Data mining is the art of discovering knowledge from databases. The user specifies the type of patterns to be mined, and the miner uses techniques to find the required patterns. Many techniques have been introduced for mining traditional patterns like frequent itemsets, association rules, etc. However, mining patterns with additional properties remains a bottleneck for specialists nowadays due to the algorithmic effort needed to handle these properties.

Recently, researchers have taken advantage of the flexibility of constraint programming to model various data mining problems. In terms of CPU time, constraint programmingbased methods have not yet competed with ad hoc algorithms. However, their flexibility allows the modeling of complex user queries without revising the solving process.

In this thesis we propose to use constraint programming for modeling and solving some well known data mining problems. Our first contribution is a constraint programming model for mining association rules. To implement our model, we introduce a new global constraint, CONFIDENT, for ensuring the confidence of rules. We prove that completely propagating CONFIDENT is NP-hard. We thus provide a non-complete propagator and a decomposition for CONFIDENT. We also capture the minimal non-redundant rules, a condensed representation of association rules, by introducing the global constraint GEN-ERATOR. GENERATOR is used for mining itemsets that are generators. For this constraint, we propose a complete polynomial propagator.

Our second contribution is a generic framework based on constraint programming to mine both borders of frequent itemsets, i.e. the positive border or maximal frequent itemsets and the negative border or minimal infrequent itemsets. One can easily decide which border to mine by setting a simple parameter. For this, we introduce two new global constraints, FREQUENTSUBS and INFREQUENTSUPERS, with complete polynomial propagators. We then consider the problem of mining borders with additional constraints. We prove that this problem is coNP-hard, ruling out the hope for the existence of a single CSP solving this problem (unless coNP ⊆ NP). I also had some interesting discussions with scientists from different labs. I thank Said JABBOUR and Lakhdare SAIS for hosting me in their lab, CRIL. Thanks to Yahia LABBAH, Mehdi MAAMAR Tias GUNS and Pierre SCHAUS for all the discussions that we had.
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Résumé

La fouille de données est l'art de découvrir des informations à partir de bases de données. L'utilisateur spécifie le type de motifs à extraire et le spécialiste utilise des techniques pour trouver les motifs requis. De nombreuses techniques ont été introduites pour l'extraction des motifs clasiques tels que les motifs fréquents, les règles d'association, etc. Cependant, l'extraction des motifs avec des propriétés supplémentaires restent un problème pour les spécialistes car des efforts algorithmiques sont requises pour gérer ces propriétés.

Récemment, les chercheurs ont profité de la flexibilité de la programmation par contraintes pour modéliser plusieurs problèmes de la fouille de données. En termes de temps d'exécution, les méthodes basées sur la programmation par contraintes ne sont pas encore concurrentes avec les algorithmes specialisées. Cependant, leur flexibilité permet la modélisation des requêtes complexes sans la nécessité de réviser le processus de résolution.

Dans cette thèse, nous proposons d'utiliser la programmation par contraintes pour résoudre des problèmes de la fouille de données. Notre première contribution est un modèle basé sur la programmation par contraintes pour l'extraction des règles d'association. Pour mettre en oeuvre notre modèle, nous introduisons une nouvelle contrainte globale, CONFIDENT, pour assurer la confiance des règles. Nous prouvons que propager complètement CONFIDENT est NP-difficile. Nous fournissons donc un propagateur non-complet et une décomposition pour la contrainte CONFIDENT. Nous capturons également les règles minimales non redondantes, une représentation condensée des règles d'association, en introduisant la contrainte globale GENERATOR. GENERATOR est utilisé pour extraire des motifs qui sont des générateurs. Pour cette contrainte, nous proposons un propagateur polynomial complet.

Notre deuxième contribution est un model générique basé sur la programmation par contraintes permettant l'extraction des deux frontières des motifs fréquents, à savoir la frontière positive ou les motifs maximaux fréquents et la frontière négative ou les motifs minimaux infréquents. Il est facile de choisir la frontière à extraire en fixant un simple paramètre. Pour cela, nous introduisons deux nouvelles contraintes globales, FREQUENTSUBS et INFREQUENTSUPERS, avec des propagateurs polynomiaux complets. Nous examinons ensuite le problème de l'extraction des frontières avec des contraintes supplémentaires. vi Chapitre 0. Résumé Nous prouvons que ce problème est coNP-difficile. Cela implique qu'il n'existe aucun CSP représentant ce problème (sauf si coNP ⊆ NP).

Introduction

Data mining is the process of transforming a raw data into useful information. Itemset mining is one of the most studied problems in data mining. It was originally introduced for sales transactions and products [START_REF] Agrawal | [END_REF]). In a transaction dataset one may look for significant regularities like "the product A is bought frequently" or "people buying A usually buy B with it".

Motivations

Many techniques have been developed for itemset mining problems including the mining of frequent itemsets [START_REF] Agrawal | [END_REF], [START_REF] Han | Mining frequent patterns without candidate generation[END_REF]), mining association rules [START_REF] Agrawal | [END_REF], Szathmary et al. [2007a]), mining closed itemsets [START_REF] Pasquier | Discovering frequent closed itemsets for association rules[END_REF]), mining high utility itemsets [START_REF] Chan | Mining high utility itemsets[END_REF]) etc. These tasks become easier and easier thanks to dedicated algorithms and thanks to the improvement of computers performance. However, the number of extracted patterns 1 is often huge and can easily exceed the size of the dataset itself. In this case the user faces an enormous number of irrelevant patterns. However, most of the time the user is interested in patterns that satisfy some specific properties. For instance, the user may ask for patterns containing/not containing some specific items.

According to [START_REF] Joost | A linear-time transformation of linear inequalities into conjunctive normal form[END_REF], there are three ways to handle the additional user's constraints. We can use a pre-processing step that restricts the dataset to only transactions that satisfy the constraints. Such a technique cannot be used on all kinds of constraints. We can use a post-processing step to filter out the patterns violating the user's constraints. Such a brute-force technique can be computationally infeasible when the problem without the user's constraints has too many solutions. We can finally integrate the filtering of the user's constraints into the specialized data mining process in order to extract only the patterns satisfying the constraints. Such a technique requires the development of a new algorithm for each new problem with user's constraints.

1. Modeling: In this thesis, we propose constraint programming based models to solve some itemset mining problems. We propose a constraint programming model for mining association rules that are frequent and confident. Then, we show that this model can be extended to mine only the Minimal Non-redundant Rules (MNRs), a condensed representation for association rules. We propose a generic constraint programming for mining borders of frequent itemsets, i.e. the positive border or maximal frequent itemsets and the negative border or minimal infrequent itemsets. One can easily decide which border to mine using a simple parameter. We show that our model can be extended to consider additional user's constraints.

Solving:

In this thesis, we do not only model problems using existing constraints but we also contribute at the solving part of constraint programming by introducing new global constraints with their filtering algorithms (aka, propagators). We introduce a new global constraint CONFIDENT. CONFIDENT is used to ensure the confidence of rules. We prove that completely propagating CONFIDENT is NP-hard. Thus, we provide CONFIDENT with two different propagators. The first one uses a non-complete filtering rule. The second one uses a decomposition using existing constraints. We introduce a new global constraint GENERATOR for mining generator itemsets. This constraint can be used to mine MNRs. We provide GENERATOR with a polynomial filtering algorithm. We prove that this algorithm is complete. We introduce two new global constraints, (1) FREQUENTSUBS for mining itemsets having only frequent subsets and (2) INFREQUENTSUPERS for mining itemsets having only infrequent supersets. We provide both constraints with complete polynomial propagators. These constraints are used in our generic model for mining borders of frequent itemsets. We show that existing propagators for the infrequency are not complete. Hence, we propose a new global constraint INFREQUENT for mining infrequent itemsets with a complete polynomial algorithm and we evaluate its efficiency.

Studying constrained patterns:

In this thesis, we address the issue of mining patterns in the presence of other constraints. As noticed in (Bonchi and Lucchese xi [2004]), mining borders under additional constraints has two interpretations, (1) borders that, in addition, satisfy the set of constraints (2) borders of the itemsets satisfying the constraints. The user is usually interested in mining itemsets w.r.t. the second interpretation. This is true on positive/negative borders, but also on closed or generator itemsets. We prove that it is coNP-hard to find maximal/minimal itemsets among those satisfying a set of additional constraints, i.e. solve the problem w.r.t. the second interpretation. This implies that there does not exist any CSP representing the problem of finding borders under additional constraints unless coNP ⊆ NP. This problem can occur also on mining MNRs with additional constraints. We prove that in a specific case both interpretations (1 and 2) are equivalent.

4. Implementing: To evaluate their efficiency, we have implemented our models using the constraint solver Oscar. For this, we have used the already implemented constraints and we have implemented the propagators of our new global constraints. Results can be found in the experiment sections in the contributions part.

Manuscript organisation

This manuscript is organised in two parts, Part I for the background and Part II for the contributions. Every part is organised in chapters: I Background:

-Chapter 1: In this chapter we present the basic methods and notations in itemset mining. We introduce the different tasks in itemset mining, frequent itemsets mining, condensed representations mining, association rules mining, etc. We also give an overview on other tasks of data mining. -Chapter 2: In this chapter we present the constraint programming paradigm.

We present some basic definitions and notations. We also present the two main features of constraint solvers, i.e. the backtracking and the propagation processes. -Chapter 3: In this chapter we present some existing constraint-based methods to solve itemset mining problems. We focus on the constraints based approaches, i.e. the basic constraint programming model, global constraints and the SAT approaches for itemset mining.

II Contributions:

-Chapter 4: In this chapter we introduce our first contribution, a constraint programming model for mining association rules with a new global constraint CONFIDENT. We show that this model can be easily extended to mine minimal non-redundant rules using a new global constraint GENERATOR. We also study the problem of combining minimal non-redundant rules with constraints. -Chapter 5: Finally, we introduce our second contribution, a generic constraint programming model for mining borders of frequent itemsets, i.e. the positive
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In this chapter, we introduce the basic concepts of itemset mining. We start with some basic definitions in Section 1.2. In Section 1.3 we review some methods for mining frequent and infrequent itemsets. Condensed representations are presented in Section 1. [START_REF]coron.loria[END_REF]. Association rules mining, its methods and variants are presented in Section 1.5. We define the problem of mining constrained itemsets in Section 1.6. A data compression technique is presented in Section 1.7. Finally, sequence and uncertain data mining are presented in Section 1.8.

Notations and Definitions

Itemset Mining

Let I = {1, . . . , n} be a set of n item indices and T = {1, . . . , m} a set of m transaction indices. An itemset P is a non empty subset of I. The transactional dataset D = {{t 1 , . . . , t m }} is a multiset of itemsets, where for all i ∈ T , t i is an itemset. The cover of an itemset P , denoted by cover(P ), is the set of transaction indices i for which t i contains P . Given S a subset of T , item(S) is the set of items belonging to all transactions whose index is in S. The frequency of an itemset P is the cardinality of its cover, i.e. f req(P ) = |cover(P )|. Let s be some given constant called a frequency threshold. The itemset P is frequent if f req(P ) ≥ s. P is infrequent (or rare) if f req(P ) < s. The closure of an itemset P is the set of items that belong to all transactions whose index is in cover(P ), i.e. closure(P ) = item(cover(P )). P is closed iff closure(P ) = P . We denote by P f the itemset P with frequency f . Table 1.1 -Transaction dataset example with five items and five transactions. The standard representation (left) and the binary representaiton (right).

trans.

Items t 1 1 1 0 1 1 t 2 1 0 1 0 0 t 3 1 1 1 0 1 t 4 0 1 1 0 1 t 5 1 1 1 0 1 Example 1.1. The dataset in Table 1.1 has 5 items, i.e. |I| = 5 and 5 transactions, i.e. |T | = 5. The cover of CE is cover(CE) = {3, 4, 5}. Its frequency is the cardinality of its cover, i.e.

t 1 A B D E t 2 A C t 3 A B C E t 4 B C E t 5 A B C E A B C D E
f req(CE) = |cover(CE)| = 3. We denote it CE 3 . With s = 3, the itemset BC is frequent (f req(BC) = 3 ≥ 3). The itemset AD is infrequent (f req(AD) = 1 < 3). The closure of AB is closure(AB) = ABE that is because cover(AB) = {1, 3, 5}
and ABE belongs to all transactions whose index is in cover(AB).

Association Rules

An association rule is an implication of the form X → Y , where X and Y are itemsets such that X ∩ Y = ∅ and Y = ∅. X represents the body of the rule and Y represents its head. 

The frequency of a rule

X → Y is the frequency of the itemset X ∪ Y , that is, f req(X → Y ) = f req(X ∪ Y ). The confidence of a rule captures how often Y occurs in transactions containing X, that is, conf (X → Y ) = f req(X→Y ) f req(X) . Given a minimum confidence c, a rule X → Y is confident if conf (X → Y ) ≥ c. A rule X → Y is valid if it is frequent w.r.t
= 60%, B → C is a valid association rule because f req(B → C) = 3 ≥ s and conf (B → C) = f req(B→C) f req(B) = 75% ≥ c.

Frequent Itemsets

Mining frequent itemsets is the problem of listing the set of all itemsets with a frequency above a given threshold. Mining frequent itemsets is essential for many data mining tasks. It captures recurrent phenomena in a dataset. In this section we review some well known algorithms for mining frequent itemsets. We then define the problems of mining frequent itemsets with variable threshold. We study the negation of the problem of mining frequent itemsets, i.e. mining infrequent itemsets. Finally, we review the problem of mining frequent itemsets from incremental datasets.

Methods for Mining Frequent Itemsets

Apriori principal

The APRIORI algorithm was first introduced in [START_REF] Agrawal | [END_REF]) for mining association rules. Since then many APRIORI based algorithms were proposed [START_REF] Park | [END_REF], [START_REF] Ye | A parallel apriori algorithm for frequent itemsets mining[END_REF], [START_REF] Lin | Apriori-based frequent itemset mining algorithms on mapreduce[END_REF], [START_REF] Li | Parallel implementation of apriori algorithm based on mapreduce[END_REF]). The basic idea of APRIORI is to generate frequent itemsets of length k + 1 from those of length k. Before the generation APRIORI applies some pruning using the anti-monotony property of the frequency.

Proposition 1.1 (Anti-monotony property of the frequency). If the itemset X is infrequent, then any itemset Y such that Y X, is infrequent too.

Proposition 1.1 implies that if X is frequent then any itemset Y such that Y X, is frequent too. APRIORI starts with items (k = 1) and generates itemsets of length 2 and so on until no itemset is to be mined. Thanks to Proposition 1.1, infrequent items will not participate at generating the itemsets of length 2.

Let L k be the list of frequent itemsets of size k and C k the list of candidate itemsets of size k. At iteration k, APRIORI generates C k from L k-1 then prunes infrequent itemsets to create the list of frequent itemsets of size k, i.e. L k . This process is repeated until L k is empty. Finally, The set of frequent itemsets corresponds to the union of all lists, i.e. ∪ n k=0 L k . Example 1.3. In Figure 1.1 the first scan generates the candidates of length 1, i.e. C 1 . The item D is then pruned due its infrequency. As a result, D is not considered in further generations thanks to Proposition 1.1 (no superset of D can be frequent). This results the list of frequent 1-itemsets (L 1 ) from which itemsets of length 2 are generated. The same process is repeated for k = 2.

Despite the extensive pruning conducted by APRIORI, it has some limits. First, it is costly to handle a huge number of candidate sets specially in terms of memory. If the dataset has 10 4 items, one should generate more than 10 7 candidate itemsets for k = 2. Second, APRIORI requires a scan of the dataset for every iteration, which can be tedious.

FP-GROWTH algorithm

To get over APRIORI's limits, the FP-GROWTH algorithm was proposed in [START_REF] Han | Mining frequent patterns without candidate generation[END_REF]). FP-GROWTH claims that it is an algorithm for mining frequent itemsets without candidates generation. FP-GROWTH uses a compact data structure called FP-tree (Frequent Pattern tree) to mine frequent itemsets. The first step of FP-GROWTH is to create the FP-tree data structure. Then one can use the FP-tree to generate frequent itemsets. We illustrate both steps in the following example. Example 1.4. In Figure 1.2 we present the FP-tree of the dataset in Table 1.1 with s = 3. The item D is infrequent and hence not considered in the FP-tree creation. Usually the order of the items is considered according to their frequencies. As all frequent items have the same frequency, we consider the lexicographic order A, B, C, E .

Step 1: FP-tree creation: We start by mapping the transaction t 1 to the tree by constructing the path root → A 1 → B 1 → E 1 . The second transaction has the same prefix as the first one (A). In this case, the frequency count is incremented for A and a node is created for C (root → A 2 → C 1 ). The transaction t 3 has the prefix AB that was already created thanks to transaction t 1 . We simply increment the frequency counts for A and B and create the nodes C and E with a frequency count of 1 (root

→ A 3 → B 2 → C 1 → E 1 ).
The transaction t 4 has no common prefix with the already created paths, in this case we create the new path root → B 1 → C 1 → E 1 . The transaction t 5 overlaps with an already existing path. We simply increment the frequency count for every node in this path (root → A 4 → B 3 → C 2 → E 2 ). Finally, nodes with the same item are connected with dashed arrows.

Step 2: Mining frequent itemsets using the FP-tree: Using the FP-tree, one can generate frequent itemsets by exploring the tree from the bottom. That is, we start with nodes in an inverted order. For every node, a set of frequent itemsets is extracted. The union of these sets is the set of all frequent itemsets. From the node E one can generate the frequent itemsets ABE 3 , BCE 3 , BE 4 , CE 3 , AE 3 and E 4 . The frequency of ABE, for instance, is identified by summing-up the frequency counts of the two paths containing AB in the prefix of E (root

→ A 4 → B 3 → C 2 → E 2 and root → A 4 → B 3 → E 1 ), i.e. f req(ABE) = 1 + 2 = 3. The frequency of ACE is identified by the single path which contains AC in the prefix of E (root → A 4 → B 3 → C 2 → E 2 ), i.e. f req(ACE) = 2, i.e. ACE is infrequent.

Frequent Itemsets with Variable Threshold

Setting a single frequency threshold to a high value misses rare but important patterns. On the other hand, set it to a low value could generate many meaningless patterns. For instance, in a supermarket transaction data, buying a car is rare but very beneficial and patterns containing the item car can be of high importance. One can set the threshold to a low value to include this important event. However, this may include insignificant patterns like buying milk with gum.

To solve this problem, a number of strategies were proposed. One possible solution is to associate to every item a frequency threshold according to its nature. In this case an itemset is frequent if its frequency exceeds the minimum among thresholds of its items [START_REF] Liu | Mining association rules with multiple minimum supports[END_REF], [START_REF] Uday Kiran | Novel techniques to reduce search space in multiple minimum supports-based frequent pattern mining algorithms[END_REF]). [START_REF] Haglin | Discovery of multiple-level association rules from large databases[END_REF] associate to every level (itemsets with a given size) a frequency threshold and an itemset of size k is frequent if its frequency is no less than the threshold associated to the level k. In (Wang et al. [2000a]) frequency constraints are defined according to bins of items.

Infrequent Itemsets

Researchers have focused almost entirely on frequent itemset mining. However, infrequent itemsets can hold useful information in many real-world problems. Infrequent itemsets can give insights into rare phenomena. For instance, in the security field, normal behaviours are usually frequent, whereas suspicious behaviours are very rare. Infrequent itemsets can be used in several domains such as biology, medicine and security [START_REF] Lee | Data mining approaches for intrusion detection[END_REF], [START_REF] Masuda | A framework for dynamic evidence based medicine using data mining[END_REF][START_REF] Ronaldo | A method for refining knowledge rules using exceptions[END_REF]). For example, in biology an expert may be interested in identifying the causes of the cardiovascular diseases (CVD). A rare pattern like "vegetarians, CVD" leads to the possible information "vegetarians are at a low risk of having CVD".

Most proposed methods for mining infrequent itemsets are based on APRIORI (Koh and [START_REF] Koh | Finding sporadic rules using apriori-inverse[END_REF], [START_REF] Adda | Mining sequential patterns[END_REF], [START_REF] Troiano | A fast algorithm for mining rare itemsets[END_REF]). In [START_REF] Koh | Finding sporadic rules using apriori-inverse[END_REF]) the authors present APRIORI-Inverse which prunes the search space by discarding all itemsets above the maximum frequency threshold. AfRIM (APRIORI for Rare Itemset Mining) [START_REF] Adda | Mining sequential patterns[END_REF]) uses the pruning principle of APRIORI by exploiting the monotonicity property of the frequency. Rarity [START_REF] Troiano | A fast algorithm for mining rare itemsets[END_REF]) starts by the longest possible infrequent itemset in a dataset and moves down through the lattice until no infrequent itemset is to be mined.

Mining Frequent Itemsets from Incremental Datasets

Mining frequent itemsets from an incremental dataset is the problem of mining frequent itemsets when we allow an update of the original dataset [START_REF] Wai | Maintenance of discovered association rules in large databases: An incremental updating technique[END_REF], Ayad et al. [2001]). More formally, let D be the original dataset and L s the list of frequent itemsets in D w.r.t. s, the relative frequency threshold (s is in percentage). We denote by D the additional multiset of transactions. D ∪ D is then the updated dataset. This problem consists in finding the set of frequent itemsets in D ∪ D , i.e. L s , from L s .

In [START_REF] Wai | Maintenance of discovered association rules in large databases: An incremental updating technique[END_REF]) an algorithm called FUP (Fast UPdate) was proposed for mining frequent itemsets from incremental datasets. FUP takes as input the frequency threshold s, the original dataset D, D and L s and returns as output L s , the set of frequent itemsets in D ∪ D . FUP prunes losers (itemsets that are in L s but become infrequent after the update) and adds winners (those that are not in L s but become frequent after the update). The experiments showed the benefit of taking advantage of L s for mining L s comparing to APRIORI which mines L s directly from D ∪ D .

Condensed representations

The number of frequent/infrequent itemsets can be huge, making it hard even to print the result. Hence, we often reduce the problem of mining frequent or infrequent itemsets to the problem of mining the borders. The positive border is the set of frequent itemsets with only infrequent supersets, i.e. Maximal Frequent Itemsets (MFIs). The negative border is the set of infrequent itemsets with only frequent subsets, i.e. Minimal Infrequent Itemsets (MIIs). The subsets of the MFIs and the supersets of the MIIs represent the frequent and infrequent itemsets, respectively.

Given the set of MFIs/MIIs one can reproduce all the frequent/infrequent itemsets. But it requires several scans of the data to identify their frequencies. The set of closed/generator itemsets allows the reproduction of frequent or infrequent itemsets with their frequencies. Closed (generator) itemsets are those maximal (minimal) w.r.t. a given frequency. In other words, a closed itemset is an itemset that has no superset with the same frequency and a generator is an itemset that has no subset with the same frequency.

Equivalence classes include itemsets that have the same frequency with an inclusion relation between them. More formally, the itemsets X and Y belong to the same equivalence class iff closure(X) = closure(Y ). The maximal itemset within an equivalence class is closed and the minimal is generator. 

A B C D E t 2 B C t 3 B C D E t 4 A B C D t 5 A B C E t 6 B C D E b Item Price A 19 B 18 C 2 D 4 E 14

Maximal Frequent Itemsets

Maximal frequent itemsets represent the smallest set possible from which all frequent itemsets are reproduced. It is usually significantly smaller than the set of frequent itemsets. In [START_REF] Mackworth | Levelwise search and borders of theories in knowledge discovery[END_REF]) MFIs are referred to as positive border.

Definition 1.1 (Maximal Frequent Itemset (MFI)). An itemset is an MFI if it is frequent and all its proper supersets are infrequent.

Example 1.5. With s = 3, the dataset in Table 1.2a has MFIs = {ABC 3 , BCDE 3 }. The dataset is illustrated in Figure 1.3. The itemset ABC is frequent (f req(ABC) = 3 ≥ 3) and all its proper supersets are infrequent (f req(ABCE) = 2 < 3 and f req(ABCD) = 2 < 3).

Several techniques have been introduced for mining MFIs (Jr. [1998], [START_REF] Gouda | Efficiently mining maximal frequent itemsets[END_REF], [START_REF] Burdick | MAFIA: A maximal frequent itemset algorithm for transactional databases[END_REF], [START_REF] Uno | LCM ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets[END_REF]). Most of these techniques adapt frequent itemsets mining methods for mining only MFIs (APRIORI, FP-GROWTH, . . . ).

Using MFIs, one can reproduce all frequent itemsets. But, unfortunately it requires several dataset scans to identify the frequency of every itemset. The set of MFIs is a subset of the set of frequent closed itemsets, we now define the closed itemsets.

Closed Itemsets

Closed itemsets are those that do not have any superset with the same frequency. They represent the maximal itemsets within equivalence classes. Definition 1.2 (Closed itemset [START_REF] Pasquier | Discovering frequent closed itemsets for association rules[END_REF])). An itemset P is closed if and only if there does not exist any itemset Q P such that f req(Q) = f req(P ).

Example 1.6. The itemset BC is closed, but BE is not as f req(BE) = f req(BCE) = 4. The closed itemset of the equivalence class containing the itemsets D, CD, BD, BCD is the itemset BCD. The closure extension is used for mining closed itemsets in [START_REF] Wang | CLOSET+: searching for the best strategies for mining frequent closed itemsets[END_REF]). In fact, X cannot be closed if it has a closure extension Y .

Definition 1.3 (Closure extension). An non-empty itemset Y is a closure extension of X iff cover(X ∪ Y ) = cover(X).
Frequent closed itemsets are those closed and frequent in addition. Usually, frequent itemsets mining is reduced to mining the closed frequent itemsets [START_REF] Pasquier | Discovering frequent closed itemsets for association rules[END_REF]). Several methods for mining closed frequent itemsets have been introduced, and LCM (Linear time Closed itemset Miner) [START_REF] Uno | LCM: an efficient algorithm for enumerating frequent closed item sets[END_REF][START_REF] Uno | LCM ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets[END_REF][START_REF] Uno | Lcm ver. 3: collaboration of array, bitmap and prefix tree for frequent itemset mining[END_REF]) is the most popular for its efficiency.

Minimal Infrequent Itemsets

Minimal infrequent itemsets represent the smallest set possible from which all infrequent itemsets are reproduced. It is usually significantly smaller than the set of infrequent itemsets. In [START_REF] Mackworth | Levelwise search and borders of theories in knowledge discovery[END_REF]) MIIs are referred to as negative border.

Definition 1. 4 (Minimal Infrequent Itemset (MII)). An itemset is an MII if it is infrequent and all its proper subsets are frequent.

Example 1.7. With s = 3, the dataset in Table 1.2a has MIIs = {AD 2 , AE 2 }. AD is infrequent (f req(AD) = 2 < 3) and all its proper subsets are frequent (f req(A) = 3 ≥ 3 and f req(D) = 4 ≥ 3).

Several techniques have been introduced for mining MIIs (Szathmary et al. [2007b], [START_REF] Haglin | Discovery of multiple-level association rules from large databases[END_REF], [START_REF] Szathmary | [END_REF]). It is obvious that the set of MIIs is a subset of the set of generator itemsets. Most techniques take advantage of this to mine MIIs.

Generator Itemsets

An itemset is a generator if there does not exists any subset with the same frequency. Generators were first introduced in (Bastide et al. [2000b]) for efficiently mining frequent itemsets. In (Szathmary et al. [2007a]) frequent generators are used for mining the minimal non-redundant rules. For efficiently mining MIIs, generators are used in (Szathmary et al. [2007b]).

Definition 1. 5 (Generator (Bastide et al. [2000b])). A generator is an itemset P such that there does not exist any itemset Q P such that f req(Q) = f req(P ).

Example 1.8. The itemset DE is generator because f req(DE) = 3 and none of its subsets (∅, D, E) have the same frequency (f req(∅) = 6, f req(D) = f req(E) = 4). The itemset BE is not a generator because it has the same frequency as one of its subsets:

f req(BE) = f req(E) = 4.
An interesting propriety on generators is that all supersets of a non-generator are nongenerators too.

Proposition 1.2 (Bastide et al. [2000b]). Given two itemsets P and Q, if P is not a frequent generator and P Q, then Q is not a frequent generator either.

Proposition 1.2 holds on frequent generators but it could be generalized to all generators by simply setting the frequency threshold to 0. Proposition 1.2 is used in [START_REF] Szathmary | Efficient vertical mining of frequent closures and generators[END_REF]) for efficiently mining frequent generators, the algorithm is called TALKY-G.

The Dualization Problem

It is obvious that a duality exists between MFIs and MIIs. The problem of inferring MFIs from the set of MIIs and vice versa is called the dualization. In [START_REF] Mackworth | Levelwise search and borders of theories in knowledge discovery[END_REF], [START_REF] Boros | On maximal frequent and minimal infrequent sets in binary matrices[END_REF]) and (Nourine and Petit [2012]) this problem is reduced to computing the minimal transversals of a hypergraph [START_REF] Berge | Christian Bessiere. Arc-consistency and arc-consistency again[END_REF]). In fact, MIIs correspond to the minimal transversals of the hypergraph constructed by the complements of the set of MFIs.

Given a hypergraph H = (V, E), a transversal of H is a subset of V that has non empty intersection with every edge in E. A transversal is minimal if it has no subset which is a transversal. We denote by T r(H) the set of all minimal transversals of the hypergraph H. We know from (Mannila and Toivonen [1997]) that MIIs = T r(H), where H is a hypergaph constructed by the complements of the set of MFIs. On the other hand, MFIs are the complements of T r(H) where H represents the set of MIIs. Example 1.9. With s = 3, the dataset in Table 1.1 has MFIs = {ABE 3 , AC 3 , BCE 3 } and MIIs = {ABC 2 , ACE 2 , D 1 }. Let H = (V, E) be a hypergraph represented in Figure 1.4. It is constructed using the complements of the set of MFIs (e.g., the complement of ABE is CD) where V = {A, B, C, D, E} and E = {1, 2, 3}. It is clear that MIIs = T r(H) = {ABC, ACE, D}.

Association Rules

Mining association rules aims at discovering interesting regularities between items in large-scale datasets. Association rules (ARs) were originally introduced by [START_REF] Agrawal | [END_REF] for sales transactions and products. An association rule captures an information of the kind "if we have A and B, the chances to have C are high". Nowadays, a broad spectrum of application domains ask for this kind of information with a variety of datasets.

A common strategy used by many algorithms for mining association rules is to proceed in two steps. This is by first generating frequent itemsets then generate confident rules from the extracted frequent itemsets. The first step was presented in Section 1.3. Next, we present the common strategy used for the second step.

Rules Generation Step

Rules generation step extracts confident rules from frequent itemsets. Unlike the frequency, the confidence is neither anti-monotone nor monotone. A brute force strategy is practically infeasible. For a frequent itemset of size k there are about 2 k rules to test for confidence. Luckily, using the following proposition helps pruning the search space. 

Proposition 1.3. If a rule X → Y \ X is not confident, then any rule X → Y \ X such that X X, is not confident too. ABCE-> ø BCE -> A ACE -> B ABE -> C ABC -> E CE -> AB AE -> BC BC -> AE BE -> AC AC -> BE AB -> CE ø -> ABCE C -> ABE E -> ABC B -> ACE A -> BCE

Condensed Representations for Association Rules

In practice, the number of valid rules is often huge and can easily exceed the size of the dataset itself. In this case the user faces an enormous number of irrelevant rules. However, the user may also ask for some representative rules according to a condensed representation. In this section, we present some well known condensed representations for association rules.

Representative rules

Representative association Rules (RRs) (Kryszkiewicz [1998a]) is a smaller set of rules that covers all rules. It uses a rule cover operator to derive all association rules. We now define the rule cover operator. Definition 1.6 (Rule Cover Operator (Kryszkiewicz [1998a])). Given a rule r : X → Y , the set of rules covered by r, denoted C(r), is defined as

C(X → Y ) = {X ∪ Z → V | Z, V ⊆ Y, Z ∩ V = ∅, V = ∅}. Example 1.11. The rule cover of A → BCD is C(A → BCD) = {A → BCD, A → BC, A → BD, A → CD, A → B, A → C, A → D, AB → CD, AC → BD, AD → BC, AB → C, AC → B, AD → B, AB → D, AC → D, AD → C, ABC → D, ABD → C, ACD → B}.
Mining the set of RRs allows the reproduction of all rules using the rule cover operator. Let AR(s, c) be the set of association rules w.r.t. the thresholds s and c, and RR(s, c) the corresponding representative rules.

Definition 1.7 (Representative Rules (Kryszkiewicz [1998a])). The set of RRs w.r.t. the thresholds s and c, denoted

RR(s, c), is RR(s, c) = {r ∈ AR(s, c) | ∃r ∈ AR(s, c) s.t r = r, r ∈ C(r )}.
Example 1.12. In the dataset in Table 1

.1, RR(2, 50%) = {∅ → AC, ∅ → ABE, ∅ → BCE, A → BCE, B → ACE, C → ABE, E → ABC}.

Minimum body maximum head

A stronger version of representative rules consists in looking for rules with minimum body and maximum head (Kryszkiewicz [1998b]). A rule is Minimum body Maximum head Rule (MMR) if it is valid and it has the minimum possible body and the maximum possible head.

Definition 1.8 (Minimum body Maximum head Rule (Kryszkiewicz [1998b])). The set of MMRs w.r.t. the thresholds s and c, denoted

M M R(s, c), is M M R(s, c) = {r : X → Y ∈ AR(s, c) | ∃r : X → Y ∈ AR(s, c) s.t r = r, X ⊆ X, Y ⊇ Y }.
Example 1.13. In the dataset in Table 1

.1, M M R(2, 50%) = {∅ → AC, ∅ → ABE, ∅ → BCE, B → ACE, E → ABC}.
It is clear that the set of MMRs is a subset of the set of RRs. However, the set of MMRs does not allow the reproduction of all valid association rules as shown in the following example.

Example 1.14. From the previous example, the valid rule A → BCE cannot be reproduced using the rules in M M R(2, 50%).

Minimal non-redundant association rules (MNRs)

The most common notion of representative rules are the minimal non-redundant association rules (MNR) (Bastide et al. [2000a]). A rule is an MNR if there does not exist any other rule with the same frequency and the same confidence that is obtained by removing items from the body or adding items to the head. Definition 1.9 (Rule dominance). We say that a rule r : X → Y dominates another rule r : X → Y denoted by r r iff X ⊆ X , Y ⊇ Y , f req(r ) = f req(r), conf (r ) = conf (r), and r = r.

Example 1.15. In the dataset in Table 1.1, the rule

D → ABE dominates the rule ADE → B because D ⊆ ADE, ABE ⊇ B and f req(ADE → B) = f req(D → ABE) = 1 and conf (ADE → B) = conf (D → ABE) = 100%.
Definition 1.10 (Minimal Non-redundant Rule (MNR) (Bastide et al. [2000a])). Given a frequency threshold s and a confidence threshold c, a non-redundant association rule r is a valid rule where there does not exist any rule r such that r r .

Note that any valid rule is whether an MNR or it is dominated by an MNR.

Example 1.16. In the dataset in Table 1.1 with s = 1 and c = 100% the set of MNRs is

{E → B, D → ABE, CE → B, B → E, BC → E, AE → B, ACE → B, AB → E, ABC → E}.
There exists an interesting operational characterization of MNRs.

Proposition 1.4 (Bastide et al. [2000a]). An association rule X → Y is an MNR if and only if:

       f req(X → Y ) ≥ s ∧ conf (X → Y ) ≥ c (1) X is a generator (2) X ∪ Y is closed (3)
Note that we can find a different kind of non-redunbdant rules in [START_REF] Javeed | Mining non-redundant association rules[END_REF]) where we ask for rules of minimal body and minimal head.

Variants of Association Rules

In real word problems, the user may ask for a different kind of rules comparing to the classical definition. In the following, we review some variants of association rules.

Rare association rules

Rare association rules are those infrequent but confident. A rare rule captures items that rarely occur in the dataset but when they occur they occur together. To generate this kind of rules one should generate infrequent itemsets w.r.t. s then generate confident rules from those itemsets w.r.t. c.

The number of rare rules is usually huge making their enumeration infeasible. In [START_REF] Szathmary | Generating rare association rules using the minimal rare itemsets family[END_REF]) mining rare rules is reduced to mining a set of informative rules to remove redundancy. This set is called Minimal Infrequent Generator Rules (MIGRs). In addition of being infrequent and confident, MIGRs represent a smallest set from which all rare rules can be reproduced.

Negative association rules

Negative association rules consider the absence of items in a transaction dataset [START_REF] Wu | Efficient mining of both positive and negative association rules[END_REF]). Negative association rules are of the form ¬X → Y , X → ¬Y or ¬X → ¬Y , meaning that the absence of X implies the presence of Y , the presence of X implies the absence of Y and the absence of X implies the absence of Y , respectively.

Disjunctive association rules

A disjunctive association rule allows the disjunctive operator between itemsets [START_REF] Amit | Mining generalised disjunctive association rules[END_REF]). Hence, we can have rules of the form X → Y ∨ Z or X ∨ Y → Z. These kind of rules can express the following information for instance "People buying cake also buy coffee or tea".

Fuzzy association rules

Fuzzy association rules [START_REF] Chan | Mining fuzzy association rules in databases[END_REF]) are introduced to deal with quantitative attributes. Fuzzy rules are of the form "if X is A then Y is B" where X and Y are attributes and A and B are fuzzy sets of X and Y , respectively. Fuzzy sets represent qualitatively an interval of an attribute. For instance we can represent the age from 25 to 55 as middle or a salary from 4, 000 to 10, 000 as high. Then we can get the following kind of information "if age is middle then salary is high" which is more understandable for human.

Weighted association rules

In contrary to the traditional association rules mining, for weighted association rules the quantity of the item in a transaction is considered (Wang et al. [2000b]). For example, a customer may purchase 6 bottles of soda and 5 backs of snacks. In this case a weighted association rule could be soda [START_REF]coron.loria[END_REF]6] → snack [3,5] meaning that customers buying between 4 and 6 sodas are more likely to buy between 3 and 5 snacks. This can help a manager of a supermarket to propose a promotion such as "if a customer buys 8 bottles of soda, he can get two free bags of snacks".

Indirect association rules

An indirect association rule captures items that rarely occur together but frequently occur with other items [START_REF] Tan | Indirect association: Mining higher order dependencies in data[END_REF]). This can be used in some practical cases. For instance, in a supermarket transaction data, the items a and b may represent two products of competing companies A and B, respectively. The company B wants to convince people buying the product a to buy the product b instead. A way to identify these people is to look for those that rarely buy b, but may buy same items as people buying b. That is because both communities (people buying a and those buying b) are interested in the type of products produced by companies A and B.

ZART and ECLAT-Z for Mining Association Rules

ZART (Szathmary et al. [2007a]) and its closest brother ECLAT-Z [START_REF] Szathmary | Efficient vertical mining of frequent closures and generators[END_REF]) are known to be of high efficiency methods for mining association rules and MNRs.

ZART is a multifunctional itemset mining algorithm. Its basic idea is to find a link between frequent generators and their closures. For this, ZART starts by mining frequent itemsets using the counting inference as in (Bastide et al. [2000b]). The counting inference allows the inferring of the frequency of non-generator itemsets without scanning the data. In fact when an itemset P is not a generator its frequency equals to the frequency of one of its subsets. We know that the frequency of an itemset is never larger than the frequency of its subset. As a result the frequency of a non-generator is the minimum among the frequencies of its subsets, i.e. f req(P ) = min i∈P (f req(P \ {i})). ZART also identifies closed frequent itemsets. It starts by labelling all frequent itemsets with "closed", then the label value changes to "not closed" for frequent itemsets having a superset with the same frequency. Finally, ZART gathers frequent generators with their frequent closed itemset in a single equivalence class and represents the inclusion relation between equivalence classes with arrows (see Figure 1.6).

For mining association rules, ZART generates rules of the form X → Y where X is a frequent generator and X ∪ Y is a frequent closed itemset. Rules generated using generators and their proper closed itemsets are called Generic Basis with a confidence of 100%. Informative Basis are those generated using generators and closed itemsets of other equivalence classes. The set of MNRs is then the union of Generic Basis and Informative Basis rules.

Example 1.17. Figure 1.6 illustrates the result of ZART on the dataset in Table 1.1 with s = 2. The inclusion relation is represented by arrows between equivalence classes. The rule AB → E is Generic Basis, that is because it uses a closed itemset and a generator from ECLAT-Z is a hybrid way to reach the same result as ZART. ECLAT-Z is a wedding between a depth-first algorithm (e.g., FP-GROWTH) and a levelwise algorithm (e.g., APRI-ORI). ECLAT-Z uses a depth-first algorithm (i.e, ECLAT [START_REF] Javeed | Scalable algorithms for association mining[END_REF])) to mine frequent itemsets. Then it filters frequent closed and generator itemsets among frequent itemsets in a levelwise manner like ZART does.

Measures for Evaluating Association Rules

The frequency and the confidence are the most used measures for rules mining. However, in many real world problems they can be misleading. In this case more expressive measures are required. For instance, the rule {Soda} → {Jus} may be considered interesting for its high confidence of 80%. However, knowing that 90% of people are Jus drinkers decreases the probability of a person who drinks Soda to drink Jus from 90% to 80%. The lift can avoid these kind of misleadings. The lift is the fraction of the confidence on the relative frequency of the head. More formally

, Lif t(X → Y ) = conf (X→Y ) f req(Y ) |T |
. The lift represents the degree of correlation between X and

Y . If Lif t(X → Y ) = 1, X and Y are indepen- dent, if Lif t(X → Y ) < 1, X and Y are negatively correlated and if Lif t(X → Y ) > 1, X
and Y are positively correlated.

Example 1.18. The rule A → BE in Table 1.1 has a lift of Lif t(A → BE) = conf (A→BE) f req(BE) 5 = 0.75 0.8 = 0.94. The lift being less than 1 means that the presence of A does not increase the chance of having BE (the probability to have BE is reduced from 80% to 75%).

A number of measures can be found in the literature for evaluating rules. Some are symmetric and others are asymmetric. Given a rule X → Y symmetric measures are those that reason on the itemset X ∪ Y , items being in the body or in the head is not important for these measures, i.e. M easure(X → Y ) = M easure(X ∪ Y ). An example of symmetric measures is the frequency. Asymmetric measures, on the other hand, do take in consideration the location of X and Y and M easure(X → Y ) does not necessary equal M easure(Y → X). An example of asymmetric measures is the confidence.

Constrained Patterns

The interestingness of a pattern is evaluated through queries in inductive mining. The theory of a dataset is the set of interesting patterns, i.e. patterns that satisfy a given query [START_REF] Mackworth | Levelwise search and borders of theories in knowledge discovery[END_REF]). For instance, mining frequent itemsets of at least a given size can be represented using a query as follows. Mine all itemsets P such that f req(P ) ≥ s∧|P | ≥ lb, where s is the frequency threshold and lb is the lower-bound size of the itemset P .

The strategy followed by specialists to compute the set of satisfied patterns is highly influenced by the type of the query. The constraints can be monotone, anti-monotone, succinct [START_REF] Ng | Exploratory mining and pruning optimizations of constrained association rules[END_REF]), or loose anti-monotone [START_REF] Bonchi | Pushing tougher constraints in frequent pattern mining[END_REF]).

Designing a special strategy for every constraint can be tedious specially when combining traditional constraints with additional user's constraints. Such user's constraints are handled by data mining researchers, whenever possible, with (i) a pre-processing step reducing the dataset; (ii) a post-processing step to filter out the undesirable patterns; (iii) a filtering integrated in the specialized algorithm.

For mining association rules, [START_REF] Ng | Exploratory mining and pruning optimizations of constrained association rules[END_REF] propose an architecture that allows an interaction with the user. First, it generates itemsets according to the user's defined constraints/thresholds. If the user does not like the returned result it has the chance to change her constraints/thresholds. In this case, the process needs to be entirely revised to take in consideration the user's new constraints. Then, as soon as the user is satisfied, the process moves to the extraction of rules from the validated itemsets by, again, considering the user's constraints.

Next, we address the problem of mining condensed representation in the presence of additional queries (constraints).

Constrained Condensed Representations

As pointed out in [START_REF] Bonchi | On closed constrained frequent pattern mining[END_REF]), constraints can interfere with closeness (or maximality) when they are not monotone. Likewise, constraints can interfere with minimality when they are not anti-monotone. In fact constraints on maximal/minimal itemsets can be interpreted in two ways:

-I 1 : mine maximal/minimal itemsets that, in addition, satisfy the constraints.

-I 2 : mine itemsets that are maximal/minimal among those satisfying the constraints.

We are usually interested in mining itemsets w.r.t. the second interpretation.

For monotone constraints on the maximality (MFIs or closed itemsets) I 1 is equivalent to I 2 . Likewise, I 1 is equivalent to I 2 for anti-monotone constraints on the minimality (MIIs or generators).

Definition 1.11 (A monotone constraint). We call c a monotone constraint on itemsets if:

∀P, Q ∈ I | Q ⊇ P : c(P ) is true =⇒ c(Q) is true.
Definition 1.12 (An anti-monotone constraint). We call c a anti-monotone constraint on itemsets if:

∀P, Q ∈ I | Q ⊆ P : c(P ) is true =⇒ c(Q) is true.
Example 1.19. Figure 1.7 illustrates the set of itemsets from the dataset in Table 1.2a that satisfy an anti-monotone constraint 1.7(a) or a monotone constraint 1.7(b), in addition to the frequency (s = 3). The anti-monotone constraint c am ensures that i∈P price(i) ≤ 22 where P is an itemset. The monotone constraint c m ensures that i∈P price(i) ≥ 33. The set of frequent closed itemsets that in addition satisfy c am are only BC, whereas the set of frequent closed itemsets among those satisfying c am are AC, BC, BD, CD, CE and CDE. The set of frequent generators is the same for both interpretations (see 

Data Compression

An entirely different strategy of itemset mining is not to extract a condensed representation of the set of frequent itemsets, but instead to look for frequent itemsets that yield to a compression that minimizes the lossles of the dataset [START_REF] Siebes | Item sets that compress[END_REF]). The KRIMP method [START_REF] Vreeken | Krimp: mining itemsets that compress[END_REF]) uses MDL (Minimal Description Length) principle to find frequent itemsets that, together, describe the dataset best. For MDL the best set of patterns is the one that compresses the data best [START_REF] Régin | A filtering algorithm for constraints of difference in csps[END_REF], [START_REF] Grünwald | A tutorial introduction to the minimum description length principle[END_REF]). More formally, MDL selects the hypothesis H that minimizes L(H) + L(D | H), where L(H) is the length of H and L(D | H) is the length of the data D when encoding with H.

For the KRIMP method the hypothesis is a two-columns table called the Code Table (CT), where the first column contains an itemset and the second one contains its associated code. KRIMP then uses some heuristics to find an approximate solution, i.e. CT, that minimizes L(CT ) + L(D | CT ). 

Other Data Mining Problems

In this thesis, we focus on solving some itemset mining problems from datasets where transactions are sets of items. But it is worthy mentioning that other types of data exist in the literature. In this section we give a brief overview on some well known problems other than itemset mining problems.

Sequence Mining

In sequence mining the dimension of time is considered (Agrawal and Srikant [1995]). In this case, the order of items is important and repetition of symbols is allowed.

Let I be a set of items and T a set of transaction indices. A sequence S is an ordered list of items, i.e. S 1 . . . S k where k is the sequence length. A sequence database SD is a multiset of transactions t i , where t i is a sequence and i ∈ T . We say that a sequence

P = P 1 . . . P m is a sub-sequence of S = S 1 . . . S n , denoted by P S, if m ≤ n and if it exist integers 1 ≤ k 1 ≤ . . . ≤ k m ≤ n such that P i = S k i .
The cover of a sequence P , denoted by cover(P ), is the set of transaction indices i for which P t i , i.e. cover(P ) = {i ∈ T | P t i }. The frequency of a sequence is the cardinality of its cover, i.e. f req(P ) = |cover(P )|. Given a frequency threshold s the problem of mining sequence patterns consists in finding all sequence patterns P such that f req(P ) ≥ s. 

(BCB) = {1, 4}. Its frequency is f req(BCB) = |cover(BCB)| = 2. Given s = 3 the sequence AC is frequent (f req(AC) ≥ 3) but BCB is not.

Mining from Uncertain Data

In some real world data some attributes suffer from an uncertainty. Take symptoms in a medical dataset for instance, their presence come from subjective observations. In uncertain datasets the presence of an item in a trasaction is associated with a probability [START_REF] Chui | Mining frequent itemsets from uncertain data[END_REF]). The structure of the dataset is the same as in itemset mining. The only difference is the additional dimension, i.e. the probability p(i, t) of the presence of an item i in a transaction t. In uncertain datasets, the frequency of an itemset is defined as follows.

Given a transaction dataset, the existential probability of an itemset P in a transaction t is p(P, t) = i∈P p(i, t). The frequency of the itemset P is then f req(P ) = t i p(P, t i ).

Table 1.4 -An uncertain dataset with 5 items and 5 transactions trans.

Items

t 1 A (0.8) B (0.9) D (1) E (0.5) t 2 A (0.6) C (0.3) t 3 A (0.2) B (0.4) C (0.6) E (0.5) t 4 B (0.8) C (0.7) E (0.9) t 5 A (0.9) B (0.6) C (0.6) E (0.3)
Example 1.21. In Table 1.4 we present an uncertain dataset with 5 transactions and 5 items.

The probability of presence of item A in transaction t 1 is p(A, t 1 ) = 0.8. the existential probability of AB in t 1 is p(AB, t 1 ) = 0.8 × 0.9 = 0.72. Its frequency is f req(AB) = 0.72 + 0.08 + 0.54 = 1.34.

Conclusion

In this chapter we have presented some background in itemset mining. We have focused specially on presenting (i) existing methods for mining frequent itemsets and its condensed representations (ii) existing methods for mining association rules and its variants. We have shown that specialized algorithms suffer from the lack of generality when it comes to mining patterns with additional constraints.

In this thesis we propose to solve some of the presented problems using constraint programming. Constraint programming allows a generic modeling of various problems. The user in this case only needs to extend the model to take in consideration her additional constraints and no revision of the solving process is required. In the next chapter we present some background in constraint programming.

II Chapter 2: Constraint Programming

"Constraint Programming represents one of the closest approaches computer science has yet made to the Holy Grail of programming: the user states the problem, the computer solves it." [Eugene Freuder]

Introduction

Constraint Programming (CP) is a powerful declarative paradigm. The user specifies the problem and the computer solves it. Constraint programming is the art of writing problems as models and solving them by finding solutions. Constraint programming dates back in the sixties, when [START_REF] Golomb | Backtrack programming[END_REF] have introduced "Backtracking Programming".

In this chapter we give a brief background on constraint programming. We start with some notations in Section 2.2. We describe the solving process conducted by constraint solvers in Section 2.3. Global constraints are defined in Section 2.4. Finally, we define the reified constraints in Section 2. 5. Further details such as constraint optimisation problems, soft constraints, numeric CSPs, dynamic CSPs, can be found in the handbook of constraint programming [START_REF] Meseguer | Soft constraints[END_REF]).

Notations and Definitions

A CP model is a general parameterized description of a class of problems. An instance of a CP model is associated with a constraint network.

A constraint network, N = (X, D, C), is specified by:

• a finite set of variables X = {x 1 , . . . , x n }. • a finite set of domains D = {dom(x 1 ), . . . , dom(x n )}, where dom(x i ) is the finite set of possible values for x i . • a finite set of constraints C = {c 1 , . . . , c m } on X. A constraint c j ∈ C is a relation
that specifies the allowed combinations of values for its variables X(c j ). |X(c j )| is called the arity of c j . c j is called a binary constraint if |X(c j )| = 2. A constraint network is called a binary network if for all c i ∈ C, c i is a binary constraint. An assignment (aka, instantiation) on a set Y ⊆ X of variables, denoted by A[Y ], is a mapping from variables in Y to values, and a valid assignment is an assignment where all values belong to the domain of their variables. A solution is an assignment on X, A[X], satisfying all constraints.

The Constraint Satisfaction Problem (CSP) consists in deciding whether an instance of a CP model has solutions (or in finding a solution).

Example 2.1. Consider the following instance of a CP model.

X = {x 1 , x 2 , x 3 } D = {dom(x 1 ), dom(x 2 ), dom(x 3 )} where, dom(x 1 ) = {1, 2}, dom(x 2 ) = {0, 1, 2, 3}, dom(x 3 ) = {2, 3} C = {c 1 (x 1 , x 2 ), c 2 (x 1 , x 2 , x 3 )} where, c 1 (x 1 , x 2 ) : x 1 > x 2 c 2 (x 1 , x 2 , x 3 ) : x 1 + x 2 = x 3
This CSP admits the two solutions (x 1 = 2, x 2 = 0, x 3 = 2) and (x 1 = 2, x 2 = 1, x 3 = 3).

Constraint Programming Solver

A trivial way to solve a CSP is to test every assignment of X for satisfiability. Intuitively, this strategy can be infeasible in practice. Thus, the solving process in constraint programming relies on two strategies, inference and search. The inference eliminates values from D, the set of domains, by constraint propagation. The search, on the other hand, explores values in D. Constraint solvers use backtracking search to explore the search space of partial assignments. At each assignment, constraint propagation algorithms prune the search space by enforcing local consistency properties such as domain consistency.

Backtracking

The backtracking algorithm explores the domains of variables by incrementally selecting variables and instantiate them. At the root the assignment is empty, then variables are instantiated one by one until A [var] is not valid then it backtracks or until var = X, i.e. the assignment is complete. More formally, a node nd in a search tree is an assignment {x 1 = v 1 , . . . , x i = v i }. nd is extended by selecting a variable x j and branch on it with a selected value v k from dom(x j ). In this case, nd is updated to nd ∪ {x j = v k }. The variable selection strategy can be static or dynamic. For the static strategy, the order of variable selection is defined before the resolution starts (e.g., lexicographic order). For the dynamic strategy the order of the variable selection is defined during the resolution (e.g., select the variable with the smallest domain).

For the value selection strategy usually values of a given domain are selected in an increasing/decreasing order.

To make the backtracking efficient we can use:

• Look back strategy which learns from fails to avoid them in further search [START_REF] Dechter | Enhancement schemes for constraint processing: Backjumping, learning, and cutset decomposition[END_REF]). • Look ahead strategy which anticipates fails by removing inconsistent values with an already instantiated variable x i = v j . This method is called Forward Checking and was first introduced under the name preclusion in [START_REF] Golomb | Backtrack programming[END_REF]). To make the solving process even stronger, constraint propagation eliminates inconsistent values by enforcing some consistency properties such as domain consistency (aka, arc consistency).

Propagation and Consistencies

Constraint propagation is a milestone in CP solvers. It is referred to with several names in the literature such as filtering algorithms. Constraint propagation reduces the search space by removing values from domains of some variables because a subset of constraints cannot be satisfied otherwise. For instance, consider the constraint c : x 1 + x 2 ≤ 5, where domains of x 1 and x 2 are integers from 1 to 10. Clearly, the constraint c forbids values from 5 to 10 from both variables.

We say that a value v in dom(x i ) has a support on the constraint c if there exists an assignment A[X(c)] with x i = v such that c is satisfied. We now define a domain consistent constraint.

Definition 2.1 (Domain Consistency (DC)). A constraint c on X(c) is domain consistent, if and only if, for every x i ∈ X(c) and every v j ∈ dom(x i ), v j has a support on c. Domain consistency helps filtering forbidden (i.e., inconsistent) values by removing values that have no support on the constraint. We say that a filtering algorithm A (or a propagator) ensures domain consistency on a constraint c if all values with no support on c have been removed by A.

Example 2.3. Consider the constraint c(x 1 , x 2 , x 3 ) : x 1 + x 2 = x 3 with dom(x 1 ) = {1, 2, 4}, dom(x 2 ) = {2, 3, 5} and dom(x 3 ) = {3, 8, 9}. Using a domain consistency filtering, we get dom(x 1 ) = {1, 4}, dom(x 2 ) = {2, 5} and dom(x 3 ) = {3, 9}. For instance, value 2 in dom(x 1 ) is removed because summing-up 2 with any value in dom(x 2 ) is not equal to any value in dom(x 3 ).

Given a constraint network N = (X, D, C), if all constraints in C are domain consistent, we say that the network N is domain consistent, but this does not mean that N has solutions. We show this in the following example.

Example 2.4. Consider the following constraint network, N = (X, D, C).

X = {x 1 , x 2 , x 3 } D = {dom(x 1 ), dom(x 2 ), dom(x 3 )} where, dom(x 1 ) = {1, 2}, dom(x 2 ) = {1, 2}, dom(x 3 ) = {1, 2} C = {c 1 (x 1 , x 2 ), c 2 (x 1 , x 3 ), c 3 (x 2 , x 3 )} where, c 1 (x 1 , x 2 ) : x 1 = x 2 c 2 (x 1 , x 2 ) : x 1 = x 3 c 3 (x 2 , x 3 ) : x 2 = x 3
N is domain consistent, the constraints c 1 , c 2 and c 3 are domain consistent. Take the constraint c 1 : x 1 = x 2 for instance, values 1 and 2 in dom(x 1 ) have supports in dom(x 2 ), i.e. 2 and 1, respectively. But N has no solution.

AC3 (AC for Arc Consistency) is the most well known algorithm for ensuring domain consistency on a network (Mackworth [1977a]). It was originally proposed for binary networks, then extended for arbitrary networks, i.e. GAC3 (G for Generalized) (Mackworth [1977b]). GAC3 tests if a value v in dom(x i ) has a support, if not it can be removed. To avoid useless tests, GAC3 uses a list where it stores only candidate pairs (x i , c j ). GAC3 has a time complexity of O(er 3 d r+1 ) and a space complexity of O(er) where e = |C|, r is the greatest arity among constraints in C and d is the cardinality of the largest domain.

We find in the literature many attempts to improve the complexity of GAC3. GAC4 reduces the time complexity to O(erd r ) by storing additional information leading to a space complexity in O(erd r ) [START_REF] Mohr | Arc and path consistency revisited[END_REF]). Bessiere [1994] proposes GAC6. GAC6 is a compromise between GAC3 and GAC4. It keeps the worst-case time complexity of GAC4, but it stops the search once a support is found as in GAC3. AC2001 improves the average complexity (Bessiere and [START_REF] Berge | Christian Bessiere. Arc-consistency and arc-consistency again[END_REF]). Domain consistency is the strongest and most used consistency for achieving an efficient filtering. A weak kind of consisitency is the bound consistency (Lhomme [1993]). Bound consistency is usually used in CSPs with continuous domains. Other consistencies can be found in the literature [START_REF] Debruyne | Domain filtering consistencies[END_REF]).

Finally, constraint solvers combine the backtracking with constraint propagation techniques such as GAC3 to reach a good performance in solving problems.

Global Constraints

Global constraints are constraints defined by a relation on a non-fixed number of variables. These constraints allow the solver to better capture the structure of the problem. Examples of global constraints are ALLDIFFERENT, REGULAR, AMONG, etc. For instance, the constraint ALLDIFFERENT(x 1 , . . . , x n ) ensures that the variables from x 1 to x n should take different values where n can be any number in N * \ {1}.

Example 2.5. The CSP in Example 2.4 can be represented using the global constraint ALLD-IFFERENT. ALLDIFFERENT(x 1 , x 2 , x 3 ) ensures that x 1 , x 2 and x 3 should take different values. ALLDIFFERENT captures better the structure of the problem and detects that the problem is inconsistent and no solution exists.

The generic DC algorithms such as GAC3 and GAC6 do not provide global constraints with an efficient filtering. However, when the decomposition of a global constraint is Berge-acyclic (Beeri et al. [1983]) (such as REGULAR) it preserves DC. On such constraints, the generic algorithms perform well and are optimal. For other global constraints, it is not possible to efficiently propagate them by generic DC algorithms because these algorithms are exponential in the number of variables of the constraint. Fortunately, for many global constraints (such as ALLDIFFERENT), dedicated propagation algorithms can be designed to achieve DC in time polynomial in the size of the input, that is, the domains and the required extra parameters.

For ALLDIFFERENT, Régin [1994] proposes a polynomial filtering algorithm ensuring DC. It uses the bipartite graph (the graph that links variables to their domains) to detect inconsistency. A matching in a graph is a subset of edges with no vertex in common. If the largest possible matching contains every vertex in X(c) then the constraint is consistent and at least a solution exists.

Reified Constraints

In constraint programming, it exists a type of meta-constraint that associate a constraint with a truth variable to represent its satisfiability. A reified constraint b ⇐⇒ c associates a Boolean variable b to the truth value of the constraint c (Apt [2003]). The variable b is set to true (b = 1) if the constraint c is satisfied, to f alse (b = 0) otherwise.

The filtering conducted by such constraint is as follows:

• If the constraint c is satisfied then b = 1.

• If the constraint c is violated then b = 0.

• If b = 1 then the constraint c should be satisfied.

• If b = 0 then the constraint c should be violated. Reified constraints are used to model several problems. It can be used to express that a number of constraints should be satisfied.

Example 2.6. Consider the following model with reified constraints.

b 1 ⇐⇒ c 1 (1) b 2 ⇐⇒ c 2 (2) b 1 + b 2 ≥ 1 (3)
This model expresses that at least a constraint (c 1 or c 2 ) should be satisfied. Constraints (1) and ( 2) are reified constraints and constraint (3) ensures that at least b 1 or b 2 is set to 1.

Conclusion

In this chapter we have presented some background in constraint programming, We have shown how constraint solvers proceed in solving problems using backtracking and constraint propagation. We also have presented some type of constraints such as global constraints and reified constraints.

Being expressive and flexible, constraint programming is used to solve data mining problems. In the next chapter, we review some existing declarative approaches in itemset mining.

III

Chapter 3: Declarative Itemset Mining

Introduction

In a recent line of work, declarative1 approaches are used to solve various data mining problems. We can find declarative approaches for itemset mining [START_REF] De Raedt | Constraint programming for itemset mining[END_REF], [START_REF] Kemmar | Constraint programming for mining n-ary patterns[END_REF], [START_REF] Boudane | A sat-based approach for mining association rules[END_REF], [START_REF] Lazaar | A global constraint for closed frequent pattern mining[END_REF], [START_REF] Schaus | Coversize: A global constraint for frequency-based itemset mining[END_REF], Bessiere et al. [2018]), for sequence mining [START_REF] Coquery | A sat-based approach for discovering frequent, closed and maximal patterns in a sequence[END_REF], [START_REF] Kemmar | PREFIX-PROJECTION global constraint for sequential pattern mining[END_REF], Aoga et al.

[2017]), for graph mining [START_REF] Kemmar | Constraint programming for mining n-ary patterns[END_REF]), for mining from uncertain datasets [START_REF] Ouled Dlala | A sat-based approach for enumerating interesting patterns from uncertain data[END_REF]), for clustering [START_REF] Dao | Constrained clustering by constraint programming[END_REF], Chabert and Solnon [2017]). In terms of CPU time, declarative methods have not yet competed with ad hoc algorithms. However, their flexibility allows the modeling of complex user queries without revising the solving process.

In this chapter we review existing declarative approaches for itemset mining problems. We start by defining some notations in Section 3.2. We introduce the basic constraint programming model for itemset mining in Section 3.3. The global constraints CLOSEDPAT-TERN and COVERSIZE, constraints that are used in our models, are presented in Sections 3.4 and 3.5, respectively. Finally, we review some SAT models in itemset mining in Section 3.6.

Notations and Definitions

Most declarative methods use Boolean variables for representing patterns, where x i represents the presence of the item i ∈ I in the pattern. x is a vector of Boolean variables, (x 1 , . . . , x |I| ) to represent the solution.

Given a vector of Boolean variables x, we use the following notations: -

x -1 (1) = {i ∈ I | dom(x i ) = {1}}. -x -1 (0) = {i ∈ I | dom(x i ) = {0}}. -x -1 ( * ) = {i ∈ I | dom(x i ) = {0, 1}}. Note that x -1 (1) ∪ x -1 (0) ∪ x -1 ( * ) = I and x -1 (1) ∩ x -1 (0) ∩ x -1 ( * ) = ∅.
Example 3.1. Given a dataset with 4 items, i.e. I = {A, B, C, D}, the instantiation x = [1, 0, 1, 0/1] corresponds to the sets x -1 (1) = {A, C}, x -1 (0) = {B} and x -1 ( * ) = {D}.

Given an integer variable p, we use the following notations: -U B(p) is the upper-bound value of p.

-LB(p) is the lower-bound value of p.

Example 3.2. Given an integer variable p with dom(p) = {1, 2, 3}, its lower-bound is 1, i.e. LB(p) = 1 and its upper-bound is 3, i.e. U B(p) = 3.

Basic Constraint Programming Model for Itemset Mining

The first constraint programming model for itemset mining was intoduced in (Raedt et al. [2008]). It is based on reified constraints to connect item variables to transaction variables.

Variables. For this model, a Boolean variable x i is associated to every item i to represent the presence of the item i in the returned itemset. A transaction t j is associated with a Boolean variable y j to represent if the returned itemset is in the transaction t j or not.

Constraints. We now present the constraints. We use D ji to represent the presence of the item i in the transaction t j (see the binary representation of the dataset in Table 1.1).

∀j ∈ T : y

j = 1 ↔ i∈I x i (1 -D ji ) = 0 (1)
The constraint (1) encodes the cover of an itemset. It ensures that the variable y j is set to 0 if the itemset x -1 (1) is absent from t j . That is, if only an item i ∈ x -1 (1) is absent from t j then x i (1 -D ji ) = 1 and the constraint

i∈I x i (1 -D ji ) = 0 is violated (i.e., y j = 0). j∈T y j ≥ s (2)
The constraint (2) ensures that the itemset x -1 (1) is frequent w.r.t. the threshold s.

The model that combines the constraints (1) and (2) allows the mining of all frequent itemsets. This model can be extended with other constraints to express other properties. The closeness, for instance, can be encoded using the following constraint. ∀i ∈ I :

x i = 1 ↔ j∈T y j (1 -D ji ) = 0
(3)

The constraint (3) ensures that the itemset x -1 (1) is closed. If the item i is present in all transactions t j such that y j = 1 then x i is set to one.

The maximality is encoded with the following constraint. ∀i ∈ I :

x i = 1 ↔ j∈T y j D ji ≥ s (4)
The constraint (4) ensures that the itemset x -1 (1) is maximal. If the itemset x -1 (1) ∪ {i} is frequent we include item i in the itemset (i.e., x i = 1).

This model has some limits in terms of memory and scalability. It requires an important number of variables/constraints to encode only the frequency, i.e. (n + m) variables and (n + m) constraints where n is the number of items and m is the number of transactions. On huge datasets the process of mining frequent itemsets became infeasible. Take for instance the dataset Retail2 which has 16, 470 items and 88, 162 transactions, it requires more than 100, 000 variables and 100, 000 constraints to encode the problem of mining frequent itemsets using the reified constraints. To ensure the closeness 16, 470 additional constraints are required and 16, 470 more constraints are required to ensure the maximality. That is why it may be interesting to capture some properties using global constraints.

The Global Constraint CLOSEDPATTERN

The first global constraint proposed for itemset mining, CLOSEDPATTERN, was introduced in [START_REF] Lazaar | A global constraint for closed frequent pattern mining[END_REF]) for mining closed frequent itemsets. A global constraint provides a better view of the structure of the problem to the solver. [START_REF] Lazaar | A global constraint for closed frequent pattern mining[END_REF] propose a complete filtering algorithm for CLOSEDPATTERN. Definition 3.1 (CLOSEDPATTERN). Let x be a vector of Boolean variables, s a support threshold and D a dataset. The global constraint CLOSEDPATTERN D,s (x) holds if and only if x -1 (1) is a closed frequent itemset w.r.t. the threshold s.

Example 3.3. On the dataset in Table 1.1 and with s = 3, given the instantiation x = [1, 0, 0, 1, 0] we have x -1 (1) = {A, D} and x -1 (0) = {B, C, E}. The constraint CLOSEDPATTERN D,3 (x) is not satisfied (f req(AD) = 1 < 3). With x = [0, 1, 0, 0, 1] the constraint CLOSEDPATTERN D,3 (x) is satisfied, because x -1 (1), i.e. BE is frequent and closed.

Propagator of CLOSEDPATTERN

In the following, we present the filtering rules of CLOSEDPATTERN. The first rule filters 0 from dom(x i ) if {i} is a closure extension of x -1 (1) (see Definition 1.3). The second rule filters 1 from dom(x i ) if the itemset x -1 (1) ∪ {i} is infrequent w.r.t. s. Finally, the third rule filters 1 from dom(x i ) if cover(x -1 (1) ∪ {i}) is a subset of cover(x -1 (1) ∪ {j}) where j is an absent item, i.e. j ∈ x -1 (0).

1. If |cover(x -1 (1) ∪ {i})| = |cover(x -1 (1))| ⇒ 0 ∈ dom(x i ). 2. If |cover(x -1 (1) ∪ {i})| < s ⇒ 1 ∈ dom(x i ). 3. If cover(x -1 (1) ∪ {i}) ⊆ cover(x -1 (1) ∪ {j}) ∧ j ∈ x -1 (0) ⇒ 1 ∈ dom(x i ).
Example 3.4. On the dataset in Table 1.1 and with s = 2, consider the partial assignment x -1 (1) = {B}, x -1 (0) = {A} and x -1 ( * ) = {C, D, E}. Thanks to rule 1, 0 is filtered from dom(x E ), because |cover(BE)| = |cover(B)|. Then, the rule 2 filters 1 from dom(x D ) because f req(BDE) = 1 < 2. The value 1 can be filtered from dom(x D ) by the rule 3 also. That is because cover(BDE) ⊆ cover(ABE) and A is in x -1 (0).

Complexity. The algorithm implementing the three filtering rules of CLOSEDPATTERN has a time complexity in O(n 2 × m) and a space complexity in O(n × m) where n is the number of items and m is the number of transactions.

It is proven in [START_REF] Lazaar | A global constraint for closed frequent pattern mining[END_REF]) that the filtering rules 1, 2 and 3 enforce domain consistency on the constraint CLOSEDPATTERN. [START_REF] Lazaar | A global constraint for closed frequent pattern mining[END_REF] propose a weak propagator for CLOSEDPATTERN by omitting the expensive quadratic filtering rule, i.e. rule 3. Using this propagator speeds-up the solving process in some cases despite its incompleteness.

The Global Constraint COVERSIZE

The global constraint COVERSIZE is introduced for computing the exact size of the cover of an itemset [START_REF] Schaus | Coversize: A global constraint for frequency-based itemset mining[END_REF]). This offers more flexibility in modeling problems. One can mine frequent (infrequent) itemsets by forcing the size of the cover to be greater or equal (less than) a frequency threshold. Example 3.5. On the dataset in Table 1.1, given the instantiation x = [0, 0, 1, 0, 1] and p = 3 the constraint COVERSIZE D (x, p) is satisfied because the frequency of x -1 (1), i.e. CE equals p, i.e. 3. The instantiation x = [1, 1, 1, 0, 0] and p = 3, on the other hand, does not satisfy COVERSIZE because f req(ABC) = 2 = p. Domain consistency on the constraint COVERSIZE is proven to be NP-hard [START_REF] Schaus | Coversize: A global constraint for frequency-based itemset mining[END_REF]). As a result, the proposed propagator is not complete. We present next the propagator of the constraint COVERSIZE.

Propagator of COVERSIZE

In the following, we present the filtering rules of COVERSIZE. The first two rules update the bounds of p. The third rule filters 1 from dom(x i ) if including the item i would result a cover size that is bellow LB(p). Finally, the fourth rule filters 0 from dom(x i ) if excluding the item i would result the increasing of U B(p

) knowing that U B(p) = |cover(x -1 (1) ∪ x -1 ( * ))|. 1. If |cover(x -1 (1))| < U B(p) ⇒ U B(p) ≤ |cover(x -1 (1))|. 2. If |cover(x -1 (1) ∪ x -1 ( * ))| > LB(p) ⇒ LB(p) ≥ |cover(x -1 (1) ∪ x -1 ( * ))|. 3. If |cover(x -1 (1) ∪ {i})| < LB(p) ⇒ 1 ∈ dom(x i ). 4. If U B(p) = |cover(x -1 (1) ∪ x -1 ( * ))| ∧ |cover(x -1 (1) ∪ x -1 ( * ))| < |cover(x -1 (1) ∪ x -1 ( * ) \ {i})| ⇒ 0 ∈ dom(x i ).
Example 3.6. On the dataset in Table 1.1, consider the partial assignment To enforce the frequency one can simply add the constraint p ≥ s and to enforce the infrequency one can add the constraint p < s. The propagator of COVERSIZE enforces DC on the frequency, but it does not on the infrequency. We can show this in an example. No filtering is conducted in this node, but value 0 for dom(x C ) is not domain consistent because with x C = 0 we have the complete instantiation x -1 (1) = {B}, x -1 (0) = {A, C} and f req(B) = 3 ∈ dom(p).

x -1 (1) = {B}, x -1 (0) = {D}
To efficiently compute the cover of an itemset, a new data-structure was introduced in [START_REF] Schaus | Coversize: A global constraint for frequency-based itemset mining[END_REF]) called ReversibleSparseBitset. ReversibleSparseBitset allows the ignoring of zero words in the cover computation.

As opposed to CLOSEDPATTERN, the closeness is encoded in [START_REF] Schaus | Coversize: A global constraint for frequency-based itemset mining[END_REF]) with an independent global constraint, COVERCLOSURE. COVERCLOSURE D (x) ensures that the itemset x -1 (1) is closed and not necessary frequent. It uses the same filtering rules as in [START_REF] Lazaar | A global constraint for closed frequent pattern mining[END_REF]) (rules 1 and 3).

SAT for Itemset Mining

A SAT problem (for SATisfiability) consists in deciding whether a formula in Conjunctive Normal Form (CNF) admits a solution or not. A formula is in CNF if it is written as a conjunction (∧) of clauses, where a clause is a disjunction (∨) of Boolean variables (aka, literals).

SAT is extensively used in itemset mining. It is used for detecting symmetries (Jabbour et al. [2013a]), for top-k itemsets mining (Jabbour et al. [2013b]), for association rules mining [START_REF] Boudane | A sat-based approach for mining association rules[END_REF][START_REF] Boudane | Enumerating non-redundant association rules using satisfiability[END_REF]), for closed frequent itemets mining (Dlala et al. [2018]) and for maximal frequent itemsets mining [START_REF] Jabbour | On maximal frequent itemsets mining with constraints[END_REF]). [START_REF] Jabbour | On maximal frequent itemsets mining with constraints[END_REF] propose a SAT approach for mining MFIs. [START_REF] Jabbour | On maximal frequent itemsets mining with constraints[END_REF] extend a model for mining closed itemsets to mine MFIs (as an MFI is a closed itemset).

SAT for Mining Maximal Frequent Itemsets

Variables. To model the SAT approach for mining MFIs two vectors of literals are required, x i to represent the presence of the item i in the itemset, and p j to represent the presence of the itemset x -1 (1) in the transaction t j .

Constraints. We now present the set of constraints (aka, formulas).

j∈T (¬p j ↔ i∈I\t j x i ) (1)
The formula (1) encodes the cover of x -1 (1). It ensures that p j is set to false if it exists at least an item in x -1 (1) that is not in t j .

j∈T p i ≥ s (2)
The constraint (2) ensures that x -1 (1) is frequent w.r.t. s. The constraint (2) corresponds to a cardinality constraint. To handle this kind of constraints in SAT, a transformation to CNF is required. In the literature, several researchers have addressed this problem [START_REF] Joost | A linear-time transformation of linear inequalities into conjunctive normal form[END_REF], Asín et al. [2011], [START_REF] Jabbour | [END_REF]). The challenge is to achieve a good size of the CNF formula and to keep a good propagation on the constraint after transformation.

i∈I ((

i ∈t j p j ) ∨ x i ) (3) 
The formula (3) ensures that the itemset x -1 (1) is closed. It encodes the fact that if cover(x -1 (1)) = cover(x -1 (1) ∪ {i}) then the item i should be in x -1 (1) (i.e., x i should be set to true).

To capture the maximality, one can add the following constraint.

i∈I ¬x i → ( j∈T |i∈t j y j < s) (4)
The constraint (4) is a cardinality constraint and needs to be transformed to CNF. This transformation can generate a huge number of clauses making the mining of MFIs infeasible. That is why [START_REF] Jabbour | On maximal frequent itemsets mining with constraints[END_REF] use blocking clauses instead. Blocking clauses are clauses added during the search to block the solver from going further and lead it to another level of the search tree.

The solver starts by setting item variables to true whenever x -1 (1) is frequent. Every time a solution is found, the blocking clause ( 5) is added to find MFIs that include other items comparing to the previous solution.

i∈I\x -1 (1)

x i (5) Note that this approach is sensitive to the value selection strategy. That is, any changes in the strategy would interfere with the soundness of the model. As a result, this approach cannot take additional constraints into consideration during the resolution. [START_REF] Boudane | A sat-based approach for mining association rules[END_REF] propose a SAT-CP hybrid approach for mining association rules. It encodes some constraints in CNF and uses constraint propagation to handle cardinality constraints. To show its flexibility, this SAT-CP model is extended to capture indirect rules. Using the same model, [START_REF] Boudane | Enumerating non-redundant association rules using satisfiability[END_REF] capture the set of MNRs. Next, we present the SAT-CP model for mining association rules.

SAT for Association Rules

Variables. To model the SAT-CP approach for mining association rules four vectors of literals are required: x i to represent the presence of the item i in the body; y i to represent the presence of the item i in the head; p j to represent the presence of the itemset x -1 (1) in the transaction t j ; and q j to represent the presence of the itemset x -1 (1) ∪ y -1 (1) in the transaction t j .

Constraints. We now present the set of constraints (aka, formulas).

( i∈I x i ) ∧ ( i∈I y i ) (1)
The formula (1) ensures that x -1 (1) and y -1 (1) are not empty (note that the SAT approach does not allow the body to be empty).

i∈I

(¬x i ∨ ¬y i ) (2)
The formula (2) ensures that

x -1 (1) ∩ y -1 (1) = ∅. j∈T (¬p j ↔ i∈I\t j x i ) (3) 
The formula (3) is similar to formula (1) from Section 3.6.1. It encodes the cover of x -1 (1).

j∈T (¬q j ↔ ¬p j ∨ (

i∈I\t j y i )) (4) 
The formula (4) encodes the cover of x -1 (1) ∪ y -1 (1). It ensures that q j is set to false if p j is set to false (x -1 (1) absent from t j ) or at least an item in y -1 (1) is absent from t j .

j∈T q j ≥ s (5)

The constraint ( 5) is similar to formula (2) from Section 3.6.1. It ensures that x -1 (1)∪y -1 (1) is frequent w.r.t. s.

j∈T q j j∈T p j ≥ c (6)
Finally, the constraint (6) ensures that the rule x -1 (1) → y -1 (1) is confident w.r.t. c.

The solutions to the SAT-CP model that combines the constraints from (1) to ( 6) are the set of association rules. It encodes the constraints from (1) to ( 4) in CNF and uses constraint propagation for the constraints ( 5) and ( 6).

Despite the cardinality part of the SAT-CP model, the size of the encoding of the formulas from (1) to ( 4) may be huge. With n the number of items and m the number of transactions, this approach requires (2n + 2m) literals and more than (2nm) clauses to encode the formulas from (1) to ( 4). This makes the charging of the CNF to the RAM infeasible on some datasets. For instance, the formulas from (1) to ( 4) on the dataset Retail is encoded in a CNF file of size 63Gb. [START_REF] Boudane | Enumerating non-redundant association rules using satisfiability[END_REF] propose to extend the SAT-CP model for association rules to mine only MNRs (see Definition 1.10). For this, it is sufficient to force x -1 (1) ∪ y -1 (1) to be closed and x -1 (1) to be a generator (see Proposition 1.4). The previously presented model in extended using the following formulas. i∈I ((

SAT for MNRs

j∈T q j → i ∈ t j ) → x i ∨ y i ) (7) 
The formula ( 7) is similar to formula (3) from Section 3.6.1. It ensures that the itemset x -1 (1) ∪ y -1 (1) is closed. It encodes the fact that if cover(x -1 (1) ∪ y -1 (1)) = cover(x -1 (1) ∪ y -1 (1) ∪ {i}) then the item i should be in x -1 (1) ∪ y -1 (1) (i.e., either x i or y i should be set to true).

( i∈I x i → (j∈T ,i ∈t j ) ( k ∈t j ∪{i} ¬x k )) ∨ ( k∈I x k = 1) (8) 
The formula (8) ensures that the itemset x -1 (1) is generator. It represents the fact that if f req(x -1 (1) → y -1 (1)) = f req(x -1 (1) \ {i} → y -1 (1)) then i has to be excluded from x -1 (1). Finally, the constraint ( k∈I x k = 1) only ensures that x -1 (1) is not empty, because an empty-set is always generator.

Because of the closeness and generator constraints, the size of the formula to handle the MNRs became even larger. For the dataset Retail we move from a formula of size 63Gb for mining association rules, to a formula of size 187Gb for mining MNRs.

Conclusion

In this chapter we have presented some existing declarative approaches for itemset mining. We have presented the constraint programming and the SAT based approaches for itemset mining. We have introduced the basic constraint programming model for itemset mining and we have shown its limits. We have presented existing global constraints in itemset mining, namely, CLOSEDPATTERN and COVERSIZE. We also have presented some of the SAT models for itemset mining and we have shown that these models suffer from a memory issue. Other than itemset mining, declarative approaches are used in data mining including sequence mining, graph mining, mining from uncertain datasets, clustering, etc.

Part II Contributions

Introduction

Mining association rules is one of the most studied problems in data mining. It aims at discovering interesting regularities between items in large-scale datasets. An Association Rule (AR) captures an information of the kind "if we have A and B, the chances to have C are high". Nowadays, a broad spectrum of application domains ask for this kind of information on a variety of datasets.

In this chapter, we propose a full CP model for finding ARs. We use global constraints to ensure frequency and confidence of the rules. We take the frequency global constraint from existing literature (i.e., COVERSIZE constraint [START_REF] Schaus | Coversize: A global constraint for frequency-based itemset mining[END_REF])). For the confidence we need to introduce a new global constraint CONFIDENT for ensuring the minimum confidence of the extracted rules. We show that domain consistency on CONFIDENT is NP-hard. We then propose a non-complete propagator and a decomposition for CONFI-DENT. We show that our CP model can easily be extended for taking into account any kind of user's constraints, such as cardinality of the rule, mandatory or forbidden items in the rule, etc. We show that our CP model is also able to capture the notion of MNR. For this, we introduce a new global constraint GENERATOR for mining generators. We provide a polynomial algorithm achieving domain consistency on GENERATOR. We then give a discussion on constrained MNRs. Experiments on several known large-scale datasets show the effectiveness of our global constraints and CP model. This chapter is organized as follows. Section 4.2 presents our CP model for computing association rules. Section 4.3 defines the global constraint CONFIDENT, a global constraint for ensuring the confidence of a rule. Section 4.4 presents the extension of our CP model to compute MNRs. The global constraint GENERATOR, which is needed in that model, is defined and a propagator is proposed in Section 4.5. Section 4.6 shows how to extend our CP model to compute association rules with various kinds of user's constraints. We give discussion on constrained MNRs in Section 4.7. Finally, before concluding this chapter, Section 4.8 reports experiments.

A CP Model for Association Rules

In this section we present CP-RULE, a CP model for mining association rules. We introduce three vectors x, y and z of n Boolean variables, where x i , y i and z i respectively represent the presence of item i in the body of the rule, in the head of the rule, and in the rule as a whole.

The model CP-RULE should be specified so that for any assignment on x, y, z that is a solution, x -1 (1) → y -1 (1) is a valid association rule.

CP-RULE involves five types of constraints:

CP-RULE D,s,c (x, y, z) =                    ∀i ∈ I : ¬x i ∨ ¬y i (1) i∈I y i (2) ∀i ∈ I : z i ⇐⇒ x i ∨ y i (3) CONFIDENT D,c (x, y) (4) FREQUENT D,s (z) (5) 
The role of each type of constraint is the following:

(1) ensures that a given item cannot be both in the body and in the head of a rule;

(2) ensures that the head of a rule is not empty;

(3) is a channelling constraint ensuring that z -1 (1) = x -1 (1) ∪ y -1 (1);

(4) is a global constraint that ensures that the rule x -1 (1) → y -1 (1) is confident w.r.t. c;

(5) is a global constraint that ensures that z -1 (1) is frequent w.r.t. s. The constraint FREQUENT D,s has already been studied in the literature on itemset mining [START_REF] De Raedt | Constraint programming for itemset mining[END_REF], [START_REF] Schaus | Coversize: A global constraint for frequency-based itemset mining[END_REF]). The constraint CONFIDENT D,c , however, does not exist yet. We define it in the next section.

The Global Constraint CONFIDENT

In this section, we present a new global constraint for ensuring the confidence of an association rule. We prove that it is unfortunately NP-hard to enforce domain consistency on this constraint. As a result, we propose a non-complete filtering algorithm for CONFI-DENT, and a decomposition using existing constraints, which is semantically equivalent to the CONFIDENT constraint. 

if conf (x -1 (1) → y -1 (1)) ≥ c.
Example 4.1. Consider the dataset in Table 1.1 with c = 80%. CONFIDENT D,80% ([0, 0, 0, 1, 0], [1, 1, 0, 0, 0]) is satisfied because the rule D → AB has a confidence of 100% ≥ c. CONFIDENT D,80% ([1, 0, 0, 0, 1], [0, 1, 0, 1, 0]) is not satisfied because the rule AE → BD has a confidence of 66.66% < c.

We now prove that enforcing domain consistency on the constraint CONFIDENT in NPhard. This rules out the hope for a complete propagator for CONFIDENT. Proof. From (Bessiere et al. [2007]) we know that if it is NP-complete to decide whether there exists a valid assignment satisfying a global constraint, then, enforcing domain consistency on this constraint is NP-hard. We then prove that it is NP-complete to decide if there exists a valid assignment for CONFIDENT D,c . Membership. Given the constraint CONFIDENT D,c (x, y) and a valid assignment on x and y, we traverse the table D and compute the size of the covers of the itemsets x -1 (1) and x -1 (1) ∪ y -1 (1). This is linear in |D|. We then compute the ratio |cover(x -1 (1)∪y -1 (1))| |cover(x -1 (1))| and compare it to c to decide if the assignment satisfies the constraint. This is linear in log|D|. Completeness. We reduce 3SAT to the problem of deciding if there exists a valid assignment satisfying CONFIDENT D,c (x, y). Given a 3SAT formula F on the set V = {v 1 , . . . , v n } of Boolean variables, we construct the following instance of the constraint CONFIDENT D,c . For clarity purpose, we denote the items in the transaction table D by pos1, neg1, • • • , posn, negn, z. Thus, x = {x pos1 , x neg1 , . . . , x posn , x negn , x z } and y = {y pos1 , y neg1 , . . . , y posn , y negn , y z }. Domains are defined by dom(x posi ) = {0, 1}, ∀i, dom(x negi ) = {0, 1}, ∀i, dom(x z ) = {0}, dom(y posi ) = {0}, ∀i, dom(y negi ) = {0}, ∀i and dom(y z ) = {1}. We denote by All the set of all items. The confidence ratio c is set to 0.5.

The transactions table

D is: 1. All \ {z} (n times) 2. All \ {posi}, ∀v i ∈ V 3. All \ {negi}, ∀v i ∈ V 4. All \ {posi, negi, z}, ∀v i ∈ V (2 times) 5. All \ {it 1 , it 2 , it 3 , z}, for each clause cl in F , where it i = posj if the ith literal in cl is v j , it i = negj if the ith literal in cl is ¬v j . For instance, if F = {l 1 ∨ ¬l 2 ∨ l 3 } with n = 3, D is: t1 pos1 |neg1 |pos2 |neg2 |pos3 |neg3 | | t2 pos1 |neg1 |pos2 |neg2 |pos3 |neg3 | | t3 pos1 |neg1 |pos2 |neg2 |pos3 |neg3 | | t4 |neg1 |pos2 |neg2 |pos3 |neg3 | z | t5 pos1 | |pos2 |neg2 |pos3 |neg3 | z | t6 | |pos2 |neg2 |pos3 |neg3 | | t7 | |pos2 |neg2 |pos3 |neg3 | | t8 pos1 |neg1 | |neg2 |pos3 |neg3 | z | t9 pos1 |neg1 |pos2 | |pos3 |neg3 | z | t10 pos1 |neg1 | | |pos3 |neg3 | | t11 pos1 |neg1 | | |pos3 |neg3 | | t12 pos1 |neg1 |pos2 |neg2 | |neg3 | z | t13 pos1 |neg1 |pos2 |neg2 |pos3 | | z | t14 pos1 |neg1 |pos2 |neg2 | | | | t15 pos1 |neg1 |pos2 |neg2 | | | | t16 |neg1 |pos2 | | |neg3 | |
Suppose a formula F is satisfiable. Let us denote by S a solution of F . We construct the valid assignment on x, y such that x posi = 1 and x negi = 0 for each i such that S[v i ] = 1, and x posi = 0 and x negi = 1 for each i such that S[v i ] = 0. Bear in mind that x z and y are already assigned as they have a singleton domain. By construction of D, x -1 (1) ∪ y -1 (1) appears in n transactions (2) and (3). By construction again, x -1 (1) appears in the n transactions where x -1 (1) ∪ y -1 (1) appears plus the n transactions (1). x -1 (1) does not appear in any transaction ( 4) because they all miss posi and negi for some i, whereas x -1 (1) contains posi or negi for all i. Finally, as S satisfies F , x -1 (1) does not appear in any transaction (5) because these transactions all miss at least the item of x -1 (1) corresponding to the literal satisfying the clause. As a result, the rule x -1 (1) → y -1 (1) has confidence n 2n = 0.5, and our assignment on (x, y) satisfies the constraint CONFIDENT D,c (x, y).

Suppose now that A is a valid assignment on x, y satisfying the constraint CONFIDENT D,c (x, y). Remember that y -1 (1) necessarily contains z, so x -1 (1) does not. Hence, x -1 (1) appears at least in the n transactions (1) where y -1 (1) does not appear. Now, y -1 (1) only appears in transactions (2) and (3) because it contains z. Thus, x -1 (1) must appear in at least n transactions (2) and (3) to reach the confidence of 50%. For a given i, x -1 (1) must contain at least one among posi and negi, otherwise the two corresponding transactions (4) would cover x -1 (1) and not y -1 (1), making confidence impossible to reach. Thus, x -1 (1) can (and must) appear in exactly n transactions (2) and (3), which means that for each i, exactly one among posi and negi is in x -1 (1). We then can build the mapping from the assignment A on x, y to the instantiation S on v 1 , . . . , v n such that S

[v i ] = 1 if A[x posi ] = 1, and S[v i ] = 0 if A[x negi ] = 1.
We have n transactions (1-4) covering x -1 (1) ∪ y -1 (1) and 2n covering x -1 (1). As transactions (5) do not contain z, they must not cover x -1 (1), otherwise confidence cannot be reached. As a result, for every transaction ( 5), x -1 (1) necessarily contains at least one item (other than z) which is not in the transaction. By construction of transactions ( 5) and thanks to the mapping from A to S, this item corresponds to the truth value of a Boolean variable that satisfies the clause of F associated with the transaction. Therefore, F is satisfiable.

Consequently, deciding if there exists a valid assignment satisfying the constraint CONFIDENT D,c is NP-complete, and domain consistency on CONFIDENT D,c is NP-hard. Theorem 4.1 tells us that we cannot efficiently enforce domain consistency on CONFIDENT D,c unless P = N P . We thus propose weaker propagators for CONFIDENT D,c .

A propagation rule.

We first propose a filtering rule for CONFIDENT D,c . The rule is activated only if x is entirely instantiated. Proposition 4.1. Given a complete assignment on x and a partial assignment on y, for any i ∈ y -1 ( * ), if conf (x -1 (1) → y -1 (1) ∪ {i}) < c then we can remove value 1 from dom(y i ).

Proof. We know that conf (x -1 (1) → y -1 (1)) = |cover(x -1 (1)∪y -1 (1))| 1 (1)∪y -1 (1)). We want to mine confident rules, i.e. k × f req(x -1 (1) ∪ y -1 (1)) ≥ c. This is f req(x -1 (1) ∪ y -1 (1)) ≥ c/k. Using the anti-monotone property of the frequency, if the itemset x -1 (1) ∪ y -1 (1) ∪ {i}

|cover(x -1 (1))| = 1 |cover(x -1 (1))| ×|cover(x -1 (1)∪ y -1 (1))|. As x is entirely instantiated, 1 |cover(x -1 (1))| is constant (let us call it k). Then conf (x -1 (1) → y -1 (1)) = k×|cover(x -1 (1)∪y -1 (1))| = k×f req(x -
(y i = 1) is infrequent w.r.t. c/k then the item i is discarded (1 ∈ dom(y i )).
Example 4.2. Consider the dataset in Table 1.1 with c = 70%. Given the complete assignment on x, x -1 (1) = {A}, x -1 (0) = {B, C, D, E} and x -1 ( * ) = ∅, and the partial assignment on y, y -1 (1) = {B}, y -1 (0) = {A} and y -1 ( * ) = {C, D, E}, the filtering rule in Proposition 4.1 filters 1 from dom(y C ) because the rule A → BC is not confident w.r.t. c (conf (A → BC) = 50% < c).

A decomposition. We also propose an incomplete propagation operated by a decomposition of CONFIDENT D,c using the global constraint COVERSIZE [START_REF] Schaus | Coversize: A global constraint for frequency-based itemset mining[END_REF]), which is able to capture the frequencies of x and z = x ∪ y. The decomposition of CONFIDENT D,c is as follows.

CONFIDENT D,c (x, y) ≡        COVERSIZE D (x, p) COVERSIZE D (x ∪ y, q) q p ≥ c
In this decomposition, p represents the frequency of x -1 (1) and q represents the frequency of z -1 (1). The fraction q p represents the confidence of the rule x -1 (1) → y -1 (1). We simply ensure that the fraction q p is greater or equals the confidence threshold c using an inequality constraint.

A CP model for computing MNRs

In this section we show how our CP-RULE model can be extended to return only MNRs (see Definition 1.10). For this we use a global constraint that we define later.

According to Proposition 1.4, our CP-RULE model can be extended to a model able to extract MNRs by adding two constraints:

MNRULE D,s,c (x, y, z) =        CP-RULE D,s,c (x, y, z) (1) GENERATOR D (x) (2) CLOSED D (z) (3) 
where:

(1) CP-RULE ensures that the rule x -1 (1) → y -1 (1) is valid;

(2) is a global constraint that ensures that the itemset x -1 (1) is a generator;

(3) is a global constraint that ensures that the itemset z -1 (1) is closed.

The constraint CLOSED D has already been studied in the literature on itemset mining [START_REF] Lazaar | A global constraint for closed frequent pattern mining[END_REF], [START_REF] Schaus | Coversize: A global constraint for frequency-based itemset mining[END_REF]). The constraint GENERATOR D , however, does not exist yet. We define it in the next section.

The Global Constraint GENERATOR

The new global constraint GENERATOR is introduced in this section. GENERATOR is used to mine itemsets that are generator. We propose a complete polynomial algorithm achieving DC on GENERATOR. Definition 4.2 (GENERATOR constraint). Let x be a vector of Boolean variables and D be a dataset. The global constraint GENERATOR D (x) holds if and only if x -1 (1) is a generator.

Example 4.3. Consider the dataset in Table 1.1. GENERATOR D ([1, 1, 0, 0, 0]) is satisfied because AB does not have any subset with the same frequency. GENERATOR D ([0, 1, 0, 0, 1]) is not satisfied because BE has a subset with the same frequency (f req(BE) = f req(B)).

The propagator we propose for the GENERATOR constraint is based on the property in Proposition 1.2.

Algorithm. The propagator for the global constraint GENERATOR is presented in Algorithm 1. Algorithm 1 takes as input the variables x. Algorithm 1 starts by computing the cover of the itemset x -1 (1) and stores it in cover (line 3). Then, for each item j ∈ x -1 (1), Algorithm 1 computes the cover of the subset x -1 (1) \ {j}, and stores it in cov[j] (line 5). Algorithm 1 checks if a subset has the same frequency as x -1 (1), if so the constraint is violated and a fail is returned (line 6). Algorithm 1 can then remove items i that cannot belong to a generator containing x -1 (1). To do that, we start by comparing the cover of x -1 (1) ∪ {i} (i.e., cover ∩ cover(i)) with the cover of x -1 (1) (i.e., cover) (line 8). If they have equal size (i.e., same frequency), we remove i from the possible items, that is, we remove 1 from dom(x i ) and continue to the next item (line 9). Then, for every item j in x -1 (1)∪{i}, we compare the cover of x -1 (1) ∪ {i} (i.e., cover ∩ cover(i)) to the cover of x -1 (1) ∪ {i} \ {j} (i.e., cov[j] ∩ cover(i)) (line 11). If they have equal size (i.e., same frequency), we remove i from the possible items, that is, we remove 1 from dom(x i ) and break the loop (line 12).

Example 4.4. Consider the dataset in Table 3.1. Given the partial assignment x -1 (1) = {B}, x -1 (0) = {D} and x -1 ( * ) = {A, C, E}, the Algorithm 1 filters 1 from dom(x E ) because f req(BE) = f req(B).

Theorem 4.2. The propagator in Algorithm 1 enforces domain consistency on the constraint GENERATOR.

Note that without the use of the cov structure (that is, by recomputing cover(x -1 (1) \ {j}) at each execution of the loop at line 7), the time complexity becomes O(n 3 × m). However, this version is less memory consuming and can be more efficient in practice. This is especially true when the subset that has the same frequency as x -1 (1) ∪ {i} is x -1 (1) (i.e., when the test at line 8 is true), which reduces the time complexity to O(n × m).

It is also important to stress that domain consistency on GENERATOR does not depend on x -1 (0). Thus, Algorithm 1 is not called during the solving process when a variable is instantiated to zero.

On Constrained Association Rules

In many practical cases, the user asks for association rules satisfying extra constraints in addition to frequency and confidence. Such user's constraints are handled by data mining researchers, whenever possible, with (i) a pre-processing step reducing the dataset; (ii) a filtering integrated in the specialized algorithm; (iii) a post-processing step to filter out the undesirable rules. In this section, we show how flexibly the CP-RULE model can be augmented to express the kind of association rules the user is interested in. We illustrate this flexibility on a few examples of constraints that are common properties of rules a user may be interested in [START_REF] Joost | A linear-time transformation of linear inequalities into conjunctive normal form[END_REF]).

Mandatory / forbidden items in a rule

The user may ask for rules that involve a particular set M of mandatory items in the body (resp. in the head, or in the rule as a whole). With the CP approach, such constraint can simply be added to the CP-RULE model as follows:

mand M (x) ≡ (∀i ∈ M : x i = 1)
where x is respectively replaced by y or z if M must be in the head or in the rule as a whole.

Similarly, the user may ask for rules that do not involve a set of forbidden items (F) in the body (resp. in the head, or in the rule as a whole). In CP-RULE, we can express this constraint as follows:

f orb F (x) ≡ (∀i ∈ F : x i = 0)
where x is respectively replaced by y or z if F must be forbidden from the head or from the rule as a whole.

For instance, the user can ask for rules with a head containing a set of items M and a body not containing a set of items F. The two following constraints are added to the CP-RULE model:

f orb F (x) ∧ mand M (y)
.

Cardinality constraints

The user may also be interested in constraints on the cardinality of the body of the rule (and/or the head, and/or the rule as a whole):

-atLeast constraint: A rule (body and/or head) contains at least lb items:

atLeast lb (x) ≡ i∈I x i ≥ lb
-atM ost constraint: A rule (body and/or head) contains at most ub items:

atM ost ub (x) ≡ i∈I x i ≤ ub
-Exactly constraint: A rule (body and/or head) contains exactly v items:

Exactly v (x) ≡ i∈I x i = v
where x is respectively replaced by y or z if the cardinality constraint is on the head or on the rule as a whole.

For instance, when a user asks for ARs with a size of v, a body of at most ub and a head of at least lb, the CP-RULE model is extended with the following constraints:

Exactly v (z) ∧ atM ost ub (x) ∧ atLeast lb (y)

On Constrained MNRs

Constraints added to the model MNRULE can interfere with the maximality of x -1 (1) ∪ y -1 (1) (i.e., x -1 (1) ∪ y -1 (1) being closed) and the minimality of x -1 (1) (i.e., x -1 (1) being generator) (see Section 1.6.1).

At first glance, it seems that our CP model for mining MNRs cannot be extended with anti-monotone constraints on the body of the rule because x -1 (1) ∪ y -1 (1) is closed and the body is in x -1 (1) ∪ y -1 (1). But the body being generator guarantees the safety of our model in taking in consideration anti-monotone constraints on the body and monotone constraints on the head.

In this section we prove that anti-monotone constraints on the body and monotone constraints on the head are safe on MNRULE. That is, there always exist MNRs satisfying the constraints and dominating the satisfied rules (see Definition 1.9). Theorem 4.4. Given a valid non MNR rule r : X → Y satisfying c 1 an anti-monotone constraint on X and c 2 a monotone constraint on Y , there always exists an MNR r : X → Y satisfying c 1 (X ) and c 2 (Y ) such that r r.

Proof. Suppose that r : X → Y is not MNR satisfying c 1 (X) an anti-monotone constraint and c 2 (Y ) a monotone constraint. We prove that there always exists an MNR r dominating r and satisfying c 1 and c 2 . From the definition of MNRs we know that if r is not MNR then there exists an MNR r : X → Y such that r r, i.e. f req(r ) = f req(r) and conf (r ) = conf (r) and X ⊆ X, Y ⊇ Y . As c 1 (X) is a satisfied anti-monotone constraint and X ⊆ X then c 1 (X ) is satisfied too. Similarly, as c 2 (Y ) is a satisfied monotone constraint and Y ⊇ Y then c 2 (Y ) is satisfied too. Hence, the rule r is an MNR satisfying the constraints and dominating the rule r.

Experimental Evaluation

We made several experiments to evaluate our constraints and our CP model for mining pure and constrained association rules. We compared to the state of the art approaches.

Benchmark Datasets

We selected several real-sized datasets from the FIMI repository.1 These datasets have various characteristics representing different application domains. Table 4.1 reports for each dataset the number of transactions |T |, the number of items |I|, the average size of transactions |T |, the density ρ (i.e., |T |/|I|), and its application domain. The datasets are presented by increasing size |I| × |T |. We selected datasets of various size and density. Some datasets, such as Zoo and Chess, are very dense (resp. 44% and 49%). Others, such as T10 and Retail, are very sparse (resp. 1% and 0.06%). The sizes of these datasets vary from around 4, 000 to more than 10 9 .

Experimental Protocol

The implementation of our CP models and constraint propagators were carried out in the Oscar solver using Scala. 2 The code is publicly available. 3For each dataset, an instance is characterized by its minimum frequency threshold (i.e., s). For instance, Zoo_5 denotes the instance of the Zoo dataset with a minimum frequency threshold of 5. 

Mining Frequent Generators

To evaluate the new global constraint GENERATOR, we compare our CP approach for mining frequent generators with TALKY-G [START_REF] Szathmary | Efficient vertical mining of frequent closures and generators[END_REF]). We used the implementation of TALKY-G publicly available in the CORON Data Mining Platform. 4 Our approach combines the constraint GENERATOR D with COVERSIZE D (x, p) and p ≥ s to ensure the frequency. After a few preliminary tests, we decided to use smallest item frequency first as variable ordering heuristic and largest value first as value ordering heuristic. We have selected for every dataset frequency thresholds to have different numbers of frequent generators. The execution time for every approach and the number of frequent generators, #F G, are reported in Table 4.2.

The first observation to notice, and as expected, TALKY-G outperforms the CP approach for mining frequent generators. However, CP is very competitive and even better than TALKY-G on some instances (e.g., Zoo_1, T10_500 and Retail_45). This is specially true when the number of frequent generators is small (i.e., less than 20K solutions).

Note that we are using the less memory version of our propagator presented in Algorithm 1. This version is efficient in practice. On Anneal_244, for instance, all the filterings of Algorithm 1 were conducted because of x -1 (1) having the same frequency as x -1 (1)∪{i} (the test in line 8 of Algorithm 1 is true). 

CONFIDENT: Dedicated Propagator vs Decomposition

For propagating the constraint CONFIDENT, we have implemented both propositions presented in Section 4.3. In this section we compare two CP models for mining ARs. The one that uses the filtering rule presented in Proposition 4.1 as propagator for CONFIDENT (i.e., F-RULE) and the one that uses a decomposition using COVERSIZE (i.e., DECOMPO-SITION). We have selected 3 datasets, small, middle and huge with a fixed frequency threshold and we have variated the minimum confidence threshold, i.e. c. In Table 4.3 we report the execution time for both approaches. We also report the number of nodes to evaluate the level of filtering conducted by each approach.

Clearly, the use of the decomposition provides us with a better resolution time due the practical efficiency of the propagator of COVERSIZE. The level of filtering is also slightly better. The number of nodes being the same for Vote_22 with c = 70%, DECOMPOSITION outperforms F-RULE with 1, 276 nodes for Vote_22 with c = 100%. In fact, DECOMPOSI-TION can filter 0 from all dom(x i ) if that is the only way to ensure that q ≥ p × c. This filtering occurs rarely but it explains the slight difference in the number of nodes.

Hence, for the next experiments we use the decomposition to replace the constraint CONFIDENT in our model. 

Heuristic of Variable Selection for Mining Association Rules

In this section we compare the resolution time of our approach using different static variable ordering heuristics. We have tested all the combinations x, y, z to decide the order of vectors. The variables of a given vector are ordered in a lexicographic order and we use smallest value first as value ordering heuristic. Table 4.4 presents the time, in seconds, for every variable ordering heuristic on every instance. For every dataset we have selected s to have a hard instance and we fixed c to 90%.

The first observation that we can draw from Table 4.4 is that the heuristics starting with the same vector perform almost the same (e.g., x, y, z and x, z, y ). It is clear that the heuristics starting with the body of the rule x outperform the others (the ones starting with y or z). If we compare the heuristics starting with x we notice that x, y, z is slightly better than x, z, y although x, z, y being competitive and even better on some instances (e.g., Anneal_650). As a result, we use the variable ordering heuristic x, y, z in the rest of our experiments. 

Mining Association Rules

In this experiment we compare our CP approach to the ECLAT-Z specialized algorithm for extracting ARs (Szathmary et al. [2007c]), and to a SAT-based approach [START_REF] Boudane | A sat-based approach for mining association rules[END_REF]) (note that this approach is hybrid and it uses constraint propagation to handle the cardinality constraints). We used the implementation of ECLAT-Z publicly available in the CORON Data Mining Platform. 5 In all the instances presented in the following experiments, the minimum confidence has been fixed to 90% so that we focus on highly confident rules. For each dataset, an instance is characterized by its minimum frequency threshold. For instance, Zoo_51 denotes the instance of the Zoo dataset with a minimum frequency threshold of 51 (and always a minimum confidence of 90%). For each dataset, we have selected three instances according to the number of solutions. The first instance has less than 1, 000 ARs, the second instance has between 100, 000 and one million ARs, and the third instance has more than one million ARs. The only exception is the very large and sparse dataset Retail, for which we could not reach large number of solutions. Table 4.5 reports the CPU time, in seconds, for each approach on each selected instance. We also report the total number of ARs (#TOT) for each instance. 6 The first observation that we can draw from Table 4.5 is that, as expected, the specialized algorithm ECLAT-Z performs very well. However, the CP approach is very competitive too, and sometimes faster than ECLAT-Z (see the first instance of each dataset, where only a few valid ARs exist). The explanation for this good behavior of CP is the strength of constraint propagation to rule out inconsistent parts of the search space. On the contrary, on an instance as loose as Pumsb_39237, with 49, 000 transactions, 2, 113 items, and around 20 million solutions, the CP solver is almost reduced to an enumerating process.

Concerning the SAT approach, on small and middle-sized datasets (i.e., from Zoo to Connect), we observe that SAT performs reasonably well, although being slower than CP on almost all the instances. On larger and larger datasets, the results of SAT become worse and worse. On very large datasets, SAT reaches the one hour timeout for T10 and T40 instances and out-of-memory on all the instances of Pumsb and Retail. The out-of-memory state is due to the fact that SAT generates huge propositional formulas to represent the dataset and the constraints (see Section 3.6.2). On the instances where we observe an out-of-memory, SAT generates formulas of size ranging from 14Gb to 63Gb.

Finally, it is important to note that even when CP reaches the timeout, it returns solutions on the fly before the timeout. This is because CP, as opposed to ECLAT-Z, does not need to build any complex data structure before starting the search for ARs. On T40_100, CP returns the first solution in only 1.25 seconds and returns more than 390 million solutions before the timeout, whereas ECLAT-Z does not return any AR to the user before having computed its whole structure, that is, no solution before the timeout on T40_100.

Our next experiment evaluates the behaviour of ECLAT-Z, CP and SAT when varying the minimum confidence (c). Figure 4.1 illustrates the time, in seconds, for each approach on each selected minimum confidence threshold on the instance Vote_22. From Figure 4.1 5. coron.loria.fr 6. This number is computed by releasing the timeout. we can observe that our CP approach is the one that improves the most for mining highly confident rules. From the instance where c = 10% to the instance where c = 100%, the CPU time for CP is reduced by 98% (from 189.56 to 2.46 seconds), whereas for ECLAT-Z it is reduced by 83% (from 28.75 to 4.61 seconds) and for SAT by only 36% (from 1578.35 to 1006.35 seconds). As a result, our CP approach is always better than SAT and becomes even better than ECLAT-Z with c = 100%. This is due to the constraint propagation conducted by the constraints in the decomposition of CONFIDENT which provides CONFIDENT with an efficient filtering. This experiment compares ECLAT-Z (Szathmary et al. [2007c]) to SAT [START_REF] Boudane | Enumerating non-redundant association rules using satisfiability[END_REF]) and CP for extracting MNRs. Table 4.6 reports the CPU time, in seconds, for each approach on each selected instance. We also report the total number of MNRs (#TOT).

For the MNRULE model presented in Section 4.4, we have used the global constraint GENERATOR presented in Section 4.5, and to ensure closeness, we have used the constraint COVERCLOSURE introduced in [START_REF] Schaus | Coversize: A global constraint for frequency-based itemset mining[END_REF]).

SAT wins only on the smallest dataset (i.e., Zoo instances). For larger datasets, the encoding of the MNR constraints in SAT can take three times more space than the encoding of the original AR problem and then can lead to an out-of-memory state. For instance, SAT encodes only the first constraints of the AR problem on a Retail instance with a formula of 63Gb (see Section 3.6.2). When moving to the MNR problem, we reach 187Gb.

ECLAT-Z can take significantly more time to enumerate MNRs than ARs. On the T10_20 instance, it is easier for ECLAT-Z to enumerate more than 1 million ARs (15.12 seconds) than to enumerate 257 thousand MNRs (1131.39 seconds). The opposite is observed on CP. Such a performance is mainly due to the constraints GENERATOR and COV-ERCLOSURE that provide the CP solving process with more propagation to remove more inconsistent values in the search space. This is especially true when the number of non-solutions to prune is important. Nevertheless, the Retail instances contradict this trend. This is explained by the fact that on Retail almost all ARs are MNRs whereas in average on all our instances only 7% of the ARs are MNRs. Hence, on Retail the constraints GEN-ERATOR and COVERCLOSURE are redundant to the model for ARs (CP-RULE). Thus, the propagators of GENERATOR and COVERCLOSURE do not participate to the reduction of the search space. They just waste time. For instance, CP explores exactly the same search space (2, 750 nodes) on Retail_265 to extract ARs and MNRs (because all ARs are MNRs).

Again, on the timeout instance T40_100, CP returns its first solution in 1.23 seconds and returns more than 160 million MNRs before the timeout. ECLAT-Z is not able to return any MNR before the timeout. In this section, we present experiments that show the expressiveness of our CP approach in taking into account user's constraints, and the power of CP to solve such combinatorial problems. We illustrate with mandatory/forbidden-item constraints and with cardinality constraints on the body or the head of the rule as a whole (see Section 4.6). We compare our CP approach with SAT and ECLAT-Z-PP (ECLAT-Z with a post-processing step filtering out the rules not satisfying the user's constraints). We selected the instances having more than one million ARs in Table 4.5 (i.e., #T ot ≥ 10 6 ).

Mining rules with constraints on items. The user can ask for rules with some specific items in the rule, the body and/or the head. In the same way, a user can ask for rules not involving a particular set of items. For instance, we may want to extract rules between electronics and cleaning items only. Or to extract rules outside food items. We perform an experiment on the following user query: Q 1 : Given two sets of items F and M, extract ARs not containing F in the body, and containing M in the head.

Q 1 can easily be expressed in CP with the following constraints:

CP-RULE D,s,c (x, y, z) ∧ F orb F (x) ∧ M and M (y)

For our experiment, we generate sets F and M of the same size. We randomly select a pair of items and we put one in F and one in M. We repeat the process until the number of solutions to Q 1 falls under a very low threshold. Table 4.7 reports the penultimate step, that is, the F and M where the number of solutions is the smallest above 10. We made an exception with T10_20, that we will use to illustrate what happens on an instance with no solution. Table 4.7 reports the CPU time of ECLAT-Z-PP, SAT and CP on Q 1 . We also report the number of solutions to Q 1 (#TOT).

The main observation is that the declarative approaches SAT and CP outperform ECLAT-Z-PP. ECLAT-Z-PP extracts all ARs and filters out the rules the user is not asking for. For Anneal_80, ECLAT-Z-PP spends 14 minutes to extract and save more than 84 million ARs. The post-processing step spends 10 minutes to filter out this huge number of ARs and to return the only 21 solutions of Q 1 . With SAT and CP, the 21 solutions are returned in less than one second.

For the SAT approach, the forbidden and mandatory constraints can easily be encoded with monomials (i.e., unit clauses) that reduce the search space and speed-up the resolution. However, when the size of the dataset increases, the performance of SAT decreases. SAT cannot solve T40_100 within the time out. In addition, SAT faces again the problem of the size of the formulas and reaches an out-of-memory state on Pumsb_39237. On the instance with no solution T10_20, SAT cannot prove that no solution exists within the timeout. ECLAT-Z-PP spends more than 1 minute to extract more than 1 million useless solutions and filter them out. CP proves the absence of solutions in 0.02s.

Mining rules with cardinality constraints. The user can also ask for rules with particular sizes of body or head. We performed an experiment with the following query: Q 2 : Extract ARs with a body not exceeding a size of ub and a head of a minimum size of lb.

Q 2 can easily be expressed in CP with:

CP-RULE D,s,c (x, y, z) ∧ atM ost ub (x) ∧ atLeast lb (y)
For each instance, we select a lower-bound lb and an upper-bound ub in order to have at least 10 solutions to Q 2 . For that, we use two scenarios. The first scenario starts by selecting the largest value for lb for which there exist at least 10 ARs with a head of minimum size lb. Then, we take for ub the size of the smallest body for which there still exist at least 10 solutions. The second scenario selects the smallest value for ub for which there exist at least 10 ARs with a body not exceeding this value. Then, we take for lb the size of the largest head for which there still exist at least 10 solutions. Again, for T10_20, we select lb and ub in order to illustrate the case of no solution. Table 4.8 compares ECLAT-Z-PP, SAT and CP acting on the query Q 2 . We report the CPU time, in seconds, for each instance. We also report the total number of solutions (#TOT).

We observe that CP wins on all instances. SAT reaches the one hour timeout on two instances whereas these two instances are solved by CP in less than 10 seconds. Once again, SAT faces an out-of-memory state on Pumsb_39237.

When comparing CP to ECLAT-Z-PP we can observe that for the instances having more than 10 million ARs we have a significant gap in terms of CPU time. CP on Anneal_650 returns the 73 solutions in less than one second, whereas ECLAT-Z-PP spends 13 minutes on the post-processing step.

For the instance with no solution T10_20, SAT cannot prove there is no solution before the time out. ECLAT-Z-PP needs a post-processing of more than 1 minute to deal with the 1 million extracted ARs. CP proves there is no solution in less than 6 seconds.

We add a new cardinality constraint to Q 2 . In addition to Q 2 with user's constraints on the body and the head of a rule, the user can also ask for rules of a given size: Q 3 : Extract ARs of a size of v with a body of size at most ub and a head of size at least lb. Q 3 is expressed using constraints as follows:

CP-RULE D,s,c (x, y, z) ∧ Exactly v (z) ∧ atM ost ub (x) ∧ atLeast lb (y)
As for Q 2 , we select lb, v and ub in order to have at least 10 solutions. Again, for T10_20, we select lb, v and ub in order to illustrate the case of no solution. Table 4.9 compares ECLAT-Z-PP, SAT and CP acting on the query Q 3 . We report the CPU time, in seconds, for each instance. We also report the total number of solutions (#TOT).

Again, the results reported on Q 3 strengthen our previous observations. CP wins on all instances. SAT reaches the one hour timeout on two instances and an out-of-memory state on Pumsb_39237.

ECLAT-Z needs a post processing of between 1 and 18 minutes to return the only few interesting rules. ECLAT-Z is not able to solve the problem T40_100 due a timeout. Our CP approach solves the problems in only between 0.13 and 4.37 seconds.

Again, For the instance with no solution T10_20, SAT cannot prove there is no solution before the time out. ECLAT-Z-PP needs a post-processing of more than 1 minute to filter all the 1 million extracted ARs. CP proves there is no solution in less than 4 seconds. As pointed out in Section 4.7, anti-monotone constraints on the body and monotone constraints on the head can be injected in our model for mining MNRs without problem. In this section we compare the tree approaches in taking in consideration constraints in addition to the MNR property. We want to mine MNRs w.r.t. Q 4 .

Q 4 : Extract MNRs with a body not exceeding a size of ub and a head of a minimum size of lb. Q 4 is expressed using constraints as follows: MNRULE D,s,c (x, y, z) ∧ atM ost ub (x) ∧ atLeast lb (y)

For Q 4 , we selected the instances having more than one million MNRs in Table 4.6 (i.e., #T ot ≥ 10 6 ). The only exception is Chess_1918 for which CP already outperforms ECLAT-Z for mining MNRs. Adding constraints on that instance would only confirm the outperformance of CP.

For every instance, lb and ub are selected in order to have:

• More than 10 solutions.

• Between 1 and 9 solutions.

• No solution.

Table 4.10 compares ECLAT-Z-PP, SAT and CP acting on the query Q 4 . We report the CPU time, in seconds, for each instance. We also report the total number of solutions (#TOT).

Despite the hardness of the instance T40_100, our CP approach is able to extract constrained MNRs in less than 10 seconds. ECLAT-Z needs to extract all MNRs to filter inconsistent ones as a post processing step. ECLAT-Z is not able to solve the original problem and does not return any solution within the allocated time.

On Pumsb_39237, ECLAT-Z spends more than one minute to extract more than 3 million MNRs to finally filter most of them in a post processing step. CP solve the three instances in less than 1 second. Once again, SAT faces an out-of-memory state on Pumsb_39237. This time also on T40_100. 

Conclusion

In this chapter, we have introduced a full constraint programming model for mining association rules. For this model, we introduced a new global constraint CONFIDENT for ensuring the confidence of a rule. We proved that enforcing domain consistency on CONFIDENT is NP-hard, ruling out the possibility of a polynomial domain consistency propagator for CONFIDENT (unless P = N P ). Thus, we proposed for CONFIDENT two weak propagators, one that uses a filtering rule and the other that uses the global constraint COVERSIZE for a decomposition. We have shown that our CP model can easily be extended to take in consideration user's constraints such as mandatory or forbidden items constraints, cardinality constraints, etc. We proposed an extension of our CP model to extract minimal non-redundant rules. For this, we have introduced a new global constraint GENERATOR for mining generators. This constraint can be used to model and solve various itemset mining problems. We proposed a polynomial propagator achieving domain consistency for GENERATOR. We gave a discussion on combining constraints with minimal non-redundant rule. We proved that anti-monotone constraints on the body and monotone constraints on the head are safe on our model.

We have empirically evaluated our CP approach. The experiments showed the performance of our constraints and models comparing to existing approaches. For mining association rules, our CP approach significantly outperforms the existing declarative approach i.e. the SAT approach. That is specially on huge datasets where the SAT approach suffers from a memory issue. Comparing to the specialized algorithm ECLAT-Z, our CP approach performs well and becomes even better than ECLAT-Z for mining minimal nonredundant rules and constrained rules. It is worthy noticing also that our CP approach returns solutions on the fly, and returns the first rules in seconds as a result. On the other hand, ECLAT-Z proceeds in two steps and it is not able to return any solution before the first step has finished.

V Chapter 5: Constraint Programming for Mining Borders of Frequent Itemsets

Introduction

For many data mining problems, the frequency represents an important metric. Given a frequency threshold s over a transaction dataset, frequent itemsets are those present in at least s transactions. Itemsets present in less than s transactions are called infrequent (or rare). The number of frequent/infrequent itemsets can be huge, making it hard even to print the result. Hence, we often reduce the problem of mining frequent or infrequent itemsets to the problem of mining the borders. The positive border is the set of frequent itemsets with only infrequent supersets, i.e. Maximal Frequent Itemsets (MFIs). The negative border is the set of infrequent itemsets with only frequent subsets, i.e. Minimal Infrequent Itemsets (MIIs). The subsets of the MFIs and the supersets of the MIIs represent the frequent and infrequent itemsets, respectively.

In this chapter we propose a generic parameterized model allowing the user to decide which border to mine (i.e., MFIs or MIIs). For this model we need to define two new global constraints: (1) FREQUENTSUBS for mining itemsets having only frequent subsets, and (2) INFREQUENTSUPERS for mining itemsets having only infrequent supersets. We provide a polynomial domain consistency propagator for each of these two constraints. For ensuring the infrequency of an itemset, we propose a new global constraint INFREQUENT with a polynomial domain consistency propagator.

We then address the issue of mining borders in the presence of other constraints. As noticed in [START_REF] Bonchi | On closed constrained frequent pattern mining[END_REF]), mining borders under additional constraints can lead to the loss of solutions. This can happen with maximal/minimal borders, but also with closed itemsets or generator itemsets. We prove that it is coNP-hard to find maximal/minimal itemsets among those satisfying a set of additional constraints. This implies that there does not exist any CSP representing the problem of finding maximal/minimal itemsets under additional constraints, unless coNP ⊆ NP. This is an a posteriori justifi-cation of the "multi-shot" approaches, such as the one presented in [START_REF] Négrevergne | Dominance programming for itemset mining[END_REF]). This chapter is organized as follows. In Section 5.2 we give a generic model for mining MFIs or MIIs. We define the new global constraints FREQUENTSUBS and INFREQUENT-SUPERS and we present their propagators in Sections 5.3 and 5.4, respectively. In Section 5.5 we propose an implementation of the frequency/infrequency constraints. Section 5.6 analyzes the problem of mining constrained MFIs or MIIs. We present some empirical results in Section 5.7 before concluding.

A Generic CP Model for Mining Borders

We present a CP model, MODEL D,s,b , for mining MFIs or MIIs. MODEL D,s,b uses a vector x of n Boolean variables. MODEL uses new global constraints that we present later.

MODEL D,s,b (x) =        FREQUENTSUBS D,s (x) (1) INFREQUENTSUPERS D,s (x) (2) b ⇐⇒ FREQUENT D,s (x) (3) 
The role of each type of constraint is the following:

(1) is a global constraint that holds if and only if the itemset x -1 (1) has only frequent subsets w.r. Example 5.1. The lattice in Figure 5.1 displays the set of itemsets satisfying the constraints FREQUENTSUBS and INFREQUENTSUPERS on the dataset of Table 1.1 with s = 3. The intersection between both sets is the set MFIs∪MIIs.

We can then use MODEL D,s,b to mine either MFIs or MIIs by simply setting b to true or false. In the next sections, we define the global constraints FREQUENTSUBS and INFREQUENT-SUPERS and we propose propagators.

The Global Constraint FREQUENTSUBS

In this section we present the new global constraint FREQUENTSUBS. FREQUENTSUBS is used to mine itemsets that have only frequent subsets. Definition 5.1 (FREQUENTSUBS). Let x be a vector of Boolean variables, s a frequency threshold and D a dataset. The global constraint FREQUENTSUBS D,s (x) holds if and only if ∀P x -1 (1), f req(P ) ≥ s.

Proof. We first prove that if FREQUENTSUBS admits a solution, x -1 (1) is necessarily one of them. Suppose there is a solution and x -1 (1) is not one of them. This means that there exists a superset of x -1 (1) which has all its subsets frequent. x -1 (1) is one of these subsets. Thus, all subsets of x -1 (1) are frequent and x -1 (1) is solution too, which contradicts the assumption. We now prove that Algorithm 2 returns failure if and only if FREQUENTSUBS does not admit any solution. We know that FREQUENTSUBS has no solution if and only if x -1 (1) is not solution. x -1 (1) is not solution if and only if it has an infrequent subset x -1 (1) \ {j} for some j in x -1 (1). In such a case the test in line 7 is true and failure is returned. If FREQUENTSUBS admits solutions, x -1 (1) is a support for x i = 0, for all i ∈ x -1 ( * ). As a result, Algorithm 2 does not need to check consistency of value 0 for any variable.

We now prove that Algorithm 2 prunes value 1 from dom(x i ) exactly when i cannot belong to a solution containing x -1 (1). Suppose value 1 of x i is pruned by Algorithm 2. This means that the test in line 8 (or line 14) was true, that is, there exists a subset of x -1 (1) ∪ {i} which is infrequent. Thus, by definition, x -1 (1)∪{i} does not belong to any solution. Suppose now that value 1 of x i is not pruned. From lines 8 and 14, we deduce that there does not exist any infrequent subset of x -1 (1) ∪ {i}. Thus x -1 (1) ∪ {i} is a solution and value 1 of x i is domain consistent. Proof. Computing the size of the cover of an itemset is in O(n × m). Line 5 is called at most n times, leading to a time complexity in O(n 2 × m). The time complexity of lines 8-10 is bounded above by n. The test at line 13 is done at most n 2 times. The cover x -1 (1)∪{i}\{j} at line 13 is computed in O(m) thanks to the cov data structure. Thus, the time complexity of lines 9-14 is bounded above by n 2 × m. As a result, Algorithm 2 has an O(n 2 × m) time complexity. any solution. We know that if INFREQUENTSUPERS has solutions, x -1 (1) ∪ x -1 ( * ) is one of them. x -1 (1) ∪ x -1 ( * ) is not solution if and only if it has a frequent superset. In such a case the test in line 7 is true for some j in x -1 (0) and failure is returned. If INFREQUENT-SUPERS has solutions, x -1 (1) ∪ x -1 ( * ) is a support for x i = 1, for all i ∈ x -1 ( * ). As a result, Algorithm 3 does not need to check consistency of value 1 for any variable.

The Global Constraint INFREQUENTSUPERS

We now prove that Algorithm 3 prunes 0 from dom(x i ) exactly when i belongs to all solutions containing x -1 (1). If the test in line 13 is true this means that with x i = 0 we get itemsets having at least a frequent superset. Hence, 0 must be pruned from dom(x i ). Suppose now that the test in line 13 is false for all j. x -1 (1) ∪ x -1 ( * ) \ {i} has only infrequent supersets and x i = 0 is domain consistent. Proof. Computing the cover of x -1 (1) ∪ x -1 ( * ) in line 4 is in O(n × m). The loop in line 6 computes the cover of x -1 (1) ∪ x -1 ( * ) ∪ {j} in O(m) using the already computed cover of x -1 (1) ∪ x -1 ( * ) (i.e., cover). As a result the worst case time complexity of lines 4-8 is in O(n × m). Similarly, the time complexity of lines 10-14 is bounded above by n × m. Lines 10-14 are called at most n times, leading to a time complexity in O(n 2 × m).

The Duality Between Propagators

It is worth noticing the duality between Algorithm 2 and Algorithm 3. Algorithm 2 removes value 1 from dom(x i ) if including the item i leads to an itemset having an infrequent subset. Algorithm 3 removes value 0 from dom(x i ) if excluding the item i necessarily leads to itemsets having a frequent superset. This duality is not totally obvious at a first glance because Algorithm 2 requires the cov data structure to have its good time complexity whereas Algorithm 3 does not need it. The reason is that Algorithm 2 computes the covers of subsets that we cannot derive from the cover of their supersets whereas Algorithm 3 computes covers of supersets that can be obtained by simple bitwise operation on their subsets.

On the Conjunction of FREQUENTSUBS and INFREQUENTSUPERS

To mine itemsets that have frequent subsets and infrequent supersets at the same time we combine the constraints FREQUENTSUBS and INFREQUENTSUPERS. One may ask if the propagators of FREQUENTSUBS and INFREQUENTSUPERS enforce DC on the constraint network defined by the conjunction of FREQUENTSUBS and INFREQUENTSUPERS. The answer is no and we show this in the following example.

Example 5.6. Consider the dataset in Table 5.1 with s = 1. With the partial assignment x -1 (1) = {D}, x -1 (0) = {A} and x -1 ( * ) = {B, C, E}, neither the propagator of FRE- (1) = {B, D}, x -1 (0) = {A} and x -1 ( * ) = {C, E}. Value 1 is filtered by the propagator of FREQUENTSUBS from dom(x C ) and dom(x E ) leading to the complete assignment x -1 (1) = {B, D}, x -1 (0) = {A, C, E} and x -1 ( * ) = ∅. BD does not satisfy the constraint INFREQUENTSUPERS (its superset ABD is frequent) and value 1 is not domain consistent for dom(x B ).

Implementation of the Frequency Constraint

For encoding constraint (3) in MODEL (see Section 5.2), we may use COVERSIZE with p ≥ s to ensure the frequency (when b = true) and with p < s to ensure the infrequency (when b = f alse). The propagator of COVERSIZE enforces DC on the frequency, but it does not on the infrequency (see Section 3.5). Hence, we propose a new global constraint INFREQUENT for mining infrequent itemsets. We provide INFREQUENT with a filtering rule that enforces DC. 

if x -1 (1) is infrequent w.r.t. s, i.e. f req(x -1 (1)) < s. Example 5.7. Consider the dataset in Table 1.1 with s = 3. INFREQUENT D,3 ([0, 0, 0, 1, 0]) is satisfied because D is infrequent w.r.t. s. INFREQUENT D,3 ([1, 1, 0, 0, 0]) is not satisfied because AB is frequent w.r.t. s. Proposition 5.1 (Filtering Rule for INFREQUENT). For every i ∈ x -1 ( * ), if f req(x -1 (1) ∪ x -1 ( * ) \ {i}) ≥ s then remove 0 from dom(x i ).
Example 5.8. Consider the dataset in Table 1.1 with s = 3. Given the partial assignment x -1 (1) = ∅, x -1 (0) = {A} and x -1 ( * ) = {B, C}, the filtering rule in Proposition 5.1 filters 0 from dom(x C ) because the itemset B is frequent w.r.t. s. Note that this value is not filtered by the propagator of COVERSIZE (see Example 3.7).

Theorem 5.6. The filtering rule presented in Proposition 5.1 enforces domain consistency on the constraint INFREQUENT.

Proof. We first prove that the value 1 for a variable x i such that i ∈ x -1 ( * ) always belongs to a solution and hence cannot be pruned by domain consistency. For this we prove that if INFREQUENT admits a solution, x -1 (1) ∪ x -1 ( * ) is necessary one of them. Suppose that there is a solution and x -1 (1) ∪ x -1 ( * ) is not one of them. This means that there exits a subset of x -1 (1) ∪ x -1 ( * ) which is infrequent. Thus, x -1 (1) ∪ x -1 ( * ) is infrequent too which contradicts the assumption. As a result, value 1 cannot be pruned from dom(x i ).

We now prove that the filtering rule in Proposition 5.1 prunes 0 from dom(x i ) exactly when i must be added to the itemset x -1 (1). If the test in Proposition 5.1 is true this means that by excluding the item i we get only frequent itemsets. Hence, 0 must be pruned from dom(x i ). Suppose now that the test in Proposition 5.1 is false, in this case x -1 (1) ∪ x -1 ( * ) \ {i} is an infrequent itemset with x i = 0. Thus 0 is domain consistent.

On Constrained Borders

As pointed out in [START_REF] Bonchi | On closed constrained frequent pattern mining[END_REF]), constraints can interfere with closeness (or maximality) when they are not monotone. Likewise, constraints can interfere with minimality when they are not anti-monotone. Hence, existing "one-shot" CP approaches can miss solutions because they look for maximal/minimal itemsets that in addition satisfy constraints (e.g., CLOSEDPATTERN with non monotone constraints), whereas we are usually interested in itemsets that are maximal (or minimal) among those satisfying the constraints (see Section 1.6.1). In this section we prove that deciding whether a frequent itemset is maximal or closed or minimal among those satisfying the constraints is coNPcomplete. This means that finding maximal/closed/minimal itemsets among those satisfying a set of constraints is coNP-hard. It is a proof that it is not possible to solve this problem using a single CSP (unless coNP ⊆ NP). This validates "multi-shot" approaches [START_REF] Négrevergne | Dominance programming for itemset mining[END_REF]).

Theorem 5.7. Given a dataset D on a set of items I and a set C of user's constraints, deciding whether an itemset is maximal/closed among those satisfying C is coNP-complete.

Proof. Membership. Given an itemset P , a witness to its non maximality/closeness is an itemset P P that is frequent, satisfies C, and in the case of closeness has the same frequency as P . Checking that P is frequent and checking that it has the same frequency as P is linear in |D|. Checking that P satisfies C requires the polynomial check of the C constraints. Hence, the "no" answer admits a polynomial certificate, and so deciding maximality or closeness is in coNP.

Completeness. We reduce co3COL, which is coNP-complete, to the problem of deciding whether an itemset is maximal/closed. We want to decide whether a connected graph G = (V, E) is non colorable with three colors. We build the dataset D on the set I = (a 1 , . . . , a n , b 1 , . . . , b n , c) of items, where n = |V |. The pair (a i , b i ) of items will represent the vertex i in V . D contains the single transaction (1, . . . , 1) and the frequency threshold s is set to |T |/2.

As in all CP models for itemset mining, there is a Boolean variable for each item. The standard semantics is that x p = 1 if and only if the item p is in the itemset returned as solution.

For each edge (i, j) ∈ E, a quaternary constraint c(x a i , x b i , x a j , x b j ) is put in the set C of user's constraints. The tuples allowed by c(x a i , x b i , x a j , x b j ) are (0000), ( 0110), ( 0111), ( 1001), ( 1011), ( 1101), ( 1110). The assignments (01), (10), and (11) for the pair of variables (x a i , x b i ) represent the three colors for vertex i. c(x a i , x b i , x a j , x b j ) accepts the tuple (0000) plus the six tuples representing the six combinations of different colors for the pair of vertices (i, j). Hence, by construction, the tuple (0, . . . , 0) is solution, and, as soon as a variable x a i or x b i is set to 1, it forces all neighbors in E of vertex i to take another color than the color represented by the assignment of (x a i , x b i ). As a result, deciding whether the itemset {c} is maximal/closed among the itemsets satisfying C is equivalent to deciding whether there does not exist any superset of {c} satisfying C, which is equivalent to deciding whether G is non 3-colorable.

Theorem 5.8. Given a dataset D on a set of items I and a set C of user's constraints, deciding whether an itemset is minimal/generator among those satisfying C is coNP-complete.

Proof. (Sketch.) Membership is direct adaptation of the proof of membership in Theorem 5.7: A witness of non-minimality/non-generator of an itemset P is a subset that is infrequent (or has the same frequency in case of generator) and satisfies C, which is polynomial to check. Completeness is the dual of the reduction in Theorem 5.7. We reduce co3COL to the problem of deciding whether an itemset is minimal/generator. We build the dataset D on the set I = (a 1 , . . . , a n , b 1 , . . . , b n ) of items with the three transactions (1, 0, . . . , 0), (0, . . . , 0, 1) and (1, . . . , 1). The frequency threshold s is set to |T |/2. For each edge in the graph, we use again a quaternary constraint but the tuple (0000) is replaced by the tuple (1111) and the three colors are represented by the assignments (00), (01), and (10) instead of (01), (10), and (11). By construction, the tuple (1, . . . , 1) is solution and deciding whether the itemset (a 1 , . . . , a n , b 1 , . . . , b n ) is minimal/generator among the itemsets satisfying C is equivalent to deciding whether there does not exist any subset of (a 1 , . . . , a n , b 1 , . . . , b n ) satisfying C, which is equivalent to deciding whether G is non 3-colorable.

Corollary 5.1. Given a dataset D on a set of items I and a set C of user's constraints, finding an itemset that is maximal/closed/minimal/generator among those satisfying C is coNPhard.

Experiments

We made several experiments to compare our CP model MODEL D,s,b to the state of the art approaches.

Experimental Protocol

The implementation of MODEL D,s,b and its constraint propagators were carried out in the Oscar solver using Scala. 1 The code is publicly available. 2 All experiments were conducted on an Intel core i7, 2.2Ghz with a RAM of 8Gb and a timeout of one hour. MODEL D,s,b is denoted by CP4MFI (resp. CP4MII) when b = 1, i.e. mining MFIs (resp. b = 0, i.e. mining MIIs). We used the global constraint COVERSIZE to encode the constraint (3) in MODEL D,s,b . We enforce frequency by simply adding the constraint p ≥ s. As for the infrequency, we have assessed the quality of the COVERSIZE encoding of infrequency by comparing to the propagator of the new constraint INFREQUENT.

As an MFI is a closed itemset and an MII is a generator, we enhance propagation by adding, respectively, the global constraints COVERCLOSURE [START_REF] Schaus | Coversize: A global constraint for frequency-based itemset mining[END_REF]) and GENERATOR (Belaid et al. [2019b]). After a few preliminary tests, we decided to use smallest item frequency first as variable ordering heuristic and largest value first as value ordering heuristic. We compared CP4MFI to the FP-GROWTH [START_REF] Grahne | Efficiently using prefix-trees in mining frequent itemsets[END_REF]) specialized algorithm for extracting MFIs. We used for this the Borgelt's data mining platform. 3 We compared CP4MII to WALKY-G [START_REF] Szathmary | [END_REF]) for mining MIIs using the CORON data mining platform. 4 We selected several real-sized datasets from the FIMI repository. 5 A dataset is characterized by its name, the number of items |I|, the number of transactions |T | and its density ρ (see Table 4.1).

The Infrequency

We start by comparing the propagator of COVERSIZE for ensuring the infrequency with the propagator of the new global constraint INFREQUENT.

The number of infrequent itemsets is huge, hence we mine only non-zero infrequent itemsets in this experiment (infrequent itemsets that appear in at least one transaction). For each propagator and each selected instance, Table 5.2 reports the CPU time in seconds, the number of nodes, the number of fails and the number of infrequent itemsets (#Sol). An instance of a given dataset is characterized by its frequency threshold s (e.g., Zoo_2 denotes the instance of Zoo with s = 2).

We observe that the number of additional nodes explored by the propagator of COV-ERSIZE is marginal comparing to the propagator of INFREQUENT. But the CPU time is better using the propagator of COVERSIZE. Take for instance Vote_10 where the number of nodes/fails are reduced using the propagator of INFREQUENT. However, the use of the COVERSIZE propagator reduces the CPU time by 4 seconds on Vote_10. This is due to the fact that the propagator of COVERSIZE does not compute the cover of x -1 (1) ∪ x -1 ( * ) \ {i} in every node but only when U B(p) = |cover(x -1 (1) ∪ x -1 ( * ))| (see Section 3.5). In the next experiments we use the propagator of COVERSIZE for ensuring the infrequency. 

Mining Borders

This experiment compares CP4MFI to FP-GROWTH and CP4MII to WALKY-G for mining MFIs and MIIs. For each approach and each selected instance, Table 5.3 reports the CPU time and the number of MFIs/MIIs. 6 An instance of a given dataset is characterized by its frequency threshold s (e.g., Zoo_50 denotes the instance of Zoo with s = 50).

A first observation is that the specialized algorithms FP-GROWTH and WALKY-G follow a completely different approach to extract MFIs and MIIs whereas our CP model can mine a border or the other just by flipping a parameter. When mining MFIs, the main observation that we can draw from Table 5.3 is that, as expected, the specialized algorithm FP-GROWTH performs very well. However, CP4MFI is very competitive too, and even faster on one instance (Chess_160). As for MIIs, CP4MII outperforms WALKY-G in 14 instances out of 26. CP4MII reaches once the timeout of one hour. WALKY-G reaches the time out on two instances and an out of memory state on three instances. WALKY-G uses a hash structure for storing frequent generators. Maintaining this data structure can be very expensive, especially on dense datasets. For instance, on the very dense instance Chess_500, WALKY-G exhausts the 8Gb of memory to store the 50M frequent generators. On the moderately dense Connect_7000 WALKY-G needs to store more than 7.4M frequent generators to find the 165K MIIs in 163.25 seconds. On these two instances, CP4MII returns the whole set of MIIs in only 97.42 and 99.42 seconds, respectively. On sparse datasets, where we have few frequent generators, WALKY-G is very efficient. On the very sparse dataset T10, WALKY-G stores less than 50K frequent generators to extract the 698K MIIs of T10_50 in less than 5 seconds whereas CP4MII needs more than 7 minutes. 

Mining Constrained Borders

In many practical applications, the user asks for itemsets satisfying some additional constraints. We performed experiments that show the strength of our CP approach in taking into account user's constraints. We look for MFIs of minimim size lb and MIIs of maximum size ub. These two queries can easily be expressed in our CP model by adding the cardinality constraints i∈I x i ≥ lb to CP4MFI, and i∈I x i ≤ ub to CP4MII. FP-GROWTH includes a filtering step allowing us to specify the minimum size of extracted MFIs. However, WALKY-G does not provide such feature, and extracting MIIs under cardinality constraints is only possible via a post-processing step. Table 5.4 reports the results. We selected the instances having more than one million MFIs and/or MIIs in OOM= out of memory Table 5.3. For each selected instance, we increased lb (resp. decreased ub) and we report the CPU time, in seconds, according to the number of solutions.

The main observation on the performance of FP-GROWTH for extracting constrained MFIs is that its CPU time is almost constant. For instance, extracting more than 5M or just 10 MFIs on Chess_160 requires almost the same CPU time. This is explained by the fact that the cardinality constraint in FP-GROWTH has no pruning power. It is just used as a checker. On the contrary, when lb increases, CP4MFI removes more values thanks to constraint propagation, thus drastically reducing the search space. Take for instance Pumsb_17000 When lb = 22, CP4MFI extracts the 55K MFIs in more than 50 minutes whereas when lb increases to 30, CP4MFI returns the 21 remaining solutions in only 15 seconds. On instances with no solutions, such as Pumsb_17000 with lb = 35, CP4MFI proves the absence of solutions in one second whereas FP-GROWTH spends 157.28 seconds.

For WALKY-G, no results are reported because it already has an OOM or TO state before reaching post-processing step. The main observation that we can draw on the behavior of CP4MII is again the strong correlation between the increase of tightness of the cardinality constraint (that is, the decrease of ub) and the drop in CPU time needed to extract the constrained MIIs. The explanation for this good behavior of CP4MII is again the strength of constraint propagation to discard inconsistent values, thus reducing the search space. On Pumsb_17000, when ub decreases from 8 down to 1, CP4MII goes from 45 minutes down to 4.59 seconds to return the set of MIIs (1.3M MIIs for ub = 8 and 2K MIIs for ub = 1).

Conclusion

In this chapter, we have presented a CP model allowing the mining of MFIs and MIIs. For this, we have defined two new global constraints, namely FREQUENTSUBS and INFREQUENTSUPERS, with polynomial complete propagators. We have proposed a new implementation of the infrequency constraint. We have proven that the problem of mining MFIs or MIIs with constraints is coNP-hard, ruling out the hope for a single CSP solving this problem (unless coNP ⊆ NP). Nevertheless, our CP model is sound when the additional constraints are monotone on MFIs or anti-monotone on MIIs. Experiments showed that the CP approach is competitive with state of the art techniques for mining MFIs or MIIs and even better for mining MFIs or MIIs with additional constraints.

Conclusion

In this thesis, we have used constraint programming to model and solve some well known itemset mining problems. Our models offer the user the flexibility to express complex queries.

We first proposed a full constraint programming model for mining association rules. For this we have introduced a new global constraint CONFIDENT for the confidence of rules. We have proven that the problem of deciding if there exists a confident rule is NPcomplete. This implies that domain consistency on CONFIDENT is NP-hard. We thus, proposed two weak propagators. The first one uses a filtering rule. The second one uses a decomposition using existing constraints. We have shown that, in addition to constrained rules, our model is able to capture minimal non-redundant rules. For this, we used a new global constraint, GENERATOR, for mining itemsets that are generators. We have proposed a complete polynomial propagator for GENERATOR. We also studied the problem of constrained minimal non-redundant rules. We have shown that anti-monotone constraints on the body and monotone constraints on the head are safe.

We have also proposed a generic constraint programming model for mining borders of frequent itemsets. For this, we have introduced two new global constraints, FRE-QUENTSUBS for itemsets that have only frequent subsets and INFREQUENTSUPERS for itemsets that have only infrequent supersets. For both constraints, we proposed polynomial complete propagators. We have proven that mining constrained borders is coNPhard ruling out the possibility of a CSP solving this problem.

Experiments have shown the efficiency of our constraints and models. For mining classical patterns such as association rules, positive border, negative border, our CP approaches are not better than ad hoc methods. However, when it comes to mining patterns with additional constraints our CP approaches are flexible and faster thanks to constraint propagation. If we compare with declarative approaches, our CP approach for mining association rules outperforms the SAT approach. Despite the use of some constraint propagation to handle cardinality constraints, the SAT approach suffers from a memory issue when encoding the cover constraint into CNF. handled through a global constraint. A study of the level of consistency for the utility constraint is required to design a dedicated propagator. Existing CP models in itemset mining can then be extended to consider the utility constraint. Our model for mining association rules, for instance, can consider the utility constraint to mine rules that are of high utility in addition of being frequent and confident.

Preferences modeling

The user may ask for patterns with some preferences. These preferences can be quantitative according to some measure (e.g., a pattern is preferred to another according to its frequency) or qualitative according to a pairwise comparison between patterns (e.g., the pattern P 1 is preferred to P 2 ). Some of these preferences are not strong and can be violated. For instance, the user may prefer itemsets containing the item A unless all those itemsets are infrequent. These kind of preferences can be handled in constraint programming using soft constraints (i.e., weighted constraints) [START_REF] Meseguer | Soft constraints[END_REF]). Weighted Constraint Satisfaction Problem (WCSP) is a CSP where some of the constraints can be violated according to some degrees [START_REF] Bistarelli | Semiring-based csps and valued csps: Frameworks, properties, and comparison[END_REF], [START_REF] Larrosa | Solving weighted CSP by maintaining arc consistency[END_REF]). A generic CP model can be designed for itemset mining to take in consideration the soft constraints of the user in addition to the strong constraints.

Active mining using constraint acquisition

Active mining is the problem of mining patterns when we allow an interaction with the user [START_REF] Matthijs Van Leeuwen | Interactive data exploration using pattern mining[END_REF]). This problem can be divided into three main steps: (1) mine: where the computer extracts interesting patterns according to current information, (2) interact: where the computer interacts with the user who expresses her opinion on the extracted patterns, (3) learn: where the computer learns the user's constraints/preferences from the interaction. The three steps are repeated until the user is satisfied. In constraint programming the mining step can be handled by constraint solvers. The interaction and learning steps, on the other hand, are handled by constraint acquisition (Bessiere et al. [2017]). Constraint acquisition helps the user in the modeling process. Constraint acquisition interacts with the user via queries. Depending on the user's answer it learns (i.e., acquires) the constraints the user is interested to satisfy. The process is repeated until the user is satisfied. An architecture combining constraint solvers with constraint acquisition can be designed to actively mine patterns the user is interested in.
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 16 Figure 1.6 -Result of ZART on the dataset in Table 1.1 with s = 2 (Szathmary et al. [2007a]).

  Figure 1.7(a)). No frequent generator satisfies in addition c m , whereas the set of frequent generators among those satisfying c m are AB, BCE and BDE. The set of frequent closed itemsets is the same for both interpretations (see Figure 1.7(b)).
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 17 Figure 1.7 -Condensed representations with constraints

  Figure 2.1 -A search tree on Example 2.3

  Definition 3.2 (COVERSIZE). Let x be a vector of Boolean variables, p an integer variable and D a dataset. The global constraint COVERSIZE D (x, p) holds if and only if p = |cover(x -1 (1))|.

  and x -1 ( * ) = {A, C, E} and dom(p) = {0, 1, 2, 3, 4, 5}, i.e. LB(p) = 0 and U B(p) = 5. The rule 1 updates the upper-bound of p to |cover(B)|, i.e. U B(p) = 4. The rule 2 updates the lower-bound of p to |cover(ABCE)|, i.e. LB(p) = 2. Given the partial assignment x -1 (1) = {B}, x -1 (0) = {C}, x -1 ( * ) = {A, D, E}, U B(p) = 4 and LB(p) = 2, the rule 3 filters 1 from dom(x D ) because |cover(BD)| = 1 < LB(p). Given the partial assignment x -1 (1) = {B}, x -1 (0) = {C}, x -1 ( * ) = {A, D, E}, U B(p) = 2 and LB(p) = 2, the rule 4 filters 0 from dom(x D ) because U B(p) = f req(ABDE) = 2 and f req(ABE) = 3 > f req(ABDE).

  We can express this by the following model: COVERSIZE D (x, p) ∧ p < 3. The constraint p < 3 updates the upper-bound of p to 2, i.e. U B(p) = 2. With the partial instantiation x -1 (1) = {B}, x -1 (0) = {A} and x -1 ( * ) = {C} we have: U B(p) = 2 and LB(p) = |cover(BC)| = 1.

Definition 4 .

 4 1 (CONFIDENT constraint). Let x and y be two vectors of Boolean variables. Let D be a dataset and c a minimum confidence threshold. The constraint CONFIDENT D,c (x, y) holds if and only

Theorem 4 .

 4 1. Enforcing domain consistency on the constraint CONFIDENT D,c is NP-hard.
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 41 Figure 4.1 -Vote_22: ECLAT-Z vs SAT vs CP
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 5 3. Given a transaction dataset D of n items and m transactions, Algorithm 2 has an O(n 2 × m) time complexity.
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 55 Given a transaction dataset D of n items and m transactions, Algorithm 3 has an O(n 2 × m) time complexity.
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 5 3 (INFREQUENT). Let x be a vector of Boolean variables, s the frequency threshold and D a dataset. The global constraint INFREQUENT D,s (x) holds if and only
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  . s and confident w.r.t. c. Example 1.2. Consider the transaction dataset presented in Table 1.1. With s = 3 and c
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 12 Dataset with 5 items and 6 transactions (left) and associated prices for items(right) 

	a	
	trans.	Items
	t 1	

Table 1 .3 -Sequence database

 1 

	trans. Sequence
	t 1	ABCBC
	t 2	BABCA
	t 3	ACBB
	t 4	CAABACB
	t 5	

AC

Example 1.20. Table

1

.3 represents a sequence database where I = {A, B, C} and T = {1, 2, 3, 4, 5}. The sequence AC is a sub-sequence of BABCA. The cover of the sequence BCB is cover

Table 3 .1 -Dataset

 3 Example 3.7. On the dataset in Table3.1 we want to mine infrequent itemsets with s = 3.

	trans. Items
	t 1	A B	
	t 2	A	C
	t 3	B	
	t 4	A B C
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 41 Dataset Characteristics.

	Dataset	|T |	|I| |T | ρ(%)	Type of Data
	Zoo	101	36 16	44	Animals data
	Vote	435	48 16	33	Vote data
	Anneal	812	93 42	45	Anneal data
	Chess	3,196	75 37	49	Game steps
	Mushroom	8,124	119 23	19	Species of mushrooms
	Connect	67,557	129 43	33	Game steps
	T10	100,000	1,000 10	1	Synthetic dataset
	T40	100,000	1,000 40	4	Synthetic dataset
	Pumsb	49,046	2,113 74	3	Census data
	Retail	88,162 16,470 10 0.06 Retail market basket data
			T10 = T10I4D100K T40 = T40I10D100K
	All experiments were conducted on an Intel core i7, 2.2Ghz with a RAM of 8Gb and a
	timeout of one hour.				

Table 4 . 2 -

 42 CP vs TALKY-G for mining frequent generators (time in seconds)

	Instance	CP	TALKY-G	#F G
	Zoo_1	0.44	0.70	9,978
	Vote_40	0.96	0.31	42,793
	Vote_4	3.80	0.88	258,017
	Chess_1918	2.90	0.42	98,419
	Chess_959	152.78	29.29	5,601,829
	Chess_640	968.60	333.58	25,031,186
	Anneal_244	5.93	1.38	343,272
	Anneal_41	35.93	25.56	3,510,475
	Mushroom_82	2.73	0.45	69,966
	Mushroom_9	8.43	1.28	234,231
	Connect_47290	7.52	0.48	35,876
	Connect_20268 114.39	5.24	460,357
	T10_500	1.46	1.95	1,071
	T10_10	324.64	78.12	307,467
	T40_5000	0.47	0.53	317
	T40_1000	30.74	3.99	65,237
	Pumsb_39237	24.39	1.36	67,836
	Pumsb_29428	1789.20	72.32	2,853,042
	Retail_45	22.39	45.54	19,115
	Retail_9	161.91	114.22	191,266

Table 4 .

 4 3 -DECOMPOSITION vs F-RULE (time in seconds)

	Instances	c(%)	DECOMPOSITION T ime #N ode	T ime	FILTER #N ode
		70	28.31 20,113,200 35.68 20,113,200
	Vote_22	90	6.43	4,167,824	9.48	4,167,968
		100	2.18	709,352	2.32	710,628
		70	8.02	2,934,558	16.28 2,934,628
	Mushroom_1500	90	6.11	2,054,332	11.15 2,054,428
		100	4.23	1,362,110	8.32	1,362,318
		70	16.40	323,382	39.77	323,382
	T40_1300	90	13.16	218,690	31.83	218,734
		100	8.21	18,416	21.06	20,062

Table 4 . 4 -

 44 Variable ordering heuristics (time in seconds)

	Instances	x, y, z	x, z, y	z, x, y	z, y, x	y, x, z	y, z, x
	Zoo_6	43.45	47.86	110.78	116.46	122.23	120.24
	Vote_22	6.43	7.74	20.08	19.74	50.25	48.66
	Anneal_650	208.87	193.96	224.82	275.86	310.43	344.83
	Chess_1918	68.74	71.10	112.33	117.18	153.80	207.20
	Mushroom_813	50.67	54.90	108.02	112.21	147.13	146.76
	Connect_90	125.48	127.90	146.39	143.35	269.56	255.72
	T10_20	63.35	62.52	82.08	82.72	340.66	278.65
	T40_1000	134.64	134.23	173.43	167.53	410.14	386.49
	Pumsb_39237 1567.72 1552.79 1627.22 1655.04 2522.13 2354.25
	Retail_89	58.76	57.69	51.14	50.85	108.68	103.93
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 45 ECLAT-Z vs SAT vs CP for extracting ARs (time in seconds)

	Instances	ECLAT-Z	SAT	CP	#TOT
	Zoo_51	0.07	0.02	0.04	292
	Zoo_31	0.40	0.92	0.82	198,971
	Zoo_5	24.99	106.52	59.09 30,792,317
	Vote_153	0.04	0.32	0.05	244
	Vote_44	1.81	255.52	1.79	419,204
	Vote_22	5.66 1054.81	6.43	2,075,212
	Anneal_780	0.08	0.19	0.06	798
	Anneal_731	0.28	1.11	1.17	174,710
	Anneal_650	93.96	467.83	208.87 84,589,753
	Chess_3037	0.08	0.56	0.07	474
	Chess_2557	0.62	5.97	2.16	349,298
	Chess_1918	15.98	260.21	68.74 17,522,446
	Mushroom_4062	0.10	3.78	0.10	469
	Mushroom_1747	0.59	51.87	1.43	112,826
	Mushroom_813	27.81	686.39	50.67 14,331,056
	Connect_66882	0.64	26.90	0.04	70
	Connect_63504	0.99	95.97	7.70	201,928
	Connect_60802	3.03 1126.91	125.48	3,640,704
	T10_500	0.29	TO	2.71	532
	T10_100	1.63	TO	9.92	160,171
	T10_20	15.12	TO	63.35	1,303,932
	T40_1600	1.35	TO	5.36	648
	T40_1300	1.73	TO	13.16	101,588
	T40_100	TO	TO	TO	> 7.10 9
	Pumsb_47085	1.31	OOM	0.11	338
	Pumsb_43651	2.07	OOM	8.39	135,677
	Pumsb_39237	34.35	OOM 1567.72 19,749,382
	Retail_441	1.59	OOM	0.52	37
	Retail_265	1.74	OOM	2.27	75
	Retail_89	2.53	OOM	58.76	255
		TO: timeout OOM: out-of-memory

Table 4 .

 4 6 -ECLAT-Z vs SAT vs CP for extracting MNRs (time in seconds)

	Instances	ECLAT-Z	SAT	CP	#TOT
	Zoo_51	0.04	0.03	0.06	177
	Zoo_31	0.39	0.08	0.17	2,261
	Zoo_5	8.21	0.47	0.72	13,987
	Vote_153	0.05	0.38	0.08	244
	Vote_44	10.95	29.08	2.27	259,387
	Vote_22	47.40	49.14	3.56	505,030
	Anneal_780	0.05	0.39	0.03	104
	Anneal_731	0.18	0.60	0.22	2,597
	Anneal_650	5.70	1.48	1.05	47,220
	Chess_3037	0.09	1.90	0.08	536
	Chess_2557	0.92	7.64	1.82	191,656
	Chess_1918	70.94	254.87	28.28 4,633,764
	Mushroom_4062	0.09	30.57	0.06	109
	Mushroom_1747	0.42	72.88	0.27	2,215
	Mushroom_813	3.45	205.46	0.87	11,405
	Connect_66882	0.62	828.00	0.07	70
	Connect_63504	1.10	863.17	3.96	51,754
	Connect_60802	7.28 1107.33	19.82	322,838
	T10_500	0.53	OOM	5.96	532
	T10_100	42.58	OOM	24.62	147,531
	T10_20	1131.39	OOM 285.70	256,896
	T40_1600	3.54	OOM	14.01	648
	T40_1300	8.97	OOM	26.86	101,588
	T40_100	TO	OOM	TO	> 10 9
	Pumsb_47085	1.44	OOM	0.19	277
	Pumsb_43651	1.99	OOM	8.47	69,222
	Pumsb_39237	71.96	OOM 370.58 3,668,125
	Retail_441	2.07	OOM	3.47	37
	Retail_265	2.01	OOM	10.64	75
	Retail_89	12.67	OOM 156.86	250
		TO: timeout OOM:	

out-of-memory 4.8.8 Mining Constrained Association Rules.
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 47 ECLAT-Z-PP vs SAT vs CP on Q 1 (time in seconds)

	Instances	|F| |M| ECLAT-Z-PP	SAT	CP #TOT
	Zoo_5	11	11	535.69	0.02 0.02	15
	Vote_22	7	7	38.57	0.16 0.04	14
	Anneal_650	12	12	1454.23	0.19 0.01	21
	Chess_1918	9	9	292.59	0.54 0.07	32
	Mushroom_813 10	10	263.93 19.82 0.02	21
	Connect_60802 9	9	61.04 24.22 0.02	19
	T10_20	10	10	84.04	TO 0.02	0
	T40_100	10	10	TO	TO 0.06	19
	Pumsb_39237	12	12	765.67 OOM 0.02	23
				TO: timeout OOM: out-of-memory

Table 4 . 8 -

 48 ECLAT-Z-PP vs SAT vs CP on Q 2 (time in seconds)

	Instances	ub lb ECLAT-Z-PP	SAT	CP #TOT
	Zoo_5	2 11	479.26	3.92 0.36	27
	Zoo_5	1	9	491.48	0.17 0.06	12
	Vote_22	4	8	37.69 282.25 0.66	13
	Vote_22	1	2	38.49	1.41 0.05	23
	Anneal_650	2 13	1567.48	1.14 0.26	76
	Anneal_650	1 12	1622.19	0.53 0.15	73
	Chess_1918	2	9	280.60	2.17 0.20	20
	Chess_1918	1	8	284.22	1.07 0.08	24
	Mushroom_813	1 11	249.00	47.52 0.07	14
	Connect_60802 1 11	61.80	30.41 0.26	12
	T10_20	1 11	84.47	TO 5.44	0
	T40_100	1 11	TO	TO 8.33	39
	Pumsb_39237	1 12	741.49	OOM 0.34	32
				TO: timeout OOM: out-of-memory

Table 4 . 9 -

 49 ECLAT-Z-PP vs SAT vs CP on Q 3 (time in seconds)

	Instances	v ub lb ECLAT-Z-PP	SAT	CP #TOT
	Zoo_5	15 3 12	479.92	6.61 0.16	17
	Vote_22	13 5	7	38.49 756.95 1.50	18
	Anneal_650	13 1 11	1542.12	0.79 0.13	69
	Chess_1918	12 3	9	280.60	6.63 0.53	14
	Mushroom_813 11 1 10	250.56	48.97 0.05	77
	Connect_60802 12 1 11	61.22	24.22 0.23	12
	T10_20	18 1 14	83.96	TO 3.46	0
	T40_100	12 1 11	TO	TO 4.37	37
	Pumsb_39237	13 1 12	761.31	OOM 0.34	30
				TO: timeout OOM:	

out-of-memory 4.8.9 Mining Constrained MNRs.

  

Table 4 .

 4 10 -ECLAT-Z-PP vs SAT vs CP on Q 4 (time in seconds)

	Instances	ub lb ECLAT-Z-PP	SAT	CP #TOT
	T40_100	1 11	TO OOM 9.53	33
	T40_100	1 12	TO OOM 9.45	2
	T40_100	1 13	TO OOM 9.02	0
	Pumsb_39237 1 12	157.70 OOM 0.24	12
	Pumsb_39237 1 13	154.24 OOM 0.28	2
	Pumsb_39237 1 14	154.01 OOM 0.35	0
			TO: timeout OOM: out-of-memory

  t. s; (2) is a global constraint that holds if and only if the itemset x -1 (1) has only infrequent supersets w.r.t. s; (3) the Boolean parameter b reifies the global constraint FREQUENT. FREQUENT D,s holds if and only if x -1 (1) is frequent w.r.t. s. We prove that MODEL D,s,b is a correct model for mining MFIs or MIIs.Theorem 5.1. The set of solutions to MODEL D,s,b corresponds to the set of MFIs if b = true, the set of MIIs otherwise. We now prove that a solution of MODEL D,s,b , can only be an MFI or an MII depending on the value of b. A solution of MODEL D,s,b can only be frequent (i.e., b = true) or infrequent (i.e., b = f alse). If it is frequent then it is an MFI (see Definition 1.1). Otherwise it is an MII (see Definition 1.4).The powerset lattice of the dataset in Table 1.1 with borders of FREQUENTSUBS and INFREQUENTSUPERS (s = 3).
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	Figure 5.1 -								
	Proof. We first prove that MFIs and MIIs always satisfy constraints (1) and (2). All super-
	sets of an MFI are infrequent, thus satisfying (2). Because an MFI is frequent, all its proper
	subsets are frequent, thus satisfying (1). An MII has only frequent subsets, thus satisfy-
	ing (1). Because an MII is infrequent, it has only infrequent supersets, thus satisfying (2).
	Hence, all MFIs and all MIIs satisfy constraints (1) and (2).	

  In this section we present the new global constraint INFREQUENTSUPERS. INFREQUENT-SUPERS is used to mine itemsets that have only infrequent supersets. (INFREQUENTSUPERS). Let x be a vector of Boolean variables, s a frequency threshold and D a dataset. The global constraint INFREQUENTSUPERS D,s (x) holds if and only if ∀P x -1 (1), f req(P ) < s. Example 5.4. Consider the dataset in Table 1.1 with s = 3. INFREQUENTSUPERS D,3 ([1, 1, 1, 0, 1]) is satisfied because ABCE has only infrequent supersets w.r.t. s. INFREQUENTSUPERS D,3 ([1, 0, 0, 0, 1]) is not satisfied because AE has a frequent superset, i.e. ABE.

	Definition 5.2

Table 5 .1 -Dataset

 5 QUENTSUBS nor the propagator of INFREQUENTSUPERS can filter any value. However, value 1 for dom(x B ) is not domain consistent. That is because with x B = 1 we get the partial assignment x -1

	trans.	Items
	t 1	A B		E
	t 2	B	D
	t 3	B C
	t 4	A B	D
	t 5	A	C
	t 6	B C
	t 7	A	C
	t 8	A B C	E
	t 9	A B C

Table 5 .

 5 2 -COVERSIZE vs INFREQUENT for mining infrequent itemsets (time in seconds)

	Dataset	s		COVERSIZE		INFREQUENT		#Sol
	|I| × |T |								
	ρ(%)		Nodes	Fails	Time(s)	Nodes	Fails	Time(s)	
	Zoo	2	2,604,234	427,622	2.11	2,117,054 184,032	2.07	874,496
	36 × 101	6	3,738,154	222,786	2.73	3,353,040	30,229	2.78	1,646,292
	44%	10 3,817,790	109,687	2.86	3,613,174	7,379	3.40	1,799,209
	Vote	2 17,774,002 1,431,723	12.61	16,366,434 727,940	14.64	7,455,279
	48 × 435	6 21,229,000 727,822	14.57	20,219,334 222,989	18.51	9,886,679
	33%	10 21,465,596 455,058	14.61	20,817,530 131,025	18.63	10,277,741

Table 5 .

 5 3 -FP-GROWTH vs CP4MFI for mining MFI and WALKY-G vs CP4MII for mining MIIs (time in seconds)

	Dataset |I| × |T |	s		Mining MFIs			Mining MIIs
	ρ(%)		(a) CP4MFI	#MFIS		(b) CP4MII	#MIIS
	Zoo	50	0.01	0.03	32		0.12		0.04	111
	36 × 101	9	0.01	0.08	200		0.10		0.13	875
	44%	1	0.01	0.09	59		0.27		0.12	1,071
	Vote	150	0.01	0.04	75		0.19		0.10	479
	48 × 435	5	0.08	0.77	13,787		0.85		1.40	37,526
	33%	1	0.13	0.47	342		1.26		1.24	32,067
	Anneal	700	0.01	0.05	65		0.26		0.08	303
	93 × 812	100	0.42	1.10	15,889		9.59		2.06	77,119
	45%	50	0.61	1.13	14,296	23.48		3.41	86,783
	Chess 75 × 3, 196 49%	2,500 1,000 500	0.01 1.04 16.60	0.10 4.34 25.66	286 114,382 952,812	0.10 23.14 OOM		0.13 8.38 97.42 1,353,344 511 152,316
		160	233.78	127.30 5,784,232	OOM	923.84 9,364,262
	Mushroom	4,000	0.01	0.03	12		0.31		0.06	145
	119 × 8, 124	40	0.07	1.09	12,010		0.86		2.33	48,111
	19%	4	0.24	1.56	39,416		1.95		4.58	49,046
	Connect 129 × 67, 557 33%	55,000 7,000 2,000	0.01 2.60 24.40	0.51 69.03 342.95	594 123,345 163.25 0.34 893,826 TO	0.48 99.42 885.99 1,180,278 891 165,198
		676	102.90	800.65 3,283,735		TO 3541.77 4,221,496
	T10	5,000	0.01	0.19	10		0.13		4.59	905
	1, 000 × 100, 000	1,000	0.12	207.89	307		2.33	373.01	344,651
	1%	50	0.35	255.18	12,062		4.27	472.82	698,556
	Pumsb	48,000	0.01	0.09	3		0.25		10.18	2,115
	2, 113 × 49, 046	32,000	0.21	470.80	17,791	30.10		48.55	57,425
	3%	17,000 145.96	TO 2,403,260	OOM		TO > 3 × 10 6
					(a): FP-GROWTH	(b): WALKY-G
			T10 = T10I4D100K	TO= timeout	OOM= out of memory

Table 5 . 4 -

 54 FP-GROWTH vs CP4MFI for mining constrained MFI and WALKY-G vs CP4MII for mining constrained MIIs (time in seconds)

	Instance	lb	Mining constrained MFIs (a) CP4MFI #SOL ub	Mining constrained MIIs (b) CP4MII #SOL
		25	17.97	0.30	0	1 OOM	0.08	19
	Chess_500	24 21	17.60 16.60	0.72 1.65	2 2,091	3 OOM 5 OOM	0.41 8.88	1,962 31,591
		17	17.86	10.58 171,567	7 OOM	16.58	224,172
		29 201.55	1.23	0	1 OOM	0.03	9
	Chess_160	28 224.31 26 226.77	1.73 3.51	10 1,527	3 OOM 4 OOM	0.62 1.31	2,384 13,487
		23 219.82	16.08 132,814	6 OOM	17.44	186,653
		40 117.87	5.96	0	1	TO	0.15	20
	Connect_676	33 111.95 32 109.07	69.00 117.17	266 21,788	2 4	TO TO	2.53 22.81	1,612 33,742
		31 125.62	171.04 157,793	5	TO	119.42	144,007
		35 157.28	1.16	0	1 OOM	4.59	2,033
	Pumsb_17000	30 157.58 26 153.33	14.96 148.26	21 1,663	3 OOM 6 OOM	11.94 254.58	5,721 166,178
		22 154.52 3019.25	55,018	8 OOM 2702.20 1,388,040
					(a): FP-GROWTH	(b): WALKY-G
					TO= timeout	

In this manuscript we focus on declarative approaches that are based on constraints (CP and SAT).

fimi.ua.ac.be/data/

fimi.ua.ac.be/data/

bitbucket.org/oscarlib/oscar/

gite.lirmm.fr/belaid/cp4ar

coron.loria.fr

This number is computed by releasing the timeout.
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Proof. We first prove that the value 0 for a variable x i such that i ∈ x -1 ( * ) always belongs to a solution of the constraint GENERATOR, and so cannot be pruned by domain consistency. Suppose i ∈ x -1 ( * ). If x -1 (1) is a generator, removing the value 0 from dom(x i ) increases x -1 (1) to x -1 (1) ∪ {i}, and then x -1 (1) cannot be returned as a generator, which contradicts the hypothesis. Suppose now that x -1 (1) is not a generator. We know from Proposition 1.2 that for any Q

x -1 (1), Q is not a generator. Thus, x -1 (1) ∪ {i} cannot belong to any generator, and value 0 cannot be pruned from dom(x i ).

We now prove that Algorithm 1 prunes value 1 from dom(x i ) exactly when i cannot belong to a generator containing x -1 (1). Suppose value 1 of x i is pruned by Algorithm 1. This means that one of the tests in line 8 or 11 was true, that is, there exists a sub-itemset of x -1 (1) ∪ {i} with the same frequency as x -1 (1) ∪ {i}. Thus, by definition, x -1 (1) ∪ {i} does not belong to any generator. Suppose now that value 1 of x i is not pruned. From the lines 8 and 11, we deduce that there does not exist any subset of x -1 (1) ∪ {i} with the same frequency as x -1 (1) ∪ {i}. Thus x -1 (1) ∪ {i} is a generator and value 1 of x i is domain consistent. Proof. Computing the size of the cover of an itemset is in O(n × m). Line 5 is called at most n times, leading to a time complexity of O(n 2 × m). The test at line 8 is done at most n times. The cover of x -1 (1) ∪ {i} is computed in O(m) thanks to cover. The test at line 11 is done at most n 2 times. The covers of x -1 (1) ∪ {i} and x -1 (1) ∪ {i} \ {j} at line 11 are computed in O(m) thanks to the cover and cov data structures. Thus, the time complexity of lines 7-12 is bounded above by O(n 2 × m). As a result, Algorithm 1 has an O(n 2 × m) time complexity.

Algorithm 2: Propagator for FREQUENTSUBS 1 In: s: frequency threshold; 2 InOut: x = {x 1 . . . x n }: Boolean item variables;

) is satisfied because BE has only frequent subsets w.r.t. s. FREQUENTSUBS D,3 ([1, 0, 0, 1, 0]) is not satisfied because AD has an infrequent subset, i.e.

D.

Algorithm. The propagator for the global constraint FREQUENTSUBS is presented in Algorithm 2. Algorithm 2 takes as input the variables x and the frequency threshold s. Algorithm 2 starts by computing the cover of the itemset x -1 (1) and stores it in cover (line 4). Then, for each item j ∈ x -1 (1), Algorithm 2 computes the cover of the subset x -1 (1) \ {j}, and stores it in cov[j] (line 6). If x -1 (1) \ {j} is infrequent then x -1 (1) is not a solution and we return a failure (line 7). Algorithm 2 must then remove items i that cannot belong to a solution containing x -1 (1). To do that, we first test if the itemset x -1 (1) is infrequent (line 8). If so, we remove 1 from dom(x i ) for all i ∈ x -1 ( * ) (lines 9-10) because the itemset x -1 (1) ∪ {i} has an infrequent subset (x -1 (1)) for every i in x -1 ( * ). Otherwise, for every item i in x -1 ( * ) we test if the itemset x -1 (1) ∪ {i} is infrequent (line 12). If so, it could have infrequent subsets. Thus, for every item j in x -1 (1), we test if the size of the cover of x -1 (1) ∪ {i} \ {j} (i.e., cov[j] ∩ cover(i)) is less than s (line 14). If so, we remove i from the possible items, that is, we remove 1 from dom(x i ) and break the loop (line 15).

Example 5.3. Consider the dataset in Table 1.1 with s = 3. Given the partial assignment x -1 (1) = {D}, x -1 (0) = ∅ and x -1 ( * ) = {A, B, C, E}, Algorithm 2 filters 1 from dom(x A ) because the itemset AD has an infrequent subset, i.e. D (f req(D) = 1 < s).

Theorem 5.2. The propagator in Algorithm 2 enforces domain consistency on the constraint FREQUENTSUBS. 

Algorithm. The propagator for the global constraint INFREQUENTSUPERS is presented in Algorithm 3. Algorithm 3 takes as input the variables x and the frequency threshold s. Algorithm 3 starts by computing cover, the cover of the largest possible itemset, x -1 (1) ∪ x -1 ( * ) (line 4). If such an itemset has a frequent superset (line 7) then no itemset containing x -1 (1) can be a solution and we return failure (line 8). Algorithm 3 must then remove value 0 from dom(x i ) if the absence of the item i can lead to an itemset that has a frequent superset. To do that, for every free item i (line 9), Algorithm 3 computes cover2, the cover of the largest itemset not containing the item i, i.e. x -1 (1) ∪ x -1 ( * ) \ {i} (line 10). If x -1 (1) ∪ x -1 ( * ) \ {i} is frequent (line 11), it could have a frequent superset. Thus, for every item j in x -1 (0)∪{i} we test whether the itemset x -1 (1)∪x -1 ( * )\{i}∪{j} is frequent (line 13). If so, we remove 0 from dom(x i ) and break the loop (line 14).

Example 5.5. Consider the dataset in Table 1.1 with s = 3. Given the partial assignment Proof. We first prove that if INFREQUENTSUPERS admits a solution, x -1 (1) ∪ x -1 ( * ) is necessarily one of them. Suppose there is a solution and x -1 (1) ∪ x -1 ( * ) is not one of them. This means that there exists a subset of x -1 (1) ∪ x -1 ( * ) which has all its supersets infrequent. x -1 (1) ∪ x -1 ( * ) is one of these supersets. Thus, all supersets of x -1 (1) ∪ x -1 ( * ) are infrequent and x -1 (1) ∪ x -1 ( * ) is solution too, which contradicts the assumption. We now prove that Algorithm 3 returns failure if and only if INFREQUENTSUPERS does not admit Chapter 0. Conclusion

We believe that constraint programming is a powerful paradigm that can be used to solve complex data mining problems. In the following we summarise some perspectives related to our work.

Short term perspectives

Extend/adapt our model for mining association rules Association rules mining aims at detecting interesting correlations between items. Measuring this correlation remains a bottleneck nowadays. In some real world problems, the frequency and the confidence cannot fulfill all the user needs. Our constraint programming model for mining association rules can be extended to consider more complex statistical measures that describe the user's request best. Our CP model for mining association rules can be extended/adapted to mine other type of rules. Rare association rules, for instance, can be mined by just replacing the frequency constraint with the infrequency constraint in our model for mining association rules.

A global constraint with the confidence as variable

Our global constraint CONFIDENT can be revised to consider the confidence as a variable. In this case, the constraint CONFIDENTVAR D (x, y, var) is satisfied if and only if var = conf (x -1 (1) → y -1 (1)). The benefit of such constraint is the possibility to easily express constraints on the confidence (e.g., mine rules with a confidence less than a given threshold).

Long term perspectives

We can distinguish three main points that can be tackled as future works.

Constraint programming for high utility itemset mining

The frequency being monotonic offers the flexibility in designing algorithms for mining frequent itemsets. This is not true on the utility which is not monotonic. In itemset mining, high utility itemset mining consists in finding itemsets according to some given utilities (e.g., item prices). The itemset is considered to be of high utility if its utility is no less than a given threshold. Recently, the problem of high utility itemset mining is in the spotlight. Because the utility is not monotonic, it makes if difficult to design an efficient algorithm to handle the utility. In constraint programming the utility constraint can be