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Abstract

Rockfall hazard has to be evaluated and monitored in order to prevent loss of life and infrastructure. In
this regard it is important to create event catalogs and understand rockfall dynamics. Seismic waves can
help for this purpose as they carry valuable information of the event. They are generated when rockfalls
impact the ground and can be used to detect, classify and locate events. Beyond that, rockfall proper-
ties such as their volume and their dynamic behavior can be inferred. Yet, high frequency seismic signals
(> 1 Hz) are poorly understood. This is because they are associated to complex seismic sources which
are spatially distributed and can rapidly vary over time. On top of this, high frequency seismic waves are
prone to be scattered and diffracted due to interactions with soil heterogeneities or surface topography.
This thesis takes an important step forward to enhance understanding of high frequency rockfall seis-
mic signals by simulating seismic wave propagation on domains with realistic velocity profiles and 3D
surface topographies using the Spectral Element Method (SEM).
The influence of the topography on the seismic wave field is investigated. It is found that topography
induced amplification is substantially different between deep sources and sources located at the sur-
face. This is because surface waves generated by shallow sources are exposed to constant scattering
and diffraction when traveling along the surface.
The energy decay along the surface is investigated for different velocity models and equations are de-
rived to back-calculate the total seismic energy radiated by the source. This is of interest as the rockfall
seismic energy is related to the rockfall volume. In order to account for topography effects, a correction
factor is proposed which can be introduced in the energy calculation.
Observed seismic signals generated by rockfall at Dolomieu crater on Piton de la Fournaise volcano,
La Réunion, are analyzed. Synthetic seismograms are used to identify and interpret observed signals
generated by single impacts. The influence of topography on the waveforms is demonstrated and the
sensitivity on source location as well as source direction is evaluated. Signal characteristics such as am-
plitudes and frequency content are explained based on Hertz contact theory.
Additionally, inter-station spectral ratios computed from rockfall seismic signals are shown to be char-
acteristic of the source position. Comparison with simulated spectral ratios suggest that they are dom-
inated by the propagation along the topography rather than the mechanism of the source. Based on
these findings, a method is proposed for the localization of rockfalls using simulated inter-station en-
ergy ratios. The method is applied to localize rockfalls at Dolomieu crater. The implementation of the
method involves a sliding time window which allows a straightforward application on continuous seis-
mic signals. The potential of the method to monitor rockfall activity in real-time is emphasized.

Keywords: rockfalls · rockfall seismic signal · surface waves · seismic wave simulation · spectral ele-
ments · site effects · topography · source localization





Résumé

Les risques d'éboulements doivent être évalués et surveillés afin de prévenir les pertes de vies humaines
et dommages aux infrastructures. A cet égard, il est important de créer des catalogues d'événements
et de comprendre la dynamique des éboulements. Les ondes sismiques peuvent être utiles à cette fin,
car elles transmettent des informations précieuses sur l'événement. Elles sont générées lorsque des
éboulements touchent le sol et peuvent être utilisées pour détecter, classer et localiser des événements.
Plus encore, on peut déduire des propriétés des éboulements telles que leur volumes et leur comporte-
ment dynamique. Cependant, les signaux sismiques hautes fréquences (> 1 Hz) sont mal compris. En
effet, ils sont associés à des sources sismiques complexes qui sont réparties dans l'espace et peuvent
varier rapidement dans le temps. De plus, les ondes sismiques hautes fréquences sont susceptibles
d'être diffusées et diffractées en raison des interactions avec les hétérogénéités du sol ou la topogra-
phie de surface.
Cette thèse franchit une étape importante dans la compréhension des signaux sismiques hautes fré-
quences des éboulements en simulant la propagation des ondes sismiques en utilisant la méthode des
éléments spectraux (SEM) avec des profils de vitesse réalistes et des topographies de surface 3D.
L'influence de la topographie sur le champ des ondes sismiques est étudiée. On constate que l'ampli-
fication induite par la topographie est sensiblement différente entre les sources situées en profondeurs
et celles situées en surface. En effet, les ondes de surface générées par des sources peu profondes sont
exposées à une diffusion et à une diffraction constantes lorsqu'elles se déplacent le long de la surface.
La désintégration de l'énergie le long de la surface est étudiée pour différents modèles de vitesse et des
équations sont dérivées pour calculer rétroactivement l'énergie sismique totale rayonnée par la source.
Ceci est intéressant du fait du lien entre l'énergie sismique et le volume d'éboulement. Afin de tenir
compte des effets topographiques, il est proposé un facteur de correction qui peut être introduit dans
le calcul de l'énergie.
Les signaux sismiques générés par les éboulements du cratère Dolomieu du Piton de la Fournaise, à La
Réunion, sont analysés. Les sismogrammes synthétiques sont utilisés pour identifier et interpréter les
signaux observés qui sont générés par des impacts uniques. L'influence de la topographie sur les formes
d'onde est démontrée et la sensibilité avec l'emplacement et la direction de la source est évaluée. Les
caractéristiques du signal telles que les amplitudes et le contenu fréquentiel sont expliquées sur la base
de la théorie du contact de Hertz.
De plus, les rapports spectraux entre stations, calculés à partir des signaux sismiques d'éboulement,
sont considérés comme caractéristiques de la position de la source. La comparaison avec les rapports
spectraux simulés suggère qu'ils sont dominés par la propagation le long de la topographie plutôt que
par le mécanisme de la source. Sur la base de ces résultats, une méthode est proposée pour la locali-
sation des éboulements à l'aide de rapports énergétiques simulés entre stations. La méthode est ap-
pliquée pour localiser les éboulements dans le cratère de Dolomieu. La mise en œuvre de la méthode
implique une fenêtre temporelle glissante qui permet une application simple sur des signaux sismiques
continus. L'accent est mis sur la capacité de la méthode à surveiller l'activité des éboulements en temps
réel.

Mots clefs: éboulements · signaux sismiques · ondes de surface · simulation d'ondes sismiques · élé-
ments spectraux · effets de site · topographie · localisation de source
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Introduction

’Things are getting unstable’

The full title of a newspaper article published last week (October 2, 2019) in The Guardian
reads: ’Things are getting unstable’: global heating and the rise of rockfalls in
Swiss Alps (Hruby, 2019). It is not the first time that rising temperatures are linked
to increased rockfall activity in high-mountain environments. Retreating glaciers, thawing
permafrost and the subsequent infiltration of water into the rock are suspected to destabi-
lize slopes, eventually leading to failure (Huggel et al., 2012; Bader et al., 2017). Yet, not
only high-mountain environments are prone to be affected by climate change induced mass
wasting processes. For example, global warming related cumulation and intensification of
heavy rainfalls is expected to increase landslide hazard and risk (Gariano and Guzzetti,
2016; Handwerger et al., 2019). 2 In this context, it seems more acute than ever to under-
stand slope stability and landslide dynamics in order to mitigate risk for example with the
help of early warning systems of structural protections.
Nevertheless, thawing ice and heavy rainfalls are by no means the only causes for mass
wasting processes. Earthquakes can trigger numerous landslides of big volumes. Recent
examples are the 2018 Hokkaido earthquake which reportedly triggered more than 6,000
landslides and the 2018 Sulawesi earthquake for which the induced landslides caused the
most fatalities (Petley, 2019). Furthermore, mass wasting processes frequently occur in
volcanic environments. This originates from unconsolidated and thus unstable structures
as well as seismic activity linked to eruptions or volcano-tectonic events.
The consequences of landslides can be severe. According to The International Disaster
Database EM-DAT more than 17,000 fatalities have been reported since the year 2000
related to landslides. An additional number of 400,000 people lost their homes. On top of
that, events may impact infrastructure such as buildings, roads, railways, and power lines.
Risks can be exacerbated when human activity such as deforestation and mining is poorly
regulated.

In order to assess landslide risk, it is critical to create event catalogs and understand the
dynamic behavior of landslides. This can be a challenging task regarding the spatial and
temporal unpredictability of landslides. Fortunately, vibrations in form of seismic waves
are generated through the forces exerted by the landslide on the ground. These seismic
waves carry valuable information on the events which we can try to extract from recorded
seismograms.

2. Landslide is used as an umbrella term for different kinds of gravity driven mass wasting processes
such as rockfalls, dry granular flows and wet granular flows. We will go more into detail in Chapter 2.



This way, it has been shown that landslide seismic signals can help to detect, locate and
classify events. Furthermore, landslide properties such as their volume were determined
and their dynamic flow history could be constrained. In addition, growing networks of
seismic stations allow to monitor continuously large areas of interest in real time.

When relating seismic signals to landslide behavior, it is crucial to understand the mech-
anisms of the seismic source. In other words, the forces generated by the landslide on the
ground have to be studied in order to be able to interpret the generated seismic waves.
This has been successfully addressed for low frequency seismic sources, meaning sources
which vary slowly over long periods of time. Their temporal evolution could be associated
to the macroscopic acceleration and deceleration of landslides.
In contrast, high frequency landslide seismic sources are poorly understood. They are re-
lated to single particles impacting the ground. In general, this can result in a spatially
distributed force field of high temporal variability. Consequently, the recorded seismic sig-
nal is a superposition of incoherent seismic waves generated at different positions.
To make things even more complex, high frequency seismic waves are prone to be strongly
distorted on their path from the source to the receiver. This originates from interactions
with soil heterogeneities and surface topography. As a result, the recorded seismic signal
can not directly be related to the seismic source even if the source consists of a simple single
impact. Instead, the wave propagation has to be carefully considered before interpretation.

Objectives

The objectives of the present work can be summarized in three bullet points:

• Enhance understanding of high frequency landslide seismic sources
Landslide basal forces are numerically simulated on real topographies using a contin-
uum model in order to evaluate their temporal evolution and their frequency content.
Forces generated by single boulder impacts are predicted using Hertz contact theory.

• Quantify the influence of topography on surface wave propagation
The seismic wave propagation is simulated on real topographies using the Spectral
Element Method (SEM). The landslide generated seismic waves are modeled by point
forces located at the surface. The influence of topography is evaluated based on
waveforms, amplitudes and the spectral content of the synthetic seismograms.

• Analyze rockfall seismic signals recorded at Piton de la Fournaise volcano
The high frequency seismic signal (>1Hz) generated by rockfalls at Dolomieu crater
on Piton de la Fournaise volcano (La Réunion) is modeled. Spectral amplitude ratios
as well as energy ratios between station pairs are analyzed. Furthermore, the signal
characteristics of single boulder impacts are interpreted.
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Organization

Chapter 1 introduces the study site, namely Dolomieu crater on Piton de la Fournaise vol-
cano, La Réunion. It presents the geological setting as well as the instrumentation deployed
by the Observatoire Volcanologique du Piton de la Fournaise (OVPF). Subsequently, the
shallow subsurface structure is characterized which is fundamental for the numerical simu-
lations of the seismic wave propagation. More precisely, the seismic velocity-depth profile
is determined and spectral site amplification factors are estimated in order to account for
lateral soil heterogeneities. The estimated site effects are compared simulations on a model
with topography to evaluate the influence of topography. Finally, intrinsic attenuation and
scattering of the seismic signals at Dolomieu crater are discussed.
Chapter 2 is all about landslides. The utility of seismology to classify and characterize
events is emphasized and previous research related to landslide seismic signals is reviewed.
This is followed by a discussion on landslides models. Granular flow on the topography
of Dolomieu crater is simulated using a thin-layer model. The simulated basal forces and
their spectral content are analyzed. Thereafter, Hertz contact theory is introduced. This is
a fundamental theory which describes the contact between two colliding bodies. It will be
used later to interpret the seismic signal generated by boulder impacts. Finally, rockfalls
at Dolomieu crater are presented and their temporal evolution is analyzed by means of
camera images and recorded seismic signals.
Chapter 3 focuses on the propagation of seismic waves. The Spectral Element Method
(SEM) is introduced and technical aspects regarding the implementation of topography as
well as the velocity model are presented. A convergence test is conducted and the wave
propagation is compared between models with different seismic velocity profiles. A second
part of the chapter analyzes the seismic energy decay of the seismic waves along the sur-
face as a function of source-receiver offset. Equations are derived for the computation of
source generated energy from the seismic recording of a single receiver at the surface of
the domain. Assumptions as well as complications for a heterogeneous velocity model are
discussed and estimation errors are quantified.
Chapter 4 dives into the seismic wave propagation at Dolomieu crater. The effect of topog-
raphy is analyzed depending on different velocity models. A synthetic crater model helps
to evaluate the respective influence of crater depth and crater curvature. Subsequently,
real seismic signals generated by rockfalls at Dolomieu crater are explored. Observations
and simulations are compared by means of spectral ratios between station pairs. There-
after, the signal characteristics of single boulder impacts are analyzed making use of Hertz
contact theory. In a second part, the estimation of the source energy is discussed in case of
topography. A topography correction factor is proposed and preliminary results are shown.
Chapter 5 makes use of the findings from the previous chapter and proposes a method to
localize rockfalls based on energy ratios between stations. Here, the effect of topography
is deliberately exploited in order to enhance resolution of the localization. Limitations of
the method as well as future developments are discussed.
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Chapter 1

Study site: Piton de la Fournaise

Situated in the Indian Ocean, around 700 km east of Madagascar and 175 km southwest
of Mauritius, Réunion is - besides Martinique and Guadeloupe - an island of the French
overseas territory with active volcano. Piton de la Fournaise is one of the most active
volcanoes worldwide. It is monitored by the local Observatoire Volcanologique du Piton
de la Fournaise (OVPF) which is administrated by the Institut de Physique du Globe de
Paris (IPGP). The permanent monitoring of volcanic activity in real time with diverse
and dense instrumentation offers excellent research conditions.
Volcanic environments are prone to mass wasting processes such as landslides and rockfalls.
In the case of Piton de la Fournaise, its caldera collapse in 2007 left 340m deep Dolomieu
crater with highly unstable crater walls. Since then, rockfalls frequently occur inside
Dolomieu crater. The high quantity of events within this very confined space provides a
perfect opportunity for the study of rockfalls.

Summit of 
Piton de la Fournaise

La Réunion

Piton des
Neiges

Figure 1.1 – Map of La Réunion. La Réunion is located in the Indian Ocean east of Madagascar (see red rectangle in
inset). The present day island is built up by two volcanoes: dormant Piton des Neiges in the northwest and active
Piton de la Fournaise in the southeast. The summit of Piton de la Fournaise is characterized by Dolomieu crater
as shown in Figure 1.2.



Chapitre 1 − Study site: Piton de la Fournaise

In the following we will summarize the volcanic setting of Piton de la Fournaise and present
the available instrumentation which will be used in this study. Thereafter, we will discuss
subsurface properties which are significant for seismic wave propagation.

1.1 Volcanic setting

The island of Réunion is characterized by two volcanoes, namely Piton des Neiges in the
northeast, dormant since around 12 ka (Deniel et al., 1992), and Piton de la Fournaise in
the southeast, active till present day since about 500 ka (Merle et al., 2010). With around
one eruption every 10 months, Piton de la Fournaise is one of the most active volcanoes
worldwide (Roult et al., 2012). It belongs to the class of basaltic shield volcanoes, which
are predominantly formed by occasional effusive eruptions (Peltier et al., 2012). As the
lava is rather fluid, it can spread over wide areas which is why shield volcanoes are char-
acterized by gentle side slopes. In contrast, eruptions of stratovolcanoes are mainly of
explosive nature and involve faster cooling lava which result in steeper profiles.
Besides lava flows and pyroclastic deposits, which are so-called exogenous processes, vol-
canoes can grow due to expansion of internal magma chambers, so-called endogenous pro-
cesses as for example intrusions. In parallel, destructive events such as crater collapses
and landslides form the counterpart of growing processes. One of such destructive events
occurred on Piton de la Fournaise in April 2007 with its caldera collapse, leaving behind
the present day characteristic shape of Dolomieu crater. In the following section we will
briefly discuss its formation as well as its structure, which is of importance to understand
occurrences of mass wasting processes within the crater.

1.1.1 Dolomieu crater

Present day Dolomieu crater was formed in April 2007 during one of the most intense erup-
tions of Piton de la Fournaise in recent history (e.g. Staudacher et al., 2009). Its extension
originates from a first collapse in 1931, after which it had been progressively filled up with
lava (Michon et al., 2013). The 2007 eruption lasted in total around 1 month and just a
few days after its beginning, in the night of April 5, the rock column beneath Dolomieu
crater collapsed (Michon et al., 2007, 2009; Peltier et al., 2012). Within 24 h, the center of
the caldera dropped by more than 300m. Figure 1.2 illustrates the topographic structure
of Dolomieu crater. Michon et al. (2009) identified a cyclic behavior during the collapse,
characterized by small-scale deflation and inflation of the summit area accompanied with
an increase and decrease of seismicity. They drew parallels to caldera collapses on other
basaltic volcanoes and related the cyclic behavior to pressure release caused by drainage of
the underlying magma chamber and simultaneous pressure increase caused by the down-
ward movement of the collapsing column.
The caldera collapse plays a defining role for the resulting crater structure which in turn
determines regions of instability and hence rockfall occurrences. There are significant
structural differences between northern and southern part of Dolomieu crater. While the
collapse revealed subvertical scarps along the northern side, terraces at the level of the
former crater floor were left on the southern side, which subsided subsequently into the
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1.1 −Volcanic setting

Figure 1.2 – Dolomieu crater and instrumentation. Topographic representation of Piton de la Fournaise summit
(see Figure 1.1 for location). The summit is characterized by Dolomieu crater with smaller Bory crater at its east and
Soufrière crater at its north. Contour lines show elevation differences of 40 m. Position of seismic stations BON,
BOR, DSO and SNE are marked by red triangles. The small insets show antennas of 6 stations (orange dots) around
BON and DSO. Positions of cameras CBOC, DOEC and SFRC are marked by green dots. Green cones indicate the
camera's range of vision. Blue dashed line corresponds to the structural cross-section shown in Figure 1.3.

newly formed crater (Michon et al., 2009). Derrien et al. (2019) recently published a de-
tailed interpretation on the current crater structure and the involved faulting mechanisms,
shown in Figure 1.3. Objective of their investigation was to assess the risk of caldera
rim instabilities to prevent accidents for tourists, scientific teams and other visitors. The
structural difference between north and south can be seen on the crater cross-section in
Figure 1.3. As mentioned before, while the northern crater wall is characterized by a steep
scarp with talus from rockfall deposits at its bottom end, the south consists of step-like
terraces on which scree is deposited almost up to the crater edge. This has consequences
for both the occurrence and type of mass wasting processes which are generally speaking
of rockfall type (referred to as rock topple by Derrien et al. (2019)) in the north and of dry
granular flow type (referred to as debris avalanche by Derrien et al. (2019)) in the south
(for landslide classification used in the present work see Figure 2.1 in section 2.1). We will
review rockfall activity at Dolomieu crater and discuss individual events in section 2.3 of
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Chapitre 1 − Study site: Piton de la Fournaise

Chapter 2.

Figure 1.3 – Structural cross-section through Dolomieu crater. (a) NW-SE cross-section showing an interpreta-
tion of faults and geological structure of the subsurface. Its location is indicated by the blue dashed line in Figure
1.2. (b) Mechanisms of crater wall instabilities in relation with volcano deformation cycles of inflation and defla-
tion. Different mechanism dominate processes on the northern and the southern crater side. Figure extracted
from Derrien et al. (2019).

1.2 Instrumentation

Piton de la Fournaise volcano is monitored by the Observatoire Volcanologique du Piton
de la Fournaise (OVPF). The installed instrumentations can be grouped into 5 networks:
cameras, meteorological stations, seismic stations, stations for deformation measurements
(including inclinometers, extensometers and GPS stations), and geochemical sensors. The
present study uses data from the cameras and from the seismic network, which will be
introduced in the following.

1.2.1 Cameras

Three cameras are positioned at the edge of the crater rim, monitoring its inside. Figure 1.2
indicates their location as well as their range of vision. The cameras record continuously
2 frames per second. Based on a semi-automatic detection of rockfall seismic signals, only
images within time windows corresponding to events are transferred to the OVPF. Camera
snapshot examples during a large rockfall on the northwestern crater wall on October 2,
2016, are illustrated in Figure 1.4.
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1.3 − Instrumentation

CBOC DOEC SFRC

Figure 1.4 – View from the cameras installed on Dolomieu crater rim. Snapshots from the three cameras on Oc-
tober 2, 2016, at 7:43:43 (UTC) during a large rockfall located at the northwestern crater wall. The rockfall is partly
visible on CBOC and fully visible on DOEC. Thanks to the high stand of the sun the crater is almost completely
illuminated without major shadow zones. Neither clouds, fog nor rain hinders the view.

1.2.2 Seismic stations

For the present study the four closest seismic stations surrounding Dolomieu crater are
used, namely BON, BOR, DSO, and SNE (see Figure 1.2 for location). The response band
for BON and SNE is broadband (i.e. corner frequency ≥ 10 s), while BOR and DSO are
short-period (i.e. corner frequency < 10 s). All stations are sampled at 100Hz and have
three components except for DSO, which has only vertical orientation. Table 1.1 summa-
rizes the station attributes together with their coordinates.

Table 1.1 – Coordinates and type of seismic stations. UTM coordinates, elevation above sea level and type of the
four seismic stations surrounding Dolomieu crater. Their locations are mapped in Figure 1.2. Note that ‘1C’ and
‘3C’ denote vertical sensors and 3-component sensors, respectively.

Easting (m) Northing (m) Elevation (m) Orientation, Band

BON 366058.98 7650772.23 2549.0 3C, High Broad Band
BOR 365821.67 7650017.06 2540.0 3C, Extremely Short Period
DSO 366566.99 7649794.54 2517.0 1C, Extremely Short Period
SNE 366958.00 7650848.96 2505.0 3C, High Broad Band

Seismic signals and their spectra recorded at all four stations are shown in Figure 1.5. The
signal corresponds to the large rockfall on October 2, 2016, which was already pictured
in Figure 1.4 in the previous section. From the spectra we can deduce a main frequency
content of the rockfall signal between 2 and 10Hz. The signal below 1Hz is contaminated
by a high noise level, which originates most probably from the ocean at the nearby coast.
This makes it difficult to identify low frequency seismic waves generated by rockfalls of
this size (signals generated by mass wasting events of bigger volumes contain significant
amplitudes below 1Hz, see e.g. Zhao et al. (2015)).
In addition to the permanent seismic stations of OVPF, two antennas of 6 stations each
were installed in 2014 in the framework of the ERC SLIDEQUAKES project. They are
located around station BON and station DSO as can be seen in Figure 1.2. All stations
are short-period with 3-components. The recordings correspond from top to bottom to
station BON, BOR, DSO, and SNE. They will be used hereafter to deduce a 1D velocity
profile.
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Chapitre 1 − Study site: Piton de la Fournaise
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Figure 1.5 – Seismic recordings at the 4 stations surrounding Dolomieu crater. Seismic signals (left column) and
their spectra (right column) corresponding to a rockfall on October 2, 2016 (see Figure 1.2 for location and Fig. 1.4
for visual observation). Main frequency content of the rockfall signal is between 2 and 10 Hz. Noise from ocean-
coast interactions are contaminating the signals below 1 Hz.

1.3 Subsurface characterization for seismic wave propagation

The internal structure of volcanoes is essentially dependent on the cycles of growth and
destruction. Building history can be inferred by interpretation of subsurface structure. A
detailed study of the internal structure and the building history of Piton de la Fournaise
was carried out by Peltier et al. (2012) who made use of new outcrops revealed by the 2007
caldera collapse of Piton de la Fournaise.
For the present study on seismic signals from rockfalls at Dolomieu crater, we are interested
in the subsurface properties which govern the seismic wave propagation. In the following
we will try to find an effective description of the medium which allows us to build models
for numerical simulations. This includes a discussion on the seismic velocity model, on site
effects due to local geological structures at the seismic stations as well as on properties of

10



1.3 − Subsurface characterization for seismic wave propagation

seismic scattering and intrinsic attenuation.

1.3.1 Seismic velocity model

The seismic velocity structure of Piton de la Fournaise has been investigated by several
authors (e.g. Nercessian et al., 1996; Brenguier et al., 2007; Prôno et al., 2009). Mordret
et al. (2015) invert a high-resolution 3D anisotropic S-wave velocity model after cross-
correlating 4 years of seismic noise data from 2009 to 2013. Frequencies up to 2.5Hz
are used in the inversion. Depth and lateral resolutions are limited to 400m and 2000m,
respectively. The obtained model contains minimum S-wave velocities of around 850 km.s−1

at shallow depth (see Figure 1.6 for a distribution of 1D velocity profiles extracted from
the model at positions around Dolomieu crater). This is in accordance with studies based
on seismic noise recordings from the temporary experiment VolcArray in 2014, which
involved three seismic arrays installed on the edifice of Piton de la Fournaise (Brenguier
et al., 2016). Using a plane wave beamforming method, Brenguier et al. (2016) report
surface wave velocities of 1.0 km.s−1 and 0.75 km.s−1 for frequency bands of 1-3Hz and 3-
6Hz, respectively. Nakata et al. (2016) find similar values applying a double beamforming
technique on the same array data.
However, for the following study on rockfall seismic signals, we need a velocity model which
is valid up to 20Hz. Recently, Lesage et al. (2018) compared shallow velocity structures
of 11 different volcanoes. The comparison reveal similar structures in the first 500m of
andesitic and basaltic volcanoes: a strong velocity gradient close to the surface which is
progressively decreasing with depth. Given the smooth gradient variation, they suggest an
analytic function which can be used as a generic model for the shallow velocity structure
on these volcano types:

ci(z) = ci0[(z + ai)
αi − aαii + 1], (1.1)

where c is the wave speed, i = P, S stands for P-wave and S-wave, respectively, and z is
the depth below surface. Fitting the observed average velocity curves, they determine the
following parameters:{

cP0 = 540m.s−1, αP = 0.315, aP = 10, for P-wave,

cS0 = 320m.s−1, αS = 0.300, aS = 15, for S-wave.
(1.2)

The left graph in Figure 1.6 shows the proposed generic P-wave and S-wave velocity vari-
ations with depth. They are compared to S-wave velocities in the vicinity of Dolomieu
crater from the model of Mordret et al. (2015). A large discrepancy in the first 100m can
be observed which originates from the missing high frequency content above > 2.5Hz in
the model of Mordret et al. (2015). Further below, the Lesage model describes the velocity
profiles reasonably well.
In order to validate the velocity model of Lesage et al. (2018) above 2.5Hz for our study
site, we conduct dispersion curve analyses from noise measurements at two circular anten-
nas positioned around station BON and DSO (see Figure 1.2). For the analysis we perform
spacial autocorrelation (SPAC, based on Aki, 1957) using the MSPAC (Modified Spatial
Autocorrelation) toolbox (Köhler et al., 2007; Wathelet et al., 2008) as implemented in the
Geopsy software (www.geopsy.org). SPAC is a popular method to obtain velocity profiles
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Figure 1.6 – Shallow velocity profile of Piton de la Fournaise. Left: Velocity-depths profiles vS,Le and vP,Le from the
model proposed by Lesage et al. (2018) for S-wave and P-wave, respectively. The S-wave velocity is compared with
values vS,Mo (orange shaded zone) from the model inverted by Mordret et al. (2015). vS,Mo represents a distribution
of extracted profiles in the vicinity of Dolomieu crater.Right: Theoretical Rayleigh dispersion curves of the model
by Lesage et al. (2018) for fundamental mode R0 and first higher mode R1. Picks from the antennas around BON
and DSO are marked by red and green stars, respectively. A good agreement is found between the picks from
BON and the fundamental mode. Errors on BON values are estimated directly from the uncertainties during the
picking process.

on volcanoes (e.g. Ferrazzini et al., 1991; Métaxian et al., 1997; Chouet et al., 1998; Sac-
corotti et al., 2003; Mora et al., 2006; Perrier et al., 2012).
The picked inversion curves are compared on the right graph in Figure 1.6 with theoret-
ical Rayleigh dispersion curves obtained from the Lesage velocity model. The theoretical
dispersion curves were calculated with modal summation using Computer Programs in
Seismology (Herrmann, 2013). We compare dispersion curves instead of velocity-depth
profiles to avoid the predefinition of velocity layers which is necessary to invert the picked
velocities.
Measurements from the antenna around BON (red stars in Figure 1.6) shows a good agree-
ment with the fundamental mode Rayleigh dispersion curve and hence confirms the validity
of the Lesage model in the frequency range of 1-6Hz. Unfortunately, no coherent dispersion
curves are found above 6Hz. For higher frequencies, smaller antenna apertures would be
needed (smallest stations distance of available antennas is 30m). Data from DSO antenna
did hardly show any coherent dispersion curve patterns. A small window picked around
2.5Hz shows very low velocities (green stars in Figure 1.6). The lack of consistent dis-
persion curves might be explained by the proximity of the antenna to the southern crater
wall, leading to a scattered wave field. Consequently, we decide to omit the measurements
from the DSO antenna for the velocity analysis.
Given the lack of velocity estimations above 6Hz, we assume that the velocity model of
Lesage et al. (2018) is able to describe adequately the shallow velocity structure of Piton de
la Fournaise. The fact that the model is based on data from similar volcanoes confirms the
validity of the assumption. Comparison of synthetic seismograms with observed seismic
signals from rockfall impacts in Chapter 4 will reveal that the Lesage model adequately
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1.3 − Subsurface characterization for seismic wave propagation

reproduces arrival times and complexity of waveforms.
For the simulation of seismic wave propagation on Piton de la Fournaise, we will implement
the velocity model of Lesage et al. (2018) so that it follows the topography elevation. In
other words, looking at equation 1.1, we impose z = 0m at any position on the surface of
the domain. This is reasonable as a main cause for velocity variation is the compaction of
material with depth due to the increasing overburden pressure (Lesage et al., 2018). The
resulting model is presented in Figure 4.3 on page 95 (Chapter 4).

1.3.2 Geological site effects

Geological structures and soil properties (e.g. soft surface layers) can locally modify seismic
amplitudes (e.g. Borcherdt, 1970; Mora et al., 2006; Gélis and Bonilla, 2014; Chávez-García
et al., 2018). To evaluate the importance of these effects on the seismic stations surrounding
Dolomieu crater, we estimate amplification factors by means of data from volcano-tectonic
(VT) events. However, not only local subsurface properties but also variation of the surface
topography can modify seismic amplitudes and thus bias the estimation of geological site
effects (Davis and West, 1973). As we would like to examine geological site effects isolated
from topographic effects, we will subsequently evaluate the potential influence of topogra-
phy by numerically modeling its response on a domain with Dolomieu crater topography
and Lesage velocity profile.

Site effect estimation from volcano-tectonic (VT) events

Local site effects can be identified by stripping off the source signature and propagation
path influences from the measured seismic signal. Mathematically, this is easily realized by
a deconvolution in time domain or a division in frequency domain. The difficult part is the
knowledge on source and path terms. A classical approach is the site-to-reference spectral
ratio method (SRM), originally proposed by Borcherdt (1970). Assuming the same seismic
source and similar propagation paths, SRM evaluates local site effects relative to a refer-
ence station which is supposed to be unaffected by these site effects. In practice however,
the concept of an ideal reference site is hard to fulfill, even if the station is installed on
bedrock. Estimated site effects can be easily biased if the reference station itself is exposed
to site amplification. For this reason, the choice for the station of reference have to be
evaluated carefully.
For the present study we want to evaluate geological site effects on the 4 stations sur-
rounding Dolomieu crater, namely BON, BOR, DSO and SNE. The station on the stiffest
site (i.e. with the highest seismic velocity) is normally chosen as reference. However, as
could be seen in the previous section, we are missing information on local velocity profiles
for all stations. As station DSO only contains one component, it is excluded as potential
candidate for the reference station. Its proximity to the crater and the impossibility to
pick a nice dispersion curve from the surrounding antenna (see previous section) neither
advocate for this choice. To investigate the potential of the three remaining stations, we
calculate the spectral ratio between horizontal and vertical (H/V) ground motion using
noise records. Peaks in this ratio are indicators for site amplification. This is due to the
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fact that site amplification is normally characteristic to a certain wavelength. Due to the
velocity difference of S- and P-wave, spectral amplification peaks shift accordingly on the
corresponding components.
Figure 1.7 shows the calculated H/V ratios using 35 noise records of around 30 s each.
Spectral ratios of all recordings combined for each station by calculating their logarithmic
mean. In order to avoid spurious fluctuations of the ratios, the smoothing function pro-
posed by Konno and Ohmachi (1998) with bandwidth b = 40 is applied on the FFTs. This
smoothing method is appropriate as it ensures symmetrical windows of constant width
across a logarithmic frequency range.
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Figure 1.7 – Noise H/V.
Spectral ratios calcu-
lated from 35 noise
recordings of around
30 s each for station
BON, BOR and SNE.
Blue shaded zone
marks the standard
deviation from the
distribution of ratios.

Analyzing the spectral ratios, station BON shows the lowest values above 4Hz while having
increasing values towards lower frequencies. The spectral ratio of station BOR is generally
low, gradually decreasing with increasing frequencies. Station SNE shows the highest val-
ues with a minimum at around 15Hz. From this analysis we conclude that station BON
and BOR are least affected by site amplification and hence appropriate reference stations.
However, before taking a final decision we will evaluate the recorded spectra of seismic
events.
For the estimation of site effects we chose to analyze signals from volcano-tectonic (VT)
events. VTs are suitable because sources are centered beneath the crater and the gener-
ated seismic waves are less biased by topography than waves traveling along the surface
from shallow sources such as rockfalls (in the next section we will assess the influence of
topography on the site effect estimation).
VTs are selected from a catalog compiled by Duputel et al. (2019) who use template match-
ing and relocation techniques to detect and locate events on Piton de la Fournaise between
June 2014 and July 2018. As station DSO tends to saturate in case of very strong ground
motion, medium sized VTs are chosen. Later it is ensured that the considered frequency
content has a signal to noise ratio above 3. The final selection contains 36 events which is
assumed to be sufficient to ensure a normal distribution. The corresponding source posi-
tions are illustrated in Figure 1.8.
The selected VTs are located around 2 km below the crater. At this depth, the inter-station
spacing is not negligible. Thus, in order to account for weakening of the signal due to ge-
ometrical spreading, the measured amplitudes are corrected by source-receiver distance r.
Figure 1.9 shows recorded spectra of three randomly chosen events. Globally it can be
observed that station BON and BOR have the smallest amplitudes on all components.
This suggests that they are not affected by local site amplification and can be chosen as
reference stations.
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We decide to take the mean of the two stations as reference for the site effect estimation.
Then, if v̂ijk(f) is the Fourier transform of ground velocity vijk(t) measured at station i
on component j for VT event k, the spectral amplification Aijk(f) is calculated as follows:

Aijk(f) =
v̂ijk(f)

0.5[v̂BONjk(f) + v̂BORjk(f)]
. (1.3)

Spectral amplifications of all VT events k are combined for each station by calculating their
logarithmic mean. The obtained amplification function at each station is shown in Figure
1.10 for the vertical component and in Figures 1.11 and 1.12 for the horizontal components
in north and east direction, respectively. Note that station DSO is single component which
is why horizontal site amplification cannot be determined.
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Figure 1.10 – Site effects on vertical component. Vertical amplification factor as a function of frequency for each
station. Computed from VT with the mean of BON and BOR as reference. Blue shaded zone denotes estimation
error which corresponds to the standard deviation of the amplification distribution of all events.

As expected, station BON and BOR show flat ratios fluctuating around unity. Only
for the horizontal component in north direction BOR seems to be amplified relative to
BON. We will check hereafter if this could be originating from the nearby topography of
Dolomieu crater or smaller Bory crater. Both stations DSO and SNE exhibit moderate
amplification on the vertical component of factors in between 2 and 3 (Figure 1.10). A
spectral peak is visible at SNE around 8Hz. On the horizontal components, station SNE
is stronger amplified. Amplification reaches factors up to 5 for both north- and east-
component (Figure 1.11 and 1.12). Maximum amplification is located at around 4Hz. It
might be related to the peak at around 8Hz on the verical component, shifting down in
frequency due to the lower S-wave velocity if we assume predominantly shear waves on the
horizontal components.
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Topographic influence on geological site effect estimation

As mentioned earlier, topography variations can have strong effects on ground motion.
In order to verify that the site amplification factors estimated in the previous section are
mainly caused by local geological features, we will investigate the possible topographic with
the help of numerical simulations. Note that for shallow sources, such as the later studied
landslide seismic sources, seismic waves propagate mainly along the surface. Consequently,
influence of topography is expected to be essentially different than for deep sources. This
will be investigated in detail in Chapter 4.
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Figure 1.13 – Numerical model with plane wave of vertical incidenc. Cross-section through Dolomieu crater (see
inset for orientation). The mesh is built up of elements with side lengths of 60 m (bottom part) and 20 m (top
part). A zone of refinement connects the different element sizes. Above, the elements are vertically deformed in
order to accommodate the surface topography. The plane wave source is located at 200 m elevation. The color
map corresponds to the Lesage velocity model (see section 1.3.1). Absorbing boundaries (PMLs) of 200 m thick-
ness are attached to the sides and the bottom of the domain.

For a quantitative analysis of topographic effects on seismic waves from deep sources, we
simulate seismic wave propagation using the Spectral Element Method (SEM). The reader
is referred to section 3.2 in Chapter 3 for all details on the method as well as the ar-
chitecture of the computational domain including the 3D surface topography. The here
used domain is based on a cube of dimensions x = 1800m, y = 1800m and z = 1200m.
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Figure 1.13 illustrates the numerical model on which the surface topography of Piton de
la Fournaise is imposed.
The simulation is carried out using a 7Hz Ricker-type plane wave of vertical incidence.
A plane wave approach has two benefits. Firstly, we do not have to carry out several
simulations in order to average over sources of varying lateral positions (as it is done in
the site effect estimation from the observed VTs). Secondly, it can be used as far-field
approximation for sources situated at great depth directly underneath the crater which
is why we don’t have to consider different source-receiver distances for each station. Due
to the finite computational domain, plane wave approaches are often used in numerical
studies (e.g. for site effect estimations in the 2D simulations of De Martin et al. (2013)).
The plane wave source is implemented by a horizontal grid of point sources with 30m
lateral spacing at around 800m below surface. Two velocity models are considered. A
homogeneous model with vS = 1000m.s−1 and vP = 2000m.s−1 for S-wave and P-wave,
respectively, and the velocity model proposed by Lesage et al. (2018). The latter is imple-
mented in a way to follow the elevation of topography. This is visualized in Figure 1.13.
Intrinsic attenuation is taken into account with quality factor QS = 50 and QP = 80 for
S-wave and P-wave, respectively.
Figure 1.14 shows the synthetic seismograms recorded at the surface along an array across
Dolomieu crater (see the inset in Figure 1.13 for the location of the array).
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Figure 1.14 – Synthetic seismograms from plane wave simulation. The sections of seismograms show vertical
ground velocity from simulations on the homogeneous velocity model left and on the Lesage velocity model right.
Stations are located along the topographic profile indicated by the blue line on top, which corresponds to an array
across Dolomieu crater (see Figure 1.13).

The sections of seismograms show how the plane wave is propagating upwards and arrives
first at the bottom of the crater and at the deeper flanks on the outside of the domain.
Unfortunately, despite experimenting with the properties of the PMLs (Perfectly Matched
Layers, see section 3.2.1 for more details on these energy absorbing boundaries), we could
not avoid reflections from the boundaries when the plane wave is hitting the surface. These
reflected waves can be detected in the shown section as they are generated at zero and max-
imum offset and travel into the center of the domain. A crude way forward to avoid these
reflections is to increase the computational domain. However, this is computationally very
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expensive. For now, we will interpret the results bearing in mind these reflections. In fact,
it is not counterintuitive that also in the real case, for a VT source below the summit of
Piton the la Fournaise, waves would arrive from the sides as they are traveling upwards
and guided along the surface towards the peak.
Analyzing the synthetic seismograms, the crater rim, which is located at offsets around
0.7 km and 1.5 km, causes the most distinctive wave-field. Subsequent to the arrival of the
plane wave at the crater rim, waves are traveling along the surface into opposite directions,
i.e. towards the bottom of the crater and away form the crater. In particular in the case
of the Lesage model, the waves traveling towards the bottom of the crater are interfering
at the center where we can see strong amplitudes (at a time around 1.5 s). Bearing the 3D
crater symmetry in mind, the recorded amplitudes can result from waves traveling towards
the center from all directions. This effect is not as pronounced for the homogeneous model.
This might be caused by the fact that more wave energy is guided along the surface in the
case of the Lesage model due to the strong velocity gradient.
In the following we will compute spectral ratios from the synthetic seismograms and com-
pare them to the previously estimated site effects. If the amplification functions show
similar features, we can conclude that the these might be caused by the topography as the
numerical models do not consider local geological structures.

Site-to-reference spectral ratio
In order to compare observed and synthetic spectral ratios, we apply the same spectral
analysis on the simulated seismograms, taking the mean of station BON and BOR as ref-
erence. Figure 1.15 compares the vertical spectral amplification functions estimated from
VTs (as shown above) with spectral ratios from simulations on the homogeneous velocity
model and on the Lesage velocity model. In general, we cannot identify correlations be-
tween observations and simulations. The only accordance observable is a peak at around
8Hz at station SNE which is reproduced on the Lesage model. However, the synthetic
spectral ratio at station SNE is strongly fluctuating which make final conclusions difficult.
These strong fluctuations might be related to the reflections from the PML as stations
SNE is located closer to the domain boundary than the other stations.
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The observed amplification factors on the horizontal components are compared with sim-
ulations on the Lesage model. Figures 1.16 and 1.17 shows the spectral ratios for north-
and east-competent, respectively. As for the vertical component, no correlation can be
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observed. Again, stronger value fluctuations are present at station SNE which might be
related to the proximity to the domain boundary.
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As no clear correlation are identified between simulated and observed spectral ratios, we
assume that influences from topography on the estimated geological site effects can be
neglected in the frequency band of interest. Considering that the crater dimensions are
much bigger than the seismic wavelengths, this result might have been expected. More
concretely, the diameter of the crater measures around 1000m (see profile in Figure 1.14)
while seismic wavelengths range between 25m and 250m for the shown frequency band
from 2Hz to 20Hz (assuming an effective S-wave speed of around 500m.s−1 close to the
surface, see Figure 1.13). This means that the orders differ by a factor of 10. Nonethe-
less, the synthetic seismograms shown in Figure 1.14 demonstrate that the wave field is
influenced by the crater topography. In particular, surface waves are generated and guided
along the topography. This can cause interferences as observed in the center of the crater.
The spatial distribution of topographic amplification from a deep source is further inves-
tigated in appendix 1.4.1. Similar amplification maps will be studied in Chapter 4 for
sources located at the surface in the context of rockfall generated wave fields. We will see,
that amplification patterns caused by surface sources differ substantially from amplifica-
tion patterns caused by deep sources. This is because topography influences surface waves
on their whole trajectory. For this reason, the influence of topography on surface waves
has to be considered as a propagation effect rather than a local site effect at the station.

1.3.3 Intrinsic attenuation

The amplitudes of seismic waves are attenuated with traveled distance due to processes
referred to as internal friction. These attenuating medium properties can be characterized
by so-called quality factors QP and QS for P-wave and S-wave, respectively. The higher
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the quality factor of a medium, the less attenuated are seismic waves. The theoretical
formulation of intrinsic attenuation will be introduced in chapter 3.
In order to describe the medium of Piton de la Fournaise we define QP = 80 and QS =

50. These values correspond to estimates from former studies at Piton de la Fournaise
(Battaglia and Aki, 2003; Hibert et al., 2011) and are close to values used for similar
volcanoes (e.g. De Gori et al., 2005; O’Brien and Bean, 2009).

1.3.4 Scattering

Heterogeneities in the subsurface cause scattering of the wave field. Scattering can lead to
prolonged ground motion, recorded as the so-called coda after a seismic event. The duration
of coda-waves can well exceed the duration of the source mechanism. For the present study
we are interested if scattering plays a major role in the observed rockfall seismic signals. In
the following we evaluate the scattering potential of the medium at Piton de la Fournaise
using a test on energy equipartition. It has been shown that stabilization of the time
varying ratio between vertical and horizontal (V/H) kinetic energy indicates a multiple
scattering regime (Margerin et al., 2009; Souriau et al., 2011).
We apply the test on seismic signals of a VT as well as a rockfall event. In detail, after
preprocessing the seismic signals they are filtered in a frequency band of interest. The
squared ground velocities are subsequently smoothed with a sliding window of length l0.
Finally, ratio V/H is calculated as (v2

z)
0.5/(v2

x + v2
y)

0.5. Figure 1.18 shows filtered and
smoothed squared ground velocities together with the corresponding V/H ratios at stations
BON, BOR and SNE for two different events.
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Figure 1.18 – Evaluation of scattering from energy equipartition. Test on energy equipartition for a VT event on
January 31, 2017 (left) and a rockfall event on January 22, 2017 (right). For each station, squared ground velocities
filtered between 12.5 Hz and 17.5 Hz and smoothed with a sliding window of length l0 = 0.1 are shown for each
component. The correspondingV/H ratio is plotted below.

No stabilization for the V/H ratios is observed. The test was carried out with the same
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Chapitre 1 − Study site: Piton de la Fournaise

result in different frequency bands and using different sliding window lengths. This means
either that heterogeneities in the ground do not cause significant scattering or that if the
coda exists, it is below the noise level and not measurable. Note that energy equipartition
is not observed for the the seismic noise due to the continuous activity of noise sources.
From the above analysis it is impossible to issue a clear statement on the scattering regime.
However, we will see in Chapter 2 that the duration of the recorded rockfall seismic signals
is dominated by the propagation phase of the events. This indicates that scattering is
indeed negligible.
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1.4 −Appendices

1.4 Appendices

1.4.1 Spatial distribution of topographic amplification for wave fields of vertical incidence

In order to assess the spatial variability of topographic amplification, simulations on a
model with topography are related to a flat reference model regarding the total kinetic
energy. Subsequently we will compare the amplification maps to the curvature of the
topography. The frequency scaled curvature (FSC) was proposed by Maufroy et al. (2015)
to be a proxy for topographic amplification.

Energy amplification maps

To calculate maps of topographic amplification calculate the energy ratio between simu-
lations from a model with topography and a flat reference model. For this, the ground
velocity is recorded on a grid of stations on the whole domain surface. Then, the squared
ground velocities of all three components are summed and integrated over the whole dura-
tion of seismic motion. This value is used as a measure for seismic energy. Subsequently,
the energy ratio Etopo/Eflat between model with topography and flat reference model is
calculated at each grid point in order to obtain a map of amplification.
The energy ratio is shown for the homogeneous model and the Lesage model in Figure
1.19 in case of a plane wave with vertical polarization. The ratios are computed from
the unfiltered synthetic seismograms. With the Ricker source of 7Hz dominant frequency,
the amplification patterns hence correspond to wavelengths of around 70m (assuming an
effective S-wave speed of around 500 m.s−1 close to the surface, see Figure 1.13).
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Figure 1.19 – Topographic amplification for a vertically polarized plane wave of vertical incidence. Energy ratio
Etopo/Eflat between model with topography and flat reference model for homogeneous velocity (left) and Lesage
velocity profile (right). Blue dashed line marks location of cross-section shown in Figure 1.14 and contour lines
count for 60 m elevation difference.

We remark a general amplification due to topography which increases close to the borders
of the domain. This general amplification can be attributed to the artifact reflections from
the PMLs (see Figure 1.14; note that these reflections are not present in the flat case).
However, as discussed in section 1.3.2, waves might also arrive from the sides in the real
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Chapitre 1 − Study site: Piton de la Fournaise

case as they are traveling upwards and guided along the surface towards the peak. Simu-
lations on a significantly bigger domain could help to evaluate this hypothesis.
Ignoring the general amplification, the amplification map of the homogeneous model (left
hand side of Figure 1.19) does not show any prominent features except for a circle of less
amplification (of white color) around the crater rim. This feature is possibly caused by de-
structive interference of reflected plane wave and rim-generated surface wave. In contrast,
the Lesage model shows amplification at the center of the crater. This results from the
previously discussed waves reflected at the crater rim and traveling towards the bottom of
the crater (see Figure 1.14). Apart from that, the only remarkable feature on the Lesage
model is a deamplified zone at the steep northwestern crater wall. This means that less
energy is present at this steep slope in comparison to the flat surface.
Figure 1.20 shows amplification patterns on the model Lesage model from horizontally
polarized plane wave in east-direction (left) and in north-direction (right).
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Figure 1.20 – Topographic amplification for a horizontally polarized plane waves of vertical incidence. Energy
ratio Etopo/Eflat on the Lesage model for plane wave horizontally polarized in east direction (left) and in north
direction (right). Blue dashed line marks location of cross-section shown in Figure 1.14 and contour lines count for
60 m elevation difference.

Again we can observe a general amplification which increases towards the boundaries pos-
sibly due to the reflections from the PMML. Besides that, strong amplification is present
at the crater center, similar to the vertically polarized source. The same explanation of
reflected seismic waves traveling towards the crater bottom holds as previously. Besides a
tendency for deamplification at the crater walls we can remark slight amplification directly
at the crater rim. The mechanism which explains this phenomenon is that energy from
waves traveling upwards end up being trapped at the crater rim.

Frequency scaled curvature

The concept of frequency scaled curvature (FSC) was proposed by Maufroy et al. (2015)
as a proxy for topographic amplification. By comparison with ground motions from 200
3D earthquake simulations, they found correlation between topographic amplification and
topography curvature smoothed over a characteristic length equal to half the wavelength
of the amplified S-wave. Accordingly, convex shapes such as the top of hills and ridges are
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linked to seismic amplification, whereas concave shapes such as valleys are deamplified.
This confirms many observations regarding earthquake ground shaking which have been
reported in a multitude of research articles (e.g. Davis and West, 1973; Hartzell et al., 1994;
Hough et al., 2010). Note that this amplification is related to topography and does not
consider amplification due to the subsurface structure as for example the often observed
amplification in valleys due to basin fillings. For calculating a FSC map, the topography
curvature, which is the second spatial derivative of the elevation, is smoothed by performing
a double convolution with a n×n unit matrix. The characteristic length of the smoothing
matrix is defined as LS = 2n∆x, where ∆x is the space increment of the DEM.
In order to compare the FSC maps to the simulated amplification maps above, compa-
rable wavelengths have to be chosen. The simulation were carried out with a dominant
frequency of 7Hz, leading to a dominant wavelength of around 70m (assuming an effective
S-wave speed of around 500 m.s−1 close to the surface, see Figure 1.13). According to
Maufroy et al. (2015), correlations of topographic amplification are found between curva-
ture smoothed over smoothing lengths of double the wavelength. For this reason we define
the smoothing length Ls = 140m. For comparison, a smoothing length of Ls = 80m is
applied, corresponding to a wavelength of 40m or a frequency of 12.5Hz. The resulting
FSC maps of Dolomieu crater are shown in Figure 1.21.
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Figure 1.21 – Frequency scaled curvature (FSC) of Dolomieu crater. FSC calculated using different smoothing
lengths: Ls = 140 m on the left andLs = 70 m on the right. According to Maufroy et al. (2015), this is a proxy
for amplified wavelengths of 70 m and 40 m, respectively. Amplification is expected for convex curvature (positive
values), whereas concave curvatures (negative values) results in deamplification of the seismic signal.

Immediately observable is the strong positive curvature (red colored) of the crater rim
which persists for both smoothing lengths. According to Maufroy et al. (2015), ampli-
fication is expected at these positions due to the convex curvature of the topography.
In contrast, the concave shape of the crater inside results in deamplification (blue col-
ored). Going from long smoothing length (low frequency) to short smoothing length (high
frequency), the FSC map becomes more scattered due to small-scale variations of the to-
pography. High frequency seismic waves (corresponding to around 12.5Hz) are expected to
interact with these small-scale variations. Regarding the seismic stations, no amplification
is expected as they are positioned on comparably flat topographic relief. Only station DSO
is located very close to the crater rim and thus might be affected by amplification. Again
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we point out that these amplification patterns hold for the wave field of deep sources.
Surface waves generated by shallow sources can experience a substantially different topo-
graphic amplification as will be shown in Chapter 4.
Comparing with simulated amplification patterns above, we can find similar amplification
patterns at the sides of the crater. This is true in particular for a horizontally polarized
source (see Figure 1.20), for which the crater walls are deamplified whereas amplification
exists directly at the top of the crater rim. However, the amplification at the crater rim
persists only partly and is not as wide as the red ring shown by the FSC maps. Further-
more, the FSC maps do not predict at all the strong amplification observed in the center
of the crater, which is caused by the interferences observed in Figure 1.14. In order to be
able to compare amplification patterns for different wavelengths, the simulated amplifica-
tion patterns have to be calculated from band-filtered synthetic seismograms. This was
omitted for the here presented simulations from deep sources but will be done in Chapter
4 for the analysis of amplification patterns from surface sources.
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Chapter 2

Landslides and generated seismic waves

Landslides are gravitational mass wasting processes which represent a major natural hazard
on society and play an important role in erosion processes, predominantly occurring in
mountainous, volcanic and coastal environment. In order to mitigate risk, it is critical to
understand and predict the behavior of landslides. Yet, the term landslide itself is not
constrained on a single physical process. In the words of Jones (1992):

It is essential to recognise at the outset that the term landslide is the most
over-used and loosely defined term employed in slope studies. It is merely a
convenient short-hand or umbrella term employed to cover a very wide range
of gravity-dominated processes that transport relatively dry earth materials ...
downslope to lower ground, with displacement achieved by one or more of three
main mechanisms: falling, flowing ... and sliding ... .

For this reason, many approaches exist in order to classify and describe landslide processes.
One recently developed possibility is to use recorded signals of landslide generated seismic
waves. Growing networks of continuously measuring seismic stations enable high detection
rates and monitoring of instable sites.
However, we have to be aware of the two-fold nature of the problem: the landslide propa-
gation and the seismic wave propagation. These two physical processes are interconnected
by the landslide seismic source, which is constituted by the landslide basal forces. The
study of landslide seismic sources can be approached from two sides: in a forwards man-
ner, by modeling landslide dynamics or in a backwards manner, by analyzing and inverting
landslide seismic signals. Ultimately, these two approaches are combined. As we will see
in the following, this has been successfully carried out in a low frequency approximation,
modeling the seismic signal from a modeled landslide seismic source.
In this chapter, we will first focus on the landslide seismic signal, revealing its utility for
both classification and determination of landslide properties and dynamics. Thereafter,
we will cover the modeling of landslide basal forces, presenting different numerical models
as well as Hertz contact theory which describes the stress-strain relationship between two
colliding bodies. Finally, rockfall activity at Dolomieu crater is reviewed and example
events are analyzed by correlating camera images and recorded seismic signals.



Chapitre 2 − Landslides and generated seismic waves

2.1 From seismic signal to landslide source

Seismology has been proven to be of high utility to study and monitor physical processes
at the Earth’s surface such as storms (e.g. Ebeling and Stein, 2011), rivers(e.g. Gimbert
et al., 2014), glaciers (e.g. Tsai et al., 2008; Podolskiy and Walter, 2016; Sergeant et al.,
2016), snow avalanches (e.g. Suriñach et al., 2005), and landslides (e.g. Hibert et al., 2011;
Allstadt, 2013; Bottelin et al., 2014). These studies are commonly referred to as environ-
mental seismology (Larose et al., 2015).
In the present work we are interested in landslide related seismic signals. In the following
we review how these signals can be used to classify events. Thereafter we will go more into
detail on the link between physical landslide processes and the seismic signal in the low
frequency and high frequency regime. Finally we will discuss how laboratory experiments
of granular flows and grain impacts are used to better understand landslide radiated seis-
mic waves.

2.1.1 Landslide seismic source classification

Landslides classification is often based on the initiating rupture process, the type of move-
ment, the displacement speed, the involved type of material, the water content, or the
volume. An extensive review on landslide classification was compiled by Hungr et al.
(2001). Here we focus on landslide classification in relation with generated seismic waves.
This is a powerful tool as it directly relates the seismic signal with physical processes.
Leprettre et al. (1998) showed, for the case of snow avalanches, that events can be detected
and classified by extracting characteristic features from the associated seismic signal. The
same approach has been applied to landslides (e.g. Dammeier et al., 2011; Hibert et al.,
2014b; Manconi et al., 2016; Maggi et al., 2017; Provost et al., 2017; Hibert et al., 2017c).
Based on this principle, Provost et al. (2018) recently proposed a typology of landslide
seismic sources based on common features in the recorded signals. They considered land-
slide seismic sources as illustrated in Figure 2.1.
Analyzing signal features such as duration, number of peaks and frequency content, they
define three main classes of landslide events: slopequakes, rockfalls, and granular flows.

• Slopequakes comprise all seismic signals produced by subsurface processes such as
fracturing, shearing or fluid migration (see Fig. 2.1 (d)-(g)). They can be identified
by relatively short signal durations (< 10 s). We will not go into further detail as
slopequakes are not in the scope of the present work.

• Rockfalls refer to seismic signals generated by the downward movement of single
blocks, impacting the ground after free fall or during processes such as bouncing and
rolling (see Fig. 2.1 (c)). Depending on the detachment phase, they are often referred
to as rock topples (Varnes, 1978). Rockfall seismic signals are characterized by well
separated peaks which correspond to successive impacts. Their duration ranges from
5 s up to tens of seconds, depending on the trajectory and the cliff height. Frequency
content can be very high (> 100Hz) while most energy is measured between 20 and
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(a)

(b)

(c)

(d)

(e)
(f)

(g)

Figure 2.1 – Landslide
seismic source processes.
Landslide seismic sources
generated by
(a) wet granular flow,
(b) dry granular flow,
(c) rockfall,
(d) tensile fracture opening,
(e) tensile cracks opening,
(f) shearing, and
(g) fracture fluid migration.
Figure extracted from
Provost et al. (2018).

40Hz (note here that the measured frequency content also depends on the source-
receiver distance, with increased attenuation of higher frequencies).

• Granular flows denote seismic signals produced during the downslope movement of
either dry or wet granular material (see Fig. 2.1 (a)-(b)). Compared to rockfalls,
granular flows can involve a wide distribution of different grain sizes. The seismic
signals are often described as cigar-shaped, characterized by a smooth envelope with
emergent onset. Signals of dry granular flows last up to 500 s with frequency content
between 1 and 35Hz, while signals of wet granular flow can continue for several
thousands of seconds to several hours with slightly higher frequency contents.

Following this classification, rockfalls can be distinguished from granular flows by the ob-
servation of well separated successive peaks with high frequency content. However, this
observation can blur in case of simultaneous or progressive impacts of multiple blocks.
Also, what starts as a rockfall can rapidly turn into a granular flow when blocks break
apart during detachment or during impact (e.g. Hibert et al., 2011), or when additional
material is entrained along the trajectory as for example erosion of underlying debris (e.g.
Dammeier et al., 2011). Vice versa, large spikes in signals of granular flows may be ob-
served corresponding to strong impacts of large boulders (in analogy discussed for debris
flows by Burtin et al., 2016).
Regarding landslide events at Dolomieu crater, we will see that the generated seismic sig-
nals contain both rockfall and granular flow characteristics. This is due to the fact that
events often involves both impacts of single blocks and the spreading of granular mass. We
will generally refer to them as rockfalls.
It is worthwhile mentioning, that machine-learning techniques are increasingly used to au-
tomatically detect and classify landslide seismic signals. As for example based on Random
Forest algorithms, Provost et al. (2017) classifies seismicity of slow-moving Super-Sauce
landslide in the French Alps and Hibert et al. (2017c) identifies rockfalls and volcano-
tectonic earthquakes at Piton de la Fournaise.
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2.1.2 Landslide properties and dynamics

Thanks to the classification above, signal characteristics can be associated to specific land-
slide types. However, the seismic signals can be exploited even more. It has been shown
that landslide properties as well as their temporal evolution can be inferred.
In the following we will review previous studies which derive landslide properties and dy-
namics from seismic signals. Firstly, we will present studies which follow a low frequency
approximation. This simplifies landslide dynamics to the smooth global behavior of an
effective granular medium and makes it possible to invert the force-time function from
seismic signals. Secondly, studies which are not based on the low frequency approximation
are discussed. This means that no information from the signal is lost and makes it for
example possible to estimate the total energy generated by landslides. However, the high
frequency content of the signal increases complexity and restricts techniques like the force
inversion.

Low frequency

When considering the low frequency seismic signal recorded at a distant receiver, the land-
slide can be approximated as a point source with fixed position over time. This is because
the landslide dimension and its trajectory are negligible small compared to seismic wave-
length and source-receiver distance. This principle is illustrated on the left hand side of
Figure 2.2. To get a rough idea, let’s consider a landslide trajectory of 1 km. Then, to
justify the low-frequency approach, the studied wavelengths should be at least 10 km. This
results in signal periods of above 10 s (< 0.1Hz) for a minimum wave speed of 1 km.s−1.
This is in accordance with the studies reviewed below, which typically consider signals pe-
riods above 10 s. The source-receiver distance should be of several wavelengths, i.e. around
at least 40 km, in order to be outside the range of the near-field. On a side note, large
landslides can be recorded at a few hundreds of kilometer distance from the source (e.g.
Brodsky et al., 2003).
Following this low frequency approximation, the landslide seismic source simplifies to a
single force varying over time. Authors have been using different approaches in order to
relate observed seismic signals to this force-time function. On the one hand, an appropri-
ate shape of the force-time function can be assumed and successively adjusted in timing
and amplitude by fitting synthetic and observed seismograms (Kanamori and Given, 1982;
Eissler and Kanamori, 1987; Dahlen, 1993; La Rocca et al., 2004). On the other hand, in
a more elegant way, the force-time function is derived directly from the recorded seismic
signals. This can be done by deconvolution or waveform inversion (Kanamori et al., 1984;
Kawakatsu, 1989; Lin et al., 2010; Moretti et al., 2012; Ekström and Stark, 2013; Yamada
et al., 2013; Allstadt, 2013; Hibert et al., 2014a; Zhao et al., 2015; Yamada et al., 2016).
In this process, numerical models of landslide dynamics can help to constrain force param-
eters and to better interpret inversion results and their ambiguity.
The nature of the source-time function was first studied first by Kanamori and Given
(1982). Analyzing Rayleigh and Love wave phase radiation patterns associated with a
landslide during Mount St. Helens volcano eruption in 1980, they concluded that a bell-
shaped horizontal force mechanism could best reproduce observed seismograms. Shortly
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later, Kanamori et al. (1984) estimated the force-time function by direct deconvolution of
the observed seismogram with a synthetic impulse response. This revealed a source-time
function of sinusoidal shape. Eissler and Kanamori (1987) interpreted that the additional
negative portion of the force history originates from the deceleration phase of the sliding
mass. This hypothesis was confirmed by Kawakatsu (1989) who performed a force inversion
of the observed seismograms based on a simple description of a block sliding down a slope.
Refining the description of the landslide dynamics, Brodsky et al. (2003) modeled the force
evolution using a rigid block sliding down a ramp of decreasing slope. By this, they could
constrain the coefficient of basal friction. Since then, the advancement of numerical models
have helped to describe both horizontal and vertical forces in more detail. They take into
account complex flow behaviors which may result from interactions with the underlying
topography or erosion along the path (e.g. Favreau et al., 2010; Moretti et al., 2012, 2015).
A simple simulation of a granular mass sliding down a slope is presented in appendix 2.4.1.
Acceleration and deceleration phase of the flowing mass can clearly be derived from the
spatially distributed basal forces.
The inferred force-history can eventually help to constrain landslide properties and dy-
namics, such as for example the involved volume (e.g. La Rocca et al., 2004), the runout
distance (e.g. Brodsky et al., 2003; Moretti et al., 2015) or the flow velocity (e.g. Hibert
et al., 2014a). However, in a certain way the low frequency approximation is restricted
on big landslides which involve large volumes of material. This is because only big land-
slides generate low frequency seismic waves of magnitudes which are detectable at large
distances. Still, to get a better general understanding of landslide activity, it is of impor-
tance to analyze a broad range of events from small to big volumes. In the next section
we will review studies which do not rely on the low frequency approximation.

High frequency

For high frequency landslide seismic signals, typically above 1Hz, the seismic source can no
longer be described by a single-point force. With the seismic station located closer to the
event, the spatial distribution of a moving force field cannot be neglected. In addition, high
frequency seismic waves are more exposed to diffraction and scattering at heterogeneities
in the ground and at the surface topography. The increased complexity of the problem is
illustrated in Figure 2.2.
Despite the increased complexity, high frequency signals potentially contain landslide in-
formations of higher temporal and spatial resolution. Analyzing rockfall signals, Deparis
et al. (2008) identified the time of rock detachment followed by rock impact after a short
free fall. This temporal reconstruction has been applied to both granular flows (e.g. Hibert
et al., 2014a) and rockfalls (e.g. Bottelin et al., 2014; Zimmer and Sitar, 2015; Gualtieri
and Ekström, 2017). Studying the physical processes during rockfall impacts, Farin et al.
(2015) used Hertz contact theory (see section 2.2.2) in order to predict impact forces and
seismic signal characteristics in terms of amplitude and frequency content. Before apply-
ing the theory on real-size rockfall experiments carried out by Dewez et al. (2010), they
successfully predict seismic signals generated during laboratory experiments.
Indeed, laboratory experiments can help to understand the dynamics of granular flows (e.g.
Delannay et al., 2017) and rockfalls impacts (e.g. Labiouse and Heidenreich, 2009) as well
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Low frequency approximation

Moving force field.

Temporally & spatially

complex basal forces

Seismic wave propagation 

influenced by topography.

d
λ, d  ≫  landslide dimension

Low frequency High frequency

Figure 2.2 – From low to high frequency landslide seismic signal. Left: Low frequency approximation. Landslide
dimension and its trajectory are negligible small compared to seismic wavelengthλand source-receiver distance
d. The seismic signal at the station (triangle) is recorded at low frequencies. Right: Physical processes of the land-
slide and the seismic wave propagation which have to be taken into account when the seismometer (triangle) is
located closer to the landslide and records higher frequencies.

as the generated seismic signals (McLaskey and Glaser, 2010; Farin et al., 2015; Bachelet
et al., 2018). Complementary to this are real-scale experiments as for example carried out
by Hibert et al. (2017a), releasing single blocks within a gully in the French Alps. Using
the generated seismic signals, they were able to retrieve mass and velocity of each block
before impact. This was realized by finding laws between potential energy loss, kinetic
energy and seismic energy.
Scaling laws present a statistical approach to relate seismic signals to landslide properties.
This way, many authors investigated the relation between loss in potential energy and
generated seismic energy (Berrocal et al., 1978; Weichert et al., 1994; Vilajosana et al.,
2008; Deparis et al., 2008; Hibert et al., 2011; Dammeier et al., 2011; Hibert et al., 2014b;
Levy et al., 2015). Using numerical landslide models, Hibert et al. (2011) shows the pro-
portionality between potential energy loss and generated seismic energy and propose an
empirical relationship to estimate landslide volume. Fundamental to this is the estimation
of generated seismic energy which involves assumptions on the propagation and distribu-
tion of the generated energy in the underlying subsurface. In other words, it has to be
estimated how much of the totally generated energy is recorded at the station. This task
is not trivial, even for a synthetic subsurface model of known parameters as we will see in
section 3.3 on page 71, where we derive an equation for the energy calculation.
Finally, landslide seismic signals can be used to not only locate events but also follow the
position of a moving source over time. This can be realized by using for example polariza-
tion methods (Vilajosana et al., 2008) or beam-forming methods (Lacroix and Helmstetter,
2011; Bottelin et al., 2014). We will come back to localization methods in Chapter 5 on
141.
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In this section we could see the potential of seismic waves to infer information of landslide
properties and dynamics. To fully exploit this potential, it is crucial to understanding the
mechanisms of the seismic source which is constituted by the basal forces imposed from the
landslide on the ground. Modeling landslide dynamics can help to enhance understanding.
In the following, we will present different models which are adequate to describe certain
types of landslides.

2.2 Modeling landslide seismic sources

Landslide numerical modeling is an important tool to better understand and constrain
landslide dynamics and the forces generated on the ground. As we discussed before, the
basal forces are the interconnection between landslide physics and radiated seismic waves
and thus key to understand recorded seismic signals. Different approaches are used to
model different landslide classes. Generally speaking, we can distinguish between contin-
uum models and discrete models:

• Continuum models take a macroscopic approach and model the landslide as a
continuous mass. Often based on Navier-Stokes equations, they are used to simulate
the fluid like behavior of granular flows. The basal forces are essentially related to
acceleration and deceleration of the mass due to variations of the topography. One of
the main issues for landslide continuum models is the estimation of the effective fric-
tion coefficient between the flowing mass and the underlaying ground. Observations
have shown long runout distances for large landslides, suggesting high mobility due
to apparent low friction which is also referred to as friction weakening (Lucas et al.,
2014; Levy et al., 2015; Delannay et al., 2017). Obviously, continuum models can not
resolve the dynamics of individual particles. Consequently, generated seismic waves
are limited to rather low frequencies corresponding to the macroscopic landslide dy-
namics. High frequencies, generated by grain-grain interaction or boulder impacts,
cannot be considered.

• Discrete models take a microscopic approach, describing the dynamics of individual
grains or boulders and the involved interactions. Dependent on the complexity of the
model, they take into account free fall, bouncing, sliding, and rolling of single particles
(e.g. Dorren et al., 2004). For models describing granular flows of many particles,
assumptions have to be made on the distribution of grain sizes and grain shapes.
Very commonly, individual particles are modeled as perfect spheres. Generally, these
models are computationally more expensive than continuum models and may not be
adequate to simulate the dynamics of real-scale granular flows.

In reality, landslides can possess wide distributions of particle sizes and shapes and can
change dynamical regimes during their movement (e.g. from a falling rock block to a
flowing granular mass). The different scales and dynamics make it difficult to have a
model which can universally be applied. For this reason it is important to determine the
objective of study (e.g. simulation of runout distance, basal forces, shape and height of
deposit, ...) prior to choosing a model.
In the following we will introduce a continuum model which is based on the thin-layer
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Chapitre 2 − Landslides and generated seismic waves

approximation and can be used to simulate granular flows on 3D topographies. We will
use this model to show that the frequency content of generated forces can increase with the
roughness of the topography. However, even if the runout distance can well be estimated
on the rough topography, the continuum model can not be used to reproduce the necessary
high frequency forces (> 1Hz) for the observed rockfall seismic signal at Dolomieu crater.
For higher frequencies, the impacts of single particles has to be considered. For this reason,
we will introduce the Hertz contact theory (Hertz, 1882). This theory is commonly used to
model the stress-strain relationship between two colliding particles. It is applied for both
modeling grain-grain interactions and boulder impacts on the ground. This model will
serve later for the estimation of maximum impact forces of rockfalls. The predicted forces
will then be used to calibrate seismic waves simulations in order to allow comparison with
real signals.

2.2.1 SHALTOP granular flow simulations

SHALTOP is a numerical model for the simulation of incompressible flow on 3D topography
(Bouchut et al., 2003; Bouchut and Westdickenberg, 2004; Mangeney et al., 2007). It is
based on a thin-layer (or shallow-water) assumption which implies that the thickness of the
flow is small compared to its horizontal extent, a concept which was first applied to granular
flows by Savage and Hutter (1989). To reduce the computational time, the flow speed is
averaged over the thickness of the flow which leads to the hydrostatic approximation.
Eventually, SHALTOP solves for the time varying flow thickness h(x, y, t) normal to the
topography and depth-averaged flow velocity u(x, y, t). Topography elevation is described
by z = b(x, y) while (x, y, z) are the Cartesian coordinates. The basal friction is described
according to Coulomb’s law of friction with either constant or velocity- and thickness-
dependent friction coefficient. Friction coefficient µ can be related to friction angle ϕ using
µ = tanϕ. Friction angle ϕ is empirically estimated and represents the mean effective
friction of the depth-averaged model. It is related to the mean energy dissipation during
the flow (Roche et al., 2011). SHALTOP has been applied successfully to reproduce real-
scale granular flows (e.g. Kuo et al., 2009; Favreau et al., 2010; Hibert et al., 2011; Moretti
et al., 2012; Levy et al., 2015; Zhao et al., 2015; Moretti et al., 2015; Yamada et al., 2016).
The model is used here to investigate the spatially distributed force field generated by
granular flows on the ground. In appendix 2.4.1 we simulate the forces generated by a
column collapse on a flat surface and by a mass sliding down a slope. It can be observed
how the forces are related to acceleration and declaration of the mass. In the following,
we analyze the forces generated by a granular flow on a real topography. We expect that
the topography variations can introduce abrupt accelerations and thus higher frequency
contents of the forces.

Example at Dolomieu crater

A granular flow on the real Dolomieu crater topography is modeled and the influence of
topography roughness and friction coefficient on the generated basal forces and their fre-
quency content is analyzed. This is important in order to evaluate if this model can be
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used to describe the force field which generates the observed rockfall seismic signals.
Topography is implemented using the DEM of Dolomieu crater with 2m resolution (rough
case) and its smoothed version which is low-pass filtered with a corner wavelength of 20m
(smooth case). Coulomb-type friction with constant friction coefficient is applied. Two dif-
ferent friction angles are tested, namely δ = 35 ◦ and δ = 37 ◦. These values correspond to
empirical values determined in former studies of granular flows at Dolomieu crater (Hibert
et al., 2011, 2014b).
Simulations are carried out in comparison to a granular flow on the southwestern crater
wall on April 24, 2013. For initiating the numerical simulation, a mass volume of 52m3 is
released on top of the crater wall, corresponding to the position of detachment of the real
event. The shape of the released mass is described by a half-sphere of 5m radius.
Figure 2.3 shows three instants of the event, namely 1) shortly after releasing the mass in
the simulation, 2) 5 s seconds afterwards, and 3) after 20 s when most movements cease in
the simulation. Note that the initiation processes are essentially different between reality
and simulation. First movements of the real granular flow can be detected on the video
around 10 s before the start of the simulation. While the mass of the real granular flow
increases gradually, the simulation releases the whole mass at once. Furthermore, several
boulders continue to descend towards the crater bottom in the real case. This rockfall-type
behavior could not be reproduced with the SHALTOP model. Despite all these discrepan-
cies, we want to emphasize that the objective of this study is to determine the frequency
content of simulated basal forces. The real event is not entirely reproduced, merely the
extent of the spreading granular mass is compared for evaluation of the simulations.
Each instant in Figure 2.3 shows camera snapshots of the real event and simulations on
rough and on smooth topography for friction angle δ = 37 ◦. In the camera snapshots,
the generated dust clouds approximately indicate the extent of the granular flow. This
spreading extent is well reproduced by the simulation on the unfiltered topography. For
the low-pass filtered topography, the mass is sliding faster and longer due to the smooth-
ness of the bed, even for the here shown high friction angle of 37 ◦. The simulated basal
forces are spatially scattered on the rough topography, while showing a smooth character
on the smooth topography.
The force-time functions measured at three fixed position in space are compared between
all simulations in Figure 2.4. Position 1 is at the location of the released mass, positions 2
and 3 are placed downhill with spacings of around 40m. For each position, forces Fx, Fy,
and Fz in x−, y−, and z−direction are shown, respectively.
The black dashed lines indicate the first movement which is measured at each position. As
the mass is released abruptly at position 1, the dashed line is positioned at time t = 0 s.
Subsequently, the mass arrives successively at position 2 and 3. Generally it can be ob-
served that the vertical force Fz is the biggest. This is because it is associated to the
gravitational force which is imposed by the mass on the ground. At position 1, Fz is
positive, meaning that it points upwards due to the removal of mass. For the two other
positions, the vertical force points downwards as mass is added at these positions. At
position 2 we can see that Fz is non-zero at the end of the simulation for the friction angles
of δ = 37 ◦. This means that part of the mass stopped at this position without moving
on downslope. No force at all is measured at position 3 in case of the rough surface with
friction angle δ = 37 ◦. The rough surface together with the high friction angle decelerates
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2013-04-24 8:21:51.181) Time = 0.5 s Time = 0.5 s

2013-04-24 8:21:55.682) Time = 5 s Time = 5 s

2013-04-24 8:22:10.673) Time = 20 s Time = 20 s

Figure 2.3 – Modeled landslide basal forces on topography. Left column: Camera snapshots of a rockfall on the
southwestern side of Dolomieu crater on April 24, 2013. Dust clouds indicate the spreading spatial extent of the
granular flow. Middle and right columns: SHALTOP simulations on rough and smooth topography with friction
angle δ = 37 ◦. The color scale indicates the relative thickness of the flow at each time instant. Underlying
panels show generated basal forces in vertical direction. The moving force field is more scattered in case of the
rough topography (middle column). The time-invariant blue spot (positive force) corresponds to static forces due
to removal of the initial mass.
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Figure 2.4 – Basal forces measured at three fixed positions. ForcesFx (left),Fy (middle), andFz (right) at three
different positions 1, 2, and 3. Simulated forces on rough (real DEM of 2 m resolution) and smooth (low-pass
filtered with 20 m corner wavelength) topography with friction angle of δ = 35 ◦ and δ = 37 ◦. Black dashed
line marks the time at which the first movement is measured.

the mass so that it does not arrive at position 3.
We will now analyze in more detail the generated forces at position 2. For this, the forces
are plotted in Figure 2.5 without equal force axes. Besides the force amplitude, we can
analyze the curves in terms of timing, polarization and smoothness:

• Timing shows when and how fast the flow is passing the measurement position. It
can be observed that the mass passes the quickest in case of smooth topography
and low friction angle. Increasing the friction angle results in a wider force-time
function as the velocity of the flow becomes smaller. This is also true when going
from smooth topography to rough topography. The decrease of flow velocity can
also be identified by the later arrival. The remaining force on the z-component for
big friction angles reveals that mass is resting till the end of the simulation at the
position of measurement.

• Polarization has to be interpreted differently for horizontal forces and vertical
forces. For horizontal forces it is related to tangential acceleration and deceleration
of the flow along the slope in the axis direction, indicated by positive and negative
values, respectively. The force in x-direction is mostly positive for all simulations,
indicating a downslope acceleration as the x-directions is close to the direction of the
steepest slope. Only the simulation on rough topography with high friction angle
is showing an important negative portion, which means that mass is decelerating
at the measurement position for later times. This can similarly be observed for the
forces in y-direction. As mentioned before, the force in z-direction is mainly linked
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to the process of adding or removing mass. At the measurement position we can see
exclusively negative values (i.e. forces pointing downwards), meaning that mass is
temporally added. The remaining negative force in case of the high friction angles
reveals the mass is resting at the measurement position.

• Smoothness of the curves can tell us about the dynamics and the shape of the
flowing mass. More abrupt changes of movement on the rough topography result in
spikier horizontal forces. The vertical forces, as mentioned before, are mainly linked
to the mass, and thus the thickness of the flow. For the smooth topography we
can observe curves consisting of a single lobe. This means that the thickness of the
passing mass is gradually increasing and decreasing. The vertical forces on the rough
topography show more fluctuations, indicating fluctuations of the flow thickness.
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Figure 2.5 – Basal forces on varying topography roughness. Force-time functions at position 2 (x = 60 m, y =
170 m, see Figure 2.3) for each component. Forces are simulated on rough and smooth topography with friction
angle of δ = 35 ◦ and δ = 37 ◦. Note the different scales of the force axes.

In summary, the time variations of forces are linked to flow velocity, flow thickness and
acceleration-deceleration phases which all are influence by bed roughness and friction. In
turn, the frequency content of generated seismic waves is determined by the time variation
of the basal forces. For this reason we take a look at the frequency content of the whole
force field.
First of all, we calculate the total force by integrating over the whole surface. The result-
ing total forces for all simulations are shown in Figure 2.6 together with their amplitude
spectra.
Directly noticeable is the spiky character of the forces from the simulations on the rough
topography, in particular in case of friction coefficient δ = 35 ◦. This are numerical ar-
tifacts which are related to strong velocity gradients caused by the rough surface. Also
remarkable is that the vertical force is no longer bigger as the horizontal forces. This is due
to the fact that the forces related to the gravitational mass canceled each other out. Apart
from that it is interesting to see that the simulations on the smooth slope contain a second
main lobe at around 12 s which is not visible for the simulations on the rough surface. It is
plausible that this second lobe is related to the deceleration phase of the mass. Comparing
with Figure 2.3 we can observe that the mass on the smooth surface is stopped by a little
hill which probably cause the observed deceleration forces. In contrast, the mass on the
rough surface is stopped more continuously due to the rough surface. It is also visible that
the forces Fy are of opposite polarity compared to the forces Fx. This has to be explained
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Figure 2.6 – Total force summed over the whole surface and corresponding frequency spectrum. Top: Total
force calculated integrating all forces over the whole surface. This can be done when the associated seismic wave-
lengths are larger than the force field. Bottom: Frequency spectra of the total forces above.

by the fact that the slope of deepest descent points in negative y-direction.
The spectra show gradually decreasing amplitudes towards higher frequencies. Amplitude
spectra on the smooth topographies are slightly higher at lower frequencies, probably re-
sulting from longer flow durations. At higher frequencies the simulations on the rough bed
contain higher values. However, numerical noise could effect these results. To verify their
validity, the results have to be tested on convergence by decreasing the numerical time
step.
Summing of the forces in the time domain is only valid in a low-frequency approximation.
At higher frequencies the different source positions have to be considered since the corre-
sponding wavelengths are not necessarily larger than the force field of the landslide. To
avoid the superposition of forces in the time domain, we carry out another analysis for
which we first calculate the amplitude spectra measured at each point of the domain and
sum them up subsequently. The resulting spectra for each simulation are shown in Figure
2.7. Similar to the spectra in Figure 2.6, the spectral amplitudes are decreasing towards
higher frequencies. However, by first calculating the FFTs at each position and subse-
quently summing, forces of opposite polarity do not cancel each other out. As a result, the
values of the spectra are almost a magnitude higher. This is especially evident for the low
frequency vertical force which is related to the adding and removing of mass.
Again, amplitude spectra on the smooth topographies are generally higher at lower fre-
quencies. Interestingly, the smooth bed simulation with higher friction coefficient shows
higher amplitudes on the y-component. This might be linked to more lateral spreading of
the flow. Apart from that the rough topography can potentially increase high frequency
content. Comparing for example the vertical force component, the rough bed simulation
with low friction angle contains the highest amplitudes for frequencies above 1Hz. As said
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Figure 2.7 – Sum of all frequency spectra. In contrast to the spectra shown in Figure 2.6, the FFTs are first com-
puted at each position and subsequently summed. By this, the superposition of forces in the time domain is
avoided which can lead to the canceling of forces.

before, convergence tests with decreasing time step have to be carried out in order to see
if the higher values are physical meaningful.
Nonetheless, even with increased force-time variations through stronger topography rough-
ness or smaller friction angles, the SHALTOP model does not seem to be adequate for sim-
ulating high frequency basal forces. For this, it is inevitable to use models which allow the
description of individual impacts. In the next section we will introduce the Hertz contact
theory, which is a classical model to describe the collision between two bodies.

2.2.2 Hertz impact model

The Hertz contact theory (Hertz, 1882) is a fundamental and widely-used model for the
stress-strain relation between two colliding bodies. Let’s consider an elastic sphere im-
pacting an elastic half space. Following Hertz theory, the impact force FH normal to
the plane, can be described by means of the indentation depth δ, which is a measure of
interpenetration of sphere and plane, as follows:

FH(t) =
4

3
ER1/2δ3/2(t). (2.1)

R is the sphere radius and E is the effective Young’s modulus defined as follows:

1

E
=

1− ν2
s

Es
+

1− ν2
p

Ep
, (2.2)

where νs, νp, Es, and Ep are Poisson’s ratio and Young’s modulus of sphere and impacted
plane, respectively. With the time varying impact force FH of equation 2.1 by hand and
ignoring the force of gravity, we can set up the sphere’s equation of motion:

md2
ttδ(t) = −4

3
ER1/2δ3/2, (2.3)
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where m is the mass of the sphere. From this differential equation, the maximum inden-
tation depth δmax can be derived:

δmax =

(
15mv2

n

16ER1/2

)2/5

, (2.4)

where vn is the velocity normal to the plane. Substitution into equation 2.1 gives the
maximum normal impact force F0:

F0 =
4

3
ER1/2δ3/2

max =
4

3
ER1/2

(
15mv2

n

16ER1/2

)3/5

. (2.5)

Assuming a Coulomb type friction, tangential maximum force Ft can be derived from
normal maximum force Fn = F0 by means of friction coefficient µ:

Ft = µF0. (2.6)

As in the previous section, friction coefficient µ is related to friction angle ϕ via µ = tanϕ.
Important in regards to generated seismic waves is the impact characteristic frequency
content, which is related to the behavior of the force over time. Johnson (1987) showed
that the temporal evolution of indentation depth δ can be approximated by a sine-function:

δ(t) ≈ δmax sin(πt/Tc), 0 ≤ t ≤ Tc. (2.7)

The ground velocity at the impact location can thus be described by a cosine-function as

δ̇(t) ≈ πδmax

Tc
cos(πt/Tc), 0 ≤ t ≤ Tc, (2.8)

where δ̇ is the time derivative of δ. It is plotted in Figure 2.8 together with its frequency
spectrum. Both are shown as functions of impact duration Tc.
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Figure 2.8 – Time derivative of Hertzian indentation depth. Left: Time derivative δ̇ of Hertzian indentation depth
δ normalized by maximum indentation depth δmax in dependency of impact duration Tc, which represents the
time during which the two bodies are in contact. Right: Frequency spectrum of the ground velocity. The inverse
impact time 1/Tc is related to the corner frequency fc after which the spectral amplitude decays exponentially.
The maximum amplitude is located at frequency f=0.7/Tc.

It can be observed that the amplitude spectrum of the ground velocity decays exponen-
tially above a corner frequency fc which is related to the inverse of contact time Tc. The
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maximum spectral amplitude is located at a frequency f = 0.7/Tc.
Combining equations 2.1 and 2.7, the time evolution of the Hertz impact force can be
approximated as

FH(t) ≈ F0 sin(πt/Tc)
3/2, 0 ≤ t ≤ Tc. (2.9)

The time-dependent impact force is illustrated in Figure 2.9 together with its spectrum
similar as in Figure 2.8.
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Figure 2.9 – Hertzian impact force and corresponding frequency spectrum. Left: Hertzian force-time function
FH normalized by maximum impact force F0 in dependency of impact duration Tc, which represents the time
during which the two bodies are in contact. Right: Frequency spectrum of the force-time function. The inverse
impact time 1/Tc is related to the corner frequency fc after which the spectral amplitude decays exponentially.

Also for the force spectrum an exponentially decay can be observed above a corner fre-
quency fc which is related to the inverse of contact time Tc. At higher frequencies, the
spectrum consists of a series of low amplitude nodes. McLaskey and Glaser (2010) are able
to well reproduce the spectrum and the node locations carrying out experiments of a ball
colliding on a massive plate.
According to Johnson (1987), impact or contact duration Tc can be approximated by:

Tc ≈ 2.94
δmax

vn
, (2.10)

with maximum indentation depth δmax and impact speed vn normal to the impacted plane.
This means, the higher the impact velocity vn, the shorter the impact duration Tc and the
higher the corner frequency fc. In other words, we can expect higher frequency contents
in rockfall signals for impact of boulders with higher velocity. All dependencies of impact
force, impact duration and corner frequency are summarized in Table 2.1.

Table 2.1 – Dependency of impact force, duration and corner frequency on impact parameters. Behavior of im-
pact force F0, impact duration Tc and upper corner frequency fc as function of sphere mass m, sphere radius
R, effective Young's modulusE, impact speed vn and inelasticityP . Dependencies are derived from equations
2.5 and 2.10 except for the dependency on inelasticityP which is deduced from Farin et al. (2015).↗: increasing
value;↘: decreasing value.

m↗ R↗ E ↗ vn ↗ P ↗

F0 ↗ ↗ ↗ ↗ ↘
Tc ↗ ↘ ↘ ↘ ↗
fc ↘ ↗ ↗ ↗ ↘
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The Hertz contact theory is an elastic model and does not consider inelasticity such as
plastic deformation. In reality, plastic deformation plays an important role during rockfall
impacts, for example due to fracturing of the impacting rock. Plastic behavior during the
collision occurs, when the pressure on the contact area exceed the yield strength of the ma-
terial. There are several approaches to take plastic deformation into account. For example,
Zhang et al. (2018a) derives a maximum impact force based on the concept of a sphere
with an outer zone of elastic deformation and an inner zone of plastic deformation. Farin
et al. (2015) describes introduces plastic deformation by dividing the temporal evolution
of the Hertz impact in three phases. Starting with 1) a fully elastic phase for the time in
which the exerted pressure is inferior to the shield strength, the second phase is described
by 2) a fully plastic deformation which is related to an impact force smaller than in the
elastic case, finally followed by 3) an elastic rebound for which the indentation depth has
been corrected due to the plastic deformation. Numerically solving the established equa-
tion, they show that the impact force decreases with increasing plasticity, whereas the
force-time function becomes wider. This means that the contact time Tc becomes longer.
As a result, plastic deformation during a rockfall decreases high frequency content in the
corresponding seismic signal.
The estimation of impact forces is an important task for the design of structural protections,
in particular for infrastructure facilities in mountainous regions. A review of Volkwein et al.
(2011) compiles relevant research on characterization of rockfall hazard and corresponding
protection measures. Several countries use their own standard to estimate rockfall impact
forces. A comparison can be found in Zhang et al. (2018a). Most models seem to be
based on Hertz contact theory before being calibrated to empirical relations as for example
parameters of the cushion layer (as e.g. in the Swiss guidline ASTRA, 2008).

2.3 Rockfalls at Dolomieu crater

As described in Chapter 1, rockfalls occur very frequently at Dolomieu crater on Piton
de la Fournaise since its caldera collapse in 2007. The high event rate, due to unstable
crater walls, together with the dense instrumentation of OVPF provide laboratory-like
conditions for the study of rockfalls. In the following we will review previous studies on
rockfall activity at Dolomieu crater. Afterwards we introduce a catalog of selected events
before presenting and analyzing exemplary rockfalls by means of camera images and seismic
recordings.

2.3.1 Previous studies

Combining methods based on photogrammetry and georeferencing, Derrien et al. (2019)
estimate total mass-wasting volumes at Dolomieu crater of 4.2 ± 0.1 × 106 m3 and 1.8 ±
0.1 × 106 m3 in periods from April 2007 to April 2008 and from April 2008 to May 2015,
respectively. Investigating fracture processes and slope deformation, they distinguish two
main mechanisms of instability, namely rock topples on the northwestern crater walls
and sliding slopes on the southeastern sides (see Figure 1.3). Hibert et al. (2017b) uses
seismic methods to analyze the spatio-temporal evaluation of rockfalls at Dolomieu crater.
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For the period between May 2007 and April 2011, they estimate a total rockfall volume
of 3.23 × 106 m3. Similar to Derrien et al. (2019), they find the largest volumes in the
months after the caldera collapse. The seismic analysis enables them to count the number
of rockfall events. This way, they detect more than 6000 events in the studied period.
While the two month after the crater collapse are characterized by up to 80 rockfalls per
day, the number is decreasing afterwards to a long-term rate of up to 5 rockfalls per day.
The average rockfall volume is constantly decreasing from 650m3 in 2007/2008 to 19m3

in 2010/2011. Furthermore, triggering mechanisms are investigated. While occasional
correlation with rainfall is found, there is a strong relation between volcanic seismicity and
rockfall activity. Analyzing rockfall locations, they find intensification of rockfall activity
towards the location of the next eruption. Durand et al. (2018) elaborates on the influence
of external forcings on slope instabilities, concentrating on a period between 2014 to 2016
which is less biased by processes due to the post-collapse relaxation of Dolomieu crater.
Using both photogrammetric and seismic data, they estimate a total rockfall volume of
80,000 to 100,000m3. They show that rain and volcanic activity can increase the number
of rockfalls and, in particular, their volume. Similar to Hibert et al. (2017b), they find
a tendency of rockfall activity to migrate towards locations of lava outbreaks. This is an
important finding as it means that rockfall activity could be used to predict the location
of proximate eruptions.

2.3.2 Rockfall examples: Video and seismic signal

In this section we will analyze three exemplary rockfalls at Dolomieu crater by means of
camera images and corresponding seismic signals. We focus on small events of individual
boulders for which we can identify separated impacts on the camera images. Figure 2.10
shows the different location of the three rockfalls.
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Figure 2.10 – Map of
Dolomieu crater with
rockfall trajectories.
Topographic map of
Dolomieu crater with
surrounding seismic
stations (triangles) and
cameras (dots). Red
shaded areas indicate
estimated trajectory lo-
cations of three rockfalls
discussed hereafter.
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inferred from videos.
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20 m.

When correlating camera images and seismic signals, we have to bear in mind the delay
time caused by the travel path of seismic waves between position of impact and the po-
sition of measurement. In other words, we expect that the seismic signal of an impact
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arrives after the impact time on the video. However, the visual detection of the rockfall
trajectory relies mostly on dust clouds created during impacts as the boulders might be
too small to be followed on the video. Hence, a small delay time might be existent between
true impact and visual detection. Yet, this delay time is in the same order as the image
sampling time, which is 0.5 s. Note that we will study the signal signature of impacts more
precisely in Chapter 4 by comparing observed and simulated waveforms. As we will see, a
precise definition of arrival times is impossible as the waveforms are very complex without
clear onset due to the underlying velocity structure and the surface topography.
Besides camera snapshots, we show images of the reconstructed rockfall trajectory. These
images were generated by Frédéric Lauret (OVPF), analyzing differences between two
successive snapshots. Detected differences during the total rockfall duration are then su-
perposed in order to obtain an image of the whole trajectory.
Following the classification of landslide seismic signals proposed by Provost et al. (2018)
which was presented in section 2.1, the signals at Dolomieu crater are best attributed to
the class of granular flow due to their rather smooth envelope and major frequency con-
tent between 1 and 35Hz with maxima around 10Hz. However, we will see that rockfall
characteristic peaks caused by individual impacts become visible in high frequency bands.
Furthermore, we will observe that the duration of seismic signal is similar to the duration
of rockfall propagation. This corresponds to finding of Hibert et al. (2011) for rockfalls at
Dolomieu crater and suggests that scattering effects of the medium on the seismic waves
can be neglected when analyzing the seismic signals. Tests on the energy equipartition
in section 1.3.4 neither indicated a multiple scattering regime of the medium surrounding
Dolomieu crater.

1) Rockfall on January 22, 2017

The first example is a rockfall on the steep northwestern crater wall, occurring on January
22, 2017 (event 1 in Figure 2.10). Trajectory, snapshots and seismic signals in different
frequency bands as well as the spectrogram are shown in Figure 2.11. Clouds close to
the upper edge of the crater obstruct the visibility which is why only the lower part of the
rockfall can be seen on the trajectory. Snapshot a) shows the first event which is detectable
by eye on the video. From the seismic traces we can tell that sources were already active
before that time. The clouds may hinder the ability to visually detect earlier events on
the upper crater wall. Impact a) corresponds most probably to the subsequent peak in the
seismic signal, best visible at 10-15Hz. Snapshot b) shows the most pronounced impact of
this rockfall. The corresponding boulder hits the crater wall after a free fall. The seismic
signal shows a clear peak especially in the higher frequencies (most distinct at 25-30Hz).
At snapshot c) we can identify at least three boulders moving on different trajectories. The
boulders might originate from fragmenting of the initial block, by subsequent detachments
or by activation of underlying debris. The seismic signal contains several small peaks at
higher frequencies and amplitudes with smooth envelopes at 1-5Hz, corresponding to a
generally active granular material. Snapshot d) shows the impact of a subsequent block at
the bottom of the outcropped wall. The impact can be identified by a nicely visible peak
at 20-25Hz. Snapshot e) corresponds to the time at which the last movement is visually
detectable on the video. The seismic signal only shows some minor amplitudes probably
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Figure 2.11 – Rockfall at northwestern wall of Dolomieu crater. For location see rockfall 1 in Figure 2.10. Top: Im-
ages taken from camera DOEC. Trajectory on the top left is reconstructed from differences between successive
images during the whole rockfall duration. Circles mark event locations, while arrows indicate the direction of
arrival. Bottom: Seismic signal at closest station BON in different frequency bands with spectrogram represen-
tation below (using Stockwell transform). Vertical lines from a) to e) correspond to times of camera snapshots
above. Note that seismic traces are normalized individually by their maximum. Relative amplitudes can be de-
duced from the spectrogram.
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caused by movements which are too small to detect on the video. This confirms that the
duration of the seismic signal is controlled by the propagation phase of the rockfall.

2) Rockfall on February 28, 2016

The second example is a rockfall on the southern crater slope (event 2 in Figure 2.10). Im-
ages and seismic signals are shown in Figure 2.12. Rockfalls on the southern side generally
have longer durations due to the smaller slope angle. The trajectory is greatly visible on
the top left image for the whole event except for the detachment phase which is hidden
in the shadow. The first movement is detected in snapshot a). From the seismic signals
we can conclude that the detachment happened before, possibly associated with a small
free fall causing a spiky signal. The rockfall subsequently tunnels through the small valley
in between the rock formations. Snapshot b) corresponds to the time when the rockfall
appears below the small valley. It then accelerates on the free plane of debris, resulting
in the strongest impacts, detectable from the high amplitude peaks at time c). Several
boulders can be detected at this point. The first block arrives at the bottom of the crater
in snapshot d). The strong amplitudes at 5-15Hz might be related to the stopping phase
of this block superposed with signals generated by other blocks further above. Snapshot
e) shows the last movement on the trajectory of the left branch. Scattered movements in
the middle of the debris cone are visible afterwards, leading to small seismic amplitudes.

3) Rockfall on December 13, 2016

The last example is a rockfall on the southwestern crater slope (event 3 in Figure 2.10).
Images and seismic signals are shown in Figure 2.13. The reconstructed trajectory shows
nicely individual impacts. The location of detachment can be seen on snapshot a), which
corresponds very well in time to the first amplitudes on the seismic traces. As for example
2), the rockfall trajectory is then hidden in a small valley, leading it towards the right
in the image. Snapshot b) corresponds to the first appearance from behind the valley,
approximately 20 s after the detachment. A strong peak is visible at 5-10Hz at that time.
Afterwards the rockfall accelerates and the seismic amplitudes become larger, reaching
their maximum around time c). Snapshot d) confirms that the rockfall is composed from
at least three boulders. The last movement is visible on snapshot e) when the third
boulder is arriving at the crater bottom. Movements of smaller blocks which don’t create
a dust cloud might be going on afterwards. Interestingly, in comparison with the previous
examples, the here discussed signal shows less high frequency content in the beginning of
the event. Possible explanations might be linked to an absence of free fall after detachment
and lower velocities. This leads to a decrease of the upper corner frequency fc according
to Hertz contact theory (see Table 4.2). Additionally, debris of former rockfalls below the
position of detachment could act as cushion layer and prevent the generation of higher
frequencies.
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Figure 2.12 – Rockfall at southern wall of Dolomieu crater. For location see rockfall 2 in Figure 2.10. Top: Images
taken from camera SFRC. Trajectory on the top left is reconstructed from differences between successive images
during the whole rockfall duration. Circles mark event locations, while arrows indicate the direction of arrival.
Bottom: Seismic signal at closest station DSO in different frequency bands with spectrogram representation be-
low (using Stockwell transform). Vertical lines from a) to e) correspond to times of camera snapshots above. Note
that seismic traces are normalized individually by their maximum. Relative amplitudes can be deduced from the
spectrogram.
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Figure 2.13 – Rockfall at southwestern wall of Dolomieu crater. For location see rockfall 3 in Figure 2.10. Top:
Images taken from camera DOEC. Trajectory on the top left is reconstructed from differences between successive
images during the whole rockfall duration. Circles mark event locations, while arrows indicate the direction of ar-
rival. Bottom: Seismic signal at closest station BOR in different frequency bands with spectrogram representation
below (using Stockwell transform). Vertical lines from a) to e) correspond to times of camera snapshots above.
Note that seismic traces are normalized individually by their maximum. Relative amplitudes can be deduced
from the spectrogram.
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2.4 Appendices

2.4.1 SHALTOP simulations of granular mass

In order to relate seismic signals to landslide dynamics, it is crucial to understand the
acting seismic source which is constituted by the forces imposed from the landslide on the
ground. For this reason, simulations of granular mass on varying surface are conducted.
Subsequently the resulting basal forces are analyzed. In the following we present SHALTOP
simulations of a collapsing cylinder on a flat surface, as well as of a parabolic shaped mass
released on a slope.

Column collapse on flat ground

The collapse of a column is a classical experiment to study the spreading of granular mass.
Authors compare numerical models with laboratory experiments to understand the under-
lying physical processes (e.g. Mangeney-Castelnau et al., 2005). An example of a column
collapse is illustrated in Figure 2.14.

Figure 2.14 – Column collapse on flat sur-
face.
Illustration of a granular mass of cylin-
drical shape collapsing on a flat surface.
The collapse is shown for two times, cor-
responding to the initial geometry and to
the time at which the collapse is reaching
the central position.

In the here presented simulation we define a column of height 4m and radius 5m, the angle
of internal friction is set to 10◦. Cross-sections through the mass are shown in Figure 2.14
at different times. This allows to follow the evolution of the spreading mass regarding its
shape. Additionally, the horizontal spreading velocity as a function of offset is shown.
We can observe how the collapse propagates from the edges of the column towards its cen-
ter. The height of the center stays unchanged up to a time of around 1.8 s. After this time,
the central height is decreasing until reaching a stable value of around 2m after around
3.8 s. The horizontal velocity of the central position stays zero during the whole time as it
only moves vertically. Highest horizontal velocity can be observed close to the forefront of
the spreading mass.
The spreading history can similarly be derived from the spatial distribution of basal forces.
A cross-section through the horizontal and vertical force field is shown in Figure 2.16 as a
function of time. On top, the total force integrated over the whole surface is displayed.
The temporal evolution of the horizontal and vertical force field Fx and Fz show an initia-
tion at zero time at the edges of the column (corresponding to x = 90m and x = 110m). As
the collapse proceeds, the forces are propagating towards the center (located at x = 100m)

50



2.4 −Appendices

x-coordinate (m)

h
o
ri

zo
n
ta

l 
v
e
lo

ci
ty

 (
m

/s
)

h
e
ig

h
t 

(m
)

50 60 70 80 90 100 110 120 130 140 150
0

0.5

1

1.5

2

2.5

3

3.5

4
t = 0 s
t = 0.375 s
t = 0.75 s
t = 1.125 s
t = 1.5 s
t = 1.875 s

50 60 70 80 90 100 110 120 130 140 150
0

1

2

3

4

5

6

7
t = 0 s
t = 0.375 s
t = 0.75 s
t = 1.125 s
t = 1.5 s
t = 1.875 s

50 60 70 80 90 100 110 120 130 140 150
0

0.5

1

1.5

2

2.5

3

3.5

4
t = 2 s
t = 2.375 s
t = 2.75 s
t = 3.125 s
t = 3.5 s
t = 3.875 s

50 60 70 80 90 100 110 120 130 140 150
0

1

2

3

4

5

6

7
t = 2 s
t = 2.375 s
t = 2.75 s
t = 3.125 s
t = 3.5 s
t = 3.875 s

x-coordinate (m)

a)

b)

c)

d)

Figure 2.15 – Height profile and absolute horizontal velocity during a column collapse. Graphs on the top show
the height profiles of the collapsing column at time steps of 0.375 s. Times until the central position starts to
collapse (at around 1.8 s) are shown on the left hand side, times afterwards are shown on the right hand side.
Beware of the unequal aspect ratio. The absolute horizontal velocity is shown below at the corresponding time
steps.
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Figure 2.16 – Time evolution of forces generated by a column collapse. Total force integrated of the whole sur-
face (top) and cross-section trough the spatially distributed force (below) for horizontal force Fx in x-direction
(left) and vertical forceFz (right). Horizontal force in y-direction is not shown as it is equal to zero on the shown
cross-section.

which is reached after around 1.8 s, just as observed above in the profiles and the velocities
of the mass (see Figure 2.15). The horizontal forces (bottom left of Figure 2.16) show op-
posite polarity on either side of the center as they are related to the horizontal movement
of the mass. At the precise position of the center (at x = 100m), horizontal force Fx is
always equal to zero. This corresponds to the observations of the horizontal velocity. The
horizontal forces (right hand side of Figure 2.16), are predominantly negative due to the
downwards movement of the mass. Only at the position where the column collapses we can

51



Chapitre 2 − Landslides and generated seismic waves

see a positive force, propagating towards the center. The upwards force can be explained
by the removal of mass. At a time of around 1.8 s, when the center of the mass starts
to collapse, we can observe a bright stripe (zero force) propagating outwards. Looking at
the profiles after that time (right top of Figure 2.15), a wave can be detected traveling
outwards. This wave of constant height can explain the stripe of zero force. In the end,
starting at the center at around 3.5 s we can see a strong force propagating outwards. It
is related to the stopping phase of the collapse, which starts at the center of the spreading
mass. The high value might be caused numerically as high velocity gradients can be evoked
during the stopping of the mass.
The total force integrated over the whole surface is zero in case of the horizontal force as
the opposite polarized force vectors are canceling each other out. For the vertical force,
we can remark a strong positive initial related to the sudden removal of mass at the sides
of the column. As the collapse proceeds, the vertical mass movement results in a negative
total force. As the collapse decelerates, the vertical force converges towards zero.
The global force-time functions are varying smoothly over time. This corresponds to the
generation of low frequency seismic signals. Without any surface variations, the flow does
not experience sudden (de-) accelerations which could cause higher frequencies. The only
origin of higher frequencies are at the edges of the column, due to the sudden collapse.

2D parabola on exponentially shaped slope

To simulated the forces generated by the downslope movement of a landslide, a granular
mass is released on top of a exponentially shaped slope. The geometry of the mass is defined
to be parabolic with 20m maximum height. The experiment is set up symmetrically along
the y-axis with frictionless borders to avoid the lateral extension of the mass. This way, it
can be compared to 2D analytical solutions which is omitted here. Figure 2.17 shows the
mass before release and after sliding down the slope.

Figure 2.17 – Release of 2D parabola on
exponentially shaped slope.
Granular mass of parabolic shape released
on top of an exponentially shaped slope.
The mass is shown at time t = 0 s before
release, and at time t = 30 s after stop-
ping.

The generated forces during the flow along the slope are illustrated in Figure 2.18. The
horizontal force nicely shows the acceleration and deceleration of the sliding mass. Upon
release, the mass accelerates and exerts a force on the ground in negative x-direction,
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opposite to the direction of movement. At a position of around x = 700m, the mass starts
to decelerate. This corresponds to a time of around 12 s as can be seen in the evolution of
the total force. The deceleration generates a force in positive x-direction, in direction of
the movement, onto the ground. The mass stops it’s movement at a time of around 26m.
The vertical force is positive in the beginning as mass is removed from its initial position.
Afterwards, the force becomes positive pointing downwards. This is related to the vertical
movement of the mass.
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Figure 2.18 – Time evolution of forces generated by a granular mass sliding down a slope. Total force integrated
of the whole surface (top) and cross-section trough the spatially distributed force (below) for horizontal forceFx

in x-direction (left) and vertical forceFz (right). Horizontal force in y-direction is not shown as it is equal to zero
on the shown cross-section.

As for the column collapse, a smooth global behavior of the forces can be observed. This
corresponds to the generation of low frequency seismic waves. High frequencies are not
generated as the slope is very smooth without small-scale topography variations and as
the granular flow does not consider impacts of single boulders.
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Chapter 3

Seismic wave propagation

The following chapter covers seismic wave propagation in a general way, i.e. unspecific to
seismic waves generated by landslides. After introducing the fundamental wave equation,
we will present the principals of the spectral element method (SEM) which will be used
to numerically model seismic waves. We will discuss the benefits of this method and why
it is suitable for the present thesis. Thereafter, some technical procedures will be detailed
such as for example the implementation of topography onto the model domain.
The second part of this chapter deals with the seismic energy radiated by a surface load.
The derivation of this theory will help afterwards to back-calculate the seismic energy
generated by a landslide from a seismic signal recorded at a single seismometer.

3.1 Fundamentals

The propagation of seismic waves depends on the properties of the underlying medium.
If stresses and strains obey a linear relationship, the medium is called linear elastic. The
corresponding constitutive relation between stress tensor σ and strain tensor ε can be
formulated as:

σ = Cε, (3.1)

where C is often referred to as the stiffness tensor. In the most general case, the stiffness
tensor contains 21 independent coefficients. However, due to symmetry axes in the medium,
the number of independent coefficients reduces. A totally isotropic medium, i.e. a medium
which is uniform in all directions, can be described by two independent variables, the bulk
modulus and the shear modulus.
In this linearly elastic medium, the displacement u of each point can be described by the
following equation of motion:

ρ∂2
ttu = ∇ · σ + f , (3.2)

where ρ is the material density and f is an external force.
Perfect elasticity is an idealized concept and does not exist in real materials. Instead, the
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amplitudes of seismic waves attenuate with traveled distance due to a group of processes
which we refer to as internal friction. The intrinsic attenuation of a given medium is quanti-
fied by dimensionless quality factors Q independently for P-wave and S-wave propagation.
It can be defined as the relative energy loss per cycle (Aki and Richards, 2002):

1

Q(ω)
= −∆E/E

2π
, (3.3)

where E is the peak strain energy. Observations of Q show a roughly constant value over a
wide frequency range (Komatitsch et al., 2005) which is why it is generally considered inde-
pendent of frequency. However, this does not imply that the attenuation is not frequency
dependent. Conversely, high frequency seismic waves experience stronger attenuation with
distance as their cycle rate is higher. This can clearly be observed when describing wave
amplitude A as a function of distance r, which decays exponentially from initial amplitude
A0 (Aki and Richards, 2002):

A(r) = A0 e−αr, with α =
fπ

Qc
, (3.4)

where we defined the frequency dependent absorption coefficient α(f).

3.2 Numerical model based on the spectral element method (SEM)

The principle of the spectral element method (SEM) relies on subdivision of the model
domain into smaller elements. By this, the complexity of a given problem is broken down
into simpler subproblems. Regarding for instance seismic wave propagation in a hetero-
geneous medium, the subdivision of the domain can be of high utility: sharp material
interfaces don’t have to be resolved by fine discretization but can simply be placed at
element boundaries. SEM is a a special case of the finite element method (FEM). The
solution is approximated in each element using Lagrange polynomials whose interpolation
nodes lie on the so-called Gauss-Lobatto-Legendre (GLL) points. This leads to spectral
convergence of the method which is faster than for example using piecewise linear basis
functions.

3.2.1 Developing the formalism of SEM

In the following the underlying formalism of SEM will be introduced briefly. For a more
detailed review see for example Chaljub et al. (2007) or Chapter 7 in Igel (2017).
To introduce the spectral element method, we assume the 1D elastic wave equation which
describes waves propagation in x-direction with transverse particle motion governed by
shear modulus µ(x). The wave is initialized by an external force f(x, t) perpendicular to
the direction of propagation. On a domainD of length L with space variable x ∈ D = [0, L],
wave equation 3.2 then reduces to:

ρ ∂2
tt u(x, t) = ∂x [µ(x) ∂x u(x, t)] + f(x, t), (3.5)
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with stress-free boundary conditions:

µ∂xu(x, t)

∣∣∣∣
x=0,L

= 0. (3.6)

Rather than solving directly for the displacement field u, the spectral element method
approximates the solution by summing over a finite number of basis functions ϕi → ϕi(x)

which we will choose later. Summing over Np basis functions, solution ū is approximated
by:

u(x, t) ≈ ū(x, t) =

Np∑
i=1

ui(t)ϕi(x), (3.7)

with time-dependent expansion coefficients ui. Their name is motivated by the fact that
these coefficients will correspond exactly to the value of displacement u at a given grid
point xj . This results from the choice of basis functions as we will see later.

The weak form of the problem

In order to find coefficients ui, wave equation 3.5 is transformed into weak (or variational)
form. This allows to explore the solution space with the help of time-independent test
functions v → v(x) with square-integrable derivatives which represent all admissible dis-
placements. Then, we define a function to find solution ū such that for all admissible test
functions v(x): ∫

D
v ρ ∂2

ttū dx−
∫
D
v ∂x(µ∂xū) dx =

∫
D
v f dx, (3.8)

where integration is carried over the whole physical domain D. Through integration by
parts we can reduce the spatial derivative to first order. Using boundary conditions of
equation 3.6 leads to ∫

D
v ρ ∂2

ttū dx+

∫
D
µ∂xv ∂xū dx =

∫
D
v f dx. (3.9)

Note here that free surface boundary conditions are implicitly fulfilled which is a big
advantage of the method for example when it comes to geophysical applications in which
the Earth’s surface is involved. To illustrate this advantage we can draw a comparison
with the finite difference method. To impose a stress free boundary in the latter method,
grid points outside the model domain are required.
It is very convenient that the test functions are chosen to be identical to the basis functions
used before in expansion 3.7. This is known as the Galerkin principle and is beneficial for
both solving the system which is becoming symmetric and the precision of the numerical
approximation. Thus, by replacing v → ϕj(x) and combining equations 3.7 and 3.9 we get
following linear system of equations, valid for any ϕj :

Np∑
i=1

[
∂2
ttui

∫
D
ρϕjϕidx︸ ︷︷ ︸
Mji

]
+

Np∑
i=1

[
ui

∫
D
µ∂xϕj ∂xϕi dx︸ ︷︷ ︸

Kji

]
=

∫
D
ϕj f dx. (3.10)
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Mji and Kji are elements of the so called mass matrix M and stiffness matrix K, respec-
tively. Written in matrix-vector form:

M∂2
ttu(t) + Ku(t) = f(t), (3.11)

After discretizing the time period of interest in time steps ∆t, equation 3.11 can be solved
for displacement u(t+ ∆t) by using an adequate numerical integration scheme such as the
Newmark method (Festa and Vilotte, 2005; Chaljub et al., 2007). Before that, mass matrix
M has to be inverted. However, through the right choice of the numerical integration
scheme in combination with the test function basis, the mass matrix will become diagonal
and thus trivial to invert.

From global to local formalism

Up to this point the formalism follows a global approach. The domain is now subdivided
into smaller elements which will increase the flexibility of the method. This is realized
in straightforward manner by carrying out the integration over each subdomain De and
subsequently summing over all ne subdomains:

Np∑
i=1

[
∂2
ttui

ne∑
e=1

∫
De

ρϕjϕidx
]

+

Np∑
i=1

[
ui

ne∑
e=1

∫
De

µ∂xϕj ∂xϕi dx
]

=

ne∑
e=1

∫
De

ϕej f dx. (3.12)

By defining local basis functions ϕei within each subdomainDe, the sum over all subdomains
drops and we can calculate solution uei within each subdomain:

Np∑
i=1

∂2
ttu

e
i

∫
De

ρϕejϕ
e
idx+

Np∑
i=1

uei

∫
De

µ∂xϕ
e
j ∂xϕ

e
i dx =

∫
De

ϕej f dx. (3.13)

It is convenient to transfer the global coordinates x ∈ D of each subdomain De to local
coordinates on a reference interval ξ ∈ [−1, 1]. Considering an arbitrary function f(x), the
coordinate transformation from x→ ξ is realized by a change of variables as follows:∫

De

f(x) dx =

∫ 1

−1
f(ξ)J(ξ) dξ, with Jacobian J =

dx
dξ
. (3.14)

This mapping operation can become very complex depending on the shape of the elements.
Nevertheless, it facilitates the operations under the integral which become independent of
the global coordinates. Then for example, changing from from linear elements to higher
order elements as presented in section 3.2.5 is just a matter of changing the Jacobian.

The choice of basis functions

We will now define the basis functions as well as the positions of the grid points on which
the solution will be interpolated. The choice falls on Lagrange polynomials li defined on
the so-called Gauss-Lobatto-Legendre (GLL) points xj .
The Lagrange polynomials are constructed such that li(xj) = δij where δij is the Kronecker
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3.2 −Numerical model based on the spectral element method (SEM)

symbol. This can be observed in Figure 3.1 which shows the Np = N + 1 Lagrange
polynomials of order N = 6, defined on the N + 1 GLL points. It is also noteworthy that
the GLL points are not equidistant but move closer to each other towards the boundaries.
This configuration reduces spurious oscillations of the interpolation which are also known
as Runge’s phenomenon.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Local reference coordinates

0.0

0.5

1.0

Am
pl

itu
de

 o
f l

i

Figure 3.1 – Lagrange Polynomials. TheN + 1 Lagrange polynomials li of orderN = 5 defined on theN + 1
GLL points xj . The GLL points are located at the zero crossings of the polynomials. Note that li(xj) = δij for
i, j = 1, . . . , N + 1.

Approximation of spatial integration

The task now is to find a way in order to carry out the integration over the subdomains
numerically so that the introduced error is minimal. This is achieved by using the so-called
Gauss-Lobatto-Legendre quadrature with Lagrange polynomials defined on GLL points as
before. Using the GLL points in the quadrature leads to the so-called spectral convergence
of the method with an error in the order O(2N − 1).
For an arbitrary function f(x) integrated over interval [−1, 1] the quadrature gives:

∫ 1

−1
f(x) dx ≈

∫ 1

−1

N+1∑
i=1

f(xi)li(x) dx =
N+1∑
i=1

f(xi)

∫ 1

−1
li(x) dx︸ ︷︷ ︸
wi

, (3.15)

where the integration weights wi can be calculated analytically.
Approximating the integrals in equation 3.13 by the quadrature and introducing the La-
grange polynomials ϕi = li leads to the final system of equations for each subdomain
e = 1, ..., ne:

N+1∑
i=1

M e
ji∂

2
ttu

e
i +

N+1∑
i=1

Ke
jiu

e
i = fej , (3.16)

with

M e
ji = wjρδji,

Ke
ji =

N+1∑
k=1

wkµ∂xlj∂xli,

fej = wjf.
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The equations for all elements can be assembled in a global system and solved with an
appropriate time stepping scheme as mentioned before. The solution is continuous across
element interfaces and the boundary of the computational domain is stress-free. In order
to simulate an open domain we have to implement absorbing boundary conditions which
we will introduce hereafter.

Absorbing boundaries (PML)

Apart from the free surface boundary, we want to simulate seismic wave propagation
on a seemingly infinite model without artificially introduced boundary effects. However,
the computational domain has to be truncated outside the area of interest. To do so
we apply open boundaries by so-called Perfectly Matched Layers (PMLs). The design of
these absorbing layers provide an exponential decay of the wave amplitude independent
of the frequency within the PML without reflection of energy at its interface. A detailed
description on the implementation in SEM can be found in Festa and Vilotte (2005).
The size of the PML has to be wide enough to accommodate big wavelength while its grid
point distances have to be small enough to resolve small wavelength (see CFL criterion in
section 3.2.3). This has to be carefully considered if for example the wavelength changes
with depth due to the velocity model (note that in the here used SEM version, the width
of the PML has to be constant with depth). To absorb all present wavelength, either a
wide PML with increased polynomial degree is applied or several adjacent layers of PML
are implemented.

3.2.2 Source input: body force and surface traction

The seismic source can be implemented in SEM as an external force f (see equation 3.2). In
a 3D medium, a point force fi(x, t) at location x = ξ, pointing in direction of the xn-axis,
is described as (Aki and Richards, 2002):

fi(x, t) = Aψ(t)δ(x− ξ)δin, for i = 1, 2, 3, (3.17)

where A is the amplitude of the force, ψ(t) is an arbitrary force-time function, δ(x − ξ)
the 3D Dirac delta function and δin the Kronecker delta for directionality.
Other than that, seismic sources can also be implemented on the boundaries of the domain.
This is convenient to describe surface sources as for example the force-field generated by
a landslide during its flow along topography. For this, the stress-free boundary condition
defined in 3.6 has to be modified. Introducing a non-zero boundary condition evokes an
extra term during the integration by parts, going from equation 3.8 to equation 3.9. This
way, time and space dependent surface tractions can be defined.
In the present study we primarily studied the wave propagation from point sources. The
force-time function which was used to the describe these point sources is introduced in the
following.
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3.2 −Numerical model based on the spectral element method (SEM)

The Ricker wavelet

In order to simulate the seismic impulse response of a given body, known as Green’s
function, the force-time function ψ should be a Dirac delta function in time. In practice
this is not possible as the numerical method cannot resolve the infinite frequency content.
As an alternative, a so-called wavelet of finite frequency is used. In the present work we
use the Ricker wavelet (also known as Mexican hat wavelet) which has zero mean and a
Gaussian shaped frequency content. For a dominant frequency fdom, force-time function
ψ becomes (Wang, 2015):

ψ(t) =
(

1− 2 (πfdom(t− τ))2
)
e−(πfdom(t−τ))2 , (3.18)

with time shift τ . Figure 3.2 illustrates the Ricker wavelet in both time and frequency
domain.
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Figure 3.2 – Ricker wavelet. Ricker wavelet with dominant frequency fdom = 7 Hz and time shift τ = 0.5 s in
the time domain (left) and frequency domain (right).

Some wavelets are constructed in order to contain flat frequency plateaus. This can be
convenient for spectral analyses but causes oscillations in the time domain. The Ricker
wavelet on the contrary has a simple shape which makes interpretations in the time domain
less complex.

3.2.3 Time step, spatial resolution and convergence

The time stepping used in the SEM formulation is carried out by an explicit Newmark
scheme (Newmark, 1959; Hughes, 1987). This scheme is conditionally stable and time step
∆t is subject to the Courant-Friedrichs-Lewy (CFL) criterion (Courant et al., 1928):

∆t ≤ C
(

∆x

c

)
min

, (3.19)

where ∆x is the distance in between adjacent GLL points, c is the seismic wave speed and
C the Courant number which is < 0.5 for a stable scheme depending on the polynomial
order and the mesh geometry (Chaljub et al., 2007).
The spatial resolution is likewise determined by both the element size and the polynomial
degree. In practice, the element side length must not exceed the minimum seismic wave-
length when using a polynomial degree of 5, corresponding to 6 GLL points per element.

61



Chapitre 3 − Seismic wave propagation

This rule of thumb can be compromised by medium heterogeneities and surface topogra-
phy.

Simulation of a wave field from a vertical point force
The wave field is simulated on a flat homogeneous domain in order to illustrate the conver-
gence of the method. As a source, a Ricker wavelet of dominant frequency fdom = 4Hz is
used. The upper limit of its frequency content can be estimated by fmax ≈ 4 fdom = 12Hz
(compare with Figure 3.2). The model domain is defined by S-wave and P-wave speeds
of vS = 700m.s−1 and vP = 1000m.s−1, respectively. Thus, the minimum wave speed is
vmin = vS = 700m.s−1. This leads to a minimum wavelength of λmin = vmin/fmax ≈ 60m.
The polynomial order of the elements is 5 (6 GLL points). At this order, as mentioned
above, the element size must not exceed the minimum wavelength. This means, that the
side length of the elements should be smaller than 60m.
Figure 3.3 shows snapshots at two different times of the simulated wave field generated by
a vertical point force at the surface. Snapshots are shown for models with element size of
100m, 80m, and 40m.
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Figure 3.3 – Snapshots of wave field on models with different element sizes. Snapshots of the simulated wave
field at time t = 0.8 s (left) and t = 1.6 s (right) on models with element size of 100 m (top), 80 m (middle), and
40 m (bottom). The snapshots show a cross-section through the domain which crosses the source location. PMLs
of one element width are attached to the sides and bottom of the domain (indicated on the left by a white line).
Wave speed of S-wave and P-wave are vS = 700 m.s−1 and vP = 1000 m.s−1, respectively. The wave field is
generated by a vertical point force represented by a Ricker wavelet of 4 Hz dominant frequency. As Rayleigh wave
speed is similar to vS , the dominant wavelength of the visible Rayleigh waves is 175 m. Amplitudes correspond
to vertical ground velocity.
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We can observe that the resolution of the wave field gradually improves with decreasing
element size. Furthermore, strong reverberations can be detected in the case of 100m
elements, following the leading wave front. Other than that, we can also see reflection
from the boundary in the case of 100m and 80m elements. The width of the absorbing
boundary layer is equal to one element. In case of the larger elements, the wave field is
badly resolved in the PML layer and can therefore not be fully absorbed. This leads to
the observed reflections.
To show the convergence with decreasing element size, the seismic signal is recorded at
a horizontal position of 500m (300m away from the source). Synthetic seismograms and
their frequency spectrum are shown in Figure 3.4 for all models.
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Figure 3.4 – Convergence of seismograms with decreasing element size. Seismograms (left) and corresponding
frequency spectrum (right) recorded on models with different element sizes, corresponding to the models shown
in Figure 3.3. Seismograms are recorded at the surface in a distance of 300 m from the source.

Looking at the seismograms in Figure 3.4, we can observe entailed reverberations in the
case of 100m elements. Reducing the element size to 80m, the reverberations reduce and
the signal fits better the signal from 40m elements. However, a spurious signal can be
observed towards the end of the recording. With the help of the snapshots above, we
can relate this signal to the reflections from the boundaries. For the 40m elements, no
reverberations are left and we can assume that the solution has converged (here without
proof by comparison with even smaller elements).
This can similarly be observed in the frequency domain. While the spectrum correspond-
ing to the 100m elements show large fluctuations, the spectrum from the 80m elements
converges towards the solution from the 40m elements. Interesting to note is that the
spectra up to this point in time are identical below 5Hz, which corresponds to wavelengths
larger than 140m. This shows that all models are able to resolve these low frequencies.

3.2.4 Implementation of intrinsic attenuation

Intrinsic attenuation causes exponentially decaying wave amplitude as described in equa-
tion 3.4. In order to mimic numerically such an attenuating material, SEM introduces a
series of standard linear solids (SLS), a principle which was proposed by Liu et al. (1976).
Each of these solids is characterized by a single relaxation mechanism and through super-
position a quality factor Q is obtained which is nearly constant over a certain frequency
range. Figure 3.5 compares the resulting quality factor Q when using different numbers of
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SLSs. In the simulations hereafter we will use 5 solids which we consider to be sufficient
in order to obtain a nearly constant Q over the frequency range of interest (∼ 1− 20Hz).
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Figure 3.5 – Model for quality factor Q. An attenuating material of quality factorQ = 50 over a frequency range
from 0.05 to 50 Hz was mimicked using 3, 5 and 8 standard linear solids (SLS), respectively. While 3 SLSs result in
deviations up to 40%, 5 SLSs reach a nearly constant value. Improvements using 8 SLSs are negligible and thus
not worthwhile the additional computational effort.

3.2.5 Implementation of topography

Surface topography is imposed onto the meshed domain by vertically adjusting the posi-
tions of grid points. In other words, the elements are stretched or compressed vertically
around the mean value of elevation. Figure 3.6 illustrates this procedure. Grid points on
the surface are shifted so that they represent the real elevation of the topography, while
deformation below decreases successively towards a horizontal reference layer (here at the
bottom of the domain).

Figure 3.6 – Implementation of topography. Top left: Representation of digital elevation model (DEM) of 20 m
resolution from a cross-section through Dolomieu crater (La Réunion). Bottom left: Rectangular mesh with cubic
elements of 20 m side length. Right: Mesh with imposed topography through successive vertical deformation of
cubic elements.

It is important to be aware that the deformation of elements modifies the distance of collo-
cation points dependent on how many elements are used to accommodate the topography.
This has to be considered carefully as it can affect the numerical scheme. On the one hand,
the numerical time step decreases with the grid point distance (see equation 3.19) causing
more expensive computations. On the other hand, increased distances can threaten the
convergence of the method according to the polynomial degree and the simulated wave-
length.
Figure 3.7 shows a first example of simulated wave propagation on a homogeneous model
with topography. For this example, a part of Dolomieu crater topography was imposed on

64



3.2 −Numerical model based on the spectral element method (SEM)

the model. A vertical point force (4Hz Ricker wavelet) acts at the bottom of the crater.
Topography disturbs drastically the symmetric wave propagation observed on the model
with flat surface (see Figure 3.3). For example, surface waves arriving at the rim of the
crater are partly transmitted and reflected and continue traveling as surface waves in oppo-
site directions. Also, body waves originating from the bottom of the crater travel directly
to the the sides of the domain and can be detected at surface stations E to I.
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Figure 3.7 – Wave propagation on homogeneous model with topography. The vertical displacement field is
shown in snapshots at time t = 0.7 s and t = 1.4 s (left). The seismic source is described by a 4 Hz Ricker
wavelet which act as a point force on the bottom of the crater. The model is homogeneous with P-wave veloc-
ity vP = 1000 m.s−1, S-wave velocity vS = 700 m.s−1 and density ρ = 2000 kg.m−3. Right: Synthetic seis-
mograms recorded at stations marked by green stars in the snapshots on the left. Introduction of topography
increases the complexity of the wave field (compare with wave field on flat domain shown in Figure 3.3).

The resolution of the model topography does not only depend on the available DEM of
the study site but also on the element configuration in the meshed domain. In the next
paragraph we will discuss the influence of topography resolution on synthetic seismograms
by changing the element size in the mesh.
Generally, in order to not lose resolution, the element size should not be larger than the
spatial discretization of the imposed DEM. However, using a mesh of small elements can
lead to computationally expansive simulations. For this reason we will introduce there-
after two approaches which can increase topographic resolution while avoiding expensive
mesh configurations. Concretely spoken, we will present higher order elements and the
application of a buffer layer.

Topography resolution

As already indicated before, the topography resolution is both dependent on the available
DEM file and the element size. Using linear elements, i.e. elements with flat faces, the
maximum resolution is determined by the element side length (this will change when using
higher order elements as discussed in the next paragraph). Figure 3.8 illustrates this issue
by comparing meshes of different elements sizes.
As the seismic wave field interacts with the free surface, a poor representation of topography
will obviously affect the simulated seismograms. In order to investigate this influence, we
resume the previous simulation example on a homogeneous model with topography (see
Figure 3.7). This time we build three models using element sizes of 40m, 20m and 10m,
respectively. The underlying topography resolution is 20m. Top graph of Figure 3.9
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Figure 3.8 – Dependency of to-
pography resolution on ele-
ment size.
Decreasing the element size
in the meshed domain from
100 m (left) to 25 m (right) re-
sults in a more detailed topog-
raphy representation.
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Figure 3.9 – Influence of topography resolution on synthetic seismograms. Comparison between models using
element sizes of 40 m, 20 m and 10 m, respectively, which determines topography resolution (see Figure 3.8). Top:
Seismograms recorded at station A to I marked with green stars in Figure 3.7. Differences between the 2 models
with smaller elements are vanishing. Bottom: Spectra of seismograms from one station. Differences between the
2 models with smaller elements appear especially in the higher frequency range (above∼ 7 Hz).

compares the simulated traces of each model. While models with 20m and 10m elements
result in similar seismograms, recordings from model with 40m elements are quite distinct.
Yet, differences exist between the models with smaller elements. For a more detailed
investigation, we compare spectral contents from one of the stations (bottom graph of
Figure 3.9). Comparing the 2 models with small elements, we can in fact detect that
the main differences arise from the higher frequency content, i.e. above ∼ 7Hz. This
corresponds to wavelengths below 100m, given vS = 700m.s−1 and assuming mainly S-
waves and surface waves (see Figure 3.3). This means that changes of topography resolution
up to 10 times smaller than the seismic wavelength can still affect the wave field. Similar
observations were made by Ma et al. (2007).
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Higher order elements

Up to now, the topography is imposed on the mesh by shifting the grid points at the
corners of each element and determining the position of internal grid points accordingly
by linear interpolation. This means that the surface of each element is flat and that sharp
edges can be present at the interfaces of elements (see top of Figure 3.11). In other words,
the derivative of the topography is discontinuous. This is not a problem for the numerical
scheme but it introduces an error, in particular when the element size is bigger than the
available resolution of the DEM.
A way to increase accuracy of the imposed topography without decreasing the element size
is to use nonlinear elements. This is realized by going from linear interpolation in between
the corners of the elements, to a higher degree of interpolation using additional control
points. Figure 3.10 illustrates a 1st order element with 8 control points and a 2nd order
element with 27 control points. In the latter configuration, a polynomial interpolation
of 2nd order can be used to map the solution from the local reference coordinates to the
physical coordinates.

Figure 3.10 – From 8 to 27 control points per
element.
Left: Element with 8 control points at each cor-
ner. Right: Element with 27 control points,
which allow a curvilinear deformation of the
element.

27 control
points

8 control
points

Figure 3.11 – Topography on meshes with elements of 1st and 2nd order. Cross-section of computational domains
with imposed topography of Dolomieu crater. The blue lines run through the GLL points (6 × 6 × 6 GLL points
per element). Element are of 30 m side length. Their boundaries can be identified by the densification of lines.
Top: Mesh containing 1st order elements with 8 control points. The surface of the elements is flat and sharp edges
at the element boundaries are observable. Bottom: Mesh containing 2nd order elements with 27 control points.
Elements are curvilinear which results in a globally smooth topography.
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In order to observe the difference between 1st and 2nd order elements, the topography of
Dolomieu crater is imposed on a domain with cubic elements of 30m side length. Figure
3.11 compares the two implementations. While the topography is assembled of flat faces
with sharp edges when using linear elements, the utilization of curvilinear elements results
in a globally smooth mesh.
Smoothly varying topographies can be implemented very efficiently using curvilinear ele-
ments. This is shown in Figure 3.12, where the seismic wave propagation is modeled on
a domain with a Gaussian topography. Synthetic seismograms are shown in Figure 3.13.
It can be observed, that signals are identical between meshes using 2nd order elements
of 60m side length and meshes using linear elements of 20m side length. This has huge
consequences on the computational effort. Decreasing the element size by a factor of 3
increases the number of elements by a factor of 27 and accordingly the computational cost.

20m, 1st order 60m, 1st order 60m, 2nd order

Source Source Source

Figure 3.12 – Seismic wave propagation on Gaussian topography. Snapshot of the wave field taken at time
t = 1.6 s for models with 20 m linear elements (left), 60 m linear elements (middle), and 60 m linear elements
(right). Differences in the resulting topography can be seen in the zoomed insets: 20 m linear elements show a
fine grid of flat faces which lead to a smooth topography. The flat faces become more obvious for 60 m linear
elements. Finally, curvilinear elements are able to reproduce almost perfectly the smooth Gaussian shape. The
green triangle marks the recording position of the seismograms in Figure 3.3.
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Figure 3.13 – Seismograms measured on linear and curvilinear elements. Seismograms (left) and corresponding
frequency spectrum (right) recorded on models shown in Figure 3.12 at the position marked by a green trianble.
Even though the signal look almost identical in the time domain, differences are noticeable in the frequency do-
main. The 60 m 2nd order elements are able to reproduce the solution from the 20 m linear elements.

However, the 2nd order elements, cannot represent topography variations of wavelength
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smaller than twice the element size. To increase resolution, the element size has to be
reduced.

Introduction of buffer layer

It comes without saying that SEM does not restrict the use of differently sized elements.
This is very convenient to create efficient meshes. For example when simulating seismic
waves, regions of higher seismic velocities and thus longer wavelengths can be meshed with
larger elements. Also, complex structures can be meshed more precisely by decreasing the
size of surrounding elements.
We use this feature to obtain a more detailed representation of the topography as already
discussed before. However, to avoid expensive computations due to numerous small ele-
ments, we want to coarsen the mesh and use larger elements in the subsurface. For the
transition between different element sizes, a refinement layer is used which breaks down
the element size by a factor of 3. Its architecture is visualized in Figure 3.14.
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Figure 3.14 – Mesh refinement. Transi-
tion between elements of side length d
(blue) and 3d (green) via the refinement
layer (red). Note that this is a 2D view
onto the plane in which the boundary of
the big element is situated.

In practice, problems during the mapping in SEM can arise when the refinement layer is
overly distorted due to strong topography variations. In this case we introduce a smooth
horizon between surface topography and refinement layer. This horizon is a low-pass fil-
tered version of the topography. Figure 3.15 illustrates the implementation of a buffer layer
for the case of Dolomieu crater topography.

3.2.6 Implementation of velocity model

The construction of SEM allows variable medium properties within elements. Individual
values of density ρ, S-wave velocity vs and P-wave velocity vp can be assigned to each GLL
grid point (which in fact also means that the distance between GLL points determines the
model resolution). The values in between grid points are interpolated with the Lagrange
polynomials, just like the solution for displacement field u.
The software used here, SEM3D, is designed to define vertically layered material proper-
ties with boundaries at element interfaces. However, in order to be able to implement a
vertically smooth varying velocity model, we modify the code to directly define material
properties at the grid point level.
After doing so, the velocity model proposed by Lesage et al. (2018) for the shallow velocity
structure of volcanoes can be implemented. This velocity model was introduced in section
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Figure 3.15 – Mesh with topography and buffer layer. Model with Dolomieu crater topography t of 10 m resolu-
tion. The mesh is built of linear elements with side length of 10 m above and 30 m below refinement layer r. A
smooth buffer horizon b (low-pass filtered topography with wavelengths≥ 200 m) is introduced between sur-
face topography and refinement layer to accommodate high frequency topography variations. Left: Cross-section
of the domain. The location of buffer horizon b can be identified by the green-magenta interface. Below this in-
terface vertical mesh variations are smooth. Refinement layer r is situated below the magenta-cyan interface.
Right: Top view on the 3D domain. The mesh above the buffer horizon was removed in the front part (up to the
cross-section shown on the left). The difference between smoothly varying buffer horizon b and rough surface
topography t is clearly visible.

1.3.1 on page 11.
Figure 3.16 compares the simulated wave propagation from a vertical point source on
three different velocity profiles: a homogeneous model (left), a model with low velocity
layer (middle) and a model with Lesage velocity profile (right).
Seismograms recorded at the surface of the homogeneous model show the propagation of
surface waves with constant velocity. These are so-called Rayleigh waves which are char-
acterized by particle motions in the vertical-radial plane. A small amount of body wave
energy, arriving earlier than the Rayleigh waves, is visible at small offsets.
Introducing a shallow low velocity layer has various effects on the wave field. On the one
hand side it leads to internal reflections of body waves within this layer. These so called
multiples can be observed on the section of seismograms arriving successively with con-
stant velocity. On the other hand side, the propagation speed of Rayleigh waves becomes
dispersive, i.e. frequency dependent. This can be explained by their frequency depen-
dent penetration depth. If the penetration depth is deeper than the shallow layer, the
underlaying layer contributes to the propagation speed. Additionally, higher-order modes
of Rayleigh waves can be generated. Higher-order modes exist in heterogeneous media as
Rayleigh waves can travel with various speeds for a given frequency (changing their wave-
length accordingly). In the present case, the fundamental mode is almost non-dispersive,
as the penetration depth of the main frequency content does not reach the underlaying
layer. This is why we can see a strong Rayleigh wave traveling with constant speed such as
in the case of the homogeneous model. However, some contribution of dispersive 1-order
modes results in Rayleigh wave oscillations with seemingly curved arrival times (this was
analyzed with the help of the modal summation method within Computer Programs in
Seismology (Herrmann, 2013)).
In case of the Lesage model, the velocity is smoothly increasing with depth. Without
sharp layer interfaces, body waves can travel on a curved path through depth back to the
surface instead of being reflected at layer boundaries. This causes diverging arrival times
as marked by a white circle in the top right corner of Figure 3.16. Further, the Rayleigh
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wave speed is continuously increasing with frequency which can nicely be observed at large
offsets (marked by a white circle and denoted as Fundamental Rayleigh). Low frequency os-
cillations (wide wavelets) arrive earlier than high frequency oscillations (narrow wavelets).
Beside the fundamental mode, the 1st-order mode is visible traveling at higher speeds.
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Figure 3.16 – Different velocity models on flat domain. Synthetic seismograms (top) and snapshots of the wave
field at time t = 0.8 s and t = 1.4 s (bottom) for different velocity models: homogeneous model (left column),
model with low velocity layer (middle column, the dotted white line on the snapshots indicate the layer depth) and
model with Lesage velocity profile (right column). The sections of seismograms are recorded at the surface of the
corresponding cross-section shown in the snapshots below. Amplitudes correspond to vertical ground velocity.
Red arrows mark the source position, which is a 7 Hz Ricker vertical point force.

As can be seen from the illustrated snapshots of the wave field, the velocity model changes
the partition between energy “lost” into the subsurface and energy traveling along the
surface. This is of high importance for the following sections, in which we discuss how to
back-calculate the generated energy of a source from the surface measurements of a distant
seismometer.

3.3 Radiated seismic energy from a surface load

In the context of landslide generated seismic waves it is of interest to calculate the totally
released seismic energy, for example in order to estimate the landslide volume. However,
the only available input for this calculation is given by the seismic measurement of a single
seismic station (or multiple stations if we are lucky) at the Earth’s surface. This means
that we have to find an estimate which tries to relate the energy measured at the surface
to the energy present in the whole subsurface and integrate the total energy radiated in
all directions around the source.
Typically, landslide seismic energy is estimated under the assumption of a single dominant
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frequency (Vilajosana et al., 2008; Hibert et al., 2011, 2014b; Levy et al., 2015). Here we
will derive an equation which takes the spectral wave properties into account. For this,
we assume a vertical surface load whose position is known. Starting from a homogeneous
model, for which an analytical solution is proposed, we will go to a heterogeneous model
for which the energy decay will be investigated numerically.

3.3.1 Seismic energy decay as a function of traveled distance

Before establishing an equation to back-calculate the source generated energy from a single
seismometer, let us observe the decay of seismic energy with distance r along the surface of
a flat domain. Part of this decay is caused by intrinsic attenuation as described in equation
3.4. Intrinsic attenuation causes an exponential energy decay. Additionally, the seismic
energy decays due to so-called geometrical spreading as it is distributed in space during
propagation. In fact, body wave energy decays with 1/r2 as the wavefront is growing
spherically, whereas surface wave energy decays on a cylindrical growing wavefront with
1/r.
Here we compare the seismic energy decay on the three velocity models introduced in
section 3.2.6, namely the model with homogeneous velocity, the model with shallow low
velocity layer and the model with Lesage velocity profile. Figure 3.17 plots energy density
multiplied by offset as a function of offset for radial and vertical component. Energy density
etot is calculated by equation 3.21, which is introduced in the next section. Multiplication
by offset r compensates for the geometrical spreading of surface waves. Thus, if only surface
waves were measured, the energy density should decay exponentially which can easily be
identified using a logarithmic scale.
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Figure 3.17 – Seismic energy decay as a function of traveled distance. Comparison of the seismic energy decay
along the surface of domains with different velocity models: homogeneous model, model with shallow low S-
wave velocity and model with Lesage velocity profile. Energy density etot is calculated for radial (left) and vertical
(right) ground velocity. Multiplication by offset r compensates for geometrical spreading of surface waves. Linear
decay on the logarithmic scale indicates that exclusively surface waves are measured.

In the case of a homogeneous model, the energy decays linearly on the semi-logarithmic
scale. This suggests that mainly surface waves are measured. Only at very short offsets
the assumption does not hold, possibly related to the presence of body waves. The decay
of energy on the heterogeneous models is not perfectly linear. The model with shallow low
velocity shows an oscillating decay which might be explained the interference of multiples
(see Figure 3.16). The Lesage model shows a slightly curved decay. This is possibly related
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3.3 −Radiated seismic energy from a surface load

to the dispersive surface wave velocities as well as the involvement of body waves measured
at the surface (see Figure 3.16).
The observation that mainly surface waves are measured at the surface of a homogeneous
model (in case of a vertical surface load), will be used in the following section to derive an
analytical equation which allows to calculate the energy of the source. The involvement of
body waves in case of a heterogeneous model will be investigated subsequently.

3.3.2 Estimation of source generated energy on homogeneous media

In this section we derive a formula to back-calculate the seismic energy radiated from a
surface point source by means of a seismic surface measurement. First of all, we have to
describe the total energy ER radiated by a seismic source. For this, we measure the energy
flux through a surface which encloses the source.
The energy density flux φ is defined as the energy E passing through a surface S within
time t. Equivalent to this definition, the flux can be expressed as the energy density e

propagating with velocity c as illustrated below:

φ =
dE
dt

dS

= dE
dV = e dE

dV = e

c

= ce.

Regarding seismic waves, c refers to the wave propagation velocity whereas e is the total
energy density e = ec + ep composed of kinetic and potential energy density, respectively.
The kinetic energy density can be measured by means of the ground velocity v:

ec(t) =
1

2
ρv2(t), (3.20)

with mass density ρ. In order to obtain the total energy density through time etot, we
integrate from t0 to t1, the duration during which the seismic waves pass by the receiver.
With

∫
ec dt =

∫
ep dt and thus etot =

∫
e dt = 2

∫
ec dt we have

etot =

∫ t1

t0

ρv2 dt. (3.21)

The totally integrated energy ER radiated by a seismic source is equal to the energy density
flux φ(r, t) integrated over time and over a surface S0 enclosing the source, thus:

ER =

∫ t1

t0

∫
S0

cρv2 dS dt. (3.22)

As we only have measurements from stations located at the Earth’s surface we have to
adjust the surface integral over S0 accordingly. In order to consider energy radiated into
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the subsurface, a factor will be introduced which considers the energy partition among
different wave types.

Energy partition for surface loads

The energy partitions among different wave types were derived by Weaver (1985) for a
semi-infinite solid based on a diffuse-field approach. The results were reinterpreted by
Sánchez-Sesma et al. (2011) who explicitly pointed out their significance for surface point
loads. In doing so, horizontal and vertical surface loads have to be distinguished. The
relative energy partitions, which are directly derived from Weaver (1985), are illustrated
in Figure 3.18 as functions of Poisson’s ratio. It can be observed that for horizontal loads
the majority of energy radiates as horizontal body shear waves whereas for vertical loads
the majority of energy is released as Rayleigh waves.

Figure 3.18 – Wave type energy partition. Relative energy partitions among horizontal and vertical S-waves (SH
and SV, respectively), P-waves (P) and Rayleigh waves (R) for both horizontal (left) and vertical (right) surface loads
as functions of Poisson's ratioσ.

Vertical load on semi-infinite solid

For a vertical surface load, as can be seen in Figure 3.18, Rayleigh waves constitute the
major energy partition which we shall refer to as pR. Further, as discussed in section 3.3.1,
surface waves dominate the signal measured at a distant receiver since body waves decay
faster and since energy does not propagate upwards in case of a surface load on a semi-
infinite homogeneous medium. Assuming that exclusively surface waves are measured, the
surface integral in equation 3.22 takes a cylindrical form and can be rewritten as

ER =
1

pR
cρ

∫ t1

t0

∫ 2π

0

∫ h

0
v2 dz rdθ dt, (3.23)

with distance r between source and receiver and azimuth θ integrated over a full circle
surrounding the source. Integration over depth z must be carried out along the dispersive
penetration depth h = h(f) varying with frequency f . In order to respect the frequency
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dependency, equation 3.23 is transformed to frequency domain making use of Parseval’s
theorem:

ER =
1

pR
2πr cρ

∫ ∞
−∞

hv̂2 df =
1

pR
4πr cρ

∫ ∞
0

hv̂2 df, (3.24)

where v̂ = v̂(f). Note that the discrete version of Parseval’s theorem is derived in annex
A.1
Due to intrinsic attenuation the signal amplitude A decays exponentially as described in
equation 3.4. The energy decay is thus proportional to exp(−2αr), where α is the frequency
dependent attenuation coefficient. Correcting for this exponential decay we finally have:

ER =
1

pR
4πr cρ

∫ ∞
0

hv̂2 e2αr df, (3.25)

Note that Rayleigh wave quality factor QR generally depends on both QP and QS , the
quality factors of P-wave and S-wave. However, as Rayleigh wave velocity cR is much more
sensitive to S-wave velocity cS , we can neglect the contribution of QP . This can be seen
in appendix 3.4.1, in which we discuss the velocity dispersion of Rayleigh waves caused by
attenuation. In the following we will present a way to efficiently integrate the dispersive
Rayleigh penetration depth.

Rayleigh wave effective depth

In order to back-calculate the totally generated energy, the measured signal at a surface
receiver has to be integrated in depth to account for the total Rayleigh wave energy.
However, horizontal and vertical ground velocity amplitudes of Rayleigh waves are varying
with depth. In the following, an effective penetration depth h is derived with which the
surface measurement can elegantly be integrated.
In a semi-infinite homogeneous medium with depth z ≥ 0, bounded by a free surface at
z = 0, the horizontal and vertical ground velocities vx and vz of a Rayleigh wave traveling
in x-direction can be described as (Maradudin, 1987):

vx(x, z, t) = ω AZx sin(kx− ωt), (3.26)

vz(x, z, t) = ω AZz cos(kx− ωt), (3.27)

with wavenumber k and angular frequency ω (note that in a homogeneous medium the
dispersion relation ω = cRk is linear, where cR denotes the Rayleigh wave speed). A is
constant, Zx and Zz are depth dependent horizontal and vertical amplitude functions:

Zx(z) = e−kβP z − γe−kβSz, (3.28)

Zz(z) = βP

(
e−kβP z − 1

γ
e−kβSz

)
, (3.29)

with

βP =

√
1−

c2
R

c2
P

, βS =

√
1−

c2
R

c2
S

, and γ = 1−
c2
R

2c2
S

, (3.30)
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where cP and cS are longitudinal and transversal wave speeds, respectively.
The depth distribution of the seismic energy is proportional to the squared ground velocity
depth functions Zx and Zz, thus:

Ex(z) ∝ Z2
x(z) = e−2kβP z + γ2e−2kβSz − 2γe−k(βP+βS)z, (3.31)

Ez(z) ∝ Z2
z (z) = β2

P

(
e−2kβP z +

1

γ2
e−2kβSz − 2

γ
e−k(βP+βS)z

)
. (3.32)

We are searching for an effective depth h so that the seismic energy measured at the
surface multiplied by this effective depth corresponds to the depth integral of the true
depth-amplitude curve, that is:

hxEx(0) =

∫ ∞
0

Ex(z)dz, (3.33)

hzEz(0) =

∫ ∞
0

Ez(z)dz. (3.34)

In order to illustrate the effective depth h, let’s assume a medium with Poisson’s ratio
σ = 0.33 (corresponding to cP = 2000m.s−1 and cS = 1000m.s−1). For this case, the
squared horizontal and vertical ground velocities are shown in Figure 3.19 as functions of
depth, corresponding to equations 3.31 and 3.32, together with the effective depth h. Note
that the depth axis is normalized by wavelength λ.
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plitudes (blue dashed) together with effective depthh (solid green) as functions of depth in units of wavelength
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Substituting equations 3.31 and 3.32 into equations 3.33 and 3.34, respectively, we find the
effective depth h as a function of the medium parameters:

hx =
1

k

1
2βP

+ γ2

2βS
− 2γ

βP+βS

(1− γ)2 , (3.35)

hz =
1

k

1
2βP

+ 1
2βSγ2

− 2
(βP+βS)γ(

1− 1
γ

)2 . (3.36)

With this relation at hand, the effective depth for horizontal and vertical ground velocities
can be plotted as functions of Poisson’s ratio σ as shown in Figure 3.20. This is of great
utility in order to easily integrate the seismic energy over depth from a surface measure-
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ment.
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Finally, equation 3.25 for estimating the generated energy can be completed by means of
effective depth h:

ER =
1

pR
4πr cρ

∫ ∞
0

(
hxv̂

2
x + hyv̂

2
y + hz v̂

2
z

)
e2αr df, (3.37)

while hx = hy.
We will now test the derived theory on synthetic examples of wave propagation on a flat
domain.

Synthetic example for energy estimation

The previous sections presented the theory with which the source generated energy can be
estimated from a distant receiver measurement in a semi-infinite solid. In the following,
this theory will be validated numerically.
A homogeneous model is used with medium parameter cP = 2000m.s−1 ,cS = 1000m.s−1,
and ρ = 2000 kg.m−3. The source is a 7Hz Ricker wavelet pointing in vertical direction.
Synthetic seismograms are calculated up to a maximal source-receiver distance of 2000m on
a model without and with intrinsic attenuation. Attenuation parameters in the latter are
set to QP = 80 and QS = 50. This results in a Rayleigh quality factor of QR = 51.4, which
was calculated numerically using Computer Programs in Seismology (Herrmann, 2013).
The radiated energy is calculated using equation 3.37 without and with the exponential
term for attenuation. Rayleigh effective depth is hx = 0.083λ and hz = 0.548λ (see Figure
3.19), while Rayleigh wave partition factor is pR = 0.6427 (see Figure 3.18).
Figure 3.21 shows the estimated energy normalized by the true energy ESource radiated from
the source. Appendix 3.4.2 explains how we calculate the source energy ESource generated
by a point force.
Thanks to the derived spectral effective penetration depth and the Rayleigh partition
factor, we are able to retrieve the original source energy. The estimation is flawed at
short distances up to around 600m offset. This is possibly due to interferences with body
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Figure 3.21 – Source generated energy estimated along offset. Energy estimation on a model without (left) and
with (right) intrinsic attenuation. Up to an offset of around 600 m the estimation is flawed possibly due to the
interferences with body waves. As the theory assumes measured surface waves, the energy estimation is flawed
at short offsets.

waves which are not considered in the equation. Body waves have a dominant wavelength
of almost 300m (2000m.s−1 ÷ 7Hz), meaning that the influence persist up to distances
of around 2 wavelengths from the source. A slight overestimation is observed at longer
distances. This might originate from rounding errors and is not further investigated here.
Assuming that the medium parameters are known, equation 3.37 can be used to efficiently
calculate the source energy without knowledge on the source frequency. Keep in mind that
the formula is only valid for vertical sources. Horizontal sources cause radiation patterns
which are not radial symmetric. This, as well as the the strong presence of SH-waves (see
Figure 3.18) are not considered in the derivation above.
In the next section we investigate the consequences when changing from a homogeneous
to a heterogeneous medium.

3.3.3 Estimation of source generated energy on heterogeneous media

In the previous section we derived a formula to estimate the energy generated by a source
on a homogeneous medium. For a heterogeneous medium, this formula becomes invalid,
in particular due to the contribution of different wave types to the measurement such as
higher modes and body waves. The implied complexities are studied hereafter on the ex-
ample of the Lesage velocity model.
From the seismograms shown in Figure 3.16, we can see that in contrast to a homogeneous
model, wave propagation on the Lesage model leads to the appearance of the 1st mode
Rayleigh waves as well as a higher proportion of body waves measured at the surface. A
zoom of seismograms at source-receiver offsets between 500m and 800m is presented in
Figure 3.22 which illustrates the contribution of the different Rayleigh wave modes.
The energy decay of the different wave field components is illustrated in Figure 3.23 as a
function of offset r for radial and vertical components. The curves are multiplied by offset
r to compensate for geometrical spreading of surface waves.
It is visible that at small offsets the energy of the entire signal is dominated by fundamental
mode surface waves. While the contribution of fundamental Rayleigh waves decreases with
offset, the 1st mode Rayleigh waves seem to gain importance. The relative contributions
are illustrated in Figure 3.24.
We can observe that the contributions are changing as a function of distance. While the
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Figure 3.22 – Synthetic seismograms from the Lesage velocity model. Radial (left) and vertical (righ) compo-
nents of ground velocity recorded along the surface of a flat model with Lesage velocity profile. The total signal
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mode Rayleigh wave (R1, dashed green). Single modes were simulated using modal summation from Computer
Programs in Seismology (Herrmann, 2013).
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of Lesage velocity model for fundamental Rayleigh wave R0, first higher mode R1 and the total wave field. Energy
densityetot is calculated for radial (left) and vertical (right) ground velocity. Multiplication by offsetr compensates
for geometrical spreading of surface waves. Values are calculated in respect to the energy of the sourceESource.
The curve of the total wave field corresponds to the one shown in Figure 3.17.

0 500 1000 1500 2000 2500 3000
Offset r (m)

0.0

0.2

0.4

0.6

0.8

1.0

e t
ot

,i/
e t

ot
,a

ll

Radial component

R0 energy fraction
R1 energy fraction
Total minus R0 & R1

0 500 1000 1500 2000 2500 3000
Offset r (m)

Vertical component

R0 energy fraction
R1 energy fraction
Total minus R0 & R1

Figure 3.24 – Energy composition of the measured signal with distance. The relative energy density etot,i/etot,all
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contributions from fundamental mode R0 weakens, the first mode becomes more impor-
tant. This is due to different attenuation over distance: as the first mode is faster than
the fundamental mode (see the corresponding velocity dispersion curves in Figure 1.6)
attenuation factor α becomes smaller (see equation 3.4). Besides the contributions from
fundamental and first mode, we remark increasing residual energy with distance. This en-
ergy originates from body waves or superposition of higher modes and is attenuated even
less than the first mode Rayleigh wave.
As the main contribution within the studied offset range is mainly constituted from the
first two Rayleigh modes, we follow the approach of the previous section for integrating
their energy over time and space in order to retrieve the source energy. For this, the energy
measured at the surface has to be integrated in depth as a function of the energy-depth
distribution of each individual mode. The energy-depth functions are described by the
squared eigenfunctions. Figure 3.25 displays radial and vertical depth-functions of funda-
mental and first mode. The depth axis is normalized by wavelength λ. The values of three
different frequencies are plotted in order to evaluate the spectral variability.
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Figure 3.25 – Rayleigh wave eigenfunctions for the Lesage velocity model. Squared eigenfunctions for radial
(left) and vertical (right) component of Rayleigh fundamental mode R0 (top) and first higher mode R1 (bottom).
The functions are computed for the Lesage velocity profile (see 1.6) in respect to frequencies of 5 Hz, 10 Hz and
15 Hz. Annotations show the corresponding wavelength λ as well as penetration depth h. The depth axis is ex-
pressed in units of wavelengthλ.

It can be observed, that the energy is similarly distributed in depth for all frequencies
in case of the fundamental mode. This allows to define an effective depth heff which is

80



3.3 −Radiated seismic energy from a surface load

independent of the frequency, as done for the homogeneous medium above. Neglecting the
slight variations, we define hx,eff = 0.06 and hz,eff = 0.32. These values can be multiplied
by the wavelength to compute the true penetration depth of each frequency
Defining an effective depth is no longer possible for the first mode for which the energy is
differently distributed in depth dependent on the frequency. More concretely, the higher
the frequency, the more energy is in the subsurface in respect to the value at the surface.
Consequently, effective depth heff varies drastically. On the other hand, the true penetra-
tion depths show less relative variation than in case of the fundamental mode. Hence, we
decide to approximate a constant penetration depth of hx = 39m for the radial component
and hz = 14m for the vertical component, which are the rounded medians of the shown
frequencies. This way, we do not rely on a dispersive effective depth.
Besides the contribution of different wave types, we are confronted with dispersive surface
waves due to the velocity gradient in depth. Consequently, equation 3.37 has to be adapted
in terms of the dispersive velocity. For each mode i the radiated energy ER,i becomes:

ER,i = 4πr ρ

∫ ∞
0

cg,i hjiv̂
2
ji e2αir df, (3.38)

where cg,i = cg,i(f) is the dispersive group velocity and summation over all components j
is implicit. Attenuation factor αi is given by

αi =
fπ

Qicg,i
. (3.39)

Note that in case of propagating waves the spatial quality factor is usually determined and
attenuation factor αi is calculated using group velocity cg,i. However, it is also possible to
measure the temporal quality factor. Then, the phase velocity has to be used to determine
the attenuation factor (see e.g. Aki and Richards, 2002). Note also, that energy partition
factor pR was omitted as it is only valid for surface loads at the surface of a homogeneous
medium. For our numerical model, we know exactly the Rayleigh wave group velocities
cg,i as well as the quality factors Qi 1. We can hence compute ER,i relative to the source
energy ESource. This is shown in Figure 3.26 for radial and vertical component of each
mode as a function of offset.
The constant values in Figure 3.26 proof that we can exactly correct geometrical spreading
and attenuation for the dispersive Rayleigh waves. Also, we can observe their relative
contributions within the assumption regarding the constant penetration depth of first mode
Rayleigh waves. Interesting to see is that the vertical component of the fundamental
Rayleigh wave contains by far the most energy. This can be useful to know in order to
conduct a first order estimation of the source energy.
In general, the different wave types cannot be separated (in particular when considering
rockfall seismic signals due to the continuous source activity). Consequently, we have to
find an equation which can estimate the source energy based on a signal which contains
mixed wave types. For this, we will now test the impact of different assumptions. Namely,

1. In fact, quality factor Q is identical for all Rayleigh modes. Yet, it is dispersive as can be seen from
equation 3.45 in appendix 3.4.1. However, this can generally be neglected. For QS = 50 and QP = 80
Rayleigh quality factor QR ranges between 58.3 and 54.8 at frequencies between 3Hz and 20Hz. This was
computed numerically.
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Figure 3.26 – Radiated energy of Rayleigh fundamental and first mode. Estimation of energy composition ra-
diated by the source regarding radial and vertical component for fundamental mode (R0) and first mode (R1)
Rayleigh wave. The value is normalized by the total source energyESource.

it is assumed that the measured signal contains

1. only fundamental Rayleigh waves R0,

2. only 1st mode Rayleigh waves R1,

3. contribution from both R0 and R1 in proportions changing with offset r as found in
Figure 3.24.

Figure 3.27 shows the estimated normalized source energy ER/ESource under these assump-
tions as a function of offset.
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Assuming only fundamental mode Rayleigh waves we can see that the source energy is
underestimated at very short distances within 500m. The estimation increases steadily
with offset becomes overestimated at around 800m. At offsets larger than 1500m an expo-
nential growth starts which eventually leads to an exploding value. This can be explained
by the fact that the contribution of first mode Rayleigh waves as well as body waves in-
creases with offset. As this contribution is not considered, the exponential decay due to
attenuation is compensated assuming too big attenuation factors α (corresponding to the
relatively too small group velocity of fundamental mode Rayleigh waves). This leads to
the exponential growth of the estimation with offset.
Assuming only first mode Rayleigh waves, the source energy is strongly overestimated at
short offsets. This mainly originates from overestimating the group velocity at which the
energy is propagating. The overestimation of group velocity becomes successively balanced

82



3.3 −Radiated seismic energy from a surface load

by the underestimation of attenuation. Consequently, the energy estimation decreases with
offset. However, regarding the positive gradient of the curve we can expect a similar ex-
ponential growth as for the first assumption for offsets larger than the shown range.
Finally, under the third assumption, the source energy is well estimated for offsets up
to 2000m. A slight overestimation can be remarked, which is probably explained by the
contribution of body waves. This overestimation increases successively with offset as the
contribution of body waves is increasing (see Figure 3.24). Eventually, it leads to an ex-
ponential growth of the estimated energy from offsets larger than 2000m.
In conclusion, taking into account contribution from both Rayleigh fundamental and first
mode results in the best source energy estimation with constant values up to source-receiver
offsets of 2000m. However, the contribution of residual energy leads to an overestimation
of attenuation and consequently an exponential growth of the estimated energy.
In the literature, landslide seismic energy is typically estimated under the assumption of
a dominant frequency (e.g. Vilajosana et al., 2008; Hibert et al., 2011, 2014b; Levy et al.,
2015). This means, that the estimation is carried out neglecting the dispersive nature of
surface waves, thus assuming constant propagation speed cg,i and constant penetration
depth hji. The dispersion of quality factor Q is generally small (see discussion above) and
can be neglected. In the following we test the consequences of the non-dispersive assump-
tion by assuming different dominant frequencies. Figure 3.28 shows the estimated energy
based on a dominant frequency of 7Hz which corresponds to the true dominant frequency
of the Ricker source.
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Figure 3.28 – Non-dispersive
source energy estimation on
heterogeneous medium.
Estimation of normalized
radiated seismic energy
ER/ESource similar to Figure
3.27. Here the calculation
is performed under the
assumption of 7 Hz dominant
frequency, i.e. group ve-
locity cg,i = cg,i(7 Hz),
penetration depth
hji = hji(7 Hz), and quality
factorQi = Qi(7 Hz).

We can see that all assumptions lead to curves of estimated energy of similar shapes. To
understand the behavior of the functions with offset, we have to be aware that the veloc-
ity of waves with frequencies below the dominant frequency is underestimated while the
velocity of waves with higher frequencies is overestimated. Consequently, at short offsets,
where a lot of high frequency content is present, the estimated energy is overestimated.
The underestimation of propagation speed for low frequencies leads to the observable de-
cline of estimated energy. Eventually, the contribution of residual energy leads to a growth
of energy at large offsets. Comparing the different assumptions, we can notice that by
considering contribution from both R0 and R1 results in the curve of least curvature. This
means that this assumption is the most stable to estimate the source energy as a function
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of offset.
In the preceding test we were lucky enough to know exactly the dominant frequency of the
source. We will now analyze the consequences when underestimating or overestimating
the dominant frequency. Figure 3.29 shows the energy estimation assuming a dominant
frequency of 4Hz and 10Hz, respectively.
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Figure 3.29 – Non-dispersive source energy estimation with wrongly estimated dominant frequency. Estima-
tion of normalized radiated seismic energyER/ESource similar to Figure 3.28 for underestimated 4 Hz (left) and
overestimated 10 Hz (right) dominant frequency. The actual dominant frequency is 7 Hz.

The underestimation of the dominant frequency (4Hz, left in Figure 3.29) leads to over-
estimation of the estimated energy at short distances up to 500m due to the general
overestimation of propagation speeds. Subsequently, the too large propagation speed leads
to too small attenuation factors. Consequently, intrinsic attenuation is not compensated
entirely, leading to a sharp decline of estimated source energy. Overestimating the dom-
inant frequency (10Hz, right in Figure 3.29) results to the opposite behavior. As the
attenuation factor is overestimated, the estimated source energy grows exponentially. This
behavior is observed for all assumptions.
It is evident that fixing a dominant frequency can be very risky due to the under- or over-
estimation of properties of the propagating wave field. To improve the estimation we now
test the effect of fixing the propagation speed and the penetration depth, but keeping a
frequency dependent attenuation factor, that is:

αi(f) =
fπ

Qi(fdom) cg,i(fdom)
. (3.40)

We can see that quality factor Q and group velocity cg,i are now fixed to a dominant
frequency fdom, but attenuation factor α still varies with frequency f . As said before, the
dispersive character of quality factor Q can generally be neglected. Figure 3.30 shows the
resulting source energy estimation as function of offset for underestimated frequency 4Hz
and overestimated frequency 10Hz.
The frequency dependent attenuation factor as defined in equation 3.40 results in a more
stable energy estimations in comparison to the attenuation factor fixed to a dominant
frequency (see Figure 3.29). The general behavior of the curves is still similar, but the
gradients of the decay (in case of underestimation of the dominant frequency) and the
growth (in case of overestimation of the dominant frequency) of estimated energy are
weaker than for the fixed attenuation factor. The curves suggest that at short offsets it
is better to overestimate the dominant frequency (necessarily assuming the contribution
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Figure 3.30 – Source energy estimation with wrongly estimated dominant frequency but spectral attenuation
factor. Estimation of normalized radiated seismic energyER/ESource similar to Figure 3.28 for underestimated
4 Hz (left) and overestimated 10 Hz (right) dominant frequency. Here, a frequency dependent attenuation factor
as defined in equation 3.40 is taken into account. The actual dominant frequency is 7 Hz.

of fundamental Rayleigh waves as they dominate the signal at short offsets). In contrast,
at larger offsets it is safer to underestimate the dominant frequency in order to avoid the
correction with too large attenuation factors.
In conclusion, as we exactly know the medium parameters of the synthetic model, we
are able to back-calculate reasonably well the source energy within receiver distances of
2000m (see Figure 3.27). However, in practice the subsurface properties are in general
poorly known. For this reason, assumptions on the involved propagations speeds and
penetration depths have to be made. Assuming a single dominant frequency can lead to
very wrong energy estimations as could be seen in Figure 3.29. A slightly more stable
energy estimation can be achieved by keeping a frequency dependent attenuation factor
as defined in equation 3.40. The frequency dependent attenuation factor can easily be
taking into account by the integration in the frequency domain instead of integrating the
measured ground velocity in the time domain.
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3.4 Appendices

3.4.1 Velocity dispersion due to intrinsic attenuation

Intrinsic attenuation causes velocity dispersion which can be described as follows (Liu
et al., 1976):

ci
ci,0

= 1 +
1

πQi,0
ln

(
f

f0

)
, (3.41)

where c denotes the wave propagation velocity, Q the quality factor and f the frequency,
while index i = P, S is for P -waves and S-waves, respectively, and index 0 for a refer-
ence system in which the quality factor is defined. In the following, the effect of this
velocity dispersion on the energy decay of Rayleigh waves in a homogeneous half-space is
investigated.

Effect of attenuation on Rayleigh wave phase velocity

The velocity dispersion in equation 3.41 is valid for P-waves and S-waves. Slepyan (2010)
shows that Rayleigh wave velocity cR can be approximated with S-wave velocity cS and ’s
ratios σ as

cR ≈ cS · (0.8740 + 0.2004σ − 0.07567σ2) (3.42)

For a typical Poisson’s ratio of 0.0 ≤ σ ≤ 0.5, the Rayleigh wave velocity ranges between
0.8740cS ≤ cR ≤ 0.9723cS . Due to the strong dependency on S-wave velocity, influence of
P-wave velocity dispersion on the Rayleigh wave velocity is neglected in the following.
Reformulating equation 3.41 and following the approach of Liu et al. (1976), the relative
velocity variation of S-waves due to attenuation is expressed as follows:

δcS
cS,0

=
cS − cS,0
cS,0

=
1

πQS,0
ln

(
f

f0

)
. (3.43)

The Rayleigh wave phase velocity is thus varying with

δcR =
∂cR
∂cS

δcS =
∂cR
∂cS

cS,0
πQS,0

ln

(
f

f0

)
. (3.44)

Anderson et al. (1965) relates quality factors of P-wave and S-wave with Rayleigh wave
quality factor QR (here for a half-space without stratification):

Q−1
R =

(
cP
cR

∂cR
∂cP

)
Q−1
P +

(
cS
cR

∂cR
∂cS

)
Q−1
S . (3.45)

We have already seen the strong dependency of Rayleigh wave velocity on S-wave velocity
which is why we approximate ∂cR/∂cP ≈ 0. With this approximation, equation 3.44 can
be rewritten as

δcR
cR

=
1

πQR,0
ln

(
f

f0

)
. (3.46)

Figure 3.31 shows the relative velocity variations in a frequency range from 0.1Hz to
50Hz caused by attenuation with quality factors QR,0 = 50 and QR,0 = 50 at a reference
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frequency f0 = 1Hz. We can observe a velocity correction of up to 2.5% for QR,0 = 50.

Figure 3.31 – Rayleigh wave dispersion due to attenuation. Rayleigh wave phase velocity variations due to atten-
uation with quality factorsQR,0 = 50 andQR,0 = 100 at a reference frequency f0 = 1 Hz.

3.4.2 Calculation of energy generated by a point force

In the SEM simulations we implement the seismic source by a point force. This means that
we know the magnitude of the force, but the magnitude of the generated seismic energy is
unknown as it depends on the medium properties.
In order to measure generated seismic energy, we record the ground velocity v at the source
position xS . Assuming that source force F is known, the source generated energy ES can
be computed by

ES(xS) =

∫ t1

t0

Fi(xS , t)vi(xS , t)d t, (3.47)

where times t0 and t1 correspond to the time window in which the source is active and
where we used the summation convention on repeated indices.
In order to validate equation 3.47, we conducted a test in which we measured the total
energy passing through a surface surrounding the source. For this we design a cylinder of
stations as illustrated in Figure 3.32.
Measuring particle velocity v and stress tensor σ at each position of the cylinder surface,
we can infer the total energy ER,tot radiated by the source into the medium (Madariaga,
2015):

ER,tot =

∫ t

0

∫
S
σij(x)vi(x, t)nj(x) dSdt, (3.48)

where ni is the outward normal to surface S and t is the time at which the total energy has
propagated across the surface. Stress σ is measured by σij = λεiiδij + 2µεij with strain ε
and Lame parameters λ and µ. Strain ε is related to the gradients of particle displacement
u by εij = (∂jui + ∂jui)/2.
With the help of the simulation we find

ES(xs) = ER,tot, (3.49)
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which means that the source energy calculated by equation 3.47 is indeed the totally
generated energy propagating in the medium.

Source

Figure 3.32 – Cylindrical sta-
tion arrangement around
source.
Blue dots represent the
stations which are arranged
on a cylindrical surface
(including the bottom)
surrounding the source.
The source is located at the
surface of the domain which
corresponds to z = 600.
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Chapter 4

Simulation of rockfall generated seismic signals and
the influence of surface topography

In this chapter the seismic wave propagation at Dolomieu crater is explored and topography
induced amplification is evaluated. After a purely numerical study, observed rockfall signals
from Dolomieu crater are analyzed and compared with simulations. The findings build the
basis for the rockfall localization method proposed in following Chapter 5. A second part
(section 4.8) is attached to this chapter, which picks up the previously derived theory
for the estimation of radiated energy and proposes to introduce a correction factor which
accounts for the influence of topography. Improvements of the energy estimation are shown
by preliminary results using an exemplary rockfall at Dolomieu crater.

4.1 Abstract

Rockfalls generate seismic waves which contain valuable information on their properties.
However, as they predominately occur in mountainous regions, the generated seismic waves
are prone to be affected by the strong surface topography. For this reason, the influence of
topography on ground motion and in particular surface wave propagation is investigated
using the spectral element method on a 3D domain with realistic surface topography of
Dolomieu crater at Piton de la Fournaise volcano, La Réunion. Amplification patterns are
presented in terms of Peak Ground Velocity (PGV) and total kinetic energy. Depending on
the receiver position, topography can (de-)amplify PGV values by factors up to 10, while
kinetic energy values can be affected by factors up to 20 relative to a reference model with
flat surface. Amplification factors are however strongly depend on the underlying velocity
model. Even though laterally smoothly varying velocity models are used without local
heterogeneities, amplification patterns differ strongly due to the changes of velocity with
depth. Further, the influence of topography resolution is studied. Considerable effects
are found on wavelengths which are up to 5 times bigger than the resolution. Analyzing
amplification as a function of crater geometry suggests that the variation of topography
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curvature affects the seismic wave propagation more than variation of the crater depth.
Spectral ratios of recorded signals generated by rockfalls at Dolomieu crater are computed
between different stations. It is demonstrated that these ratios taken within specific time
windows are characteristic of the corresponding source position. Comparison with simula-
tions suggests that ratios are dominated by the propagation along the topography rather
than by the polarization of the acting source.
Finally, the seismic signature of single impacts are studied. Comparison with simulations
help to associate signal pulses to impact sources. It is revealed that a single impact can
provoke complex waveforms of multiple peaks, especially when considering topography.
Impact forces derived from Hertz contact theory result in comparable magnitudes of real
and simulated signals amplitudes. It is emphasized that topography increases variability
of both waveforms and amplitudes in dependency of source position and its polarization.

4.2 Introduction

The interaction of the seismic wave field with complex surface geometries can locally mod-
ify the seismic ground motion. Anomalously strong shaking on hill tops, mountain ridges
or flanks causing severe structural damages at buildings (Lee et al., 1994; Hartzell et al.,
1994; Hough et al., 2010) or triggering earthquake-induced landslides (Meunier et al., 2008;
Harp et al., 2014) have been related to seismic amplification due to this topographic effect.
Data from field experiments support the assumption of amplified ground motion at the
mountain top relative to its base (Davis and West, 1973; Pedersen et al., 1994; Spudich
et al., 1996).
Numerous studies have tried to quantify numerically the topographic effect on seismic
waves generated by deep sources in order to better understand and predict site specific
ground motion. Geli et al. (1988) compiled previous results from experimental and theo-
retical studies with new results of more complex models (i.e. including subsurface layering
and neighboring ridges), trying to explain the underestimation of amplification factors in
previous numerical simulations. Besides confirming significant amplification at hill tops for
wavelengths comparable to the mountain width, they express the need of more complex,
three-dimensional models. Bouchon and Barker (1996), simulating the ground motion
after the 1994 Northridge, California, earthquake on a homogeneous model with three-
dimensional topography, point out that a small hill of less than 20-m high can amplify
ground acceleration by 30% to 40% for frequencies between 2Hz and 15Hz. Lee et al.
(2009a) model the seismic response of the mountainous region of Yangminshan, Taiwan,
using the 3D spectral element method and a detailed representation of the topography.
They find amplification in peak ground acceleration (PGA) as high as 100% relative to
a flat surface. Additionally, they report an increase of up to 200% in cumulative kinetic
energy as a result of increased duration of shaking due to complex reflection and scattering
processes of the seismic waves at the topography.
Yet, due to complex patterns of amplification and deamplification it is difficult to quan-
tify the effect of topography in a generic way. Maufroy et al. (2015) propose to use the
topography curvature, smoothed in dependency of the studied wavelength, as proxy for
amplification factors. They confirm correlation between the smoothed curvature and to-
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pographic amplification using a database of 200 earthquake ground-motion simulations.
Based on the NGA-West2 earthquake catalog (Ancheta et al., 2014), Rai et al. (2017)
show statistical biases of site residuals in the ground motion prediction equation (GMPE)
presented by Chiou and Youngs (2014) towards relative elevation and smoothed curvature
and suggest topographic modification factors dependent on signal frequency and relative
elevation. Besides these successful findings, some authors point out the complex coupling
between topography and the underlying soil structure which must not be neglected when
estimating topographic amplification (Assimaki and Jeong, 2013; Hailemikael et al., 2016;
Wang et al., 2018; Jeong et al., 2019).
All the studies mentioned above investigate topographic effects on a seismic wave field
of vertical incidence. Lee et al. (2009b) investigates the influence of the source depth on
ground motion amplification and demonstrates that amplification in a basin can be re-
duced when a mountain range is located in between the basin and a shallow source. This
suggests that surface topography can have a pronounced influence on the propagation of
surface waves as they are subject to an accumulated effect of scattering, diffraction, reflec-
tion and conversion. It is crucial to enhance understanding of these mechanisms for the
study of shallow seismic sources which have gained increasing attention with the emerging
field of environmental seismology (Larose et al., 2015). Several authors investigate numer-
ically the interaction of surface waves with 2D surface geometries such as corners, hills or
canyons (Fuyuku and Matsumoto, 1980; Weaver, 1982; Snieder, 1986; Sánchez-Sesma and
Campillo, 1993; Zhang et al., 2018b; Wang et al., 2018). Ma et al. (2007) demonstrate that
a topographic feature 10 times smaller than the wavelength can still considerably reduce
the amplitude of by-passing surface waves. Similar to Lee et al. (2009b), they simulate
on a 3D model of San Gabriel Mountains, Los Angeles, California, the shielding effects
of large-scale topography on fault-generated surface waves, finding amplification factors in
peak ground velocity (PGV) of up to +50% on the source-side of the mountain range and
up to -50% on the opposite site. Wang et al. (2015) model the influence of an uplifted
and a depressed topography on the wave field generated by a vertical point source at the
surface above a 2D homogeneous half space. Comparing amplitudes and frequency content
between source side and far source side they find that the depressed topography causes
stronger contrasts than the uplifted topography, especially for steeper slopes and at higher
frequencies.
The present study is focused on seismic waves generated by rockfalls at Dolomieu crater on
Piton de la Fournaise volcano, La Réunion. Seismic signals from rockfalls, or more gener-
ally from landslides, have been demonstrated to be of great usefulness in order to classify
and locate events as well as constrain flow dynamics and rheology (e.g. Vilajosana et al.,
2008; Deparis et al., 2008; Favreau et al., 2010; Hibert et al., 2011; Dammeier et al., 2011;
Moretti et al., 2012; Bottelin et al., 2014). However, as landslides predominantly occur in
areas of strong topographic relief, the measurements are prone to be strongly influenced
by topography variations which can lead to erroneous landslide estimates. For example,
in order to calculate landslide volumes, the generated seismic energy is estimated from
seismic recordings (Hibert et al., 2011). At the same time, energy estimations can vary
from station to station. We will show here that topography can partly explain relative
signal amplitudes between seismic stations.
In the following we will introduce the study site and present an exemplary rockfall event
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at Dolomieu crater by means of camera images and recorded seismic signals. Then, the
numerical model for the SEM simulations will be defined which entails a discussion on
the seismic velocity profile of Piton de la Fournaise. After setting up the Earth model,
the simulated wave propagation is studied on different velocity models. Using a reference
model with flat surface, topography induced amplification patterns regarding peak ground
velocity (PGV) and total kinetic energy are computed. By this, the influence of the under-
lying velocity model is shown. Additionally, amplification patterns from horizontal seismic
sources are discussed. As the resolution of topography on the numerical domains is lim-
ited, synthetic seismograms are compared on models with different topography resolutions.
Also, similar to authors of previous studies who try to quantify the effect of topography in
terms of its geometric parameters, as for example canyon width over canyon depth (Wang
et al., 2015) or frequency-scaled curvature (Maufroy et al., 2015), the influence of crater
depth and its curvature on ground motion is investigated.
Finally, real seismic signals generated by rockfalls at Dolomieu crater are analyzed. To
begin, simulated and observed spectral ratios between seismic stations are compared. The
ratios allow to investigate the spectral content of the signals independently of the rockfall
source. The aim is to find out, whether the spectral ratios are characteristic to the source
position, to its polarization or to path effects from the propagation along the topography.
Subsequently, we investigate the seismic signature of a rockfall impact. For this, an event
consisting of a single boulder is selected in order to be able to well separate between differ-
ent impacts. The synthetic waveforms from a model with flat surface and from the model
with topography are compared to characteristics of the real rockfall signals. In order to
compare signal amplitudes, impact forces are estimated based on Hertz contact theory.

4.3 Study site

The study site of the present work is located on Piton de la Fournaise volcano, La Réu-
nion (see Figure 4.1). Its summit is characterized by 340m deep Dolomieu crater which
collapsed in 2007 (e.g. Staudacher et al., 2009). Since then, due to instabilities of the
crater walls, high rates of rockfall events are observed within the crater (Hibert et al.,
2011, 2014b, 2017b; Durand et al., 2018; Derrien et al., 2019).
The high quantity of events together with a dense seismic network monitored by the Ob-
servatoire Volcanologique du Piton de La Fournaise (OVPF) provide excellent conditions
for the study of rockfalls. Using recorded seismic signals, past studies investigate the
link between rockfall activity and external forcings such as rain or seismicity, the spatio-
temporal evolution of rockfall occurrences as well as their volumes (Hibert et al., 2014a,
2017b; Durand et al., 2018). Additional to the seismic stations, three cameras positioned
on the crater rim are monitoring rockfall activity. This allows to correlate video images to
rockfall seismic signals.
As an example, Figure 4.2 shows images and seismic signals of a rockfall on the southern
crater wall on February 28, 2016. The presented event consists of a few boulders (clearly
detectable on the video are three boulders) which are moving from the top of the crater
wall towards its bottom within around 30 s. As we want to study in detail high frequency
rockfall signals (> 1Hz), events which contain a minimum number of involved boulders are
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Figure 4.1 – Map of La Réunion and Dolomieu crater. Left: The island of La Réunion located in the Indian Ocean,
built up by two volcanoes: dormant Piton des Neiges in the northwest and active Piton de la Fournaise in the
southeast. Right: The summit of Piton de la Fournaise with 340 m deep Dolomieu crater and smaller craters Bory
and Soufrière. Trajectories of three rockfalls which will be analyzed in the following are approximated by red
shaded zones. Seismic stations BON, BOR, DSO and SNE are marked by green triangles. Cameras CBOC, DOEC
and SFRC are marked by blue dots. Contour lines show elevation differences of 20 m.

of advantage as they imply a less complex seismic source which can be located with the
help of camera images. In contrast, rockfalls of multiple blocks or granular flows constitute
a spatially distributed source in which single impacts can hardly be identified.
The first movement for the shown rockfall can be detected in snapshot a). At that time, a
large signal amplitude is recorded on station DSO, which is located very close to the source
position. Subsequently, the rockfall travels through a small valley (see b) ) and accelerates
towards the position in c). The acceleration of the boulder results in strong impacts which
can be detected on both the signal and the spectrogram after time c) at all stations. A
time corresponding to snapshot d), the first boulder arrives at the crater bottom, whereas
a second boulder is half-way down. Again strong amplitudes are measured around time d),
probably corresponding to the second boulder. Around time e), the last movements of a
third block is visible. Afterwards, some hints of motion of smaller blocks detected. Signal
amplitudes are decaying correspondingly.
It can be observed that station DSO records very strong signals in the beginning, while
signal amplitudes increase slowly at the other stations. This is certainly related to the
changing source-receiver distance. Additionally, as shown hereafter, topography may in-
fluence the signal amplitudes depending on the source position in respect to the receiver
position. From the spectrograms we can see that the main frequency content is between
3Hz and 20Hz. Later we will discuss on the frequency content of single impacts using
Hertz contact theory. This suggests that the high frequency content is limited by the in-
verse of the impact time which is greatly dependent on the impact speed.
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Figure 4.2 – Rockfall at the southern wall of Dolomieu crater on February 28, 2016. For location see rockfall 1 in
Figure 4.1. Top: The left image shows the rockfall trajectory, reconstructed from differences between successive
camera images during the whole rockfall duration. To the right, 5 snapshots are shown taken at specific times
from camera SFRC. Circles mark a selection of rockfall positions, while the arrows indicate the direction of arrival.
Bottom: Vertical ground velocity recorded at stations BON, BOR, DSO and SNE with corresponding spectrogram
to the right (calculated using Stockwell transform). Vertical lines from a) to e) mark the times of camera snapshots
above.

4.4 SEM simulations

In order to study the effect of topography on rockfall seismic signals recorded at differ-
ent stations, seismic wave propagation is simulated based with the 3D Spectral Element
Method (SEM, e.g. Festa and Vilotte, 2005; Chaljub et al., 2007). The seismic source is
modeled using a Ricker wavelet with dominant frequency of 7Hz, implemented as point
force on the surface. This source covers the bandwidth between 2Hz and 20Hz which is
predominantly observed for the rockfalls at Dolomieu crater.

4.4.1 Mesh of the Earth model

Figure 4.3 shows a cross-section through the spectral-element mesh. The dimensions of
the domain measure x = 2100m, y = 1800m, and z = 600m. Absorbing boundaries
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4.4 − SEM simulations

(PMLs) of 160m thickness are added on the sides and on the bottom in order to simulate
an open domain. The elements are successively deformed in vertical direction in order to
accommodate the surface topography which is taken from a digital elevation model (DEM)
of 10m resolution. In the following we will first use a filtered topography with 30m corner
wavelength, implemented on a mesh with elements of 20m side length and afterwards
the unfiltered topography on a mesh with elements of 10m side length which corresponds
to the best available DEM. For the latter, in order to decrease computational costs, the
element size is increased from 10m to 30m at 150m below the surface as shown in Figure
4.3 (Zone of refinement). However, problems in the numerical method can arise when the
mesh refinement is distorted by small-scale topography variations. For this reason a low-
pass filtered topography is introduced as reference horizon (Buffer layer) at 100m below
the surface.

BON

BOR

DSO

N

cross-section

Buffer layer

Zone of
refinement

Bory

Dolomieu

PML

P
M

LP
M

L

Figure 4.3 – SEM mesh with topography of Piton de la Fournaise. Cross-section through Dolomieu crater of
model with topography resolution of 10 m. Perspective as seen from the East with Bory crater located in the back-
ground. The color map corresponds to the Lesage velocity model (see section 4.4.2). The buffer layer 100 m below
the surface dampens small-scale topography variations. The zone of refinement at 150 m below the surface con-
nects elements of 10 m and 30 m side length. Absorbing boundaries (PMLs) of 160 m thickness on the sides and
on the bottom of the domain are implemented so that topography and velocity model are smoothly continued
outwards.

4.4.2 Velocity model

Three different velocity models are implemented: (1) a homogeneous model, (2) a model
with shallow low S-wave velocity layer, and (3) a model with smoothly increasing velocity
as proposed by Lesage et al. (2018) for shallow volcano structures. The velocity-depth
profiles are illustrated on the left hand side of Figure 4.4 and summarized in Table 4.1.
The generic model by Lesage et al. (2018) is based upon measurements at multiple andesitic
and basaltic volcanoes. Wave speed c for P- and S-wave is expressed as follows:

ci(z) = ci0[(z + ai)
αi − aαii + 1], i = P, S, (4.1)
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where z is the depth below surface while αi and ai are fitting parameters as defined in
Table 4.1.
The velocity profiles are compared to the S-wave velocity model inverted from ambient
noise recordings at Piton de la Fournaise by Mordret et al. (2015). The shaded zone shown
in Figure 4.4 corresponds to depth-profiles extracted from the inverted 3D model in the
vicinity of Dolomieu crater. A good agreement is observed with the Lesage velocity profile.
The discrepancy in the first 100m can be associated to missing high frequency content in
the model of Mordret et al. (2015), who inverted frequencies below 2.5Hz.
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Figure 4.4 – Velocity profiles and dispersion curve measurement at Piton de la Fournaise Left: S- and P-wave
velocity for (1) homogeneous model (vS,1 and vP,1), (2) model with shallow S-wave velocity layer (vS,2 and vP,2), and
(3) Lesage velocity model (vS,3 and vP,3). The shaded zone (vS,Mo) is extracted from the inverted 3D S-wave model of
Mordret et al. (2015). Right: Theoretical dispersion curves of Lesage model for fundamental (R0) and first mode
(R1) Rayleigh wave velocity together with picked dispersion curves from antenna around BON. The errors are es-
timated from the uncertainty during dispersion curve picking.

In order to further validate the Lesage model for our study site, we compare Rayleigh
velocity dispersion curves from noise measurements at an antenna located around station
BON with theoretical values from the Lesage model (right hand side of Figure 4.4). Picks
from the antenna measurements are determined using the Modified Spatial Autocorrelation
(MSPAC) Toolbox (Köhler et al., 2007; Wathelet et al., 2008) as implemented in the
Geopsy software (www.geopsy.org). Theoretical dispersion curves are calculated from the
Lesage model using modal summation from Computer Programs in Seismology (Herrmann,
2013). The measured values are in good agreement with the fundamental Rayleigh velocity
dispersion curve. Due to minimum antenna aperture of 30m, coherent dispersion curves
could not be picked above 6Hz.
Despite missing measurements above 6Hz, the Lesage model is assumed to be the most
reasonable model for the shallow high frequency velocity structure of Piton de la Fournaise
volcano as it is based upon measurements at comparable volcanoes.
Implementation of the velocity model on the SEM mesh is realized so that it follows the
topography elevation. This means, in respect to the velocity profiles shown in Figure 4.4,
that 0m depth is imposed for each point at the surface of the domain. This is reasonable
as a main cause for velocity variation is the compaction of material with depth due to
increasing overburden pressure. The resulting model is visualized in Figure 4.3 for the case

96



4.4 − SEM simulations

of the Lesage velocity profile.
Rock density ρ as well as quality factors QP and QS for intrinsic attenuation of P- and S-
wave velocity, respectively, are chosen based on previous studies on Piton de la Fournaise
and similar volcanoes (Battaglia and Aki, 2003; O’Brien and Bean, 2009; Hibert et al.,
2011). All parameters are summarized in Table 4.1.

Table 4.1 – Model parameters for the SEM simulations. P- and S-wave velocity vP and vS , density ρ, and P- and
S-wave quality factorQP andQS for (1) homogeneous model, (2) model with shallow S-wave velocity layer, and
(3) Lesage velocity model.

Model vP vS ρ (kg.m−3) QP QS

1) homogeneous 2000m.s−1 1000m.s−1 2000 80 50

2) low vS layer 2000m.s−1

{
500m.s−1 (top 100m)

1000m.s−1 (below)
2000 80 50

3) Lesage


cP0 = 540m.s−1

αP = 0.315

aP = 10


cS0 = 320m.s−1

αS = 0.300

aS = 15

2000 80 50

4.4.3 Wave propagation from a vertical surface load

In the following the wave propagation along the topography is illustrated on different
velocity models. A vertical point source is placed on the southern crater wall, corresponding
approximately to the starting position of the rockfall shown in Figure 4.2. Simulations are
carried out on the domain with 20m elements and topography filtered at 30m corner
wavelength. A comparison to simulations on the high resolution topography is carried
out later. Figure 4.5 shows synthetic seismograms recorded on the surface along an array
crossing the source position, Dolomieu crater and station BON (see inset for location of the
array). Snapshots of the propagating seismic wave field on a cross-section along the array
are shown below. Note that all amplitudes correspond to vertical ground velocity. The
simulations were realized without intrinsic attenuation in order to enhance visibility of the
wave field over time. This caused reflections from the boundaries which we will ignore here.
Attenuation is implemented in the simulations for the analyses in the following sections.
For the simulation with the homogeneous domain (left column of Fig. 4.5), we can identify
in the first snapshot at time t = 0.8 s the P-wave traveling downwards as being the fastest
wave with propagation direction parallel to the the shown vertical ground velocity. At
time t = 1.6 s the original S-wave is visible on the bottom of the cross-section. The S-wave
can be identified as the direction of propagation is perpendicular to the vertical ground
velocity. Just above is a newly created S-wave (annotated as SR) which separated at the
bottom of the crater from the Rayleigh wave due to the convex topography. Yet, part
of the energy continues as Rayleigh wave along the topography towards the rim of the
crater. Also visible is a diffracted surface wave (annotated as Rd). It split from a wave
front traveling towards station BOR and took a curved path along the flank of the crater.
At time t = 2.0 s we can see this diffracted Rayleigh wave continuing outside the crater
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Figure 4.5 – Wave propagation from a vertical surface load on different velocity models. Synthetic seismograms
(top row) recorded at an array crossing the source, Dolomieu crater and station BON (see inset) for (1) homoge-
neous model (left), (2) model with shallow S-wave velocity layer (middle), and (3) Lesage velocity model (right).
Traces are normalized to themselves and show vertical ground velocity. Snapshots of the wave field on cross-
sections along the same array are shown below, corresponding to the times marked by red dashed lines. Intrinsic
attenuation was not applied in these models in order to enhance visibility of the propagation wave field. Reflec-
tions from the boundary on the left can be observed at later times. These vanish when introducing attenuation
as has been done for the analyses in the sections hereafter.

and arriving at station BON at different azimuth than the Rayleigh wave which traveled
diagonally across the crater and its rim (annotated as Rf). The energy of Rayleigh wave Rf
was partly reflected at the crater rim so that a new Rayleigh wave Rr is traveling backwards
through the crater. Up front (on the very right of the domain), a direct S-wave hits the
surface and is partly reflected and converted to build a straight P-wave front traveling
downwards at an oblique angle to the horizontal (annotated as SP).
Adding a low S-wave velocity layer (middle column in Fig. 4.5) drastically changes the
wave field due to reflections within this layer and the dispersive character of Rayleigh
waves. Looking at the synthetic seismograms we can observe in the first 2.5 s a wave
train of dispersive character overlaid by multiples (compare to Fig. 3.16 in Chapter 3).
Compared to the homogeneous model, it is of increased complexity and longer duration. At
around t = 2.6 s the waves hit the crater rim opposite to the source and are partly reflected
(marked by ellipse) just as in the homogeneous case. The snapshots at times t = 2.6 s and
t = 3.8 s show in contrast to the homogeneous case a much more scattered wave field of

98



4.5 − Influence of topography on simulated wave propagation

irregular amplitude patterns. Similar to Lee et al. (2009a) who find characteristic patterns
dependent on the resolution of the imposed topography, the characteristic length of these
patterns is likely to be related to the resolution of the topography and the flat element
surfaces of 20m side length.
In the case of Lesage velocity model (right column of Fig. 4.5) the majority of energy stays
close to the surface of the domain due to the velocity gradient. Scattering of the wave field
along the topography is even more elevated than in the case with low velocity layer and
the duration of shaking is prolonged. From synthetic seismograms (top right of Fig. 4.5)
we can still identify the outward propagation of energy as well as the reflection of part of
the energy at the crater rim (marked by ellipse).
Figure 4.6 compares the seismograms of the three different velocity models recorded at
station BON (their locations are indicated by a white lines in Fig. 4.5). It can be observed
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Figure 4.6 – Seismograms at stations
BON simulated on different velocity
models.
Comparison of seismograms simulated
on different velocity models recorded at
station BON (see Fig. 4.5 for location).
Complexity and duration of waveforms
as well as their amplitudes increase from
homogeneous model over low vS layer
model towards Lesage model.

that the smallest amplitudes are obtained in the case of the homogeneous model as a
big part of the energy is directed downwards into the subsurface. Amplitudes for the
Lesage model are the biggest since more energy stays close to the surface due to the
velocity gradient. The amplitudes for the model with low velocity layer are intermediate.
Furthermore, the complexity of the wave forms as well as their duration increases when
going from the homogeneous model over low vS layer model towards the Lesage model.
This is caused by increased scattering along the topography as already mentioned before
as well as the appearance of multiples and first mode Rayleigh waves (see Fig. 3.16 in
Chapter 3).

4.5 Influence of topography on simulated wave propagation

4.5.1 Amplification of peak ground velocity (PGV)

In order to quantify topographic ground motion amplification, simulations on a model
with topography are compared to a reference model with flat surface. For this, the ratio
between PGV values measured on both models at the same horizontal coordinates is cal-
culated. Figure 4.7 shows the peak ground velocity ratio PGVz,t/PGVz,f between model
with topography and flat reference model for the three velocity models.
The homogeneous model shows a contrast between source side of the crater and the op-
posite side. On the source side an amplification of PGV is present while the far side is
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Figure 4.7 – Topographic amplification of vertical PGV. PGV amplification in respect to a flat reference model for
the homogeneous model (left), the model with shallow low velocity layer (middle) and the Lesage velocity model
(right). The yellow star denotes the source, green triangles the stations. Annotations give ratios measured at the
station locations as well as percentage of topographic amplification. Neighboring contour lines differ 60 m in
elevation.

characterized by a strong deamplification. The amplification on the source side (+12% at
DSO) can be explained by the simultaneous arrival of surface and direct waves emitted
from the source. Deamplification on the far-side of the source (−83% at BON and −87% at
SNE)can be understood as shadow zone behind the crater as a major part of wave energy
is diverted downwards into the subsurface due to the crater shape.
In case of the model with low velocity layer, general amplification on the source side and
deamplification on the far-source side of the crater are still present but contrast are less
pronounced (deamplification at station DSO goes down to −67%) and patterns become
more complex (DSO is now deamplified by −19%). The introduction of a low velocity
layer causes more energy to stay at the surface and thus reduces the shadow zone behind
the crater. The uneven topography together with the underlying low velocity layer causes
complicated reflections and wave conversions which lead to increased complexity of ampli-
fication patterns.
The contrast between source side and far-source side of the crater decreases further for the
Lesage velocity model (−45% at DSO, −62% at BON and −35% at SNE). As could be seen
on the wave propagation snapshots in Figure 4.5, the gradient causes energy to stay close
to the surface. Whereas a lot of energy is lost downwards due to the crater topography in
the homogeneous model as well as in the low velocity layer model, the velocity gradient
in the Lesage model guides waves efficiently along the crater topography or back to the
surface which causes a more homogeneous amplification pattern. Scattering away from the
surface due to surface roughness as well as conversion from vertical to horizontal energy
leads to an overall deamplification in vertical PGV. Still, due to focusing mechanisms of
the 3D topography, ray-shaped zones starting off the source location can experience PGV
amplification.
The conversion from vertical to horizontal energy is illustrated in appendix 4.9.1. The
amplification patterns of horizontal PGV from a vertical source are shown in Figure 4.42
and 4.43 for north- and east-component of ground motion, respectively. Strong topo-
graphic amplification can be observed east-west from the source for the north-component
and north-south from the source for the east-component. This is due to the fact that a
vertical source does not generate energy on the transverse components. Topography can
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cause energy on the transverse component due to wave conversion or diffraction resulting
in the strong directionality of amplification.

4.5.2 Amplification of kinetic energy

Scattering and diffraction of the wave field along the topography increase the complexity
and the duration of recorded waveforms. This is not taken into account when measuring
PGV amplification. For this reason, we will measure amplification of kinetic energy over
the whole signal duration. This is done by time integration of the squared ground velocity
v2(x, t) = [v2

x(x, t) + v2
y(x, t) + v2

z(x, t)]
0.5, where x denotes the horizontal coordinates of

the receiver position. The resulting ratio Etopo/Eflat of total kinetic energy between model
with topography and flat reference model is shown in Figure 4.8 for the three different
velocity models.
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Figure 4.8 – Topographic amplification of total kinetic energy. Energy amplification in respect to a flat refer-
ence model for the homogeneous model (left), the model with shallow low velocity layer (middle) and the Lesage
velocity model (right). The yellow star denotes the source, green triangles the stations. Annotations give ratios
measured at the station locations as well as percentage of topographic amplification. Neighboring contour lines
differ 60 m in elevation.

The amplification patterns of kinetic energy show more contrast than the PGV ratios.
For the homogeneous model, amplification increases to +41% at DSO and decreases to
−92% at BON. Again, this is due to the fact that topography does not only influence peak
amplitude, but also complexity and duration of the signal. Similar to the homogeneous
model, amplification patterns on the two heterogeneous models show increased contrasts.
The ray-shaped zones of amplification on the Lesage model are more pronounced than for
the PGV ratios. This means, that topography guides both vertical and horizontal energy
along these paths. Remarkable as well is increased amplification at parts of the crater cliff
ridge which is possibly due to the discussed reflection of Rayleigh waves at these positions.
In order to verify that the amplification pattern differences between the velocity models do
not solely arise from changes in wavelength, amplification patterns in different frequency
bands are compared in appendix 4.9.2. Figure 4.44 and 4.45 show energy amplification in
three different frequency bands for the homogeneous model and the Lesage model. While
the amplified source side and deamplified far-source side remain for all frequency bands
on the homogeneous model, we can see complex amplification patterns for all frequency
bands on the Lesage model. If differences in amplification were only due to changes in
wavelength, we would expect similar patterns for the intermediate frequency band on
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homogeneous model (Rayleigh wavelength λ ≈ 1000m.s−1 ÷ 10Hz = 100m) and the low
frequency band on the Lesage model (Rayleigh wave length λ ≈ 580m.s−1÷5Hz ≈ 116m,
see dispersion curves in Fig. 4.4).

4.5.3 Horizontal sources

Up to now only vertical surface loads were considered. However, the basal forces generated
by rockfalls on the ground can also have horizontal components. Here we show amplifi-
cation patterns for horizontal sources on the Lesage velocity model. Figure 4.9 illustrates
vertical PGV amplification for a wave field generated by a horizontal surface force in east-
direction (left) and in north-direction (right).
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Figure 4.9 – PGV amplifica-
tion for horizontal source.
Vertical PGV amplifica-
tion for eastwards- and
northwards-directed source.
The star denotes the source
position and neighboring
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elevation.

A strong directionality is visible in the PGV amplification pattern. This is due to the
fact that in case of the flat reference model a horizontal source does not generate radial
or vertical seismic energy perpendicular to its polarization. Topography however can give
raise to radial or vertical energy in this direction by conversion from transverse energy or
due to diffracted waves paths.
Amplification of total kinetic energy is shown in Figure 4.10. The directionality patterns
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Figure 4.10 – Energy am-
plification for horizontal
source. Energy amplifi-
cation for eastwards- and
northwards-directed source.
The star denotes the source
position and neighboring
contour lines differ 60 m in
elevation.

are no longer visible as the total kinetic energy takes into account all components of the
measured ground velocity. It is remarkable that the amplification patterns are compara-
ble between the two different horizontal source directions as well as the vertical source
direction shown before in Figure 4.8. This suggests that topography guides seismic energy
on trajectories along the surface in dependency of the source position and only weakly
dependent on the source polarization.
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4.5.4 Topography resolution

In the following we investigate the influence of topography resolution on the simulated
wave propagation. Figure 4.11 compares synthetic seismograms obtained from a model
with flat surface, from a model with 20m topography resolution (low-pass filtered with
30m corner wavelength), and from a model with 10m topography resolution. Waveforms
recorded at the crater surrounding stations BON, BOR, DSO and SNE are shown.
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Figure 4.11 – Influence of topography resolution on synthetic waveforms. Comparison of synthetic seismograms
on model with flat surface, model with 20 m topography resolution and model with 10 m topography resolution.
Seismograms recorded at stations BON, BOR, DSO and SNE which are surrounding Dolomieu crater. The source
is located on the southwestern crater wall.

First of all we can observe that the amplitude diminishes on the models with topography
in respect to the simulations from the flat model. This was expected form the preceding
analyses. Further, topography causes waveforms of longer duration and of more complex
forms. For the flat model, wave packets corresponding to body waves, 1st mode Rayleigh
waves and fundamental mode Rayleigh waves are well separated (see Figure 3.16 in Chapter
3, where wave types for the Lesage model are analyzed). They become less distinguishable
when introducing topography. However, it is noticeable that the first part of the wave train
is almost identical for both models with topography. At later times, amplitudes are smaller
on the model with 10m topography resolution. This suggests, that mainly fundamental
Rayleigh waves are affected as well as 1st mode Rayleigh waves of higher frequencies which

103



Chapitre 4 − Simulation of rockfall generated seismic signals and the influence of surface topography

arrive later due to their lower velocity compared to low frequencies of the 1st mode. Body
waves may stay unaffected as they interact less with topography and the recording stations
are located at relatively flat planes. Figure 4.12 shows the spectra of the signals recorded at
station BON. Differences between the two models with topography become evident above
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Figure 4.12 – Synthetic crater
model. SEM mesh with synthetic
crater topography and imposed
surface roughness. The Lesage
velocity model is implemented to
follow the surface elevation.

around 5Hz. This corresponds to a minimum wavelength of 116m for the fundamental
Rayleigh wave (λ ≈ 580m.s−1 ÷ 5Hz ≈ 116m). Concluding that wavelength below 116m
are still sensitive to the change in topography resolution, it means that 1st mode Rayleigh
waves of above 7Hz are affected (λ ≈ 800m.s−1 ÷ 7Hz ≈ 114m). This analysis suggests
surface waves are sensitive to changes in topography resolution which are 5 times smaller
than their wavelength.
The decrease of the amplitude for higher resolved topography can be attributed to increased
scattering away from the surface. Interestingly, Lee et al. (2009a) finds the opposite when
comparing waveforms on different topography resolution for a source deep beneath the
surface. This implies that the source position plays a major role for the effect of topography.
On the one hand, topography can increase ground shaking and thus trap energy close to the
surface. On the other hand, in the case of waves traveling along the surface, the topography
can increase scattering and thus prevent energy to propagate. Similar conclusions are
drawn by Lee et al. (2009b) who investigate how topography effects are modulated by the
source depth in regards to ground motion in a basin located behind a mountain range.

4.5.5 Crater depth and curvature

In order to investigate the effect of topography curvature and crater depth on seismic
ground motion, we create a synthetic crater model. For this, we use the equation for crater
topographies proposed by Soontiens et al. (2013), suppressing the crater rim. Figure 4.13
shows a cross section through one of the created synthetic crater models. The underlying
medium corresponds to the Lesage velocity model.
A natural surface roughness is imposed in order to break the perfect symmetry of the crater
shape which leads to symmetric interferences of the propagating wave field (illustrated in
appendix 4.9.3 on the left hand side of Figure 4.46). The surface roughness is taken from
a real DEM and band-pass filtered at corner wavelengths of 40m and 100m (illustrated on
the right hand side of Figure 4.46). Figure 4.14 compares synthetic seismograms recorded
along arrays on the models with flat surface, with rough surface and with crater topography.
In comparison to the simulation on the flat surface, rough surface introduces scattering
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4.5 − Influence of topography on simulated wave propagation

Figure 4.13 – Synthetic
crater model. SEM
mesh with synthetic
crater topography
and imposed surface
roughness. The Lesage
velocity model is im-
plemented to follow
the surface elevation.
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Figure 4.14 – Synthetic seismograms on arrays along different surface topographies. Blue lines illustrate pro-
files of the surface topographies for the models with flat surface (left), rough surface (middle), and synthetic crater
shape (right). Seismograms of vertical ground velocity recorded at the corresponding horizontal positions are
shown below, normalized by themselves. Wave types on the flat model are identified as in Figure 3.16 of Chapter
3. The yellow star marks the position of the vertical source. Note that the spurious reverberations in case of the
flat surface model after the signal (> 6 s) are trimmed for the analyses hereafter.

of both Rayleigh modes. This leads to prolonged ground shaking. The two modes are no
longer clearly separated, even though the main energy from the fundamental mode can
be identified. Introducing the crater topography adds more complexity. The wave field
becomes distorted particularly close the crater walls. This is similar as for the real crater
topography before (see Fig. 4.5).
Before modifying crater depth and curvature in order to investigate their effect on topo-
graphic amplification, let us first have a look on amplification patterns due to the surface
roughness alone. Figure 4.15 compares total kinetic energy ratio Etopo/Eflat of model with
rough surface and model with flat surface for three different frequency bands. All frequency
bands are influenced by the surface roughness. We remember that the rough topography
is band pass filtered at corner wavelengths 40m and 100m. Fundamental Rayleigh wave-
lengths on the Lesage model are slightly above this range for the average of the lowest
frequency band (λ ≈ 580m.s−1÷ 5Hz = 116m) and slightly below this range for the aver-
age of the highest frequency band (λ ≈ 390m.s−1÷ 15Hz = 26m). We remark ray-shaped
zones of amplification which are blurred in the lower frequency band and become sharper
towards higher frequencies. The variation of topography seem to guide energy along this
ray paths. In contrast, some areas of pronounced topography variation (visible by the
densification of contour lines) seem to shield the propagation of energy and cause shadow
zone behind them. This can for example be observed in north-east direction of the source.
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Figure 4.15 – Energy amplification on rough surface in different frequency bands. Energy amplification in re-
spect to a flat reference model in frequency bands 3-7 Hz (left), 8-12 Hz (middle) and 13-17 Hz (right). Spectral ratios
at positions P1 and P2 are evaluated in Figure 4.20 and 4.21, respectively. The yellow star denotes the source.

The kinetic energy ratios between model with synthetic crater topography and flat refer-
ence model are presented in Figure 4.16. We can recognize amplification patterns caused by
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Figure 4.16 – Energy amplification on crater topography in different frequency bands. Energy amplification
in respect to a flat reference model in frequency bands 3-7 Hz (left), 8-12 Hz (middle) and 13-17 Hz (right). Spectral
ratios at positions P1 and P2 are evaluated in Figure 4.20 and 4.21, respectively. The yellow star denotes the source.

the surface roughness as seen before (compare with Fig. 4.15), superimposed with amplifi-
cation caused by the crater topography. Globally, the wave field is deamplified behind the
crater (as seen from the source position). Higher frequencies seem to be more affected by
this than lower frequencies. Nonetheless, paths of amplifications are traversing the crater.
The amplification opposite to the source might also be associated to waves which travel
on both sides around the crater and interfere opposite to the source (this effect is very
pronounced in the case without surface roughness as illustrated in Fig. 4.46 in appendix
4.9.3). This amplification across the crater is also visible in the simulations on the models
with real topography of Dolomieu crater (compare to Fig. 4.8 and 4.10).
We will now investigate the sensitivity of amplification on different crater depths and cur-
vatures. The crater parameters were chosen so that on the one hand crater depth varies
from small to big with fixed curvature and on the other hand curvature varies from weak to
strong with fixed crater depth. Natural surface roughness is imposed on all crater shapes
in order to break the perfect symmetry. Figure 4.17 gives an overview of all synthetic
crater topographies and compares them to a profile through Dolomieu crater.
To get a first impression on the influence of crater depth and crater curvature, amplification
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patters of the total kinetic energy are illustrated in Figures 4.18 and 4.19, respectively.
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Figure 4.18 – Energy amplification on crater topography for different depths. Ratios of total energy between
model with topography and reference model with flat surface for small, medium and big crater depth. Contour
lines mark elevation differences of 50 m. Spectral ratios at positions P1 and P2 are evaluated in Figure 4.20 and
4.21, respectively. The yellow star denotes the source. Note that spurious blue dots inside the crater (especially at
steep flanks in case of big depth) were caused by numerical measurement problems at these positions.

Comparing amplification patterns from varying crater depth and curvature, it seems that
the curvature has a stronger influence on the ground motion. Going from small depth to
big depth in Figure 4.18, the amplification pattern just varies slightly. The biggest change
is observed behind the crater directly opposite to the source (at position P2). Amplifica-
tion is decrasing at this point with increasing crater depth. In contrast, inside the crater
an increase of amplification can be detected. This changes of amplification patterns might
be related to interferences caused by the symmetric crater form. On the other hand, going
from weak to strong curvature the shadow zone behind the crater is strongly increasing.
This is not only true directly opposite to the source position but also in north-west and
north-east direction.
It is expected that the influence of the crater geometry differs for different wavelength of
the propagating seismic wave. In order to evaluate this, spectral ratios of the simulated
seismograms are calculated in respect to a flat reference model at positions P1 and P2
(see Figure 4.15 and 4.16 for exact locations). The positions are located behind the crater
on the other side of the source. Position P1 was chosen to not only have a measurement
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Figure 4.19 – Energy amplification on crater topography for different curvatures. Ratios of total energy between
model with topography and reference model with flat surface for weak, medium and strong crater curvature.
Contour lines mark elevation differences of 50 m. Spectral ratios at positions P1 and P2 are evaluated in Figure
4.20 and 4.21, respectively. The yellow star denotes the source. Note that spurious blue dots inside the crater
(especially at steep flanks in case of strong curvature) were caused by numerical measurement problems at these
positions.

point directly opposite to the source where we have seen increased amplification due to the
round crater symmetry. In practice we measure the mean spectral ratio of 5 measurement
positions located in a square with 30m spacing to the central point. This way we can also
evaluate the spatial variation of amplification.
The obtained spectral ratios from all crater shapes are shown in Figure 4.20 and 4.21 for
position P1 and P2, respectively. The ratio between rough surface and flat surface is ad-
ditionally plotted for comparison.
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Figure 4.20 – Spectral ratios at position P1 for different surface topographies. Spectral ratios of synthetic seis-
mograms at position P1 for the model with rough surface and models with varying crater depth (left) and varying
crater curvature (right) in respect to a flat reference model. The solid curve corresponds to the mean of 5 ratios
measured at positions on a square with 30 m spacing from the central point. The shaded area represents their
standard deviation.

At both positions P1 and P2, the spectral ratio from the rough surface is minimal for in-
termediate frequencies. A possible explanation for this is that the intermediate frequency
range corresponds to fundamental Rayleigh wavelengths which are comparable to the wave-
lengths of the roughness (between 40m and 100m as already discussed before). Shorter
and longer wavelengths may interact less with the topography variations, thus are less
scattered and continue to propagate more easily. However, these interpretations have to
be used very carefully as amplification patterns vary strongly spatially.
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Figure 4.21 – Spectral ratios at position P2 for different surface topographies. Spectral ratios of synthetic seis-
mograms at position P2 for the model with rough surface and models with varying crater depth (left) and varying
crater curvature (right) in respect to a flat reference model. The solid curve corresponds to the mean of 5 ratios
measured at positions on a square with 30 m spacing from the central point. The shaded area represents their
standard deviation.

All different crater shapes cause deamplification at position P1 across the whole frequency
range (see Fig. 4.20). Variation of the crater depth (left) does not show major effects. It
is interesting to note however that the smaller crater depth partially cause higher deam-
plification. On the other hand, when varying the crater curvature (right) influences in the
high frequencies range above 10Hz appear. The crater with strongest curvature causes
more deamplification in this frequency range.
A different picture is presented when analyzing position P2 (see Fig. 4.21). The spectral
ratios from the crater models are no longer flat across the whole frequency range but in-
crease towards higher frequencies. This has to be associated to the observed amplification
behind the crater opposite to the source. Varying the crater depth does not strongly in-
fluence the results except for frequencies from 5Hz to 8Hz where the small crater depth
causes far less deamplification. In turn, varying the curvature have stronger effects. Spec-
tral ratios for the three different curvatures differ clearly above 5Hz. As a result, the
strongest curvature causes the strongest deamplification while the weakest curvature even
causes slight amplification for very high frequencies.
All in all, variation of curvature seem to have stronger effects on ground motion amplifi-
cation than variation of crater depth. Nonetheless, all crater models influence the whole
frequency range which was studied.

4.6 Seismic signals from rockfalls at Dolomieu crater

We will now study observed seismic signals generated by rockfalls at Dolomieu crater. As
the influence of the topography changes with the source position, we analyze the signals
at specific times corresponding to specific rockfall positions. First we will investigate spec-
tral ratios of time windowed rockfall signals between different measurement positions. We
investigate as to whether if simulations can reproduce the observed spectral ratios when
taking into account topography. Subsequently we will focus on a single block impact, iden-
tifying its seismic signature and comparing signal amplitudes by estimating the generated
impact force using Hertz contact theory.
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4.6.1 Observed Spectral ratios between stations

Three rockfalls at the southern crater wall (rockfall location 1 in Fig. 4.1) with similar
trajectories are chosen for analysis. Trajectories of the rockfalls were identified from camera
recordings. Snapshots of the three events are shown in Figure 4.22 together with an image
of the whole trajectory reconstructed from differences of successive snapshots. Below,
the corresponding seismic signals recorded at the 4 stations surrounding the crater are
presented.
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Figure 4.22 – Three similar rockfalls on the southern wall of Dolomieu crater. The events correspond to rockfall
location 1 in Figure 4.1, occurring on 1) February 28, 2016 at around 11:47 (left), 2) February 28, 2016 at around
12:46 (middle), and 3) February 18, 2016 at around 12:27 (right). Panel a) shows the total trajectory of each event
(seen from camera SFRC). The approximate starting positions are located at top of the small valley, indicated by
white arrows. Panel b) shows snapshots (seen from camera SFRC) at a chosen time for which all three rockfalls
are at comparable positions. Panel c) presents the rockfall seismic signals, on which the red dotted lines mark the
time of the snapshots. Time windows R1, R2, and R3 (blue shaded zones) are defined±4 s around these times.
The corresponding location of these time windows are also indicated as blue shaded zones on the trajectories.
Same holds for reference time window C1 (magenta shaded zone), which corresponds to the beginning of event
1). Noise time window N is taken from recordings before event 1).

Station DSO shows the strongest amplitudes, especially in the beginning of the rockfall.
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This is due to the fact that the three rockfalls are starting very close to the location of
this station. BON contains the smallest amplitudes, being the furthest station and on
the opposite side of the crater. The dynamics of the three events is not entirely identical.
Event 1) consists of a single boulder bouncing down towards the bottom of the crater while
some more blocks are following with a time lag of around 15 s. In contrast, event 2) has
two blocks moving down closely following each other with a time lag of only 4 s as can be
seen on snapshot 2b). Event 3) consists of a main boulder (corresponding to trajectory 3a
on the right) with a smaller block following much later with a lag of about 50 s.
Despite these differences in the rockfall dynamics, we compare spectral ratios between
stations for the time when the main blocks are passing the same position, corresponding to
windows R1, R2 and R3 around the time of the shown snapshots. The spectral ratios are
computed from the measurements at stations BOR, DSO (only vertical component) and
SNE with respect to station BON. In order to avoid spurious fluctuations, the spectra are
smoothed using the smoothing function proposed by Konno and Ohmachi (1998) before
calculating the ratios. The obtained curves are shown as dark blue lines (TW-R1, -R2,
-R3) in Figure 4.23 for the vertical component and in Figures 4.24 and 4.25 for north- and
east-component, respectively.
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Figure 4.23 – Spectral ratios from rockfall seismic signals of vertical component. Spectral ratios on the vertical
component for BOR, DSO and SNE in respect to BON. Time windows TW-R1, -R2, and -R3 correspond to rockfalls
1), 2), and 3) as defined in Figure 4.22. Time windows TW-N and TW-C1 correspond to noise recordings and be-
ginning of rockfall 1), respectively. Time window TW-C2 is taken from a rockfall on the southwestern crater wall
(location 2 in Fig. 4.1).

It is visible that the spectral ratios behave similarly for each of the events and for each
component. Only low frequency values on the east-component (Fig. 4.25) deviate stronger
from each other. In order to verify that the spectral values are indeed characteristic to
the rockfall signals at the chosen positions, the curves are compared to ratios from noise
recordings (TW-N), ratios from beginning of event 1) (TW-C1), and ratios from rockfall
occurring at a different position in the crater (TW-C2, rockfall position 2 in Figure 4.1).
The ratios from noise recordings and from the rockfall at different location show strong
deviations from curves R1, R2 and R3. Curve C1 from the beginning of event 1) is quite
similar on some station components (e.g. for north-component of ratio BOR/BON in
Fig. 4.24) but deviates strongly on other components (e.g. vertical component of ratio
DSO/BON in Fig. 4.23).
The findings suggest that the spectral ratios are characteristic for the position of the
rockfall seismic source. The source-receiver distance is one factor which leads to this
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Figure 4.24 – Spectral ratios
from rockfall seismic signals of
north component.
Spectral ratios on the north
component for BOR and SNE in
respect to BON. Time windows
from rockfall signals are defined
as in Figure 4.23.
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Figure 4.25 – Spectral ratios
from rockfall seismic signals of
east component.
Spectral ratios on the east
component for BOR and SNE in
respect to BON. Time windows
from rockfall signals are defined
as in Figure 4.23.

result. Hereafter we will investigate as to whether the source-receiver distance alone can
explain the spectral ratios or if they are better reproduced when topography is accounted
for the simulations. Further, different radiation patterns are produced when changing the
direction of the source. For this reason we additionally study the influence of the source
direction on the spectral ratios.

4.6.2 Comparison of observed and simulated spectral ratios

The seismic source of a rockfall can be very complex as multiple impacts of different magni-
tude can occur simultaneously at different positions. Hence, it is very difficult to correctly
simulate the rockfall seismic signal, especially at high frequencies. For this reason, spectral
ratios between stations are very convenient in order to compare real and synthetic signals.
By this, the signature of the source is removed from the signal and solely propagation path
effects are left. However, different source polarizations cause different radiation patterns.
This is illustrated on the left hand side of Figure 4.26 on a model with flat surface. If
the radiation pattern is not radial symmetric, which in only the case for vertical ground
motion from a vertical source, the spectral ratios are affected depending on the azimuthal
position of the respective receivers.
The direction of a rockfall seismic source depends on the rockfall dynamics and on the un-
derlying slope. Generated forces in case of an impact are schematically illustrated on the
right hand side of Figure 4.26. Depending on the slope angle, the direction of movement
and the friction between the moving mass and the ground, the resulting force is composed
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Figure 4.26 – Seismic radiation patterns and forces from rockfall impact. Left: Seismic radiation patterns from a
vertical source (top) and from a horizontal force (bottom) for ground velocity in vertical-, north-, and east-direction.
Right: Forces generated by a rockfall impact. The red dotted line illustrates the trajectory of a bouncing boulder.
The impact generates force Fn normal to the slope. Depending on the boulder velocity tangential to the slope
and of the friction coefficientµ, a tangential forceFt = µFn is generated (assuming Coulomb friction). Normal
and tangential force add up to resulting forceFr .

of a force normal and a force tangential to the slope. Neglecting mass movements per-
pendicular to the slope of steepest descent, the direction of the horizontal component of
the resulting force is determined by the orientation of the slope. In order to analyze the
influence of the source direction on the spectral ratios, we compare a vertical force to a
normal force and a tangential force. Note that the vertical force direction is in between the
normal and the tangential force direction and might perhaps be similar to the direction of
the resulting force.
To calculate the spectral ratios, 7 source positions are picked from a grid of 10m spacing.
The chosen source positions can be seen in Figure 4.27. As the rockfalls are moving during
the 8 s time windows, it is more reasonable to assume a distributed source. Furthermore,
choosing several sources allows to evaluate the sensitivity of the curves on the source po-
sitions. The positions correspond to the area in which rockfalls 1), 2), and 3) are present
during time windows R1, R2, and R3, respectively (see Fig. 4.22).
Figure 4.28 compares spectral ratios from the vertical component of the rockfall signal as
seen before with the ones from simulated seismograms on models with flat surface and with
the Dolomieu topography. Synthetic seismograms are obtained assuming either a vertical
force, a force normal to the slope or a force tangential to the slope in direction of the
steepest descent. The source on the flat model is varied accordingly (i.e. with the same
angles to vertical, north and east). The shown spectral ratios are the mean value from all
picked source positions. The shaded zone indicates their standard deviation.
Some behaviors of the curves can be attributed to the relative source-receiver distances and
are reproduced from both models. This can most clearly be seen from ratios DSO/BON
which are of high value as the source is much closer to station DSO. The values increase
towards higher frequencies. This is related to the attenuating properties of the medium
which causes the amplitudes of higher frequencies to decrease faster with traveled distance
than lower frequencies.
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Figure 4.27 – Picked source positions for
simulated spectral ratios. A total of 7
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the evaluation of spectral ratios from syn-
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Influences from radiation patterns can be detected on the flat model, especially for ra-
tio BOR/BON. Ratios from the tangential force are much smaller than from the other
sources. As the slope is dipping northwards, the direction of the tangential force is in
north-direction. Station BOR is located east of the source position which is transverse to
the source direction. For this reason, a smaller signal amplitude is measured at station
BOR in comparison with station BON (ratio < 1), even though BOR is slightly closer to
the source. These effects from the radiation patterns cannot be identified for the model
with topography. This indicates that effects from the propagation along the topography
dominate over effects from the source polarization. We will come back to this point again
later in the discussion.
Apart from that, larger fluctuations around the mean are detectable for the simulations on
the model with topography. We remember that the fluctuations are caused by the different
source positions. For both models, changes of the source position affect the source-receiver
distance as well as the direction of the source which is defined by the local gradient of
the topography (and also applied to the simulations on the flat model). Thus, the larger
fluctuations on the topography must arise from variations of the propagation path.
All in all, ratios from the simulations seem to be smaller than the real values except for
ratio BOR/BON on the model with topography. In particular the SNE/BON seems to be
strongly amplified. Similar observations are drawn from the ratios of the the horizontal
components. These are shown in Figure 4.47 and 4.48 of appendix 4.9.4 for north- and
east-component, respectively. The deviation between observations and simulations might
be caused by local structures in the subsurface which are not accounted for in the simu-
lations. In the following we estimate local site effects at the stations using signals from
volcano-tectonic events. Afterwards we will remove these site effects from the signals in
order to allow a better comparison with the simulations.

Estimation of site effects caused by local subsurface structures

Site effects are estimated from seismic signals of 36 volcano-tectonic (VT) events which are
located around 2 km below Dolomieu crater (see 1.8 in Chapter 1). As spectral ratios of
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Figure 4.28 – Observed and simulated spectral ratios of vertical component. Vertical spectral ratios for BOR,
DSO and SNE in respect to BON. Blue lines (TW-R1, -R2, -R3) correspond to observed rockfall signals as shown
before in Fig. 4.23. Spectral ratios from synthetic seismograms are shown for a vertical force, a force normal to
the slope and a force tangential to the slope on the model with flat surface (flat) and with topography (topo).

rockfall signals are analyzed in respect to station BON, we choose this station as reference
for the site effect estimation. Also, based on H/V ratios of noise recordings and observed
spectra of VT signals, BON has been qualified in Chapter 1 as an adequate reference sta-
tion. The spectral ratios are computed from FFT spectra after applying the smoothing
function proposed by Konno and Ohmachi (1998) in order to avoid spurious fluctuations.
Figure 4.29 shows the mean spectral amplification calculated from all events together with
its standard deviation. Spectral amplification on north- and east-component are presented
in Figure 4.30.
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No evidence of amplification is found for station BOR, except on its north-component
which is amplified by a factor of 2 for frequencies above 5Hz. Single-component station
DSO seems to be amplified on its vertical component with a peak around 9Hz. Strongest
amplification is experienced by station SNE with factors up to 7 on its horizontal compo-
nents.
Based on the disussion in section 1.3.2 of Chapter 1, where site effects from a vertically
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Figure 4.30 – Site effects on horizontal components. Spectral amplification factor in respect to reference BON for
ground velocity in north-direction (left) and east-direction (right). Blue shaded zone indicates standard deviation
of the amplification distribution from all VTs.

incident plane wave were evaluated, we can assume that topography does not have a major
effect on the estimated geological site effects from VT signals. In other words this means,
that the here presented amplification curves are caused by local subsurface structure alone.
As the simulations for the rockfall signals does not consider local subsurface structures, we
want to use the just revealed site effect information in order to enhance the comparison to
the real rockfall signals. However, it is not evident that the site effects estimated from the
VT events are similar to site effects on the rockfall signals which mainly involve surface
waves due to the source position. For a proper correction of amplified rockfall signals, site
effects have to be simulated for a surface source on a model including local heterogeneities
in the ground. However, this goes beyond the scope of the present work. In the following
we will assume that site effects are comparable for both deep sources and rockfall sources
and correct the observed rockfall seismic signals accordingly.

Comparison of spectral ratios after site effect deconvolution

To improve comparability between observations and simulations, site effects which are not
considered in the numerical model are removed from the recorded rockfall signals. This
is realized by deconvolution of the signals with the site effects estimated in the previous
section. Spectral ratios computed from the site corrected signals are compared to the
simulated ratios in Figures 4.31, 4.32, and 4.33 for vertical-, north-, and east-component,
respectively.
After removal of site amplification from the recorded seismic signals, spectral ratios be-
tween stations are better reproduced by the simulations.
The previously underestimated vertical spectral ratios DSO/BON and SNE/BON (see
Fig. 4.28) show now a good agreement between observations and simulations. The same
is true for the north-component of ratio BOR/BON (see Fig. 4.47 before and Fig. 4.32
after deconvolution). Most evident are the improvements of the horizontal spectral ratios
SNE/BON (compare Fig. 4.47 and 4.32 for north-component Fig. 4.48 and 4.33 for east-
component).
Comparing results from simulations on the model with flat surface and the model with
topography, spectral ratios of the latter show in general a better agreement with the ratios
from real events. Not only do the simulations on the topography allow more variability of
the ratios (observable by the wider shaded zone of uncertainty around the mean due to
changes in the source position), but also ratios are less affected by the source direction.
This is clearly illustrated on ratio BOR/BON for the north-component (Fig. 4.32). As
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Figure 4.32 – Observed and
simulated spectral ratios of
north-component after site
effect deconvolution. Spectral
ratios for BOR and SNE in
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to observed rockfall signals
as shown before in Fig. 4.24.
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seismograms are shown for a
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flat surface (flat) and with
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station BOR is located almost perfectly east of the source position (see Fig. 4.27), almost
no signal from a vertical source is recorded on the north-component which is transverse to
the the direction of propagation from source to receiver. For this reason, the spectral ratio
BOR/BON is so small in case of the vertical force. However, after introducing topography,
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the spectral ratio BOR/BON behave similarly for all source directions. This means, that
the spectral ratios are in this case not dominated by the source characteristics but by the
propagation along the topography.
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Figure 4.33 – Observed and
simulated spectral ratios of
east-component after site
effect deconvolution. Vertical
spectral ratios for BOR and SNE
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This can be observed similarly for the east-component shown in Figure 4.33. While curves
from different source direction differ from each other in case of the flat model, they are
more similar for simulations on the model with topography.
Trying to identify topographic effects in the spectral ratios, we could argue that the min-
imum in ratio DSO/BON (Fig. 4.31) at around 10Hz can be explained by topography.
However, the spatial (i.e. picked source positions) and temporal (i.e. the chosen time win-
dows) uncertainty of the rockfall source make it difficult to pinpoint exactly topographic
effects in the spectral ratios. Nevertheless, we are confident that the station ratios are
influenced by topography. In Chapter 5 we will use the influence of the topography for
rockfall localization. The method is based on the principle to search for the source position
which best describes the observed inter-station ratios of observed signals.
In the final part of the present chapter we will focus on a single rockfall impact and try to
identify the characteristic of its seismic signal as well as compare signal amplitudes with
simulations based upon the Hertz contact theory.

4.6.3 Seismic signature of a rockfall impact

In the following we will have a detailed look at the seismic signal generated by single
impacts of a rockfall at Dolomieu crater. We will try to understand their characteristics
by comparison with synthetics simulated on models with and without topography. The
comparison between observed and simulated signal has to be carried out very carefully due
to the lack of precise source and subsurface information. It is important to emphasize that
we do not want to reproduce the recorded signal but rather understand some of its features

118



4.6 − Seismic signals from rockfalls at Dolomieu crater

as for example arrival times, waveform complexity and amplitudes.
For the analysis, a single boulder rockfall is preferably chosen with well separated impacts
which can be tracked on video. The most adequate event was found on January 22, 2017,
which took place on the northern crater wall. Figure 4.34 shows a camera snapshot of
the rockfall at time of impact N2, location of the impacts and the rockfall seismic signal
recorded on the vertical component at the closest station BON. Two boulder impacts, N1
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Figure 4.34 – Single boulder rockfall on January 22, 2017. Top left: Camera snapshot taken shortly after impact
N2. Estimated vertical distance between impacts N1 and N2 and estimated slope angle to the vertical at im-
pact positions. Bottom left: Location of impacts N1 and N2 in Dolomieu crater. Top right: Vertical ground velocity
recorded at closest station BON in frequency band 2-40 Hz. Red shaded area illustrates the time window of graph
below. Dashed lines mark impact times N1 and N2 estimated from video. Middle right: Comparison of frequency
bands 2-10 Hz, 10-20 Hz, and 20-40 Hz. Signals are normalized to their maximum. Red bar to the left indicates
relative amplitudes. Bottom right: Time-frequency representation of rockfall signal (calculated using the Stock-
well transform).

and N2, separated around 4 s from each other, are analyzed hereafter. A minor impact
n1 can be detected 1 s after impact N1. We will use it afterwards to estimate the vertical
velocity of the boulder.
Note that the impact time is estimated according to the appearance of small dust clouds
which are caused by the impacts. Thus, the precision of the impact time is affected by the
time delay between true impact and visibility of the dust cloud. The precision is further
limited by the sampling time of 0.5 s between successive snapshots.
The broadband seismic signal of the rockfall (top right of Figure 4.34) is characterized by
two main lobes. These two main lobes are separated by a gap of low seismic energy at
around 10:26:32. During this gap, no impact is detectable on the video. Thus, the boulder
is in free fall before hitting the ground at impact location N2. Afterwards, the rockfall
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splits into several blocks which continue to move downwards on the debris cone of former
rockfalls. At these later times it is very difficult to identify single impacts.
In order to be able to better distinguish single impacts, the seismic signal is filtered in
different frequency bands. The graph on the middle right of Figure 4.34 compares the sig-
nal band-pass filtered in ranges of 2-10Hz, 10-20Hz, and 20-40Hz. Note that the signals
are normalized. Their relative amplitudes can be inferred from the red bars plotted in the
beginning of the signal as well as from the spectrogram below.
The signal filtered in the low frequency band (2-10Hz) exhibits a smooth amplitude en-
velope. The two main lobes discussed before can be observed whereas no single pulses
can be identified. It contains the strongest amplitudes and thus dominates the broadband
signal. Short signal pulses emerge in the high frequency bands. It is evident that seismic
sources were already active before impact N1. Unfortunately, these could not be detected
on the video. Impacts are possibly hidden behind the clouds on the top of the crater wall.
A clear seismic pulse in the frequency range 10-20Hz can be associated to impact N1.
It arrives around 0.5 s after the time determined from the video. A second pulse around
one second later can be associated to impact n1. It is slightly smaller and seems to be
wider. The highest frequency band does not show clear corresponding signals to these two
impacts. This is different for impact N2. Both high frequency bands show abrupt signal
onsets around 1 s after detection time of impact N2 on the video. The following signal can
not be described as a single pulse but contains several peaks. This raises the question as
to whether the source is made of several impacts or if these peaks result from the seismic
wave propagation. Using synthetic seismograms generated by a point source, we will see
hereafter that a single impact can indeed cause such complex waveforms. This in turn
means that we cannot simply associate an individual impact to each seismic pulse detected
in the signal.
Another interesting observation concerns the impact generated frequencies. As we could
see, impact N1 is hardly detectable in the highest frequency range (20-40Hz), whereas
impact N2 produces clear signals in both high frequency bands (10-20Hz and 20-40Hz).
Arguing with the changing source-receiver distance, we would expect the contrary as N1 is
slightly closer to station BON than N2. If we assume that the properties of the boulder and
of the underlying ground are identical for both impacts, the change in frequency content
must be related to the impact velocity. According to Hertz contact theory, which we will
introduce hereafter, higher impact velocities are associated with shorter collision times,
according to Hertz contact theory. The inverse of the collision time constitute the upper
limit of the force spectrum. Hence, as the boulder is accelerating between impact N1 and
impact N2, the higher velocity at impact N2 should cause a shorter collision time and has
therefore a higher cut-off frequency.

Hertz contact theory

In order to predict relative amplitudes of signals generated by impacts N1 and N2, the
respective impact forces of the boulder on the ground are estimated. Farin et al. (2015)
use the theory of Hertz (1882) to describe the force of an elastic sphere impacting a solid
elastic surface. After successfully applying the theory on seismic signals generated during
laboratory experiments they analyze real-size rockfall experiments carried out by Dewez
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et al. (2010). Here we estimate the impact forces in similar fashion, assuming a spherical
boulder of radius R and mass m. As derived in section 2.2.2 in Chapter 2, the maximum
impact force F0 exerted by the sphere perpendicularly to the plane can be described as

F0 =
4

3
ER1/2 δ3/2

max, (4.2)

where δmax is the maximum indentation depth

δmax =

(
15mv2

n

16ER1/2

)2/5

, (4.3)

with impact speed vn normal to the slope. E is the effective Young’s modulus 1/E∗ =

(1−ν2
s )/Es+(1−ν2

p)/Ep, where νs, νp, Es, and Ep are Poisson’s ratio and Young’s modulus
of sphere and impacted plane, respectively.
First of all, the impact speed vn normal to the slope is estimated. For both impacts N1 and
N2 we assume a sub-vertical fall of the boulder before collision. In other words, the boulder
has a vertical speed of vc at the time of collision. Slope angles at the impact positions
are inferred from the DEM to be around α = 15 ◦. The normal impact speed can then
be calculated as vn = vc sinα. To estimate vc for N1 and N2, height differences between
the impacts are determined from the DEM using the impact positions estimated from the
video. As labeled in Figure 4.34, we find a height difference of around H1 = 15m between
N1 and n1, and a height difference of around H2 = 140m between N1 and N2. Impacts
N1 and n1 are detected 1 s apart from each other. Assuming an approximately constant
velocity during this short time window, the vertical speed for impact N1 is vc,1 = 15m/s.
For impact N2, acceleration during the long free fall cannot be neglected. The speed is
thus derived by vc,2 = vc,1 + (2g(H2 − H1))0.5, where g = 10m.s−2 is the gravitational
acceleration. Hence, a vertical speed vc,2 = 65m/s is found for impact N2. The so inferred
normal impact speeds are summarized in Table 4.2.
As only the dust clouds of the impacts and not the boulder itself is traceable on the video,
the boulder radius is roughly estimated to be R = 0.3m. This results in a boulder mass
of m = 225 kg, given a mass density ρ = 2000 kg.m−3 similar to the one used in the
simulations. Due to lack of more precise information, a typical effective Young’s modulus
of E = 10MPa is applied (Farin et al., 2015).
The maximum impact force F0 can now be calculated using equation 4.2. As presented in
Table 4.2, we find 83 kN and 485 kN for impact N1 and N2, respectively. These values will
be used hereafter to calibrate the seismic source in the numerical simulations.
Concerning the frequency content of the impacts, we have a look at the contact duration
of the impacts. Following Johnson (1987), the temporal evolution of the Hertzian impact
force FH can be approximated by

FH(t) ≈ F0 sin(πt/Tc)
3/2, 0 ≤ t ≤ Tc. (4.4)

The force-time function and its frequency spectrum are shown in Figure 4.35 as a function
of impact duration Tc.
We can observe an exponential decay of the spectral amplitude above corner frequency
fc = 1/Tc. Johnson (1987) showed, that the impact duration can be approximated by
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Figure 4.35 – Hertzian impact force and corresponding frequency spectrum. Left: Hertzian force-time function
FH normalized by maximum impact force F0 in dependency of impact duration Tc, which represents the time
during which the two bodies are in contact. Right: Frequency spectrum of the force-time function. The inverse
impact time 1/Tc is related to the corner frequency fc after which the spectral amplitude decays exponentially.

means of maximum indentation depth δmax and impact normal speed vn as

Tc ≈ 2.94
δmax

vn
. (4.5)

Applied to N1 and N2, the impact durations are estimated to be 0.038 s and 0.029 s,
respectively. It then follows, using the relation fc = 1/Tc, that the high frequency content
of the impacts are limited by corner frequency 26Hz and 35Hz, respectively. Table 4.2
gives an overview over all impact parameters.

Table 4.2 – Impact parameters. For impact N1 and N2: vertical impact speed vc, angle α between slope and
vertical, impact speed vn normal to the slope, maximum indentation depth δmax, contact time Tc, and corner
frequency fc.

vc α vn δmax F0 Tc fc

N1 15m.s−1 15 ◦ 4m.s−1 0.05m 84 kN 0.038 s 26Hz
N2 65m.s−1 15 ◦ 17m.s−1 0.16m 485 kN 0.029 s 35Hz

As a result, Hertz contact theory predicts a higher frequency content for N2 due to its higher
impact velocity. This corresponds to the observed waveforms in Figure 4.34. Impact N1
can hardly be detected in the high frequency band (20-40Hz), whereas impact N2 shows a
clear pulse despite the slightly bigger source-receiver distance. Our estimations are in good
agreement with these observations, predicting frequencies up to 26Hz for N1 and up to
35Hz for N2. Even though the absolute values contain a high uncertainty due to the rough
estimations of boulder and ground parameters, their relative values are mainly determined
on the respective impact speeds which we can constrain reasonably well thanks to the
videos. For this reason it is very possible that the observed differences in high frequency
content are related to the changing impact speed.

Comparison of observed and synthetic waveforms

Above, we tried to associate pulses in the observed seismic signal to impacts detected on
the video. This was done in a crude way by analyzing the signal after the time of im-
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pact. We will now use numerical simulations to get insights into travel times and expected
waveforms. As mentioned before, the intention is not to reproduce observed waveforms,
but rather to understand which signal characteristics can be associated to a single impact.
The source-time function is represented by a Ricker wavelet. As it is very compact in time
with a single main lobe, its signature can be neglected on the synthetic waveforms which
hence mainly represent the response from the propagation path. Observed and synthetic
signals are compared in the frequency band of 10-20Hz. This is because in this frequency
band we could identify short signal pulses which we associated to the rockfall impacts. At
the same time, 20Hz constitutes the upper frequency limit of our simulations.
We use the maximum impact forces estimated above to calibrate the simulations from
sources N1 and N2. First of all, observed and synthetic seismograms are normalized in
order to allow an easier comparison of the waveforms. Figure 4.36 show vertical ground
velocity recorded at stations BON, BOR, DSO, and SNE and simulations from impacts
N1 and N2 on models with flat surface and with Dolomieu topography. Source positions
of the two impacts are estimated from the video (see the positions on the map in Fig.
4.34). As the exact source direction of the real impacts are unknown, the variability of
synthetic waveforms is shown in dependency of the force direction. Signals generated by a
vertical force Fz, a force Fn normal to the slope and a force Ft tangential to the slope are
demonstrated.
Analyzing the synthetic seismograms, we can observe in general that N1 produces smaller
amplitudes in respect to N2. This is due to the estimated impact forces of 84 kN and
485 kN, respectively (see Table 4.2). Going more into detail, seismograms from the model
with flat surface show the same relative amplitudes between N1 and N2 for all different
source directions. This is different for the model with topography, where the relative am-
plitudes between N1 and N2 can vary. For example, on the closest station BON, the signal
from a force Fn normal to the slope results in a smaller amplitude relative to N2 than
for forces Fz and Ft vertical and tangential to the slope. This suggest, that topography
allows more variability of the signal amplitude when changing the source direction than
a flat surface. Further, still for station BON, the amplitudes of impact N1 are bigger
on the model with topography than for the model on the flat surface. This corresponds
better to the real observations, where the maximum amplitude of impact N1 is almost
as big as maximum amplitude of impact N2. Similarly we can observe on station DSO
that the signal of impact N1 is very small in respect to the signal of N2 in the case of
topography. While the amplitudes on the flat surface model are strongly dependent on
the source-receiver distance, amplitudes on the model with topography can be modified
due to the propagation path. This could be seen already before by analyzing amplification
patterns of topography in respect to the flat reference.
Besides the variability of amplitudes due to topography, we can have a look on the sim-
ulated waveforms. On the model with flat surface, three wave packets following each
impact can be detected, which are well separated from each other on the more distant
stations BOR, DSO, and SNE. These three wave packets correspond to body wave, 1st

mode Rayleigh wave, and fundamental mode Rayleigh wave (see e.g. Figure 4.14). The
arrival time of the 1st mode Rayleigh wave is in good agreement with the first major pulse
after each impact. This suggests that the Lesage velocity model represents the shallow
subsurface velocity around Dolomieu crater reasonably well. However, on the flat model
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Figure 4.36 – Comparison of rockfall signal with synthetic waveforms from different force directions. Blue lines
correspond to vertical ground velocity recorded at different stations for the same time window as shown in Figure
4.34. Red vertical lines indicate impact times N1 and N2 from the video. Synthetic waveforms of impacts N1 and
N2 are shown for the model with flat surface (green) and with Dolomieu topography (orange). Source positions
are illustrated in Figure 4.34. The variability of waveforms is demonstrated in dependency of a vertical forceFz ,
a forceFn normal and a forceFt tangential to the slope. All traces are normalized by their maximum.

the amplitude of the 1st mode Rayleigh wave is consistently smaller than the amplitude of
the fundamental mode. A corresponding amplitude variation cannot be identified on the
real signals. In contrast, simulations on the model with topography generate waveforms
of more complexity. This increased complexity corresponds better to the observed signals,
even if the waveforms do not fit perfectly. The variation of the force direction modifies the
waveforms stronger than in the flat case. Also, waveforms vary strongly from station to
station. This is not observed in the flat case, in which the waveforms are very similar on
stations at comparable source-receiver distances (i.e. BOR, DSO, and SNE).
The analysis shows that topography allows for more variability of both amplitudes and
waveforms. Appendix 4.9.5 additionally demonstrates the increased variability of signals

124



4.7 − Conclusion

in dependency of a slightly changing source position. Furthermore, a polarization analysis
is carried out. From this, a similar conclusion is drawn regarding the variability of polar-
ization caused by topography.
Besides variability of the waveforms, it has been observed that a single impact can produce
complex waveforms, in particular when topography variations are involved. Consequently,
it is generally not possible to deduce from a rockfall seismic signal, if the source consists
of a single impact of multiple impacts.
Finally, observed and synthetic seismograms are compared without normalization. This
way, the absolute signal amplitudes calibrated by the Hertz impact force are evaluated.
The total value of the acting force as well as its direction is determined by summing the
force normal and the force tangential to the slope. Tangential force Ft is inferred from the
maximum normal impact force Fn = F0 assuming Coulomb friction Ft = µF0, where µ is
the material specific friction coefficient. We define µ = 0.7, which is a typical value used
for rockfall at Dolomieu crater (e.g. Hibert et al., 2014b). The resulting signal amplitudes
for model with flat surface and model with topography are compared in Figure 4.37 with
the observed rockfall signals.
First of all, despite the rough parameter estimations concerning the falling boulder and
the impacted ground, comparable amplitude magnitudes in respect to the observed signal
are achieved using the Hertz contact theory. Synthetic seismograms from the flat model
generally overestimate the observed amplitudes. From simulations on topography, signals
of impact N1 are always underestimated, while signals from N2 are overestimated on BON
and DSO and underestimated on BOR and SNE. This can partly be also related to local
site effects which are not considered in the simulation. For example, the underestimation
at SNE could be related to the strong amplification at this station found by the above
presented site effect estimation (compare with Fig. 4.29).
Noteworthy are the relative amplitude changes between the stations. While in the case of
the flat model, amplitudes are decreasing with distance from the source, the model with
topography breaks this relation. For example, on the flat model the maximum amplitude
decreases drastically from station BON to station DSO. In contrast for the model with
topography, the signal amplitude of impact N2 is almost half as the one of station BON.
This topography induced amplitude change was shown before by means of ratios between
model with and without topography.

4.7 Conclusion

We investigated the effect of topography on the propagation of wave fields generated by
surface point loads. The dependency of topography induced amplification on the under-
lying velocity model is demonstrated. A velocity-depth profile with strong gradient, as
proposed by Lesage et al. (2018) for the shallow velocity structure of volcanoes, leads to
increased scattering at the surface topography and prolonged ground shaking as more seis-
mic energy stays close to the surface. This results in spatial amplification patterns which
can contain zones of high amplification. The sensitivity study on crater geometry indicates
that modifications of the crater curvature affects the wave field stronger than modification
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Figure 4.37 – Amplitude comparison between observed and synthetic seismograms. Blue lines correspond to
vertical ground velocity recorded at different stations for the same time window as shown in Figure 4.34. Red
vertical lines indicate impact times N1 and N2 from the video. Synthetic waveforms of impacts N1 and N2 are
shown for the model with flat surface (green) and with Dolomieu topography (orange). The seismic source is
constructed by summing forceFn andFt normal and tangential to the slope. Fn corresponds to the maximum
impact forceF0 as shown in Table 4.2. Source positions are illustrated in Figure 4.34.

of the crater depth.
Simulation were compared with measurement from rockfalls at Dolomieu crater. By an-
alyzing signals generated at specific rockfall locations, it is demonstrated that spectral
ratios between stations are characteristic to the source positions. Comparison with simu-
lations further suggests that the spectral ratios are dominated by the propagation along
the topography rather than the polarization of the seismic source. After validating this
finding for different rockfall locations, it will be used in Chapter 5 for the localization of
events. Assuming that the observation holds for all rockfall locations, the proposed method
can be applied without dependency on the implied source direction. In this context it is
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important to point out that the influence of the topography on surface waves has to be
considered as a propagation effect rather than a local site effect at the recording station.
In other words, a surface wave arriving at a recording stations is affected by its total path
along the topography. This is similar to body waves which are affected by their total path
though the subsurface. Just as body waves are used to infer subsurface properties, the
information imprinted on surface waves might be used to infer properties of their origin.
In contrast to subsurface properties, surface topography can be measured quite easily and
accurately. This allows to accurately simulate the response of topography with numerical
models. Nonetheless, the coupling of topographic effects and local site effects from het-
erogeneities in the subsurface should additionally be considered. In the present study we
accounted for local site amplification by estimating amplification factors from VT events.
However, it is not granted that surface waves experience the same amplification as a ver-
tical incident wave field. Thus, to better estimate influence of the subsurface, the surface
wave propagation has to be modeled including subsurface heterogeneities. Unfortunately,
this is not in the scope of the present work.
Finally, analysis of seismic signature of single impacts demonstrate the potential informa-
tion hidden in rockfall seismic signals. Synthetic waveforms show that a single impact
can produce a complex waveform with multiple pulses. While seismograms from the flat
model show similar waveforms at all stations, surface topography modulates waveforms as
a function of source direction and source position. Also, the relative amplitudes between
different stations can strongly be influenced by the topography. Calculations based on the
Hertz contact theory suggest that the observed differences in frequency content of the two
presented impacts can be explained by differences in impact speeds. For identical boulder
and ground parameters, a higher impact speed results in a higher frequency content. Fur-
thermore, amplitudes calibrated by the maximum impact force predicted from the Hertz
theory results in magnitudes comparable to the real signals.
The combination of Hertz contact theory and wave propagation simulations is an impor-
tant step for the interpretation of rockfall seismic signals based on the underlying physical
processes. The Hertz impact theory is frequently used to predict the impact force of rock-
falls, for example for the design of structural protections (e.g Volkwein et al., 2011). Also,
laboratory experiments show the validity of Hertz theory concerning the waves generated
by the collision of a ball on a massive plate (e.g. McLaskey and Glaser, 2010). However,
only few studies apply the theory to seismic signals from real-scale rockfalls, as done by
Farin et al. (2015); Bachelet et al. (2018). A limiting factor is the complex rockfall source
which often consists of multiple simultaneous impacts. For this reason, application to arti-
ficially triggered rockfalls which ensures separated impacts of a single boulder would help
validate the Hertz theory in the field and to enhance understanding of real impact processes.
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4.8 Landslide generated seismic energy: Improved estimation through con-
sideration of topography (Work in progress)

The seismic energy radiated by a landslide can give important insights on landslide prop-
erties. For example, it has been shown that the radiated energy can be related to the
landslide volume (e.g. Hibert et al., 2011, 2014b). In Chapter 3 we derived an equation in
order to estimate the totally radiated energy by means of the measurement of a single seis-
mometer located at the surface. We discussed the influence of different subsurface velocity
models. However, the equations are based on the propagation of seismic waves along flat
surfaces. The formalism becomes invalid when surface topography is introduced. This is
illustrated in Figure 4.38.
In order to take surface topography into account when estimating the source radiated en-
ergy, we propose to introduce a topography correction factor. The idea is presented in the
following. Implementation and results are preliminary.

FF
r

h

Figure 4.38 – Illustration of topography influence on estimation of source radiated energy. The illustration
shows the seismic wave propagation from a vertical point force on a homogeneous model with flat surface (left)
and surface topography (right). The seismic station (yellow triangle) is placed at distance r from the source. The
total energy ESource radiated by the source can be calculated from the recorded ground velocity v as defined in
equation 3.37. The equation becomes invalid when surface topography modifies ground velocity vtopo (red sig-
nal).

4.8.1 Topography correction factor
In order to account for topography when estimating the total energy radiated by the source,
a correction factor is introduced. This correction factor is dependent on the source position.
The idea is to relate the measurements from the domain with topography to corresponding
values which would be measured in the case of a flat surface. As a result, the equation
derived in Chapter 3 for the energy estimation on flat surfaces can be used.
The correction factor is determined from seismic wave simulations on a model with realistic
3D topography and on a flat reference model. Here, we assume a frequency independent
correction factor Ctopo, which we define as

Ctopo =
Eflat

Etopo
, (4.6)

where Eflat and Etopo is the energy calculated from the synthetic seismograms from a
model with flat surface and with topography, respectively. Remember that we quantified
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the influence of topography similarly in Chapter 4. Carrying out reciprocal simulations 1

for each seismometer, we can determine the correction factor at each potential rockfall
position. The correction factor Cz,topo calculated from vertical ground velocity is visualized
in Figure 4.39.
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Figure 4.39 – Topography correction factors for each seismometer as a function of source position. The cor-
rection factors Cz,topo of vertical components are calculated for stations BON, BOR, DSO, and SNE (counter-
clockwise). The general value> 1 corresponds to the findings in Chapter 4 where we could see deamplification
of surface waves due to scattering along the topography (see section 4.5). Black dots mark the trajectory of the
rockfall analyzed hereafter.

Correction factor Ctopo is then introduced in the calculation of the source energy. For a
heterogeneous model, assuming fundamental Rayleigh waves only, equation 3.38 becomes:

ER = Ctopo 4πr ρ

∫ ∞
0

cg hj v̂
2
j e2αr df, (4.7)

with source-receiver distance r, mass density ρ, Rayleigh group velocity cg, and attenuation
factor α. Penetration depth hj and ground velocity v̂j(f) are associated to components
j = {E,N,Z}. Note, that a frequency dependent correction factor can easily be considered
by moving Ctopo under the integral.

4.8.2 Test example of rockfall at Dolomieu crater

By introducing the topography correction factor, we hope to achieve a more coherent energy
estimation from different stations. As the rockfall is moving, the energy is calculated in a

1. Reciprocal simulations are introduced in section 5.4.2 of Chapter 5.
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sliding time window with correction factors corresponding to the current rockfall position.
A first test is conducted by applying the topography corrected energy estimation to a
rockfall on December 13, 2016 which occurred on the southwestern crater wall (the rockfall
corresponds to event 3 presented in section 2.3 of Chapter 2). The observed seismic signals
are displayed in Figure 4.40.
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Figure 4.40 – Seismic
signals and cumulated
radiated energy of
rockfall on December
13, 2016.
Vertical ground velocity
recorded at stations
BON, BOR, DSO, and
SNE. Overlaid is the
cumulated radiated
energy estimated in a
sliding time window
of 4 s length without
overlaps. Note that the
energy is calculated
only from vertical com-
ponents and without
topography correction
factor. Site effects are
removed from the
signals.

For demonstration, only the vertical components are used in the energy estimation. The
subsurface is assumed to be well described by the Lesage velocity model (see section 1.3.1)
with Rayleigh attenuation factor of QR ≈ QS = 50. As derived in section 3.3.3, an effective
penetration depth of hz,eff = 0.32 is used. The cumulated radiated energy, calculated in
time windows of 4 s without correction factor, is overlaid on the seismic signals in Figure
4.40.
In order to consider the influence of topography, an area of the current rockfall position
is determined and correction factors are averaged over this area. Subsequently, the energy
calculated in each time window is corrected following equation 4.7. Figure 4.41 compares
the cumulative radiated energy estimated without and with topography correction factor.

It can be observed that the topography corrected energy estimation yields higher values of
radiated energy. The mean value of the two estimations differ by a factor of 6. This means
that energy lost due to scattering during propagation of surface waves along the topography
is restored. It is also shown that the relative difference between energy estimations of
different stations is reduced. While the maximum deviation from the mean is 116% before
correction, it is 54% after accounting for topography.
The results are preliminary in a sense that only vertical components are considered and
only one event is analyzed. Still, they suggest that the energy estimation is substantially
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Figure 4.41 – Cumulative radiated energy calculated without and with topography correction factor. Radiated
energy estimated without (left) and with (right) topography correction. Only vertical components are considered
and the vertical correction factor Cz,topo is used. The mean estimated energy is marked by the gray line. Per-
centages give the maximum deviations from the mean. Site effects are removed from the signals prior to energy
calculation.

influenced by the topography. Thus, topography correction factors should be considered
to correctly estimate the source energy. This is important for example to assess rockfall
volumes.

4.8.3 Perspectives

The topography corrected energy estimation was demonstrated using solely vertical com-
ponents. It goes without saying that it is crucial to consider all components in order to
achieve a correct energy estimation. For this, it has to be carefully evaluated how the
horizontal components on the topography can be related to a signal measured on a flat
surface. Source related radiation pattern can complicate this relation additionally. If only
single-component seismometers are available, assumptions have to be made to account for
the energy on the other components.
Another issue is the frequency dependency of correction factors. The best solution would be
to directly deconvolve the signals with the spectral transfer function between simulations
on the flat model and on the model with topography. However, regarding the uncertainty
of the source position as well as the superposition of multiple sources, it has to be tested
if results are systematically better.
This brings us to the moving seismic source. It is very laborious to determine for each
time window the exact source position. To avoid this, it has to be investigated if longer
time windows and correction factors averaged over larger areas achieve comparable energy
estimations. An elegant solution would be to combine the energy estimation with the local-
ization method proposed in the previous chapter. This way, correction factors are defined
based on the probability of the source locations.
Synthetic rockfall signals can help to develop all the previous points. In contrast to real
rockfalls, the totally radiated energy of synthetic examples is known. This way, the to-
pography specific correction can be tested under different conditions, as for example the
superposition of multiple sources at different locations and also the influence of hetero-
geneities in the subsurface.
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4.9 Appendices

4.9.1 Amplification of horizontal peak ground velocity (PGV)

Figure 4.42 and 4.43 show amplification patterns of horizontal PGV from a vertical source
for north- and east-component, respectively. The strong topographic amplification east-
west from the source for the north-component and north-south from the source for the
east-component is caused as no transverse energy is present in case of the flat reference
model. In contrast, energy is measured on these components when waves are propagating
along topography as a result of diffraction or of conversion between horizontal and vertical
energy.
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Figure 4.42 – Topographic amplification of north-component PGV. Ratio PGVN,t/PGVN,f between model with to-
pography and flat reference model from vertical source for the homogeneous model (left), the model with shal-
low low velocity layer (middle) and the Lesage velocity model (right). The yellow star denotes the source, green
triangles the stations. Annotations give ratios measured at the station locations as well as percentage of topo-
graphic amplification. Neighboring contour lines differ 60 m in elevation.
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Figure 4.43 – Topographic amplification of east-component PGV. Ratio PGVE,t/PGVE,f between model with to-
pography and flat reference model from vertical source for the homogeneous model (left), the model with shal-
low low velocity layer (middle) and the Lesage velocity model (right). The yellow star denotes the source, green
triangles the stations. Annotations give ratios measured at the station locations as well as percentage of topo-
graphic amplification. Neighboring contour lines differ 60 m in elevation.

4.9.2 Energy amplification in different frequency bands

Figure 4.44 and 4.45 show energy amplification in three different frequency bands for homo-
geneous model and Lesage model, respectively. Rayleigh wavelengths on the two models are
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comparable in frequency band 3-7Hz for the homogeneous model (λ ≈ 1000m.s−1÷10Hz =

100m) and in frequency band 8-12Hz for the Lesage model (λ ≈ 580m.s−1÷5Hz ≈ 116m,
see dispersion curves in Fig. 4.4). However, we can observe that the amplification patterns
differ from each other in these two frequency bands. This suggests that the respective am-
plification patterns are not only characteristic of a certain wavelength. The wave propaga-
tion essentially depends on the velocity model which hence results in different amplification
patterns.
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Figure 4.44 – Amplification of total kinetic energy in different frequency bands for homogeneous model. En-
ergy amplification in respect to a flat reference model in frequency bands 3-7 Hz (left), 8-12 Hz (middle) and 13-
17 Hz (right). The yellow star denotes the source, green triangles the stations. Annotations give ratios measured
at the station locations as well as percentage of topographic amplification. Neighboring contour lines differ 60 m
in elevation.

366000 367000

76
50

00
0

76
51

00
0

BON: 0.25 (-75%)

BOR: 0.19 (-80%)

DSO: 0.73 (-27%)

SNE: 0.39 (-61%)
3-7 Hz

366000 367000

BON: 0.42 (-57%)

BOR: 0.47 (-53%)

DSO: 1.09 (+9%)

SNE: 0.54 (-46%)
8-12 Hz

366000 367000

BON: 0.71 (-28%)

BOR: 0.43 (-56%)

DSO: 1.24 (+23%)

SNE: 0.31 (-69%)
13-17 Hz

10 1

100

101

Etopo/Eflat

Figure 4.45 – Amplification of total kinetic energy in different frequency bands for Lesage model. Energy am-
plification in respect to a flat reference model in frequency bands 3-7 Hz (left), 8-12 Hz (middle) and 13-17 Hz (right).
The yellow star denotes the source, green triangles the stations. Annotations give ratios measured at the station
locations as well as percentage of topographic amplification. Neighboring contour lines differ 60 m in elevation.

4.9.3 Synthetic crater and surface roughness

Left hand side of Figure 4.46 demonstrates the symmetric interference patter caused by
a perfectly symmetric synthetic crater. Seismic waves are guided on symmetric paths
around the crater and interfere constructively on the opposite side of the source where
strong amplification is visible. In order to break this symmetry and get a more realistic
crater model, the surface roughness illustrated on the right hand side of Figure 4.46 is
imposed onto the model. It is extracted from a real DEM and band-pass filtered between
corner wavelengths of 40m and 100m.
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Figure 4.46 – Energy amplification on symmetric crater and domain with imposed surface roughness. Left: Am-
plification pattern of vertical energy caused by perfect symmetric crater shape. Right: Model domain with surface
roughness of wavelengths between 40 m and 100 m. This roughness is imposed on synthetic crater topography
in order to prevent symmetric interference patterns as illustrated on the left.

4.9.4 Observed and simulated spectral ratios for horizontal components

In section 4.6.2 we could see that the vertical spectral ratios from the real rockfall signals
are generally higher than the simulated values. This can also be observed on the horizontal
ratios. Spectral ratios from the north-component are shown in Figure 4.47. While ratios
BOR/BON are slightly underestimated from the simulations, ratios SNE/BON show devi-
ations of almost a factor 10. Ratios on the east-component are better reproduced as can be
seen in Figure 4.48. However, similarly to the north-component, simulated ratios deviate
more from the observed values in case of ratio SNE/BON.
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Figure 4.47 – Observed and
simulated spectral ratios of
north-component. Spectral ra-
tios for BOR and SNE in respect
to BON. Blue lines (TW-R1, -R2,
-R3) correspond to observed
rockfall signals as shown before
in Fig. 4.24. Spectral ratios
from synthetic seismograms
are shown for a vertical force, a
force normal to the slope and
a force tangential to the slope
on the model with flat surface
(flat) and with topography
(topo).
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Figure 4.48 – Observed and
simulated spectral ratios of
east-component. Spectral ra-
tios for BOR and SNE in respect
to BON. Blue lines (TW-R1, -R2,
-R3) correspond to observed
rockfall signals as shown before
in Fig. 4.24. Spectral ratios
from synthetic seismograms
are shown for a vertical force, a
force normal to the slope and
a force tangential to the slope
on the model with flat surface
(flat) and with topography
(topo).

4.9.5 Variability of synthetic seismograms with source position

For the simulation of rockfall impacts, the impact position has to be estimated. The
uncertainty of the estimation from the videos is expected to be in the order of at least
10m. In the following, the variability of the waveforms with the source position is shown.
Afterwards, a polarization analysis is carried out which also shows the variability of the
signals, especially in case of surface topography.

Variability of waveforms

To evaluate the variability of waveforms on the source position, the synthetic seismograms
from 5 different source-pairs are compared. Each source-pair corresponds to impacts N1
and N2. Besides the original source positions used in the analyses for N1 and N2 above,
four additional positions are picked from a grid of 10m spacing. Figure 4.49 illustrates the
selected positions, whereas the red dots in the center correspond to the original position
for N1 and N2.
The synthetic waveforms from each station pair are plotted in Figure 4.50 for both the
flat model and the model with topography. In the case of the model with flat surface,
a change of the waveforms can hardly be noticed when changing the source position.
In contrast to that, the simulated waveforms on the topography show strong variations.
The strong variability of waveforms indicates that a perfect fit with the observed signals
is almost impossible due to uncertainties on source position and subsurface information.
Simultaneously, it can be assumed that topography is one of the factors which causes of
the different waveforms observed for the real signals at different stations.
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Figure 4.50 – Comparison of rockfall signal with synthetic waveforms for different source positions. Blue lines
correspond to real seismograms at different stations. Red vertical lines indicate impact times N1 and N2 from
the video. Synthetic waveforms of impacts N1 and N2 are shown for the model with flat surface (green) and with
Dolomieu topography (orange). The variability of waveforms is demonstrated in dependency of source positions,
which are illustrated in Figure 4.49. The source is composed of normal and tangential force (see Fig. 4.26). All
traces are normalized by their maximum.
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Variability of polarization

Polarization analyses can be used for the localization of landslides (e.g. Vilajosana et al.,
2008; Bottelin et al., 2014). However, the polarization of surface waves can be strongly
affected by topography. Ripperger et al. (2003) and Métaxian et al. (2009) demonstrate
the complexity of particle motions for surface waves traveling along the topography of vol-
canoes. In the following, we will carry out a polarization analysis of the signal generated
by impact N2. Observations and simulations are compared as above in a frequency band
of 10-20Hz. Two source positions are compared, located 10m apart from each other. Fig-
ures 4.51 and 4.52 present the polarization analysis at station BON for source positions
2 and 3, respectively (the source positions are defined in Figure 4.49). The figures show
synthetics from the flat model, from the model with topography as well as the real signals
in terms of vertical (Z), radial (R), and transverse (T) component. Radial and transverse
component are defined in respect to the source-receiver direction. Note that the synthetic
signals correspond to a source composed by forces normal and tangential to the slope as
illustrated in Figure 4.26. The same source direction is applied on the flat model. The
polarization analysis is carried out for three time windows.
Regarding signals on the flat model for source position 2 (Fig. 4.51), we can infer from
previous interpretations of the wave propagation on the Lesage model that TW1 contains
the body wave, TW2 the 1st mode and TW3 the fundamental mode Rayleigh wave. Addi-
tionally, a signal on the transverse component indicates that the non-vertical source is also
generating a Love wave. The polarization diagrams correspond to this interpretation. In
TW1 a very small signal of mainly radial polarization is visible. TW2 contains a mixture
of radial and transverse signal resulting from Rayleigh and Love wave. TW3 is circularly
polarized in the radial-vertical plane, indicating a Rayleigh wave.
In contrast to the flat model, signals from the model with topography as well as real sig-
nals show different polarizations and stronger amplitudes in the first TW1. Polarizations
correspond well to each other, also for TW2. In TW3, the particle motion becomes more
complex. This complexity is not reproduced by the flat model.
Modifying the source from position 2 to 3 (from Fig. 4.51 to 4.52) completely switches
polarization so that the polarization in the horizontal plane on the model with topogra-
phy does not correspondent anymore to the real case. We can observe that also on the
flat model the polarization changes. This means, that the change of polarization is partly
caused by a change in source direction. The explanation for this is that the orientation of
the slope is different at the new source position. Thus, the azimuth of the source changes.
The question arises if the source polarization at more distant receivers is rather dominated
by the propagation along topography than on the source polarization. Carrying out anal-
yses in different time windows at station BOR and SNE, no clear answer for this question
was found. Figures 4.53 and 4.54 present the polarization analysis at station SNE from
source locations 2 and 3, respectively. We can observe that the particle motion changes
with source position on the model with topography which indicate that the polarization
is not completely dominated by the travel path. Nevertheless, the increased complexity of
particle motion on topography corresponds better to the observed particle motion.
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Figure 4.51 – Polarization analysis at station BON from source 2. Top: Vertical (Z), radial (R), and transverse (T)
signal for flat model, model with topography and real recordings. Bottom: Particle motion in the transverse-radial
plane (left) and the vertical-radial plane (right) for flat model(top), model with topography (middle) and real
observations. Source position 2 is defined in Figure 4.50.
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Figure 4.52 – Polarization analysis at station BON from source 3. As in Figure 4.51 for source position 3, which is
defined in Figure 4.50.
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Figure 4.53 – Polarization analysis at station SNE from source 3. Top: Vertical (Z), radial (R), and transverse (T)
signal for flat model, model with topography and real recordings. Bottom: Particle motion in the transverse-radial
plane (left) and the vertical-radial plane (right) for flat model(top), model with topography (middle) and real
observations. Source position 3 is defined in Figure 4.50.
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Figure 4.54 – Polarization analysis at station SNE from source 3. As in Figure 4.53 for source position 3, which is
defined in Figure 4.50.
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Chapter 5

Rockfall localization based on inter-station energy
ratios

5.1 Abstract

Landslide generated seismic signals have been shown to be of great utility in order to
detect and monitor landslide activity. Furthermore, landslide locations were successfully
estimated using methods which rely on either arrival times, amplitudes or polarization of
the seismic signal. However, strong surface topography can significantly influence seismic
wave propagation and thus flaw the estimates if not taken into account correctly.
On the upside, the imprint of topography on the seismic signal can be characteristic of
the source position. We show that this additional information can be used to get a more
detailed landslide location estimation. In order to do so, the seismic impulse response is
modeled on a domain with 3D topography using the spectral element method. Subse-
quently, in order to locate events, station energy ratios of the synthetic seismograms are
compared with energy ratios of landslide signals in a sliding time window.
We test the method on rockfalls which occurred at Dolomieu crater of Piton de la Four-
naise, La Réunion. We propose that the method can be applied for monitoring landslide
activity in a specific area with multiple seismic stations after calculating once the impulse
response for the corresponding topography.

5.2 Introduction

Besides investigating the structure and dynamics of the Earth’s interior, seismology is
increasingly used to study and monitor processes on the Earth’s surface. This study is
commonly referred to as environmental seismology (Larose et al., 2015). Surface processes
can include natural phenomena such as storms (e.g. Ebeling and Stein, 2011), glaciers (e.g.
Tsai et al., 2008; Podolskiy and Walter, 2016; Sergeant et al., 2016), rivers (e.g. Gimbert
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et al., 2014), debris flow (e.g. Burtin et al., 2009) and landslides (e.g. Hibert et al., 2011;
Allstadt, 2013; Bottelin et al., 2014; Vouillamoz et al., 2018). Furthermore, seismic signals
can be used to monitor urban structures (e.g. Mordret et al., 2017) as well as human ac-
tivity such as traffic (e.g. Riahi and Gerstoft, 2015; Fuchs and Bokelmann, 2018).
In the context of landslides, seismic signals can be used to identify hazard. Growing net-
works of seismic stations offer the opportunity to continuously monitor large regions of
interest. Events can be detected, classified, characterized and located. This helps create
catalogs of landslide events which serve to understand their occurrences. Thanks to this,
triggering mechanism could be studied by correlating landslide catalogs with meteorolog-
ical data (Burtin et al., 2009; Helmstetter and Garambois, 2010; Durand et al., 2018) or
with data of volcanic seismicity (Hibert et al., 2017b; Durand et al., 2018). Besides moni-
toring hazard, rockfall localization can also give insight into volcano summit deformation
(Durand et al., 2018).
Several methods for landslide localization by means of seismic signals have been proposed.
We can divide the methods into two groups of approaches. The first group infers the source
position geometrically by pointing towards it from several stations and determining the in-
tersection. For this, the azimuth of incoming phases has to be determined. This can either
be done by polarization analysis with three-component seismometers (Vilajosana et al.,
2008) or with array methods to estimate the apparent slowness vector (Almendros et al.,
2002). The second group back-projects properties of the signal onto the source position,
trying to find the best correlation between multiple stations. The back-projection relies
either on the decay of amplitudes with distance (Battaglia and Aki, 2003), or on travel time
differences between stations. Travel time differences can be inferred from cross-correlation
of signal envelopes (Burtin et al., 2009; Lacroix and Helmstetter, 2011; Yamada et al.,
2012) or from picking of first arrival times (Hibert et al., 2014b; Fuchs et al., 2018).
As landslides predominantly occur in mountainous regions, generated seismic waves are
prone to interact with the strong surface topography variations. The influence of topog-
raphy on seismic wave propagation has long been subject of study (Geli et al., 1988).
Topography can affect the wave path, wave polarization (Ripperger et al., 2003; Métaxian
et al., 2009) and seismic amplitudes (Lee et al., 2009a). If not taken into account correctly,
these topographic effects compromise localization methods and decrease their precision.
Assuming elongated wave paths along the topography, back-projection methods can take
topography into account adjusting source-receiver distances and thus travel times. This is
done for example by Hibert et al. (2014b) to locate rockfalls at Dolomieu crater, La Réu-
nion. However, elongation of wave paths does not consider diffraction or scattering along
the topography. In fact, the influence of topography can be described as a propagation
effect as waves which travel along the surface are subject to an accumulation of effects.
In the following we try to predict the characteristic imprint of topography on the seis-
mic signal as a function of the source location. For this, we use the Spectral Element
Method (SEM) on a numerical domain with 3D topography. Simulations are compared
with observed signals generated by rockfalls at Dolomieu crater on Piton de la Fournaise,
La Réunion, by means of spectral ratios. Subsequently, a method is proposed for the local-
ization of rockfall seismic sources. The method is based on energy ratios between station
pairs with the assumption that the ratios are characteristic of the position of the seismic
source. A higher resolution of the localization is expected when considering topography.
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5.3 Data from rockfalls at Dolomieu crater

The study site is located on Piton de la Fournaise volcano, La Réunion, shown in Figure
5.1b). Rockfalls occur frequently at the instable flanks of Dolomieu crater, which was
formed during the caldera collapse in 2007 (Michon et al., 2007). The volcano is monitored
by the Observatoire Volcanologique du Piton de la Fournaise (OVPF). Instrumentation
includes a dense network of seismic stations and three cameras on top of Piton de la Four-
naise, looking into Dolomieu crater. This allows to correlate seismic signals generated with
camera images which is of great benefit to study rockfalls and the generated seismic waves.
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Figure 5.1 – Rockfall seismic signals at Dolomieu volcano crater. a) Dolomieu crater is located on the summit
of Piton de la Fournaise volcano, which is on the island of La Réunion in the Indian Ocean, east of Madagascar.
Smaller craters Bory and Soufrière are located east and north of Dolomieu crater, respectively. Seismic stations are
marked by green triangles and cameras by blue dots. The red zone marks a rockfall trajectory estimated from the
video. b) Seismic signals generated by the rockfall indicated in a). Signals are recorded at the four seismic stations
surrounding Dolomieu crater. The red lines show the evolution of recorded seismic energy, which is calculated in
windows of 4 s length which are sliding with time steps of 2 s. c) Ratios of seismic energy between station pairs.
The beginning of the rockfall is marked by an abrupt change of the ratios.

Figure 5.1 shows the recorded ground velocity caused by a rockfall on the southwestern
crater wall. It can be observed that the signal at the closest station BOR is starting most
abruptly, whereas signals at further stations BON and SNE show slowly emerging ampli-
tudes. The different temporal evolution of the recorded signals can nicely be seen by the
evolution of recorded seismic energy which is overlaid in Figure 5.1b). To measure the
temporal evolution of seismic energy at each station, we integrate squared ground velocity
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over a sliding time window of 4 s width. 1

Station energy ratios are shown in Figure 5.1c), where station BON is chosen as reference
station. Note that BON is also chosen as reference site for the site amplification functions
as it is found to be the least amplified station. The beginning of the rockfall is marked
by an abrupt increase of the ratios BOR/BON and DSO/BON, whereas ratio SNE/BON
is dropping. Subsequently, the ratios are evolving differently as the rockfall is moving to-
wards the bottom of the crater.
As the seismic source is identical for all stations, the temporal evolution of energy ra-
tios is caused by the path of wave propagation. First of all, the moving source position
changes source-receiver distances and hence modifies signal amplitudes due to geometrical
spreading and intrinsic attenuation. However, additional propagation effects can be intro-
duced by soil heterogeneities and topography between source and corresponding receiver.
In the following we will model the influence of topography whereas soil heterogeneities are
considered with the help of empirical site amplification factors.

5.4 Methodology

The proposed methodology for the estimation of rockfall localization is based on the as-
sumption that energy ratios between stations are characteristic for a given source position.
This assumption was validated in Chapter 4 by analyzing spectral ratios for three rockfalls
occurring on the southern crater wall. In the following we will show another example for
rockfalls located on the southwestern crater side. Using this assumption, we try to infer the
rockfall source position by comparing observed energy ratios with simulations. Note here
that the method is not using the spectral ratios but rather the energy ratio averaged within
frequency bands of 4Hz. This makes the method robust against spurious variations of the
spectral values. In order to explore all potential rockfall sources, reciprocal simulations will
be carried out where the synthetic source is placed on the location of the seismometers.
Then, a grid search is performed in order to find the source positions which best fit the
observed energy ratios. This method will first be tested on a synthetic example, discussing
the limits of the approach, and finally applied to real events.

5.4.1 Observed spectral ratios

Similar to the analysis carried out in section 4.6.1 of Chapter 4, we compare spectral sta-
tion ratios for different rockfalls. The spectral ratios are computed in a time window for
which all rockfalls are in the same area. If the spectral ratios are found to be similar, it can
be assumed that they are characteristic of the source position. They are then compared
with synthetic spectral ratios from a model with flat surface and a model with Dolomieu
topography. Note that in order to enhance comparability between real and observed spec-
tral ratios, site effects due to the local subsurface structure are removed from the real

1. Note that in order to calculate the actual kinetic energy, the squared ground velocity has to be
multiplied by the material density times a factor of one half (see equation 3.20). However, as we are
interested in station energy ratios, we neglect this multiplication assuming similar material densities at all
four stations.
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signals. As discussed in Chapter 4, we assume that amplification factors estimated from
volcano-tectonic (VT) seismic signals are similar for rockfall signals. The site amplification
functions are shown in Figures 4.29 and 4.30 for vertical and horizontal ground motion,
respectively.
The trajectories of the chosen rockfalls are mapped on the left hand side of Figure 5.2.
Their locations are approximated based on camera images.
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Figure 5.2 – Rockfalls at the southwestern crater wall. Left: Estimated trajectories of three events: rockfall 1 starts
right below crater Bory, whereas rockfalls 2 and 3 start further south with similar trajectories. All trajectories meet
within the red rectangle where synthetic sources are placed for the comparison of spectral ratios. The inset shows
a zoom of the synthetic source positions, marked by blue dots. Right: Trajectories of rockfall 1 and 3 reconstructed
from differences of successive images taken from camera DOEC. The profile of crater Bory can be recognized and
serve for orientation.

Rockfall 1 starts right beneath crater Bory which is located on the western side of Dolomieu
crater. Rockfalls 2 and 3 start further south until crossing the trajectory of rockfall 1 half
way down on their way to the crater bottom. The generated seismic signals will be com-
pared at a time which corresponds to this crossing position. Trajectories of rockfall 1 and
3 are visualized on the right hand side of Figure 5.2 in images which are reconstructed
from differences between successive snapshot taken from camera DOEC. This allows to see
the whole trajectory in a single image.
The seismic signals generated by rockfalls 1-3 are shown in Figure 5.3, together with im-
ages taken from camera CBOC. At the time of the shown images, all rockfalls are located
in the same area. The time is marked on the seismic signals by the vertical dotted red
lines R1, R2, and R3.
The camera images reveal that each of the rockfalls involves at least two boulders moving
downslope simultaneously. Their locations are marked by red ellipses. The associated ar-
rows indicate their direction of movement. We can see that while the boulders of rockfall
1 originate from below the camera position, boulders of rockfall 2 and 3 come from the
right hand border of the image. This corresponds to the mapped trajectories in Figure 5.2.
The waveforms of the signals differ accordingly to the different trajectories. Looking at
the signal on closest station BOR, amplitudes are strongest right in the beginning in case
of rockfall 1. In contrast, signals of rockfalls 2 and 3 show different shapes, in which the
strongest amplitudes are recorded later in the signal. As station BOR is at similar distance
from the starting positions of the two different trajectories (see Figure 5.2), the different
waveforms cannot be explained by source-receiver distance alone. It is possibly the source
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Figure 5.3 – Camera snapshots and seismic signals of the three rockfalls on the southwestern crater side. Top:
Camera images taken from camera CBOC of rockfalls 1, 2 and 3 at the time for which all rockfalls are in comparable
positions (compare with Figure 5.2). Trajectory and directions of the boulders are indicated by red circles and
arrows. Bottom: Seismic signals corresponding to rockfalls 1, 2 and 3. The vertical dotted lines R1, R2 and R3 mark
the time of the camera snapshot shown above. Blue shaded zones display the time windows of±4 s around R1,
R2, and R3 in which spectral station ratios of the signals are computed.

mechanism which dominates the waveforms. Rockfall 1 starts at the very steep flank right
below Bory crater. It is thus immediately accelerated very strongly resulting in strong
impacts. On the other hand, rockfalls 2 and 3 start on less steep flanks. It can hence be
assumed that their velocities are smaller in the beginning resulting in smaller amplitudes
at station BOR compared to the signals of rockfall 1.
Later on, the trajectories of the three rockfalls cross (see map in Figure 5.2 and snapshots
in Figure 5.3). At this point the spectral station ratios are compared in order to find
out if they are similar according to the similar source location. The spectral ratios are
computed from the signals in a window of ±4 s around the time of the shown snapshots.
Ratios computed from vertical ground velocity are shown by the blue lines in Figure 5.4
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(note that site amplification is already removed here). It can be observed that the spectral
ratios from the three events are indeed very similar across the whole frequency range for
all station pairs, i.e. BOR/BON, DSO/BON and SNE/BON.
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Figure 5.4 – Observed and simulated spectral ratios of vertical component. Vertical spectral ratios for BOR, DSO
and SNE in respect to BON. Blue lines (TW-R1, -R2, -R3) correspond to observed rockfall signals as shown before in
Fig. 5.3. Spectral ratios from synthetic seismograms are shown for a vertical force, a force normal to the slope and a
force tangential to the slope on the model with flat surface (flat) and with topography (topo). Prior to calculating
the ratio, site effects are removed and FFTs are smoothed using the function proposed by Konno and Ohmachi
(1998).

The spectral ratios are compared to simulations from a model with flat surface (top of Fig-
ure 5.4) and a model with Dolomieu topography (bottom of Figure 5.4). The dependency
of the ratios on the source direction is investigated. Three input force configurations are
tested, namely a vertical force, a force normal to the slope and a force tangential to the
slope in direction of the strongest slope gradient. Furthermore, the variability of the ratios
in regards to the source location is assessed by calculating the mean spectral ratio from 17
source positions on a grid of 10m spacing. The different source positions are illustrated
by blue dots in Figure 5.2.
The biggest difference between simulations on flat surface and topography can be observed
on ratio DSO/BON. While the flat surface model predicts ratios close to unity, the model
with topography contains amplified factors (values > 1), especially for frequencies above
7Hz (corresponding to fundamental Rayleigh wavelengths below 70m on the Lesage veloc-
ity model). This means that the topography causes stronger amplitudes at station DSO
with respect to station BON which are both at comparable distances from the source of
more than 500m (corresponding to at least seven wavelengths). This agrees very well with
the observed spectral ratios which cannot be explained by the flat model.
Other than this we can see that changing the source direction does not essentially influence
the spectral ratios from the model with topography, except for frequencies below 5Hz. The
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similarity at higher frequencies suggest that the ratios are dominated by the propagation
along the topography rather than by the source mechanism. Based on this finding, we can
estimate the source position independently of the source direction. This will be used in
the proposed method for localization estimation in the following, in which we will assume
a vertical input force. In contrast, on the model with flat surface, more influence can
is observed when changing the source direction. The ratios of the tangential force differ
systematically from the ratios of vertical and normal force. This is caused by the different
radiation patters from changing source direction, as illustrated in Figure 4.26 in Chapter
4.
The strong influence of the source direction on the flat surface model becomes more evident
on the horizontal components. Figures 5.5 and 5.6 show the spectral ratios calculated from
signals recorded on the north- and east-component, respectively.
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Figure 5.5 – Observed and sim-
ulated spectral ratios of north
component.
North-component spectral ra-
tios for BOR and SNE in re-
spect to BON. Blue lines (TW-
R1, -R2, -R3) correspond to ob-
served rockfall signals as shown
before in Fig. 5.3. Spectral ratios
from synthetic seismograms are
shown for a vertical force, a force
normal to the slope and a force
tangential to the slope on the
model with flat surface (flat)
and with topography (topo).

Again we can observe that the spectral ratios from the real signals are very similar be-
tween the three rockfall events (plotted by blue lines R1, R2, and R3). Comparing with
simulations from the model with flat surface, it is obvious that changing the source di-
rection has a strong effect on the spectral ratios. This can be in particular seen on the
east-component in Figure 5.6. As just mentioned above, the differences are caused by the
radiation patterns from different source directions. In contrast, ratios from the simulation
on the model with topography are less influenced by the source direction, especially at
frequencies above 5Hz. The ratios agree reasonably well with the observed ratios from
the rockfall signals. The strongest deviation is visible towards high frequencies on ratio
SNE/BON for the east-component (see bottom right in Figure 5.6). In comparison with the
observed spectral ratios, the simulated amplitudes measured at station SNE are strongly
underestimated with respect to station BON. On the one hand, this could be caused by
the simplified Earth model of the simulations, which does not take into account lateral
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soil heterogeneities. On the other hand, we could see from the videos that the rockfall
source is made of at least two boulders at slightly different positions. The recorded signal
is hence a superposition of the generated seismic waves. This is not considered for the
simulated spectral ratios which are computed from single forces. Furthermore, it is very
difficult to pick exact source positions based on the video. Therefore, rather than picking
source positions manually, we will establish an algorithm with which we can search for
the positions which best explain all observed station ratios. The algorithm is based on a
single force assumption which is a strong limitation of the method. We will see that the
source location estimation works best in the beginning of the rockfall, as the source is very
confined. Later on, when the rockfall source becomes spatially distributed, the uncertainty
of the estimation is increasing. However, the general movement towards the crater bottom
can still be inferred.
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Figure 5.6 – Observed and sim-
ulated spectral ratios of east-
component.
East-component spectral ratios
for BOR and SNE with respect
to BON. Blue lines (TW-R1, -
R2, -R3) correspond to observed
rockfall signals as shown be-
fore in Fig. 5.3. Spectral ratios
from synthetic seismograms are
shown for a vertical force, a force
normal to the slope and a force
tangential to the slope on the
model with flat surface (flat)
and with topography (topo).

5.4.2 Reciprocal SEM simulations

In order to explore a multitude of potential rockfall source positions without carrying out
a simulation for each of them, simulations are carried out reciprocally. This means that
the synthetic source is placed at the location of the seismometer and the wave field is
recorded at the actual source location. Potential rockfall source positions are confined to
a rectangular area at Dolomieu crater, illustrated in Figure 5.7. The area is sampled by a
grid of measurement points with 10m spacing.
After defining the points of measurement, simulations for each seismometer are carried out.
For this, a point source is placed at the position of the seismometer while the input force
direction is aligned with the component of the seismometer. In total, 10 simulations are
carried out: 3 × 3 simulations for three-component seismometers BON, BOR, and SNE,
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Figure 5.7 – Grid of stations for recip-
rocal simulations. The sampled area
is of dimensions 1200 m × 1000 m
(east×north). Sample spacing is 10 m,
resulting in 121 × 101 = 12221 grid
points.

and 1 simulation for single-component seismometer DSO. This is done for both the model
with Dolomieu crater topography and a model with flat surface for comparison.
The wave propagation is simulated on a domain with Lesage velocity profile as presented in
Figure 4.3 of Chapter 4. A Ricker wavelet of 7Hz dominant frequency is used as force-time
function.

Simulated station energy ratios

For the localization of rockfall sources, we will compare observed and simulated station
energy ratios. Here, we demonstrate the influence of topography on these energy ratios.
As an example, we simulate the vertical ground velocity generated by a vertical source.
For each station pair, the total kinetic energy ratio is computed at each grid position.
The total kinetic energy is the squared ground velocity (here on the vertical component),
integrated over the total duration of the signal. Note that for the demonstration here, we
use the unfiltered signal. For the localization of rockfalls afterwards, we will consider the
frequency dependency of the ratios by band-pass filtering the signal in frequency bands of
4Hz.
First of all, let’s have a look on the energy ratios from the model with flat surface. The
spatial distributions of ratios BOR/BON, DSO/BON, and SNE/BON are visualized in
Figure 5.8.
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Figure 5.8 – Station energy ratios from simulations on model with flat surface. At each grid position (see Fig. 5.7)
the ratio is computed between seismic energyEi at station BOR (left), DSO (middle), and SNE (right) and seismic
energyEref at reference station BON.
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We can observe bipolar pattern of the energy ratios with negative values towards reference
station BON and positive values towards the respective station in the numerator. Unity
of the ratios can be followed by a white line which represents the equidistant positions
between the station-pairs. In conclusion, the values are purely determined by the source-
receiver distances.
This is different for the energy ratios on the model with surface topography, displayed in
Figure 5.9. In general, the bipolar spatial distribution of ratios still persists as the source-
receiver distance still dominate the decay of seismic amplitudes. However, the patterns
become distorted due to the influence of the topography on the wave field.
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Figure 5.9 – Station energy ratios from simulations on model with flat surface. At each grid position (see Fig. 5.7)
the ratio is computed between seismic energyEi at station BOR (left), DSO (middle), and SNE (right) and seismic
energyEref at reference station BON. In comparison with energy ratios on the flat surface model shown in Figure
5.8, topography distorts the values.

Using the predicted spatial distribution of energy ratios from the simulation, we try to
better reproduce observed energy ratios and enhance the capability to locate the source
position. Here, we demonstrated the influence of topography on the unfiltered energy
ratios. For locating rockfall, we will band pass filter the signals in order not to blur infor-
mations from different frequencies. The energy ratios filtered in three different frequency
bands can be seen in appendix 5.7.1 from the model with topography.

5.4.3 Optimization method for source localization

After introducing the database of synthetic energy ratios in the previous section, we will
now propose an equation which allows to compare observed and synthetic energy ratios in
order to find the most probable source position. To do this, a probability value is associated
to each point of the grid presented in Figure 5.7.
The probability at each grid point is defined by the inverse of the error between synthetic
energy ratio Esimu

i /Esimu
ref and observed energy ratio Eobs

i,tw/E
obs
ref,tw, where ‘ref’ is the station

of reference and i is one of the remaining stations. As the rockfall source is moving, the
observed energy ratio is evaluated in time window ‘tw’. The error etw for each time window
is defined as follows:

etw =
1

NSta

NSta∑
i=1

∣∣∣∣∣log10

(
Esimu
i

Esimu
ref

÷
Eobs
i,tw

Eobs
ref,tw

)∣∣∣∣∣ , (5.1)

151



Chapitre 5 −Rockfall localization based on inter-station energy ratios

where NSta is the number of station pairs used for the calculation. Zero error is achieved
if simulated and observed energy ratios are equal. Using the logarithm in equation 5.1
ensures that the relative values between simulations and observations are equally spaced
around zero. This, combined with the absolute, results in an error estimation which is
independent on the station of reference.
In the following, the proposed method is tested on synthetic and real examples. The
probability of the source location is calculated by the inverse of error etw and scaled to a
probability density function (PDF) with relative values between 0 and 1.

5.5 Application

In the previous section we proposed a formalism to evaluate the relative probability of
potential source locations on a predefined grid of positions. We will now test this method
initially on a synthetic example and subsequently on real rockfall signals. Finally, the
probabilities of all time windows are combined in the attempt to reconstruct the full rockfall
trajectory.

5.5.1 Synthetic example

For the synthetic example, three vertical single force sources are defined at different po-
sitions well separated in time. Synthetic seismograms are simulated on the model with
topography.
The location is estimated using simulations from the model with topography and the model
with flat surface. This way we can make sure that the energy ratios are influenced by the
topography and not solely dominated by source-receiver distances, in which case the source
could be localized using the flat model. The energy ratios are calculated from the signals
filtered in a frequency band of 13-17Hz. We will later compare the results with estimations
using signals filtered in frequency bands 3-7Hz and 8-12Hz. The highest frequency band is
found to have the best spatial resolution due to the shorter wavelengths (15Hz correspond
to a fundamental Rayleigh wavelength of around 26m on the Lesage velocity model). Also
note that the time windows are chosen long enough so that the whole signal of a single
source is measured at each station. For the real rockfall, the time window will be shortened
in order to better separate successive source positions.
First of all, we calculate the source location probability using only the vertical compo-
nents. Having 4 stations available, error etw is calculated from NSta = 3 station pairs. The
resulting probability maps are shown in Figure 5.10 for the three source locations (P1, P2,
and P3), comparing the estimations using the model with topography (Topo) with the
flat model (Flat). The source location is positioned in the center of the red circle.
Using the simulations from the model with topography, the true source position is found
in all cases P1, P2, and P3 (observable by the dark purple dot in the center of the red
circles). This is not surprising as the station energy ratios are calculated from exactly the
same synthetic seismograms. However, what is more interesting is that the results are am-
biguous, meaning that several positions of high probability are found. On the other hand,
using the simulations from the flat model, the true source position is not found. Areas of
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Figure 5.10 – Localization of single vertical forces using vertical energy ratios. Synthetic test for localization of
three single vertical sources at different positions P1, P2, and P3. The source location is positioned in the center
of the red circle. Localization is carried out in frequency band 13-17 Hz using synthetic seismograms of vertical
component from a model with topography (top) and a model with flat surface (bottom).

high probability are located outside the red circles which have a diameter of around 90m.
This means that the station energy ratios are influenced by the topography and not only
determined by the source-receiver distance.
In order to reduce ambiguity of the results, the horizontal components are included in the
calculation. This way, we have NSta = 7 station pairs: 3 station pairs of vertical compo-
nent and 2 stations pairs for each north- and east-component as DSO only has a vertical
component. The resulting probability maps are shown in Figure 5.11, again for all source
positions (P1, P2, and P3), and using simulations from the model with topography (Topo)
and from the flat model (Flat).
Introducing the horizontal components reduces the ambiguity of the source position. Using
the model with topography, a single point of high probability is found at the true source
positions in the center of the red circles. In contrast, using the flat model, hardly any
source location of higher probability can be found when introducing the horizontal com-
ponents. This is due to the fact that a vertical source on a flat model does not generate
energy on the transverse components. This is related to the behavior already seen on the
spectral ratios for the horizontal components (see Figures 5.5 and 5.6). For certain source
directions, the predictions of the flat model were in strong disagreement with the observed
ratios, whereas a better agreement was found for the model with topography.
Finally we compare the source localization using different frequency bands. The probability
maps for frequency bands of 3-7Hz, 7-12Hz, and 13-17Hz are shown in Figure 5.12. The
localization is carried out with the simulations from the model with topography. Results
are compared using only vertical components (Z) and all three components (ENZ).
We can observe that the ambiguity of the localization reduces towards higher frequencies.
The low frequency band 3-7Hz show very blurred probability maps. This is related to

153



Chapitre 5 −Rockfall localization based on inter-station energy ratios

BON

BOR

DSO

SNE BON

BOR

DSO

SNE BON

BOR

DSO

SNE

0

1
PDF

BON

BOR

DSO

SNE BON

BOR

DSO

SNE BON

BOR

DSO

SNE

0

1
PDF

To
p
o

F
la
t

P1

P1

P2 P3

P2 P3

Figure 5.11 – Localization of single vertical forces using vertical and horizontal energy ratios. Synthetic test for
localization of three single vertical sources at different positions P1, P2, and P3. The source location is positioned
in the center of the red circle. Localization is carried out in frequency band 13-17 Hz using synthetic seismograms
of vertical and horizontal components from a model with topography (top) and a model with flat surface (bottom).
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Figure 5.12 – Localization of single vertical forces energy ratios in different frequency bands. Synthetic test
for localization of three single vertical sources at different positions P1, P2, and P3 after filtering the signals in
frequency bands 3-7 Hz (left), 8-12 Hz (middle), and 13-17 Hz (right). The source location is positioned in the center
of the red circle. Localization is carried out using synthetic seismograms from only vertical components (Z, top)
as well as vertical and horizontal components (ENZ, bottom) from a model with topography.

the longer wavelengths (5Hz corresponds to a fundamental Rayleigh wavelength of 116m
on the Lesage model) and thus reduced spatial resolution. The medium frequency band
8-12Hz shows similar estimation as from the highest frequency band. A really good result
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is found when considering all three components. Yet, using only vertical components leads
to slightly more ambiguity.
To summarize, station energy ratios are influenced by topography and can help to localize
single seismic sources with the method defined by equation 5.1. Ambiguity of the localiza-
tion can be reduced by considering both vertical and horizontal components. The spatial
resolution of the localization is enhanced by the use of higher frequencies which correspond
to shorter wavelengths.
The synthetic test showed the general capability of the method. However, it presents a
very special case in which the seismic sources are very well separated in time. In reality,
the seismic source of a rockfall can be much more complicated consisting of multiple blocks
or granular material imposing forces on the ground simultaneously at different positions.
In the following we will apply the method on a first example rockfall which consists only
of a few boulders and can be nicely observed on video.

5.5.2 Rockfalls at Dolomieu crater

Rockfall localization at given time steps

The localization method is tested on a rockfall on December 13, 2016, corresponding to
event 3 in Figure 5.2. The analysis is carried out at 6 different times a) to f) as defined on
the seismogram in Figure 5.13. Above the seismogram, the whole trajectory is visualized
as well as snapshots of times b) to e).
Time a) is right before the start of the rockfall. Time b) is after the detachment, when
movements can be detected on the video. At time c), the rockfall appears from behind a
small valley at the top of the crater wall. A total of three boulders are detectable time
d) on their way down towards the crater bottom. At time e), the third boulder arrives at
the bottom. No movement is detectable anymore on the video at time f). Yet, it can be
assumed that smaller granular material is still active on the flank, causing small amplitude
seismic signals.
The localization method is performed in the high frequency band of 13-17Hz. The energy
is calculated from the signals within a window of ±2 s around the defined times. The
window length should be chosen as small as possible in order to sample the moving source.
However, as we use the same time windows for the recordings at all stations, the whole
signal generated by a given source has to arrive at each of the stations within the time
window. For this reason a window length of 4 s was defined which seems an appropriate
compromise (see e.g. Figure 4.36 for arrival time and duration of signals from a single
source).
As concluded from the synthetic test in the previous section, the localization performs
best when considering all components and simulations from the model with topography.
To begin with, the real rockfall event is analyzed accordingly. The resulting source location
probabilities are shown in Figure 5.14 for the 6 successive time windows.
We can observe probable source locations at the southeastern crater side at time a). As
the rockfall has not started at that time, the source locations must be related to ambient
seismic noise. Then, after the start of the rockfall, the source probability moves westwards
in direction of the rockfall. However, the detachment position is wrongly localized outside
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Figure 5.13 – Camera images and seismic signal of rockfall on December 13, 2016. Top: Images taken from cam-
era DOEC. Image on the left shows the whole rockfall trajectory. Towards the right, snapshots at times b) to e)
are displayed. Rockfall positions are indicated by red circles, the direction of movement with red arrows. Bottom:
Vertical ground velocity vZ recorded at closest station BOR. Time steps a) to f) are marked by red vertical dashed
lines. Localization is performed in time windows of±2 s around these time steps. The signal is bandpass filtered
at 13-17 Hz.

the crater. The area of probable sources does not move significantly for time step c). At
time d), a movement in northeast direction is visible which continues till time e) which
corresponds to the time at which the third boulder has arrived at the bottom of the crater.
Time f) finds similar source positions as the previous two time steps.
All in all, we can observe that the area of probable source locations move during the
course of the rockfall. However, the locations do not correspond well with the true rockfall
trajectory. The offset might be caused by local site amplification at the stations which
are not considered in the simulations. For this reason, we perform the same analysis with
signals from which the site effects are removed. For this the site effects estimated from VT
seismic signals are used as presented in Figures 4.29 and 4.30 for vertical and horizontal
ground motion, respectively. The resulting localization probability maps are displayed in
Figure 5.15.
Is is visible that the localization is in better agreement with the actual rockfall position.
Right after the start of the rockfall, the source probability focused close to the position
of detachment. It then moves northwest at time c), before moving northeast towards the
crater bottom during times d) and e). At time e), after the last visible boulder arrived at
the crater bottom at time, a zone of probable source positions rest in the bottom part of
the trajectory. This can possibly be explained by movement of granular material which

156



5.5 −Application

BON

BOR

DSO

SNE

a) 11:08:57

BON

BOR

DSO

SNE

b) 11:09:03

BON

BOR

DSO

SNE

c) 11:09:15

BON

BOR

DSO

SNE

d) 11:09:43

BON

BOR

DSO

SNE

e) 11:09:55

BON

BOR

DSO

SNE

f) 11:10:15 0

1
PDF

ambient
noise

Figure 5.14 – Localization with seismic signals from which site effects are not removed. Localization of seismic
source at time steps a) to f) as defined in Figure 5.13. The color-scale represents the source location probability.
Blue arrows indicate the movement of the area of most probable source locations. Red shaded zone marks actual
rockfall trajectory, estimated from video. Signals are filtered in frequency band of 13-17 Hz. Both vertical and
horizontal components are employed. Simulations are carried out on model with topography.
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Figure 5.15 – Localization with site effect corrected seismic signals. Localization of seismic source at time steps
a) to f) as defined in Figure 5.13. Site effects estimated from VT signals are removed from vertical and horizontal
ground velocity (see Fig. 4.29 and 4.30 for site amplification functions). The color-scale represents the source lo-
cation probability. Blue arrows indicate the movement of the area of most probable source locations. Red shaded
zone marks actual rockfall trajectory, estimated from video. Signals are filtered in frequency band of 13-17 Hz.
Simulations are carried out on model with topography.

can not be detected on the video.
The results are now compared with estimations using simulations from the model with
flat surface in order to evaluate the benefit of taken into account the topography. For the
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localization with the flat mode, only the vertical components are considered because the
horizontal components are not well predicted from the vertical source (see discussion on
the synthetic example in section 5.5.1). This leads to NSta = 4 station pairs. The resulting
probability maps are shown in Figure 5.16.
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Figure 5.16 – Localization with site effect corrected seismic signals using simulations from flat model. Local-
ization of seismic source at time steps a) to f) as defined in Figure 5.13. Site effects estimated from VT signals are
removed from vertical and horizontal ground velocity. Simulations from the model with flat surface are used for
the localization (in contrast to the results shown in Figure 5.15). The color-scale represents the source location
probability. Blue arrows indicate the movement of the area of most probable source locations. Red shaded zone
marks actual rockfall trajectory, estimated from video. Signals are filtered in frequency band of 13-17 Hz.

In general, a similar behavior of the moving source location probability can be observed
as from the simulations with topography. However, comparing time b) at the beginning
of the rockfall, the probability from the flat model does not focus close to the position of
detachment. Instead, a very blurry zone of low probability is visible. This is similar for
time c). In fact, it is possible that the probability focuses outside the sampled rectangular
area. Then, for times d) and e) a focused area of high probability is observable moving
towards the crater bottom. It is located south of the actual rockfall trajectory. At time
f), again an unfocused zone of low probability is visible.
In general we could see that analyzing the station energy ratios in moving time windows
allows to monitor rockfall activity. The beginning of the rockfall can clearly be detected as
the location probability map is abruptly changing towards the position of the detachment.
At this time, when the seismic source is still very confined in space, taking into account the
topography seems to improve the focus of the method. Later, when the source becomes
more distributed in space, the localization is becoming more scattered. In the following we
will evaluate the localization of the whole rockfall by applying a sliding window analysis.
The reconstructed temporal evolution will be visualized and compared between analyses
using simulations from models with and without topography.
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Spatio-temporal rockfall evolution

In order to reconstruct the full rockfall trajectory, the localization method of equation 5.1
is performed using a sliding time window. Subsequently, results from all time windows
are combined at each potential source position by selecting the maximum probability over
time. In other words, for each grid point, the minimum error e between observed and
simulated energy ratios is defined by

e = min
tw

etw, (5.2)

where etw it the error in each time window ‘tw’ as defined in equation 5.1. The maximum
probability is the inverse of error e. The spatio-temporal evolution of the rockfall is then
visualized by plotting at each grid point both maximum probability and corresponding
time.
Figure 5.17 compares the localization from models without and with Dolomieu topogra-
phy (flat and topo, respectively). Time is represented by color whereas intensity gives the
probability of the source location. Only vertical components are used for both cases, i.e.
NSta = 4 station pairs. Signals were filtered in frequency band 13-17Hz and site effects are
removed. The time step of two successive time windows is set to 2 s. The window length
of 4 s is kept from before.
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Figure 5.17 – Estimation of spatio-temporal rockfall evolution from vertical components. Comparison of local-
ization using the flat model (left) and the model with topography (right). Color represents time, intensity repre-
sents probability of source location. Only vertical components are used for the localization. Seismic signals are
filtered in frequency band of 13-17 Hz. The signal recorded at the closest station BOR is plotted below so that time
steps b) to e) can be associated to colors (compare with Figure 5.13).

The localization using the flat model results in a probability distribution which is smooth
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in space but discontinuous in time (i.e. patches of colors change abruptly to a different
color). Looking at Figure 5.16, which shows the source location probability at certain time
steps, we can observe for example at time e) a localized area of high probability. A similar
patch at time e) can be recognized in Figure 5.17 in red color. The focalized areas of high
probability at certain at certain time steps leads to the discontinuous patches.
In contrast, the localization with simulations from the model with topography result in a
more continuous time evolution in which the colors change more smoothly. On the other
hand, the patterns are more scattered.
Analyzing the rockfall evolution in more detail, the model with topography seems to better
locate the detachment position in the beginning of the rockfall corresponding to time b)
and purple color. Probable positions are located close to the crater rim, even though south
of the actual position. Ambiguous positions are also found outside the crater. Position c) is
not very well mapped from neither of the two models. However, probable source positions
might also be overlaid by higher probabilities at later times. This is a limitation of the
method which assumes a continuous forward movement of the source position. We will
discuss about possible solutions for this later. Position d), corresponding to orange color,
is mapped too far south by the flat model. The model with topography finds positions of
high probability which are closer to the actual trajectory. Finally, at time e), correspond-
ing to the red color, the source positions found by the model with topography are spatially
strongly scattered. This can have different reasons. Firstly, source positions in this area
might be more ambiguous which is accordingly to the test on the synthetic example for
source position P3 (see Figure 5.10). Secondly, as the big boulders have arrived at the
bottom on the crater by time e), the seismic signals might not be dominated by a single
source anymore but rather consists of a superposition of spurious seismic sources from
granular material. Hence, as the method is based on the assumption of a single source, the
localization is flawed.
In general, the estimated locations from both models are south of the actual rockfall tra-
jectory. This might be caused by soil heterogeneities which are not perfectly accounted for
by the site effects. Nevertheless, the site effects estimated from the VT events significantly
improve the localizations. This is illustrated in Figure 5.18, where we compare localizations
of raw signals and signals from which the site amplifications are removed. The localization
is carried out using the model with topography and including the horizontal components.
This way, we can evaluate if including the horizontal components can improve the local-
ization above.
The differences between raw and treated signals are evident. Taking into account the site
effects moves the positions of high probability towards the actual rockfall trajectory.
Comparing the results with the results from the vertical components in Figure 5.17 shows,
that the localization is improved when additionally considering the horizontal components.
This is in particular true for position c) which corresponds to the blue color. While hardly
any probable source position was found using the vertical components only, the horizontal
components allow to map sources in good agreement with the true position. However, the
positions are still ambiguous which is visible by the spatially distributed source positions.
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Figure 5.18 – Estimation of spatio-temporal rockfall evolution from vertical and horizontal components. Com-
parison of localization using raw signals (left) and signals from which site effects are removed (right). Color rep-
resents time, intensity represents probability of source location. Vertical and horizontal components are used
for the localization. Seismic signals are filtered in frequency band of 13-17 Hz. The signal recorded at the closest
station BOR is plotted below so that time steps b) to e) can be associated to colors (compare with Figure 5.13).

5.5.3 Localization of further rockfalls

After testing in detail the localization method on the rockfall of December 13, 2016, we
now apply the method to different events. First of all, the two other rockfalls for which
we analyzed spectral ratios in section 5.4.1 are localized. This is interesting as all of them
are located in the southwestern part of Dolomieu crater, however, the detachment position
of rockfall 1 is located further north. This way we can test if the method can resolve the
different trajectories. Subsequently, we have a look on rockfalls examples on the northern
crater wall. Here, a rockfall consisting of single boulder impacts is compared to a rockfall
of fine granular material.

Rockfall in the southwestern part of Dolomieu crater

Here we localize the rockfalls from December 12, 2015, at 4:32 and at 10:48 corresponding
to events 1 and 2 in Figure 5.2. The localization method is applied using vertical and hor-
izontal components and energy ratios are compared with the simulation from the model
with topography. The resulting probability maps are shown in Figure 5.19 for both events.

Rockfall 1 (left hand side of Figure 5.19) is very well located in the beginning of the event.
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Figure 5.19 – Localization of rockfalls on the southwestern crater wall. Localization of rockfalls from December
12, 2015, at 4:32 (left) and at 10:48 (right) corresponding to events 1 and 2 in Figure 5.2. The corresponding seismic
signals (vertical ground velocity) recorded at the closest station BOR is plotted below. Vertical and horizontal
components are used for the localization, filtered in frequency band of 13-17 Hz.

It can be observed that the detachment phase which corresponds to the purple color is
correctly positioned below crater Bory. Subsequently, the localization follows the actual
trajectory in the right direction towards the east. However, with increasing time, the area
of probable source locations becomes larger. The end of the rockfall the most probable
source locations are mapped too far south on the wall of the crater instead on the crater
bottom. This is possibly related to a wrong assumption of a single force.
Nevertheless, it is nicely visible that trajectory of rockfall 1 can be distinguished from
rockfall 2. For the latter, which is very similar to the previously analyzed rockfall 3, the
position of detachment is located further south compared to rockfall 1. This suggests that
the method is able to resolve different positions of detachment. Later in time, due to the
increased spatial distribution of sources, the source location probabilities become more
scattered.

Rockfalls on the northern Dolomieu crater wall

We now shift from rockfalls located in the southwest to rockfalls located at the northern
wall of Dolomieu crater. Two events are chosen, namely a rockfall on January 22, 2017,
which consists of single boulder impacts, and a rockfall on June 14, 2016, which consists
of fine granular material flowing down the steep crater wall. The rockfall on January 22,
2017 is described in detail in 2.3 of Chapter 2. Again, vertical and horizontal components
are used for the localization as well as the simulations from the model with topography.
The resulting probability maps are presented in Figure 5.20.
The proposed method is able to correctly locate the two events on the northwestern crater

162



5.6 − Conclusion

BON

BOR

DSO

SNEBON

BOR

DSO

SNE

BON

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

0

1

P
D

F

BON

0 5 10 15 20 25 30
Time (s)

0

1

P
D

F
2017-01-22 - 10:27:20 -- boulders 2016-06-14 - 11:25:20 -- granular

Figure 5.20 – Localization of rockfalls on the northern crater wall. Localization of rockfall from January 22, 2017
(left), which is a constituted of single boulders, and from June 6, 2014 (right), which consists of fine granular mate-
rial. The corresponding seismic signals (vertical ground velocity) recorded at the closest station BON are plotted
below. Vertical and horizontal components are used for the localization, filtered in frequency band of 13-17 Hz.

wall. As before, the position of detachment is better resolved than the subsequent part
of the trajectory, for which the probable source locations are spatially scattered. It is
remarkable that source locations could also reasonably well be extracted from the seismic
signal generated by the granular flow, which is shown on the right hand side of Figure 5.20.
This is not intuitive as the localization method is based on a single force assumption. The
fact that a moving source position could still be mapped suggests that the recorded signals
are dominated by a confined area of maximum source energy. It has to be investigated in
more detail, if the maximum seismic energy which dominates the signal is generated right
at the forefront of the spreading mass.

5.6 Conclusion

We proposed a method for the localization of rockfalls which is based on energy ratios
between stations. The method is able to locate rockfalls which occurred within Dolomieu
crater and follow their spatial evolution over time. Considering topography enhances the
resolution of the localization, especially during detachment when the seismic source in very
confined in space. As the detachment is mostly located at top of the crater walls, it is
plausible to think that resolution is also improved on steeper slopes as their imprint on the
seismic signal might be very characteristic. To further investigate this, the method has to
be applied to other mountainous regions. As the topography can be retrieved easily and
accurately for example by airborne photogrammetry (e.g. Derrien et al., 2019), it should
definitely be considered for the localization of surface sources.
After the detachment phase, the localization becomes spatially scattered. This is possibly
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linked to the fact that the rockfall seismic source becomes more complex with multiple
impacts at different positions within short time windows. Indeed, the superposition of
multiple sources is not considered in the method and can bias the localization. With
regards to this limitation, the method performs remarkable well. Even for the granular
flow a moving source location could be identified. Localization might be improved by
correlating successive time windows. This way, former source positions could be identified
and removed from the new signal. Testing on synthetic rockfall signals can help in the
process to optimize the method. The synthetic tests carried out in this work only considered
single sources which were well separated in time.
In its current implementation, we suppose that the signal of a seismic sources arrives fully
within the defined time window at all stations. This is possible due to the relative positions
of the seismometers with respect to the rockfalls sources at Dolomieu crater. This might
be a limitation for other source-receiver configurations. However, if the region of interest is
defined and the seismic velocities known, a time shift for the windows at different stations
can easily be introduced. For practical purposes the method also has to be tested on
different numbers of seismometers in order to evaluate its performance if for example only
2 station pairs are involved.
Future refinements also include the combination of different frequency bands. Here we
predominantly analyzed the frequency band of 13-17Hz which was concluded to have the
best spatial resolution with respect to lower frequency bands. A joint analysis of several,
possibly also narrower, frequency bands could improve localization.
A huge benefit of the method is its simplicity of implementation. Once the impulse response
of the domain in regards to different seismic stations is simulated, localization is estimated
quickly without the need for complicated analyses such as precise arrival time picking. Its
potential use for continuous monitoring in real time is natural due to the sliding window
approach.
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5.7 Appendices

5.7.1 Band-pass filtered station energy ratios from simulations on model with topography

Figures 5.21, 5.22, and 5.23 show simulated energy ratios between station pairs similar as
Figure 5.9 in section 5.4.2. Here, synthetic seismograms are filtered in frequency bands of
3-7Hz, 8-12Hz, and 13-17Hz, respectively. It can be observed how the spatial variation
of energy ratios is blurred in the low frequency band and becomes sharper and of stronger
contrasts towards the high frequency band.
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Figure 5.21 – Station energy ratios from synthetic seismograms filtered at 3-7 Hz. Synthetic seismograms are
simulated on model with topography and filtered in a frequency band of 3-7 Hz. At each grid position (see Fig. 5.7)
the ratio is computed between seismic energyEi at station BOR (left), DSO (middle), and SNE (right) and seismic
energyEref at reference station BON.
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Figure 5.22 – Station energy ratios from synthetic seismograms filtered at 8-12 Hz. Similar as in Figure 5.21.
Synthetic seismograms are simulated on model with topography and filtered in a frequency band of 8-12 Hz.
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Figure 5.23 – Station energy ratios from synthetic seismograms filtered at 13-17 Hz. Similar as in Figure 5.21.
Synthetic seismograms are simulated on model with topography and filtered in a frequency band of 13-17 Hz.
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In this thesis we explore the potential information hidden in the high frequency seismic
signals generated by rockfalls. To do this, the wave propagation is numerically simulated
and compared with rockfalls signals recorded at Dolomieu crater on Piton de la Fournaise
volcano, La Réunion. In the following we review the findings and give directions for related
future work.

Discussion & Findings

Rockfall seismic signals can be used to retrieve information on event properties and dynam-
ics. For this, the seismic signal has to be linked to the rockfall seismic source. However,
high frequency seismic waves are strongly affected by soil heterogeneities and surface to-
pography during their propagation so that it can be difficult to interpret the recorded
seismic signals. We address this issue by numerically simulating the seismic wave field
using the Spectral Element Method (SEM).

For this purpose, a model domain is designed and meshed which represent the study site
of Dolomieu crater on Piton de la Fournaise volcano, La Réunion. This includes both
the surface topography and the seismic velocity profile of the subsurface. For the surface
topography, a Digital Elevation Model (DEM) of 10m resolution is used. The subsurface
velocity is implemented according to the generic velocity model proposed by Lesage et al.
(2018) for the shallow subsurface structure of volcanoes. The validity of this velocity profile
is verified by comparing theoretical and observed Rayleigh wave dispersion curves. The
latter are determined by means of ambient noise measurements at seismic antennas. Ad-
ditionally, spectral site amplification factors are analyzed in order to account for local soil
heterogeneities. This is realized by computing site-to-reference spectral ratios using seis-
mic signals generated by volcano-tectonic (VT) events. It is found that all components of
station SNE are strongly amplified in respect to stations BON and BOR. Single-component
station DSO also shows amplification on its vertical component. In order to test possible
influences from topography on the observed spectral ratios, spectral ratios are simulated
on a model with laterally smooth velocity profile and real topography. The results from
a plane wave of vertical incidence suggest that the observed spectral amplification factors
are not biased by topography.

The seismic wave propagation generated by vertical surface loads is simulated on flat
domains and compared between three different velocity profiles, namely a homogeneous
model, a model with a shallow low S-wave velocity layer and the Lesage velocity model. It
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is observed that in contrast to the homogeneous model, a major part of the seismic energy
propagates close to the surface in case of the heterogeneous models. This is due to reflec-
tions at the layer boundary and the velocity gradient, respectively. The decay of energy
measured at the surface is studied as a function of source-receiver offset. While the energy
decay on the homogeneous model can be related to the propagation of surface waves, it is
influenced by body waves in the case of the heterogeneous models. Finding a relation of
energy decay as a function of distance can help to estimate the totally generated source
energy. This is of interest as the seismic energy generated by rockfalls can for example be
related to their volumes.
For the homogeneous model, the fact that mainly fundamental mode Rayleigh waves are
measured by a seismic station located at the surface makes it possible to analytically derive
an equation which back-calculates the total energy radiated by the source. For this, wave
partitioning factors as well as frequency dependent penetration depths are determined de-
pend on the underlying medium properties.
The superposition of different wave types measured at the surface in case of heterogeneous
media complicates the estimation of the source energy. For the Lesage velocity profile,
fundamental as well as 1st mode Rayleigh waves are identified. Additionally, body waves
are measured at the surface. As the different waves types attenuate differently with dis-
tance, their relative contribution to the measured signal changes with distance. It is for
this reason that the energy calculation has to be carried out carefully. We find that in
the first 1500m fundamental Rayleigh waves dominate the signal. Consequently, a good
source energy estimation can be achieved by only considering fundamental Rayleigh waves.
Estimation can be improved up to 2000m by assuming both fundamental and 1st mode
Rayleigh waves. For this, their relative contribution as a function of offset has to be con-
sidered. Using the surface wave assumption at larger offsets leads to on overestimation of
source energy which is growing exponentially with distance. This is due to the increasing
contribution of body waves which are generally associated to lower attenuation factors due
to higher propagation speeds and quality factors. When neglecting the dispersive nature
of surface waves, a strong over- or underestimation of the source energy can already be
obtained at short offsets. For this reason, it is advisable to keep a frequency dependent
attenuation factor even if the group velocity is determined for a dominant frequency. Fur-
thermore, at short distances (up to 1500m) it is less severe to overestimate the dominant
frequency, since the too high velocities of lower frequencies lead to a strong overestimation
of seismic energy. In contrast, at offsets between 1500m and 3000m it is safer to under-
estimate the dominant frequency. Otherwise, the too high attenuation factors of higher
frequencies result to exponentially growing overestimation of the source energy.

The derived equations for the estimation of source energy are generally only valid for flat
surfaces. Topography can modify the seismic amplitudes and thus falsify the energy esti-
mations. To avoid this, a topography correction factor is proposed to be introduced in the
equations. This correction relates the actual measurements on the topography to reference
measurements on a flat surface. It is determined by the ratios of simulated seismograms
from a model with flat surface and with topography. This way, it is expected that the
source energy estimations from different seismometers are more coherent which was veri-
fied in a first example.
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Based on the same principle, namely the ratio of simulations from models with flat surface
and with topography, the influence of topography on the wave field from a surface source is
investigated in detail. Surface waves are exposed to constant interactions with topography
as they propagate along the surface. The resulting scattering and diffraction is dependent
on the underlying medium. For example, energy scattered along the topography on the
homogeneous medium can be radiated down into the subsurface leading to a strong deam-
plification by factors up to 20 of the energy measured at the surface in respect to a flat
surface. In contrast, as more energy is kept close to the surface on the Lesage model due
to the velocity gradient, the scattering from the topography results in prolonged ground
shaking. For this reason, deamplification is more moderate with factors up to 10.
It is found that seismic wavelengths are affected by a wide range topography characteristic
lengths. On the one hand, it is shown that amplitudes of seismic wavelengths which are five
times larger than the topography variations are modified. On the other hand, waves are
influenced by crater diameters which are 30 times bigger than the seismic wavelength. In
order to investigate the principal cause of this influence, a synthetic crater study is carried
out. The objective of this study is to separately evaluate the influence of crater depth and
topography curvature. The results suggest that curvature has a stronger influence on the
wave field.
In general, the topographic amplification has to be evaluated carefully due to its strong
spatial variability. Simulation of the wave propagation on 2D profiles might result in an
oversimplified picture. Furthermore, it is important to be aware that the influence of to-
pography is dependent on the source position. For surface waves from shallow sources,
the influence of topography can be considered as a propagation effect rather than a site
effect since they are affected along the whole propagation path. The comparison with sim-
ulations from a plane wave of vertical incidence demonstrate that the topography induced
amplification is substantially different for deep sources.

Finally, simulations are compared with real seismic signals generated by rockfalls at Dolomieu
crater. First of all, spectral ratios between station-pairs are analyzed. This way, the source
signature is removed and simulations can be compared to observations without the need
for a precise source description. Yet, radiation patterns related to the directionality of the
source can influence the ratios. Analyzing multiple rockfalls at similar locations indicate
that the spectral ratios are characteristic to the source position. Further, simulated spec-
tral ratios from a flat model show strong dependency on the source direction. In contrast,
the spectral ratios of different source directions are very similar in case of a model with
topography. The comparison with the observed spectral ratios demonstrate a good agree-
ment in case of the model with topography, whereas the spectral ratios can deviate strongly
in case of the flat model dependent on the source direction which can be explained by a
strong influence of the related radiation patterns. This suggest, that the spectral ratios
are not only characteristic to the source position but also dominated by the wave propa-
gation along the topography rather than the source direction. Note that prior to compare
simulations and observations, the site amplification factors estimated from VT events had
to be removed.

The characteristic of inter-station ratios with respect to the source position and the prop-
agation along topography can be used for the localization of seismic sources. With the
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assumption that the ratios are independent on the source direction, simulations from a
vertical source are compared to observations in order to find the source position which
can best explain the observed ratios. Rather than comparing the whole spectral ratios,
the ratio of energy averaged over a frequency band of 4Hz is used. A synthetic test of
the method reveals that the least ambiguous localization is achieved by considering energy
station ratios from both vertical and horizontal components. When using simulations from
a flat model, localization shifts away from the true source position and consideration is de-
graded when horizontal components are considered due to the wrongly predicted radiation
patterns.
Applying the method to real rockfall signals at Dolomieu crater shows, that simulations
form the model with topography can estimate the position of detachment reasonably well.
The localization becomes more scattered at later times. This is probably due to the su-
perposition of spatially distributed sources which are not considered in the method.
The sliding window approach of the proposed localization method leads to an extremely
simple implementation without the need of complicated analyses such as the picking of
arrival times which involves large uncertainties in the case of dispersive surface waves. The
impulse response of an area of interest only has to be simulated once for each seismometer.
Once this is done, the method can potentially be used to monitor rockfall activity in real
time thanks to the sliding window approach.

When directly comparing simulated and observed seismic signals (i.e. not via station ra-
tios), the seismic source has to be described in terms of temporal and spatial variation as
well as amplitude. In order to gain insight into the distributed force field imposed by gran-
ular flows on the ground, simulations are conducted using the thin-layer model SHALTOP.
The generated forces are related to the acceleration and deceleration of the flow as well
as the gravitational force from the mass. Simulations on the real topography of Dolomieu
crater show that surface roughness as well as friction coefficient influence the frequency
content of the exerted forces. This is because both of the determine the flow speed and
the acceleration and deceleration of the mass. However, the model is not able to reproduce
the high frequency content above 1Hz of the rockfall seismic signals recorded at Dolomieu
crater. This is because impacts of single particles are not considered with this model.
In order to estimate the forces generated by impacts of single boulders, the Hertz contact
theory is introduced. Maximum impact force F0 and the corresponding impact time Tc
and upper corner frequency fc are defined and their dependency on the impact parameters
is discussed. The dependencies are again summarized in table C1.

Table C1 – Dependency of impact force, duration and corner frequency on impact parameters. Behavior of im-
pact force F0, impact duration Tc and upper corner frequency fc as function of sphere mass m, sphere radius
R, effective Young's modulusE, impact speed vn and inelasticityP . Dependencies are derived from equations
2.5 and 2.10 except for the dependency on inelasticityP which is deduced from Farin et al. (2015).↗: increasing
value;↘: decreasing value.

m↗ R↗ E ↗ vn ↗ P ↗

F0 ↗ ↗ ↗ ↗ ↘
Tc ↗ ↘ ↘ ↘ ↗
fc ↘ ↗ ↗ ↗ ↘
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Analyzing single impact seismic signals at Dolomieu crater, the predictions from the Hertz
model is used to interpret signal characteristics and amplitude. For this, a rockfall example
of two well separated impacts is selected. The first impact shortly after the detachment
and contains less high frequency content (>20Hz) than the second impact which followed
after a free fall of around 4 s. As the boulder accelerates during the free fall the impact
speed of the second impact is higher. The respective impact speeds vn are estimated based
on video material. This way, assuming similar ground parameters at the two impact po-
sitions, the upper corner frequency fc could be determined. As a result, the missing high
frequency content in the first impact is explained by the smaller impact speed which can
be directly inferred from Table C1.
With the estimated impact speeds at hand, the maximum impact forces F0 are calculated.
These are used to calibrate the input force of the seismic wave frequencies. As a result,
the synthetic seismograms are of similar magnitude as the observed seismograms.
Finally, the simulated and observed waveforms are compared. The simulations from the
model with topography and Lesage velocity profile is able to reproduce the complexity of
observed waveforms. It is emphasized that reproduction is not only limited by the estima-
tion of the source-time function, but also by the variability of the waveforms with source
direction as well as source position. The comparison of simulations and observations is
proceeded by a polarization analysis with the attempt to separate successive wave phases.
Again, the topography is able to better reproduce the observed polarization but an ex-
act fitting is limited by the variability of the polarization with source position and source
direction.

Limitations & Perspectives

The seismic wave propagation is simulated on a domain with realistic topography and a
subsurface model which adequately represents the average shallow subsurface structure of
volcanoes. This velocity profile was validated by dispersion curve estimation from antenna
measurements. However, the measurements only allowed dispersion curve determination
up to 6Hz. A smaller antenna should be deployed to validate the model at higher fre-
quencies. Furthermore, the velocity model is implemented in a way so that it follows the
surface topography, thus assuming lateral continuity of the model. This assumption could
be verified by measuring dispersion curved at multiple positions. Also, ambient noise cross-
correlations could help to identify lateral soil heterogeneities.
Local soil heterogeneities at the position of the stations are accounted for by estimating
spectral site amplification factors using signals generated by VT events. The good agree-
ment between simulated and observed inter-station spectral ratios after deconvolution of
the observed signals with the estimated site effects suggests that the functions correctly
estimate the site amplification. This can also be concluded by the improved rockfall local-
ization after site effect removal. However, it is not evident that rockfall generated surface
wave experience the same amplification as the upwards traveling seismic waves from deep
VT sources. In fact, horizontal and vertical amplification factors could be interchanged
due to the different direction of propagation. In order to evaluate the amplification on
rockfall generated surface waves, the wave propagation has to be simulated on a model
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with local heterogeneities.
No evidence for a scattering related seismic coda is found on the rockfall signals. Yet,
scattering could still slightly modify amplitudes and prolong ground shaking. To evaluate
the effect, the seismic wave propagation can be simulated on a model with a stochastic
variability of the velocity described by a fractal distribution as for example done by O’Brien
and Bean (2009).

The estimation of the seismic energy is derived for the homogeneous model and the Lesage
velocity. The validity of the equations have to be tested on other velocity profiles. Then,
the theory has to be validated against field measurements. In case of the latter, empirical
attenuation factors can be estimated and compared with theoretical values.
The method of the energy estimation in case of topography using a correction factor has
to be further developed. This includes the consideration of horizontal components and
how they can be related to the flat reference model. A further complication is represented
by the source directionality and the related radiation patterns. In fact, if the signals are
dominated by the propagation along the topography as could be seen by the comparison
of observed and simulated spectral ratios, the energy estimation might be more robust on
a topography than on a flat surface in the case of an unknown source direction.
All these issues can be addressed with the help of synthetic rockfall signals for which the
exact source energy is known. To begin with, single point forces can be used to test the
energy estimation on topography. Subsequently, the effect of an distributed source can
be investigated. For this, rockfall seismic sources can be numerically modeled. However,
insight in the limitations of the energy estimation method can also be evaluated by super-
posing point sources. An example for a synthetic rockfall signals is shown in Figure C1
for which point sources have been selected at different positions. For each position, a start
time and an amplitude is defined. Here, all the point forces are described by a 7Hz Ricker
wavelet. In a first test, such a signal is totally sufficient to evaluate the performance of the
energy estimation. Later on, more complicated synthetic rockfall signals can be designed.

The synthetic rockfall signal can also be used for developing the localization method. A
synthetic test of single point forces has already been performed. However, a strong limita-
tion of the method is the assumption that a dominant single source is measured within a
given time window. This is because the observed energy ratios are compared to simulated
energy ratios at a single position. Using synthetic rockfall signal, the limitations of the
method can be evaluated. Furthermore it can be tested, how energy ratios from differ-
ent frequency bands can best be combined to achieve optimal localization. For practical
purposes it is also of interest how the method performs with different numbers of station
pairs as well as for different source-receiver constellation. Furthermore, the performance
of the method regarding different topographies has to be tested. An exciting hypothesis
is that resolution is enhanced for steeper slopes as their imprint on the signals might be
more characteristic.

We showed that the influence of topography is very prominent in case of shallow sources
and the generated surface waves. The present thesis is focused on the Dolomieu crater
topography on Piton de la Fournase volcano. The effect of topography should also be eval-
uated for different surface geometries. This is especially important when seismic signals
from surface sources are analyzed. A first idea of the topography effect can be obtained by
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Figure C1 – Synthetic rockfall example. To create a synthetic rockfall signal with moving source, the positions
of single point sources are selected. These are mark by the red dots on the map on the right hand side. Subse-
quently, a time shift and an amplitude is defined for each source. The resulting superposition of the single source
synthetic seismograms is shown on the right hand side. The synthetic signals are shown for vertical ground ve-
locity at stations BON, BOR, DSO, and SNE.

computing the energy ratio between simulation from a model with flat surface and with
surface topography. An example of a different study site is shown in Figure C2, where
the topography induced energy amplification is calculated on the topography of Stromboli
volcano. Mainly deamplification is of the energy is observable in respect to a flat reference
model. However, note that a homogeneous velocity model is used. As could be seen from
the simulations on Dolomieu crater, a heterogeneous velocity model can strongly influence
the amplification pattern.
Finally, the seismic wave propagation generated by a distributed rockfall source can be
simulated. For this, the temporally varying and spatially distributed force field generated
by rockfalls has to be modeled. As a continuum model such as SHALTOP hardly generates
high frequency forces above 1Hz, a discrete model can be used. Alternatively, the basal
force field of the continuum model might be used as envelope within which stochastic high
frequency impulses are defined. Once the distributed force field is modeled, it can be used
to define the input source in the wave propagation model. As discussed in Chapter 3,
the implementation in SEM of the surface source on the topography is easily realized by
defining non-zero boundary conditions.
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Chapter A

Annexes

A.1 The discrete Parseval's theorem

The Fourier transform of a continuous function x(t) is written as

x̂(ω) =

∫ ∞
−∞

x(t)e−iωt dt. (A.1)

For a finite sequence of N sampling points separated by time step ∆t, the integral becomes
a summation over N :

x̂(ω) =

N−1∑
k=0

x[k]e−iωk∆t ∆t. (A.2)

The sequence can be regarded as periodic with the fundamental frequency ω0 determined
by the total duration T of the sequence: ω0 = 2π/T = 2π/N∆t. With N sample points,
the periodic cycle can be subdivided into N frequencies:

ω = 0, 1 · 2π

N∆t
, 2 · 2π

N∆t
, ..., n · 2π

N∆t
, ..., (N − 1) · 2π

N∆t
. (A.3)

Note that ω = 0 corresponds to the average of the data. Evaluating equation A.2 at these
frequencies only gives the discrete Fourier transform (DFT):

x̂[n] =

N−1∑
k=0

x[k]e−in
2π
N
k ∆t, withn = 0, (N − 1). (A.4)



With the discrete Fourier transform by hand, we can now show Parseval’s theorem for a
discrete sequence. For this, we

|x̂[n]|2 =
N−1∑
k=0

x[k]
N−1∑
k′=0

x∗[k′]e−in
2π
N

(k−k′) ∆t2 (A.5)

=
N−1∑
k=0

x[k]
N−1∑
k′=0

x∗[k′]e−in
2π
N

(k−k′) ∆t
1

N∆f
, (A.6)

where the relation ∆t = 1/N∆f was used which can be deduced form the frequency series
in equation A.3. Rearranging the terms and summing over all frequencies leads to

N−1∑
n=0

|x̂[n]|2 ∆f =
1

N

N−1∑
k=0

x[k]

N−1∑
k′=0

x∗[k′]

N−1∑
n=0

e−in
2π
N

(k−k′) ∆t. (A.7)

Making use of the formula for a finite geometric series
∑N−1

n=0 ar
n = a(1−rN )

1−r , the inner sum
on the right hand side can be rewritten as

N−1∑
n=0

e−in
2π
N

(k−k′) =
1− e−i2π(k−k′)

1− e−i2πN(k−k′)/N = Nδkk′ , (A.8)

where δkk′ denotes the Kronecker delta which is 1 if k = k′ and 0 elsewhere. It follows
directly

N−1∑
n=0

|x̂[n]|2 ∆f =
N−1∑
k=0

|x[k]|2∆t. (A.9)
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