ub and a head of a minimum size of lb.

Q4 is expressed using constraints as follows:

MNRULED,s,c(x, y, z) ∧ atMostub(x) ∧ atLeastlb(y)

For Q4, we selected the instances having more than one million MNRs in Table 4.6
(i.e., #Tot ≥ 106). The only exception is Chess_1918 for which CP already outperforms
ECLAT-Z for mining MNRs. Adding constraints on that instance would only confirm the
outperformance of CP.

For every instance, lb and ub are selected in order to have:
• More than 10 solutions.
• Between 1 and 9 solutions.
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• No solution.

Table 4.10 compares ECLAT-Z-PP, SAT and CP acting on the query Q4. We report the
CPU time, in seconds, for each instance. We also report the total number of solutions
(#TOT).

Despite the hardness of the instance T40_100, our CP approach is able to extract con-
strained MNRs in less than 10 seconds. ECLAT-Z needs to extract all MNRs to filter incon-
sistent ones as a post processing step. ECLAT-Z is not able to solve the original problem
and does not return any solution within the allocated time.

On Pumsb_39237, ECLAT-Z spends more than one minute to extract more than 3 million
MNRs to finally filter most of them in a post processing step. CP solve the three instances
in less than 1 second. Once again, SAT faces an out-of-memory state on Pumsb_39237. This
time also on T40_100.

Table 4.10 – ECLAT-Z-PP vs SAT vs CP on Q4 (time in seconds)

Instances ub lb ECLAT-Z-PP SAT CP #TOT

T40_100 1 11 TO OOM 9.53 33
T40_100 1 12 TO OOM 9.45 2
T40_100 1 13 TO OOM 9.02 0

Pumsb_39237 1 12 157.70 OOM 0.24 12
Pumsb_39237 1 13 154.24 OOM 0.28 2
Pumsb_39237 1 14 154.01 OOM 0.35 0

TO: timeout OOM: out-of-memory

4.9 Conclusion

In this chapter, we have introduced a full constraint programming model for mining
association rules. For this model, we introduced a new global constraint CONFIDENT
for ensuring the confidence of a rule. We proved that enforcing domain consistency on
CONFIDENT is NP-hard, ruling out the possibility of a polynomial domain consistency
propagator for CONFIDENT (unless P = NP ). Thus, we proposed for CONFIDENT two
weak propagators, one that uses a filtering rule and the other that uses the global con-
straint COVERSIZE for a decomposition. We have shown that our CP model can easily
be extended to take in consideration user’s constraints such as mandatory or forbidden
items constraints, cardinality constraints, etc. We proposed an extension of our CP model
to extract minimal non-redundant rules. For this, we have introduced a new global con-
straint GENERATOR for mining generators. This constraint can be used to model and solve
various itemset mining problems. We proposed a polynomial propagator achieving do-
main consistency for GENERATOR. We gave a discussion on combining constraints with
minimal non-redundant rule. We proved that anti-monotone constraints on the body and
monotone constraints on the head are safe on our model.
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We have empirically evaluated our CP approach. The experiments showed the per-
formance of our constraints and models comparing to existing approaches. For mining
association rules, our CP approach significantly outperforms the existing declarative ap-
proach i.e. the SAT approach. That is specially on huge datasets where the SAT approach
suffers from a memory issue. Comparing to the specialized algorithm ECLAT-Z, our CP
approach performs well and becomes even better than ECLAT-Z for mining minimal non-
redundant rules and constrained rules. It is worthy noticing also that our CP approach
returns solutions on the fly, and returns the first rules in seconds as a result. On the other
hand, ECLAT-Z proceeds in two steps and it is not able to return any solution before the
first step has finished.





V

Chapter 5: Constraint Programming for
Mining Borders of Frequent Itemsets

5.1 Introduction

For many data mining problems, the frequency represents an important metric. Given
a frequency threshold s over a transaction dataset, frequent itemsets are those present in
at least s transactions. Itemsets present in less than s transactions are called infrequent
(or rare). The number of frequent/infrequent itemsets can be huge, making it hard even
to print the result. Hence, we often reduce the problem of mining frequent or infrequent
itemsets to the problem of mining the borders. The positive border is the set of frequent
itemsets with only infrequent supersets, i.e. Maximal Frequent Itemsets (MFIs). The nega-
tive border is the set of infrequent itemsets with only frequent subsets, i.e. Minimal Infre-
quent Itemsets (MIIs). The subsets of the MFIs and the supersets of the MIIs represent the
frequent and infrequent itemsets, respectively.

In this chapter we propose a generic parameterized model allowing the user to decide
which border to mine (i.e., MFIs or MIIs). For this model we need to define two new global
constraints: (1) FREQUENTSUBS for mining itemsets having only frequent subsets, and (2)
INFREQUENTSUPERS for mining itemsets having only infrequent supersets. We provide a
polynomial domain consistency propagator for each of these two constraints. For ensur-
ing the infrequency of an itemset, we propose a new global constraint INFREQUENT with
a polynomial domain consistency propagator.

We then address the issue of mining borders in the presence of other constraints. As
noticed in (Bonchi and Lucchese [2004]), mining borders under additional constraints can
lead to the loss of solutions. This can happen with maximal/minimal borders, but also
with closed itemsets or generator itemsets. We prove that it is coNP-hard to find maxi-
mal/minimal itemsets among those satisfying a set of additional constraints. This implies
that there does not exist any CSP representing the problem of finding maximal/minimal
itemsets under additional constraints, unless coNP ⊆ NP. This is an a posteriori justifi-
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cation of the "multi-shot" approaches, such as the one presented in (Négrevergne et al.
[2013]).

This chapter is organized as follows. In Section 5.2 we give a generic model for mining
MFIs or MIIs. We define the new global constraints FREQUENTSUBS and INFREQUENT-
SUPERS and we present their propagators in Sections 5.3 and 5.4, respectively. In Sec-
tion 5.5 we propose an implementation of the frequency/infrequency constraints. Sec-
tion 5.6 analyzes the problem of mining constrained MFIs or MIIs. We present some em-
pirical results in Section 5.7 before concluding.

5.2 A Generic CP Model for Mining Borders

We present a CP model, MODELD,s,b, for mining MFIs or MIIs. MODELD,s,b uses a vector
x of n Boolean variables. MODEL uses new global constraints that we present later.

MODELD,s,b(x) =


FREQUENTSUBSD,s(x) (1)
INFREQUENTSUPERSD,s(x) (2)
b ⇐⇒ FREQUENTD,s(x) (3)

The role of each type of constraint is the following:
(1) is a global constraint that holds if and only if the itemset x−1(1) has only frequent

subsets w.r.t. s;
(2) is a global constraint that holds if and only if the itemset x−1(1) has only infrequent

supersets w.r.t. s;
(3) the Boolean parameter b reifies the global constraint FREQUENT. FREQUENTD,s

holds if and only if x−1(1) is frequent w.r.t. s.

We prove that MODELD,s,b is a correct model for mining MFIs or MIIs.

Theorem 5.1. The set of solutions to MODELD,s,b corresponds to the set of MFIs if b = true,
the set of MIIs otherwise.

Proof. We first prove that MFIs and MIIs always satisfy constraints (1) and (2). All super-
sets of an MFI are infrequent, thus satisfying (2). Because an MFI is frequent, all its proper
subsets are frequent, thus satisfying (1). An MII has only frequent subsets, thus satisfy-
ing (1). Because an MII is infrequent, it has only infrequent supersets, thus satisfying (2).
Hence, all MFIs and all MIIs satisfy constraints (1) and (2).

We now prove that a solution of MODELD,s,b, can only be an MFI or an MII depending
on the value of b. A solution of MODELD,s,b can only be frequent (i.e., b = true) or infre-
quent (i.e., b = false). If it is frequent then it is an MFI (see Definition 1.1). Otherwise it is
an MII (see Definition 1.4).



5.3. The Global Constraint FREQUENTSUBS 69

{}

A B C D E

AB AC AD AE BC BD CD BE CE DE

ABC ABD ACD ACE ABE ADE BCD BCE BDE CDE

ABCD ACDE ABCE ABDE BCDE

ABCDE

Itemsets with infrequent 
supersets border 

Itemsets with frequent 
subsets border

MFI

MII

Figure 5.1 – The powerset lattice of the dataset in Table 1.1 with borders of FREQUENTSUBS and
INFREQUENTSUPERS (s = 3).

Example 5.1. The lattice in Figure 5.1 displays the set of itemsets satisfying the constraints
FREQUENTSUBS and INFREQUENTSUPERS on the dataset of Table 1.1 with s = 3. The
intersection between both sets is the set MFIs∪MIIs.

We can then use MODELD,s,b to mine either MFIs or MIIs by simply setting b to true or
false. In the next sections, we define the global constraints FREQUENTSUBS and INFREQUENT-
SUPERS and we propose propagators.

5.3 The Global Constraint FREQUENTSUBS

In this section we present the new global constraint FREQUENTSUBS. FREQUENTSUBS
is used to mine itemsets that have only frequent subsets.

Definition 5.1 (FREQUENTSUBS). Let x be a vector of Boolean variables, s a frequency
threshold and D a dataset. The global constraint FREQUENTSUBSD,s(x) holds if and only
if ∀P ( x−1(1), freq(P ) ≥ s.
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Algorithm 2: Propagator for FREQUENTSUBS

1 In: s: frequency threshold;
2 InOut: x = {x1 . . . xn}: Boolean item variables;

3 begin
4 cover← cover(x−1(1));
5 foreach j ∈ x−1(1) do
6 cov[j]← cover(x−1(1) \ {j});
7 if |cov[j]| < s then return failure ;

8 if |cover| < s then
9 foreach i ∈ x−1(∗) do

10 dom(xi)← dom(xi) \ {1};

11 foreach i ∈ x−1(∗) do
12 if |cover ∩ cover(i)| < s then
13 foreach j ∈ x−1(1) do
14 if |cov[j] ∩ cover(i)| < s then
15 dom(xi)← dom(xi) \ {1}; break;

Example 5.2. Consider the dataset in Table 1.1 with s = 3.
FREQUENTSUBSD,3([0, 1, 0, 0, 1]) is satisfied because BE has only frequent subsets w.r.t. s.
FREQUENTSUBSD,3([1, 0, 0, 1, 0]) is not satisfied because AD has an infrequent subset, i.e.
D.

Algorithm. The propagator for the global constraint FREQUENTSUBS is presented in Al-
gorithm 2. Algorithm 2 takes as input the variables x and the frequency threshold s.
Algorithm 2 starts by computing the cover of the itemset x−1(1) and stores it in cover
(line 4). Then, for each item j ∈ x−1(1), Algorithm 2 computes the cover of the subset
x−1(1) \ {j}, and stores it in cov[j] (line 6). If x−1(1) \ {j} is infrequent then x−1(1) is not
a solution and we return a failure (line 7). Algorithm 2 must then remove items i that
cannot belong to a solution containing x−1(1). To do that, we first test if the itemset x−1(1)
is infrequent (line 8). If so, we remove 1 from dom(xi) for all i ∈ x−1(∗) (lines 9-10) because
the itemset x−1(1) ∪ {i} has an infrequent subset (x−1(1)) for every i in x−1(∗). Otherwise,
for every item i in x−1(∗) we test if the itemset x−1(1) ∪ {i} is infrequent (line 12). If so, it
could have infrequent subsets. Thus, for every item j in x−1(1), we test if the size of the
cover of x−1(1) ∪ {i} \ {j} (i.e., cov[j] ∩ cover(i)) is less than s (line 14). If so, we remove i
from the possible items, that is, we remove 1 from dom(xi) and break the loop (line 15).

Example 5.3. Consider the dataset in Table 1.1 with s = 3. Given the partial assignment
x−1(1) = {D}, x−1(0) = ∅ and x−1(∗) = {A,B,C,E}, Algorithm 2 filters 1 from dom(xA)
because the itemset AD has an infrequent subset, i.e. D (freq(D) = 1 < s).

Theorem 5.2. The propagator in Algorithm 2 enforces domain consistency on the constraint
FREQUENTSUBS.
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Proof. We first prove that if FREQUENTSUBS admits a solution, x−1(1) is necessarily one of
them. Suppose there is a solution and x−1(1) is not one of them. This means that there
exists a superset of x−1(1) which has all its subsets frequent. x−1(1) is one of these subsets.
Thus, all subsets of x−1(1) are frequent and x−1(1) is solution too, which contradicts the
assumption. We now prove that Algorithm 2 returns failure if and only if FREQUENTSUBS
does not admit any solution. We know that FREQUENTSUBS has no solution if and only
if x−1(1) is not solution. x−1(1) is not solution if and only if it has an infrequent subset
x−1(1) \ {j} for some j in x−1(1). In such a case the test in line 7 is true and failure is
returned. If FREQUENTSUBS admits solutions, x−1(1) is a support for xi = 0, for all i ∈
x−1(∗). As a result, Algorithm 2 does not need to check consistency of value 0 for any
variable.

We now prove that Algorithm 2 prunes value 1 from dom(xi) exactly when i cannot be-
long to a solution containing x−1(1). Suppose value 1 of xi is pruned by Algorithm 2. This
means that the test in line 8 (or line 14) was true, that is, there exists a subset of x−1(1)∪{i}
which is infrequent. Thus, by definition, x−1(1)∪{i} does not belong to any solution. Sup-
pose now that value 1 of xi is not pruned. From lines 8 and 14, we deduce that there does
not exist any infrequent subset of x−1(1) ∪ {i}. Thus x−1(1) ∪ {i} is a solution and value 1
of xi is domain consistent.

Theorem 5.3. Given a transaction datasetD of n items and m transactions, Algorithm 2 has
an O(n2 ×m) time complexity.

Proof. Computing the size of the cover of an itemset is inO(n×m). Line 5 is called at most
n times, leading to a time complexity in O(n2 × m). The time complexity of lines 8-10 is
bounded above by n. The test at line 13 is done at most n2 times. The cover x−1(1)∪{i}\{j}
at line 13 is computed in O(m) thanks to the cov data structure. Thus, the time complexity
of lines 9-14 is bounded above by n2 ×m. As a result, Algorithm 2 has an O(n2 ×m) time
complexity.

5.4 The Global Constraint INFREQUENTSUPERS

In this section we present the new global constraint INFREQUENTSUPERS. INFREQUENT-
SUPERS is used to mine itemsets that have only infrequent supersets.

Definition 5.2 (INFREQUENTSUPERS). Let x be a vector of Boolean variables, s a frequency
threshold and D a dataset. The global constraint INFREQUENTSUPERSD,s(x) holds if and
only if ∀P ) x−1(1), freq(P ) < s.

Example 5.4. Consider the dataset in Table 1.1 with s = 3.
INFREQUENTSUPERSD,3([1, 1, 1, 0, 1]) is satisfied becauseABCE has only infrequent super-
sets w.r.t. s. INFREQUENTSUPERSD,3([1, 0, 0, 0, 1]) is not satisfied becauseAE has a frequent
superset, i.e. ABE.
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Algorithm 3: Propagator for INFREQUENTSUPERS

1 In: s: frequency threshold;
2 InOut: x = {x1 . . . xn}: Boolean item variables;

3 begin
4 cover← cover(x−1(1) ∪ x−1(∗));
5 if |cover| ≥ s then
6 foreach j ∈ x−1(0) do
7 if |cover ∩ cover(j)| ≥ s then
8 return failure;

9 foreach i ∈ x−1(∗) do
10 cover2← cover(x−1(1) ∪ x−1(∗) \ {i});
11 if |cover2| ≥ s then
12 foreach j ∈ (x−1(0) ∪ {i}) do
13 if |cover2 ∩ cover(j)| ≥ s then
14 dom(xi)← dom(xi) \ {0}; break;

Algorithm. The propagator for the global constraint INFREQUENTSUPERS is presented
in Algorithm 3. Algorithm 3 takes as input the variables x and the frequency thresh-
old s. Algorithm 3 starts by computing cover, the cover of the largest possible itemset,
x−1(1) ∪ x−1(∗) (line 4). If such an itemset has a frequent superset (line 7) then no itemset
containing x−1(1) can be a solution and we return failure (line 8). Algorithm 3 must then
remove value 0 from dom(xi) if the absence of the item i can lead to an itemset that has a
frequent superset. To do that, for every free item i (line 9), Algorithm 3 computes cover2,
the cover of the largest itemset not containing the item i, i.e. x−1(1)∪ x−1(∗) \ {i} (line 10).
If x−1(1) ∪ x−1(∗) \ {i} is frequent (line 11), it could have a frequent superset. Thus, for
every item j in x−1(0)∪{i}we test whether the itemset x−1(1)∪x−1(∗)\{i}∪{j} is frequent
(line 13). If so, we remove 0 from dom(xi) and break the loop (line 14).

Example 5.5. Consider the dataset in Table 1.1 with s = 3. Given the partial assignment
x−1(1) = {A}, x−1(0) = {B,D} and x−1(∗) = {C,E}, Algorithm 2 filters 0 from dom(xC)
because the itemset AE has a frequent superset i.e. ABE (freq(ABE) = 3 ≥ s).

Theorem 5.4. The propagator in Algorithm 3 enforces domain consistency on the constraint
INFREQUENTSUPERS.

Proof. We first prove that if INFREQUENTSUPERS admits a solution, x−1(1)∪ x−1(∗) is nec-
essarily one of them. Suppose there is a solution and x−1(1) ∪ x−1(∗) is not one of them.
This means that there exists a subset of x−1(1) ∪ x−1(∗) which has all its supersets infre-
quent. x−1(1) ∪ x−1(∗) is one of these supersets. Thus, all supersets of x−1(1) ∪ x−1(∗) are
infrequent and x−1(1)∪ x−1(∗) is solution too, which contradicts the assumption. We now
prove that Algorithm 3 returns failure if and only if INFREQUENTSUPERS does not admit
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any solution. We know that if INFREQUENTSUPERS has solutions, x−1(1) ∪ x−1(∗) is one
of them. x−1(1) ∪ x−1(∗) is not solution if and only if it has a frequent superset. In such a
case the test in line 7 is true for some j in x−1(0) and failure is returned. If INFREQUENT-
SUPERS has solutions, x−1(1)∪ x−1(∗) is a support for xi = 1, for all i ∈ x−1(∗). As a result,
Algorithm 3 does not need to check consistency of value 1 for any variable.

We now prove that Algorithm 3 prunes 0 from dom(xi) exactly when i belongs to all
solutions containing x−1(1). If the test in line 13 is true this means that with xi = 0 we get
itemsets having at least a frequent superset. Hence, 0 must be pruned from dom(xi). Sup-
pose now that the test in line 13 is false for all j. x−1(1) ∪ x−1(∗) \ {i} has only infrequent
supersets and xi = 0 is domain consistent.

Theorem 5.5. Given a transaction datasetD of n items and m transactions, Algorithm 3 has
an O(n2 ×m) time complexity.

Proof. Computing the cover of x−1(1) ∪ x−1(∗) in line 4 is in O(n ×m). The loop in line 6
computes the cover of x−1(1) ∪ x−1(∗) ∪ {j} in O(m) using the already computed cover
of x−1(1) ∪ x−1(∗) (i.e., cover). As a result the worst case time complexity of lines 4-8 is
in O(n × m). Similarly, the time complexity of lines 10-14 is bounded above by n × m.
Lines 10-14 are called at most n times, leading to a time complexity in O(n2 ×m).

The Duality Between Propagators

It is worth noticing the duality between Algorithm 2 and Algorithm 3. Algorithm 2
removes value 1 from dom(xi) if including the item i leads to an itemset having an infre-
quent subset. Algorithm 3 removes value 0 from dom(xi) if excluding the item i neces-
sarily leads to itemsets having a frequent superset. This duality is not totally obvious at
a first glance because Algorithm 2 requires the cov data structure to have its good time
complexity whereas Algorithm 3 does not need it. The reason is that Algorithm 2 com-
putes the covers of subsets that we cannot derive from the cover of their supersets whereas
Algorithm 3 computes covers of supersets that can be obtained by simple bitwise operation
on their subsets.

On the Conjunction of FREQUENTSUBS and INFREQUENTSUPERS

To mine itemsets that have frequent subsets and infrequent supersets at the same time
we combine the constraints FREQUENTSUBS and INFREQUENTSUPERS. One may ask if the
propagators of FREQUENTSUBS and INFREQUENTSUPERS enforce DC on the constraint
network defined by the conjunction of FREQUENTSUBS and INFREQUENTSUPERS. The an-
swer is no and we show this in the following example.

Example 5.6. Consider the dataset in Table 5.1 with s = 1. With the partial assignment
x−1(1) = {D}, x−1(0) = {A} and x−1(∗) = {B,C,E}, neither the propagator of FRE-
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Table 5.1 – Dataset

trans. Items
t1 A B E
t2 B D
t3 B C
t4 A B D
t5 A C
t6 B C
t7 A C
t8 A B C E
t9 A B C

QUENTSUBS nor the propagator of INFREQUENTSUPERS can filter any value. However,
value 1 for dom(xB) is not domain consistent. That is because with xB = 1 we get the
partial assignment x−1(1) = {B,D}, x−1(0) = {A} and x−1(∗) = {C,E}. Value 1 is filtered
by the propagator of FREQUENTSUBS from dom(xC) and dom(xE) leading to the complete
assignment x−1(1) = {B,D}, x−1(0) = {A,C,E} and x−1(∗) = ∅. BD does not satisfy the
constraint INFREQUENTSUPERS (its superset ABD is frequent) and value 1 is not domain
consistent for dom(xB).

5.5 Implementation of the Frequency Constraint

For encoding constraint (3) in MODEL (see Section 5.2), we may use COVERSIZE with
p ≥ s to ensure the frequency (when b = true) and with p < s to ensure the infrequency
(when b = false). The propagator of COVERSIZE enforces DC on the frequency, but it
does not on the infrequency (see Section 3.5). Hence, we propose a new global constraint
INFREQUENT for mining infrequent itemsets. We provide INFREQUENT with a filtering
rule that enforces DC.

Definition 5.3 (INFREQUENT). Let x be a vector of Boolean variables, s the frequency
threshold and D a dataset. The global constraint INFREQUENTD,s(x) holds if and only
if x−1(1) is infrequent w.r.t. s, i.e. freq(x−1(1)) < s.

Example 5.7. Consider the dataset in Table 1.1 with s = 3. INFREQUENTD,3([0, 0, 0, 1, 0])
is satisfied because D is infrequent w.r.t. s. INFREQUENTD,3([1, 1, 0, 0, 0]) is not satisfied
because AB is frequent w.r.t. s.

Proposition 5.1 (Filtering Rule for INFREQUENT). For every i ∈ x−1(∗), if freq(x−1(1) ∪
x−1(∗) \ {i}) ≥ s then remove 0 from dom(xi).

Example 5.8. Consider the dataset in Table 1.1 with s = 3. Given the partial assignment
x−1(1) = ∅, x−1(0) = {A} and x−1(∗) = {B,C}, the filtering rule in Proposition 5.1 filters 0
from dom(xC) because the itemset B is frequent w.r.t. s. Note that this value is not filtered
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by the propagator of COVERSIZE (see Example 3.7).

Theorem 5.6. The filtering rule presented in Proposition 5.1 enforces domain consistency
on the constraint INFREQUENT.

Proof. We first prove that the value 1 for a variable xi such that i ∈ x−1(∗) always belongs
to a solution and hence cannot be pruned by domain consistency. For this we prove that
if INFREQUENT admits a solution, x−1(1) ∪ x−1(∗) is necessary one of them. Suppose that
there is a solution and x−1(1) ∪ x−1(∗) is not one of them. This means that there exits a
subset of x−1(1)∪x−1(∗) which is infrequent. Thus, x−1(1)∪x−1(∗) is infrequent too which
contradicts the assumption. As a result, value 1 cannot be pruned from dom(xi).

We now prove that the filtering rule in Proposition 5.1 prunes 0 from dom(xi) exactly
when i must be added to the itemset x−1(1). If the test in Proposition 5.1 is true this means
that by excluding the item i we get only frequent itemsets. Hence, 0 must be pruned from
dom(xi). Suppose now that the test in Proposition 5.1 is false, in this case x−1(1)∪ x−1(∗) \
{i} is an infrequent itemset with xi = 0. Thus 0 is domain consistent.

5.6 On Constrained Borders

As pointed out in (Bonchi and Lucchese [2004]), constraints can interfere with close-
ness (or maximality) when they are not monotone. Likewise, constraints can interfere with
minimality when they are not anti-monotone. Hence, existing "one-shot" CP approaches
can miss solutions because they look for maximal/minimal itemsets that in addition sat-
isfy constraints (e.g., CLOSEDPATTERN with non monotone constraints), whereas we are
usually interested in itemsets that are maximal (or minimal) among those satisfying the
constraints (see Section 1.6.1). In this section we prove that deciding whether a frequent
itemset is maximal or closed or minimal among those satisfying the constraints is coNP-
complete. This means that finding maximal/closed/minimal itemsets among those sat-
isfying a set of constraints is coNP-hard. It is a proof that it is not possible to solve this
problem using a single CSP (unless coNP ⊆ NP). This validates "multi-shot" approaches
(Négrevergne et al. [2013]).

Theorem 5.7. Given a dataset D on a set of items I and a set C of user’s constraints, decid-
ing whether an itemset is maximal/closed among those satisfying C is coNP-complete.

Proof. Membership. Given an itemset P , a witness to its non maximality/closeness is an
itemset P ′ ) P that is frequent, satisfies C, and in the case of closeness has the same
frequency as P . Checking that P ′ is frequent and checking that it has the same frequency
as P is linear in |D|. Checking that P ′ satisfies C requires the polynomial check of the
C constraints. Hence, the "no" answer admits a polynomial certificate, and so deciding
maximality or closeness is in coNP.
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Completeness. We reduce co3COL, which is coNP-complete, to the problem of deciding
whether an itemset is maximal/closed. We want to decide whether a connected graph
G = (V,E) is non colorable with three colors. We build the dataset D on the set I =
(a1, . . . , an, b1, . . . , bn, c) of items, where n = |V |. The pair (ai, bi) of items will represent the
vertex i in V . D contains the single transaction (1, . . . , 1) and the frequency threshold s is
set to |T |/2.

As in all CP models for itemset mining, there is a Boolean variable for each item. The
standard semantics is that xp = 1 if and only if the item p is in the itemset returned as
solution.

For each edge (i, j) ∈ E, a quaternary constraint c(xai
, xbi

, xaj
, xbj

) is put in the set C of
user’s constraints. The tuples allowed by c(xai

, xbi
, xaj

, xbj
) are (0000), (0110), (0111), (1001),

(1011), (1101), (1110). The assignments (01), (10), and (11) for the pair of variables (xai
, xbi

)
represent the three colors for vertex i. c(xai

, xbi
, xaj

, xbj
) accepts the tuple (0000) plus the

six tuples representing the six combinations of different colors for the pair of vertices (i, j).
Hence, by construction, the tuple (0, . . . , 0) is solution, and, as soon as a variable xai

or xbi

is set to 1, it forces all neighbors in E of vertex i to take another color than the color rep-
resented by the assignment of (xai

, xbi
). As a result, deciding whether the itemset {c} is

maximal/closed among the itemsets satisfying C is equivalent to deciding whether there
does not exist any superset of {c} satisfying C, which is equivalent to deciding whether G
is non 3-colorable.

Theorem 5.8. Given a dataset D on a set of items I and a set C of user’s constraints, decid-
ing whether an itemset is minimal/generator among those satisfying C is coNP-complete.

Proof. (Sketch.) Membership is direct adaptation of the proof of membership in Theo-
rem 5.7: A witness of non-minimality/non-generator of an itemset P is a subset that is
infrequent (or has the same frequency in case of generator) and satisfies C, which is poly-
nomial to check. Completeness is the dual of the reduction in Theorem 5.7. We reduce
co3COL to the problem of deciding whether an itemset is minimal/generator. We build
the dataset D on the set I = (a1, . . . , an, b1, . . . , bn) of items with the three transactions
(1, 0, . . . , 0), (0, . . . , 0, 1) and (1, . . . , 1). The frequency threshold s is set to |T |/2. For each
edge in the graph, we use again a quaternary constraint but the tuple (0000) is replaced
by the tuple (1111) and the three colors are represented by the assignments (00), (01),
and (10) instead of (01), (10), and (11). By construction, the tuple (1, . . . , 1) is solution
and deciding whether the itemset (a1, . . . , an, b1, . . . , bn) is minimal/generator among the
itemsets satisfying C is equivalent to deciding whether there does not exist any subset
of (a1, . . . , an, b1, . . . , bn) satisfying C, which is equivalent to deciding whether G is non
3-colorable.

Corollary 5.1. Given a datasetD on a set of items I and a setC of user’s constraints, finding
an itemset that is maximal/closed/minimal/generator among those satisfying C is coNP-
hard.
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5.7 Experiments

We made several experiments to compare our CP model MODELD,s,b to the state of the
art approaches.

5.7.1 Experimental Protocol

The implementation of MODELD,s,b and its constraint propagators were carried out in
the Oscar solver using Scala. 1 The code is publicly available. 2 All experiments were
conducted on an Intel core i7, 2.2Ghz with a RAM of 8Gb and a timeout of one hour.
MODELD,s,b is denoted by CP4MFI (resp. CP4MII) when b = 1, i.e. mining MFIs (resp. b = 0,
i.e. mining MIIs). We used the global constraint COVERSIZE to encode the constraint (3)
in MODELD,s,b. We enforce frequency by simply adding the constraint p ≥ s. As for the
infrequency, we have assessed the quality of the COVERSIZE encoding of infrequency by
comparing to the propagator of the new constraint INFREQUENT.

As an MFI is a closed itemset and an MII is a generator, we enhance propagation
by adding, respectively, the global constraints COVERCLOSURE (Schaus et al. [2017]) and
GENERATOR (Belaid et al. [2019b]). After a few preliminary tests, we decided to use small-
est item frequency first as variable ordering heuristic and largest value first as value ordering
heuristic. We compared CP4MFI to the FP-GROWTH (Grahne and Zhu [2003]) special-
ized algorithm for extracting MFIs. We used for this the Borgelt’s data mining platform. 3

We compared CP4MII to WALKY-G (Szathmary et al. [2012]) for mining MIIs using the
CORON data mining platform. 4 We selected several real-sized datasets from the FIMI
repository. 5 A dataset is characterized by its name, the number of items |I|, the number
of transactions |T | and its density ρ (see Table 4.1).

5.7.2 The Infrequency

We start by comparing the propagator of COVERSIZE for ensuring the infrequency
with the propagator of the new global constraint INFREQUENT.

The number of infrequent itemsets is huge, hence we mine only non-zero infrequent
itemsets in this experiment (infrequent itemsets that appear in at least one transaction).
For each propagator and each selected instance, Table 5.2 reports the CPU time in seconds,
the number of nodes, the number of fails and the number of infrequent itemsets (#Sol).
An instance of a given dataset is characterized by its frequency threshold s (e.g., Zoo_2
denotes the instance of Zoo with s = 2).

1. bitbucket.org/oscarlib/oscar
2. gite.lirmm.fr/belaid/cp4borders
3. borgelt.net/fpgrowth.html
4. coron.loria.fr
5. fimi.ua.ac.be/data
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We observe that the number of additional nodes explored by the propagator of COV-
ERSIZE is marginal comparing to the propagator of INFREQUENT. But the CPU time is
better using the propagator of COVERSIZE. Take for instance Vote_10 where the number
of nodes/fails are reduced using the propagator of INFREQUENT. However, the use of the
COVERSIZE propagator reduces the CPU time by 4 seconds on Vote_10. This is due to the
fact that the propagator of COVERSIZE does not compute the cover of x−1(1)∪x−1(∗) \ {i}
in every node but only when UB(p) = |cover(x−1(1)∪x−1(∗))| (see Section 3.5). In the next
experiments we use the propagator of COVERSIZE for ensuring the infrequency.

Table 5.2 – COVERSIZE vs INFREQUENT for mining infrequent itemsets (time in seconds)

Dataset
|I| × |T |
ρ(%)

s COVERSIZE INFREQUENT #Sol

Nodes Fails Time(s) Nodes Fails Time(s)
Zoo

36× 101
44%

2 2,604,234 427,622 2.11 2,117,054 184,032 2.07 874,496
6 3,738,154 222,786 2.73 3,353,040 30,229 2.78 1,646,292

10 3,817,790 109,687 2.86 3,613,174 7,379 3.40 1,799,209
Vote

48× 435
33%

2 17,774,002 1,431,723 12.61 16,366,434 727,940 14.64 7,455,279
6 21,229,000 727,822 14.57 20,219,334 222,989 18.51 9,886,679

10 21,465,596 455,058 14.61 20,817,530 131,025 18.63 10,277,741

5.7.3 Mining Borders

This experiment compares CP4MFI to FP-GROWTH and CP4MII to WALKY-G for min-
ing MFIs and MIIs. For each approach and each selected instance, Table 5.3 reports the
CPU time and the number of MFIs/MIIs. 6 An instance of a given dataset is characterized
by its frequency threshold s (e.g., Zoo_50 denotes the instance of Zoo with s = 50).

A first observation is that the specialized algorithms FP-GROWTH and WALKY-G fol-
low a completely different approach to extract MFIs and MIIs whereas our CP model can
mine a border or the other just by flipping a parameter. When mining MFIs, the main ob-
servation that we can draw from Table 5.3 is that, as expected, the specialized algorithm
FP-GROWTH performs very well. However, CP4MFI is very competitive too, and even
faster on one instance (Chess_160). As for MIIs, CP4MII outperforms WALKY-G in 14 in-
stances out of 26. CP4MII reaches once the timeout of one hour. WALKY-G reaches the time
out on two instances and an out of memory state on three instances. WALKY-G uses a hash
structure for storing frequent generators. Maintaining this data structure can be very ex-
pensive, especially on dense datasets. For instance, on the very dense instance Chess_500,
WALKY-G exhausts the 8Gb of memory to store the 50M frequent generators. On the mod-
erately dense Connect_7000 WALKY-G needs to store more than 7.4M frequent generators
to find the 165K MIIs in 163.25 seconds. On these two instances, CP4MII returns the whole
set of MIIs in only 97.42 and 99.42 seconds, respectively. On sparse datasets, where we
have few frequent generators, WALKY-G is very efficient. On the very sparse dataset T10,
WALKY-G stores less than 50K frequent generators to extract the 698K MIIs of T10_50 in
less than 5 seconds whereas CP4MII needs more than 7 minutes.

6. This number is computed by releasing the timeout.
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Table 5.3 – FP-GROWTH vs CP4MFI for mining MFI and WALKY-G vs CP4MII for mining MIIs (time
in seconds)

Dataset
|I| × |T |
ρ(%)

s
Mining MFIs Mining MIIs

(a) CP4MFI #MFIS (b) CP4MII #MIIS

Zoo
36× 101

44%

50 0.01 0.03 32 0.12 0.04 111
9 0.01 0.08 200 0.10 0.13 875
1 0.01 0.09 59 0.27 0.12 1,071

Vote
48× 435

33%

150 0.01 0.04 75 0.19 0.10 479
5 0.08 0.77 13,787 0.85 1.40 37,526
1 0.13 0.47 342 1.26 1.24 32,067

Anneal
93× 812

45%

700 0.01 0.05 65 0.26 0.08 303
100 0.42 1.10 15,889 9.59 2.06 77,119
50 0.61 1.13 14,296 23.48 3.41 86,783

Chess
75× 3, 196

49%

2,500 0.01 0.10 286 0.10 0.13 511
1,000 1.04 4.34 114,382 23.14 8.38 152,316
500 16.60 25.66 952,812 OOM 97.42 1,353,344
160 233.78 127.30 5,784,232 OOM 923.84 9,364,262

Mushroom
119× 8, 124

19%

4,000 0.01 0.03 12 0.31 0.06 145
40 0.07 1.09 12,010 0.86 2.33 48,111
4 0.24 1.56 39,416 1.95 4.58 49,046

Connect
129× 67, 557

33%

55,000 0.01 0.51 594 0.34 0.48 891
7,000 2.60 69.03 123,345 163.25 99.42 165,198
2,000 24.40 342.95 893,826 TO 885.99 1,180,278
676 102.90 800.65 3,283,735 TO 3541.77 4,221,496

T10
1, 000× 100, 000

1%

5,000 0.01 0.19 10 0.13 4.59 905
1,000 0.12 207.89 307 2.33 373.01 344,651

50 0.35 255.18 12,062 4.27 472.82 698,556
Pumsb

2, 113× 49, 046
3%

48,000 0.01 0.09 3 0.25 10.18 2,115
32,000 0.21 470.80 17,791 30.10 48.55 57,425
17,000 145.96 TO 2,403,260 OOM TO > 3× 106

(a): FP-GROWTH (b): WALKY-G
T10 = T10I4D100K TO= timeout OOM= out of memory

5.7.4 Mining Constrained Borders

In many practical applications, the user asks for itemsets satisfying some additional
constraints. We performed experiments that show the strength of our CP approach in
taking into account user’s constraints. We look for MFIs of minimim size lb and MIIs
of maximum size ub. These two queries can easily be expressed in our CP model by
adding the cardinality constraints

∑
i∈I xi ≥ lb to CP4MFI, and

∑
i∈I xi ≤ ub to CP4MII. FP-

GROWTH includes a filtering step allowing us to specify the minimum size of extracted
MFIs. However, WALKY-G does not provide such feature, and extracting MIIs under
cardinality constraints is only possible via a post-processing step. Table 5.4 reports the
results. We selected the instances having more than one million MFIs and/or MIIs in
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Table 5.4 – FP-GROWTH vs CP4MFI for mining constrained MFI and WALKY-G vs CP4MII for min-
ing constrained MIIs (time in seconds)

Instance
Mining constrained MFIs Mining constrained MIIs

lb (a) CP4MFI #SOL ub (b) CP4MII #SOL

Chess_500

25 17.97 0.30 0 1 OOM 0.08 19
24 17.60 0.72 2 3 OOM 0.41 1,962
21 16.60 1.65 2,091 5 OOM 8.88 31,591
17 17.86 10.58 171,567 7 OOM 16.58 224,172

Chess_160

29 201.55 1.23 0 1 OOM 0.03 9
28 224.31 1.73 10 3 OOM 0.62 2,384
26 226.77 3.51 1,527 4 OOM 1.31 13,487
23 219.82 16.08 132,814 6 OOM 17.44 186,653

Connect_676

40 117.87 5.96 0 1 TO 0.15 20
33 111.95 69.00 266 2 TO 2.53 1,612
32 109.07 117.17 21,788 4 TO 22.81 33,742
31 125.62 171.04 157,793 5 TO 119.42 144,007

Pumsb_17000

35 157.28 1.16 0 1 OOM 4.59 2,033
30 157.58 14.96 21 3 OOM 11.94 5,721
26 153.33 148.26 1,663 6 OOM 254.58 166,178
22 154.52 3019.25 55,018 8 OOM 2702.20 1,388,040

(a): FP-GROWTH (b): WALKY-G
TO= timeout OOM= out of memory

Table 5.3. For each selected instance, we increased lb (resp. decreased ub) and we report
the CPU time, in seconds, according to the number of solutions.

The main observation on the performance of FP-GROWTH for extracting constrained
MFIs is that its CPU time is almost constant. For instance, extracting more than 5M or
just 10 MFIs on Chess_160 requires almost the same CPU time. This is explained by the
fact that the cardinality constraint in FP-GROWTH has no pruning power. It is just used
as a checker. On the contrary, when lb increases, CP4MFI removes more values thanks
to constraint propagation, thus drastically reducing the search space. Take for instance
Pumsb_17000 When lb = 22, CP4MFI extracts the 55K MFIs in more than 50 minutes
whereas when lb increases to 30, CP4MFI returns the 21 remaining solutions in only 15 sec-
onds. On instances with no solutions, such as Pumsb_17000 with lb = 35, CP4MFI proves
the absence of solutions in one second whereas FP-GROWTH spends 157.28 seconds.

For WALKY-G, no results are reported because it already has an OOM or TO state before
reaching post-processing step. The main observation that we can draw on the behavior of
CP4MII is again the strong correlation between the increase of tightness of the cardinality
constraint (that is, the decrease of ub) and the drop in CPU time needed to extract the
constrained MIIs. The explanation for this good behavior of CP4MII is again the strength
of constraint propagation to discard inconsistent values, thus reducing the search space.
On Pumsb_17000, when ub decreases from 8 down to 1, CP4MII goes from 45 minutes down
to 4.59 seconds to return the set of MIIs (1.3M MIIs for ub = 8 and 2K MIIs for ub = 1).
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5.8 Conclusion

In this chapter, we have presented a CP model allowing the mining of MFIs and
MIIs. For this, we have defined two new global constraints, namely FREQUENTSUBS and
INFREQUENTSUPERS, with polynomial complete propagators. We have proposed a new
implementation of the infrequency constraint. We have proven that the problem of mining
MFIs or MIIs with constraints is coNP-hard, ruling out the hope for a single CSP solving
this problem (unless coNP ⊆ NP). Nevertheless, our CP model is sound when the addi-
tional constraints are monotone on MFIs or anti-monotone on MIIs. Experiments showed
that the CP approach is competitive with state of the art techniques for mining MFIs or
MIIs and even better for mining MFIs or MIIs with additional constraints.





Conclusion

In this thesis, we have used constraint programming to model and solve some well
known itemset mining problems. Our models offer the user the flexibility to express com-
plex queries.

We first proposed a full constraint programming model for mining association rules.
For this we have introduced a new global constraint CONFIDENT for the confidence of
rules. We have proven that the problem of deciding if there exists a confident rule is NP-
complete. This implies that domain consistency on CONFIDENT is NP-hard. We thus,
proposed two weak propagators. The first one uses a filtering rule. The second one uses a
decomposition using existing constraints. We have shown that, in addition to constrained
rules, our model is able to capture minimal non-redundant rules. For this, we used a new
global constraint, GENERATOR, for mining itemsets that are generators. We have proposed
a complete polynomial propagator for GENERATOR. We also studied the problem of con-
strained minimal non-redundant rules. We have shown that anti-monotone constraints
on the body and monotone constraints on the head are safe.

We have also proposed a generic constraint programming model for mining borders
of frequent itemsets. For this, we have introduced two new global constraints, FRE-
QUENTSUBS for itemsets that have only frequent subsets and INFREQUENTSUPERS for
itemsets that have only infrequent supersets. For both constraints, we proposed poly-
nomial complete propagators. We have proven that mining constrained borders is coNP-
hard ruling out the possibility of a CSP solving this problem.

Experiments have shown the efficiency of our constraints and models. For mining
classical patterns such as association rules, positive border, negative border, our CP ap-
proaches are not better than ad hoc methods. However, when it comes to mining patterns
with additional constraints our CP approaches are flexible and faster thanks to constraint
propagation. If we compare with declarative approaches, our CP approach for mining
association rules outperforms the SAT approach. Despite the use of some constraint prop-
agation to handle cardinality constraints, the SAT approach suffers from a memory issue
when encoding the cover constraint into CNF.



ii Chapter 0. Conclusion

We believe that constraint programming is a powerful paradigm that can be used to
solve complex data mining problems. In the following we summarise some perspectives
related to our work.

Short term perspectives

Extend/adapt our model for mining association rules

Association rules mining aims at detecting interesting correlations between items. Mea-
suring this correlation remains a bottleneck nowadays. In some real world problems, the
frequency and the confidence cannot fulfill all the user needs. Our constraint program-
ming model for mining association rules can be extended to consider more complex statis-
tical measures that describe the user’s request best. Our CP model for mining association
rules can be extended/adapted to mine other type of rules. Rare association rules, for
instance, can be mined by just replacing the frequency constraint with the infrequency
constraint in our model for mining association rules.

A global constraint with the confidence as variable

Our global constraint CONFIDENT can be revised to consider the confidence as a vari-
able. In this case, the constraint CONFIDENTVARD(x, y, var) is satisfied if and only if
var = conf(x−1(1) → y−1(1)). The benefit of such constraint is the possibility to easily
express constraints on the confidence (e.g., mine rules with a confidence less than a given
threshold).

Long term perspectives

We can distinguish three main points that can be tackled as future works.

Constraint programming for high utility itemset mining

The frequency being monotonic offers the flexibility in designing algorithms for min-
ing frequent itemsets. This is not true on the utility which is not monotonic. In itemset
mining, high utility itemset mining consists in finding itemsets according to some given
utilities (e.g., item prices). The itemset is considered to be of high utility if its utility is no
less than a given threshold. Recently, the problem of high utility itemset mining is in the
spotlight. Because the utility is not monotonic, it makes if difficult to design an efficient
algorithm to handle the utility. In constraint programming the utility constraint can be
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handled through a global constraint. A study of the level of consistency for the utility
constraint is required to design a dedicated propagator. Existing CP models in itemset
mining can then be extended to consider the utility constraint. Our model for mining as-
sociation rules, for instance, can consider the utility constraint to mine rules that are of
high utility in addition of being frequent and confident.

Preferences modeling

The user may ask for patterns with some preferences. These preferences can be quan-
titative according to some measure (e.g., a pattern is preferred to another according to its
frequency) or qualitative according to a pairwise comparison between patterns (e.g., the
pattern P1 is preferred to P2). Some of these preferences are not strong and can be vio-
lated. For instance, the user may prefer itemsets containing the item A unless all those
itemsets are infrequent. These kind of preferences can be handled in constraint program-
ming using soft constraints (i.e., weighted constraints) (Meseguer et al. [2006]). Weighted
Constraint Satisfaction Problem (WCSP) is a CSP where some of the constraints can be
violated according to some degrees (Bistarelli et al. [1999], Larrosa and Schiex [2004]). A
generic CP model can be designed for itemset mining to take in consideration the soft
constraints of the user in addition to the strong constraints.

Active mining using constraint acquisition

Active mining is the problem of mining patterns when we allow an interaction with the
user (van Leeuwen [2014]). This problem can be divided into three main steps: (1) mine:
where the computer extracts interesting patterns according to current information, (2) in-
teract: where the computer interacts with the user who expresses her opinion on the ex-
tracted patterns, (3) learn: where the computer learns the user’s constraints/preferences
from the interaction. The three steps are repeated until the user is satisfied. In constraint
programming the mining step can be handled by constraint solvers. The interaction and
learning steps, on the other hand, are handled by constraint acquisition (Bessiere et al.
[2017]). Constraint acquisition helps the user in the modeling process. Constraint acqui-
sition interacts with the user via queries. Depending on the user’s answer it learns (i.e.,
acquires) the constraints the user is interested to satisfy. The process is repeated until the
user is satisfied. An architecture combining constraint solvers with constraint acquisition
can be designed to actively mine patterns the user is interested in.
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