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Résumé

La Numération Formule Sanguine (NFS) est un des examens les plus prescrits dans

le monde car il fournit aux praticiens une information sur l’état de santé global du

patient. De manière générale, une NFS recense les différentes cellules sanguines,

tels que les globules rouges (GRs), les globules blancs et les plaquettes. En outre,

une mesure du volume de ces cellules est également fournie. Ces analyses sont

aujourd’hui pratiquées en routine à l’aide d’automates d’hématologie assurant une

analyse rapide des échantillons : environ 120 tests par heure.

La majorité des modules composant les automates d’hématologie actuels dé-

coulent du principe Coulter [21], qui consiste à aspirer les cellules une par une pour

les faire passer dans une zone de détection. Le concept originel est illustré sur la

Fig. 1: les cellules sont diluées dans une solution électrolytique et aspirées à travers

un micro-orifice dans lequel un fort champ électrique est imposé par deux électrodes.

Ainsi, la cellule, isolante, engendre une augmentation de résistance lorsqu’elle tra-

verse l’orifice, ce qui se traduit par une perturbation de tension aux bornes des

électrodes, que l’on désignera par le terme "pulse". En comptant les pulses, on

dénombre les cellules, et l’amplitude du pulse est considérée proportionnelle au vol-

ume de la particule associée. Notamment, les travaux théoriques de Kachel [74, 75]

donnent le volume de la particule Vp en fonction du maximum de la perturbation

Figure 1 – Principe de détection pour le comptage et la volumétrie des cellules par
principe Coulter.
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électrique ∆Um comme suit :

Vp ∝
1

E2fs
∆Um, (1)

avec E, le champ électrique vu par la cellule, et fs, le facteur de forme dépendant

de la forme et de l’orientation de la particule. Ce système simple a été amélioré

et complexifié plus récemment afin de fournir des analyses plus fines et complètes

des éléments figurés du sang en utilisant notamment des circuits fluidiques plus

sophistiqués. Cependant, la mise en application du système original est encore très

répandue, notamment grâce à son faible coût de production. Cette thèse s’intéresse

à l’analyse des GRs par les systèmes classiques tel qu’illustrés sur la Fig. 1.

Utilisés de manière intensive depuis le milieu du siècle dernier, on pourrait penser

que les compteurs Coulter sont parfaitement connus et maitrisés. Au contraire,

plusieurs artéfacts de mesure pouvant conduire à des erreurs sont toujours mal com-

pris. Ces artéfacts s’expliquent par un champ électrique E inhomogène dans la zone

de détection et par des variations de fs découlant des déformations et rotations

du GR. Etant donné que E et fs ne sont pas fixes, il devient impossible d’évaluer

Vp par une mesure de ∆Um (voir Eq. 1). Ces effets se produisent lorsqu’une cel-

lule évolue près des parois de l’orifice. En effet, dans cette région, sont observés

un champ électrique fortement inhomogène et d’importants taux de cisaillements

du champ de vitesse pouvant conduire à des dynamiques complexes de la cellule.

Dans les systèmes commerciaux actuels, ces défauts sont contournés par des mises

en oeuvre plus complexes du principe Coulter, ou par des approches de filtrage des

signaux associés à des passages proches paroi. Parmi ces méthodes, on peut trouver

la ‘focalisation-hydrodynamique’ [154] ou le tri par seuillage du temps de passage

[173]. L’hydrofocalisation force les cellules à emprunter des trajectoires au centre

de l’orifice pour s’affranchir totalement des effets de bord, mais implique une mise

en oeuvre plus compliquée. En partant du postulat que les cellules passant près des

murs sont transportées à des vitesses plus faibles, la méthode de tri proposée par

Waterman [173] consiste à rejeter les pulses les plus longs. Cependant, la durée du

pulse est fonction du volume de la particule, rendant ainsi la calibration du seuil

de tri difficile. De plus, il s’avère en pratique que les méthodes de tri actuelles ne

s’affranchissent pas totalement des effets de bord.

Pour résumer, dans les systèmes classiques, des artéfacts de nature électrosta-

tique et dynamique faussent les mesures et sont toujours incompris. En outre, les

déformations du GR induites par les forts gradients de vitesse proches des parois

influent sur la forme du pulse au travers de fs. Il est donc probable que la signature

électrique contienne une information sur la forme et la deformabilité du GR. Il est à

noter que bon nombre de pathologies affectant les GRs influent sur leur forme et leur

déformabilité (malaria [48, 112, 115, 115, 143], sphérocytose [5, 123], elliptocytose

[18, 163], sickle cell [118, 138]). Ainsi, les travaux effectués dans cette thèse sont

dédiés à la compréhension des phénomènes en jeu lorsqu’un GR évolue proche des

murs de l’orifice, et au traitement des informations morphologiques et rhéologiques

contenues dans les pulses associés à de telles trajectoires.

S’attaquer à ces problématiques avec une approche expérimentale s’avèrerait

compliqué en raison des problèmes d’accessibilité de la zone de mesure: taille de
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Figure 2 – Simulation numérique de la mesure d’impédance dans un compteur Coul-
ter industriel.

l’orifice (quelques microns), vitesse de passage des cellules (plusieurs m.s−1), pas de

fenêtre optique sur la zone de mesure. C’est pourquoi une approche numérique est

retenue pour ces travaux.

Simuler le comportement d’une particule déformable dans un compteur Coulter

induit une problématique des rapports d’échelle : loin en amont de l’orifice la par-

ticule évolue sur une longue distance à des faibles vitesses, alors qu’elle est détectée

dans un orifice de quelques microns ou elle avance à des vitesses de l’ordre de 5 m.s−1

(voir Fig. 1). Ainsi, simuler l’évolution entière d’un GR dans le compteur Coulter

n’est pas possible à cause du temps de calcul requis pour la partie amont, alors que

la zone d’interêt est limitée au voisinage de la perforation. Les premiers chapitres

traitent de cette problématique. Plus particulièrement, une méthode permettant de

s’affranchir de ces problèmes d’échelles est proposée [162] et illustrée sur la Fig. 2.

Elle consiste à simuler la dynamique du GR en deux parties (1 et 2 sur la Fig. 2). La

première (1) est une configuration d’écoulement extensionnel qui mime l’élongation

de la cellule dans la partie en amont de la zone de détection. La pertinence de cette

simulation est validée par comparaison avec un calcul fait dans la configuration réelle

complète, sur la partie amont de l’orifice. Une fois étiré (résultat du calcul 1), le

GR est placé juste avant l’entrée de l’orifice dans un domaine réduit de la configu-

ration industrielle, afin de calculer la dynamique du GR dans la zone de détection

(2). La perturbation du champ électrique associée à la dynamique de la cellule est

calculée séparément par une série de simulations électrostatiques (3). Le pulse élec-

trique est déduit en post-traitement des calculs électrostatiques (4). Il est important
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Figure 3 – Comparaison des résultats numériques avec des pulses provenant d’une
acquisition expérimentale obtenue en analysant un échantillon de sang (A et B). Les
dynamiques du GR correspondant aux illustrations A et B sont représentées en C
et D, respectivement.

de noter que la simulation dans la configuration extensionnelle (1) requiert le taux

d’écoulement perçu par la cellule lorsqu’elle se déplace dans la partie en amont de

l’orifice. C’est pourquoi un calcul sans particules dans la configuration totale du

compteur Coulter est nécessaire (0). Une ligne de courant (LDC) provenant de ce

calcul préliminaire peut être extraite. L’évolution temporelle du taux d’écoulement

le long de la LDC choisie est donnée en paramètre du calcul (1), comme illustré sur

la Fig. 2.

Cette méthode a été validée au regard des lois empiriques et par comparaisons

avec des résultats expérimentaux. Par exemple, la Fig. 3 superpose des résultats

numériques avec des données expérimentales, pour des GRs. Les pulses ont été

simulés en considérant un GR passant au milieu de la zone de détection et proche de

la paroi (A et B, respectivement). Plus précisément, une LDC passant par le centre

de l’orifice est retenue pour obtenir le pulse numérique montré sur la Fig. 3A, alors

que la Fig. 3B provient d’une LDC passant à 5 µm de la paroi. Les dynamiques de

GR associées aux pulses numériques illustrés en A et B sont montrées en C et D,

respectivement.

Les résultats numériques mettent en lumière les effets de bord de type hydro-

dynamique et électrique (voir Fig. 3D). Pour un passage au centre, une signature
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d’HORIBA Medical, alors que c−WR est obtenu avec la méthode de tri proposée
dans cette thèse.

électrique simple en forme de ‘cloche’ est obtenue (voir Fig. 3A), alors qu’un pulse

affecté par les effets de bord est plus complexe (voir Fig. 3B). En évoluant près de la

paroi, le GR tourne ce qui produit un pic sur le pulse, et tend à surestimer le volume

mesuré (le maximum du pulse). En effet, en prenant le maximum du pulse comme

mesure du volume, la taille de la cellule sera évaluée plus grande pour une trajectoire

au bord que pour une trajectoire centrale (voir Fig. 3A et B). Dans le Chap. 5, il est

proposé de détecter la rotation de la cellule à partir de la forme du pulse associé pour

avoir un meilleur tri de signaux et une meilleure volumétrie des particules. Il est

également montré que cette nouvelle méthode de tri fournit des résultats similaires

à l’hydrofocalisation, qui est un système coûteux permettant de forcer les GRs à

passer au centre des orifices, ce qui élimine les artéfacts de mesure. Sur la Fig. 4, on

compare la distribution de ∆̃Um (ie. maximum des pulses) obtenue à l’aide d’un sys-

tème hydrofocalisé (‘hf ’) avec des distributions obtenues avec un système classique,

pour différentes méthodes de tri (‘c’, ‘c − Log’, ’c −WR′). Le cas ’c’ fait référence

à l’acquisition classique, sans tri appliqué. La distribution référencée par ‘c − Log’

est obtenue après application de la méthode de filtrage implémentée dans les auto-

mates d’ HORIBA Medical. Enfin, la distribution ‘c −WR’ est obtenue grâce au

tri proposé dans cette thèse. On constate qu’avec l’hydrofocalisation, la distribution

des volumes (ie. hauteurs de pulse) est symétrique et Gaussienne (cas ‘hf ’), alors

que sur le système classique les volumes mesurés sont dissymétriques (‘c’). Le tri

’c − Log’ améliore la symétrie de la distribution mais le résultat n’est toujours pas

en accord avec l’hydrofocalisation. En revanche la méthode proposée (‘c−WR’) est

symétrique et se superpose au résultat provenant du système hydrofocalisé.

Les signaux rejetés par le tri discuté ci-dessus sont impactés par les effets de
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bord et contiennent potentiellement une information sur la déformabilité et la forme

des cellules. Le Chap. 6 est dédié au traitement de ces informations. Par exemple,

dans une approche expérimentale, la morphologie et la rhéologie des cellules dans

un échantillon ont été modifiées, et les signaux générés lors de l’analyse ont été

enregistrés. En soumettant l’échantillon à des molécules de glutaraldehyde, des GRs

plus rigides sont obtenus. De plus, l’ajout de SB3-12 (fournit par Sigma-Aldrich)

dans la solution électrolytique tend à rendre les GRs sphériques. Des acquisitions

faites à plusieurs concentrations en SB3-12 et glutaraldehyde montrent des résultats

en dehors d’une normalité préétablie. On a notamment pu définir des métriques

(non détaillées ici) qui mettent en exergue les acquisitions faites sur des échantillons

anormaux (dans lesquels du SB3-12 ou du glutaraldehyde a été ajouté).

Les méthodes discutées ci-dessus ne sont pas adaptées pour detecter des anoma-

lies n’affectant qu’une petite proportion des cellules. Détecter des sous-populations

implique un diagnostic de l’anormalité à l’échelle du pulse et non à l’échelle de

l’acquisition. Autrement dit, il faut répondre à la question : est-ce que le pulse

provient d’un GR normal ou anormal? Des investigations allant dans ce sens sont

proposées dans le Chap. 6. Les méthodes retenues pour déterminer si la cellule est

anormale au regard du pulse associé sont basées sur des modélisations par réseaux de

neurones. Par exemple, la Fig. 5 concerne la modélisation par un réseau de neurones

du problème qui consiste à classifier les pulses en trois familles suivant si ils ont été

générés par un GR normal, traité au SB3-12 (anormalement sphérique) ou traité

au glutaraldehyde (anormalement rigide). L’architecture du modèle est représentée

sur la Fig. 5A et la précision du modèle après l’apprentissage est renseignée sous

la forme d’une matrice de confusion en Fig. 5B. Il est à noter que la matrice de

confusion est évaluée à partir d’un jeu de données qui n’a pas été impliqué dans

la phase d’apprentissage. Montrant une précision supérieure à 92 % pour chaque

classe, ce modèle est encourageant et ouvre la voie à la détection de sous populations

de GRs pathologiques. En outre, il est possible de détecter le type d’anomalie (ie.

rigide ou sphérique) à partir du pulse. Par conséquent, être spécifique sur le type

de pathologie peut également être envisagé par ce type de méthode.

En résumé, les travaux effectués s’intéressent aux systèmes d’analyse cellulaires

par la mise en oeuvre du principe Coulter originel. Une méthode numérique pour

simuler le comportement des GRs dans ces systèmes est introduite. Cette dernière

est validée par comparaisons avec une approche expérimentale, et semble donc

reproduire les principaux mécanismes en jeu. De manière inédite, cette étude

numérique propose des scenarii crédibles expliquant les pulses complexes générés

par des passages proches-paroi. Cette compréhension nouvelle des signaux a permis

l’élaboration de critères de tri fournissant une mesure plus précise du volume des

cellules. Enfin, dans une approche expérimentale, il est montré que les pulses induits

par des passages proche paroi sont sensibles à la forme et à la deformabilité du GR.

De plus, des méthodes dédiées au traitement des informations de morphologie et de

rhéologie cellulaire sont proposées.
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1.1 Context

The work presented in this thesis was performed in the framework of a collab-

oration between HORIBA Medical and IMAG (‘Institut Montpelliérain Alexan-

der Grothendieck’). HORIBA Medical is the segment among the five branches of

the group HORIBA that is dedicated to the development and the manufacturing

of haematological automata. At IMAG, numerical software devoted to the anal-

ysis of medical devices in contact with blood is developed (YALES2BIO https:

//imag.umontpellier.fr/~yales2bio/).
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Coulter counters are empirical systems dating back to the middle of the last

century and make part of the current haematological instruments. They allow the

counting and the volumetry of blood cells by monitoring their electrical print when

they flow in a sensing zone. The blood analysis provided by such systems is an essen-

tial part of clinical diagnosis, which makes blood analysis one of the most frequent

medical analysis performed worldwide. Because haematological analysis provided

by industrial automata is nowadays a common practice, it might be thought that

Coulter counters are perfectly mastered. However, it appears that misunderstood

artefacts falsify the volume measurements of cells and the information contained in

results from Coulter counters is not fully exploited.

Motivated by recent increases in computers power, numerical simulation has en-

countered major breakthroughs and intended to provide relevant indications on the

dynamics of blood cells in Coulter counters, and the associated electrical prints. The

purpose of this work is to bring new insights on the empirical haematological system

by the use of numerical simulation and to elaborate methods for a more complete

and accurate diagnosis of the analysed cells. For this purpose, associating the strong

industrial expertise of HORIBA Medical (that has been on the haematological mar-

ket for decades) with the knowledge and tools developed at IMAG appears to be a

suited approach.

Hence, in this first chapter, grounding concepts on haematology, Coulter counter,

and numerical simulation are given.

1.2 Basic concepts in haematology

1.2.1 Composition and principal functions of blood

Human tissues need to be supplied continuously in oxygen and nutrients to ensure

the vital functions of the human body. In addition, wastes produced by human

tissues such as carbon dioxide must be evacuated. These two essential tasks are

maintained during the entire life of living beings by the cardiovascular system. It is

composed of the blood vessels and of the heart, a muscle ensuring an uninterrupted

flow of blood that contains the aforementioned substances.

Blood is made up of a carrying fluid called plasma and blood cells, such as Red

Blood Cells (RBCs), white blood cells and platelets (see Fig. 1.1). The plasma is

a fluid mostly composed of water (around 90 %) in which are diluted a variety of

substances like hormones, proteins or urea. RBCs are in charge of the transport of

dioxygen from the lungs to the different organs and the removal of carbon dioxide,

waste of the organs works. They represent about 45% of the total blood volume

and 98% of the total number of cells in suspension in the plasma. Platelets are

small cell fragments that play a role in the coagulation reaction that occurs in case

of injuries of the blood vessel endothelium. White blood cells are the cells of the

immune system and fight off foreign germs, bacteria or viruses, for instance.
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Parameter Normal range Description
Min Max

RBC [1012/L] 4.01 6.04 RBCs concentration.
MCV [fL] 80 100 Mean Cell Volume (MCV) of RBCs.
RDW [%] 12.2 15.4 RBCs Distribution Width, giving an in-

dication on the volume distribution ar-
round the MCV.

Hb [g/L] 130 180 Haemoglobin concentration.
Hct [%] 33 50 Hematocrit.

WBC [109/L] 4 11 White Blood Cells concentration.
Monocytes [109/L] 0.2 0.8 Monocytes concentration.

Lymphocytes [109/L] 1.5 4.5 Lymphocytes concentration.
Granulocytes [109/L] 2.0 8.0 Granulocytes concentration.

PLT [109/L] 150 450 Platelets concentration.
MPV [fL] 8 14 Mean platelets volume.

Table 1.1 – Typical haematological parameters rendered in a Complete Blood Count
and differenciation of cells (CBC+DIFF) and the associated range of normal values.

1.3 Coulter counters

Some of the haematological parameters currently provided in CBC+DIFF require

the counting and the sizing of blood cells. In 1953, Coulter [21] introduced a fast

and automatic device dedicated to the numeration of a large number of microscopic

cells and the measurement of their volume.

The Coulter principle is depicted in Fig. 1.4: particles suspended in an elec-

trolytic solution are pumped into a micro-orifice commonly called aperture, sapphire

or ruby. An electrical field is imposed with a constant intensity using two electrodes.

According to Ohm’s law, a particle flowing through the sapphire changes the total

resistivity of the system and induces a tension pulse. If sufficiently separated from

the others, one particle produces one pulse, and its maximum is assumed to be

proportional to the particle volume. Thus, counting the pulses and measuring their

amplitude give the concentration and the volume distribution of the cells.

A typical volume distribution obtained by analyzing directly a blood sample is

shown in Fig. 1.5A. Two blood cells types appear in the distribution: RBCs, corre-

sponding to the larger cells with volumes around 90 µm3; platelets, observed at low

volumes around 10 µm3. As stated in Tab. 1.1, platelets are fewer than erythro-

cytes, thus explaining their low count compared to RBCs. The volume distribution

of RBCs is right-skew, which is a typical result of Coulter counters[12]. This point

is discussed in detail in the following sections. Because of their small concentration

(see Tab. 1.1), white blood cells are not visible in Fig. 1.5A. They are expected to

account for in the RBCs population but are negligible from a statistical point of

view. Measuring the white blood cells populations requires to first lyse the RBCs

before the sample analysis. Using the ABX Minilyse LMG reagent (HORIBA Med-

ical), the three kinds of white blood cells are observable. This solution ensures the

RBCs lysis and affects white blood cells populations in such a way they may be
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Figure 1.4 – Principle of a Coulter counter device for particle counting and sizing
and typical orders of magnitude of size and flow velocity.
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Figure 1.5 – Typical volume histograms obtained by analysing a blood sample with a
Coulter counter. (A) is obtained when the blood sample is analysed directly. (B) is
obtained by diluting the blood sample in a ABX Minilyse LMG solution (HORIBA
Medical) : RBCs are lysed and the three main types of white blood cells are visible.

segregated with size criteria. The Coulter principle thus allows the differentiation

of three types of white blood cells. However, more complex systems equipped with

an optical sensor can separate the three subtypes of granulocytes. Such systems are

often included in top-of-the-range automata.
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natures are well known and explained by the squared electrical field (see Eq. 1.2).

On the contrary, in the case of deformable cells, pulses impacted by edge-effects are

still misunderstood. Due to the difficulties in accessing the RBC dynamics within

the measurement zone (small sensing region (tens of µm), large velocity (≈ 5 ms−1),

no optical access, very short time of exposure (10 µs)), numerical simulations would

be an appealing way of tackling this question. Also, simulations allow controlling

the input parameters, which is particularly difficult to do in experiments with bio-

logical cells. In other words, numerical simulation of the dynamics of the RBCs in

Coulter counters and of the associated electrical perturbation is expected to bring

new information useful to explain and characterize the links between the mechanical

properties of the cells and their electrical signatures.

Once a relation is made between geometrical and mechanical properties of cells

and their electrical responses, one may rely different statistical methods to process

the experimental signals and infer the properties of the cells. For instance, neural

networks enable the building of complex models from a database: they represent

an interesting approach to process cells information embedded in electrical prints,

in a complementary way to numerical simulation. Remind that industrial Coulter

counters are nowadays widely exploited to assess patients CBC. Consequently, from

a hardware point of view, no further developments are needed and implementing an

additional signal processing to assess richer information about cells would be most

probably doable at low industrial development cost.

The present work is dedicated to RBCs, the most deformable and numerous

blood cells. The remaining of this opening chapter presents an overview of the

existing methods to simulate flowing RBCs.

1.4 Numerical simulation of RBCs

An appealing approach for investigating electrical prints generated by RBCs in the

microscopic aperture of Coulter counters is the numerical simulation. In this section,

the properties of RBCs in terms of shape, composition and mechanical behaviour

are first presented. Then, an overview of the existing numerical models and their

applications in the prediction of RBCs dynamics is given. Finally, the challenges of

simulating deformable RBCs in Coulter counters are succinctly introduced.

1.4.1 A close-up look on red blood cells

Erythrocytes are enucleated cells. Hence, a RBC may be viewed as a microscopic

drop of fluid (cytoplasm) surrounded by a thin solid membrane. Measurements of

Evans and Fung [33] shed light on the discocyte shape of the cell, for which they

proposed the following parametrization:

z(r) = ±
RO

2

√

1−
(
r

RO

)2

×

(
C0 + C2

(
r

RO

)2

+ C4

(
r

RO

)4
)

(1.6)

Figure 1.14 illustrates the RBC shape as stipulated by Eq. 1.6, by defining RO =

3.91 µm, C0 = 0.81 µ, C2 = 7.83 µm and C4 = -4.39 µm. A typical RBC volume is
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the reduced volume (Q), the cell shape, and its content. For instance, malaria (plas-

modium falciparum) increases the cell reduced volume [115, 143] and the membrane

shear modulus [48, 112, 115] but also reduces the haemoglobin concentration [122],

that is related to the internal viscosity [79]. Furthermore, the presence of the par-

asite within the membrane should change the global rigidity of the cell. Spherical

and ellipsoidal RBCs arise from hereditary spherocytosis [5, 123] and elliptocytosis

[18, 163], respectively. One may also cite sickle cell anemia that leads to rigid RBCs

with a sickle-like shape [118, 138]. Hence, morphological and rheological information

of RBCs represent a real interest to diagnose pathologies.

1.4.2 RBCs simulations, State of the art

Simulating flowing RBCs implies the modelling a Fluid-Structure Interaction (FSI)

problem between incompressible fluids (internal and external fluids) and a thin mem-

brane. Remind that RBCs are highly deformable, thus making the small deformation

assumption invalid. The modelling of FSI for large solid deformations represents a

challenging task that is still investigated.

Different methods to achieve such modelling are proposed in the literature. These

methods may differ in the way the fluid and/or the membrane are treated. The

fluid dynamics may be predicted by approaching the solution of Navier Stokes

equations using a finite volume [111], a finite difference [6, 32, 179] or a finite

element method [26, 71]. The Lattice-Boltzmann equation that was shown to

converge to Navier-Stokes equations (by the Chapman-Enskog expansion) is also

widely used [86, 87, 104, 137, 158–160]. Navier-Stokes equations write the con-

servation laws of the fluid macroscopic quantities whereas the Boltzmann equation

expresses the advancement of a mesoscopic quantity that is the probability density

function of the molecules composing the fluid to go in different directions. Parti-

cle based methods are also used, such as the dissipative particles dynamics (DPD)

method [37, 39] and the multiparticle collision dynamics (MPC) method [108, 109].

Concerning the modelling of the solid membrane, two main approaches are gener-

ally combined with Particle based, LB and Navier-Stokes methods. The first one

[7, 19, 20, 86, 111, 111, 175–177] consists in describing the membrane as a continuous

medium by the use of strain energy functions. For example, the RBC membrane is

generally modeled with the Skalak law [151] that accounts for the shear and area

modulus (see Tab. 1.2) and the Helfrich bending energy [63] that models the bending

withstanding of the membrane. The principle of the second approach is to consider

the membrane as a set of particles linked to each others by a network of springs

[38, 39, 121]. Finally, assuming a Stokes flow, the boundary integral method has

been used by many authors [29, 30, 41, 43, 88–90, 171, 172].

The different models have been validated and, in the case of RBCs, were mostly

applied in simple configurations such as optical-tweezers [36, 95, 149, 150], Shear

Flows [25, 91, 107, 152] and micro channels [40, 165, 181], for instance. Numerical

simulation of the dynamics and deformation of RBCs under flow has tremendously

developed over the last years, but the application to industrial geometries is still lim-

ited. Its application to Industrial Coulter counters is expected to yield new insights
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in the behaviour and the electrical signature of RBCs in the sensing region, but

has never been performed before to fully characterize an industrial system. Numer-

ical studies of particles dynamics in Coulter counters have mainly considered rigid

particles, both spherical [57] and aspherical [69]. Gibaud et al. [46, 47] performed

the first simulations of deformable RBCs in Coulter counters, but the study was

restricted to hydrofocalized analysers, and the simulations suffer from limitations

on the initial conditions, as detailed in the next paragraph.

1.4.3 Issues involved when tackling the numerical simulation of

RBCs in Coulter counters

A computation of the entire analysis of RBCs by Coulter counters is not possible,

due to the large number of cells and above all the huge ranges in both length and

time scales when the entire device is considered. As shown in Fig. 1.4, the size of

the measurement region (where the electrical field is strong enough so that the cell

can be detected) is of a few tens of micrometers and cells pass through the sapphire

in a few tens of microseconds. On the contrary, far from the sapphire, they are

suspended in a tank of a few centimeters (5 cm) and they flow at a velocity of the

order of 10−3 ms−1. The separation of scales leads to prohibitive computational

times, while the measurement region is very limited. An option is to focus on the

measurement region only, but cells deform before being detected by the counter [74].

Gibaud et al. [46, 47] computed the signal associated with RBCs but neglected part

of the upstream deformations for computational reasons. This explains why most

existing numerical simulations have only considered rigid particles [57, 69], thus

circumventing the challenge of the scale separation by reducing the computational

domain to the region where the impedance signal is detected. This cannot be done

when deformable particles are considered. A method to tackle such simulations

was developed in this thesis and has been published in[162]. It will be detailed in

Chap. 4.

1.5 Thesis objectives and outlines

Numerical simulations of RBCs would give a new insight on the electrical prints

arising from industrial Coulter counters. In this respect, an original sequence of

simulations is proposed to overcome the multi-scale issue that arises naturally. A

numerical pipeline dedicated to rigid spheres is presented in Chap. 3 and extended to

deformable particles in Chap. 4. The numerical results are validated by comparisons

with theoretical statements and experimental measurements. The simulations of

the pipeline are performed with different solvers of YALES2BIO software, that are

presented in Chap. 2, at first.

In particular, the proposed numerical approach is employed to highlight the

variety of complex pulses originating from RBCs evolving near the aperture walls (see

the end of Chap.4). Besides these pulses are associated with particular dynamics in

the aperture and the shape factor of a deforming RBC is modeled. These numerical
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results thus explain the mechanisms involved in the complex pulses obtained from

particles flowing along a near-wall trajectory.

Errors in the volume measurement generated by near-wall trajectories were dis-

cussed in Sec. 1.3.2. These deficiencies are currently balanced by filtering strategies

or hardware improvements of the original Coulter principle. Filtering methods are

simpler of implementation but the lack of knowledge on the edge-effects limited

their development in the past. Thanks to the understanding brought by the numer-

ical simulation, an original filter is proposed in Chap. 5 and shown to accurately

reproduce results from hydrodynamical focusing.

In Chap. 6, cells morphology and rheology are shown to impact the measure-

ment. Then, methods for processing the cells features from the electrical pulses

are introduced. Among them, NNs are employed to characterize the RBCs. The

training of such NNs requires a database composed of many couples ain/aobs, in

which ain is the pulse and aobs the cell parameters. Note that knowing aobs may be

problematic with an experimental approach. This is the case if aobs represents the

mechanical parameters (Gs, Ea ...) of the cell, for instance. Numerical simulation

allows constructing any couples ain/aobs, which makes the association of numerical

simulations with NNs promising. In particular, this strategy is used in Chap. 6

for modeling the inverse problem of numerical simulations and is also employed in

Chap. 5 to develop a filtering method. However, because of simulations times, the

main drawback of such a coupling is the computational cost to pay for a sufficient

number of couples ain/aobs. This is why the strategy of achieving NN models from

experimental data will be preferred in some applications of Chap. 6.
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In Coulter counters, RBCs suspended in an electrolytic solution flow through

a micro-orifice in which a dense electrical field is imposed by two electrodes (see

Fig. 1.4). Moreover, RBCs are enucleated cells viewed as a drop of fluid sur-

rounded by a solid membrane. Hence, simulating the impedance measurement of

RBCs in a Coulter counter implies a three-way coupling problem: Solid/Fluid flow;

Solid/Electrical field; Fluid flow/Electrical field.

In practice, the suspending fluid and the cells move at velocities much lower

than the velocity of light. The electrostatic assumption is then made which means
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the electrical field develops instantly despite the fluid and particles motions. Cou-

pling between the fluid-flow and the electrostatic field are neglected. In addition,

dielectrophoretic forces acting on the membrane are not accounted for, despite the

ability of RBCs to be polarized [116, 132]. These assumptions allow considering a

Solid/Fluid problem completely separated from Solid/Electrostatic problems since

RBCs motions depend only on Fluid-Structure Interactions.

In YALES2BIO software, Solid/Fluid and Solid/Electrostatic problems are treated

with two distinct solvers (FSIS and ESS, respectively). The solvers employed in the

context of this thesis are as follows:

1) A Navier Stokes Solver (NSS) that computes the flow of incompressible fluids.

2) A Fluid-Structure Interaction Solver (FSIS) that couples solver NSS with

infinitely thin membranes.

3) An Electrostatic Solver (ESS) calculating the electrical field in the presence

of cells.

In the present chapter, each solver is described and validation cases are presented.

Solver NSS is introduced in the first section. Then, the coupling of NSS with solid

membranes in FSIS is detailed. Finally, the solver ESS is presented.

2.1 Flow solver (NSS)

The electrolytic solution in which cells are in suspension is mainly water. Conse-

quently, the fluid motions are modeled according to incompressible Navier Stokes

equations:
∂~u

∂t
+∇.(~u⊗ ~u) = −

1

ρ
∇P +∇.[ν∇~u] +∇.[ν(∇~u)T ] (2.1)

∇.~u = 0 (2.2)

where ~u denotes the fluid velocity, P the pressure, ρ the fluid density and ν the

kinematic viscosity. Note that the viscosity ν may vary in the fluid domain. This

section focuses on the numerical method in solver NSS to solve Eq. 2.1 and 2.2.

2.1.1 Time advacement

The fluid equations presented above are solved with a prediction correction method

[17]. From the fluid quantities at the beginning of the time step (indicated by a

superscript n), a predicted velocity (~u∗) is computed by advancing the momentum

equation Eq. 2.1 without the pressure term. For the sake of simplicity, an explicit

Euler time advancement scheme is retained in the following development:

~u∗ − ~un

∆t
= −∇.(~un ⊗ ~un) +∇.[νn∇~un] +∇.[νn(∇~un)T ] (2.3)

Generally, ~u∗ is not divergence free as prescribed in Eq. 2.2, thus a correction must

be performed on the predicted velocity. In this respect, the corrected velocity at the

end of the time step (~un+1) must satisfies:

~un+1 − ~un

∆t
= −∇.(~un ⊗ ~un)−

1

ρ
∇Pn+1 +∇.[νn∇~un] +∇.[νn(∇~un)T ] (2.4)
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By subtracting Eq. 2.4 with Eq. 2.3, the following equation is obtained:

~un+1 − ~u∗

∆t
= −

1

ρ
∇Pn+1 (2.5)

Then, applying the divergence operator on each side of the above equation leads to:

∇.
~un+1

∆t
−∇.

~u∗

∆t
= −∇.[

1

ρ
∇Pn+1]

Now imposing that the velocity ~un+1 is divergence-free, a Poisson equation for the

pressure is obtained:
1

ρ
∇.[∇Pn+1] =

1

∆t
∇.~u∗ (2.6)

Once the Poisson equation (Eq. 2.6) solved, the velocity field is corrected using

Eq. 2.5.

2.1.2 Space discretization

Finite Volume Method

According to the time advancement procedure, spatial discretizations for Eq. 2.3,

2.5 and 2.6 are needed. In YALES2BIO, this is done by the use of a Finite Volume

Method (FVM) consisting in splitting the fluid domain into several control volumes

that are represented by squares in Fig. 2.1. A control volume Ωi is bounded by

∂Ωi that is the union of several faces Si,j . Each face Si,j is defined as the frontier

between control volumes Ωi and Ωj . The macroscopic fluid quantities (P and ~u) are

assessed at the discretization nodes ~xi assumed to be located at the center of mass of

the control volumes Ωi. The spatial discretization is then developed by integrating

Eq. 2.3, 2.5 and 2.6 over each control volume Ωi and balancing the fluxes over faces

Si,j .

Integrating Eq. 2.3 over a control volume Ωi leads to:

1

∆t

∫

Ωi

(~u∗ − ~un)dV =
∫

Ωi

−∇.(~un ⊗ ~un) +∇.[νn∇~un] +∇.[νn(∇~un)T ]dV (2.7)

Then, using the Ostrogradski theorem, integrals over Ωi may be rewritten as inte-

grals over ∂Ωi:

1

∆t

(∫

Ωi

~u∗dV −

∫

Ωi

~undV

)
= −

∫

∂Ωi

[~un ⊗ ~un] d~S +
∫

∂Ωi

νn∇~und~S

+
∫

∂Ωi

νn(∇~un)Td~S
(2.8)

By construction, integrals over ∂Ωi equals the sum of integrals over faces Si,j (see

Fig. 2.1):

1

∆t
(
∫

Ωi

~u∗dV −

∫

Ωi

~undV ) = −
∑

j

∫

Si,j

[~un ⊗ ~un] d~S +
∑

j

∫

Si,j

νn∇~und~S

+
∑

j

∫

Si,j

νn(∇~un)Td~S
(2.9)
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~xi

~xj

~xi,j

~ni,j

Si,j

~ex

~ey

Ωi
∂Ωi

Ωj

Figure 2.1 – Control volumes involved in the finite volume method for the spatial
discretization. Although this representation is in two dimensions, the notations
stand for three-dimensional control volumes.

When integrating ~u over Ωi, the Taylor development implies:
∫

Ωi

~udV =
∫

Ωi

~ui +∇~u|i(~x− ~xi) +O(||~x− ~xi||
2)dV (2.10)

The discretization nodes ~xi being placed at the center of mass of Ωi, the integral of

the second-order term vanishes. Hence, at the second-order of accuracy, the previous

equation simplifies as: ∫

Ωi

~udV = ~uiVi (2.11)

With Vi referring to the volume of Ωi. Then, using Eq. 2.11 to approximate the

volume integrals in Eq. 2.9 leads to:

Vi

∆t
(~un+1

i − ~un
i ) = −

∑

j

∫

Si,j

[~un ⊗ ~un] d~S +
∑

j

∫

Si,j

νn∇~und~S

+
∑

j

∫

Si,j

νn(∇~un)Td~S
(2.12)

In an equivalent manner, Eq. 2.5 and Eq. 2.6 lead respectively to:

Vi

∆t
(~un+1 − ~u∗) = −

1

ρ

∑

j

∫

Si,j

Pn+1d~S, (2.13)

and
1

ρ

∑

j

∫

Si,j

∇Pn+1.d~S =
1

∆t

∑

j

∫

Si,j

~u∗.d~S (2.14)

By defining operators C(~u, ~u), G(P ), D(~u), L(P ), Lcv(ν, ~u) and LT
cv(ν, ~u) as:

C(~u, ~u) =
∑

j

∫

Si,j

[~u⊗ ~u] d~S, (2.15)
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G(P ) =
∑

j

∫

Si,j

Pd~S, (2.16)

D(~u) =
∑

j

∫

Si,j

~u.d~S, (2.17)

L(P ) =
∑

j

∫

Si,j

∇P.d~S, (2.18)

Lcv(ν, ~u) =
∑

j

∫

Si,j

ν∇~u d~S, (2.19)

and

LT
cv(ν, ~u) =

∑

j

∫

Si,j

ν[∇~u]Td~S, (2.20)

Eq. 2.12, 2.13 and 2.14 respectively write:

Vi

∆t
(~u∗

i − ~u
n
i ) = −C(~un, ~un) + Lvc(ν

n, ~un) + LT
vc(ν

n, ~un), (2.21)

Vi

∆t
(~un+1 − ~u∗) = −

1

ρ
G(Pn+1), (2.22)

and
1

ρ
L(Pn+1) =

1

∆t
D(~u∗) (2.23)

Operator C stems from the convective term of the momentum equation (Eq. 2.1).

The pressure gradient of the correction equation (Eq. 2.5) is related to G, while D

is used to approximate the divergence of ~u∗ in the Poisson equation (Eq. 2.6). L

is employed for the Laplacian of Pn+1 in Eq. 2.6, whereas Lcv and LT
cv assess the

viscous part of Eq. 2.1. In particular:

1) L assesses the Laplacian

2) Lcv is a Laplacian accounting for a variable coefficient

3) LT
cv is close to Lcv, the only difference being the transpose that is applied to

the gradient (see Eq. 2.19 and 2.20).

Numerical schemes estimating the different operators (C, G, D, L, Lcv and LT
cv)

are presented in the following.

Laplacian operators

Let ~xi,j be the vertex placed at the intersection of face Si,j and vector (~xj − ~xi), as

shown in Fig. 2.1. If the control volumes are regular, ~xi,j is located at the center of

mass of Si,j , that allows the following second order developement of Eq. 2.18:

L(P )|i =
∑

j

∫

Si,j

∇P.d~S =
∑

j

∇P |i,j .~Si,j (2.24)

Note that ~Si,j equals Si,j × ~ni,j (see Fig. 2.1). The value of ∇P at node ~xi,j (denoted

by ∇P |i,j) is required in the above expression. It is approximated by writing the

Taylor developments of P at points ~xi and ~xj , in the vicinity of ~xi,j :

Pi = Pi,j +∇P |i,j .(~xi − ~xi,j) +O(||~xi − ~xi,j ||
2) (2.25)
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Pj = Pi,j +∇P |i,j .(~xj − ~xi,j) +O(||~xj − ~xi,j ||
2) (2.26)

Subtracting Eq. 2.26 to Eq. 2.25 and by keeping only terms of order 2 leads to:

Pj − Pi = ∇P |i,j .(~xj − ~xi)

Then, it comes that:

∇P |i,j = (Pj − Pi)
(~xj − ~xi)

|~xj − ~xi|2
(2.27)

The substitution of Eq. 2.27 in Eq. 2.24 gives the second-order accurate spatial

discretization of the Laplacian operator:

L(P )|i =
∑

j

(Pj − Pi)
(~xj − ~xi)

|~xj − ~xi|2
.~Si,j (2.28)

Note that in the case where (~xj − ~xi) is parallel to ~Si,j , this simplifies to:

L(P )|i =
∑

j

Pj − Pi

|~xj − ~xi|
Si,j (2.29)

At a second-order of accuracy, operator Lcv reduces as follows, provided ~xi,j is

the center of mass of Si,j :

Lcv(ν, ~u)|i =
∑

j

∫

Si,j

ν∇~u ~dS =
∑

j

νi,j∇~u|i,j ~Si,j (2.30)

The velocity gradient at ~xi,j (∇~u|i,j) is treated as ∇P |i,j in Eq. 2.27 but νi,j still

needs to be expressed according to nodal values of viscosity νi and νj . This is done

by writing the two following Taylor series expansions:

ν = νi,j +∇ν|i,j .(~xi − ~xi,j) +O(||~xi − ~xi,j ||
2) (2.31)

νj = νi,j +∇ν|i,j .(~xj − ~xi,j) +O(||~xj − ~xi,j ||
2) (2.32)

By summing Eq. 2.31 with 2.32, neglecting terms of order 3, and assuming (~xj−~xi,j)

= (~xi,j − ~xi), νi,j expresses as follows:

νi,j =
νi + νj

2
(2.33)

In this way, Lcv(ν, ~u) writes:

Lcv(ν, ~u)|i =
∑

j

νi + νj

2
(~uj − ~ui)

[
(~xj − ~xi)

|~xj − ~xi|2
.~Si,j

]
(2.34)

Furthermore, with a similar approach, LT
cv yields:

LT
cv(ν, ~u)|i =

∑

j

νi + νj

2

(~xj − ~xi)

|~xj − ~xi|2

[
(~uj − ~ui).~Si,j

]
(2.35)
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Divergence operators

This section is devoted to operators D and C, that compute the divergence of ~u and

~u ⊗ ~u, respectively. With ~xi,j located at the center of mass of Si,j , second-order

approximations of C(~u, ~u) and D(~u) read:

C(~u, ~u)|i =
∑

j

∫

Si,j

[~u⊗ ~u] ~dS =
∑

j

[~ui,j ⊗ ~ui,j ] ~Si,j , (2.36)

and

D(~u)|i =
∑

j

∫

Si,j

~u.d~S =
∑

j

~ui,j .~Si,j (2.37)

As developed for assessing ν at point ~xi,j (see Eq. 2.33), ~ui,j is approximated by:

~ui,j =
~uj + ~ui

2
(2.38)

In this respect, injecting the above expressions in Eq. 2.36 and 2.37 yields:

C(~u, ~u)|i =
∑

j

[(
~uj + ~ui

2

)
⊗

(
~uj + ~ui

2

)]
~Si,j =

∑

j

~uj + ~ui

2
Ui,j , (2.39)

and

D(~u)|i =
∑

j

~uj + ~ui

2
.~Si,j =

∑

j

Ui,j . (2.40)

Ui,j , that is defined as ~uj+~ui

2
.~Si,j represents the flow-rate across face Si,j . Conse-

quently, applying D to ~u (see Eq. 2.40) is equivalent to balancing the flow-rates

(Ui,j) that come in and get out of the control volume Ωi.

Gradient operator

With the same assumptions that enable Eq. 2.33 and Eq. 2.38, the pressure at ~xi,j

is assessable by:

Pi,j =
Pj − Pi

2
(2.41)

This allows the following development of G(P ):

G(P )|i =
∑

j

∫

Si,j

Pd~S =
∑

j

Pi,j
~Si,j =

∑

j

Pj + Pi

2
~Si,j , (2.42)

once again, provided ~xi,j is the center of mass of Si,j .

High order schemes for the spatial discretization

The derivations of the different operators proposed in this section are second-order.

Fourth-order assessments of surface integrals involved in the different operators are

available in YALES2BIO and will be used in the following simulations. The reader

is referred to works of Kraushaar [84], Vantieghem [169] and Puiseux [130] for more

details on the implementation of the fourth-order schemes in YALES2BIO. One

should also recommend the publication of De Stefano et al [156] for a more theoretical

description of high order schemes in Finite-Volume Methods.
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Velocity prediction (Eq. 2.21)

Solving the Poisson equation for
the Pressure (Eq. 2.23)

Velocity correction (Eq. 2.22)

~un, νn

~u∗

Pn+1

~un+1

n← n+ 1

Figure 2.2 – Temporal loop involved in the Navier Stokes Solver (NSS).

2.1.3 Navier Stokes Solver (NSS) time stepping

Including the expressions of the different operators (see Eqs. 2.28, 2.34, 2.35, 2.39,

2.40 and 2.42) in Eqs. 2.21, 2.22, and 2.23 provides the discretization of Eqs. 2.3,

2.5 and 2.6 in both time and space. Instead of an explicit Euler scheme (used in

the former sections as an illustration), a fourth-order Runge Kutta scheme (RK4)

[148, 174] is preferred in practice. The velocity ~un is advanced to ~u∗ in four sub-steps

as: 



~u1 = ~un + 1
4
∆t×RHS(~un, νn)

~u2 = ~un + 1
3
∆t×RHS(~u1, νn)

~u3 = ~un + 1
2
∆t×RHS(~u2, νn)

~u∗ = ~un + 1
3
∆t×RHS(~u3, νn)

(2.43)

with RHS referring to the right-hand side of Eq. 2.21. Note that the kinematic

viscosity is not updated during the RK4 substeps.

A better view on the NSS solver time step is given in Fig. 2.2. The first step in

the temporal loop consists in computing a velocity prediction ~u∗ by using Eq. 2.21

(or Eq. 2.43 if a RK4 advancement is chosen). Note that ~u∗
i is evaluated for each

node ~xi representing the fluid domain. Given ~u∗
i , Eq. 2.23 represents a linear system

of equations for the pressure Pn+1
i . Hence, in a second step (see Fig. 2.2) the linear

system 2.23 is solved with a Deflated Preconditioned Conjugate Gradient algorithm

[105] (DPCG). Finally, once Pn+1
i is calculated, the divergence free velocity at the

end of the time step (~un+1
i ) is computed according to Eq. 2.22.

2.1.4 A few words on the boundary conditions

In the case where boundary velocities are prescribed, the following ~u∗ condition is

commonly imposed just after the prediction step (see Fig. 2.2):

~u∗|Bd = ~un+1|Bd (2.44)
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Here, Bd refers to the boundaries of the computational domain. Besides, a vanishing

pressure gradient along ~nBd (the boundaries normal) is imposed when the Poisson

equation is solved in the second step (see Fig. 2.2):

∂Pn+1

∂~nBd
|Bd = 0 (2.45)

As shown by Kim and Moin [80], applying such boundary conditions is only first-

order accurate. They proposed an improved version of Eq. 2.44, that makes the

method second-order accurate:

~u∗|Bd = ~un+1|Bd
+ ∆t

1

ρ
∇Pn|Bd

(2.46)

For more information on the boundary conditions, readers are referred to [80, 169].

In practice, ∇Pn is included in the prediction step, so that only the increment

of pressure between time step n and n+1 is calculated with the Poisson equation to

correct the predicted velocity. Adding ∇Pn in Eq. 2.3 for the prediction ~u∗ makes

the method second-order accurate even with the boundary condition of Eq. 2.44,

since the requirement of Eq. 2.46 is fulfilled on the domain bounds.

2.1.5 Fluid grids

The derivation of the spatial discretization of Sec. 2.1.2 is second-order accurate for

regular and structured grids (as for square meshes shown in Fig. 2.1). Dealing with

industrial configurations generally implies complex geometries that are difficult to

discretize with regular meshes. In the present section, the meshing process is briefly

explained.

Based on a tetrahedral grid provided by common meshing software such as

GMSH or GAMBIT, the control volumes Ωi are constructed around the vertices

of the tetrahedra. Figure 2.3 illustrates the construction of a control volume from a

2D triangular mesh. However, this can easily be extended to 3D tetrahedral grids.

The initial triangular mesh is shown in continuous lines while the control volume

built around a vertex ~xi is shown in dashed lines. The control volume is constructed

by assessing the middle of the edges of the triangles (crosses in Fig. 2.3) and the

centers of mass of the triangles (bold points in Fig. 2.3).

Regarding Fig. 2.3, it should be noted that the line Si,j (or surface Si,j , for a 3D

tetrahedral grid) is no more flat, contrary to the idealized case of Fig. 2.1. Hence,

vector ~Si,j required in the spatial discretization (see Sec. 2.1.2) takes a more intricate

definition than Si,j~ni,j . Actually, it is defined as the sum of S′
i,j~n

′
i,j and S′′

i,j~n
′′
i,j (see

Fig. 2.3).

Depending on the initial triangular mesh, ~xi may not be the center of mass of

the control volume. In the same way, nodes ~xi,j are generally not corresponding

to the centers of mass of faces Si,j . As a consequence, the second-order spatial

discretization developed in Sec. 2.1.2 becomes only first-order accurate. The more

regular the mesh is, the less the order of accuracy decreases. That is why regular

elements are highly recommended. Moreover, two neighbouring elements should be

close in size.
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~xi

~xj

~xij

~n′
ij

S′
ij

~n′′
ij

S′′
ij

Figure 2.3 – Construction of the control volume Ωi (drawn in dashed line) from a
triangular grid. This illustration shown in 2D stands in 3D.

2.1.6 Applications

The present model has been applied in a large panel of simulations relevant to car-

diovascular biomechanics. For example, Siguenza [148] showed that the Womersley

profiles in 2D pulsatile flows are well predicted for several pulsation frequencies.

Zmijanovic et al. [185] retrieved the transition from laminar to turbulent flow that

was observed in a series of experiments performed in different FDA laboratories.

Puiseux [131] confirms that NSS reproduces the pusatile and steady developement

lengths in cylindrical channels, as reported by Durst et al. [31] and He et al. [61],

respectively. He also validates the accuracy of NSS in a pipe bend in both pulsatile

and stationary flows by comparisons with works of Timite [164] and Siggers [147],

respectively. In a recent publication, the solver has shown really good velocity cor-

relations with 4D flow MRI measurements performed in an in-vitro configuration

[130].

2.2 Fluid Structure Interaction Solver (FSIS)

Simulating the dynamics of RBCs in flow implies the coupling of the membrane

mechanics with the flow of an incompressible fluid. In solver FSIS, this is enabled

by the Immersed Boundary Method (IBM) of Peskin [125]. This model is dedicated

to the fluid-structure interactions between an infinitely thin and massless solid with

an incompressible fluid (see Fig. 2.4). A curvilinear coordinates system (~es,~er,~eq)

is attached to the solid whereas the fluid is defined in the Eulerian coordinates

system (~ex,~ey,~ez). The system (~es,~er,~eq) is orthonormal and defined in such a way

plane (~es,~er) is tangential to the membrane and ~eq is directed outward of the cell

(see Fig. 2.4). The membrane is also observed with a Lagrangian point of view by
~X(r, s, t), which describes the membrane at time t. Because the solid dimension
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along ~eq is negligible, the coordinate q is not needed for tracking the membrane

in such a formalism. The fluid motions are modelled according to incompressible

Navier Stokes equations, as in NSS:

∂~u

∂t
+∇.(~u⊗ ~u) = −

1

ρ
∇P +∇.[ν∇~u] +∇.[ν(∇~u)T ] +

1

ρ
~fv (2.47)

∇.~u = 0 (2.48)

The term ~fv is a source term accounting for the forces arising from the solid. Remind

that the kinematic viscosity ν may vary in the domain, and as discussed in the

following is higher inside of the RBC membrane. When deformed, the solid stores an

elastic energy defined by W ( ~X(r, s, t)). To recover its reference shape, the membrane

applies an elastic force on the surrounding fluid particles:

~FE =
∂W

∂ ~X
(2.49)

Peskin [125] proposed to account for the membrane forces in the momentum

equation (Eq. 2.47) through the source term ~fv . The forces coming from the solid

(~FE) are regularized as follows:

~fv(~x) =
∫

Ωs

~FE( ~X(r, s, t))δ(~x− ~X(r, s, t))drds (2.50)

Note that ~fv is expressed in an Eulerian formalism while ~FE depends on the mem-

brane Lagrangian coordinates ~X(r, s, t). The change of formalism is enabled by the

integrated Dirac function δ. Assuming that the membrane mass is negligible, the

solid is transported at the surrounding fluid velocity ~u. This implies the interpola-

tion of ~u at the membrane location:

d ~X

dt
=
∫

Ωf

~u(~x)δ(~x− ~X)d~x (2.51)

Equations 2.47, 2.48, 2.49, 2.50 and 2.51 represent the system of equations solved

in the solver FSIS. Note that without membrane in the domain, Eq. 2.49, 2.50 and

2.51 are not required, ~fv = ~0 and FSIS reduces to NSS.

Note that if Fluid/Electrostatic interactions were taken into account, an addi-

tional forcing term in the right-hand side of Eq. 2.47 would be required [169]. Be-

sides, when taking into account dielectrophoretic forces, membrane displacements

and internal energy would depend on the electrostatic field, which is not the case

here.

The treatment of Eq. 2.47 and Eq. 2.48 was detailed in Sec. 2.1. Hence, the

present section details the computation of the membrane forces ~FE , at first. Then,

the coupling procedure provided by Eq. 2.50 and 2.51 is presented for the discrete

problem.

2.2.1 Membrane discretization

The membrane of each cell is described with triangular elements in 3D. For example,

Fig. 2.5 shows the discrete membrane of one RBC. Only the cell membrane is meshed,
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Fluid domain Ωf

Ωs

~X

~es~eq

~er

~ex

~ey

~ez

Figure 2.4 – Diagram of an infinitely thin membrane (Ωs) immersed in a fluid domain
Ωf .

as highlighted in the cut view of Fig. 2.5. Besides, the surface grid is embedded in

a tetrahedral grid on which Navier Stokes equations are solved with the procedure

detailed in Sec. 2.1. Although internal and external fluids are different, they are

both treated at the same time with the method of Sec. 2.1. The membrane acts

by imposing forces on the fluid. The membrane elastic forces are split into two

components: in-plane and out-of-plane parts. As discussed in Sec. 1.4, the in-

plane contribution accounts for the area and shear resilience of the membrane while

bending resistance is involved in the out-plane forces. The two following subsections

detail the calculation of these two parts in the context of a triangulated membrane.

In plane elastic forces

The so-called Skalak law [151] provides one possible hyperelastic strain energy func-

tion Wsk of the membrane deformed in its plane:

Wsk =
Gs

4
[(λ2

1 + λ2
2 − 2)2 + 2(λ2

1 + λ2
2 − λ

2
1λ

2
2 − 1)] +

Ea

4
(λ2

1λ
2
2 − 1)2 (2.52)

Gs and Ea are material parameters and denote respectively the shear and the area

modulus. Terms λ1 and λ2 are the principal values of strain that are computed as

the eigenvalues of the Cauchy-Green strain tensor ¯̄G:

¯̄G = ¯̄F T ¯̄F = (11 +
∂~U(~s)

∂~s
)T (11 +

∂~U(~s)

∂~s
) (2.53)

with ¯̄F , the transformation tensor. The vector ~s refers to the material location

in the membrane basis (~es,~er), while ~U is the displacement field of the membrane,

expressed in (~es,~er) as well. ¯̄G is a matrix of size 2×2, defined in the membrane

basis, and symmetrical by definition. Hence, ¯̄G is defined by three components: G11,
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Figure 2.5 – Top: Example of a membrane triangular grid shown over a fluid tetra-
hedral mesh. Bottom: zoom on the membrane mesh (left) and cut-view of the
membrane grid (right).

G22 and G12: G11 and G22 are the two diagonal components of ¯̄G and G12 is the

value taken by the non-diagonal terms of ¯̄G (since G12 = G21). From G11, G22 and

G12, the two principal values of ¯̄G (λ1 and λ2) involved in Eq. 2.52 may be written

as follow:

λ2
1 =

1

2
[G11 +G22 +

√
(G11 −G22)2 + 4G2

12] (2.54)

λ2
2 =

1

2
[G11 +G22 −

√
(G11 −G22)2 + 4G2

12] (2.55)

The membrane is discretized with a first-order finite element method. From a

reference state, the membrane grid is deformed as shown in Fig. 2.6. The method

proposed by Charrier et al. [15] and detailed in the following computes for each

triangular element the nodal forces (viz. the forces at the vertices of the triangles)

induced by the strain energy Wsk stored in the membrane by an arbitrary defor-

mation of the element. At the element scale, the displacement field ~U induces a

deformation of the triangle in a local coordinates system tangential to the mem-

brane (~es,~er), as shown in Fig. 2.6. In YALES2BIO, the local coordinates system is

defined in such a way that ~es is lined up with an edge of the triangle, as illustrated in

Fig. 2.6. However, for the sake of clarity, it is better to represent the deforming tri-

angle as in Fig. 2.7. Both formalisms lead to the same result since the strain energy

is invariant by rigid body movements. The triangle deformation is induced by the

vertices displacements ~U1, ~U2, and ~U3, that move M1, M2 and M3 to M ′
1, M ′

2 and

M ′
3, respectively (see Fig. 2.7). Displacement ~U i of a vertex Mi has U i

s and U i
r for

components, according to ~es and ~er, respectively. In the finite element formalism,

the displacement ~U of an arbitrary material point ~s (see Fig. 2.7) belonging to the
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Figure 2.6 – Sketch of the deforming triangles in the membrane plane.

triangular element is approximated by ~Uh:

~Uh(~s) =

(
Uh

s (~s)

Uh
r (~s)

)
=

(
{N}T {UM

s }

{N}T {UM
r }

)
(2.56)

{~UM
s } and {~UM

r } contain the vertices displacements values such as:

{~UM
s } =



U1

s

U2
s

U3
s


 , {~UM

r } =



U1

r

U2
r

U3
r


 (2.57)

The term {N}T in Eq. 2.56 is composed by the shape functions.

{N}T =
(
φ1(~s) φ2(~s) φ3(~s)

)
(2.58)

In particular, φ are linear functions constructed in a way φi(~s) equals 1 at node i and

0 at the remaining nodes. Thus, Eq. 2.56 consists in interpolating the displacements
~U1, ~U2, and ~U3 in ~s.

Substituting Eq. 2.56 in Eq. 2.53 provides an approximation of the Green-

Lagrange strain tensor in the triangular element:

¯̄G =



G11 G12

G12 G22




=




1 + ∂{N}T {UM
s }

∂s
∂{N}T {UM

r }
∂s

∂{N}T {UM
s }

∂r 1 + ∂{N}T {UM
r }

∂r




T 


1 + ∂{N}T {UM
s }

∂s
∂{N}T {UM

r }
∂s

∂{N}T {UM
s }

∂r 1 + ∂{N}T {UM
r }

∂r



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M1

M2

M3

M ′
1

M ′
2

M ′
3

~U1

~er

~es

~Uh(~s)

~s

~S(~s)

~U3

~U2

Figure 2.7 – Diagram of a deforming membrane triangular element in the local
coordinates sytem.

It should be noted that {~UM
s } and {~UM

r } do not depend on s and r, consequently,

after some algebra the components of ¯̄G write:

G11 = 1 + 2
∂{N}T

∂s
{UM

s }+ {UM
s }

T ∂{N}

∂s

∂{N}T

∂s
{UM

s }

+ {UM
r }

T ∂{N}

∂s

∂{N}T

∂s
{UM

r },

(2.59)

G22 = 1 + 2
∂{N}T

∂r
{UM

r }+ {UM
r }

T ∂{N}

∂r

∂{N}T

∂r
{UM

r }

+ {UM
s }

T ∂{N}

∂r

∂{N}T

∂r
{UM

s },

(2.60)

and

G12 =
∂{N}T

∂r
{UM

s }+ {UM
s }

T ∂{N}

∂r

∂{N}T

∂s
{UM

s }

+
∂{N}T

∂s
{UM

r }+ {UM
r }

T ∂{N}

∂r

∂{N}T

∂s
{UM

r }

(2.61)

Note that, combining Eq. 2.52 with Eq. 2.54, 2.55, 2.59, 2.60 and 2.61, provides an

estimation of the strain energy Wsk({UM
s }, {U

M
r }), in the deformed element.

According to the principle of virtual works, an infinitesimal change in the vertices

positions ({δUM}) at which forces {FM} are applied results in a variation of the

element strain energy δWe:

δWe = {δUM
s }

T {FM
s }+ {δUM

r }
T {FM

r } (2.62)

35



CHAPTER 2. NUMERICAL MODELS FOR THE SIMULATIONS OF IMPEDANCE MEASUREMENTS

With the same convention used for nodal displacements, nodal forces {FM
s } and

{FM
r } read:

{~FM
s } =



F 1

s

F 2
s

F 3
s


 , {~FM

r } =



F 1

r

F 2
r

F 3
r




Assuming a homogeneous deformation in the element implies:

δWe = SeδWsk, (2.63)

in which Se is the element surface. Thus, Eq. 2.62 and 2.63 allow to write:

{δUM
s }

T {FM
s }+ {δUM

r }
T {FM

r } = SeδWsk (2.64)

Writing the second-order Taylor development of Wsk({UM
s }, {U

M
r }) provides the

following expression for δWsk:

δWsk = Wsk({~UM
s }+ {δ~UM

s }, {
~UM

r }+ {δ~UM
r })−Wsk({~UM

s }, {
~UM

r })

= ~∇(Wsk({~UM
s }, {~U

M
r }).

(
{δ~UM

s }

{δ~UM
r }

)

That is equivalent to:

δWsk = (
∂Wsk

∂{UM
s }

,
∂Wsk

∂{UM
r }

).

(
{δ~UM

s }

{δ~UM
r }

)

= (
∂Wsk

∂λ1

∂λ1

∂{UM
s }

+
∂Wsk

∂λ2

∂λ2

∂{UM
s }

,
∂Wsk

∂λ1

∂λ1

∂{UM
r }

+
∂Wsk

∂λ2

∂λ2

∂{UM
r }

).

(
{δ~UM

s }

{δ~UM
r }

)

= (
∂Wsk

∂λ1

∂λ1

∂{UM
s }

+
∂Wsk

∂λ2

∂λ2

∂{UM
s }

){δ~UM
s }+ (

∂Wsk

∂λ1

∂λ1

∂{UM
r }

+
∂Wsk

∂λ2

∂λ2

∂{UM
r }

){δ~UM
r }

(2.65)

Finally, comparing Eq. 2.64 and Eq. 2.65, one may obtain the nodal forces ({FM
s }

and {FM
r }) induced by the element deformation:

{FM
s } = Se

∂Wsk

∂λ1

∂λ1

∂{UM
s }

+ Se
∂Wsk

∂λ2

∂λ2

∂{UM
s }

(2.66)

{FM
r } = Se

∂Wsk

∂λ1

∂λ1

∂{UM
r }

+ Se
∂Wsk

∂λ2

∂λ2

∂{UM
r }

(2.67)

Note that {FM
s } and {FM

r } represent the nodal forces induced by the deformation

of a sole triangular element. Hence, the actual force at a membrane marker is

calculated as the summation of contributions arising from all elements to which it

belongs.

Out-plane curvature forces

Membrane bending forces derive from the Helfrich energy [63]:

Wb =
Eb

2

∫

S
(2κ− co)2dS, (2.68)
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Figure 2.8 – Construction of the local coordinates system (~nO,~ξO,~ηO) at a given
membrane marker O.

in which κ denotes the mean curvature, Eb the bending modulus and co the sponta-

neous curvature. Developements by Zhong-can et al. [184] state that the membrane

curvature force at a membrane marker O expresses:

~FO
b = Eb[(2κ

O − co)(2[κO]2 − 2κO
g + κOco) + 2∇sκO]~nO, (2.69)

where κs is the Gaussian curvatures, ∇s denotes the Laplace Beltrami operator

(surface Laplacian) and ~n refers to the membrane normal. Superscript O refers to

the marker O at which the quantities are evaluated. Note that ~FO
b is a force per

unit area.

Farutin et al. [35] proposed a method to compute the different curvatures of

Eq. 2.69. For the sake of completeness, the principal steps are presented in the

following. For more details in terms of theoretical developments, readers are referred

to the original publication [35].

First, given a membrane marker O, the normal at vertex O denoted by ~nO is

computed as the averaged normal of the neighbouring triangular elements (repre-

sented as black arrows in Fig. 2.8). Moreover, a local coordinates system centered

in O is defined by taking two vectors perpendicular to ~nO that are referred to as ~ξO

and ~ηO (see Fig. 2.8). Then, membrane nodes in the neighbourhood of O are chosen

and their coordinates (ξ,η) in the local coordinates system (~ξO,~ηO) are computed.

A marker near O whose location is ~X (expressed in (~ex,~ey,~ez)), has the following ξ

and η coordinates:

ξ = ( ~X − ~XO).~ξO

η = ( ~X − ~XO).~ηO
(2.70)
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With ~XO the coordinates of O in the global system. The quadratic approximations

of the global coordinates Xi (i=1,2,3) of the retained neighbours according to the

local coordinates (ξ,η) are then performed:

Xi(ξ, η) = XO
i + CXi

ξ |
Oξ + CXi

η |
Oη +

1

2
[CXi

ηη |
Oη2 + CXi

ξξ |
Oξ2 + CXi

ξη |
Oξη] (2.71)

Coefficients CXi |O are assessed by a classical least squares method. They repre-

sent the coefficients of the polynomial approximation of the global coordinate Xi

in the local coordinate system of node O. Representing the surface coordinates as

a function of a local curvilinear coordinate system (ξ , η) allows to use differential

geometry expressions to calculate the locals curvatures. The curvatures at node O

are given by:

κO =
1

2
tr(¯̄cO[¯̄gO]−1) (2.72)

κO
g = det(¯̄cO[¯̄gO]−1) (2.73)

With ¯̄cO and ¯̄gO depending of coefficient CXi |O such as:

¯̄gO
αβ =

3∑

i=1

CXi
α |

OCXi

β |
O,

¯̄cO
αβ =

3∑

i=1

nO
i C

Xi

αβ |
O,

(α, β ∈ {ξ, η})

(2.74)

nO
i stems from the normal vector components (~nO) in the global system. It should

be noted that ¯̄gO depends only on the first-order coefficients (CXi

ξ |
O and CXi

η |
O)

while ¯̄cO relies on second-order coefficients (CXi

ξξ |
O, CXi

ηη |
O and CXi

ξη |
O). Once κO

is evaluated for all membrane markers O according to Eq. 2.72, a last quadratic

approximation is achieved for the mean curvature κ:

κ(ξ, η) = κO + Cκ
ξ |

Oξ + Cκ
η |

Oη +
1

2
[Cκ

ηη|
Oη2 + Cκ

ξξ|
Oξ2 + Cκ

ξη|
Oξη] (2.75)

Finally, from coefficients Cκ|O, the remaining operator ∇sκO is computed as:

∇sκO = Cκ
αβ |

O[gO
αβ ]−1 − ([gO

αβ ]−1CXi

αβ |
O)([gO

γǫ]
−1Cκ

γ |
OCXi

ǫ |
O) (2.76)

Equations. 2.2.1, 2.72, 2.76 and Eq. 2.69 provide the curvature force (~FO
b ) at node

O.

2.2.2 Coupling

The total elastic forces (~FE) are obtained by summing the bending part with the

in-plane deformation part (see Sec. 2.2.1). As stated in Sec. 2.2, the elastic forces

are accounted in the fluid momentum equation (Eq. 2.47) as a source term ~fv. This

is done by the regularisation equation of Peskin [125] (Eq. 2.50). These forces are

a consequence of the membrane displacement induced by the fluid. The membrane

nodes movements are computed by the interpolation equation (Eq. 2.51). Both
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interpolation and regularisation equations involve the integration of a Dirac func-

tion allowing the change of formalism (from Eulerian to Lagrangian and inversely).

Hence, in the continuous case, exchanged quantities (forces and velocities) are sim-

ply transmitted and the coupling between solver NSS and the solid membrane is

achieved straightforwardly. However, considering the discrete problem implies a

complication concerning the Dirac function. Indeed, regarding Fig. 2.5, it should

be noted that the membrane markers (viz. the vertices of the triangular meshes)

are not conforming with the fluid discretization nodes (i.e. tetrahedra vertices).

Consequently, using directly Eq. 2.50 and Eq. 2.51 is not suited. The Dirac func-

tion is then replaced by window function that must satisfy specific properties [140]

and is the equivalent in the discrete space of the Dirac function in the continuous

space. Moreover, as reported by Pinelli et al. [127], the use of irregular fluid meshes

requires a specific adaptation of the window function.

The present section deals with such issues. After introducing the discrete form of

regularization and interpolation equations (Eq. 2.50 and Eq. 2.51), the approximated

Dirac function used for the discrete problem is presented. Then, the method of

Pinelli et al. [127] to adjust the discrete Dirac function to irregular grids is explained.

Finally, the method employed to impose a different viscosity inside the cell is dealt

with.

Discrete spreading and interpolation equations

Assuming that the fluid domain is discretized with N control volumes and the mem-

brane by M markers, one may approximate Eq. 2.50 and Eq. 2.51 by:

∂ ~Xj

∂t
(t) =

N∑

i=1

~uiδh(~xi − ~Xj(t))Vi (2.77)

and

~fv(~xi, t) =
M∑

j=1

~FE |jδh(~xi − ~Xj(t))Sm
j (2.78)

~ui and ~FE |j stems from the fluid velocity at node ~xi and the elastic force at marker
~Xj . Vi is the control volume, while Sm

j denotes the area of the membrane part

surrounding marker ~Xj . In Eq. 2.77 and Eq. 2.78, the modified dirac function δh

appears. As a matter of fact, if the membrane marker is not located on a fluid node,

the classical Dirac function is not able to transfer the fluid velocity to the membrane

and the solid forces to the fluid.

Approximation of the dirac by a window function

The main idea when designing δh is that Eq. 2.78 spreads force ~FE to the neighboring

fluid nodes and Eq. 2.77 interpolates the membrane velocity from the nearby fluid

nodes. This may be done by a function with compact support that equals zero far

from the solid membrane, so that the interaction only occurs near the solid markers.

Figure. 2.9 illustrates the compact support of δh around a marker indexed by m.

Fluid nodes, represented by a square are within the support and will have a nonzero
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m′

m

Figure 2.9 – Diagram of a membrane grid shown over a fluid triangular grid. Note
that this diagram is shown in two dimensions, for the sake of clarity. Membrane
markers are shown in bold blue points that are linked by red segments. Compact
support of the window functions related to markers denoted by m and m′ are illus-
trated by dashed circles. Fluid nodes located in the support of m are highlighted
by diamond points, while those that are in m′ support are pointed by black arrows.

contribution in the computation of marker m velocity (see Eq. 2.77). Moreover,

elastic forces (~FE) at marker m are spread over all diamond nodes of Fig. 2.9 by

Eq. 2.78. The black arrows (see Fig. 2.9) mark the fluid nodes that are placed in the

compact support of δh centred on a second marker denoted by m′. Hence, diamond

points highlighted by a black arrow are coupled with both m and m′. This illustrates

the fact that for a given fluid node ~xi, several solid markers may contribute to the

applied volumic force (~fv|i).

The approximated Dirac function δh can not be chosen arbitrarily. It must satisfy

specific conditions that are developed in the following. For an arbitrary function f ,

the window function δh is expected to lead to the approximation fh(~xo) the closest

to f(~xo) by assessing the following integral:

fh( ~xo) =
∫
f(x)δh(~x− ~xo)dxdydz (2.79)

Writing the Taylor expansion of f(~x) in the vicinity of ~xo provides the following

equation:

f(~x) = f( ~xo) +
∞∑

i

∞∑

j

∞∑

k

fxi,yj ,zk( ~xo)(x− xo)i(y − yo)j(z − zo)k
(2.80)

Multiplying Eq. 2.80 by δh(~x− ~xo) and integrating over the domain yields:

fh( ~xo) = f( ~xo)
∫
δh(~x− ~xo)dxdydz

+
∞∑

i

∞∑

j

∞∑

k

fxi,yj ,zk( ~xo)
∫

(x− xo)i(y − yo)j(z − zo)kδh(~x− ~xo)dxdydz

(2.81)
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Then, imposing fh( ~xo)= f( ~xo), one may deduce from Eq. 2.81 the following condi-

tions that δh must satisfy:

{
M0,0,0 =

∫
δh(~x− ~xo)dxdydz = 1

Mi,j,k =
∫

(x− xo)i(y − yo)j(z − zo)kδh(~x− ~xo)dxdydz = 0 ∀i, j, k
(2.82)

Terms Mi,j,k in Eq. 2.82 are the moments of the window function. Generally, only

the conditions on the moments of order 0 and/or 1 are taken into account. One

of the window functions implemented in YALES2BIO that fulfills the conditions on

the first order is the following, proposed by Peskin [124] and restricted to Cartesian

meshes of grid size hs:

δh(r) =

{
1

4hs
(1 + cos(πr

2
)) if |r| < 2

0 otherwise
(2.83)

With r = |~x−~xo|. This window function has a support of 4 grid spaces. Many other

possibilities exist for regularization, notably over 3 [140] or 2 grid spaces [52], with

more or less restrictions on the properties of the window function. The construction

of the window function is notably discussed by Peskin [125].

IBM For irregular meshes

When irregular fluid grids are considered, classical window functions like Eq. 2.83

do not comply with the conditions of Eq. 2.82. Pinelli et al. [127], using the work of

Liu and co-authors [100–102] on the so-called Reproducing Kernel Particle Method,

introduced δ̃h, a calibrated version of δh:

δ̃h(~x− ~xo) =
∑

l

∑

m

∑

n

bl,m,n(x− xo)l(y − yo)m(z − zo)nδh(x− xo) (2.84)

Equation. 2.84 is the product of a polynomial by an initial window function (δh).

The polynomial coefficients bl,m,n are set in such a way that the requirements on the

momentums of the calibrated window function are satisfied:




M̃0,0,0 =
∫
δ̃h(~x− ~xo)dxdydz = 1

M̃i,j,k =
∫

(x− xo)i(y − yo)j(z − zo)kδ̃h(~x− ~xo)dxdydz = 0

∀i, j, k, with i+ j + k ≤ P

(2.85)

, with P the order of the method. The idea of the method is that the higher P,

the closest the window function to a Dirac function. The correction of δh by a

polynomial actually enables to define the moments of the corrected window function

from those of the initial window function. Injecting Eq. 2.84 in Eq. 2.85 leads to:





∑
l

∑
m

∑
n bl,m,n

∫
(x− xo)0+l(y − yo)0+m(z − zo)0+nδh(~x− ~xo)dxdydz = 1∑

l

∑
m

∑
n bl,m,n

∫
(x− xo)i+l(y − yo)j+m(z − zo)k+nδh(~x− ~xo)dxdydz = 0

∀i, j, k, with i+ j + k ≤ P

⇐⇒

{ ∑
l

∑
m

∑
n bl,m,nMl,m,n = 1∑

l

∑
m

∑
n bl,m,nMi+l,j+m,k+n = 0 ∀i, j, k with, i+ j + k ≤ P

(2.86)

41



CHAPTER 2. NUMERICAL MODELS FOR THE SIMULATIONS OF IMPEDANCE MEASUREMENTS

We impose the moments of the zeroth, first and second order to be 1, 0 and 0,
respectively. Hence, Eq. 2.86 reduces to the following linear system:




M0,0,0 M1,0,0 M0,1,0 M0,0,1 M1,1,0 M1,0,1 M0,1,1 M2,0,0 M0,2,0 M0,0,2

M1,0,0 M1,0,0 M1,1,0 M1,0,1 M2,1,0 M2,0,1 M1,1,1 M3,0,0 M1,2,0 M1,0,2

M0,1,0 M1,1,0 M0,2,0 M0,1,1 M1,2,0 M1,1,1 M0,2,1 M2,1,0 M0,3,0 M0,1,2

M0,0,1 M1,0,1 M0,1,1 M0,0,2 M1,1,1 M1,0,2 M0,1,2 M2,0,1 M0,2,1 M0,0,3

M1,1,0 M2,1,0 M1,2,0 M1,1,1 M2,2,0 M2,1,1 M1,2,1 M3,1,0 M1,3,0 M1,1,2

M1,0,1 M2,0,1 M1,1,1 M1,0,2 M2,1,1 M2,0,2 M1,1,2 M3,0,1 M1,2,1 M1,0,3

M0,1,1 M1,1,1 M0,2,1 M0,1,2 M1,2,1 M1,1,2 M0,2,2 M2,1,1 M0,3,1 M0,1,3

M2,0,0 M3,0,0 M2,1,0 M2,0,1 M3,1,0 M3,0,1 M2,1,1 M4,0,0 M2,2,0 M2,0,2

M0,2,0 M1,2,0 M0,3,0 M0,2,1 M1,3,0 M1,2,1 M0,3,1 M2,2,0 M0,4,0 M0,2,2

M0,0,2 M1,0,2 M0,1,2 M0,0,3 M1,1,2 M1,0,3 M0,1,3 M2,0,2 M0,2,2 M0,0,4







b0,0,0

b1,0,0

b0,1,0

b0,0,1

b1,1,0

b1,0,1

b0,1,1

b2,0,0

b0,2,0

b0,0,2




=




1

0

0

0

0

0

0

0

0




(2.87)

Finally, once bl,m,n are assessed by solving Eq. 2.87, the calibrated window function

reads:

δ̃h(~x− ~xo) = [b0,0,0 + b1,0,0(x− xo) + b0,1,0(y − yo) + b0,0,1(z − zo)+

b1,1,0(x− xo)(y − yo) + b1,0,1(x− xo)(z − zo) + b0,1,1(y − yo)(z − zo)+

b2,0,0(x− xo)2 + b0,2,0(y − yo)2 + b0,0,2(z − zo)2]δh(~x− ~xo)

(2.88)

It should be noted that coefficients bl,m,n depend on ~xo, the center of the approxi-

mated Dirac function. This means that the linear system of Eq. 2.87 is solved once

for each membrane marker.

Variable viscosity coeficient

In some applications, the cytosol viscosity (νin) may differ from the suspending

fluid viscosity (νext). The internal viscosity (νin) is imposed by the use of the

method presented in the front-tracking method of Unverdi and Tryggvason [168].

An indicator function Ii is computed for each fluid node ~xi, in such a way that Ii

= 0 outside the membrane and Ii = -1 inside the cell. Hence, the viscosity field is

assessed by:

νi = νext + (νext − νin)Ii (2.89)

The indicator function is obtained by solving the following Poisson equation:

∇.[∇I] = ∇. ~G (2.90)

~G is computed by spreading the membrane normals on the fluid grid as done for the

elastic forces in Eq. 2.78:

~G(~xi, t) =
M∑

j=1

~njδh(~xi − ~Xj(t))Sm
j (2.91)

Equation. 2.90 is discretized with a finite volume method (as presented in Sec. 2.1.2)

and takes the following discrete form:

L(I)|i = D(~G)|i (2.92)

This linear system for the indicator function (Ii) is solved with the DPCG method

[105].
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Compute membrane forces

Spread membrane forces on
fluid nodes

Update
viscosity

Perform a Navier Stokes Solver (NSS) time step (see Fig. 2.3)

Interpolate velocity & advance
membrane markers

Volume conservation algorithm

~Xn

~FE |
n

~fv|
n νn

~un+1, Pn+1

~Xn+1

~Xn+1 ← ~Xn+1 + δ ~X

n← n+ 1

Figure 2.10 – Temporal loop of solver FSIS.

2.2.3 Algorithm of the Fluid-Structure Interaction solver (FSIS)

Figure. 2.10 summarizes the different steps required for solving the fluid-structure

interaction between an elastic membrane and an incompressible fluid in the solver

FSIS. At the beginning of the time step, the viscosity field is updated from the

membrane markers positions ( ~Xn) according to Eq. 2.89. Then, membrane elastic

forces are computed from ~Xn by applying Eq. 2.69 on each marker and assessing

Eq. 2.66 and 2.67 on each triangular element. Thereafter, the membrane forces

(~FE |
n) are spreaded on the fluid nodes by applying the regularization equation

(Eq. 2.78) with the calibrated window function. The source term (fv|
n) and the

viscosity (νn) being known, the fluid quantities (~u and P ) are advanced as done

in solver NSS (see Fig. 2.2), the regularized membrane source term being treated

explicitly. Finally, solid markers are updated by interpolating the velocity on the

membrane with Eq. 2.77 and using an explicit Euler time advancement scheme. An

additional step that has not been described is called ‘volume conservation algorithm’

(see Fig. 2.10), performed to correct the well-known problem of volume conservation

of the immersed boundary method [97, 125]. It is performed at the end of the time

step and is devoted to the volume conservation of the cell. It consists in solving an

optimization problem to compute the smallest markers moves δ ~X that ensure the

conservation of the cell volume. More information on this optimization problem are

available in [46, 150].

Solver FISIS of YALESBIO have been used in several publications, showing its
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ability to recover typical dynamics behaviors of red blood cells in complex flows

[72, 91, 103, 107, 110]. In the next section an example of application is given.

2.2.4 Test case: RBC flowing in a micro-capillary

Gases exchanges between tissues and the haemoglobin contained inside RBCs occur

in micro-capillaries (vessels of a few micrometers of diameter). The shape taken

by RBCs in such vessels is expected to play an important role in the exchanges of

dioxygen and carbon dioxide. Previous experimental and numerical studies revealed

several RBCs shapes in constricted channels, depending on the flow-rate and the

constriction. The reported trends state that the discocyte is maintained at low

flowrates while a parachute shape is observed for high flow regimes. In between,

RBCs may tumble or present a slipper shape [40, 117, 166]. In this section, an

illustration of the results obtained with the solver FSIS is presented. It consists

in comparing the RBC shapes obtained from different couples constriction/flowrate

with numerical results of Fedosov et al. [40].

The computations are monitored by the following dimensionless parameters:

1) The constriction χ:

χ =
Drbc

Dc
, (2.93)

involving the channel diameter Dc and a RBC characteristic size Drbc. It is defined

as the diameter of the sphere having the same surface as the cell membrane.

2) The Foppl Von Karman number FV K , that compares the membrane shear

resistance with the bending resistance:

FV K =
GsD

2
rbc

Eb
. (2.94)

3) The scaled shear rate
.
γ∗:

.

γ∗=
ρνextD

3
rbc

Eb

.
γm, (2.95)

in which
.
γm is the shear rate assessed by

.
γm = um/Dc, with um the mean velocity

in the channel.

4) The Reynolds number Re:

Re =
umDrbc

νext
. (2.96)

5) The viscosity ratio:

Y =
νin

νext
(2.97)

Imposing χ to 0.71, FV K to 2662, Re to 0.1 and Y to 1, three different
.
γ∗ are

tested (5, 15 and 25). Note that if χ, FV K , Re and
.
γ∗ are known, imposing Drbc,

ρ and Eb allows to derive um, Dc, Gs, νin, and νext. The area modulus Ea and

the spontaneous curvature co are not accounted for in the dimensionless parameters,

that is why they are kept constant in the cases considered (Ea = 31 N.m−1 and

co = 0 m−1, respectively). In the following, Eb = 3 × 10−19 Nm and ρ = 1000
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Figure 2.11 – Fluid domain used in the FSIS test case. The top picture illustrates
the geometry and boundary conditions. The source term (~Src) is represented by a
red arrow. Note that this source term is imposed on all nodes composing the fluid
domain. The cylinder has a length Lc of 91.5 µm and a diameter Dc of 9.14 µm. The
middle picture depicts the mesh used in the simulation. The bottom illustration
displays the initial velocity field.

kg.m−3. Moreover, the discocyte shape reported in [33], with a membrane area of

133 µm2 and a volume of 93 µm3 is retained and considered as the stress-free shape

in the simulations. Hence, the RBC has a characteristic size Drbc of 6.5 µm and the

channel diameter (Dc) equals 9.15 µm, since χ = 0.71. The RBC initially takes a

discocyte shape and the membrane is meshed with triangular elements whose the

typical size is 0.3 µm.

The fluid domain employed in the simulation that complies with χ = 0.71 is

shown in Fig. 2.11 (top figure). A null velocity is applied on the channel walls

(edges indicated as ‘wall’ in Fig. 2.11) and a periodic condition is set on boundaries

referred to as ‘periodic’. The fluid flow is forced by means of a constant source term

that is added in the volumic forces of the momentum equation:

Src =
8νextρum(

1
2
Dc

)2
(2.98)

Src equals the pressure loss required for imposing a mean velocity of um in the

channel, as supported by the analytical solution of the Poiseuille flow. The initial

velocity is set according to the parabolic profile of Poiseuille:

u(r) = 2um

(
1−

r2

(Dc/2)2

)
, (2.99)
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Figure 2.12 – Shapes depicted by RBCs flowing in a microcapillary defined by χ =
0.71. Top row: cut view obtained with solver FSIS. Middle row: 3D view obtained
with solver FSIS. Bottom row: typical RBCs shapes obtained by Fedosov et al.,
coming from [40]. The left, middle and right columns refer to the discocyte,
the slipper and the parachute shapes, respectively. The discocyte, the slipper and
the parachute shapes obtained with solver FSIS of the YALES2BIO software are
obtained by performing computations with

.
γ∗ equal to 5, 15 and 25, respectively

(left, middle and right columns respectively). A Reynolds number (Re) of 0.1 and
a Foppl Von Karman (FV K) of 2662 are used in these simulations.

in which u is the velocity along the channel principal axis and r is the radial position

in the channel section. The channel is meshed with tetrahedral elements having a

characteristic size of 0.3 µm (see Fig. 2.11, middle image) and the initial velocity

field is shown in Fig. 2.11 (bottom figure).

The first and the second rows of Fig. 2.12 depict the RBC shapes obtained from

the three different values of
.
γ∗ (5, 15, 25) in a cut view and a 3D view, respectively.

A discocyte shape is observed for the RBC that flows at a scaled shear rate of 5

(left column). Taking a
.
γ∗ of 15 leads to a slipper shape (middle column) while for

25, the parachute is retrieved (right column). These results are in agreement with

those of Fedosov et al. [40] who reports the same shapes for the three presented

cases. The bottom row of Fig. 2.12 shows typical shapes (discocyte, slipper, and

parachute) they obtained and good comparisons with the solver FSIS are observed.
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2.3 Electrostatic solver (ESS)

This section is devoted to the electrostatic solver (ESS) that enables the calculation

of the electrical field perturbed by an isolating cell. In the following, the mod-

elling assumptions and equations are introduced. Then, its implementation in the

YALES2BIO software is presented. Finally, solver ESS is validated by comparison

with analytical results.

2.3.1 Red blood cells in an electrostatic field

Maxwell-Ampere’s law for a linear, isotropic and homogeneous medium writes :

∇× ~B = ι0ιr(~j + ζ0ζr
∂ ~E

∂t
) (2.100)

~B and ~E are respectively the magnetic and the electrostatic fields, while ~j is the

free electric current density. ζ and ι denote respectively the permittivity and the

magnetic permeability. Indices 0 and r refer to the vacuum and the material relative

quantities. The divergence of Eq. 2.100 leads to:

∇.(~j + ζ0ζr
∂ ~E

∂t
) = 0 (2.101)

With the electrostatic assumption, Ohm’s law (~j = σ ~E) allows to rewrite the previ-

ous equation as follow:

∇.(σ ~E + ζ0ζr
∂ ~E

∂t
) = 0 (2.102)

With σ representing the material conductivity. If the electrical field ~E is constant,

Eq. 2.102 leads to a Poisson equation for the electrical potential ψ, since ~E=∇ψ.

Actually, RBCs move and disturb the electrical field, which is why ~E varies in time.

However, by performing a dimensional analysis of Eq. 2.102, one may conclude that

the unsteady term of Eq. 2.102 is negligible in such configuration [46]. Hence, the

electrical potential is obtained by solving :

∇.[σ∇ψ] = 0 (2.103)

RBCs are assumed isolating as done in previous analytical developments [53, 68],

which is not exactly true. Indeed, the RBC membrane is almost insulating depending

on the strength of the electrical field, but cytosol has a conductivity of about 0.31

S.m−1. In the present work, a zeroing conductivity is set in the volume covered by

the RBC to represent the non-conducting nature of the membrane.

2.3.2 Numerical implementation

As discussed in Sec. 2.3.1, the electrical perturbation caused by the RBC in a Coul-

ter counter is modeled with the Laplace equation for the electrical potential ψ (see

Eq. 2.103) with a vanishing conductivity coefficient (σ) inside of the membrane.
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Given the location of the membrane markers, the indicator function I is first com-

puted according to Eq. 2.90. Then, as for the kinematic viscosity ν, the conductivity

field is set as follow:

σi = σext + (σext − σin)Ii (2.104)

The assumed isolating nature of the cell is accounted by imposing σin << σext. Note

that the cell membrane location is only needed for imposing the variable conductivity

field.

Once the variable conductivity field is imposed in the domain, the Laplace equa-

tion (Eq. 2.103) is solved on a tetrahedral mesh, as for the fluid flow. The Laplace

equation is solved using a second-order operator inspired from the numerical ap-

proach of Specogna and Trevisan [153], that have better properties on irregular

meshes than the classical finite volume operator (Sec. 2.1.3). Usual conditions im-

posed on the limits of the domain are:

1) The Dirichlet boundary conditions, that are used to impose the potential on

the electrodes, for instance (see Fig. 1.4):

ψBd = bc (2.105)

The indice Bd stems from the domain limits, while bc is the imposed boundary

condition, income of the problem.

2) The Neumann boundary conditions that are generally employed for modeling

non-conducting walls of the domain:

∂ψ

∂~nBd
|Bd = 0 (2.106)

The vector ~nBd represents the vector normal to the boundary.

2.3.3 Test case: Electrical perturbation of a sphere in a

homogeneous electrical field

In this thesis, we need to calculate the electrical perturbation due to the presence

of an isolating red blood cells in a Coulter counter, as a function of its position

and deformation. Such a calculation has to be performed typically 20 times for the

passage of 1 RBC, to discretize the electrical signal in time. Hence, we need a fast

method to do so. In order to avoid re-meshing the geometry too many times, the

presence of the particle is imposed in a immersed way. In the present section, the

approach of modelling the electrical perturbation by assessing the solution of the

Laplace equation with a variable conductivity coefficient is validated by comparison

to analytical results and conformal meshes results. In particular, the resistance vari-

ation ∆R induced by a spherical particle immersed in a homogeneous electrical field

is simulated and compared with the analytical development presented in Sec. 1.3.1

(see Eq. 1.1).

The configuration is a cylindrical domain as depicted in Fig. 2.13 (top figure) on

which a voltage difference of 1.0 V is applied. The channel boundaries indicated as

‘wall’ are modelled as non-conducting walls as stated by Eq. 2.106. Three different

computations are then performed (see Fig. 2.14). In the first simulation, the Laplace
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Figure 2.13 – Illustration of the geometry (top) and mesh (bottom) used in the ESS
test case. Boundary condition are provided in the top picture, and the dimensions
D and L are taken as 50 µm and 200 µm, respectivelly. Note that the mesh size is
refined in the central region of domain with a size of 0.3 µm. The typical size of the
tetrahedra then increases to 1.5µm with a growth rate of 1.2.

equation is solved with a constant conductivity equalling 2.27 S.m−1 in the entire

domain (see the top row of Fig. 2.14). The second computation is also performed

with σ = 2.27 S.m−1, but with a spherical hole in the domain as shown in the middle

row of Fig. 2.14. The spherical hole is located at the center of the domain and has

a diameter of 5 µm. The spherical surface is assumed isolating and homogeneous

Neumann boundary conditions are imposed, according to Eq. 2.106. Finally, in

the third simulation, a variable conductivity coefficient is imposed while solving the

Laplace equation. Using the method presented in Sec. 2.3, a value of σin = 10−12

S.m−1 is imposed inside a spherical membrane of 5 µm diameter that is located at

the center of the domain (see bottom row of Fig. 2.14). The conductivity outside of

the spherical membrane is set to σext = 2.27 S.m−1, as in the former cases. It should

be noted that cases of the middle and bottom rows model the presence of the same

spherical particle, while case of the top row is used as reference for assessing the

change of resistance (∆R) induced by the particle. Cases of top and bottom rows

(see Fig. 2.14) are performed with the mesh shown in Fig. 2.13. Regarding the case

of the middle row (see Fig. 2.14) the grid is built similarly but with a hole of 5 µm

of diameter in the center of the cylinder.

The potential ψ is solved for each case discussed above and the electrical field
~E is computed as: ~E = ~∇ψ. Figure. 2.15 shows the electrical field magnitude | ~E|

for the three different cases. For the case without particle, the electrical field is
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Figure 2.14 – Illustration of the three configurations investigated in the context of the
validation case of solver ESS. The top row refers to the case without particle. In the
case illustrated in the middle row, the presence of a spherical particle is modelled
by a spherical hole in the computation domain. Note that the sphere surface is
modelled as a non-conducting boundary. Finally, in the case of the bottom row,
a vanishing conductivity coefficient is imposed inside a spherical membrane. Note
that both the spherical membrane (bottom) and the spherical hole (middle) have
diameters of 5 µm.

Case I[A] R[Ω] ∆R[Ω]

Empty 2.2275787E-05 44891.79 0.0
Hole 2.2270263E-05 44902.93 11.14

PTCL 2.2270370E-05 44902.71 10.92

Table 2.1 – Assessements of the current intensity (I), the resistance (R) and the
resistance variation (∆R) for the three different cases of Fig. 2.14. ∆R is computed
as the difference with the ‘empty’ case.

perfectly homogeneous. In the contrary, the presence of a particle disturbs ~E in its

neighbourhood (see Fig. 2.15). It is observed that the approach of vanishing the

conductivity inside a spherical membrane provides an electrical field similar to the

method that models the particle surface as a non-conducting wall.

For each computation, the current intensity I is calculated by integrating the free

current density ~j over the inlet and outlet sections of the domain (ie. the surfaces

were the tensions of 1.0 V and 0.0 V are imposed). Reminding that the current

density equals σ ~E in the electrostatic assumption, I is computed as:

I =

∫

S

~j.d~S =

∫

S
σ ~E.d~S (2.107)

50



CHAPTER 2. NUMERICAL MODELS FOR THE SIMULATIONS OF IMPEDANCE MEASUREMENTS

Figure 2.15 – Electrical field magnitudes obtained for the three different cases de-
picted in Fig. 2.14. The illustrations correspond to Fig. 2.14 in a row-wise fashion.

PTCL Hole Theory

∆R[Ω] 10.92 11.14 11.22
Error[%] 2.6 0.75 0.0

Table 2.2 – Comparison of the two approaches for modeling the resistive perturbation
caused by a spherical particle, with the theoretical result.

It is verified that the current through the inlet is equal to the current throught the

outlet. In Tab. 2.1, are reported the the current intensity I, and the resistance R

that derives from Ohm’s law with a tension equals to 1 V, for each simulation. Rows

denoted by ‘Empty’, ‘Hole’ and ‘PTCL’ refer to cases of Fig. 2.14 (top, middle and

bottom rows, respectively). ∆R, that is also provided in Tab. 2.1 is computed as

the resistance variation according to the ‘Empty’ case. Results obtained with the

two different approaches (‘Hole’ and ‘PTCL’) are close in terms of ∆R.

The analytical development of ∆R presented in Chap. 1 (see Eq. 1.1) predicts a

value of 11.22 Ω, which is close to the numerical results. In Tab. 2.2 assessments of

∆R obtained numerically are compared with the theory. An error of 2.6 % is made

using the variable conductivity approach while a difference less than 1 % is done

with a spherical hole. Whereas the case ‘hole’ is shown to provide more consistent

results, the variable conductivity approach is preferred in the following. Indeed,

errors are reasonable, and above all, a sole mesh may be used for different particle

shapes and locations in the domain.
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Dealing with rigid and spherical particles, this chapter represents a preliminary

numerical study of an Industrial Coulter counter. As a part of this chapter, the

configuration originating from ABX Micros 60 (HORIBA Medical) is introduced.

The ABX Micros 60 operating system is the starting point of all developments

made in the context of this thesis. Furthermore, this work paves the way to the

following chapter that will extend the procedure proposed for rigid spheres to the

case of deforming RBCs.

The first part (Sec. 3.1) is dedicated to the introduction of the numerical config-

uration arising from the ABX Micros 60 and the pipeline proposed to simulate the

pulse associated to the passage of a rigid sphere in an industrial Coulter counter.

Then, in a second part (Sec. 3.2), several spheres trajectories in the device are sim-

ulated on the basis of the method of Sec. 3.1. Dealing with spheres, the electrical

edge-effects are retrieved, and comparisons with experimental measurements vali-

date the modeling procedure.
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3.1 Numerical Configuration

The aim is to compute the electrical signal produced by a spherical isolating particle

passing through the industrial analyser. Depicted in Fig. 3.1, the ABX Micros 60

is a simple, compact and fully automatic instrument providing basic haematological

analyses. More precisely, RBCs, platelets and the three main types of white blood

cells are counted and sized by impedance measurements (see Sec. 1.3). For this pur-

pose, this automaton is composed of two chambers (viz. two Coulter counters). In

the chamber pointed as ‘RBC chamber’ in Fig. 3.1, platelets and RBCs are analysed

by diluting the whole blood in an electrolytic solution (ABX Minidil, commercialized

by HORIBA Medical). This set-up returns size distributions similar to Fig. 1.5A,

in which both platelets and RBCs populations are observable. WBC are also sized,

but their negligible concentration is assumed to not perturb the statistics. In the

‘WBC chamber’ (see Fig. 3.1), the blood sample is diluted in a solution containing

a lysing reagent that is in charge of destroying the RBCs. As discussed in Sec. 1.3,

this allows the differenciation of the three main types of white blood cells in a vol-

ume histogram (see Fig. 1.5B). This work focuses on the RBC chamber only. In

this chapter, the particular case where the RBC chamber is filled with a suspension

of rigid spheres is considered. It corresponds to a case notably performed in the

industry for calibrating the diagnostic instrument.

Figure 3.1 – Haematological automaton ABX Micros 60 developed by HORIBA
Medical.

As discussed in Sec. 1.4.3, simulating the entire evolution of the particle in the

device is not possible due to the separation of scales. However, the area of detection

is restricted to the micro-orifice neighbourhood and dealing with rigid spheres allows

starting the computations by depositing the rigid sphere just before the it enters the

sensing region. Hence, the option adopted is to focus on a single particle evolving

in the measurement region only. In that sense, the actual industrial geometry is

reduced to the detection area. By applying suited boundary and initial conditions,

it is shown that a reduced configuration reflects accurately what is happening in the

orifice.
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The modelling assumptions presented in Chap. 2 allow computing the particle

dynamics in the orifice separately from the electrical perturbation. That is why two

reduced configurations are introduced: the first one for computing the particle dy-

namics and a second one for solving the electrical field around the particle. Defining

these reduced configurations implies preparatory computations without particles in

the entire geometry. Indeed, the reliable boundary and initial conditions are de-

duced from the flow field and the electrostatic field stemming from simulations in

the whole domain.

In the following section, simulations for assessing the flow field (NSS0) and the

electrostatic field (ESS0) in the entire industrial geometry are presented. Then,

based on computations NSS0 and ESS0, the two reduced configurations are intro-

duced. Finally, the simulations of the particle dynamics (FSIS1) and the associated

electrical pulses (ESS1) (in the reduced configurations) are detailed.

3.1.1 Preliminary simulations in the industrial geometry

Figures 3.2A and B show the entirety and a slice cut of the fluid domain that corre-

sponds to the RBCs chamber of Fig. 3.1. The counting tank geometry presented in

Fig. 3.2 includes the RBC chamber, where the RBC suspension is stored, the aper-

ture where the detection of cells occurs, and an outlet duct. As already mentioned,

the aperture is very small compared to the whole geometry: 50 µm in diameter

and 75 µm long (see Fig. 3.2 C), while the height of the RBC chamber is of the

order of 5 cm. The diluted blood sample enters by the boundary indicated as inlet

and is vacuumed through the outlet surface (Fig. 3.2A), while the electrical field is

imposed by the electrodes highlighted in Fig. 3.2B. The origin of the coordinates

system (~ex,~ey,~ez) is located at the center of the micro-orifice. The aperture is aligned

with axis ~ex while ~ey is included in the middle slice plane shown in Fig. 3.2B, 3.2C

(~ez is perpendicular to the (~ex,~ey) plane).

Carrying Flow (NSS0)

The electrolytes generally used in Coulter counters are mostly water and typical

Reynolds numbers evaluated in industrial systems are higher than 100 (based on

bulk velocity in the aperture and diameter). Hence, the flow can be predicted by

the Navier Stokes equations for an incompressible fluid with constant kinematic

viscosity ν = 10−6 m2.s−1 and density ρ = 1000 kg.m−3. The velocity (~u) and

the pressure (P ) in the domain (without particles) are then assessed by the use of

solver NSS presented in Sec. 2.1.2. This simulation is referred to as NSS0 in the

following. The flow is solved by imposing a 7.74 × 10−9 m3.s−1 flow rate at the

inlet (see Fig. 3.2A), which corresponds to a pressure drop of 200 mbar between

the upstream and the downstream parts of the micro-orifice, in agreement with

the operating regime of ABX Micros 60. This simulation is performed on the grid

depicted in Fig. 3.3, for which a mesh refinement is performed around the aperture.

Specifically, a characteristic mesh size of 1.6 µm is imposed inside of the micro-orifice,

which allows a sufficient resolution of the flow field.
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(A)

Inlet

Outlet

(B)

Cathode

Anode

orifice

(C)

75µm

50µm
~ex

~ey

Figure 3.2 – (A) Fluid domain for red blood cells counting and sizing of ABX Micros
60 (HORIBA Medical). (B) Slice cut of the same geometry. The electrodes used
for applying the electrical field in the micro-orifice are highlighted. (C) Zoom on
the micro-orifice, where the cells are detected (indicative dimensions for length and
diameter are given).

Figure 3.3 – Mesh of the entire industrial configuration. The meshes size inside the
aperture is set to 1.6 µm and increases with a growth rate of 1.3 to 500 µm. The
counting chamber is hence described by 5M nodes.
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5 -40.0 30.0 0.0
6 40.0 30.0 0.0

Figure 3.4 – Time convergence of the velocity magnitude inside of the aperture
in simulation NSS0 that computes the flow field without particles in the entire
geometry. Picture (A) shows the evolution of the velocity magnitude |~u| according
to time, while (B) specifies the locations of the points at which the velocities are
recorded.

Time evolutions of the velocity magnitude |~u| at 6 probe points are recorded

during the simulation and the flow appears to converge after a 50 µs, as shown

in Fig. 3.4A. The different probes locations are given in the table of Fig. 3.4B.

Figure .3.5A exhibits the velocity field once the simulation is converged. Close

enough to the aperture, the flow is axisymmetric, of axis ~ex. In the following, the

choice of restricting the study to the symmetrical plane (~ex,~ey) will be made.

Electrical Field without particles (ESS0)

The electrical field in the RBC chamber is obtained by solving the Laplace equation

(see Eq. 2.103), as done in previous studies[46, 69]. Hence, solver ESS introduced

in Sec. 2.3 is used to assess the electrostatic field in the industrial geometry of

Fig. 3.2, in a simulation ESS0. Specified by HORIBA Medical, the conductivity of

the electrolyte σ is set to 2.27 S.m−1[46]. Note that the conductivity is imposed

constant in the whole domain since no particles are considered in this computation.

The electrical potential is imposed to 13.9 V on the cathode and 0.0 V on the anode

(Fig. 3.2B), as in the industrial configuration. The remaining edges of the domain

are modelled as non-conducting walls by applying a Neumann boundary condition

according to Eq. 2.106. The potential ψ is solved on the mesh of Fig. 3.3 by solver

ESS, and the electrical field ~E is computed from ψ as follows:

~E = ~∇.ψ (3.1)

Figure 3.5B shows the resulting electrical field magnitude (| ~E|) around the aperture.

In the corner of the orifice, regions of dense electrical field discussed in Sec. 1.3.2 are

retrieved. In contrast, E is more homogeneous in the core region of the aperture.

Besides, the obtained results are qualitatively in agreement with the electrical field

shown in Fig. 1.7 that originates from Kachel works [74, 75]. Note also that according
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Figure 3.5 – Velocity field (A) and electrical field (B) obtained in simulations per-
formed in the entire geometry (simulation NSS0 and ESS0). Isolines are depicted
and show that most of the variations occur in a close zone around the micro-orifice.
Three streamlines SL1, SL2, and SL3 illustrate different electrical field and velocity
field that particles may undergo depending on their trajectory.

to the theory which predicts an electrical perturbation proportional to E2, this

perturbation is expected to be extremely small when the particle is a few tens of

microns away from the aperture. This limits the interaction between the signals of

the different particles of a sample.

3.1.2 Reduced configurations

As observed in Fig. 3.5B, the geometry of the industrial Coulter counter induces an

electrical field that is concentrated in the micro-orifice. This property emphasizes

the approach of reducing the computation to the sensing region since the particle

is detected only in the micro-orifice. Limiting the computation domain to the ori-

fice involves fewer discretization nodes and thus reduces computational costs. The

shortened configurations for computing the particle dynamics and for assessing the

electrical disruption are referred to as RC1 and RC2 in the following.

Reduced configuration for the fluid flow (RC1)

The reduced domain (RC1) for the fluid flow is shown in Fig. 3.6A. The initial

velocity field and the boundary conditions on the ’inlet’ surfaces (Fig. 3.6A) are

interpolated from the time-converged velocity field obtained from the simulation in

the entire industrial geometry (NSS0). On the wall faces, a zero velocity condition

is imposed. On the outlet face, a convective outlet boundary condition is set to

ensure mass conservation. In such a way, a stationary base flow inside the aperture

equivalent to the flow simulated in the whole geometry (NSS0) is retrieved. Com-

parisons of velocity profiles arising from NSS0 and a simulation in RC1 are provided

in Fig. 3.6B. Velocity profiles from the inlet, outlet and middle sections of the ori-

fice are reported. The good agreement found between both approaches validates
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Figure 3.6 – (A) Schematic of the axisymmetric reduced configuration RC1 for com-
puting the carrying flow. Slice cut of the reduced configuration shown over a small
part of the full configuration. On boundaries indicated as Inlet, a velocity profile
interpolated from computation NSS0 is imposed. The domain is characterized by
l1=75µm, l2=130µm and l3=60µm. (B) Comparison of the velocity profiles coming
from computation NSS0 and a computation performed on the reduced configuration
RC1 without particle. The velocity profiles are assessed at the inlet (x = -37.5 µm),
middle (x = 0 µm) and outlet (x = 37.5 µm) sections of the aperture. ‘Mid’, ‘In’,
and ‘Out’ refer to the inlet, middle and outlet sections, respectively. ‘FC’ and ‘RC’
stem from the full configuration and the reduced configuration, respectively.

the use of RC1 for computing the fluid flow inside the aperture instead of the full

configuration.

Reduced configuration for electrostatic computations (RC2)

Figure. 3.7A shows the electrical potential ψ obtained from computation ESS0. From

the potential field outcoming from ESS0, the reduced configuration RC2 is defined

by relevant potential isolines. In Fig. 3.7A, isolines of ψ are shown and those which

are highlighted by black arrows are retained for extracting RC2. They correspond

to potentials of 13.05 V and 0.85 V. Figure. 3.7B depicts the reduced configuration

corresponding to the selected isolines. Computing the electrical field in RC2 is done

by imposing 13.05V and 0.85V on the cutting surfaces as depicted in Fig. 3.7B,

and applying a Neumann boundary condition on boundaries indicated as ‘Wall’ (see

Fig. 3.7B).

3.1.3 Simulation of the impedance measurements for rigid spheres

Dynamics of the particle inside of the aperture (FSIS1)

Because the flow is stationary, streamlines are considered as good approximations of

achievable sphere trajectories. Given a streamline extracted from simulation NSS0,
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(A)

13.05V 0.85V13.05V

(B)

Reduced
Configuration (RC2)

Full
Configuration

13.05V 0.85V13.05V

Wall

Figure 3.7 – (A) electrical potential obtained from the electrostatic simulation per-
formed in the entire industrial geometry (ESS0). The potential isolines are shown
in black continuous lines. The two isolines used for extracting the reduced domain
RC2 are indicated by arrows. (B) Reduced configuration RC2, shown over the full
configuration. The different boundary conditions are highlighted by arrows.

the lagrangian time (τ) of a fluid particle following this streamline is computed.

Time τ = 0 refers to the moment at which the streamline crosses the aperture

inlet section (x = -37.5µm). This way, negative times refer to the upstream part

of the aperture while positive times are related to the particle evolution inside of

the orifice, and beyond. Then, computations of the particle dynamics start by

placing the sphere in RC1, on the selected streamline at the location corresponding

to τ = -5 µs (as illustrated in Fig. 3.8). It should be noted that the particles are

not enforced to follow the streamlines (small deviations are observed in practice).

Indeed, they are only needed to manage the particle path in the aperture. Rigid

spheres are modelled with a spherical membrane of diameter 5 µm. The YALES2BIO

solver is dedicated to deformable particle, so that rigid spheres are seen as viscous

capsules with membranes having high elastic moduli: Gs, Ea, Eb, co and νin are

set to 2.5×10−3 N.m−1, 2.5 × 10−1 N.m−1, 3.0 × 10−19 J, 0 and 50 × 10−6 m2.s−1

respectively, which ensures that the particle remains spherical during the simulation

(variations in diameter were less than 1 %). The particle dynamics is then solved

using solver FSIS that is detailed in Sec. 2.2 in a simulation referred to as FSIS1.

Note that the external viscosity νext and the fluid density ρ are imposed as in
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Figure 3.8 – Defining the particle initial position from a streamline. A streamline is
extracted from NSS0 in such a way it passes through a chosen point (indicated as SL
extraction point, in the graph). Then the particle initial location for computation
FSIS1 is on the extracted streamline 5 µs before the orifice inlet section. This is
illustrated for two streamlines SL1 and SL3 for which extraction points are taken as
(0 , 0, 0) and (0, 20µm, 0), respectively.

computation NSS0.

Electrical Field around the particle (ESS1)

Computations of the electrical perturbations are performed once the simulation of

particle dynamics inside the micro-orifice (FSIS1) is achieved. First, a series of mem-

brane positions is stored (typically every microsecond) from simulation FSIS1. From

the particle position predicted by the dynamics simulation FSIS1, a variable con-

ductivity coefficient is imposed in the reduced domain RC2 by using of the method

detailed in Sec. 2.3. The assumed isolating property of particles is accounted for

by imposing a vanishing conductivity coefficient inside of the membrane. More pre-

cisely, an internal conductivity σin of 10−12 S.m−1 and an external conductivity σext

of 2.27 S.m−1 (value used in ESS0) are set. Finally, for each particle position of in-

terest, the solver ESS is run on RC2 with boundary conditions indicated in Fig. 3.7

for assessing the electrical field disturbed by the particle. An example is shown in

the middle illustration of Fig. 3.9 which shows a typical | ~E| around a spherical

particle coming from the simulation of the dynamics (left illustration). This type

of simulation is now referred to as ESS1.

Reconstruction of the electrical signal

From the electrical field ~E (see Fig. 3.9 middle picture), the resistance of the system

is calculated, and compared with the resistance of the system without particle (com-

putation ESS0). This yields ∆R, the resistance variation caused by the presence of
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T ime

∆
R

Electrostatic
simulation (ESS1)

Particle dynamics
simulation (FSIS1)

Pulse
construction

Figure 3.9 – Reconstruction of the electrical perturbation from the particle dynamics
inside the aperture (FSIS1). The left figure shows typical sphere following positions
in the micro-orifice over the velocity field. A membrane geometry coming from FSIS1
is used in an electrostatic simulation (ESS1) (see the middle figure). From the
electrostatic simulation, the electrical perturbation ∆R is computed (right figure).
Repeating this process for several consecutive membrane positions from FSIS1, the
electrical pulse is built point by point.

the particle in the electrical field. An example of ∆R computation is provided in the

test case of Sec. 2.3.3. Hence, repeating this process (ESS1 + ∆R calculation) for

consecutive membrane positions inside the aperture allows the construction of the

complete electrical perturbation over time, as shown in Fig. 3.9 (see right picture

of Fig. 3.9).

3.1.4 Summary of the entire procedure

Tackling the simulation of the electrical print of a rigid sphere in an industrial Coul-

ter counter is allowed by a shortening of the computation domain. This reduction

implies a prior knowledge of electrical and flow fields in the entire geometry. Hence,

the first steps of the proposed numerical pipeline (summarized in Fig. 3.10) are

the computations NSS0 and ESS0, that are dedicated to simulations in the entire

geometry of the flow field and the electrostatic field, respectively. Then, the sim-

ulation of the particle dynamics (FSIS1) is performed in a reduced configuration

RC1 on which are applied boundary and initial conditions consistently with the flow

field simulated in NSS0. The sphere is initially placed 5 µs away from the aperture

entrance on a streamline extracted from NSS0. From FSIS1, N successive positions

of the particle are used in N simulations ESS1. Computations are done in a re-

duced configuration RC2 that complies with potential isosurfaces of ESS0. Note

that potential values related to the isosurfaces involved in the extraction are used as

boundary conditions of RC2. In a simulation ESS1, a vanishing conductivity is set

in the part of RC2 that is covered by the particle position arising from FSIS1, while

the conductivity employed in ESS0 is used in the remainder of RC2. Finally, the

resistive perturbation (∆R) is obtained by comparing RW OP , the resistance without

particle stemming from ESS0, with RW P , the resistance with particle obtained from

each ESS1 calculation (see Fig. 3.10).
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Case x [µm] y[µm] z[µm]

1 0 0 0
2 0 5 0
3 0 10 0
4 0 12.5 0
5 0 15 0
6 0 16 0
7 0 17 0
8 0 18 0
9 0 19 0
10 0 20 0

Table 3.1 – Streamlines extraction points considered in the simulations.

3.2 Electrical pulses as a function of the spheres

trajectory

Using the method detailed in Sec. 3.1 and summarized in Fig. 3.10, several spheres

trajectories in the aperture were tested. In particular, 10 streamlines are extracted

from the simulation NSS0, in such a way that they pass through points listed in

Tab. 3.1. Examples of extracted streamlines are shown in Fig. 3.5, in which SL1, SL2,

and SL3 refer to cases 1, 6, and 10 of Tab. 3.1, respectively. It should be noted that

computations NSS0 and ESS0 (see Fig. 3.10) are preliminary simulations performed

only once to characterize the flow and the electrical signal without particles. In

other words, NSS0 and ESS0 are performed only once and remain valid for all cases

of Tab. 3.1.

Using the IBM requires a fluid mesh size that equals the membrane mesh size

[127]. In the simulations, the spherical membrane of 5 µm of diameter is meshed with

triangles having a characteristic size of 0.3 µm. Considering computations FSIS1,

the reduced configuration RC1 is meshed with a refinement of 0.3 µm around the ex-

pected trajectory (approximated by the streamline). That means ten different grids

are needed for tackling the 10 different cases of Tab. 3.1. For instance, Fig 3.11A

shows the grid used for case 1 in run FSIS1. Solver ESS is stationary and computa-

tions ESS1 represent only a small portion of the total computational cost. That is

why the choice was made to perform all computations ESS1 on a unique well-refined

grid adapted to all cases and shown in Fig. 3.11B. In this grid of RC2, the charac-

teristic mesh dimension is downsized to 0.3 µm around all streamlines of Tab. 3.1.

Electrical pulses of Fig. 3.12A and the corresponding spheres trajectories of

Fig. 3.12B arise from cases of Tab. 3.1. For a better visualisation, cases 2 and

3 are not represented in Fig. 3.12A, because variations in terms of electrical sig-

natures are small between cases 1 and 4. The pulse duration is found to increase

with the proximity to the aperture wall. As illustrated by SL1, SL2, and SL3 in

Fig. 3.5A, a particle following a near-wall trajectory experiences lower velocities

than on a central path. Hence, when evolving in the neighbourhood of the aperture
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(A) (B)

Figure 3.11 – Meshings of RC1 (A) and RC2 (B). The grid shown in (A) is devoted to
the FSIS1 computation of a sphere following a central trajectory. The RC2 meshing
of illustration (B) is used for all simulations ESS1 in this work.
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Figure 3.12 – Impedance pulses obtained numerically from spheres by considering
the different streamlines of Tab. 3.1. Picture (A) shows the resistive perturbations
obtained by the use of the proposed pipeline (see Fig. 3.10). Figure (B) depicts the
sphere trajectories, outcomes of simulations FSIS1.

edges, the sphere spends more time in the sensing region, which induces a longer

pulse. A flat velocity profile is present in the core region of the micro-orifice. This

is illustrated by spaced velocity isolines in the central region of the aperture (see

Fig. 3.5A), and by the velocity profiles in Fig. 3.6B. Such a flow explains the small

variations in terms of pulse durations between cases 1 and 4. In the contrary, by the

walls, the velocities decrease rapidely (see Fig. 3.5A and Fig. 3.6B), thus explaining

the substancial differences of pulse lengths from case 5 to case 10.

3.2.1 When the electrical field shapes the pulse

In the case of rigid spheres, the shape factor fs is constant so that a linear rela-

tion between the squared electrical field E2 and the electrical perturbation ∆R is
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Figure 3.13 – Comparison between the squared electrical field magnitude E2 along
the particle trajectory with the resistive perturbation obtained from rigid spheres.
Each quantity ψ(x) is scaled as : φ•(x) = φ(x)/φ(x = 0), with φ ∈ [∆R,E2]. ∆R•

and (E2)• are graphed according to the particle axial position in the aperture (viz.
x). (A), (B) and (C) stem from cases 1, 6 and 10 of Tab. 3.1, respectively.

expected:

∆R =
E2fs

ρei2
Vp, (3.2)

with Vp the particle volume, ρe the fluid resistivity and i the intensity. The aim is to

validate the numerical simulations with the analytical trends. To do so, from simu-

lation ESS0, the electrical field E is interpolated along the trajectories of Fig. 3.12B.

In Fig. 3.13, the scaled squared electrical field, and the scaled resistance variation

are shown for cases 1, 6 and 10. A good agreement between E2 and ∆R is found,

that confirms the linearity claimed by Eq. 3.2 [74]. Considering the other trajecto-

ries, the same agreement is observed (not shown). Note that this agreement is not

obvious, as variations of E at the scale of the particle are not accounted for in the

analytical formula.
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3.2.2 Comparison with experimental data

Numerical results were shown to be consistent with the analytical statement of

Kachel [74, 75]. In the following, the results obtained with the proposed pipeline

are compared with experimental measurements obtained from the analysis of a

polystyrene latex bead sample. Such spherical particles have the same size than

in the simulations and are assumed undeformable and isolating.

Experimental acquisitions

With the aims of validating the numerical pulses of Fig. 3.12A, experimental signals

were recorded during the analysis of a latex bead sample by an ABX Micros 60

(simulated devise, see Fig. 3.1). Latex beads have a well-controlled diameter of 5

µm, with a typical tolerance margin around 3 %. When the sample is presented to

the ABX Micros 60, a needle withdraws a drop from the sample tube. Moved by

an electrical motor, the needle distributes the collected volume in the two chambers

(see Fig. 3.1) for analysis. In the ‘RBC chamber’, the sample is diluted by a factor

1/15000 in the ABX Minidil electrolytic reagent (HORIBA Medical). Finally, a

vacuum pump aspirates the diluted suspension through the micro-orifices of both

chambers while an electrostatic field is applied by electrodes. Remind that this

study focuses on the RBC analysis, that is why the electrical signals are recorded

for the ‘RBC chamber’ only. Note that in the ‘RBC chamber’, the pressure drop

ensuring the flow and the electrical potential imposed on the electrodes agrees with

the numerical set-up previously presented (see Sec. 3.1.1). This is a crucial point for a

direct comparison of the signals over time. During the analysis, the terminal voltage

is amplified by the ABX Micros 60 hardware system and given as an input of an in-

house LabVIEW code. Increases of the electrical tension ∆U (ie. electrical pulses)

are recorded with this set-up. Figure. 3.14 depicts the recorded signals according to

time. In ABX Micros 60, the measurement sequence lasts about 16 s, which makes

pulses of a few tens of µs undistinguishable in such representation. It is preferable

to represent the acquisition by centring the pulses in time as done in Fig. 3.15.

On this view of the experimental acquisition, ‘M-shaped’ and ‘bell-shaped’ pulses

are recognisable. Incoherent signatures are observed among the recorded electrical

prints. The latter can be explained by several particles crossing the sensing region

at the same time (also called coincidences), but also by bubbles vacuumed through

the aperture. For example, bubbles may arise from the electrodes and are generally

much bigger than particles, thus generating pulses having an amplitude larger than

the bounding box of the graph (see Fig. 3.14 and Fig. 3.15). However, the conception

of industrial devices makes them infrequent.

Superimposing results from experiments with simulations

In this part, numerical pulses are compared with experimental data. Stating that

the pulse duration contains an information on the particle trajectory, the choice

was made to compare the predicted pulses of Fig. 3.12 with experimental pulses of

Fig. 3.15 having almost the same duration. The pulse duration is measured by the
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Figure 3.14 – Impedance pulses recorded during the analysis of a latex beads sample
by an ABX Micros 60 (HORIBA Medical). The top illustration depicts the entire
acquisition over 16 s, while the bottom picture shows a 3.5 ms sequence of the full
acquisition and 4 pulses appear more clearly.

metric W (for width) that is defined as follow:

W(thresh) = T1 − T0 (3.3)

Regarding the definition of instants T0 and T1 provided by Fig. 3.16,W quatifies the

time spent by the electrical perturbation above a given threshold [183] (see thresh

in Fig. 3.16). The choice of a threshold intersecting the ascending and descending

slopes of the pulse is crucial for W to measure relevantly the cell occupation time

in the sensor.

Converting the experimental tension pulses to resistive pulses is not straight-

forward because of signal treatments performed by the ABX Micros 60 hardware

system. Therefore, experimental and numerical data are scaled in amplitude be-

fore comparisons. Considering the experimental acquisition, the tension pulses are

scaled with the mean of the ‘bell-shaped’ pulses maximum ∆Um|bs. ‘Bell-shaped’

signatures are generated by centred trajectories and were illustrated in Fig. 1.13A.

They can be extracted from the entire acquisition by the use of a convenient pulse

duration threshold. For instance, computing W(0.5V ) for all pulses of Fig. 3.15,

and keeping only those that have a duration (viz. W(0.5V )) below 17.0 µs renders
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Figure 3.15 – Impedance pulses recorded during the analysis of a latex beads sample
by a ABX Micros 60 (HORIBA Medical). For a better overview on the recorded
electrical signatures, the pulses are centred in time in this representation.

T0 T1

thresh

T ime

Figure 3.16 – Sketch of T0, T1 required for computing the W metric.

‘bell-shaped’ pulses (in this case). A simpler and more general method providing

the extraction of ‘bell-shaped’ pulses is presented in Chap. 5. Regarding numerical

resistive pulses of Fig. 3.12A, they are scaled with the maximum of case 1 (denoted

by ∆Rm|bs), which depicts a ‘bell-shape’. In summary, achieving the scaling proce-

dure converts each experimental tension pulse ∆U(t) and each numerical resistive

pulse ∆R(t) (functions of time) to dimensionless electrical disruptions ∆U∗(t) and

∆R∗(t), respectively. More precisely, ∆U∗(t) and ∆R∗(t) writes:

∆U∗(t) =
∆U(t)

∆Um|bs

, ∆R∗(t) =
∆R(t)

∆Rm|bs
(3.4)

A width computed from a pulse scaled as stipulated by Eq. 3.4 (∆U∗ or ∆R∗)

is relative to the ‘bell-shaped’ maximum, viz. ∆Um|bs or ∆Rm|bs, depending on

the source (experiment or simulation, respectively). For the sake of clarity, pulses

durations computed from ∆U∗ or ∆R∗ are denoted by Wr in the following. Notice
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that Wr may be computed directly from original pulses ∆U and ∆R with:

Wr(thresh′) =W(thresh′ ×∆Um|bs), (3.5)

or

Wr(thresh′) =W(thresh′ ×∆Rm|bs), (3.6)

respectively. The duration Wr is computed for each experimental and simulation

pulses, with thresh′ equal to 0.5. Given a pulse duration (Wr) derived from a

numerical data, experimental signatures having the same length, with a tolerance

margin of 1 µs are extracted for comparison. Figure 3.17 displays the numerical

results superimposed with experimental pulses of corresponding Wr, for the eight

cases shown in Fig. 3.12. A good agreement is found between the numerical results

and the experimental observations. Pulses that display a ‘bell-shape’ are the shortest

(see Fig. 3.17A and B), while those having a ‘M-shape’ are the longest (see Fig. 3.17F,

G and H). In between (see Fig. 3.17C, D and E), the electrical signatures depict a

plateau.

3.3 Conclusion

This chapter was devoted to the simulations of rigid beads in Coulter counters.

Dealing with undeformable spheres is a simple case since their initial state in the

computations are known, thus allowing to focus the simulations on a restricted

zone around the orifice. In particular, the electrical field is concentrated around

the aperture so that it is sufficient to start the computation 5 µs before the orifice

entrance in order to properly describe the electrical pulse.

The proposed method is a sequence of computations in which the sphere dy-

namics is solved in a Fluid-Structure Interaction (FSI) simulation and the electrical

perturbation in several electrostatic calculi. Remind that the FSI solver (FSIS) im-

plemented in YALES2BIO is devoted to highly deformable cells. Hence the sphere

rigidity in the FSI computation is ensured by significant elastic modulus for the

membrane and a substantial internal viscosity.

Several spheres trajectories are simulated and results are shown to retrieve the

linearity between the pulse and the squared electrical field, as in the theory. Besides,

the simulations are in good agreement with experiments made with rigid latex beads.

However, the presented pipeline is not suited to deformable particles. Indeed, in

such cases, there is a need for computing the deformations occurring in the upstream

part of the aperture so that depositing the particle 5 µs before the orifice inlet section

is not relevant. Tackling the simulation of the deformable particle is the purpose of

the following chapter.
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Figure 3.17 – Comparisons of simulated pulses for the case of spheres with experi-
mental pulses coming from the analysis of a latex bead sample. Graphs A, B, C, D,
E, F, G and H refers to cases 1, 4, 5, 6, 7, 8, 9 and 10, respectively (see Fig. 3.12).
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The proposed method for handling the numerical simulation of deformable par-

ticles in an industrial Coulter counter gave rise to a research article1.

Chap. 3 focuses on the introduction and the validation of a method enabling the

simulation of rigid and spherical particles in Coulter counters. When considering

rigid spheres, the hydrodynamic loads seen by the particle before it enters in the

detection area does not impact its shape and the orientation of the sphere does not

matter. Thus, what happens before the orifice is neglected, which allows to start

the computations by placing the sphere near the aperture entrance. This is only

valid when dealing with spherical and rigid particles. In contrast, RBCs (that are

aspherical and deformable) can not be treated with this approach. As a matter of

fact, deformed RBCs were observed before they enter in a constricted channel [75]

(see Fig. 1.10). Hence, starting the simulations by placing a RBC at rest just before

the orifice is irrelevant.

1Numerical simulation of deformable particles in a Coulter counter. International Journal for Nu-
merical Methods in Biomedical Engineering, aug 2019
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On the one hand, simulating the RBC evolution in the upstream part of the

aperture is required to accurately reproduce the cell dynamics in Coulter counters.

On the other hand, taking into account that part of the geometry induces far too

long computations (see Sec. 1.4.3). In this context, the first section of the present

chapter (Sec. 4.1) introduces a method to tackle such simulations with reasonable

computational costs. This original strategy is based on the pipeline of Fig. 3.10 but

adds a specific computation that accounts for the upstream dynamics of the cell.

Section. 4.2 shows how this improved pipeline can be used to decrease the overall

computational time (compared to a brute force strategy where the whole Coulter

counter is computed) and specifies the conditions under which a relevant simulation

can be performed. Finally, Sec. 4.3 presents numerical results for deformable RBCs

in a ABX Micros 60 (see Fig. 3.1) and compares the results with both theoretical

predictions and experimental data. The accuracy of the method is then illustrated,

and the variety of pulses discussed in Chap. 1 is associated with various RBC dynam-

ics in the aperture. Furthermore, this numerical method is shown to provide useful

information about the shape factor in the presence of deformation and rotation of

cells.

4.1 Numerical Pipeline

4.1.1 Overview of the numerical challenge

This section focuses on the principal issues associated with the simulation of an

impedance pulse generated by a deformable particle in a Coulter counter and pro-

vides an overview of the method proposed to achieve this task.

As for the study dealing with the rigid sphere case (Chap. 3), the operating

regime of ABX Micros 60 (HORIBA Medical) is used in the present chapter. Ex-

amples of electrical and velocity fields obtained by numerical simulations in this

industrial configuration were shown in Chap. 3 (see Fig. 3.5A and 3.5B). Inside

the micro-orifice, the electrical field is very large due to the flux conservation law;

this is where particles are detected. The aperture allows concentrating the electrical

field so that the resistance perturbation associated with the passage of a particle is

large. Besides, the field decreases rapidly when getting out of the aperture, so that

a microscopic particle is not detected outside of the orifice, which allows the sizing

of cells one by one if the sample is sufficiently diluted. Due to the contraction of

the geometry, the velocity inside the aperture is large, which yields high-throughput

measurements but also generates high-velocity gradients and viscous stresses. In

particular, high shear stresses are retrieved near the aperture walls. Due to these

shear stresses, deformable particles such as RBCs may undergo rotational motions

and complex deformations [91]. Before entering in the orifice, the velocity magnitude

raises over a short distance, causing large longitudinal strain, so that RBCs align in

the direction of the strain and elongate to a prolate ellipsoid shape, as reported by

Kachel [74] and Gibaud [46]. Far from the aperture, velocity gradients are negligible,

and no deformation is expected.

The industrial geometry may be conceptually divided into three parts, as de-
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picted in Fig. 4.1. Indeed, the RBCs are first transported without deformation in

the biggest part of the geometry (Part A). Then, they are stretched just before the

aperture entrance by an extensional flow field (Part B). Finally, RBCs are deformed

in the micro-orifice while disturbing the electrical field (Part C). Figure 4.1B reports

the characteristic RBCs transit time in those three parts in the ABX Micros 60. In

the method presented in the following, the choice was made to neglect Part A be-

cause no deformation nor electrical perturbation is expected. Thus, only Parts B and

C are considered for the modelling. However, as shown in Fig. 4.1 B, the second part

involves a time scale that is larger than the third one by several orders of magnitude.

Therefore, instead of simulating the particle evolution in the whole domain where

deformations occur (Parts B and C), we propose to split the calculation into two

simulations. First, a simulation of the stretching of the cell by a relevant extensional

flow is considered. This simulation is referred to as FSIS0. It predicts the elongation

happening in Part B of the geometry. A variable strain rate that mimics that seen by

the cell is imposed. It is extracted from the first simulation NSS0 (see Chap. 3), per-

formed on the entire geometry without particles. The calculation in the extensional

flow configuration FSIS0 yields a deformed particle, that is used in the computa-

tion of the particle dynamics inside the measurement region (FSIS1 introduced in

Sec. 3.1.3) corresponding to Part C. The particle stretched after FSIS0 is placed near

the orifice entrance in the reduced configuration of the whole geometry (RC1) that

is a restricted region around the aperture, in order to reduce the computational cost

of FSIS1. Finally, the electrical perturbation is computed by performing a series

of electrostatic simulations (ESS1) using several particle positions extracted from

FSIS1. The whole procedure is sketched in Fig. 4.2. It represents an improvement

of the pipeline of Fig. 3.10 with an additional simulation (FSIS0) that computes the

upstream dynamics. In the following, solely the case of RBCs is handled. However,

the pipeline displayed in Fig. 4.2 may be applied to any deformable particle.

Simulation NSS0, ESS0, FSIS1, and ESS1 having already been presented (see

Chap. 3), only FSIS0 is described in the following. When considering an aspherical

and deforming particle, the initial orientation of the particle in FSIS1 must be

specified. This point is also detailed in the following.

4.1.2 Extensional configuration setup

Assumption of an axisymmetric extensional flow in the upstream part

It is first shown that particles flowing in a Coulter counter are first subjected to a

purely extensional flow before entering in the aperture. From the simulation per-

formed in the whole domain (NSS0), three streamlines passing at different distances

from the aperture edges are extracted. More precisely, the selected streamlines are

chosen such as they pass through points located in the aperture at different distances

from the wall: (0,0,0), (0,15,0) and (0,20,0), coordinates given in µm. Respectively

denoted by SL1, SL2 and SL3, the streamlines were depicted in Fig. 3.5 in Chap. 3.

The streamlines curvilinear coordinate system (~es, ~er, ~ez) is defined in the following

way: ~es is aligned with the streamline; ~er is perpendicular to the streamline and

belongs to the plane (~ex, ~ey) and ~ez = ~es ∧ ~er. Time τ is established from the La-
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(A)

Part C

RBC deformation +

electrical perturbation

Part B

RBC deformation without

electrical perturbation

Part A

RBC transport

without deformation

(B)

Part Time Scale
A 50s

B 12ms

C 20µs

Figure 4.1 – (A) Schematic of the industrial geometry, divided in three parts de-
pending on the existence of particles deformation and the impact on the electrical
field. In Part A, the RBC is simply transported without deformations. In Part
B, the particle may undergo deformations but is far from the detection area. In
Part C, the RBC is deformed and disturbs the electrical field. (B) Table presenting
characteristic time scales for these three parts, for the case of an ABX Micros 60
(HORIBA Medical).

grangian coordinates system of a fluid particle moving along the selected streamline,

as done in Sec. 3.1.3. Remind that time τ is negative before the aperture entrance (x

< 37.5 µm), and positive after the orifice inlet section. If the flow is an axisymmetric

strain flow in the s direction, we should have ∂Us

∂z = -2 ∂Uz

∂z = -2 ∂Ur

∂r .

The velocity gradients in the curvilinear coordinates system are computed and

are shown against τ in Fig. 4.3. Regarding the streamline SL1 which crosses the

aperture center, Fig. 4.3A shows that
∂Uz

∂z
perfectly equals

∂Ur

∂r
for all the upstream

part of the aperture. This equality remains valid for the other streamlines SL2 and

SL3 except for very small negative values of τ (viz. except very close to the aperture

inlet). From these observations, the assumption that a particle moving along a

streamline behaves as in an axisymmetric and purely extensional flow up to -12 µs

is made. This assumption is the basis of the FSIS0 simulation type described in the

next section.

Extensional configuration setup (FSIS0)

For part B, where the RBC is deformed without impacting the electrical field, a

fluid-structure interaction simulation is performed in a simplified domain used to

impose an axisymmetric strain flow. The RBC is supposed to travel in part B along

the streamline at the surrounding fluid velocity. The particle is initially placed at the

center of a cylindrical fluid domain with possibly a non-zero initial orientation with
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Figure 4.3 – Time evolution of the velocity gradients observed by a particle moving
along the three different streamlines depicted in Fig. 3.5, as predicted from the
simulation performed on the entire industrial configuration. The graphs A, B and
C correspond to the streamlines passing by points (0, 0, 0), (0,1 5 µm, 0) and (0, 20
µm, 0), and are denoted by SL1, SL2 and SL3 in Fig. 3.5, respectively.
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Inlet

Inlet

D

l

OutletOutlet

~es

~er

~ez

θsl

Streamline

Figure 4.4 – Extensional configuration scheme (simulation FSIS0). The particle is
initially placed at rest in the center of a cylindrical fluid domain. The cylinder
diameter D and length l are respectively equal to 30µm and 50µm. Boundary
conditions that insure an extensional velocity field are set according to Eq. 4.1.

respect to axis ~es, as sketched in Fig. 4.4. From the time evolution of the stretch rate

obtained for a particular streamline (Fig. 4.3), the following time varying boundary

condition is imposed on the lateral boundary (r2 + z2 =
D2

4
, s in [-

l

2
,
l

2
]) of the

cylinder:

~u =
∂Us(t)

∂s



s

− r
2

− z
2


 (4.1)

Convective outlet boundary conditions are imposed on the two circular faces s =

-l/2 and s = l/2. According to the axisymmetric extensional assumption discussed

previously, the particle stretching is performed until 12 µs before the aperture en-

trance. A discussion on the elongation starting point is provided in a following

section. Note that the external viscosity νext and the fluid density ρ are imposed as

in computation NSS0 and FSIS. Of course, the RBC parameters (νin, Gs, Ea, Eb,

co) employed in FSIS0 and FSIS1 must be consistent.

4.1.3 Initial state of a deformable particle in FSIS1

Once stretched during simulation FSIS0, the particle dynamics inside the micro-

orifice is solved in simulation FSIS1. Contrary to the case of rigid spheres (see

Chap. 3), the RBC orientation at the beginning of FSIS1 must be specified. The

elongated cell is initially placed on the selected streamline at the point corresponding

to time -12µs in a reduced configuration of the industrial geometry (RC1). The

particle orientation θsl (see Fig. 4.4) at the end of the stretching step is recorded

and applied as the initial angle of the particle with respect to the streamline for the

dynamics simulation.
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4.2 Validation

The pipeline detailed in the last section was first tested as explained in this section.

From the computation NSS0, the streamline shown in Fig. 4.5A (SL2 in Fig. 3.5)

is extracted and different simulations varying the initial conditions are performed.

The computed cases are summarized in Fig. 4.5B. In a first study, which corresponds

to cases 1 to 4, the impact of the RBC starting time (or the distance from the

aperture at which the cell is deposited, see Fig. 4.5A) on its dynamics and the

resulting impedance pulse is dealt with. For this study, the particle stretching in the

extensional configuration (Simulation FSIS0) is bypassed and the RBC is dropped

directly on the streamline at different positions, in a full simulation FSIS1. The

initial positions are related to times corresponding to the lower bounds reported in

the ‘FSIS1’ column of Fig. 4.5B. Then, the capability of the extensional simulation

FSIS0 to reproduce the dynamics before the aperture is assessed. More precisely, as

introduced in Sec. 4.1, the RBC is first stretched in an extensional flow simulation

FSIS0, then its dynamics inside the orifice is solved in a simulation FSIS1, the

final RBC state from FSIS0 being used as an initial condition for FSIS1. This

runs sequence corresponds to case 5 in Fig. 4.5B and represents the same physical

configuration as case 1. On the contrary, cases 2-4 denote different initial locations

of the RBC. Note however that the final time (τ=18 µs) is the same for all cases.

All cases of Fig 4.5 B were computed using the same RBC. The membrane pa-

rameters (required in Eq. 2.52 and Eq. 2.69) are imposed as: Gs=2.5× 10−6 N.m−1,

Ea=2.5× 10−1 N.m−1, Eb=6.0 × 10−19 J, c0=0. All parameters are in agreement

with the range of measurements provided in the literature [4, 20, 107]. Density

variations between the internal fluid and the suspending medium are neglected since

some test cases designed to assess the impact of higher density inside the RBCs have

shown negligible effect (see App. A). In the studied configuration (ABX Micros 60,

HORIBA Medical) the sample analysis is performed at ambient temperature (21°C).

Hence, as measured in [79], higher values of internal kinematic viscosity are encoun-

tered instead of the physiological value of 6.0 × 10−6 m2 s−1 at 37 ◦C. Deduced

from Kelemen et al.’s measurements [79], an internal viscosity of 18.0 × 10−6 m2

s−1 would be imposed. However, with the aim of challenging the pipeline in a con-

figuration where the RBC is more deformable, the internal viscosity was set to 10.0

× 10−6 m2 s−1 (for this validation part). The membrane was discretized with trian-

gular elements with a characteristic size of 0.3 µm. The initial RBC orientation θsl

with respect to the streamline (Fig. 4.7) is chosen as 0.43 rad for all cases excepted

for run 5-FSIS1, where the outcome from run 5-FSIS0 was used. This problem is

symmetric with respect to the (~ex, ~ey) plane, so that the orientation is only defined

by an angle in this plane.

Using the IBM requires a fluid mesh size equal to the membrane mesh size

[125, 127]. Hence, for computation FSIS0, the mesh size is simply imposed to 0.3µm

in the whole cylinder (Fig. 4.6) while for FSIS1, a refinement of 0.3µm is achieved

around the streamline as previously stated (Sec. 3.2).

For cases 1 to 4, the RBC starting position was willingly placed relatively far

from the aperture entrance. A wider reduced configuration is used for these specific
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aperture walls
streamline

(B)

Case FSIS0 (µs) FSIS1 (µs) Cost (CPU-hour) ǫ̇0 (s−1)
1 ø [-517 , 18] 16400 1000
2 ø [-330 , 18] 12000 2000
3 ø [-130 , 18] 6500 5000
4 ø [-58 , 18] 4600 12000
5 [-517 , -12] [-12 , 18] 2000 1000

Figure 4.5 – Summary of the cases performed to assess the effect of the RBC ini-
tial position. (A) Initial RBC starting positions along the selected streamline.The
streamline corresponds to SL2 (Fig. 3.5) and is extracted from the time converged
velocity field of simulation NSS0. It is selected such as it passes by the point (0, 15,
0). (B) Characteristics of the simulations performed in terms of the physical time
range in the extensional configuration (FSIS0) and in the reduced configuration
(FSIS1). The overall computation cost and the typical strain rate (ǫ̇0) experienced
by the RBC at the beginning of the simulation are also reported.

Figure 4.6 – Meshes used for the computation of the extensional configuration FSIS0.
The mesh contains approximately 0.4M nodes.
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b

Streamline

θsl

~ex
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θ

~es

Figure 4.7 – Inertia Equivalent Ellipsoid (IEE) parameters and orientation. IEE
parameters are shown over a RBC elongated shape. The sketch is represented in the
symmetrical plane (~ex, ~ey) such as ~ez is out of plane, as the IEE parameter c.

cases with l3=150 µm (Fig. 3.6). In these cases (1 to 4), RBCs follow the streamline

within a tolerance margin of 0.3 µm (one mesh size) when travelling in the part

upstream of the aperture.

In the following, the Inertia Equivalent Ellipsoid (IEE) of the deforming RBC

[135] is used to compare the different cases considered. From the membrane nodes

position, the inertia matrix of the RBC at the center of mass is computed and

diagonalized to obtain the eigenvalues and eigenvectors. The IEE parameters, a, b

and c are then obtained by solving the following equation:



λ1 0 0

0 λ2 0

0 0 λ3


 =

V

5




(b2 + c2) 0 0

0 (a2 + c2) 0

0 0 (a2 + b2)


 (4.2)

The left and right terms of Eq 4.2 are respectively the diagonalized RBC inertia

matrix and the empirical inertia matrix of an ellipsoid of axes a, b and c, with V

denoting the IEE volume. Both are expressed in the eigenvectors basis. The RBC

orientation is defined according to the angle between the IEE axis corresponding to

the parameter a and the streamline (θsl) on the one hand and the ~ex axis (θ) on the

other hand (Fig. 4.7).

4.2.1 Impact of the starting position on the RBC dynamics

The purpose of this section is to illustrate the dependency of the RBC dynamics

with respect to the starting position and to exhibit a starting distance from which

the dynamics inside the aperture and the electrical perturbation are converged.

From the IEE orientation (Fig. 4.8A), one observes that for the upstream part of

the micro-orifice (τ < 0), the RBC initial angle progressively decreases to show an

orientation perfectly aligned with the streamline just before the aperture entrance.

However, inside the micro-orifice, the RBC displays a rotation that depends on

the initial starting time. Regarding the ellipsoid parameters in the upstream part,
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shown in Fig. 4.8 B-D, the RBC is deformed from an oblate shape to a quasi-prolate

shape. Indeed, initially, a = c, and both are greater than b. Then, a increases and

c decreases whereas b stays almost the same. In the aperture (τ > 0), the RBC

is compressed as shown by a decreasing a and an increasing b. This compression

occurs as the RBC progressively turns inside the aperture. In fact, for the considered

streamline, the RBC crosses a region with substantial velocity shears as it was shown

by streamline SL2 in Fig. 3.5A of Chap. 3. The shear stress undergone by the RBC

inside the aperture makes it rotate. Besides, the RBC gets compressed when its

orientation approaches the compression axis in the shearing region.

The IEE parameters and orientation inside the aperture converge with respect

to the RBC starting position. Indeed, taking case 1 as the reference, cases 2, 3 and

4 indicate that taking an earlier starting time (Fig 4.5 B) gives a result closer to

the reference. Also, case 2 shows superimposed results with case 1, regarding the

IEE parameters inside the micro-orifice (Fig. 4.8). This supports the fact that it

is sufficient to use an initial RBC location in the region where the strain rate is of

order 2000 s−1 (see Fig. 4.5) to accurately describe the RBC dynamics within the

aperture.

As a direct consequence of the RBC dynamics, the electrical perturbation also

exhibits a dependency with the starting time, as depicted in Fig. 4.9. As for the

IEE parameters, the electrical pulses for cases 1 and 2 are practically identical while

cases with a starting point closer to the orifice entry would give inaccurate results.

The difference between case 1 and case 4 maxima is evaluated to 10%.

4.2.2 Extensional configuration validation

We now compare cases 1 and 5. In both cases, the RBC is deposited at the same

location, but in case 5, the dynamics far from the aperture is computed in the ded-

icated extensional configuration (FSIS0) while it is included in a simulation FSIS1

in case 1 (remind that no calculation FSIS0 is performed for case 1).

First, Fig. 4.8 shows that the run 5-FSIS0 is in good agreement with the first

part (τ < - 12 µs) of case 1. Thus the extensional axi-symmetrical configuration

FSIS0 is proven to be suitable to reproduce the early stage of the RBC deformation.

It should be noted that the orientation corresponding to run 5-FSIS0 in Fig. 4.8D

is evaluated as the orientation of the IEE a-axis with respect to axis ~es of the

extensional configuration (Fig. 4.4). Then, comparing run 5-FSIS1 to case 1, one

may observe that a RBC dropped in the reduced configuration after being stretched

in an extensional configuration behaves as if it had undergone the full elongation

before entering the aperture. Moreover, cases 1 and 5 are perfectly consistent in

terms of impedance pulse, as shown in Fig. 4.9. The approach of solving separately

the particle elongation occurring before the sensing region allows a computation

cost reduced by a factor 8 (cases 1 and 5 Fig. 4.5B). Regarding the results shown

in Fig. 4.8 and Fig. 4.9, simulations should start at least 330 µs before the orifice

entrance. Due to the low computation cost of the extensional simulation, the choice

was made to simulate the cell elongation in the configuration FSIS0 from -517 µs to

-12 µs. Computation FSIS1 then starts from -12 µs and ends after the RBC leaves
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Figure 4.8 – Inertia equivalent ellipsoid principal axis and orientation for cases sum-
marized in Fig. 4.5B. (A) Orientation of IEE axis a with the trajectory as defined
in Fig. 4.7. (B) IEE parameter a, that tends to align with the extensional direction.
(C) IEE parameter b, perpendicular to a in the symmetrical plane (~ex,~ey). (D) IEE
parameter c that is out of the symmetrical plane lined up with ~ez.

the micro-orifice.

4.3 Results

Using the numerical pipeline of Sec. 4.1, the RBC dynamics and the induced elec-

trical perturbation are simulated by considering the same streamlines employed for

spheres in Chap. 3 (see Tab. 3.1). The RBC parameters are set as in Sec. 4.2 ex-

cept for the internal viscosity which is 18×10−6 m2.s−1, to take into account the

room temperature of the experimental acquisition [79]. The electrical responses ob-

tained by applying the pipeline of Fig. 4.2 to streamlines of Tab. 3.1 are shown in

Fig. 4.10A, while the trajectories followed by the RBC are depicted in Fig. 4.10B.

For the most centred paths, ‘bell-shaped’ pulses with a short duration are obtained,

while for trajectories near the aperture edges, more complex pulses with a longer du-

ration are observed. Comparing qualitatively results from spheres (Fig. 3.12A) with

result from RBCs (Fig. 4.10A) , it appears obvious that more complex phenomena
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Figure 4.9 – Impedance pulses obtained from a RBC with the different initial con-
ditions that are summarized in Fig. 4.5B.
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Figure 4.10 – Impedance pulses obtained numerically for different trajectories from
RBCs. Picture (A) shows the impedance pulses and (B) illustrates the related RBC
trajectories.

occur when the particle deforms and rotates.

4.3.1 Variety of deforming RBCs dynamics and impact on the

pulse

RBC rotation inside the aperture

Figure. 4.11A depicts the evolution of the IEE orientation θ (see definition in Fig. 4.7)

according to the cell position x, for each case of Fig. 4.10A (1, 4 and 5-10). For

the most centred paths (1 and 4), the cell is oriented with the aperture principal

axis (~ex). In contrast, when considering near-wall trajectories such as 5 to 10, a

substantial rotation is observed. For instance, Fig. 4.12 shows RBC consecutive

positions in the aperture for cases 1 and 10. The cell rotation is observed for a near-
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wall trajectory while an oblate elongated shape aligned with the aperture is obtained

for the central path. An interesting result is that the closer the particle path to the

aperture wall, the earlier the rotation in the aperture (see Fig. 4.11A). As stated in

theoretical developements [10, 50], such variations in the particle orientation would

induce changes in the electrical pulse. Hence, the infinity of rotation dynamics

explains the huge variety of pulse signatures reported in the literature (remind the

discussion of Sec. 1.3.2).

The electrical perturbations are shown according to the particle location in the

micro-orifice (x) in Fig. 4.11B. Regarding Fig. 4.11A and Fig. 4.11B, the cell rotation

induces a peak on the pulse, consisting of an increase in ∆R, that is shorter than the

time spent by the cell in the sensing region (viz. shorter than the pulse duration).

Considering cases 6-10, the pulses maxima are reached when the cell is perpendicular

to the orifice principal axis (θ = π/2). This is in agreement with results of Qin et al.

[133] that showed an higher resistive perturbation when the particle longest axes is

perpendicular to the electrical field (see Fig. 1.8 in Chap. 1). Despite the substantial

rotation observed for case 5 (Fig. 4.11A), the pulse maximum does not match with

the instant at which θ = π/2 (see case 5 in Fig. 4.11B). This is because the RBC

achieves a π/2 orientation outside of the orifice, where the electrical field rapidly

decreases.

RBC deformations inside the aperture

By showing the evolution of the IEE parameters, Fig. 4.13 sheds light on the defor-

mations experienced by RBCs in the micro-orifice. For the sake of clarity, only cases

1, 6 and 10 are depicted. Moreover, for the sake of completeness, the orientations θ

are recalled in Fig. 4.13A. Regarding case 1, for which a constant orientation of 0 rad

is observed, the cell shape is almost constant in the aperture (τ > 0). In contrast,

changes of orientation and deformations are visible when considering cases 6 and

10. It should be noted that in cases 6 and 10, the deformations are reflected in a

compression of the RBC as it rotates. The compression is illustrated by a decreasing

a and increasing b and c, as for the test case of Sec. 4.2. Moreover, the maximum of

this compression occurs when the cell is perpendicular to the orifice principal axis.

When RBCs rotate in the aperture (see instant 8 µs for the near-wall case in

Fig. 4.12), they may be severely compressed by the flow, which results in wrin-

kling of the surface. Wrinkling has been reported for deformable particles such as

capsules and vesicles [78, 89] due to membrane compression. In particular, sudden

compression of extended vesicles induces wrinkles whose characteristic length scale

decreases with the compression rate. Assuming that RBCs would develop similar

wrinkles, their size would be much smaller than our grid size [78] . As a conse-

quence, the simulation develops surface small amplitude oscillations at the scale of

the mesh size. This numerical artifact is classical in deformable particles simulations

[67, 89, 135, 160] and has not been found to affect the large-scale results, although it

may lead to instabilities when the membrane remains under compression for a long

time. This is not the case here, where the RBCs rapidly flip and are stretched again

by the shear flow.
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Figure 4.11 – Resistive pulses and RBC orientation according to the position inside
the aperture. (A) RBC orientation (θ is zero when the particle is aligned with the
aperture axis), (B) Resistive pulses obtained from the RBCs simulations.
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Figure 4.12 – RBC consecutive positions inside of the orifice for cases 1 (central
trajectory) and 10 (near-wall trajectory).
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Figure 4.13 – RBC IEE orientation and parameters for cases 1, 6 and 10 of Fig 4.10.
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Shape factor of deforming RBCs

In the case of rigid spheres, the shape factor fs is constant so that a linear rela-

tionship between the squared electrical field and the electrical perturbation ∆R was

observed (Sec. 3.2.1), supporting Kachel’s statement [74] that, under the assump-

tion of a constant shape factor, ∆R is directly proportional to E2. Considering

RBCs, deformations and rotations that may cause substantial shape factor varia-

tions are observed for near-wall paths. In this respect, no linearity can be expected

between E2 and ∆R (Eq. 1.2). Hereafter, the shape factor variations are modelled.

This modelling effort aims at providing a finer analysis of the pulses signatures and

uncorrelate the dynamical effects from the electrical ones.

In the following, the RBC shape factor is modeled using IEE orientation and

parameters. Provided one of the ellipsoid principal axes is aligned with the electrical

field ~E, Velick and Gorin [170] state that, in the case of a non-conducting ellipsoid

immersed in a homogeneous electrical field, the shape factor may be written as:

fs =
2

2− a b cLα
(4.3)

where a, b and c denote the ellipsoid semi-axes and Lα is an elliptical integral that

depends on the ellipsoid axis that is lined up with ~E. As an example, if axis a is

aligned with the electrical field, one has:

Lα = La =

∫ ∞

0

dλ

(a2 + λ)3/2(b2 + λ)1/2(c2 + λ)1/2
(4.4)

For the computation of Lb and Lc, the ellipsoid variables a, b and c are simply

interchanged in Eq. 4.4. In order to take into account the RBC orientation inside

the aperture, Eq. 4.3 is combined with the following relation [10]:

fs = f// − (f// − f⊥)cos2θ (4.5)

where θ is the orientation of the IEE a-axis with respect to the electrical field, while

the terms f// and f⊥ denote the shape factor of the particle when the latter are

computed with the use of Eq. 4.3 using La and Lb, respectively.

From the RBC IEE parameters reported in Fig. 4.13, the shape factor evolution

inside the aperture is computed for cases 1, 6 and 10 by the use of Eq. 4.5. Figure 4.14

shows the scaled shape factor, the scaled electrical field squared, the scaled pulse

and the scaled product of the shape factor with the electrical field squared. For

the case of a centred path (Fig. 4.14A), the shape factor is constant within the

micro-orifice as it was suggested by observing the constant IEE parameters and

orientation in Fig. 4.13. In agreement with Eq. 1.2, the scaled electrical perturbation

is then superimposed with the squared electrical field. For a near-wall trajectory,

rotation and deformations of the RBC make the shape factor vary during the particle

evolution inside the orifice. The squared electrical field is no more sufficient to

explain the pulse signature, but as provided by equation 1.2, the product of fs with

E2 shows a good comparison with the electrical perturbation. A loss of accuracy

is nevertheless observed when approaching the aperture limits (x=± 37.5µm). On

the orifice limits, the electrical field ~E is not aligned with axis ~x, thus the IEE
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Figure 4.14 – Modelling of the pulse signatures for the case of a deformable particle
such as RBC. On those graphs, the pulse, the squared electrical field, the shape factor
and the product of the squared electrical field with the shape factor are shown. (A),
(B) and (C) refer to cases 1, 6 and 10 of Fig. 4.10. In the shown graphs, each quantity
φ(X) is scaled as: φ•(X) = φ(X)/φ(X = 0), with φ ∈ {∆R,E2, E2 × fs, fs}.

orientation θ does not measure the expected angle for equation 4.5, which explains

the differences. A correction would need to be implemented to make the model

relevant outside the orifice.

Shape factors of an aligned and a perpendicular discocyte were evaluated ac-

cording to Eq. 4.5 and compared with case 10 in Fig. 4.15. Assuming θ = 0 and

θ = π/2, a discocyte has for shape factors 1.22 and 2.8 respectively, while a RBC

evolving next to the aperture walls (see case 10) displays a shape factor that varies

in between 1.06 and 1.6. The maximum fs is obtained when the RBC is perpendic-

ular to the electrical field, while the minimum value corresponds to a well-elongated

shape that is almost aligned with the orifice principal axis (See Fig. 4.12). As shown

in Fig. 4.15, the maximum shape factor for a deformable cell is smaller than the

one calculated for a perpendicular discocyte (1.6 vs 2.8). This is because the RBC

is compressed and even tends to fold during rotation as illustrated in Fig. 4.12.

Moreover, the minimum value of the RBC shape factor is smaller than the one of a

rigid discocyte aligned with the axis (1.06 vs 1.22). This is because the deformable

cell is strongly elongated during the FSIS0 phase as illustrated in Fig. 4.8, thus
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Figure 4.15 – Shape factor evolution according to the longitudinal particle position
inside the micro-orifice. The shape factors of a discocyte aligned and perpendicular
to the electrical field are also shown in red dashed lines.

reducing the projected area. Assuming that a rigid RBC (thus keeping its discocyte

shape) rotates in the aperture, one would obtain pulses with a much more important

peak. This illustrates the importance of taking into account deformations and cell

dynamics when simulating the impedance measurement of RBCs.

Impact of RBCs parameters on the impedance pulse

Simulations over different trajectories are now performed by varying the shear mod-

ulus (Gs), the internal viscosity (νin) and the reduced volume (Q) of the RBCs,

one-at-time. In doing so, the original signatures are subject to modifications shown

in Fig. 4.16. Only cases 1, 6, and 10 are displayed for the sake of concision. Pulses

associated to the different RBC dynamics are scaled by the maximum of the pulse

arising when the same cell (same shape and parameters) experiences a central tra-

jectory. Regarding the central path (see Fig. 4.16A), the electrical print does not

depend on variations of the RBC features. However, cases 6 and 10 change when

the cell parameters are modified, as shown in Fig. 4.16B and C. Increases of νin

and Gs yield pulses with a more important peak. The internal viscosity appears to

have the same impact as the membrane rigidity (driven by Gs). Indeed, the cytosol

viscosity reduces the instantaneous deformability of the cell. Hence, because of the

short loading times experienced by RBCs in Coulter counters, an increase of viscos-

ity yield a smaller RBC deformation inside the sensing region. As previously shown,

a strong compression of the cell occurs while it rotates, which appears to mitigate

the peak amplitude. Consequently, increases of νin and Gs make the RBC harder to

compress and produce a larger peak. On the other hand, the amplitude of the peak

decreases when the reduced volume (Q) is increased in the simulations. A higher

reduced volume implies a more spherical cell that tends to conceal the consequences

of the cell rotation. Results of Chap. 3 for rigid spheres are also shown in Fig. 4.16

an confirm this hypothesis, since no peak of rotation are observed for pulses referred
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Figure 4.16 – One-at-a-time sensitivity analysis of the effect of the shear modulus
Gs, the reduced volume Q and the internal viscosity νin. Picture (A), (B) and (C)
refer to the original cases 1, 6 and 10, respectively. Reference cases shown in black
are performed with Gs = 2.5 × 10−6 N.m−1, νin = 18 × 10−6m2.s−1, and Q = 0.65.
In cases referred as ր νin, ր Gs, and ր Q, νin = 21 × 10−6 m2.s−1, Gs = 40.0
× 10−6 N.m−1 and Q = 0.75, respectively. Results for rigid spheres arising from
Chap. 3 are also shown and referred as ‘sph’.
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as ‘sph’.

Impacts of the bending modulus Eb and the spontaneous curvature co have shown

insignificant effects on the results (not shown). Since changes of the membrane area

are less than 1 % in the original computations, the impact of the area modulus Ea is

not assessed. In a study presented in App. A, the effect of the cytosol density (ρin)

is shown to have a negligible effect on the electrical print, when physiological values

are considered.

4.3.2 Comparison with experimental data

Numerical results of Sec. 4.3.1 state that the RBC dynamics in the aperture depends

on its trajectory. In particular, the distance from the aperture walls drives the time

spent by the cell in the detection area and even the experienced rotation. More

precisely, it is shown that particles traveling close to the aperture wall spend more

time in the orifice and rotate earlier than the others. Besides, these dynamical effects

are directly visible on the generated electrical print. On the one hand, the time spent

in the orifice is linked to the electrical print duration. On the other hand, the cell

rotation increases the shape factor that induces a peak on the pulse. In summary,

approaching the orifice wall implies an increase of the duration and a shifting of

the peak to the left-hand side of the pulse. This section aims at verifying these

predictions on an experimental pulses acquisition. The pulse duration is measurable

according to the metric W introduced in Chap. 3 (see Eq. 3.3) but a measurement

of the moment at which the peak occurs still needs to be defined. This is done

first by introducing the metric P. Then, for each pulse obtained experimentally and

numerically, W is plotted against P to emphasize the close links between trajectory,

cell rotation and orifice occupation time. Finally, comparisons of the numerical

pulses with experimental signatures are presented.

Measuring the Peak Position

The position of the peak is rated as follows:

P(thresh) =
T2 − T0

T1 − T0

× 100 (4.6)

Figure. 4.17 illustrates the construction of instants T0, T1 and T2 that are required

in Eq. 4.6. Note that T0 and T1 depend on a threshold while T2 corresponds to the

moment at which the pulse maximum is attained. Hence, P consists in projecting the

pulse maximum on a pulse width (W(thresh)), and assessing its relative position.

As a reminder, W(thresh) is defined as:

W(thresh) = T1 − T0 (4.7)

If the peak is observed at the beginning of the pulse, P tends to 0 %, whereas P

increases as the peak is delayed on the pulse. The cutting threshold must be chosen

in such a way it intersects the ascending and descending slopes of the electrical

signature.

93



CHAPTER 4. NUMERICAL SIMULATION OF RED BLOOD CELLS IN AN INDUSTRIAL COULTER
COUNTER

T0 T2 T1

thresh

∆Rm or ∆Um

T ime

Figure 4.17 – Sketch of T0, T1 and T2 calculus.

Graphing the pulse width against the peak position

An experimental acquisition is performed as described in Sec. 3.2.2, this time by

analysing a blood sample coming from a healthy patient. As done in Sec. 3.2.2,

the experimental pulses are scaled with the averaged maximum of the ‘bell-shaped’

signatures ∆Um|bs while numerical results are scaled by the maximum of case 1

∆Rm|bs (see Fig. 4.10). This yields the scaled pulses ∆U∗ and ∆R∗:

∆U∗(t) =
∆U(t)

∆Um|bs

, ∆R∗(t) =
∆R(t)

∆Rm|bs

Note that a simple method allowing the extraction of ‘bell-shaped’ pulses from an

experimental acquisition is provided in Chap. 5.

With the same convention that defines Wr as the width calculated on a scaled

pulse (defined by Eq. 3.5 and Eq. 3.6), Pr denotes the peak position evaluated on

∆U∗ or ∆R∗. Note that Pr may be calculated directly from ∆U and ∆R as:

Pr(thresh′) = P(thresh′ ×∆Um|bs), (4.8)

and

Pr(thresh′) = P(thresh′ ×∆Rm|bs), (4.9)

respectively. If the readers feel uncomfortable with these notations, they are referred

to App. E, where they are summarized and illustrated.

Thereafter, the metrics Wr and Pr are assessed for each experimental signature

and each numerical pulse, with thresh′ = 0.5. In Fig. 4.18, the scatter plot of Wr

as a function of Pr is shown: the experimental data are shown in red points and the

numerical results are depicted in black points connected with a black dashed line.

The numbers in Fig. 4.18 refer to the different simulated cases of Fig. 4.10.

In such a representation, electrical pulses are organized in two main branches

that are connected at Pr ≈ 80 % and Wr ≈ 17 µs. The lower branch, for which

Wr < 17 µs, refers to cases 1-5 from simulations. More precisely, it corresponds

to the region of the aperture that extends from the perfectly centred path, to the

first trajectory for which the cell can reach a π/2 orientation inside the aperture (in-

between cases 5 and 6). The upper branch (Wr > 17 µs) corresponds to simulated
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Figure 4.18 – Scatter plot of Wr according to Pr for the experimental acquisition
(red points) and the numerical results (black points connected by a dashed line).
Metrics are calculated with a relative threshold of 0.5.

trajectories 5-10 and display a decreasing pulse duration (Wr) with respect to the

peak position (Pr). This is in agreement with the previous statement that when the

trajectory progressively approaches the aperture wall, the peak occurs sooner and

the pulse becomes longer.

A third cluster placed in the region of low Pr (between 5% and 15%) is ob-

served experimentally, but not obtained by considering trajectories of Fig. 4.10 in

the simulations. These pulses may be explained by trajectories even closer to the

orifice edges. Considering such trajectories however leads to unstable computations.

Further developments are needed to accurately reproduce this isolated cluster but

preliminary indications are available in App. B.

Superimposing numerical and experimental pulses

Let define PPn andWn, respectively Pr andWr computed for an arbitrary numerical

pulse, as far as PPe and We are the same metrics but for a given experimental

pulse. In Fig. 4.19, each numerical pulse is superimposed with experimental pulses

satisfying PPn − 2% < PPe < PPn + 2% and Wn − 1µs < We < Wn + 1µs. Note

that the pulses are centred in time for better comparisons.

The pulse signatures predicted numerically are well retrieved experimentally de-

spite the variable amplitudes that originates from the scattered RBC volumes within

a blood sample. Nevertheless, some experimental pulses exhibit shapes that do not

correspond to numerical results. However, these cases are rare and can be explained

by particle coincidences in the aperture.

Note also that the amplitude of the numerical pulses associated with rotating
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cells seem in the lower range of the experimental data. In other words, simulations

possibly overpredict the compression of the rotating cells in the aperture. In our

simulations, membrane viscosity has been neglected and this assumption is a possible

cause for this relative discrepancy.

4.4 Conclusion

In this chapter, a method for tackling the numerical simulation of a deformable

particle in a Coulter counter was presented. This approach takes into account the

cell deformation occurring before it enters in the sensing region. A complex pipeline

composed of several simulations is required to achieve results.

Note that in the range of the electrical field observed in the studied configu-

ration (of the order of 1.0 × 106 V.m−1), RBC electro-deformations were reported

[132][116], so that greater deformation should be expected if dielectrophoretic (DEP)

forces were taken into account. Besides, due to the short loading times experienced

by RBCs in the presented simulations (a few tens of µs), the membrane viscos-

ity would play an important role in the maintaining of the cell shape although it

was not accounted for. Further investigations about the impact of DEP forces and

membrane viscosity should be performed in the future. Still, good comparison with

experimental data was obtained, demonstrated that the proposed pipeline and cur-

rent assumptions are appropriate to represent the main mechanisms at play.

A variety of rotation dynamics was observed numerically and shown to depend on

the RBC path in the aperture. On a perfectly centred path, the cell is aligned with

the aperture principal axis during its entire evolution in the sensing region. Then,

the more the trajectory is close to the aperture wall, the more the RBC experiences

an important rotation, in such a way it achieves a half-turn in the near vicinity of

the orifice edges. This infinity of rotation dynamics explains the huge variety of

pulses reported in the literature for aspherical and/or deformable particles. The

cell rotation produces an increase of the shape factor fs, which yields a peak on

the electrical pulse (viz. a short increase of the electrical perturbation). Hence, a

particle flowing in the wall vicinity is seen bigger than if it has followed a centred

path since the pulse maximum is taken as a measurement of the RBC volume. This

explains and illustrates the dynamical edge-effects leading to measurement errors.

A substantial deformation of the RBC is observed as it rotates on a near-wall path.

This deformation consists of a cell compression that appears to limitate the rise in

fs and thus the peak amplitude. Consequently, the RBC deformability may impact

the peak of rotation.

Regarding these results, two questions arise:

1) From the new understanding of the dynamical edge-effects, is it possible to

develop an original filtering method to improve the volume measurements?

2) The electrical pulses originating from near-wall trajectories depend on the

cell deformability. Hence, is it possible to process the RBC deformability from the

associated electrical print?
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Figure 4.19 – Comparison of numerical and experimental pulses. The numerical
pulses are superimposed with experimental (in red continuous line) data that have
the same width and peak position metrics, with a tolerance margin of ±1µsec and
±2% respectively. Graphs A, B, C, D, E, F, G and H refers to cases 1, 4, 5, 6, 7, 8,
9 and 10, respectively.
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Results presented in this chapter gave rise to patent filing1.

In Sec. 1.3.2, edge-effects producing skews in the measurement of the cell volume

were discussed. These artefacts overestimate the volume of the RBC passing near

the edge of the orifice, as demonstrated in the former chapter, and induce the typical

‘right-skew’ volume distribution (an example was shown in Fig. 1.5A). By enforcing

particles to pursue central trajectories, hydrodynamical focusing [154] was found to

produce a symmetrical distribution. However, this method implies a more complex,

technologically demanding, implementation of Coulter counters. Methods consist-

ing in rejecting inaccurate pulses were introduced [173]. Although improving the

volume distributions of the analyzed particles, these methods are unable to retrieve

a Gaussian-like distribution [129].

Generally, the pulse maximum is taken as the measurement of the particle volume

Vp. However, in addition to Vp, the electrical perturbation depends on the squared

electrical field E2 and the shape factor fs, which are directly impacted by the edge-

1Medical analysis device by impedance signal processing, 2019, Patent pending (FR)
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effects. This explains the measurement errors, since the relationship between the

measured volume and the actual volume Vp depends on whether the particle expe-

rienced edge effects or not. In particular, the numerical study of Chap. 4 shed light

on electrical and hydrodynamical edge-effects. In particular, it was shown that both

types may be stratified from their impact on the electrical print. On the one hand,

electrical artefacts are related to increases in the electrical field E occurring near the

aperture walls: particles passing close to the wall do not perturb the same electrical

field as particles flowing on the aperture axis, hence the different signals. On the

other hand, hydrodynamical edge-effects consist in particle rotation and deformation

that lead to changes in the shape factor fs. Variations in fs are observed when cells

undergo shear close to the walls. Such velocity gradients make the cell rotate, which

increases fs. Moreover, substantial deformation come with the rotation. These edge

effects produce complex signatures such as ‘M-shaped’ when dealing with spheres

(see Fig. 3.17F-H), or pulses with a peak if RBCs are considered (see Fig. 4.19D-H).

In contrast with near-wall paths, cells flowing in the core region are edge-effects

free and classical ‘bell-shaped’ pulses are observed: they are consistent with a con-

stant fs along the trajectory, and the pulse shape corresponds to the history of E

experienced by the cell.

An overview on the impact of edge-effects is given in Fig. 5.1. Figure. 5.1A and

B show respectively the dynamics of a RBC on a central and a near-wall trajectory,

while the evolution of a rigid bead close to the wall is depicted in Fig. 5.1C. Electrical

pulses associated to these particles dynamics are displayed in Fig. 5.1D. Note that

results of Fig. 5.1 arise from simulations that were presented in former chapters.

Electrical field isolines in the aperture are superimposed with the cell dynamics of

Fig. 5.1A, B and C. Besides, regions of dense electrical field near the aperture corners

and their impacts on the electrical pulse are highlighted by blue circles in Fig. 5.1B,

C and D. Furthermore, the RBC rotation and the induced peak on the electrical

print are indicated by black arrows (see Fig. 5.1B and D). In the considered regime,

one may map the edge-effects as shown in Fig. 5.1. Considering the core region of

the micro-orifice, the velocity profile is flat and the electrical field is homogeneous,

thus no edge effects are observed in Part A. In part B, velocity gradients implying

dynamical edge-effects are present. Finally, electrical edge-effects take place near

the aperture corner (Part C).

This chapter aims at detecting and removing pulses impacted by edge effects

to provide an accurate volume measurement of particles. Note that particles going

through part C also get across part B. In other words, part C is covered by part B

so that it is sufficient to detect dynamical edge-effects to filter irrelevant pulses out.

Since particles rotate in the shearing region (Part B), it is proposed to filter hydro-

dynamical edge-effects by sensing the particle rotation from the associated electrical

pulse. In the first part, the impact of rotation on the measured volume is shown.

Then the original filter is described and applied to experimental data. Furthermore,

it is shown that the proposed method provides results closer to hydrodynamical-

focusing than the filter currently implemented in HORIBA Medical analysers. In

the last section, a second method for the detection of particle rotations is introduced.

Based on Neural-Network modelling, the latter is shown to provide results similar
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Figure 5.1 – Impact of the Edge Effects (EE) on the pulse shape. (A) and (B)
show RBC consecutive positions inside the aperture over electrical field isolines for
centred and near-wall trajectories, respectively (flow is from left to right). Picture
(C), displays a rigid bead on a near-wall trajectory. The impedance pulses related
to dynamics of (A), (B) and (C) are shown in picture (D). Notation ‘NW’ in (D)
stems from Near Wall. The cell rotation observed in (B) generates a peak on the
impedance pulses. This event is highlighted by a black arrow in (B) and (D). In
addition, the electrical EE are outlined by blue circles, as shown in (B), (C) and
(D).
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Part C

Figure 5.2 – Mapping of edge-effects in the micro-orifice. In part A, there is no
edge effects. In part B, velocity gradient induces dynamical edge effects. In part C,
regions of dense electrical field cause electrical edge-effects.
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Figure 5.3 – Simulated impedance measurements (right plot) corresponding to a
RBC following different trajectories (left plot). Impedance pulses are related to
numerical simulations presented in Sec. 4.3 and shown in Fig. 4.10. For sake of
clarity, the electrical pulses corresponding to trajectories 2 and 3 are not shown.

to the first method.

5.1 Discrepancy in the volume measurement with

classical Coulter counters

This section aims at introducing the fundamental concept from which the proposed

filters are derived. More precisely, the impact of the cell rotation on the measured

volume and its link with the trajectory are explained. The argumentation is based

on numerical results of Sec. 4.3. As a reminder, the electrical perturbation of a

RBC was assessed for ten different trajectories. In all cases the same RBC is used,

with identical geometrical characteristics and mechanical properties. Only its initial

location (and thus its trajectory and dynamics in the aperture) changes. Some of

the electrical pulses are reminded in Fig. 5.3.
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Figure 5.4 – Reliance of the measured volume (A), the particle orientation at the
moment at which the pulse reaches its maximum value ∆Rm (C), and the R metric
(D), according to the distance from orifice center of mass. Parameters pu and pd

required for assessing R are set to 7/8 and 1/2, respectively. Picture (B) illustrates
how the distance from the aperture center D and the orientation at ∆Rm (θm) are
defined.

5.1.1 Errors in the measured volume

In a Coulter counter, the maximum ∆Rm is taken as a measurement of the particle

volume Vp. One may thus conclude from Fig. 5.3 that errors of about 55 % may

be made on the volume, depending on the trajectory. For instance, the maxima of

cases 1 and 10 in Fig. 5.3 are respectively 12.6 Ω and 19.3 Ω, thus a RBC following

a near-wall path is seen 1.53 times bigger than a cell evolving in the core region.

Figure. 5.4A displays the evolution of the measured volume ∆Rm according to

the cell distance with respect to the aperture central axis D. As shown in Fig. 5.4B,

D is evaluated as the distance between the RBC center of mass and point (0,0,0)

at the moment when the trajectory crosses the orifice middle section (viz. plane

(~ey, ~ez)). From Fig. 5.4A, the measured volume in the core region of the aperture

(D ∈ [0 ; 13 µm]) is stable around 12.6 Ω. Taking the perfectly centred path as the

reference, the error at D=13 µm is 3 %. Overestimations of the cell volume become

much larger for D > 13 µm: ∆Rm is an increasing function of D between 13 µm

and 17µm and then appears to stabilize around a value of 19.3 Ω. This discrepancy

in measured volume explains the typical ‘right-skew’ volume distributions observed

experimentally (discussed in Chap. 1, shown in Fig. 1.5A).
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5.1.2 Impact of the cell rotation on the measured volume

As discussed previously, variations of the shape factor fs are observed near the orifice

edges. Such changes in fs result in the cell rotation that increases the electrical

perturbation. In that sense, the isolating particle resists more to the electrical

current, which yields a peak on the electrical pulse and overestimates the cell volume

(compared to a centred trajectory).

As represented in Fig. 5.4B, the orientation of the cell when the pulse maximum

is reached (θm) is evaluated for the 10 cases of Fig. 5.3. In Fig. 5.4C, the evolution

of θm according to D is depicted. If D > 16 µm, the time spent by the cell in the

detection area is sufficiently long (because of low velocities near the wall) and the

shear undergone by the particle is sufficiently strong for the RBC to reach a π/2

orientation inside of the aperture. On the contrary, in the core region of the micro-

orifice, there is a flat velocity profile: the cell does not rotate and θm ≈ 0 when D

< 13 µm. Between 13 µm and 16 µm, the cell undergoes shear but does not spend

enough time in the aperture to reach θm = π/2.

It should be noted that both ∆Rm and θm display a sigmoid-like profile (see

Fig. 5.4A and C), thus supporting the approach of detecting the RBC rotation to

select relevant pulses for the volume measurement. In particular, when θm ≈ 0 rad,

∆Rm takes a value close to 12.6 Ω (see D < 13 µm) whereas if θm = π/2, ∆Rm

shows its maximum value that is around 19.3 Ω (D > 16 µm). Moreover, if D is in

the range [13 µm ; 16 µm], θm increases from 0 rad to π/2 rad, in a same way ∆Rm

increases from its minimal value to its maximal value (12.6 and 19.3 Ω, respectively).

As highlighted by black arrows in Fig. 5.1B and D, the RBC rotation in the

aperture produces a peak in the impedance pulse. A peak is defined as an increase

in the electrical perturbation whose length is shorter than the pulse duration. A

method designed to detect such peaks is described in the next section

5.2 Detection of the particle rotation from the

electrical pulse

In Sec. 5.1, the link between the particle rotation and the error on the measured

volume was established. Considering near-wall paths, RBCs rotate, which induces

a peak on the electrical perturbation. A simple metric computed from the pulse is

introduced in Sec. 5.2.1, which enables a separation between ‘bell-shaped’ pulses and

pulses presenting a peak. In Sec. 5.2.2, this criterion is shown to provide an expected

Gaussian-like volume distribution of RBCs. Furthermore, the proposed filter is

compared with hydrodynamical-focusing [154] and the filter currently implemented

in HORIBA Medical automata.

5.2.1 Metric definition

The metric denoted by R is computed as the ratio of the two pulse widths (see

Eq. 3.3) defined in Fig. 5.5A. By defining Wu and Wd as Wu = W(∆Rm × pu) and
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Figure 5.5 – Illustration of the calculation of Wu and Wd required for assessing the
metric R (A). Calculation of R on case 1 and case 10 of Fig. 5.3 are given in (B)
and (C), respectively. Computations of Wu and Wd are shown for resistive pulses
∆R, but the method stands for tension pulses ∆U .

Wd = W(∆Rm × pd), the metric R takes the following expression:

R =
Wu

Wd
× 100, in % (5.1)

Parameter pd should be chosen in such a way ∆Rm × pd intersect the ascending and

descending slopes of the pulse, and Wd informs on the time spent by the particle in

the micro-orifice. If a peak is present on the pulse, Wu meant to measure the time

spent in the peak. Hence, pu must be defined so that ∆Rm × pu crosses the peak.

Notice that in the absence of peak, Wu should be closer to Wd. Hence, R is intended

to take a low value in case of peak of rotation (see Fig. 5.5B) and a high value for

a ‘bell-shaped’ pulse without peak (see Fig. 5.5C). Note that Wd increases when

the cell trajectory gets closer to the aperture edges. This is expected to reinforce

the difference between Wu and Wd if the pulse presents a peak. R is evaluated

for the 10 simulated cases depicted in Fig. 5.3 and its evolution according to D is

shown in Fig. 5.4D. For assessing these R values, pu and pd are set to 7/8 and 1/2,

respectively. When θm is small (D < 13 µm), high values ofR are obtained (between

60 and 70 %), while for cases where the RBCs may reach θm = π/2 (D > 16 µm),

R is below 30 %.

By comparing Fig. 5.4A and D, it is seen that rejecting pulses for which R is

below 55% would allow to reduce the maximum measured volume (∆Rm) from 19.3
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Ω to 14.0 Ω (∆Rm for a central path being 12.6 Ω). Consequently, the maximum

overestimation should be reduced from 53 % to 10 %. The R metric thus appears

to be relevant to isolate the complex pulses presenting a peak of rotation from the

‘bell-shaped’ pulses for which RBCs do not rotate. Hence, a filter based on R may

be introduced. This filter consists in rejecting pulses having a width ratio (R) below

55%. Applying such a filter is expected to reduce errors in the measured volume

and provide a more accurate assessment of haematological parameters related to

the RBCs volumes. The accuracy of the R based filter is evaluated in the following

section for the case of experimental data.

5.2.2 Application to experimental data

A blood sample coming from a healthy patient is analysed by the use of a Yumizen

H2500 (HORIBA Medical). This haematology analyser is equipped with different

measurement units dedicated to specific tasks. In a first device, RBCs counting and

sizing are performed with a classical Coulter counter whose configuration was used

for the numerical simulations (Sec. 3.1). In a second system, optical measurements

are included in a hydro-focused Coulter counter. This module is used for detect-

ing platelets among other blood cells (most of them being RBCs) by combining

impedance and optical measurements. During the blood sample analysis, electri-

cal pulses from both aforementioned systems are recorded. Pulses from the system

equipped with hydrofocusing will be used as the reference for assessing the accuracy

of the R based filter. Optical measurements performed in the second device are not

needed and are not recorded.

For each pulse coming from the classical Coulter counter, the maximum (∆Um),

the width (W, see Eq. 3.3) and the width ratio (R) are computed. Parameters pu

and pd required for the calculation of R are taken as 7/8 and 1/2, respectively. The

pulses durations (W) are computed with a threshold of 0.28 V according to Eq. 3.3,

a typical pulse amplitude being around 1.5 V. Figures. 5.6A and 5.6B show the

scatter plots of W as a function of ∆Um and R as a function of ∆Um, respectively.

Stating that longer pulses are related to near wall trajectories, Waterman et al.

[173] proposed to reject pulses that have a width above a certain threshold. Such

a filter may be represented as a horizontal line in Fig. 5.6A. In Yumizen H2500,

instead of a constant width threshold, pulses that are placed above a logarithmic

curve are rejected (see Fig. 5.6A). As discussed in Chap. 1, this curve is defined by

the following expression:

W = A
√
log(∆Um)−B, (5.2)

with A and B set to 2.01e-05 and -2.4, respectively. These two types of filters appear

to split the pulse population arbitrarily. In contrast, two distinct clusters separated

by a threshold of 52 % with respect to the R axis are observed (see Fig. 5.6B) This

threshold agrees with the value of 55 % that was predicted numerically. It should be

noted that the cluster located below R = 52 % spreads between 1.25 V and 2.8 V

along the ∆Um axis, while the cluster above R = 52 % takes ∆Um values included

in [0.7 V ; 2.2 V]. This supports the numerical results stating that pulses with low
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∆̃Um. A good comparison is observed between hydrofocused and classical systems,

provided that the R based filter is used.

Electrical pulses arising from the classical and the hydrofocused Coulter coun-

ters were recorded for 4 blood samples more. The electrical signals from these two

systems were respectively calibrated with ∆Um|
c
bs and ∆Um|

hf
bs , measured on the

first blood sample and illustrated in Fig. 5.7A. In other words, the blood sample

from wich distributions of Fig. 5.7A arise is used as a calibrator. Then, averages

and standard deviations of ∆̃Um are calculated and referred as mean(∆̃Um) and

std(∆̃Um). Note that the averaged ∆̃Um assesses the Mean Corpuscular Volume

(MCV), while the standard deviation leads to the RBCs Distribution Width (RDW)

when divided by mean(∆̃Um). As discussed in Chap. 1, such haematological pa-

rameters (in particular the RDW) are essential for the diagnosis of various diseases

[144].

Figure 5.8 shows the correlations of mean(∆̃Um)and std(∆̃Um) between the

hydrofocused system and the classical system for different applied filters. Regarding

the averages (Fig. 5.8A), good Pearson correlation coefficients (R2) are obtained

for all cases (‘c’, ‘c-Log’ and ‘c-WR’). Showing a R2 of 0.99, the R-based filter

is nevertheless in better agreement with the reference than cases ‘c-Log’ and ‘c’,

whose R2 = 0.96 and R2 = 0.93, respectively. Regarding the standard deviation,

results show that unfiltered data from the classical counter is poorly correlated to

the reference data from the hydrofocused system (see Fig. 5.8B, R2 = 0.6). The

correlation is improved with the logarithmic filter (see case ‘c-Log’ in Fig. 5.8B),

but the original filter appears to better correlate with the hydrodynamical-focusing

(R2 = 0.78 for ‘c-Log’ and R2 = 0.92 for ‘c-WR’).

In summary, the introduced R metric enables a filtering of pulses impacted

by the edge-effects. After filtering, symmetrical volume distributions in agreement

with the results from an hydrofocused Coulter counter are obtained. Besides, very

good correlations are obtained with the hydrofocused system in terms of statistics,

thus paving the way to an accurate assessment of haematological parameters with

a simpler and cheaper implementation. A further study is intended to defined the

optimal couple pu/pd, and the sensibility of the R-based filter to such parameters.

5.3 Neural Network modeling for detecting particles

rotation

Detecting the particle rotation from the pulse and excluding the pulse from the

measurement statistics is shown to fix the right-skewed volume distribution ob-

tained with classical Coulter counters. The detection is enabled by a simple metric

computed from the pulse ( see R in Sec. 5.2.1). With the aim of proposing an al-

ternative to sort the pulses, a second method based on this principle is proposed in

the following. The detection of rotations is allowed by a Neural Network (NN) that

is trained with numerical data, as explained in Sec. 5.3.1. Then, in Sec. 5.3.2, NN

results are compared with the R based filter previously introduced.

NNs are models built by combining simple mathematical objects called neurons
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Figure 5.7 – Pulses maxima (∆Um) distributions depending on the system and the
applied filter. (A) Histogram obtained from classical and hydrofocused Coulter
counters are referred to ‘c’ and ‘hf’, while histograms obtained after applying the
R-based filter and the logarithmic filter on the classical system are denoted ‘c-WR’
and ‘c-Log’, respectively. The ∆Um averages of cases ‘c-WR’ and ‘hf’ are referred to
∆Um|

c
bs and ∆Um|

hf
bs and highlighted by vertical black lines. (B) Probability density

functions of the calibrated pulse maxima (∆̃Um). Pulses from the classical system
are scaled with ∆Um|

c
bs while pulses from the hydrofocused counter are scaled with

∆Um|
hf
bs .
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(A)

(B)

Figure 5.8 – Correlations of hematological parameters between the classical Coulter
counter and the hydrofocused Coulter counter, depending on the applied filter. Cor-
relations of averages and standard deviations are shown in (A) and (B), respectively.
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Figure 5.9 – (A) Principle of an elementary neuron that computes y from a given
number of inputs xi. (B) Illustration of a simple Neural Network (NN).

(see Fig. 5.9A). Given a number N of inputs xi, it computes z, the sum of xi weighted

by parameters wi:

z =
N∑

i=1

xiwi (5.3)

Then, an activation function fa is applied to the weighted sum z, that leads to the

neural output y:

y = fa(z)

= fa

(
N∑

i=1

xiwi

)
(5.4)

The combination of these elementary neurons enables the construction of com-

plex and non-linear models. As illustrated in Fig. 5.9B, neurons are generally or-

ganised in layers: neurons are connected to each elements of the preceding and

following layers. Such a NN structure is commonly called Multi-Layer Perceptron

(MLP). Given a problem that consists in predicting apred ∈ R
No from ain ∈ R

Ni , the

latter (ain) is given as an income to the input layer. Then, ain is propagated in the

NN until the output layer, that yields the model prediction apred. In this respect, the

input and output layers must contain Ni and No neurons, respectively. Hence, NNs

may handle problems of arbitrary dimensions. Furthermore, provided the number

of neurons is sufficient, NNs were proven to approach any continuous functions in

a compact subset of space [22, 66]. From a database composed of couples ain/aobs,

the model weights w are learned in such a way the NN predicts apred the closest to

aobs, given the corresponding ain. This is done with a gradient descent method. (1)

A ain associated to aobs is drawn randomly from the training database, and given

to the MLP for assessing apred. Given aobs and apred, the loss function FL rates

the prediction error. (2) The gradients of FL with respect to the model weights are

computed and used for enhancing the model. (3) A new couple ain/aobs is chosen

and the procedure is repeated from step 1. Note that this procedure update the
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illustrates the full strategy when applied to cases 1 and 10, from simulations. Infor-

mation about the particle rotation is expected to be in the pulse shape but not in

the pulse amplitude. This is why the choice was made to scale the electrical print by

its maximum, as shown in Fig. 5.11A. Then, using a threshold of 0.5 × ∆Rm, pulses

widths W1 and W10 are computed for cases 1 and 10, respectively (see Fig. 5.11A).

Once scaled in both amplitude and time, cases 1 and 10 may be represented as in

Fig. 5.11B. Note that the part of ∆R/∆Rm above 0.5 is placed between t/W(∆Rm

2
)

= 0 and t/W(∆Rm

2
) = 1, for the sake of convenience. Then, pulses are sampled with

Ns points between t/W(∆Rm

2
) = 0 and t/W(∆Rm

2
) = 1. In this manner, cases 1 and

10 lead to ‘1 sampled’ and ‘10 sampled’, as shown in Fig. 5.11B.

Once treated, the pulse is described with a series of Ns values of ∆R/∆Rm,

denoted as Pi in Fig. 5.11C (i ∈ [1 , Ns]). This set of Pi is taken as the input of

the NN. Furthermore the time during which the pulse is higher than a threshold

is intended to provide relevant indications on the trajectory, which itself has been

shown to drive the rotation undergone by particles (see Fig. 4.11A). Therefore,

W(∆Rm

2
) is given as an input parameter, in addition to the set of Pi. In the table

shown in Fig. 5.11D, the input values related cases 1 and 10 are shown in the ‘input’

column (for Ns = 8). This way, cases 1 and 10 are represented with the same number

of variables (Ns + 1) while they are of different lengths initially. A drawback of this

method is that short pulses are better described than longer ones. This implies

the choice of a sufficiently large Ns to properly characterize the longest pulses. In

practice, Ns = 20 will be used in the following sections.

This treatment is illustrated for numerical resistive pulses ∆R in Fig. 5.11 but the

process remains valid for experimental tension pulses ∆U . Furthermore, the choice

of scaling the pulse by its maximum was also motivated by the aim of designing a

NN suited for experimental data, while it is trained from a numerical database.

NN output layer

The output layer is composed of a single neuron that renders the model prediction:

did the cell undergo a rotation in the aperture or not? From a mathematical point

of view, these two options constitute a binary choice that is translated by either 0

or 1, respectively. As shown in Fig. 5.1A, in case 1, the RBC does not rotate in

the aperture, so that an output value of 1 is associated with case 1, as shown in

Fig. 5.11D (see column ‘Output’). In contrast, case 10 is associated with an output

value of 0 because the RBC rotates in the orifice, as depicted in Fig. 5.1B.

As it was shown in Fig. 5.4C, a smooth transition in θm exists between cells that

do not rotate at all and cells that can reach an orientation θm of π/2. Consequently,

it is choosen to set an output of 1 if θm < 0.3 rad and a value of 0 if θm > 0.3 rad.

This is represented as an horizontal line in Fig. 5.12A, which shows θm as a function

of D for the database considered in the following (discussed in the next section).

Remind that the activation function used for all neurons is the sigmoid function.

This is why the model is unable to give back a strict value of 0 nor 1 but renders a

score included in [0 , 1] (due to the definition of the sigmoid function). Hence the

clustering must be done by thresholding the NN score. A threshold of 0.5 on the
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Figure 5.11 – Treatment applied to pulses in order to make them readable by the
MLP of Fig. 5.10. The process is illustrated for two different pulses predicted by
numerical simulations (cases 1 and 10). (A) Pulses are first scaled by their maximum
(∆Rm). (B) The timescale is divided by the metric W, computed with a threshold
of 0.5 (see picture A). This is equivalent to calculateW with a of 0.5 × ∆Rm on the
original pulse (ie. before it is scaled by ∆Rm). Note that for the sake of clarity, the
part of the pulse that is above 0.5 is represented between 0 and 1. (C) The pulse
is then resampled as a series of Ns Pi between 0 and 1. (D) The MLP of Fig. 5.10
takes as input the series of Pi amplitudes (i ∈ {1 ; 2 ; ... ; Ns }) in addition to the
associated W (see input column, Ns = 8 in this example). The output associated
with the pulse depends on whether θm is greater or lower than 0.3 rad (see output
column). Note that the treatment is illustrated for a resistive pulse from simulation,
but the procedure is applicable for tension experimental pulses.
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NN score is an intuitive way to doing that for instance. Note that considering a

score between 0 and 1 assesses the sharpness of the model decision-making (viz. if

the NN is sure about its classification or not).

Numerical database

The numerical database involved in this modelling is composed of 85 simulations and

their associated pulses. More precisely, it is composed by cases 1-85 of Tab. D.1 (see

App. D). The streamline monitoring the particle trajectory varies in a range covering

the major part of the aperture. It is defined by the scalar ra (see Tab. D.1) that

is related to the point (0, ra, 0) from which the streamline is extracted. Moreover,

the shear modulus Gs, the internal viscosity νin, the reduced volume Q and the cell

volume were varied during the database building. This is done to make the model

robust with respect to changes in the RBC properties.

Cases 1-85 of Tab. D.1 are represented in a scatter graph of θm according to D

in Fig. 5.12A. The database is split into a ‘training dataset’ and a ‘test dataset’. The

‘training dataset’ is used for updating the NN weights during the training step, while

the ‘test dataset’ is only employed for assessing the model accuracy. More precisely,

the ‘test dataset’ is made up of cases 2-21, of Tab. D.1 (see Appendix. D). The target

value is set according to the condition on θm, as discussed in the previous section.

Figures. 5.12B and C show cases that have a target value of 1 and 0, respectively

(viz. θm < 0.3 rad and θm > 0.3 rad). Note that pulses are treated as detailed in

Fig. 5.11 by using Ns = 20.

Training of the Neural Network

The NN illustrated in Fig. 5.10 is built by means of TensorFlow (https://www.

tensorflow.org/). The model weights are updated with the ADAM method [81]

which is a variant of the classical descent gradient method. In particular, error

gradients are calculated with the back-propagation method presented in App. C.

Furthermore, the loss function to minimize is the Root Mean Square (RMS) error.

The training procedure is performed over 10 000 epochs (number of iterations, see

App. C) with a batch size that equals the ‘training dataset’ size.

In the right column of Fig. 5.13 are shown NN scores against θm for different

epochs of the training. The epoch is indicated by the vertical line shown in the

graph of the left column (see Fig. 5.13), which depicts the evolution of the RMS

error according to the training epoch. In the first epoch, the NN score is almost

constant but rapidly takes a sigmoid-like profile according to θm (see first and second

rows of Fig. 5.13). At epoch 4000, θm < 0.3 and θm > 0.3 are already separated by

a threshold of 0.5 on NN score. As the model learning progresses, the transition in

NN scores occurring around 0.3 rad becomes steeper. For instance, at the end of the

NN training (epoch 10 000), NN scores between 0.95 and 1.0 are observed for θm <

0.3 rad, while NN scores between 0.0 and 0.05 are obtained when θm > 0.3 rad.

Note that the ‘test dataset’ depicts the same trend than the ‘training dataset’,

for all epochs of the training. This supports the fact that no overfitting takes place

during the model training. As well, the error made on the ‘test dataset’ decreases
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Figure 5.13 – Evolution of the MLP predictions (ie. NN score) according to θm,
during the training step (Right graphs). Left pictures illustrate the considered
epoch as a vertical line over the graph showing the RMS error against the training
epoch. The six rows correspond to epochs 0, 2000, 4000, 6000, 8000 and 10000, from
the top-down.
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Figure 5.14 – Distributions obtained on an experimental pulses acquisition. Distri-
butions shown refer to the entire acquisition ‘c’, the part of the acquisition for which
R > 52 (‘c-WR’), and parts of the acquisition that shows a NN score above and
below 0.5.

5.3.2 Comparison with the Width Ratio based filter

Concerning pulses predicted by numerical simulations, the NN has been shown to

detect accurately the cell rotation (see Tab. 5.1). However, numerical data are not

plagued with experimental errors and noise. Hence, there is a need for assessing the

model accuracy in the case of experimental data. In this section, the R-based filter

of Sec. 5.2 is compared with the NN model of Sec. 5.3.1.

The experimental pulses coming from the analysis of the blood sample of Chap. 4

(see Sec. 4.3.2) are treated as done in Fig. 5.11 and given to the NN of epoch 10 000

for assessing the NN scores. Applying a threshold of 0.5 to the NN scores leads to two

pulse populations. The ∆Um histograms for these two populations and for the whole

set of pulses are depicted in Fig. 5.14. Note that ‘c’ denotes the distribution arising

from the entire acquisition, without filtering. Besides, the ∆Um histogram obtained

after applying the R-based filter of Sec. 5.2 is shown for comparison (see ‘c-WR’ in

Fig. 5.14). For the entire population (case ‘c’), the typical right-skew distribution is

again shown, while thresholding NN scores enables a symmetrical ∆Um distribution.

Pulses with a peak of rotation that yields an overestimation of the cell volume are

well sorted and are gathered in the distribution of NN scores below 0.5. This is

supported by higher values of ∆Um recovered for case ‘NN score < 0.5’ compared to

‘NN score > 0.5’. Although both ‘NN score > 0.5’ and ‘c-WR’ depict symmetrical

distributions, the MLP seems more restrictive. Indeed, fewer pulses meet the ‘NN

score > 0.5’ requirement than ‘c-WR’. More precisely, the R-based filter conserves

around 55 % of the pulses while only 45 % of the whole acquisition is retained with

the NN.

We now analyse the sorting with respect to different metrics of the pulses (their

width, peak position, width ratio). Figure 5.16A and B show scatter plots of Wr as

a function of Pr by coloring in blue the points that are related to pulses for which R
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Figure 5.15 – Bell-shape signatures extracted from an experimental pulse acquisition
by means of the NN filter: NN score > 0.5 (see left picture). The averaged signature
is represented with a bold continuous black line, and ∆Um|bs is illustrated with the
double arrow. The right plot displays the remaining of the acquisition (viz. pulse
for wich NN score < 0.5).

> 52 % and NN score > 0.5, respectively. The numerical results of Fig. 5.3 are also

displayed in order to indicate the associated trajectories. Remind that Wr and Pr

correspond to metrics W and P but computed from a threshold relative to ∆Rm|bs

or ∆Um|bs, whether a numerical or experimental pulse is considered, respectively.

∆Rm|bs equals the maximum of case 1 in Fig. 5.3 while ∆Um|bs is calculated as

the averaged maximum of the ‘bell-shaped’ signatures, from the considered experi-

mental acquisition. The extraction of ‘bell-shaped’ pulses for calculating ∆Um|bs is

allowed by the R-based filter or the NN model (see Fig. 5.15). This convention was

indispensable for comparing simulation and experimental results in former chapters

(Chap. 3 and Chap. 4). An overview on all these quantities related to electrical

pulses is given in App. E.

The R-based filter seems to retain pulses generated by RBCs following trajec-

tories between case 1 and case 5 (see blue points in Fig. 5.16A). More restrictively,

the NN is shown to be limited to trajectories in between cases 1 and 4 (see Fig. 5.3

and Fig. 5.16B). This explains the fewer number of pulses accounted in case ‘NN

score > 0.5’ compared to case ‘c-WR in distributions of Fig. 5.14.

A better view of the differences between the two methods (viz. the R based

filter and the NN) is provided by plotting R against Pr, as done in Fig. 5.16C and

D. Again, pulses whose R is above 52 % and NN whose score is higher than 0.5 are

colored in blue in Fig. 5.16C and D, respectively. By representing the acquisition on

a R/Pr graph, the population for which Pr is around 80% is scattered in terms of R

while it is concentrated along the Wr axes in a Wr/Pr scatter plot. This highlights

the transition between cases 4 and 6. As a reminder, the RBC slightly rotates in

case 4, whereas it achieves a π/2 orientation in the orifice when considering case 6

(see Fig. 4.11A). Hence, by comparing Fig. 5.16C and D the conclusion that the NN

is more sensitive to cells rotations is drawn. This is likely due to the fact that a

condition of θm < 0.3 rad is more restrictive than thresholding R to 52 %, in terms
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(A) (B)

(C) (D)

Figure 5.16 – Comparison of the R based filter and the NN filter on bi-dimensional
representations of an experimental acquisition. Numerical results of Chap. 4 are also
shown, which gives an idea on the pursued trajectories. The numbers shown in these
graphs are related to the different cases of Fig. 5.3. Note that the same experimental
acquisition used in Chap. 4 is considered in these graphs. Top row (A and B) graphs
Wr against Pr, while the bottom row (C and D) illustrates R according to Pr.
In graphs of the left column, pulse for which R > 52 are highlighted in blue. In
pictures of the right column, pulses for which NN score > 0.5 are colored in blue.
The dimensionless threshold involved in the calculations of Wr and Pr is set to 0.5,
as in Chap. 4.
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of measurements errors (see Fig. 5.4).

5.4 Conclusion

In classical Coulter counters, errors in the assessment of the particle volumes may oc-

cur because of the edge-effects. This edge-effects overestimate the cell volume, thus

leading to a right-skewed volume distribution. Hydrodynamical-focusing enforces

centered trajectories of cells, removes the edge-effects and allows a Gaussian distri-

bution. However hydrofocused systems are more expensive and complex in terms

of implementation. This is why classical Coulter counters with methods aiming at

filtering the edge-effects are still employed in haematological automata. Actually,

the development of filtering strategies was limited by the lack of knowledge on the

edge-effect and the expected Gaussian distributions are not obtained. Based on new

insights provided by numerical simulations of RBCs in a classical Coulter counter,

filtering methods were proposed in the present chapter. This original family of meth-

ods consists in detecting and rejecting from the analysis the pulses subjected to a

cell rotation in the sensing region. Two examples for detecting the cell rotation were

given, and both were shown to provide a Gaussian volume distribution. In a first

method, a metric is used to isolate the ‘bell-shaped’ pulses (suited for measuring

the volume) from pulses presenting a peak of rotation. This metric is defined as

the ratio of two widths computed from the pulse and denoted by R. In the second

method, a NN is trained from a numerical database. More precisely, it is trained to

reject pulses generated by RBCs that reach at least 0.3 rad in the micro-orifice.

The choice of parameters pu and pd required for R may likely be optimized for

providing a better sorting. A further study on the impact of these parameters on the

R-based filter is intended in the near future. Note that the two proposed methods

would be simple of implementation in current automata, in particular the R-based

filter.
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Classically, a Coulter counter is used to count the cells, and measure their size,

yielding for the RBC population the mean corpuscular volume (MCV) and the RBCs

distribution width (RDW). However, we have shown that non-hydrofocused counters

measure an apparent volume, which is reliable only if cells pass close to the aperture

axis. The pulses associated with cells passing close to the aperture wall are more

difficult to interpret. Their amplitude is not only proportional to the volume but also

depends on the cell dynamics. A hydrofocused counter would eliminate such pulses

and provide a robust volumetry measurement. However, cells properties determine

their dynamics underflow: instead of seeing the near-wall behaviour as a bias on the

volume measurement, one may use non-hydrofocused counters to infer more RBCs

properties than just their size.

Indeed, it is well-known that RBCs properties are affected by numerous patholo-

gies (malaria, spherocytosis, elliptocytosis, sickle cell, thalassemia). Measuring sev-
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T ime

Figure 6.1 – Sketch of T0, T1 and T2 calculus.

eral thousands of RBCs in routine exams may thus provide the physician with valu-

able information about the health of the patient. This exploratory chapter deals with

the assessment of RBCs morphological and mechanical information from impedance

pulses. Detecting abnormal pulses that could be generated by pathological cells

implies the definition of standard impedance pulses (viz. the results which can be

expected from healthy people). A normal (healthy) exam from a non-hydrofocused

Coulter counter is thus defined in a first step. Then, by affecting the RBCs in

an experimental approach, it is shown that results out of the normality ranges are

obtained. This chapter ends with a preliminary study of the inverse problem of

numerical simulations of Chap. 4. In particular, a NN assessing some of the RBCs

parameters (shear modulus, internal viscosity ...) from the corresponding pulse is

presented.

6.1 Defining the normality on a given system

Hereafter, several blood samples collected from healthy patients are analysed to de-

fine the normality of impedance signals. The normality is observable in a qualitative

way on proper representations or may be assessed quantitatively by observing di-

rectly the pulses signatures and assessing their relative proportions. In the following,

the pulses normality for an ABX Micros 60 is presented. Note that the normality

would depend on the device and must be defined for each automaton.

6.1.1 Summary of the introduced pulses representations

In industrial counters, the pulse characterization is reduced to the assessment of

their maxima (∆Um) and their duration (W). The logarithmic filter currently im-

plemented in Yumizen H2500 and ABX Micros 60 (see Sec. 5.2.2) is a perfect example

of existing treatments applied to impedance pulses: it is only based on ∆Um andW.

New insights, supplied by numerical simulations, led to the introduction of original

metrics: R that measures the peak of rotation and P, that indicates the moment

at which the peak occurs in the pulse. As a reminder, W and P are expressed as
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follow:

W(thresh) = T1 − T0, (6.1)

P(thresh) =
T2 − T0

T1 − T0

× 100, (6.2)

in which instants T0, T1 and T2 are defined as in Fig. 6.1. Besides, R, that is defined

as a width ratio reads:

R =
W(pu ×∆Um)

W(pd ×∆Um)
, (6.3)

with pu and pd being user-defined parameters defined so that: 0 < pd < pu < 1.

Thresholding a pulse with absolute value as done in the computation of W and

P makes the results dependent on the cell volume. Hence, in order to provide

comparisons between different samples, it is preferable to scale the pulses with the

mean amplitude of ‘bell-shaped’ signatures ∆Um|bs (known as a robust measurement

of the mean cell volume MCV), before calculating W and P. Computing W and P

in such a way makes them relative to the MCV, thus they are denoted by Wr and

Pr, for the sake of clarity. In other words, Wr and Pr writes:

Wr(thresh′) =W(thresh′ ×∆Um|bs), (6.4)

and

Pr(thresh′) = P(thresh′ ×∆Um|bs), (6.5)

Illustrated in App. E, this convention was used in former chapters for comparing

numerical results with experimental data. Notice that this is not required for R

that involves thresholds defined as percentages of the pulse maximum ∆Um.

Based on these metrics, informative representations of the acquisitions are al-

lowed, as illustrated in Fig. 6.2. Plotting Wr against Pr (Fig. 6.2A and B) was

shown to organize pulses according to their trajectory in Chap. 4. Combining R

and ∆Um in a scatter plot highlights volume overestimations, and allows a filtering

aiming at avoiding sizing errors (Fig. 6.2C and D). Finally, scatter plots of R against

Pr (Fig. 6.2E and F) reveal the intermediate rotation dynamics in the aperture (viz.

from trajectories related to small rotations in the orifice to the first trajectory on

which particles may reach π/2 rad in the aperture). The representations of Fig. 6.2

are typical of healthy blood samples, but for the sake of concision, comparisons with

other healthy blood samples are not shown.

6.1.2 Normality of pulses signatures

The purpose of this section is to evaluate the reproducibility of electrical signatures

when healthy blood samples are considered. From graphsWr/Pr (see Fig. 6.2A and

B), specific pulses signatures can easily be extracted, as stated in Chap. 4.

By analyzing 22 blood samples coming from healthy patients by the use of ABX

Micros 60, graphs similar than Fig. 6.2 are obtained. For each acquisition, the

procedure detailed in Chap. 5 (R-based filter) is used to extract the ‘bell-shaped’

population and compute ∆Um|bs, the mean of their maxima. Then, metrics Wr

and Pr are assessed for each pulse. Specific boxes on the Wr/Pr representation are

then used to extract typical pulse signatures from the acquisition. Figure 6.3 shows
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Figure 6.6 – Pulses populations in boxes of Fig. 6.3. Bars plot refers to the normal-
ity computed as the average of 22 healthy blood samples. The error margins are
calculated as twice the standard deviations, which arise from the 22 healthy blood
samples. The populations assessed for a blood sample treated with glutaraldehyde
and SB3-12 at concentrations of 0.5 % and 90 mg.L−1 (respectively) are also shown.

Figure 6.7 – Microscopic images of RBCs suspended in a PBS solution (left picture)
and in a SB3-12 solution at 100 mg.L−1 (right picture).

6.2.1 Evidence of the geometrical and rheological information

embedded in impedance pulses

Experimental protocol

Changing the RBCs geometrical and rheological characteristics is done by adding

specific reagents in a ABX Minidil solution (ie. the electrolytic solution in which

RBCs are suspended during the analysis). More precisely, dilutions of SB3-12 and

glutaraldehyde in ABX Minidil at different concentrations are prepared. In par-

ticular, SB3-12 dilutions cover a range varying between 0 and 90 mg.L−1, while

glutaraldehyde is diluted at various concentrations in the range [0 % , 0.5 %]. Then,

pulses acquisitions are performed with an ABX Micros 60, as usual, but replacing

the classical reagent (ABX Minidil) with the modified solutions. On ABX Micros

60, the replacement of the electrolytic solution is done by interchanging the reac-
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tant bottles with a simple ‘plug and play’ procedure. Besides, the ’CLEAN ALL

REAGENT’ command is run for removing the former solution from the needle and

the system pipes. Two blood samples are analysed with these modified solutions.

The first sample is used in acquisitions with the different SB3-12 solutions, while

the second one is involved in experiments with the various glutaraldehyde prepara-

tions. Acquisitions are performed twice to make sure that results are repeatable. In

addition, reference pulses acquisitions are also performed for all samples with the

original ABX Minidil solution. Notice that such acquisitions were accounted for in

the normality definition of Sec. 6.1.

Comparisons with the predefined normality

Figure. 6.8 displays typical Wr/Pr representations arising from pulses acquisitions

with SB3-12 and glutaraldehyde. Especially, graphs of the left column derive from

the acquisitions at glutaraldehyde concentrations of 0 %, 0.15 % and 0.5 % (A,

C and E, respectively), while figures of the right column arise from experiments

involving the following SB3-12 concentrations: 0 mg.L−1, 30 mg.L−1 and 90 mg.L−1

(B, D and F, respectively). Note that left and right columns are obtained with two

different samples.

At zero concentrations of glutaraldehyde and SB3-12, graphs are in good agree-

ment with the normal scatter plots expected (see the comparison between Fig. 6.8A

and Fig. 6.8B with Fig. 6.2B). However, adding the aforementioned molecules in

the electrolytic solution impacts the distribution and location of pulses in a Wr/Pr

representation, as shown in Fig. 6.8C, D, E and F. Moreover, the locations of pulses

in such a plot are shown to be related to SB3-12 and glutaraldehyde concentrations.

Box-wise pulses proportions are assessed for the acquisitions with glutaraldehyde

at 0.5 % and SB3-12 at 90 mg.L−1. The obtained percentages are superimposed with

the bar graph defining the normality in Fig. 6.6. Regarding the statistics, the added

reagents induce deviations with respect to the normality. In particular, assessments

for the acquisition involving SB3-12 are systematically out of the tolerance margins.

In box6, SB3-12 produces a reduction of the population, in contrast with glutaralde-

hyde that increases the proportion of pulses. The two reagents have also opposite

effects on box7. This suggests that a sample of rigid RBCs and a sample of spherical

erythrocytes are distinguishable by statistical evaluations. It should be noted that

glutaraldehyde leaves Box8 and 9 unpopulated, so does SB3-12 with Box9.

As done for healthy blood samples in Sec. 6.1.2, the averaged pulse is computed

for each box of Fig. 6.3 from acquisitions corresponding to Fig. 6.8E and F (viz.

with glutaraldehyde at 0.5 % and SB3-12 at 90 mg.L−1, respectively). The resulting

mean signatures are compared in a box by box manner with the normality in Fig. 6.5.

Regarding boxes related to the most centred paths, small deviations, and even no

deviations are observed in terms of averaged pulses (see Box1 and Box2 in Fig. 6.5).

Stiffening RBCs with glutaraldehyde tends to increase the magnitude of the peak

that emerges when the cell rotates (see case ‘gluta’ in Fig. 6.5C, D, E, and F). This

is consistent with the numerical results of Chap. 4. As a reminder, when evolving

in the vicinity of walls, the RBC rotation induces a peak on the associated pulse.
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Besides, a strong compression of the cell occurs while it rotates, which appears to

mitigate the peak amplitude. Consequently, a rigid cell that cannot compress is

expected to produce a larger peak. Regarding boxes 7, 8, and 9, a substantial effect

of glutaraldehyde is observed. However, boxes 8 and 9 are sparsely populated with

glutaraldehyde, which makes the averaged signatures irrelevant for these two cases

(see Fig. 6.6 in which pulses proportions for the case of glutaraldehyde are available).

Contrary to glutaraldehyde, SB3-12 is shown to reduce the importance of the peak

(see Fig. 6.5C, D and E). Indeed, the consequence of cells rotations is limited by

the spherical aspect taken by RBCs suspended in a SB3-12 solution. Simulations

performed by increasing the reduced volume Q (thus the cell sphericity) have shown

the same trend in Chap. 4. Note that box6 and box9 are emptied when RBCs are

submitted to SB3-12 (see Fig. 6.6), which makes pulses referred to as ‘SB3-12’ in

Fig. 6.5F and I irrelevant. Lastly, spherical RBCs generate pulses that conform with

the normality, regarding box7 and box8 (Fig. 6.5G and H).

In summary, spherizing or stiffening RBCs directly impacts the electrical signa-

tures. Omitting boxes 1 and 2, glutaraldehyde and SB3-12 have distinct effects on

the electrical prints. In particular, spherizing the cell reduces the magnitude of the

peak of rotation in contrast with a more rigid RBC that generates a more important

peak.

Designing global markers

In the last section, morphological and rheological alterations of RBCs were shown

to deviate the measurements from a predefined normality. The demonstrations were

based on the Pr/Wr plane. In the present section, indicators for abnormal samples

are introduced but this time based on Pr/R representations, since such plots ap-

pear more sensitive to RBCs disorders. As supported by Fig. 6.9 which is based on

the same data as Fig. 6.8, R/Pr graphs emphasize the differences between spher-

ized and stiffened RBCs, even when intermediate concentrations of glutaraldehyde

and SB3-12 are considered (see Fig. 6.9C and D, respectively). When monitoring

the acquisitions with Pr/Wr plots, discrepancies are less obvious, in particular for

intermediate cases (see Fig. 6.8C and D). Indeed, in such a representation, acqui-

sitions broadly conserve the same arrangement: two branches intersecting at Pr ≈

80 %, and an isolated cluster located at Pr ≈ 15 %. Note that apart from the main

cluster related to central paths, data organisation in a R/Pr graph may completely

differ from the normality when RBCs are altered (comparing Fig. 6.9A and B with

Fig. 6.9C, D, E and F).

Stating that the representation of Fig. 6.9 is more sensitive to shape and me-

chanics alterations, a second set of boxes is defined, this time on a R/Pr graph (see

Fig. 6.10). This second set of boxes is indexed by a prim superscript. In each box,

the pulses proportion but also averages of R and Pr are calculated. Boxes were

chosen manually to maximize as much as possible the differences between the re-

sults with spherized RBCs and rigidified RBCs, regarding the computed quantities

(viz. boxes statistics and averages of R and Pr). In particular, box3′ is chosen be-

cause a considerable increase of the population is expected for spherical RBCs (see
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Figure 6.10 – Second set of boxes, defined over aR/Pr graph. MetricR is calculated
with pu = 7/8 and pd = 1/2, while Pr is assessed by using a threshold of 0.5.

Fig. 6.9F). Furthermore, box4′ is retained because rigid cells tend to leave this part

of the plot unpopulated (see Fig. 6.9E), while spheres remain and spread along the

R axis (see Fig. 6.9F). One should also cite box5’, in which substantial differences

between both types of alteration are observed (see Fig. 6.9E and 6.9F).

More sophisticated methods may provide automatically the set of boxes. The

presented results must be viewed as an example of processing the data for assessing

morphological and rheological information.

Overall, 18 values per sample are calculated from the 6 boxes of Fig. 6.10: for

each of the 6 boxes, the proportion of pulses with respect to the total number

of pulses, the mean value of R and the mean value of Pr are calculated. In the

following, only the most relevant quantities are presented, for the sake of concision.

Figure. 6.11 shows the evolutions of pulses proportions in box3′ and box5′ according

to the concentrations of glutaraldehyde (A and B, respectively) and SB3-12(C and D,

respectively). Remind that for each concentration the blood samples were analysed

twice, which provides an indication of the repeatability of the observations. The

normality is assessed by considering the 22 healthy blood samples of Sec. 6.1 and

represented as horizontal lines in Fig. 6.11. The average over these 22 samples is

depicted with a red continuous line, while the tolerance margin (defined as twice the

standard deviation) is shown in black dashed lines.

As the concentrations of glutaraldehyde and SB3-12 increase, the populations in

box3′ and box5′ get out of the normality. Assuming that SB3-12 and glutaraldehyde

concentrations are respectively correlated to RBCs sphericity and rigidity, it appears

that proportions in box3′ and box5′ measure such cells features. Both glutaraldehyde

and SB3-12 tend to increase the pulses percentages in box3′ and box5′. Hence,

considering a single quantity enables the detection of abnormalities and does not

supply the type of disorder. Still, remind that the two types of alteration can be

segregated by assessing the pulses proportions in box6 and box7 (see Fig. 6.6), for

instance.
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Figure 6.11 – Typical evolutions of boxes statistics according to glutaraldehyde and
SB3-12 concentrations. The red and continuous line refers to the average on the 22
healthy blood introduced in Sec. 6.1, while the tolerance margin is represented in
dashed lines. This range is defined as twice the standard deviation.

6.2.2 Screening RBCs subpopulations

In Sec. 6.2.1, it is shown that impedance pulses contain information about cell mor-

phological and/or rheological disorders. Examples of signal processing enabling the

diagnosis of the type of disorder have also been presented. The introduced methods

require a normality definition that is available in Sec. 6.1. Although treatments

achieved in Sec. 6.2.1 provide a straightforward detection of abnormalities, they are

limited to pathologies affecting a substantial proportion of the RBC population.

Remind that such procedures are based on statistical assessments and averaged

quantities. Hence, more advanced methods allowing the cell diagnosis from the

electrical pulse are required to capture small populations of abnormal RBCs. This

section is devoted to neural network modellings that are built in that sense. Firstly,

a NN is trained to detect abnormal pulses. Then, a second NN is trained with the
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aim to detect the type of abnormality: rigidity or sphericity (viz. glutaraldehyde or

SB3-12, respectively).

As described in Sec. 5.3, NNs are models made of interconnected neurons that

are generally organised in successive layers. When neurons are linked to all neu-

rons of the preceding and following layers, the NN is called multi-layer perceptron

(MLP). Such an architecture may lead to models having a substantial number of

parameters (called weights) when the problem suffer from high dimensionality is-

sue. In following modellings, Convolutional Neural Networks (CNNs) are employed.

Convolutional Neural Networks (CNNs) can prevent hyper-parametrized models by

restricting relevantly inter-layer connections. They are dedicated to structured in-

put variables from a single source, whose organisation is informative (as for pixels

composing an image, and electrical pulses). CNNs involve convolution layers that

consist in scanning the input data with several filters (also called kernels) to detect

the presence of pertinent features to address the desired modelling. A convolution

layer is thus parametrised by the number, the size (Nk) and the increment S of the

kernels (step by which filters are moved on the input data). Scanning the input data

with a kernel leads to a ‘feature map’, so that a convolution layers is composed of

as many features maps as kernels involved. Features maps are taken as an input by

the following layer, that can be either a convolution or a fully-connected layer. The

reader is referred to App. C for more details on these concepts related to CNNs.

Abnormality sensor

CNN structure: The detection of abnormal pulses is performed by using a CNN.

Depending on the trajectory followed by the cell, the generated pulse is more or

less long. Hence, assuming a constant recording time step (∆t), electrical prints

are described by temporal sequences of variable sizes. This is problematic since

feedforward neural networks take as input an imposed number of variables. Using a

CNN, the procedure introduced in Sec. 5.3.1 to tackle this issue is not suited. Indeed,

CNNs involve convolution layers enabling the recognition of specific patterns when

dealing with structured input data. The later defines data stemming from the same

source whose arrangement is informative. Yet, this is not the case in the approach

of Sec. 5.3.1, where both the pulse duration and the resampled signal are defined as

input of the model (see Fig. 5.11). Hence, the treatment illustrated in Fig. 6.12 is

performed directly on the pulses to make them all intelligible for the CNN. First,

the pulse is scaled in amplitude by its maximum ∆Um. The procedure consists in

building the treated pulse from ∆U/∆Um, with chosen increment (∆t), duration

(Tw) and threshold (see Fig. 6.12). The treated pulse is defined as the sequence of

duration Tw, sampled with a time step ∆t, which equals the maximum between the

threshold and ∆U/∆Um. In doing so, all pulses are represented by NLo=Tw/∆t

points. Left and right pictures of Fig. 6.12 illustrate this process when performed

on two pulses with different durations. Once treated, both are represented with

temporal series of the same lengths. Note that the original signal must be located

between instants 0 and Tw, as shown in Fig. 6.12.

The retained CNN is composed of 8 layers. In the following, Tw is set to 49 µs,
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Data Base
Normal Abnormal

ABX Minidil
Gluta [%] SB3-12 [mg.L−1]
∈ [0.3 ; 0.5] ∈ [60 ; 90]

Table 6.1 – Summary of the acquisitions selected for training the CNN aiming at
detecting abnormal cells. The normality is defined by acquisitions made with ABX
Minidil, while abnormal observations stem from acquisitions with SB3-12 and glu-
taraldehyde. The considered SB3-12 and glutaraldehyde concentrations are indi-
cated.

Data base: Data stem from the experimental acquisitions previously discussed.

In particular, pulses involved in the normality definition (Sec. 6.1) are retained

in addition to pulses recorded when SB3-12 and glutaraldehyde are added in the

suspending solution; only glutaraldehyde and SB3-12 concentrations included in

[0.3 % ; 0.5 %] and [60 mg.L−1 ; 90 mg.L−1] are accounted for. This means the

model is designed to detect RBCs that are significantly impacted. Reagents used

for the acquisitions belonging to the database are summarized in Tab. 6.1. As

stated in Sec. 6.1, pulses obtained by using the ABX Minidil solution are considered

as normal observations (see Tab. 6.1). An outlet value of 1 is then associated with

such pulses, during the training procedure. Acquisitions made with SB3-12 and

glutaraldehyde are considered as abnormal observations and are then coupled with

an outlet value of 0.

Pulses observed while cells undergo central trajectories were shown to be less

sensitive to changes in the RBCs characteristics (see Fig. 6.4A and B). Hence, these

latter are removed from the database beforehand. The R-based filter introduced

in Chap. 5 enables this extraction as illustrated in Fig. 6.14. From a pulse, R is

calculated and if it is above 52 % the pulse is rejected from the database. For

example, in Fig. 6.14A pulses leading to R above 52 % are colored in blue. Fig-

ure 6.14B illustrates the acquisition in a Wr/Pr graph, with the same color code

than as in Fig. 6.14A. Then, Fig. 6.14C gives an insight on the retained signatures

on aWr/Pr representation. In this manner, pulses from box1 and box2 (see Fig. 6.3

and Fig. 6.14B) are removed from the dataset. The process shown in Fig. 6.14 is

applied to all acquisitions involved in Tab. 6.1.

CNN training: The database of Tab. 6.1 is split into two datasets: a training

dataset and a test dataset. Only the training dataset is used in the CNN training,

the test dataset is used for assessing the model accuracy. The CNN weights are

updated with the ADAM algorithm [81] in a mini-batch gradient descent approach.

The batch size is set to 200, and the learning is run over 1000 epochs on the training

dataset. The loss function is the root mean squared (RMS) error and its gradients

are calculated with a back-propagation method. During the training step, the error

made on the test dataset is calculated. In Fig. 6.15A, the RMS errors on the training

and test datasets are shown according to the training epoch. During the entire

training, the error on the training data decreases. However, from epoch 500, the
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Figure 6.17 – Overview of the CNN training (architecture shown in Fig. 6.16). (A)
Root mean squared (RMS) error for the training and test datasets according to the
epoch. (B) Confusion matrix obtained by applying the CNN of epoch 500 to the
test dataset.

the learning is done with ADAM algorithm [81] in 1000 epochs on the database

of Tab. 6.1, and the loss function is expressed as the RMS error. Note that the

treatment illustrated in Fig. 6.14 is performed to reject pulses that are irrelevant

for the assessment of RBCs morphological and rheological disorders. Figure. 6.17A

depicts the evolution of the RMS errors on the training and test datasets during

the CNN learning. Regarding the training dataset, the error falls during the whole

learning, while the test dataset stalls from about epoch 500. Hence, the CNN state

of epoch 500 is retained for the following applications.

Once the training step achieved, applying the model to the test data leads to the

confusion matrix presented in Fig. 6.17B. Given a pulse, the CNN renders a vector

of three components that are included in [0 ; 1]. The classification is then done by

retaining the class corresponding to the output neuron of maximum value. Regarding

normal pulses, both CNNs (see Fig. 6.13 and Fig. 6.16) have an accuracy of almost

96 %, as stated in Fig. 6.15B and Fig. 6.17B. The correctness on abnormalities is

around 92 % for the two different types (SB3-12 and glutaraldehyde), as shown

in Fig. 6.17B. Hence, recognizing the type of disorder from the pulse appears to be

possible. Note that 5.1 % of the pulses obtained using SB3-12 are predicted as pulses

stemming from acquisitions with glutaraldehyde, while 3.9 % of pulses generated by

cells treated with glutaraldehyde are seen as signals resulting from an analysis with

SB3-12. That means 97.6 % of RBCs in SB3-12 and 95.7 % of RBCs analysed in

glutaraldehyde are diagnosed as abnormal. Hence, one may conclude that the two

approaches (CNNs of Fig. 6.13 and Fig. 6.16) are almost equivalent in terms of
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abnormality detection.

Future improvement

Results provided by CNNs of Fig. 6.13 and Fig. 6.16 are encouraging but further

studies are needed to provide more accurate results. As shown by off-diagonal values

in confusion matrices of Fig. 6.15B and Fig. 6.17B (i.e. the prediction errors),

sub-populations representing only a few percent of the sample would be hardly

traceable. It should be noted that coincidences (several particles crossing the orifice

at the moment) are not removed from the dataset, which may alter the model

training and skew assessments of Fig. 6.15B and Fig. 6.17B. Filtering signatures

induced by such events is indispensable for detecting small abnormal populations

(below 1 %, for instance). Furthermore, the reliance of the results on the CNNs

architectures (Fig. 6.13 and Fig. 6.16) is intended in the future. This point represents

an interesting direction for improving the prediction of both models.

6.3 Towards a complete RBCs characterization

The purpose of this section is to model the inverse problem of numerical simulations

presented in Chap. 4. More precisely, one aims at evaluating the RBC parameters

from the associated electrical print. In that respect, the retained approach is to

train a NN from numerical pulses obtained with varying RBC parameters.

Numerical simulations allow the building of couples ain/aobs, in which ain repre-

sents the electrical pulse and aobs refers to the RBC parameters. In a first attempt

of modelling, aobs was composed by: the internal viscosity (νin), the shear modulus

(Gs), the reduced volume (Q) and the streamline. Remind that the streamline is

used to manage the cell trajectory in the aperture. It is defined by a point (0 , ra

, 0), by which the streamline gets through. The coordinate ra is included in [0 µm

; 25 µm], and refers to the distance from the aperture centerline. As previously

stated, the flow is axisymmetric around the aperture, that is why all the considered

streamlines are in the plane (~ex,~ey). The curvature modulus (Eb) and the spon-

taneous curvature (co) have been verified to have negligible effects in a reasonable

physiological range. Hence, they are kept constant in all simulations of the numerical

database. Moreover, the RBC area modulus Ea is also kept constant, since changes

of area were less than 1 % in the reference simulations of Fig. 4.10 (see Sec. 4.3).

Note also that the effect of the internal density on the electrical pulse is insignif-

icant, as stated in App. A. It turns out that the learning step of such an inverse

problem is not possible (not shown). In particular, the NN is unable to accurately

predict internal viscosities and shear moduli (νin and Gs, respectively). As shown in

Chap. 4 (see Fig. 4.16B and C), the shear modulus Gs and the internal viscosity νin

have the same impact on the electrical signature. This highlights a non-uniqueness

issue and explains why this attempt in modeling the inverse problem fails.

In the first section, the direct problem is modelled with a NN, and shown to

support the assumption of non-uniqueness above-mentioned. Then, in a second

section, it is proposed to combine νin and Gs in a single parameter for modelling
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Figure 6.19 – Training and test of the direct model provided by the MLP of Fig. 6.18.
Picture (A) shows the evolution of the RMS errors for the training and test data
according to the epoch. Figures (B), (C), (D), and (E) are examples of pulses
predicted by the MLP superimposed with the actual signatures from simulations.
Note that pulses considered in (B), (C), (D), and (E) are part of the test dataset
and stem from cases 326, 336, 351 and 364 of Tab. D.1 (in App. D), respectively.

converted as stated in Sec. 5.3.1. The batch size is the same as the training dataset

and the gradient descent algorithm is performed over 20000 epochs. The learning

step converges rapidly to an optimum as shown by Fig. 6.19A. In addition, the RMS

for training and test data are similar, indicating that no over-fitting occurred during

the learning. Indeed from epoch 1000 results do not change significantly.

Applying the trained MLP to the test data, it is observed that electrical pulses

are accurately retrieved. For example, Fig. 6.19B, C, D, and E compare pulses

predicted by the MLP with the original pulses stemming from numerical simulations,

for 4 cases from the test dataset. Note that the predicted pulses in these graphs are

reconstructed from the outcome of the MLP (see Fig. 6.18). This explains why the

predictions take values included in 0.5 and 1, in terms of amplitude (see Fig. 6.19B,

C, D, and E).

Remind that substantial efforts are required to simulate the numerical database

from which the MLP arises. However, once trained, this MLP can provide the

impedance pulse almost instantly by providing it with the RBC parameters. Hence,

it may represent an efficient tool for simulating an entire acquisition.
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6.3.2 Simplified inverse problem

Training and results

Based on the results of Sec. 6.3.1, the inverse problem is modified by replacing

parameters νin and Gs by a single variable νapp (see Eq. 6.6). Hence, the modelling

of this modified problem is done with the neural network architecture of Fig. 6.21A.

It is composed of two convolutional layers (cv 1 and cv 2), that are equivalent to those

shown in Fig. 6.13 and Fig. 6.16. Following the convolution layers, a fully-connected

layer of 40 neurons is set. Finally, the output layer is composed of 3 neurons, each

neuron being related to one of the RBCs parameters (see output layer in Fig. 6.21A).

All the activation functions of the model are sigmoid functions except the output

layer, which takes identity activation functions. The use of a sigmoid function for

the output layer would not be relevant for this regression problem because it could

only render values included in [0 ; 1]. The numerical database of Tab. D.1 is split

into two parts: a test dataset defined by cases {319, 321, 326, 329, 344, 349, 351,

355, 359, 366, 369, 370, 375, 381, 382}; a training dataset made up of the other cases

(viz. cases 86-382 without the test data). The learning step is performed in 80000

epochs with a batch size that equals the size of the training dataset. As previously

done, the cost function that rates the model error is the RMS. In Fig. 6.21B, the

evolutions of RMS errors for the training and test dataset are shown. The model

converges rapidly and the CNN state of epoch 20000 is retained. In Fig. 6.21C, the

predictions of the CNN for the training and test datasets are displayed against the

target values. Predictions for both training and test data are located on the identity

function, which validates the model training. It appears that the CNN is more

accurate in the prediction of parameter ra (see Fig. 6.21C), but results obtained for

νapp and Q are also satisfying.

Test on experimental data

Applying this model to an experimental acquisition, distributions of νapp, Q (re-

duced volume) and ra shown in Fig. 6.22 are obtained. Note that in the numerical

database from which the model has been designed, ra varies in between 16 µm and

20 µm, which corresponds to cases 6 to 10 of Chap. 4 (see Fig. 4.18), in terms of

trajectory in the aperture. Hence, from the experimental acquisition, only pulses

that satisfy R < 52 % and Pr > 20 % are retained for testing. This allows the ex-

traction of experimental pulses that are superimposed with cases 6-10 in a Wr/Pr

plot (see Fig. 4.18). The considered experimental acquisition stems from an analy-

sis performed with ABX Minidil and belongs to the normality definition of Sec. 6.1.

Vertical lines that illustrate the boundaries of the numerical database are shown over

the distributions of Fig. 6.22. As expected, the predicted ra distribution is broadly

included within the database range (see Fig. 6.22A). However, Q and νapp distri-

butions spread out of the simulated ranges (see Fig. 6.22B and C). The predicted

reduced volumes (Q) depict an intuitive symmetrical distribution that is centered

around a reasonable value of 0.7. Regarding the νapp distribution, one can doubt

on the reliability of the model. Indeed, a substantial part of the acquisition is lo-
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Despite uncertainties concerning the inverse model, its behavior when RBCs

are modified with glutaraldehyde or SB3-12 was assessed. In Fig. 6.24A and B,

Q and νapp distributions are shown for three different SB3-12 concentrations (in-

cluding 0 for reference). In the same way, Fig. 6.24C and D display respectively Q

and νapp histograms for three concentrations of glutaraldehyde. When increasing

the SB3-12 concentration, the Q distribution is shifted to the right-hand side (see

Fig. 6.24A), which is consistent with the fact that SB3-12 spherizes RBCs. However,

νapp decreases when adding SB3-12, which was not expected (see Fig. 6.24B). When

treating cells with glutaraldehyde, the model predicts increases in Q and νapp. The

growth of νapp is in agreement with previous observations reporting more rigid cells

when treated with glutaraldehyde. At substantial concentration, glutaraldehyde

was shown to alter RBCs shapes, but no quantitative measurements are available,

to our knowledge. Hence, it is difficult to conclude on the reliability of the model

that predicts a more spherical aspect of RBCs when glutaraldehyde is added in the

suspending solution.
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7.1 Main results

This thesis presents a numerical study of electrical prints generated by particles

flowing through the sensing region of a Coulter counter.

Due to substantial differences in velocities and length in industrial Coulter coun-

ters, there is a need of focusing the computation domain to the measurement region.

In practice, calculations are performed by depositing the particle just before the

aperture in a fluid domain restricted to the detection area. In Chap. 3 , this proce-

dure was presented for the case of ABX Micros 60 (HORIBA Medical) and applied

to the prediction of electrical pulses generated by rigid spheres. Spheres lead to

‘bell-shaped’ pulses when following a centred trajectory, while the signature tends

to depict a ‘M-shaped’ by the walls. The typical ‘M-shaped’ is explained by regions

with a dense electrical field that are around the aperture corners. Numerical results

were shown to be in good agreement with an experimental pulses acquisition when

a latex bead sample is analysed. Note that a strict comparison between these two

approaches is not possible because of the accessibility of industrial systems: it is

not possible to know where the particles pass in an experiment, which precludes the

direct comparison. However, the pulse duration (rated by metric Wr, see Eq. 3.3)

is related to the particle trajectory, thus comparisons were performed by sampling

the durations of the pulses and superimposing the shapes of the numerical and the

experimental pulses having the same duration Wr.
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As a direct extension of Chap. 3 to deformable particles, Chap. 4 dealt with

the case of RBCs. Contrary to rigid spheres, RBCs deform and may rotate before

entering in the sensing region. Hence, the approach of starting the simulation by

depositing a resting RBC near the aperture entrance (as it was done for spheres in

Chap. 3) is not relevant: there is a need for accounting the cell dynamics before

the aperture. However, due to low velocities in the upstream part of the orifice,

simulating the whole RBC behaviour before it enters the aperture would lead to

tremendous computational costs. In that respect, an original pipeline was proposed

to tackle the numerical simulation of deformable particles in Coulter counters [162].

In this method, the upstream dynamics of RBCs is simulated in a relevant exten-

sional configuration which is much smaller than the entire device. Once elongated

by this extensional flow, the RBC is dropped just before the orifice entrance, in a

reduced configuration of the complete geometry. This approach was validated by

comparisons with a computation tackling the entire Coulter counter. In addition, it

is shown to reduce the CPU cost by a factor of 8. By applying this original pipeline,

a variety of RBCs dynamics was simulated. In the core region of the orifice, the

RBC depicts an elongated shape that is aligned with the perforation. Closer to

the edges, velocity shears make the RBC rotate, and a cell compression is observed

while the particle turns in the shearing region. Centered paths render ‘bell-shaped’

pulses while rotating cells produce a peak on the electrical perturbation. Besides,

it is stated that the closer the particle from the aperture wall, the sooner the cell

rotation occurs, and so does the peak in the pulse. Then, a metric measuring the

moment at which the peak occurs was introduced (Pr, see Eq. 4.6). Combining

Pr with Wr allows an arrangement of the pulses according to the RBCs trajectory.

These tendencies, originally discovered in the numerical simulations results, are also

observable in the experiments by analysing healthy blood samples. Furthermore,

the use of Pr and Wr enables the extraction of experimental signatures that were

predicted numerically. The good agreement found with the experimental data not

only validates the introduced pipeline but also explains the huge variety of pulses

signatures observed when analyzing a blood sample.

Considering both rigid spheres and deforming RBCs, two types of edge-effects

were retrieved: electrical artefacts that are caused by the regions of high local elec-

trical field; dynamical artefacts occurring when deforming and aspherical particles

evolve near the wall in the shearing region. Shear velocity gradients deform and

make the RBCs rotate, thus inducing a change of the cell shape factor that directly

impact the electrical perturbation (see Eq. 1.2) Using the inertia equivalent ellipsoid

and shape factor analytical models provided in the literature, the evolution of the

RBC shape factor inside the aperture is provided. As stipulated by the empirical

Eq. 1.2, a linear relationship between the electrical perturbation and the product of

the shape factor with the squared electrical field is retrieved. Notice that, consider-

ing rigid spheres, for which the shape factor remains constant, it was shown that the

squared electrical field is directly proportional to the electrical print. The use of the

numerical simulation with the shape factor modelling allows a better understanding

of the electrical and dynamical respective contributions to the edge-effects. The pre-

sented method represents also useful tool to assess the deformability contribution to
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the pulse shape.

Numerical results highlighted volume overestimations when pulses impacted by

edges-effects are considered. In the studied configuration, all RBCs impacted by

electrical edge-effects are also impacted by dynamic artefacts. It is then proposed to

filter pulses altered by dynamical edge-effects to achieve a more accurate assessment

of cells volumes. Generally, the pulse maximum is taken as a measurement of the

cell volume. The RBC rotation increases the shape factor fs and thus the apparent

volume for the Coulter counter. Hence, methods aiming at detecting whether the

RBC rotates were introduced in Chap. 5. A first approach detects the peak of

rotation by computing a width ratio, denoted by R (see Eq. 5.1). Calculating R for

all pulses from an experimental acquisition and applying a convenient threshold onR

for filtering irrelevant signals, symmetrical and Gaussian-like volume distributions

were obtained. Note that without any filter, the observed volume distribution is

right-skewed, as it was reported in the literature. Also, the R based filter shows a

better correlation with hydrodynamical focusing (which is the reference in Coulter

counters), in terms of average and standard deviation of measured volumes: in

hydrofocused Coulter counters, cells are enforced to flow through the detection area

by the core of the orifice, in such a way they are not impacted by edge-effects. A

second method detects the rotation by a Neural Network (NN) modelling. Probably

due to a stricter criterion for rotation detection, this second method appears to be

limited to more centred path than the R-based filter; a symmetrical distribution is

also retrieved. The approach of detecting particle rotations from electrical pulses

was subjected to patent protection, whose examination is still ongoing.

The last chapter (Chap. 6) lays the foundation of a possible characterization

of the shape and the rheology of particles by the analysis of impedance pulses.

By spherizing and stiffening RBCs with SB3-12 and glutaraldehyde (respectively),

changes may quantitatively be observed on relevant two-dimensional graphs (Wr/Pr

and R/Pr, for instance). By defining boxes on the aforementioned graphs, propor-

tions and averaged pulse signatures diverge from a predefined normality. Note that

the normality is defined from several healthy blood samples that were not treated

with glutaraldehyde nor SB3-12. Methods based on bi-dimensional graphs consist

in calculating percentages or averaged metrics (viz. R and Pr). Hence, only cases

where a substantial part of the sample is abnormal may be sensed with such methods.

This drawback was balanced by the use of Convolutional Neural Network (CNN). In

a first CNN modelling, it was shown that abnormal signatures may be distinguished

with an accuracy of about 96 %. Then, the abnormality type (SB3-12 or glutaralde-

hyde) appears to be achievable by a CNN trained to recognize three subgroups:

normal RBCs, RBCs spherized by SB3-12 and RBCs rigidified with glutaraldehyde.

A correctness of about 92 % was obtained for the diagnosis of the disorder type.

In the last part of Chap. 6, NNs are used for modelling the inverse problem

of numerical simulations. This study aims at assessing the RBC parameters from

the corresponding electrical pulse. Four parameters were retained in this study:

(1) the cell trajectory, (2) the membrane shear modulus, (3) the internal viscosity,

and (4) the RBC sphericity (or reduced volume). For this purpose, a database

of about 300 pulses was generated in a numerical approach. It was observed that
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the neural network fails in learning the inverse problem (given a pulse, provides

the 4 parameters), while the direct problem is easily achieved. The direct problem

indicating that several couples of shear modulus and internal viscosity may lead to

the same pulse signature, the choice of combining them into a unique parameter

similar to an apparent inner viscosity was made. Both internal viscosity and shear

modulus drive the capability of the RBC to being compressed in the shearing region

(near the orifice edges), thus they both induce variations of same nature on the pulse.

Combining these two parameters in the apparent viscosity, the inverse problem is

successfully learned by the CNN. Finally, when applying the CNN to experimental

data, encouraging results are obtained. The predicted trajectories correlate with Pr

andWr, which agrees with statements of Chap. 4. Moreover, RBCs reduced volume

and apparent viscosity, outcoming from the CNN, are assessed in reasonable ranges

but would require further modelling efforts (discussed in the following).

7.2 Raised issues and perspectives

7.2.1 The close vicinity of the orifice edges

A part of the experimental acquisitions was not retrieved in the simulations. This

portion represents approximatelly 6 % of the whole acquisition and is observed at

Pr values arround 10 % on graphs Wr/Pr and R/Pr. Considering a trajectory

even closer to the aperture walls seems to explain this cluster (see App. B), but nu-

merical instabilities encountered in such wall proximity make difficult any definitive

conclusions.

Despite the lack of understanding of this specific part of the acquisition, it was

shown that the related pulses signatures are reproducible from a healthy blood

sample to another. Besides, they are also sensitive to alterations of RBCs. In a

nutshell, this specific part of experimental acquisitions was not fully understood

in the context of this thesis but was proven to be sensible to morphological and

rheological disorders of RBCs. Hence, further numerical efforts are intended in the

future to reproduce accurately this type of signatures and understand the involved

mechanisms.

7.2.2 Completeness of the numerical model

The range of shear rates experienced by the cell in Coulter counters is much higher

than the configurations generally studied in the literature. Nevertheless, RBC de-

formations remain moderate. The RBC exposure times to these high shear rates

being very short, the internal viscosity plays an important role in maintaining the

cell shape. The same should be true for the membrane viscosity, although it was

not modelled in the present study.

As the membrane viscosity, dielectrophoretic (DEP) forces acting on the mem-

brane were not taken into account, although RBC electro-deformations were reported[116,

132] in the range of the electrical field observed in the studied configuration (of the

order of 1.0 × 106 V.m−1). Further investigations about the impact of DEP forces

and membrane viscosity should be performed in the future. Still, good comparison
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with experimental data was obtained, that demonstrated that the proposed pipeline

(Chap. 4) and current assumptions (Chap. 2) are appropriate to represent the main

mechanisms at play.

Nevertheless, when applying the inverse modelling of Chap. 6 on experimental

data, it appears that key components are likely missing in the numerical model.

Indeed it was suggested that the membrane viscosity would play an important role

in the original apparent viscosity. Hence, answers on the real impact of missing

physics on the results are needed before claiming a quantitative assessment of the

RBC features with an inverse modeling.

7.2.3 Improvements of abnormalities sensors

In Chap. 6, boxes on relevant two-dimensional representations of pulses were defined

manually to measure the state of normality of the sample. Note that this choice is

probably not optimal, and a better definition of boxes would potentially emphasize

abnormalities. Machine learning approaches based on k-mean methods may provide

automatically the set of boxes, for instance.

As preliminary modellings, CNNs detecting abnormal pulses were shown to pro-

vide encouraging results. Because ‘bell-shaped’ pulses are not relevant for processing

other information than its volume, a WR based filter is applied to the acquisition

before the use of such CNNs. This could alter the evaluation of sub-population

percentages. For example, adding SB3-12 or glutaraldehyde may change the pro-

portion of pulses along the WR axis. Hence, the proportion of signatures rejected

by the WR filter would depend on the RBCs morphology and rheology. In this

context assessing sub-populations after a WR separation cannot render the actual

proportion of abnormal cells. Further studies are required to fix this issue. Note

that interchanging the ‘sheathing’ fluid and the ‘blood sample’ in a hydro-focused

Coulter counter could represent an appropriate answer to this issue.

Detecting small populations of abnormal cells would require an improvement

of the current CNN models. For example, with an accuracy of the order of 96

%, detecting a pathological population of 1% appears to be an intricate task. As

previously suggested, a cleaning of the training and test datasets from coincidences

(pulses generated by several particles in the sensing region) must be performed.

Removing coincidences from the acquisitions may be done by increasing the dilution

rate of the blood sample in the electrolytic solution during the analysis. Another

approach is to conceive a method dedicated to the filtering of electrical prints arising

from such artefact.

157





A
p

p
e

n
d

ix

A
Modeling of the cytosol density

The internal density of RBCs is higher than plasma, water, and also the electrolytic

solution in which they are suspended in Coulter counters. Remind that such so-

lutions are mostly composed of water. In particular, when flowing near the orifice

walls, RBCs undergo curved trajectories at a significant velocity. This point gives

rise to a fundamental question: are inertial effects important in such configurations?

This section presents the developments made in the context of this thesis to

account for the internal density of RBCs. The improved model is validated with a

study of Uhlmann, which provides data for a bead falling in a viscous fluid. Finally,

the impact of cytosol density on the electrical measurement of RBCs is assessed.

A.1 Two-phase flow model

A.1.1 Modelling equations

Accounting for a different density inside the RBC membrane implies a two-phase

flow modelling that can be described with the following Navier Stokes equations:

∂ρ~u

∂t
+∇.(ρ~u⊗ ~u) = −∇P +∇.[µ∇~u] +∇.[µ(∇~u)T ] + ~fv (A.1)

∂ρ

∂t
+∇.(ρ~u) = 0 (A.2)

Here, µ denotes the dynamic viscosity that equal ρ × ν. Note that Eq. 2.47 and

. 2.48 presented in Chap. 2 are simplified versions of Eq. A.1 and . A.2, in the case

where ρ is constant in the fluid domain.

Since the two phases are unmiscible and incompressible, the density ρ of a fluid

particle should be preserved. Consequently, ρ must satisfies:

Dρ

Dt
= 0

⇐⇒
∂ρ

∂t
+ ~u∇.ρ = 0

(A.3)

Combining Eq. A.2 with Eq. A.3 provides the following divergence free condition for

the velocity:

∇.~u = 0 (A.4)

In this respect, the problem consists in solving Eq. A.1 and Eq. A.4.
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A.1.2 Numerical treatement

In order to obtain an explicit advancement equation for the velocity ~u, the momen-

tum equation (Eq. A.1) is subject to the following developments. First, the temporal

derivative of ρ~u in Eq. A.1 is derived as follow :

ρ
∂~u

∂t
+ ~u

∂ρ

∂t
+∇.(ρ~u⊗ ~u) = −∇P +∇.[µ∇~u] +∇.[µ(∇~u)T ] + ~fv (A.5)

Then, by injecting Eq. A.2 in Eq. A.5 leads to:

ρ
∂~u

∂t
− ~u∇.(ρ~u) +∇.(ρ~u⊗ ~u) = −∇P +∇.[µ∇~u] +∇.[µ(∇~u)T ] + ~fv (A.6)

Finally, ∂~u
∂t takes the following expression:

∂~u

∂t
=

1

ρ
~u∇.(ρ~u)−

1

ρ
∇.(ρ~u⊗ ~u)−

1

ρ
∇P +

1

ρ
∇.[µ∇~u] +

1

ρ
∇.[µ(∇~u)T ] +

1

ρ
~fv (A.7)

The time advancement of Eq. A.4 and A.7 is done with a prediction correction

method. From the quantities at the beginning of the time step (indicated with a

superscript n), a predicted velocity ~u∗ is obtained by advancing Eq. A.7 without the

pressure term. For the sake of simplicity, an explicit Euler scheme is used in the

developments:

~u∗ − ~un

∆t
=

1

ρn
~un∇.(ρn~un)−

1

ρn
∇.(ρn~un ⊗ ~un)

+
1

ρn
∇.[µn∇~un] +

1

ρn
∇.[µn(∇~un)T ] +

1

ρn
~fn
v

(A.8)

Note that contrary to the predicted velocity ~u∗, the actual velocity at the end of the

time step (~un+1) should depend on the pressure gradient as follows:

~un+1 − ~un

∆t
=

1

ρn
~un∇.(ρn~un)−

1

ρn
∇.(ρn~un ⊗ ~un)−

1

ρn
∇Pn+1

+
1

ρn
∇.[µn∇~un] +

1

ρn
∇.[µn(∇~un)T ] +

1

ρn
~fn
v

(A.9)

Then, subtracting Eq. A.9 with Eq. A.8 gives:

~un+1 − ~u∗

∆t
= −

1

ρn
∇.Pn+1 (A.10)

Finally, by applying the divergence operator to both sides of Eq. A.10 and impos-

ing that ~un+1 is divergence free, the following Poisson equation for the pressure is

obtained:

∇.[
1

ρn
∇.Pn+1] =

1

∆t
∇.~u∗ (A.11)

In summary, the predicted velocity ~u∗ is advanced with Eq. A.8 in a first time.

Provided ~u∗ is known, Eq. A.11 represents a linear system for Pn+1. Hence, Eq. A.11

is solved with a DPCG method[105] to assess the pressure, and Pn+1 is then used

to compute the velocity at the end of the time step (~un+1), as stated by Eq. A.10.

Equations. A.8, A.10 and A.11 are discretized in space by employing a finite-

volume method (See Sec. 2.1.2). The three steps composing the time advancement
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0 s 0.46 s

2.3 s

0.92 s 1.38 s 1.84 s

2.76 s 3.22 s 3.68 s 4.14 s

Figure A.1 – Simulation of a rigid bead falling in a viscous fluid. The bead is
represented over a cut view of the fluid domain on which the velocity magnitude is
shown.

of fluid equations are coupled with the solid membrane with a similar procedure than

in Sec. 2.2 (see Fig. 2.10). Note that µn and ρn are calculated from the membrane

location ~Xn at the beginning of the time step. More preciselly, the indicator function

I is assessed from ~Xn as done Sec. 2.2.2 with Eq. 2.90. Then, µ and ρ are set as:

µ = µext + (µext − µin)I, (A.12)

and

ρ = ρext + (ρext − ρin)I, (A.13)

Subscripts in and ext stem from internal and external parts of the membrane.

161



APPENDIX A. MODELING OF THE CYTOSOL DENSITY

0 10 20 30

−1.5

−1

−0.5

0

t/tref

u
z
/u

r
e
f

Present Result
Uhlmann Result

Figure A.2 – Vertical velocity of the bead when falling in a viscous fluid. The
presented results are compared with those of Uhlmann[167].

A.2 Test case: bead falling in a viscous and

incompressible fluid

This section aims at validating the implementation presented in the previous section.

The tested configuration concerns a bead falling in an incompressible and Newtonian

fluid. In this context, the configuration presented by Uhlmann[167] is retained. The

fluid domain Ωf is defined as [0, 1.25 m] × [0, 1.25 m] × [0, 10 m]. The external fluid

has a density (ρext) and a dynamic viscosity (µext) of 1000 kg.m−3 and 1.04238 Pa.s,

respectively. A source term modelling the gravity is added in the right-hand side of

the momentum equation: ~g=(0, 0, -9.81 m.s−2). A density ratio (ρin/ρext) of 2.56 is

applied in such a way the particle falls in the ~g direction. The spherical membrane

has a radius Rb of 1/12 m and the different moduli required for the modelling (see

Eq. 2.52 and Eq. 2.69) are set as: Gs = 2.5 N.m−1, Ea = 2.5 × 10 5 N.m−1, Eb = 6.0

J and co = 12 m−1. Besides the viscosity ratio is set to µin/µext is imposed to 50. In

this way, the particle conserves its spherical aspect during the entire simulation. The

fluid and solid grid are respectively defined with triangular and tetrahedral elements

whose typical size equals 0.013 m. Figure. A.1 shows a sequence of sphere positions

over a cut view of the fluid domain. The velocity magnitude is represented in the

cut view. Note that the cutting plane passes through the sphere center of mass.

Hence the slice of the fluid domain may differ from a picture to another in Fig. A.1.

From the series of sphere positions, the time evolution of the particle vertical

velocity (uz) is calculated and compared with results of Uhlmann[167] in Fig. A.2.

Bead velocities are scaled with uref that equals
√
|~g|2ra. Moreover, in Fig. A.2, the

time scale is dimensionless since it is divided by tref =
√

2ra/|~g|. The bead velocity

increases in a transition period (viz. t/tref < 10) and then stabilizes at a velocity

uz/uref around 1.75. The present simulation displays an oscillating behavior of the

velocity, that occurs after the transition phase. This was not reported by Uhlmann,

as Fig. A.2 shows. Nevertheless, these oscillations appear to occur around velocities
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(A)

(B)

(C)

Figure A.3 – Consecutive RBC positions in the aperture for three different internal
densities: (A), (B) and (C) are simulated with densities of 1000 kg.m3, 1200 kg.m3

and 2000 kg.m3, respectively.

supported by Uhlmann and the proposed method is overall in good agreement with

the reference.

A.3 Heavier RBC in a Coulter counter

In this section, the impact of the cytosol density on the impedance pulse is assessed.

The case 10 performed in Chap. 4 (see Sec. 4.3) is performed two times more, but

by imposing internal densities (ρin) of 1200 kg.m3 and 2000 kg.m3. As a reminder,

the membrane is defined as follows: Gs=2.5× 10−6 N.m−1, Ea=2.5× 10−1 N.m−1,
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Figure A.4 – Impedence pulses obtained at different cytosol densities (ρin).

Eb=6.0 × 10−19 J, c0=0. The internal kinematic viscosity is set as 18×10−6 m2.s−1.

Note also that the external fluid has a kinematic viscosity (νext) and a density (ρext)

of 1×10−6 m2.s−1 and 1000 kg.m3, respectively. The cases with internal densities of

1200 kg.m3 and 2000 kg.m3 will be compared with case 10 that is actually equivalent

to a simulation performed at ρin = 1000 kg.m3 (that equals to the external density).

An internal density of 1200 kg.m3 is consistent with physiological values [106].

Hence, the case performed with ρin = 2000 kg.m3 is definetly to large. The plasma

has a density similar to water (1000 kg.m3), thus explaining the sedimentation of

RBCs under gravity. The dynamics obtained for the different internal densities

are shown in Fig. A.3. Overally, the trajectory is not significantly impacted when

increasing ρin from 1000 to 2000 kg.m3 (see Fig. A.3A, B and C). Nevertheless,

by comparing Fig. A.3A and C, it is observed that imposing an internal density

equalling twice the external density deflects the RBC trajectory to the orifice core

region, that is physically meaningful. Indeed, the RBC inertia is higher at ρin =

2000 kg.m3, thus it is more difficult for the cell to pursue the streamline on the bend

at the aperture inlet. Besides, when increasing the internal density, the cell tends to

take a crescent shape after the inlet bend. When turning in the shearing region, the

RBC is harder to set in motion with an higher ρin. Consequently, the RBC resists

more to the rotation, which yield a crescent shape (see Fig. A.3C).

In Fig. A.4, pulses related to the dynamics of Fig. A.3 are shown. Globally,

increasing ρin reduces the pulse length. Increasing ρin to 2000 kg.m3 yields a sub-

stantial impact on the pulse (see Fig. A.4), but remind that such value is not relevant.

However, considering an internal density equaling 1200 kg.m3, no significant differ-

ence with 1000 kg.m3 is observed. One conclude that the impact of the cytosol

density on the electrical pulse is negligible, in a reasonable physiological range.
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B
Issues and preliminary results for very

near wall trajectories

In Fig. 4.18 of Chap. 4, a cluster located at Pr around 10 % is not retrieved nu-

merically by considering trajectories of Fig. 4.10. This part of the experimental

acquisition is related to larger pulses (viz. larger Wr) than the remaining data.

Hence, a computation performed by using a streamline closer to the wall than all

cases of Fig. 4.10 is presented in the following. As presented in Chap. 4, the stream-

line extracted from the carrying flow is a key component of the pipeline for the

numerical simulation of deformable particles in Coulter counters. Although RBCs

are not enforced to pursue the streamline, it gives an a priori idea on where the

particle is going to flow in the orifice. The computation presented hereafter is not

included in the main part of this thesis because numerical instabilities make the

results questionable. Still, the presented findings appear to confirm that the afore-

mentionned pulses population is associated to trajectories in a really close vincinity

of walls.

From computation NSS0 of Sec. 3.1.1 a streamline passing by point (0, 23 µm,

0) is chosen. For comparison purposes, case 10 of Fig. 4.10 was performed from

a streamline going through (0, 20 µm, 0). Then, applying the pipeline of Fig. 4.2

renders results of Fig. B.1. In the top row, the RBC dynamics inside the aperture is

shown. Besides, a zoom in the membrane highlights the issues encountered during

such computations. Indeed, triangular elements describing the membrane intersect

at some points, which is definitely not physical. Although this computation is shown

to be unstable, the related pulse is located in the cluster that has not been retrieved

previously (see bottom row in Fig. B.1). As shown by the pulses signatures in

Fig. B.1, this cluster is made of pulses for which the electrical peak is higher than

the peak of rotation. The electrical peak arises from the dense electrical field near the

aperture corners. Remind that this phenomenon explained the typical ‘M-shapped’

pulses observed for spheres. In that sense, the metric Pr (see Eq. 4.6) does not

locate the peak of rotation but the substantial electrical peak at the very beginning

of the pulse. This explains why this pulse population is isolated in the Pr/Wr

representation of the acquisition.
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C
Neural Networks

In the present work, NNs are used to build models allowing an assessment of cells

features when they flow in a Coulter counter. For example, cells features may include

the mechanical behaviour, the shape, or the trajectory of RBCs. These indications

should be deduced from the electrical pulses, which implies NNs that take a temporal

signal (viz. a pulse) as an income for rendering the cell characteristics.

Neural Networks (NNs) are one of the numerous machine learning methods.

The reader is referred to [59] for an overview of existing methods. Briefly, machine

learning consists in building a predictive model from a database. The two main

branches in machine learning are supervised and unsupervised learning. The latter is

not treated in this work. In supervised learning problems, the database is composed

by a number Ndata of observations that are couples ain/aobs. Machine learning

models are constructed in a way that they predict a value apred as close as aobs

from the corresponding ain, including for values that were not used to build the

model. Hence, the dataset from which the model is derived (also referred as training

database) must be representative of all the possible observations so that a substantial

number of data (Ndata) is generally required.

NNs are models built by combining simple mathematical objects called neurons

(see Fig. C.1). Given a number N of inputs xi, it computes z, the sum of xi weighted

by parameters wi:

z =
N∑

i=1

xiwi (C.1)

Then, an activation function fa is applied to the weighted sum z, that leads to the

neural output y:

y = fa(z)

= fa

(
N∑

i=1

xiwi

)
(C.2)

The combination of these elementary neurons enables the construction of complex

and non-linear models. If the number of neurons is sufficient, NNs were proven to

approach any continuous functions in a compact subset of space [22, 66]. Moreover,

NNs may tackle problems of arbitrary dimensions.
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Figure C.1 – Principle of an elementary neuron that computes y from a given number
of inputs xi.

C.1 Introduction to Multi Layer Perceptrons

Let consider a problem in which No variables must be deduced from Ni inputs.

Elementary neurons (see Fig. C.1) may be combined to design a more complex

relation between inputs and outputs. The most known, used and described neurons

arrangement is called Multi-Layer Perceptron (MLP) [45, 73, 120, 139]: neurons are

organized in layers, and each neuron is linked with those of the neighbouring layers

only (see Fig. C.2).

C.1.1 Construction and prediction of a MLP

Figure. C.2 is a diagram of an arbitrary MLP. The NN is composed by Lo layers.

The outcome of the n-th neuron of the l-th layer is denoted by al
n and given as an

input to each neuron of layer l + 1. The weight linking the n-th neuron of layer l

with the m-th neuron of layer l + 1 is referred as wl+1
n,m. Hence, versions of Eq. C.1

and Eq. C.2 suited to any neuron of a MLP write:

zl+1
n =

Nl∑

m=1

al
mw

l+1
m,n, (C.3)

and

al+1
n = fa(zl+1

n )

= fa




Nl∑

m=1

al
mw

l+1
m,n


 ,

(C.4)

respectively. With Nl, the number of neuron in layer l. In particular, the layer

numbered by 1 takes the problem input size (N1 = Ni) while the output layer (Lo)

contains NLo neuron that equals the problem outcome dimension (No). This way,

given a1
m (for m in [1 , Ni]) and wl

m,n (for m in [1 , Nl−1], n in [1 , Nl] and l in [2 ,
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Figure C.2 – Principle of an arbitrary multilayer perceptron, an organisation of
neurons by Lo successive layers. Inputs of the model a1

n are given in the first layer
while the predictions aLo

n (ie. the output of the model) are extracted from the last
layer of the model (Lo).

Lo]), the MLP prediction (viz. aLo
n for n in [1 , No]) is assessed by the feed-forward

algorithm (see Alg. 1) that propagates the income in the MLP, layer by layer.

Algorithm 1 Feed forward algorithm

Require: input parameters a1
m and all weights wl

m,n

l← 2
while l ≤ Lo do
n← 1
while n ≤ Nl do
zl

n ← 0
m← 1
while m ≤ Nl−1 do
zl

n ← zl
n + al−1

m wl
m,n

m← m+ 1
end while
al

n = fa(zl
n)

n← n+ 1
end while
l← l + 1

end while
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C.1.2 Model training

Note that the model prediction depends on the MLP weights (wl
m,n). Given a dataset

composed by Ndata observations, or couples ain/aobs (or a1/aobs), the learning step

consists in the enhancing of the NN weights in such a way the errors between the

model predictions apred (or aLo) and the actual values aobs are minimized. This

optimization problem is solved with a gradient descent method. More precisely, the

MLP weights are updated as follow:

wl
m,n ← wl

m,n − α×
∂FL

∂wl
m,n

(C.5)

With FL, the loss function that quantifies the error between the predicted outcome

aLo and the target value aobs (note that aobs and aLo have the same dimension). An

example of loss function could be:

FL(aLo , aobs) =

NLo∑

n=1

(aobs
n − aLo

n )2 (C.6)

In other words, given an initial guess for the weights and a couple a1/aobs, Alg. 1

is performed to calculate aLo , that is then compared with aobs by FL . Then, the

derivatives of FL according to the different weights ( ∂FL

∂wl
m,n

) are used to update the

model as stated in Eq. C.5.

In the following, ∂FL

∂wl
m,n

is derived for a weight linked to the output layer (Lo)

and for one that is located in a deeper layer. Based on these two examples, a

generalization of an explicit and exact descent gradient algorithm for the updating

of the NN weights is introduced. Known as ‘back propagation’, this approach was

introduced by Rumelhart [142] and improved by many authors [8, 65, 96, 119, 126,

180]. Moreover, this method can easily be adapted with improved versions of the

gradient descent algorithm, that are available in the literature [27, 81, 128].

Computation of the gradient for a weight located before the output layer:

As an example, ∂FL

∂wLo
1,1

(see Fig. C.2) is treated. The chain rule allows the following

developement of ∂FL

∂wLo
1,1

:

∂FL

∂wLo
1,1

=
∂FL

∂aLo
1

×
∂aLo

1

∂zLo
1

×
∂zLo

1

∂wLo
1,1

(C.7)

The expressions of ∂FL

∂aLo
1

and
∂aLo

1

∂zLo
1

are known by definition and are denoted by F ′
L(aLo

1 )

and f ′
a(zLo

1 ), respectively. Besides, regarding Eq. C.3, term
∂zLo

1

∂wLo
1,1

equals aLo−1
1 .

Consequently Eq. C.7 may be rewritten as follow:

∂FL

∂wLo
1,1

= F ′
L(aLo

1 )× f ′
a(zLo

1 )× aLo−1
1 (C.8)

Now, defining δLo

i as:

δLo

i = F ′
L(aLo

i )× f ′
a(zLo

i ), (C.9)
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Eq. C.8 finally writes:
∂FL

∂wLo
1,1

= aLo−1
1 × δLo

1 (C.10)

Computation of the gradient for a weight located in a deeper layer: Term
∂FL

∂wLo−1

2,1

(see Fig. C.2) is dealt with in the following. Once again, the chain rule is

used:
∂FL

∂wLo−1
2,1

=
∂FL

∂aLo−1
1

×
∂aLo−1

1

∂zLo−1
1

×
∂zLo−1

1

∂wLo−1
2,1

(C.11)

In Eq. C.11, f ′
a(zLo−1

1 ) and aLo−2
2 appear directly (see Eq. C.3 and Eq. C.4, respec-

tively). Hence, Eq. C.11 leads to:

∂FL

∂wLo−1
2,1

=
∂FL

∂aLo−1
1

× f ′
a(zLo−1

1 )× aLo−2
2 (C.12)

Moreover, it should be noted that term ∂FL

∂aLo−1

1

of Eq. C.12 may be derived as follows:

∂FL

∂aLo−1
1

=

NLo∑

i=1

∂FL

∂aLo

i

×
∂aLo

i

∂zLo

i

×
∂zLo

i

∂aLo−1
1

=

NLo∑

i=1

δLo

i × w
Lo

1,i

(C.13)

The first line of Eq. C.13 illustrates that FL depends on aLo−1
1 through the NLo

ouputs aLo

i . This is highlighted in Fig. C.2 by the continuous black arrows emerging

from the first neuron of layer numbered by Lo − 1. The second line of Eq. C.13 is

simply deduced from Eq. C.9 and Eq. C.3. Consequently, substituting Eq. C.13 in

Eq. C.12 provides the following expression:

∂FL

∂wLo−1
2,1

= aLo−2
2 × f ′

a(zLo−1
1 )×

NLo∑

i=1

δLo

i × w
Lo

1,i (C.14)

Finally, by introducing δLo−1
1 as:

δLo−1
1 = f ′

a(zLo−1
1 )×

NLo∑

i=1

δLo

i × w
Lo

1,i , (C.15)

Eq. C.14 yields:
∂FL

∂wLo−1
2,1

= aLo−2
2 × δLo−1

1 (C.16)

Generalization: In an analogous way, Eq. C.14 and Eq. C.16 may be developed

for any weight in a hidden layer. Hence, Eq. C.10 and C.16 may be generalized to

all neurons of the MLP:
∂FL

∂wl
m,n

= al−1
m × δl

n, (C.17)
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with δl
n depending on whether the output layer Lo is considered or not, as illustrated

by Eq. C.9 and Eq. C.15:

δl
n = {

f ′
a(zl

n)× F ′
L(al

n) , l = Lo

f ′
a(zl

n)×
∑Nl+1

i=1 δl+1
i × wl+1

n,i , l < Lo
(C.18)

Equation C.18 is the basis of the ‘back propagation’ algorithm that is presented in

Alg. 2. Provided that zl
n, al

n and wl
m,n are known, the δLo

n are evaluated for a first

time. Then, δl
n is propagated backward and layer by layer, up to the input L1.

Algorithm 2 Back propagation

Require: zl
n, al

n and wl
m,n

Ensure: δl
n

l← Lo

while l ≥ 1 do
n← 1
while n ≤ N l do

if l = Lo then
δl

n ← F ′
L(al

n)
else
δl

n ← 0
m← 0
while m ≤ N l+1 do
δl

n ← δl
n + δl+1

m × wl+1
n,m

m← m+ 1
end while

end if
δl

n ← δl
n × f

′
a(zl

n)
n← n+ 1

end while
l← l − 1

end while

Summary of the training procedure: Given a database containing Ndata pairs

a1/aobs, the training procedure of the model is performed as follow: (1) From an

observation a1/aobs coming from the database, Alg. 1 is performed in order to assess

zl
n and al

n for each neuron of the NN. In particular, running Alg. 1 provides the

model prediction aLo
n . (2) With al

n known for all neurons of the model, the back

propagation algorithm (Alg. 2) is used to compute δl
n. (3) The gradients are then

computed according to Eq. C.17 and the model weights wl
m,n are finally updated

according to Eq. C.5. (4) A new couple a1/aobs is then chosen randomly from the

data base and the procedure is restarted from step 1. Repeating this process for a

sufficient number of observations, the model is expected to converge to an optimal

solution.

Mini-batch descent gradient: Rather than a classical ‘batch gradient descent’

(BGD) that computes the error on the entire dataset to update the parameters, the
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kernels, for instance. This CNN was designed and trained to recognize handwritten

numbers [58] and is available (http://scs.ryerson.ca/~aharley/vis/). A number may

be drawn directly on the web page and the CNN renders on live the model prediction.

Moreover, an insight of the successive filterings applied on the image is provided.

When Nft kernels are involved, a convolution layer, leads to an image of dimension

N c
h × N c

w × Nft. In which N c
h =

Np

h
−Nk

S , N c
w = Np

w−Nk

S , and Np
h × Np

w is the size

of the source image. This is illustrated in Fig. C.5 in which the ‘input data’ is

filtered in Nft features maps in ‘Convolution Layer 1’. All features map are placed

in parallel (see Fig. C.5), thus implying a three dimensional picture. Generally, all

features maps of a convolution layer arise from kernels of the same size. Hence,

if a convolution layer follows another one, the dimension Dk of its kernels equals

the number of features maps Nft of the preceding layer, as illustrated in Fig. C.5.

Values composing kernels matrices are weights updated during the training step by

proceeding as in Sec. C.1. Hence, the CNN identifies automatically the relevant

filters to render the optimal results, regarding the training database. In summary, a

convolution layer is defined by the number of kernelsNft, the kernels size Nk, and the

filter increment S. Note that kernels dimensions Dk are not user-defined parameters,

since they depend on the previous layer. Regarding CNNs of Fig. C.4 and Fig. C.5,

it should be noted that the last layers of the model are fully-connected layer (as in

a MLP). Actually, a NN is said CNN if its first hidden layer is a convolutional layer.

C.2.3 CNN for electrical pulses

Images processing was taken as an example in this brief introduction to CNNs.

However, electrical pulses may also be viewed as structured data, but with a sole

dimension Np. Hence the use of CNNs to detect relevant one-dimensional patterns

in an electrical pulse seems appropriate. Dealing with temporal series should imply

one dimensional kernels (see Fig. C.6). Besides, note that the notion of pixel (for

images) is equivalent to the concept of time step when treating temporal signals. The

CNN shown in Fig. C.6 is inspired from Fig. C.5 but is devoted to one-dimensional

time series sequences.
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Numerical Database

As part of this thesis, Neural Networks (NN) were trained on the basis of numerical

data. In this appendix, all simulations performed in the aims of building the nu-

merical databases are reported. Numerical simulation are achieved with the method

presented in Sec. 4.1 and only five parameters are varied in the computations: the

internal viscosity νin, the shear modulus Gs, the reduced volume Q, the streamline

on which the cell is deposited, and the membrane surface Sm. The streamline is

parametrized by ra, defining the point (0, ra, 0) to which it gets through. Having

shown negligible effects on the impedance pulse the remaining parameters are kept

constant in all cases presented in the following. More precisely, the curavature mod-

ulus, the spontaneous curvature and the area modulus are set as: Eb = 6 × 10−19 J,

co = 0 m−1 and Ea= 2.5 × 10−1 N.m−1. All simulated cases are shown in Tab. D.1.

Given the membrane surface Sm, the reduced volume Q tells us the volume

enclosed by the cell. Equivalently, Q specifies Sm if the cell volume is provided.

Hence, a change of Q may be done by a modification of the membrane surface or

the cell volume. In practice, the cell shape is obtained from a discocyte membrane

of given Sm (filled out in Tab. D.1) with an initial reduced volume of 0.65. Provided

Sm and Q, the cell reference volume Vp = Q4
3
π
√

Sm

4π

3

is taken as an input by solver

FSIS (see Sec. 2.2) in a preliminary simulation. In this calculation, the ‘volume

conservation’ routine ensures a cell volume of Vp, and the area modulus Ea ensures

a membrane surface of Sm. The final cell shape then results in the competition

between bending and shear resistances. Hence, at the end of the equilibrium shape

calculation, the cell has the expected reduced volume of Q. The computation of

membrane equilibrium shapes with solver FSIS was detailed in [46] and used in [91],

for instance.

As mentioned in Sec. 3.2, a specific fluid grid is required for each considered

streamline (ie. ra). For the sake of convenience, ra is included in [16 µm, 17 µm, 18

µm, 19 µm, 20 µm].
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D.1 Database employed in the detection of RBCs

rotation

In Sec. 5.3, a NN is trained to isolate pulses generated by RBCs rotating in the

aperture from those induced by cells showing a constant orientation. In this mod-

elling, the training procedure makes use of cases 1-85. Reminding that the rotation

experienced by RBCs is closely linked to the followed trajectory, the dataset spreads

over a range of ra covering a substantial part of the aperture. Besides, parameters

νin, Gs, Q and Sm are varied in order to make the model robust with respect to the

RBCs morphology and rheology.

D.2 Database used for the assessement of RBCs

parameters

The purpose of Sec. 6.3 is to build a NN capable of rendering the RBC parameters

from the associated impedance pulse. In that sense, cases 86-382 of Tab. D.1 are

considered. Note that the membrane surface Sm is the same for all this dataset.

That means cell volumes may differ in these different cases, depending on the re-

duced volume Q. The pulse amplitude is proportional to the cell volume, but in

the approach of Sec. 6.3 pulses are scaled with their respective maximum before

being processed by NNs. Hence, variations in Sm (and thus in volume) would not

have impacted the modelling. In Fig. D.1 cases 86-382 are represented on a three

dimensionnal plot according to νin, Gs and Q. The parameter ar is not shown in

the graph, and remind that Sm is constant for all these cases. The first part of this

database (86-318) is regularly sampled as shown by red bold circles, while the sec-

ond part (319-382) is subject to random sampling by the use of a Latin HyperCube

(LHC) method. Briefly, the range covered by the regular sampling (see Fig. D.1) was

split into 63 subsets of equal dimensions. Then, a set of parameters (νin, Gs and Q)

is chosen randomly in each subset, thus leading to 63 cases (319-382 in Tab. D.1).

Parameter ra is drawn randomly in [16 µm, 17 µm, 18 µm, 19 µm, 20 µm].

Table D.1 – Numerical database

No νin[m2.s−1] Gs[N.m−1] Q ra[m] Sm[µm2]

1 1.500e-05 2.500e-06 0.650 0.0 134

2 1.500e-05 2.500e-06 0.650 1.5e-05 134

3 1.500e-05 2.500e-06 0.650 1.6e-05 134

4 1.500e-05 2.500e-06 0.650 1.7e-05 134

5 1.500e-05 2.500e-06 0.650 1.8e-05 134

6 1.500e-05 2.500e-06 0.650 1.9e-05 134

7 1.500e-05 2.500e-06 0.650 2.0e-05 134

8 1.800e-05 2.500e-06 0.650 0.0 134

9 1.800e-05 2.500e-06 0.650 5.0e-06 134

10 1.800e-05 2.500e-06 0.650 1.0e-05 134

11 1.800e-05 2.500e-06 0.650 1.25e-05 134
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Table D.1 – Numerical database

NO νin[m2.s−1] Gs[N.m−1] Q ra[m] Sm[µm2]

12 1.800e-05 2.500e-06 0.650 1.5e-05 134

13 1.800e-05 2.500e-06 0.650 1.6e-05 134

14 1.800e-05 2.500e-06 0.650 1.7e-05 134

15 1.800e-05 2.500e-06 0.650 1.8e-05 134

16 1.800e-05 2.500e-06 0.650 1.9e-05 134

17 1.800e-05 2.500e-06 0.650 2.0e-05 134

18 2.100e-05 2.500e-06 0.650 0.0 134

19 2.100e-05 2.500e-06 0.650 1.5e-05 134

20 2.100e-05 2.500e-06 0.650 1.6e-05 134

21 2.100e-05 2.500e-06 0.650 1.7e-05 134

22 2.100e-05 2.500e-06 0.650 1.8e-05 134

23 2.100e-05 2.500e-06 0.650 1.9e-05 134

24 2.100e-05 2.500e-06 0.650 2.0e-05 134

25 1.800e-05 4.000e-05 0.650 0.0 134

26 1.800e-05 4.000e-05 0.650 1.5e-05 134

27 1.800e-05 4.000e-05 0.650 1.6e-05 134

28 1.800e-05 4.000e-05 0.650 1.7e-05 134

29 1.800e-05 4.000e-05 0.650 1.8e-05 134

30 1.800e-05 4.000e-05 0.650 1.9e-05 134

31 1.800e-05 4.000e-05 0.650 2.0e-05 134

32 1.800e-05 1.600e-04 0.650 0.0 134

33 1.800e-05 1.600e-04 0.650 1.5e-05 134

34 1.800e-05 1.600e-04 0.650 1.6e-05 134

35 1.800e-05 1.600e-04 0.650 1.7e-05 134

36 1.800e-05 1.600e-04 0.650 1.8e-05 134

37 1.800e-05 1.600e-04 0.650 1.9e-05 134

38 1.800e-05 1.600e-04 0.650 2.0e-05 134

39 1.800e-05 2.500e-06 0.650 0.0 125

40 1.800e-05 2.500e-06 0.650 1.5e-05 125

41 1.800e-05 2.500e-06 0.650 1.6e-05 125

42 1.800e-05 2.500e-06 0.650 1.7e-05 125

43 1.800e-05 2.500e-06 0.650 1.8e-05 125

44 1.800e-05 2.500e-06 0.650 1.9e-05 125

45 1.800e-05 2.500e-06 0.650 2.0e-05 125

46 1.800e-05 2.500e-06 0.650 0.0 142

47 1.800e-05 2.500e-06 0.650 1.5e-05 142

48 1.800e-05 2.500e-06 0.650 1.6e-05 142

49 1.800e-05 2.500e-06 0.650 1.7e-05 142

50 1.800e-05 2.500e-06 0.650 1.8e-05 142

51 1.800e-05 2.500e-06 0.650 1.9e-05 142

52 1.800e-05 2.500e-06 0.650 2.0e-05 142
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Table D.1 – Numerical database

NO νin[m2.s−1] Gs[N.m−1] Q ra[m] Sm[µm2]

53 1.800e-05 2.500e-06 0.650 23.0e-6 134

54 1.800e-05 2.500e-06 0.650 22.0e-6 134

55 1.800e-05 2.500e-06 0.650 21.0e-6 134

56 1.800e-05 2.500e-06 0.650 14.0e-6 134

57 1.800e-05 2.500e-06 0.650 13.0e-6 134

58 1.800e-05 2.500e-06 0.650 12.0e-6 134

59 1.800e-05 2.500e-06 0.650 11.0e-6 134

60 1.800e-05 2.500e-06 0.750 0.0 134

61 1.800e-05 2.500e-06 0.750 1.5e-05 134

62 1.800e-05 2.500e-06 0.750 1.6e-05 134

63 1.800e-05 2.500e-06 0.750 1.7e-05 134

64 1.800e-05 2.500e-06 0.750 1.8e-05 134

65 1.800e-05 2.500e-06 0.750 1.9e-05 134

66 1.800e-05 2.500e-06 0.750 2.0e-05 134

67 1.800e-05 2.500e-06 0.750 2.1e-05 134

68 1.800e-05 2.500e-06 0.750 2.2e-05 134

69 1.800e-05 2.500e-06 0.750 2.3e-05 134

70 1.800e-05 2.500e-06 0.850 0.0 134

71 1.800e-05 2.500e-06 0.850 1.5e-05 134

72 1.800e-05 2.500e-06 0.850 1.6e-05 134

73 1.800e-05 2.500e-06 0.850 1.7e-05 134

74 1.800e-05 2.500e-06 0.850 1.8e-05 134

75 1.800e-05 2.500e-06 0.850 1.9e-05 134

76 1.800e-05 2.500e-06 0.850 2.0e-05 134

77 1.800e-05 2.500e-06 0.850 2.1e-05 134

78 1.800e-05 2.500e-06 0.850 2.2e-05 134

79 1.800e-05 2.500e-06 0.850 2.3e-05 134

80 1.800e-05 4.000e-05 0.650 23.0e-6 134

81 1.800e-05 4.000e-04 0.650 22.0e-06 134

82 1.800e-05 4.000e-03 0.650 21.0e-05 134

83 1.800e-05 1.600e-04 0.650 23.0e-6 134

84 1.800e-05 1.600e-03 0.650 22.0e-06 134

85 1.800e-05 1.600e-02 0.650 21.0e-05 134

86 1.500e-05 2.500e-06 0.550 1.6e-05 134

87 1.500e-05 2.500e-06 0.550 1.8e-05 134

88 1.500e-05 2.500e-06 0.550 2.0e-05 134

89 1.500e-05 2.500e-06 0.650 1.6e-05 134

90 1.500e-05 2.500e-06 0.650 1.8e-05 134

91 1.500e-05 2.500e-06 0.650 2.0e-05 134

92 1.500e-05 2.500e-06 0.750 1.6e-05 134

93 1.500e-05 2.500e-06 0.750 1.8e-05 134
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Table D.1 – Numerical database

NO νin[m2.s−1] Gs[N.m−1] Q ra[m] Sm[µm2]

94 1.500e-05 2.500e-06 0.750 2.0e-05 134

95 1.500e-05 2.125e-05 0.550 1.6e-05 134

96 1.500e-05 2.125e-05 0.550 1.8e-05 134

97 1.500e-05 2.125e-05 0.550 2.0e-05 134

98 1.500e-05 2.125e-05 0.650 1.6e-05 134

99 1.500e-05 2.125e-05 0.650 1.8e-05 134

100 1.500e-05 2.125e-05 0.650 2.0e-05 134

101 1.500e-05 2.125e-05 0.750 1.6e-05 134

102 1.500e-05 2.125e-05 0.750 1.8e-05 134

103 1.500e-05 2.125e-05 0.750 2.0e-05 134

104 1.500e-05 4.000e-05 0.550 1.6e-05 134

105 1.500e-05 4.000e-05 0.550 1.8e-05 134

106 1.500e-05 4.000e-05 0.550 2.0e-05 134

107 1.500e-05 4.000e-05 0.650 1.6e-05 134

108 1.500e-05 4.000e-05 0.650 1.8e-05 134

109 1.500e-05 4.000e-05 0.650 2.0e-05 134

110 1.500e-05 4.000e-05 0.750 1.6e-05 134

111 1.500e-05 4.000e-05 0.750 1.8e-05 134

112 1.500e-05 4.000e-05 0.750 2.0e-05 134

113 1.800e-05 2.500e-06 0.550 1.6e-05 134

114 1.800e-05 2.500e-06 0.550 1.8e-05 134

115 1.800e-05 2.500e-06 0.550 2.0e-05 134

116 1.800e-05 2.500e-06 0.650 1.6e-05 134

117 1.800e-05 2.500e-06 0.650 1.8e-05 134

118 1.800e-05 2.500e-06 0.650 2.0e-05 134

119 1.800e-05 2.500e-06 0.750 1.6e-05 134

120 1.800e-05 2.500e-06 0.750 1.8e-05 134

121 1.800e-05 2.500e-06 0.750 2.0e-05 134

122 1.800e-05 2.125e-05 0.550 1.6e-05 134

123 1.800e-05 2.125e-05 0.550 1.8e-05 134

124 1.800e-05 2.125e-05 0.550 2.0e-05 134

125 1.800e-05 2.125e-05 0.650 1.6e-05 134

126 1.800e-05 2.125e-05 0.650 1.8e-05 134

127 1.800e-05 2.125e-05 0.650 2.0e-05 134

128 1.800e-05 2.125e-05 0.750 1.6e-05 134

129 1.800e-05 2.125e-05 0.750 1.8e-05 134

130 1.800e-05 2.125e-05 0.750 2.0e-05 134

131 1.800e-05 4.000e-05 0.550 1.6e-05 134

132 1.800e-05 4.000e-05 0.550 1.8e-05 134

133 1.800e-05 4.000e-05 0.550 2.0e-05 134

134 1.800e-05 4.000e-05 0.650 1.6e-05 134
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Table D.1 – Numerical database

NO νin[m2.s−1] Gs[N.m−1] Q ra[m] Sm[µm2]

135 1.800e-05 4.000e-05 0.650 1.8e-05 134

136 1.800e-05 4.000e-05 0.650 2.0e-05 134

137 1.800e-05 4.000e-05 0.750 1.6e-05 134

138 1.800e-05 4.000e-05 0.750 1.8e-05 134

139 1.800e-05 4.000e-05 0.750 2.0e-05 134

140 2.100e-05 2.500e-06 0.550 1.6e-05 134

141 2.100e-05 2.500e-06 0.550 1.8e-05 134

142 2.100e-05 2.500e-06 0.550 2.0e-05 134

143 2.100e-05 2.500e-06 0.650 1.6e-05 134

144 2.100e-05 2.500e-06 0.650 1.8e-05 134

145 2.100e-05 2.500e-06 0.650 2.0e-05 134

146 2.100e-05 2.500e-06 0.750 1.6e-05 134

147 2.100e-05 2.500e-06 0.750 1.8e-05 134

148 2.100e-05 2.500e-06 0.750 2.0e-05 134

149 2.100e-05 2.125e-05 0.550 1.6e-05 134

150 2.100e-05 2.125e-05 0.550 1.8e-05 134

151 2.100e-05 2.125e-05 0.550 2.0e-05 134

152 2.100e-05 2.125e-05 0.650 1.6e-05 134

153 2.100e-05 2.125e-05 0.650 1.8e-05 134

154 2.100e-05 2.125e-05 0.650 2.0e-05 134

155 2.100e-05 2.125e-05 0.750 1.6e-05 134

156 2.100e-05 2.125e-05 0.750 1.8e-05 134

157 2.100e-05 2.125e-05 0.750 2.0e-05 134

158 2.100e-05 4.000e-05 0.550 1.6e-05 134

159 2.100e-05 4.000e-05 0.550 1.8e-05 134

160 2.100e-05 4.000e-05 0.550 2.0e-05 134

161 2.100e-05 4.000e-05 0.650 1.6e-05 134

162 2.100e-05 4.000e-05 0.650 1.8e-05 134

163 2.100e-05 4.000e-05 0.650 2.0e-05 134

164 2.100e-05 4.000e-05 0.750 1.6e-05 134

165 2.100e-05 4.000e-05 0.750 1.8e-05 134

166 2.100e-05 4.000e-05 0.750 2.0e-05 134

167 1.600e-05 8.750e-06 0.583 1.6e-05 134

168 1.600e-05 8.750e-06 0.583 1.7e-05 134

169 1.600e-05 8.750e-06 0.583 1.8e-05 134

170 1.600e-05 8.750e-06 0.583 1.9e-05 134

171 1.600e-05 8.750e-06 0.583 2.0e-05 134

172 1.600e-05 8.750e-06 0.716 1.6e-05 134

173 1.600e-05 8.750e-06 0.716 1.7e-05 134

174 1.600e-05 8.750e-06 0.716 1.8e-05 134

175 1.600e-05 8.750e-06 0.716 1.9e-05 134
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176 1.600e-05 8.750e-06 0.716 2.0e-05 134

177 1.600e-05 3.375e-05 0.583 1.6e-05 134

178 1.600e-05 3.375e-05 0.583 1.7e-05 134

179 1.600e-05 3.375e-05 0.583 1.8e-05 134

180 1.600e-05 3.375e-05 0.583 1.9e-05 134

181 1.600e-05 3.375e-05 0.583 2.0e-05 134

182 1.600e-05 3.375e-05 0.716 1.6e-05 134

183 1.600e-05 3.375e-05 0.716 1.7e-05 134

184 1.600e-05 3.375e-05 0.716 1.8e-05 134

185 1.600e-05 3.375e-05 0.716 1.9e-05 134

186 1.600e-05 3.375e-05 0.716 2.0e-05 134

187 2.000e-05 8.750e-06 0.583 1.6e-05 134

188 2.000e-05 8.750e-06 0.583 1.7e-05 134

189 2.000e-05 8.750e-06 0.583 1.8e-05 134

190 2.000e-05 8.750e-06 0.583 1.9e-05 134

191 2.000e-05 8.750e-06 0.583 2.0e-05 134

192 2.000e-05 8.750e-06 0.716 1.6e-05 134

193 2.000e-05 8.750e-06 0.716 1.7e-05 134

194 2.000e-05 8.750e-06 0.716 1.8e-05 134

195 2.000e-05 8.750e-06 0.716 1.9e-05 134

196 2.000e-05 8.750e-06 0.716 2.0e-05 134

197 2.000e-05 3.375e-05 0.583 1.6e-05 134

198 2.000e-05 3.375e-05 0.583 1.7e-05 134

199 2.000e-05 3.375e-05 0.583 1.8e-05 134

200 2.000e-05 3.375e-05 0.583 1.9e-05 134

201 2.000e-05 3.375e-05 0.583 2.0e-05 134

202 2.000e-05 3.375e-05 0.716 1.6e-05 134

203 2.000e-05 3.375e-05 0.716 1.7e-05 134

204 2.000e-05 3.375e-05 0.716 1.8e-05 134

205 2.000e-05 3.375e-05 0.716 1.9e-05 134

206 2.000e-05 3.375e-05 0.716 2.0e-05 134

207 1.700e-05 1.500e-05 0.616 2.0e-05 134

208 1.700e-05 1.500e-05 0.616 2.0e-05 134

209 1.700e-05 1.500e-05 0.683 2.0e-05 134

210 1.700e-05 1.500e-05 0.683 2.0e-05 134

211 1.700e-05 2.750e-05 0.616 2.0e-05 134

212 1.700e-05 2.750e-05 0.616 2.0e-05 134

213 1.700e-05 2.750e-05 0.683 2.0e-05 134

214 1.700e-05 2.750e-05 0.683 2.0e-05 134

215 1.900e-05 1.500e-05 0.616 2.0e-05 134

216 1.900e-05 1.500e-05 0.616 2.0e-05 134
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217 1.900e-05 1.500e-05 0.683 2.0e-05 134

218 1.900e-05 1.500e-05 0.683 2.0e-05 134

219 1.900e-05 2.750e-05 0.616 2.0e-05 134

220 1.900e-05 2.750e-05 0.616 2.0e-05 134

221 1.900e-05 2.750e-05 0.683 2.0e-05 134

222 1.900e-05 2.750e-05 0.683 2.0e-05 134

223 1.600e-05 8.750e-06 0.650 1.6e-05 134

224 1.600e-05 8.750e-06 0.650 1.8e-05 134

225 1.600e-05 8.750e-06 0.650 2.0e-05 134

226 1.600e-05 2.125e-05 0.583 1.6e-05 134

227 1.600e-05 2.125e-05 0.583 1.8e-05 134

228 1.600e-05 2.125e-05 0.583 2.0e-05 134

229 1.600e-05 2.125e-05 0.650 1.6e-05 134

230 1.600e-05 2.125e-05 0.650 1.8e-05 134

231 1.600e-05 2.125e-05 0.650 2.0e-05 134

232 1.600e-05 2.125e-05 0.716 1.6e-05 134

233 1.600e-05 2.125e-05 0.716 1.8e-05 134

234 1.600e-05 2.125e-05 0.716 2.0e-05 134

235 1.600e-05 3.375e-05 0.650 1.6e-05 134

236 1.600e-05 3.375e-05 0.650 1.8e-05 134

237 1.600e-05 3.375e-05 0.650 2.0e-05 134

238 1.800e-05 8.750e-06 0.583 1.6e-05 134

239 1.800e-05 8.750e-06 0.583 1.8e-05 134

240 1.800e-05 8.750e-06 0.583 2.0e-05 134

241 1.800e-05 8.750e-06 0.650 1.6e-05 134

242 1.800e-05 8.750e-06 0.650 1.8e-05 134

243 1.800e-05 8.750e-06 0.650 2.0e-05 134

244 1.800e-05 8.750e-06 0.716 1.6e-05 134

245 1.800e-05 8.750e-06 0.716 1.8e-05 134

246 1.800e-05 8.750e-06 0.716 2.0e-05 134

247 1.800e-05 2.125e-05 0.583 1.6e-05 134

248 1.800e-05 2.125e-05 0.583 1.8e-05 134

249 1.800e-05 2.125e-05 0.583 2.0e-05 134

250 1.800e-05 2.125e-05 0.650 1.6e-05 134

251 1.800e-05 2.125e-05 0.650 1.8e-05 134

252 1.800e-05 2.125e-05 0.650 2.0e-05 134

253 1.800e-05 2.125e-05 0.716 1.6e-05 134

254 1.800e-05 2.125e-05 0.716 1.8e-05 134

255 1.800e-05 2.125e-05 0.716 2.0e-05 134

256 1.800e-05 3.375e-05 0.583 1.6e-05 134

257 1.800e-05 3.375e-05 0.583 1.8e-05 134
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258 1.800e-05 3.375e-05 0.583 2.0e-05 134

259 1.800e-05 3.375e-05 0.650 1.6e-05 134

260 1.800e-05 3.375e-05 0.650 1.8e-05 134

261 1.800e-05 3.375e-05 0.650 2.0e-05 134

262 1.800e-05 3.375e-05 0.716 1.6e-05 134

263 1.800e-05 3.375e-05 0.716 1.8e-05 134

264 1.800e-05 3.375e-05 0.716 2.0e-05 134

265 2.000e-05 8.750e-06 0.650 1.6e-05 134

266 2.000e-05 8.750e-06 0.650 1.8e-05 134

267 2.000e-05 8.750e-06 0.650 2.0e-05 134

268 2.000e-05 2.125e-05 0.583 1.6e-05 134

269 2.000e-05 2.125e-05 0.583 1.8e-05 134

270 2.000e-05 2.125e-05 0.583 2.0e-05 134

271 2.000e-05 2.125e-05 0.650 1.6e-05 134

272 2.000e-05 2.125e-05 0.650 1.8e-05 134

273 2.000e-05 2.125e-05 0.650 2.0e-05 134

274 2.000e-05 2.125e-05 0.716 1.6e-05 134

275 2.000e-05 2.125e-05 0.716 1.8e-05 134

276 2.000e-05 2.125e-05 0.716 2.0e-05 134

277 2.000e-05 3.375e-05 0.650 1.6e-05 134

278 2.000e-05 3.375e-05 0.650 1.8e-05 134

279 2.000e-05 3.375e-05 0.650 2.0e-05 134

280 1.700e-05 1.500e-05 0.616 17.0e-6 134

281 1.700e-05 1.500e-05 0.650 17.0e-6 134

282 1.700e-05 1.500e-05 0.650 19.0e-6 134

283 1.700e-05 2.125e-05 0.616 17.0e-6 134

284 1.700e-05 2.125e-05 0.616 19.0e-6 134

285 1.700e-05 2.125e-05 0.650 17.0e-6 134

286 1.700e-05 2.125e-05 0.650 19.0e-6 134

287 1.700e-05 2.125e-05 0.683 17.0e-6 134

288 1.700e-05 2.125e-05 0.683 19.0e-6 134

289 1.700e-05 2.750e-05 0.650 17.0e-6 134

290 1.700e-05 2.750e-05 0.650 19.0e-6 134

291 1.800e-05 1.500e-05 0.616 17.0e-6 134

292 1.800e-05 1.500e-05 0.616 19.0e-6 134

293 1.800e-05 1.500e-05 0.650 17.0e-6 134

294 1.800e-05 1.500e-05 0.650 19.0e-6 134

295 1.800e-05 1.500e-05 0.683 17.0e-6 134

296 1.800e-05 1.500e-05 0.683 19.0e-6 134

297 1.800e-05 2.125e-05 0.616 17.0e-6 134

298 1.800e-05 2.125e-05 0.616 19.0e-6 134
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299 1.800e-05 2.125e-05 0.650 17.0e-6 134

300 1.800e-05 2.125e-05 0.650 19.0e-6 134

301 1.800e-05 2.125e-05 0.683 17.0e-6 134

302 1.800e-05 2.125e-05 0.683 19.0e-6 134

303 1.800e-05 2.750e-05 0.616 17.0e-6 134

304 1.800e-05 2.750e-05 0.616 19.0e-6 134

305 1.800e-05 2.750e-05 0.650 17.0e-6 134

306 1.800e-05 2.750e-05 0.650 19.0e-6 134

307 1.800e-05 2.750e-05 0.683 17.0e-6 134

308 1.800e-05 2.750e-05 0.683 19.0e-6 134

309 1.900e-05 1.500e-05 0.650 17.0e-6 134

310 1.900e-05 1.500e-05 0.650 19.0e-6 134

311 1.900e-05 2.125e-05 0.616 17.0e-6 134

312 1.900e-05 2.125e-05 0.616 19.0e-6 134

313 1.900e-05 2.125e-05 0.650 17.0e-6 134

314 1.900e-05 2.125e-05 0.650 19.0e-6 134

315 1.900e-05 2.125e-05 0.683 17.0e-6 134

316 1.900e-05 2.125e-05 0.683 19.0e-6 134

317 1.900e-05 2.750e-05 0.650 17.0e-6 134

318 1.900e-05 2.750e-05 0.650 19.0e-6 134

319 1.590e-05 6.004e-06 0.551 2.0e-05 134

320 1.650e-05 8.650e-06 0.601 2.0e-05 134

321 1.548e-05 1.021e-05 0.697 1.7e-05 134

322 1.544e-05 1.174e-05 0.724 1.6e-05 134

323 1.515e-05 1.910e-05 0.557 2.0e-05 134

324 1.561e-05 1.464e-05 0.634 1.9e-05 134

325 1.502e-05 1.905e-05 0.698 1.8e-05 134

326 1.519e-05 2.046e-05 0.725 1.6e-05 134

327 1.562e-05 2.400e-05 0.591 2.0e-05 134

328 1.623e-05 2.422e-05 0.613 2.0e-05 134

329 1.599e-05 2.599e-05 0.673 1.8e-05 134

330 1.567e-05 2.949e-05 0.717 2.0e-05 134

331 1.592e-05 3.402e-05 0.577 1.7e-05 134

332 1.532e-05 3.991e-05 0.631 1.6e-05 134

333 1.649e-05 3.518e-05 0.660 2.0e-05 134

334 1.537e-05 3.121e-05 0.715 1.6e-05 134

335 1.744e-05 8.919e-06 0.568 1.8e-05 134

336 1.746e-05 8.901e-06 0.622 2.0e-05 134

337 1.658e-05 1.046e-05 0.668 1.8e-05 134

338 1.747e-05 1.153e-05 0.723 1.7e-05 134

339 1.655e-05 1.236e-05 0.561 1.8e-05 134
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340 1.796e-05 1.925e-05 0.610 1.8e-05 134

341 1.653e-05 1.573e-05 0.669 1.7e-05 134

342 1.680e-05 1.422e-05 0.720 1.8e-05 134

343 1.681e-05 2.307e-05 0.578 1.8e-05 134

344 1.656e-05 2.330e-05 0.610 2.0e-05 134

345 1.688e-05 2.534e-05 0.656 2.0e-05 134

346 1.653e-05 2.371e-05 0.706 1.9e-05 134

347 1.749e-05 3.886e-05 0.594 1.7e-05 134

348 1.790e-05 3.072e-05 0.621 1.7e-05 134

349 1.692e-05 3.675e-05 0.665 2.0e-05 134

350 1.718e-05 3.265e-05 0.708 2.0e-05 134

351 1.835e-05 9.450e-06 0.600 1.6e-05 134

352 1.839e-05 1.161e-05 0.613 1.6e-05 134

353 1.877e-05 5.642e-06 0.665 2.0e-05 134

354 1.849e-05 4.686e-06 0.707 1.8e-05 134

355 1.913e-05 1.431e-05 0.558 1.8e-05 134

356 1.911e-05 1.293e-05 0.602 1.8e-05 134

357 1.865e-05 1.534e-05 0.693 1.9e-05 134

358 1.930e-05 2.055e-05 0.738 1.8e-05 134

359 1.869e-05 2.638e-05 0.587 2.0e-05 134

360 1.946e-05 3.018e-05 0.650 1.7e-05 134

361 1.923e-05 2.624e-05 0.680 2.0e-05 134

362 1.927e-05 2.634e-05 0.743 1.7e-05 134

363 1.826e-05 3.321e-05 0.590 2.0e-05 134

364 1.922e-05 3.145e-05 0.608 1.7e-05 134

365 1.927e-05 3.511e-05 0.664 1.9e-05 134

366 1.906e-05 3.913e-05 0.705 1.7e-05 134

367 2.067e-05 3.003e-06 0.558 1.9e-05 134

368 2.065e-05 6.120e-06 0.631 1.8e-05 134

369 2.099e-05 3.652e-06 0.692 1.8e-05 134

370 1.958e-05 6.020e-06 0.725 1.8e-05 134

371 2.058e-05 1.591e-05 0.567 1.7e-05 134

372 1.988e-05 1.672e-05 0.615 1.7e-05 134

373 1.966e-05 1.202e-05 0.666 2.0e-05 134

374 2.082e-05 1.819e-05 0.747 1.7e-05 134

375 2.021e-05 2.865e-05 0.589 1.8e-05 134

376 2.041e-05 2.875e-05 0.641 1.6e-05 134

377 2.020e-05 2.701e-05 0.681 1.7e-05 134

378 2.029e-05 2.896e-05 0.718 1.8e-05 134

379 2.009e-05 3.605e-05 0.562 1.8e-05 134

380 2.096e-05 3.632e-05 0.644 2.0e-05 134
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381 2.064e-05 3.834e-05 0.651 1.8e-05 134

382 1.966e-05 3.781e-05 0.726 1.7e-05 134
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Figure D.1 – Three-dimensional plot of the Numerical database considered in mod-
els of Sec. 6.3. This database is related to cases 86-382 of Tab. D.1. A part of the
database was performed in a random manner using a Latin Hyper Cube (LHC) pro-
cedure (shown in black triangles). The remaining part is made up of computations
regularly spaced (shown in red bold points). The regular and the LHC samplings
refer to cases 86-318 and 319-382, respectively.
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Notations related to pulses

In the framework of this thesis, experimental tension pulses (∆U) and numerical

resistive pulses (∆R) are dealt with. It is proposed to scale pulses from both sources

with the aim of making them relative to the cells volumes, thus ∆U∗ and ∆R∗ were

introduced. Several metrics computed from electrical prints are used (W, P, R) and

equivalents for scaled pulses are required (Wr, Pr). This scaling procedure is es-

sential for providing comparisons between predictions arising from simulations with

data from experiments (see Chap. 3 and Chap. 4). Besides, this convention underlies

the normality defined in Chap. 6, which is independent from the differences of cells

volumes from a blood sample to another. This appendix summarizes notations and

metrics related to both experimental and numerical pulses.

E.1 Numerical pulses

Let consider a RBC of given parameters whose dynamics and electrical print ∆R for

a specific trajectory are simulated. The maximum (in ohms) of the electrical print is

denoted by ∆Rm. Considering the same RBC (same parameters) but undergoing a

centred trajectory yields a ‘bell-shaped’ signature, for which the maximum is referred

as ∆Rm|bs (see top row of Fig. E.1). Then, the dimensionless numerical pulse ∆R∗

is defined by scaling ∆R with ∆Rm|bs. ‘Bell-shaped’ signatures are assumed to be

a robust measurement of the cells volumes. It should be noted that assessing ∆R∗

requires two simulations unless the considered particle path is centred, and ∆Rm =

∆Rm|bs.

For the case of a resistive pulse, W demands a resistive threshold (thresh), so as

P (see expressions in Fig. E.1). In contrast,Wr and Pr require dimensionless thresh-

olds (thresh′) that are relative to ∆Rm|bs. In this respect, Wr, Pr and ∆R∗ are

dimensionless quantities that are relative to the cell volume (assessed by ∆Rm|bs).

E.2 Experimental pulses

Experimental pulses are measured as tension variations ∆U . With a notation sim-

ilar to numerical data, the maximum of an experimental tension pulse is denoted

by ∆Um. Considering an entire experimental acquisition in which cells of different
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Abstract

In Coulter counters, cells counting and volumetry is achieved by monitoring their electrical print when they
flow through a polarized micro-orifice. However, the volume measurement may be impaired when the trajectory
of the cell is in the vicinity of the aperture edges due to complex dynamics and deformations of the cell.

In this thesis, numerical simulations of the dynamics and electrical signature of red blood cells (RBCs) in a
Coulter counter are presented, accounting for the deformability of the cells. In particular, a specific numerical
pipeline is developed to overcome the challenge of the multi-scale nature of the problem. It consists in segmenting
the whole computation of the cell dynamics and electrical response in a series of dedicated computations, with
a saving of one order of magnitude in computational time. This numerical pipeline is used with rigid spheres
and deformable red blood cells in an industrial Coulter counter geometry and compared with experimental mea-
surements. The simulations not only reproduce electrical signatures typical of those measured experimentally,
but also provide an understanding of the key mechanisms at play in the complex signatures induced by RBCs
following a near-wall trajectory.

Based on this new understanding provided by numerical simulations, a filtering strategy is introduced,
which allows the filtering of pulses induced by near-wall paths which are irrelevant for the cells sizing. The
method is shown to retrieve the expected symmetrical distribution of RBCs and provides results comparable to
hydrodynamical focusing, a more intricate implementation of the Coulter principle. Such a result paves the way
for a robust assessment of haematological parameters with a cheaper and simpler implementation, compared to
hydrofocused devices.

The impact of the cell morphology and rheology on the electrical print is evidenced for near-wall trajectories.
Indeed, by altering the cell deformability and sphericity, the electrical pulses are proven to differ from predefined
normality of measurements. Furthermore, neural network modellings are performed in the aims of assessing
such RBC properties. Among the proposed processing, classification of normal, stiffened and spherical RBCs is
provided. Finally, the inverse problem of numerical simulations is achieved, thus allowing the evaluation of the
mechanical parameters of RBCs.

Keywords : Computational Fluid dynamics ; Fluid-Structure Interaction, Red Blood Cells ; Coulter counter ;

Impedance Measurements ; Neural Networks

Résumé

Le comptage et la volumétrie des cellules sanguines est réalisé par l’analyse des signatures électriques pro-
venant de leur passage dans un micro-orifice polarisé. Cependant, les mesures peuvent être altérées par des
dynamiques et déformations complexes de la cellule lorsque la trajectoire empruntée est proche des parois de
l’orifice.

Dans cette thèse, des dynamiques de Globules Rouges (GRs) dans un compteur Coulter et les signatures
électriques correspondantes sont simulées. La prise en compte de la déformabilité des GRs implique de se
confronter au caractère multi-échelle de ce type de configuration. Une méthode est proposée pour contourner
cette difficulté de modélisation. En particulier, le calcul de la dynamique et de la perturbation électrique est
fractionné en une séquence de simulations spécifiques, et le coût de calcul est réduit d’un ordre de grandeur. La
méthode proposée est utilisée pour simuler des signaux de sphères rigides et de GRs, et les résultats sont validés
par comparaisons avec des données expérimentales. L’association des signaux expérimentaux à des dynamiques
de GRs dans l’orifice fournit une compréhension inédite des mécanismes en jeu dans les signatures complexes
observées lorsque la cellule emprunte une trajectoire proche-paroi.

Cette connaissance nouvelle des signatures a permis l’élaboration d’une nouvelle approche de tri permettant
d’isoler les pulses associées aux passages en bord, non adaptés pour la volumétrie des cellules. La méthode
introduite retrouve la distribution symétrique attendue pour le volume des GRs et donne des résultats compa-
rables à la focalisation hydrodynamique, une implémentation plus complexe du principe Coulter. Les résultats
ainsi obtenus ouvrent la voie à une mesure des paramètres hématologiques plus précise tout en conservant la
simplicité et le coût modéré d’un système classique.

L’impact des paramètres morphologiques et rhéologiques des cellules sur les signatures correspondants à des
passages proche paroi est illustré. En modifiant la déformabilité et la sphéricité des GRs dans une approche ex-
périmentale, les mesures diffèrent d’une normalité préétablie. De plus, des modélisations par réseaux de neurones
sont réalisées dans le but d’accéder aux propriétés du GR à partir du pulse électrique. Parmi les traitements
proposés, une classification des GRs normaux, rigides et sphériques est réalisée. Enfin, la modélisation du pro-
blème inverse des simulations numériques est effectuée afin d’évaluer de manière quantitative les paramètres
mécaniques des GRs.

Mots-clefs : Mécanique des fluides numérique ; Interaction Fluide-Structure ; Globules Rouges ; Compteur

Coulter ; Mesures d’impédance ; Réseaux de neurones
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