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Abstract 

Through our senses, the brain receives an enormous amount of information. This information needs to 

be filtered and refined in order to extract the most salient features that will help us to guide our 

behavior. In this process, the brain encodes the environment into an internal ‘perceptual world’ in 

correspondence with our changing needs. An important advantage also is the ability to create new 

associations about external cues and their behaviorally relevant outcomes. This gives the possibility to 

generate predictions and respond precisely to various events in a challenging and always changing 

environment. Thus, previous experiences will shape our sensation and determine the responses to 

perceptual-based decisions.  

 

The study of sensory perception is complicated as we cannot have direct access to well-isolated internal 

sensory representations. These representations need to be inferred from animal behavior in response to 

well characterized sensory stimuli. In this context, the study of animal learning and its contingencies are 

key elements for the study of sensory representations, as different learning strategies or learning rules 

can lead to different behavioral outcomes. How the brain actually extracts and generates these different 

perceptual features and wires them to behavior remains the two major questions in modern 

neuroscience. To answer these questions, novel neural engineering approaches are now employed to 

map, model and finally generate, artificial sensory perception with its learned or innate associated 

behavioral outcome. 

 

In this work, we have used a combination of different modern technologies together with computational 

modeling to give important hints about the type of computations that auditory cortex performs under 

simple and more complex sound discrimination tasks. We have also explored the learning strategies that 

mice can adopt under a sound-basedperceptual discrimination task. More concretely, using a Go/noGo 

discrimination task combined with optogeneticsto silence auditory cortex during ongoing behavior in 

mice, we have established the dispensable role of auditory cortex for simple frequency 

discriminations,butalso its necessary role to solve a more challenging task. Specifically, we showed that 

for mice trained to discriminate between a frequency-modulated sound and a pure tone withboth 

startingat the same frequency,auditory cortex wasnecessary as discrimination was fully impaired during 
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the optogenetic manipulations. By the combination of different mapping techniques and light-sculpted 

optogenetics to activate precisely defined tonotopic fields in auditory cortex, we couldelucidate the 

strategy that mice use to solve the task, revealing a delayed frequency discrimination mechanism.In 

parallel, observations about learning speed and sound-triggered activity in auditory cortex led us to 

study their interactions and causally test the role of cortical recruitment in associative learning. Using 

modern optogenetics, we reproduced a well-known cue interaction phenomenon that has been 

observed in different learning paradigms, the overshadowing effect. These precise cortical manipulations 

demonstratedthat neuronal recruitment can be thoughtof as the neurophysiological correlate of 

saliency. The description of this relationship confirms implicit assumptions of mainstream associative 

learning theories. Altogether these results push forward our comprehension of the learning rules 

governing sensory-based associations in the brain.Finally and more broadly, this work provides insight 

into the integrationof modern optical techniques into sensory rehabilitation approaches in order to 

improve sensory feature mapping and sensory discrimination e.g. hearing-impaired patients.   
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1. General introduction 

1.1. The cerebral cortex 

The link between the brain, and sensory perception becomes most dramatically evident in cases of loss 

or disturbance of perceptual functions after some form of brain damage (Sacks, 1985). From the 

periphery, the information finally arrives to the cerebral cortex into hierarchically organized sensory 

areas, where it is processed and sent to different ‘higher’ areas in the brain. In mammals, the cerebral 

cortex has a central role indifferent cognitive processes, analysis, integration and sensory perception, as 

also in planning of goal directed behavior, learning and memory retrieval. Composed of the allocortex 

(containing the archicortex or the hippocampal region and the paleocortex or olfactory cortex) and the 

iso or neocortex, this structure is considered the evolutionarily youngest brain region (Gao et al., 2013). 

Structural as well as functional principles within cortical circuits, especially in primary sensory areas, 

display a high degree of conservation across different species, even in the lissencephalic rodent brain. 

These conserved characteristics allow experimental studies in the laboratory using different animal 

models and the post-hoc extension to understand the general organization and principles of the human 

brain (Schreiner et al., 2000). 

1.1.1. Columnar organization 

Early observations of the sensory systems in the brain by Santiago Ramón y Cajal and one of his disciples 

Rafael Lorente de Nó, noted the presence of vertically arranged and highly connected cells (de Castro 

and Merchán, 2017; Larriva-Sahd, 2014). Years later Vernon Mountcastle, using electrophysiological 

recordings in the somatosensory and motor cortex of cats and monkeys, described how these columnar 

structures responded to the same type of mechanical stimulus (Mountcastle, 1957; Mountcastle and 

Powell, 1959). The preceding efforts of Hubel and Wiesel in the 1960s, studying the primary visual cortex 

of cats, led to the discovery of ‘orientation columns’ and ‘ocular dominance columns’, corroborating 

previous observations and theories about the functional columnar organization of the principal sensory 

systems in the neocortex (Hubel and Wiesel, 1959; Hubel and Wiesel, 1962), which have been later 
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validated by many different techniques (Ohki et al., 2006). From these foundational studies, similar 

structural principles were observed studying other sensory modalities as for example, the frequency 

tuning in auditory cortex of different species including humans (Goldstein et al., 1970; Winer, 2011). 

Following with this idea, it has been largely observed and described that in each sensory domain, 

neurons tend to be preferentially clustered in groups that share similar input features and response 

properties (Andermann and Moore, 2006; Schubert et al., 2007;  Ko et al., 2011; Issa et al., 2014 ; 

Deneux et al., 2016 ; Issa et al., 2017; Bimbard et al., 2018). Recently proposed, this characteristic of 

neocortical circuitswould emerge during development, where cells that belong to the same progenitor 

are preferentially connected creating local connectivity patterns(Kandler et al., 2009). Later, through 

sensory experience, these circuits would be refined by Hebbian plasticity mechanisms (Peinado et al., 

1993; Gao et al., 2013) and different connectivity rules at macro and micro-scales (Barkat et al., 2011; 

Vasquez-Lopez et al., 2017; Hayashi et al., 2018; Nishiyama et al., 2019).  

1.1.2. Senses and their organization in the cortex 

An important characteristic of the previously described neocortical columnar organization, is that often 

reflects some of the corresponding sensory topographic representation in the periphery (Douglas and 

Martin, 2007; Larriva-Sahd, 2014; de Castro and Merchán, 2017). Neurons in the peripheral nervous 

system are fundamental units of information processing, capturing and translating changes in our 

environment into a readable code for the brain. The five most commonly described senses, olfaction, 

vision, gustation, touch and hearing, emerge from specialized sensory receptors neurons that can be 

classified on the basis of their structure, position and functionality in relation to the stimuli they sense. 

Regarding structural characteristics they are clustered in three groups; neurons with free nerve endings 

sensing directly the stimuli, neurons with encapsulated ending of connective tissue and specialized 

receptor neurons with special components that translate the stimuli into electrical signals (Purves, 2004). 

Classified also by their position, they can be grouped as an exteroreceptor; if it is located near the 

stimulus in the environment, interoreceptor; if it senses internal organs or internal variables as blood 

pressure, or propioreceptor; located near a muscle or an area in the body that receives motion signals 

(Purves, 2004). Classified by their functionality, sensory receptors can be chemoreceptors that translate 

chemical sensation, osmoreceptors that respond to solute concentrations, nociceptor that detect the 

presence of certain molecules, mechanoreceptors that are in charge of physical stimuli such as variations 
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in pressure and thermoreceptors which are sensitive to temperature (Purves, 2004). Each sensory 

modality is then equipped with one or more of these different types of receptors,in order to transduce 

different type of signals. From the periphery, the information flows through the axons of interconnected 

neurons to finally reach the brain (Hackett, 2011). Besides the important number of relay and processing 

stations from periphery to primary sensory areas in the neocortex(Krubitzer, 1995), important sensory 

features can be foundin the cortical surface in form of representational maps. In the following sections, 

before a complete description of the auditory system, I will briefly describe some of these sensory 

representations in the cortex. Sensory representations those are accessible using different type of 

techniques but which precise role for sensory perception has not been yet fully addressed.  

Somatosensation 

 The somatosensory system is composed of two major components: one in charge of the detection of 

mechanical stimuli and another for the detection of pain and temperature. Somatosensation is in this 

way related to several sub-modalities such as light touch, vibration and pressure that via a diverse set of 

neural receptors, mainly mechanoreceptors located in the skin and hair follicles, convey the information 

in a topographic manner through several ascending pathways to the spinal cord, brainstem, and ventral 

posterior complex in the thalamus to finally reach the primary somatosensory cortex (S1). In humans, S1 

is located in the postcentral gyrus of the parietal lobe (Brodmann’s areas 3a, 3b, 1 and 2) and each of 

these zones contains an entire somatotopic representation of the body (Figure 1-1A). In each of these 

parallel somatotopic maps, neurons encode specific to certain features of skin stimulation such as 

texture, shape or movement direction(Purves, 2004). In rodents, the body representation is largely 

biased towards the topographical representation of the whisker pad, containing the classic ‘barrels’, 

where each of them is composed of neurons responding to principally one specific whisker of the 

whisker pad (Benison et al., 2007) (Figure 1-1B-C). Also recent observations in rodent S1 have described 

that neurons within a single barrel column appear to be spatially clustered forming a map of orientation 

selectivity within single barrel columns(Andermann and Moore, 2006; Kremer et al., 2011).  
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Figure 1-1. Human and rodent body representations in the primary 

somatosensory cortex. 
(A) Diagram showing the location of the human primary somatosensory cortex (S1) in the 
brain and schematic of the body representation in a coronal view of S1. Also a classic 
representational quantification of the area dedicated to each part of the body (homunculus) 
made in the 1930s but still generally valid. Adapted from Purves (2004). (B) Same 
representation as A but for a rat. The Rattunculusshows graphically the area dedicated to 
each part of the rat’s body in S1 and S2 in the brain. From Benison and colleagues (2007) (C) 
Barrel cortex in a mouse stained with cytochrome oxidase to reveal the ‘barrels’ in dark grey 
in S1. Each barrel is labeled with the stander nomenclature representing each whisker on the 
mouse snout. From Schubert and colleagues (2007). 

Vision 

The visual system begins with one of the most advanced sensory organs, the eye. The eye, along with its 

lens and muscles, focuses and modulates the amount of light that is received at back part of the globus 

ocularis, where the retina is found. In the retina, there are specialized receptor neurons that contain a 

light-sensitive photo pigment, called photoreceptors. These neurons are dedicated then to the detection 

of photons and their transformation into electrical signals. The extremely well organized architecture of 

the retina, transforms already the information at this stage, emphasizing some aspects of the visual field, 

that will be sent through the optic nerve and optic track to several brain structures such as the 
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pretectum (involved in pupillary light reflex), the suprachiasmatic nucleus of the hypothalamus (involved 

in the day/night cycle), the superior colliculus (involved in the coordination of head and eye movements) 

and the thalamus (Purves, 2004). Visual information arrives firstto the dorsal lateral geniculate nucleus 

(LGN) in the thalamus, from where is sent mainly to the primary visual cortex (V1). The spatial 

organization of the photoreceptors in the retina is maintained through the whole visual pathways, 

creating organized visual representations of the space or retinotopy. Most of the neurons in the visual 

pathway receive information from both eyes but as a general rule, the left half of the visual field is 

represented in the right half of the brain, and vice versa (Purves, 2004). In humans, V1 is located in the 

calcarine fissure in the occipital lobe (Brodmann’s area 17), where V1 neurons are mainly responsive to 

the orientation of edges in a simple or in a more complex way, where approximately all edge 

orientations are equally represented in the form of orientation columns (Hubel and Wiesel, 1962;Ohki et 

al., 2006) (Figure 1-2). The description of visual cortical neuron receptive fields and their organization is 

an enormous field of active research, which have showed that basic spatial organization principles are 

relatively well conserved across species (Krubitzer, 1995). However, recent observations in rodents 

mitigate this idea whereas contrary to cats and monkeys, visual stimulus orientation in the rodent 

primary visual cortex would be represented in a ‘salt and pepper’ organization, showing substantial 

heterogeneity in the tuning properties of neighboring neurons (Bachatene et al., 2016).   

 

 
Figure 1-2. Orientation maps from the visual cortex of the cat. 

Orientation preference maps obtained with optical imaging of intrinsic signals from the visual 
cortex of an anesthetized cat. Dark areas correspond to regions in the cortex that are active 
during the monocular presentation of a grating at the orientation indicated in the upper left 
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part of each image (all panels but e). In the center, the summed imaged of all orientation 
preference map color coded to each direction. Scale bar: 500 mm. Adapted from Crair and 
colleagues (1997). 

Gustation 

Gustation is one of the chemical senses and is in charge of the detection of taste. Gustatory receptor 

neurons in the taste buds or papillae, mainly located on the tongue and upper digestive track, detect 

chemicals (sweet, bitter and umami) and ions (salty and sour). Taste cells are then innervated by 

branches of the facial (VII), glossopharyngeal (IX) and vagal (X) nerves which contact the gustatory 

nucleus of the solitary tract in the medulla (Purves, 2004). The rostral part of this nucleus sends 

projections to the ventral posterior medial nucleus in the thalamus, which in turn sends projections to 

the anterior insula in temporal lobe, the operculum of the frontal lobe and also to a second group of 

neurons in the caudolateral orbitofrontal cortex, where neurons are involved in satiety and motivation to 

eat (Pritchard et al., 2008). Neurons along the taste pathway are particularly responsive for one taste 

and the information flows in a sort of topographic map to the brain, creating separate taste 

representations in the cortex (Chen et al., 2011; Prinster et al., 2017).  

 

 
Figure 1-3. Taste representations in the cortex of humans and mice. 

(A) Functional magnetic resonance imaging (fMRI) responses to the standardized five basic 
tastes together with a cortical surface representation of the human right insular cortex in two 
different subjects and average image in a pilot study. Adapted from Prinster et al., (2017). (B) 
Two photon calcium imaging in the mouse insular cortex. On top image of the brain with the 
approximate location of the recording site in the primary taste cortex (yellow). On bottom, 

A B 
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neurons are represented with small circles and high neuronal responses to different tastants 
in a single trial color coded for the same recording site, depending on the stimulus applied to 
the animal’s tongue. Adapted from Chen and colleagues (2011). 

Olfaction 

Olfaction, the other chemical sense, is in charge of the detection of small molecules called odorants. 

Olfactory receptors neurons are located on a relatively small portion of tissue in the nose. In close 

contact with the different odorants dissolved in the mucus, receptor cells detect and transduce these 

signals through the olfactory tract. The precise information arrives to a single glomerulus, where then is 

split to different sensory areas of the brain(Johnson and Leon, 2000; Rubin and Katz, 1999; Stewart et al., 

1979). Afferent projections from the olfactory bulb mainly reach the piriform cortex, in humans located 

in the temporal lobe. This sensory system is really unique as it is the only one not containing a thalamic 

relay.Also, the main area dedicated to it in the cortex is not six-layered, but only thee-layered cortex. 

Another difference of this system is the poor feature representation in the olfactory bulb and pyriform 

cortex, as no map of odorant features has been described yet (Purves, 2004; Choi et al., 2011). Despite 

the lack of fine representations, large-scale odor responses in the olfactory bulb glomeruli can be used to 

predict the identity of odors in rats (Linster et al., 2001) (Figure 1-4A-B). Olfactory receptor neurons vary 

greatly in the diversity of G-coupled protein receptors at their cell surface (more than 400 in human and 

close to 1200 in rodents) (Purves, 2004). These particularities make odor perception vary a lot depending 

on the molecular structure, concentration and timing of exposition of the different odorants in the air, as 

also the fact that the constitution of the most common odor’s perception is in fact the result of a 

complex mixture of odorant molecules. 

 



General introduction 

 

 

8 

 

 
Figure 1-4. Single odor representations in the olfactory bulb. 

(A) Surface of the olfactory bulb and optical imaging of intrinsic signals in response to 
different odorants in the rat olfactory bulb. Dark areas represent neuronal activations in 
presence of each odor presentation in the same area. Scale bar 250 µm. Adapted from Rubin 
and Katz (1999). (B) Contour of the different areas in the olfactory bulb of a rat and average 
deoxyglucose charts showing the spatial distribution of [14C]2-deoxyglucose uptake evoked by 
different odorant enantiomers. Adapted from Johnson and Leon (2000). 

1.1.3 Perspective 

The columnar organization of sensory features in the mammalian neocortex revised here corresponds to 

a fundamental principle observed in almost all species studied. Yet one of the major goals of sensory 

neuroscience is try to link these cortical representations with the precise sensory percepts and their role 

in for example, learning and memory recall. Modern neurophysiological techniques make possible today 

formulate and test these type of causal hypothesis. After a comprehensive description of the auditory 

system and associative learning theory, several attempts on this venue willbe described, as they 

constitute the background and supportof the work presented here.  

  

A B 
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1.2. The auditory system 

1.2.1. Overview 

Most hearing research today focuses on the study of both, normal and pathological aspects of hearing 

comprehending different animal models. Comparative hearing research has been able to determine 

some of the fundamental principles shared across species for the main structures of the auditory system, 

their physiological functions and their role for different hearing abilities, often with a successful 

translation to the human auditory system. This system depends on highly evolved and complex 

structures as well as external physiological processes. The ear, first auditory relay station, is responsible 

for the detection and decomposition of sounds. Sound is the oscillation of air molecules in the form of 

three dimensional waves. As any wave, sound waves contain three major features; phase, amplitude or 

loudness and frequency or pitch. Most natural sounds are composed of complex waveforms of sinusoidal 

waves varying in amplitude, frequency and phase. The hearing bandwidth (the audible range) has been 

tested in more than 60 mammalian species. Varying only in some extreme cases, it shares some 

important similarities and generalizations, such as the minimum sound detection thresholds (Schreiner 

et al., 2000; Vater and Kössl, 2011). These conserved fundamental hearing capabilities reflect the 

coevolved adaptations of the middle and inner ear across most mammalian species (Basch et al., 2016). 

In general, all mammals analyze and decompose the sound into its constituent frequency components 

with different degrees of resolution (Mann and Kelley, 2011). The ear then is a highly specialized 

biological Fourier analyzer of sound waves, followed by an extremely well organized hierarchical routing 

system that allows the transformation and segregation of sound into a precise neural code.  

1.2.2. Lower auditory structures 

The first stage of sound transformation occurs in the external and middle ear, where air vibrations are 

amplified and transmitted to the cochlea in the inner ear. There, frequency, amplitude and phase are 

transduced by hair cells and then transmitted to the central nervous system by the auditory nerve. One 

key feature of the auditory system is the topographic organization or tonotopy of its projections from 

the cochlea to the auditory cortex (AC) in the brain, in what is called the lemniscal pathway. From the 
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cochlear nucleus (CN), the auditory information flows in parallel tonotopic streams, that reach first the 

superior olivary complex (SOC), where the information of the two ears first interacts allowing the 

localization of sound in space. Following the pathway, the next stage is the inferior colliculus (IC) in the 

midbrain, where auditory information is integrated and interacts with the motor system (Casseday and 

Covey, 1996; Xiong et al., 2015). The IC projects to the medial geniculate nucleus (MGB) in the thalamus, 

which in turn projects to the primary auditory cortex (AI) (Figure 1-5). Here the information is routed to 

different secondary auditory areas in the brain and feedback to the thalamus and the IC in a dynamic 

manner. The auditory pathway is very complex as it counts on many feedforward and feedback 

projections and only an overview of the main processing stations and their connections is provided. 

 

 
Figure 1-5. Schematic view of the auditory system. 

All nuclei of the lemniscal auditory pathway are tonotopically organized. Cochlear nucleus 
(CN), superior olivary complex (SOC), inferior colliculus (IC), and medial geniculate nucleus 
(MGN).Primary (belt), secondary (belt) and  tertiary (parabelt) auditory cortex in the human 
brain are located in the superior part of the temporal lobe. From Saenz and Langers (2014). 
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Periphery 

External Ear  

The external ear corresponds to the visible part of the auditory system and comprises the pinna, concha, 

ear canal and eardrum or tympanic membrane. Sound waves are captured in the pinna, then enter the 

ear canal and push the tympanic membrane which will vibrate according to the sound waves, 

transmitting them to the middle ear. In humans, this region particularly enhances the detection of sound 

around frequencies close to human speech, as this perceptual system is thoughtto have evolved to 

encode environmental stimuli in the most efficient way  (Gervain and Geffen, 2019). 

Middle Ear 

The function of the middle ear is to act as interface between the mechanical boundaries between the air-

filled spaces of the external ear with the liquid-filled spaces of the cochlea. This structure is composed of 

three small bones (ossicles) called the malleus, incus and stapes. These bones form a sort of chain that 

match the distinct resistances encountered from the air to an aqueous fluid – perilymph and endolymph 

– in the inner ear. In simple terms, a wave traveling through the air is too weak to cross this air-water 

boundary and produce the same oscillations, so the energy or pressure of the sound wave needs to be 

concentrated in a small area. This transformation occurs thanks to the close contact of the malleus with 

the tympanic membrane, its anchorage with the incus which in turn moves the stapes, the final part of 

the chain that is in contact with the cochlear surface through the oval window. The correct sound 

transmission and transformation is also regulated by two muscles in the middle ear, regulating the 

stapedius reflex (also called the acoustic reflex), which is triggered by loud noises or self-generated 

vocalizations to reduce the amount of energy transmitted to the cochlea.  

 

 
Figure 1-6. Structures of the middle ear. 
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In the middle ear are located the auditory ossicles. These three small bones are in charge of 
the transformation of sound air waveforms, which impact the tympanic membrane, into 
oscillations in a liquid media inside the cochlea, through extremely precise movements of the 
oval window. Also are shown the cochlea and the vestibular system. From Nyberg and 
colleagues(2019). 
 

Inner  ear 

Apart from the cochlea, in the inner ear is also located the vestibular system, responsible for the sense of 

balance by the continuous gathering of information concerning direction and acceleration of the head in 

the space. The cochlea is the most critical and important structure in the auditory system, which with its 

coiled architecture, is where the pressure waves are amplified, decomposed and transformed into 

electrical pulses. This structure is divided into three fluid-filled chambers (the scale vestibule, scala 

mediaand the scale tympani) separated by two membranes, the Reissner’s membrane or tectorial and 

the basilar membrane. The basilar membrane is the most important for audition, as it lies over the Organ 

of Corti (see later), and covers the entire length of the cochlea, changing its thickness from narrow and 

stiff in the basal end (near the oval and round windows) to wider and more flexible in the apical end. The 

movement applied on the oval window, propagates through this membrane and also through the 

cochlear fluids from the base to the apex, depending on its frequency. Low frequencies will cause 

vibrations mostly at the apex of the basilar membrane and increasing frequencies will shift the maximal 

vibration toward the basal end. This means that each location of the basilar membrane will have a ‘best’ 

frequency, precisely translated to the Organ of Corti. This last structure contains the inner hair cells and 

outer hair cells, the mechanoreceptor neurons of the auditory system. The movement generated on the 

basilar membrane moves the cilia on inner hair cells, opening cation-selective channels near the tip, 

which leads to the entry of K+ ions into the hair cell. The increase in intracellular K+ results in the 

depolarization of the cell and, due to the entry of Ca2+ through voltage-gated Ca2+ channels in the soma, 

the release of neurotransmitters to the synaptic contacts with spiral ganglion neurons. Together, the 

axons of these neurons form the auditory branch of the vestibulocochlear or VIIIth cranial nerve. This 

process is non-linearly amplified, in a poorly understood manner, by outer hair cells depending on the 

frequency range of stimulation. In this way, each cycle of the sound wave is reflected by a sinusoidal 

change in the membrane voltage, which is extremely precise for the low frequency sounds (phase 

locked) but less precise or sensitive for high frequency ones, due to the continuous depolarization of the 

cell whose magnitude reflects then the amplitude of the stimulus (Cheatham, 1993). Extracellular 
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recordings of an auditory nerve fiber stimulated at different frequencies, have shown that spikes tend to 

occur near the crest of the sine wave (when the deflection of the stereocilia of the hair cells is maximal) 

but not with clockwork precision (Schnupp et al., 2011). This is due to nerve fibers changing their firing 

rates from roughly Poisson distributed intervals to a lessregular phase-locked mode. This effect depends 

on the frequency of stimulation, as they can skip some cycles or spikes can occur not on the crest of the 

wave (Schnupp et al., 2011). In summary, as single hair cells respond to a specific narrow frequency 

band, the collection of hair cell response features creates the tonotopy observed along the whole 

auditory pathway present in almost all mammals studied (Schnupp et al., 2011). 

 

 

 
 

 
Figure 1-7. The cochlea and the basilar membrane. 

(A) Schematic structure of the cochlea that shows the basilar and tectorial membrane, as well 
as the location and organization of the different cell types that generate the 
mechanostransduction of oscillations into electrical activity by the inner hair cells. From 
Kapuria and colleagues (2017)(B) Summary of the most important physical properties of 
thebasal-to-apical basilar membrane,as frequency tuning, thickness, cell type and their basic 
morphological characteristics.Adapted from Basch and col (2016). 
 

Cochlear structure 

Basilar membrane properties 
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Auditory nuclei 

Cochlear nucleus 

The auditory nerve fibers join the VIIIth cranial nerve after leaving the cochlea and project to the first 

relay station of the auditory system, the CN. As described before, each nerve fiber receives inputs from 

only one inner hair cell projecting to the ipsilateral CN in the brainstem, which is divided into two parts: 

the ventral part and the dorsal part. At this stage, terminals of the auditory nerve axons differ in density 

and type, innervating different populations of CN neurons with different properties. Neurons of the CN 

differ in their anatomical location, morphology and spectro-temporal response profiles but importantly 

the connections maintain thecochlear tonotopic organization. Neurons of the ventral part of the CN 

project ipsilaterally and contralaterally to the SOC and neurons from the dorsal part bypass the SOC and 

project directly to the nuclei of the lateral lemniscus on the contralateral side to then arrive at the IC, the 

first processing station of the midbrain.  

Olivary complex 

In this structure, the spatial position of the sound is encoded using either Interaural Time Differences 

(ITDs) for low frequencies (< 3 kHz) in the medial superior olive (MSO) or Interaural sound Intesity 

Differences (ILDs) for high frequency sounds (> 2 kHz) in the lateral superior olive (LSO) (Kandler et al., 

2009) (Figure 1-8). Later, ascending fibers reach the contralateral nucleus of the lateral leminiscus which 

in turn projects toward the IC.  

 

 
Figure 1-8. Brainstem auditory sound localization circuits. 
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Tonotopic distribution of cochlear outputprojections that innervate the cochlear nucleus 
(CN). From the CN excitatory (green) and inhibitory (red) connections are detail with the 
lateral superior olive (LSO) and medial superior olive (MSO). Together these circuits make 
possible sound localization in space based on spike time differences. HF; High frequency 
sounds, LF; Low frequency sounds.Adapted from Kandler and colleagues(2009). 
 

Inferior colliculus 

Inputs from the brainstem nuclei converge along a fiber bundle known as the lateral lemniscus, which 

arrives in the IC together with commissural connections between left and right ICs. The IC is subdivided 

into several sub-regionscontaining one or severalsub-nuclei(C. Chen et al., 2018). Generally the IC is 

subdivided in core (ICc) and shelter (ICx) regions. ICc is compose of the central nucleus (CNIC) which 

receive most input from the lemniscal pathway arriving from the brainstem. The CNIC is then surrounded 

by the ICx, which is composed of the dorsal cortex at the top (DCIC), the external or lateral cortex (LCIC) 

and the nucleus of the branchium (nBIC) (Chen et al., 2018) (Figure 1-9). Together to the ascending 

projections from lower auditory stations that innervate the IC, there are an important amount of 

cortifugal projections arriving to ICx (Bajo et al., 2007; Winer et al., 1998), maybe participating in fine 

sound localization but their functions are not yet well stablish (Bajo et al., 2010) (Figure 1-9). The 

complicated pattern of innervations as the combination of binaural information in this structure 

generates complex neuronal responses, finding for example neurons responding to sound frequency, 

intensity, duration, as well as neurons able to encode sound localization due to ITD (Grothe et al., 2010; 

King et al., 1998). Other more refined features can also be found as for example, neurons in the IC of the 

barn owl, were they are not only tuned to specific horizontal regions in the physical spaces but also to 

preferred elevations (Grothe, 2018). Comparable maps have not yet been described in mammals, but 

other features can be found already at this stage such as frequency-modulation responsive neurons 

(Clopton and Winfield, 1974; Felsheim and Ostwald, 1996; Hage and Ehret, 2003; Rees and Møller, 

1983). The CNIC is the structure tonotopically arranged, where neurons responding best to low 

frequencies are located near the dorsal surface and neurons responding progressively towards higher 

frequencies are located more ventrally (Barnstedt et al., 2015; Schnupp et al., 2011). ICx neurons send 

projections to the superior colliculus (SC) where auditory information interacts with head and reflexive 

eye movements to orientate them to unexpected sound sources(King et al., 1998). Most of the 

projections from the CNIC and DCIC arrive to the biggest processing and relay auditory nucleus in the 

thalamus, the MGB or as is simply known, the auditory thalamus(Figure 1-9). 
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Auditory thalamus 

The MGB receives its inputs mainly from the IC but also direct projections from lower auditory nuclei. In 

general the MGB is described as an obligatory relay station for all of the ascending auditory projections. 

The MGB, as the IC, is subdivided into several sub-nuclei, most notably the ventral (MGv), dorsal (MGd) 

and medial nuclei (MGm) (Figure 1-9). The MGv is part of the lemniscal system,where neurons respond 

best to one particular frequency, and therefore the tonotopic organization is extremely well conserved. 

This area corresponds to the major thalamo-cortical relaywith approximately 85% of boutons arriving 

and clustered in layers III and IV in the cortex (Polley et al., 2007) (Figure 1-9). In parallel to this, the MGd 

is part of the non-lemniscal system as it receives less tonotopically organized projections from the CNIC 

(Lee, 2015). This area also sends projections to the granular layer of the cortex but with much more 

dispersion than MGv. MGm is also not well tonotopically organized receiving its inputs from all nuclei of 

the IC but also from other lower structures (Hackett, 2011). Neurons in the MGB are tuned not only to 

frequency, but to other complex features because of the convergence of spectrally and temporally 

separate auditory pathways (Malmierca et al., 2015). For example, neurons responding best to 

combinations of frequencies are first observed at this stage (Syka, 1997). Outputs from the MGB are 

many including dorsal striatum (Chen et al., 2019) and limbic structures such as the amygdala (Antunes 

and Moita, 2010), but in the vast majority of thalamic projections arrive to the primary and secondary 

auditory cortical areas (Hackett, 2011; Lee, 2015). Recent experiments indicate that the different 

subdivisions of the MGB in fact project to non-overlapping areas of the AC, where MGv projects to the 

core or primary auditory areas whereas theMGd sends its projections the belt or secondary and parabelt 

or terciary AC regions (Smith and Populin 2001) (Figure 1-9). Consequently, it is thought that in 

secondary and associative areas of the AC, the main input to layer IV would be projections from primary 

auditory cortical areas (Hackett, 2011). Mention that the MGB is only a relay station of auditory 

information to upcoming structures is mostly for schematics and representational reasons as it is well-

known that corticofugal feedback projections from AC to the MGB outnumber largely the feedforward 

cortical projections of the MGB. Primary as well as secondary auditory areas project to all nuclei of the 

MGB meaning that information that is routed from the MGB to AC, is under constant transformation and 

strict control of these numerous corticothalamic feedback connections (Kimura et al., 2005; Winer et al., 

2001; Winer and Lee, 2007). 
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Figure 1-9. Schematic representation of auditory thalamus projections to 

AC. 
Feedforwardprojections from MGB to AC arrive to different auditory areas accordingly to the 
nuclei from they emerged. The ventral nucleus of the MGB projects mainly to AI whereas the 
dorsal and medialnucleus project towards secondary and tertiary auditory areas. Corticofugal 
projections reach all nuclei of MGB. Indicated with roman numbers are the neocortical layers 
from where connections arrive and exit the cortex.Black connections indicate ascending 
projections and red descending projections.Non-lemniscal areas arehighlighted in 
grey.FromMalmierca and colleagues (2015).   

  

Secondary 

Primary  Secondary 
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1.2.3. The auditory cortex 

The first evidence about the existence of a brain area dedicated specifically for the processing of sounds, 

came from the early experiments performed by David Ferrier in the 1870s (“Ferrier on the Functions of 

the Brain,” 1877). First, by direct galvanic stimulations and profound ablations of different areas of the 

brain in monkeys, he localized and described in much better detail, the motor cortex than his 

predecessors. Using similar techniques, he realized that precise stimulations in the superior temporal 

gyrus of monkeys generates a startle response and lesions in the temporal lobe generate severe 

deafness in the subjects without other apparent motor or cognitive deficiencies. After several decades of 

research, it is now known that only humans and macaques show some degree of hearing loss after 

removal or ablation of the AC, unlike smaller mammals such as ferrets, cats and dogs (Warren, 2005). 

Using diverse techniques, the AC has been precisely located and recognized as the last step in a long 

chain of hierarchically arranged stages of sound processing (Hackett, 2011). In humans and primates the 

AC, is located in the temporal lobe and is comprised of the superior temporal gyrus and Heschl’s gyrus. In 

ferrets, cats and dogs,it is located in the sylvian gyrus. Thanks to an extensive amount of research, the AC 

has been subdivided in a great number of sub-areas, where some of them show a clear and well 

organized tonotopy (Figure 1-10). Generally, there is evidence to suggest that in primates, there are at 

least three hierarchically arranged sub-areas within the AC, primary or ‘core’, secondary or ‘belt’ and 

associative or ‘parabelt’ (Winer, 2011). These different sub-areas, are delineated by their anatomical 

connectivity patterns, cytoarchitectonic characteristics, physiological criteria and different cell-biological 

markers (Hackett et al., 2001; Wallace et al., 1991). Primary areas are considered to be the main targets 

of the ascending lemniscal pathway and they are delimited by the extensive accumulation of granular-

like neurons (mainly located in layer IV), short response latencies, strong expression of cytochrome 

oxidase (CO), acetylcholinesterase (AChE) and parvalbumin (PV), together with a strong myelination 

pattern. In contrast, secondary and more associative areas present large pyramidal neurons with longer 

response latencies, and a fractured tonotopic organization with diffuse myelination patterns and less 

metabolic activity (Polley et al., 2007; Kuśmierek and Rauschecker, 2009; Guo et al., 2012; 

Joachimsthaler et al., 2014). 

 

In general, the core or primary auditory areas present two or three subdivisions, extensively 

characterized by tracer injections and extracellular recordings studies. In non-human primates these 
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subdivisions are the primary auditory cortex (AI), rostral area (R) and rostrotemporal area (RT), arranged 

from caudal to rostral (Figure 1-10). In other mammals, they are mainly defined as AI and anterior 

auditory field (AAF) (Hackett, 2011) (Figure 1-10). The homology of brain regions across species, 

particularly for these areas, is difficult as it shows an incredible specialization regarding the specific 

animal needs. For example in echolocating bats, there is a considerable number of areas specialized for 

the processing of echo delays and Doppler shifts, which obviously does not have a counterpart in the 

human or non-human primate brains (Grothe et al., 2010; Schnupp et al., 2011).  

 

 
Figure 1-10. Schematic representation of AC in some of the most studied 

mammals. 
Primary auditory areas are in darker color. Most of the secondary and tertiary areas 
described so far are also indicated. Low (L) and High (H) tonotopic fields are indicated in each 
panel. From Hackett and colleagues (2011).   

 

The connectivity pattern in between the different sub-areas of the AC varies between species. While in 

carnivores, it is usually described that AI and AAF present comparable amounts of thalamic inputs, 

cortico-cortical connections and similar neurophysiological properties, the secondary auditory area or 

belt present very distinct connectivity patters (Figure 1-9). In non-human primates as well as in cats, it 

has been described that AI send direct projections to the secondary areas which in turn, send projections 
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back to AI and to the posterior ectosylvian region (comparable in some degree to the parabelt region in 

primates) (Fay and Popper, 1994). 

Tonotopic organization 

The first demonstrations of tonotopy were provided by recordings of evoked potentials in the exposed 

ectosylvian cortex of the cat, while stimulating isolated auditory nerve fibers from different regions of 

the cochlea (Woolsey and Walzl, 1942; Rose and Woolsey, 1949b). This structural organization was 

seriously doubted years later by several different groups arguing that responses from isolated units in AC 

were sparse (Davies et al., 1956;  Evans and Whitfield, 1964; Gerstein and Kiang, 1964; Evans et al., 1965; 

Abeles and Goldstein, 1970) and highly modulated by several factors such as attention and anesthesia 

(Evans and Whitfield, 1964; Katsuki et al., 1959). Although some of these works argued in favor of the 

columnar organization of the AC, as they observed a clear macroscopic tonotopic organization after 

averaging the best or characteristic frequency from nearby isolated neurons, this started a long lasting 

dispute in the field (Goldstein and Abeles, 1975). The emergence of new technologies to precisely locate 

and record the activity of thousands of neurons at the same time and at different spatial resolutions 

(Denk et al., 1990; Grinvald et al., 1986), resurfaced the question about how good the tonotopic 

organization was maintained across neighboring neurons in the AC, especially in superficial layers. In 

humans there is evidence from MEG studies, recordings with implanted electrodes or functional imaging 

(fMRI) of at least one tonotopic gradient in the core region (Howard et al., 1996; Lütkenhöner and 

Steinsträter, 1998; Talavage et al., 2000). A mirror second tonotopic map has been described recently 

through high power fMRI, homologous to AI and R areas in the monkey’s brain (Formisano et al., 2003). 

For other mammals, large-scale tonotopic organization has been observed in great detail, using several 

low resolution optical techniques in the marmoset (Zeng et al., 2019), cat (Langner et al., 2009 ; Spitzer 

et al., 2001), ferrets (Nelken et al., 2004; Versnel et al., 2002), chinchilla (Harel et al., 2000; Harrison et 

al., 1998), gerbils (Schulze et al., 2002), rats (Bakin et al., 1996 ; Kalatsky et al., 2005) and mouse 

(Bathellier et al., 2012; Deneux et al., 2016; Horie et al., 2013; Issa et al., 2014; Issa et al., 2017; Kato et 

al., 2015; Kubota et al., 2008; Moczulska et al., 2013; Sawatari et al., 2011; Stiebler et al., 1997; 

Takahashi et al., 2006; Tsukano et al., 2015; Tsukano et al., 2016). Using microelectrode arrays/single 

electrodes or wide-field two photon calcium imaging recent studies have found the same macroscopic 

structural organization reported by low resolution optical techniques in the cat (Atencio and Schreiner, 
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2010), rat (Polley et al., 2007) and with high detail in the mouse cortex (Bao et al., 2001; Barkat et al., 

2011; Guo et al., 2012; Hackett et al., 2011;  Issa et al., 2014; Issa et al., 2017; Joachimsthaler et al., 2014; 

Stiebler, 1987; Yang et al., 2014; Zhang et al., 2005). Together these works removed all doubt about the 

large-scale tonotopic organization of the AC, underlining five subdivisions: two highly tonotopically 

organized comprising the primary auditory cortex (AI) and the anterior auditory field (AAF), and three 

non-tonotopic subdivisions, the secondary auditory field (A2), ultrasonic field (UF) and dorsoposterior 

field (DP) (Figure 1-11A). The segregated UF is often described as a particular feature of the AC in the 

mouse, as neurons with responses to ultrasonic vocalizations and best frequencies over 40 kHz are 

mostly observed here (Holy and Guo, 2005; Asaba et al., 2014). Recent findings, based mostly on 

retrograde tracing studies (Tsukano et al., 2016), have introduced new insights about the number and 

name of the subdivisions of primary and secondary areas in the AC of mice, discribing at least six 

subdivisions with four being tonotopically arranged (AI, AII, AAF and dorsomedial field or DM) and two 

non tonotopically arranged (dorsoanterior field or DA and DP) (Tsukano et al., 2017a) (Figure 1-11B). 

 

 
Figure 1-11. Schematic representation of the mouse AC. 

(A) Drawing of the mouse brain and approximate location of the AC (top) and first detailed 
tonotopic representation of the main sub-divisions present in the mouse AC (based on 
Stiebler et al., 1997) (B) New proposal for the sub-divisions of the AC in the mouse based on 
recent findings of tracer experiments of connections from MGB to AC. Abbreviations 
correspond to; AI: primary auditory field; A2: secondary auditory field; AAF: anterior auditory 
field; UF: ultrasonic field; DP:  dorsoposterior field, DM: dorsomedial field and DA; 
dorsoanterior field. Adapted from Tsukano and colleagues (2017). 

 

A B 
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Low resolution optical imaging techniques average neuronal responses over several thousands of 

micrometers or even millimeters of neuronal tissue and can show in great detail the macro architecture 

of the main tonotopically arranged subdivisions of the AC, but this technique has several drawbacks. 

Similar to microelectrode studies, where the signal or activity registered can be largely biased towards 

highly active areas or areas with neurons sharing some similar properties, these methods can hide fine 

detailed structural features (Kanold et al., 2014). Again different scenarios have been reported using 

single cell resolution techniques such as the loading or expression of Ca+2 indicators combined with two 

photon microscopy (Svoboda et al., 1997; Tian et al., 2009; Ohki et al., 2005). Independent of the calcium 

tracer used, either Oregon Green Bapta-1 (OGB-1), Fluo-4 or the different versions of the genetically 

encoded calcium tracer GCamP (GCamP3, GCamP6m or GCamP6s), a series of recent publications has 

not reliably observed a fine or smooth transition from the global to the local tonotopy (Bandyopadhyay 

et al., 2010; Rothschild et al., 2010; Winkowski and Kanold, 2013). Generally, looking at the best 

frequency or characteristic frequency responses of neurons in superficial layers in the anesthetized mice, 

a poor tonotopic organization can be observed over spatial scales of <200 µm (Bandyopadhyay et al., 

2010; Rothschild et al., 2010) (Figure 1-12). However, the high noise correlations observed between 

nearby neurons and the presence of the expected average global tonotopic organization by looking 

across multiple fields of view (>200 µm), indicates a high connectivity and a robust columnar 

organization (Bandyopadhyay et al., 2010; Rothschild et al., 2010) (Figure 1-12). This has also been 

recently confirmed by recordings using multichannel silicon probes (See et al., 2018). Only few years 

later, using the same approach but now in awake mice, an impressive smooth and detailed tonotopic 

organization was reported (Issa et al., 2014), as also found recently in the marmoset (Zeng et al., 2019). 

Apparently, differences in the structural properties of the AC can arise from the different methodologies 

and differences in the cortical state of the animals at the moment of the recording (Guo et al., 2012; Issa 

et al., 2014; Kanold et al., 2014; Pachitariu et al., 2015). 
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Figure 1-12. Schematic tonotopy of superficial layers in the mouse AI. 

Tonotopic organization derived from two photon calcium recordings in anesthetized mice. 
Differences in suprathreshold and subthreshold activity account for a model of 
interconnected subnetworks with a fractured tonotopic organization based on best 
frequency tuning characteristics. Adapted from Castro and Kandler (2010). 

Other stimulus representations in auditory cortex 

Cortical maps are efficient for reducing complexity and redundancy, and enhancing coding power by 

coordinated parallel processing of the incoming sensory information (Chklovskii and Koulakov, 2004). 

Different sensory features are thought to be transformed in overlaid maps of sensory processing 

subnetworks that work together in order to generate single sensory percepts. Apart from the tonotopic 

organization previously described, there is evidence that other sensory features are mapped through the 

auditory system of birds, such as source location in the owl (Knudsen, 1984) and object distance in the 

bat (O’Neill et al., 1989). In the mammalian brain there have been reports of response maps of latency 

(Mendelson et al., 1997), sound intensity (Heil et al., 1994), amplitude and frequency modulations in a 

large variety of species (e.g.Clarey et al., 1994; Eggermont, 1998; Godey et al., 2005; Issa et al., 2017; 

Mendelson et al., 1993; Zhang et al., 2003) and binaural interactions in almost all of the species that 

haven been studied (Schreiner and Winer, 2007), including mice (Panniello et al., 2018). How these 

cortical maps interact is a matter of debate and active research (King et al., 2018), even though some 

theories have been presented such as the observations that neurons tuned to low frequencies would 

prefer sweeps going from low to high frequencies and the contrary, that neurons tuned to high 

frequencies would respond more often to sweeps in the opposite direction (Godey et al., 2005; Zhang et 

al., 2003). Technical limitations in conjunction with changing cortical states, due to different attentional 

states of the animals, during the course of long mapping experiments (Fritz et al., 2003) or task-specific 
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modulations(Bartlett and Wang, 2005; Scheich et al., 2007) have been largely detrimental for the correct 

mapping of auditory features and their interpretation. It has been observed that even looking at the 

same neuron, it can show in a short period of time a high ambiguity in its response profile (Schreiner and 

Winer, 2007). 

Laminar organization 

Looking in more detail, besides the columnar organization of the neocortex, there is a hierarchically 

laminar organization parallel to the pial surface which is the result of radial waves of migration of post-

mitotic neurons during development. During early stages of development, neuroepithelial cells lining in 

the ventricles transform into radial glial progenitors (RGP), the main neuronal progenitor cell type 

responsible for the production of other progenitors and eventually for the final neuronal output (Purves, 

2004; Uzquiano et al., 2018). At early stages, radial glial cells self-amplify in order to increase the 

progenitor pool. Progressively they produce other type of progenitor cells, namely basal progenitors. 

Humans brains are characterized by abundant basal radial glial progenitors, which are highly proliferative 

and thought to be important for neocortical expansion and evolution. In rodents, basal progenitors are 

mainly constituted by intermediate progenitors, dividing symmetrically and producing post-mitotic 

neurons (Douglas and Martin, 2007; Uzquiano et al., 2018). This last mentioned cell type, residing in the 

ventricular zone (VZ) of the dorsal telencephalon, enters into numerous rounds of symmetric division, 

generating different types of newborn neurons which in turn, migrate radially and differentiate 

producing the final columnar organization of the neocortex (Kornack, 2000).  

 

 
Figure 1-13. Radial neuronal migration in the developing brain. 
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Radial migration is observed during early development when new born neurons, from radial 
glial progenitors at the ventricular zone, migrate to the cortical plate and proliferate forming 
the layers of the cortex in an ‘inside-out’ manner. Adapted from Moffat and 
colleagues(2015). 

 

The different layers are grouped into three parts: (1) supragranular layers containing layers from I to III, 

(2) internal granular layer comprising only the layer IV, (3) andinfragranular layers covering the layers V 

and VI. Although there is intricate connectivity between layers in a feedforward and feedback manner, 

the amount and type of cellular populations allows us to determine in part the functional role of each of 

these layers. In general terms in primary auditory areas, the information arrives mainly into layer IV, 

from which is broadcast to other cortical layers. Recordings of sound onset latencies in the different 

layers can account for this as smaller latencies are usually observed in layer IV with gradual increases 

towards the upper layers (Mendelson et al., 1997) (Figure 1-14). Layers II and III serve with intra-cortical 

and cortico-cortical projections whereas layers V and VI correspond to the main output layers to 

subcortical and other cortical structures. Although the functional impact and fine architectural features 

of all cortical layers has not yet been completely defined, there are some common rules that have been 

found in most mammals (Hackett et al., 2011). 

 

 
Figure 1-14. Sound onset latency and recording depth for multi-units in AI. 

The minimum sound onset latency for multi-units (MU) recorded across all layers of AI in the 
AC of cats plotted against cortical depth. The averaged approximate location of the cortical 
laminae is indicated with Roman numerals. Dashed line corresponds to averages of locally 
minimum onset latencies whereas the dotted line corresponds to the average onset latency 
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for five depths in nine electrode penetrations. Adapted from Mendelson and 
colleagues(1997) 

Layer I 

Layer I contains a small number of neurons where almost of all them are GABAergic VIP interneurons. 

These neurons are heavily innervated by lower layers and high-order cortical areas, making of this layer 

the main input of top-down modulations (Fu et al., 2014; Letzkus et al., 2011; Muralidhar et al., 2013). 

Layers II-III 

Even though these layers are usually described together, there is a growing interest to separate them 

based on their structural and functional differences. These layers receive inputs principally from layer IV 

and a small fraction directly from the thalamus, together with strong lateral inhibitory inputs (Meyer et 

al., 2011). This is translated into low spontaneous and evoked firing rates with high stimulus selectivity, 

particularly in awake animals (Haider et al., 2013; Lefort et al., 2009). Similar results were obtained 

during whole-cell recordings of neurons in awake head-fixed mice, where high variations in subthreshold 

activity were observed but only few spontaneous spikes probably because of the presence of large 

inhibitory inputs (Poulet and Crochet, 2018; Petersen et al., 2003). Recently, in AI, it has been shown that 

layer II neurons respond significantly stronger to pure tones and they tend to be more tuned in an 

intensity-dependent manner than the neurons layer III (Oviedo et al., 2010). Also these layers differ in 

their inputs and long-range projections, layer II receives mainly intra-columnar inputs from layer IV, 

whereas layer III can receive it from out-of-columun layer VI and auditory thalamus (Winer, 2011). More 

striking is the difference in their output targets, where layer II sends projections to lower sub-areas of 

the AC and layer III neurons showed clear and strong projections to the contralateral AC (Oviedo et al., 

2010). Thus, in addition to their morphological differences,layer II and III not only present different 

sound-evoked responses in vivoand also different circuitry suggesting a clear segregation in sound 

processing and global function (Oviedo et al., 2010).   

Layer IV 

This layer corresponds to the main point of arrival of the lemniscal pathway as it receives strong 

tonotopically organizedfeedforward connections from the auditory thalamus (Hackett et al., 2011), 

although other properties such as temporal and spectral features are less concisely aligned between the 

two stations (Lee and Winer, 2008).The morphology of the neurons in this layer is unique in that most of 



General introduction 

 

 

27 

 

them are non-pyramidal spiny stellate cells (Winer, 2011). Neurons in this layer send projections to 

upper layers, mainly layer II and III of the corresponding column (Hackett, 2011).  

Layer V 

This layer corresponds to the thickest layer in primary auditory areas and integrates information from 

almost all cortical layers thanks to long apical dendrites. In return, this layer sends long-range axonal 

projections to other cortical and subcortical brain regions. The neurons in this region, contrary to layer I, 

are mainly excitatory with the second smallest quantity of inhibitory cells (Tremblay et al., 2016). 

Layer IV 

This layer contains a large number of cell types, whit a few of them having the most elaborate axonal 

projections connecting neighboring cortical columns (Narayanan et al., 2015). Because of these varied 

neuronal morphologies, this layer receives information from a broad range of stimuli coming from 

thalamic and different intra-cortical connections together with weak inhibitory inputs, as it is the layer 

with the least inhibitory cells in the AC and a sustained high firing rate(Radnikow and Feldmeyer, 2018; 

Tremblay et al., 2016). Excitatory neurons in this layer send projections to other intra-cortical areas, but 

mainly supply feedback projections to the auditory thalamus (Winer, 2011). 

Principal cortical cell types 

The earliest detailed descriptions of the different types of neurons in the cortex are the observations of 

Santiago Ramón y Cajal in the last decade of the 19th century (Gil et al., 2014) (Figure 1-15). Studying the 

axonal structure, somatic morphology and dendritic profiles, he described a great amount of different 

cell types and proposed several theories about neuronal circuits, most of which were validated using 

modern fluorescent and electrophysiological techniques (Markram et al., 2015). Currently, neocortical 

neurons are classified in two main classes: glutamatergic projection neurons, principally pyramidal shape 

neurons, that correspond to approximately the 80% of cortical neurons, and GABA (ϒ-aminobutyric acid) 

–ergic interneurons, that correspond to roughly 20% of cortical neurons (Markram et al., 2004). In 

general, the interneurons receive local excitatory as well as inhibitory inputs and their classification 

depends on many different morphological, anatomical, genetic and physiological properties (Chen et al., 

2015; Purves, 2004). In general, cortical inhibitory neurons can shape tuning specificity, stimuli response 
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strength and robustness, as well as the shapeof the correlations between intra and extra-cortical 

domains (Aizenberg et al., 2015; Briguglio et al., 2018). Recently, it has been observed that attentional 

and state-dependent cortical dynamics in primary sensory areas can be largely modulated by higher 

order inputs in a top-down manner involving different neuromodulators, such as cholinergic inputs 

which arrives mainly to superficial layers. These can have an important impact in attentional 

engagement, mainly thought local inhibitory circuits (Kuchibhotla et al., 2017). Even though, cortical 

neurons process complex and non-linear features that differ between sensory modalities, there are 

some neuronal connectivity rules shared among different sensory areas that tell us more about how the 

sensory information is treated than the features that are encoded and extracted. In this sense, the 

connectivity patterns and functionality of the most abundant and generally mentioned cell types, is 

quickly described; 

 
Figure 1-15. Drawing by Santiago Ramón y Cajal of the cerebral cortex. 

This drawing ofa Golgi staining byCajal conveyed some of his findings reported for small 
mammals. Different type of cell morphologies are appreciated and their approximate 
localization in the laminar organization of the neocortex. Adapted from Gil and colleagues 
(2014). 
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Excitatory cells 

Excitatory neurons or principal cells are named like this because of their quantitative superiority in the 

cortex. They are generally divided into two main groups, spiny stellate cells and pyramidal cells, with 

both groups differentially located in the cortical layers (Simons and Woolsey, 1984) (Figure 1-16A). 

Besides the morphological differences in excitatory neurons, their local organization also can be 

distinguished by their electrophysiological properties. According to their spiking profile, there are also 

two main groups, regular-spiking (RS) and burst-spiking (BS) neurons (McCormick et al., 1985) (Figure 

1-16B). More recent and complex classifications have been made regarding their biophysical properties, 

such as their axon conduction velocities, together with enzymes, neurotransmitters and more 

detailedimmune-histochemical profiles, which greatly exceeds the scope of this manuscript.  

 
Figure 1-16. Principal excitatory neurons in layer IV of the neocortex. 

(A) Reconstruction of two of the most classic and well-described cell types found in the 
neocortex (mouse C2 barrel), spiny stellate and pyramidal cells in order. Differences in their 
dendritic and axonal arborizations are evident as well as their differential localization. 
Adapted from Schubert and colleagues (2003)  (B) Photomicrographs of one spiny stellate 
neuron (top, scale bar 25 µm and 100 µm) and one pyramidal neuron (bottom) stained with 
biocytin found in the mouse neocortex. Adapted from Lefort and col (2009). 
 

Inhibitory cells 

Inhibitory cells in the neocortical circuits have the most diverse morphological and functional properties 

of any other cell type in the cortex. Generally they are thought of as the main source of spike timing 

control in the cortical circuitry as in awake animals they control the output signal of presumably every 
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neuron in the brain (Haider et al., 2013). Despite their great heterogeneity, there are three genetically 

defined sub-classes that are the most studied interneurons so far. 

Parvalbumin-expressing (PV) interneurons 

This class of interneurons consist of two main subgroups; basket cells which make up almost 50% of 

interneurons and target mostly the soma and proximal dendrites of pyramidal cells, and chandelier cells 

targeting the axon initial segment (Markram et al., 2004) (Figure 1-17A). Both types of interneuron 

receive strong inputs from thalamus, inputs from other types of interneurons, as well as from different 

areas of the cortex, together with the strong inputs of the pyramidal cells in their vicinity (Markram et 

al., 2004). This pattern of connectivity suggests that this class of interneurons produces a strong and fast 

inhibitory conductance decreasing quickly and precisely the excitability in their local vicinity, as 

dysfunctions in their properties can leads to epileptic activity in cortical neural circuits (Casanova et al., 

2003). At the same time, this connectivity feature has been used in a number of recent publications, 

where acute and strong activations of this genetically targeted neuronal population,are used to heavily 

modulate or even inactivate large cortical domains (Briguglio et al., 2018; Hong et al., 2018). PV 

interneurons have also been shown to tbe causally involved in the generation and maintenance of 

gamma oscillations (30-80 Hz) in the brain, which are believed to enhance information transmission and 

processing (Kim et al., 2016; Sohal et al., 2009). Generally in the AC, these type of interneurons are 

described with wide tuning properties (Maor et al., 2016), and controlling more the balance or gain of 

excitatory activity rather than specific features (Li et al., 2015) (Figure 1-17B). Light modification of their 

firing rate can sharpen the tuning profile of principal cells in the AC with a consequent increase in 

behavioral acuity during frequency discrimination (Aizenberg et al., 2015). Also, this particular type of 

interneurons has been linked to the active suppression in cortical circuits observed by self-generated 

movement and sounds (Angeloni and Geffen, 2018). 

Somatostatin-expressing (SOM) interneurons 

This second class of interneurons consists mainly of Martinotti cells targeting the tuft dendrites of 

pyramidal cells and other types of interneurons such as PV+ interneurons (Figure 1-17A). Also broadly 

tuned but less so than PV interneurons (Li et al., 2015) (Figure 1-17B), these types of interneurons are 

globally modulated by behavior-dependent activity patterns. They control the main output of pyramidal 

cells by sharpening their responses profiles as well as generating strong lateral inhibition (Kato et al., 

2015; Wilson et al., 2012). Recently, these types of interneurons have been suggested as the main source 
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of inhibition caused by habituation in primary sensory systems (Natan et al., 2017) and play a necessary 

role for learning in mice (Chen et al., 2015). 

5HT3A-receptor-expressing interneurons 

The last major class of interneurons consists largely of vasoactive intestinal peptide (VIP) interneurons, 

which are located almost entirely in upper cortical layers. By their location they receive inputs from high-

order cortical areas being involved in learning dependent changes and behavioral neuromodulation. 

Also, it has been observed in primary visual and auditory cortices that the firing rate of this type of 

interneuron is largely modulated by locomotion or foot-shocks through cholinergic inputs (Fu et al., 

2014).    

 

 
Figure 1-17. Schematic representation of neocortical 

circuits and their responses to sounds. 
(A) Sketch of the connections for pyramidal cells (green), Basket cells (red) and Chandelier 
cells (Purple) from the parvalbumin expressing group of interneurons, somatostatin 
expressing interneurons (Light blue) and vasoactive intestinal peptide cells from the 5HT3A-
receptor-expressing group of interneurons. (B) Tonal receptive field of spikes at a particular 
frequency and intensity combination from genetically identified different class of neurons. 
Adapted from Li and colleagues (2015). 

1.2.4. Sensory perception and behavior 

The auditory system is well-known to be strictly organized by the decomposition of sound frequencies 

made in the inner ear and maintained through the whole auditory pathway until it reaches the auditory 
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cortex. Contrary to these observations, an important review of the early literature in sensory systems by 

Whitfield in 1979, pointed out experiments where some level of sensory detection and discrimination 

can be achieved in trained animals after ablation of sensory cortical regions. The goal now, is to be able 

to describe what are the features encoded and retrieved at each step of the sensory processing pathway 

and what are the transformations that occur in cortical circuits. Together with the minimal components 

that allow animals to achieve simple and more difficult sensory-based decisions. The link between 

sensory perception and behavioral actions is established through experience and learning. It Is for this 

reason that for the proper study of cortical circuits and their role in perception, we need a good 

understanding of how these associations or connections are built and reinforced in the brain. 

Fundamental theories of associative learning described how the brain predicts future outcomes based on 

previouslearned associations, how saliency can define the rate of learning or how attention can select 

certain stimulus features. In the next section, a brief historical and descriptive introduction is made to 

understand these basic learning rules as also how learningis most commonly modeled. Learning models 

have been useful totestgeneral assumptions about cue interactions observed during animal learning and 

today are an important tool to unravel learning and its mechanisms.   
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1.3. Learning and modeling animal behavior 

1.3.1. Classical and operant conditioning 

Learning through experience and sensation, allows us to precisely adapt our behavior. From infancy, we 

interact with our environment via exploratory sensorimotor commands and we adapt our sensation in 

response to our changing environment (Berg and Sternberg, 1985; Dehaene-Lambertz and Spelke, 2015). 

Through the evolutionary process, different animals have acquired impressive sets of skills to sense their 

environment and survive in challenging conditions. For example, bats use sound, instead of vision, to 

move through space at night (Schnitzler et al., 1987) or bees that are able to detect UV light which helps 

to choose flowers depending on their reflectance (Chittka et al., 1994). The adult brain together with its 

specialized perceptual systems is responsible for solving these challenging situations with its enormous 

capacity to link environmental cues with surprising outcomes and to adapt behavior in order to 

meetinnate or immediate needs. In the laboratory we can study this capacity and train animals to 

linkbasic behaviors, such as seeking for reward/pleasant events or avoidance of harmful/unpleasant 

ones, with different stimuli in order to explore the basic rules of associative learning. To start unraveling 

perception and sensory based decisions, we need to have precise control of the input or sensory 

stimulus and a good understanding of the behavioral task and the structure that the animals will follow 

to learn a new association. Therefore, it is necessary to minimize the external contingencies and 

variables that can affect the behavior with the ultimate goal of obtaining the most stereotyped behavior 

in a population of animals whit a similar overall level of performance. In this direction, the simplest 

learning paradigm is “classical conditioning”, introduced by Pavlov in 1902, wherean unconditioned 

stimulus (UCS) and an unconditioned response (UCR) are used to create a new association with a neutral 

stimulus (NS). In simple terms, an environmental cue or stimulus (food-UCS) that naturally produces an 

unlearned/innate behavior (salivation-UCR) is linked to another stimulus which previously has no effect 

on the subject (sound-NS). During conditioning, for every trial the NS becomes more associated with the 

UCS because oftheir consecutive presentations (Figure 1-18A). By doing this, the NS rapidly become a 

signal or cue that predicts the presence of the UCS. After this association is made, the NS is now called, 

conditioned stimulus (CS) because now can trigger theconditioned response (CR, before UCR). In this 

classic experiment, the presence of the sound will produce salivation before the presentation of the 
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food.Indeed, Pavlov’s principle is able to explain the emergence of this type of conditioned response but 

it was unable to account for the appearance of repeated/stereotyped behaviors, as for example an 

animal pressing a lever to obtain food after a sound cue. From those observations it can be predicted 

that, at the moment that the animal is pressing the lever, it salivates because of the association between 

lever and food, but Pavlovian principlescannot explain why the animal decided to press the lever in the 

first place. 

 

Around the same time as Pavlov, Thorndike in 1898 implemented a set of experiments that were gave 

important clues to understand animal motivation, behavior and learning. He made several observations 

of animals creating new associations in complex settings. In a typical experiment, he would place a cat in 

a puzzle box and measure the time or number of trials that the animals needed to escape or get a bowl 

of food by pulling the correct lever inside the box (Figure 1-18B). By studying their learning curves, he 

observed that the learning was gradual and continuous, displaying a step by step slow increase due to 

trial and error (Figure 1-18C). This idea, described in more detailin his theory of ‘law of effect’ (Nevin, 

1999), is the foundation of what B.F. Skinner later developed as “operant conditioning” (Skinner, 1932). 

In this context, a stimulus-action that is followed by rewarding events will be repeated and the opposite, 

if the same stimulus-action is followed by non-rewarded/unpleasant events it will be avoided or less 

likely to be repeated. In this regard, the CS can be appetitive and predict reward or it can be aversive and 

predict punishment. An important feature also pointed out at this time was the restricted temporal 

contiguity needed between a stimulus and a response to promote successful conditioning (e.g.Smith and 

Roll, 1967; Mahoney and Ayres, 1976).  

 

 
Figure 1-18.Pavlov’s conditioning and Thorndike’s puzzle box experiments. 

(A) Schema of the Pavlovian salivary conditioning for dogs. A cannula collects the saliva while 
different devices control the presentation of the sensory stimuli. (B) Thondike’s puzzle box 
for cat where pulling of the loop inside the box triggers the opening of the door (C) 
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Theoretical learning curveobserved in such type of experiments. Adapted from Domjan and 
Grau (2015).  

From these foundational experiments, it was stablish thestudy of animalsin the laboratory during 

learning of casual relationships (Dickinson, 1981). Later different settings and training paradigms helped 

to formalize themost common concepts of conditioning and reinforcementlearning in animal behavior.  

1.3.2. Discrimination and generalization 

Even though classical/Pavlovian conditioning, which allows anticipation of biologically important events, 

and operant/instrumental conditioning, which gives control to the occurrence of these events, 

aretreated separately, both forms of conditioning are necessary to generate internal predictions 

andrespond accordingly to the cues in the environment (Domjan and Grau, 2015). Using a combination 

of these two methods in the laboratory, we can study perceptual decisions in behaving animals. Via 

classical conditioning, we can train animals to create basic associations and then through instrumental 

conditioning, refine the previous acquired behavior regarding some salient stimulus features. One type 

of such protocols, are Go/NoGo discriminations and normally consist in 4 training phases. In the first 

phase, animals are habituated to be head-fixed until theydo not show signs of evident stress. In the 

second phase, for several trials, a sound (CS+) is paired with a water/food reward, independent of the 

behavior of the animal. In the third phase, the animal needs to lick right after the presentation of the 

sound in order to get the reward. In the last phase, when the animals are generally highly conditioned to 

respond to the sound (CS+), a new sound is introduce but not followed by any reward (CS-). During CS- 

presentations, behavioral responses can be punished with a time out or a soft air puff or mild foot shock. 

At the beginning of this stage, the animals generalize and respond for both CS+ and CS- in the same way. 

Only after several trials do the animals start to decrease their behavioral response to the CS- and 

respond only to the CS+ (Figure 1-19). 
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Figure 1-19. Performance of one animal in a sound discrimination task. 

Individual learning curvesof the last phase of a simple discrimination conditioning (when the 
CS- is introduced)from one representative mouse. Note that at the beginning the animals 
generalize and respond to both stimuli (red and blue), until it stops responding for the non-
rewarded stimulus and discrimination improve. In black overall performance corresponding 
to the average of the two curves. Adapted from Bathellier and colleagues(2013) 

 

In the last decades, it has been shown that almost all animals, even very simple organisms as unicellular 

ciliatesfrom the genus Paramecium (Hennessey et al., 1979), are ablewith training to discriminate 

between a rewarding (CS+) and a neutral or unpleasant (CS-) stimulus. It is hard to account for all types 

of classical/operant conditioning that have been tested so far, but it is worth pointing out a few 

examples where the capacity of certain animals to associateand categorize eventswith a relevant 

outcome is just remarkable. In an experiment performed byHernstein and colleagues (1976), pigeons 

were trained to peck a response key after the presentation of very complex visual stimuli or ordinary 

landscape snapshots (Figure 1-20A). Only responses to one set of randomly assignedimages delivered 

food (CS+) and another set had no behaviorally relevant outcome (CS-). As it was previously described,at 

the beginning of the training subjects responded in a similar way to both set of pictures, but only after 

several pairings, they started to peck more rapidly to the CS+ and slowly or not to the CS-set. Later a high 

level of discrimination is observed, novel or non-trained images can be tested and study how animals 

categorize them into one of the two trained groups (CS+ or CS-). This phenomenon, where two stimuli 

can be highly discriminable but at the same time sufficiently similar to be considered or ‘judgde’ in the 

same category, is called generalization. In this regard, it is generally thought that discrimination is limited 

by peripheral sensory factors while generalization can be influenced by context and task requirements. 

To probe this ability in birds, Hernstein and colleagues (1976) trained pigeons to discriminate between 

images of scenes or landscapes containing a tree and others than don’t (Figure 1-20A). In several test 

sessions, novel/non-trained images were presented to the animals and remarkably, they could use the 
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categorical information (presence of a tree or not) to discriminate and respond correctly, as no decrease 

in performance was observed when the new images were presented randomly between regular trained 

ones (Figure 1-20B) (Hernstein et al., 1976). This experiment has been replicated using different objects 

to create this categorical classification, as water or people, showing the remarkable ability of animals to 

extract certain information and generalize (Figure 1-20B) (Vaughan and Greene, 1984). 

 

 

 

Figure 1-20. Pictures used to trained different groups of 
pigeons and generalization results. 

(A) On top images used to test generalization and classification for trees (T) and on bottom 
for people (P), images of water (W) not shown. (B) Generalization results where the 
discrimination index is plotted for each animal trained. These plots are showing that the 
probabilitiesofuntrained novel images corresponding to the same trained category are highly 
categorized. Horizontal lines show the medians. Adapted from Hernstein and colleagues 
(1976). 

 

This type of stimuli generalization is not only restricted to visual stimuli it can also be studiedusing 

sounds (Wright and Zhang, 2009). Interestingly, it has been observed in Mongolian gerbilstrained to 

discriminate between symmetric pairs of frequency-modulated tones or chirps (linearly ascending and 

descending), their capacity to create sound feature categories and transfer they learned behavior to 

novel/non-trained sounds (Wetzel et al., 1998). Using a shuttle box and a Go/no-Go avoidance task, 

animals were trained with an ascending chirp (CS+) to cross the hurdle of the box or stay in the same 

side during the presentation of a descending chirp (CS-). If the proper behavior was not done, at the end 
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of the sound animals were punished with a mild foot shook. Once the animals had reached stable 

performance, in order to create a categorical classification of chirp direction, a new pair of frequency 

modulated tones was introduced and the animals were re-trained.The generalization and categorization 

were later tested by presenting randomly a novel/untrained chirp to a well-trained animal, and 

observing if the transfer of the ‘concept or the category’ was achieved. All animals tested responded to 

the vast majority of the novel chirps used as good as for the trained sounds, proving the ability of the 

animals to form categories with artificial behaviorally non relevant sounds (Wetzel et al., 1998). 

 

Different theories aim to explain how the process of generalization is implemented in the brain but for 

the purpose of this work, feature theorywill be discussed in more detail as is the most relevant for this 

work. In simple terms, the comparison of two different stimuli can be made in different ways. One 

possible approximation (prototype theory) is to compare each stimulus to an inborn or learned ‘model or 

prototype’ but it is difficult to understand and explain how this prototype is primarily formed. A more 

straightforward approximation is to compare different stimuli by their decomposition into simple or 

basic features. Then, during training of a novel stimulus, a new association will be formed with a sub-set 

of features creating a ‘concrete representation’ where only a fraction of the information is stored. 

Generalization then occurs because every new input or entry will be compared and categorized by the 

sum of its common features. The more elements two stimuli have in common; bigger will be the 

probability to generalize between them. Cerella in 1980 trained pigeons to peck for food in response to 

only drawings of Charlie Brown and not for other characters or similar shapes. To test generalization, he 

presented different slides containing scrambled or clipped versions of Charlie Brown cartoons, but that 

contained several of its characteristic original features (Figure 1-21A,Top). Surprisingly, pigeons 

responded almost as well to these untrained novel images similar as they did for the trained images 

(Figure 1-21A, Bottom). Similar observations can be extracted froma more recent study by Bathellier and 

colleagues (2012), where they trained mice to lick in order to get a water reward after hearing a complex 

sound (Figure 1-21B). After reaching a good level of detection for the CS+, they introduced a novel non-

rewarded complex sound (CS-). As discussed before, animals at the beginning respond similarly to both 

sounds, but after several training sessions, mice learned to keep licking for the CS+ and refrain or stop 

licking for the CS- sound. In well-trained mice, they presented randomly a novel untrained set of sounds 

that formed a continuous transformation from sound CS+ into CS-(Figure 1-21B, Bottom). Mice 

categorize these sounds in anon-linear/discrete manner showing an abrupt change of categorization 



General introduction 

 

 

39 

 

from CS+ to CS- sound (Figure 1-21B, Top) (Bathellier et al., 2012). These results can be easily explained 

using the feature theory framework, where more difficult discriminations will redefined the sub-set of 

features learned or recognized in order to achieve the correct outcome and maximize rewards, creating 

an abrupt change in categorization. We can conclude from these experiments that simple features 

embedded in complex stimuli can‘call’ one or another totally different stimulus representation. Then, we 

can make the assumption that by the activation of a subset of neurons that encode one of these features 

we could trigger artificially any stimulus representation in the brain. This is one of the major subjects of 

this work and it will be treated in depth in the following sections.  

 

 
Figure 1-21. Generalization experiments using images or sounds. 

(A) Modified and scramble images of Charlie Brown(top) and discrimination ratio showing 
that pigeons generalized over the different images (bottom).Adapted from Cerella (1980).(B) 
Different group of mice trained either with S1 (blue curve) or S2 (green curve) as CS+. Plotted 
is the probability to choose S2 sound showing the generalization for each group to novel 
mixed sounds (Top) and spectrograms for each sound tested (Bottom).Adapted from 
Bathellier and colleagues (2012) 
 

  

A B 
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1.3.3. Learning from predictions 

The first theories and models of learning came from the observations that animals preferentially learn 

from cues that are good predictors of biologically important outcomes (Domjan and Grau, 2015; Garcia 

and Koelling, 1966; Hollis et al., 1997). A prime example of this is a bird trying to catch a fish under the 

water. Sudden ripples on the surface have a great saliency for the animal as they are good predictors of a 

fish getting close to the surface. Associative learning then is related to the formation of connections 

between environmental cues andactions with their respective outcomes. Internal signals will then 

translate this relationship cue-action into motivationally significant events (Dickinson, 1981). At every 

pairing, the cue that preceded the behavior becomes relevant because it acquires a predictive value of 

behaviorally pleasant or unpleasant events. From this, it was inferred that the learning process depends 

on the unpredictability of primary appetitive/aversive events, because only unpredicted events are 

effective for conditioning as no learning occurs when the reward/punishment becomes fully predictable 

(Kamin, 1967). In other words, the rate of learning or acquisition will depend on how big is the difference 

between the prediction and the expected outcome (Rescorla and Wagner, 1972). 

 

Predictions are essential for survival because making inferences about future events leads us to prepare 

better behavioral actions, decrease reaction times and avoid previously experienced adverse conditions. 

Consequently, when the predictions are accurate and important outcomes can be anticipated, it is 

thought that no change will occur to this representation and no internal resources will be expended, as 

information processing and memory storage are energetically costly (Johnston, 1982; Mery and Kawecki, 

2003).One of the first observations of this paradigm was made in experiments done by Kamin in 1967, 

where the acquisition of a new association was closely related to the novelty or the predictive power of 

the stimulus. In a group of animals (Group A) trained with a light + noise (NS) follow by a mild foot shook 

(UCS), after very few sets of trials the presence of the light + noise (now CS) produced freezing (CR). If 

another group of animals (group B) is first pre-trained with only the noise paired with the mild foot 

shock, and then with light + noise as was done for Group A, in a final test only using light, only animals of 

group A will show the CR (seeTable 1). In this case, the results are often explained by assuming that for 

group B, the noise-shock association was learned first and then blocked any consecutive learning as the 

noise already predicted fully the presence of the shock.  

 



General introduction 

 

 

41 

 

Table 1. Summary of a simple training strategyof blocking. 
 

 Pre-Training Training Test Light Only 

Group A  Noise + Light à Shock Strong CR 

Group B Noise à Shock Noise + Light à Shock Weak or non CR 

 

In another and more complex experiment, now using two sets of compound stimulus, If a group of 

animals is trained with two stimuli A and B, but only one  followed by a reward (A à CS+, B à CS-). In a 

second stage, if A is presented together with a novel stimulus X (AX) and paired again with the reward, 

when X is tested alone, it won’t have any behavioral outcome due to the blocking effect (Schultz and 

Dickinson, 2000). Interestingly is that, if B is presented together with a novel stimulus Y (BY) but now 

followed by a reward, when Y is presented alone, it will be a much better predictor of the reward than X, 

even if both were paired with the reward the same amount of times (Table 2). 

 

Table 2. Summary of a training experimentofblocking  
using a discrimination paradigm 

 

  First training Second training Test X alone Third training Test Y alone 

  CS+ CS- CS+  CS+  
Stimuls  A B AX No CR BY Moderate CR 

 

This key aspect of learning is also present in human experiments. In a study, using a conditioned 

suppression learning paradigm, blocking was achieved in human subjects trained on an operant 

discrimination task  based on a video game(Arcediano et al., 1997). Thought clear evidence of blocking in 

human experiments, these types of results are not free of controversy as several others, have failed to 

induce this phenomenon (Davey, 1988; Shanks and Lopez, 1996). This failed has been mainly attributed 

to the fact that we integrate differently the stages of training, perceiving every phase as an independent 

experiment (Tonneau and González, 2004). However these limitations, blocking experiments that have 

succeeded have used modified experimental conditions, where single-phase designed protocols appears 

to be a valid approach (Hinchy et al., 1995; Arcediano et al., 1997). In general, these kinds of experiments 

have proven that for successful associative learning to occur, the close pairing of the stimulus and 
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thereward is of course necessary, but the predictive power of the cue at the moment of the pairing also 

plays an integral role. These observations have been translated into several formal theories and have 

become the basis of different models of learning (Bathellier et al., 2013; Bush and Mosteller, 1951; Gluck 

and Bower, 1988; Mackintosh, 1975; Rescorla and Wagner, 1972; Pearce and Hall, 1980). The most 

influential framework so far, is the one proposed by Rescorla and Wagner in 1972 (from now R-W) as it 

has become the background and starting point of almost all following models, with profound 

implications not only in traditional learning theory but also in others areas of research (Miller et al., 

1995). A short introduction of this theory is provided in the following section to understand the basis and 

concepts treated by this model.     

1.3.4. Rescorla-Wagner Model 

One convention was very important in the formulation of this model and it comes from the empirical 

finding that repeated pairing of CS-US does not produce an unlimited linear increment of the CS-US 

association strength. On the contrary, the effect of pairing decreases during the course of the 

conditioning producinga gradual deceleration of learning (Rescorla and Wagner, 1972). As mentioned 

above, it is assumed that the connection between the stimulus representation and the US representation 

gets gradually strengthened in a trial-by-trial base, reaching in some point an asymptote (λ). This has 

been interpreted as the amount of learning increases, also does the expectancy of the US on the basis of 

CS presence. The following equation summarizes this assumption: 

 

∆VCS = αβ (λUS– VCS) 

Equation 1. R-W’s model of associative learning 
 

where α and β are constants and do not change over the course of conditioning. The constant α is 

related to the associability of the CS regarding its relative saliency andβ is related to the associability of 

the US also regarding its saliency.  λUS represents the magnitude of the US association reflecting the 

maximum strength that the CS-US association can achieve(from 0 to 1) and VCS represents the strength 

of the CS-US association at that particular moment or trial.∆VCS is the change in the CS-US association 

strength after one trial, which is limited by the actual value of VCS and its distance to the value of λUS. 

When the first CS-US encounter occurs, VCS is equal to 0 and ∆VCSthen will only depend on the value of α 
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and β. After every pairing, learning occurs as the value of VCS increases accordingly to the difference 

between its actual value and the maximum possible for that association (λ – VCS). Asit can be inferred, 

the value of (λ – VCS) referred also as the ‘error term’, represents the extent to which the US is predicted 

by the stimulus ,getting smaller with further training and having less and less of an impacton the 

connection between the two representations, until learning stops when VCS reaches the value of λ. 

Following this equation, we can model the experimental observation of learning occurring fast at the 

beginning and slowly plateaus as the error term or ‘surprise’ tends to 0 and the US becomes ‘fully 

predictable’. An important parameter so far unexplored is α, If is modified, it changes the speed or rate 

of learning but not the final scope of the association. Now if we consider that one trial can be more than 

one stimulus at the time, early versions of this type of model (e.g. Bush and Mosteller, 1951) 

implemented this, as considering independent error terms for each of the cues present in the trial. In 

view of the results by Kamin in 1967 (see Table 1), the idea of cue independence is challenged, as 

learning previously about one cue can influence learning of another one. In this way the idea of 

competition was implemented in the R-W’s model into Equation 1 and now by looking at equation 2, it is 

possible to understand how blocking occurs; 

 

∆VL = αLβUS (λ – VCS) 

∆VL= αLβUS (λ – [VL + VN]) 

L= Light; N= Noise 

Equation 2. Blocking results explained using R-W’s terms 
 

During the first trials of conditioning for group A with light and noise, the noise was already associated 

with the shock, so the prediction of the animal is the difference of the magnitude of the shock (λ) and of 

the sum of strengths of predictive values of light and noise combined. As VN can already fully predict the 

shock, no change in the association of light --> shock occurs. As we can notice in this equation, the 

predictive strength of the CS (V) is actually the sum of all associative strengths for each stimulus on the 

compound (ΣV = VA + VB + VC, etc.). This is an important feature of this model, making easy the 

implementation of compound stimuli. From this model then, we can derive that two stimuli in a 

compound, compete and perse acquire different association strengths. This prediction has been 

extensively tested experimentally and has its origins in observations that can be tracked down as early as 

experiments made by Pavlov in 1927. In summary, animals that are trained with compound stimulus will 



General introduction 

 

 

44 

 

tend to respond strongly to the most salient part, even if the parts separately can achieve similar levels 

of conditioning (Kamin, 1967;Mackintosh, 1975). This phenomenon called ‘overshadowing effect’, has 

been widely observed in different animals species (e.g. Mackintosh, 1971; Matzel et al., 1985; Perez et 

al., 2015) as also in human experiments (e.g. Siegel and Allan, 1985; Baetu and Baker, 2010; Vandorpe 

and De Houwer, 2005). 

1.3.5. Attention based models 

The overshadowing effect, resides on the relative intensity difference of the two stimuliin a compound 

stimulus, as little or no overshadowing occur when the stimuli have similar intensities (Pearce and 

Bouton, 2001). Underthe R-W’s model framework, this effect is explained because of the increment in 

associative strength of every part in a compound stimulus, is restricted to the level of the current 

response strength of the entire compound. In this way little or non-conditioning occurs with the less 

salient part because the more salient one reaches an asymptote for every possible associative strength in 

the compound. Another important strength of the R-W’s model is its ability to account for another 

phenomenon called latent or conditioned inhibition (Lubow and Moore, 1959; Lubow, 1989). This effect 

is observed when in an initial stage, animals are trained with a stimulus (A) paired with ashock (US) until 

a reliable CR is reached. Subsequently, regular A-US trials are intermixed with a non-reinforced 

compound stimulus (AB). At the end of this training protocol, where A certainly predicts the US but at 

the same time, B signals its absence, it can be observed that A does not decreased its power to produce 

the CR. Conditioned inhibition is related to the results obtained when B, is later used alone to trained the 

animals in a subsequent learning stage. In this case, the association B-US will progress much slower than 

the A-US association. This can be explained, as that during the second stage of training (A+ and AB- 

stimuli), λ is equal to 0 and ΣV is positive, making B acquire a negative associative strength. Even though, 

conditioned inhibition provided another good demonstration for the power of the R-W’s model to 

account for the interactions of cues during the learning process, another set of experiments around that 

time, showed several hints that challenged the validity of this proposal as for example, a phenomenon 

called ‘unblocking’ (Dickinson et al., 1976). Unblocking consists in the failure of pre-training animals with 

a salient stimulus A, to overshadow the learning about B in a consecutive stage. The R-W model can 

predict in part the results observed but only when the US is of a bigger magnitude. In this case, λ will 

acquired a bigger value, letting the AB stimulus gain some associative strength. On the contrary, when 



General introduction 

 

 

45 

 

the US is of a reduce magnitude, W-R’s model fails to account for this experimental observation. Another 

variety of experimental findings has been difficult to explain using W-R’s model (Miller et al., 1995) and 

from here, theories of learning started to deviate and explain these discrepancies using different terms 

and principles.  

 

One important difference in later models of learning is that R-W’s model takes the difference between 

the expected and the outcome (prediction-error) to determine the ‘effectiveness’ of learning, whereas 

others models have also considered it in this way, but in parallel the ‘ability or associability’ of a CS to 

generate an effective conditioning. Associability has been defined in the following models by the 

parameter α, with the ability to change during the course of learning. In early deviant theories applying 

this concept, it was described that animals cannot learn from several stimuli at the same time. Instead, 

the saliency of the CS and its relevance for the subject, due to previous experiences with it, can modify 

the extent of the animal’s ability to learn (Kosten et al., 2012). In this context, it was defined that 

stimulus processing is mainly done by different ‘analyzers’ holding different acquired strengths through 

the evolutionary process (Garcia and Koelling, 1966; Gemberling and Domjan, 1982; Shapiro et al., 1980). 

Following this approach, then each analyzer will respond to a single stimulus dimension (color, texture, 

sound, etc). Different connections with the behavioral responses would be created and strengthened, 

when the response is reinforced and weakened when is not. A summary of these and updated previous 

concepts of learning are in the ‘theory of selective attention’ proposed by Mackintosh in 1975. In his 

theory, he specifies that these connections are created with each specific stimulus feature and not with 

entire stimulus dimensions (Mackintosh, 1975). 

 

Mackintosh’s theory (1975) explained the results of unblocking described before, by proposing that 

associability is tightly related to predictability, changing its value as a result of experience. Animals then 

can be able to ‘turn off’ a stimulus that had no significant outcome (conditioned inhibition), but its 

unexpected change can ‘turn back’ attentional mechanisms, letting now the animal re-learn or modify an 

old association. Further support to his theory, were the results from experiments using stimuli that 

contains several dimensions. For example, animals can be trained with four stimuli composed by 2 colors 

and 2 types of lines (red vertical lines, red horizontal lines, green vertical lines and green horizontal lines) 

where only one feature is rewarded (for example, the color red)(Figure 1-22A-B). In a later discrimination 

stage, associability for one feature’s dimension can be tested by changing the stimuli’s color and 
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orientation, and at the same time, the relevant feature that signals the reward. The measure of learning 

speed of these new compound stimuli trained in two parallel different groups can give important clues 

about attention mechanism. For example, in the first group the same relevant dimension indicates the 

reward (intra-dimension or IDS, as color) and a second group the previous irrelevant dimension indicates 

it (extra-dimension or EDS, as orientation of the bars) (Figure 1-22C). Animals learned faster if there was 

an intra-dimensional shift than an extra-dimensional one, according with the principle previously 

described by Mackintosh’s model and suggesting that associability could be generalized from one 

stimulus to another as a function of their similarity (Mackintosh and Little, 1969; Dias et al., 1996; 

George and Pearce, 1999; Redhead et al., 2001; Trobalon et al., 2003; George and Pearce, 2003). In front 

of this kind of scenario, the R-W’s model fails to solve this discrimination as it proposes that the change 

of associative strength for one stimulus or feature compete with all the other parts in the compound for 

the same maximal value of associative strength. In this case, where two compounds contains the same 

amounts of features, the model should react in the same way making the discrimination impossible to 

solve (George et al., 2001).  

 

 
Figure 1-22. Patterns used in an Intra-Extra dimensional binding experiment 

(A) All patterns used to train animals in a classic pattern recognition task. (B) Discrimination 
of one feature in this case; color. (C) Second stage of learning were different patterns of 
stimuli are presented and is tested if an intra dimensional shift produces a faster learning 
speed. Adapted from George and Pearce(2003). 

 

In summary, Mackintosh’s model propose that an association will be learned faster if the compound 

stimulus contains a feature that can be a good predictor of the possible outcome. This principle can be 

described inthe following equation; 

 

∆VA = αA β (λ– VA) 

Equation 3. Mackintosh’s model of associative learning 

A B C 
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where the change in the association (∆VA) between a stimulus (A) and the US is influenced by its 

associability (αA) and the learning rate constant β. As described before (λ - VA) correspond the ‘error 

term’ that represents the discrepancy between the asymptote of learning of the (US) or the maximal 

value expected by that CS and the current strength of the A-US association. Finally, the associability 

value according to this modelcan be defined according to the following rule; 

 

∆αA> 0 if │λ– VA│<│λ– VX│ 

and, 

∆αA< 0 if │λ– VA│≥│λ– VX│ 

 

where αA will have a positive value when A on that trial, is a good predictor. This because the 

discrepancy between its current associative strength and the expected outcome is less than the 

discrepancy between the sums of all associative strengths of all stimuli that participates in the 

compound apart of A in that trial. Conversely, αA will decrease if the outcome can be predicted by other 

stimulus or as well as it can be done by A. Thanks to these modifications, first in the error term; where 

now the change in associative strength is due to the difference λ – VCS and second in the specific changes 

of αCS during learning; which now can account for the learning history of the CS, this model was able to 

account for all experimental results exposed before.  

 

After only few years of the proposal of Mackintosh’s theory (Mackintosh, 1975), another framework 

appeared to better explain the relationship between attention/associability and learning (Holland and 

Schiffino, 2016). Pearce and Hall (1980) after several observations that the associability of a cue will be 

greater when it does not predict entirely a reinforcement (stimulus A not paired with a US in all trials), 

than when it does it precisely (A paired with US in all trials). They stipulated that the associability of a 

stimulus in a particular trial, is proportional to the sum of the aggregate prediction errors until that trial 

(Pearce and Hall, 1980). Using this principle, they argued that reliable predictors should not receive a lot 

of attention, as they should not be able to change animal’s behavior. On the contrary, stimuli whose 

predictive value is poor, would attract more attention as constant learning is required to predict the real 

likelihood of their outcomes. Following with this idea, if an animal is trained with CS-US and suddenly the 
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expected US is absent, in the following trial the prediction-error should be high. Using these terms, they 

proposed that associability of a stimulus is determined by the following equation; 

 

αA
n = | λn– VTotal

n –1| n –1 

Equation 4.Calculation of associative power according to Pearce and Hall’s 
model 

 

where n correspond to the current trial. αA will be equal to the current absolute discrepancy of the 

previous trial between λ and VTotal. VTotal is calculated in the same way that in the R-W’s model, where its 

value corresponds to the sum ofthe all stimuli associative strengths present at that trial or in other 

words, the extent to which the US was predicted by all stimuli presented on that trial. The value of αA 

then will be high, when a stimulus it has been followed by a US that was unexpected and it will continue 

high in front of an unexpected absence (as the difference of |λ – VTotal| will also be high). The final 

expression of this formulation is the following; 

 

∆V = α S λ 

Equation 5. Pearce and Hall’s model of associative learning 
 

where at every trial, the change in associative strength (∆V) will be determined by the adjustments in 

associability or attention on α as it was defined above, the saliency of that particular stimulus (S) and the 

asymptote of learning for that particular US (λ) .In simple terms, this model proposes that an animal will 

pay more attention to a new stimulus or that its associability will be high long enough the stimulus does 

not fully predict the US (Pearce and Hall, 1980). This is somewhat is a counterintuitive claim, as better 

the stimulus predict the US, its associability decrease and no further attention is directed to that 

stimulus. Using this formulation, it was possible to explain the experiments were certain level of 

uncertainty accompanies the US (Holland and Schiffino, 2016) and more recent paradigms as reversal 

conditioning (Jarvers et al., 2016). 

 

In a parallel stream, according to the connectionist approach previously proposed by Mackintosh 

(Mackintosh, 1975), it has been suggested that when a compound stimulusis used for conditioning, 

indeed an association is form with each stimulus in the compound even with the less salient one, but 
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they claim that the later retrieval of the less salient cue-US association is some way fails. Following this 

framework, several post-learning protocols have shown the possibility to ‘restore’ in some extent the 

overshadowing effect (Kaufman and Bolles, 1981; Matzel et al., 1985; Sissons et al., 2009). Some of these 

results can also be explained by Pierce and Hall’s model, as when the pairing of a cue with a low 

associability can be restored presenting the cue without the expected outcome. Again the experiments 

of Honey and Hall in 1991, are also in accordance with this connectionist proposal. In this experiment, 

rats were exposed in separate occasions to two different flavors (A and B). Both flavors then were 

rendered similar by the addition of a third flavor (X) to each of them. After training the animals with an 

aversion protocol with A followed by an US, it was observed in a final test, using each compound 

separately, that flavor B could also evoke the conditioned CR (Honey and Hall, 1991). Separate CS 

associations, linked to the same US, could activate part of its representations as in this case, the 

presentation of B could activate the representation of X-US. These ideas have found recent support, 

where old fear memories apparently can be ‘retrieved’ by the direct activation of the neurons encoding 

that fear representation (Guskjolen et al., 2018) or by direct activations of specific CS-US representations 

in the hippocampus (Liu et al., 2012; Ramirez et al., 2015).  

 

In general, all theories previously described share some common assumptions. For example, the fact that 

learning increase gradually and that only the best predictor of an outcome, gets strengthened its 

association with the reinforcer, even though some associations can still be formed between the other 

parts of the stimulus. Taken together, even if this in some sense seems contradictory, it appears that 

predictiveness as much as uncertainty can lead to high levels of associability. Regarding the R-W and 

Mackintosh’ models, high predictability of an US and a cue generates high associability, but for P-H’s 

model the same conditions leads to a decrease associability, as the aggregate prediction error 

approximates to zero. In the literature, there is support and evidence for all of these models, where each 

of them can explain certain results and othersdon’t or with some constrains. This led to the appearance 

of hybrid models with the assumption that both central types of models are right but by their own they 

cannot fully account for the influence of the ‘associative history’ or previous training on subsequent 

learning stages. Varying in the detail, hybrid models (e.g. Le Pelley, 2004) incorporate a dual associability 

change. For one side, one component of the cue’s associability is computed for stimulus selection 

according to principles taken from R-W and Mackintosh’s models and in another one, a second 

associability component is computed for learning using the equation provided by P-H’s model (Le Pelley, 
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2004). The product of these two components then determines the learning properties of each stimulus. 

To some extent this approach can be very problematic, even though if this kind of models can explain a 

wide variety of results, they can lead to the search of distinct neural mechanisms to the same central 

process.  

1.3.6. Adaptive network models 

The amount of empirical findings in non-human animal behavior that share aspects with human learning 

and cognition, have generated a lot of attention from different areas of research, such as cognitive 

psychology and computer science. The merging of these fields generated that models of cognitive 

processes, known as parallel distributed processing or connectionist networks (e.g. Rumelhart et al., 

1986), bind with current associative learning theories to study more in detail the commonalities between 

complex human abilities and associative rules studied in simple organisms. The connectionist networks, 

where neuron-like computing elements are massively interconnected by weighted unidirectional links, 

typically are organized with a layer of sensory units, an intermediate or association unit layers and one 

last layer of response units (Figure 1-23A). All this structure work together under a framework of total 

error reduction (TER) that simply means, that they will try to reduce as maximum the total error in a 

desire input-output matching loop (Gluck and Bower, 1988; Witnauer et al., 2014). 

 

 
Figure 1-23. Diagram of a classic adaptive network model. 

(A) Multilayered neural network containing one input layer, one hidden layer and one output 
layer. Each layer is constituted by units or neurons which can backpropagate learning 
gradients. (B) Schematic showing units labels on A and how its response is generated. At each 
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itineration, the sum of all weighted inputs passes through a non-linear function to get the 
output of the unit. Different equations are the used to calculate the error of each unit in the 
hidden layers with the target value. In this way the weights are re-calculated until the 
network reaches the target value.  

 

In their essence, the presentation of one stimulus, activate the sensory units in the first layer which in 

turn, generate an activity pattern directly in the second/hidden layer or response unit (Figure 1-23A). In 

more complex networks (as found in backpropagation models) intermediate layers are interconnected 

and the activation of their units is accordingly to the sum of all its weighted inputs togheter with a linear 

or non-linear threshold that will (or not) trigger the following unit (Figure 1-23B). In this way, the input 

and output of one unit can be expressed in the following equation: 

 

Xj= Σiyiwji
 

Equation 6. Output function of a classic unit in simple layered network model. 
 

where the total input Xj of unit j, is the sum of all the previous outputs (Σiyi) multiplied by its weighted 

connections wij. Eventually the propagation of activity will terminate in an output element, which in turn 

will update the weights of the interconnected units in the previous layers. This weighting is in agreement 

with an additive or multiplicative rule to reach the desire or correct final output by repeated cycles of 

input-output matching. As it can be inferred from classical learning theory, these weights can be though 

as the associative strengths between a stimulus and a desired conditioned behavioral action. Also the 

threshold or ruleby which the weightsare updated corresponds to the learning rule such as the one used 

in the R-W’s model(Witnauer et al., 2014). In general this type of models has been used, merged with 

classical associative learning theory, to train different machine learning algorithms in pattern recognition 

as other more complicated classifications and categorizations task achieving outstanding results (LeCun 

et al., 2015). 

1.3.7. Variability 

Learning considered as the acquisition of knowledge through experience depends on a multitude of 

neural and cognitive processes which most of them are not accessible experimentally and constitute the 

basis of the high intrinsic variability between individuals(Evans, 2003). In order to representlearning, 
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performance (i.e. probability of correct responses, computed as the proportion of correct trials among n 

number of trials) is one of the most recurrent outputs measured and quantified over the curse of any 

learning paradigm. Consequently, learning models are derived from experimental observations which 

generallyare based on group-average performances and/oraveraged learning curves. To probe the 

accuracy of any of such type of models, typically model’s predictions are compared with learning curves 

obtained from averaged data using some smoothing techniques, as trial-by-trial moving windows or 

across block of trials even sometimes whole learning sessions comprising hundreds of trials per subject. 

Then variability can be heavily masked depending on the number of trials taken to compute each bin of 

the individual learning curves (Bathellier et al., 2013; Brown and Heathcote, 2003; Deliano et al., 2016). 

Models are often compared to grouped learning curves averaging many individual’s learning curves. This 

is in practice misleading or misrepresentative due to the extent of individual’s variability seen in real 

experiments. In this way, averaged learning curves, where the cumulative progress or performance is 

plotted against time or number of trials, can show a gradual increase of performance butin reality for 

some subjects, learning ca occurs incredible fast (Bathellier et al., 2013) (Figure 1-24). Only observing 

averaged learning curves, important dynamics can disappear, as slope steepness, fast learning-related 

changes, differences in the asymptotic level of performance and latency of acquisition taken as the 

number of trials before an abrupt change in the learning curve’s slope occurs (Gallistel et al., 2004) 

(Figure 1-24). This abrupt change in learning curve’s slope, from the initial response level (‘pre-resolution 

period’) until the asymptote, usually span over few trials, in part contradicting the most common 

theoretical assumption; which assumesthat learning of a simple behavior is the slow and gradual 

strengthening of connections between one or more sensory representations. From the last, It can be 

extrapolated the existence of a certain behavioral threshold that needs to be crossed, through the 

successive extraction of information and successful storage in either recent or long term memory, to let 

a certain behavior to be expressed.  
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Figure 1-24. Learning curves of pigeons trained in a classicalpavlovian 

conditioningtask. 
Best fitting for number of pecks versus trials (light black) for single animals and average 
learning curve for all animals (strong black). Adapted from Gallistel and colleagues (2004). 

 

From the previous, it is obvious that modeling and the study of animal’s behavior needs to account for 

this high variability, greatly observed in animal conditioning and Bathellier and colleagues (2013) did a 

steep forward on this matter. They developed a reinforcement learning model whichwas built using the 

type of architecture of adaptive network models (e.g. Gluck and Bower, 1988) combined with a 

multiplicative learning rule and a prediction-error term as the one used in most associative learning 

models (e.g. Rescorla and Wagner, 1972). In detail, this model is contained of three sensory units, where 

one represents the ‘context’ and trial initiation, and two other units corresponding to the CS+ and CS- 

(Port, S+ and S- unit in Figure 1-25). All this modules are then connected to a decision circuit and an 

inhibitory unit which in turn is also connected to the decision unit (Figure 1-25). In presence of an input 

or stimulus, the decision circuit will then sums linearly the sensory inputs from the three sensory 

modules and the inhibitory one, to give an all-or-none output that represents the decision to Go or not 

to Go for that particular stimulus, where S+ represents the rewarded stimulus and S- is the non-

rewarded one (Figure 1-25).  
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Figure 1-25. Sketch of the multiplicative reinforcement model for 

associative learning. 
This model is composed of three different sensory units projecting towards a decision unit 
and an inhibitory unit. The decision unit linearly sums the sensory inputs together with the 
feed-forward inhibition from the inhibitory unit to respond in all-or-none fashion. Synaptic 
weights are updated through a learning rule trial-wise according to stimulus, response and 
presence or not of a reward. Adapted from Bathellier and colleagues (2003). 

 

A correct response then is rewarded and the model learns by updating the weights in a trial-by-trial base 

using the multiplicative rule, weighting more positive expectation errors. This means that anunpredicted 

reward (at beginning of the conditioning)will produce a stronger effect than an unpredicted omission, 

making the model able to account for the differential learning speeds of CS+ and CS- and further reversal 

learning for individual learning curves (Figure 1-26A) as also for the average population (Figure 1-26B).  

Altogether, this model is able to explain the pre-resolution period and account for inter-individual 

variability during normal and reversal learning, by exposing the unconsidered intrinsic variability of initial 

connections between the representation of the relevant stimuli and the action at the beginning of the 

training (Bathellier et al., 2013). Importantly this model also account for important biological processes 

generally ignored by early theoreticians of associative learning, as the asymmetric response to rewards 

and absence of expected rewards which appears in the activity of dopaminergic neurons of the basal 

ganglia encoding prediction-error rewards (Schultz et al., 1997; Schultz, 2007; Cohen et al., 2012).  
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Figure 1-26. Individual and averaged learning curves for an 

associative learning task in mice. 
(A) Behavioral data and fit obtained from single animals learning curves discriminating two 
different complex sounds. (B) Behavioral averaged population learning curves and fit from 
the reinforcement learning model. Adapted from Bathellier and colleagues (2013). 

1.3.8. Neuronal basis of associative learning 

Associative learning, as previously described, is based on the unpredictability of rewarded outcomes. In 

this way, associative learning models as well as connectionist and adaptive network models are based on 

this assumption that have found a physiological correlate only at the end of the 20th century (Schultz et 

al., 1997; Schultz and Dickinson, 2000). The search for biological underpins of associative learning 

theories converged in a neurotransmitter called Dopamine (DA), historically associated with motor 

functions from early observations of Parkinsonian patients (Burns et al., 1983), nowadays it has been 

proven its role as a key element in the acquisition of predictable value and motivational importance to 

otherwise neutral stimulus and reward-seeking behavior (Schultz and Dickinson, 2000). DA is produced 

by midbrain neurons in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc), 

from where they project to different regions of the brain in three different streams: nigrostriatal system, 

A 

B 

Mouse 1                                   Mouse 2 
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mesolimbic system and mesocortical system. Damage of specific fibers in the nigrostriatal system can 

alter feeding and drinking behaviors, whereas damage in the mesolimbic system can produce a several 

problems in locomotion and reward-seeking behavior (Schultz, 1998). In several species, including 

humans, it has been shown that activity of midbrain DA neurons reflects a prediction-error signal 

(Schultz et al., 1997). Dopaminergic neurons increase their firing rate when an unpredictedreward is 

received, which peak is largely modulated by continuous encounters until there is not, when the reward 

is fully predictable (Patriarchi et al., 2018) (Figure 1-27A). Furthermore, as animals use external cues to 

learn and predict the probability of rewarded events, when an association occurs due to several pairings 

as in a classical conditioning paradigm, DA neurons now start to respond progressively to the apparition 

of the cue instead of the delivery of the reward, and more interestingly is that their activity is largely 

suppressed when a cue-predicted reward is omitted (Figure 1-27B). 

 

 
Figure 1-27. Dopamine dynamics of DA neurons during a conditioning task. 

(A) Averaged fluorescence responses of a genetically encoded dopamine sensor, expressed in 
DA neurons of the NAc, during the expected (red) and unexpected (black) delivered of 
reward in four mice trained in a classic appetitive Pavlovian conditioning 
schedule.Conditioning consisted of the presence of a light and sound (CS) paired with a drop 
of water with sucrose (US). (B) Same as A, when the same animals were already conditioned 
and they expect the reward (red) and when in some random trials, the expected reward was 
omitted (brown). Adapted from Patriarchi and colleagues (2018). 

 

These observations indicate that the activity DA neurons serve as a signal of any prediction-error 

mismatch. In general, presence/absence of unexpected/expected reward respectively, will generate an 

error in between the predicted outcome and the actual outcome, leading to the acquisition or 

B A 
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modification of the behavior until the outcome can be again reliably anticipated. These observations had 

a profound significance for the associative learning theory as it could probe that many years of models 

and predictions could finally have a biological traceable counterpart observable in many different species 

including humans.  
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1.4. To record, decode and manipulate neuronal 

representations 

1.4.1. Linking two disciplines 

Associative learning has become the main experimental framework to study the link between a certain 

region and sensory perception. Different learning paradigms such as go/no discrimination or two 

alternative forced choice tasks (2AFC) are the most used entry point to unravel sensory perception and 

learning induced chances in sensory as well as other brain circuits. With the development of new 

technologies that can record and manipulate cortical circuits during behavior, the field has moved fast in 

elucidating causal functions for certain brain circuits in perception and their functional limits (Houweling 

and Brecht, 2008; Salzman et al., 1990; Yang et al., 2008; Yang and Zador, 2012). These techniques have 

led to definitions in which neuronal populations can be instructive, permissive or without any perceptual 

role for a certain behavior. In this endeavor, the experiments in macaques, where the role of the middle 

temporal area (MT) has been studied in great detail in the visual cortex for motion perception, have a 

crucial importance. As it was described in previous chapters, some stimulus features are encoded by 

cortical neurons in a columnar manner, such as the MT area of the macaque’s brain which is highly 

organized regarding direction selectivity flow and its firing rate has a statistical relationship with animal’s 

choice in visual motion discrimination (Newsome et al., 1989; Britten et al., 1996). Lesions in this area 

generate a total ‘blindness’ for the judgment of motion direction with little effect on other perceptual 

judgments (Newsome et al., 1986) proving the necessary role of MT neurons in motion perception. On 

the other hand, direct electrical stimulation in a particular MT direction selectivity column, activates 

neurons coding for a specific motion direction which can have a profound repercussion in perceptual 

decisions of motion direction in behaving monkeys (Salzman et al., 1990; Salzman et al., 1992; Salzman 

and Newsome, 1994). Following these fundamental observations, the direct manipulation of neuronal 

activity in the cortex is the most powerful approach to study an area’s role in motor or sensory 

perception but first is necessary to know if the information in a certain brain region can have enough 

predictive power of the perceptual stimulus sensation to then manipulate it specifically. 
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The study of sensory neuronal representations and their decoding to elicit behavioral choicesare two 

research directionsthat have come together only recently (Figure 1-28). A small number of recent articles 

have shown that it is possible to predict behavioral discriminations from neural representations (Panzeri 

et al., 2017). As described in a previous section, odors are represented in the olfactory bulb as single 

odorant receptors project to only to one glomerulus. By studying the similarity of odors representations 

in the glomerular layer of the olfactory bulb inrats, large-scale odors representations that failed to be 

significantly different also failed to be discriminable for the subjects in a behavioral task (Linster et al., 

2001). In early stations of the auditory system, such as the inferior colliculus, it is possible to decode the 

identity of several complex natural sounds using the activity of only a few neurons (Lyzwa et al., 2015). 

Going further, neural representations of complex sounds in AC can also be used to predict the identity of 

the sounds (Carruthers et al., 2015) and even more importantly, behavioral discrimination and 

generalization in  ferrets (Town et al., 2018), rats (Centanni et al., 2014; Engineer et al., 2008; Engineer et 

al., 2013; Orduña et al., 2005; Shetake et al., 2011) and mice (Bathellier et al., 2012; Runyan et al., 2017). 

It is known that certain stimulus features are encoded in local ensembles of cortical neurons and from 

those experiments, we know that behavioral choices can be predicted accurately from coarse neuronal 

activity in primary sensory areas but it is still unclear if theses representations are enough to trigger 

sensory perception or if they are enough to generate a sensory based behavioral decision.  

 

 
Figure 1-28. Intersection between sensory coding and behavioral readouts 

Features encoded in neuronal population activity (sensory information) can be used to 
readout the perceptual behavioral choices of animals engaged in a sensory discrimination 
task. Going further, from knowing the particular features encoded in the circuit, it can be 
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possible to manipulate the information and bias the perceptual decision of the subject. 
Adapted from Panzeri and colleagues (2017). 

1.4.2. Role of auditory cortex in the discriminations of sounds 

The link between certain brain regions and the control of certain specificlearnedbehaviors is doubtless. 

For example, lesions in the Broca or Wernicke’s areas will give rise to non-overlapping deficits in speech 

(Damasio and Geschwind, 1984). On the contrary, many others brain areas have no clear or a not yet 

defined role in motor control or sensory perception. The role of the AC for sound perception and 

discrimination has been largely debated due to several contradictory observations. An extensive amount 

of work has been done with the aim to test the necessity of AC in different species under different 

contexts, such as for simple frequency discriminations, sound localization, pattern recognition, fear 

conditioning, detections of changes in continuous sound sequences, and others simple and more 

complicated features (Warren, 2005). The first ablation experiments of the AC date from the end of the 

19th century where lesions in monkeys and dogs had profound behavioral deficits for sound detection 

and frequency discrimination (Winer, 2011). Years later, similar kinds of experiments in the cat, showed 

some contradictory results (e.g.Butler et al., 1957). In much better controlled AC lesions experiments, it 

was observed that intensity thresholds were unchanged after surgery (Raab and Ades, 1946), and AC was 

not necessary for the detection of frequency changes (Butler et al., 1957) and pure tone frequency 

discrimination (Thompson, 1959; Goldberg and Neff, 1961; Diamond et al., 1962; Dewson, 1964) as long 

as the inferior colliculus remained intact (Neff et al., 1975). The discrepancies with earlier experiments 

were attributed at that time, to the possibility that not all species had the same cortical dependence, 

possible differences in the methodologies applied and/or in the real extent of the cortical lesions, as 

similar results were obtained some years later (Abeles et al., 1975). It is Important to note are the 

experiments of Meyer and Woolsey in 1952, where they trained cats to discriminate between two trains 

of pulses that differed only in the frequency of the last pulse. Using this protocol, animals with large 

bilateral ablations of AC responded similarly to both sounds, result that was understood as that animals 

without the AC, had lost the ability to inhibit their response to non-target or neutral stimulus (Meyer and 

Woolsey, 1952; Thompson, 1960). Similar observations have been made in more complex sound 

discriminations where the discrimination is also impaired due to high rates of false alarms, as for 

example discriminations of auditory patterns in cats (Butler et al., 1957) and the direction of frequency 
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modulated sounds observed also in cats (Kelly and Whitfield, 1971) and gerbils (Wetzel et al., 1998; Ohl 

et al., 1999). Another interesting example of note, is the experiments in macaques where they had to 

distinguish and discriminate a group of their ‘coo’ calls (Petersen et al., 1978). In this case, bilateral and 

only left unilateral lesions resulted in small but significant deficits to discriminate between these 

complex sounds, where calls are similar to raising frequency modulated sounds at different bandwidths 

and intensities (Petersen et al., 1978; Harrington et al., 2001), demonstrating the selective nature and 

the kind of sound processing that the AC could be involvedin mammals, as the same results were 

obtained recently in rats (Kudoh et al., 2006; Rybalko et al., 2006; Cooke et al., 2007; Jaramillo and 

Zador, 2011; Porter et al., 2011).  

 

In parallel, lesion experiments have tested the role of the AC in the processing of other sound features, 

convincingly showing that proper sound localization and the association of sounds with a certain location 

in the space needed the entire auditory pathway, including the AC, for humans (Mendez and Geehan, 

1988), monkeys (Heffner, 1978; Heffner and Heffner, 1990), cats (Diamond et al., 1956; Strominger, 

1969; Jenkins and Masterton, 1982; Jenkins and Merzenich, 1984), ferrets (Kavanagh and Kelly, 1987) 

and gerbils (Smith et al., 2004). Although different results were obtained using the same paradigm in rats 

(Kelly and Glazier, 1978; Kelly, 1980), suggesting some species disparities. These important observations 

attracted a lot of attention as little was really known about the perceptual functions of the AC in rodents, 

contrary to the detailed progress in the anatomical categorization of their AC subfields(Stiebler et al., 

1997). Recent studies in this area, have used more transient inactivation protocols to test the role of AC, 

due to the failure of some lesions studies to report a clear role of AC in simple frequency discrimination 

protocols (e.g. Pai et al., 2011). Differences again could be attributed to the real lesion size (Pai et al., 

2011), post-lesion recovery (Yamasaki and Wurtz, 1991) and/or the potential brain reorganization after 

ablation (Otchy et al., 2015; Robertson and Irvine, 1989; Scharlock et al., 1963; Wakita, 1996). For 

example, Talwar and colleagues (2001), trained rats to detect and to discriminate simple pure tones after 

the application of the ϒ-aminobutyric acid (GABA)A receptor agonist, muscimol. The application of this 

compound to the surface of the AC leads to a strong cortical silencing, leaving the thalamic activity 

unaffected(Intskirveli et al., 2016). After approximately 30 minutes, rats showed a “profound but 

reversible” effect on discrimination performance (Talwar et al., 2001). Similar results were obtained 

under a similar cortical inactivation procedure for pure tone localization in space in gerbils (Smith et al., 

2004) and in a pure tone discrimination task in mice (Kuchibhotla et al., 2017), challenging previous 



General introduction 

 

 

62 

 

observations from several lesion studies also in rats, where AC was showed not to be necessary for pure 

tone discriminations (Kudoh et al., 2006, Rybalko et al., 2006).  

 

In summary, lesion experiments typically examine behavior after several days or weeks after surgery, 

observing behavioral effects linked to task complexity, animal model, biological relevance of stimuli and 

sometimes nonspecific negative consequences after surgery. These variables may have hindered the 

study of AC functions due to the ability of the mammalian brain to reorganize its functions or to the 

animals changing behavioral strategies rapidly. Acute manipulations have contested well-known previous 

beliefs challenging the field to revisit and reconsider the role of AC in perceptual decisions.  

1.4.3. Acute manipulations of cortical representations 

Local ensembles of neurons transfer information in form of spikes. It often is considered that there are 

two possible strategies to ‘encode’ the information. A “sparse code” is related to the spiking of small sets 

of silent but highly selective neurons, converting the information into a precise temporal sequence of 

action potentials (temporal-based). The opposite can be thought as well, where a “dense code” can 

decipher the information as the variation of a high firing rate of active but not really selective neurons, 

transforming in this case the information into a number of action potentials fired in a certain period of 

time (rate-based). A large list of publications can account and support with evidence that both types of 

strategies are implemented in the brain, as temporal-base transfer can be found in phase locked systems 

where spikes are correlated to stimulus onset or certain phase of brain oscillations (e.g. Cardin et al., 

2009; Colgin et al., 2009; Kim et al., 2016 ; Kühn and Helias, 2017) and rate-base transfer in the 

correlation between firing rate and stimulus intensity in several sensory systems (e.g. Shadlen and 

Newsome, 1994; Harvey et al., 2013). Other more recent theories, have also noticed that the enormous 

spiking variability in the brain, often considered as ‘noise’, can also encode information in the interspike-

interval between 2 subsequent spikes, but more support is needed to validate these kind of approaches 

(Li et al., 2018). Although those concepts are useful to summarize in some way the vast amount of 

observable findings, it can miss the real strategy that the brain uses to decode the incoming information. 

The rate-based coding accuracy to predict a behavioral output is in some way constrained to the 

relationship between the external stimuli and the timescale of the observation.For example, classifiers 

discriminate and predict better behavioral discriminations of speech sounds when they are trained with 
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1 ms time bins of single and multiunit neuronal recordings in AI of rats, than when they are trained with 

40 ms time bins averages (Engineer et al., 2008). Similar observations were made before in ferrets but 

indicating a time scale from 10 to 50 ms to ensure an efficient decoding (Schnupp et al., 2006). Spikes 

trains evolve in a continuous dynamical space where setting a certain arbitrary time window for one 

neuron, or a population will reduce the complexity of a spike-based or temporal-based code into a rate-

based code (Brette, 2015; Panzeri et al., 2017). Following this, it can be a more precise question, if from a 

condensed point of view (rate information) of a highly variable and stochastic system (temporal 

information) it can be inferred certain causality in the system with the unfortunate loss of precise 

stimulus information (Reich et al., 2001). Timing of single spikes can contain important information 

about an external stimulus but maybe a rate-based system can be more efficiently used to generate 

behavioral choices due to the high redundancy of spike information from single neurons in the brain 

(Salzman and Newsome, 1994; O’Connor et al., 2010;O’Connor et al., 2013; Peng et al., 2015). 

Optogenetics 

The ability to manipulate individual components or spikes in the brain was envisioned a long time ago by 

Francis Crick (Crick, 1979). After several decades of efforts, it is possible and it is called ‘optogenetics’. 

This term comprises any specific genetic targeting of cells or proteins combined with optical technology 

for either observing or controlling the target within intact, living circuits (Deisseroth et al., 2006). 

Specifically in neuroscience, optogenetics is used to control the firing rate of specific neuronal 

populations by the expression of a natural light-sensitive ion-transporting membrane protein (Fenno et 

al., 2011). Channelrhodopsins (ChRs), first characterized ex vivo (Nagel et al., 2002) and later improved 

and introduced in mammalian cells (Boyden et al., 2005), are the family of the most commonly used 

light-sensitive channels. These channels originally found in the algae Chlamydomonas reinhardtii are 

fundamental for their phototaxis (Sineshchekov et al., 2002), as in presence of blue light (∼470 nm) they 

allow the entry of sodium (Na+) into the cells, leading to excitatory currents and the generation of action 

potentials (Figure 1-29). Several rounds chimeragenesis and mutagenesis have increased light sensitivity 

and millisecond time scale kinetics of these channels, such as channelrhodopsin-2 with H134R mutation 

(ChR2/H134R) (Nagel et al., 2005) and the E123T mutation (ChETA) (Gunaydin et al., 2010). Subsequent 

modifications supported by modern bioinformatics have led to red-shifted versions as VChR1 (Lin et al., 

2013). In parallel, the search of other types of light-sensitivity channels resulted in the discovery of light-
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sensitive chloride (Cl-) pumps (eNpHR) to hyperpolarize the cell membrane and achieve a specific 

neuronal silencing in the presence of yellow light (∼590 nm) (Gradinaru et al., 2008) (Figure 1-29). The 

optogenetic toolbox increases rapidly and several options are now available with different origins, kinetic 

properties, wavelength sensitivity andionic conductance (Fenno et al., 2011; Wietek and Prigge, 2016). In 

the last years, optogenetic manipulations combined with transgenic animal lines or viral delivery 

systems, have overtaken the field and now constitute the standard protocol to modulate the firing rate 

of specific population of neurons (Deisseroth, 2015; Kim et al., 2017). From the fascinating experiments 

were it was possible to control motor neuron and mechanosensory neuron’s activity in transgenic intact 

live nematodes (Caenorhabditis elegans) with a direct testable behavioral readout, a new paradigm has 

been settled in neuroscience to study the causal role of neuronal activity in ongoing behavior (Nagel et 

al., 2005; Zhang et al., 2007). 

 

 
Figure 1-29. Different opsins allow the bidirectional control of neuronal 

activity. 
(A) Channelrhodopsin (ChR) in presence of blue light allow the entry of sodium ions, at the 
other side, halorhodopsins in presence of yellow light allow the entry of chloride anions, 
generating depolarization and hyperpolarization in neuronal membranes, respectively. 
Adapted from Fenno and colleagues (2011). (B) Cell-attached and whole-cell recordings of 
cell-cultured neurons expressing an excitatory (ChR2) and an inhibitory (NpHR) opsin allowing 
the bidirectional control of neuronal activity. Adapted from (Zhang et al., 2007). 

 

The delivery of ChRs into cells can be done in several ways, most commonly via viral expression systems 

and/or transgenesis in order to create a stable expression in a mouse line (Arenkiel et al., 2007; Madisen 

et al., 2012). Adeno-associated (AAV) and lenti virus expression systems are versatile and allow a robust 

expression of the protein of interest in a specific animal cell type (Kim et al., 2017) or subcellular 
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compartment (Rost et al., 2017) via well-known specific promoters (Zhang et al., 2010). Transgenic 

mouse lines permit the direct expression of any gene in a more stable using the Cre-LoxP system (Sjulson 

et al., 2016).  Together, these biotechnological tools allowed for the first time a direct testing of causal 

hypotheses concerning neuronal activity in specific neuronal populations and their impact on perceptual 

systems. 

Photo-inhibition in genetically identified interneurons 

Silencing the activity of a specific cell population in the cortex (Figure 1-30) can help to elucidate in detail 

its functions (Kato et al., 2015; Letzkus et al., 2015) or the role of an entire particular area of the brain 

(Hong et al., 2018), in a more acute manner than any pharmacological silencing (e.g. Hikosaka and 

Wurtz, 1985; Smith et al., 2004), cooling (Long and Fee, 2008) and beyond doubt, lesion experiments 

(see page 60: Role of auditory cortex in the discriminations of sounds). The expression of ChR2 in 

parvalbumin-expressing (PV+) interneurons has resulted in a good strategy to intersect the real 

contribution of a specific cortical area during ongoing behavior without perturbing other cognitive 

neither motor functions. This methodology has allowed testing and probing the necessity of V1 in mice 

to perform a threshold detection task for either contrast or orientation stimuli (Glickfeld et al., 2013), as 

also virtual navigation in a visually guided behavioral task designed to study learning dependent changes 

in neuronal representations (Poort et al., 2015). Also recently and more dramatically, the expression of 

an inhibitory opsin (Halo) directly into excitatory neurons helped to elucidate the dispensable role of S1 

in mice for the acquisition and execution of a single whisker detection task (Hong et al., 2018), contrary 

to previous results using similar techniques (Sachidhanandam et al., 2013; Guo et al., 2014). 

 



General introduction 

 

 

66 

 

 
Figure 1-30. Focal silencing strategy in awake animals. 

The expression of an excitatory opsin (ChR2) in genetically identified PV-interneurons can 
lead to the almost entire inactivation of anextensive cortical area (left). On top photo 
stimulation regime and in bottom mean peristimulus time histogram (PSTH) of 1 ms time bin 
for fast spiking interneurons and pyramidal cells classified in terms of their response to the 
optogenetic stimulation. Adapted from Guo and colleagues (2014). 
 

Directed photo-activations 

Neuronal activations in the cortex using optogenetics has proven to be incredibly specific and drive 

behavior with millisecond precision. Animals can be trained to report an optogenetics stimulations 

directly in the cortex(Choi et al., 2011; Huber et al., 2008; Nomura et al., 2015; Musall et al., 2014) as it 

was shown that mice can report only a few spikes triggered by ChR2 in a small subset of superficial 

cortical layers (Huber et al., 2008) (Figure 1-31). Another similar experiment showed that different small 

ensembles of neurons in the piriform cortex of mice can be used to train distinct behaviors in the first 

type of optogenetic-induced discrimination protocol (Choi et al., 2011). Optogenetics in this way can be 

combined with behavioral experiments and this was pushed forward by O’ Connor and colleagues in 

2013. In their experiment combining behavior, electrophysiology, whisker detection and genetic 

targeting to deliver ChR2 specifically into layer IV neurons of the mouse primary somatosensory cortex, 

they showed that mice during behavior, trained to detect with a single whisker the position of a pole, 

can confound precisely triggered artificial activity in the barrel cortex (‘virtual touch’) with the activity 

elicited by the real touch of the whisker with the pole (O’Connor et al., 2013). A similar experiment 

showed that in the primary gustatory cortex of mice, where taste neuronal ensembles are non-

overlapping and well organized, ChR2-based specific activations elicited behavioral responses as 
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expected in a mouse trained to discriminate between two different flavors, ‘bitter’ or ‘sweet’ (Peng et 

al., 2015).  

 
Figure 1-31. Cortical activation of superficial layers in S1 of 

freely moving mice and cell quantification. 
Schematic of the photo-stimulation setup to optogenetically activate superficial pyramidal 
cells in S1 in in utero electroporated freely moving mice (left) and performance of photo-
stimulation detection in function of estimated number of activated cells for different number 
of light pulses at 20 Hz; five light pulses (blue lines), two light pulses (green lines) and one 
single light pulse (red). Thick lines mean performance across five animals and dotted lines 
mean of individual animals across five sessions of 200 to 1000 trials (right). Adapted from 
Huber and colleagues (2008).    

 

In the AC, although thereare well-organized tonotopic fields, their functional and causal implications for 

sound processing remain to be tested. Only few reports have shown targeted activations of AC based on 

the frequency properties of the neurons. Znamenskiy and Zador (2013) performed this type of 

manipulations where they trained rats to discriminate low and high frequency of a ‘cloud of pure tones’ 

in a two-alternative forced choice task (Figure 1-32A). During the task, short non-overlapping pure tones 

where presented and the rats had to judge the ‘average’ frequency of the complex sound and choose 

between the left or right port depending if it was low (5 – 10 kHz) or high (20 – 40 kHz) frequency, 

respectively (Figure 1-32A). By measuring psychometric curves, they tested if an optogenetic 

manipulation of an inserted probe at different areas of the tonotopic map had an effect on pitch 

perception and if it could bias the response of the subjects towards the main tonotopic frequency 

stimulated. In their hands, using a broad expression of ChR2 in the AC by injections of an AAV virus, they 
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indeed could perturb the task but the direction of the bias was not correlated or predicted by the tuning 

of the cortical area activated (Figure 1-32B). Going further, they succeeded and managed to bias 

correctly the choice of the animals but by only targeting corticostriatal neurons using a combination of a 

CRE dependent retrograde virus (HSV-1) in the striatum and injections of Cre-dependent ChR2 with an 

AAV virus in the AC. In this way the expression of ChR2 was mainly in layer V neurons of the AC 

projecting to striatum and their activation during the task could bias the choice towards the main 

frequency of the stimulated region (Figure 1-32C).  

 

 
Figure 1-32. 2AFC task in rats and frequency detection bias. 

(A) Diagram of the behavioral task. Rats initiate the trial by a nose poke in the middle area. 
After hearing the cloud of tones they had to judge the average frequency and indicate by 
moving towards the correct side in order to collect a water reward. (B) Schema of the cloud 
of tones used in the task (top) and perturbation experiment in rats widely expressing ChR2 in 
AC (bottom). Bias did not correspond with the preferred frequency of neurons recorded and 
stimulated using an tetrode combined with an optic fiber in freely moving rats performing 
the task. (C) Retrograde targeting strategy of corticostriatal projecting neurons in the AC 
using a combination of HSV-Cre and AAV-FLEX-ChR2 (top) and bias experiment in 2 rats (33 
penetration sites) showed a biasing predicted by the frequency of the stimulated 
corticostriatal projecting neurons. Adapted from (Znamenskiy and Zador (2013). 

 
Directed photo-activations, but now in parvalbumin-positive (PV+) interneurons, have shown to also 

modify the perceptual frequency detected in mice. More in detail, using two types of conditioned 

behaviors, the expression and activation of ChR2 or Arch in genetically identified PV+ interneurons 

A B C 
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generated opposite changes in frequency discrimination acuity and specificity of auditory conditioning 

(Aizenberg et al., 2015). These experiments have probed the power of optogenetic perturbations, both 

directly into excitatory or indirectly into inhibitory interneurons, to study the contribution of AC in 

associative learning and frequency discrimination behaviors in mice.  

 

Also importantly, is to mention a more recent experiment (Tsunada et al., 2016),using a similar 

perceptual decision task but now in monkeys (Figure 1-33A) butwhere instead of using an optogenetic 

stimulation, they used classic micro-stimulations protocols. Tsunada and colleagues (2016) observed 

similar results to the work ofZnamenskiy and Zador (2013). In they work, micro-stimulationsin certain 

locations of one of the main targets of AI, the belt region AL (Figure 1-33B), can actually bias the 

perceptual pitch-judged decision accordingto the tonotopic region and therefore the preferred 

frequency of neurons in the stimulated cortical area of monkeys (Figure 1-33C).  

 

 
Figure 1-33. Perceptual decision bias in monkeys by micro-stimulation in AL. 

A 

B 

C 
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(A) Stimuli and perceptual task in monkeys. A temporal sequence of tone bursts with 
different coherence was presented at every trial where monkeys had to judge the frequency 
and move a joystick depending if it was high frequency towards the left and low frequency 
towards the right. (B) Micro-stimulations in AL area of the belt of AC but not AI could bias 
perceptual decisions. (C) Single site micro-stimulation effect on behavioral performance and 
frequency judge plotted as psychrometric functions. Red and blue dots correspond to data 
with and without perturbation observing a shift towards the frequency of the tonotopic area 
stimulated in AL for two monkeys (high frequency on top and low frequency on bottom). 
Adapted from Tsunada and colleagues (2016). 

 

Several questions remained to be answered regarding the direct role of primary AC processing in the 

perception of sounds and sound-guided behavioral decisions, such as its role in frequency 

decomposition, frequency resolution and temporal integration for simple and more complex sound 

discriminations.   
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2. Results:  Section I 

In most animals, the auditory system allows the detection, identification and classification of sounds and 

their precise sources. In conjunction, these capabilities give animals the possibility to detect biologically 

significant sounds, orient with good precision towards the source and quickly respond with the proper 

behavioral output. Importantly, in humans, hearing loss and sensitivity deficits are the third-most 

common condition in older adults that, in addition to the obvious disabilities, have important 

consequences for social interactions and thus life quality, often leading to more profound emotional 

deficits than the loss of any other sensory modality (Leverton, 2019; Li et al., 2014). Several approaches 

have been used to restore normal hearing thresholds in deaf people, where electric cochlear implants 

are the most successful between all the different existing neuroprostheses (Jeschke and Moser, 2015). 

However, cochlear implant users struggle with speech comprehension in noisy environments as well as 

for the appreciation of music due to abnormal pitch perception (Kohlberg et al., 2014; Zeng et al., 2014). 

Trauma and damage directly to the auditory nerve, together with the existence of several hearing 

anomalies, which are based on transduction problems from lower auditory centers, requires us to seek 

alternative strategies to improve pitch and general sound perception in hearing impaired humans. While 

the cochlea is certainly required for normal auditory perception, little is known about the causal 

relationship between primary auditory cortical computations and perception. To further explore this 

relationship, in this work we used different neuronal mapping approaches, combined with 

inactivationand targeted optogeneticperturbations of the AC during behavior to show that auditory 

cortex is not always involved in auditory discriminations. On the other hand, when it is required for 

solving a more complex task, even coarse targeted perturbations at this stage can bias an animal’s 

behavioral choices. This proved AC causal involvement in sensory-guided behavioral discriminations 

depending on the strategy and learning rules used to solve the task. This result lays the groundwork for 

future research aiming at sensory rehabilitation based on direct auditory cortical stimulation, pointing 

towards the usefulness of strategies to eventually harness the role of parallel pathways while auditory 

cortical perception is manipulated.   
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2.1. Abstract 

Driving perception by direct activation of neural ensembles in cortex is a necessary step for achieving a 

causal understanding of the perceptual code and developing central sensory rehabilitation methods. 

Here, using optogenetic manipulations during an auditory discrimination task in mice, we show that 

auditory cortex can be short-circuited by coarser pathways for simple sound identification. Yet, when the 

sensory decision becomes more complex, involving temporal integration of information, auditory cortex 

activity is required for sound discrimination and targeted activation of specific cortical ensembles 

changes perceptual decisions as predicted by our readout of the cortical code. Hence, auditory cortex 

representations contribute to sound discriminations by refining decisions from parallel routes. 
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2.2. Introduction 

The role of primary sensory cortical areas in perceptual decisions is complex. Primary sensory areas are 

often viewed as necessary links between peripheral sensory information and decision centers, but 

multiple observations challenge this simplified model. For example, human subjects with primary visual 

cortex lesions display residual visual abilities, a phenomenon termed ‘blindsight’ (Sanders et al., 1974; 

Schmid et al., 2010). In animals, classical associative conditioning (Bruce, 2001; LeDoux et al., 1984) or 

some operant behaviors (Hong et al., 2018) based on sensory stimuli can be performed in the absence of 

primary sensory cortex. However, several studies also report sensory-based behaviors that are abolished 

or severely impaired by primary sensory cortex silencing (Letzkus et al., 2011; O’Connor et al., 2010; 

Poort et al., 2015; Sachidhanandam et al., 2013). In addition, cortical stimulation experiments show that 

primary cortex for all sensory modalities can perturb perceptual decisions or initiate sensory-driven 

behaviors, suggesting a role in perception (Choi et al., 2011; Houweling and Brecht, 2008; Huber et al., 

2008; Musall et al., 2014; O’Connor et al., 2013; Peng et al., 2015; Salzman et al., 1990; Yang et al., 2008; 

Znamenskiy and Zador, 2013). This apparent contradiction is particularly evident in hearing, for which 

involvement of auditory cortex (AC) is controversial even for discrimination of two distinct sounds. 

Indeed, lesions or reversible silencing of AC lead to deficits or have little effect depending on task 

conditions, silencing methods and animal models (Gimenez et al., 2015; Jaramillo and Zador, 2011; 

Kuchibhotla et al., 2017; Ohl et al., 1999; Pai et al., 2011; Rybalko et al., 2006; Talwar and Gerstein, 

2001). Thus, AC does not seem to be always necessary for sound discrimination.   

 

Moreover, requirement of AC in particular task settings points towards two alternative mechanistic 

implications. One alternative is that AC requirement reflects a permissive role for the task (Otchy et al., 

2015), for example by providing some global gating signals to other areas, which is not informative about 

the decision to be taken, but without which the behavioral decision process is impaired. The second 

alternative 59 is that AC actually provides for each stimulus distinct pieces of information which 

contribute to drive the discriminative choices. Optogenetic manipulations of AC activity can modulate 

auditory discrimination performance (Aizenberg et al., 2015), which could be both explained by a 

permissive or a driving role of AC in the task. Targeted manipulation of AC outputs in the striatum can 

bias sound frequency discrimination towards the sound frequency corresponding to the preferred 
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frequency of the manipulated neurons (Znamenskiy and Zador, 2013). This indicates that AC output can 

be sufficient to drive discrimination, but as necessity was not shown in this task, it remains possible that 

this manipulation does not reflect the natural drive occurring in the unperturbed behavior. In support of 

this, targeted manipulation of generic AC neurons failed to drive consistent biases in this task 

(Znamenskiy and Zador, 2013). Thus, necessity and sufficiency of precise AC activity patterns in a sound 

discrimination behavior remain to be established. 

 

Here we combine optogenetic silencing and patterned activation techniques in head-fixed mice to show 

that AC is not required in a simple frequency discrimination task but is necessary for a difficult 

discrimination involving more complex sounds with frequency overlaps. We also show based on a 

discrimination of distinct optogenetically driven AC activity patterns that specific AC information is 

sufficient for driving a discrimination, and decisions in this case also take longer than choices made in the 

simple task. Last, we show that focal stimulation of AC in the mouse is able to modify the animal’s choice 

in the difficult task but not in the simple one. We also show that the AC region most sensitive to focal 

stimulation contains AC encodes auditory features used by the mouse to discriminate the two trained 

sounds. These results indicate that AC provides necessary and sufficient information to drive decisions in 

difficult sound discriminations, while other pathways bypass it in simple discriminations. 

2.3. Results 

2.3.1. Requirement of auditory cortex depends on sound discrimination 

complexity. 

Lesion studies in rats and gerbils (Ohl et al., 1999; Rybalko et al., 2006), suggest that the involvement of 

AC in sound discrimination could be related to the sound features that have to be discriminated, and 

thus potentially to the difficulty of the discrimination. To test this idea in mice, we trained one group of 

head-fixed mice to discriminate only frequency features (a 4 kHz against a 16 kHz pure tone, PTvsPT task) 

while a second group had to integrate frequency variations over time to discriminate a linearly rising 

frequency modulated sound (4-12 kHz) against a pure tone (4 kHz, FMvsPT task), (Figure 2-1A). While the 

PTvsPT task was rapidly learned, the FMvsPT task was more challenging as it required much longer 
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training (67 ± 13 trials, n = 30 mice for the PTvsPT, against 415 ± 53 trials, n = 29 mice, for FMvsPT task to 

reach 80% performance; Wilcoxon rank-sum test, p = 6.8×10-8,Figure 2-1B-C). 

 

 
 

Figure 2-1. Discriminating a FMs from a PT is harderthan two PTs. 
(A) Sketch of the head-fixed Go/NoGodiscrimination task. (B) Learning curves for all mice 
performing each task. (C) Number of trials needed to reach 80% discrimination performance 
for PTvsPT and FMvsPT discrimination task (PTvsPT, n = 30. FMvsPT, n = 29. Wilcoxon rank- 
sum test, P < 0.001). Open circlescorrespond to single mice. Bar plots show the mean and 
SEM. 

 

 We thus wondered whether this difference in task difficulty could relate to differential involvement of 

AC. To investigate, we decided to silence AC by activating parvalbumin-positive interneurons (PV) 

expressing channelrhodopsin (hChR2-tdTomato). Electrophysiological calibration in awake, passive mice 

(Figure 2-2A and Figure 2-8) showed that this manipulation strongly disrupted cortical activity (Figure 

2-2B), decreasing population firing rates to target sounds by ~70%, with about 50% of putative PV-

negative neurons displaying a complete suppression of their response (Figure 2-2C and Figure 2-8). To 

evaluate the effect of PV-activation on task performance, we trained a linear Support Vector Machine 

(SVM) classifier to discriminate the two target sounds based on the population activity of putative PV-

negative neurons (n=125, in 2 mice). We then measured the performance of the classifier with AC 
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responses to the same sounds during PV-activation. For the pure tones, the SVM performance dropped 

from almost perfect classification to less than 70% and for the FM sounds, SVM performance dropped to 

chance levels (Figure 2-2D). 

 

When bilaterally applying this PV-activation protocol through cranial windows in behaving mice, we 

indeed observed a drop of performance down to chance level (50%) in the FMvsPTtask, while mice 

lacking Chr2 expression performed normally (Figure 2-2E). However, the samemanipulation during the 

PTvsPT task yielded less than a 10% performance drop (Figure 2-2E).Because the same inactivation 

strategy applied to the inferior colliculus, an earlier stageof the auditory system, fully abolished PTvsPT 

performance (Figure 2-2F), we suspected that the continued performance of the PTvsPT task after AC 

perturbation was not due to incompleteness of the silencing (Figure 2-2C andFigure 2-8), but rather to 

the absence of AC involvement. We thusperformed bilateral lesions of the entire AC and observed no 

impact on behavioral performance for the PTvsPT task, even on the day following lesion (Figure 2-2G 

andFigure 2-9). In summary,AC is dispensable for a simple pure tone discrimination task while it is 

necessary for the more difficult FMvsPT task. 

2.3.2. Information from auditory cortex can drive slow discriminative choices 

Necessity alone does not prove that AC activity patterns causally drive decisions in the FMvsPT task 

(Hong et al., 2018; Otchy et al., 2015). Seeking to establish a proof of sufficiency for AC activity in this 

task, we first tested if two distinct activity patterns in AC can provide enough information to drive a 

discrimination task, as so far, cortical stimulation studies haveonly demonstrated detection of a single 

cortical stimulation (Houweling and Brecht, 2008; Huber et al., 2008; Musall et al., 2014; O’Connor et al., 

2013; Peng et al., 2015; Salzman et al., 1990; Znamenskiy and Zador, 2013). To this end, we used a micro-

mirror device(Dhawale et al., 2010;Zhu et al., 2012) to apply two-dimensional light patterns onto the AC 

surface through a cranial window in Emx1-Cre x Ai27 mice expressing channelrhodopsin in pyramidal 

cells (Figure 2-3A). 
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Figure 2-2. Cortical requirement for sound discrimination depends on 

discrimination complexity. 
(A) Sketch of the optogenetic inactivation strategy through a cranial window covering the 
primary and secondary auditory cortex. For calibration, silicon probes were inserted beneath 
the window. (B) Sound response PSTH of a sample PV-negative cell with and without light-
driven PV-neuron activation. (C) Mean population response to sounds with and without 
optogenetic activation of parvalbumin cells (15 ± 1.4 Hz vs 4.7 ± 0.9 Hz; n = 125, p = 6.2×10-
18, Wilcoxon rank-sum test) and distribution of sound response reduction during light-ON 
trials for putative PV-negative neurons. (D) S+ versus S- discrimination performance for a 
linear SVM classifier trained on a sample of normal population responses (5 repetitions) and 
tested on either normal population responses or on population responses recorded during 
optogenetic inactivation (5 independent repetitions) (n=125 cells, from 2 mice).(E) 
Discrimination performance without (black) and with (blue) optogenetic inactivation of AC 
during PTvsPT (left, 91 ± 2.4% vs 82 ± 2%, n = 6, 574 p =0.025, Wilcoxon rank-sum test) 
andFMvsPT (right, 83 ± 1.7% vs 52 ± 3.5%, n = 7, p =, 0.002, Wilcoxon rank-sum test) tasks in 
mice expressing ChR2 in PV interneurons. The same measurements are shown for control 
mice without ChR2 expression (dark blue). (F) Discrimination performance without (black) 
and with (blue) optogenetic inactivation of inferior colliculus during PTvsPT (left, 85 ± 2.3% vs 
54 ± 1.9%, n = 6, p = 0.004, Wilcoxon rank-sum test) and FMvsPT (right, 75 ± 2.7% vs 52 ± 
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5.6%, n = 5, p = 0.016, Wilcoxon rank-sum test) tasks. (G) Left; Example histological section 
showing the extent of bilateral AC lesions. Right; Mean discrimination performance during 
PTvsPT before and after AC lesion (97 ± 1.1% vs 87 ± 2.9%, n = 4, p = 0.043, Wilcoxon rank-
sum test) or sham surgery (93 ± 1.4% vs 91 ± 4.5%, n = 4, p = 0.8, Wilcoxon rank-sum test). 

 

We chose to trigger the two discriminated activity 133 patterns with light disks of 0.4 mm diameter at 

two distinct positions. To make sure that optogenetic patterns were qualitatively similar to sound-

evoked activity, we calibrated them in awake mice by recording isolated single units with multi-electrode 

silicon probes while targeting the light disks to many locations within the cranial window (Figure 2-3A). In 

this procedure we observed that recorded single units tended to respond only to a subset of the tested 

locations (e.g. Figure 2-3B). Pooling together the activity of all recorded neurons, we observed that 

optogenetically and sound-triggered responses had similar latencies and time courses above a 50 ms 

time scale (Figure 2-3C, note that optogenetic responses followed the 20Hz modulation of the light 

stimulus below the 50 ms time scale). Moreover, response amplitudes were similar in particular for the 

lowest light intensity tested (12mW, Figure 2-3C), reflected by a high correlation of response amplitudes 

to the preferred sound and the optogenetic pattern (Figure 2-3D). Last, the spatial extent of optogenetic 

responses (600-800 μm diameter, depending on light intensity, Figure 2-3E) matched the extent of pure 

tone responses in primary auditory cortex (e.g. Figure 2-10). 

 

 
Figure 2-3. 2D-light pattern triggers focal activity in auditory cortex. 

(A) Left, Photostimulation setup and optogenetic calibration protocol. Right, example image 
of a ~400 μm disk projected onto the cranial window. (B) Left, image of the AC cranial 
window with a sketch of the silicon probe insertion site and grid locations where light was 
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projected (light blue). Middle & right, 2D maps of an example single unit for two light 
intensities, representing the mean firing rate over 10 repetitions during photo-stimulation of 
the different locations on the grid. (C) Time course of mean firing rate (50ms time bin) in 
response to a single pure tone of 500 ms at 70 dB (black line) or in response to 12 mW.mm-2 
(left) or 32 mW.mm-2 (right) focal optogenetic stimulations (light blue line, disk diameter 400 
μm) for n = 84 single units (shadings represent SEM). Insets: magnification at stimulus onset. 
(D) Best photo-stimulation response plotted against best sound response. For 12 mW.mm-2 
the slope of the regression line was 1.01 and the correlation coefficient 0.74, p = 2.4×10-16, 
n = 84 single units recorded between 300 and 900 μm in depth. (E) Mean of Gaussian models 
that were fitted to the lateral distribution profile of photo-stimulation responses for single 
units with significant spatial modulation. Half-width diameter: 560±147 μm at 12mW.mm-2 
and 800±235 μm at 32mW.mm-2 (n = 15 single units). 

 

 Together, these measurements indicated that the chosen cortical stimulation patterns yielded response 

characteristics within the range of natural sound responses. Using the same behavioral protocol as for 

the sound discrimination tasks, we trained mice to discriminate between unilateral cortical stimulations 

(32 mW mm-2) in low versus high frequency tonotopic areas of the primary auditory field of AC (Figure 

2-4A-C). The locations of these areas with respect to blood vessel patterns were identified using intrinsic 

imaging (Figure 2-4C andFigure 2-10) as previously established (Bathellier et al., 2012; Deneux et al., 

2016; Kalatsky et al., 2005; Nelken et al., 2004). Blood vessels were then used as landmarks to robustly 

target the same regions across days. We observed that mice could learn to discriminate these artificial 

AC patterns within hundreds of trials (Figure 2-4D), showing AC activity can drive a discrimination 

task.Strikingly however, discrimination of cortical patterns was executed about four times slower than 

the cortex-independent discrimination of real pure tones (~400 ms vs ~100 ms, Figure 2-4E-F), as 

measured by determining the first time point after stimulus onset at which licking behavior significantly 

differed for S+ and S- stimuli (Figure 2-11). In addition, ~400ms reaction times were observed for the 

detection of optogenetic activation in AC, independent of pattern size and intensity (Figure 2-11), 

showing that the long decision latencies for AC-driven discrimination are not due to insufficient drive 

from the artificial cortical patterns, but rather to a rate-limiting process in the pathway downstream of 

AC that triggers the animal’s decisions. Interestingly, in the cortex-dependent auditory task (FMvsPT), 

discrimination times were also ~400 ms (Figure 2-4E-F), but contrary to direct cortical stimulation, 

discrimination was preceded by an early non-discriminative response whose onset timing was similar to 

the discriminative lick response in the PTvsPT task (Figure 2-4F, arrowhead). These observations suggest 

that sound discrimination activates two pathways. (i) An AC-independent pathway producing an early 

response which can distinguish very distinct sounds but fails to discriminate more complex differences. 
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(ii) An AC-dependent, slower pathway which can provide specific information to improve the responses 

initiated by the AC independent pathway, in case these fail to discriminate the proposed sounds. 

 

 
Figure 2-4. Mice can discriminate two artificial activity patterns in AC. 

(A) Sketch of the Go/NoGo discrimination task for optogenetic stimuli with sample trials 
showing licking signals for each stimulus. (B) Sample cranial window superimposed with 
thelocation of two optogenetic stimuli in AC. (C) Localization of the two optogenetic stimuli in 
theAC tonotopic map obtained from intrinsic imaging. Same mouse as in B. (D) Population 
learningcurve for discrimination of two optogenetic stimulations (340±105 trials to reach 
80% correctperformance, n = 5). (E) Mean decision times for the three different 
discrimination tasks (optogenetic 424 ± 58 ms, n= 5; FMvsPT, 366 ± 25 ms, n= 29; PTvsPT, 
153 ± 22 ms, n= 30mice). PTvsPT was significantly different from the two other groups (p = 
7.3×10-9 for FMvsPTand p = 1.1×10-3 for optogenetic, Wilcoxon rank-sum test) which were 
not different from eachother (p=0.2, Wilcoxon rank-sum test). (F) Mean licking traces for S+ 
and S- stimuli duringoptogenetic (top), FMvsPT (middle) and PTvsPT (bottom) discrimination. 
Arrowhead: unspecific initial licks. 
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2.3.3. Focal auditory cortex stimulations bias decisions in the complex 

discrimination 

If indeed AC provides specific information to drive the correct decision exclusively in the difficult task, 

then specific activation of neural ensembles in AC should influence behavioral decisions in the FMvsPT 

task but not in the PTvsPT task. To test this hypothesis, we trained two groups of Emx1-Cre x Ai27 to 

perform these tasks. For both groups, the non-rewarded stimulus (S-) was the 4 kHz pure tone. The 

rewarded stimulus was the 16kHz pure tone for one group and the 4-12 kHz FM sweep for the other 

group. After task acquisition, the right AC of each mouse was functionally mapped 182 using intrinsic 

imaging to determine its tonotopic organization (Figure 2-5A). Then a grid of optogenetic stimulus 

locations (400μm disks) was aligned to this map. Each location was stimulated during behavioral 

performance as occasional non-rewarded catch trials (10% occurrence) together with the non-rewarded 

4 kHz pure tone (Figure 2-5B). The purpose of this design was for the 4 kHz tone to drive the rapid non-

specific response and test if additional specific cortical drive mimics, at least partially, the perception of 

the rewarded stimulus instead of the presented S-, thereby changing the late discriminative response. To 

mimic sound-induced activation as closely as possible with our method, we used the lower of our two 

calibrated light intensities (12 mW.mm-2, Figure 2-5C-D). Unlike previous studies (O’Connor et al., 2013; 

Znamenskiy and Zador, 2013), these catch trials were not rewarded to measure a spontaneous 

interpretation of optogenetic perturbations by the brain and rule out reward-associated responses 

potentially generated by fast learning processes. Each of the 17 locations in the grid was tested across 

five catch trials and the average lick count elicited was compared to the mean expected lick count 

distribution in five regular S- trials to assess statistical significance (e.g. Figure 2-5C, p<0.05). We 

accounted for multiple testing across the 17 locations using the Benjamini-Hochberg correction. This 

conservative analysis showed that specific locations (e.g. Figure 2-5D) significantly increased lick counts 

above random fluctuations and brought the behavioral response close to the normal rewarded stimulus 

(S+) response for the FMvsPT task (Figure 2-5E). Moreover, the fraction of locations perturbing behavior 

was significantly above the false positive rate across all animals tested (Figure 2-5F). This was not the 

case for the easier PTvsPT task (Figure 2-5F), in which no stimulus location could raise the lick count close 

to S+ level (Figure 2-5E). Together, this experiment showed that targeted, physiologically realistic AC 

stimulation is sufficient to change the decisions of mice in the difficult auditory task but not in the simple 

task, corroborating the idea that AC is not involved in the former but contributes decisive information in 
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the latter. This idea was also reinforced by the observation that locations significantly 207 perturbing 

behavior clustered around a specific area of AC when mapped across all animals in the FMvsPT task but 

not in PTvsPT task (Figure 2-5G,H). This area spanned the mid-frequency range of the primary auditory 

field (AI) and to a lesser extent the central region of AC (Figure 2-5H) as defined from intrinsic imaging 

maps (Figure 2-5A and Figure 2-6A). 

 

 
Figure 2-5. Focal optogenetic AC activation can bias behavioral decisions. 

(A) Intrinsic imaging response maps for three pure tones, aligned and averaged across 10 
mice. Bottom right, map of tonotopic gradients obtained by subtracting the 4 and 32 kHz 
response maps. The approximate contours and direction of the main tonotopic gradients 
(primary auditory field AI, anterior auditory field AAF, secondary auditory field A2) are 
superimposed. (B) Schematic of the focal AC perturbation experiment: optogenetic stimuli at 
different locationswere superimposed in occasional trials with the S- sound (4 kHz). (C) 
Probability distribution of S- lick counts averaged over three random trials in one sample 
mouse. The superimposed red circles represent the mean lick counts over three trials for 
each optogenetic stimulus location. Open circles: non-significant responses. Filled circles: lick 
count is larger than 95% of S- lick counts. Filled circles with black contours: significant 
locations after Benjamini-Hochberg correction for multiple testing (P<0.05). (D) Map of 
normalized lick counts for optogenetic perturbations obtained by summing the estimated 2D 
neuronal population response profile for one light disk, multiplied by observed lick count and 
positioned at all optogenetic locations with a significant response. (E) Mean lick counts for all 
optogenetic stimulus locations and all mice involved in the PTvsPT or FMvsPT tasks. Red filled 
circles correspond to significant locations (P < 0.05, corrected for multiple testing). (F) 
Percentage 635 of significant locations found in the PTvsPT and FMvsPT tasks across all mice. 
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Dashed line: expected false discovery rate. (G) Maps of normalized lick counts for significant 
optogenetic locations averaged across all mice performing the PTvsPT task. Black circles: 
centers of optogenetic stimuli. (H) Same as (G) but for the FMvsPT task. 

2.3.4. Tonotopic location of effective focal stimulations matches frequency 

cues used for discrimination 

The central, non-tonotopic region of AC, potentially part of secondary auditory areas (A2), was recently 

suggested to contain neurons specific for vocalizations and FM sweeps(Honma et al., 2013; Issa et al., 

2014; Issa et al., 2017). This is in line with its contribution to the decisions in the FMvsPT task. We thus 

wondered if the mid-frequency area of AI is also involved in coding the 4-12 kHz FM sweep. First, we 

observed that strong intrinsic imaging responses to the FM sweep occur in AI, particularly in the mid–

frequency area (Figure 2-6A). To better quantify the information contained in this area, we performed 

two-photon calcium imaging in layer 2/3 of AC in awake, passively listening mice who had been injected 

with pAAV1.Syn.GCaMP6s virus. All imaged fields were aligned to intrinsic imaging maps using blood 

vessel patterns (Figure 2-6B) allowing a comparison of micro- and mesoscale maps. Color coding cell 

locations with respect to their best frequency, we qualitatively observed a good match between 

tonotopic maps derived from the intrinsic and calcium imaging (Figure 2-6C, Figure 2-12), even if a 

certain level of disorganization could be seen in the high resolution map as reported previously 

(Bandyopadhyay et al., 2010; Rothschild et al., 2010). For example, the mid-frequency area identified 

with intrinsic imaging mostly contained cells with best frequencies at 8 or 16kHz when imaged at high 

resolution (e.g. Figure 2-6C, Figure 2-12). Based on these data, we calculated the similarity (correlation 

coefficient) between population responses to FM sweeps and to different pure tones and found, both at 

coarse and high spatial resolution, that the response to the FM sweeps is most similar to the 232 

responses to pure tones around 8 kHz (Figure 2-6D). We reasoned that cells coding for this frequency 

range in AI could be particularly important for discriminating the FM sweep from the 4 kHz tone. To 

quantify this idea with our two-photon calcium imaging measurements, we calculated the fraction of 

neurons responding to different pure tones within the population that responds to the FM sweep but 

not to the 4 kHz pure tone (discriminative FM sweep neurons). This showed that neurons which 

discriminatively respond to the FM sweep indeed have a preference for frequencies around 8kHz (Figure 

2-6E), a result in line with the localization of the most disruptive optogenetic perturbations in the 

mid240 frequency region of AI, at least if AC representations are similar in passive and active mice. To 
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evaluate if context-dependent changes (Francis et al., 2018; Kuchibhotla et al., 2017), could impact our 

conclusions, we also performed calcium imaging in mice engaged in the FMvsPT task. We found as 

previously reported positive and negative modulations (Kuchibhotla et al., 2017) for a fraction of neural 

responses during engagement, which averaged to a net decrease of population responsiveness (Figure 

2-13). However, AC population activity classifiers trained in the passive state maintained good 

performance in discriminating the sounds when tested in the active state (Figure 2-13), confirming the 

overall similarity of active and passive sound representations in AC.  

 

 
Figure 2-6.AC neurons coding for intermediate frequencies 

distinguish sounds from the difficult task. 
(A) Sketch of intrinsic imaging setup and averaged re-aligned intrinsic imaging maps sampled 
over 12 mice for 4, 8 and 16 kHz pure tones and FM sweeps. White lines and arrows indicate 
the main tonotopic fields as in Fig 5A.          (B) Sketch of 2-photon setup and picture of the AC 
surface with the localization of calcium imaging fields-of-view (FoV) for a sample mouse. A 
magnification of FoV 5 is shown on the right. Raw calcium traces (scale bar: 50 %∆f/f0) and a 
pure tone tuning curve (70 dB SPL) for a sample neuron are shown on the bottom. The 
calcium imaging setup is sketched on the left. (C) Magnification of cranial window shown in 
(B) with the contours of intrinsic imaging responses to 4 and 8 kHz pure tones (left) and the 
locations of all significantly responding neurons which do not respond to both 4 kHz and 4-12 
kHz (discriminative neurons see methods) 652 recorded with 2 photon calcium imaging (non-
discriminative neurons removed). Color-code corresponds to their preferred frequency over 
the same sounds used during intrinsic imaging experiments. Circle diameters are proportional 
to the mean deconvolved calcium response for the best frequency sound over 20 repetitions 
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(right). The dashed line indicates the position of the main tonotopic fields. (D) Red dots: 
Correlation of the pooled intrinsic response maps of the FM sweeps with pooled maps of four 
different pure tones (n=12 mice for the aligned maps). Black dots: correlation between the 
population vector responses of the FM sweeps and of various pure tones (time bin 0 to 1s 
after sound onset, from 5157 significantly responding neurons over 30 sessions in 5 mice). 
Intrinsic: max=1; min 0.75. Calcium imaging: max = 0.25; min=0. (E) Fraction of neurons that 
respond significantly to pure tones and FM sweeps (n=520 neurons, Wilcoxon rank sum test, 
α = 0.01) from the pool of significantly responding neurons (discriminative neurons, n= 4692 
neurons). 

 

Thus together, our optogenetic and imaging experiments suggest that AC contributes to the 

discrimination of the 4-12 kHz sweep vs 4 kHz pure tone by engaging spatially segregated neurons that 

preferentially code for intermediate frequencies around 8 kHz. A prediction of this model is that mice 

engaged in the FMvsPT discrimination should strongly associate the 4-12 kHz sweep with pure tones in 

the 8 kHz frequency range. To test this prediction, we presented pure tones in occasional non-rewarded 

catch trials during the task and measured the lickingresponses of the mouse (Figure 2-7A). We observed 

that mice responded to 5.6 kHz and 8 kHznon-rewarded pure tones with a number of licks similar to the 

lick count observed after therewarded 4-12 kHz sweep (Figure 2-7B), revealing the 257 expected 

association of these frequencies with the FM sound. We thus wondered if this categorization behavior 

crucially depends on neurons sensitive to frequencies in the 8 kHz region. We trained a linear classifier 

(SVM) to discriminate the 4-12 kHz sweep and the 4 kHz pure tone based on the responses of neurons 

imaged in passive mice and significantly activated by only one of the two sounds (discriminative 

neurons). When testing this classifier with the single trial population responses elicited by pure tones, we 

could qualitatively reproduce the categorization curves observed during behavior (Figure 2-7B). This 

indicates a match between the structure of the coding space in AC and of the perceptual space as probed 

in the FMvsPT behavioral task. However, when the classifier was trained without the neurons that 

significantly respond to the 8 kHz pure tone, then no match is observed between behavioral and cortical 

categorization curves, although the remaining neurons still discriminate the FM sweep from the 4 kHz 

pure tone (Figure 2-7B). This result corroborates the idea that activation of neurons responding in the 8 

kHz frequency range critically contributes to the identification of the FM sweep against the 4 kHz tone, in 

line with the observation that focal optogenetic stimulation in the region most sensitive to the mid-

frequency ranges promotes licking responses associated with the FM sweep (Figure 2-5H). 
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Figure 2-7.Mice use intermediate frequencies as a cue to discriminate 

between FM sound and low frequency PT. 
(A) Sketch of the auditory categorization assay. (B) Mean response probabilities in response 
to unrewarded pure tones occasionally replacing trained stimuli in the FMvsPT discrimination 
task (mean ± SEM, n=6 mice). Circles in red are the probabilities of an SVM classifier, trained 
to discriminate between FM sweeps and 4 kHz pure tones, to classify different pure tones as 
an FM sweep. Population vectors used to train the classifier correspond to the 672 mean 
deconvolved calcium responses of 4692 significantly responding and discriminative neurons 
in a [220 ms ; 448 ms] time bin with 20 repetitions for each sound). Circles in grey correspond 
to the same analysis but after exclusion of neurons that respond significantly to an 8 kHz pure 
tone. 
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2.4. Discussion 

Together, our results demonstrate that, while AC is dispensable for a simple pure tone discrimination 

task, specific activity patterns in AC provide necessary and sufficient information for discrimination of a 

more complex sound pair (FMvsPT task). Here the more complex task involves two sounds which overlap 

in frequency at their onset but then diverge due to upward frequency modulation for one of them. The 

two sounds are thus theoretically distinguishable thanks to both spectral (mid- and high-frequencies of 

the FM sound) and temporal (continuous frequency variations) cues. It is striking that despite the large 

spectral differences between the two sounds of the FMsPT task, this discrimination was much harder for 

mice to learn than the pure tone discrimination task. The challenge might come from the frequency 

overlap at the beginning of the two sounds. This spectral overlap implies that both sounds activate a 

large group of identical neurons throughout the auditory pathway, as we observe in the AC (the FM 

sweep also activates the 4 kHz region, Figure 2-6A, Figure 2-12). Activation of the set of neurons coding 

for the overlapping frequency is a strong and early predictor of rewards in S+ trials. Therefore, a simple 

reinforcement learning rule might associate activity of these neurons to the licking response, which 

makes it difficult for the animal to refrain from licking in S- trials, in which the same neurons are active. 

The challenge for the brain might be to use information from the non-overlapping parts of the sound 

representations to counteract such generalization. Analysis of the licking profiles in the FMvsPT task 

indicates that mice do not fully resolve this problem. Indeed, their initial response both to S- and S+ is to 

lick shortly after sound onset. It is only after this initial impulse that modulation of licking leads to the 

discriminative response (Figure 4F). The role of AC might be to solve this initial confound, while 

alternative pathways are able to learn the correct associations when discriminated stimuli are encoded 

with little overlap as expected for the distant pure tones of the PTvsPT task. Interestingly, a similar 

phenomenon is observed in a Pavlovian discriminative fear condition protocol, in which conditioning to a 

specific direction of frequency ramps cannot be achieved without AC, while AC is dispensable for fear 

conditioning to a specific pure tone (Letzkus et al., 2011). Thus, the requirement of auditory cortical 

areas for distinguishing temporal variations in frequency overlapping stimuli might be a generic principle 

independent of the sound association protocol used to uncover it. Our study does not identify the 

alternative pathways which provide auditory information to motor centers in the absence of AC in the 

simple PTvsPT task. Connectivity studies suggest multiple connections between the auditory system and 

motor related centers (Pai et al., 2011). Primary auditory thalamus is known to project to striatum 
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(LeDoux et al., 1991) a brain region necessary for appetitive sound discrimination tasks (Guo et al., 2018). 

Thalamo-striatal projections could possibly implement the main sensory-motor association in the easy 

task (Gimenez et al., 2015;Guo et al., 2017). Sensory-motor associations are also possible at the mid-

brain level, where inferior colliculus contacts superior colliculus which projects to several motor centers 

(Stein and Stanford, 2008). The strong impact of optogenetic silencing of the inferior colliculus on the 

PTvsPT discrimination suggests that the sensory-motor association does not occur at brainstem level 

before information reaches colliculus (Figure 2A), although further investigation would be necessary to 

verify that our colliculus silencing experiment does not uncover a permissive effect of colliculus in the 

task (Otchy et al., 2015). Likewise, thalamic silencing was shown to strongly impact frequency 

discrimination (Gimenez et al., 2015), suggesting that the sensory-motor association in our PTvsPT task 

does not occur before auditory information reaches thalamus. Finally, another possibility is that 

decisions in the PTvsPT task are driven by alternative cortical routes excluding AC but receiving auditory 

information from primary or secondary thalamus. Such direct pathways, for example to more associative 

areas have been proposed to support “blindsight” abilities in patients lacking primary visual cortex 

(Cowey, 2010). In line with this possibility, recent results indicate that fear conditioning to simple sounds 

does not require AC but requires the neighboring temporal association area (Dalmay et al.). Also, 

recordings in prefrontal cortex during an auditory discrimination task show the presence of fast 

responses to sounds (Fritz et al., 2010), compatible with a direct pathway. Similarly, in our task, bypass 

pathways to temporal or prefrontal associative areas could eventually be sufficient to make simple 

auditory decisions, even in absence of AC, Independent of the identity of the alternative pathway 

involved in the PTvsPT, our results suggest that it provides a faster route to generate motor responses 

than the route which involves AC. This idea derives from the long discrimination times (~400 ms) 

observed when mice discriminate two optogenetically-driven cortical activity patterns as compared to 

the short discrimination times (~150ms) observed for the PTvsPT task (Figure 2-4E-F). This long 

discrimination time is unlikely to result from difficulties in differentiating the two optogenetic stimuli, as 

detection of one stimulus required also ~400ms independent of stimulus strength and size (Figure 2-11), 

consistent with previous measurements in another optogenetic stimulus  detection task (Huber et al., 

2008). Calibration of our optogenetic stimuli also showed that the two chosen stimulus locations can be 

efficiently discriminated based on triggered cortical activity within 50 to a 100ms (Figure 2-11). However, 

although population firing rate and spatial extent parameters of optogenetic stimuli were similar to 

sound responses in AC (Figure 2-3), we cannot fully rule out that some non-controlled parameters of the 



 Targeted cortical manipulation of auditory perception  

 

 

89 

 

artificial stimulations lead to extended reaction times. It is also possible that absence of subcortical drive 

in the optogenetic task leads to threshold effects that slow down the behavioral response. Yet, in 

support of a slowsensory cortical pathway, discrimination times observed in cortex-dependent sensory 

discrimination tasks in head-fixed mice using visual or tactile cues are typically above 400ms (O’Connor 

et al., 2010; Poort et al., 2015; Sachidhanandam et al., 2013). In the cortex dependent auditory task 

presented in our study (FMvsPT), discrimination times are also long (~350ms, Figure 2-4E-F). We 

measured that AC activity starts to be discriminative for the FM sweep and 4kHz pure tone only about 

100 to 150ms after sound onset while two pure tones arediscriminated by AC activity already 50ms after 

onset (Figure 2-2D). This leaves a supplementary delay between information arrival and decision of at 

least 100ms in the cortex dependent FMvsPT task as compared to the cortex independent PTvsPT task. 

This delay could be due to complex multisynaptic pathways downstream to AC (e.g. including 

associativecortical areas) or to downstream temporal integration processes. Timing differences could 

alsoplay a role in the absence of AC engagement in simple tasks. Indeed, while AC rapidly receives 

auditory information (Figure 2-2D), its slow impact on behavior could allow alternative pathwayswhich 

provide faster responses to short-circuit information coming from AC. This might explain the absence of 

strong perturbations of the easy PTvsPT task when we applied non-rewarded focal stimulations of AC, 

calibrated to typical sound response levels, despite specific targeting to the tonotopic fields relevant for 

the discrimination. We do not exclude that rewarding licking responses to the occasional focal 

stimulations could rapidly lead,after some learning, to a reinforced participation of stimulated cortical 

areas in behavioral decisions. In the case of the harder FMvsPT task, focal stimulations had a significant 

effect on behavior despite the absence of rewards in our protocol. This indicates that, despite the 

coarseness of the stimulation approach which globally targets heterogeneous cell ensembles enriched 

with particular spectral information due to tonotopic organization (Figure 2-6, Figure 2-12), some 

optogenetically-driven ensembles activate large enough parts of the stimulus representations to change 

behavioral decisions. Thus, our results demonstrate that manipulation of AC representations impact 

perception, at least, if the behavioral task for perceptual read out is appropriately chosen. This opens 

interesting possibilities for central auditory rehabilitation techniques. In the FMvsPT task, we took 

advantage of the fact that spectral cues can be used to distinguish the two auditory stimuli, such that 

neural ensembles relevant for discrimination in AC tend to be clustered in space and can be activated 

with broad light patterns, while minimizing activation of cell types carrying confounding information. 

However the spatial organization in the mouse AC, is not absolutely strict(Bandyopadhyay et al., 2010; 
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Rothschild et al., 2010), especially for more complex features, as for example temporal modulations 

(Deneux et al., 2016; Kuchibhotla and Bathellier, 2018). Thus, fine scale stimulation methods (Packer et 

al., 2015)implemented at a sufficiently large scale 380 would be necessary to precisely interfere at AC 

level with the discrimination of sounds that only differ based on complex, non-spectral features, and 

thereby eventually construct more precise artificial auditory perceptions. The fact that the AC pathway is 

dispensable for simple discriminations suggests that auditory judgements, and potentially perception, 

result from the interplay between a coarse description of sensory inputs and a time-integrated, more 

elaborate description that involves AC. As we showed by attempting to drive auditory judgments directly 

at the cortical level (Figure 2-5), the coexistence of these pathways is a critical issue to manipulate 

auditory perception. It might thus be advantageous to combine stimulations of cortical and sub-cortical 

(Guo et al., 2015) levels in order to improve the quality of artificially generated perception in the central 

auditory system. 
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2.5. Material and methods 

2.5.1. Experimental model and subject details 

We used the following mouse lines: PV-Cre (Jax # 008069) x Ai27 (flex-CAG-hChR2-tdTomato; Jax # 

012567), for optogenetic inactivation, Emx1-IRES-Cre (Jax #005628) x Ai27 (Jax # 012567) for optogenetic 

activation, and C57Bl6J for lesion experiments. In all experiments, young adult females and males 

between 8 to 16 weeks old were used. Animals were housed 1–4 animals per cage, in normal light/dark 

cycle (12 h/12 h). All procedures were in accordance with protocols approved by the French Ethical 

Committee (authorization 691 00275.01). 

2.5.2. Behavioral experiments 

Behavior was monitored and controlled using an homemade software (Elphy, G. Sadoc, UNIC, France) 

coupled to a National Instruments card (PCIe-6351). Sounds were amplified (SAI Stereo power amp, 

Tucker-Davis Technologies) and delivered through high frequency loudspeakers (MF1-S, Tucker-Davis 

Technologies) in a pseudo-random sequence. Water delivery (5–6 μl) was controlled with a solenoid 

valve (LVM10R1-6B-1-Q, SMC). A voltage of 5V was applied through an electric circuit joining the lick 

tube and aluminum foil on which the mouse was sitting, so that lick events could be monitored by 

measuring voltage through a series resistor in this circuit. Before starting the training procedure, mice 

were water restricted for two consecutive days. The first day of training consisted of a habituation period 

for head fixation and 703 to reliably receive water by licking the lick port without any sound. After this 

period, S+ training was conducted for 2 or 3 days where S+ trials were presented with 80-90% 

probability, while the remaining trials were blank trials (no stimulus). A trial consisted of a random inter-

trial interval (ITI) between 6 and 8 seconds to avoid prediction of stimulus appearance, a random ‘no lick’ 

period between 3 and 5 seconds and a fixed response window of 1.5 seconds. Licking during the 

response window on an S+ trial above lick threshold (3-5 consecutive licks) was scored as a ‘hit’ and 

triggered immediate water delivery. No licks was scored as a ‘miss’ and the next trial immediately 

followed. Each behavioral session contained ~150 rewarded trials allowing mice to obtain their daily 

water supply of ~800 μl. At the beginning of each session, ~20 trials with ‘free rewards’ were given 
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independent of licking to motivate the mice. When animals reached more than 80% ‘hits’ for the S+ 

stimulus, the second sound (S-) was introduced, and the lick count threshold was set to 5 licks (in a few 

PTvsPT experiments, only 3 licks). During presentation of the S+ sound, licking below threshold was 

considered as a ‘correct rejection’ (CR) and the next trial immediately followed, licking above threshold 

on S- trials was considered as a ‘false alarm’ (FA), no water reward was given, and the animal was 

punished with a random time out period between 5 and 7 seconds. Each session then contained 300 

trials with 50% probability for each trial type. Sounds of 0.2 seconds at 60 dB were used for the PT vs PT 

task and sounds of 0.5 seconds at 70 dB for the FM vs PT task. During the entire behavioral training 

period, food was available ad libitum and animal weight was monitored daily. Water restriction was 

interleaved with a 12h ad libitum supply overnight every Friday. 

2.5.3. Behavior analysis. 

Learning curves were obtained by calculating the fraction of correct responses over blocks of 10 trials. 

Discrimination performance over one session was calculated as (hits + correct rejections)/total trials. 

Discrimination time was calculated on collections of10 trial blocks in which the discrimination 

performance 728 was greater than or equal to 80%, containing a total of at least 100 trials. The licking 

signal for each stimulus was binned in 10 ms bins, and for every time bin, we used the non-parametric 

Wilcoxon rank sum test to obtain the p-value for the null hypothesis that the licking signal was coming 

from the same distribution for S+ and S-. The discrimination time was determined as the first time bin 

above a p-value threshold of 0.01 while applying the Benjamini-Hochberg correction for multiple testing 

over all time bins. 

2.5.4. Cranial window implantation. 

To allow chronic unilateral access to AC (for 2-photon calcium imaging or electrophysiology), a cranial 

window was incorporated into the skull and a metal post for head fixation was implanted on the 

contralateral side of the craniotomy. Surgery was performed in 4 to 6 week old mice placed on a thermal 

blanket under anesthesia using a mix of ketamine (Ketasol) and medetomidine (Domitor) (antagonized 

with atipamezole - Antisedan, Orion pharma at the end of the surgery). The eyes were covered using 

Ocry gel (TVM Lab) and Xylocaine 20mg/ml (Aspen Pharma) was injected locally at the site where the 
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incision was made. The right masseter was partially removed and a large craniotomy (~5 mm diameter) 

was performed above the AC using bone sutures of the skull as a landmark. For 2P calcium imaging, we 

did 3 to 5 injections (~300 μm separation) of 200nL (35 nl/min) using pulled glass pipettes of 

rAAV1.syn.GCamP6s.WPRE virus diluted 10 times (Vector Core, Philadelphia, PA, USA). After this, the 

craniotomy was immediately sealed with a 5 mm circular cover slip using cyanolite glue and dental 

cement (Ortho-Jet, Lang). For AC inactivation experiments with optogenetics, the same procedure was 

repeated on both brain hemispheres in a single surgery. For inferior colliculus inactivation experiments, 

the 5mm cranial window was placed on the midline such that it covered the dorsal part of both 

hemispheres of the inferior colliculus. In all cases, mice 752 were subsequently housed for at least one 

week without any manipulation.  

2.5.5. Optogenetics inactivation of AC during behavior. 

For optogenetic inactivation experiments, mice were first trained to respond to the S+ stimulus alone 

(see Behavior), then when the S- stimulus was introduced for discrimination training, a pair of blue LEDs 

(1.1W, PowerStar OSLON Square 1+, ILS, wavelength 455nm) was placed 2 cm above their head, facing 

each other at 1 cm distance, and were flashed 1 over 5 trials for visual habituation of the animal to light 

flashes (initially inhibiting licking). When discrimination performance was above 80% and similar both 

with and without light flashes, one to three test sessions were performed in which the LEDs were either 

placed on the bilateral AC cranial windows, or on the inferior colliculus window (1 LED only). Stimulus 

presentation was pseudo-randomized over blocks of 100 trials and light flashes appeared in 1 out of 5 

trials for each stimulus with the same reward or punishment conditions as regular trials. Blue light 

delivery followed a square wave (20Hz) time course and started 100ms before onset lasting for 700ms 

(sound duration was no longer than 500ms). Light intensity at the brain surface was measured to be 36 

mW/mm2. Discrimination performance was computed as the number of hits and correct rejections over 

the total number of trials, separating trials in which the LED was turned ON or OFF. 

2.5.6. Patterned optogenetics during ongoing behavior. 

For patterned optogenetic activation in the mouse AC, we used a LED-based video projector (DLP 

LightCrafter, Texas Instruments) tuned at 460 nm. To project a two-dimensional image onto the 
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ACsurface (Figure 2-2 and Figure 2-4), theimage of the micromirror chip was collimated through a 150 

mm cylindrical lens (Thorlabs,diameter: 2 inches) and focused through a 50 mm objective (NIKKOR, 

Nikon). Light collectedby the objective passes through a dichroic beam splitter (long pass, >640nm, 

FF640-FDi01,Semrock) and is collected by a CCD camera 777 (GC651MP, Smartek Vision) equipped with a 

50 mm objective (Fujinon, HF50HA-1B, Fujifilm). For discrimination of artificial AC patterns, two disks of 

400 μm were placed at two different locations in AC. The first disk was defined as the S+ stimulus and 

systematically located at the center of the low frequency domain in AI.The second disk, defined as the S- 

stimulus was placed at the center of the high frequency domain in the UF obtained with intrinsic imaging 

(Figure 2-11, see Intrinsic Imaging below).Alignment of optogenetic stimulus locations across days was 

done using blood vessel patterns at the surface of the brain with a custom made GUI in Matlab. In short, 

a reference blood vessel image was taken at the beginning of the experiment. In subsequent days, a new 

blood vessel image was taken and aligned to the reference image by optimizing the image cross- 

correlation to obtain the appropriate rotation and translation matrix. Behavioral training with 

optogenetic stimuli was done with the same protocol as for sounds.For focal AC activation during sound 

discriminations, a grid of 15 to 17 locations was constructed using disks of ~400 μm distributed in 5 rows. 

The grid was aligned to AC for each animal using the three regions of maximal responses in the intrinsic 

imaging response map to a 4 kHz pure tone (see Intrinsic Imaging) as a reference for horizontal position 

and orientation. Each grid was constructed to maximize the coverage of the different frequency domains 

and tonotopic subfields seen in intrinsic imaging (seeFigure 2-4). To probe responses to optogenetic 

perturbation during discrimination behavior we performed test sessions of 300 pseudo-randomized trials 

in which 45 to 54 trials were non-rewarded catch trials with stimulation of a grid location together with 

the S- sound. Sound (4 kHz, 500 ms at 70dB) and light (12 mW/mm2, 1 s duration, square wave intensity 

profile at 20 Hz) started at the same time. In two animals, we performed test sessions in which 50% of 

the catch trials were rewarded if the animals licked above lick count threshold (5 licks). These two 

animals had also a non-reversible lesion of the contralateral AC, but we noticed in another set of 

experiments (notshown) that contralateral lesions did not significantly 802 increase response probability 

to AC perturbations. Responses to focal optogenetic perturbations were computed over 3 catch trial 

repetitions. The significance of these responses was assessed by computing the distribution of lick count 

responses over 10,000 random triplets of responses to S- alone. The p-value of the response to a 

particular optogenetic stimulation location was taken as the percentile of this distribution corresponding 

to the trial-averaged lick count for the optogenetic stimulation. Based on the pvalues computed for all 
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grid locations, we performed a Benjamini-Hochberg correction for multiple testing to identify the 

locations with a significant response at a false positive rate of 0.05. For display, lick count responses L to 

optogenetic perturbations were normalized for each mouse as (L-s-)/(s+ - s-), where s+ and s- are the 

mean lick counts observed for S+ and S- stimuli. Maps of response to optogenetic perturbation were 

aligned across different mice, by matching the grid locations placed on the 4kHz landmarks, calculating 

the best rotation and translation matrix as for alignment of the intrinsic imaging maps (see Intrinsic 

Imaging). To account for the actual spread of the optogenetic stimulus in the AC network, the response 

at each location was represented by a two-dimensional spatial profile identical to the estimated profile 

shown in Figure 2A for 12 mW/mm2 focal stimuli. Profiles of all significant locations were summed to 

construct the maps (Figure 2-4F). 

2.5.7. In vivo electrophysiology. 

Recordings for calibration of optogenetics were done in mice implanted already with a cranial window 

above AC for at least 2 or 3 weeks. On the day of the recording, the mouse was briefly anesthetized (~30 

min, ~1% isoflurane delivered with SomnoSuite, Kent Scientific) to remove some of the cement seal and 

a piece of the cover slip of the cranial window was cut using a diamond drill bit. The dura was resected 

ventral to AC as previously delimited using intrinsic imaging (see methods below). The area was covered 

with Kwik-CastTM silicon (World precision 827 instruments) and the animal was placed in his home cage 

to recover from anesthesia for at least 1 hour before head-fixation in the recording setup (same as used 

for behavior). All recordings were performed using four shank Buzsaki32 silicon probes (Neuronexus). 

Before each recording, the tips of the probe were covered with DiI (Sigma). The silicon was gently 

removed and the area cleaned using warm Ringer’s buffer. The probe was inserted at a ~30° angle with 

respect to brain surface with a micromanipulator (MP-225, Butter Instrument) at 1-2 μm per second, 

with pauses of 1-2 minutes every 50 μm. Each recording session time, including probe insertion and 

removal, lasted no more than 3 hours. After the experiment, the animal was deeply anesthetized 

(isoflurane) and euthanized by cervical dislocation. Brains were fixed overnight by 4% paraformaldehyde 

(PFA) in 0.1 M phosphate buffer (PB). Coronal brain slides of 80 μm were prepared and imaged (Nikon 

eclipse90i, Intensilight, Nikon) to identify the electrode track tagged with DiI and determine 

recordingdepth. For calibration of optogenetic inactivation experiments, sounds played during the 

recordings included a blank, 4, 4.5, 4.7, 5, 6, 8, 16 kHz pure tones of 200 ms duration at 60 dB, 4 kHz 500 
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ms pure tone at 70 dB, 4 to 12 kHz 500 ms frequency modulated sound at 70 dB and white noise ramps 

of 1000 ms from 60 to 85 dB and 85 to 60 dB. The same blue directional LED (24° light cone) as used for 

inactivation during behavior was placed above the cranial window, however at a slightly higher distance 

(about 0.75 cm) of the window to leave space for the electrode. Light was delivered for 700 ms, starting 

100 ms before sound onset. Silicon probe voltage traces were recorded at 20 kHz and stored using 

RHD2000 USB interface board (Intan Technologies). Raw voltage traces were filtered using a Butterworth 

high-pass filter with a 100 Hz cutoff (Python). Electro-magnetic artefacts from the LED driving current 

were removed by subtracting a template calculated across all LED ON trials. For calibration of focal 

optogenetic activations, we used a grid of contiguous 8x5 400 μm circles. Each location was played 

randomly and repeated 10 times. Also, a 4 kHz pure tone of 500 ms at 70 dB, 4-12 kHz FM sound of 500 

ms at 70 dB and white noise ramps 852 of 1000 ms from 60 to 85 dB and 85 to 60 dB were played to 

compare later with optogenetic responses. 

2.5.8. Analysis of electrophysiology. 

Spikes were detected and sorted using the KlustaKwik spike sorting algorithm (Harris et al., 2000) (Klusta, 

https://github.com/kwikteam/klusta) with a strong and weak threshold of 6 and 3 respectively. Each 

shank was sorted separately where putative single units were visualized and sorted manually using 

KlustaViewa. Data analysis was done using custom Python scripts. Spikes were binned in 25 ms bins. 

Firing rates during stimulation periods were calculated by averaging across trials. For AC inactivation, 

significant responses to at least one sound were identified using the Kruskal-Wallis H-test for 

independent samples and the Benjamini-Hochberg procedure was applied to correct for multiple testing 

across units (p < 0.05). Percentage of inhibition was calculated as follows:  100 – (L * 100/ S), where S 

corresponds to best sound response and L to the response to the same sound during optogenetic 

activation of PV interneurons. To estimate the robustness of sound representations in our recordings, we 

trained a linear Support Vector Machine classifier to discriminate two sounds based on single unit 

responses binned in 50 ms bins. Only units that were inhibited by light (putative PV-negative cells) were 

used to train the classifier. To evaluate classification performance without optogenetics, the classifier 

was trained over 5 trials for each pair of sounds and tested with other 5 trials. To test the effect of light 

on sound responses, the classifier was trained with 10 unperturbed sound delivery trials and tested with 

10 sounds and light delivery trials. For focal optogenetic activations, we calculated for each single unit 
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the trial-averaged firing rate change with respect to baseline over the 1s optogenetic stimulation for all 

locations, yielding two-dimensional spatial response maps. Using the centers of each location, a 2D map 

was created for each unit and fitted with two-dimensional Gaussian model. 

2.5.9. Auditory cortex lesions and immunohistochemistry. 

Mice after learning a PT vs PT discrimination task were anesthetized (~1.5% isoflurane delivered with 

SomnoSuite, Kent Scientific) and placed on a thermal blanket. Craniotomies were performed as 

described above and focused thermo-coagulation lesions were done bilaterally. The area was then 

covered using Kwik-Cast silicon (World precision instruments) and closed with dental cement (Ortho-Jet, 

Lang). After a period of recovery on a heating pad with accessible food pellets, mice were taken back to 

their home cage and a nonsteroidal anti-inflammatory agent (Metacam®, Boehringer Ingelheim) was 

injected intramuscularly. To test if mice could still perform the discrimination task, they were placed on 

the behavioral setup the next day after surgery. If a mouse presented signs of pain, liquid meloxicam was 

given in drinking water or via subcutaneous injection. Discrimination was tested in a normal session and 

performance calculated as previously described. After the experiment, mice were transcardially perfused 

with saline followed by 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB) and then brains post-

fixed overnight at 4 °C. After washing with phosphate-buffered saline (PBS), brains were cut in 80 μm 

coronal slides and immuno-histochemical reactions were performed on free-floating brain slices as 

follows. Slides were blocked for 2 h using PBS + 10% goat serum and 1% Triton-X 100 at room 

temperature. After washing in PBS (10min×3), the sections were incubated 2h at room temperature with 

a dilution 1:100 of mouse anti-NeuN conjugated with Alexa Fluor® 488 (MAB377X, Merck). Slides were 

washed and mounted for imaging using a Nikon eclipse 90i microscope (Intensilight, Nikon). 

2.5.10. Intrinsic imaging and alignment of tonotopic maps across animals. 

Intrinsic imaging was performed to localize AC in mice under light isoflurane anesthesia (~1% delivered 

with SomnoSuite, Kent Scientific) on a thermal blanket. Images were acquired using a 50 mm objective 

(1.2 NA, NIKKOR, Nikon) with a CCD camera (GC651MP, Smartek Vision) equipped with a 50 mm 

objective (Fujinon, HF50HA-903 1B, Fujifilm) through a cranial window implanted 1-2 weeks before the 

experiment (4-pixel binning, field of view between 3.7 x 2.8 mm or 164 × 124 binned pixels, 5.58-μm 
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pixel size, 20 fps). Signals were obtained under 780 nm LED illumination (M780D2, Thorlabs). Images of 

the vasculature over the same field of view were taken under 480 nm LED illumination (NSPG310B, 

Conrad). Two second sequences of short pure tones at 80 dB were repeated every 30 seconds with a 

maximum of 10 trials per sound. Acquisition was triggered and synchronized using a custom made GUI in 

Matlab. For each sound, we computed baseline and response images, 3 seconds before and 3 seconds 

after sound onset, respectively. The change in light reflectance ΔR/Rₒ was calculated over repetitions for 

each sound frequency (4, 8, 16, 32 kHz, white noise). Response images were smoothed applying a 2D 

Gaussian filter (σ = 3 pixels). The different subdomains of AC corresponding to the tonotopic areas 

appeared as regions with reduced light reflectance. To align intrinsic imaging responses from different 

animals, the 4 kHz response was used as a functional landmark. The spatial locations of maximal 

amplitude responses in the 4 kHz response map for the AI, A2 and AAF (three points) was extracted for 

each mouse and a Euclideantransformation matrix was calculated by minimizing the sum of squared 

deviations (RMSD) for the distance between the three landmarks across mice. This procedure yielded a 

matrix of rotation and translation for each mouse that was applied to compute intrinsic imaging 

responses averaged across a population of mice. 

2.5.11. Two-photon calcium imaging. 

Two-photon imaging during behavior was performed using a two-photon microscope equipped with an 8 

kHz resonant scanner (Femtonics, Budapest, Hungary) coupled to a pulsed Ti:Sapphire laser system 

(MaiTai DS, Spectra Physics, Santa Clara, CA). The laser was tuned at 900 nm during recordings and light 

was collected through a 20x (XLUMPLFLN-W) or 10x (XLPLN10XSVMP) Olympus objective. Images were 

acquired at 31.5 Hz. For each behavioral trial, imaging duration 928 was 7s with a pause of 5s in between 

trials. Sound delivery was randomized during the trial to prevent mice from starting licking with the 

onset of the sound (45 dB SPL) emitted by the microscope scanners at the beginning of each trial. All 

sounds were delivered at 192 kHz with a National Instruments card (NI-PCI-6221) driven by homemade 

software (Elphy, G. Sadoc, UNIC, France), through an amplifier (SAI Stereo power amp, Tucker-Davis 

Technologies) and high frequency loudspeakers (SAIand MF1-S, Tucker-Davis Technologies, Alachua, FL). 

During the active context mice performed the discrimination task, a regular session consisted in ~250 

trials, followed immediately after by a passive context session with ~150 trials (lick tube was withdrawn). 

Data analysis was performed using Matlab and Python scripts. Motion artifacts were first corrected 
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frame by frame, using a rigid body registration algorithm. Regions of interest (ROIs) corresponding to the 

neurons were selected using Autocell a semi-automated hierarchical clustering algorithm based on pixel 

covariance over time (Roland et al., 2017). Neuropil contamination was subtracted (Kerlin et al., 2010) by 

apply the following equation: Fcorrected (t)= Fmeasured (t) – 0.7 Fneuropil (t), where Fneuropil (t) is 

estimated from the immediate surroundings (Gaussian smoothing kernel, excluding the ROIs (Deneux et 

al., 2016),  = 170μm). Then the change in fluorescence (ΔF/F0) was calculated as (Fcorrected (t) - F0) / 

F0, where F0 is estimated as the 3rd percentile of the low-pass filtered fluorescence over ~40 s time 

windows period. To estimate the time-course of the firing rate, the calcium signal was temporally 

deconvolved using the following formula: r(t) = f’(t) + f(t) / τ in which f’ is the first time derivative of f and 

τ the decay constant set to 2 seconds for GCaMP6s. In total 7605 neurons were recorded across active 

and 11 passive sessions in 3 mice. We kept for analysis only 1008 neurons significantly responding to the 

S+ or S- stimuli with respect to baseline activity (Wilcoxon rank-sum test, p = 0.01 and Bonferroni 

correction for multiple testing). The deconvolved signals where smoothed with a Gaussian kernel (α = 

33ms). To estimate the discriminability of two sounds based on cortical popul 953 ation responses, linear 

Support Vector Machine classifiers were trained independently on each time point to discriminate 

population activity vectors obtained from halfof the presentations of each sound and context (training 

set), and were tested on activity vectors obtained on the remaining presentations of the same sounds 

and context or on all presentationsof sounds in the non-trained context (test sets). To estimate 

behavioral categorization of sounds based on population activity in AC, we trained linear SVM classifier 

to discriminate AC responses to single presentations of the trained target sounds, and tested the 

classifiers with AC responses in single presentations of the non-trained sounds. Classification results 

were averaged across presentations to generate the categorization probability. 

2.5.12. Quantification and statistical analysis 

All quantification and statistical analysis were performed with custom Matlab or Python scripts.Statistical 

assessment was based on non-parametric tests reported in figure legends together with the mean and 

SEM values of the measurements, the number of samples used for the test and the nature of the sample 

(number of neurons, recording sessions or mice). A custom bootstrap test (see Methods) was used for 

identification of optogenetic stimulation locations producing a behavioral effect. Unless otherwise 

mentioned, false positive rates below 0.05 were considered significant and the Benjamini-Hochberg 
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correction for multiple testing was applied for repeated measurements in the experiments. In all 

analyses, all subjects who underwent a particular protocol in the study were included. For small groups, 

a minimum of 4samples in each compared group was used to allow significance detection by standard 

non-parametric tests (e.g. Wilcoxon ranksum test). 

2.5.13. Data and software availability 

All data and analysis code are available from the corresponding author upon reasonable request. 
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2.8. Supplementary figures 

 
Figure 2-8. PV interneuron activation strongly perturbs AC responsesto 

sounds. 
(A) To localize AC during calibration experiments, the white noise intrinsic imaging 
responsemap (middle left), was used to target probe insertion. The cover slip of the window 
wasslightly broken and removed, allowing the insertion of the probe into the exposed 
brain(middle right, see dashed line indicating glass border). At the end of the recording, the 
animalwas perfused, and histology was done to track probe location and depth using 
fluorescent dyeDiI. (B) Left, Fraction of single units identified as spike clusters obtained using 
theKlustaKwik spike sorting algorithm which displays a clear refractory period in their spike 
train autocorrelogram (example in D). Middle, Fraction of single units that 
significantlyrespond to sounds (see Methods). Right, Fraction of sound-responsive cells that 
are activated(red) or inhibited (blue) by light-gated PV activation. (C). Time course of mean 
firing rateacross all single units in response to PTs of 0.2s at 60db (black line) and to the 0.5s 
long 4kHz and 4-12kHz chirp at 70dB (black dashed line). In blue are shown the responses to 
the samesound groups but during PV interneuron activation. (D) Example of a single unit for 
whichsound responses were inhibited by light. Left, Mean spike waveform (electrode site 
withlargest amplitude) and spike train autocorrelogram for this unit. Right, Heat map of 
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meanfiring rate in response to sounds (average over 10 trials for each sound) during sound 
andsound + light trials. The solid red line corresponds to sound onset. Dashed blue 
linescorrespond to light onset and offset. E. Same as D but for a cell which is not inhibited 
byoptogenetic activation of PV neurons. 
 

 
 

Figure 2-9. Irreversible lesions covered the full extent of auditory cortex. 
(A). Bright-field images of coronal brain slices showing the extent of bilateral lesions for the 
four animals shown in Figure 2G. (B). Epifluorescence images of identified cortical neurons 
(NeuN staining) for the two areas delimited by the black squares in A. Punctate NeuN staining 
indicates intact cell bodies outside of the lesion. The absence of a punctate pattern on the 
tissue bordering the lesion indicates that the cortical network was damaged in this zone, 
which was thus included into the lesioned area in our quantification. (C) Coronal slide 
reconstruction modified from the mouse brain atlas (Paxinos and Franklin, 2004) showing the 
location and extent of the lesion (red shading) with respect to AC (more intense black 
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contour) at the anteroposterior location corresponding to the center of AC along this axis. 
The anteroposterior coordinates from bregma and AC location are indicated for each section. 
(D) Same as C but for the anteroposterior locations corresponding to anterior and posterior 
limits of AC. Overall our reconstructions show that primary and secondary auditory cortex 
were fully lesioned for all four animals. 

 

 

 
Figure 2-10. Discriminated artificial optogenetic stimuli were 

located insimilar tonotopic locations across mice. 
(A) Intrinsic imaging response maps to 4 kHz and 32 kHz pure tones, on the right the 
maintonotopic fields are revealed by plotting the difference of 4 kHz and 32 kHz response 
maps.AI; primary auditory cortex, A2; secondary auditory cortex, AAF; anterior auditory field. 
UF;ultrasonic field. Circles correspond to the optogenetic stimulus locations shown used to 
driveartificial discrimination behavior in this mouse. (B) Aligned intrinsic imaging responses to 
4kHz and 32 kHz pure tones averaged across five mice. The resulting difference map is shown 
on the right. The optogenetic stimulus locations for the same five animals are superimposed 
asblack circles. (C) Mean number of trials to reach 80% performance. Empty circles 
correspondto single animals and the bars to mean and SEM. 
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Figure 2-11. Reaction time for detection of a single focal cortical 

stimulus is similar to discrimination time for choosing between two 
focal cortical stimuli. 

(A) Top, Time course of averaged lick traces for each stimulus in one example mouse for the 
two sound discrimination tasks and for detection and discrimination of optogenetic stimuli. 
Bottom, p-values for the null hypothesis that S+ and S- lick signals come from the same 
distribution obtained for every time point (Wilcoxon rank-sum test). Green lines indicate the 
first significant time point corresponding to discrimination time. (B) Reaction times of 8 mice 
for the detection of an optogenetic stimulus of different intensities (left, 12 vs 32 mW.mm-2) 
or of different sizes (right, two small disk vs one small disk + one large disk of doubled 
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diameter). Dark blue: 32 mW.mm-2 (n= 4 mice). Light blue: 12 mW.mm-2 (n= 4 mice). Dark 
green: larger stimulus (n= 3 mice). Light green: smaller stimulus (n= 5 mice). (C) Left, Sketch 
of the silicon probe location and grid indicating the two spots used to train an SVM 
classifier.Right, Performance of an SVM classifier trained for each time bin of 50 ms to 
discriminatebetween single unit population responses (n=8 neurons showing significant 
spatiallymodulated optogenetic activation for light intensity 12mW/mm-2) of two 
optogeneticstimulations separated by approximately same distance as optogenetics stimuli 
used to train 5 mice during the discrimination task (~800 μm; stimuli used are the location of 
peak response for each neuron and another ~800 μm distant location). The classifier was 
trained with asubset of 5 trials and tested on 5 different trials. Inset shows a magnification 
around stimulusonset indicating that discrimination is achieved between 50 and 100 ms from 
stimulus onset. 
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Figure 2-12. Tonotopic maps from intrinsic and two-photon 
calcium imaging are similar. 

(A) Auditory cortex surface and localization of 2P calcium imaging field-of-view (light grey). 
Contour of intrinsic imaging responses to pure tones (4 kHz in blue and 8 kHz in green) and 
approximate tonotopics gradients (AI and A2) obtained from-- mean intrinsic imaging 
responses of 12 mice showed in Figure 2-6A (dashed black lines). Area of optogenetic 
stimulation that elicited behavioral responses showed in Figure 2-5H (black line). (B) 2P 
calcium imaging responses in same animal presented in A. Neurons displayed presented 
significant responses (Wilcoxon rank sums pval <0.01) to pure tones. Circles diameters are 
proportional to the mean deconvolved calcium response over 20 repetitions. (C) Auditory 
cortex surface and localization of 2P calcium imaging field-of-view of another example mouse 
(light grey). (D) Tonotopic gradients obtained by subtraction of the 4 and 32 kHz intrinsic 
response maps. (E) Top, 2P calcium imaging responses of field-of-views in C. Circles 
correspond to the localization of all significantly responding neurons. Color-code correspond 
to their preferred frequency over the same sounds used during intrinsic imaging experiments 
and size proportional to the mean deconvolved calcium response over 20 repetitions. 
Bottom, Same representation of 2P calcium imaging responses as B. 
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Figure 2-13. Stability of AC sound representations despite context 
dependent modulations. 

(A) Sketch of 2-photon imaging during passive listening and discrimination behavior. (B) 
Traces of mean raw (light blue and orange) and deconvolved (blue and red) calcium signals 
for six example neurons. Cells 1 and 2 had similar responses in the active and passive states 
while cells 3 and 4 had boosted early responses in the active state and cells 5 and 6 
diminished late responses during the active state (discrimination task). (C) Heatmap showing 
mean deconvolved calcium signal to S+ and S- during the two different contexts for the 200 
most responsive neurons (11 imaging sessions, 3 mice) for either sound and context (ranked 
by their p-value for the Wilcoxon signed rank test, n = 63 trials). (D) Mean deconvolved signal 
for 1008 imaged neurons in response to S+ (top) and S- stimuli (bottom) during active and 
passive contexts. (E) Discrimination performance of an SVM classifier trained with neuronal 
population activity (1008 neurons) during active (top) and passive context (bottom) and 
tested with both contexts. 
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3. Results:  Section II 

In the last decades, learning theories have constantly evolved going far beyond the intuitive thinking of 

early models. Complexity comes with redundancy and increased reliability, but at the expense of 

parsimonious computer simulations (Witnauer et al., 2017). Early associative models of learning helped 

to explain a small category of cue-competition learning effects, but failed to  account for more complex 

interactions such as latent inhibition or overshadowing recovery with CS-US association extinction. 

Revised versions of early models (e.g. Le Pelley, 2004), such as new theories based on attentional effects, 

have been important to address human and more complex animal learning observations. In parallel, 

adaptive network models and their more recent versions (deep neuronal networks) have evolved 

incredibly fast, being able to outperform humans in some tasks such as pattern recognition (Assael et al., 

2016). The acceptance or rejection of models depends on how well they fit the available data and, at 

present, it is difficult to find one model that can fully integrate all the important principles of associative 

learning,such as similarity or generalization (Niv et al., 2015), reversal learning (e.g. Jarvers et al., 2016) 

and subject  variability (e.g. Brown and Heathcote, 2003; Matzel et al., 2003). Although these models are 

useful to describe the establishment of associations between internal stimuli representations and 

reinforcement, it is also important to find the biological correlates and causal events that give rise to 

these associations and cue interactions. The following work followed the classical associative learning 

framework, in particular reinforcement learning, and investigated one of the most widely used but at the 

same time poorly understood parameter of most associative learning models, saliency.To probe the 

strong correlation of cortical recruitment with the saliency parameter, we used targeted cortical 

manipulations using modern optogenetics. Here we showed causally that differences in cortical 

recruitment for stimuli with similar detectability can largely affect learning strategy. Also, well-controlled 

cortically implanted stimuli were able to reproduce the well-known overshadowing effect, explaining 

how this cue interaction can emerge due to differences in neuronal recruitment for different trained 

stimuli. 
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3.1. Abstract 

Salience is a broad and widely used concept in neuroscience whose neuronal correlates, however, 

remain elusive. In behavioral conditioning, salience is used to explain various effects, such as stimulus 

overshadowing, and refers to how fast and strongly a stimulus can be associated with a conditioned 

event. Here, we identify sounds of equal intensity and perceptual detectability, which due to their 

spectro-temporal content recruit different levels of population activity in mouse auditory cortex. When 

using these sounds as cues in a Go/NoGo discrimination task, the degree of cortical recruitment matches 

the salience parameter of a reinforcement learning model used to analyze learning speed. We test an 

essential prediction of this model by training mice to discriminate light-sculpted optogenetic activity 

patterns in auditory cortex, and verify that cortical recruitment causally determines association or 

overshadowing of the stimulus components. This demonstrates that cortical recruitment underlies major 

aspects of stimulus salience during reinforcement learning. 
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3.2. Introduction 

Sensory stimuli can vary in their efficacy as a conditioned stimulus during behavioral conditioning. In 

classical conditioning, a well-known example is the so called “overshadowing” effect.When animals are 

trained to associate two simultaneously presented stimuli (historically a tone and a flash) to a specific 

unconditioned stimulus (e.g. foot-shock), it is often observed that, after training, the animal is 

conditioned more strongly to one stimulus than to the other (Kamin, 1967). In their theoretical work 

originally developed for classical conditioning, but later extended to operant conditioning, Rescorla and 

Wagner(1972) introduced the notion of salience to explain the overshadowing phenomenon. In their 

model, salience is a parameter affecting the speed at which a given stimulus is associated with the 

unconditioned stimulus. Thus, when behavior reaches maximal performance and learning stops, the 

more salient of the two stimuli has been associated more strongly with the unconditioned stimulus, 

leading to overshadowing. While this theory captures a number of phenomena and is the basis for 

important frameworks such as reinforcement learning (Dayan and Balleine, 2002; Sutton and Barto, 

1998), the neural underpinnings of the salience parameter remain elusive. 

 

Salience in this context is usually seen as the global amount of neural activity representing the stimulus, 

like in models of attentional salience (Desimone and Duncan, 1995; Itti and Koch, 2001; Li, 2002; Treue, 

2003). This intuitively follows from the idea that if more spikes represent a stimulus, they can produce 

more synaptic weight changes, as expected from the firing rate sensitivity of typical learning 

rules(Bienenstock et al., 1982 ; Dayan and Abbott, 2001; Denève et al., 2017; Frémaux and Gerstner, 

2016; Martin et al., 2000), and thus modulate more rapidly the relevant connections. However, this idea 

lacks direct causal experimental verification in a learning task. Moreover, other theories propose that 

salience could also be encoded in other parameters such as neuronal synchrony levels (Fries, 2015; 

Shamma et al., 2011; VanRullen, 2003; Womelsdorf and Fries, 2007), which could influence learning via 

the temporal properties of biological learning rules (Buschman et al., 2012; Cassenaer and Laurent, 2012; 

Gütig and Sompolinsky, 2006; Kopell et al., 2014; Lee et al., 2009). Thus, the neuronal correlate of 

stimulus salience is a key question with broad implications for learning theories.  
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Using auditory discrimination tasks of sounds with different global cortical response strengths, we show 

that cortical recruitment impacts learning dynamics (Bathellier et al., 2013; Gallistel et al., 2004) similarly 

to the salience parameter of a reinforcement learning model. To explore this result in more precise 

experimental settings, we trained mice to discriminate optogenetically-driven response patterns that 

elicit different levels of cortical activity. Using this paradigm, we directly demonstrate that cortical 

recruitment determines which part of a compound stimulus drives a learned association while 

“overshadowing” other parts of the stimulus. This validates a generic prediction of reinforcement 

learning models and causally establishes the role of cortical recruitment as a neuronal correlate of 

stimulus salience.  

3.3. Results 

3.3.1. Sounds with identical levels can recruit different activity levels 

To investigate the relationship between stimulus salience and neuronal recruitment, we first aimed to 

identify sounds recruiting different amounts of cortical activity. A previous report has shown that 

complex sounds with different frequency content but equal duration and sound pressure level can 

recruit population responses of different sizes in cat auditory cortex(Wong and Schreiner, 2003). To test 

if a similar phenomenon exists in mice, which would then allow us to experimentally decouple 

recruitment from physical intensity, we chose three short, complex sounds (70ms duration) containing a 

large range of frequencies and temporal modulations, but normalized at equal mean pressure level 

(73dB SPL, Figure 3-1A). These sounds displayed different power spectra in the 10-30kHz range (Figure 

3-1A) where the mouse ear is most sensitive (Hackett et al., 2011; Kanold et al., 2014; Zheng et al., 

1999). We thus wondered if this discrepancy was affecting their detectability. To do so, we trained mice 

to lick on a water port after presentation of any of the three sounds randomly presented in the same 

task to obtain a reward (Figure 3-1B). We then measured response probability to decreasing intensity 

levels. All mice experience the three sounds in the same task. We observed that, for all sounds, response 

probability steadily decreased down to chance level as measured in the absence of sound (Figure 3-1C). 

Yet, no significant response difference was observed across the three sounds (Figure 3-1C), indicating 
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that the chosen 73dB SPL was at a comparable distance from the detection threshold for the three 

sounds.  

 

 
Figure 3-1. Spectro-temporal differences in complex sounds do 

not affect near-threshold detectability 
(A) Spectrograms of three 70 ms long complex sounds, with power spectrum on right. (B) 
Schematics describing the auditory detection task. (C) Mean response probability for 6 mice 
trained to detect sounds A, B and C at 73 dB to get a reward and probed with lower sound 
intensities. While the effect of intensity was significant, there was no effect of sound identity 
(Friedman test, pintensity = 2.3×10-9, psound = 0.43, n=6 mice). Error bars represent standard 
errors (SEM).  

 

We assessed recruitment of neural activity in the auditory cortex (AC) in response to these three sounds 

using two-photon calcium imaging in awake, passively listening mice. We imaged 6 mice that were 

injected with AAV1-GCAMP6s virus in AC (Figure 3-2A). Recordings were followed by an automated 

image registration and segmentation algorithm(Roland et al., 2017) (Figure 3-2B) that allowed the 

isolation of 15,511 neurons across 27 imaging sites, from which large fluorescence signals could be 

observed (Figure 3-2C). The fields-of-view were either 0.5×0.5 or 1×1 mm (Figure 3-2A-B), allowing a 

rapid tiling of the full extent of primary and secondary auditory cortex (Figure 3-7). Cortical depths were 

randomly chosen ranging between 100 and 300 µm corresponding to layer II/III. The mouse AC (primary 

+ secondary) contains approximately 200,000 neurons in one hemisphere (Herculano-Houzel et al., 2013) 

and thus about 50,000 neurons in layer 2/3, so we expect our sample of ~15,000 neurons to be 

representative for supragranular AC. Because typical learning rules are dependent on pre-synaptic firing 

rate (Bienenstock et al., 1982; Dayan and Abbott, 2001; Denève et al., 2017; Frémaux and Gerstner, 

2016; Martin et al., 2000), we first measured the amplitude of the mean-deconvolved calcium signals, a 

proxy for neuronal firing rate (Yaksi and Friedrich, 2006), recorded across the entire duration of the 

response (Figure 3-2D). We observed that at 73 dB intensity, sound A elicited at least two-fold less 
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cortical activity than sounds B and C (Figure 3-2E). This was consistently observed across mice (Figure 

3-7). Sounds producing more firing in the population activated also more neurons (~18% for sound A and 

~25% for B and C, Figure 3-2E). But note that the fraction of responsive neurons strongly depends on 

statistical threshold. Furthermore, the observed differences in neuronal activity recruitment were 

consistent with previous, independent measurements performed under anesthesia (Figure 3-7). All three 

sounds elicited distinct response patterns as evaluated by correlation-based population similarity 

measures and sound identity could be decoded with high accuracy based on single-trial response 

patterns using linear classifiers (Figure 3-2F), indicating that sound discriminability was not affected by 

cortical recruitment. Another discrepancy between cortical recruitment and the physical intensity of a 

stimulus can be observed using sounds with different temporal intensity profiles. Up-ramping sounds 

elicit larger cortical responses in mice (Deneux et al., 2016) and other animals (Ghazanfar et al., 2002; 

Wang et al., 2014) than their time-symmetric down–ramps, despite equal physical energies. This effect 

correlates with asymmetries in subjectively perceived loudness in humans (Neuhoff, 1998). We 

confirmed this result for 2s white noise sounds ramping between 60 and 85dB, with a clear effect at 

sound onset despite the lower initial intensity level in up-ramps (Figure 3-2G). Rhythmic amplitude 

modulations provided another striking example, as we observed that a white noise sound modulated at 

1 Hz produces more activity than when modulated at 20Hz, although the two sounds have the same 

physical energy (Figure 3-2H).  

 

In summary, when different sounds are played above the detection intensity threshold, the amount of 

recruited cortical activity in mouse AC depends on factors other than intensity and can vary across 

different sounds. Based on this observation, we asked whether cortical recruitment could be related to 

stimulus salience in a learning task.  
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Figure 3-2. Spectro-temporal differences impact on cortical recruitment. 

a.Example field of view illustrating GCAMP6s labeling of L2/3 auditory cortex neurons. b. 
Result of automated cell segmentation run on the data acquired in the example shown in a. c. 
Example single trial responses to sounds (different colors) for two neurons (top and bottom). 
Gray bars = sound duration. d. Population responses (n = 27 sessions, 15511 neurons in 6 
mice) to Sound B (red) and A (blue). Both normalized fluorescence (light colors) and 
deconvolved (dark colors) calcium signals are shown. e. Mean deconvolved signal and 
fraction of significantly responding neurons to sounds A, B and C. Mean calcium responses to 
sound A (0.05 ± 0.03% ΔF/F.s-1, mean ± SEM) were significantly smaller than to B (0.10 ± 
0.02%  ΔF/F.s-1)  and C (0.12 ± 0.02%  ΔF/F.s-1 ; sign test, p = 0.0008 and p = 0.026, n = 27 
sessions, 15511 neurons in 6 mice). Sound B and C also activated a larger fraction of neurons 
(24 and 25 % ; two-sided Signed testacross 20 sound repetitions, p<0.05) than A (18% ; χ2 
test, p = 10-41 and 6×10-31, n = 15511). f. Population response reliability (diagonal) and 
similarity (off-diagonal) matrix for sounds A, B and C. The pair-wise discriminability value, 
computed with a linear classifier is indicated in red. g. Mean deconvolved calcium signals for 
6757 auditory cortex neurons in 12 awake mice during 29 calcium imaging sessions for 2 s 
long white noise sounds modulated in intensity between 60dB to 85dB upwards and 
downwards(mean between 0 and 0.5s after sound onset for up: 0.80 ± 0.08 % vs down: 0.62 
± 0.11 %, Signed test p =3.75×10-4, n = 29 sites, in 12 mice; mean between 0 to 2.5 s: 0.166 ± 
0.58 % vs down: 0.157 ± 0.57 %, Signed test, p = 0.034). The inset show the significantly 
different (χ2 test, p = 10-68) fraction of responsive cells (75% and 61% ; two-sided Signed test, 
p<0.05). h. Mean deconvolved calcium signals for 59590 auditory cortex neurons in 7 awake 
mice during 60 calcium imaging sessions for white noise sounds modulated in intensity at 1 
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Hz and at 20 Hz (0.357 +- 0. 032 % and 0.15 +- 0.034 % ΔF/F.s-1, signed test, p = 0.0009). The 
inset show the significantly different (χ2 test, p = 10-189) fraction of responsive cells (37% and 
29% ; two-sided Signed test, p<0.05). Error bars represent standard errors (SEM). 

3.3.2. Cortical recruitment influences learning speed 

Classically, relative salience measures are performed using an overshadowing paradigm in which two 

stimuli are conditioned together, as a compound stimulus, to an unconditioned stimulus. Then, salience 

is derived from the level of the conditioned response elicited by each stimulus component individually. 

While this approach is valid when the compound is made of stimuli from two different sensory 

modalities, two simultaneous sounds are likely to fuse perceptually, precluding measurement of their 

individual saliences with the classical overshadowing design (Brandon et al., 2000). Alternatively, 

Rescorla and Wagner’s model postulates that learning speed follows stimulus salience. We thus decided 

to test if learning speed relates to cortical recruitment, using an auditory-cued Go/No-Go task. To do so, 

water-deprived mice were first trained to visit a lick-port and to receive a water reward if they licked 

after being presented with an S+ sound. The main effect of this pre-training phase was to raise 

motivation rather than to learn sound-reward association and thus could not be used to measure 

learning speed. When mice collected rewards in at least 80% of their port visits, the Go/NoGo task was 

started by introducing a non-rewarded S- sound in half of the trials (Figure 3-3A). After a large number of 

trials, mice succeeded to both sustain licking to the S+ and withdraw from licking for the S- (Figure 3-3B), 

demonstrating discrimination of the two sounds. Importantly, as typically observed in such tasks 

(Bathellier et al., 2013), the S+ sound was rapidly associated with the lick response and the rate limiting 

factor in task learning was to associate the suppression of licking with the S- sound (Figure 3-3B). Hence, 

learning speed depends more on the properties of the S- than of the S+ sound in this task. Discrepancies 

between two stimuli X and Y can thus be measured by comparing the learning speed of the X versus Y 

Go/NoGo discrimination when X is the S- against the speed observed when Y is the S-. For example, if X is 

less salient than Y, we expect learning to be slower when X is the S-. We therefore trained eight cohorts 

of mice to compare learning speed for sounds pairs A-B, A-C, B-C and for the pair of sinusoidaly 

modulated sounds. We also used learning speed data from an earlier study for discrimination of up and 

down-ramping sounds (Deneux et al., 2016). Plotting the population learning curves for the sound pairs 

with maximum cortical recruitment differences (A-B & A-C,), we qualitatively observed that the average 
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learning speed was faster when cortical recruitment for the S- sound was larger than for the S+ sound 

(Figure 3-3C), suggesting a link between learning speed and cortical recruitment.    

 

However, looking at learning curves from individual mice, we noticed that the qualitative difference 

observed at the group level hides a more complex effect. As often observed in animal training (Gallistel 

et al., 2004) and as we previously reported for our task (Bathellier et al., 2013), most individual learning 

curves had a sigmoidal rather than exponential time course. Specifically, the curves displayed a delay 

phase with no increase in performance followed by a learning phase with a steep performance increase. 

Also, the duration of each phase was highly variable across animals as exemplified in Figure 3-3B. We 

wondered whether cortical recruitment was affecting one particular phase or both. Using sigmoidal fits 

(Figure 3-3B), we measured the delay phase duration as the number of trials necessary to reach 20% of 

maximal performance, and the learning phase duration as the number of trials necessary to go from 20% 

to 80% maximal performance. We observed across the five sound pairs tested that learning phase 

duration was systematically longer when the S- sound recruited less activity than the S+ sound (Figure 

3-3D) and a non-parametric analysis of variance showed this effect to be highly significant across all 

mouse populations tested. No systematic effect of cortical recruitment was observed for the delay phase 

(Figure 3-3D, Figure 3-8). In addition, we noticed that cortical recruitment had also an effect on inter-

individual variability. When the S- sound recruited more activity than the S+ sound, learning phase 

duration was more homogenous than for the opposite sound assignment, especially for the two sound 

pairs with a large difference of cortical recruitment (mean normalized standard deviation difference: 

93% ± 18%, mean ± SEM, n = 5 sound pairs, p = 0.008 Wilcoxon rank-sum test, Figure 3-3D-E andFigure 

3-8). Together, these results obtained over a total of 72 mice, indicated clear relationships between 

cortical recruitment and learning phase duration for the five pairs of sounds tested. It cannot be ruled 

out a priori that other, non-measured parameters of the sound representations could explain this 

dependency. Yet, in the hypothesis that these parameters would be randomly assigned to the tested 

sounds, the probability to obtain by chance a consistent result across five independent experiments 

would be only about 3% (2-5), so we expect this eventuality to be rather unlikely. 
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3.3.3. A reinforcement learning model reproduces recruitment effects 

To theoretically evaluate the generality of these results, whether they are predicted in detail by existing 

reinforcement learning models, we therefore tested a recent model of the discrimination task, extending 

the Rescorla-Wagner reinforcement learning framework to a simple but more biologically interpretable 

neuronal model (Figure 3-4A) (Bathellier et al., 2013). The model postulates that associative learning 

occurs by adjusting the synaptic weights between sensory and decision neural populations described by 

population firing rate variables. At the input, two populations are specific for the S+ and S- sounds 

respectively, which we denote as Ŝ+ and Ŝ-, and one population, Ĉ, which represents information 

common to S+ and S- trials (e.g. overlap between the S+ and S- representations or activity independent 

of sound, for example, related to visiting the lick port). Population Ĉ is an essential element of the model 

to reproduce high initial hit-rates during delayed discrimination learning (Bathellier et al., 2013). The 

decision population has two ensembles: one promoting and one inhibiting licking (Figure 3-4A). 

Adjustment of synaptic weights happens through a Hebbian learning rule modulated by Rescorla and 

Wagner’s (1972) δ-rule which gates weight updates by the reward expectation error. However, the 

employed -rule is asymmetric, meaning that the learning rate is larger by a factor v when an 

unexpected reward occurs, as compared  
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Figure 3-3. Cortical recruitment differences impacts learning phase 

duration. 
a. Schematics describing the auditory Go/NoGo discrimination task.b. Individual learning 
curves for 4 mice discriminating sounds A and C. Performance for S+ (red), S- (light blue) and 
both (black) sounds are displayed. Mice from the top row have sound A as the S- stimulus 
while mice from the bottom row have sound C as the S- stimulus. Typical learning curves 
display a delay and learning phase as shown in light gray and orange colors. c. Mean learning 
curves for different groups of mice (n = 6 for each curve) discriminating between sounds A 
and C (top) or A and B (bottom). Slower learning is observed when the S- sound recruits less 
cortical activity than the S+ sound (blue) as compared to when sound valence is swapped 
(orange). d. Mean +/- standard error for the learning and delay phase for the five 
discriminated sound pairs (A vs C, A vs B, B vs C, up- vs down ramp, 20Hz vs 1Hz modulation 
represented by blue and orange symbols). The conditions “S- recruitment > S+ recruitment” 
(blue) and “S+ recruitment < S- recruitment” (orange) are significantly different for the 
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learning phase but not the delay phase (Friedman test, p = 0.0005 indicated as *** and p = 
0.72 indicated as ns, n = 6 mice per group except for the up- and down ramps, n = 12). e. 
Cumulative distributions of learning phase durations for sound pairs A-C, A-B. Error bars 
represent standard errors (SEM). 

 

to when an expected reward does not occur. This asymmetry is crucial for capturing the fast raise of the 

hit-rate, and slower adjustment of the correct rejection-rate (Figure 3-3B). Last, synaptic updates are 

multiplicative, meaning that weight updates are proportional to the current weight value40-43. The key 

feature of multiplicative learning is that learning speed depends on the current strength of the synapses. 

Thus, the same model can have very slow learning (low weights) as in the delay phase and faster learning 

(high weights) as in the learning phase. Furthermore, this feature makes learning dynamics highly 

sensitive to the initial synaptic weights, which become important parameters that can even account for 

most of the inter-individual variability (Bathellier et al., 2013). Importantly, the activity level of the Ŝ+ 

and Ŝ- populations can be varied in the model, allowing to simulate the impact of cortical recruitment for 

example by setting either Ŝ- or Ŝ+ activity level to 2 while level for the other population is 1 (but note 

that this value can be widely varied without changing our conclusions, Figure 3-4B, Figure 3-9 & Figure 

3-10, Supplementary Note 1). 

 

We therefore wondered whether this model reproduces the observed relationships between cortical 

recruitment and mean learning speed and its variability. The dynamics of the model depend on the 

choice of its three core parameters (noise level, learning rate and asymmetry, see Methods) and of its 

initial synaptic weights, and we showed previously (Bathellier et al., 2013) that individual learning curves 

can be fitted by adjusting these parameters, even without accounting for recruitment difference. 

Nevertheless, to test if the model captures the effect of recruitment, one can use a realistic set of 

parameters and test if asymmetric recruitment produces the effects seen during the behavior. We thus 

looked at the qualitative behavior of the model using a set of parameters obtained in a previous group of 

experiments (Bathellier et al., 2013) by fitting the individual learning curves from 15 mice trained in a 

task identical to the one used in this study. This parameter set included 15 different values of the initial 

weights, and core parameters were identical for all mice, which we showed is sufficient to account for 

inter-individual variability (Bathellier et al., 2013). Based on these parameters, and systematically varying 

the recruitment values in simulations, we observed that recruitment differences were positively 

correlated to learning phase duration in the model, similar to the experimental results (Figure 3-4B). 
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Also, as illustrated when neuronal recruitment is doubled for one of the two stimuli, the model 

reproduced two other experimental observations. First, the delay phase was not significantly influenced 

by recruitment (Figure 3-4C). Second, the variability of the learning phase duration was much stronger 

when S- recruited less activity than S+ (Figure 3-4C-D). Thus, without any tuning, the model qualitatively 

reproduced the complexity of the experimental dynamics, offering an opportunity to explore possible 

mechanisms for the complex effects of neuronal recruitment on learning behavior in a precise 

theoretical framework. 

 
Figure 3-4. A multiplicative reinforcement learning model 

reproduces modulations of learning speed by neuronal recruitment 
a. Schematics describing the auditory Go/NoGo discrimination model. b. Mean +/- standard 
deviation of the difference of learning phase duration against difference in neural 
recruitment by the stimuli for the model initialized with 15 sets of initial conditions obtained 
when fitting learning curves from a previous study(Bathellier et al., 2013). The experimental 
observations of Figure 3-3D are superimposed in red.  c. Mean +/- standard errors for the 
learning and delay phases obtained with the model for a two-fold difference in cortical 
recruitment between the two stimuli.  A longer learning phase (Kolmogorov-Smirnov test, 
p=8×10-7 indicated as ***, n=15 initial conditions per group) but not delay phase 
(Kolmogorov-Smirnov test, p=0.13 indicated as ns, n=15 initial conditions per group) is 
observed when S- recruits less activity (blue) as compared to when S- recruits more activity 
than S+ (orange). d. Learning phase duration plotted against the value of the modeled initial 
synaptic weights. Same simulations and color code as in c. Significant correlations were 
observed only when S- recruits less activity (blue), and for wCe (ρ = -0.61, p = 0.015, n=15) and 
wCi (ρ = -0.70, p = 0.0034, n=15). Error bars represent standard errors (SEM).  
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3.3.4. Learning speed effects depend on initial synaptic strengths 

To understand the origin of inter-individual variability in our simulations, we plotted the learning phase 

duration against the values of the three initial synaptic weight parameters (wCe and wCi  for the Ĉ 

population, and a single initial value wSfor the four weights of the Ŝ+ and Ŝ- population, as in Figure 

3-4A). First, we observed that the initial weight between sound-specific neural populations and the 

decision populations (wS) had no correlation with learning speed duration. This was expected as wS 

mostly impact the delay phase because small initial synaptic weights lead to slow initial learning 

(multiplicative rule). After the delay phase, sufficient learning has occurred for the sound-specific 

synaptic weights to increase performance at high speed and wSdoes not influence learning speed 

anymore. Our earlier results25 showed that wSis the main determinant of the delay phase duration and 

is highly variable across mice. These inter-individual wSvariations induced large variations of delay phase 

duration masking the smaller impact of neuronal recruitment on delay phase in simulations (Figure 3-4). 

This suggests that variability in initial connectivity may explain the independence between cortical 

recruitment and delay phase duration in behavior.A second observation was that the learning phase is 

long when the initial weights wCe and wCi (non-specific population Ĉ) are small, but only when S- recruits 

less activity than S+ (Figure 3-4D). In contrast, for large weights, the recruitment differences between S+ 

and S- have no effect on learning phase (Figure 3-4D). Hence, variability in initial connectivity from non-

specific representation of the task may explain the larger variability in learning phase duration observed 

in behavior when cortical recruitment for S- is smaller than recruitment for S+ (Figure 3-3E).  

 

To better understand why the initial conditions of wCe and wCi gate the influence of neuronal recruitment 

on learning speed, we plotted the time-course of both excitatory and inhibitory connection weights for 

four combinations of recruitment and initial weights values (Figure 3-5A-D, see also Figure 3-10for the 

same analysis with a smaller recruitment ratio). These plots show that the large prolongation of the 

learning phase when neuronal recruitment is lower for S- than for S+ and when wCe and wCi are small 

(Figure 3-5D)  is due to the maintenance throughout the delay phase of low initial weights from Ŝ- and Ĉ 

populations to the No-Go population. This impacts the effective speed (multiplicative learning rule) at 

which correct rejections responses to S- are acquired during the learning phase, flattening the overall 

learning curve. In contrast, with large initial synaptic weights from the Ĉ population, more rapid S- 

rejection learning is obtained solely based on the Ĉ common population (Figure 3-5C). 
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When S- recruits more activity, learning is always fast (Figure 3-5A-B) because, in all cases, the rate 

limiting process remains the abolition of licking to the NoGo stimulus (due to learning rule asymmetry, 

see). This process is boosted by strong Ŝ- recruitment. Also, in these conditions, acquisition of the NoGo 

stimulus is independent of wCe and wCi, because the Ĉ population drives the Go response. Thus, the 

complex modulation of learning phase duration by neuronal recruitment is due, in the model, to a non-

trivial assignment of the three sensory populations to either Go or NoGo responses, based on neuronal 

recruitment distribution. Specifically, when the Ŝ- population recruits more activity, it is assigned to 

NoGo, while the Ĉ population drives the Go response. In contrast, when the Ŝ+ population recruits more 

activity, it is assigned to the Go response, and in this case, the Ĉ population drives the NoGo response. 

These different solutions of the binary discrimination problem could be seen as different strategies 

chosen by the model or eventually the animals during the learning process. The existence of multiple 

solutions to the task provides a testable, general prediction of reinforcement learning models which use 

population activity as a salience parameter (independent of the magnitude of recruitment differences, 

see analytical arguments in Supplemental Experimental Procedures). The test would be to isolate and 

drive the neurons corresponding to Ĉ in the brain. Activation of the Ĉ population alone should drive 

licking when S- recruits more activity, and should not drive licking when S- recruits less activity (Figure 

3-5,Figure 3-10).  
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Figure 3-5. The effects of neuronal recruitment in the model are 

explained by the differential adjustment of synaptic weights during 
learning. 

a. (top) Sketch of the initial synaptic weights and simulated model performance for S+ (red), 
S- (light blue) and both stimuli (black). (middle) Values of the connections to the excitatory 
(G) and inhibitory decision populations as indicated by the schematics on the left-hand-side. 
Yellow: connections from the “common” Ĉ population. Red: connections from the Ŝ+ 
population. Blue: Connections from the Ŝ- population. (bottom) Sketch of the connectivity 
pattern after and response probability after learning for the S+ (co-activation of Ŝ+ & Ĉ) and 
S- (co-activation of Ŝ- and Ĉ) reinforced stimuli as well as for the common stimulus 
component alone (Ĉ, yellow). Simulation parameters: X = [1 ; 1; 2], α= 0.01, σ = 0.6195, v = 6, 
wCi = 1, wCe= 2, and wS= 0.01. b. Same as a, but with wCi = 0.1, wCe= 0.2. c. Same as a, but with  
X = [1 ; 2 ; 1]. d. Same as c, but with wCi = 0.1, wCe= 0.2. 

3.3.5. Recruitment determines learning strategy 

Testing this prediction was impractical with our sound-based Go/NoGo discrimination protocol, because 

the neurons encoding information common to S+ and S- trials (Ĉ population) likely code for multiple 
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cues, including (i) the overlap of S+ and S- representations and (ii) all cues related to the decision to visit 

the lick port, and thus cannot be isolated. Therefore, we decided to test the model predictions in an 

artificial but better controlled experiment in which head-fixed mice had to discriminate optogenetically-

driven cortical ensembles. We used a custom-made video-projector setup (Dhawale et al., 2010) to 

project precise 2D light patterns through a cranial window placed above the AC in Emx1-Cre x Ai27 mice 

(Figure 3-6A-B, Figure 3-11). Using intrinsic imaging, we identified the main tonotopic fields of mouse AC 

(Figure 3-6C) (Bathellier et al., 2012; Moczulska et al., 2013) and thereby reliably positioned optogenetic 

stimulation spots in homologous regions across mice (Figure 3-6C). We defined three circular 

optogenetic stimulation spots out of which we constructed two stimuli. One of the three spots, the Ĉ 

spot, was common to the two S+ and S- stimuli and the two other spots corresponded to the stimulus-

specific neuronal populations Ŝ+ and Ŝ- (e.g. Figure 3-6B). Thus, the Go-trial cue consisted of 

simultaneous activation of Ŝ+ and Ĉ and the NoGo-trial cue consisted of simultaneous activation of Ŝ- 

and Ĉ. Furthermore, cues common to S+ and S- related to licking port visits in the sound task were 

eliminated in the head-fixed task design, as mice did not initiate the randomly interleaved trials. Thus the 

Ĉ spot was the only cue common to Go and NoGo-trials. We doubled the diameter of either the Ŝ+ or the 

Ŝ- spot to create a difference in cortical recruitment between the two input representations. 

Electrophysiological measurements of the population firing rate elicited by the small and large spots 

showed that the recruitment difference between the stronger and weaker stimuli was about 69 % 

(Figure 3-11), comparable with the population recruitment differences observed for sounds (Figure 3-4B; 

Figure 3-11). Also, we measured that the large disk activates about 2.5 more neurons than the small disk 

(Figure 3-11). Given that the Ĉ spot has a small diameter, we could evaluate the fraction of cells 

commonly activated by the S+ and S- stimuli within the cells activated by S+ and S- as 1 / (1+1+2.5) ≈ 

22%, similar to the fraction of cells commonly activated by sounds (e.g. 18%, 18%, 23% for sound pairs A-

B, A-C, and B-C, S.E.M = 0.3%, binomial distribution). Thus the artificial stimuli, although not identical to 

sound responses had comparable characteristics.Mice were then initially trained to obtain a water 

reward by licking after the coincident activation of the Ŝ+ and Ĉ spot. When 80% performance was 

reached in this stage, the discrimination training started. Mice kept licking in the presence of the Ŝ+ spot 

and learned, within hundreds of trials to avoid licking in the presence of the Ŝ- spot (both activated 

together with Ĉ, Figure 3-6D), reaching a steady state performance of 94.7% ± 4.5% correct trials (hit rate 

93.9% ± 3.3%, false alarm rate 4.5% ± 1.3%, n=8 mice, see Figure 3-6E-F). Importantly, in this task setting, 
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the stringent definition of the common Ĉ population, activated during the initial motivation training, 

likely resulted in the systematic establishment of strong initial connections for this population at the 

beginning of the discrimination training, leading to homogenous durations of the learning phase (212 ± 

117 trials for the large Ŝ- vs 260 ± 220 for the small Ŝ-, p = 0.26, Wilcoxon rank-sum test, see also Figure 

3-6D) independent of recruitment (Figs. 4-5). 

 

However, once mice had learned the behavioral task, we measured their response to Ĉ activation alone 

in catch trials that were not rewarded (catch trial probability = 0.1; 15 catch trials per mouse). In the 

group of mice that had a larger Ŝ- spot, we observed that activation of Ĉ elicited strong licking responses 

(84% ± 6% response probability, n = 6 mice, Figure 3-6E). In contrast, in the group of mice that had a 

larger Ŝ+ spot, activation of Ĉ elicited no licking response (2% ± 1% response probability, n = 7 mice, 

Figure 3-6F). Note that these effects are unlikely to be caused by inhibition of Ĉ when paired with the 

large Ŝ+ or Ŝ- spot, as no inhibition from the larger spot was observed at the location of Ĉ in calibration 

experiments (Figure 3-11). In addition, behavioral responses to Ŝ+ or Ŝ- alone were compatible with our 

model (Figure 3-6E, f vs Figure 3-5). By confirming the model’s predictions, these results demonstrate, in 

a causal manner, that cortical recruitment affects the choice of which stimulus is associated to a 

particular response. Even if simple in essence, this result shows that cortical recruitment is a parameter 

influencing learning, in a manner compatible with the role of a salience parameter in reinforcement 

learning models. 
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Figure 3-6. Discrimination training of multi-spot optogenetic 

patterns reveals a choice of learning strategy depending on the 
level of cortical recruitment. 

a.Schematics of the optical setup to project arbitrary 2D light patterns onto the surface of 
auditory cortex. Blue light patterns from a Digital Micromirror Device (DMD) are collimated 
and deflected through the objective lens by a beam splitter. The surface of the cranial 
window can be simultaneously imaged by a CCD camera using external LEDs (green for blood 
vessel, red for intrinsic imaging).  b. Examples of light patterns used for the discrimination 
task. Scale bars: 600 μm. c. Tonotopic maps obtained with intrinsic imaging for two mice, and 
localization of the three optogenetic stimulation spots in the same high, low and mid 
frequency fields. d. Four example learning curves for the optogenetic discrimination task. 
Grey: smaller Ŝ- ; color: larger Ŝ-. e. (left) Light pattern in the task in which the S- stimulus has 
higher level of cortical recruitment (Ŝ- >Ŝ+). Ĉ = common component of S+ and S- stimuli. 
(right) Response probability for the two learned target stimuli (Ĉ& Ŝ+ vs Ĉ& Ŝ-), for the 
presentation of the common part of the stimuli alone (Ĉ, yellow), for the specific parts of the 
stimuli alone (Ŝ+; Ŝ-) and in absence of stimulation (blank). 10 to 15 catch trials per mouse. 
Mean and individual data points, n = 6 mice (except Ŝ+ & Ŝ-, n=2 mice). Gray dots: single 
animals.  f. Same as e, but with Ŝ+ larger than Ŝ-. Mean and individual data points, n=7 mice 
(except Ŝ+ & Ŝ-, n=3 mice). Scale bars: 600 μm.Source data are provided as a Source Data file. 
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3.4. Discussion 

Combining behavioral measurements, large scale two-photon imaging, optogenetics and theoretical 

modeling, we have shown that sounds of different quality but equal mean pressure levels can recruit 

highly variable levels of neuronal activity in AC, measured as the mean amount of activity in a 

representative subsample of neurons. We showed that cortical recruitment levels correlate with learning 

speed effects in a Go/NoGo task as expected if neuronal recruitment corresponds to stimulus salience. 

Moreover, these effects can be precisely reproduced by a reinforcement learning model of the task. 

Finally, training mice to discriminate optogenetically evoked cortical patterns, and manipulating these 

patterns, we showed that neuronal recruitment determines which elements of the cortical 

representation are selected to drive each conditioned action. This corroborates, in a causal manner, the 

idea that cortical recruitment is a neuronal correlate of stimulus salience.  

 

Several studies indicate that cortical recruitment can vary across stimuli, even when played at the same 

sound pressure level (Deneux et al., 2016; Kanold et al., 2014; Wong and Schreiner, 2003). These 

discrepancies may have multiple origins. First, it is well known that the mouse cochlea is more sensitive 

in its middle frequency range (Zheng et al., 1999), which could explain the overrepresentations of sounds 

in this frequency range (10-30 kHz) in cortex (Kanold et al., 2014). In this case, cortical recruitment is 

expected to reflect recruitment throughout the auditory system, making it a good proxy for sound 

salience independent of whether the discrimination task requires AC (Kato et al., 2015; Kuchibhotla et 

al., 2017; Znamenskiy and Zador, 2013)or does not require it (Gimenez et al., 2015; Pai et al., 2011; 

Rybalko et al., 2006). But a second source of recruitment differences may be the nonlinearities of cortical 

representations (Atencio et al., 2008; Deneux et al., 2016; Kuchibhotla and Bathellier, 2018; Nelken, 

2008). For example, a recent study suggested that cortical response patterns can be invariant to changes 

in intensity (Sadagopan and Wang, 2008). In this case, cortical recruitment should also depend on the 

higher level features composing sound representations and on how broadly these features are 

represented in cortex.  

 

The idea that the amount of neuronal activity recruited by a stimulus influences behavior, has been 

proposed in different contexts. For example, several studies indicate that attention can boost neuronal 
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firing associated to behaviorally relevant stimuli (Desimone and Duncan, 1995; Fritz et al., 2007; Goard 

and Dan, 2009) and thereby make them more discriminable from other stimuli (Zhang et al., 2014). Also, 

several theoretical studies have proposed that attention impacts learning (Mackintosh, 1975; Pearce and 

Hall, 1980) and some reinforcement learning models can account for such effects by dynamically 

weighting stimuli according to their predictive relevance (Niv et al., 2015). It will be an interesting 

research avenue to analyze the relative contribution of bottom-up sound encoding and attentional top-

down mechanisms to the level of cortical recruitment. Earlier reports, using direct micro-stimulation of 

the cortex, showed that low levels of neuronal recruitment can impact detection probability (Huber et 

al., 2008; Houweling and Brecht, 2008). Here, we show that neuronal recruitment for stimuli that are 

well beyond detection threshold still impact the learning process. Even if such effects are predicted by 

the Rescorla and Wagner’s model, capturing their details requires a refinement of the original model 

(Rescorla and Wagner, 1972). In particular, we had to introduce a more realistic multiplicative learning 

rule which renders learning speed not only dependent on neuronal recruitment, but also on the current 

synaptic strength. This property has important consequences. First, it introduces variability in the 

relationship between recruitment and learning speed, through large inter-individual variations of the 

initial weights for the synapses involved in the task. Second, the multiplicative rule makes learning speed 

proportional to the product of neuronal recruitment and connectivity, allowing for more robustness, by 

compensating weak neuronal recruitment with stronger initial connections (see Supplemental 

Experimental Procedures). In our experiments, this phenomenon tends to stabilize learning speed, 

explaining why neuronal recruitment does not always impact the learning phase duration, except for 

particular initial conditions for which compensation occurs too slowly (Figs. 3-5).  

 

Strong pre-established connections can lead to fast learning for specific stimuli with innate meaning. In 

this study, we have shown an effect of cortical recruitment on learning speed for five different pairs of 

sounds which had no particular meaning to the animal. This does not exclude the possibility that some 

sounds, in particular, sounds with learned or innate meaning would show a different relationship. For 

example, pup calls are extremely salient to mothers but trigger little activity in cortex (Marlin et al., 

2015). This could be due to strong pre-existing wiring between cortical neurons responding to pup calls 

compensating for limited recruitment. So, even if, as we show, cortical recruitment plays a role in the 

salience of a sound, general theories of salience should also account for potential a priori meaning of 
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stimulus, via pre-existing connections, as simple extensions of our model would suggest, or via more 

complex cognitive processes assigning value to the sounds. 

 

The complex dynamical phenomena described in our study make learning speed measurements a more 

complicated proxy for stimulus salience than the overshadowing protocol which relies on steady state 

behavior, after the dynamical phase of the association. However, it allows the comparison of salience for 

stimuli from the same sensory modality. Because our extended multiplicative model only diverges from 

the Rescorla-Wagner model for the transient dynamical part of the association process, it reproduces 

overshadowing effects (Bathellier et al., 2013), and can also predict how elements of sensory 

representations are assigned to different conditioned responses in a more complex task setting.  Here, 

by conditioning mice to compound stimuli composed of multiple optogenetically activated neuronal 

ensembles (Figure 3-6), we show, in line with reinforcement learning models, that the brain establishes 

its stimulus discrimination strategy based on the amount of activity recruited by the different 

subpopulations representing the stimuli.  
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3.5. Materials and methods 

3.5.1. Animals 

All mice used for imaging and behavior were 8 to 16 weeks old C57Bl6J and GAD2-Cre (Jax #010802) x 

RCL-TdT (Jax #007909) mice. Mice used for optogenetics were 8 to 16 weeks old males and female 

obtained by crossing homozygous Emx1IRES-cre (Jax #005628)mice with Ai27 (Jax # 012567)mice to obtain 

expression of Td-Tomato-tagged channelrhodopsin (ChR2) in excitatory neurons of the cortex. All animal 

were group housed. All procedures were approved by the Austrian laboratory animal law guidelines 

(Approval #: M58 / 02182 / 2007 /11; M58 / 02063 / 2008 /8) and the French Ethical Committee 

(authorization 00275.01). 

3.5.2. Two-photon calcium imaging in awake mice 

At least three weeks before imaging, mice were anaesthetized under ketamine medetomidine. The right 

masseter was removed and a large craniotomy (~5 mm diameter) was performed above the AC. We then 

performed three to five injections of 200nL (35-40nL.min-1), rAAV1.Syn.GCaMP6s.WPRE virus obtained 

from U. Penn Vector Core (Philadelphia, PA) and diluted 10 times. The craniotomy was sealed with a 

glass window and a metal post was implanted using cyanolite glue and dental cement. At least three 

days before imaging, mice were trained to stand still, head-fixed under the microscope for 20 to 60 min 

per day. Then mice were imaged one to two hours per day. Imaging was performed using a two-photon 

microscope (Femtonics, Budapest, Hungary) equipped with an 8kHz resonant scanner combined with a 

pulsed laser (MaiTai-DS, SpectraPhysics, Santa Clara, CA) tuned at 920 nm or 900nm depending on the 

experiments. Images were acquired at 31.5Hz. All sounds were delivered at 192 kHz with a NI-PCI-6221 

card (National Instrument) driven by Elphy (G. Sadoc, UNIC, France) through an amplifier and high 

frequency loudspeakers (SAI and MF1-S, Tucker-Davis Technologies, Alachua, FL). Sounds were calibrated 

in intensity at the location of the mouse ear using a probe microphone (Bruel&Kjaer). In a first 

experiment, we played three 70 ms complex sounds at 73dB SPL preceded by two 50 ms 4kHz pure tones 

(inter-tone interval: 375 ms) sounds as in the behavioral task. The three sounds were played in a random 

order and repeated 30 times. In a second experiment, we played white noise sounds ramping -up or -
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down in intensity between 60dB and 85dB SPL during 2s. The ramps were repeated 20 times. In a third 

experiment, we played 20 repetitions of white noise sounds modulated in intensity at 1 and 20 Hz. 

3.5.3. Data analysis 

Data analysis was performed using Matlab and Python scripts. Motion artifacts were first corrected 

frame by frame, using a rigid body registration algorithm. Regions Of Interest were selected using a semi-

automated hierarchical clustering algorithm based on pixel covariance over time as described in30(see 

detailed method below). Neuropil contamination was subtracted65 by apply the following equation: Ftrue 

(t) = Fmeasured (t) – 0.7 Fneuropil (t), then the change in fluorescence (∆F/F0)was calculated as (F-F0) / F0, 

where F0 is estimated as the minimum of the low-pass filtered fluorescence over ~40 s time windows 

period. To estimate the time course of firing rate, the calcium signal was temporally deconvolved using 

the following formula: r(t) = f’(t) + f(t) / τ in which f’ is the first time derivative of f and τ the decay 

constant set to 2 seconds for GCaMP6s. For the complex sounds, the population response was computed 

as the mean deconvolved signal across all neurons from sound onset to 500ms after sound offset. For 

the ramps, because the behavioural discrimination response typically occurs within few hundreds of 

milliseconds after the ramp onset34, the mean population response was evaluated from 0 to 500ms after 

sound onset. To estimate the discriminability of two sounds based on cortical population responses, 

linear Support Vector Machine classifiers were trained to discriminate population activity vectors 

obtained from 20 presentations of each sound (training set), and were tested on activity vectors 

obtained for 10 independent presentations of the same sounds (test set).     

3.5.4. Patterned optogenetics and intrinsic imaging 

To flexibly activate different activity patterns in the mouse AC, we used a computer driven (VGA input) 

video projector (DLP LightCrafter, Texas Instruments) which includes a strong blue LED light source (460 

nm) and from which we have removed the objective. To project a two-dimensional image onto the AC 

surface (Figure 3-6A-B), the image of the micromirror chip is collimated through a 150 mm cylindrical 

lens (Thorlabs, diameter: 2 inches) and focused through a 50 mm objective (NIKKOR, Nikon). Imaging of 

the cortex at the focal plane is obtained by side illumination with a green (525 nm, blood vessels) or far 

red (780 nm, intrinsic imaging) LED. The light collected by the objective passes through a dichroic 
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beamsplitter (long pass, >640nm, FF640-FDi01, Semrock) and is collected by a CCD camera (GC651MP, 

Smartek Vision) equipped with a 50 mm objective (Fujinon, HF50HA-1B, Fujifilm). Note that the image 

projected to the cortical surface corresponds to a narrow cone of light extending below the surface and 

potentially activating ChR2 expressing neurons throughout the cortical depth.  Intrinsic imaging was 

performed in isoflurane anesthetized mice (1.1% delivered through SomnoSuite, Kent Scientific). To 

compute intrinsic signal maps we divided the red light image of the cortical surface after the onset of a 

stimulation (average over 2 s) with 2s long pure tones (4, 8, 16 and 32kHz) by the mean image 

immediately before stimulus onset. 

3.5.5. Calibration of optogenetic 

For calibration of optogenetic stimulation, a small aperture was drilled in the cranial window with a 

diamond-coated dental drill during isoflurane anesthesia. 30 minutes after surgery, 4x8 silicon probes 

(Neuronexus) were implanted at a ~35° angle in AC in the awake head-fixed mouse. Recordings were 

performed at three different depths (400, 600 and 800 µm) using a pre-amplifier and multiplexer 

coupled to a USB acquisition card (Intan Technologies). Sounds and light stimulations were randomly 

presented at 2.5 sec and each repeated 10 times. Single unit spikes were detected and sorted from 

multi-unit spikes using the Phy Suite (https://github.com/kwikteam/phy). Light stimuli consisted of small 

and large disk (360 µm and 720 µm diameter) presented at different positions of a two-dimensional grid 

centered on the probe location (Figure 3-11). For small disks, the grid included 5x8 locations with a 

regular x y∆ = ∆ = 360 µm spacing. For large disks, the grid included 3x4 locations with a regular spacing 

of 480 µm. Population firing rate elicited by a single disk was estimated as the integral ,x y
Locations

r x y∆ ∆∑  

of the responses ,x yr  to the disk centered at locations that were within in the extent of the smaller of the 

two grids (large disks: all locations, extent 1440×1920 µm; small disk: 4x5 locations, spanning 1440×1800 

µm). The integrals for big and small disks were normalized by 0 0x y∆ ∆ = 360×360 µm2. The overall 

fraction of responsive neurons over the extent of the smaller grid (see firing rate) was computed as 

( )_
,

( , ) /responsive cells locations cells
x y

N x y N N
 

× 
 
∑ , where _ ( , )responsive cellsN x y  is the number responsive cells 

at each disk location, locationsN is the number of locations and cellsN the number of recorded cells.   
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3.5.6. Go/NoGo discrimination behavior 

Mice were water-deprived and trained daily for 200 to 300 trials. Mice first performed 4 habituation 

sessions to learn to obtain a water rewards (~5 µl) by licking on a spout over a threshold after the 

positive stimulus S+. After habituation, the fraction of collected rewards was about 80%. The learning 

protocol then started in which mice also received a non-rewarded, negative sound S- for which they had 

to decreasing licking below threshold to avoid an 8 s time-out. For the freely moving complex sound 

discrimination, S+ and S- sounds consisted of two 4 kHz pips (50 ms) followed by one of the three 70 ms 

complex click shown in Figure 3-1A. The interval between the offset and onset of the pips and click was 

375 ms. Licking was assessed 0.58 s after the specific sound cue in a 1 s long window by an infrared beam 

at the spout. For the intensity ramp discrimination, licking was assessed in a 1.5 s window after sound 

offset. In both cases, licking was considered above threshold if the infrared beam in front of the licking 

tube was broken during 75% of the measurement time-window. Positive and negative sounds were 

played in a pseudorandom order with the constraint that exactly 4 positive and 4 negative sounds must 

be played every 8 trials. For learning curves, performance was measured as the fraction of correct 

positive and correct negative trials over bins of 100 trials. For the optogenetically-driven, head-fixed 

discrimination task, the S+ and S- stimuli were each composed of two disks of blue light (465 nm) flashing 

at 20 Hz for 1 s. One of the two disks (noted Ĉ) was common to S+ and S- stimuli, the other disk was 

condition-specific. The three disk locations were chosen in similar tonotopic locations across mice based 

on intrinsic imaging maps. They were precisely re-positioned for every training session using an 

automated registration procedure based on blood-vessel patterns. A strong masking light was used to 

prevent the animal from using visual cues in the task. The common disk was 360 µm in diameter. In one 

set of mice, the disk specific to S- was 720 µm in diameter, while the S+ specific disk was 360 µm in 

diameter. In the other set of mice, sizes of the specific disks were swapped. Head-fixed mice performed 

200 to 300 trials per day with an inter-trial interval randomized between 3 s and 7 s. Individual licks were 

detected through an electric circuit connecting the mouse and the lick tube. Then, each trial was started 

only if the mouse was not spontaneously licking for at least 3 s (in addition to the inter-trial interval). 

Mice were first trained to respond to the S+ stimulus by producing at least 3 to 5 licks (depending on the 

mouse) to get the 5 µL water reward. When the mouse could collect more than 80% of the rewards, the 

S- stimulus was introduced. Licking above threshold after S- was punished with a 7 s timeout. 
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3.5.7. Reinforcement learning model. 

The model has been described extensively in a previous publication25. In short, it is composed of three 

sensory units (Ŝ+, Ŝ- and Ĉ, representing populations of neurons) whose activity described by a three-

dimensional vector Xand which are connected to a simple decision circuit (Figure 3-4A). Cortical 

recruitment is modeled by changing the firing value of the sound units. When the S- stimulus recruits less 

activity than the S+ stimulus, the input vectors are: XS+ = [1 0 2] or XS- = [1 1 0]. When S- recruits more 

activity than S+, the input vectors are: XS+ = [1 0 1] or XS- = [1 2 0].  

 

The decision circuit is composed of all-or-none response unit (y = 0 or 1) which linearly sums the three 

sensory inputs (representing synaptic populations) under the form of three direct excitatory connections 

and of a graded feed-forward inhibition from a virtual inhibitory unit in fact equivalent to three direct 

inhibitory connections. The output of model is described by a single equation for the decision unit: 

 

E I( . . )y θ ξ= − −W X W X      (1) 

 

in which θ  is the Heaviside step function. WE and WIare three-dimensional positive vectors describing 

the excitatory synaptic weights from the sensory units to the decision and inhibitory units respectively. 

The variable ξ  is a Gaussian random noise process of unit variance which models the stochasticity of 

behavioral choices.  

Based on the action outcome (R = 1 for a reward, R = -1 for no reward), the learning rule for the synaptic 

weights is implemented as: 

 

E E E I[ ( ). ]f R yδ α σ= − −W W W W X Xe       (2) 

I I E I[ ( ). ]f R yδ α σ= − − −W W W W X Xe      (3) 

 in which e  is the Hadamard (element-wise) product implementing the multiplicative rule, yxr  is a 

Hebbian term, α  is the learning rate and σ is a parameter related to the noisiness of the model and 

setting its asymptotic performance. To account for the faster improvement of performance for rewarded 

as compared to non-rewarded trials, positive expectation errors are more strongly weighted than 

negative ones, thanks to the asymmetric function [ ]f u u=  if  0u ≤  and [ ]f u uν=  if 0u > . The 
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parameter ν is typically larger than 1, consistent with the activity of  basal ganglia dopaminergic 

neurons in mice(Cohen et al., 2012)and monkeys(Schultz et al., 1997) coding for reward expectation 

error.  

As described above, the equations of the model are stochastic due to the Gaussian random noise process 

ξ . To compute the response probability estimates plotted throughout the study, we used a previously 

established probability equation (Bathellier et al., 2013), valid for learning dynamics much slower than 

fluctuations (ergodic approximation). The probability to make a lick response given the input vector S+X

or S-X  is: 

 

S+|S-
S+|S- S+|S-

.1( 1| ) 1 erf
2 2

p p y
 ∆  

= = = = +  
  

WX
X X     (4) 

 

 where E Iw w w∆ = −
r r r

 represents now the average observed values of difference between the 

excitatory and inhibitory connections. In addition, the plasticity equations become: 

 

( )E E S+ S+ S+ S- S- S-[1 . ] [ 1 . ]
2

f p f pαδ σ σ= − ∆ + − − ∆W W W X X W X Xe   (5) 

( )I I S+ S+ S+ S- S- S-[1 . ] [ 1 . ]
2

f p f pαδ σ σ= − − ∆ + − − ∆W W W X X W X Xe   (6) 

3.5.8. Statistical tests 

Unless otherwise specified, all quantifications are given as mean ± standard error (SEM). To statistically 

assess the differences between paired measurements (e.g. activity for two different sounds elicited in 

the same neuronal populations) we used the non-parametric Signed test. To compare two sets of 

measurements (e.g. delay and learning phase duration for two groups of mice) we used the non-

parametric Wilcoxon rank sum test. Assessment of the differences in the fraction of responsive neurons 

for different sounds was done with the χ2 test which evaluates differences in the distributions of two 

binary variables. All tests are two-sided. No data was excluded from the analysis sample.  
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3.5.9. Data and software availability 

All datasets, analysis software and codes for running the simulations of our model are freely available on 

the Dryad Digital Repository (http://datadryad.org/) doi:10.5061/dryad.47h8t87 or on 

https://www.bathellier-lab.org/downloads.  
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3.8. Supplementary figures 

 
 

Figure 3-7. Cortical recruitment differences are robust across mice and 
experiments 

a.Localization and horizontal extent of the imaging fields-of-view (red squares) in one of the 
imaged mouse. The 1x1 mm fields-of-view were localized with blood vessels patterns (white 
lines). The auditory cortex is identified by subtracting intrinsic imaging responses to 4kHz 
(black colors) and 32 kHz (white colors) tones revealing the main tonotopic gradients.  
b.Responses of neural population recorded in each of the 6 awake mice included in the 
averages shown in presented in Figure 1 (activity is measured with GCAMP6s). Responses are 
measured as mean deconvolved calcium signals during the entire duration of the response 
(sound duration +0.5s). Normalization in obtained by subtracting and dividing with response 
to sound A. The distribution of responses to B and C are significantly above zero (n=6 mice, 
Wilcoxon signed rank test, p=0.031 for B and C) c. Average population activity in OGB1 
labelled neurons imaged with two-photon microscopy in 7 isoflurane anesthetized mice (28 
population, 1994 neurons) for sounds A, B and C. Mean ± SEM, for A: 3.1176 ± 0.3726 AP.s-1,  
B: 5.4527  0.4982 AP.s-1, C:  6.3453 ±  0.4978 AP.s-1. Responses to sound B and C are 
significantly different from A, but not from each other Wilcoxon rank sum test, p=0.0012, 
p=1.5×10-5,  p=0.31. Error bars represent standard errors (SEM). 
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Figure 3-8. Impact of cortical recruitment on learning and delay phase 
durations. 

a. Mean +/- standard error of the difference of learning (left) and delay (right) phase 
durations plotted against the difference in neural recruitment by the stimuli. Correlation 
coefficients: 0.63 (p=0.24, n=5) for the learning phase, 0.32 for the delay phase (p=0.60, n=5). 
Note that high correlations are expected to occur by chance for low sample size. b. 
Cumulative distributions of learning phase durations for sound pairs B-C, for the up- (orange 
symbol) and down-ramp (blue symbol) and for the 1 Hz(orange symbol) and 20Hz (blue 
symbol) modulated sounds. 
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Figure 3-9.The impact of neuronal recruitment on learning 

speed depends on the initial strengths of synaptic connections 
in the model 

a. Normalized learning phase duration difference (duration S- with more recruitment - 
duration S- with more recruitment)/(duration S- with more recruitment) is color-coded and 
plotted against the cortical recruitment ratio of the discriminated stimuli and the strength of 
the initial inhibitory and excitatory connection to unspecific cues (wCi and wCe, same value for 
both). From left to right the value of the asymmetric learning rate parameter v is increased. 
Simulation parameters: wS = 0.01, α= 0.01, σ = 0.6195. b. Same as a, but varying only the 
initial inhibitory (left) or excitatory connection (right) while the other connection is kept 
constant at value 1. c. Same as b, but with the non-varied initial connection kept at a constant 
value of 0.01. d. Same as a, but now with initial connectivity from sound stimuli wS = 1 such 
that there is no delay phase. In all plots, the recruitment ratio is equal to the larger of the two 
saliency values.    
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Figure 3-10. The effects of neuronal recruitment in the model do 
not crucially depend on the magnitude of recruitment 

differences. 
Same simulations asinFigure 3-5, butwith a ratio of recruitment between the least and the 
most active stimulus equal to 1.4 (corresponding to the ratio of numbers of recruited 
neurons by sounds C and A) instead of 2 (chosen according to the ratio of population firing 
rates for sounds C and A). Simulation parameters: X= [1 ; 1; 1.4], α= 0.01, σ = 0.6195, v= 6, wCi 
= 1, wCe= 2, and wS= 0.01. b. Same as a, but with wCi = 0.1, wCe= 0.2. c. Same as a, but with X = 
[1 ; 1.4 ; 1]. d. Same as c, but with wCi = 0.1, wCe = 0.2. 
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Figure 3-11. Cortical responses to patterned optogenetic stimulations. 
a. Picture of the electrophysiolocal experiment setting. A 4-shanks silicon probe (sketched) is 
inserted with a shallow angle through a hole under the glass window (curved dashed line). 
The rectangle indicates the area covered by the videoprojector. b. Example waveform 
(bottom left) and spike train autocorrelogram (top left) of a single unit. An array of 3 x 4 
stimulus locations (spacing 480 µm) was probed to reconstruct the spread of activity for the 
large disk (red, top right), and 4 x 5 locations (out of 5 x 8) were selected for the small disk in 
order to cover a similar extent as the grid of large disk centers. Example raster plots for two 
locations are shown at the bottom right. c. Mean response time course for all selected 
locations and single units (160 single units, 2 mice, 5 recording locations), for the small (light 
blue) and large (dark blue) disk. d. Integral of population (bars) and single units (gray dots) 
firing rate computed by summing over the grids of stimulus location for the small and large 
disk, in order to estimate the total response elicited by one disk across auditory cortex. The 
small disk elicits about 3 times less activity than the large disk (small 13.7 ± 2.0 AP.s-1; large: 
42.3 ± 5.7 AP.s-1, n = 160 cells, in 2 mice). Thus, the recruitment difference (as measured for 
sounds in Figure 3-4B andFigure 3-8A) between the strong (1 small + 1 large disk) and weaker 
(2 small disks) stimuli is equal to 2*(Sstrong-Sweak)/(Sstrong+Sweak) = 69%. e. Average fraction of 
responsive neurons over the 160 neurons recorded across the same range of grid location 
centers for the small and large disks. Grey dots indicate the fraction of responsive neurons 
for individual locations. The small disk activated about 2.5 times less neurons than the large 
disk (small 10% ± 2%, n = 20 locations; large: 25 ± 3 %, n = 12 locations). Thus, the 
recruitment difference between the stronger and weaker stimuli is equal to 55%. f. Average 
activity recorded at the relative position of the Ĉ spot (1 mm away, Figure 3-6) with respect 
to the center of the large disk (estimated as the stimulus location that elicits the best 
response) before large disk stimulation (baseline) and during stimulation (stimul.). A residual 
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positive response is observed at the Ĉ spot location (baseline 0.87 ± 0.12 AP.s-1, stimul. 1.89± 
0.22 AP.s-1, n = 160 cells). Error bars represent standard errors (SEM). 
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4. General discussion 

Throughout this thesis, I have treated the role of later stages of the auditory system in sensory based 

decisions and learning processes in parallel. One of the aims of this section is to better link the concepts 

emerging from our two studies and propose new perspectives to feed future avenues of research.  

4.1. Learning and remodeling of auditory cortex 

Learning involves the correct extraction of behaviorally relevant stimulus features to generate the 

appropriate action and maximize reward. Here we use a simple associative learning paradigm to study 

different learning principles employed in auditory sensory processing. Learning and perceptual sensory 

decisions involve and generate structural changes in sensory cortices. These changes are thought to be 

an essential substrate for learning and for the expression of amemory trace. Different 

electrophysiological studies as well as more recent targeted two photon calcium imaging experiments, 

have highlighted that these individual neuronal changes through learning increase a neuron’s ability to 

discriminate between sensory stimuli (e.g. Chu et al., 2016; Polley, 2006; Poort et al., 2015). These 

learning related changes at the single neuronal level, theoretically improve an animal’s performance 

during a perceptual decision task (Makino et al., 2016). Particularly for audition, a vast literature exists 

showing the remapping of cortical features representations induced by learning, even for a simple pure 

tone detection task. Cortical remapping or features reorganization has also been observed during a 

sustained increment of neuromodulatory inputs (e.g. Bakin and Weinberger, 1996) as well as via 

targeted cortical micro-stimulations directly into AC (e.g. Maldonado and Gerstein, 1996). In some way, 

these observations are counterintuitive with one of our first and compelling results about the 

dispensable role of AC for simple pure tones discriminations (see page 60 and Figure 2-2). 

 

In more detail, studies in non-human primates, as also in rodents, have shown the existence of a strong 

correlation between learning and an expansion in the cortical representation for the sound used to 

trained the subjects, even for a simple frequency detection task (Polley, 2006; Recanzone et al., 1993; 

Weinberger, 2007). These results have also been observed in other sensory systems for their 

corresponding sensory features (Poort et al., 2015; Wiest et al., 2010). These non-transient changes in 
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coding of a single sensory dimension after learning, are usually referred to as like ‘representational 

plasticity’ (RP) (Weinberger, 2015). In the auditory system, substantial gain in the tonotopic 

representations for frequency detection thresholds and tuning bandwidth sharpening has been 

observed. These changes would confer an increase detectability and acuity towards the trained 

frequency. Also others sound parameters have been tested and given similar results,examples being 

repetition rate(Bao et al., 2004),preferred stimulus intensity (Polley, 2006) or direction of frequency 

modulation(Ohl et al., 2001). In another line of experiments,Bieszczad and Weinberger (2010) observed 

that RP is dependent on the strategy that the animals use to solve a sounddetection combined withthe 

determination of sound duration.In their task, thirsty rats had to bar press (BP) to collect a water reward 

during the presentation of a pure tone. Animals could adopt two strategies to obtain the maximal 

amount of rewards, (i) BP until the end of the sound or (ii) bar press until the presentation of an alarm 

light indicating the end of the trialwhich gives a ‘grace period’ after sound offset. BPs during the Inter-

Trial-Interval (ITI) were punished with a long time out period. Consequently, animals that used the first 

strategy, paid more attention to the onset and offset of the sound, while the other group paid attention 

to the onset of the sound but they keptpressing after sound offset until the appearance of the warning 

light(Bieszczad and Weinberger, 2010b). This change in strategy lead to different results were only the 

animals with the ‘grace period’ and alarm light, developed RP for the frequency of the pure tone used to 

trained the animals (Bieszczad and Weinberger, 2010a). Theseresults suggest that the change or 

reorganization of the tonotopic field in AC does not only depend on the pairing of a sound with a reward 

but also on the learning strategy used by the animalstogether with contextual factors, which suggests 

limitations about the scope of those observations. Artificial manipulations of brain circuitshave tackled 

this issue and tried to induced RPoutside of a behavioral setup-up in orderto show that tonotopic 

remappingis not only related to learning. Intra-cortical micro-stimulations (ICMS) experiments 

performed directly into the AC,which have been shown to affect the cortical organization by modulating 

nearby neuron’s receptive fields towards the center of the micro-stimulated area, producingsimilar 

reorganizations thanthe learning-induced changes in the tonotopic field, corroborating the 

multidimensionality and scope of this kind of results (Maldonado and Gerstein, 1996; Talwar and 

Gerstein, 2001). 

 

Learning and memory formation cannot be accessed directly but only inferred from behavioral changes. 

From the coding stand point it is not because a change in the tuning curve of a particular neuron are 
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observed that these effects are causal to learning and that animals really used that sensory ‘upgrade’ to 

perform a sensory- based decision. Also contrary to the previously described experiments and results, 

several observations of an auditory memory formation without AC remapping or a sounds-related area 

expansion have been reported (Galindo-Leon et al., 2009; Gdalyahu et al., 2012; Shepard et al., 2016). 

When the actual behavioral effect of artificially induced AC remapping has been precisely tested, no 

improvement in frequency discrimination or detectability has been observed suggesting that these 

changes are insufficient to drive better perceptual capabilities (Talwar and Gerstein, 2001). As well as 

artificial manipulations, like the large tonotopic reorganizations observed due to paired electrical 

activations of the nucleus basalis and pure tone presentations (Bakin and Weinberger, 1996; Kilgard and 

Merzenich, 1998; Ma and Suga, 2003; Suga et al., 2002; Weinberger, 2007), has also been shown to not 

be behaviorally relevant in an already trained animal or required for good behavioral performance (Reed 

et al., 2011). Altogether these results have shown that tonotopic map expansion or the increase of some 

sensory feature representation in primary auditory cortex (AI) is not necessary for the expression of an 

auditory memory trace or the performance of an animal in a classical instrumental sound discrimination 

task. These conclusions are in close agreement with the results shown in our study, where AC proved to 

be dispensable in a pure tone vs pure tone discrimination task.Previous studies where dependency of AC 

for similar decision tasks was shown, have used the ϒ-aminobutyric acid (GABA)A receptor agonist, 

muscimol, to inactivate transiently the AC during ongoing behavior (Jaramillo and Zador, 2011; 

Kuchibhotla et al., 2017; Smith et al. 2004; Talwar et al. 2001). It has been suggested that this compound 

can alter thalamocortical connectivity (Intskirveli et al., 2016), and could also diffuse to different brain 

structures necessary for any sound-driven behavior (see below). These possible caveats limit the 

interpretation of muscimol-based results and leave the possibility that secondary effects might explain 

the changes in performance observed. 

4.2. Frequency discrimination without AC 

During learning several parallel streams of information should adjust their connections based on reward 

and predictions errors. As described before,improved cortical discrimination of sensory stimuli acquired 

through learning and experience canbetter ‘inform’ than drive, downstream or association 

areasprecisely when this information is needed and available (Znamenskiy and Zador, 2013). We propose 
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with our work that during simple discrimination tasks, the cortical flow of activity towards decision and 

action centers in the brain can be easily bypassed by faster circuits. It has been described that 

projections from midbrain auditory stations or thalamus towards different decision centers in the brain 

can drive innate or conditioned behaviors (Xiong et al., 2015). Supporting this idea is the well-known and 

largely accepted observations that for the expression of conditioned fear to a specific pure tone, the AC 

is not necessary (Letzkus et al., 2011; Romanski and LeDoux, 1992). However, the medial part of the 

medial geniculate nucleus in the thalamus (MGm), which has projections to the amygdaloid complex, is 

sufficient to generate fear under those simple circumstances (Antunes and Moita, 2010; LeDoux et al., 

1990; Maren, 2003; Quirk et al., 1997 ; Romanski and LeDoux, 1992). Also, defensive unconditioned 

innate behaviors can be drive by direct activations of the connections between inferior colliculus (IC) and 

the periaqueductal gray (PAG) (Xiong et al., 2015; Tovote et al., 2016). Moreover, in lower auditory 

centers, transient learning-based neuronal changes have been observed but their role is still poorly 

understood. Very few studies have shown this type of modulations, which has mostly been artificially 

induced through activations of corticofugal projections from AC (Kong et al., 2014; Ma and Suga, 2003;  

Yan and Ehret, 2001;  Zhang et al., 1997;  Zhang and Suga, 2005), leaving open the question of the 

relevance of these learning related changes undermore natural conditions.  

 

In an appetitive associative conditioningparadigm, it is less clear whatis the minimumset of brain areas 

that is necessary and sufficient to sustain a simple discrimination behavior. Here we show that at least 

the information need to be routed from the inferior colliculus (IC) to the following downstream 

processing stations, as an optogenetic perturbation at this stage is detrimental for any type of sound 

discrimination (Figure 2-2). New evidence suggests that the thalamus has an important role during 

behavioral discriminations by conducting and orchestrating several cognitive faculties suchas attentional 

allocation and contextual shift (Nakajima and Halassa, 2017; Schmitt et al., 2017). Projections from lower 

stages of sensory processing could arrive to the same regions as corticofugal AC projectionsin decision 

centersand could trigger reward-associated actions. Recently, projections from the dorsal division of the 

MGB (MGd) to the dorsal striatum (Beckstead, 1984; Hunnicutt et al., 2016) haven been revisited 

showing their contribution in an overall frequency discrimination task using a cloud of tones (Chen et al., 

2019). Silencing specifically MGd projections to the dorsal striatum or the ‘auditory striatum’ has an 

impact in the overall judgment of the frequency content of a cloud of short pure tones (100 ms) without 

having an impact on motivation or motor control (Chen et al., 2019). Despite the low number of MGd 
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projecting neurons that have a significant response to sounds (206/1178) showed in that study, they 

were still able to perturb part of the task. Those results in parallel brought some questions about what 

type of information these connections carry on (if it is not auditory as the majority of neurons do no 

respond to simple sounds) and what is their specific role in sensory-based decision tasks. This will be an 

interesting avenue for future research as now it is possible to label specifically different subpopulations 

of projecting neurons together with their specific targets (Nassi et al., 2015; Oyibo et al., 2014; Sjulson et 

al., 2016; Zingg et al., 2017) and image them withdeep-brain fluorescence microscopy in freely moving 

animals (Flusberg et al., 2008; Klaus et al., 2017; Ozbay et al., 2018; Ziv et al., 2013). 

4.3. Frequency modulated sound vs pure tone 

Frequency modulated sounds (FMs) are common in natural sounds and an important signature of 

vocalizations in most mammals (Kuchibhotla and Bathellier, 2018). Human speech as well, comprises 

several types of FMs, where certain aspects such as their frequency change modulation rate or the 

direction of the frequency modulation are crucial to distinguish between similar syllables and therefore 

different words. As mentioned before, there is a lot of ongoing work aimed at understanding 

theemergence, processing and integration of FMs responses in the auditory system. It is well known that 

the number of neurons tuned to certain FMs properties, increase from the brainstem to central stations 

of the auditory pathway (e.g., Whitfield 1969; Kelly and Whitfield 1971; Phillips et al. 1991), where AC 

processing is fundamental for their proper perception. Although the discrimination of FMs has been 

tested and proven to be cortically dependent, in recent works (see page 60: Role of auditory cortex in 

the discriminations of sounds), FMs discrimination tasks have used symmetrical sweeps where animals 

can use primary and solely spectral clues to solve the task, disregarding entirely the frequency 

modulation of the sounds (Rybalko et al., 2006). As introduced in previous chapters, It has been 

proposed that reinforcement learning can be achieved by focusing and paying attention to only a few 

stimulus features more than the overall or whole stimuli (Niv et al., 2015). In this way, testing auditory 

processing of precise sound features using symmetric FMs can lead to misleading conclusions, as the 

spectral content of FMs and its contribution to the proper discrimination of this type of sounds is often 

overlooked. Following with this idea, early observations in cats where AC lesions have an important 

effect in the correct discrimination of pure tone sequences (Diamond and Neff 1957; Kelly 1973), 
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indicates that cortical dependency can be due more to the temporal order of simple spectral features 

embedded in more ‘complex’ sounds than the overall discriminability of sound envelopes. Only one 

experiment of my knowledge has tested if animals could generate broad categorization of different FMs 

regarding the direction of the frequency modulation (Wetzel et al., 1998). The results showed good 

categorical performance when untrained FMs were presented, suggesting that animals have the 

cognitive capability, but only after several months of training (Wetzel et al., 1998). It is not entirely 

possible to rule outthe possibility that animals use simple spectral information in that task, as very 

similar sweeps were used in that study. Sounds varied in the rate of the modulation more than in the 

frequency content at sound onset allowing the animals to use that information and again disregardthe 

entire envelope or the overall frequency modulation of the sound.  Others experiments, have tackled 

this issue by the use of ‘cloud’ or fast self-repeated FMs which in turn creates a more complex 

perceptual sound, where the processing power of AC to solve this type of discriminations is undoubtedly 

necessary for both, appetitive (Kelly and Whitfield, 1971) and aversive associative conditioning (Letzkus 

et al., 2011). 

 

In our study we use the previous knowledge about the dependency of AC to treat and process FMs, in 

order to study the perceptual and causal contribution of the tonotopic organization for the 

discriminations of sounds in the mouse AC. We used a Go/noGo discrimination task of a frequency 

modulated sound against a pure tone (FMvsPT), with the particularity that both sounds started at the 

same frequency, forcing the animal to discriminate the sound identity by using more complex 

comparisons (Figure 2-1). The surprisingly large number of trials that the animals needed to achieve a 

good discriminative performance was the first indication that for the animalsthis was not a simple 

discrimination task, even though perceptually the two sounds are very different (Figure 2-1). The results 

obtained when the necessity of AC was tested, supported the previous observations, as in the presence 

of bilateral silencing of AC all subjects presented low discrimination performance back to chance levels 

(Figure 2-2). In order to explain the cortical dependency of this type of task and others using FMs, only 

few studies have looked into the details and tried to uncover the role of AC. In this respect, it has been 

suggested that the cortical necessity to perform a sound discrimination task can be related, either to 

animal’s deficits for sound selectivity or sound sensitivity. For example in cats (Kelly and Whitfield, 1971) 

and gerbils (Ohl et al., 1999), a clear decrease in performance has been observed associated to an 

increased rate of False Alarms (FA), suggesting a potential cortical role of ‘inhibitor’ for the conditioned 
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behavior during the presentation of the CS- (Jarrell et al., 1987). The results obtained in this work, using 

the multiplicative reinforcement learning model can lean favor of this hypothesis (see page 124; 

Recruitment determines learning strategy). The model strongly indicates that animals trained under this 

type of Go/noGo discrimination task, the action of licking in the behavioral context by itself (Port unit) 

can be strongly reinforced and even overshadow the CS+ when this stimulus is not salient enough (Figure 

3-5). In fact animals can solve a Go/noGo discrimination task by using the strategy of licking at every trial 

onset and only pay attention to the CS- sound to inhibit their conditioned behavior. In our study, even 

using random inter-trial-intervals and a ‘wait’ for no lick period, a clear strategy was not fully evident as 

close to the half of the animals presented selectivity and the other half sensitivity deficits. In 3/7 mice, 

discrimination went down due to a high rate of FA, contrary to the 4/7 of mice, where there was a clear 

effect in detection, as the discrimination performance went down due to the decreased rate of Hits and 

maintained correct rejection (CR) responses, meaning that the animals did not lick at all during the 

optogenetics trials (Figure 4-1). It needs to be clarified that both effects were observed only in trials with 

the optogenetic inactivation of AC, as regular trials were unaffected during the same sessions (Figure 

2-2). It is unlikelythat the light by itself would have perturbed the animals during behavior as they were 

well habituated to the random presence of light inside the behavioral box.  

 
Figure 4-1. Error type for mice during AC silencing. 
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Fraction of trials that correspond to the different behavioral outputs in response to CS+ and 
CS- during optogenetic AC silencing. Colors correspond to hits, misses, correct rejections (CR) 
and false alarms (FA).   

 

To better understand our results, we studied the licking profile of the animals during this task revealing 

that all subjects presented an early licking behavior for both sounds (Figure 2-4). This pattern indicates 

that in fact the subjects indeed did not discriminate the sound identity at the beginning, starting to 

respond at every trial precisely at sound onset. Only later subjects could use the deviant frequencies 

between the two sounds to continue or to stop licking. Using two photon calcium imaging in awake naïve 

mice, we could observe that indeed both sounds activate the same population of neurons by the strong 

correlation of cortical activity at sound onset (Figure 4-2A). Cortical activity elicited by the sounds diverge 

as time continues and only after ~100 ms the activity should be deviant enough to generate or report the 

decision as observed with the carefully measured decision time of about ~ 350 ms for this task (Figure 

2-4 and Figure 4-2B).  

 

 
Figure 4-2.AC cortical activity is correlated at the onset of sounds. 

(A) Activity correlation matrix of the sounds used in the hard task. White filled triangle 
indicates sound onset and black filled triangle indicates sound offset. (B) SVM trained with 
cortical activity of different sounds and tested discrimination accuracy in time for the 
different sound discriminations labeled. Lines were smoothed applying a Gaussian filter.   

 

These observations strongly suggest that animals faced withthis ‘difficult’ discrimination task adopted a 

strategy to maximize the amount of reward and in this case, using an early and probably subcortical 

mechanism,they initiatethe conditioned behavior irrespective of the stimulus identity.Only after the 

involvement of AC to temporally discriminate spectral deviantsound features, the ongoing behavior can 

A B 
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be maintained or ‘corrected’ to avoid unwanted delays (as false alarms leads to ‘long’ and also variable 

time outs) (Figure 2-7). This strategy in a certain way can be imposed due to our learning contingencies, 

as for example by the use of a first phase where a certain number of rewards are given irrespective of 

the behavior and only the CS+ is regularly presented (see page 131; Material and Methods). This 

behavioral training paradigm is thought to rapidly train the animals to lick and maintain high levels of 

motivation. When a good and reliable level of conditioning in this starting phase of training is observed, 

the CS- is introduced, making the animals to pay more attention to the stimuli and learn to discriminate 

between them, in order to obtain the best amount of rewards in the least amount of time. In summary, 

the difference in cortical dependency for the complex discrimination compared to the easy PTvsPT task, 

may be that animals cannot solve it using spectral cues at the beginning and they need to track the 

sound in the temporal domain in the decision circuit. This additional processing power is provided by 

cortical areas, as AC silencing disrupts the correct performance of the taskindependent of the strategy 

used by the animal (Figure 2-2). This type of selectivity has been observed in the context of fear 

conditioning using a sound (CS) paired with mild foot shock (US) (Guimarãis et al., 2011).  The correct 

acquisition and expression of a classic fear conditioning, requires the amygdala and medial prefrontal 

cortex (mPFC) but not the hippocampus. Guimarãis and colleages (2011) shown that using different time 

intervals between the CS and US has a direct influence in the brain areas involved in this task. Increasing 

the time gap between the two events the dorsal-hippocampus becomes involved and necessary for the 

acquisition of the fear conditioning (Guimarãis et al., 2011). In summary with these observations and our 

results, it becomes clear that the temporal relationship between events and their integration in the brain 

to solve a sensory-based decision task requires the activity of multiple and distinctive areas of the brain. 

4.4. Optogenetics to study sensory perception 

The use of optogenetics has become the state of the art to dissect the role of different brain circuit 

components. Even though, only a few groups have shown that it is possible to train an animal to detect 

an artificial optogenetically-induced activity pattern (Choi et al., 2011; Huber et al., 2008; Nomura et al., 

2015).Still fewer studies have enhance sensory thresholds or stimulus detectability using precise 

optogenetic manipulations (Musall et al., 2014; Aizenberg et al., 2015) or transiently biased perceptual-

based decisions with optogenetics perturbations during ongoing behavior (O’Connor et al., 2013; Peng et 
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al., 2015; Znamenskiy and Zador, 2013). Here we have shown for the first time that animals can 

discriminate two different light-sculpted optogenetic activations in the same hemisphere and cortical 

domain (Figure 2-4 and Figure 3-6). More interestingly, it was also possible to train the animals using 

more complex light stimuli, as the use of three independent circles of different sizes and different 

combination patterns (Figure 3-6). These novel, artificially created stimulus combinations helped to 

elucidate the causal role of neuronal recruitment to determine learning strategy and establish the 

relationship between cortical recruitment as the saliency parameter in regular learning models (Figure 

3-6). The use of patterned optogenetic stimulation in awake animals makes it also possible to combine 

targeted cortical activations within a sound discrimination task. Using this approach, we tested if a pure 

tonotopically-targeted artificial activation could be used to trigger the conditioned behavior in a cortex 

dependent sound-driven discrimination task (FMvsPT) and determine the precise information that 

animals used to solve this ‘hard’ task. In this way and in parallel, we could test if the subjects learned to 

recognize different ‘classes’ of sounds (one modulated and the other static) or if they use simple spectral 

features to differentiate between the two sounds to solve the task. Directed optogenetics stimulations in 

AC during the FMvsPT task, indeed helped to elucidate the role of AC and the strategy that the animals 

used to solve the task, showing that in the presence of the 4 kHz pure tone an artificial activation of 

middle frequency coding neurons was sufficient to bias the perceptual decision of the mousefor few 

trials in most animals tested (Figure 2-5). Some studies have found special areas that respond to FMs in 

AC using different techniques and there is evidence for a topographic map of FMs in AC observed across 

several species (see page 23; Other stimulus representations in auditory cortex). For example, Honma 

and colleagues (2013) showed specific responses to a series of continuous FMs using flavoprotein 

fluorescence responses in UF and DP in mice. Going further and more recently, they observed different 

projection patterns towards these areas in the mouse AC, showing that their inputs are coming 

preferentially from a distinct area of the ventral division of the auditory thalamus (MGv) than the ones 

arriving to AI (Honma et al., 2013; Tsukano et al., 2015; Tsukano et al., 2017b). Our results are also in 

agreement with recent suggestions about the cortical organization of AC in mice and its subdivisions, 

emerging from the previous studies just described (Tsukano et al., 2017a). The optogenetic ‘HotSpot’ will 

probably be located in the new delineated tonotopic gradient, the dorsomedial area (DM) (Figure 1-11 

and Figure 2-6), but a more detail study is needed. Issa and colleagues (2014) using widefield transcranial 

imaging of calcium responses together with single-cell two-photon calcium imaging in mice, showed an 

unspecific intermediate zone responsive almost exclusively to vocalizations and FMs, close to the tail of 
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our delignated ‘HotSpot’ (Figure 2-6). Even though our results in general indicate that the activation of 

middle frequency neurons is crucial and sufficient to solve this task, we cannot rule out the contribution 

of neurons specialized in the processing of FMs. Targeting this specific set of neurons and studying their 

rolein a discrimination task of this type can be a promising venue for future research. A robust 

approximation towards this framework has already been done by Tasaka and collegues (2018). In their 

study, they use the expression of immediate early genes (IEG) for targeting an specific set of neurons 

responsive only to pup wriggling calls and ultrasonic vocalizations (USVs) in AC of mice (Tasaka et al., 

2018). Finally, targeted expression of ChR2 can be achieved using these types of techniques, as it has 

been done to stimulate engram neurons in the hippocampus and express a fear memory (Liu et al., 

2012). The combination of auditory stimulation and precise neuronal targeting then can be the next way 

to study precisely the role of different type of neuronal responses and their direct and specific role in 

behavioral paradigms.  

4.5. General observations 

The results attained within this thesis, are different in several aspects from previous studies that have 

used direct optogenetic stimulations on cortical surfaces to study sensory perception. Here, we have 

used complete cortical mapping before doing any cortical manipulation in order to target precisely the 

same sub-regions of AC across different animals. It has been observed that the blood vessel pattern as 

well as the position and size of AC can vary between animals  (Issa et al., 2014; Stiebler et al., 1997; 

Tsukano et al., 2016), therefore electrode or optical fiber insertions without a functional mapping of AC 

for each individual can lead to misleading results and conclusions.In our experiments we have used 

optical imaging of intrinsic signals using a red shifted LED (780 nm) in anesthetize animals with isoflurane 

(Figure 2-10; Figure 2-12 and Figure 3-6). This wavelength was used because of mismatches observed 

between electrode mapping experiments and optical spatial responses obtained with the regular green 

LEDs used in most previous studies (540 nm). These mismatches can be due to local and more superficial 

blood volume changes independent of neuronal activity (Spitzer et al., 2001). It is well known that 

intrinsic imaging depends on deoxyhemoglobin changes which can be registered better with red light 

than green light. Therefore, by using a red-shifted lightin our experiments, it is conceivable that deeper 

and more reliable intrinsic signals were obtained.Together with the coarse mapping of the AC, here we 
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used light-sculpted optogenetics (Dhawale et al., 2010; Sakai et al., 2013) to scan and test the 

contribution of different tonotopic locations of the entire AC in the same animal during ongoing 

behavior. This had a great advantage compared to other studies that have used tetrodes combined with 

optical fibers to deliver the light (Znamenskiy and Zador, 2013). Is it well-know that electrophysiological 

measurements can be biased towards the most active cells hiding maybe the real averaged best 

frequency of a certain area. Probably that is the reason why Znamenskiy and Zador (2013) failed to bias 

the decision of the animals using non-targeted optogenetics stimulations in AC and only succeededlater 

when a small portion of cortical neurons was targeted. Also, in our study all optogenetics perturbations 

were done in the right AC. Several studies have suggested that an hemispheric division in control and 

processing of certain auditory features (Rauschecker and Scott, 2009), such as vocalizations and/or 

frequency modulations responses are more localized in the right (Abrams et al., 2008; Petersen et al., 

1978; Poeppel et al., 2004; Poremba et al., 2004; Rybalko et al., 2006; Wetzel et al., 1998) and amplitude 

modulations in the left hemisphere (Rybalko et al., 2010; Schulze et al., 2014). Contrary to the study of 

Guo and colleagues (2014) where they scan the entire neocortex in search of regions that can perturb a 

whisker-based decision task in mice, we scan the tonotopic organization of AC in search of areas that 

trigger the opposite behavior (Go response) of the one orchestrated by the presence of the noGo sound 

or CS- (Figure 2-5). This search led to the finding of a particular ‘HotSpot’ where optogenetics 

perturbations had a significant behavioraloutput with a clear interpretation (Figure 2-5). Also the 

framework used here of a cortically dependent Go/NoGo sound discrimination task was really important. 

Cortexindependent tasks could make use of faster and shorter circuits (Antunes and Moita, 2010;Xiong 

et al., 2015). One drawback of our manipulations was the lability of catch trial responses over a large 

number of repeats, observed for our optogenetic manipulations (Figure 2-5). We think that the total 

absence of reward and the big number of these test trials could have been the explanation for these 

transient responses plus the non-specificity of our ChR2 targeting (see below). Highly trained animals try 

to maximize the reward with the minimal effortas they show very stereotypical behavior. This could 

make them stop fast to non-rewarded trials as they were not encouraged to keep responding to them in 

any sense. CS+ that leads to highly predictable rewards can also be detrimental for this kind of protocols 

as described in earlier chapters (see page40; Learning from predictions). The use of a variable percentage 

of CS+ rewarded can maintain the animal’s motivation to explore, having on average more trials to study 

perceptual manipulations in behaving animals. On the other hand, the used of non-rewarded trials 

allowed us to cleanly address the perceptual contribution of ouroptogenetic perturbations, contrary to 
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previous studies were test conditions were rewarded in the same way as the CS+ (O’Connor et al., 2013; 

Peng et al., 2015; Znamenskiy and Zador, 2013). As we also showed here, animals can easily learn to 

detect an optogenetic stimulation and trigger the same behavioral output of any conditioned stimulus 

paired with a reward (Figure 2-4). A solution can also be to reward only a percentage of these test trials 

to keep animals motivated to explore and generalized in a greater degree and not so restrictively. Lastly, 

another drawback of our work is that we have used broad expression of ChR2 in all layers of AC, contrary 

to previous works (O’Connor et al., 2013; Znamenskiy and Zador, 2013), where ChR2 expression was 

restricted to either one particular layer of the cortex or subpopulations of projecting neurons. Targeting 

a vast number of cortical neurons could also have been detrimental for our results due to the obvious 

non-specific interactions of neuronal tuning features, incrementing the dissimilarity of the artificially 

generated ‘sound’ perception. This is one ‘easy’ aspect that can be studied in the future in more detail to 

improve the reproducibility and scope of our results.  

4.6. Considerations about the auditory neural code 

Whether animals base their sensory decisions on the population average activity or a sparse but precise 

spike sequences has been a long standing question in neuroscience (Brette, 2015; Panzeri et al., 2017; 

Parker and Newsome, 1998). O’Connor and colleagues (2010) studying the somatosensory cortex of mice 

during a vibrissa-based pole localization, have suggested that neuronal discriminability of stimulus 

identity is highly correlated with the neuronal firing rate. Neurons with intrinsically high firing rates, as 

for example neurons located in layer IV and V,have more discriminative power about pole position than 

others (Daniel H. O’Connor et al., 2010). Despite this observation, they also found a sparse group of 

neurons in superficial layers of S1 that were highly discriminative, suggesting that their precise activation 

could drive behavior. Other results at that time obtained by Huber and colleagues (2008) certainly 

showed that the optogenetic activation of only few hundreds of superficially located neuronscan 

generate a behaviorally detectable neuronal activity (Huber et al., 2008). O’Connor and colleagues(2013) 

expanded their previous observations and described that precise genetically targeted optogenetic 

perturbations in layer IV of S1, can indeed generate ‘illusory’ sensation of a virtual pole. Going further 

they observed that precise spike timing perturbations did not have an enhanced effect for 

thedevelopment of the virtual touch compared tocoarse firing rate modifications (O’Connor et al., 2013). 
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Similar ‘illusory’ sensory perception was achieved by the coarse activation of ‘taste’ neurons in the 

insular cortex of mice trained to discriminate different tastes in water(Peng et al., 2015). Contrary to this, 

Poort and colleagues (2015) observed in animals performing a grating discrimination task in a virtual 

reality environment, atransient and more restricted increase in the discriminability ofneurons in 

superficial layers of V1. This effect was highly reduced when animals were not engaged in the visual 

discrimination task (Poort et al., 2015). This important observation suggested that the improved 

decoding of stimulus identity can be due to top-down neuromodulatory signals directly impacting 

superficial cortical circuits, as it has also been shown recently for mouse AC (Kuchibhotla et al., 2017; 

Bagur et al., 2018). Summarizing these previous observations in awake animals, it looks like an acute 

reduction of non-specific population responses and increased discriminability by only a portion of 

neurons in primary sensory areas, is a common feature of learned sensory-based decisions (Chen et al., 

2013; Chu et al., 2016; Makino and Komiyama, 2015; Makino et al., 2016; Peron et al., 2015; Tsunada et 

al., 2016). In fact, recent evidence support these observations but suggests that these learning induced 

changes rely on the behavioral state of the animal (Bagur et al., 2018; Kuchibhotla et al., 2017; Makino 

and Komiyama, 2015; Poort et al., 2015). Finally, independent of previous observations, it is apparent 

that coarse activations of many non-discriminative and a few highly discriminative cells in superficial 

cortical layers, is sufficient to inform downstream areas and drive the proper behavioral decision (Figure 

2-5). In the auditory system especially of mice, this is the matter of a strong debate as there is no ground 

proof of basic organizational features or the final scope and contribution of cortical processing for sound 

discrimination and perception (see page 60; Role of auditory cortex in the discriminations of sounds). 

Some studies suggest that even though tonotopy is a well-known canonical organization, stimulus 

features beyond frequency emerge through the auditory system. For example, precise temporal details 

are transformed and coded only into firing rates (Guo et al., 2015). Putting together previous 

observations with our results, it seems possible to implement coarse perturbations of sound perception 

at the level of the AC, based on the tonotopic map, but certainly, finer spatial resolution will be 

necessary to study precise sensory features.  

 

Coming back to the transient effects observed in primary sensory areas regarding the behavioral state of 

the animal. In our experiments, we addressed this issue by measuring the cortical representation of the 

task sounds across different behavioral states of the animals (Figure 2-12 and Figure 2-13). Intrinsic 

imaging was performed during anesthesia and the possible variation of sensory representations between 
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different attentive states was studied in awake animals using two photon calcium imaging in both, 

passive listening and active ongoing behavior. Overall we observed a good correspondence between the 

different techniques (Figure 2-12). We also showed that animals who have learned to discriminate our 

FMvsPT task presented a surprising behavioral categorization for pure tones (Figure 2-7). Recording 

sound responses with two photon calcium imaging in naïve animals and training a classifier with these 

responses resulted in similar classifier categorization boundaries as the observed in trained animals 

(Figure 2-7). Similar results have been obtained in AC and other sensory modalities, where the cortical 

activity can be used to predict the categorization of trained animals (see page 58; Linking two 

disciplines). These results, together with our optogenetics manipulations elucidated causally the strategy 

that the animals were using to solve this cortically dependent task (Figure 2-7).  

 

Different types of cortical manipulations have shown that coarse manipulations of the neural activity 

have profound perceptual consequences. Here, we show that coarse activity patterns imposed in cortical 

circuits can trigger the same behavioral outputs trained and learned by the animals in appetitive 

conditioning paradigms. Several routes can be taken to improve and better control the results obtained 

as some of them have been already mentioned but also, the increasing optical power and targeting 

technology can be now combined to achieve single cell recording and optogenetics activations/silencing 

(Chen et al., 2018; Chen et al., 2019; Packer et al., 2015; Pégard et al., 2017; Quan et al., 2018; Ronzitti et 

al., 2017; Ronzitti et al., 2018; Yang et al., 2018). These precise manipulations can have plausible 

behavioral readouts as the striking results o fHouweling and Brecht (2008), where they have shown that 

perturbations in the activity of only one single neuron can be already behaviorally detectable. 

4.7. Therapeutic strategies using optogenetics 

Several alternative therapeutic strategies for partial or complete deaf people have been under 

investigation during the last years in order to improve speech understanding and music appreciation 

(Kohlberg et al., 2014). Usually, it is noted that cochlear implant users have lower frequency or pitch 

resolution together with poor sound intensity perception and reduced temporal acuity (Jeschke and 

Moser, 2015). The idea of optogenetic prostheses for the amelioration of acoustic disorders has been 

gathering a lot of attention in the last years, as the first attempts and prototypes have shown impressive 
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temporal and spectral sound encoding capabilities compared to regular electric cochlear implants (Guo 

et al., 2015; Keppeler et al., 2018). Several mutations and diseases can affect sound transduction from 

the cochlea to midbrain auditory stations (Starr et al., 2008). Also, It is well-known that certain sound 

properties and sound perception in general is not only encoded in the cochlea, as for example the phase 

locked responses to the periodicity of sound by spiral ganglion neurons of the auditory nerve (Nayagam 

et al., 2011). Sound level or intensity is also mediated by asymmetrical recruitment of out-of-frequency 

spiral ganglion neurons. Under these constrains together with direct lesion on the auditory nerve, 

alternative approaches are needed to directly translate sounds into the midbrain auditory stations 

(Darrow et al., 2015) and, directly into the cortical surface, as it has been shown recently for V1 of non-

human primates (Chernov et al., 2018). There is a lot of room to improve ChR2 delivery systems into 

human tissues, besides the ongoing targeted genetic therapy approaches which are exponentially 

growing every year. Until now, there are more than 2000 clinical trials that have occurred and/or are in 

progress, related to restoring vision in blind people, eradication of blood cancer, correction of 

hemoglobinopathies and immune system deficiencies (Kumar et al., 2016), which makesit likely to soon 

solve gene delivery issues into human cells at any developmental stage. In summary, the growing fields 

of research on the generation of new and/or upgraded optogenetic tools combined with prosthetics 

engineering will soon converge into the implementation of optogenetic prostheses into human hosts. 

4.8. Towards a complete and inclusive learning model 

Modern neuroscience has a strong bias towards reverse-engineering the brain. This approach combined 

with powerful computational tools can engender different type of models which could help to explain 

observed neurophysiological data and propose novel predictions. Several approaches have been already 

implemented at different scales and complexity levels, as today we can find models from single neurons 

to complex neuronal networks or even entire brain structures (Erö et al., 2018). Reductionism 

approaches have tried to model more simple organism but it is still an ongoing multidisciplinary effort, 

being able today to only account for only few thousands of neurons and run in resting state-like behavior 

(Epelde et al., 2018; Huang et al., 2018; Sarma et al., 2018; Szigeti et al., 2014). Taking this into account, 

for the mammalian brain a more realistic and minimalistic approach is necessary as modeling only one 

sensory modality (with vision winning the race) and all possible ad-hoc sensory feature interactions. A 
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complete detailed model of the auditory systems does not exist yet but many efforts have been made to 

model accurately some auditory responses at different levels (Deneux et al., 2016). Auditory models 

have expanded their scope from simple linear spectro-temporal receptive fields models (STRFs) (Aertsen 

and Johannesma, 1981), towards the use of several non-linearities and deep neuronal networks to 

explain, the appearance of direction of frequency modulation and other sound interactions (Patil et al., 

2012). In parallel, the modeling of neuronal processes such as associative learning and sensory 

discrimination have gained an enormous complexity (see page 33; Learning from predictions), reaching 

several different fields of research. The final aim is to be able to combine these different types of models 

into one integrative framework that could account for the coding of different sensory features and their 

integration in the brain through sensory experience.  

 

Here we described that saliency, an important and so far unexplained experimentally sensory feature, in 

fact has a neurophysiological correlate that can be now introduced in future learning models as the 

degree of neuronal recruitment. It is obvious that more work needs to be done to completely model 

animal learning, even under simple learning paradigms such as the one that we described in this work. 

Go/no-Go discriminations tasks are simple in essence but complicated to disassemble as several 

components have not yet been considered by any learning model, such as the animal motivation and 

impulsive behaviors. More in detail, it has been observed that animals in this type of behavioral 

paradigm, show differential behavioral states during the course of one training session (Berditchevskaia 

et al., 2016). High levels of impulsivity can be observed at the beginning of each session, decreasing as 

trials proceed and the level of deprivation decreases, to reach a middle point where the instrumental 

conditioning strategy and motivation of the animal is crucial to keep responding robustly. In a final stage, 

satiety or tiredness determines when the animal stops responding and the behavioral session ends. 

These important parameters have to be implemented in future models as they govern finally the 

measurable sensory readouts. The used of self-initiated trials in freely moving animals or during two-

alternative forcedchoice tasks (2AFC) can help to dissociate these variables, but animals under these 

different learning paradigms take significantly longer to reach good performance levels (Schmitt et al., 

2017). 

 

Simply in principle, rewarded actions can impact several brain structures. As described by Bathellier and 

colleagues (2013), their reinforcement learning model (RLM) learns by using a multiplicative rule and a 
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biologically plausible prediction-error term. Based on the literature, there are several intermediary steps 

in between the sensory domain (modeled in the RLM as independent sensory units) and the decision 

center (modeled in the RLM as one single sensory unit). An important hub of sensory information in the 

brain is the striatum, as it corresponds to the main input center of the basal ganglia and the anatomically 

preferential site where sensory inputs can encounter prediction-error signals from dopaminergic 

neurons (Xiong et al., 2015). Learning then can be seen in this region as the weighting of corticostriatal 

connections through the gating of dopaminergic feedback under the rules of long term potentiation 

(LTP) and depression (LTD), as in most spike-timing dependent plasticity mechanisms (Markram et al., 

1997). Through LTP and LTD of the different output pathways of the striatum (direct and indirect), which 

provide GABAergic inputs to motor centers in the brain (Ficalora and Mize, 1989; Klaus et al., 2017), 

motor actions can be selected and controlled as activations of the direct pathway potentiate movement 

and activations of the indirect pathway inhibit it (Barbera et al., 2016; Kravitz et al., 2010). Certainly 

these two subpopulations of neurons do not have totally orthogonal behavioral readouts and their 

orchestrated activation lead to the proper control of the learned motor actions (Cui et al., 2013; 

Tecuapetla et al., 2014; Tecuapetla et al., 2016).  

4.9. Concluding remarks 

Optogenetic manipulations combined with recent technological advances and new genetic targeting 

strategiesis the best currentstrategy to achieve a better understanding and control of sensory perception 

in behaving animals. Moving towards a broader and more biologically precise learning model, all sensory 

feature interactions and non-linearities defined so far could be integrated in the ‘sensory units’ of the 

RLM described here. Intermediate steps between the ‘sensation’ and ‘decision’ parts could be included 

as new motor-skill selection layers inspired by the brain’s hierarchical connectivity patterns. Through 

dopaminergic-like prediction-error signals, these intermediate steps could also be implemented with the 

ability to learn and weigh the proper behavioral repertoire. To account for the different learning 

strategies, experimenters should consider the more instinctive behaviors observed at the beginning of 

any behavioral training. In this way, associative learning and its governing rules could be precisely 

modeled and finally unraveled.  
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