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Interoperability and Upgradability Improvement for

Context-Aware Systems in Agriculture 4.0

Abstract

The next evolution of agriculture is Agriculture 4.0. Agriculture 4.0 is about using

technologies of the Internet of Things (IoT) and Context-Aware Systems (CASs) to

increase the performance of farming activities. A CAS can react automatically and

adequately to the environment based on its context. Applying CASs in agriculture

can reduce farm labor and increase the precision of farming activities. However, it

encounters two challenges specific to agriculture. The first challenge relies on the

need to upgrade a CAS regularly with new computing devices or software programs

without changing its functionality. Indeed, natural factors, such as violent weather and

wild animals, can damage the computing devices located on farmland. Moreover, after

each farming season, farmers may need to upgrade their system with new computing

devices and software programs. The second challenge is the data heterogeneity

generated from a CAS. In agriculture, various phenomena involve the need to have

different sensor devices that make numerous types of measurements and produce

heterogeneous data. Representing all of these heterogeneous data is necessary for

the interoperability of different computing devices in a CAS or the interoperability

between different CASs in the IoT ecosystem. This thesis proposes three contributions.

The first contribution addresses the first challenge. It is a new architecture based

on the microservice mindset that allows system developers to focus on the services’

goals rather than the computing devices and software programs of a CAS. This

new architecture is called the stack of services for CASs. The second contribution

addresses the second challenge. It is a new ontology for CASs named CASO. The

ontology provides a vocabulary to model heterogeneous data generated from CASs

and embodies a mechanism to make rules for reasoning. The third contribution is

to build a decision support system (DSS) for the irrigation CAS in the research

unit TSCF, INRAE. The design of the DSS relies on the stack of services for CASs.

Moreover, the DSS uses a new ontology called IRRIG, a specialization of CASO

for irrigation. The DSS is an automation version of the manual irrigation method

IRRINOV R©. All the guidelines for farmers in IRRINOV R© are transformed into rules

for reasoning. The contributions of this thesis are going to be applied to build a smart

irrigation CAS deployed in AgroTechnoPôle, located in Montoldre, France.

Keywords: Agriculture 4.0, Internet of Things, Context-Aware System,

Microservice, Stack of Services, Wireless Sensor Network, Ontology, Rules-based

inference, Decision Support System.
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Amélioration de l’Interopérabilité et de l’Évolutivité pour les

Systèmes Contextuels dans l’Agriculture 4.0

Résumé

La prochaine évolution de l’agriculture est l’Agriculture 4.0. Dans ce domaine, les
nouvelles technologies de l’Internet des Objets (IdO) et les systèmes contextuels sont
utilisés pour améliorer les performances des activités agricoles. Un système contextuel
est un système capable de réagir automatiquement et adéquatement en fonction
du contexte. Le fait d’utiliser un tel système permet non seulement de réduire la
charge de travail des agriculteurs, mais aussi d’améliorer la précision des activités
agricoles. Cependant, leur emploi dans le monde rencontre deux obstacles spécifiques.
Le premier obstacle est le besoin de mettre régulièrement à jour le système contextuel
sans changer sa fonctionnalité. Ce besoin s’appuie sur le fait que l’agriculture est une
activité saisonnière, avec un lieu de travail externe, ce qui implique plusieurs facteurs
imprévisibles qui influent sur les aspects logiciels et matériels du système. Le deuxième
obstacle est l’hétérogénéité de données générées à partir du système contextuel. Dans
le domaine agricole, on trouve des capteurs variés observant des phénomènes variés
et produisant des données également variées. Représenter ces données est un fait
nécessaire pour l’interopérabilité des dispositifs à l’intérieur un système contextuel,
ou pour l’interopérabilité de plusieurs systèmes contextuels différents à l’intérieur
l’écosystème de l’IdO. Cette thèse propose trois contributions. La première est une
architecture s’appuyant sur le principe de microservice. Cette architecture est une
pile de services pour les systèmes contextuels, qui permet aux développeurs d’un
système de se focaliser sur les objectifs des services plutôt que leurs aspects logiciels
et matériels. La deuxième contribution est une ontologie, intitulé CASO, dédiée
aux systèmes contextuels. Cette ontologie fournit un vocabulaire pour modéliser les
données générées par le système contextuel. De plus, elle inclut un mécanisme pour
créer des règles de raisonnement. La troisième contribution est un système d’aide à
la décision (SAD) pour l’irrigation automatique, développé à partir d’IRRINOV R©,
une méthode d’irrigation manuelle. Il fait partie d’un système contextuel dédié à
l’irrigation de l’équipe TSCF d’INRAE. Ce SAD est basé sur la pile de services pour
les systèmes contextuels, et utilise l’ontologie IRRIG, une spécialisation de CASO
dédiée à l’irrigation. Les trois contributions vont être appliquées dans un système
contextuel d’irrigation déployé dans l’AgroTechnoPôle, situé à Montoldre, en France.

Mots-clefs : Agriculture 4.0, Internet des Objets, Système contextuel,
Microservice, Pile de Services, Réseaux de Capteurs Sans Fils, Ontologie, Inférence à
base de Règles, Système d’Aide à la Décision.
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Nâng Cao Khả Năng Tương Tác và Nâng Cấp của Hệ Thống

Phản Ứng Theo Hoàn Cảnh trong Nông Nghiệp 4.0

Tóm Tắt

Nông Nghiệp 4.0 sử dụng các công nghệ trong Internet kết nối vạn vật và hệ thống

phản ứng theo hoàn cảnh nhằm nâng cao hiệu suất các hoạt động nông nghiệp. Hệ

thống phản ứng theo hoàn cảnh là một hệ thống phản ứng một cách tự động và phù

hợp dựa trên hoàn cảnh thực tế. Hệ thống này giúp giảm bớt công việc của nông dân

cũng như tăng độ chính xác trong các hoạt động nông nghiệp. Tuy nhiên, do tính chất

đặc thù của nông nghiệp, việc sử dụng hệ thống này đối mặt với hai khó khăn. Khó

khăn thứ nhất là một hệ thống trong nông nghiệp cần được nâng cấp thường xuyên.

Thật vậy, các thiết bị trong hệ thống này đặt ngoài trời thường dễ bị ảnh hưởng do

tác động bên ngoài, chúng có thể cần được thay thế hoặc nâng cấp. Hơn nữa, nông

nghiệp là một hoạt động thời vụ, do đó sau mỗi vụ mùa một hệ thống trong nông

nghiệp có thể được nâng cấp theo yêu cầu từ các nhà quản lý nông nghiệp. Khó khăn

thứ hai là sự đa dạng của dữ liệu sinh ra trong nông nghiệp. Các hiện tượng trong

nông nghiệp rất đa dạng và chúng thường được quan sát bởi các thiết bị cảm biến

khác nhau. Các thiết bị cảm biến này sinh ra các loại dữ liệu khác nhau. Việc biểu

diễn tất cả dữ liệu nhằm phục vụ cho sự tương tác giữa các thiết bị trong một hệ

thống phản ứng theo hoàn cảnh, cũng như giữa các hệ thống riêng biệt, tương đối

phức tạp. Luận án này giới thiệu ba đóng góp khoa học. Đóng góp thứ nhất là một

mô hình thiết kế cho hệ thống phản ứng theo hoàn cảnh dựa trên các dịch vụ tinh

giản. Một hệ thống phản ứng theo hoàn cảnh được thiết kế dựa trên các dịch vụ

tinh giản có thể tập trung vào mục đích của các dịch vụ thay vì phần cứng hay phần

mềm của hệ thống, qua đó việc nâng cấp hệ thống sẽ bớt phụ thuộc vào thiết bị và

chương trình phần mềm. Đóng góp thứ hai là một bản thể học cho hệ thống phản

ứng theo hoàn cảnh nói chung với tên gọi CASO. Bản thể học này cho phép biểu diễn

tất cả dữ liệu sinh ra từ một hệ thống phản ứng theo hoàn cảnh. Ngoài ra, bản thể

học này hàm chứa một cơ chế cho phép người dùng viết các luật cho máy suy luận.

Đóng góp thứ ba là một hệ thống ra quyết định tưới tiêu tự động được dịch từ một

phương pháp tưới tiêu thủ công cho nông dân với tên gọi IRRINOV R©. Hệ thống ra

quyết định này sử dụng bản thể học IRRIG, một trường hợp đặc thù phục vụ cho

tưới tiêu phát triển từ CASO. Đóng góp từ luận án này được sử dụng thực tiễn trong

khu nông nghiệp công nghệ cao có tên AgroTechnoPôle, Montoldre, cộng hòa Pháp.

Từ khóa: Nông nghiệp 4.0, Internet kết nối vạn vật, Hệ thống phản ứng theo

hoàn cảnh, Dịch vụ tinh giản, Ngăn xếp các dịch vụ tinh giản, Mạng cảm ứng không

dây, Bản thể học, Máy suy luận, Hệ thống ra quyết định.
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Glossary

Adaptive Context-Aware System Context aware system that can modify its
behaviour according to changes in the application’s context (Efstratiou, 2004).

Aggregate Data Data get from an aggregation. Aggregation is a computation of
the function of a computer program.

Clean Data the data that is processed so that it can be used correctly by one or
several applications of an information system. The data before the processes to
become clean data is raw data.

Cloud Computing All data must be uploaded to centralized servers, and after
computation, the results need to be sent back to devices (Yu et al., 2018).

Computation An action of calculation realized by an electronic device. Three
computation types considered in this dissertation are measurement, aggregation,
and deduction.

Computing Device An electronic device with processing and storage capabilities,
for example, a computer, a mobile phone, and an embedded device.

Context Any information that can be used to characterise the situation of an
entity (Efstratiou, 2004). Context of an information system is a set of entities
characterised by their state, plus all information that can help to derive any
state changes of these entities (Sun et al., 2016).

Context-Aware System Uses context to provide relevant information and services
to users, where relevance depends on the user’s task (Abowd et al., 1999).

Decision Support System An application of an information system or an
information system that specialized in provides information to suggest farmers
in their activities.

Deducted Data Data get from a deduction. A deduction is a process of providing
output result of an inference engine.
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Glossary

Domesticated Species Domesticated animals and plants produces agriculture
products and be affected by farming activities (Renting et al., 2009).

Embedded Device A type of computing device. In this dissertation, an embedded
device means a sensor device and an actuator device. A sensor device is
equipped with sensors and a transceiver module to monitor phenomena (Deepika
and Rajapirian, 2016). An actuator device with communication capability can
receive the control information to react to the environment.

Hardware Component A term used in the context-aware system. It can be a
computing device or a part of a computing device belonging to the system.

High-Level Context A type of context of information systems that contain
qualitative data (Sun et al., 2016) All the data contributing to the high-level
context of a system is also called high-level context data.

Information System System that first collects, stores and processes data to
transform them into information. Then, the information is further processed
and turns into another form satisfying the applications of the system.

Internet of Things Allows people and things to be connected Anytime, Anyplace,
with Anything and Anyone, ideally using Any path/network and Any services
(International Telecommunication Union, 2005).

Interoperability A characteristic of a product or system, whose interfaces are
completely understood, to work with other products or systems, present or
future, in either implementation or access, without any restrictions, as defined
by the Association Francophone des Utilisateurs de Logiciels Libres (AFUL).

Low-Level Context A type of context of information systems that contain
quantitative data (Sun et al., 2016) All the data contributing to the low-level
context of a system is also called low-level context data.

Measured Data Data get from a measurement. Measurement is the data generation
of a sensor device.

Microservice A style of engineering highly automated, evolvable software systems
made up of capability-aligned microservices (Nadareishvili et al., 2016). Each
microservice is an independently deployable component of limited scope that
supports interoperability through message-based communication. They are
small, highly decoupled and focus on doing a small task (Newman, 2015).
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Glossary

Ontological Engineering The set of activities that concern the ontology
development process, the ontology life cycle, the methods and methodologies
for building ontologies, and the tool suites and languages that support them
(Gómez-Pérez et al., 2004).

Ontology A formal, an explicit specification of a shared conceptualization (Studer
et al., 1998).

Precision Agriculture Farming activities with the mind-set about doing the right
thing at the right place at the right time (Wolfert et al., 2014).

Process Type of composition whose elements are composed into a sequence or flow
of activities and interactions with the objective of carrying out certain work
(ISO/IEC, 2016). To put it simply, process is composed of a set of activities to
accomplish a goal.

Semantic Web A web environment in which information is well-defined meaning,
better-enabling computers and people to work in cooperation (Berners-Lee
et al., 2001).

Service Logical representation of a set of activities that have specified outcomes,
is self-contained, may be composed of other services, and is a black box to
consumers of the service (ISO/IEC, 2016).

Smart Farming Real-time data gathering, processing, and analysis, as well as
automation technologies on the farming procedures, allowing the improvement
of the overall farming operations and management and more informed decision-
making by the farmers (Kamilaris et al., 2016).

Software Component A term used in the context-aware system. It can be a
software program or a part of a software program belonging to the system.

Stack of Services for Context-Aware Systems An architecture inspired by the
microservice mindset. It allows system designers to focus on the goal of services.
The stack of services for context-aware systems is composed of several services
organized in four phases of the context life cycle of context-aware systems.

State A qualitative data which changes over time, summarizing a set of information
of an entity (Bendadouche et al., 2012). In an information system, the entity
and its states are defined for a specific application.

Upgradability The ability to replace computing devices and software programs of
a system then brings the system up to date or improve its characteristics.
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Glossary

Watering Cycle An irrigation system performs a watering activity on all the plots
engaged in the system (Nguyen et al., 2020b). Watering cycle duration is the
number of days between two consecutive waterings on a same plot.

Wireless Sensor Network A network of devices, denoted as nodes, which can sense
the environment and communicate the information gathered from the monitored
field through wireless links (Buratti et al., 2009).
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Introduction

"Knowing yourself is the beginning of all wisdom." – Aristotle

Agriculture has always been one of the most vital factors of human civilizations
(Harari, 2015). It refers to the science and art of cultivating domesticated species
(International Labour Office, 2011). In which, domesticated species are animals
and plants that produce agricultural products like milk, fruits, and cotton. These
animals and plants are affected by farming activities such as sowing, monitoring, and
irrigation. Thanks to agriculture, humans can satisfy their basic physiological needs
of food and clothing (Maslow, 1943). However, this fact is no longer self-evident in
a short time since agriculture is facing two critical challenges. First, the population
explosion and the scarcity of natural resources are followed by a new situation that
the demand for agricultural products exceeds the production capacity of agriculture
(Sundmaeker et al., 2016). Second, climate changes in air temperature, atmospheric
carbon dioxide, and the frequency of extreme weather, have negative impacts on
agriculture: the reduction of the quality and quantity of agriculture products, the risk
of exotic pests, and the difficulties faced by farmers in deploying farming activities
(Urruty et al., 2016). Addressing these two challenges, humans have been applying
information and communication technologies (ICTs) in agriculture. This approach
improves the performance of farming activities; therefore, it increases agricultural
productivity and yield, decreases the environmental footprint of agriculture, and
replaces farmers’ labor by automation. The domain of agriculture using ICTs is
also known as e-agriculture.

The development of ICTs by time has a significant impact on the evolution of
e-agriculture. At the end of the 20th century, the exponential growth of computing
devices and software programs, and the popularity of the global positioning system
(GPS) and the wireless sensor network (WSN), are the base for a new evolution in
e-agriculture, known as Agriculture 3.01. The aim of Agriculture 3.0 is to support

1Agriculture 3.0, together with Agriculture 1.0, 2.0, and 4.0, are a subset of technological
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precision agriculture. Precision agriculture is "about doing the right thing at the right
place at the right time" (Wolfert et al., 2014); so that, domesticated species can receive
the exact treatment that they need (Netherlands Study Centre for Technology Trends,
2016). The early 21st century has been witnessing the rise of the Internet of Things
(IoT), which is the base for Agriculture 4.0. In detail, the IoT is a mindset where
"people and things are connected anytime, anyplace, with anything and anyone, ideally
using any path/network and any services" (International Telecommunication Union,
2005). All of the ICTs that contribute to this mindset are IoT technologies. They
can be categorized into three groups: things-oriented vision, internet-oriented vision,
and semantic-oriented vision (Sundmaeker et al., 2010). The things-oriented vision
includes technologies in building computing devices, such as RFID, NFC tag, and
embedded devices. The Internet-oriented vision provides communication standards
such as Wifi, Zigbee, LoRa, 4G, and 5G. The semantic-oriented vision is dedicated to
resolves the data heterogeneity issues in IoT by using semantic technologies such as
ontology. Figure 1 illustrates the mindset of IoT and Figure 2 shows the three groups
IoT technologies. Agriculture 4.0 is the next evolution of Agriculture 3.0 in both
technologies and vision. Technically speaking, it inherits the technologies available
in Agriculture 3.0, also adopting IoT technologies. Its vision has two folds. First, it
focuses more on smart farming instead of precision agriculture. Smart farming refers
to "real-time data gathering, processing, and analysis, as well as automation technologies
on the farming procedures, allowing the improvement of the overall farming operations
and management and more informed decision-making by the farmers" (Kamilaris et al.,
2016). Second, it insists on sharing data between different systems in one domain or
in the IoT cross-domains ecosystem. The IoT cross-domain ecosystem includes many
domains such as smart farming, smart home, smart cities, and smart transportation
(Al-Fuqaha et al., 2015).

A context-aware system (CAS) is the candidate to undertake smart farming. A
CAS is a system that "uses context to provide relevant information and services to users,
where relevant depends on the users’ task" (Abowd et al., 1999). It can react quickly
and adequately to the context changes. Technically speaking, a CAS is composed
of connected computing devices. A computing device is an electronic equipment
with processing and storage capabilities, such as a computer, a mobile phone, or an
embedded device. An embedded device in this dissertation means a sensor device
or an actuator device. A sensor device is equipped with a transceiver module and
sensors, to monitor phenomena (Deepika and Rajapirian, 2016). An actuator device

revolutions. A technological revolution is a period in which the emergence of a new group of
technologies, for example, in mechanics, biology, and ICTs, profoundly changes the way humans
work in a specific domain, such as industry or agriculture. The history records four technological
revolutions known as technological revolution 1.0, 2.0, 3.0, and 4.0.
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with communication capability can receive control signals to act on the environment.
In a CAS, one or several computers work as an information system. An information
system can collect, store, and process data to transform them into information. Then,
the information is further processed and turned into another form, satisfying some
applications of the information system. A typical CAS often comprises three elements:
a decision support system (DSS), a WSN, and actuator devices. A DSS is a type of
information system specializing in providing information to suggest farmers in their
activities. A WSN includes sensor devices that monitor phenomena in the field and
send them to the information system. Actuator devices react to the environment
under the control of the information system. A modern CAS must be able to connect
to the Internet, then can have a cloud computing centralized server. Cloud computing
is a concept that a centralized server somewhere in the Internet stores and processes
data before sending the processed results back to the computing devices in the local
network (Yu et al., 2018). The computing devices in the local network connect to
the Internet through a gateway. A gateway is a computing device that plays a role
as the data forwarder between different networks. Figure 3 illustrates the prototype
of a CAS in e-agriculture.

The following example shows the advantage of e-agriculture compared to
agriculture without ICTs. In traditional irrigation, farmers go to their fields to
examine the crop development stage and to read the soil moisture measurement
provided by the probes2 put in the soil. They use practical experience or follow
an irrigation method to estimate the water needs of the crops manually. Based on

2A probe is a soil sensor device in the shape of a tube.
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Figure 3: Prototype of a CAS in e-agriculture

the estimates, the farmers decide whether to irrigate their fields. Figure 4 illustrates
the practice in traditional agriculture. This traditional approach has two significant
drawbacks. First, it requires daily observations, often made by farmers. Manual
observations are unstable since farmers can make mistakes. Also, they depend
strictly on the availability of farmers. Second, the resource shortage problem demands
farmers to use water sparingly. Using a CAS can overcome the two above drawbacks.
Addressing the first drawback, the WSN can automatically monitor the crops precisely
24/7, as a result, reduce the labor’s farmers. Also, the results returned from the WSN
are highly accurate. Addressing the second drawback, the DSS uses the observed data
to calculate and deduct watering suggestions. A suggestion could be a precise amount
of water or a precise time for watering the fields, depending on the irrigation method.
Figure 5 illustrates an example of using a CAS in modern irrigation.

The above example shows that the use of CASs, together with ICTs in irrigation,
is better than the traditional approach in many senses. It is also true in other
farming activities. Besides the advantages, a CAS itself encounters the two following
challenges specialized in agriculture.

• Challenge in the upgradability of CASs: Agricultural workplaces are mostly
outdoor. Many factors can break outdoor computing devices. For example,
random lightning strikes and breaks a soil sensor device. Consequently, broken
computing devices need to be replaced by new ones. Ideally, the substitute
computing device should have the same model and use the same software
program as the broken one. In reality, these conditions might not be satisfied.
Thus, it is uneasy for system developers to guarantee the functionality of the
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Figure 4: The practice in traditional irrigation

Internet

Figure 5: The practice of using a CAS in modern irrigation

CAS. Another reason for the need to upgrade a CAS relies on a feature of
agriculture: it is a seasonal activity that relates to cycles of food growing and
harvesting. After each farming season, farmers may have several adjustments
preparing for the next season. One of the changes is to upgrade their CAS
with a new version of computing devices and software programs. It raises the
same issue: how to upgrade a CAS with new computing devices and software
programs without changing its functionality.

• Challenge in the interoperability of CASs: The phenomena needed to be
observed in agriculture varies. Consequently, a CAS must have different sensor
devices that make different measurements and produce different measured data.
For example, a soil sensor makes a soil moisture measurement that produces
the soil moisture data of a plot at the moment. A pluviometer makes a rain
quantity measurement that produces the rain quantity data of a period. It is
necessary to represent all of these heterogeneous data in a CAS to guarantee
the interoperability between the computing devices of the CAS. Moreover,
agriculture 4.0 also considers the interoperability between CASs in e-agriculture
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and the interoperability between CASs in the IoT ecosystem. Representing
the data generated by a CAS for its computing devices is uneasy; even worse,
representing the data generated by a CAS for other CASs in the cross-domain
ecosystem is a significant challenge.

Note that upgradability and interoperability are two qualities of systems; thus,
overcoming the two above challenges can improve the qualities of CASs. Two following
hypotheses promise to overcome the two above challenges:

• Hypothesis about a system design for CASs independent of computing devices
and software programs: It addresses the challenge of the upgradability of CASs.
Suppose that there is no delay on the Internet, and all the exchanged messages
between computing devices always arrive on time. If there is a system design
approach that divides a CAS into logical blocks and focuses on the goal of each
logical block regardless of location and type of computing devices and software
programs, system developers can freely upgrade the CAS with new computing
devices and software programs as long as they satisfy the goal of logical blocks.

• Hypothesis about a sharable data model for CASs: It addresses the challenge
of the interoperability of CASs. Suppose that every computing device of every
CAS can extract data from received messages without faults. If CASs share
the same data model and vocabulary, and every received data goes along with
metadata to explain itself, CASs can automatically process these data.

This research aims to overcome the two challenges in the upgradability and the
interoperability of CASs. As the final result, there are three contributions to this
research as follows.

• Contribution about using a microservice architecture specialized for CASs: This
contribution follows the hypothesis of a system design for CASs independent of
computing devices and software programs. It presents a new architecture called
the stack of services for CASs. This stack of services is composed of a set of
logical blocks called services. Each service is a process of a CAS.

• Contribution about using an ontology specialized for CASs: This contribution
follows the hypothesis of a sharable data model for CASs. It presents a new
ontology called CASO. This ontology contains the fundamental concepts and
properties for CASs in general. Consequently, every CAS can use this ontology
to model its data. Also, the vocabulary of this ontology implies a mechanism
supporting to make generic rules for reasoning.

• Contribution to translating a manual irrigation method into rules: This
contribution presents the irrigation DSS in TSCF that uses a new ontology
called IRRIG. This ontology is a specialization of CASO dedicated to irrigation.

6
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It is not only for data modeling but also for reasoning. In detail, the rules in the
ontology are transformed from the irrigation guideline for farmers in an manual
irrigation method named IRRINOV R©.

The two first contributions can improve the upgradability and the interoperability
of CASs. As a side effect, they can help other system developers to accelerate
their development. The third contribution is a specialization of using the two first
contributions. Also, it has a meaning in sharing the development experience of
developing an expert system that automatizes the irrigation method IRRINOV R©.
An expert system is a type of DSS that emulates a human expert’s decision-making
ability by reasoning through a knowledge base (Jackson, 1999). This expert system
is going to be a part of the irrigation CAS in the experiment farm in Agrotechnopôle.
For more information, Agrotechnopôle is an ecosystem for agricultural machines and
digital information systems developed by an alliance of organizations and institutes
in Europe. Two members of the alliance dedicated to developing AgrotechnoPôle are
INRAE3 and LIMOS4.

Note that the contributions and experimentations of this research are in the
close system of TSCF. Thus, there is no problem with security, and all the computing
devices are available to access. In the real context of the IoT, different systems may
have their constraints on security.

This dissertation aims to present the three above contributions. The early part of
this introduction has already introduced the most basic information to understand the
context and the motivation of this research. The rest of this dissertation is organized
as follows.

Chapter 1 addresses the first contribution. At first, it explains the context life-
cycle of CASs. Next, it introduces different system design approaches before selecting
one for CASs in the IoT. One key section of this chapter is to present the stack of
services for CASs as the chosen system design approach. The stack of services for
CASs serves as a tool to analyze six smart farming systems to prove that it can cover
several CASs.

Chapter 2 focuses on the second contribution. At the beginning, it presents
ontology as a solution to overcome the data heterogeneity in IoT. Then, it compares
two ontologies SOSA/SSN and SAREF based on the requirements of a CAS use case.
This comparison is necessary since one amongst them will be the core of CASO.
Finally, this chapter presents the evaluation of CASO.

3INRAE is a France’s new National Research Institute for Agriculture, Food and Environment,
formed by the fusion of INRA and IRSTEA in January 2020.

4LIMOS is the Laboratory of Informatics, Modelling, and Optimization of the Systems (UMR
6158), in Aubière, France.
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Chapter 3 presents the third contribution. First, it gives the essential information
about the irrigation method IRRINOV R©. Second, this chapter introduces a new
methodology to develop the expert system for daily watering suggestions based on
the method IRRINOV R©. This chapter’s main contribution is the experiences to
develop this expert system presented in the four next sections: specification, modeling,
implementation, and testing.

Finally, the conclusion sums up the dissertation and then discusses the limitations
and difficulties of this research work. Moreover, it opens some perspectives to improve
and continue this research in the future.
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Chapter 1

Architecture for Context-Aware
Systems Using a Stack of Services

"It is not the strongest of the species that survives, nor the most
intelligent that survives. It is the one that is the most adaptable to

change." – Charles Darwin (as quoted by Leon C. Megginson)

CAS is a kind of system suitable for unstable environments that require quick
reactions against context changes. Agriculture, a domain with workplaces are mostly
outdoors, is a typical example of such an environment. In agriculture, domesticated
species, including crops and livestock, are easily affected by many natural changeable
factors such as air temperature and rain.

CASs in the IoT have two critical characteristics. First, the system can be
highly distributed. Second, the hardware and software components of this system
can be replaced very fast by time. They involve a need to have a design approach
that focuses more on the goal of the components instead of the type of hardware,
software, or location. This chapter presents a new design approach called the stack
of services for CASs that satisfy the above requirements.

This chapter is organized as follows. Section 1.1 gives more information about
CASs: the definition of context and the context life-cycle in CASs. Section 1.2
presents different approaches to design a system and highlights the reason to propose
the stack of services for CAS. The main contribution of this chapter is Section 1.3:
it defines the stack of services for CASs in detail. Next, Section 1.4 is a state of the
art of six smart farming systems based on the stack of services for CASs. Section 1.5
compares the six systems and distinguishes essential and optional services. Finally,
Section 1.6 sums up the chapter and opens a discussion.
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Chapter 1. Architecture for Context-Aware Systems Using a Stack of Services

1.1 Context Life Cycle of Context-Aware Systems

Context is the most fundamental element of a CAS. In general, context refers to as
"any information that can be used to characterize the situation of an entity" (Abowd
et al., 1999). And an entity can be "a person, a place, or an object that is considered
relevant to the interaction between a user and an application, including the user and
applications themselves." However, a context should be specialized for an information
system as "a set of entities characterized by their state, plus all information that can
help to derive any state changes of these entities" (Sun et al., 2016). Of which, a
state is "a qualitative data which changes over time, summarizing a set of information
of an entity" (Bendadouche et al., 2012). In an information system, the entity and
its states are defined for a specific application. Two types of context are: low-level
context and high-level context. The low-level context contains quantitative data, and
the high-level context contains qualitative data. Quantitative data can be the binary
number, a digital picture, or other kinds of resources that are related to an entity
but unable to describe the state of the entity. For example, the number 30 in the
context 30 degree C is related to the room’s temperature. Qualitative data can
be everything that can describe the state of an entity such as hot is a state of the
room’s temperature.

The following example supports to understand better the terms of context and
entity in an information system. Given that there is an application that receives
measured data from some tensiometers to decide whether a plant needs water. In
this application, the plant is an entity related directly to the goal of this application.
It has two states needs water and does not need water. The soil is another
entity that relates indirectly to the application’s goal. After one measurement of
the tensiometer, the data soil moisture is at 150 cbar is generated. It belongs
to the low-level context. The low-level context transforms into the high-level context
of the application after a reasoning process. The high-level context contains two new
data. The first data is deducted from the data in the low-level context. This data
is represented as soil is dry, of which dry is the state of the entity soil. Second,
another data related to the entity plant is deducted from the high-level context data
related to the entity soil. It can be presented as plant needs water.

Figure 6 shows the context life cycle of a smart farming CAS. The working
procedures of CAS include four phases: acquisition, modeling, analysis, and
exploitation. Each phase contains a group of processes that enable the system, at
first, to receive input data, process it, then to produce new output data. The figure
describes transferred messages between phases and between each phase in the CAS
(red box) and the other objects outside this system. The messages between phases in
the system are data, low-level context, and high-level context. The messages between
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a phase in the system and an object external of the system (external systems, external
data sources, human) can be data or information. The description of the four phases
of a CAS is as follows.

Exploitation
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Modeling
phase

Analysis
phase

Data

Low-level
context

External 
data

sources

DataExternal 
systems

Information

Data

High-level
context
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Figure 6: Context life cycle of a smart farming CAS

• Acquisition phase: A phase contains processes that focus on how the system
retrieves measured data directly from the WSN or data collected from external
data sources. An external data source could be any source in the Internet
that does not belong to the local network of the CAS. This paper defines data
sources located inside the system, such as a sensor device of a WSN, as internal
sources. The output of this phase is clean data. Clean data refers to the data
which are processed and can be used correctly by one or several applications of
an information system.

• Modeling phase: A phase contains processes that focus on how to model and
organize clean data into the system. This phase demands the system equipped
with a data model and storage in advance. The input of this phase is clean data
derived from the acquisition phase. The system represents and stores the input
data, and guarantee that the data becomes meaningful with the system. The
output of this phase is the low-level context.

• Analysis phase: A phase contains processes that focus on how to transform
and enrich the low-level context into the high-level context. The transformation
and enrichment are realized by processes such as reasoning, fusion, and
aggregation. The input of this phase is the low-level context from the modeling
phase. The output of this phase is the high-level context required by the
applications of the system.
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• Exploitation phase: A phase contains processes that focus on how the
system uses the high-level context retrieved from the analysis phase to run
applications. Three categories of application are user-oriented, external system
distribution, and action. According to the applications, this phase’s output
could be information, data, or physical action realized by an actuator device.

1.2 Overview of System Design Approaches

System design is an essential step to develop a system. A system design approach is
a prototype to design systems. System developers choose a system design approach
appropriate to their goal and the conditions of the expected system. Depending on
the complexity and detail of the prototype, it is possibles to have four categories:

• Design mindset: Comprising only the principle and ideas to design a
system. System developers can use freely to choose and organize the hardware
and software components as long as it satisfies the principles of the design
mindset. Some examples of design mindsets are microservice and service-
oriented architecture (SOA).

• Architecture: Comprising several logical blocks, of which, each block has its
functions. In general, these blocks follow an order or an organization defined by
the architecture. System developers are free to choose hardware and software
components that satisfy the functions of blocks. Some examples of architectures
are MAPE-K, IoT-A, and Avatar.

• Platform: Comprising several suggestions of hardware and software
components to form a system. It usually is a blueprint detail the type of
hardware and software components that system developers need to follow. Some
examples of platforms are Agri-IoT, FIWARE, DIMMER, and CityPulse.

• System: Comprising the detail hardware and software components and their
configuration. System developers normally run and maintain a system in real
experimentation. Some examples are the six smart farming systems presented
in Section 1.4.

The complexity and detail of design approaches follow the order: design
mindset < architecture < platform < system. Consequently, a design approach
can be further developed with more detail from the ones on its left side. For example,
a new architecture is developed based on the principles of a design mindset.

This research aims to propose a design approach for CASs that focuses on the
goal but not the location and type of components of systems. Thus, the design
approach should be architecture.
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1.3 Stack of Services for Context-Aware Systems

Stack of services for CASs is an architecture inspired by the microservice design
mindset. The microservice design mindset contains the principle to develop a system
"made up of capability-aligned micro-services" (Nadareishvili et al., 2016). Each
micro-service is "an independently deployable component of limited scope that supports
interoperability through message-based communication. It is small, highly decoupled, and
focus on doing a small task" (Newman, 2015). Stack of services for CASs is composed
of several services organized in order and relies on the context life cycle of CASs.
Stack of services for CASs allows system developers to focus on the goal of services.
Note that term service is a specialization of the term process in the situation that
the system is highly distributed. The stack of services has the following advantages.

• The system is easy to be upgraded since the goals of services never change when
the hardware and software components are replaceable.

• This approach can generate numerous design solutions based on the services
available in the system. Then, system designers have more choices to select the
one that fits their goal the best.

• The types and numbers of computing devices and software programs grow by
time. Fortunately, the number of services is limited. Therefore, it is easier to
share knowledge about services than knowledge about computing devices and
software components.

The stack of services for CASs has 16 services organized in four phases of the
context life cycle of CASs. The 16 services are defined based on the study over several
e-agriculture systems and the knowledge of stakeholders in this research project.
Figure 7 illustrates the stack of services for CASs. The four squircle blocks, from
bottom to top in the vertical order, correspond to the four phases of the context
life cycle. Each squircle block contains several services. They are interdependent,
also according to the vertical order, from bottom to top. To make it explicit: in
a squircle block, when one service X is on top of a service Y means that a new
session of the service X starts when the session of the service Y ends. In each squircle
block, there exist multiple flows of services. A flow of services represents the possible
path of services inside a block, in one direction from bottom to top. A flow starts
with the bottom service, moves to the higher service until reaching the top service
and terminates the phase. For example, in the acquisition block, the path from the
source selection service, crossing the internal data collection service, towards
the cleaning service is a flow of services. Another flow of services could be the path
from the source selection service, crossing the external data collection service,
towards the cleaning service.
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Figure 7: Stack of services for CASs

1.3.1 Services of the Acquisition Phase

The acquisition phase contains four services as follows.

1.1 Source selection: The service to register the configuration data of data sources
at run-time. By using configuration data , another service can retrieve data from
the data sources. The virtual sensor description of the Global Sensor Network
(GSN) middleware is an example of configuration data (Aberer et al., 2006).

1.2 Internal data collection: The service to collect data from internal data
sources. For example, measured data are collected from a sensor device. This
service works differently depending on the communication models: pull model
(request/response) and push model (publish/subscribe). In the pull model, the
procedure of sending requests and waiting for measured data arrives is repeated.
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In the push model, the service subscribes to a source only one time, but it
receives new measured data as soon as it is generated.

1.3 External data collection: The service to collect data from external data
sources. For example, a national weather station that sends forecast data is an
external data source. The working procedure of this service also depends on
the communication model of pull and push. Different from the internal data
collection phase, the external data collection always needs the agreement of the
external systems for the data. Moreover, the exchange message between systems
must be encapsulated under the networking protocol standards.

1.4 Cleaning: The service to transform the input data to guarantee the correctness
of data. Three possible actions in the data treatment are data consistency
enforcement, filtering, and aggregation. Data consistency enforcement
replaces error input data with the correct data. It is also named numerical data
consistency enforcement (Sha and Shi, 2008). Filtering selects relevant data
and removes the irrelevant one. Aggregation uses basic operators such as
addition and subtraction, to produce more accurate data.

1.3.2 Services of the Modeling Phase

The modeling phase contains three services as follows.

2.1 Format transformation: The service that the format of the data is
transformed into another format. For example, a text is extracted from a PDF
document and transformed into an XML file.

2.2 Annotation: The service to interpret data using a specific schema. The data
after this interpretation becomes a part of the low-level context. Two possible
actions in the annotation service are parsing and integration. Parsing is the
particular case of integration: the clean data received from the acquisition
phase are sufficient to be represented in the model. For example, a message
from a sensor device contains not only the value of measurement but also the
relevant metadata such as the unit of measurement, type of sensor device, and
the date-time of the measurement. They are enough to be interpreted in the
schema. Integration is when the clean data needs to be combined with other
data stored in the system to be interpreted.

2.3 Storage: The service to store data in different storages. Two cases are: to
store the data into long term storage or short term cache. Data stored in long
term storage is persistent over time. In contrast, short term data is stored in a
temporary cache for the short term use. Frequently, the short term cache is for
data streaming.
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1.3.3 Services of the Analysis Phase

The analysis phase contains four services as follows.

3.1 Retrieving: The service that retrieves low-level context data stored in the
system. This service equals federation when the retrieved data are from more
than one database. This service equals querying when the retrieved data are
only from one database.

3.2 Merging: The service that uses aggregation operators or fusion to combine
several types of low-level context data to produce new low-level context data.
This service equals aggregation in the case that the input is only numerical
data. The aggregation operates calculations such as sum, average, min,
and max. Otherwise, this service equals fusion in the case that the types
of input are heterogeneous. An example is the fusion of an imagery map
representing farmland and the coordinates of sensor nodes located in the
farmland. This fusion results in a new map with multiple points, of which
each point corresponds to the position of a sensor device.

3.3 Reasoning: The service that uses reasoning techniques to produce new high-
level context data. Many reasoning techniques are available in computer science;
however, the two techniques that are considered are inference and pattern
matching. This service equals inference when the system uses a knowledge
base to deduct new data. The knowledge base comprises a facts base and a
set of rules. The facts base stores low-level and high-level context data of the
system. Rules could be interdependent: some rules can only work based on the
results derived from firing other rules. An inference made by an inference engine
is triggered by the user or by the schedule of an application. This service equals
pattern matching when the system possesses a set of patterns. Patterns are
defined by domain experts or by users. The pattern detection engine observes
the input and produces the corresponding output when the input is exactly
matching with the pattern. Different from a rule, a pattern is independent of
other patterns. One pattern itself contains enough data to produce a decision
(high-level context data) from the input.

3.4 Storage updating: The service that updates the new data produced after the
analysis phase into the storage.

1.3.4 Services of the Exploitation Phase

The exploitation phase contains five services as follows.

4.1 Context transformation: The service that the high-level context data
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received from the analysis phase is transformed into another format. The three
possible actions of the context transformations are lowering, translation, and
encapsulation. The service equals lowering when high-level context data
is transformed into low-level context data. The service equals translation
when data is translated into a human-readable format. The service equals
encapsulation when data are encapsulated by networking protocol standards
to become an encapsulated message.

4.2 User-oriented distribution: The service to provide information in a human-
readable format to users. An example of the human-readable format could be an
imagery file or an HTML web page. Two possible actions of the user-oriented
distribution service are notification and visualization. Notification uses
the push model: as soon as receiving new data from the context transformation
service, a message containing the data is sent to the user. Visualization uses
the pull model: when the user’s device requests for information, a response
message is sent to the user.

4.3 External system distribution: The service to send encapsulated messages
received from the context transformation service to external systems. The
encapsulated messages contain data. The working procedure of this service
also depends on the communication models of pull and push.

4.4 Action: The service to control an actuator device. An actuator can be a simple
device such as an open/close water valve.

4.5 Reconfiguration: The service to automatically reconfigure the working
schedule of the other services according to the changes of context. For example,
suppose that the system needs to send a notification to farmers when the soil
is dry. The soil is dry, equivalent to the fact that the measurement of the
tensiometer generates a data equal or superior to 150 cbar. Given that by
default, the tensiometer generates a new measured data and sends it to the
server once per day. When the value of the last measurement is 149 cbar, the
reconfiguration service detects that the measurement will reach the 150 cbar
soon. Then, it should increase the frequency of measurement of the internal
data collection service into once per hour.

1.4 Six Smart Farming Systems

This section is to review six smart farming systems: Kirby smart farm system,
PLANTS system, Phenonet-OpenIoT system, FarmBeats system, BIO-ICT system
for precision agriculture, and system of Hwang et al. They are selected from
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several systems in e-agriculture. The selection procedure relies on three criteria. First,
the selected systems must be CAS, which can automatically change their behaviors
according to the context. Second, the selected systems must be published in academics
and have real experimentation. Third, the farming activities of smart farming systems
relate to crops and livestock.

At first, this research uses the services of the stack of services for CASs to describe
each smart farming. The description procedure has three steps. The first step outlines
a smart farming system as its original description from the publications related to the
system. Note that this research focuses on context and services that handle context,
then the hardware devices and software components irrelevant to this goal will be
ignored. Moreover, in the original description of some systems, several services exist,
but the components handle them are unnamed. Thus, it is necessary to add extra
hardware and software components that handle these services. The result of this step
is a figure to describe the architecture of the system. The second step searches for
possible services corresponding to processes in the smart farming system. The list
of possible services is in the stack of services. The third step determines the data
exchanges between components inside and outside the system.

Then, this research compares and analyses the six smart farming systems. This
work has two folds. First, it proves that all of the possible services of smart farming
systems are available in the stack of services for CASs. In other words, the stack of
services for CASs can cover all of the smart farming systems. Second, this state of
the art points out which services are fundamental, which services are optional.

The six following subsections describe the six smart farming systems. The
comparison in detail of them will be presented later in Section 1.5.

1.4.1 Kirby Smart Farm

Kirby Farm is a 2800 hectare farmland in Armidale, Australia (Griffith et al., 2013).
The main farming activities of this farm are pasture management and livestock
monitoring. To perform these activities, the Commonwealth Scientific and Industrial
Research Organization (CSIRO) and the University of New England (UNE) develop a
smart farming system called Kirby Smart Farm system. The system enables users to
visualize real-time monitored data, to define expected agricultural events, to receive
notifications and decision supports (Taylor et al., 2013; Gaire et al., 2013). The
Kirby Smart Farm system consists of several computing devices. First, a Smart Farm
server executes complex computational tasks. Second, collection points and taggle1

receivers work as gateways. Third, sensor devices, including cattle tags, soil sensor

1https://taggle.com.au
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devices, and private weather stations, are for the monitoring of different agricultural
phenomena. In detail, cattle tags are for livestock’s position detecting; soil sensor
devices are for soil moisture, temperature, and electrical conductivity measuring; and
weather stations are for air temperature measuring.

There are two primary technology contributions in Kirby Smart Farm. The first
one is the two improvements for the GSN middleware. GSN is well-known as an open-
source middleware for sensor data streaming management (Aberer et al., 2006). The
first improvement is to upgrade GSN using semantic web technologies: transforming
raw data into RDF data. The RDF data can be published on the web following linked
open data (LOD) standards2. Kirby Smart Farm uses an ontology combined of the
semantic sensor network (SSN) ontology (Compton et al., 2012b) and agricultural
domain-specific ontologies, to model the data. The second improvement to GSN
is that Kirby Smart Farm allows users to contribute their knowledge by defining
self alerts and events using the complex event processing (CEP) framework (Taylor
and Leidinger, 2011). In addition to the upgrade of GSN, the second technology
contribution of Kirby Smart Farm is the combination of multiple technologies such
as GPS, satellite imagery and sensory data, in providing a spatially-enabled planning
and management dataset for multiple objectives.

Figure 8 describes the components, services, and flows of data, of the Kirby Smart
Farm system. To ease the description of this system, five extra components are added:
stream processing, storage, external source, user’s device, RDF data distributor, and
external system. First, the stream processing component handles the data annotation,
data organizing and data querying. Second, the storage component stores virtual
sensor description files and dataset. Third, the external source represents the sources
of external data. Fourth, the user’s device component represents devices of users.
Fifth, the RDF data distributor handles distributing the RDF data to other external
systems. Last, the external system represents the other systems that access the data
of the Kirby Smart Farm system.

In the acquisition phase, at first, it is necessary to determine internal data sources
and external data sources. Internal data are measured data retrieved from soil sensor
devices, weather stations, and cattle tags in the local farmland. External data are
events defined by users through the web display portal. The source selection service
is run by the virtual sensor manager. This service is to select the internal data sources
recorded in virtual sensor description files. These files are stored at the storage. Then,
the internal data collection service are run by the collection points and the taggle
receivers. The collection points collect measured data from weather stations and soil
sensors. The taggle receivers collect measured data from cattle tags. These measured

2https://www.w3.org/DesignIssues/LinkedData.html
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Figure 8: Description of the Kirby Smart Farm system

data are transferred to Smart Farm server where they are filtered, corrected, and
put in corresponding queues due to the cleaning service run by the data listener
& message queue component. About external data, the external data collection
service enables users to define events and alerts via the personal alert conditions
component in the web display portal. This component runs the cleaning service
to guarantee that input data from humans are correct. In addition, the wrapper
component of the GSN also supports to collect data from the external sources. Thus,
the wrapper component could run the external data collection service.

The modeling phase is to integrate internal data streams and external data into
the system. The data listener & message queue component leads internal data streams
to the wrapper component of the GSN module. Based on the description of virtual
sensors, this component forwards input streams to appropriate outputs. Then, the
stream processor component runs the annotation and storage services to handle the
data streams. The annotation service annotates data streams with the information
of virtual sensors and the related data from the ontology to transform them into
RDF data streams. The storage service is to organize RDF data in the Virtuoso
triple store. Meanwhile, the external source data collected in the web display portal
are translated to event description files due to the format transformation service
before being saved in the SF storage due to the storage service.

In the analysis phase, the data streams retrieved by the stream processing
component due to the retrieving service are forwarded to the following components:
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real-time analysis and fusion, semantic data integration and event processor. First,
the real-time analysis and function component runs the merging service to combine
the data streams with the other available data set in SF storage such as GPS-
based asset mapping and satellite imagery to produce a spatially-enabled planning
and management data set. This data set is further used as a source for further
analysis. Second, the semantic data integration component runs merging service
to do calculations to produce low-level context data and runs reasoning service
to produce high-level context data according to users’ demands. Third, the event
processor component runs the reasoning service to produce high-level context data
in the form of alerts when the input streams are matched with users’ defined events.
All data and context produced by the previous services are stored in the triple store
or the SF storage due to the storage updating service.

In the exploitation phase, the presentation and visualisation component runs
the context transformation service to translate context and data into a human-
readable format. Also, this component runs the user-oriented distribution service
to send the human-readable context and data to users. Moreover, the RDF data stored
in the virtuoso can be queried by the external system due to the external system
distribution service. This service is run by RDF data distributor component.

1.4.2 PLANTS

The smart farming system developed in the PLANTS project (PLANTS system)
refers to as an autonomous irrigation system (Goumopoulos et al., 2009). The
system performs farming activities, including plant growth real-time monitoring and
irrigation control. The experiment of this system is in a greenhouse at the University
College Cork, Ireland (Goumopoulos et al., 2014). The greenhouse embraces the
farmland of 96 strawberries equipped with PAM3 meters, sensor and actuator devices.
Sensor devices measure the temperature of the leaves of plants, ambient temperature
and soil moisture. Actuator device is an irrigation distribution unit that waters the
crops. The other hardware components are gateways, driver operators, a coordinator
node and a web server (Goumopoulos, 2012). The coordinator node is a server with
high computational capability. A driver operator is defined as a hardware component
installed with a specific driver that connects to a gateway of each wireless sensor and
actuator network (WSAN).

The PLANTS system has two advantages. First, a knowledge base containing a
rule base and a fact base enables the system to infer new data and make decisions. A

3Pulse-Amplitude-Modulation chlorophyll fluorometer is a device used for chlorophyll fluorescence
analysis.
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specific ontology dedicated to this system is used to model data. The knowledge base
is also a part of the decision support system (DSS) module in the PLANTS system.
Second, this system uses machine learning and expert knowledge in enriching the rule
base. It uses log data of the system, combined with support from data mining experts
and agriculture experts, to produce the new appropriate rules, and put them in the
rule base. However, the second advantage is out of the scope of this review because
it has no impact on the flows of data.

Figure 9 describes the components, services, and flows of data, of the PLANTS
system. To ease the description of this system, four extra components are added:
local device interface, fact base, external source and user’s device. First, the local
device interface component is the interface between the coordinate node and the driver
operator. Second, the fact base storage contains data modelled using the PLANTS
ontology. Third, the external source represents sources of external data such as a
weather station. Finally, the user’s device represents devices of users. On the other
hand, some components in the PLANTS system are removed from this analysis such
as interaction manager, communication manager and machine learning since they
have no impact on flows of data.
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Figure 9: Description of the PLANTS system

In the acquisition phase, the PLANTS system collects measured data from sensor
devices. The gateway runs the internal data collection service to collect measured
data from the sensor nodes in the motes. Also, the PAM meter also runs the internal
data collection service to collect measured data from the chlorophyll fluorescence
devices. The measured data are transferred to the driver operator. This component
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runs the cleaning service that corrects and filters the data. Moreover, it is worth to
note that the PLANTS system could provide the external data collection service
to collect external data from external source. In a publication of the PLANTS system,
the authors note that the external source could be a weather station; however, there
is no further detail about this service.

In the modeling phase, the driver operator runs the annotation service to combine
extra data such as timestamps with the data derived from the gateways and PAM
meters. The data contains both measured data and the state of sensor devices. These
data are represented and could be understood by the coordinated-node; then, they are
the low-level context data. The local device interface component in the coordinator
node receives these data and runs the storage service to organize them into the
appropriate places: data stored in the database and the state of sensors stored in
devices’ state repository in the storage.

In the analysis phase, the process manager component is responsible to connect
all software components in the coordinator node. The process manager component
runs the retrieving service to retrieve data from the storage and distributes them to
appropriate components. It can retrieve data in RDF form from the fact base through
the ontology manager component. Then, it transfers these data to inference engine.
The hardware state manager component retrieves the state of devices and distributes
them to the inference engine. The inference engine component runs the reasoning
service to produce high-level context data. All the new contexts are updated into
the fact base due to the storage updating service run by the ontology manager
component.

In the exploitation phase, the system operates two activities: controlling the
irrigation actuator devices and sending information to users. In the first activity, the
actuator device runs the action service to spray mist in the greenhouse or water some
plants. In the second activity, the context and data are converted into human-readable
form due to the context transformation service. Then, these human-readable form
data are sent to the user’s device due to the user-oriented distribution service.
These two services are run by the web server.

1.4.3 Phenonet-OpenIoT

Phenonet-OpenIoT is a smart farming system developed by CSIRO (Jayaraman et al.,
2015). This smart farming system is based on the OpenIoT platform (Soldatos et al.,
2015). The experiment of the Phenonet-OpenIoT system is in a study plot named
Kirkegaard and Danish, in Australia (Jayaraman et al., 2016). Domesticated species
in this experiment are crops used as food for sheep. However, there is no information
about the type of crops in the related publication. The farming activities are, at first,
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to monitor soil moisture, water use, crop growth rate and crop yield, then to evaluate
the effect of sheep grazing on crop re-growth. The sensor devices used for monitoring
works are soil moisture at multiple depths and canopy temperature sensor devices.
The next two elements of the Phenonet-OpenIoT system are a gateway and a cloud
server. The gateway uses the X-GSN (extension of GSN) middleware (Calbimonte
et al., 2014); then, it can semantically annotate data using the vocabularies of the
ontologies such as SSN, GEO4 and QU5. The cloud server contains some modules of
the OpenIoT platform such as the Linked Stream Middleware (LSM), the scheduler
and the Service Delivery and Utility Manager (SDUM). An LSM is a module that
handles cloud data storage. A scheduler is represented as a software component that
processes users requests and ensures access to the resources. An SDUM is represented
as a software component that registers users with their requests.

The Phenonet-OpenIoT system has two advantages. First, a Do-it-Yourself
(DIY) application that allows users to define the interface of virtual devices and
expectable results. Second, this system develops the Phenonet ontology, which is the
combination of the SSN ontology and some extension for agriculture. The goal of this
ontology is to improve the interoperability of the system.

Figure 10 describes the components, services, and flows of data, of the Phenonet-
OpenIoT system. To ease the description of this system, five extra components
are added: virtual sensor configure base, LSM directory storage, LSM data access,
user’s device and external source. First, the virtual sensor configure base contains
virtual sensor descriptions at the local side. Second, the LSM directory storage
also stores virtual sensor descriptions but in the cloud server. Third, the LSM data
access component is an interface for the LSM module that interacts with the other
components in the cloud server. Fourth, the user’s device represents devices of users.
Finally, the external source represents the source of external data.

In the acquisition phase, the gateway collects measured data from the sensor
nodes. At first, the virtual sensor manager component runs the source selection
service to select data streams based on the virtual sensor descriptions stored in the
virtual sensor config base. Next, the wrapper component runs the internal data
collection service to retrieve measured data from internal sources. The wrapper
component of the GSN also supports collecting data from the external sources.
Thus, the wrapper component could also run the external data collection service.
Moreover, this component runs the cleaning service to filter and aggregate the
collected data streams using time-based windows.

In the modeling phase, the annotation component runs the annotation service to

4https://www.w3.org/2005/Incubator/geo/
5https://www.w3.org/2005/Incubator/ssn/ssnx/qu/qu
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Figure 10: Description of the Phenonet-OpenIoT system

annotate the data streams using the vocabulary of the Phenonet-OpenIoT ontology.
Then, in the cloud server, the RDF stream processor runs the storage service to
organize the data into the RDF cloud storage. After being annotated and represented,
the data are low-level context data. Moreover, the virtual sensor descriptions in the
gateway are transferred to the cloud server. These descriptions are stored in the LSM
directory storage due to the storage service.

In the analysis phase, the low-level context data are processed differently
depending on activities: sensor discovery or data retrieving. In the case of sensor
discovery, at first, LSM data access component runs the retrieving service to get the
list of virtual sensors. When users request the target sensor devices and observed
phenomenon, the reasoner component runs the reasoning service to produce a
filtered list of virtual sensors appropriate to the users’ request. In the case of data
retrieving applications, the system provides continuous or static data depending on
the demand of users. On the one hand, the RDF stream processor component runs
the retrieving service to get real-time data streams. On the other hand, the LSM
data access component runs the retrieving service to get static data from the RDF
cloud storage. The SDUM component uses the SPARQL scripts retrieved from LSM
directory storage to query the data. The querying activities also include aggregation.
Thus, it is possible to conclude that the LSM directory storage also runs themerging
service. The results of the reasoning service are stored in the cloud server due to
the storage updating service.
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In the exploitation phase, the context transformation service translates high-
level context data into human-readable form. Then, the user-oriented distribution
service sends this content to users’ devices. The two services are run by the Phenonet-
OpenIoT Do-it-Yourself interface component.

1.4.4 FarmBeats

FarmBeats is a smart farming system developed by Microsoft (Vasisht et al., 2017).
The system develops applications for the precision agriculture domain such as
irrigation decision, crop harvesting suggestion and livestock management. FarmBeats
experienced six months in two states of the United States of American: one in upstate
New York and one in Washington DC. The experimentation in New York is a 100acres
(about 40 hectares) farmland planted with vegetables, fruit, grains, combined with
raising livestock for dairy and meat products. In the experimentation in Washington
DC, farmers grow vegetables on farmland with an area of five acres (about two
hectares). The system contains an Azure Cloud, a FarmBeats gateway, IoT base
stations and multiple sensor devices. The FarmBeats gateway could be considered as
a local server based on its computational and storage capabilities. An IoT base station
handles communication between sensor devices and the FarmBeats gateway. Most of
the sensor devices measure the pH, moisture, temperature of the soil. Some sensor
devices generate imagery of the farmland. Actuator device is called an irrigation unit,
and it is responsible for watering the crops.

The first advantage of FarmBeats is that it uses various types of sensor devices
to improve the consistency of the input data. They include ten types of sensors,
three types of cameras and three types of drones. Moreover, the combination of
different types of data can produce more informative data. For instance, farmland
images from drones associated with the location of sensor devices and measurement
values from the WSN provide a precision map that supports the precision farming
activities. This new map contains more useful information for users than the original
one. The second advantage of this system is to use machine learning in prediction
of the situation of the entire farm based on the situation of some discrete locations.
The third advantage of this project is in video and imagery treatment: it combines
sparse 3D reconstruction techniques from video with image stitching techniques.

Figure 11 describes the components, services, and flows of data, of the FarmBeats
system. To ease the description of this system, five extra components are added:
server computing, cache, local users’ device, global user’s device and other farming
system. First, the server computing component handles calculation and storage tasks
in the Azure cloud server. Second, the cache is the cache to store temporary data
at the FarmBeats gateway. Next, the local users’ device and global user’s device
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represent devices of users respectively at the local network and on the Internet.
Finally, the other farming system represents the other farming systems that share
farming analytics with the FarmBeats system.
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Figure 11: Description of the FarmBeats system

In the acquisition phase, the IoT base station runs the internal data collection
service to collect measured data from the sensor devices and to collect images from
the farm cameras and drone cameras. These data are transferred to the FarmBeats
gateway. The sensor interface component in the FarmBeats gateway runs the
cleaning service to guarantee that the data can be further used. For instance, the
mechanism of the MQTT, the network protocol used for the communication between
the IoT base station and the FarmBeats gateway, is to ignore inappropriate data.

In the modeling phase, the sensor interface component runs the annotation
service to add related data to the received data and to represent them at the
FarmBeats gateway. The storage service is to organize all the data in the appropriate
storages. This service is run at the both FarmBeats gateway and Azure cloud server.
In the former case, the long-term data are stored in the storage component, and
the short-term data are stored in the cache. Note that the short-term data are for
real-time data visualisation. In the latter case, the data, at first, are transferred to
the Azure cloud server. Note that only the high-level context data inferred after the
analysis phase, are transferred to the Azure cloud server for long-term uses. Then,
the server computing component organizes the data into the Azure cloud storage.

In the analysis phase, at the FarmBeats gateway, the local computing component
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runs retrieving service to retrieve data from local storage. Next, the local computing
component runs the merging service to produce a precision map integrated with
aggregate data such as daily average measured data. This is the result of both the
fusion between image and numerical data and the aggregation of numerical data.
Moreover, this component runs the reasoning service to produce high-level context
data such as crop suggestions and livestock health statistics. All of the new data are
stored in the storage due to the store updating service. At the Azure cloud server,
all the data stored in the Azure cloud storage can be retrieved by the retrieving
service run by the server computing component.

In the exploitation phase, the web server at the local side runs the context
transformation service and user-oriented distribution service to send the
human-readable data to the local user’s devices. In the Azure cloud server, the Azure
web server runs the same services to send human-readable data to the global user’s
devices. Moreover, at the local side, the irrigation units run the action service to
water the crops. It is worth to mention that this smart farming system also provides
the external system distribution service since it supports cross-farms analytics;
however; there is no information about this service in the system’s publication.
Suppose that the Azure web server runs the external system distribution service
to send data to the other farming system.

1.4.5 BIO-ICT System for Precision Irrigation

BIO-ICT is a project of BIO-ICT Centre of Excellence in Montenegro (Bajceta et al.,
2016). The project aims to build a general IoT architecture for three different use
cases: precision agriculture, aquaculture monitoring and environment monitoring
(Popovic et al., 2017). Each use case addresses a different group of stakeholders. This
review focuses only on the use case of precision agriculture which has two missions:
soil protection and plant protection. The soil protection mission is about doing
analytics in irrigation and fertilization. The latter mission is for the grapevine diseases
treatment and testing the resistance of plants. The BIO-ICT system for precision
irrigation consists of a WSN with multiple types of sensor devices, actuator devices,
gateways and a private cloud server. This system experimented in a vineyard in
Danilovgrad, Montenegro. Sensor devices measure air temperature, relative humidity,
pressure, soil temperature, wind speed and leaf wetness. The actuator device is a
smart spraying unit to water the crops.

The BIO-ICT system focuses on providing API between the private cloud server,
and users’ devices or third-parties systems. Moreover, it provides flexible tools for
different stakeholders: the data collection tool addresses data scientists, and the plant
disease detection tool addresses farmers.
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Figure 12 describes the components, services, and flows of data, of the BIO-
ICT system for smart spraying. To ease the description of this system, three extra
components are added: cache, users’ device and third-party application system. The
cache component represents a table in the database at the cloud server for the
short-term data. The users’ device represents devices of users. The third-party
application system represents external systems that can access the database of the
BIO-ICT system and provide application from such data. Inversely, the spraying unit
is removed from this analysis since users manually control it through the server.
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Figure 12: Description of the precision irrigation use case of the BIO-ICT system

In the acquisition phase, the configure portal component runs the source
selection service to access the virtual sensor devices stored in configuration storage.
A virtual sensor device is defined by users in the form of a description file. The
description file includes the information of name, location and type measurement of
the virtual sensor device. The gateway runs the internal data collection service to
collect measured data from sensor devices. Then, the measured data are transferred
to the cloud server. Next, the API data import component runs the cleaning service
to ensures that the data can be used further. For instance, the data in the messages
with the inappropriate API keys could be ignored.

In the modeling phase, the API data format component runs the annotation
service to represent the data. Then, the data is in system-understandable format
and becomes low-level context data. Next, the data integration component runs the
storage service to organize data in the database or in the cache. On the one hand,
the database stores all the data. On the other hand, the cache only stores the 20
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lasts measured data of each sensor device, and these data are used for real-time data
visualization.

In the analysis phase, the data integration component runs the retrieving
service to retrieve data from the database and the cache. These data are transferred
to appropriate components. These components are: real-time messaging, real-time
visualization and data analytic. The real-time visualisation component runs the
merging service to provide informative data from the measured data and its related
data stored in the cache. The reasoning service run by the real-time messaging and
data analytic components produces high-level context data for the human alerting
and the disease forecasting.

In the exploitation phase, the API data export component runs the context
transformation and user-oriented distribution services to transform context in
human-readable form and send them to users’ devices. The context transformation
service can convert the data into CSV or JSON file formats. Moreover, the API data
export also provides the data to the third-party application system.

1.4.6 System of Hwang et al.

The system developed by Hwang et al. aims to manage the growth of paprika in
a greenhouse in Jeollanam-do, Korean (Hwang and Yoe, 2011; Hwang et al., 2010).
The system supports to improve the production and yield of paprika by precision
irrigation and heating technologies. In the greenhouse, various sensor devices are
installed. First, the sensor devices dedicated to the ambience, measure temperature,
humidity, illumination and CO2 levels. Second, the sensor devices dedicated to the
crops, measure leaf humidity and temperature, body weight and height, and fruit
temperature and volume. Third, the sensor devices dedicated to the soil, measure
moisture, temperature and pH. Also, the greenhouse is equipped with several actuator
devices for activities such as illuminating, watering, CO2 generating, heating and
ventilation. The actuator devices are called greenhouse facitlities. They are both
manually controlled by users or automatically controlled by the system. One the
one hand, the sensor devices connect to the middleware through the gateways. On
the other hand, each actuator device connects to the middleware through Program
Logic Controller devices (PLC). The middleware connects to a Paprika Greenhouse
Management Server which includes a database server, an application server and a
web server. Furthermore, this system is equipped with camera systems (CCTV) and
image processors to process imagery data.

The system of Hwang et al. focuses on developing a middleware that can collect
data from various types of sensor and can control several types of actuator devices.
Moreover, the system provides two applications corresponding to two different types
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of reasoning. First, the event management application with the pattern detection
technique is for real-time notifications. Second, the context-aware management
application using the inference technique aims to control the greenhouse facilities.
The context-aware management application possesses a self-developed ontology to
model networks, sensors, context and activities of the system.

Figure 13 describes the components, services, and flows of data, of the system
of Hwang et al. To ease the description of this system, two extra components are
added: server cache and users’ device. First, the server cache component is the cache
to store temporary data at the parika greenhouse management server. Second, the
user’s device represents devices of users. Moreover, the external CCTVs of the system
are ignored in this paper because they have no impact on the development of crops.
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Figure 13: Description of the system of Hwang et al.

In the acquisition phase, the gateway runs the internal data collection service
to collect measured data from the sensor devices and images from the internal
CCTVs. The data are transferred to the sensor network interface component.
This component runs the cleaning service to guarantee that the other software
components could use the received data. For example, this service converts different
data structure types into integer data.

In the modeling phase, the data management component runs the annotation
service to annotate data and represented them. In the case of context-aware
management application, data are annotated and represent using the self-developed
ontology. The database controller component runs the storage service to store data
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in the database. Note that this service has a filtering mechanism that only organizes
the data when they are new. The database is located in the paprika greenhouse
management server.

In the analysis phase, the data service manager component runs the retrieving
service. This service queries real-time data from the data management component
or static data from the database through the database controller component. The
queries, themselves, do aggregation. Thus, the data service manager component
also runs the merging service. The real-time data are forwarded to the parika
greenhouse management server and to the event management component. The static
data are forwarded to the context-aware management component and to the event
management component. The event management component runs the reasoning
service to produce high-level context data. In detail, the service uses the pattern
matching technique in this case. Of which, an event is a pattern of data. When
the arrived data matches an event, the event management component produces
the corresponding informative data that are relevant to the alert activity. The
context-aware management component also runs the reasoning service to produce
the informative data related to the control of the actuator devices. The service,
in this case, applies the inference technique by using an ontology-based reasoner to
infer high-level context data. The database controller component runs the storage
updating service to organize new data from the reasoning service into the database.

In the exploitation phase, there are two main activities: actuator devices
controlling and user content providing. In the first activity, the greenhouse facilities
such as watering and heating systems, run the action service to control the
environment in the greenhouse. In the second activities, the web server and the
app server translate data and context retrieved from the middleware into human-
readable form due to the context transformation service. Then, they distribute
them to users’ devices due to the user-oriented distribution service.

1.5 Comparison of Six Smart Farming Systems

This section analyses and compares the six smart farming systems presented in
the previous section. Despite the differences between the six systems in hardware
components, software components, and communication technologies, the stack of
services enables viewing them under a unified vision. Table 1 shows the list of services
by each smart farming system.

The first row of the table includes the six projects corresponding to the six
smart farming systems. The first column lists the services in the stack of services.
The intersection of a column and a row is called a box. A box checked by the "x"
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Table 1: Services found in the six smart farming systems

symbol means that the smart farming system, at the first row on the same column
with the box, provides the service at the first row on the same column with the box.
From this table, there are some following remarks.

• It is possible to conclude that the stack of services for CASs can cover all the
smart farming systems.

• Eight services are fundamental: internal data collection, cleaning,
annotation, storage, retrieving, reasoning, storage updating, context
transformation, and user-oriented distribution. Therefore, the irrigation
CAS developed for TSCF should include them.
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• Eight services are optional: source selection, external data collection,
format transformation, merging, external system distribution, action,
and reconfiguration. In other words, a smart farming system can work
properly without them. Moreover, no system among the six smart farming
systems provides the reconfiguration service. This service has a side meaning:
a system with this service is adaptive since it can modify its working habit to
satisfy its context. Therefore, none of the above systems is adaptive.

1.6 Summary and Discussion

To sum up, this chapter presents the stack of services for CASs. It is an architecture
that relies on the context life cycle of CASs. This architecture follows the principles
of the microservice design mindset: it consists of 16 services. The 16 services are
identified based on numerous CASs in e-agriculture and the knowledge of computer
scientists involved in this project. The stack of services for CASs can improve the
upgradability since each service focuses on goal; then, system developers can replace
hardware and software components with new ones as long as they maintain the
service’s goal. Moreover, this chapter reviews six smart farming systems based on
the services of the stack of services for CASs and to conclude that its services can
cover all of the smart farming systems.

It is possible to conclude that this chapter success in responding to the challenge
of the upgradability of CASs. However, there are still two points to discuss further:

• Beside e-agriculture, the stack of services for CASs should be evaluated in other
domains, such as smart city and smart transportation, to guarantee that the
list of services in the stack is complete. It is necessary to publish and promote
this theory so that it gets more contributions and suggestions from the other
communities.

• As a side point in Section 1.5, there is no work on adaptive context-aware
systems (ACAS). ACAS is a CAS which can "modify its behavior according to
changes in the application’s context" (Efstratiou, 2004). It could be a perspective
for new researches in the future.

I
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Context-Aware System Ontology for
Data Heterogeneity

"The alchemist picked up a book that someone in the caravan had
brought. Leafing through the pages, he found a story about Narcissus.
The alchemist knew the legend of Narcissus, a youth who knelt daily
beside a lake to contemplate his own beauty. He was so fascinated by

himself that, one morning, he fell into the lake and drowned. At the spot
where he fell, a flower was born, which was called the narcissus. But this
was not how the author of the book ended the story. He said that when
Narcissus died, the goddesses of the forest appeared and found the lake,

which had been fresh water, transformed into a lake of salty tears. "Why
do you weep?" the goddesses asked. "I weep for Narcissus" the lake replied.

"Ah, it is no surprise that you weep for Narcissus," they said, "for though
we always pursued him in the forest, you alone could contemplate his beauty

close at hand." "But... was Narcissus beautiful?" the lake asked. "Who
better than you to know that?" the goddesses asked in wonder. "After all,
it was by your banks that he knelt each day to contemplate himself!" The

lake was silent for some time. Finally, it said: "I weep for Narcissus, but I
never noticed that Narcissus was beautiful. I weep because, each time he

knelt beside my banks, I could see, in the depths of his eyes, my own beauty
reflected." "What a lovely story," the alchemist thought.” – Paulo Coelho

An advantage of using the stack of services for CASs to design a system is to determine
the type of contexts (low-level or high-level). Contexts have a meaning in representing
a CAS; however, determining data is more significant in processing. Technically
speaking, the low-level context and the high-level context are two sets of data.
Therefore, representing different types of data and different types of computations
that process data are essential.
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Even that data in IoT are heterogeneous and numerous, it is possible groups
them into three categories: measured data, aggregate data, and deducted data. In
CAS, deducted data usually is the state of an entity and is a part of the high-level
context. The other ones usually are numeric. They are parts of the low-level context.
The computations that produce measured data, aggregate data, and deducted data,
respectively are measurement, aggregation, and deduction. This chapter aims to
present a new ontology that models these three type of data and their corresponding
computations. Consequently, it improves the interoperability of CASs in the IoT.
Moreover, this ontology contains the vocabulary that embodies a mechanism to create
generic rules for reasoning.

This chapter is organized as follows. Section 2.1 gives more information about
ontology and its role in the stack of interoperability. Section 2.2 presents two well-
known ontologies SOSA/SSN and SAREF, before selecting one of them as the core
to develop a new ontology for CASs. This chapter’s main contribution is Section 2.3:
to present CASO as the ontology indicated to CASs. Next, Section 2.4 explains the
method to evaluate and maintain CASO. Finally, Section 2.5 sums up the chapter
and open a discussion.

2.1 Ontological Approach for the Interoperability of
Data Semantic

The Association Francophone des Utilisateurs de Logiciels Libres (AFUL) defined
the interoperability1 as "a characteristic of a product or system, whose interfaces are
completely understood, to work with other products or systems, present or future, in
either implementation or access, without any restrictions". There exist several stacks of
interoperability. One one hand, most of them consider four interoperability layers of
technical, syntactic, semantic, and organization (Rahman and Hussain, 2020; Kubicek
et al., 2011). On the other hand, other standards, such as the interoperability
convention document for the French government’s information systems, suggest using
a model of six layers interoperability (Direction générale de la modernisation de
l’État (DGME), 2009). Alternatively, the Alliance for Internet Of Things Innovation
(AIOTI) proposes an interoperability framework of eight layers (Van der Veer
and Wiles, 2008). In this sense, this thesis proposes a stack of interoperability
based on the principles of agriculture projects. This research proposes the stack
of interoperability of five layers: technical interoperability, interoperability
of protocol, interoperability of data format, interoperability of data

1http://www.interoperability-definition.info/en/
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semantic, and interoperability of organizations. Figure 14 illustrates the stack
of interoperability and the relations of its layers. The meaning of each layer is as
follows.

Technical interoperability

Interoperability of protocol

Interoperability of data format

Interoperability of data semantic

Interoperability of organizations

Interoperability level

Syntactic

Figure 14: Stack of interoperability for CASs

• Technical interoperability: Two actors can exchange and process signals.
At this level, one actor plays the role of a sender, and the other plays the role
of a receiver, or both can be receiver-sender at the same time. The exchange
between actors creates physical media, which can be electrical, optical, or wave.
The exchange between actors is a physical signal. By using the analog-to-digital
converter (ADC) and digital-to-analog converter (DAC), these physical signals
can transform to the sequence of bit 0 and 1 that the computer can understand,
and inversely computer transforms bits into a physical signal to transfer them
over physical media. Electrical signals are transferred through copper cables, for
example, cat3, cat5, and coaxial. Optical signals are transferred through optical
cables. Wave signals are transferred through wireless or telecommunication
technologies such as wifi, Bluetooth, 4G, and 5G.

• Interoperability of protocol: Two actors can exchange and process data.
Data are encapsulated and decapsulated using a well-known networking
structure called the networking protocol. In detail, at the side of the sender, the
data will be encoded, divide, and attach to another control data before being
sent on physical media at the technical layer. This process itself is divided into
many functional layers; for example, in TCP/IP network protocols stack, there
are four different layers. Inversely, at the side of the receiver, the raw data will
be reformulated by the same functional layers.

• Interoperability of data format: Two actors can exchange and process
information. The exchanged information between two actors can be read by
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both the sender and receiver when they share in a structured format that
satisfied the three following rules. First, big data is divided into smaller data
pieces; for example, a sentence is divided into words. Second, pieces of data are
classified by types; for example, words are categorized into nouns and verbs.
Third, some markup words called tag supports to recognize and make pieces of
data in order. Example of this mechanism is the format XML, HTML, JSON,
and RDF.

• Interoperability of data semantic: Two actors share the same data model,
or their data models have some similar parts. As a consequence, the two actors
can not only read the exchanged information but also has knowledge about the
meaning of the information and use it correctly. Some well-known techniques
used in the interoperability of data semantic are ontology, semantic annotation,
and linked data.

• Interoperability of organizations: Actors in this layer are organizations in
an agriculture project. Two organizations have a protocol to collaborate for the
success of the project.

This research considers ontology as the tool to model data of CASs for two
reasons. First, ontology is well-known for data semantic enhancement since it provides
not only vocabulary and relations between elements of the vocabulary but also
the meta-data to describe such elements. Second, the vocabularies of ontology are
sharable and able to use by everyone. Sharing data is critical in IoT, then the data
schema of a system should be understood by another system. In other words, ontology
is a candidate to archive the interoperability of data semantic.

As the definition of (Studer et al., 1998), ontology is an abstract model that
model some phenomenon in the world. An ontology must be machine-readable, be
accepted, and shared between a group of people or systems. Moreover, an ontology
"may takes a variety of forms" according to their objective (Uschold and Jasper,
1999). There are some different methods to classify ontologies, for example, based
on language expressivity, based on scope or domain (Roussey et al., 2011b). This
research considers the classification that distinguishes between data ontology and
logical ontology (Roussey et al., 2011a) since it clarifies the contributions of ontology
in the context life cycle CAS. A data ontology provides a vocabulary to model data
recorded in a system. In detail, the vocabulary contains classes, properties, and
individuals. More than that, a logical ontology provides rules to support the reasoning
over the data. A logical ontology is built based on a relevant data ontology. In the
context life cycle of CAS, the data ontology contributes to the modeling phase, and
the logical ontology contributes to the analysis phase.
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2.2 Comparison of SOSA/SSN and SAREF

Ontology communities encourage to reuse the existed ontologies and vocabularies in
forming a new one. In this sense, this research also plans to reuses vocabularies from
other well-known ontologies and standards; however, it is essential to select only one
of them as the core ontology. There are two steps to determine it:

1. Determine a list of requirements of CASs.

2. Select the ontology that best covers the list of requirements.

The core ontology for the CASs should be an ontology for embedded devices
and their measurements. There exist several ontologies addressing this topic
(Bendadouche et al., 2012; Gyrard et al., 2016). However, this work only has two
final candidates: SOSA/SSN and SAREF, according to two criteria: (1) well-known
and being used in several projects, and (2) developed and maintained for a long time
by a creditable organization.

The ontology SSN(Compton et al., 2012a) was proposed by the World Wide
Web Consortium (W3C) and has been broadly adopted worldwide. Addressing
the omissions of the original version of the ontology SSN, the joint W3C and
Open Geospatial Consortium (OGC) Spatial Data on the Web Working Group
has developed a new version of SSN2 including a module called SOSA3 (Sensor,
Observation, Sampler, and Actuator). This new version, called SOSA/SSN, extends
the SSO Pattern (Stimulus Sensor Observation Pattern), implemented in the previous
version, by including classes and properties for actuators and sampling. The
three major components of SOSA are sensors and observations, samplings and
samples, and actuators and actuations.

SAREF4 is a reference ontology for smart appliances that focuses on the smart
homes, and provides a significant contribution to enable semantic interoperability in
the IoT being adopted by European Telecommunication Standardization Institute
(ETSI) as a Technical Specification (ETSI, 2015). This ontology provides a core
model for IoT that could be extended and adapted in order to cover specific domains.
SAREF focuses on the representation of appliances and devices, together with
their functions, commands, services, states, and profiles. In the latest
version, this ontology considers the representation of measurements from sensors.

This section compares SOSA/SSN and SAREF to select one as the core ontology.
The selection is based on the two steps to determine the core ontology. Section 2.2.1

2http://www.w3.org/ns/ssn
3http://www.w3.org/ns/sosa
4http://www.w3id.org/saref
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describes the first step, that is, to determine the list of requirements. Section 2.2.2
presents the second step, that is, select the ontology that best covers the requirements.

2.2.1 Requirements Extraction

Requirements to be modeled of a system should be extracted from sources of
information related to this system. There are three sources of information as follows.

• Experiences of the computer scientists of the project.

• Experiment dataset of an irrigation CAS maintained by TSCF.

• Books and documents about the standards and concepts of CASs.

After analyzing the above sources of information, the result is a list of
requirements. Each requirement is coded as R with a number and the title of the
requirement. R means requirement, and a number corresponds to the order of a
requirement in the list. The list of requirements is as follows.

R1. Device: Computing devices and other tools used in a CAS. The CAS
irrigation system includes four following types: (1) sensor devices: weather
station, tensiometer, and pluviometer; (2) actuator devices: watering sprinkler;
(3) gateways; (4) server: a local server based on Linux that supports part of the
DSS. This requirement includes four sub-requirements:

R1.1. Sensor device: Generic sensor devices.

R1.2. Actuator device: Generic actuator devices.

R1.3. System componency: Componency relation between devices.

R1.4. Domain specific device: Agricultural domain oriented devices, for
example, a pluviometer.

R2. Observation: A measurement, aggregation, or deduction made by
computing devices, including the data about the result of the observation,
units of measures, and time-related information about the observation. The
following units need to be represented in this agriculture use case: millimeter
(mm), centibar (cbar), Watermark unit of measure (the Watermark soil moisture
measure ranges from 0 to 200), which is transformed to cbar, and day counting
(day). Also, Celsius degrees (oC), Decibel-milliwatts (dBm), and Millivolt (mV)
are usually needed in a broader scenario of irrigation systems. This requirement
includes four sub-requirements:

R2.1. Aggregation: Observations of the calculations made by software
programs of computing devices.

R2.2. Deduction: Deductions made by an inference engine.
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R2.3. Domain specific result: Concrete results needed for this
agriculture use case; for example, the state of crop.

R2.4. Domain specific unit: Concrete units needed for this agriculture
use case; for example, the Watermark specific units.

R3. Property: Specific agricultural oriented properties as well properties also
used in other domains. The following list of properties corresponds to this
agriculture use case, and it does not intend to be exhaustive in the agricultural
domain: soil moisture, water received during watering, temperature of the soil,
temperature of the air, ambient humidity, precipitation, and crop growth stage.

R3.1. Domain specific property: Concrete properties to be observed
or acted upon needed for this agriculture use case; for example, the soil
moisture or the water received by the plot during the watering activity.

R4. Feature of interest: The entity that has the property being observed.
For example, when measuring temperature, one might distinguish whether it is
the temperature of a room or a person. This entity is usually referred to as the
feature of interest. This requirement could be further specified as follows:

R4.1. Domain specific feature of interest: Concrete feature of interest
that has the property being observed for this agriculture use case; for
example, the soil.

R5. Action: The action that an actuator device performs. This requirement
could be further specified as follows:

R5.1. Domain specific action: The action watering in this agriculture
use case. It includes the parameters such as the time interval during which
the action has to be carried out.

2.2.2 Ontology Requirements Coverage

Table 2 presents the relation between the requirements and the ontology elements
defined in the ontologies SOSA/SSN and SAREF. In this table, the first column of
a row represents the requirement. The second column and third column in the same
row represent the coverage by the SOSA/SSN and SAREF ontologies. They can be
in the three following situations. First, when the cell is empty, it means that the
given ontology has no vocabulary to cover the requirement. Second, when the cell is
covered, the elements from the given ontology are included in the cell (note that these
elements might be classes or properties). Third, when there is a number enclosed by
parenthesis, the document of the given ontology provides side notes that can be useful
for the requirement.
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Table 2: Requirements coverage by SOSA/SSN and SAREF

Requirement SOSA/SSN SAREF

R1 Device ssn:System saref:Device

R1.1 Sensor device sosa:Sensor saref:Sensor

R1.2 Actuator device sosa:Actuator saref:Actuator

R1.3 System componency ssn:hasSubSystem saref:consistsOf

R1.4 Domain specific device

R2 Observation
sosa:Observation saref:Measurement

(1) saref:UnitOfMeasure

(2)

R2.1 Aggregation (3)

R2.2 Deduction

R2.3 Domain specific result

R2.4 Domain specific unit

R3 Property ssn:Property saref:Property

R3.1 Domain specific property

R4 Feature of interest sosa:FeatureOfInterest

R4.1 Domain specific feature of interest

R5 Action
sosa:Procedure saref:Function

saref:Command

R5.1 Domain specific action

As shown in Table 2, regarding R5, SOSA/SSN documentation proposes to link
to the Quantities, Units, Dimensions and Data Types Ontologies (QUDT) (Hodgson
et al., 2014), the Ontology of Units of Measure (OM) (Rijgersberg et al., 2013), or the
RDF extension mechanism for UCUM (Unified Code for Units of Measure) datatype
(Lefrançois and Zimmermann, 2016) (Note (1)). For the case of SAREF, the OM
ontology is used as a suggestion for covering this aspect (Note (2)). The definition of
sosa:Observation is quite general in the document of SOSA/SSN. It can be used as
observations for both measurement and aggregation; however, in this sense, the data
model might be unclear (Note (3)).

Before selecting the core ontology between SOSA/SSN and SAREF, it is

42



Chapter 2. Context-Aware System Ontology for Data Heterogeneity

necessary to consider two remarks as follows.

1. The two ontologies cannot cover the domain specifics requirements since they
define only general concepts. In this sense, it is not a criticism about the lack
of coverage of requirements R1.4, R2.4, R3.1 and R5.1 as they refer to domain-
specific knowledge.

2. The vocabularies provided by both of the two ontology cannot clarify different
computations: measurement, aggregation, and deduction. Moreover, there is
no vocabulary indicated to the qualitative data such as a state.

From these remarks, this research selects SOSA/SSN as the core ontology since it
better covers the requirements.

2.3 CASO: an Ontology Dedicated to Context-
Aware Systems

This research proposes a new ontology for CASs called Context-Aware Systems
Ontology (CASO). CASO addresses the need for having a vocabulary that covers
the basic requirements of CASs in general. These basic requirements are the different
types of computations (measurement, aggregation, and deduction) and their data.

Some ontologies and particular ontology elements were identified to be reused in
CASO. Note that most of the selected ontologies have been developed and maintained
by standardization organizations.

• The W3C & OGC SSN is the core ontology for CASO and IRRIG. It describes
sensors, observations, samples and actuators (Janowicz et al., 2019).

• SAREF is an ontology for smart appliances that contributes to semantic
interoperability in the IoT domain (ETSI TS 103 264 - v2.1.1, 2017). This
ETSI recommendation focuses on the representation of appliances and devices
together with their functions, commands, services, states and profiles (It is
necessary to mention that CASO and IRRIG reuse some concepts from SAREF
and SAREF4AGRI, which are unavailable in the latest published versions of
these ontologies, but it is known by the authors that they will be available in
the next versions. SAREF4AGRI is an extension of SAREF for agriculture.).

• The W3C PROV is an ontology that represents provenance information (Lebo
et al., 2013).

• The W3C SKOS is a vocabulary that describes knowledge organization systems.
It will be useful in defining properties and their states (Bechhofer and Miles,
2009).
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• The W3C OWL-Time is an ontology of temporal entities, describing the
temporal properties of resources.

• Another well-known ontology reused in this conceptualization is the Ontology
of Units of Measure and Related Concepts (OM) (Rijgersberg et al., 2013).

Table 3 contains the prefixes and links to access the above ontologies.

Table 3: List of prefixes for CASO and IRRIG

Prefix Full address

caso https://w3id.org/def/caso#

dc http://purl.org/dc/elements/1.1/

irrig https://w3id.org/def/irrig#

om http://www.ontology-of-units-of-measure.org/resource/om-2/

owl http://www.w3.org/2002/07/owl/

prov http://www.w3.org/ns/prov#

saref https://w3id.org/def/saref#

saref4agri https://w3id.org/def/saref4agri

skos http://www.w3.org/2008/05/skos#

sosa http://www.w3.org/ns/sosa/

ssn http://www.w3.org/ns/ssn/

time http://www.w3.org/2006/time#

vann http://purl.org/vocab/vann/

In some cases, the reused ontology elements matched the intended use in
the developed ontology; therefore, they were adopted without modification. Some
examples of this case are the classes sosa:Platform, sosa:FeatureOfInterest, or
om:Unit. However, in other cases, some additional properties or constraints had
to be added to the reused elements. Then, a new subclass of reused concepts was
created to attach the new semantics to the subclasses created. For example, the case
of caso:Observation is a subclass of sosa:Observation.

The last version of CASO (v201912) is illustrated in Figure 15. The entities
defined in CASO are preceded by the prefix caso (yellow boxes). It contains a total
of 27 classes, 40 object properties, and four datatype properties. CASO has three
advantages specialized for CAS as follows.
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Figure 15: Overview of CASO

• The new class caso:Observation describes better an aggregation than the class
sosa:Observation. Indeed, an aggregation, in general, often takes inputs for
its calculation. The definition of sosa:Observation provides no vocabulary to
describe this fact. However, caso:Observation uses the prov:wasInformedBy
object property to identify the inputs of the computation.

• The new class caso:Deduction describes better an deduction than
sosa:Observation and caso:Observation. Indeed, the output of a deduction
should be data in high-level context which is a state. caso:Deduction uses
the caso:hasResultState object property to present the output of the
computation as a state.

• The new class caso:State describes states of an entity. The value of a state is
defined by using boundaries represented by the new class caso:Boundary. The
use of caso:State and caso:Boundary allows understanding the link between
the numeric values of an entity and its state. Note that the relations of
caso:Deduction, caso:Observation, caso:State, and caso:Boundary embody a
mechanism to make generic rules for reasoning. In detail, a state can be defined
with a range of values. When the observed data is in the range, the deduction
can deduct the corresponding state.
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CASO is encoded in OWL (W3C OWL Working Group, 2012) using Protégé
(Musen, 2015). The implementation of the ontologies included the declaration
of metadata, such as authors, dates, and licenses, according to Garijo and
Poveda Villalon (2017).

2.4 Evaluation of CASO

To check bad practices and common errors, the online pitfall scanner OOPS! (Poveda-
Villalón et al., 2014) has been applied to CASO. This tool is available on the site
http://oops.linkeddata.es/.

Figure 16 shows the report after evaluating CASO using OOPS!. In this report,
CASO has the pitfalls P10, P11, and P13 since it imports SOSA/SSN. In detail,
SOSA/SSN is a generic ontology, so that the restrictions of its classes and properties
are loosening. For example, instead of defining the domain and range of properties,
it uses domain include and range include. The reason for the pitfall P04 is
that CASO uses different vocabularies from several sources, then some of them are
independent of the others. The pitfall P32 is the case of deliberately using the same
label, for example, the classes caso:Observation and sosa:Observation.

Figure 16: Evaluation report of CASO using OPPS!

Publishing a ontology and receiving feedback from users is a solution for the
development team to detect and correct errors in a passive way. The publication of the
ontology CASO relies on the https://w3id.org/ permanent identifiers initiative. The
ontology publication follows the content negotiation mechanism. CASO is identified
with the URI https://w3id.org/def/caso#. The content negotiation mechanism
deploys to publish the ontologies are transparent to ontology developers as it is
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managed by OnToology (Alobaid et al., 2019). OnToology5 is a web-based system
that builds on top of Git-based environments and integrates a set of existing tools for
documentation, evaluation and publication activities. The OnToology’s integrated
version of Widoco(Garijo, 2017) generates the HTML published and allows users to
update the ontology with new information and diagrams.

The issue tracker provided by the GitHub is the tool to receive
feedback and control issue lists. The issue tracker of CASO is available at
https://github.com/Irstea/caso/issues. Also, ontology developers provide maintainer
email addresses that enable another method for the community to contact. Figure 17
shows the screenshot of the issue tracker for CASO in GitHub.

Figure 17: Issue tracker interface of the CASO GitHub repository

By publishing an ontology online, it is easy to receive feedback from users.
The users can contribute to the development of CASO by giving their idea or by
announcing the errors that they detected during usage. The developer team records
and verify the feedback before updating them in CASO.

2.5 Summary and Discussion

To sum up, this chapter presents CASO, a new ontology dedicated to CASs.
This ontology provides vocabularies to model the three types of computation
(measurement, aggregation, and deduction) and three types of data (measured data,
aggregate data, and deducted data). Also, il includes other concepts related to
computations, such as properties and features of interest. Moreover, one remarkable
point of the ontology is that it provides a vocabulary to making generic rules
for reasoning. CASO reuses several existed ontologies and standards, of which
SOSA/SSN is its core. After passing the necessary tests, this ontology is available

5http://ontoology.linkeddata.es/
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online, and the ontology developers maintain and update the ontology using the issue
tracker on GitHub.

It is possible to conclude that this chapter success in responding to the challenge
of the interoperability of CASs. However, there are still three points to discuss further:

• The current version (v201912) of the ontology CASO has enough vocabulary to
describe measurements, aggregations, and deductions, then the relation between
measured data, aggregate data, and deducted data are well connected. However,
after the link between deductions and actuations, the relation from deducted
data to commands of actuators is still open. This remark could be important,
especially for the CAS with the complex actuator.

• This ontology cannot represent the other aspects of CASs, such as the
networking and the coordinates of a CAS. It could be a remark to improve
CASO in the future.

• CASO is an ontology that can resolve the issue of data heterogeneity in CAS.
This ontology is generic for every CAS; thus, its vocabulary is not specialized
enough to describe data in specific use cases. For example, a smart home system
needs the vocabulary to specify humidity in a room, while a smart irrigation
system needs the vocabulary to specify soil moisture.

II
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Chapter 3

Development of an Irrigation
Decision Support System

"Start small, think big. Don’t worry about too many things at
once. Take a handful of simple things to begin with, and then

progress to more complex ones. Think about not just tomorrow,
but the future. Put a ding in the universe." – Steve Jobs

The stack of services for CASs and the ontology CASO are two new contributions to
improve the quality of CASs, respectively, in upgradability and interoperability. By
using the stack of services for CASs, system developers are free in choosing computing
devices and software components as long as the goals of services are guaranteed.
Consequently, they can upgrade the system without modifying its functionality. By
using CASO, different CASs have a common vocabulary in their data model; thus,
it eases data and information sharing. These two new contributions are generic for
every CAS. In practice, each specific case study needs to consider its circumstance to
use them properly.

This chapter presents a case study of using the stack of services for CASs and
the ontology CASO. This case study is to develop an irrigation DSS that automize
the irrigation method IRRINOV R© to suggest farmers watering their field daily.
Technically speaking, it is an expert system composed of three main elements: a
knowledge base, a rules base, and an inference engine. The DSS is a part of the
irrigation CAS in TSCF. Following the stack of services for CASs, this irrigation
CAS is composed of several services. Consequently, The DSS runs some services of
this stack of services. In data modeling, this system develops a new ontology called
IRRIG. It is a specialization of CASO for this case study.
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This chapter is organized as follows. Section 3.1 describes the irrigation method
IRRINOV R©. Next, Section 3.2 introduces the methodology to develop the irrigation
DSS. Section 3.3, Section 3.4, Section 3.5, and Section 3.6 presents respectively the
four steps to develop the DSS. Finally, Section 3.7 sums up the chapter and open a
discussion.

3.1 Method IRRINOV R©

The method IRRINOV R©1 is developed by Arvalis and its partners. It proposes a
guide for farmers to make irrigation decisions based on measurements of tensiometers
and pluviometers. It is designed to answer the following questions.

• When should irrigation be started, or when should watering devices be installed
on the plot?

• When should we start each watering cycle?

• When should irrigation be stopped, or when should farmers withdraw the
watering devices?

Note that watering cycle means an irrigation system performs a watering activity on
all the plots engaged in the system (Nguyen et al., 2020b). Watering cycle duration
is the number of days between two consecutive waterings of the same plot.

The method IRRINOV R© provides a set of decision tables and recommendations
that allow farmers to manage their irrigation system on a single plot. This method
proposes numerous variants depending on the soil, plot and crop types. This work
uses the method IRRINOV R© for the region Midi-Pyrénée, which is dedicated to maize
crop plants on clay-limestone soil (Arvalis et al., 2007). Following the IRRINOV R©

guidelines, the measuring equipment includes the following:

• An IRRINOV R© measuring station composed of six Watermark2 probes to
measure the soil water tension. Three Watermark probes should be placed
at 30 cm depth in the soil, and the other three should be placed at 60 cm depth
in the soil. Figure 18 illustrates the prototype of the IRRINOV R© station.

• A mobile pluviometer to measure the amount of water received by the crop
during watering.

• A weather station with a pluviometer to measure the quantity of water received
by the crop during rainfall.

1http://www.irrinov.arvalisinstitutduvegetal.fr/irrinov.asp
2https://www.irrometer.com/sensors.html#wm
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Pluviometer

Monitor box IRRINOV station

Soil sensor at 30cm depth

Soil sensor at 60cm depth

Figure 18: Prototype of the IRRINOV R© station

The method IRRINOV R© specifies the time needed to install the devices on the
plot. The IRRINOV R© station and the mobile pluviometer should be placed in the
plot when the crop reaches growth stage V23. The measurements can start two or
three days after installation. The Watermark probes are typically read once a week,
but during dry weather, farmers can check the probes more frequently, for example,
one observation per day. In addition, Watermark probe measurements should also be
carried out as follows:

• Before each planned watering cycle, to confirm or cancel the beginning of a new
watering cycle.

• Approximately 24 hours to 36 hours after each watering, to evaluate the
effectiveness of the watering. Note that it is necessary to avoid measurements
less than 24 hours after watering because they are unstable.

• After significant rains, to evaluate the effects of the rains. For example, if the
rainfall amount is under 10 millimeters (mm), then the rain has no impact on
the watering cycle plan.

Irrigation should stop when the crop reaches the growth stage R5hg45. Note that
state R5 is defined in (Lori J. Abendroth et al., 2011); however, the state R5hg45 is
defined in this project. This state means that the crops have moisture dents equivalent
to 45%.

The method IRRINOV R© specifies the constraints for using Watermark probes.
To validate the measurements of Watermark probes, the method IRRINOV R©

establishes that the difference between the values obtained from different probes at
the same depth should be at most 30 cbar. If the difference between the probe
measurements is above 30 cbar, then one of the probes is malfunctioning, and the
farmer should visit the field to correct the probe installation.

3V2, V7, R1, and R5 are the code names of maize growth stages defined in (Lori J. Abendroth
et al., 2011). They are respectively named "7 leaf", "10 leaf", "silking" and "dent stage with 50%
moisture" in the Arvalis growth stage classification.
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The value read on a Watermark probe must be multiplied by the correction
coefficient, which is specific for each batch of probes. For example, probes from 2013
have a correction coefficient equal to 1.0. In this paper, we call the former value a
raw value. The latter value after this process is the value of the measurement. It
represents the soil tension and has the cbar unit.

A difference of 10 to 20 cbar in tension between two probes located at the same
depth is considered normal. The method IRRINOV R© proposes to install three probes
per level of depth. The IRRINOV R© guidelines suggest that the farmer start the first
watering cycle when two probes out of three reach an initial threshold value. The
value reached by two probes out of three is the one taken into account by the decision
method. Note that when the raw value is 199 cbar, the method IRRINOV R© considers
that there is a contact problem between the Watermark probe and the soil.

The method IRRINOV R© proposes several decision tables to determine when to
start a watering cycle depending on the soil moisture and crop growth stage. Table 4
shows an example that determines when to start a watering cycle for clay-limestone
soil. This decision table is applied to maize crops when their growth stage is between
V2 and V7.

Table 4: Decision table of the relation of the watering cycle duration and the soil
moisture for maize at growth stage V2

Watering cycle duration 9 to 10 days 6 to 8 days below 5 days

Median of 30 cm depth probes 30 cbar 50 cbar 60 cbar

Median of 60 cm depth probes 10 cbar 20 cbar 20 cbar

Sum of the median of 30 cm depth probes
and the median of 60 cm depth probes

40 cbar 70 cbar 80 cbar

The second column of the above decision table should be read as "If the plot has
a watering cycle duration fixed between 9 and 10 days", and one of the two following
conditions is satisfied:

1. "When two of three probes at 30 cm depth are above the 30 cbar value" and "when
two of three probes at 60 cm depth are above the 10 cbar value".

2. "When the total (sum of the median of 30 cm depth probes and the median of 60
cm depth probes) is above 40 cbar".

Then, a watering cycle should start.
Note that for this particular decision table, the second and third rows are

redundant because of the last one: when the median of 30 cm depth probes is above
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30 cbar, and the median of 60 cm depth probes is above 10 cbar, then it is certain
that the sum of the two values is above 40 cbar.

This project translates all of the decision tables into rules to transform the manual
method IRRINOV R© into an automatic DSS.

3.2 Methodology Combined of LOT and Mini-
Waterfall

The development of the ontology IRRIG is a part of the development of the irrigation
DSS. Since ontology engineering is a domain distinguished from system engineering,
this research proposes a new methodology for both.

Ontology engineering refers to as "the set of activities that concern the ontology
development process, the ontology life cycle, the methods and methodologies for building
ontologies, and the tool suites and languages that support them" (Gómez-Pérez et al.,
2004). Its goal is to form a new ontology following a methodology. There exist several
methodologies to develop an ontology such as Cyc method, KACTUS approach,
SENSUS-based, METHONTOLOGY, and Linked Open Terms (LOT) methodology.
This research adopts LOT methodology4 as the candidate to build IRRIG due to
its success in several creditable projects (Poveda-Villalón, 2012; García-Castro et al.,
2017). LOT is flexible and rapid to change since it relies on the Agile practices5. This
methodology focuses on (1) the reuse of terms (classes, properties and attributes)
existing in already published vocabularies or ontologies and (2) the publication of the
ontology following the linked data principle. LOT relies on the ontological engineering
activities defined in the NeOn methodology when available (Suárez-Figueroa et al.,
2015). LOT defines iterations over the following four activities: (1) ontological
requirements specification, (2) ontology implementation, (3) ontology publication,
and (4) ontology maintenance. Figure 19 illustrates LOT.

System engineering is the art of developing a system. There exist numerous
methodologies to develop a system such as feature-driven development (FDD),
waterfall, and scrum. System developers of this project choose mini-waterfall as
the methodology to develop this irrigation DSS. The mini-waterfall is inspired by the
waterfall methodology, which develops a system in five activities: (1) specification, (2)
design, (3) implementation, (4) testing, and (5) maintenance (Muller and Gaertner,
2004). The purpose of the mini-waterfall methodology is to repeat the sequence of the

4http://lot.linkeddata.es
5Agile is a mindset with the principle to use a set of tools such as SCRUM, KANBAN, and FDD

to develop software fast and easy to change.
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Figure 19: Procedure of the LOT methodology

five activities multiple times to develop the system progressively. Figure 20 illustrates
the mini-waterfall methodology.

Specification

Conception

Implementation

Verification
Repeat n times

Maintenance

Figure 20: Procedure of the mini-waterfall methodology

Figure 21 illustrates the final development methodology for this irrigation CAS.
Ontology development has a life cycle called the LOT life cycle. The LOT life cycle
is presented by the dashed yellow box. Each activity in this life cycle is represented
by a solid yellow box. The solid black arrows between the boxes show the order
of the activities; for example, the development team must perform the ontological
requirements specification activity before the ontological implementation activity.
The CAS development life cycle is called a mini-waterfall life cycle. It is presented
by the dashed blue box. Each activity in this life cycle is represented by a solid
blue box. The solid yellow arrow between one activity X in the LOT life cycle and
one activity Y in a mini-waterfall life cycle means that the result of activity X is
necessary to implement activity Y. For example, the design activity of the mini-
waterfall cycle requires the result of the ontology conceptualization activity of the
LOT life cycle. Otherwise, the dashed blue arrow from one activity Y of mini-
waterfall to one activity X of LOT life cycle means that the result of the activity Y can
contribute to activity X. It is necessary to note two points in this methodology. First,
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the LOT life cycle is triggered by the mini-waterfall life cycle, but it is independent of
the mini-waterfall life cycle. As a consequence, the LOT life cycle can be shorter than
the mini-waterfall life cycle. Suppose that after each development life cycle, there is
a new version. Therefore, there is nothing to prevent the ontology from having three
versions at the same time, but the system can only have one version. Second, after the
maintenance activities of both the LOT life cycle and CAS life cycle, the development
team renews the sequence; that means, the development team starts with the first
activity. However, the current activity can be skipped if the last time result of the
same activity is sufficient.

Specification

Design

Implementation

Testing

Ontological
requirements
specification

Ontological implementation

Ontology
Conceptualization

Ontology 
maintenance

Mini-waterfall

LOT

Ontology
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Figure 21: Mini-Waterfall combined with LOT methodology to develop a system

3.3 System Specification

The system specification step is to analyze the resources required to build the system.
In the case study of the irrigation DSS, there are four sources of information as follows.

• The IRRINOV R© method version for the region Midi-Pyrénée, France.

• The Arvalis dataset: real experimental data from Arvalis and INRAE. This is
an excel file that contains recorded daily observations and activities of farmers
in a maize plot T1 B1 - DKC4814 from 14/06/2013 to 06/10/2013 in Gaillac,
France. Note that the observations recorded in the Arvalis dataset are the daily

55



Chapter 3. Development of an Irrigation Decision Support System

aggregated values of the sensor measurements. In other words, the data in the
dataset are already processed from the raw measurements.

• Farming journal ("Carnet de Terrain" in French): a document that contains
several tables to record all the precise observations related to the plot. It is a
kind of experimentation journal used frequently in research laboratories.

• Experiences and knowledge from specialists in the agriculture domain. The
specialists are from Arvalis and INRAE.

The result of the system specification step is a document of competency questions
and a system specification document. The competency questions document includes
all the questions that the final system should be able to answer. Based on these
competency questions, ontology developers can determine the concepts and the
relations between the concepts needed for the ontology. Figure 22 presents an excerpt
from the current competency questions. A system specification document includes
all detail of the system. From such detail, system developers can extract all the
functional requirements and non-functional requirements of the system.

Figure 22: Screenshot of a part of the competency questions document containing
the questions and answers from CQ1.1 to CQ1.4

3.4 System Design

The system design step is to transform all the information in the specifications into
models. This irrigation DSS has one data model and one system model.

First, the data model has a schema relied on the ontology IRRIG. The data to be
modeled are from different computations (observation, aggregation, and deduction)
relating to different entities. The entities could be grouped by topic into four
workflows: crop growth, rain quantity, soil moisture, and crop water need.
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Figure 23 shows the four workflows, of which each workflow is a collection of the
observations, aggregations, and deductions of entities related to the topic of the
workflow. For example, the crop growth workflow contains CropGrowthObservation
and CropGrowthDeduction. Observation, aggregation, and deduction produce three
types of data: measured data, aggregate data, and deducted data. Measured data
are data generated directly from devices. Aggregate data are data calculated through
an aggregation process. Deducted data are data inferred after a deduction process.
In the figure, a green box represents a measured data, a yellow box represents an
aggregate data, and a red box represents a deducted data.
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Figure 23: Four workflows of the CAS smart irrigation

The system model is a set of services. To recall, the irrigation CAS applies the
stack of services for CASs in designing. Since the DSS is only a part of the CAS, its
model corresponds to some services in the stack.

The rest of this section is organized as follows. Subsection 3.4.1 describes IRRIG.
Subsection 3.4.2 , Subsection 3.4.3, Subsection 3.4.4, and Subsection 3.4.5 presents the
data modeling and reasoning of crop growth workflow, rain quantity workflow,
soil moisture workflow, and crop water need workflow respectively. Finally,
Subsection 3.4.6 focuses on the services provided by the DSS.

3.4.1 Irrigation Ontology for Experimentation in TSCF

IRRIG is the ontology for the irrigation DSS in TSCF. Figure 24 illustrates the latest
version of IRRIG (v201912). It imports and extends CASO with 31 classes, four
properties, 71 individuals, and 24 rules. The entities defined in IRRIG are preceded
by the prefix irrig. IRRIG has three advantages as follows.
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Figure 24: Overview of IRRIG

• IRRIG specializes the class ssn:Property in different subclasses related to
moisture, stress, and growth. Several subclasses of caso:Observation specify
different types of observations. Each subclass is dedicated to the observations
of one specific instance of ssn:Property. All of these specializations allows the
system to model heterogeneous and numerous data from CASs.

• IRRIG provides 71 individuals related to several entities in agriculture. Each
individual is well-defined and is clarified by its metadata. It allows stakeholders
and data users to understand the system better.

• The 24 rules of IRRIG allows reasoning on the data. These rules are encoded
in Semantic Web Rule Language (SWRL).

3.4.2 Crop Growth Workflow Data Modeling and Reasoning

In the crop growth workflow, data related to crop growth is processed through several
computations. The input of this workflow is the crop growth stage. The output of
this workflow is the state of the property CropGrowth. In detail, the crop growth
workflow composes of two computations as follows.
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• CropGrowthObservation: The observation provides the growth state of the
feature of interest representing the crop. This state is converted from a growth
stage, which is observed by a human.

• CropGrowthDeduction: The deduction provides the growth state of the
feature of interest crop inferred by an inference engine.

3.4.2.1 CropGrowthObservation Modeling

Farmers observe the crop growth stage. These stages represent the life cycle of maize.
In the method IRRINOV R©, the following stages are observed by farmers:

• Crop growth stage of "10 leaves".

• Crop growth stage of "silking" (flowering begins when a silk is visible outside
the husks).

• Crop growth stage of "dent stage with 50% moisture".

• Crop growth stage of "dent stage with 45% moisture".
Table 5 presents the four crop growth observations stored in the Arvalis dataset.

Each observation was stored as two datapoints: (1) crop growth stage, and (2) the
date of observation (year, month, day). The two first column presents the crop stages,
respectively, in French and English. The last column presents the dates of observation.

Table 5: Observations of crop growth stage stored in the Arvalis dataset

Stage in French Stage in English Observation date

10 feuilles 10 leaves 26/06/2013

Floraison femelle Silking 27/07/2013

HG50% Dent with 50% moisture 10/09/2013

HG45% Dent with 45% moisture 19/09/2013

The crop growth stages are coded as states for the property CropGrowth. The
coding relies on other well-know resources about maize agriculture (Lori J. Abendroth
et al., 2011). Moreover, the method IRRINOV R© and the irrigation system requires
to add some new states. The list of CropGrowth states is as follows:

• CropGrowth.Init: The state represents the crop before reaching the "10
leaves" stage. This state is called Init because CropGrowth is always at
this state right after the initialization of the system. Note that this state also
represents all of the stages of the crop until it reaches the "10 leaves" stage.
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• CropGrowth.V7: The state represents the crop after reaching the "10 leaves"
stage, also named V7 in (Lori J. Abendroth et al., 2011).

• CropGrowth.V7d20: The state represents the crop 20 days after reaching
the "10 leaves" stage. Note that IRRINOV R© method has many versions
corresponding to crop specialty and soil. The number of days for this state
is different regard on IRRINOV R© method versions. In the case of the Arvalis
dataset, it is 20 days.

• CropGrowth.R1: The state represents the crop after reaching the "silking"
stage. This stage is also named R1 in (Lori J. Abendroth et al., 2011).

• CropGrowth.R1d15: The state represents the crop 15 days after reaching
the "silking" stage.

• CropGrowth.R5: The state represents the crop after reaching the "dent stage
within kernel containing 50% moisture". This stage is also named R5 in (Lori
J. Abendroth et al., 2011).

• CropGrowth.R5hg45: The state represents the crop after reaching the "dent
stage within kernel containing 45% moisture". When the crop reaches this
development stage, the irrigation could stop.

To recall, the CropGrowth states of the system could describe the life cycle of
maize. They follow a chronology order: Init < V7 < V7d20 < R1 < R1d15 < R5 <
R5hg45. In this order, a state occurs before its right state and after its left one. The
change of states takes more than one day. For example, V7d20 always happens 20
days after V7, and at least one day before R1.

Figure 25 presents the model of the CropGrowth observation on 27/07/2013 using
CASO and IRRIG. Note that the data of the CropGrowth observation on 27/07/2013
is a part of the data sample on 14/08/2013 in the Arvalis dataset.

• An instance of the class irrig:CropGrowthObservation reperesents
the farmer observation, as shown in Figure 25. By definition,
instances of CropGrowthObservation are linked to the individual
irrig:observedProperty_crop_growth, an instance of the class
irrig:GrowthProperty, and to the individual irrig:featureOfInterest_crop,
an instance of the class sosa:FeatureOfInterest.

• The observation individual is linked to the actor that made the observation.
In this case, this actor is a farmer. This model uses a sensor to represent the
farmer. Since Arvalis provides no information about the name of the farmer,
the individual arvalis:people_john_doe, an instance of the class sosa:Sensor, is
used to represent this actor. The sosa:madeBySensor object property links the
observation individual to the sensor individual, as shown in Figure 25.
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Figure 25: CropGrowth observation on 27/07/2013

• Human observation is instantaneous. Farmers made observations at a precise
time. Since Arvalis provides no information about the precise hour, minute, and
second of observation, it is fixed to 08:00:00 as for the synchronization reason.
Figure 25 presents an observation that happens at 08:00:00 on 14/08/2013. To
store the temporal information of the measurement, this model uses an instance
of the class time:Instant. The time:inXSDDateTimeStamp data property stores
the associated date-time value. The sosa:phenomenonTime object property
links the observation individual to the instant individual.

• To present the time when the farmer provides the observation, the
sosa:resultTime datatype property is used to link the observation individual to
the xsd:dateTime value corresponding. In Figure 25, this precise time is at
08:00:00 on 14/08/2013.

• The result of a CropGrowth observation is an instance of the class
irrig:CropGrowthState. The observation individual is linked to its state result
by the caso:hasResultState object property, as shown in Figure 25. The
possible states are shown in Figure 26.

3.4.2.2 CropGrowthDeduction Modeling

The daily state of the property CropGrowth is deducted based on the last CropGrowth
observation. The SWRLAPI Drools Engine runs this deduction process. The last
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Figure 26: States of the property CropGrowth

CropGrowth observation provides two information to deduct the state of CropGrowth
of a day: the last state of CropGrowth and the observation day. The second
information is to calculate the time interval between the last observation day and
the deduction day. By comparing this interval with a temporal threshold, two states
can be distinguished. Some temporal thresholds are defined as follows:

• Th_Time_15D: The threshold represents a duration of 15 days. It is used
to detect the change from the state R1 to the state R1d15.

• Th_Time_20D: The threshold represents a duration of 20 days. It is used
to detect the change from the state V7 to the state V7d20.

• Th_Time_1D: The threshold represents a duration of 1 day. It is used to
access the final state.

Figure 27 describes the state diagram that presents the mechanism to deduce
the state of the property CropGrowth of a day. In the diagram, there are nine states
and eight external transitions. The nine states include two default states of the UML
state diagram (initial and final states) and eight states defined for CropGrowth. The
variable tcrop represents a clock dedicated to CropGrowth that has a time step of
one day. The transitions occur when their conditions are satisfied. Each state of
CropGrowth in the diagram may contain internal transitions.

• The transition from the initial state towards the state Init indicates that as
soon as the system starts, the property CropGrowth reaches Init.

62



Chapter 3. Development of an Irrigation Decision Support System

when(CropGrowth.Stage = "10 leaves")

when(tcrop >= Th_Time_20D)

when(tcrop >= Th_Time_15D)

when(CropGrowth.Stage = "Silking" )

when(CropGrowth.Stage = "Dent stage with 50% moisture")

when(CropGrowth.Stage = "Dent stage with 45% moisture")

when(tcrop >=  Th_Time_1D)

CropGrowth.Init

CropGrowth.V7

 entry / tcrop := 0D

CropGrowth.V7d20

CropGrowth.R1

 entry / tcrop := 0D

CropGrowth.R1d15

CropGrowth.R5 

CropGrowth.R5hg45

 entry / tcrop := 0D

Figure 27: Automata of the CropGrowth states and their transitions

• The transition from the state Init towards the state V7 indicates that a farmer
observes the maize growth reaching the stage "10 leaves", then the property
CropGrowth reaches V7. After reaching this state, tcrop is reset.

• The transition from the state V7 towards the state V7d20 indicates that when
tcrop is superior or equal to 20 days, the property CropGrowth reaches V7d20.

• The transition from the state V7d20 towards the state R1 indicates that a
farmer observes the maize growth reaching the stage "silking", then the property
CropGrowth reaches R1. After reaching this state, tcrop is reset.

• The transition from the state R1 towards the state R1d15 indicates that when
tcrop is superior or equal to 15 days, the property CropGrowth reaches R1d15.

• The transition from the state R1d15 towards the state R5 indicates that a
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farmer observes the maize growth reaching the stage "dent stage with 50%
kernel moisture content", then the CropGrowth property reaches the state R5.

• The transition from the state R5 towards the state R5hg45 indicates that a
farmer observes the maize growth reaching the stage "dent with 45% kernel
moisture content", then the property CropGrowth property reaches R5hg45.
After reaching this state, tcrop is reset.

• The transition from the state R5hg45 towards the final state indicates that when
the clock tcrop is at least one day, the crop observation campaign is terminated.

Figure 28 and Figure 29 present the model of the CropGrowth observation on
14/08/2013 using CASO and IRRIG.
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Figure 28: CropGrowth deduction on 14/08/2013 (part 1)

• An instance of the class irrig:CropGrowthDeduction represents a deduction
process for the property CropGrowth property, as shown in Figure
28. By definition, instances of irrig:CropGrowthDeduction are linked to
the individual irrig:observedProperty_crop_growth and to the individual
irrig:featureOfInterest_crop.

• The deduction individual is linked to an actor that produces the result. The
actor is the SWRLAPI Drools Engine which is represented by the individual
arvalis:ontogen_inferenceEngine_SWRLAPI_drools, an instance of the class
sosa:Sensor. The deduction individual is linked to the sensor individual via the
sosa:madeBySensor object property, as shown in Figure 28.
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Figure 29: CropGrowth deduction on 14/08/2013 (part 2)

• Since a CropGrowth deduction is based on the last CropGrowth observation,
the deduction individual in Figure 28 is based on the observation individual
presented in Figure 25. The deduction individual is linked to the instance
of the class irrig:CropGrowthObservation via the prov:wasInformedBy object
property.

• The result of a CropGrowth deduction is an instance of the class
irrig:CropGrowthState. The deduction individual is linked to its result by the
caso:hasResultState object property, as shown in Figure 28. The possible
states are shown in Figure 26.

• To store the time of the deduction, the sosa:resultTime datatype property is used
to link the deduction individual to the xsd:dateTime value corresponding to the
result time at [d+1 06:00:00]. In Figure 29, the result time is at 06:00:00 on
15/08/2013.

• To represent the fact that a deduction concerns the data collected on the
day d, the object property sosa:phenomenonTime is used. In Figure 29,
the phenomenon time is represented by an instance of the class time:Interval
for an interval of [14/08/2013 00:00:00, 15/08/2013 00:00:00[, which
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is associated with two instances of the class time:Instant. The first one
represents the beginning of the interval: [14/08/2013 00:00:00]. The
time:Interval instance is linked to the beginning time:Instant instance by the
time:hasBeginning object property. The second one represents the end of the
interval: [15/08/2013 00:00:00]. The time:Interval instance is linked to the
ending time:Instant instance by the time:hasEnding object property. Each
time:Instant instance uses a time:inXSDDateTimeStamp data property to store
the associated date-time value. The sosa:phenomenonTime object property
links the deduction individual to the interval individual.

• The deduction result for day d is valid for a 24-hour interval: [d+1 06:00:00,
d+2 06:00:00[. No new deduction will be performed during this valid
time. In Figure 29, the valid time is represented by an instance of the
class time:Interval for an interval of [15/08/2013 06:00:00, 16/08/2013
06:00:00[, which is associated with two instances of the class time:Instant.
The caso:hasValidTime object property links the deduction individual to the
valid time.

Figure 30 supports to clarify the synchronization of all computations in the crop
growth workflow.

d 00:00:00 d+1 00:00:00 d+3 00:00:00

06:00:00 06:00:00

t

Legend
Closed boundary

Open boundary

CropGrowthObservation

CropGrowthDeduction

t

06:00:00

d+2 00:00:00

Phenomenon Time

Phenomenon Time Valid Time

Result Time

Figure 30: Time scales of the crop growth workflow

3.4.2.3 CropGrowthDeduction Reasoning

Figure 27 gives a global view of the mechanism to deduct a CropGrowth state. In
reasoning, this mechanism is in the form of one or several rules. There are a total of
six rules corresponding to the six transitions towards the states V7, V7d20, R1, R1d15,
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R5, and R5hg45. All of them are coded in SWRL. While the rules for the states R5
and R5hg45 only need the last CropGrowth observation as input, the other four rules
require furthermore to compare the number of day at a state with a threshold. This
subsection presents two rules. The first one is the rule for the state R5 representing
the former case: it only considers the last CropGrowth observation as input. The
second one is the rule for the state V7 representing the latter case.

Table 6 contains necessary information of the rule for the state R5. The short
name of the rule is in the box Code, and its full name is in the box Full name.
The description of the rule is in the box Description. The code in the box Rule in
SWRL presents the logic of the reasoning process. Detail of the code is as follows.

Table 6: Rule for the property CropGrowth to reach the R5 state

Code:
ADv122019-CG-R5

Full name:
ArvalisData-IrrigVersion122019-CropGrowth-R5

Description:
The goal of this rule is to determine the state of CropGrowth. The rule implements the transition
from the R1d15 or R5 state to the R5 state. The input of this rule is the farmer observation at
the R5 state (?observation_crop_growth). The output of this rule is the Crop Growth deduction
at the R5 state (?deduction_crop_growth). This rule’s mechanism is to check if the last farmer
observation is at R5 state, then the deduction is at the R5 state.

Rule in SWRL:
irrig:CropGrowthObservation(?observation_crop_growth) ˆ
sosa:hasResult(?observation_crop_growth, ?irrig:state_crop_growth_r5) ˆ

irrig:CropGrowthDeduction(?deduction_crop_growth) ˆ
prov:wasInformedBy(?deduction_crop_growth, ?observation_crop_growth) ˆ

-> caso:hasResultState(?deduction_crop_growth, irrig:state_crop_growth_r5)

• The first paragraph is one premise. It means to find a crop growth observation
that has the state R5.

• The second paragraph is one premise. It means to find a crop growth deduction
that was informed by a crop growth observation.

• The final paragraph is one deduction. It means a crop growth deduction has a
result at the state R5.

Table 7 contains necessary information of the rule for the state V7. The code in
the box Rule in SWRL presents the logic of the reasoning process. Detail of the
code is as follows.

• The first paragraph is one premise. It means to find a crop growth observation
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Table 7: Rule for the property CropGrowth to reach the V7 state

Code:
ADv122019-CG-V7

Full name:
ArvalisData-IrrigVersion122019-CropGrowth-V7

Description:
The goal of this rule is to determine the state of CropGrowth. The rule implements the transition
from the Init or V7 state to one of the V7 state. The input of this rule is the farmer observation at
the V7 state (?observation_crop_growth). The output of this rule is the Crop Growth deduction
at the V7 state (?deduction_crop_growth). The mechanism of this rule is to check if the duration
(?duration_observation_deduction) between the farmer observation and the deduction is inferior
to a time threshold (?value_Th_Time_20D) then the result of the deduction is the V7 state.

Rule in SWRL:
irrig:CropGrowthObservation(?observation_crop_growth) ˆ
sosa:hasResult(?observation_crop_growth, ?irrig:state_crop_growth_v7) ˆ

irrig:CropGrowthDeduction(?deduction_crop_growth) ˆ
prov:wasInformedBy(?deduction_crop_growth, ?observation_crop_growth) ˆ

time:Instant(?instant_observation) ˆ
sosa:phenomenonTime(?observation_crop_growth, ?instant_observation) ˆ
time:inXSDDateTimeStamp(?instant_observation, ?timestamp_observation) ˆ

time:Interval(?interval_deduction) ˆ
sosa:phenomenonTime(?deduction_crop_growth, ?interval_deduction) ˆ
time:hasBeginning(?interval_deduction, ?instant_begin_deduction) ˆ
time:inXSDDateTimeStamp(?instant_begin_deduction, ?timestamp_begin_deduction) ˆ

temporal:duration(?duration_observation_deduction, ?timestamp_begin_deduction,
?timestamp_observation, "Minutes") ˆ

caso:hasOpenUpperBoundary(irrig:state_crop_growth_v7, ?Th_Time_20D) ˆ
caso:boundaryValue(?Th_Time_20D, ?value_Th_Time_20D) ˆ

swrlb:lessThan(?duration_observation_deduction, ?value_Th_Time_20D)

-> caso:hasResultState(?deduction_crop_growth, irrig:state_crop_growth_v7)

that has the state V7.

• The second paragraph is one premise. It means to find a crop growth deduction
that was informed by a crop growth observation.

• The third paragraph is one premise. It means to get the time value of a crop
growth observation.

• The fourth paragraph is one premise. It means to get the time value of the
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beginning of a crop growth deduction.

• The fifth paragraph is one premise. It means calculating the interval between
the time of crop growth observation and the time of the beginning of a crop
growth deduction.

• The sixth paragraph is one premise. It means to get the time value of the
threshold equaling to 20 days.

• The seventh paragraph is one premise. It means to check if the time value of
the interval is inferior to the time value of the threshold.

• The final paragraph is one deduction. It means a crop growth deduction has a
result at the state V7.

The rules for V7d20, R1, R1d15, and R5hg45 have the same logic but different
parameters with the two above. The tables of such rules are in the Appendix A.

3.4.3 Rain Quantity Workflow Data Modeling and Reasoning

In the rain quantity workflow, data related to rain quantity is processed through
several computations. The input of this workflow is rain quantity measured during
a duration. The output of this workflow is the state of the property RainIntensity
and the value of the property DelayDuration. In detail, the rain quantity workflow
composes of four computations:

• RainQuantityObservation: The observation provides the quantity measured
during a duration of the feature of interest representing the rain.

• RainDailyTotalQuantityObservation: The aggregation provides the total
daily quantity of the feature of interest rain. It equals the daily total of the
property RainQuantity

• DelayDurationObservation: The aggregation provides the duration of the
feature of interest delay. The value of the property DelayDuration is calculated
based on the value of the property RainDailyTotalQuantity.

• RainIntensityDeduction: The deduction that provides the state of the
property RainIntensity.

3.4.3.1 RainQuantityObservation Modeling

A pluviometer measures the rain quantity falling during a duration. It depends
on the measurement frequency of the pluviometer. The unit of rain quantity is
millimeter (mm). For example, the pluviometer measures that the rain quantity
falling during one hour is 10 mm. This process is represented by a function
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called getRainQuantity(p,t1,t2). This function returns the measurement of the
pluviometer p during the interval [t1, t2[.

Figure 31 presents the model of the RainQuantity observation in [07:00:00,
08:00:00[ on 14/08/2013 using CASO and IRRIG.
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Figure 31: RainQuantity observation in [07:00:00, 08:00:00[ on 14/08/2013

• An instance of the class irrig:RainQuantityObservation represents the
aggregation performed by running the function getRainQuantity(p,t1,t2). It
is an observation of a quantity property related to the rain, as shown in Figure
31. By definition, individuals of irrig:RainQuantityObservation are linked to
the individual irrig:observedProperty_rain_quantity, an instance of the class
irrig:AmountProperty, and to the individual irrig:featureOfInterest_rain, an
instance of the class sosa:FeatureOfInterest.

• The observation individual is linked to the actor that has made the observation,
that is, a pluviometer. A pluviometer is represented by an instance of the class
sosa:Sensor, which is also an instance of the class saref4agri:Pluviometer. Note
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that in the Arvalis dataset, there is no information about the identification
of the pluviometer. Then, the title of the sensor individual is set to
arvalis:pluviometer_1, as shown in Figure 31. The sosa:madeBySensor object
property links the observation individual to the sensor individual.

• A pluviometer measures the RainQuantity property during a time interval.
To store the time information of the measurement, this model uses an
instance of the class time:Interval. In Figure 31, the time:Interval instance
represents the period of [07:00:00, 08:00:00[ on 14/08/2013. This instance
is described by two instances of the class time:Instant. The first one
represents the beginning of the interval: [14/08/2013 07:00:00]. The
object property time:hasBeginning links the time:Interval instance to the
beginning time:Instant instance. The second one represents the end of the
interval: [14/08/2013 08:00:00]. The time:Interval instance is linked to the
ending time:Instant instance by the object property time:hasEnding. Each
time:Instant instance uses a time:inXSDDateTimeStamp data property to store
the associated date-time value. The sosa:phenomenonTime object property
links the observation individual to the interval individual.

• To present the time when the pluviometer generates the measurement, the
sosa:resultTime datatype property is used to link the observation individual
to the xsd:dateTime value corresponding to a precise time. In Figure 31, this
precise time is at 08:00:00 on 15/08/2013.

• The result of pluviometer measurement is presented by an instance of the class
sosa:Result. A value and a unit are required to describe this result. The
instance of sosa:Result is linked to the data value via the om:hasNumericValue
datatype property. The instance of the sosa:Result is linked to the individual
om:millimeter, an instance of om:Unit, via the om:hasUnit object property, as
shown in Figure 31.

3.4.3.2 RainDailyTotalQuantityObservation Modeling

The data recorded in the Arvalis dataset are not the measurements of one pluviometer,
but an aggregation of those measurements: the sum of all rain quantity measurements
that falls down during a day. The measured data collected from the pluviometer
are processed to become the sum of daily total rain quantity. To executing this
aggregation process, the function getRainDailyTotalQuantity(p,d) is run. Table
8 presents the function getRainDailyTotalQuantity(p,d). This function returns
the sum of all pluviometer measurements measured by the pluviometer p during the
24-hour interval. According to Météo-France, the rain quantity of a day is recorded
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between two instants [d 06:00:00] and [d+1 06:00:00] 6. Thus, the 24-hour interval of
the day d is represented as [d 06:00:00, d+1 06:00:00[.

Table 8: Function getRainDailyTotalQuantity(p,d)

getRainDailyTotalQuantity(p, d) =
∑

getRainQuantity(p, t1, t2)

on the condition that [t1,t2] ⊂ [d 06:00:00, d+1 06:00:00[

where
• d: a specific day, e.g., 14/08/2013

• p: a pluviometer

• ti: a specific instant of day d, e.g., 08:00:00 on 14/08/2013

• getRainQuantity(p,t1,t2): the rainfall quantity value measured by the pluviometer p
during the interval [t1,t2[.

In the Arvalis dataset, each observation was stored as two data points: (1) the
daily total rain quantity in mm, and (2) the date of observation (year, month, day).

Figure 32 presents a sample of the RainDailyTotalQuantity observation on
14/08/2013 to be modeled using CASO and IRRIG.

• The instance of the class irrig:RainDailyTotalQuantityObservation represents
the computation of the daily total of all quantity measurements produced
by one pluviometer, as shown in Figure 32. By definition, instances
of irrig:RainDailyTotalQuantityObservation are linked to the individual
irrig:observedProperty_rain_dailyTotalQuantity, an instance of the class
irrig:AmountProperty, and to the individual irrig:featureOfInterest_rain.

• The observation individual is linked to the actor that produces the result,
that is, an aggregator runs the function getRainDailyTotalQuantity(p,d).
Since there is no information about the aggregator that produces this
computation in the Arvalis dataset, it is possible to represent it by the
individual arvalis:aggregator_getRainDailyTotalQuantity, an instance of the
class sosa:Sensor. The observation individual is linked to the sensor individual
via the sosa:madeBySensor object property, as shown in Figure 32.

• The aggregator produces the result once per day at a precise time. To present
this time, the sosa:resultTime datatype property is used to link the observation
individual to the xsd:dateTime value. In the Arvalis dataset, there is no

6http://services.meteofrance.com/e-boutique/climatologie/duree-retour-precipitation-journalier-
detail.html
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Figure 32: RainDailyTotalQuantity observation on 14/08/2013

information about the hour, minute, and second of the computation. For
synchronization purposes, this precise time is fixed to the time of the deduction
computation [d+1 06:00:00]. In Figure 32, this precise time is at 06:00:00 on
15/08/2013.

• To represent the fact that an observation concerns the data collected on the
day d, the object property sosa:phenomenonTime is used. In Figure 32,
the phenomenon time is represented by an instance of the class time:Interval
for a period of [14/08/2013 06:00:00, 15/08/2013 06:00:00[, which is
associated with two instances of the class time:Instant. The first one
represents the beginning of the interval: [14/08/2013 06:00:00]. The
second one represents the end of the interval: [15/08/2013 06:00:00]. Each
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time:Instant instance uses a time:inXSDDateTimeStamp data property to store
the associated date-time value. The sosa:phenomenonTime object property
links the deduction individual to the interval individual.

• A computation of daily total rain quantity is based on several pluviometer
measurements. To represent this fact, the instance of the class
irrig:RainDailyTotalQuantityObservation is linked to several instances of
the class irrig:RainQuantityObservation via the prov:wasInformedBy object
property, as shown in Figure 32.

• The result of the computation is represented by an instance of the class
sosa:Result. This instance is described by a unit and a value, as shown in
Figure 32.

3.4.3.3 DelayDurationObservation Modeling

The daily total rain quantity data can be processed to produce the delay duration.
The delay duration is the number of days when irrigation should be postponed. To
executing this aggregation process, the function getDelay(d) is run. Table 9 presents
this function. This function returns the number of days based on the daily total rain
quantity of the day d.

Table 9: Function getDelay(d)

getDelay(d) =


Quotient(getRainDailyTotalQuantity(p, d), 5)

if getRainDailyTotalQuantity(p,d) >= 10mm

0 if getRainDailyTotalQuantity(p,d) < 10mm

where
• d: a specific day, e.g., 14/08/2013

• getRainDailyTotalQuantity(p,d): returns the total of rain quantity measured by the
pluviometer p during the interval [d 06:00:00, d+1 06:00:00[.

• Quotient: returns the integer part (or whole part) of a division operation.

• getDelay(d): is the duration of the delay period associated with the day d.

Figure 33 presents a sample of the DelayDuration observation on 14/08/2013 to
be modeled using CASO and IRRIG.

• The instance of the class irrig:DelayDurationObservation represents
the computation of the function getDelay(d), as shown in Figure
33. By definition, this individual is linked to the individual
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sosa:phenomenonTime
irrig:RainDailyTotalQuantityObservation

 sosa:hasResult 
arvalis:observation_at_PT24H_2013-08-14T060000_
0200_of_aggregator_getRainDailyTotalQuantity_

on_rain_dailyTotalQuantity

sosa:observedProperty

sosa:hasFeatureOfIntrest

irrig:DelayDurationObservation

prov:used

sosa:phenomenonTime

sosa:madeBySensor

prov:wasInformedBy

 sosa:resultTime arvalis:observation_at_PT24H_2013-08-14T060000_
0200_of_aggregator_getDelay_on_delayDuration

sosa:Result

arvalis:result_value_
0.0_millimeter

time:Interval

arvalis:interval_PT24H_
2013-08-14T060000_0200

sosa:Sensor

arvalis:aggregator_getDelay

irrig:observableProperty_
delayDuration

sosa:hasProperty

sosa:ObservableProperty

irrig:featureOfIntrest_delay

sosa:FeatureOfInterest

sosa:hasResult

om:hasUnit
sosa:Result

om:hasNumericValue

arvalis:result_value_
0_days

om:Unit

time:unitDay

"0"^^xsd:Integer

"2013-08-14T06:00:00+02:00"
^^xsd:dateTime

Figure 33: DelayDuration observation on 14/08/2013

irrig:observedProperty_delayDuration, an instance of the class
sosa:ObservableProperty, and to the individual irrig:featureOfInterest_delay,
an instance of the class sosa:FeatureOfInterest.

• The observation individual is linked to the actor that produces the result, that
is, an aggregator runs the function getDelay(d). Since there is no information
about the aggregator that produces this computation in the Arvalis dataset,
it is possible to represent it by the individual arvalis:aggregator_getDelay,
an instance of the class sosa:Sensor. The observation individual is linked to
the sensor individual via the sosa:madeBySensor object property, as shown in
Figure 33.

• The aggregator produces the result once per day at a precise time. To present
this time, the sosa:resultTime datatype property is used to link the observation
individual to the xsd:dateTime value. In the Arvalis dataset, there is no
information about the hour, minute, and second of the computation. For
synchronization purposes, this precise time is fixed to the time of the deduction
computation [d+1 06:00:00]. In Figure 33, this precise time is at 06:00:00 on
15/08/2013.
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• To represent the fact that an observation concerns the data collected
on the day d, the object property sosa:phenomenonTime is used. In
Figure 33, the phenomenon time is represented by an instance of the class
time:Interval for a period of [14/08/2013 06:00:00, 15/08/2013 06:00:00[,
which is associated with two instances of the class time:Instant. The
sosa:phenomenonTime object property links the deduction individual to the
interval individual.

• The result of the computation is represented by an instance of the class
sosa:Result. This instance is described by a unit and a value, as shown in
Figure 33.

• A computation of delay duration is based on the daily total rain quantity data.
To represent this fact, the instance of the class irrig:DelayDuration is linked
to an instance of the class irrig:RainDailyTotalQuantityObservation via the
prov:wasInformedBy object property, as shown in Figure 33. The observation
individual is linked to the result individual via the prov:used object property.

3.4.3.4 RainIntensityDeduction Modeling

The daily total rain quantity data are processed to deduct the daily state of the
intensity for the rain. An inference engine runs this deduction process based on rules.
The inference engine is SWRLAPI Drools Engine in the program Ontogen.

The rain intensity states are coded as states of the property RainIntensity. The
list of RainIntensity states is as follows:

• RainIntensity.Init: This state represents the fact that the function
getRainDailyTotalQuantity(p,d) will be evaluated from news measurements
of one pluviometer. The pluviometer will perform several measurements per day.
This state is not an output of the automata. It is a transitional state before
determining the new state of the property RainIntensity.

• RainIntensity.Light: The amount of rain that falls is insignificant. It is
insufficient to have any impact on irrigation.

• RainIntensity.Moderate: The amount of rain that falls is quite significant.
The crops have no risk of water stress, so that irrigation may be postponed.

• RainIntensity.Heavy: The amount of rain that falls is highly significant. It
can replace irrigation. Then, the crops have enough water after this rain.

The states of the property RainIntensity follow the order: Light <
Moderate < Heavy. Certain thresholds are used to determine the states
of the property RootZoneMoistureLevel from the result of the function
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getRainDailyTotalQuantity(p,d). Note that these thresholds depend on the
variety of maize crops and soil types. There are four thresholds:

• Th_RQ_Minimum: This threshold is the minimum value that the function
getRainDailyTotalQuantity(p,d) may return. It is 0 mm.

• Th_RQ_Low: This threshold is used to distinguish a light rain with a moderate
rain. This threshold value in Arvalis experimentation is equal to 10 mm (Arvalis
et al., 2007).

• Th_RQ_High: This threshold is used to distinguish a heavy rain with a
moderate rain. This threshold value in Arvalis experimentation is 40 mm
(Arvalis et al., 2007).

• Th_RQ_Maximum: This threshold is the maximum value that the function
getRainDailyTotalQuantity(p,d) may return. It is fixed to 601 mm that
even higher than the precipitation record in France 7.

The relations between thresholds and states of the property RainIntensity
are presented in Figure 34. The blue squares represent the state of
the property RainIntensity. The green squares represent the rain quantity
threshold. The dashed line squares represent a value returned from the function
getRainDailyTotalQuantity(p,d). Each of the dashed line square’s position relates
to an upper threshold and a lower threshold. For example, if the value is superior or
equal to Th_RQ_low (10) and inferior to the Th_RQ_high (40), then RainIntensity
state is Moderate.
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Figure 34: Thresholds of the states of the property RainIntensity

Figure 35 describes the state diagram that presents the inference conception to
deduce the state of the property RainIntensity based on the result of the function
getRainDailyTotalQuantity(p,d). In this diagram, there are six states and six
transitions. The six states include two default states of the UML state diagram
(initial and final states) and four states defined for RainIntensity. The variable train

7http://pluiesextremes.meteo.fr/france-metropole/Records-mondiaux.html
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represents a clock dedicated to the property RainIntensity that has a time step of
one day. Moreover, each state of RainIntensity in the diagram may contain internal
transitions.

when(train >= 24H)RainIntensity.Init

 entry / run getRainDailyTotalQuantity(p,d)

when(CropGrowth.State
>= R5hg45) RainIntentity.Light

 entry / train := 0H
            do / run getDelay(d)

RainIntensity.Moderate

 entry / train := 0H 
 do / run getDelay(d)

RainIntensity.Heavy

 entry / train := 0H
 do / run getDelay(d)

when(Th_RQ_Minimum <=
getRainDailyTotalQuantity(p,d) 

< Th_RQ_Low)

when(Th_RQ_Low <=
getRainDailyTotalQuantity(p,d) 

< Th_RQ_High)

when(Th_RQ_High <= 
getRainDailyTotalQuantity(p,d) 

< Th_RQ_Maximum)

when(CropGrowth.State >= V7)

Figure 35: Automata of RainIntensity states and their transitions

• The transition from the initial state towards the state Init indicates when the
state of the CropGrowth property is V7 or any upper state; then, the property
RainIntensity reaches the state Init. After reaching this state, a new evaluation
of the function getRainDailyTotalQuantity(p,d) is performed based on daily
pluviometer measurements.

• The transition from the state Init towards the state Light indicates that
when the value of the function getRainDailyTotalQuantity(p,d) is inferior
to Th_RQ_Low and superior or equal to Th_RQ_Minimum, then property
RainIntensity reaches the state Light. After reaching this state, the function
getDelay(d) is evaluated. Also, the train is reset.

• The transition from the state Init towards the state Moderate indicates
when the value of the function getRainDailyTotalQuantity(p,d) is inferior
to Th_RQ_High and superior or equal to Th_RQ_Low, then property
RainIntensity reaches the state Moderate. After reaching this state, the function
getDelay(d) is evaluated. Also, the train is reset.
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• The transition from the state Init towards the state Heavy indicates when
the value of the function getRainDailyTotalQuantity(p,d) is inferior to
Th_RQ_Maximum and superior or equal to Th_RQ_High, the property
RainIntensity reaches the state Heavy. After reaching this state, the function
getDelay(d) is evaluated. Also, the train is reset.

• The transitions from one state among Light, Moderate, Heavy towards
the state Init indicates a state change is possible only after 24 hours
((train >= 24 h)?); in other words, a state is valid for a whole day. To
take a new state change decisions, new daily evaluation of the function
getRainDailyTotalQuantity(p,d) is performed.

• The transitions from one state among Light, Moderate, Heavy towards the
final state indicate when the CropGrowth property reaches the state R5hg45,
pluviometer measurements are terminated.

Figure 36 and Figure 37 present a sample of the RainIntensity deduction on
14/08/2013 to be modeled using CASO and IRRIG.

sosa:FeatureOfInterest

ssn:hasProperty

irrig:featureOfInterest_rain

irrig:IntensityProperty

caso:hasState

irrig:observableProperty_
rain_intensity

sosa:Sensor

arvalis:ontogen_inferenceEngine_
SWRLAPI_drools

irrig:RainIntensityDeduction

sosa:madeBy
Sensor

sosa:hasFeature
OfInterest

sosa:observed
Property

caso:hasResultState

prov:wasInformedBy
prov:used

arvalis:deduction_at_PT24H_2013-08-14T
060000_0200_of_ontogen_inferenceEngine_

SWRLAPI_drools_on_rain_intensity

irrig:RainIntensityState

irrig:state_rain_
intensity_light

irrig: RainDailyTotalQuantityObservation

sosa:hasResult
arvalis:observation_at_PT24H_2013-08-14T060000_
0200_of_aggregator_getRainDailyTotalQuantity_

on_rain_dailyTotalQuantity

caso:Property

sosa:Result

arvalis:result_value_
0.0_millimeter

Figure 36: RainIntensity deduction on 14/08/2013 (part 1)

• An instance of the class irrig:RainIntensityDeduction represents a deduction
process for the property RainIntensity, as shown in Figure 36. By definition, this
individual is linked to the individual irrig:observedProperty_rain_intensity,
an instance of irrig:IntensityProperty, and to the irrig:featureOfInterest_rain
individual.

• The deduction individual is linked to an actor that produces the result. The
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time:Interval

time:hasBeginning
time:hasEnd

time:hasDuration

arvalis:interval_PT24H_2013-07-13T
000000_0200

time:Duration

arvalis:duration_PT24H

arvalis:instant_2013-08-13
T000000_0200

time:Instant

"2013-08-13T00:00:00+02:00"
^^xsd:dateTime

time:inXSDDateTimeStamp

time:Interval

arvalis:interval_PT24H_2013-08-14T
060000_0200

time:hasDuration

arvalis:instant_2013-08-15
T060000_0200

"2013-08-15T06:00:00+02:00"
^^xsd:dateTime

time:inXSDDateTimeStamp

time:hasBeginning
time:hasEnd

irrig:RainIntensityDeduction

 sosa:resultTime 
arvalis:deduction_at_PT24H_2013-08-14T

060000_0200_of_ontogen_inferenceEngine_
SWRLAPI_drools_on_rain_intensity

caso:hasValidTime
sosa:phenomenonTime

arvalis:instant_2013-08-14
T060000_0200

"2013-08-14T06:00:00+02:00"
^^xsd:dateTime

time:inXSDDateTimeStamp

arvalis:instant_2013-08-14
T000000_0200

"2013-08-14T00:00:00+02:00"
^^xsd:dateTime

time:inXSDDateTimeStamp

"2013-08-14T06:00:00+02:00"
^^xsd:dateTime

Figure 37: RainIntensity deduction on 14/08/2013 (part 2)

actor is an SWRLAPI Drools Engine that is represented by the individual
arvalis:ontogen_inferenceEngine_SWRLAPI_drools, an instance of the class
sosa:Sensor. The deduction individual is linked to the actor via the
sosa:madeBySensor object property, as shown in Figure 36.

• A RainIntensity deduction is based on an observation individual that represents
a computation of the function getRainDailyTotalQuantity(p,d). Thus,
the deduction individual in Figure 36 is based on the observation individual
presented in Figure 32. The deduction individual is linked to the instance of the
class irrig:RainDailyTotalQuantityObservation via the prov:wasInformedBy
object property.

• The result of a RainIntensity deduction is an instance of the class
irrig:RainIntensityState. The deduction individual is linked to its state result
by the caso:hasResultState object property, as shown in Figure 36. The
possible states are shown in Figure 38.

• To store the time of the deduction, the sosa:resultTime datatype property is used
to link the deduction individual to the xsd:dateTime value corresponding to the
result time at [d+1 06:00:00]. In Figure 37, the result time is at 06:00:00 on
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irrig:IntensityProperty

irrig:observableProperty_
rain_intensity

irrig:RainIntensityState

irrig:state_rain_intensity_light

sosa:hasState irrig:state_rain_intensity_moderate

irrig:state_rain_intensity_heavy

Figure 38: States of the property RainIntensity

15/08/2013.

• To represent the fact that a deduction concerns the data collected on the day d,
the object property sosa:phenomenonTime is used. In Figure 37, the day d is on
14/08/2013. It is represented by an instance of the class time:Interval, which is
described by two instances of the class time:Instant. The first one represents the
beginning of the interval: [14/08/2013 00:00:00]. The second one represents
the end of the interval: [15/08/2013 00:00:00]. The sosa:phenomenonTime
object property links the deduction individual to the interval individual.

• The deduction result for day d is valid for 24 h: [d+1 06:00:00, d+2
06:00:00[, that is, no new deduction will be performed during this valid
time. In Figure 37, the valid time is represented by an instance of the class
time:Interval for a period of [15/08/2013 06:00:00, 16/08/2013 06:00:00[,
which is associated with two instances of the class time:Instant as presented
above. The caso:hasValidTime object property links the deduction individual
to the valid time.

Figure 39 supports to clarify the synchronization of all the computations of the
rain intensity workflow.

3.4.3.5 RainIntensityDeduction Reasoning

Figure 35 gives a global view of the mechanism to deduct a RainIntensity state. In
reasoning, one rule can represent this mechanism. This rule is coded in SWRL. Table
10 contains necessary information of the rule. The code in the box Rule in SWRL
presents the logic of the reasoning process. Detail of the code is as follows.

• The first paragraph is one premise. It means to find a rain intensity deduction
of a day.

• The second paragraph is one premise. It means to get the data value of the
daily rain quantity observation of a day.
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Figure 39: Time scales of the rain intensity workflow

• The third paragraph is one premise. It means getting the data value of the
upper boundary and the lower boundary of every state of rain intensity.

• The fourth paragraph is one premise. It means comparing this data value of
the daily rain quantity observation of a day to check if it is inferior to the value
of the upper boundary and superior or equal to the lower boundary of a state
of rain intensity.

• The final paragraph is one deduction. It means a rain intensity deduction has
the state satisfy the condition in the fourth paragraph.

3.4.4 Soil Moisture Workflow Data Modeling and Reasoning

The IRRINOV R© method evaluates the water needs of crops by estimating the root
zone moisture. Root zone moisture is the quantity of "water remaining in the depth
of soil accessed by a plant" (International Atomic Energy Agency (IAEA), 2008). It
depends on the type of soil, the depth of crop root, and the irrigation method. Its
goal is to evaluate the amount of irrigation water required by the plants (Brouwer
et al., 1989). The system uses six tensiometers to evaluate the root zone moisture.
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Table 10: Rule for the property RainIntensity to reach a state

Code:
ADv122019-RI

Full name:
ArvalisData-IrrigVersion122019-RainIntensity

Description:
The goal of this rule is to determine the state of RainIntensity. The rule implements the transition
from the Init state to one of the state Light, Moderate and Heavy. The input of this rule is
the rain daily total quantity (?result_observation_rain_total_quantity). The output of this rule
is the Rain Intensity deduction (?deduction_rain_intensity). The mechanism of this rule is to
check if the value of the rain daily total quantity is in the value domain of two thresholds; it then
concludes the state correspondingly.

Rule in SWRL:
irrig:RainIntensityDeduction(?deduction_rain_intensity) ˆ

prov:used(?deduction_rain_intensity, ?result_observation_rain_total_quantity) ˆ
om:hasNumericalValue(?result_observation_rain_total_quantity, ?value_result_observation) ˆ

caso:hasState(irrig:observableProperty_rain_intensity, ?rain_intensity_state) ˆ
caso:hasOpenUpperBoundary(?rain_intensity_state, ?boundary_upper) ˆ
caso:boundaryValue(?boundary_upper, ?value_boundary_upper) ˆ
caso:hasClosedLowerBoundary(?rain_intensity_state, ?boundary_lower) ˆ
caso:boundaryValue(?boundary_lower, ?value_boundary_lower) ˆ

swrlb:lessThan(?value_result_observation, ?value_boundary_upper) ˆ
swrlb:greaterThanOrEqual(?value_result_observation, ?value_boundary_lower)

-> caso:hasResultState(?deduction_rain_intensity, ?rain_intensity_state)

In the soil moisture workflow, data related to soil moisture is processed through
several processes. The input of this workflow is the soil moisture at a different
specific depth in the soil. The output of this workflow is the state of the property
RootZoneMoistureLevel. As in Figure 23, the soil moisture workflow composes of six
following processes:

• Soil30cmDepthMoistureObservation: an observation that provides the
moisture of the feature of interest representing the soil layer at a 30 cm depth
(Soil30cmDepth).

• Soil60cmDepthMoistureObservation: an observation that provides the
moisture of the feature of interest representing the soil layer at a 60 cm depth
(Soil60cmDepth).

• Soil30cmDepthDailyAverageMoistureObservation: an aggregation that
provides the daily average moisture of the feature of interest Soil30cmDepth. It
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equals the daily average of the property Soil30cmDepthMoisture.

• Soil60cmDepthDailyAverageMoistureObservation: an aggregation that
provides the daily average moisture of the feature of interest Soil60cmDepth. It
equals the daily average of the property Soil60cmDepthMoisture.

• RootZoneDailyAverageMoistureObservation: an aggregation that
provides the daily average moisture of the feature of interest RootZone. It equals
a spatial aggregation of the properties Soil30cmDepthDailyAverageMoisture
and Soil60cmDepthDailyAverageMoisture.

• RootZoneDailyAverageMoistureDeduction: a deduction that provides
the state of the property RootZoneMoistureLevel.

3.4.4.1 Soi30cmDepthMoistureObservation Modeling

A tensiometer measures the soil tension (Migliaccio et al., 2002). The soil tension
affects the water extraction capability of crops as the following principles:

• When the soil tension is low, the crops require less energy to extract soil water
and the soil moisture level is high.

• When the soil tension is high, the crops have to use a large amount of energy
to extract soil water and the soil moisture level is low.

The soil tensiometers used in the IRRINOV R© method are Watermark probes.
Watermark probe p measures the soil moisture at time t of day d. The unit of
the Watermark probe is the cbar. Note that a measurement value of 199 cbar
indicates an error in the measurement process. Thus, the cleaning process is
applied to remove all 199 cbar values. To executing this process, the function
getValidMoistureProbe(p,t) is run. This function returns only the valid moisture
value measured by probe p at time t. If the moisture value is not valid, the function
returns nothing.

Figure 40 presents a sample of the Soil30cmDepthMoisture observation at
08:00:00 on 14/08/2013 to be modeled using CASO and IRRIG.

• An instance of the class irrig:Soil30cmDepthMoistureObservation
represents the computation of the function getValidMoistureProbe(p,t).
It is an observation of a moisture property related to the soil
layer at a 30 cm depth, as shown in Figure 40. By definition,
instances of irrig:Soil30cmDepthMoistureObservation are linked to
the individual irrig:observedProperty_soil30cmDepth_moisture, an
instance of the class irrig:MoistureProperty, and to the individual
irrig:featureOfInterest_soil30cmDepth, an instance of the class
sosa:FeatureOfInterest.
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sosa:FeatureOfInterest

 ssn:hasProperty 
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Figure 40: Soil30cmDepthMoisture observation at 08:00:00 on 14/08/2013

• The observation individual is linked to the sensor that made the observation.
Assuming that the node, which contains a tensiometer probe, also run the
cleaning process. A tensiometer is represented by an instance of the class
sosa:Sensor, is also an instance of the class saref4agri:SoilTensiometer. Arvalis
identifies their tensiometers by a number and depth. This information is
reused to create a name for each instance of saref4agri:SoilTensiometer. For
example, Figure 40 contains the individual arvalis:soilTensiometer_1_30cm.
The sosa:madeBySensor object property links the observation individual to
the sensor individual.

• A tensiometer measurement is an instantaneous observation. Note that the
measurements of tensiometers are unavailable in the Arvalis dataset. However,
it is possible to imagine that tensiometer measurements could happen at any
time of the day. Figure 40 presents a measurement that happens at 08:00:00
on 14/08/2013. To store the time information of the measurement, this model
uses an instance of the class time:Instant. The time:inXSDDateTimeStamp data
property stores the associated date-time value. The sosa:phenomenonTime
object property links the observation individual to the instant individual.
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• To present the time when the tensiometer generates the measurement, the
sosa:resultTime datatype property is used to link the observation individual
to the xsd:dateTime value corresponding to a precise time. In Figure 40, this
precise time is at 08:00:00 on 14/08/2013.

• The result of the tensiometer measurement is presented by an instance of the
class sosa:Result. A value and a unit are required to describe this result. The
instance of sosa:Result is linked to the data value via the om:hasNumericValue
datatype property. The instance of sosa:Result is linked to the individual
om:millibar, an instance of the class om:Unit, via the om:hasUnit object
property. Note that in the Arvalis dataset, the unit of tensiometer measurement
is the cbar. However, this unit has not yet been defined in any ontology. Thus,
this model uses the millibar (mbar) as the unit for moisture, as shown in Figure
40. This unit is defined in some well-known ontologies, such as OM.

3.4.4.2 Soil30cmDepthDailyAverageMoistureObservation Modeling

The data recorded in the Arvalis dataset are not the measurements of tensiometers,
but the aggregations of those measurements: the average soil moisture on a
day. The measured data collected from each tensiometer are processed to become
the daily aggregated soil moisture. To executing this aggregation process, the
function getDailyAggregatedMoisture(p,d) is run. Table 11 presents the function
getDailyAggregatedMoisture(p,d). This function returns the average value of all
the valid moisture values measured by probe p during the interval [d 00:00:00, d+1
00:00:00[.

Table 11: Function getDailyAggregatedMoisture(p,d)

getDailyAggregatedMoisture(p, d) =

∑n
i=1 getV alidMoistureProbe(p, ti)

n

on the condition that ti ⊂ [d 00:00:00, d+1 00:00:00[

where
• d: a specific day, e.g., 14/08/2013

• ti: a specific instant of day d, e.g., 08:00:00 on 14/08/2013

• getValidMoistureProbe(p, ti): the valid moisture value measured by the probe p at the
specific time ti.

• n: the number of valid moisture values measured during day d.

In this model, the aggregation process is represented by observation of each
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tensiometer on the daily average soil moisture at different depths. In detail, three
soil tensiometers observe the moisture at a 30 cm depth, and three others observe the
moisture at a 60 cm depth. In the Arvalis dataset, each observation was stored as
two data points: (1) the daily aggregated soil moisture in cbar, and (2) the date of
observation (year, month, day).

Figure 41 presents a sample of the Soil30cmDepthDailyAverageMoisture
observation on 14/08/2013 to be modeled using CASO and IRRIG.

irrig:Soil30cmDepthMoistureObservation

arvalis:Observation_at_PT24H_2013-07-
16T000000_0200_of_

SoilTensiometer_01_Soil30cmDepth_Moisture

irrig:Soil30cmDepthMoistureObservation

arvalis:Observation_at_PT24H_2013-07-
16T000000_0200_of_

SoilTensiometer_01_Soil30cmDepth_Moisture

irrig:Soil30cmDepthMoistureObservation

arvalis:Observation_at_PT24H_2013-07-
16T000000_0200_of_

SoilTensiometer_01_Soil30cmDepth_Moisture

sosa:FeatureOfInterest

ssn:hasProperty

irrig:featureOfInterest_
soil30cmDepth

sosa:ObservableProperty

irrig:observableProperty_
soil30cmDepth_dailyAverageMoisture

sosa:Sensor

arvalis:aggregator_
getDailyAggregatedMoisture_1

irrig:Soil30cmDepthDailyAverageMoistureObservation

sosa:madeBy
Sensor sosa:hasFeature

OfInterest

sosa:observed
Property

sosa:phenomenonTime

sosa:hasSimple
Result

sosa:hasResult

 sosa:resultTime 
arvalis:observation_at_PT24H_2013-08-14T060000_0200_of_

aggregator_getDailyAggregatedMoisture_1_
on_soil30cmDepth_dailyAverageMoisture

"780.0 millibar"^^rdfs:Literal

sosa:Result

om:hasUnit

om:hasNumericValue

arvalis:result_value_780.0_millibar

om:Unit

om:millibar "780.0"^^xsd:double

time:Interval

time:hasBeginning time:hasEnd

time:hasDuration
arvalis:interval_PT24H_2013-08-14T

060000_0200

time:Duration

arvalis:duration_PT24H

arvalis:instant_2013-08-14
T060000_0200

arvalis:instant_2013-08-15
T060000_0200

time:Instant

irrig:Soil30cmDepthMoistureObservation

arvalis:observation_at_2013-08-14T080000_0200_of_
soilTensiometer_1_on_soil30cmDepth_moisture

prov:wasInformedBy

"2013-08-14T06:00:00+02:00"^^xsd:dateTime

time:inXSDDateTimeStamp

"2013-08-15T06:00:00+02:00"^^xsd:dateTime

time:inXSDDateTimeStamp

irrig:MoistureProperty

"2013-08-15T06:00:00+02:00"
^^xsd:dateTime

Figure 41: Soil30cmDepthDailyAverageMoisture observation on 14/08/2013

• The instance of the class irrig:Soil30cmDepthDailyAverageMoistureObservation
represents the computation of the daily average of all measurements provided

87



Chapter 3. Development of an Irrigation Decision Support System

by one tensiometer, as shown in Figure 41. By definition, instances of
irrig:Soil30cmDepthDailyAverageMoistureObservation are linked to the
individual irrig:observedProperty_soil30cmDepth_dailyAverageMoisture,
an instance of the class irrig:MoistureProperty, and to the individual
irrig:featureOfInterest_soil30cmDepth.

• The observation individual is linked to the actor that produces the result, that
is, a software agent that run the function getDailyAggregatedMoisture(p,d).
Since there is no information on the software agent that produces this
computation in the Arvalis dataset, it is possible to represent it by an instance
of the class sosa:Sensor. To avoid errors, a software agent for each tensiometer
is created based on the tensiometer name. For example, the sensor individual
for the first tensiometer is arvalis:aggregator_getDailyAggregatedMoisture_1,
as shown in Figure 41. The observation individual is linked to the software
agent via the sosa:madeBySensor object property

• The software agent produces the result once per day at a precise time. To
present this time, the sosa:resultTime datatype property is used to link the
observation individual to the xsd:dateTime value. In the Arvalis dataset, there
is no information about the hour, minute, and second of the computation. For
synchronization purposes, this precise time is fixed to the time of the deduction
computation [d+1 06:00:00]. In Figure 41, this precise time is at 06:00:00 on
15/08/2013.

• The computation calculates the daily average. Figure 41 presents the average
on 14/08/2013 as observation during a day of 24 hours. This interval is
represented by an instance of the class time:Interval, which is described by
two instances of time:Instant. The first one represents the beginning of the
interval: [14/08/2013 06:00:00]. The second one represents the end of the
interval: [15/08/2013 06:00:00].

• A computation of daily average is based on several tensiometer
measurements. To represent this fact, the instance of the class
irrig:Soil30cmDepthDailyAverageMoistureObservation is linked to several
instances of the class irrig:Soil30cmDepthMoistureObservation via the
prov:wasInformedBy object property, as shown in Figure 41.

• The result of the computation is represented by an instance of the class
sosa:Result. This instance is described by a unit and a value, as shown in
Figure 41.
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3.4.4.3 RootZoneDailyAverageMoistureObservation Modeling

The six daily aggregated soil moisture data corresponding to six tensiometers
are processed to become the daily aggregated root zone moisture. To executing
this aggregation process, the function getRootZoneDailyAverageMoisture(d) is
run. Table 12 presents this function. This function returns the average value
of all the valid moisture values measured by probe p during the interval of 24
hours. Suppose that p1, p2, and p3 are the three probes at a 30 cm depth,
and p4, p5, and p6 are the three probes at a 60 cm depth. The function
getRootZoneDailyAverageMoisture(d) returns the sum of the two median values: (1)
the median of the getDailyAggregatedMoisture(p,d) values of three probes at a 30 cm
depth, and (2) the median of the getDailyAggregatedMoisture(p,d) values of three
probes at a 60 cm depth.

Table 12: Function getRootZoneDailyAverageMoisture(d)

getRootZoneDailyAverageMoisture(d) =

Median(getDailyAggregatedMoisture(p1, d),

getDailyAggregatedMoisture(p2, d),

getDailyAggregatedMoisture(p3, d))

+ Median(getDailyAggregatedMoisture(p4, d),

getDailyAggregatedMoisture(p5, d),

getDailyAggregatedMoisture(p6, d))

where
• p1, p2, and p3: three watermark probes placed at a 30 cm depth

• p4, p5, and p6: three watermark probes placed at a 60 cm depth

• getDailyAggregatedMoisture(pi,d): returns the average moisture value measured by
the probe pi during the interval [d 00:00:00, d+1 00:00:00[ (see Table 11)

• Median(x, y, z): is the median value of x, y and z.

Figure 42 presents a sample of the RootZoneDailyAverageMoisture observation
on 14/08/2013 to be modeled using CASO and IRRIG.

• An instance of the class irrig:RootZoneDailyAverageMoistureObservation
represents the computation of the daily average moisture for root zone. The
computation of the daily average is presented in Table 12. By definition,
instances of irrig:RootZoneDailyAverageMoistureObservation are linked to
the individual irrig:observedProperty_rootZone_dailyAverageMoisture, an
instance of the class irrig:MoistureProperty, and to the individual
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irrig:Soil60cmDepthDailyAverageMoistureObservation

arvalis:Observation_at_PT24H_2013-07-31T060000_0200_of_
SoftwareAgent_Soil60cmDepth_AverageMoisturePerDay

irrig:Soil60cmDepthDailyAverageMoistureObservation

arvalis:Observation_at_PT24H_2013-07-31T060000_0200_of_
SoftwareAgent_Soil60cmDepth_AverageMoisturePerDay

irrig:Soil30cmDepthDailyAverageMoistureObservation

arvalis:Observation_at_PT24H_2013-07-31T060000_0200_of_
SoftwareAgent_Soil30cmDepth_AverageMoisturePerDay

irrig:Soil30cmDepthDailyAverageMoistureObservation

arvalis:Observation_at_PT24H_2013-07-31T060000_0200_of_
SoftwareAgent_Soil30cmDepth_AverageMoisturePerDay

sosa:FeatureOfInterest

ssn:hasProperty

irrig:featureOfInterest_
rootZone

irrig:MoistureProperty

irrig:observableProperty_
rootZone_dailyAverageMoisture

sosa:Sensor

arvalis:aggregator_
getRootZoneDailyAverageMoisture

prov:wasInformedBy prov:wasInformedBy

irrig:RootZoneDailyAverageMoistureObservation

sosa:madeBy
Sensor

sosa:hasFeature
OfInterest

sosa:observed
Property

sosa:phenomenonTime

sosa:hasSimple
Result

sosa:hasResult

 sosa:resultTime 

arvalis:observation_at_PT24H_2013-08-14T060000_0200_
of_aggregator_getRootZoneDailyAverageMoisture_

on_rootZone_dailyAverageMoisture

time:Interval

time:hasBeginning time:hasEnd
time:hasDuration

arvalis:interval_PT24H_
2013-08-14T060000_0200

"2360.0 millibar"^^rdfs:Literal

sosa:Result

om:hasUnit om:hasNumericValue

arvalis:result_value_2360.0_millibar

om:Unit

om:millibar

"2360.0"^^xsd:double

time:Duration

arvalis:duration_PT24Harvalis:instant_2013-08-14
T060000_0200

arvalis:instant_2013-08-15
T060000_0200

time:Instant

irrig:Soil30cmDepthDailyAverageMoistureObservation

arvalis:observation_at_PT24H_2013-08-14T060000_0200_
of_aggregator_dailyAggregatedMoisture_1_
on_soil30cmDepth_dailyAverageMoisture

irrig:Soil60cmDepthDailyAverageMoistureObservation

arvalis:observation_at_PT24H_2013-08-14T060000_0200_
of_aggregator_dailyAggregatedMoisture_4_
on_soil60cmDepth_dailyAverageMoisture

sosa:ObservableProperty

"2013-08-14T06:00:00+02:00"^^xsd:dateTime

time:inXSDDateTimeStamp

"2013-08-15T06:00:00+02:00"^^xsd:dateTime

time:inXSDDateTimeStamp

"2013-08-15T06:00:00+02:00"
^^xsd:dateTime

Figure 42: RootZoneDailyAverageMoisture observation on 14/08/2013

irrig:featureOfInterest_rootZone, an instance of sosa:FeatureOfInterest, as
shown in Figure 42.

• The observation individual is linked to the sensor that produces the result, that
is, a software that computes the equation presented in Table 12. The software
program is named arvalis:aggregator_getRootZoneDailyAverageMoisture. This
individual is an instance of the class sosa:Sensor. The observation individual is
linked to the sensor via the sosa:madeBySensor object property, as shown in
Figure 42.
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• The computation calculates the daily average root zone moisture, that is,
average moisture of root zone observed for 24 hours. Figure 42 presents this
aggregated value on 14/08/2013 as observation during a day of 24 hours.
This interval is represented by an instance of the class time:Interval, which
is described by two instances of time:Instant. The first one represents the
beginning of the interval: [14/08/2013 06:00:00]. The second one represents
the end of the interval: [15/08/2013 06:00:00].

• The software program produces the result once per day at a precise time. To
present this time, the sosa:resultTime datatype property is used to link the
observation individual to the xsd:dateTime value. In the Arvalis dataset, there
is no information about the hour, minute, and second of the computation. For
synchronization purposes, this precise time is fixed to the time of the deduction
computation [d+1 06:00:00]. In Figure 42, this precise time is at 06:00:00 on
15/08/2013.

• A computation of root zone daily average is based on the daily aggregated
data corresponding to six tensiometers. To represent this fact, the instance
of the class irrig:RootZoneDailyAverageMoistureObservation is linked to
three instances of the classes irrig:Soil30cmDepthMoistureObservation and
three instances of the classes irrig:Soil60cmDepthMoistureObservation via the
prov:wasInformedBy object property, as shown in Figure 42.

• The result of the computation is presented by an instance of the class
sosa:Result. This instance is described by a unit and a value, as shown in
Figure 42.

3.4.4.4 RootZoneMoistureLevelDeduction Modeling

The daily aggregated root zone moisture data are processed to deduct the daily state
of the moisture level for the root zone. An inference engine runs this deduction
process based on rules. The inference engine is SWRLAPI Drools Engine in the
program Ontogen.

The root zone moisture level states are coded as states of the property
RootZoneMoistureLevel. The list of RootZoneMoistureLevel states is as follows:

• RootZoneMoistureLevel.Init: The state represents the fact that the
function getRootZoneDailyAverageMoisture(d) will be evaluated from new
measurements of tensiometers. The tensiometers will perform several
measurements per day. This state is not an output of the automata.
It is a transitional state before determining the new state of the
RootZoneMoistureLevel property.
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• RootZoneMoistureLevel.Saturated: The root zone is saturated by water.
Crops do not need extra water. Any machine is allowed to access the plot.

• RootZoneMoistureLevel.VeryHigh: The root zone contains a significantly
high amount of water. Crops do not need water regardless of its growth stage.

• RootZoneMoistureLevel.High: The root zone contains a high amount of
water. Crops need water at specific growth stages.

• RootZoneMoistureLevel.Average: The root zone contains an average
amount of water. Crops need water at specific growth stages.

• RootZoneMoistureLevel.Low: The root zone contains a low amount of
water. Crops need water at specific growth stages.

• RootZoneMoistureLevel.VeryLow: The root zone contains an insignificant
amount of water. Crops need water at specific growth stages.

• RootZoneMoistureLevel.Dry: The root zone is dry. Crops need water
regardless of its growth stage.

The states of the property RootZoneMoistureLevel follow the order: VeryLow <
Low < Average < High < VeryHigh < Saturated. Those states follow the inverse
order of the value of the function getRootZoneDailyAverageMoisture(d). Certain
thresholds are used to determine the state of the property RootZoneMoistureLevel
from the result of the function getRootZoneDailyAverageMoisture(d). Note that
these thresholds depend on the variety of maize crops and soil types. There are eight
thresholds:

• Th_ST_Minimum: The smallest value measured by a Watermark probe. In
the Watermark’s specification, it is fixed at 0 cbar.

• Th_ST_Saturation: This threshold value in the Arvalis dataset is 10 cbar.

• Th_ST_VeryHigh: This threshold value in the Arvalis dataset is 70 cbar.

• Th_ST_High: This threshold value in the Arvalis dataset is 120 cbar.

• Th_ST_Average: This threshold value in the Arvalis dataset is 140 cbar.

• Th_ST_Low: This threshold value in the Arvalis dataset is 150 cbar.

• Th_ST_VeryLow: This threshold value in the Arvalis dataset is 160 cbar.

• Th_ST_Maximum: This threshold value is set to 301 cbar, which is higher
than any measurement value provided by any Watermark probe. The maximal
measurement value that a Watermark probe can reach ranges from 0 to 200.
The maximum value after multiplying with the maximum coefficient provided
by Watermark’s manufacturer is 1.5 (from 2002 until now). Then the maximal
soil tension value is 300 cbar (200 cbar * 1.5).
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The relations between thresholds and states of the property
RootZoneMoistureLevel are presented in Figure 43. The blue squares represent
the state of the property RootZoneMoistureLevel. The green squares represent the
soil tension thresholds. The dashed line squares represent a value of the function
getRootZoneDailyAverageMoisture(d). Each of the squares’ positions shows the
upper threshold and the lower threshold. For example, if the value of the function
RootZoneDailyAverageMoisture(d) is superior or equal to Th_ST_Low (150) and
inferior to the Th_ST_VeryLow (160), then the RootZoneMoistureLevel state is
VeryLow.
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Figure 43: Thresholds of the states of the property RootZoneMoistureLevel

Figure 44 describes the state diagram that presents the inference conception
to deduce the state of the RootZoneMoistureLevel property based on the result of
the function getRootZoneDailyAverageMoisture(d). In this diagram, there are ten
states and ten transitions. The ten states include two default states of the UML state
diagram (initial and final states) and eight states defined for RootZoneMoistureLevel.
The variable tsoil represents a clock dedicated to the RootZoneMoistureLevel property
that has a time step of one day. Moreover, each state of RootZoneMoistureLevel in
the diagram may contain internal transitions.

• The transition from the initial state towards the state Init indicates when
the state of the CropGrowth property is V7 or any upper state; then, the
RootZoneMoistureLevel property reaches the state Init. After reaching this
state, a new evaluation of the function getRootZoneDailyAverageMoisture(d)
is performed based on daily tensiometer measurements.

• The transition from the state Init towards the state Saturated indicates that
when the value of the function RootZoneDailyAverageMoisture(d) is equal or
superior to Th_ST_Minimum and inferior to Th_ST_Saturation, then the
RootZoneMoistureLevel property reaches the Saturated state. After reaching
this state, the clock tsoil is reset.

• The transition from the state Init towards the state VeryHigh indicates that
when the value of the function getRootZoneDailyAverageMoisture(d) is equal
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when(CropGrowth.State >= V7)

LL

RootZoneMoistureLevel.Init

  entry / run getRootZoneDailyAverageMoisture(d)

RootZoneMoistureLevel.Satured

 entry / tsoil := 0D

RootZoneMoistureLevel.VeryHigh

 entry / tsoil := 0D 

RootZoneMoistureLevel.High

 entry / tsoil := 0D

when(Th_ST_Minimum <= 
getRootZoneDailyAverageMoisture(d) 

< Th_ST_Saturation)

RootZoneMoistureLevel.Average

 entry / tsoil := 0D

RootZoneMoistureLevel.Low

 entry / tsoil := 0D

RootZoneMoistureLevel.VeryLow

 entry / tsoil := 0D

when(tsoil >= 1D)

RootZoneMoistureLevel.Dry

 entry / tsoil := 0D

when(Th_ST_Saturation <= 
getRootZoneDailyAverageMoisture(d)

< Th_ST_VeryHigh)

when(Th_ST_VeryHigh <= 
getRootZoneDailyAverageMoisture(d)

< Th_ST_High)

when(Th_ST_High <= 
getRootZoneDailyAverageMoisture(d)

< Th_ST_Average)

when(Th_ST_Average <= 
getRootZoneDailyAverageMoisture(d)

< Th_ST_Low)

when(Th_ST_Low <= 
getRootZoneDailyAverageMoisture(d)

< Th_ST_VeryLow)

when(Th_ST_VeryLow <= 
getRootZoneDailyAverageMoisture(d)

< Th_ST_Maximum)

when(CropGrowth.State = R5hg45)

Figure 44: Automata of the RootZoneMoistureLevel states and their transitions

or superior to Th_ST_Saturation and inferior to Th_ST_VeryHigh, then the
RootZoneMoistureLevel property reaches the VeryHigh state. After reaching
this state, the clock tsoil is reset.

• The transition from the state Init towards the state High indicates that
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when the value of the function getRootZoneDailyAverageMoisture(d) is equal
or superior to Th_ST_VeryHigh and inferior to Th_ST_High, then the
RootZoneMoistureLevel property reaches the High state. After reaching this
state, the clock tsoil is reset.

• The transition from the state Init towards the state Average indicates
that when the value of the function getRootZoneDailyAverageMoisture(d) is
equal or superior to Th_ST_High and inferior to Th_ST_Average, then the
RootZoneMoistureLevel property reaches the Average state. After reaching this
state, the clock tsoil is reset.

• The transition from the state Init towards the state Low indicates when
the value of the function getRootZoneDailyAverageMoisture(d) is equal
or superior to Th_ST_Average and inferior to Th_ST_Low, then the
RootZoneMoistureLevel property reaches the Low state. After reaching this
state, the clock tsoil is reset.

• The transition from the state Init towards the state VeryLow indicates
that when the value of the function getRootZoneDailyAverageMoisture(d) is
equal or superior to Th_ST_Low and inferior to Th_ST_VeryLow, then the
RootZoneMoistureLevel property reaches the VeryLow state. After reaching this
state, the clock tsoil is reset.

• The transition from the state Init towards the state Dry indicates that when
the value of the function getRootZoneDailyAverageMoisture(d) is equal or
superior to Th_ST_VeryLow and inferior to Th_ST_Maximum, then the
RootZoneMoistureLevel property reaches the Dry state. After reaching this
state, the clock tsoil is reset.

• The transition from one state among Saturated, VeryHigh, High, Average,
Low, VeryLow and Dry towards the state Init indicates that after one day ((tsoil

>= 1)?), a state change is possible; in other words, a state is reached for a
whole day.

• The transition from the state Init towards the final state indicates that when
the CropGrowth property is at the state R5hg45, moisture measurements are
terminated.

Figure 45 and Figure 46 present a sample of the RootZoneMoistureLevel
deduction on 14/08/2013 to be modeled using CASO and IRRIG.

• An instance of the class irrig:RootZoneMoistureLevelDeduction represents
a deduction process for the RootZoneMoistureLevel property, as shown
in Figure 45. By definition, this individual is linked to the individual
irrig:observedProperty_rootZone_moistureLevel, an instance of the class
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sosa:FeatureOfInterest

ssn:hasProperty

irrig:featureOfInterest_
rootZone

irrig:MoistureProperty

caso:hasState

irrig:observableProperty_
rootZone_moistureLevel

sosa:Sensor

arvalis:ontogen_inferenceEngine_
SWRLAPI_drools

irrig:RootZoneMoistureLevelDeduction

sosa:madeBySensor

sosa:hasFeature
OfInterest

sosa:observed
Property

caso:hasResultState

prov:wasInformedBy
prov:used

arvalis:deduction_at_PT24H_2013-08-14T
060000_0200_of_ontogen_inferenceEngine_

SWRLAPI_drools_on_rootZone_moistureLevel

irrig:RootZoneMoistureLevelState

irrig:state_rootZone_
moistureLevel_dry

irrig: RootZoneDailyAverageMoistureObservation

sosa:hasResult
arvalis:observation_at_PT24H_2013-08-14T060000_0200_

of_aggregator_getRootZoneDailyAverageMoisture_
on_rootZone_dailyAverageMoisture

caso:Property

sosa:Result

arvalis:result_value_
2360.0_millibar

Figure 45: RootZoneMoistureLevel deduction on 14/08/2013 (part 1)

time:Interval

time:hasBeginning

time:hasEnd

time:hasDuration

arvalis:interval_PT24H_2013-08-13T
000000_0200

time:Duration

arvalis:duration_PT24H

arvalis:instant_2013-08-13
T000000_0200

arvalis:instant_2013-08-14
T000000_0200

time:Instant

"2013-08-13T00:00:00+02:00"
^^xsd:dateTime

"2013-08-14T00:00:00+02:00"
^^xsd:dateTime

time:inXSDDateTimeStamptime:inXSDDateTimeStamp

time:Interval

arvalis:interval_PT24H_2013-08-14T
060000_0200

time:hasDuration

arvalis:instant_2013-08-15
T060000_0200

"2013-08-15T06:00:00+02:00"
^^xsd:dateTime

time:inXSDDateTimeStamp

time:hasBeginningtime:hasEnd

irrig:RootZoneMoistureLevelDeduction

 sosa:resultTime arvalis:deduction_at_PT24H_2013-08-14T
060000_0200_of_ontogen_inferenceEngine_

SWRLAPI_drools_on_rootZone_moistureLevel

caso:hasValidTime
sosa:phenomenonTime

arvalis:instant_2013-08-14
T060000_0200

"2013-08-14T06:00:00+02:00"
^^xsd:dateTime

time:inXSDDateTimeStamp

"2013-08-15T06:00:00+02:00"
^^xsd:dateTime

Figure 46: RootZoneMoistureLevel deduction on 14/08/2013 (part 2)

irrig:MoistureProperty, and to the individual irrig:featureOfInterest_rootZone.
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• The deduction individual is linked to an actor that produces the result. The
actor is an SWRLAPI Drools Engine that is represented by the individual
arvalis:ontogen_inferenceEngine_SWRLAPI_drools, an instance of the class
sosa:Sensor. The deduction individual is linked to the actor via the
sosa:madeBySensor object property, as shown in Figure 45.

• A RootZoneMoistureLevel deduction is based on an observation
individual that represents a computation of the function
getRootZoneDailyAverageMoisture(d). Thus, the deduction instance
in Figure 45 is based on the observation individual presented in Figure
42. The deduction individual is linked to the instance of the class
irrig:RootZoneDailyAverageMoistureObservation via the prov:wasInformedBy
object property.

• The result of a RootZoneMoistureLevel deduction is an instance of the class
irrig:RootZoneMoistureLevelState. The deduction individual is linked to its
state result by the caso:hasResultState object property, as shown in Figure
45. The possible states are shown in Figure 47.

irrig:MoistureProperty

irrig:observableProperty_
rootZone_moistureLevel

irrig:RootZoneMoistureLevelState

irrig:state_rootZone_
moistureLevel_saturated

sosa:hasState irrig:state_rootZone_
moistureLevel_veryHigh

irrig:state_rootZone_
moistureLevel_high

irrig:state_rootZone_
moistureLevel_average

irrig:state_rootZone_
moistureLevel_low

irrig:state_rootZone_
moistureLevel_veryLow

irrig:state_rootZone_
moistureLevel_dry

Figure 47: States of the property RootZoneMoistureLevel

• To store the time of the deduction, the sosa:resultTime datatype property is used
to link the deduction individual to the xsd:dateTime value corresponding to the
result time at [d+1 06:00:00]. In Figure 46, the result time is at 06:00:00 on
15/08/2013.
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• To represent the fact that a deduction concerns the data collected on the day
d, the object property sosa:phenomenonTime is used. In Figure 46, the day d
is on 14/08/2013. It is represented by an instance of the class time:Interval,
which is described by two instances of the class time:Instant. The first one
represents the beginning of the interval: [14/08/2013 00:00:00]. The second
one represents the end of the interval: [15/08/2013 00:00:00].

• The deduction result for day d is valid for 24 h: [d+1 06:00:00, d+2
06:00:00[, that is, no new deduction will be performed during this valid
time. In Figure 46, the valid time is represented by an instance of the class
time:Interval for a period of [15/08/2013 06:00:00, 16/08/2013 06:00:00[,
which is associated with two instances of the class time:Instant as presented
above. The caso:hasValidTime object property links the deduction individual
to the valid time.

Figure 48 supports to clarify the synchronization of all the computations of the
soil moisture workflow.

d 00:00:00 d+1 00:00:00 d+3 00:00:00

06:00:00 06:00:00

t

Legend

Closed boundary

Open boundary

Soil30cmDepthMoistureObservation

Soil30cmDepthDailyAverageMoistureObservation

t

t

t

06:00:00

d+2 00:00:00

Phenomenon Time

Phenomenon Time

Phenomenon Time Valid Time

Result Time

Phenomenon Time

RootZoneDailyAverageMoistureObservation

RootZoneMoistureLevelDeduction

Figure 48: Time scales of the soil moisture workflow
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3.4.4.5 RootZoneMoistureLevelDeduction Reasoning

Figure 44 gives a global view of the mechanism to deduct a RootZoneMoistureLevel
state. In reasoning, one rule can represent this mechanism. This rule is coded in
SWRL. Table 13 contains necessary information of the rule. The code in the box
Rule in SWRL presents the logic of the reasoning process. Detail of the code is as
follows.

Table 13: Rule for the property RootZoneMoistureLevel to reach a state

Code:
ADv122019-RM

Full name:
ArvalisData-IrrigVersion122019-RootZoneMoistureLevel

Description:
The goal of this rule is to determine the state of RootZoneMoistureLevel. The rule
implements the transition from the Init state to one of the state VeryLow, Low, Average,
High, VeryHigh and Saturated. The input of this rule is the root zone daily moisture
(?result_observation_rootzone_moisture). The output of this rule is the Root Zone Moisture
Level deduction (?deduction_rootzone_moisturelevel). The mechanism of this rule is to check if
the value of the root zone moisture is in the value domain of two thresholds; it then concludes the
state correspondingly.

Rule in SWRL:
irrig:RootZoneMoistureLevelDeduction(?deduction_rootzone_moisturelevel) ˆ

prov:used(?deduction_rootzone_moisturelevel, ?result_observation_rootzone_moisture) ˆ
om:hasNumericalValue(?result_observation_rootzone_moisture, ?value_result_obs) ˆ

caso:hasState(irrig:observableProperty_rootZone_moistureLevel,
?state_rootzone_moisturelevel) ˆ

caso:hasOpenUpperBoundary(?state_rootzone_moisturelevel, ?boundary_upper) ˆ
caso:boundaryValue(?boundary_upper, ?value_boundary_upper) ˆ
caso:hasClosedLowerBoundary(?state_rootzone_moisturelevel, ?boundary_lower) ˆ
caso:boundaryValue(?boundary_lower, ?value_boundary_lower) ˆ

swrlb:lessThan(?value_result_observation, ?value_boundary_upper) ˆ
swrlb:greaterThanOrEqual(?value_result_observation, ?value_boundary_lower)

-> caso:hasResultState(?deduction_rootzone_moisturelevel, ?state_rootzone_moisturelevel)

• The first paragraph is one premise. It means to find the deduction of a root
zone moisture level of a day.

• The second paragraph is one premise. It means to get the data value of the
root zone moisture of a day.
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• The third paragraph is one premise. It means getting the data value of the
upper boundary and the lower boundary of every state of root zone moisture
level.

• The fourth paragraph is one premise. It means comparing this data value of
the root zone moisture observation of a day to check if it is inferior to the value
of the upper boundary and superior or equal to the lower boundary of the state
of a root zone moisture level.

• The final paragraph is one deduction. It means the deduction of a root zone
moisture level has the state satisfy the condition in the fourth paragraph.

3.4.5 Crop Water Need Workflow Data Modeling and
Reasoning

In the crop water need workflow, data related to crop water need is processed through
several processes. The input of this workflow is the states of the three properties
CropGrowth, RainIntensity, RootZoneMoistureLevel, and the value of the property
DelayDuration. These value are presented in the previous section. The output of this
workflow is the state of the property CropWaterNeed and the value of the property
SleepingDuration. In detail, the crop water need workflow composes of six processes:

• CropGrowthDeduction: see Section 3.4.2.

• RainIntensityDeductionl: see Section 3.4.3.

• DelayDuration: see Section 3.4.3.

• RootZoneMoistureLevelDeduction: see Section 3.4.4.

• CropWaterNeedDeduction: a deduction that provides the state of the
property CropWaterNeed.

• SleepingDurationObservation: a deduction that provides the duration of
the feature of interest sleeping. This sleeping duration is calculated based on
the delay duration of the day d and the state of CropWaterNeed of the day d-1.

3.4.5.1 CropWaterNeedDeduction Modeling

Crops need water is for two basic biological processes: transpiration and evaporation
(Brouwer et al., 1989). The water needs of different crops are different. The water
needs of a crop can be expressed in the quantity of water in a unit of time, such
as mm/day. On the one hand, the method IRRINOV R© answers the question about
when to water the plot. On the other hand, it ignores the question about how much
water to supply to the crop. In other words, the quantity of each irrigation water
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is fixed. Therefore, it requires only to express the crop water needs in Yes/No value
each day instead of the quantity of water in a unit of time. This model uses the
property CropWaterNeed to represent the crop water need property.

The states of the property CropWaterNeed are deduct based on the states of the
three properties RainIntensity, RootZoneMoistureLevel, and CropGrowth. However,
this system also concerns the situation that the state of property CropWaterNeed is
undefined. In detail, the method IRRINOV R© proposes to decide the next irrigation
based on an approach of using a time counter to be compared with the parameter
called the watering cycle duration. The watering cycle duration is the number of
days between two consecutive waterings on the same plot. This interval is modeling
as a timed threshold: INTERVAL_WATERING_CYCLE. It is fixed to 7 days as
the minimal number of days between two waterings in the Arvalis experimentation.
The time counter in this approach starts to count from the last watering. When
the counting number is inferior to the interval, then the system makes the watering
decision of that day regardless of the state of the property CropWaterNeed. In other
words, the state of the property CropWaterNeed, in this case, is undefined. When
the counting number is equal or superior to the interval, then the system needs to
check the state of the property CropWaterNeed. This approach enables the system
to make a watering decision on a day, even the state of the property CropWaterNeed
is undefined. To executing the aggregation process to determine the counting number
of the time counter, the function getSleeping(d) is run. Note that the number of
delay days presented in Section 3.4.3.3 has an impact on this function. This function
is presented in detail in Section 3.4.5.3.

An inference engine runs this deduction process based on rules. The inference
engine is SWRLAPI Drools Engine in the program Ontogen.

The crop water need states are coded as states of the property CropWaterNeed.
The list of CropWaterNeed states is as follows:

• CropWaterNeed.Init: This state represents the fact that the system waits
for a new evaluation of the CropGrowth and RootZoneMoistureLevel states.
This state is not an output of the automata. It is a transitional state before
determining the new state of the property CropWaterNeed.

• CropWaterNeed.NotApplicable: The state of CropWaterNeed is undefined
because the system has to wait until the crop growth raises a particular stage.

• CropWaterNeed.No: The crop does not need water according to IRRINOV R©

method.

• CropWaterNeed.Yes: The crop needs water according to IRRINOV R©

method. A watering is launched during the day after this state is reached.
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• CropWaterNeed.Unavailable: The state of CropWaterNeed is undefined
because a new irrigation decision cannot be made due to the minimal time
interval between two irrigations. The INTERVAL_WATERING_CYCLE
constant represents the minimal number of days between two waterings.
Thus, this state specifies that the system waits until at least
INTERVAL_WATERING_CYCLE days.

Figure 49 describes that state diagram that presents the inference conception to
deduce the state of the property CropWaterNeed based on the states of RainIntensity,
CropGrowth, RootZoneMoistureLevel, and the value returned from the function
getSleeping(d). In this diagram, there are seven states and seven external
transitions. The seven states include two default states of the UML state diagram
(initial and final states) and five states defined for the property CropWaterNeed.
Among the seven external transitions, only two of them are presented directly in
the diagram. The first one is the external transitions from the states Yes, No,
NotApplicable and Unavailable towards the state Init. This condition means that
the state of CropWaterNeed is valid for 24 hours and the system needs to wait for
24 hours before it is re-evaluated. The variable t represents a clock dedicated to the
property CropWaterNeed that has a time step of one day. The second one is the
external transition from the state Init towards the final state. This transition means
that when the state of CropGrowth is equal or superior to R5HG45, then the system
terminated. The other external transitions are complicated, thus they are presented
separately in Table 14 under the codes of C0, C1, C2, C3, and C4. Moreover, each
state of CropWaterNeed in the diagram contains also several internal transitions.

• The transition from the initial state to the state Init occurs on the condition C0.
This condition indicates that as soon as the system boots, the CropWaterNeed
property reaches the state Init. This condition means that the system always
starts at the state Init. After that, three internal transitions occur:

1. At the entry, the value of the function getSleeping(d-1) is read.

2. At the entry, the last state of the property CropGrowth is read.

3. At the entry, the last state of the property RootZoneMoistureLevel is read
when the value of the function getSleeping(d-1) differs from 0.

These actions mean that at the state Init, the system requires the above
information to make the next decisions.

• The transition from the state Init to the state NotApplicable on the
condition C1. This condition indicates that when the value of the property
SleepingDuration equals to 0, and the state of the property CropGrowth
is inferior to V7, then the property CropWaterNeed reaches the state
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  C4  

C0

  C3  

  C2  

  C1  
when(CropGrowth.State

>= R5hg45)

CropWaterNeed.Init

 entry / read getSleeping(d-1)
 entry / read CropGrowth
   entry [getSleeping(d-1) != 0] / read RootZoneMoistureLevel

CropWaterNeed.Yes

 entry / read RainIntensity
   entry / run getSleeping(d)      entry / t := 0H
 do [RainIntensity != Heavy] / launch Irrigation

CropWaterNeed.Unavailable

  entry / read RainIntensity
    entry / run getSleeping(d) 
   entry / t := 0H
 

CropWaterNeed.No

 entry / run getSleeping(d) 
 entry / t := 0H

 when ( t >= 24H) 

CropWaterNeed.NotApplicable

 entry / run getSleeping(d) 
 entry / t := 0H

Figure 49: Automata of CropWaterNeed states and their transitions

NotApplicable. This condition means that the CropWaterNeed is not
applicable because the crop growth is immature compared to the state V7. After
reaching the state NotApplicable, two internal transitions occur:

1. At the entry, the function getSleeping(d) is run.

2. At the entry, the clock t is reset.

These actions mean that at the state NotApplicable, the property
CropWaterNeed reaches the state NotApplicable, the system calculates the
new value of the property SleepingDuration for the day d. In that case, it is
fixed to 0 days. The clock t is reset because CropWaterNeed stays at this state
for 24 hours.
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Table 14: Conditions of CropWaterNeed state transitions

Code Conditions

C0 SYSTEM_BOOT

C1 when(SleepingDuration = 0 AND CropGrowth.State < V7)

C2

when(SleepingDuration = 0 AND

((CropGrowth.State = V7 AND RootZoneMoistureLevel.State > High) OR

(CropGrowth.State = V7d20 AND RootZoneMoistureLevel.State > Average) OR

(CropGrowth.State = R1 AND RootZoneMoistureLevel.State > Low) OR

(CropGrowth.State = R1d15 AND RootZoneMoistureLevel.State > VeryLow) OR

(CropGrowth.State = R5 AND RootZoneMoistureLevel.State > Dry)))

C3

when(SleepingDuration = 0 AND

(CropGrowth.State = V7 AND RootZoneMoistureLevel.State <= High) OR

(CropGrowth.State = V7d20 AND RootZoneMoistureLevel.State <= Average) OR

(CropGrowth.State = R1 AND RootZoneMoistureLevel.state <= Low) OR

(CropGrowth.State = R1d15 AND RootZoneMoistureLevel.state <= VeryLow) OR

(CropGrowth.State = R5 AND RootZoneMoistureLevel.State = Dry)))

C4 when(SleepingDuration > 0)

Cfin when(CropGrowth.State >= R5hg45

• The transition from the state Init to the state No on the condition C2. This
condition indicates that when the value of the property SleepingDuration equals
to 0, and one among the following conditions is satisfied:

◦ The state of CropGrowth is V7 and the state of RootZoneMoistureLevel is
superior to High.

◦ The state of CropGrowth is V7d25 and the state of RootZoneMoistureLevel
is superior to Average.

◦ The state of CropGrowth is R1 and the state of RootZoneMoistureLevel is
superior to Low.

◦ The state of CropGrowth is R1d15 and the state of RootZoneMoistureLevel
is superior to VeryLow.

◦ The state of CropGrowth is R5 and the state of RootZoneMoistureLevel is
superior to Dry,

then the property CropWaterNeed reaches the state No. It means that the state
CropWaterNeed reaches the state No when the crop growth is mature enough
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(superior or equal to V7), and the quantity of water in the root zone is sufficient
for the crops. After reaching the state No, two internal transitions occur:

1. At the entry, the function getSleeping(d) is run.

2. At the entry, the clock t is reset.

These actions mean that at the state No, the property CropWaterNeed
reaches the state No, the system calculates the new value of the property
SleepingDuration for the day d. In that case, it is fixed to 0 days. The clock t
is reset because CropWaterNeed stays at this state for 24 hours.

• The transition from the state Init to the state Yes on the condition C3. This
condition indicates that when the value of the property SleepingDuration equals
to 0, and one among the following conditions is satisfied:

◦ The state of CropGrowth is V7 and the state of RootZoneMoistureLevel is
inferior or equal to High.

◦ The state of CropGrowth is V7d25 and the state of RootZoneMoistureLevel
is inferior or equal to Average.

◦ The state of CropGrowth is R1 and the state of RootZoneMoistureLevel is
inferior or equal to Low.

◦ The state of CropGrowth is R1d15 and the state of RootZoneMoistureLevel
is inferior or equal to VeryLow.

◦ The state of CropGrowth is R5 and the state of RootZoneMoistureLevel is
inferior or equal to Dry,

then the property CropWaterNeed reaches the state Yes. It means that the state
CropWaterNeed reaches the state Yes when the crop growth is mature enough
(superior or equal to V7) and the quantity of water in the soil is insufficient for
the crops. After reaching the state Yes, four internal transitions occur:

1. At the entry, the state of the property RainIntensity is read.

2. At the entry, the function getSleeping(d) is run.

3. At the entry, the clock t is reset.

4. Launch irrigation only when the state of the property RainIntensity is
different to Heavy.

These actions mean that at the state Yes, the irrigation should be launched if
there is no heavy rain during the day d. Then, the system calculates the new
value of the property SleepingDuration for the day d. In that case, It is fixed to
6 days. The sleeping period starts. The clock is reset because CropWaterNeed
stays at this state for 24 hours.

105



Chapter 3. Development of an Irrigation Decision Support System

• The transition from the state Init to the state Unavailable on the
condition C4. This condition indicates that when the value of the property
SleepingDuration is superior to 0, the property CropWaterNeed reaches the
state Unavailable. It means that the state CropWaterNeed reaches the state
Unavailable when the sleeping period has started and is not finished. After
reaching the state Unavailable, three internal transitions occur:

1. At the entry, the state of the property RainIntensity is read.

2. At the entry, the function getSleeping(d) is run.

3. At the entry, the clock t is reset.

These actions mean that at the state Unavailable, the system needs to know
if it was raining during the day d to calculate the new value of the property
SleepingDuration for this day. The sleeping period may vary from 1 to 15 days,
depending on situations. The clock is reset because CropWaterNeed stays at
this state for 24 hours.

Figure 50 and Figure 51 present a sample of the CropWaterNeed deduction on
14/08/2013 to be modeled using CASO and IRRIG.

sosa:FeatureOfInterest

ssn:hasProperty

irrig:featureOfInterest_
crop

irrg:StressProperty

irrig:observableProperty_
crop_waterNeed

sosa:Sensor

arvalis:ontogen_inferenceEngine_
SWRLAPI_drools

irrig:CropWaterNeedDeduction

sosa:madeBy
Sensor

sosa:hasFeature
OfInterest

sosa:observed
Property

caso:hasResult
State

prov:wasInformedBy
prov:wasInformedBy

prov:wasInformedBy

prov:used
arvalis:deduction_at_PT24H_2013-08-14T

060000_0200_of_ontogen_inferenceEngine_
SWRLAPI_drools_on_crop_waterNeed

irrig:CropWaterNeedState

irrig:state_crop_
waterNeed_yes

irrig:CropGrowthDeduction

arvalis:deduction_at_PT24H_2013-08-14T
060000_0200_of_ontogen_inferenceEngine_

SWRLAPI_drools_on_crop_growth

irrig:RootZoneMoistureLevelDeduction

arvalis:deduction_at_PT24H_2013-08-14T
060000_0200_of_ontogen_inferenceEngine_

SWRLAPI_drools_on_rootZone_moistureLevel

irrig:RainIntensityDeduction

arvalis:deduction_at_PT24H_2013-08-14T
060000_0200_of_ontogen_InferenceEngine_

SWRLAPI_drools_on_rain_intensity

caso:Property

arvalis:result_value_
0_days

sosa:Result

sosa:hasResult

irrig:SleepingDurationObservation

arvalis:observation_at_PT24H_2013-08-13T
060000_0200_of_aggregator_getSleeping_

on_sleepingDuration

prov:wasInformedBy

Figure 50: CropWaterNeed deduction on 14/08/2013 (part 1)

• An instance of the class irrig:CropWaterNeedDeduction represents
a deduction process for the property CropWaterNeed, as shown in
Figure 50. By definition, this individual is linked to the individual
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time:Interval

time:hasBeginning
time:hasEnd

time:hasDuration

arvalis:interval_PT24H_2013-07-13T
000000_0200

time:Duration

arvalis:duration_PT24H

arvalis:instant_2013-07-13
T000000_0200

time:Instant

"2013-08-13T00:00:00+02:00"
^^xsd:dateTime

time:inXSDDateTimeStamp

time:Interval

arvalis:interval_PT24H_2013-08-14T
060000_0200

time:hasDuration

arvalis:instant_2013-08-15
T060000_0200

"2013-08-15T06:00:00+02:00"
^^xsd:dateTime

time:inXSDDateTimeStamp

time:hasBeginning
time:hasEnd

irrig:CropWaterNeedDeduction

 sosa:resultTime arvalis:deduction_at_PT24H_2013-08-14T
000000_0200_of_ontogen_inferenceEngine_

SWRLAPI_drools_on_crop_waterNeed

caso:hasValidTime sosa:phenomenonTime

arvalis:instant_2013-08-14
T060000_0200

"2013-08-14T06:00:00+02:00"
^^xsd:dateTime

time:inXSDDateTimeStamp

arvalis:instant_2013-08-14
T000000_0200

"2013-08-14T00:00:00+02:00"
^^xsd:dateTime

time:inXSDDateTimeStamp

"2013-08-14T06:00:00+02:00"
^^xsd:dateTime

Figure 51: CropWaterNeed deduction on 14/08/2013 (part 2)

irrig:observedProperty_crop_waterNeed, an instance of the class
irrig:StressProperty, and to the individual irrig:featureOfInterest_crop,
an instance of the class sosa:FeatureOfInterest.

• The deduction individual is linked to an actor that produces the result.
The actor is the SWRLAPI Drools Engine which is represented by the
individual arvalis:ontogen_inferenceEngine_SWRLAPI_drools, an instance of
the class sosa:Sensor. The deduction individual is linked to the actor via the
sosa:madeBySensor object property, as shown in Figure 50.

• A CropWaterNeed deduction is based on the deductions of
RootZoneMoistureLevel, RainIntensity, CropGrowth, and the observation
of SleepingDuration. Thus, the deduction individual is linked to
the instances of the classes irrig:RootZoneMoistureLevelDeduction,
irrig:CropGrowthDeduction, irrig:RainIntensityDeduction and
irrig:SleepingDurationObservation via the prov:wasInformedBy object
property. Also, the deduction individual is linked to the result of
irrig:SleepingDurationObservation via the prov:used object property.

• The result of a CropWaterNeed deduction is an instance of the
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irrig:CropWaterNeedState class. The deduction individual is linked to its state
result by the caso:hasResultState object property, as shown in Figure 50.
The possible states are shown in Figure 52.

irrig:MoistureProperty

irrig:observableProperty_
crop_waterNeed

irrig:CropWaterNeedState

irrig:state_crop_waterNeed_init

 sosa:hasState irrig:state_crop_waterNeed_no

irrig:state_crop_waterNeed_yes

irrig:state_crop_waterNeed_notApplicable

irrig:state_crop_waterNeed_unavailable

Figure 52: States of the property CropWaterNeed

• To store the time of the deduction, the sosa:resultTime datatype property is used
to link the deduction individual to the xsd:dateTime value corresponding to the
result time at [d+1 06:00:00]. In Figure 51, the result time is at 06:00:00 on
15/08/2013.

• To represent the fact that a deduction concerns the data collected on the day d,
the object property sosa:phenomenonTime is used. In Figure 51, the day d is on
14/08/2013. It is represented by an instance of the class time:Interval, which is
described by two instances of the class time:Instant. The first one represents the
beginning of the interval: [14/08/2013 00:00:00]. The second one represents
the end of the interval: [15/08/2013 00:00:00]. The sosa:phenomenonTime
object property links the deduction individual to the interval individual.

• The deduction result for day d is valid for 24 h: [d+1 06:00:00, d+2
06:00:00[, that is, no new deduction will be performed during this valid
time. It also means that the farmers can water the farmland in this valid
period. In Figure 51, the valid time is represented by an instance of the class
time:Interval for a period of [15/08/2013 06:00:00, 16/08/2013 06:00:00[,
which is associated with two instances of the class time:Instant as presented
above. The caso:hasValidTime object property links the deduction individual
to the valid time.

Figure 53 supports to clarify the synchronization of all the computations of the
crop water need workflow.
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Figure 53: Time scales of the crop water need workflow

3.4.5.2 CropWaterNeedDeduction Reasoning

Figure 49 gives a global view of the mechanism to deduct a CropWaterNeed state.
In reasoning, this mechanism is transformed into 12 rules corresponding to the four
conditions C1, C2, C3, and C4, as presented in Table 14. Of which, one rule represents
the condition C1 that the CropWaterNeed reaches the state NotApplicable. One rule
represents the condition C4 that the CropWaterNeed reaches the state No. Five rule
represents the condition C2 that the CropWaterNeed reaches the state Yes. Five rules
represent the condition C3 that the CropWaterNeed reaches the state Unavailable.
All of the rules are coded in SWRL. This subsection presents four rules corresponding
to the four conditions. Note that the five rules for C2 have the same concept but
different parameters. Thus, it is only necessary to present only one rule for C2. Same
to the case of C3.

Table 15 contains necessary information of the rule for the condition C1. The
code in the box Rule in SWRL presents the logic of the reasoning process. Detail
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of the code is as follows.

Table 15: Rule for the property CropWaterNeed to reach the NonApplicable state

Code:
ADv122019-CWN-C1

Full name:
ArvalisData-IrrigVersion122019-CropWaterNeed-Condition-1

Description:
The goal of this rule is to determine the state of CropWaterNeed. The rule implements the
transition from the Init state to the NonApplicable. The input of this rule is: (1) the value of
the SleepingDuration property for the d-1 day (?sleeping_duration_yesterday); (2) the state of
the CropGrowth property for the d day (?state_crop_growth). The output of this rule is: the
CropWaterNeed property is at the state NotApplicable for the d day. The mechanism of this rule
is: to check whether the state of CropGrowth is inferior to V7 using the caso:lesserThan observable
property. To check the value of SleepingDuration is equal to 0 by verifying if it exists a link between
the result of the SleepingDuration observation and the arvalis:result_value_0_days individual.

Rule in SWRL:
irrig:CropWaterNeedDeduction(?deduction_crop_water_need) ˆ

irrig:SleepingDurationObservation(?observation_sleeping_duration_yesterday) ˆ
prov:wasInformedBy(?deduction_crop_water_need,

?observation_sleeping_duration_yesterday) ˆ
sosa:hasResult(?observation_sleeping_duration_yesterday, arvalis:result_value_0_days) ˆ

irrig:CropGrowthDeduction(?deduction_crop_growth) ˆ
prov:wasInformedBy(?deduction_crop_water_need, ?deduction_crop_growth) ˆ
caso:hasResultState(?deduction_crop_growth, ?state_crop_growth) ˆ
caso:lesserThan(?state_crop_growth, irrig:state_crop_growth_v7)

-> caso:hasResultState(?deduction_crop_water_need,
irrig:state_crop_waterNeed_notApplicable)

• The first paragraph is one premise. It means to find every crop water need
deduction.

• The second paragraph is one premise. It means to select the crop water need
deduction that has a sleeping duration value equaling to 0 days.

• The third paragraph is one premise. It means to select the crop water need
deduction that was informed by a crop growth deduction at the state inferior
to V7.

• The final paragraph is one deduction. It means the crop water need deduction
is at the state NotApplicable.

Table 16 contains necessary information of the rule for the first part of the
condition C2. The code in the boxRule in SWRL presents the logic of the reasoning
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process. Detail of the code is as follows.

Table 16: Rule for the property CropWaterNeed to reach the No state (part 1)

Code:
ADv122019-CWN-C2-P1

Full name:
ArvalisData-IrrigVersion122019-CropWaterNeed-Condition-2-Part-1

Description:
The goal of this rule is to determine the state of CropWaterNeed. The rule implements the
transition from the Init state to the NonApplicable. The input of this rule is: (1) the value of the
SleepingDuration property of d-1 (?sleeping_duration_yesterday); (2) the state of the CropGrowth
property for the d day (?state_crop_growth); (3) the state of RootZoneMoistureLevel for the d
day. The output of this rule is: the CropWaterNeed property is at the state No for the d day. The
mechanism of this rule is: to check if the value of SleepingDuration is 0, the state of CropGrowth
is V7 and the state of RootZoneMoistureLevel is superior to High.

Rule in SWRL:
irrig:CropWaterNeedDeduction(?deduction_crop_water_need) ˆ

irrig:SleepingDurationObservation(?observation_sleeping_duration_yesterday) ˆ
prov:wasInformedBy(?deduction_crop_water_need,

?observation_sleeping_duration_yesterday) ˆ
sosa:hasResult(?observation_sleeping_duration_yesterday, arvalis:result_value_0_days) ˆ

irrig:CropGrowthDeduction(?deduction_crop_growth) ˆ
prov:wasInformedBy(?deduction_crop_water_need, ?deduction_crop_growth) ˆ
caso:hasResultState(?deduction_crop_growth, irrig:state_crop_growth_v7) ˆ

irrig:RootZoneMoistureLevelDeduction(?deduction_rootzone_moisturelevel) ˆ
prov:wasInformedBy(?deduction_crop_water_need, ?deduction_rootzone_moisturelevel) ˆ
caso:hasResultState(?deduction_rootzone_moisturelevel, ?state_rootzone_moisturelevel) ˆ
caso:greaterThan(?state_rootzone_moisturelevel, irrig:state_rootZone_moistureLevel_high)

-> caso:hasResultState(?deduction_crop_water_need, irrig:state_crop_waterNeed_no)

• The first paragraph is one premise. It means to find every crop water need
deduction.

• The second paragraph is one premise. It means to select the crop water need
deduction that has a sleeping duration value equaling to 0 days.

• The third paragraph is one premise. It means to select the crop water need
deduction that was informed by a crop growth at the state V7.

• The fourth paragraph is one premise. It means to select the crop water need
deduction that was informed by a root zone moisture level at the state superior
to High.
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• The final paragraph is one deduction. It means the crop water need deduction
is at the state No.

Table 17 contains necessary information of the rule for the first part of the
condition C3. The code in the boxRule in SWRL presents the logic of the reasoning
process. Detail of the code is as follows.

Table 17: Rule for the property CropWaterNeed to reach the Yes state (part 1)

Code:
ADv122019-CWN-C3-P1

Full name:
ArvalisData-IrrigVersion122019-CropWaterNeed-Condition-3-Part-1

Description:
The goal of this rule is to determine the state of CropWaterNeed. The rule implements the
transition from the Init state to the Yes. The input of this rule is: (1) the value of the
SleepingDuration property of d-1 (?sleeping_duration_yesterday); (2) the state of the CropGrowth
property for the d day (?state_crop_growth); (3) the state of RootZoneMoistureLevel for the d
day. The output of this rule is: the CropWaterNeed property is at the state Yes for the d day. The
mechanism of this rule is: to check if the value of SleepingDuration is 0, the state of CropGrowth
is V7 and the state of RootZoneMoistureLevel is inferior or equal to High.

Rule in SWRL:
irrig:CropWaterNeedDeduction(?deduction_crop_water_need) ˆ

irrig:SleepingDurationObservation(?observation_sleeping_duration_yesterday) ˆ
prov:wasInformedBy(?deduction_crop_water_need,

?observation_sleeping_duration_yesterday) ˆ
sosa:hasResult(?observation_sleeping_duration_yesterday, arvalis:result_value_0_days) ˆ

irrig:CropGrowthDeduction(?deduction_crop_growth) ˆ
prov:wasInformedBy(?deduction_crop_water_need, ?deduction_crop_growth) ˆ
caso:hasResultState(?deduction_crop_growth, irrig:state_crop_growth_v7) ˆ

irrig:RootZoneMoistureLevelDeduction(?deduction_rootzone_moisturelevel) ˆ
prov:wasInformedBy(?deduction_crop_water_need, ?deduction_rootzone_moisturelevel) ˆ
caso:hasResultState(?deduction_rootzone_moisturelevel, ?state_rootzone_moisturelevel) ˆ
caso:lesserThanOrEqualTo(?state_rootzone_moisturelevel,

irrig:state_rootZone_moistureLevel_high)

-> caso:hasResultState(?deduction_crop_water_need, irrig:state_crop_waterNeed_yes)

• The first paragraph is one premise. It means to find every crop water need
deduction.

• The second paragraph is one premise. It means to select the crop water need
deduction that has a sleeping duration value equaling to 0 days.
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• The third paragraph is one premise. It means to select the crop water need
deduction that was informed by a crop growth at the state V7.

• The fourth paragraph is one premise. It means to select the crop water need
deduction that was informed by a root zone moisture level at the state inferior
or equal to High.

• The final paragraph is one deduction. It means the crop water need deduction
is at the state Yes.

Table 18 contains necessary information of the rule for the condition C4. The
code in the box Rule in SWRL presents the logic of the reasoning process. Detail
of the code is as follows.

Table 18: Rule for the property CropWaterNeed to reach the Unavailable state

Code:
ADv122019-CWN-C4

Full name:
ArvalisData-IrrigVersion122019-CropWaterNeed-Condition-4

Description:
The goal of this rule is to determine the state of CropWaterNeed. The rule implements the
transition from the Init state to the Unavailable. The input of this rule is: the value of the
SleepingDuration property of yesterday (?sleeping_duration_yesterday). The output of this rule
is: the CropWaterNeed property is at the Unavailable state. The mechanism of this rule is: to
check if the value of SleepingDuration is superior to 0 using the built-in function swrlb:greaterThan
to compare the numerical value of the result of SleepingDuration with 0.

Rule in SWRL:
irrig:CropWaterNeedDeduction(?deduction_crop_water_need) ˆ

irrig:SleepingDurationObservation(?observation_sleeping_duration_yesterday) ˆ
prov:wasInformedBy(?deduction_crop_water_need,

?observation_sleeping_duration_yesterday) ˆ
sosa:hasResult(?observation_sleeping_duration_yesterday, ?sleeping_duration_yesterday) ˆ
om:hasNumericalValue(?sleeping_duration_yesterday, ?value_sleeping_duration) ˆ
swrlb:greaterThan(?value_sleeping_duration, 0)

-> caso:hasResultState(?deduction_crop_water_need, irrig:state_crop_waterNeed_unavailable)

• The first paragraph is one premise. It means to find every crop water need
deduction.

• The second paragraph is one premise. It means to select the crop water need
deduction that has a sleeping duration value superior to 0 days.

• The final paragraph is one deduction. It means the crop water need deduction
is at the state Unavailable.
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3.4.5.3 SleepingDurationObservation Modeling

This watering cycle duration is decomposed into two periods: an irrigation period
and a sleeping period (period wait until the next irrigation). In the Arvalis
experimentation: the irrigation period equals to 1 day, and the minimal sleeping
period is fixed to 6 days. The sleeping period or the number of sleeping days
is produced after an aggregation process. To execute this process, the function
getSleeping(d) is run. Table 19 presents this function. The SleepingDuration
observable property expresses the duration of the sleeping period. The sleeping
period is initialized when CropWaterNeed property reaches the state Yes. Then,
the value of SleepingDuration will decrease each day when CropWaterNeed state is
at the state Unavailable. Otherwise, SleepingDuration is fixed at 0. The value of
SleepingDuration is impacted by the rain quantity, due to the fact than rain extends
the sleeping period. Thus, the value of SleepingDuration depends on the result of
the function getDelay(d) only when CropWaterNeed is at the state Unavailable.
Thus, the duration of the sleeping period is calculated each time the CropWaterNeed
property reaches a state.

Table 19: Function getSleeping(d)

getSleeping(d) =



MIN(getSleeping(d − 1) + getDelay(d) − 1,

MAX_DELAY + WATERING_CYCLE_DURATION)

if CropWaterNeed = Unavailable

WATERING_CYCLE_DURATION − 1

if CropWaterNeed = Yes

0 if CropWaterNeed = NotApplicable or No

where
• d: a specific day, e.g., 14/08/2013

• WATERING_CYCLE_DURATION: is a constant that expresses the minimum
duration between two waterings. In Arvalis experiment it is fixed to 7 days.

• MAX_DELAY: is a constant that represents the maximum duration of the delay
period. We fix this constant to 8 days.

• getSleeping(d): is the duration of the sleeping period associated to d.

• getDelay(d): is the duration of the delay period associated with the day d.

• MIN(x,y): is the smaller value between x and y.
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Figure 54 presents a sample of the SleepingDuration observation on 14/08/2013
to be modeled using CASO and IRRIG.
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Figure 54: SleepingDuration observation on 14/08/2013

• The instance of the class irrig:SleepingDurationObservation represents
the computation of the function getSleeping(d), as shown
in Figure 54. By definition, this individual is linked to the
indiviudal irrig:observedProperty_sleepingDuration, an instance
of the class sosa:ObservableProperty, and to the individual
irrig:featureOfInterest_sleeping, an instance of the class sosa:FeatureOfInterest.

• The observation individual is linked to the actor that produces the result, that is,
an aggregator runs the function getSleeping(d). Since there is no information
about the aggregator that produces this computation in the Arvalis dataset,
it is possible to represent it by the individual arvalis:aggregator_getSleeping,
an instance of the class sosa:Sensor. The observation individual is linked to
the sensor individual via the sosa:madeBySensor object property, as show in
Figure 54.

115



Chapter 3. Development of an Irrigation Decision Support System

• The aggregator produces the result once per day at a precise time. To present
this time, the sosa:resultTime datatype property is used to link the observation
individual to the xsd:dateTime value. In the Arvalis dataset, there is no
information about the hour, minute, and second of the computation. For
synchronization purposes, this precise time is fixed to the time of the deduction
computation [d+1 06:00:00]. In Figure 54, this precise time is at 06:00:00 on
15/08/2013.

• To represent the fact that an observation concerns the data collected
on the day d, the object property sosa:phenomenonTime is used. In
Figure 54, the phenomenon time is represented by an instance of the class
time:Interval for a period of [14/08/2013 06:00:00, 15/08/2013 06:00:00[,
which is associated with two instances of the class time:Instant. The
sosa:phenomenonTime object property links the deduction individual to the
interval individual.

• The computation of the function getSleeping(d) function is based on three
actions: (1) the deduction of the property CropWaterNeed, (2) the computation
of the getSleeping(d-1) function, and (3) the computation of the function
getDelay(d). Then, this observation individual is linked to the three actions
via the object property prov:wasInformedBy, as shown in Figure 54.

• The result of the computation is represented by an instance of the class
sosa:Result. This instance is described by a unit and a value, as shown in
Figure 54.

3.4.6 Services of the Irrigation Decision Support System in
TSCF

In theory, the stack of services of the irrigation CAS in TSCF must consist of services
from all of the four phases of the context life cycle of CASs. Since the irrigation
DSS presented in this subsection is part of the irrigation CAS in TSCF, this DSS
provides only services in the modeling phase and analysis phase. Figure 55 presents
the services run by the DSS. There are a total of six services as follows.

• Annotation: This service equals to the integration process. It models the input
data using IRRIG. The input data is Arvalis data stored in an excel document.

• Storage: This service equals to both long-term storage and short-term storage
processes. After being modeled, it stores the data into owl files or temporarily
saves data in the computer’s RAM (Random-Access Memory). The former case
is long-term storage, and the latter case is short-term storage.
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Figure 55: Services run by the irrigation DSS in TSCF

• Retrieving: This service equals to querying process. It queries data from the
long-term storage or short-term storage of the DSS.

• Merging: This service equals to aggregation process. It produces aggregate
data from the retrieved data through some functions as presented in the previous
subsections.

• Reasoning: This service equals to inference process. It produces deducted
data, which are states of the entities of the four workflows.

• Storage Updating: This service distributes the new data into the storage.

3.5 System Implementation

Ontogen is a software program developed specialized for the DSS module of the CAS
irrigation system in TSCF. It is coded in Python and Java. The first version of
Ontogen (Ontogen-v201912) corresponds to the first version of the CAS irrigation
system. Ontogen takes as input sensor measurements to produce the state of the
property CropWaterNeed as output. It is divided into three modules, as follows.

• Virtual sensor: A module can read data from a CSV file or receive messages.
The former case is when all recorded data are in a file. The latter case is in real
experimentation.

• Aggregator: A module run functions to produce aggregate data from measured
data. The version Ontogen-v201912 consists of four functions which are
getDelay, getRainDailyTotalQuantity, getDailyAggergateMoisture, and
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getRootZoneDailyAverageMoisture.

• SWRLAPI Drools Inference engine: A module runs Drools inference engine.
The core of this inference engine is OWLAPI8 and SWRLAPI9. This module
uses a set of SWRL rules and all the data provided from the previous module
to deduct high-level context data.

The aggregations are encoded in Python as functions. The deductions are
executed by the SWRLAPI Drool inference engine integrated into Ontogen. In detail,
the reasoning process of the inference engine in Ontogen can be explained as follows.
First, Ontogen generates an OWL file that contains all the individuals and the IRRIG
ontology necessary for the rule engine; it creates all the individuals that describe
sensor measurements. It also creates the individuals, instances of caso:Deduction,
necessary to define the daily deduction per instance of the class caso:Property. The
file name is the concatenation of the feature of interest name and the beginning date.
Second, it launches the Drools rule engine and applies it to the individuals previously
created. The Drools engine updates the caso:Deduction instance. It links an instance
of the class caso:State with an instance of caso:Deduction via the object property
caso:hasResultState. Then, it creates a new OWL file that contains the results of
the inference engine. The OWL file is updated from the previous file. The rule for
Drools is coded in SWRL. There are a total of 24 rules in SWRL as follows.

• 6 rules for crop growth.

• 1 rule for rain intensity.

• 1 rule for root zone soil moisture level.

• 16 rules for crop water need.

The contents of the rules are presented in Appendix A. Each rule is put in a rule
file with a .rule extension. The rule files are available on the GitLab repository of
INRAE via the following link https://gitlab.irstea.fr/irrig/public/tree/master/Rule.

Figure 56 shows the algorithm implemented by the DSS using the Ontogen
program. It is the case that the virtual sensor module read data from the Arvalis
dataset, as presented in Section 3. At 06:00:00 on day d, the system triggers the DSS
to start the computation. First, the DSS retrieves the observations relevant to days d-
1 and d recorded in the Arvalis dataset. Note that in the algorithm of Figure 56, the
data retrieved at the instant [d 06:00:00] belong to the period [d-1 00:00:00,
d 06:00:00]. The DSS checks the value of the evaluation of the CropGrowth
property of day d-1. As the method IRRINOV R© is valid only when the state of
CropGrowth is from V7 to R5hg45, then the DSS has three possible cases: (1) if

8https://github.com/owlcs/owlapi
9https://github.com/protegeproject/swrlapi
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Figure 56: Algorithm in Ontogen for the DSS
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the state of CropGrowth is less than V7, then the DSS waits until the next day to
reevaluate the CropGrowth, (2) if the state of CropGrowth equals R5hg45, then
the DSS stops, and (3) if the state of CropGrowth is between V7 and R5hg45, then
the DSS continues to retrieve rules to create a fact related to CropGrowth. The fact
integrates rules as axioms. After determining the fact, the DSS can launch the Drools
inference engine to infer the state of CropGrowth for day d-1. Next, the DSS runs
the functions to obtain the value of the root zone average moisture of day d-1 and to
obtain the number of delay days. The function to obtain the value of root zone average
moisture takes the value of the average moisture of day d-1 corresponding to each
soil tensiometer from the Arvalis dataset. Additionally, the function to obtain the
number delay days takes the value of the total rain quantity of day d-1 from the Arvalis
dataset. The DSS collects all calculated results and retrieves the other rules related
to RainIntensity, RootZoneMoistureLevel and CropWaterNeed properties
and updates them. Later, the Drools inference engine infers the state of the three
mentioned properties and the value of SleepingDuration. Based on the state of
CropWaterNeed, the DSS offers two solutions: (1) if the state ofCropWaterNeed
is Yes, the DSS suggests that users launch irrigation on day d; otherwise, (2) if the
state of CropWaterNeed is No, NotApplicable or Unavailable, the DSS suggests
that users do nothing. After producing the suggestion, the system saves the results
of all computations into the knowledge base. Finally, the DSS continues to wait until
06:00:00 of the next day (d+1).

3.6 System Testing

The system testing step is to evaluate systems. The DSS works if it passes all the test
cases without faults, or at least the faults are acceptable and explainable. System
testing is not only for the DSS, but also it indirectly to evaluate the correctness of
the two ontologies CASO and IRRIG. This research proposes three levels of system
testing as follows.

• Unit test: To check whether a rule can provide expected results as testers’
calculations. Testers deliberately choose the input value.

• Sample test: To check whether a rule can provide expected results as the values
of an real experiment.

• System test: To check whether the system using all of the rules provides
expected results as the reasoning of system developers based on data from a
real experiment.
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3.6.1 Evaluation Using Unit Test

This research performed a total of 120 unit test cases for the four workflows.
• 13 test cases for crop growth workflow.

• 11 test cases for rain intensity workflow.

• 13 test cases for soil moisture workflow.

• 83 test cases for crop water need workflow.
In each test case, the system takes one or several input values depending on the
corresponding workflow and produces one output result. It is a deduction process
where the SWRLAPI Drools inference engine applies each rule to the knowledge
base, including the input value, to infer a deducted result. It is possible to evaluate
the rule by comparing the deducted result with the expected result calculated by
stakeholders. The information related to the comparisons is available in the different
tables corresponding to workflows. Each table contains several columns. The meaning
of each column is as follows.

• ID test: The identification of a test case.

• Observation: The input value of an observation.

• Date: The input value is the date of observation.

• Expected result: The output value which is calculated by stakeholders.

• Aggregate result: The output value which is calculated by one or several
functions of the software program Ontogen.

• Deducted result: The output value which is deducted by the SWRLAPI
Drools inference engine.

Note that some columns may have sub-columns or maybe disappeared in some tables,
depending on the workflow of the considering table.

Table 20 shows the information related to the crop growth workflow. In
this workflow, six rules are tested and they have the following identifications:
ADv122019-CG-V7, ADv122019-CG-V7d20, ADv122019-CG-R1, ADv122019-CG-R1d15,
ADv122019-CG-R5, and ADv122019-CG-R5hg45. They respectively are rules for the
CropGrowth property of a day to reach one of the states of V7, V7d20, R1, R1d15,
R5, or R5hg45. The rules are available in Appendix A. From this table, the expected
result is similar to the deducted result. Therefore, it is possible to conclude that all
of the rules work correctly.

Table 21 shows the information related to the rain intensity workflow. In this
workflow, only one rule is tested. It has the identification: ADv122019-RI. This rule
is for the RainIntensity property of a day to reach one of the states of Light,
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Table 20: Unit tests of rules for the state of CropGrowth deduction

ID test Date
(input)

Observation
(input)

Expected
result

Deducted
result

CG-V7-25062013000000 25/06/2013 00:00:00 V7 V7d20 V7d20

CG-V7-25062013000100 25/06/2013 00:01:00 V7 V7 V7

CG-V7-26062013000000 26/06/2013 00:00:00 V7 V7 V7

CG-V7-15072013000000 15/07/2013 00:00:00 V7 V7 V7

CG-V7-15072013120000 15/07/2013 12:00:00 V7 V7 V7

CG-R1-30062013000000 30/06/2013 00:00:00 R1 R1d15 R1d15

CG-R1-30062013000100 30/06/2013 00:01:00 R1 R1 R1

CG-R1-15072013000000 15/07/2013 00:00:00 R1 R1 R1

CG-R1-15072013120000 15/07/2013 12:00:00 R1 R1 R1

CG-R5-15072013000000 15/07/2013 00:00:00 R5 R5 R5

CG-R5-14072013000000 14/07/2013 00:00:00 R5 R5 R5

CG-R5hg45-15072013000000 15/07/2013 00:00:00 R5hg45 R5hg45 R5hg45

CG-R5hg45-14072013000000 14/07/2013 00:00:00 R5hg45 R5hg45 R5hg45

Moderate, or Heavy. The rule is available in Appendix A. In this table, the expected
result column have two sub-columns that contains expected state and delay. The
expected state equals to the deducted state, and expected delay equals to aggregated
delay. While the inference engine deducts the state, the function getDelay(d) of
Ontogen calculates the value of the DelayDuration property. It is possible to
conclude that the rule works correctly. Note that the function getDelay(d) is not the
object to be considered in this section since it is not a part of the ontology. However,
the delay duration is important for the deduction of crop water need.

Table 22 shows the information related to the soil moisture workflow. In this
workflow, only one rule is tested. It has the identification: ADv122019-RM. This rule
is for the RootZoneMoistureLevel property of a day to reach one of the states of
Dry, VeryLow, Low, Average, High, VeryHigh, or Saturated. The rule is available in
Appendix A. The expected result is similar to the deducted result, then it is possible
to conclude that the rule works fine.

Table 23 and Table 24 show the information related to the crop water need
workflow. In this workflow, 16 rules are tested.

122



Chapter 3. Development of an Irrigation Decision Support System

Table 21: Unit tests of rules for the state of RainIntensity deduction

ID test Observation Expected result Deducted Aggregated

(input) State Delay State Delay

RI-Light-0 0 mm Light 0 day Light 0 day

RI-Light-9.9 9.9 mm Light 0 day Light 0 day

RI-Moderate-10 10 mm Moderate 2 day Moderate 2 day

RI-Moderate-15 15 mm Moderate 3 day Moderate 3 day

RI-Moderate-20 20 mm Moderate 4 day Moderate 4 day

RI-Moderate-25 25 mm Moderate 5 day Moderate 5 day

RI-Moderate-30 30 mm Moderate 6 day Moderate 6 day

RI-Moderate-35 35 mm Moderate 7 day Moderate 7 day

RI-Moderate-39.9 39.9 mm Moderate 7 day Moderate 7 day

RI-Moderate-40 40 mm Heavy 8 day Heavy 8 day

RI-Moderate-71.7 71.7 mm Heavy 14 day Heavy 14 day

Of which, 12 rules are for the CropWaterNeed property of a day to reach of the
states of Yes, No, Unavailable, or NotApplicable. The identification of these
rules has radical ADv122019, and the code name from C1 to C4. Particularly, the
rules with code name C2 and C3 are divided into five parts, then it code name
add this extra code from P1 to P5. Also, four rules are for calculating the value
of the SleepingDuration property. The indenticiation codes of these rules are:
ADv122019-SD-P1, ADv122019-SD-P2, ADv122019-SD-P3, and ADv122019-SD-P4.
All of the 16 rules are available in Appendix A.
In the two tables, there are some conventions as follows.

• The duration of the day d is [17/07/2013 00:00:00, 18/07/2013 00:00:00[,
then the duration of the day d-1 is [16/07/2013 00:00:00, 17/07/2013
00:00:00[.

• The observation column has six sub-columns containing four inputs for the day
d and two inputs for the day d-1. The expected result and the deducted result
have two sub-columns for each.

• Lists of shortcuts and their meanings are:

◦ CWN: This column contains the state of CropWaterNeed.
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Table 22: Unit tests of rules for the state of RootZoneMoistureLevel deduction

ID test Observation
(input)

Expected result Deducted result

RZML-Saturated-0 0 cbar Saturated Saturated

RZML-Saturated-9 9 cbar Saturated Saturated

RZML-VeryHigh-10 10 cbar VeryHigh VeryHigh

RZML-VeryHigh-69 69 cbar VeryHigh VeryHigh

RZML-High-70 70 cbar High High

RZML-High-119 119 cbar High High

RZML-Average-120 120 cbar Average Average

RZML-Average-139 139 cbar Average Average

RZML-Low-140 140 cbar Low Low

RZML-Low-149 149 cbar Low Low

RZML-VeryLow-150 150 cbar VeryLow VeryLow

RZML-VeryLow-159 159 cbar VeryLow VeryLow

RZML-Dry-160 160 cbar Dry Dry

◦ SD: This column contains the value of SleepingDuration.

◦ CG: This column contains the state of CropGrowth.

◦ RI: This column contains the state of RainIntensity.

◦ RZML: This column contains the state of RootZoneMoistureLevel.

◦ DD: This column contains the state of DelayDuration.

In most of the test cases, the expected result equals to the deducted result. Except
for the test cases from T1-1 to T1-8, all deducted results are null. The reason is
there is no input of the day d-1, then the corresponding cells are filled with N/A. It is
possible to conclude that all the rules work correctly.

3.6.2 Evaluation Using Sample Test

This research performed a total of 17 sample test scenarios for the four workflows.
• 7 test scenarios for crop growth workflow.
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ID Test
Observation (input) Expected result Deducted result

d-1 d [17/07/2013 00:00:00, 18/07/2013 00:00:00[
CWN SD CG RI DD RZML CWN SD CWN SD

T1-1 N/A N/A V2 Heavy 8 High NotApplicable 0 null null
T1-2 N/A N/A V7 Heavy 8 Average Yes 6 null null
T1-3 N/A N/A V7 Heavy 8 High Yes 6 null null
T1-4 N/A N/A V7 Heavy 8 VeryHigh No 0 null null
T1-5 N/A N/A V7d25 Heavy 8 Average Yes 6 null null
T1-6 N/A N/A V7d25 Heavy 8 High No 0 null null
T1-7 N/A N/A R1 Heavy 8 Low Yes 6 null null
T1-8 N/A N/A R1 Heavy 8 Average No 0 null null
T2-1 Init 0 V7 Heavy 8 High Yes 6 Yes 6
T2-2 Init 0 V7 Light 1 High Yes 6 Yes 6
T2-3 Init 0 V7 Heavy 8 VeryHigh No 0 No 0
T2-4 Init 0 V7d25 Heavy 8 High No 0 No 0
T2-5 Init 0 V7d25 Heavy 8 Average Yes 6 Yes 6
T2-6 Init 0 R1 Heavy 8 Average No 0 No 0
T2-7 Init 0 R1 Heavy 8 Low Yes 6 Yes 6
T2-8 Init 0 R1d15 Heavy 8 Low No 0 No 0
T2-9 Init 0 R1d15 Heavy 8 VeryLow Yes 6 Yes 6

T2-10 Init 0 R5 Heavy 8 Low No 0 No 0
T2-11 Init 0 R5 Heavy 8 Dry Yes 6 Yes 6
T3-1 No 0 V7 Heavy 8 VeryHigh No 0 No 0
T3-2 No 0 V7 Heavy 8 High Yes 6 Yes 6
T3-3 No 0 V7d25 Heavy 8 High No 0 No 0
T3-4 No 0 V7d25 Heavy 8 Average Yes 6 Yes 6
T3-5 No 0 R1 Heavy 8 Average No 0 No 0
T3-6 No 0 R1 Heavy 8 Low Yes 6 Yes 6
T3-7 No 0 R1d15 Heavy 8 Low No 0 No 0
T3-8 No 0 R1d15 Heavy 8 VeryLow Yes 6 Yes 6
T3-9 No 0 R5 Heavy 8 Low No 0 No 0

T3-10 No 0 R5 Heavy 8 Dry Yes 6 Yes 6
T4-1 Unavailable 0 V7 Light 1 VeryHigh No 0 No 0
T4-2 Unavailable 0 V7 Light 1 High Yes 6 Yes 6
T4-3 Unavailable 0 V7d25 Light 1 High No 0 No 0
T4-4 Unavailable 0 V7d25 Light 1 Average Yes 6 Yes 6
T4-5 Unavailable 0 R1 Light 1 Average No 0 No 0
T4-6 Unavailable 0 R1 Light 1 Low Yes 6 Yes 6
T4-7 Unavailable 0 R1d15 Light 1 Low No 0 No 0
T4-8 Unavailable 0 R1d15 Light 1 VeryLow Yes 6 Yes 6
T4-9 Unavailable 0 R5 Light 1 Low No 0 No 0

T4-10 Unavailable 0 R5 Light 1 Dry Yes 6 Yes 6
T5-1 Unavailable 0 V7 Moderate 6 VeryHigh No 0 No 0
T5-2 Unavailable 0 V7 Moderate 6 High Yes 6 Yes 6
T5-3 Unavailable 0 V7d25 Moderate 6 High No 0 No 0
T5-4 Unavailable 0 V7d25 Moderate 6 Average Yes 6 Yes 6
T5-5 Unavailable 0 R1 Moderate 6 Average No 0 No 0
T5-6 Unavailable 0 R1 Moderate 6 Low Yes 6 Yes 6
T5-7 Unavailable 0 R1d15 Moderate 6 Low No 0 No 0
T5-8 Unavailable 0 R1d15 Moderate 6 VeryLow Yes 6 Yes 6
T5-9 Unavailable 0 R5 Moderate 6 Low No 0 No 0

T5-10 Unavailable 0 R5 Moderate 6 Dry Yes 6 Yes 6

Table 23: Unit tests of rules for the state of CropWaterNeed deduction (part 1)

• 3 test scenarios for rain intensity workflow.

• 7 test scenarios for soil moisture workflow.
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ID Test
Observation (input) Expected result Deducted result

d-1 d [17/07/2013 00:00:00, 18/07/2013 00:00:00[
CWN SD CG RI DD RZML CWN SD CWN SD

T6-1 Unavailable 0 V7 Heavy 8 VeryHigh No 0 No 0
T6-2 Unavailable 0 V7 Heavy 8 High Yes 6 Yes 6
T6-3 Unavailable 0 V7d25 Heavy 8 High No 0 No 0
T6-4 Unavailable 0 V7d25 Heavy 8 Average Yes 6 Yes 6
T6-5 Unavailable 0 R1 Heavy 8 Average No 0 No 0
T6-6 Unavailable 0 R1 Heavy 8 Low Yes 6 Yes 6
T6-7 Unavailable 0 R1d15 Heavy 8 Low No 0 No 0
T6-8 Unavailable 0 R1d15 Heavy 8 VeryLow Yes 6 Yes 6
T6-9 Unavailable 0 R5 Heavy 8 Low No 0 No 0

T6-10 Unavailable 0 R5 Heavy 8 Dry Yes 6 Yes 6
T7-1 Unavailable 1 V7 Moderate 6 VeryHigh Unavailable 6 Unavailable 6
T7-2 Unavailable 1 V7 Moderate 6 High Unavailable 6 Unavailable 6
T7-3 Unavailable 1 V7d25 Moderate 6 High Unavailable 6 Unavailable 6
T7-4 Unavailable 1 V7d25 Moderate 6 Average Unavailable 6 Unavailable 6
T7-5 Unavailable 1 R1 Moderate 6 Average Unavailable 6 Unavailable 6
T7-6 Unavailable 1 R1 Moderate 6 Low Unavailable 6 Unavailable 6
T7-7 Unavailable 1 R1d15 Moderate 6 Low Unavailable 6 Unavailable 6
T7-8 Unavailable 1 R1d15 Moderate 6 VeryLow Unavailable 6 Unavailable 6
T7-9 Unavailable 1 R5 Moderate 6 Low Unavailable 6 Unavailable 6

T7-10 Unavailable 1 R5 Moderate 6 Dry Unavailable 6 Unavailable 6
T8-1 Unavailable 1 V7 Heavy 8 VeryHigh Unavailable 8 Unavailable 8
T8-2 Unavailable 1 V7 Heavy 8 High Unavailable 8 Unavailable 8
T8-3 Unavailable 1 V7d25 Heavy 8 High Unavailable 8 Unavailable 8
T8-4 Unavailable 1 V7d25 Heavy 8 Average Unavailable 8 Unavailable 8
T8-5 Unavailable 1 R1 Heavy 8 Average Unavailable 8 Unavailable 8
T8-6 Unavailable 1 R1 Heavy 8 Low Unavailable 8 Unavailable 8
T8-7 Unavailable 1 R1d15 Heavy 8 Low Unavailable 8 Unavailable 8
T8-8 Unavailable 1 R1d15 Heavy 8 VeryLow Unavailable 8 Unavailable 8
T8-9 Unavailable 1 R5 Heavy 8 Low Unavailable 8 Unavailable 8

T8-10 Unavailable 1 R5 Heavy 8 Dry Unavailable 8 Unavailable 8
T9-1 Unavailable 2 V7 Heavy 8 VeryHigh Unavailable 9 Unavailable 9
T9-2 Unavailable 2 V7 Moderate 6 VeryHigh Unavailable 7 Unavailable 7
T9-3 Unavailable 2 V7 Moderate 2 VeryHigh Unavailable 3 Unavailable 3
T9-4 Unavailable 2 V7 Light 1 VeryHigh Unavailable 2 Unavailable 2

Table 24: Unit tests of rules for the state of CropWaterNeed deduction (part 2)

In each test scenario, the system takes one input value, which is the date of the
observation in the Arvalis dataset. From the date value, the system can find the other
corresponding observations in the Arvalis dataset. The SWRLAPI Drools inference
engine applies each rule to the knowledge base, including the input value, to infer a
deducted result. It is possible to evaluate the rule by comparing the deducted result
with the expected result calculated by stakeholders. The information related to the
comparisons is available in the different tables corresponding to workflows. Each table
contains several columns. The meaning of each column is as follows.

• ID test: The identification of a test case.

• Date: The input value is the date of observation.

• Expected result: The output value which is calculated by stakeholders.
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• Deducted result: The output value which is deducted by the SWRLAPI
Drools inference engine.

Table 25 shows the information related to the crop growth workflow. Similar
to Section 3.6.1, this workflow has six rules to be tested: ADv122019-CG-V7,
ADv122019-CG-V7d20, ADv122019-CG-R1, ADv122019-CG-R1d15, ADv122019-CG-R5,
and ADv122019-CG-R5hg45. They respectively are rules for the CropGrowth
property of a day to reach one of the states of V7, V7d20, R1, R1d15, R5, or R5hg45.
The rules are available in Appendix A. In this table, the expected result equals to
the deducted result. It is possible to conclude that all of the rules work correctly.

Table 25: Sample tests of rules for the state of CropGrowth deduction

ID test Date (input) Expected result Deducted result

CG-V7-26062013 26/06/2013 V7 V7

CG-V7d20-16072013 16/07/2013 V7d20 V7d20

CG-R1-27072013 27/07/2013 R1 R1

CG-R1-31072013 31/07/2013 R1 R1

CG-R1d15-11082013 11/08/2013 R1d15 R1d15

CG-R5-10092013 10/09/2013 R5 R5

CG-R5hg45-19092013 19/09/2013 R5hg45 R5hg45

Table 26 shows the information related to the rain intensity workflow. Similar to
Section 3.6.1, this workflow has one rule to be tested: ADv122019-RI. This rule is for
the RainIntensity property of a day to reach one of the states of Light, Moderate,
or Heavy. The rule is available in Appendix A. In this table, the expected result
equals to the deducted result. Therefore, it is possible to conclude that the rule
works correctly.

Table 26: Sample tests of rules for the state of RainIntensity deduction

ID test Date (input) Expected result Deducted result

RI-Light-16072013 16/07/2013 Light Light

RI-Moderate-28072013 28/07/2013 Moderate Moderate

RI-Heavy-31072013 31/07/2013 Heavy Heavy
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Table 27 shows the information related to the soil moisture workflow. Similar
to Section 3.6.1, this workflow has one rule to be tested: ADv122019-RM. This rule
is for the RootZoneMoistureLevel property of a day to reach one of the states of
Dry, VeryLow, Low, Average, High, VeryHigh, or Saturated. The rule is available in
Appendix A. The expected result is similar to the deducted result; then, it is possible
to conclude that the rule works fine.

Table 27: Sample tests of rules for the state of RootZoneMoistureLevel deduction

ID test Date (input) Expected result Deducted result

RZML-Saturated-26062013 26/06/2013 Saturated Saturated

RZML-VeryHigh-16072013 16/07/2013 VeryHigh VeryHigh

RZML-Low-21072013 21/07/2013 Low Low

RZML-High-26072013 26/07/2013 High High

RZML-VeryLow-31072013 31/07/2013 VeryLow VeryLow

RZML-Average-03082013 03/08/2013 Average Average

RZML-Dry-14082013 14/08/2013 Dry Dry

3.6.3 Evaluation Using System Test

The system test is to run the DSS over data in a period of the original dataset.
Those periods should have different events that imply state changes in the observed
properties. The four selected periods are as follows.

• [14/08/2013, 21/08/2013]: The period contains one light rain event.

• [21/08/2013, 03/09/2013]: The period contains one moderate rain event.

• [31/07/2013, 14/08/2013]: The period contains two consecutive moderate
rain events.

• [22/07/2013, 31/07/2013]: The period contains one crop state change and
two rain events.

Each period contains two consecutive watering days which are the first day and the
last day in the period. For example, in the first period [14/08/2013, 21/08/2013],
the watering days are 14/08/2013 and 21/08/2013.

Then, this test compares the day of the watering decision made by the DSS from
the day of the watering decision made by a farmer. The comparison relies on the
fact that when both the farmer and the DSS follow the same rules of the IRRINOV R©
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method, then the watering decisions on the same conditions should be equivalent.
Thus, when both the farmer and the DSS decide to do a watering on the first day of
each period, the next watering day deduced by the DSS should be the last day of the
period, in line with the decision of the farmer.

Note that with each period, the DSS takes the human decision of the first day
as an input. It produces its decision from the second day of the period. For example,
with the period [14/08/2013, 21/08/2013], the DSS takes the watering decision on
day 14/08/2013. It deduces the decisions from day 15/08/2013 to day 21/08/2013.

The results of the experiment over the four mentioned periods are shown in the
four data tables below. Each table includes 16 columns and several rows. The first
row of the table contains the labels of the type of data in the column. Each one
from the second row contains the data corresponding to a day of the period. Details
of the first row: The first 13 cells are filled in gray to indicate that the data in the
columns corresponding to these cells are input data; the 14th and 15th cells are in
red to indicate that the data in the columns corresponding to these cells are inferred
results. The last cell is in green to indicate that the data in the 16th column are the
decisions of humans in reality. The meaning of each column is as follows.

• The first three columns show the information of the day, month, and year.

• The fourth column shows the total rain quantity of a day. Its unit is mm. When
the rain quantity is greater than 0, the cell is filled with blue.

• The fifth column shows the number of delay days. These data in this cell are
calculated from the data in the fourth column. Its unit is the day. When the
number of delay days is greater than 0, the cell is filled with blue.

• The next six cells correspond to six soil tensiometers. These indicate the average
soil moisture of a day as measured by a soil tensiometer. Its unit is cbar.

• The 12th cell shows the average root zone moisture of a day. The data in this
cell are calculated based on the data in the six previous cells. Its unit is cbar.

• The 13th cell shows the crop state observed by a human. If farmers recognize a
new crop state and put it in the dataset, then this state is written by the name
code, and the cell is filled with yellow. Otherwise, the text in the cell is null.

• The 14th cell shows the value of the SleepingDuration property inferred by
the DSS. Its unit is the day.

• The 15th cell shows the state of the CropWaterNeed property. When
CropWaterNeed reaches state Yes, the text in the cell is in uppercase, and
the cell is filled with red.

• The 16th cell shows the decision of farmers recorded in the dataset. The day
that farmers decide to water the plot, the corresponding cell is made green, and
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the text inside the cell is YES. Otherwise, there is no text.

Table 28 shows the results of the experimental period from 22/07/2013 to
31/07/2013. The first watering is performed on 22/07/2013. The farmer decides
to schedule the second watering on 31/07/2013; however, the DSS suggests that the
farmer does nothing on the same day. The farmer disobeys the method IRRINOV R©

in this case for a good reason. When the value of the average root zone moisture is 152
cbar, the root zone moisture level is low. If the root zone moisture level is low and the
crop growth is R1, then the crop needs water. If following the IRRINOV R© methods,
the farmer should wait at least two more days because a rain event postpones the
irrigation by four days. The data of SleepingDuration also reflect this calculation.
The result of this experiment proves that the farmer decision may be different from
the method IRRINOV R©.

Day Month Year Rain DelayDuration WM-01 WM-02 WM-03 WM-04 WM-05 WM-06 RzM CropState SleepingDuration Ontogen-CWN Arvalis-CWN
22 7 2013 0 0 135 111 81 106 22 60 171 null 6 YES YES
23 7 2013 6 0 70 31 1 18 0 0 31 null 5 unavailable
24 7 2013 0 0 84 50 3 44 0 0 50 null 4 unavailable
25 7 2013 0 0 92 56 12 112 12 0 68 null 3 unavailable
26 7 2013 0 0 107 67 38 144 28 36 103 null 2 unavailable
27 7 2013 0 0 126 83 64 158 61 69 152 R1 1 unavailable
28 7 2013 20 4 141 67 4 43 3 0 70 null 4 unavailable
29 7 2013 0 0 144 89 16 112 10 1 99 null 3 unavailable
30 7 2013 0 0 147 97 29 150 19 10 116 null 2 unavailable
31 7 2013 0 0 149 101 46 169 47 51 152 null 1 unavailable YES

Table 28: Experiment during the period from 22/07/2013 to 31/07/2013.

Table 29 shows the results of the experimental period from 31/07/2013 to
14/08/2013. The first watering is performed on 31/07/2013. The second watering is
scheduled by both the farmer and the DSS is on 31/07/2013. This example shows
that the farmer follows the IRRINOV R© method and the DSS gives a correct result
based on this method. The DSS result is correct in this case because there are rains
on two consecutive days. The two rainy days are 06/08/2013 and 07/08/2013. These
two rainy days produce seven delay days.

Table 30 shows the results of the experimental period from 14/08/2013 to
21/08/2013. The first watering is performed on 14/08/2013. The second watering is
scheduled by both the farmer and the DSS is on 21/08/2013. This example shows
that the farmer follows the method IRRINOV R© and the DSS gives a correct result
based on this method. The DSS result is correct in this case because of the light rain
on 19/08/2013. There are no delay days in this period.

Table 31 shows the results of the experimental period from 21/08/2013 to
03/09/2013. The first watering is performed on 21/08/2013. The farmer decides
to schedule the second watering on 21/08/2013. However, the second watering is
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Day Month Year Rain DelayDuration WM-01 WM-02 WM-03 WM-04 WM-05 WM-06 RzM CropState SleepingDuration Ontogen-CWN Arvalis-CWN
31 7 2013 0 0 149 101 46 169 47 51 152 null 6 YES YES
1 8 2013 0 0 50 0 1 8 16 0 9 null 5 unavailable
2 8 2013 0 0 75 0 10 90 54 0 64 null 4 unavailable
3 8 2013 0 0 91 19 37 147 98 0 135 null 3 unavailable
4 8 2013 0 0 103 29 56 162 129 1 185 null 2 unavailable
5 8 2013 0 0 116 41 78 167 137 27 215 null 1 unavailable
6 8 2013 27 5 133 59 104 185 151 88 255 null 5 unavailable
7 8 2013 11 2 136 0 2 20 11 0 13 null 6 unavailable
8 8 2013 0 0 123 0 0 69 5 0 5 null 5 unavailable
9 8 2013 0 0 90 0 0 160 14 0 14 null 4 unavailable
10 8 2013 0 0 75 0 0 189 32 0 32 null 3 unavailable
11 8 2013 0 0 71 9 14 203 81 0 95 null 2 unavailable
12 8 2013 0 0 69 19 26 199 128 0 154 null 1 unavailable
13 8 2013 0 0 72 28 42 201 156 0 198 null 0 unavailable
14 8 2013 0 0 78 39 59 199 177 4 236 null 6 YES YES

Table 29: Experiment during the period from 31/07/2013 to 14/08/2013.

Day Month Year Rain DelayDuration WM-01 WM-02 WM-03 WM-04 WM-05 WM-06 RzM CropState SleepingDuration Ontogen-CWN Arvalis-CWN
14 8 2013 0 0 78 39 59 199 177 4 236 null 6 YES YES
15 8 2013 0 0 36 1 1 31 15 0 16 null 5 unavailable
16 8 2013 0 0 43 0 0 136 72 0 72 null 4 unavailable
17 8 2013 0 0 47 1 16 207 154 0 170 null 3 unavailable
18 8 2013 0 0 49 16 27 210 174 0 201 null 2 unavailable
19 8 2013 2 0 54 26 43 211 185 0 228 null 1 unavailable
20 8 2013 0 0 56 31 45 207 190 1 235 null 0 unavailable
21 8 2013 0 0 60 40 59 188 220 19 247 null 6 YES YES

Table 30: Experiment during the period from 14/08/2013 to 21/08/2013.

scheduled by the DSS is two days sooner. From this experiment, it is possible to
conclude that the farmer disobeys the method IRRINOV R© one more time. However,
this time, the reason for the farmer is unclear. From the data in the column of average
root zone moisture, the root zone is at a dry state from 29/08/2013. Therefore, the
decision following the method IRRINOV R© is better than the decision made by the
farmer, since the crops in the latter case need to wait for water more than those in
the former case.

From the result of system tests and the discussion of stakeholders on this result,
it is possible to conclude that the rules of IRRIG work correctly. The difference
between the watering decisions recorded in the Arvalis dataset and the watering
decision suggested by the DSS is due to the limit of IRRINOV R©, and the errors made
during the Arvalis experimentation.

3.7 Summary and Discussion

To sum up, this chapter presents the procedure to develop an irrigation DSS. This
procedure relies on a new system development methodology, which is the combination
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Day Month Year Rain DelayDuration WM-01 WM-02 WM-03 WM-04 WM-05 WM-06 RzM CropState SleepingDuration Ontogen-CWN Arvalis-CWN
21 8 2013 0 0 60 40 59 188 220 19 247 null 6 YES YES
22 8 2013 0 0 24 2 1 28 109 0 30 null 5 unavailable
23 8 2013 0 0 36 0 3 147 188 0 150 null 4 unavailable
24 8 2013 0 0 40 5 19 199 203 0 218 null 3 unavailable
25 8 2013 22 4 42 16 25 212 200 0 225 null 6 unavailable
26 8 2013 4.5 0 45 10 3 51 142 0 61 null 5 unavailable
27 8 2013 0 0 1 2 18 23 0 255 25 null 4 unavailable
28 8 2013 0 0 0 1 51 89 0 255 90 null 3 unavailable
29 8 2013 0 0 0 1 132 172 0 255 173 null 2 unavailable
30 8 2013 0 0 3 9 182 202 0 255 211 null 1 unavailable
31 8 2013 0 0 15 18 209 239 0 255 257 null 0 unavailable
1 9 2013 0 0 24 29 229 239 0 255 268 null 6 YES
2 9 2013 0 0 39 56 239 239 46 255 239 null 5 unavailable
3 9 2013 0 0 0 3 33 36 0 255 36 null 4 unavailable YES

Table 31: Experiment during the period from 21/08/2013 to 03/09/2013.

of LOT and Mini-waterfall. LOT is the methodology to develop IRRIG, the ontology
to model the system’s data. Mini-waterfall is the methodology to develop the software
program of the DSS. This development procedure includes four steps. First, in the
specification step, system developers analyze all sources of information related to the
system, then produce a specification and a competency questions documents. Second,
from the specification and competency questions documents, system developers can
form an ontology specialized for this case study. Moreover, they can determine the
services run by this DSS. Third, the implementation step is to write an algorithm to
run the system and to code rules for the reasoning. The fourth step is to evaluate
the ontology IRRIG and the system using several testing types.

It is possible to conclude that this chapter success in building an irrigation DSS
and an ontology specialized for this case study. However, there are still two points to
discuss further:

• In addition to deducting the crop growth state based on human observation,
another approach is to use the Growing Degree Unit (GDU) method. This
method proposes to determine the maximum and minimum temperature of a
day to estimate the heat accumulate of crops. This value also enables the
deducting of the crop growth state (Lori J. Abendroth et al., 2011). Even
that IRRIG provides enough vocabulary to describe the temperature data for
calculating GDU, the rules relating to this method are not yet defined. One
future version of IRRIG should provide these rules coded in SWRL.

• IRRIG should define vocabulary specialized for agriculture, which is missing in
available vocabularies, such as the unit millibar.

III
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"Life is like riding a bicycle. To keep your balance
you must keep moving." – Albert Einstein

The emergence of the IoT, together with the new wave of ICTs, brings opportunities
and challenges in e-agriculture. In particular, they promote this domain to a new
revolution called Agriculture 4.0. In Agriculture 4.0, farmers normally use a CAS to
manage and control agricultural activities because it can react fast and adequately to
the context changes. The data generated from a CAS should be sharable not only in
e-agriculture but also in other domains such as smart cities and smart environments.
The combination of them creates a cross-domain ecosystem of the IoT. Besides these
advantages, using CAS in e-agriculture encounters some challenges specialized in
agriculture. First, system developers would need to upgrade their CAS frequently:
agriculture is a seasonal activity, and its workplace environment is outdoors, so it
implies many unpredictable factors that demand the changes in software and hardware
of an agriculture CAS. Consequently, there is a need to upgrade the system using new
hardware and software without changing the CAS’s functionality. Address the first
challenge; this research proposes a stack of services for CASs, which allows designing
a system by services. This approach focuses on the goal of services and reduces the
system’s dependency on hardware and software. Thus, it improves the upgradability
of CASs. Second, the heterogeneity data generated from a CASs is a challenge in the
communication between the components in one CAS or even more, the data sharing
between different CASs. Address the second challenge; this research proposes CASO,
an ontology dedicated to CASs. It provides a vocabulary to model the computations
available in CASs and data generated from these computations. Also, this ontology
implies a mechanism to create rules for reasoning. A CAS using CASO can improve
the interoperability of data semantic between its devices. Moreover, when different
CASs use this ontology, the interoperability of data semantic between such systems
is improved. The third contribution of this research is an irrigation DSS. It is a part
of the irrigation CAS in TSCF. It automizes an irrigation method called IRRINOV R©.
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The two first contributions of this project are used in building this DSS. Indeed,
this DSS is designed using the stack of services for CASs and it runs six services:
annotation, storage, retrieving, merging, reasoning, storage updating. It
also uses CASO to develop a specialized ontology for the case study, named IRRIG.
The table decisions in the IRRINOV R© are transformed into the rules for reasoning
and are a part of IRRIG.

The contributions of this research are from the real issues in e-agriculture. Also,
the data resources used to evaluate them are from several works in agriculture.
However, the two first contributions of this thesis are generalized to be generic. It
means that they can be applied in other domains in the IoT ecosystem, such as smart
cities and smart transportation.

On the practical side, the DSS developed in this research contributes to an
irrigation CAS in TSCF. The system developers of this project deploy the other
parts of the CAS in TechnoHall10, INRAE. Figure 57 illustrates the deployment of the
devices of the CAS irrigation system in TechnoHall. Moreover, as in the plan of TSCF,
the irrigation CAS irrigation system will further employ in the AgrotechnoPôle.
Figure 57 shows a picture of the AgrotechnoPôle.

X

Arduino MEGA

Raspberry Pi 3

Valve VMA422

Watermark sensor

Wireless connection
Wired connectionLegend:

Maize plant Mini-sprinkler Plant pot

Figure 57: Devices of the CAS irrigation system in TechnoHall

There are several perspectives developed from this research. The following four
are the most appealing and executable.

• It is possible to develop a vocabulary to describe the networking of CASs. It
could be a part of CASO since networking is an aspect of a CAS. Moreover,

10TechnoHall is a basement for technologies experimentations located in the building of the center
INRAE Clermont-Auvergne-Rhône-Alpes. TechnoHall is under the supervision of TSCF.
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Figure 58: AgroTechnoPôle in Montoldre, France

with this networking part, it is possible to use reasoning techniques to force a
node to make a decision automatically. An example of multihoming: there are
two gateways in a local WSN. A node can send data to an external network via
one of them. The information about the two gateways and the network could
be useful for a node to select the path that optimizes the network traffic. This
perspective requires an expert in networking that can analyze and provide a list
of requirements. This expert may need to translate networking algorithms into
rules. The challenge of this perspective is to create an expert system that is
small enough to put in every node in the local network.

• A CAS could be smarter if it becomes an ACAS. The adaptive feature allows a
CAS to change its configurations based on the context. It is necessary to back
to the example of the irrigation CAS in TSCF to prove this statement. Given
that a probe sends soil tension information to the server once per day. When the
soil tension is near the threshold that triggers the watering activity, the server
is unable to make this decision in this day, but need to wait to the next day.
An ACAS can change the communication frequency between the probe and the
server from 24 hours to 1 hour for that special day. Thus, the decision is more
on time. This perspective requires an ontological expert that can transform
such constraints into rules. Also, it needs a vocabulary to describe the systems’
configuration information, such as the communication frequency.

• Each service in the stack of services for CASs should follow the principle of
the microservice design mindset: to have two parts. One part is to execute
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the goal. Another one handles the communication between services. For
example, the service reasoning has two parts. While the first part performs
the reasoning, the second one has the responsibility to receives data from the
service retrieving or send data to the service context transformation. This
perspective requires a system engineer who can operate a software program for
the first part and be able to build a communication protocol for the second
part. One suggestion is to use MQTT for the second part since this protocol
follows the publish/subscribe mechanism, and it is easy to implement.

• The irrigation method IRRINOV R© cannot cover all situations; then, the DSS
sometimes might produce fault suggestion. One solution to overcome this
inconvenience is to use machine learning technique. When the input data is
large enough, and the output based on the decisions of agronomists are all
correct, this technique can produce the new rules into the rules base. This
perspective requires an expert in machine learning and an agronomist. The
input data could be real experiment data, or a software program could generate
them randomly. The key is that the agronomist must provide the answer from
the input data. The machine learning expert has knowledge of rules extraction
from training data.
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Appendix A

New Vocabularies Defined in CASO
and IRRIG

"Five fingers, some are long, and some are short. But
they are all united in one hand. " – Ho Chi Minh

This appendix is a complement to Chapter 2 and Chapter 3. It presents the new
vocabularies defined and presented in CASO and IRRIG v122019. The ontologists of
TSCF will maintain and update these two ontologies. Their newest version will be
published respectively in https://w3id.org/def/caso and https://w3id.org/def/irrig.

A.1. New classes defined in CASO:

• caso:Actuation is a subclass of sosa:Actuation. It represents the act of carrying
out an Actuation to change the state of world using an Actuator. This act is
performed during the context exploitation phase of a context aware system. An
Actuation links to an Actuator to describe what made the Actuation and how;
links to an ActuatableProperty to describe the target that the Actuation change;
links to a FeatureOfInterest to detail what that property was associated with;
links to a Deduction by the wasInfluencedBy property when the act is performed
based on the given Deduction; and links to the Function that is triggered by the
Actuation by the triggersFunction property.

• caso:Boundary is the class that represents the limit of a State. The value of
the limit could be a quantitative or a qualitative data. To store the value, the
boundaryValue data property is used.

• caso:Deduction is a subclass of caso:Observation. It represents the act of
carrying out an (Observation) Procedure to estimate the State of a Property
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of a FeatureOfInterest. The Observation may be performed by an inference
engine. A Deduction links to a State by the hasResultState property to describe
what the result is; links to a TemporalEntity by the hasValidTime property to
indicate when the result is valid and for how many time.

• caso:Observation is a subclass of sosa:Observation. It represents the act of
carrying out an (Observation) Procedure to estimate or calculate a value of a
Property of a FeatureOfInterest. This act can be performed during the context
acquisition or context analysis phases of a context aware system. An Observation
links to a Sensor to describe what made the Observation and how; links to an
ObservableProperty to describe what the result is an estimate of; and links to a
FeatureOfInterest to detail what that property was associated with. When the
act is made during the context analysis phase the entry values of the procedure
should be linked to the observation by the wasDerivedFrom property.

• caso:Property is a quality of an entity. An aspect of an entity that is intrinsic
to and cannot exist without the entity.The possible quality values should be
expressed by State. A Property is linked to its possible States using the hasState
property.

• caso:State is a qualitative value of a Property, summarizing a set of information
about that Property. A State links to its Property by the isStateOf property.
To delimit the State of a Property, some Boundary may be defined.

A.2. New object properties defined in CASO:

• caso:greaterThan is an object property. It represents the relation between
states (caso:State) to define an order. In detail, the domain state is greater than
the range state.

• caso:greaterThanOrEqual is an object property. It represents the relation
between states (caso:State) to define an order. The domain state is greater than
or equal to the range state.

• caso:hasClosedLowerBoundary is an object property. It represents the relation
from a state (caso:State) to its lower boundary (caso:Boundary). The state
is reached when the associated state value is equal or superior to the lower
boundary value.

• caso:hasClosedUpperBoundary is an object property. It represents the relation
from a state (caso:State) to its upper boundary (caso:Boundary). The state is
reached when the associated state value is equal or inferior to the upper boundary
value.

• caso:hasOpenLowerBoundary is an object property. It represents the relation
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from a state (caso:State) to its lower boundary (caso:Boundary). The state is
reached when the associated state value is superior to the lower boundary value.

• caso:hasOpenUpperBoundary is an object property. It represents the relation
from a state (caso:State) to its upper boundary (caso:Boundary). The state is
reached when the associated state value is inferior to the upper boundary value.

• caso:hasResultState is an object property. It represents the relation linking
a deduction (caso:Deduction) and its result that is to say the state (caso:State)
that is applied on a property for a time.

• caso:hasState is an object property. It represents the relation from a property
to one of the possible states (caso:State) of that property.

• caso:hasValidTime is an object property. It represents the time that the
result of a deduction applies to the property. Not necessarily the same as the
sosa:PhenomenonTime or the sosa:ResultTime. May be an interval or an instant,
or some other compound temporal entity.

• caso:lesserThan is an object property. It represents the relation between states
(caso:State) to define an order. The domain state is lesser than the range state.

• caso:lesserThanOrEqualTo is an object property. It represents the relation
between states (caso:State) to define an order. The domain state is lesser than
or equal to the range state.

• caso:triggersFunction is an object property. It represents the relation from
an actuation (caso:Actuation) to a function. The actuation trigger the operation
of the function.

A.3. New data properties defined in CASO:

• caso:boundaryValue is a data property. It represents the numeric value of a
boundary (caso:Boundary).

A.4. New classes defined in IRRIG:

• irrig:AmountProperty is a subclass of ssn:Property. It represents the amount
or quantity aspect of an entity. The amount aspect of an entity is intrinsic and
cannot exist without the entity. The value of the amount should be expressed
by a qualitative value such as a state or by a quantitative value.

• irrig:CropGrowthDeduction is a subclass of caso:Deduction. It is a defined
class that represents the act of carrying out a procedure to estimate the
state of the growth property for the crop entity. The growth property is
represented by the individual irrig:observableProperty_crop_growth. The
crop entity is represented by the individual irrig:featureOfInterest_crop.
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Two necessary and sufficient conditions are defined: (1) All instances of
this class are linked to the individual irrig:observableProperty_crop_growth
via the sosa:observedProperty object property; (2) All instances of
this class are linked to the individual irrig:featureOfInterest_crop via the
sosa:hasFeatureOfInterest object property. Additionally, each instance of
this class is linked to an instance of the class irrig:CropGrowthState by the
caso:hasResultState object property; is linked to an instance of the class
irrig:CropGrowthObservation by the prov:wasInformedBy object property; and
is linked to a sensor to describe the agent that made the deduction.

• irrig:CropGrowthObservation is a subclass of caso:Observation. It is a defined
class that represents the act of carrying out a procedure (observation) to estimate
the value of the growth property for the crop entity. The growth property
is represented by the individual irrig:observableProperty_crop_growth. The
crop entity is represented by the individual irrig:featureOfInterest_crop.
Two necessary and sufficient conditions are defined: (1) All instances of
this class are linked to the individual irrig:observableProperty_crop_growth
via the sosa:observedProperty object property; (2) All instances of
this class are linked to the individual irrig:featureOfInterest_crop via the
sosa:hasFeatureOfInterest object property. Additionally, each instance of
this class is linked to a sensor to describe the agent that made the observation.

• irrig:CropGrowthState is a subclass of caso:State. It represents the qualitative
value of the crop growth property, which changes over time, summarizing a set
of information about that property. To evaluate the state of the property, some
boundaries need to be defined.

• irrig:CropWaterNeedDeduction is a subclass of caso:Deduction. It is a defined
class that represents the act of carrying out a procedure to estimate the state
of the water need property for the crop entity. The water need property is
represented by the individual irrig:observableProperty_crop_waterNeed. The
crop entity is represented by the individual irrig:featureOfInterest_crop. Two
necessary and sufficient conditions are defined: (1) All instances of this
class are linked to the individual irrig:observableProperty_crop_waterNeed
via the sosa:observedProperty object property; (2) All instances of
this class are linked to the individual irrig:featureOfInterest_crop via the
sosa:hasFeatureOfInterest object property. Additionally, each instance of
this class is linked to an instance of the class irrig:CropWaterNeedState by
the caso:hasResultState object property; is linked to three instances of
the classes irrig:CropGrowthDeduction, irrig:RootZoneMoistureLevelDeduction
and RainIntensityDeduction by the prov:wasInformedBy object property; and
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is linked to a sensor to describe the agent that made the deduction.

• irrig:CropWaterNeedState is a subclass of caso:State. It represents the
qualitative value of the crop water need property, which changes over time,
summarizing a set of information about that property. To evaluate the state of
the property, some boundaries need to be defined.

• irrig:DelayDurationObservation is a subclass of caso:Observation. It is
a defined class that represents the act of carrying out a procedure
(observation) to calculate the number of delay days of the duration
property for the delay entity. The duration property is represented by
the individual irrig:observableProperty_delayDuration. The delay entity is
represented by the individual irrig:featureOfInterest_delay. Two necessary
and sufficient conditions are defined: (1) All instances of this class
are linked to the individual irrig:observableProperty_delayDuration via
the sosa:observedProperty object property; (2) All instances of this
class are linked to the individual irrig:featureOfInterest_delay via the
sosa:hasFeatureOfInterest object property. Additionally, each instance of
this class is linked to a sensor to describe the agent that made the observation.

• irrig:GrowthProperty is a subclass of ssn:Property. It represents the growth
aspect of an entity, that is, the physical development or the increasing of amount,
number, or size of the entity. The growth aspect of an entity is intrinsic and
cannot exist without the entity. The growth quality values should be expressed
by a qualitative value such as a state or by a quantitative value.

• irrig:IntensityProperty is a subclass of ssn:Property. It represents the intensity
aspect of an entity, that is, the strong effect or the level of power per unit area of
the entity. The intensity aspect of an entity is intrinsic and cannot exist without
the entity. The intensity quality values should be expressed by a qualitative
value such as a state or by a quantitative value.

• irrig:IrrigationActuation is a subclass of caso:Actuation. It is a defined class
that represents the act of carrying out an irrigation procedure (actuation)
to change the state of a moisture actionable property of a soil entity using
a watering actuator. The moisture actionable property is represented by
the individual irrig:observableProperty_soil30cmDepth_moisture and/or
irrig:observableProperty_soil60cmDepth_moisture. The soil entity is
represented by the individual irrig:featureOfInterest_soil30cmDepth
and/or irrig:featureOfInterest_soil60cmDepth. Two necessary and
sufficient conditions are defined: (1) All instances of this class are
linked to the individual irrig:observableProperty_soil30cmDepth_moisture
and/or irrig:observableProperty_soil60cmDepth_moisture via the
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sosa:actsOnProperty object property; (2) All instances of this class
are linked to the individual irrig:featureOfInterest_soil30cmDepth and/or
irrig:featureOfInterest_soil60cmDepth via the sosa:hasFeatureOfInterest
object property. Additionally, each instance of this class is linked to a actuator
to describe the agent that made the actuation.

• irrig:MoistureProperty is a subclass of ssn:Property. It represents the moisture
aspect of an entity, that is, the amount of water available inside the entity. The
moisture aspect of an entity is intrinsic and cannot exist without the entity. The
moisture quality values should be expressed by a qualitative value such as a state
or by a quantitative value.

• irrig:RainDailyTotalQuantityObservation is a subclass of caso:Observation.
It is a defined class that represents the act of carrying out a procedure
(observation) to estimate the value of the daily total quantity property
for the rain entity. The daily total quantity property is represented by
the individual irrig:observableProperty_rain_dailyTotalQuantity. The rain
entity is represented by the individual irrig:featureOfInterest_rain. Two
necessary and sufficient conditions are defined: (1) All instances of this class
are linked to the individual irrig:observableProperty_rain_dailyTotalQuantity
via the sosa:observedProperty object property; (2) All instances of
this class are linked to the individual irrig:featureOfInterest_rain via the
sosa:hasFeatureOfInterest object property. Additionally, each instance of
this class is linked to a sensor to describe the agent that made the observation.

• irrig:RainIntensityBoundary represents the limit of a state of the rain intensity
property. The value of the limit is quantitative. To store this value, the
irrig:boundaryValue data property is used.

• irrig:RainIntensityDeduction is a subclass of caso:Deduction. It is a defined
class that represents the act of carrying out a procedure to estimate the
state of the intensity property for the rain entity. The intensity property
is represented by the individual irrig:observableProperty_rain_intensity. The
rain entity is represented by the individual irrig:featureOfInterest_rain. Two
necessary and sufficient conditions are defined: (1) All instances of this
class are linked to the individual irrig:observableProperty_rain_intensity
via the sosa:observedProperty object property; (2) All instances of
this class are linked to the individual irrig:featureOfInterest_rain via the
sosa:hasFeatureOfInterest object property. Additionally, each instance of
this class is linked to an instance of the class irrig:RainIntensityState by the
caso:hasResultState object property; is linked to an instance of the class
irrig:RainDailyTotalQuantityObservation by the prov:wasInformedBy object
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property; and is linked to a sensor to describe the agent that made the deduction.

• irrig:RainIntensityState is a subclass of caso:State. It represents the qualitative
value of the rain intensity property, which changes over time, summarizing a set
of information about that property. To evaluate the state of the property, some
boundaries need to be defined.

• irrig:RainQuantityObservation is a subclass of caso:Observation. It is a defined
class that represents the act of carrying out a procedure (observation) to estimate
the value of the quantity property for the rain entity. The quantity property
is represented by the individual irrig:observableProperty_rain_quantity. The
rain entity is represented by the individual irrig:featureOfInterest_rain. Two
necessary and sufficient conditions are defined: (1) All instances of this
class are linked to the individual irrig:observableProperty_rain_quantity
via the sosa:observedProperty object property; (2) All instances of
this class are linked to the individual irrig:featureOfInterest_rain via the
sosa:hasFeatureOfInterest object property. Additionally, each instance of
this class is linked to a sensor to describe the agent that made the observation.

• irrig:RootZoneDailyMoistureObservation is a subclass of caso:Observation.
It is a defined class that represents the act of carrying out a procedure
(observation) to estimate the value of the daily average moisture property
for the root zone entity. The daily moisture property is represented by
the individual irrig:observableProperty_rootZone_dailyAverageMoisture.
The root zone entity is represented by the individual
irrig:featureOfInterest_rootZone. Two necessary and sufficient conditions
are defined: (1) All instances of this class are linked to the
individual irrig:observableProperty_rootZone_dailyAverageMoisture via
the sosa:observedProperty object property; (2) All instances of this
class are linked to the individual irrig:featureOfInterest_rootZone via the
sosa:hasFeatureOfInterest object property. Additionally, each instance of
this class is linked to a sensor to describe the agent that made the observation.

• irrig:RootZoneMoistureLevelBoundary represents the limit of a state of the root
zone moisture level property. The value of the limit is quantitative. To store
this value, the irrig:boundaryValue data property is used.

• irrig:RootZoneMoistureLevelDeduction is a subclass of caso:Deduction.
It is a defined class that represents the act of carrying out a procedure
to estimate the state of the moisture level property for the root zone
entity. The moisture level property is represented by the individual
irrig:observableProperty_rootZone_moistureLevel. The root zone entity
is represented by the individual irrig:featureOfInterest_rootZone. Two
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necessary and sufficient conditions are defined: (1) All instances of this class
are linked to the individual irrig:observableProperty_rootZone_moistureLevel
via the sosa:observedProperty object property; (2) All instances of this
class are linked to the individual irrig:featureOfInterest_rootZone via the
sosa:hasFeatureOfInterest object property. Additionally, each instance of
this class is linked to an instance of the class irrig:RootZoneMoistureLevelState
by the caso:hasResultState object property; is linked to an instance
of the class irrig:RootZoneDailyAverageMoistureObservation by the
prov:wasInformedBy object property; and is linked to a sensor to describe the
agent that made the deduction.

• irrig:RootZoneMoistureLevelState is a subclass of caso:State. It represents the
qualitative value of the root zone moisture level property, which changes over
time, summarizing a set of information about that property. To evaluate the
state of the property, some boundaries need to be defined.

• irrig:SleepingDurationObservation is a subclass of caso:Observation. It is a
defined class that represents the act of carrying out a procedure (observation)
to calculate the number of sleeping days of the duration property for the
sleeping entity. Sleeping days are the number of days that the system needs
to wait until the next turn of doing an action. The duration property is
represented by the individual irrig:observableProperty_sleepingDuration. The
sleeping entity is represented by the individual irrig:featureOfInterest_sleeping.
Two necessary and sufficient conditions are defined: (1) All instances of this
class are linked to the individual irrig:observableProperty_sleepingDuration
via the sosa:observedProperty object property; (2) All instances of this
class are linked to the individual irrig:featureOfInterest_sleeping via the
sosa:hasFeatureOfInterest object property. Additionally, each instance of
this class is linked to a sensor to describe the agent that made the observation.

• irrig:Soil30cmDepthDailyAverageMoistureObservation is a subclass
of caso:Observation. It is a defined class that represents the act
of carrying out a procedure (observation) to estimate the value of
the daily average moisture property for the soil at 30 cm depth
entity. The daily average moisture property is represented by the
individual irrig:observableProperty_soil30cmDepth_dailyAverageMoisture.
The soil at 30 cm depth entity is represented by the individual
irrig:featureOfInterest_soil30cmDepth. Two necessary and sufficient conditions
are defined: (1) All instances of this class are linked to the individual
irrig:observableProperty_soil30cmDepth_dailyAverageMoisture via the
sosa:observedProperty object property; (2) All instances of this class
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are linked to the individual irrig:featureOfInterest_soil30cmDepth via the
sosa:hasFeatureOfInterest object property. Additionally, each instance of
this class is linked to a sensor to describe the agent that made the observation.

• irrig:Soil30cmDepthMoistureObservation is a subclass of caso:Observation. It is
a defined class that represents the act of carrying out a procedure (observation)
to estimate the value of the moisture property for the soil at 30 cm depth
entity. The daily average moisture property is represented by the individual
irrig:observableProperty_soil30cmDepth_moisture. The soil at 30 cm depth
entity is represented by the individual irrig:featureOfInterest_soil30cmDepth.
Two necessary and sufficient conditions are defined: (1) All instances of this class
are linked to the individual irrig:observableProperty_soil30cmDepth_moisture
via the sosa:observedProperty object property; (2) All instances of this
class are linked to the individual irrig:featureOfInterest_soil30cmDepth via the
sosa:hasFeatureOfInterest object property. Additionally, each instance of
this class is linked to a sensor to describe the agent that made the observation.

• irrig:Soil60cmDepthDailyAverageMoistureObservation is a subclass
of caso:Observation. It is a defined class that represents the act
of carrying out a procedure (observation) to estimate the value of
the daily average moisture property for the soil at 60 cm depth
entity. The daily average moisture property is represented by the
individual irrig:observableProperty_soil60cmDepth_dailyAverageMoisture.
The soil at 60 cm depth entity is represented by the individual
irrig:featureOfInterest_soil60cmDepth. Two necessary and sufficient conditions
are defined: (1) All instances of this class are linked to the individual
irrig:observableProperty_soil60cmDepth_dailyAverageMoisture via the
sosa:observedProperty object property; (2) All instances of this class
are linked to the individual irrig:featureOfInterest_soil60cmDepth via the
sosa:hasFeatureOfInterest object property. Additionally, each instance of
this class is linked to a sensor to describe the agent that made the observation.

• irrig:Soil60cmDepthMoistureObservation is a subclass of caso:Observation. It is
a defined class that represents the act of carrying out a procedure (observation)
to estimate the value of the moisture property for the soil at 60 cm depth
entity. The daily average moisture property is represented by the individual
irrig:observableProperty_soil60cmDepth_moisture. The soil at 60 cm depth
entity is represented by the individual irrig:featureOfInterest_soil60cmDepth.
Two necessary and sufficient conditions are defined: (1) All instances of this class
are linked to the individual irrig:observableProperty_soil60cmDepth_moisture
via the sosa:observedProperty object property; (2) All instances of this
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class are linked to the individual irrig:featureOfInterest_soil60cmDepth via the
sosa:hasFeatureOfInterest object property. Additionally, each instance of
this class is linked to a sensor to describe the agent that made the observation.

• irrig:StressProperty is a subclass of ssn:Property. It represents the stress aspect
of an entity, that is, the pressure inside the entity. The stress aspect of an entity
is intrinsic and cannot exist without the entity. The stress quality should be
expressed by a qualitative value such as a state or by a quantitative value.

• irrig:TemperatureProperty is a subclass of ssn:Property. It represents the
temperature aspect of an entity. The temperature aspect of an entity is
intrinsic and cannot exist without the entity. The temperature quality should
be expressed by a qualitative value such as a state or by a quantitative value.

A.5. New individuals defined in IRRIG:

• irrig:actuator_watering_valve_1 represents an actuator no1 that controls the
valve of water.

• irrig:boundary_rain_quantity_high is a boundary line of division between two
states heavy and moderate of the rain intensity property.

• irrig:boundary_rain_quantity_low is a boundary line of division between two
states moderate and light of the rain intensity property.

• irrig:boundary_rain_quantity_maximum is a boundary line representing the
maximal value that rain quantity cannot surpass.

• irrig:boundary_rain_quantity_minimum is a boundary line representing the
minimal value that rain quantity cannot below.

• irrig:boundary_rootZone_tension_average is a boundary line of division
between two states low and average of the root zone moisture level property.

• irrig:boundary_rootZone_tension_high is a boundary line of division between
two states average and high of the root zone moisture level property.

• irrig:boundary_rootZone_tension_low is a boundary line of division between
two states very low and low of the root zone moisture level property.

• irrig:boundary_rootZone_tension_maximum is a boundary line representing
the maximal value that root zone daily average moisture cannot surpass.

• irrig:boundary_rootZone_tension_minimum is a boundary line representing the
minimal value that root zone daily average moisture cannot below.

• irrig:boundary_rootZone_tension_saturation is a boundary line of division
between two states very high and saturated of the root zone moisture level
property.
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• irrig:boundary_rootZone_tension_veryHigh is a boundary line of division
between two states high and very high of the root zone moisture level property.

• irrig:boundary_rootZone_tension_veryLow is a boundary line of division
between two states dry and very low of the root zone moisture level property.

• irrig:featureOfInterest_air is an instance of the class sosa:FeatureOfInterest that
represents the air phenomenon.

• irrig:featureOfInterest_crop is an instance of the class sosa:FeatureOfInterest
that represents the crop phenomenon.

• irrig:featureOfInterest_delay is an instance of the class sosa:FeatureOfInterest
that represents the delay phenomenon.

• irrig:featureOfInterest_rain is an instance of the class sosa:FeatureOfInterest
that represents the rain phenomenon.

• irrig:featureOfInterest_rootZone is an instance of the class
sosa:FeatureOfInterest that represents the phenomenon of the root zone
soil of a crop.

• irrig:featureOfInterest_sleeping is an instance of the class
sosa:FeatureOfInterest that represents the phenomenon of waiting for the
next action.

• irrig:featureOfInterest_soil30cmDepth is an instance of the class
sosa:FeatureOfInterest that represents the soil at 30 cm depth phenomenon.

• irrig:featureOfInterest_soil60cmDepth is an instance of the class
sosa:FeatureOfInterest that represents the soil at 60 cm depth phenomenon.

• irrig:observableProperty_air_dailyMaxTemperature is an instance of the classes
sosa:ObservableProperty and sosa:TemperatureProperty that represents the
maximal temperature property of the feature of interest air.

• irrig:observableProperty_air_dailyMinTemperature is an instance of the classes
sosa:ObservableProperty and sosa:TemperatureProperty that represents the
minimal temperature property of the feature of interest air.

• irrig:observableProperty_air_temperature is an instance of the classes
sosa:ObservableProperty and sosa:TemperatureProperty that represents the
temperature property of the feature of interest air.

• irrig:observableProperty_crop_growth is an instance of the classes
irrig:GrowthProperty and caso:Property that represents the growth property
of the feature of interest crop.

• irrig:observableProperty_crop_stage is an instance of the classes
irrig:GrowthProperty and caso:Property that represents the stage property of
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the feature of interest crop.

• irrig:observableProperty_crop_waterNeed is an instance of the classes
irrig:StressProperty and caso:Property that represents the water need property
of the feature of interest crop.

• irrig:observableProperty_delayDuration is an instance of the class caso:Property
that represents the duration property of the feature of interest delay.

• irrig:observableProperty_rain_dailyTotalQuantity is an instance of the classes
irrig:AmountProperty and sosa:ObservableProperty that represents the daily
total quantity property of the feature of interest rain.

• irrig:observableProperty_rain_intensity is an instance of the classes
irrig:IntensityProperty and caso:Property that represents the intensity
property of the feature of interest rain.

• irrig:observableProperty_rain_quantity is an instance of the classes
irrig:IntensityProperty and caso:Property that represents the intensity
property of the feature of interest rain.

• irrig:observableProperty_rootZone_dailyAverageMoisture is an instance of the
classes irrig:MoistureProperty and sosa:ObservableProperty that represents the
daily average moisture property of the feature of interest root zone.

• irrig:observableProperty_rootZone_moistureLevel is an instance of the classes
irrig:MoistureProperty and caso:Property that represents the moisture level
property of the feature of interest root zone.

• irrig:observableProperty_sleepingDuration is an instance of the class
caso:Property that represents the duration property of the feature of interest
sleeping.

• irrig:observableProperty_soil30cmDepth_dailyAverageMoisture is an instance
of the classes irrig:MoistureProperty and sosa:ObservableProperty that
represents the daily average moisture property of the feature of interest soil
at 30 cm depth.

• irrig:observableProperty_soil30cmDepth_moisture is an instance of the classes
irrig:MoistureProperty and sosa:ObservableProperty that represents the
moisture property of the feature of interest soil at 30 cm depth.

• irrig:observableProperty_soil60cmDepth_dailyAverageMoisture is an instance
of the classes irrig:MoistureProperty and sosa:ObservableProperty that
represents the daily average moisture property of the feature of interest soil
at 60 cm depth.

• irrig:observableProperty_soil60cmDepth_moisture is an instance of the classes
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irrig:MoistureProperty and sosa:ObservableProperty that represents the
moisture property of the feature of interest soil at 60 cm depth.

• irrig:pluviometer_1 represents a pluviometer (actuator) no1 that measures the
rain quantity.

• irrig:pluviometer_2 represents a pluviometer (actuator) no2 that measures the
rain quantity.

• irrig:soil_tensiometer_1_30cm represents a tensiometer (actuator) no1 that
measures the soil moisture at 30 cm depth.

• irrig:soil_tensiometer_2_30cm represents a tensiometer (actuator) no2 that
measures the soil moisture at 30 cm depth.

• irrig:soil_tensiometer_3_30cm represents a tensiometer (actuator) no3 that
measures the soil moisture at 30 cm depth.

• irrig:soil_tensiometer_4_60cm represents a tensiometer (actuator) no4 that
measures the soil moisture at 60 cm depth.

• irrig:soil_tensiometer_5_60cm represents a tensiometer (actuator) no5 that
measures the soil moisture at 60 cm depth.

• irrig:soil_tensiometer_6_60cm represents a tensiometer (actuator) no6 that
measures the soil moisture at 60 cm depth.

• irrig:state_crop_growth_init is an instance of the class caso:State that
represents the temporary undefined state of the crop growth property.

• irrig:state_crop_growth_r1 is an instance of the class caso:State that represents
the crop after reaching "silking" stage of the crop.

• irrig:state_crop_growth_r1d15 is an instance of the class caso:State that
represents the crop 20 days after reaching the "silking" stage.

• irrig:state_crop_growth_r5 is an instance of the class caso:State that represents
the crop after reaching the "dent with 50% moisture" stage.

• irrig:state_crop_growth_r5hg45 is an instance of the class caso:State that
represents the crop after reaching the "dent with 45% moisture" stage.

• irrig:state_crop_growth_v2 is an instance of the class caso:State that represents
the crop after reaching the "7 leaves" stage.

• irrig:state_crop_growth_v7 is an instance of the class caso:State that represents
the crop after reaching the "10 leaves" stage.

• irrig:state_crop_growth_v7d20 is an instance of the class caso:State that
represents the crop 20 days after reaching the "10 leaves" stage.

• irrig:state_crop_waterNeed_init is an instance of the class caso:State that
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represents the temporary undefined state of the crop water need property.

• irrig:state_crop_waterNeed_no is an instance of the class caso:State that
represents the crop when it does not need water.

• irrig:state_crop_waterNeed_notApplicable is an instance of the class caso:State
that represents the state corresponding to the crop water need property has not
been evaluated yet.

• irrig:state_crop_waterNeed_unavailable is an instance of the class caso:State
that represents the crop when it may need water soon.

• irrig:state_crop_waterNeed_yes is an instance of the class caso:State that
represents the crop when it needs water.

• irrig:state_rain_intensity_heavy is an instance of the class caso:State that
represents the rain intensity is heavy and can interrupt the working schedule.

• irrig:state_rain_intensity_init is an instance of the class caso:State that
represents the temporary undefined state of the rain intensity property.

• irrig:state_rain_intensity_light is an instance of the class caso:State that
represents the rain intensity is light and has no impact on the working schedule.

• irrig:state_rain_intensity_moderate is an instance of the class caso:State that
represents the rain intensity is moderate and can change the working schedule.

• irrig:state_rootZone_moistureLevel_average is an instance of the class
caso:State that represents the water in the root zone is just enough for the
crop growth at state R1.

• irrig:state_rootZone_moistureLevel_dry is an instance of the class caso:State
that represents the water in the root zone is not enough for the crop.

• irrig:state_rootZone_moistureLevel_high is an instance of the class caso:State
that represents the water in the root zone is just enough for the crop growth at
state V7d20

• irrig:state_rootZone_moistureLevel_init is an instance of the class caso:State
that represents the temporary undefined state of the root zone moisture level
property.

• irrig:state_rootZone_moistureLevel_low is an instance of the class caso:State
that represents the water in the root zone is just enough for the crop growth at
state R1d15.

• irrig:state_rootZone_moistureLevel_saturated is an instance of the class
caso:State that represents the water in the root zone is saturated for the crop.

• irrig:state_rootZone_moistureLevel_veryHigh is an instance of the class
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caso:State that represents the water in the root zone is just enough for the
crop growth at state V7.

• irrig:state_rootZone_moistureLevel_veryLow is an instance of the class
caso:State that represents the water in the root zone is just enough for the
crop growth at state R5.

A.6. New rules defined in IRRIG:

Table 32: Rule for the property CropGrowth to reach the V7d20 state

Code:
ADv122019-CG-V7d20

Full name:
ArvalisData-IrrigVersion122019-CropGrowth-V7d20

Description:
The goal of this rule is to determine the state of CropGrowth. The rule implements the
transition from the state V7 or V7d20 to the state V7d20. The input of this rule is the farmer
observation at V7 (?observation_crop_growth). The output of this rule is the Crop Growth
deduction at V7d20 (?deduction_crop_growth). The mechanism of this rule checks if the duration
(?duration_observation_deduction) between the farmer observation and the deduction is superior
or equal to a time threshold (?value_Th_Time_20D), then the result of the deduction is V7d20.

Rule in SWRL:
irrig:CropGrowthObservation(?observation_crop_growth) ˆ
sosa:hasResult(?observation_crop_growth, ?irrig:state_crop_growth_v7) ˆ
time:Instant(?instant_observation) ˆ
sosa:phenomenonTime(?observation_crop_growth, ?instant_observation) ˆ
time:inXSDDateTimeStamp(?instant_observation, ?timestamp_observation) ˆ

irrig:CropGrowthDeduction(?deduction_crop_growth) ˆ
prov:wasInformedBy(?deduction_crop_growth, ?observation_crop_growth) ˆ
time:Interval(?interval_deduction) ˆ
sosa:phenomenonTime(?deduction_crop_growth, ?interval_deduction) ˆ
time:hasBeginning(?interval_deduction, ?instant_begin_deduction) ˆ
time:inXSDDateTimeStamp(?instant_begin_deduction, ?timestamp_begin_deduction) ˆ

temporal:duration(?duration_observation_deduction, ?timestamp_begin_deduction,
?timestamp_observation,"Minutes") ˆ

caso:hasOpenUpperBoundary(irrig:state_crop_growth_v7, ?Th_Time_20D) ˆ
caso:boundaryValue(?Th_Time_20D, ?value_Th_Time_20D) ˆ

swrlb:greaterThanOrEqual(?duration_observation_deduction, ?value_Th_Time_20D)

-> caso:hasResultState(?deduction_crop_growth, irrig:state_crop_growth_v7d20)
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Table 33: Rule for the property CropGrowth to reach the R1 state

Code:
ADv122019-CG-R1

Full name:
ArvalisData-IrrigVersion122019-CropGrowth-R1

Description:
The goal of this rule is to determine the state of CropGrowth. The rule implements the
transition from the state V7d20 or R1 to the state R1. The input of this rule is the farmer
observation at R1 (?observation_crop_growth). The output of this rule is the Crop Growth
deduction at R1 (?deduction_crop_growth). The mechanism of this rule checks if the duration
(?duration_observation_deduction) between the farmer observation and the deduction is inferior
to a time threshold (?value_Th_Time_15D), then the result of the deduction is R1.

Rule in SWRL:
irrig:CropGrowthObservation(?observation_crop_growth) ˆ
sosa:hasResult(?observation_crop_growth, ?irrig:state_crop_growth_r1) ˆ
time:Instant(?instant_observation) ˆ
sosa:phenomenonTime(?observation_crop_growth, ?instant_observation) ˆ
time:inXSDDateTimeStamp(?instant_observation, ?timestamp_observation) ˆ

irrig:CropGrowthDeduction(?deduction_crop_growth) ˆ
prov:wasInformedBy(?deduction_crop_growth, ?observation_crop_growth) ˆ
time:Interval(?interval_deduction) ˆ
sosa:phenomenonTime(?deduction_crop_growth, ?interval_deduction) ˆ
time:hasBeginning(?interval_deduction, ?instant_begin_deduction) ˆ
time:inXSDDateTimeStamp(?instant_begin_deduction, ?timestamp_begin_deduction) ˆ

temporal:duration(?duration_observation_deduction, ?timestamp_begin_deduction,
?timestamp_observation, "Minutes") ˆ

caso:hasOpenUpperBoundary(irrig:state_crop_growth_r1, ?Th_Time_15D) ˆ
caso:boundaryValue(?Th_Time_15D, ?value_Th_Time_15D) ˆ
swrlb:lessThan(?duration_observation_deduction, ?value_Th_Time_15D)

-> caso:hasResultState(?deduction_crop_growth, irrig:state_crop_growth_r1)

Table 34: Rule for the property CropGrowth to reach the R1d15 state

Code:
ADv122019-CG-R1d15

Full name:
ArvalisData-IrrigVersion122019-CropGrowth-R1d15

Description:
The goal of this rule is to determine the state of CropGrowth. The rule implements the
transition from the state R1 or R1d15 to the state R1d15. The input of this rule is the farmer
observation at R1d15 (?observation_crop_growth). The output of this rule is the Crop Growth
deduction at R1d15 (?deduction_crop_growth). The mechanism of this rule checks if the duration
(?duration_observation_deduction) between the farmer observation and the deduction is superior
or equal to a time threshold (?value_Th_Time_15D), then the result of the deduction is R1d15.
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Rule in SWRL:
irrig:CropGrowthObservation(?observation_crop_growth) ˆ
sosa:hasResult(?observation_crop_growth, ?irrig:state_crop_growth_r1) ˆ
time:Instant(?instant_observation) ˆ
sosa:phenomenonTime(?observation_crop_growth, ?instant_observation) ˆ
time:inXSDDateTimeStamp(?instant_observation, ?timestamp_observation) ˆ

irrig:CropGrowthDeduction(?deduction_crop_growth) ˆ
prov:wasInformedBy(?deduction_crop_growth, ?observation_crop_growth) ˆ
time:Interval(?interval_deduction) ˆ
sosa:phenomenonTime(?deduction_crop_growth, ?interval_deduction) ˆ
time:hasBeginning(?interval_deduction, ?instant_begin_deduction) ˆ
time:inXSDDateTimeStamp(?instant_begin_deduction, ?timestamp_begin_deduction) ˆ

temporal:duration(?duration_observation_deduction, ?timestamp_begin_deduction,
?timestamp_observation,"Minutes") ˆ

caso:hasOpenUpperBoundary(irrig:state_crop_growth_r1, ?Th_Time_15D) ˆ
caso:boundaryValue(?Th_Time_15D, ?value_Th_Time_15D) ˆ

swrlb:greaterThanOrEqual(?duration_observation_deduction, ?value_Th_Time_15D)

-> caso:hasResultState(?deduction_crop_growth, irrig:state_crop_growth_r1d15)

Table 35: Rule for the property CropGrowth to reach the R5hg45 state

Code:
ADv122019-CG-R5hg45

Full name:
ArvalisData-IrrigVersion122019-CropGrowth-R5hg45

Description:
The goal of this rule is to determine the state of CropGrowth. The rule implements the transition
from the state R5 or R5hg45 state to the state R5hg45. The input of this rule is the farmer
observation at R5hg45 (?observation_crop_growth). The output of this rule is the Crop Growth
deduction at R5hg45 (?deduction_crop_growth). This rule’s mechanism is to check if the last
farmer observation is at R5hg45 state, then the deduction is at R5hg45.

Rule in SWRL:
irrig:CropGrowthObservation(?observation_crop_growth) ˆ
sosa:hasResult(?observation_crop_growth, ?irrig:state_crop_growth_r5hg45) ˆ

irrig:CropGrowthDeduction(?deduction_crop_growth) ˆ
prov:wasInformedBy(?deduction_crop_growth, ?observation_crop_growth) ˆ

-> caso:hasResultState(?deduction_crop_growth, irrig:state_crop_growth_r5hg45)
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Table 36: Rule for the property CropWaterNeed to reach the No state (part 2)

Code:
ADv122019-CWN-C2-P2

Full name:
ArvalisData-IrrigVersion122019-CropWaterNeed-Condition-2-Part-2

Description:
The goal of this rule is to determine the state of CropWaterNeed. The rule implements the
transition from the state Init state to the state NonApplicable. The input of this rule is: (1) the
value of the SleepingDuration property of d-1 (?sleeping_duration_yesterday); (2) the state of the
CropGrowth property for the d day (?state_crop_growth); (3) the state of RootZoneMoistureLevel
for the d day. The output of this rule is: the CropWaterNeed property is at the state No for the
d day. The mechanism of this rule is: to check if the value of SleepingDuration is 0, the state of
CropGrowth is V7d20 and the state of RootZoneMoistureLevel is superior to Average.

Rule in SWRL:
irrig:CropWaterNeedDeduction(?deduction_crop_waterneed) ˆ

irrig:SleepingDurationObservation(?observation_sleeping_duration_yesterday) ˆ
prov:wasInformedBy(?deduction_crop_waterneed,

?observation_sleeping_duration_yesterday) ˆ
sosa:hasResult(?observation_sleeping_duration_yesterday, arvalis:result_value_0_days) ˆ

irrig:CropGrowthDeduction(?deduction_crop_growth) ˆ
prov:wasInformedBy(?deduction_crop_waterneed, ?deduction_crop_growth) ˆ
caso:hasResultState(?deduction_crop_growth, irrig:state_crop_growth_v7d20) ˆ

irrig:RootZoneMoistureLevelDeduction(?deduction_rootzone_moisturelevel) ˆ
prov:wasInformedBy(?deduction_crop_waterneed, ?deduction_rootzone_moisturelevel) ˆ
caso:hasResultState(?deduction_rootzone_moisturelevel, ?state_rootzone_moisturelevel) ˆ
caso:greaterThan(?state_rootzone_moisturelevel, irrig:state_rootZone_moistureLevel_average)

-> caso:hasResultState(?deduction_crop_waterneed, irrig:state_crop_waterNeed_no)

Table 37: Rule for the property CropWaterNeed to reach the No state (part 3)

Code:
ADv122019-CWN-C2-P3

Full name:
ArvalisData-IrrigVersion122019-CropWaterNeed-Condition-2-Part-3

Description:
The goal of this rule is to determine the state of CropWaterNeed. The rule implements the
transition from the state Init to the state NonApplicable. The input of this rule is: (1) the
value of the SleepingDuration property of d-1 (?sleeping_duration_yesterday); (2) the state of the
CropGrowth property for the d day (?state_crop_growth); (3) the state of RootZoneMoistureLevel
for the d day. The output of this rule is: the CropWaterNeed property is at the state No for the
d day. The mechanism of this rule is: to check if the value of SleepingDuration is 0, the state of
CropGrowth is R1 and the state of RootZoneMoistureLevel is superior to Low.
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Rule in SWRL:
irrig:CropWaterNeedDeduction(?deduction_crop_waterneed) ˆ
irrig:SleepingDurationObservation(?observation_sleeping_duration_yesterday) ˆ
prov:wasInformedBy(?deduction_crop_waterneed,

?observation_sleeping_duration_yesterday) ˆ
sosa:hasResult(?observation_sleeping_duration_yesterday, arvalis:result_value_0_days) ˆ

irrig:CropGrowthDeduction(?deduction_crop_growth) ˆ
prov:wasInformedBy(?deduction_crop_waterneed, ?deduction_crop_growth) ˆ
caso:hasResultState(?deduction_crop_growth, irrig:state_crop_growth_r1) ˆ
irrig:RootZoneMoistureLevelDeduction(?deduction_rootzone_moisturelevel) ˆ
prov:wasInformedBy(?deduction_crop_waterneed, ?deduction_rootzone_moisturelevel) ˆ
caso:hasResultState(?deduction_rootzone_moisturelevel, ?state_rootzone_moisturelevel) ˆ
caso:greaterThan(?state_rootzone_moisturelevel, irrig:state_rootZone_moistureLevel_low)

-> caso:hasResultState(?deduction_crop_waterneed, irrig:state_crop_waterNeed_no)

Table 38: Rule for the property CropWaterNeed to reach the No state (part 4)

Code:
ADv122019-CWN-C2-P4

Full name:
ArvalisData-IrrigVersion122019-CropWaterNeed-Condition-2-Part-4

Description:
The goal of this rule is to determine the state of CropWaterNeed. The rule implements the
transition from the Init state to the NonApplicable. The input of this rule is: (1) the value of the
SleepingDuration property of d-1 (?sleeping_duration_yesterday); (2) the state of the CropGrowth
property for the d day (?state_crop_growth); (3) the state of RootZoneMoistureLevel for the d
day. The output of this rule is: the CropWaterNeed property is at the state No for the d day. The
mechanism of this rule is: to check if the value of SleepingDuration is 0, the state of CropGrowth
is R1d15 and the state of RootZoneMoistureLevel is superior to VeryLow.

Rule in SWRL:
irrig:CropWaterNeedDeduction(?deduction_crop_waterneed) ˆ
irrig:SleepingDurationObservation(?observation_sleeping_duration_yesterday) ˆ
prov:wasInformedBy(?deduction_crop_waterneed,

?observation_sleeping_duration_yesterday) ˆ
sosa:hasResult(?observation_sleeping_duration_yesterday, arvalis:result_value_0_days) ˆ

irrig:CropGrowthDeduction(?deduction_crop_growth) ˆ
prov:wasInformedBy(?deduction_crop_waterneed, ?deduction_crop_growth) ˆ
caso:hasResultState(?deduction_crop_growth, irrig:state_crop_growth_r1d15) ˆ
irrig:RootZoneMoistureLevelDeduction(?deduction_rootzone_moisturelevel) ˆ
prov:wasInformedBy(?deduction_crop_waterneed, ?deduction_rootzone_moisturelevel) ˆ
caso:hasResultState(?deduction_rootzone_moisturelevel, ?state_rootzone_moisturelevel) ˆ
caso:greaterThan(?state_rootzone_moisturelevel, irrig:state_rootZone_moistureLevel_veryLow)

-> caso:hasResultState(?deduction_crop_waterneed, irrig:state_crop_waterNeed_no)
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Table 39: Rule for the property CropWaterNeed to reach the No state (part 5)

Code:
ADv122019-CWN-C2-P5

Full name:
ArvalisData-IrrigVersion122019-CropWaterNeed-Condition-2-Part-5

Description:
The goal of this rule is to determine the state of CropWaterNeed. The rule implements the
transition from the Init state to the NonApplicable. The input of this rule is: (1) the value of the
SleepingDuration property of d-1 (?sleeping_duration_yesterday); (2) the state of the CropGrowth
property for the d day (?state_crop_growth); (3) the state of RootZoneMoistureLevel for the d
day. The output of this rule is: the CropWaterNeed property is at the state No for the d day. The
mechanism of this rule is: to check if the value of SleepingDuration is 0, the state of CropGrowth
is R5 and the state of RootZoneMoistureLevel is superior to Dry.

Rule in SWRL:
irrig:CropWaterNeedDeduction(?deduction_crop_waterneed) ˆ

irrig:SleepingDurationObservation(?observation_sleeping_duration_yesterday) ˆ
prov:wasInformedBy(?deduction_crop_waterneed,

?observation_sleeping_duration_yesterday) ˆ
sosa:hasResult(?observation_sleeping_duration_yesterday, arvalis:result_value_0_days) ˆ

irrig:CropGrowthDeduction(?deduction_crop_growth) ˆ
prov:wasInformedBy(?deduction_crop_waterneed, ?deduction_crop_growth) ˆ
caso:hasResultState(?deduction_crop_growth, irrig:state_crop_growth_r5) ˆ

irrig:RootZoneMoistureLevelDeduction(?deduction_rootzone_moisturelevel) ˆ
prov:wasInformedBy(?deduction_crop_waterneed, ?deduction_rootzone_moisturelevel) ˆ
caso:hasResultState(?deduction_rootzone_moisturelevel, ?state_rootzone_moisturelevel) ˆ
caso:greaterThan(?state_rootzone_moisturelevel, irrig:state_rootZone_moistureLevel_dry)

-> caso:hasResultState(?deduction_crop_waterneed, irrig:state_crop_waterNeed_no)

Table 40: Rule for the property CropWaterNeed to reach the Yes state (part 2)

Code:
ADv122019-CWN-C3-P2

Full name:
ArvalisData-IrrigVersion122019-CropWaterNeed-Condition-3-Part-2

Description:
The goal of this rule is to determine the state of CropWaterNeed. The rule implements the
transition from the Init state to the Yes. The input of this rule is: (1) the value of the
SleepingDuration property of d-1 (?sleeping_duration_yesterday); (2) the state of the CropGrowth
property for the d day (?state_crop_growth); (3) the state of RootZoneMoistureLevel for the d
day. The output of this rule is: the CropWaterNeed property is at the state Yes for the d day. The
mechanism of this rule is: to check if the value of SleepingDuration is 0, the state of CropGrowth
is V7d20 and the state of RootZoneMoistureLevel is inferior or equal to Average.
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Rule in SWRL:
irrig:CropWaterNeedDeduction(?deduction_crop_waterneed) ˆ
irrig:SleepingDurationObservation(?observation_sleeping_duration_yesterday) ˆ
prov:wasInformedBy(?deduction_crop_waterneed,

?observation_sleeping_duration_yesterday) ˆ
sosa:hasResult(?observation_sleeping_duration_yesterday, arvalis:result_value_0_days) ˆ
irrig:CropGrowthDeduction(?deduction_crop_growth) ˆ
prov:wasInformedBy(?deduction_crop_waterneed, ?deduction_crop_growth) ˆ
caso:hasResultState(?deduction_crop_growth, irrig:state_crop_growth_v7d20) ˆ
irrig:RootZoneMoistureLevelDeduction(?deduction_rootzone_moisturelevel) ˆ
prov:wasInformedBy(?deduction_crop_waterneed, ?deduction_rootzone_moisturelevel) ˆ
caso:hasResultState(?deduction_rootzone_moisturelevel, ?state_rootzone_moisturelevel) ˆ
caso:lesserThanOrEqualTo(?state_rootzone_moisturelevel,

irrig:state_rootZone_moistureLevel_average)

-> caso:hasResultState(?deduction_crop_waterneed, irrig:state_crop_waterNeed_yes)

Table 41: Rule for the property CropWaterNeed to reach the Yes state (part 3)

Code:
ADv122019-CWN-C3-P3

Full name:
ArvalisData-IrrigVersion122019-CropWaterNeed-Condition-3-Part-3

Description:
The goal of this rule is to determine the state of CropWaterNeed. The rule implements the
transition from the Init state to the Yes. The input of this rule is: (1) the value of the
SleepingDuration property of d-1 (?sleeping_duration_yesterday); (2) the state of the CropGrowth
property for the d day (?state_crop_growth); (3) the state of RootZoneMoistureLevel for the d
day. The output of this rule is: the CropWaterNeed property is at the state Yes for the d day. The
mechanism of this rule is: to check if the value of SleepingDuration is 0, the state of CropGrowth
is R1 and the state of RootZoneMoistureLevel is inferior or equal to Low.

Rule in SWRL:
irrig:CropWaterNeedDeduction(?deduction_crop_waterneed) ˆ
irrig:SleepingDurationObservation(?observation_sleeping_duration_yesterday) ˆ
prov:wasInformedBy(?deduction_crop_waterneed,

?observation_sleeping_duration_yesterday) ˆ
sosa:hasResult(?observation_sleeping_duration_yesterday, arvalis:result_value_0_days) ˆ
irrig:CropGrowthDeduction(?deduction_crop_growth) ˆ
prov:wasInformedBy(?deduction_crop_waterneed, ?deduction_crop_growth) ˆ
caso:hasResultState(?deduction_crop_growth, irrig:state_crop_growth_r1) ˆ
irrig:RootZoneMoistureLevelDeduction(?deduction_rootzone_moisturelevel) ˆ
prov:wasInformedBy(?deduction_crop_waterneed, ?deduction_rootzone_moisturelevel) ˆ
caso:hasResultState(?deduction_rootzone_moisturelevel, ?state_rootzone_moisturelevel) ˆ
caso:lesserThanOrEqualTo(?state_rootzone_moisturelevel,

irrig:state_rootZone_moistureLevel_low)

-> caso:hasResultState(?deduction_crop_waterneed, irrig:state_crop_waterNeed_yes)
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Table 42: Rule for the property CropWaterNeed to reach the Yes state (part 4)

Code:
ADv122019-CWN-C3-P4

Full name:
ArvalisData-IrrigVersion122019-CropWaterNeed-Condition-3-Part-4

Description:
The goal of this rule is to determine the state of CropWaterNeed. The rule implements the
transition from the Init state to the Yes. The input of this rule is: (1) the value of the
SleepingDuration property of d-1 (?sleeping_duration_yesterday); (2) the state of the CropGrowth
property for the d day (?state_crop_growth); (3) the state of RootZoneMoistureLevel for the d
day. The output of this rule is: the CropWaterNeed property is at the state Yes for the d day. The
mechanism of this rule is: to check if the value of SleepingDuration is 0, the state of CropGrowth
is R1d15 and the state of RootZoneMoistureLevel is inferior or equal to VeryLow.

Rule in SWRL:
irrig:CropWaterNeedDeduction(?deduction_crop_waterneed) ˆ

irrig:SleepingDurationObservation(?observation_sleeping_duration_yesterday) ˆ
prov:wasInformedBy(?deduction_crop_waterneed,

?observation_sleeping_duration_yesterday) ˆ
sosa:hasResult(?observation_sleeping_duration_yesterday, arvalis:result_value_0_days) ˆ

irrig:CropGrowthDeduction(?deduction_crop_growth) ˆ
prov:wasInformedBy(?deduction_crop_waterneed, ?deduction_crop_growth) ˆ
caso:hasResultState(?deduction_crop_growth, irrig:state_crop_growth_r1d15) ˆ

irrig:RootZoneMoistureLevelDeduction(?deduction_rootzone_moisturelevel) ˆ
prov:wasInformedBy(?deduction_crop_waterneed, ?deduction_rootzone_moisturelevel) ˆ
caso:hasResultState(?deduction_rootzone_moisturelevel, ?state_rootzone_moisturelevel) ˆ
caso:lesserThanOrEqualTo(?state_rootzone_moisturelevel,

irrig:state_rootZone_moistureLevel_veryLow)

-> caso:hasResultState(?deduction_crop_waterneed, irrig:state_crop_waterNeed_yes)

Table 43: Rule for the property CropWaterNeed to reach the Yes state (part 5)

Code:
ADv122019-CWN-C3-P5

Full name:
ArvalisData-IrrigVersion122019-CropWaterNeed-Condition-3-Part-5

Description:
The goal of this rule is to determine the state of CropWaterNeed. The rule implements the
transition from the Init state to the Yes. The input of this rule is: (1) the value of the
SleepingDuration property of d-1 (?sleeping_duration_yesterday); (2) the state of the CropGrowth
property for the d day (?state_crop_growth); (3) the state of RootZoneMoistureLevel for the d
day. The output of this rule is: the CropWaterNeed property is at the state Yes for the d day. The
mechanism of this rule is: to check if the value of SleepingDuration is 0, the state of CropGrowth
is R5 and the state of RootZoneMoistureLevel is equal to Dry.
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Rule in SWRL:
irrig:CropWaterNeedDeduction(?deduction_crop_waterneed) ˆ

irrig:SleepingDurationObservation(?observation_sleeping_duration_yesterday) ˆ
prov:wasInformedBy(?deduction_crop_waterneed,

?observation_sleeping_duration_yesterday) ˆ
sosa:hasResult(?observation_sleeping_duration_yesterday, arvalis:result_value_0_days) ˆ

irrig:CropGrowthDeduction(?deduction_crop_growth) ˆ
prov:wasInformedBy(?deduction_crop_waterneed, ?deduction_crop_growth) ˆ
caso:hasResultState(?deduction_crop_growth, irrig:state_crop_growth_r5) ˆ

irrig:RootZoneMoistureLevelDeduction(?deduction_rootzone_moisturelevel) ˆ
prov:wasInformedBy(?deduction_crop_waterneed, ?deduction_rootzone_moisturelevel) ˆ
caso:hasResultState(?deduction_rootzone_moisturelevel, ?state_rootzone_moisturelevel) ˆ
caso:lesserThanOrEqualTo(?state_rootzone_moisturelevel,

irrig:state_rootZone_moistureLevel_dry)

-> caso:hasResultState(?deduction_crop_waterneed, irrig:state_crop_waterNeed_yes)

Table 44: Rule for the property SleepingDuration to get a value (part 1)

Code:
ADv122019-SD-P1

Full name:
ArvalisData-IrrigVersion122019-SleepingDuration-Part-1

Description:
The goal of this rule is to determine the state of SleepingDuration. The rule implements the
calculation of the value of SleepingDuration value The input of this rule is: the state of the
CropWaterNeed property of the current day (?deduction_crop_waterneed). The output of this
rule is: the SleepingDuration property with a value equal to 0 days. The mechanism of this rule
is: to check if the value of CropWaterNeed equals to the state notApplicable.

Rule in SWRL:
irrig:SleepingDurationObservation(?observation_sleeping_duration) ˆ
irrig:CropWaterNeedDeduction(?deduction_crop_waterneed) ˆ
prov:wasInformedBy(?observation_sleeping_duration,?deduction_crop_waterneed) ˆ
caso:hasResultState(?deduction_crop_waterneed, irrig:state_crop_waterNeed_notApplicable)

-> sosa:hasResult(?observation_sleeping_duration, arvalis:result_value_0_days)
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Table 45: Rule for the property SleepingDuration to get a value (part 2)

Code:
ADv122019-SD-P2

Full name:
ArvalisData-IrrigVersion122019-SleepingDuration-Part-2

Description:
The goal of this rule is to determine the state of SleepingDuration. The rule implements the
calculation of the value of SleepingDuration value The input of this rule is: the state of the
CropWaterNeed property of the current day (?deduction_crop_waterneed). The output of this
rule is: the SleepingDuration property with a value equal to 0 days. The mechanism of this rule
is: to check if the value of CropWaterNeed equals to the state no.

Rule in SWRL:
irrig:SleepingDurationObservation(?observation_sleeping_duration) ˆ
irrig:CropWaterNeedDeduction(?deduction_crop_waterneed) ˆ
prov:wasInformedBy(?observation_sleeping_duration, ?deduction_crop_waterneed) ˆ
caso:hasResultState(?deduction_crop_waterneed, irrig:state_crop_waterNeed_no)

-> sosa:hasResult(?observation_sleeping_duration, arvalis:result_value_0_days)

Table 46: Rule for the property SleepingDuration to get a value (part 3)

Code:
ADv122019-SD-P3

Full name:
ArvalisData-IrrigVersion122019-SleepingDuration-Part-3

Description:
The goal of this rule is to determine the state of SleepingDuration. The rule implements the
calculation of the value of SleepingDuration value The input of this rule is: the state of the
CropWaterNeed property of the current day (?deduction_crop_waterneed). The output of this
rule is: the SleepingDuration property with a value equal to 6 days. The mechanism of this rule
is: to check if the value of CropWaterNeed equals to the state yes.

Rule in SWRL:
irrig:SleepingDurationObservation(?observation_sleeping_duration) ˆ
irrig:CropWaterNeedDeduction(?deduction_crop_waterneed) ˆ
prov:wasInformedBy(?observation_sleeping_duration,?deduction_crop_waterneed) ˆ
caso:hasResultState(?deduction_crop_waterneed, irrig:state_crop_waterNeed_yes)

-> sosa:hasResult(?observation_sleeping_duration, arvalis:result_value_6_days)
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Table 47: Rule for the property SleepingDuration to get a value (part 4)

Code:
ADv122019-SD-P4

Full name:
ArvalisData-IrrigVersion122019-SleepingDuration-Part-4

Description:
The goal of this rule is to determine the state of SleepingDuration. The rule implements the
calculation of the value of SleepingDuration value The input of this rule is: (1) the state of
the CropWaterNeed property of the current day (?deduction_crop_waterneed), (2) the value of
SleepingDuration property of the last day, and (3) the value of the DelayDuration property of the
current day (?delay_duration). The output of this rule is: the SleepingDuration property with a
value equal to the minimum between two values: (1) the maximum sleep duration, and (2) the sum
of the value of the SleepingDuration of the last day and the number delay duration minus one day.
The mechanism of this rule is: to check if the value of CropWaterNeed equals to the unavailable
state; to compare the value of the maximum of sleeping duration which equals to 15 days, and the
calculation that the value of the SleepingDuration of the last day (?sleeping_duration_yesterday)
plus the value of the delay duration of the current day (?delay_duration) minus one day, and get
the minimum value between them (?value_result_get_sleeping)

Rule in SWRL:
irrig:SleepingDurationObservation(?observation_sleeping_duration) ˆ
irrig:CropWaterNeedDeduction(?deduction_crop_waterneed) ˆ
prov:wasInformedBy(?observation_sleeping_duration,?deduction_crop_waterneed) ˆ
caso:hasResultState(?deduction_crop_waterneed, irrig:state_crop_waterNeed_unavailable) ˆ

irrig:SleepingDurationObservation(?observation_sleeping_duration_yesterday) ˆ
prov:wasInformedBy(?observation_sleeping_duration,

?observation_sleeping_duration_yesterday) ˆ
sosa:hasResult(?observation_sleeping_duration_yesterday, ?sleeping_duration_yesterday) ˆ
om:hasNumericalValue(?sleeping_duration_yesterday, ?value_sleeping_duration_yesterday) ˆ

irrig:DelayDurationObservation(?observation_delay_duration) ˆ
prov:wasInformedBy(?observation_sleeping_duration, ?observation_delay_duration) ˆ
sosa:hasResult(?observation_delay_duration, ?delay_duration) ˆ
om:hasNumericalValue(?delay_duration, ?value_delay_duration) ˆ

sosa:Result(?result_day) ˆ
om:hasUnit(?result_day, time:unitDay) ˆ
om:hasNumericalValue(?result_day, ?value_result_day) ˆ
swrlm:eval(?time_tmp,

"value_sleeping_duration_yesterday + value_delay_duration - 1",
?value_sleeping_duration_yesterday,?value_delay_duration) ˆ

swrlm:eval(?value_result_get_slleeping, "if(time_tmp < 15, time_tmp, 15)",?time_tmp) ˆ
swrlb:equal(?value_result_day, ?value_result_get_sleeping)

-> sosa:hasResult(?observation_sleeping_duration, ?result_day)
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Table 48: Rule for automatically inferring GreaterThan relations

Code:
ADv122019-TransGreaterThan

Full name:
ArvalisData-IrrigVersion122019-TransferGreaterThan

Description:
This rule aims to infer automatically GreaterThan relations between states. This rule is a bonus
besides the 24 major rules of IRRIG.

Rule in SWRL:
caso:State(?x) ˆ
caso:State(?y) ˆ
caso:State(?z) ˆ
caso:greaterThan(?x,?y) ˆ
caso:greaterThan(?y,?z)

-> caso:greaterThan(?x,?z)

Table 49: Rule for automatically inferring LesserThan relations

Code:
ADv122019-TransLesserThan

Full name:
ArvalisData-IrrigVersion122019-TransferLesserThan

Description:
This rule aims to infer automatically LesserThan relations between states. This rule is a bonus
besides the 24 major rules of IRRIG.

Rule in SWRL:
caso:State(?x) ˆ
caso:State(?y) ˆ
caso:State(?z) ˆ
caso:LesserThan(?x,?y) ˆ
caso:LesserThan(?y,?z)

-> caso:LesserThan(?x,?z)
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Les sciences ont deux extrémités qui se touchent : la
première est la pure ignorance naturelle où se trouvent

tous les hommes en naissant ; l’autre extrémité est
celle où arrivent les grandes âmes, qui, ayant parcouru
tout ce que les hommes peuvent savoir, trouvent qu’ils

ne savent rien, et se rencontrent en cette même
ignorance d’où ils étaient partis. – Blaise Pascal

Cette annexe a pour vocation de récapituler le contenu de cette thèse en français.
Dans la limite de 14 pages, elle est organisée en cinq parties suivant les cinq
sections principales de cette dissertation : une introduction, trois chapitres et une
conclusion. L’introduction explique le contexte, les objectifs et introduit globalement
les contributions de la thèse. Le premier chapitre porte sur la première contribution
qui est une architecture basée sur le principe de microservice. Cette architecture
permets aux développeurs d’un système de concentrer leurs efforts sur l’objectif du
service plutôt que sur ses aspects logiciels et matériels. Le deuxième chapitre se
concentre sur la deuxième contribution qui est une ontologie intitulée CASO. Cette
ontologie est une collection de vocabulaire pour modéliser les données hétérogènes
générées par le système contextuel. De plus, elle inclut un mécanisme pour créer des
règles de raisonnement. Le troisième chapitre porte sur la troisième contribution: un
système d’aide à la décision pour un système contextuel d’irrigation de l’équipe TSCF
d’INRAE. Finalement, la conclusion donne une partie des perspectives ouvertes par
la thèse.

Introduction

Le 21e siècle fait face à un triple défi sur le plan agricole : la sécurité alimentaire est
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menacée par la croissance démographique, le changement climatique et la rareté de
ressources. Pour ces raisons, augmenter le rendement et la production agricole est
une nécessité indéniable. Une solution des solutions est d’appliquer les technologies
informatiques dans des activités agricoles afin d’en améliorer les performances.
L’agriculture basée sur l’informatique est connue sous le nom e-agriculture. Dans
la e-agriculture, les agriculteurs utilisent un système de management agricole pour
réaliser des activités agricoles.

Les développements récents des technologies ont engendré un nouveau domaine
de la e-agriculture qui s’appelle l’Agriculture 4.0. Le principe de l’Agriculture 4.0 est
d’utiliser les technologies de l’Internet des Objets pour transformer un système de
management agricole en un système contextuel agricole. L’Internet des Objets est un
scénario dans lequel les personnes et les objets sont connectés indépendamment du
temps, du lieu et du réseau informatique (International Telecommunication Union,
2005). Les technologies de l’Internet des Objets incluent toutes les technologies
qui contribuent à ce scénario. Un système contextuel agricole est un système avec
la capacité de réagir convenablement au contexte. La figure 59 décrit un système
contextuel agricole. Ce système est composé d’un système d’aide à la décision, d’une
passerelle, d’un actionneur et d’un réseau de capteurs. Le réseau de capteurs collecte
des données environnementales et les envoie au système d’aide à la décision via la
passerelle. Ce système produit des décisions basées sur ces données. Il contrôle
l’actionneur avec des commandes.

NET

Actionneur

Capteur

Passerelle

Système d’aide à la décision

Figure 59: Un prototype de système contextuel pour l’irrigation

La conception d’un système contextuel agricole nécessite de relever deux défis
spécifiques à l’agriculture. Premièrement, l’agriculture est une activité saisonnière,
avec un lieu de travail externe, ce qui implique plusieurs facteurs imprévisibles qui
influent sur les aspects logiciels et matériels du système. Le système peut donc être
amené à être mis à jour régulièrement. Ce premier défi est lié à l’évolutivité du
système. Deuxièmement, l’hétérogénéité de données générées par ce système est un
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obstacle dans l’interopérabilité entre les différents appareils composant un même, ou
l’interopérabilité entre plusieurs systèmes différents dans l’écosystème de l’Internet
des Objets. Ce défi est lié à l’interopérabilité du système.

Cette thèse a trois objectifs. Le premier objectif est de surmonter le défi
d’évolutivité. Cette thèse propose une architecture basée sur le principe de
microservice qui permet aux développeurs d’un système de se concentrer sur ses
services plutôt que sur les aspects logiciels et matériels. Le deuxième objectif
est lié au défi d’interopérabilité. Dans ce cadre, la thèse propose une ontologie,
intitulée CASO, qui fournit un vocabulaire pour modéliser les données générées par
les systèmes contextuels. De plus, elle inclut un mécanisme de création de règles de
raisonnement. Le troisième objectif révèle de la pratique. La contribution associée
est la transformation d’une méthode d’irrigation manuelle intitulée IRRINOV R© en un
système d’irrigation automatique pour l’équipe TSCF d’INRAE. Le développement de
ce système repose sur les deux premières contributions de cette thèse. Les expériences
menées après le développement de ce système sont aussi une contribution scientifique.

B.1. Architecture de Systèmes Contextuels Utilisant une Pile de Services

Un système contextuel est « un système qui utilise le contexte pour fournir des
informations et des services appropriés à l’utilisateur. Il convient de noter que la pertinence
d’une information ou d’un service dépend de la tâche réalisée par l’utilisateur » (Abowd
et al., 1999). Le contexte dans ce type de système est « un ensemble des entités
caractérisées par leur état, plus toute information permettant de dériver les changements
d’états de ces entités » (Sun et al., 2016). Deux types de contexte sont définis :

• le contexte de bas niveau contient des données quantitatives telles que les mesures
issues de capteurs ou les résultats d’agrégation sur ces mesures.

• le contexte de haut niveau, quant à lui, est constitué des données qualitatives
synthétisant la situation d’une entité.

Le cycle de fonctionnement d’un système contextuel se découpe en quatre phases,
qui sont : (1) l’acquisition du contexte, (2) la modélisation du contexte, (3) l’analyse
du contexte et (4) l’exploitation du contexte. La figure 60 illustre le cycle de
fonctionnement d’un système contextuel dédié à l’irrigation.

• phase d’acquisition du contexte : au cours de cette phase, le système acquiert
des données provenant de diverses sources. La principale source de données est
le réseau de capteurs sans fil qui mesure, collecte et transmet ses mesures sous
forme de flux. Les sorties de cette phase sont les mesures, leurs métadonnées et
toutes données nécessaires à la prise de décision.

• phase de modélisation du contexte : les mesures sont annotées pour pouvoir être
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Phase 
d’exploitation 
du contexte

Phase 
d’acquisition 
du contexte

Phase de 
modélisation 
du contexte

Phase 
d’analyse

Données

Context de
bas niveau

Source 
de 

données
externe

DonnéesSystème
externe

Information

Données

Context de 
haut niveau

Dispositif
d’arrosage

Réseau de 
capteurs

Figure 60: Le cycle de fonctionnement d’un système contextuel dédié à l’irrigation

intégrées dans un modèle de données commun. Les ontologies sont la solution
choisie pour définir ce modèle. Ces données stockées et organisées constituent le
contexte de bas niveau.

• phase d’analyse : au cours de cette phase, le contexte est enrichi. Tout d’abord
des agrégations temporelles et spatiales sont appliquées sur les mesures des
capteurs. Ainsi, le contexte de bas niveau s’enrichit de nouvelles données.
Ensuite, un raisonnement est appliqué sur le contexte de bas niveau afin de
produire le contexte de haut niveau.

• phase d’exploitation du contexte : les décisions ayant été prises à la phase
précédente, il faut maintenant les mettre en application. Dans cette phase,
le système exploite le contexte de haut niveau et le distribue à différents agents
: des appareils connectés.

Il est possible de regrouper tous les services d’un système contextuel en quatre
groupes correspondants aux quatre phases de son cycle de fonctionnement. Ce
fait s’appuie sur le principe de microservices : « un système est composé par des
services, où chaque service est petit, fortement découplé, orienté tâche et prend en charge
l’interopérabilité grâce à une communication basée sur les messages » (Nadareishvili
et al., 2016; Newman, 2015). Cette approche possède trois avantages pour le
dévelopement d’un système contextuel. Premièrement, la mise à niveau du système
est indépendante du logiciel et du matériel, car celui-ci se concentre sur les services.
Deuxièmement, les développeurs du système ont plusieurs choix, car cette approche
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peut générer un grand nombre de solutions de conceptualisation, pour un même
nombre fix de services. Troisièmement, le partage des connaissances sur un nombre
défini de services dans la communauté est plus facile que le partage de connaissances
sur u nombre indéfini de composants logiciels et matériels.

Suivant les remarques ci-dessus, cette thèse propose une pile de services pour
les systèmes contextuels qui inclut 16 services. Ces 16 services sont extraits d’une
étude sur plusieurs systèmes contextuels agricoles et des connaissances des experts
participant à ce projet. Il est à noter que les systèmes contextuels dans les différents
domaines partagent toujours un même groupe de processus. Les développeurs d’un
système contextuel peuvent utiliser les services dans cette pile dont ils ont besoin
pour construire leur système complet. La figure 61 illustre la pile de services pour les
systèmes contextuels.
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Figure 61: La pile de services pour les systèmes contextuels
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• sélection de source : ce service sert à enregistrer les informations de configuration
des sources au moment de l’exécution;

• collecte de données internes : ce service sert à collecter de données à partir de
sources de données internes;

• collecte de données externes : ce service sert à collecter de données à partir de
sources de données externes;

• nettoyage : ce service sert à garantir l’exactitude des données d’entrée;

• transformation de format : ce service sert à transformer le format original des
données en un autre format;

• annotation : ce service sert à interpréter de données à l’aide d’un schéma
spécifique ou de méta-données;

• stockage : ce service sert à stocker les données;

• récupération de données : ce service sert à récupérer les données de contexte de
bas niveau stockées dans le système;

• fusion : ce service sert à utiliser des opérateurs d’agrégation ou des techniques
de fusion pour combiner plusieurs types de données de contexte de bas niveau
afin de produire de nouvelles données de contexte de bas niveau;

• raisonnement : ce service sert à utiliser des techniques de raisonnement pour
produire de nouvelles données contextuelles de haut niveau;

• mise à jour du stockage : ce service sert à mettre à jour les nouvelles données
produites après la phase d’analyse dans le stockage;

• transformation de contexte : ce service sert à transformer le format des données
de contexte de haut niveau reçues de la phase d’analyse en un autre format;

• distribution orientée utilisateur : ce service sert à fournir des informations dans
un format lisible par les utilisateurs;

• distribution orientée système externe : ce service sert à envoyer les messages
encapsulés reçus du service de transformation de contexte aux systèmes externes;

• action : ce service sert à contrôler un dispositif d’actionnement;

• reconfiguration : ce service sert à reconfigurer automatiquement le planning de
travail des autres services en fonction des changements de contexte.

Pour vérifier si la pile de services est capable de couvrir les systèmes contextuels,
cette thèse propose un état de l’art de six systèmes agricoles intelligents : le système
Kirby Smart Farm, le système du projet PLANTS, le système Phenonet-OpenIoT, le
système FarmBeats, le système du projet BIO-ICT dédié à l’irrigation et le système
de Hwang et al. Dans cet état de l’art, chaque système agricole intelligent est analysé
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en utilisant la pile de services. La table 50 récapitule le résultat de cette analyse.
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Acquisition

1.1. Sélection de source x x x

1.2. Collecte de données internes x x x x x x

1.3. Collecte de données externes x x x

1.4. Nettoyage x x x x x x

Modélisation
2.1. Transformation de format x

2.2. Annotation x x x x x x

2.3. Stockage x x x x x x

Analyse

3.1. Récupération de données x x x x x x

3.2. Fusion x x x x x

3.3. Raisonnement x x x x x x

3.4. Mise à jour du stockage x x x x x x

Exploitation

4.1. Transformation de contexte x x x x x x

4.2. Distribution orientée utilisateur x x x x x x

4.3. Distribution orientée système externe x x x

4.4. Action x x x

4.6. Reconfiguration

Table 50: Services disponibles dans les six systèmes agricoles intelligents

Suivant l’état de l’art, il est possible de conclure que la pile de services peut
couvrir tous les systèmes contextuels. De plus, on voit aussi que certains services
sont inclus dans tous les systèmes et donc essentiels, alors que certains autres sont
optionnels.

B.2. Ontologie de Systèmes Contextuels pour l’Hétérogénéité de Données

Une ontologie est un modèle abstrait qui modélise un phénomène dans le monde
(Studer et al., 1998). Une ontologie doit être lisible par machine, et être acceptée et
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partagée dans une communauté. De plus, une ontologie peut prendre diverses formes
en fonction de leur objectif (Uschold and Jasper, 1999). Dans le cadre de ce projet,
deux types d’ontologie sont considérés : les ontologies de données et les ontologies
logiques (Roussey et al., 2011a). Les ontologies de données ont pour objectif de
modéliser des données, tandis que les ontologies logiques proposent aussi des règles
qui soutiennent le raisonnement.

Cette thèse utilise l’ontologie comme un outil pour l’interopérabilité sémantique
entre des dispositifs du système ou entre ce système et des systèmes externes. Plus
précisément, nous proposons une ontologie pour les systèmes contextuels, intitulée
CASO, est proposée. Cette ontologie répond au besoin d’un vocabulaire qui couvre les
exigences de base des systèmes contextuels en général. Ces exigences de base sont les
différents types de calculs (mesure, agrégation et déduction) et leurs données (données
mesurées, données agrégées et données inférées). La figure 62 illustre l’ontologie
CASO. Le vocabulaire de CASO contient au total 27 classes, 40 propriétés d’objets
et quatre propriétés de type de données.
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Figure 62: L’ontologie CASO

CASO réutilise les vocabulaires des plusieurs ontologies. Il est à noter que
la plupart des ontologies sélectionnées sont développées et maintenues par des
organisations de normalisation crédibles.
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• la nouvelle version de l’ontologie Semantic Sensor Network (SOSA/SSN) qui est
une recommandation du W3C et de l’OGC. Cette ontologie décrit les capteurs,
leurs mesures, les échantillons et les actionneurs (Janowicz et al., 2019).

• l’ontologie Smart Appliances REFerence (SAREF) est une recommandation de
l’ETSI pour résoudre les problèmes d’interopérabilité dans le domaine de l’IoT
(ETSI TS 103 264 - v2.1.1, 2017). Cette ontologie modélise les appareils
connectés ainsi que leurs fonctions, commandes, services, états et profils.

• l’ontologie PROV du W3C est utilisée pour modéliser la provenance des données
(Lebo et al., 2013).

• l’ontologie SKOS du W3C est préconisée pour représenter les thésaurus et tout
système d’organisation des connaissances (Bechhofer and Miles, 2009). Un
thésaurus peut être utilisé pour identifier les types de mesures ou de phénomènes
observés.

• l’ontologie Time du W3C permet de décrire tous les éléments temporels.

• l’ontologie Units of Measure and Related Concepts (OM) identifie un ensemble
d’unités de mesures (Rijgersberg et al., 2013).

De plus, CASO définit plusieurs classes et propriétés qui lui donnent trois
avantages en comparaison avec les ontologies existantes. Premièrement, elle précise
l’observation en définissant sa propre classe observation et une nouvelle classe
déduction. En conséquence, il a trois niveaux d’observation différents pour décrire les
mesures, les agrégations et les déductions. Deuxièmement, CASO définit une nouvelle
propriété d’objet et une nouvelle classe pour le résultat d’une déduction. Alors que
les résultats d’observation et d’agrégation sont des valeurs numériques, les résultats
de déductions sont des états. Troisièmement, CASO possède des nouvelles propriétés
et classes pour préciser les valeurs d’un état. Il y a toujours un lien entre un état
et ses valeurs numériques correspondantes. Ce troisième avantage implique aussi un
mécanisme pour définir des règles de raisonnement.

Afin d’évaluer l’ontologie CASO, nous utilisons OPPS!, un outil de détecter des
pièges et des erreurs dans une ontologie (Poveda-Villalón et al., 2014). Cet outil est
disponible gratuitement en ligne : http://oops.linkeddata.es/. Ensuite, CASO est
publiée sur le GitHub : https://w3id.org/def/caso. Ce fait non seulement permet à
notre équipe de promouvoir CASO et la partager à la communauté, mais aussi est une
méthode d’améliorer cette ontologie au fur et à mesure en recevant des commentaires
des autres utilisateurs.

B.3. Développement d’un Système d’Aide à la Décision pour l’Irrigation

Un système d’aide à la décision est une partie du système contextuel de TSCF.
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Le fonctionnement de ce système s’appuie sur une méthode manuelle d’irrigation
nommée IRRINOV R©. Nous avons converti cette méthode en un système d’irrigation
automatique.

La méthode IRRINOV R© est développée par l’institut technique Arvalis et ses
partenaires. Cette méthode propose un guide de bonnes pratiques aux agriculteurs
afin de décider des dates d’irrigation en fonction des tensiomètres et des pluviomètres.
Cette méthode fournit des conseils pour répondre à trois questions : (1) quand
l’irrigation devrait-elle commencer ? C’est-à-dire quand l’agriculteur doit-il mettre
en place son dispositif d’arrosage sur la parcelle (2) quand lancer un arrosage c’est-à-
dire quand démarrer un tour d’eau 3 ? (3) quand l’irrigation devrait-elle s’arrêter
? Autrement dit, quand l’agriculteur peut-il retirer son dispositif d’arrosage de
la parcelle ? l’agriculteur peut-il retirer son dispositif d’arrosage de la parcelle ?
La méthode IRRINOV R© est constituée d’un ensemble de tables de décision et de
recommandations pour gérer l’irrigation d’une parcelle. Cette méthode propose de
nombreuses variantes selon le type de sol de la parcelle et de sa culture. Dans le
cadre de ce projet, la méthode IRRINOV R© pour la culture du maïs grain en sol
argilo-calcaire (Arvalis et al., 2007) a été retenue pour être mise en œuvre dans le
système d’aide à l’irrigation. Les agriculteurs utilisent les tables de décision pour
déterminer le démarrage d’un tour d’eau. Le choix de la table dépend du type de sol,
de la durée du tour d’eau, de la culture et de son stade de développement. Cependant,
chaque décision s’appuie de l’humidité du sol, la quantité d’eau de pluie et le stade
de développement de la culture. Notez qu’il y a deux façons de déterminer le stade
de développement de la culture : (1) par l’observation d’un expert (humain) ou (2)
par la température de l’atmosphère. Dans le cadre de ce projet, la première façon
est sélectionnée. Un objectif de cette thèse est de traduire ces tables de décision en
règles de raisonnement et d’utiliser ces règles pour faire fonctionner un système d’aide
à l’irrigation.

Afin de développer le système d’aide à l’irrigation, une nouvelle méthodologie de
développement est proposée dans ce projet. Cette méthodologie est une combinaison
des méthodologies mini-cascade et LOT. La méthodologie mini-cascade s’inspire de la
méthodologie cascade, qui définit du développement d’un système en cinq activités:
(1) spécification, (2) conception, (3) mise en œuvre, (4) validation et (5) maintenance
(Muller and Gaertner, 2004). La séquence de ces cinq activités est répétée plusieurs
fois afin de développer progressivement le système. LOT est une méthodologie utilisée
pour le développement d’ontologies (Poveda-Villalón, 2012). Cette méthodologie se
concentre sur (1) la réutilisation d’éléments (classes, propriétés et attributs) existants
dans des vocabulaires ou ontologies déjà publiées et (2) la publication de l’ontologie,
selon les principes du Web de données liées. Elle réutilise certaines activités
d’ingénierie des connaissances définies dans la méthodologie NeOn (Suárez-Figueroa
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et al., 2015). Cette méthodologie définit les itérations sur les quatre activités suivantes
: (1) spécification des exigences ontologiques, (2) implémentation de l’ontologie, (3)
publication de l’ontologie et (4) maintenance de l’ontologie. La figure 63 illustre la
méthodologie pour développer ce système d’aide à l’irrigation. Cette méthodologie
permet à combiner le développement d’un système et le développement de l’ontologie
utilisée par ce système. De plus, le résultat du système deviennent un outil précieux
pour valider l’ontologie.

Spécification

Conception

Mise en oeuvre

Validation

Exigences
ontologique

Implémentation ontologique

Conceptualisation
d'ontologie

Maintenance
d'ontologie

Mini-Cascade

LOT

Encodage
d'ontologie

Évaluation
d'ontologie

Maintenance

Publication
d'ontologie

Figure 63: La méthodologie combinée de midi-cascade et LOT

Dans la première activité, la spécification de système, quatre sources
d’information sont considérées et étudiées: (1) la méthode IRRINOV R©, (2) un
ensemble des données d’Arvalis, (3) un carnet de terrain et (4) les connaissances des
experts de Arvalis ou INRAE. Notez que les données d’Arvalis ont été enregistrées
sur une expérimentation agricole réelle réalisée par des agriculteurs dans une parcelle
de maïs à Gaillac en France. Ces données sont utilisées plus tard pour la validation
du système d’irrigation. Le résultat de cette activité est un document de spécification
et un document des questions de compétences. D’une part, la spécification permet
aux développeurs de système de comprendre le système. D’autre part, l’ensemble des
questions de compétences aide à déterminer les besoins en vocabulaire de l’ontologie
ciblée.

Dans la deuxième activité, la conception du système, il faut tout d’abord
déterminer les entités et les données dans le système d’irrigation. Ils sont classifiés en

181



Appendix B. 14-Pages Summary in French

flux opérationnels. Chacun de ces flux est décrit par un phénomène observé (sol, pluie,
culture) et ses propriétés associées : (1) l’humidité du sol, (2) la quantité de pluie,
(3) le stade de développement de la culture et (4) le besoin en eau de la culture. La
figure 64 illustre quatre flux opérationnels du système contextuel dédié à l’irrigation.
Les entités de chaque flux et leurs états sont définis. Pour décrire les changements
d’état, ce projet utilise les diagrammes états-transitions.

Soil30cmDeph
MoistureObservation

Soil30cmDepthDaily
AverageMoistureObservation

RootZoneDailyAverage
MoistureObservation

RootZoneMoistureLevel
Deduction

CropWaterNeed
Deduction

SleepingDuration
Observation

RainIntenstiy
Deduction

CropGrowth
Deduction

RainDailyTotalQuantity
Observation

DelayDuration
Observation

Flux opérationnel de
l'humidité du sol

Flux opérationnel
du besoin en eau

de la culture

CropGrowth
Observation

RainQuantity
Observation

Flux opérationnel de la 
quantité de pluie 

Flux opérationnel du stade de
développement de la culture

Légende

produire Données agrégées

produire Données mésurées

produire Données inférées

Soil60cmDeph
MoistureObservation

Soil60cmDepthDaily
AverageMoistureObservation

Figure 64: Quatre flux opérationnels du système contextuel dédié à l’irrigation

Ce projet propose une nouvelle ontologie intitulée IRRIG. Cette ontologie est
une spécialisation de l’ontologie CASO pour l’irrigation. Elle étend le vocabulaire de
CASO avec 31 nouvelles classes, quatre nouvelles propriétés, 71 individus et 24 règles.
La figure 65 illustre l’ontologie IRRIG. Avec IRRIG, il est possible de modéliser les
observations, agrégations, déductions et leurs données concernant l’irrigation plus
précisément. De plus, les 24 règles sont un composant important pour raisonner sur
les données.

Dans la troisième activité, la mise en oeuvre de système, ce projet propose un
logiciel intitulé Ontogen qui joue le rôle du système d’aide à la décision dédié à
l’irrigation. Ce logiciel écrit en Python et en Java, est développé en utilisant les
services de la pile de services pour les systèmes contextuels. Notez que le système
d’aide à la décision est seulement une partie du système contextuel d’irrigation de
TSCF, donc Ontogen se compose de seulement six services : annotation, stockage,
récupération de données, fusion, raisonnement et mise à jour du stockage. Dans ce
logiciel, les 24 règles pour le service de raisonnement sont encodés en SWRL.

Dans la quatrième activité, la validation de système, ce projet utilise trois
méthodes d’examinations : (1) tests unitaires, (2) tests d’échantillons et (3) test
système. Le principe de tests unitaires est de créer des valeurs limites pour vérifier
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Figure 65: L’ontologie IRRIG

si les règles fonctionnent correctement. Dans les tests d’échantillons, on choisit par
hasard est de choisir par hasard des valeurs d’un flux dans l’ensemble des données
d’Arvalis pour voir si le système d’aide à la décision donne un résultat identique
aux données enregistrées par des agriculteurs. Le principe d’un test système est de
laisser le système consommer tous les données d’Arvalis, pour comparer la décision
du système d’irrigation avec la décision des agriculteurs.

Dans la cinquième activité, la maintenance du système, ce projet utilise deux
approches. Premièrement, l’équipe de développement du système joue aussi le
rôle de maintenir et mettre à jour ce système. Deuxièmement, pour maintenir
l’ontologie IRRIG, celle-ci est publiée sur GitHub, ce qui permet à l’équipe de
développement de l’ontologie de maintenir et mettre à jour l’ontologie en s’appuyant
sur les commentaires des autres utilisateurs.

Conclusion

Les trois contributions de cette thèse sont dans le domaine de l’agriculture 4.0. La
première améliore l’évolutivité et la deuxième améliore l’interopérabilité du système
contextuel. La troisième contribution est non seulement un exemple d’application
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de ces deux premières contributions dans un vrai cas d’étude, mais également la
transformation d’une méthode manuelle d’irrigation en un système d’aide à l’irrigation
automatique. Même si les ressources pour former et évaluer les deux premières
contributions sont dans le cadre de la e-agriculture, elles sont généralisées pour
servir dans les domaines de l’éco-système de l’Internet ds Objets tels que les villes
intelligentes ou les transports intelligents.

Toutes les contributions de cette thèse sont appliquées tout d’abord dans
un système contextuel d’irrigation située dans TechnoHall, un lieu pour faire des
expérimentations technologiques de l’INRAE. Ensuite, l’équipe TSCF plévoit la mise
en oeuvre ce système contextuel dans l’AgroTechnoPôle à Montoldre, en France, pour
faire des expérimentations réelles. À côté de cette partie pratique, quatre publications
ont été produites à partir des travaux de cette thèse (Poveda-Villalón et al., 2018a,b;
Nguyen et al., 2020b,a).

Au moins quatre perspectives ont été identifiées pour faire suite à cette thèse.
Premièrement, une perspective est d’améliorer la pile de services pour les systèmes
contextuels : il est possible de créer une plateforme à partir de l’architecture de pile
de services en développeant un protocole de communication entre les services. Une
deuxième perspective est d’améliorer l’ontologie CASO : il est possible d’ajouter un
vocabulaire relatif aux réseaux informatiques pour les systèmes contextuels. Une
troisième perspective est le passage d’un système contextuel simple à un système
contextuel adaptatif : mettre en place le service de reconfiguration permettrait
d’avoir un système contextuel adaptatif. Enfin, une quatrièmement perspective
est d’améliorer la méthode IRRINOV R© : il est possible d’utiliser une technique
d’apprentissage pour couvrir les situations pour lesquelles cette méthode n’a pas de
réponse.
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