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Abstract

Ovarian cancer is the seventh most common cancer in women with five-year survival rates of
less than 45%, and only 20% of cases are detected at early stages of the disease. Major
challenges still exist to treat this lethal disease.

The development of new drugs that target better cancer cells and reduce side effects is highly
needed. Selenium at high doses has been shown to act as a cytotoxic agent, with potential
applications in cancer treatment. However, clinical trials have failed to show any
chemotherapeutic value of selenium at safe and tolerated doses (<90 pg/day). To enable the
successful exploitation of selenium for cancer treatment, | evaluated inorganic selenium
nanoparticles (SeNP), and found them effective in inhibiting ovarian cancer cell growth. In both
SKOV-3 and OVCAR-3 ovarian cancer cell lines SeNP treatment resulted in significant
cytotoxicity. The two cell types displayed contrasting nanomechanical responses to SeNPs,
with decreased surface roughness and membrane stiffness characteristic of OVCAR-3 cell
responses. In SKOV-3, cell membrane surface roughness and stiffness increased, both are
properties associated with decreased metastatic potential. Very excitingly |1 made the novel
discovery that SeNPs dramatically increase histone methylation at three histone marks, namely
H3K4, H3K27 and H3K9. This effect was partially blocked by pharmacological agents that
blocked histone methyltransferase (HMT) function. Gene expression profiling of SeNP treated
cells through RNA sequencing demonstrated that Se caused upregulation and downregulation
of HMTs expression suggesting one mechanism for its ability to alter histone methylation.
Further interrogation of RNA seq data showed the SeNPs impact on the expression of genes
linked to hallmarks of cancer such as DNA repair activation, ROS response, extracellular matrix
organization. The beneficial effects of SeNPs on ovarian cancer cell death appear to be cell type
dependent, and due to their low in vivo toxicity, offer an exciting opportunity for future cancer
treatment.

Finally, following on from recent studies in breast and colorectal cancer patients revealing that
measurement of circulating copper isotopes (®3Cu/®®*Cu ratio) can be related to cancer
development I investigated this in biosamples from ovarian cancer patients (blood and tissue).
A significant decrease in copper isotopic ratios in the serum of cancer donors was observed
demonstrating the potential effectiveness of 83Cu/®*Cu for the blood-based detection of ovarian
cancer.



Résumé

Le cancer des ovaires est le septieme cancer le plus commun chez les femmes dont le taux de
survie a 5 ans est en deca de 45% et dont le taux de détection des premiers stades de
développement est inférieur a 20%. Avant d’arriver a un traitement, de nombreux défis restent
a relever.

Le développement de nouveaux traitements ciblant spécifiquement les cellules cancéreuses en
réduisant les effets secondaires liés au traitement est nécessaire. Pour cela, le Sélénium a été
¢tudié et a démontré a forte doses d’étre efficace contre les cellules cancéreuses in vitro. De
plus, les essais cliniques ont montré que I’utilisation de doses tolérables de sélénium
(<90ug/jour) n’avait pas d’effet thérapeutique contre le cancer. Le développement de nouvelles
formes de sélénium afin d’augmenter les doses administrées est donc nécessaire afin d’atteindre
I’effet thérapeutique souhaité. Au cours de cette thése j’ai mesuré 1’effet de formes agrégées de
sélénium appelées nanoparticules et démontré leur capacité a inhiber la croissance de cellules
cancéreuses ovariennes. Dans les lignées cellulaires cancéreuses ovariennes SKOV-3 et
OVCAR-3, le traitement aux SeNPs a déclenché la mort cellulaire. La mesure des propriétés
nanomécaniques de ces deux lignées cellulaires apres traitement a démontré un effet différent
des SeNPs en fonction du type cellulaire. Les cellules OVCAR-3 ont vu diminuer leur rugosité
de surface ainsi que leur rigidité cellulaire alors que les cellules SKOV-3 ont augmenté leur
rigidité et leur rugosité, ces deux caractéristiques étant liées a une diminution de leur potentiel
métastatique. De plus, le traitement aux SeNPs a augmenté de maniére considérable la
méthylation de trois lysines de I’histone 3 H3K4, H3K27 et H3K9. Cette méthylation a pu étre
bloquée par I’utilisation d’inhibiteurs de méthyltransférases spécifiques de ces marqueurs.
L’étude du profil d’expression des deux lignées cellulaires apres traitement a démontré le fait
que le sélénium induit des modifications d’expression des méthyltransférases nous permettant
de suggérer un mécanisme d’action du sélénium. De plus les SeNPs ont démontré leur impact
sur I’expression marqueurs cancéreux comme ’activation de la réparation de I’ADN, la réponse
aux especes réactives de I’oxygene, la réorganisation de la matrice extracellulaire. L’effet des
SeNPs semble dépendant du type cellulaire cependant leur bonne tolérabilité in vivo offre de
bonnes perspectives d’utilisation en tant que traitement du cancer.

Enfin, dans la continuité de récentes études sur le cancer du sein le cancer colorectal
s’intéressant & la mesure des isotopes du cuivre (rapport $Cu/®>Cu) et démontrant leur potentiel
dans la détection du développement de ces cancers, j’ai pu mesurer le contenu isotopique de
biopsies et de prélevements sanguins issus de patientes atteintes de cancers ovariens. J’ai pu
mesurer une diminution significative du rapport des isotopes du cuivre dans le sérum des
patientes cancéreuses en comparaison avec des témoins sains démontrant ’efficacité de
détection des cancers par la mesure des isotopes du cuivre dans le sang.
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Introduction

Introduction

I. Ovarian cancer
1. The disease

Cancer is characterized by an abnormal and uncontrolled growth of cellst. This transformation
is due to genomic instability and specific gene mutations that have been linked to cancer cells
being able to adapt to, and regulate, their local micro environment®. Tumorigenic processes are
distinct and have been well characterised, exhibiting hallmarks linking to biological functions
that are unique to cancer cells! (Figure 1). Cancer cells have a unique ability to sustain
proliferative signalling by activation of growth factors expression, evade growth suppressors
notably p53 (signalling DNA damages) mutation, activate invasive and metastatic processes,
enable replicative immortality, induce angiogenesis to increase oxygen and nutrient
availability, and resist cell death by circumventing apoptosis?. In addition, cancer cells have
been shown to deregulate their energy metabolism and avoid the immune cell surveillance
mechanisms?.

Sustaining Evading
proliferative growth
signaling suppressors

Avoiding
immune
destruction

Deregulating
cellular

Resisting Enabling
cell replicative
death immortality
Genome Tumor-
instability & ~promoting
mutation inflammation
Inducing Activating
angiogenesis invasion &
metastasis

Figure 1 Hallmarks of cancer?

Cancer cells are cells that divide without control and resist to cell death due to genomic
instability. The growth of tumours can lead to induced angiogenesis responsible for metastatic
dissemination.
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I. Epidemiology
Ovarian cancer is the most common cancer in women with 295,400 cases in 2018 and the 6"
most lethal with 184,800 mortalities reported worldwide that year®. The incidence has been
increasing during the last decade with 1.3% of the women in the UK and 3.8% in France being
affected by the disease®. Ethnicity has been correlated with the prevalence with 1.64 times more
black women than other ethnic groups developing ovarian cancer.

Different symptoms of early stage such as abdominal and pelvic pain, irregular menarche,
change in bowels habits and increase urinary frequency® have been identified however these
are not specific to ovarian cancer. More severe symptoms are often indicating that ovarian
cancer has developed. Survival rates of late detection drops with only 35% of UK patients
surviving within 5 years® whereas the early detection lead to an 90% chance of survival®’.
Despite the fact that the survival rate have been increasing in the last 20 years due to better
detection and development of new chemotherapies (PARP inhibitors for example), amongst the
high grade carcinomas ovarian cancer remains the deadliest gynaecological cancer (35%
survival rate) compared to an 80% 5-years survival for breast cancer, 70% for endometrial
cancer and 60% for cervical cancer®®.

ii.  High Grade Serous Ovarian Cancer (HGSOC)

Risk Factors

Ovarian cancer most often affects women between the ages of 75 and 80 years %, Two
hypotheses have been suggested to explain the development of High Grade Serous Ovarian
Cancer (HGSOC). Firstly ovulation creates a lesion of the ovarian epithelium that needs to be
repaired. This highly inflammatory microenvironment may lead to DNA damage, replication
errors and malignant transformations®*2, Incessant ovulation with an early menarche has been
related to an increase prevalence of low grade ovarian cancer**°.

Secondly, the development of Ovarian Cancer has been related to the onset of menopause.
During menopause the ovaries are unable to respond to hormonal stimuli stopping the feedback
of gonadotropins®®. The higher level of oestrogen compared to progesterone then results in
higher oestrogen exposure by ovarian epithelial cells increasing the risk to develop ovarian
cancer>t’.

Obesity is another risk factor due to high androgens which can be converted into oestrogen in
adipose tissue by aromatase!'1"18, A decrease in blood sex hormone binding globulins can also
result in an increase in the relative amount of free oestrogen. Finally, the use of hormonal
therapy such as infertility drugs (gonadotropin releasing-hormone antagonists or
clomiphene)!®1” have been determined as risk factors.

Hereditary factors are also linked to an overall 5% to 10% *’ risk of developing OC when one
immediate relative has had OC . This is due to the inherited mutation of BRCA genes which
increases the chance to develop OC for women of the age of 70 with BRCAL mutation by 63%

2
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and by 27% for BRCA2 mutation!®. BRCA1 and 2 are involved in DNA repair, maintenance of
genome stability and function as tumour suppressors?’. The use of progesterone-based oral
contraceptives for at least 4 years has been related to a decrease of ovarian cancer risk by 50%
in women with a BRCA mutation?! by blocking ovulation. Genetic mutations are not limited to
BRCA1/2 genes inducing instability in genome?? with deficiencies in homologous
recombination, impairing the repair of the DNA also reported?®. Several suppressor genes and
oncogenes have been associated with ovarian cancer. P53 and mismatch repair (MMR) or
double strand break repair system (CHEK, RAD1) mutations have also been related to cancer
development*147,

Finally, epigenetic modifications have also be related to malignant development and
progression of ovarian cancer. Hypermethylation of BRCAL and 2 promoters has been related
to a decrease in the efficacy of DNA repair of spontaneous mutations in ovarian epithelial
cells?*. Hypermethylation of CpG islands have been found to be related with tumour
development in comparison with normal tissues®.

Metastasis

Cancer metastasis is the leading cause of cancer death accounting for 90% of ovarian cancer
cases?®. Ovarian cancer has a unique mode of development, disseminating locally in the
peritoneal cavity and rarely beyond?”?®, Peritoneal dissemination occurs by movement of
ovarian cancer cells in the peritoneal fluid (also called ascites)?°. Dissemination happens either
when the tumour has grown extensively in the organ and caused rupture of the ovary surface or
when tumour arises from the surface of the ovary. This dissemination is accompanied by
molecular alterations in cells and notably through a cadherin switch involving overexpression
of E-cadherin (Figure 2), and activation of N-cadherin expression which is a mesenchymal
marker and vimentin expression®°. Moreover the phenotype of the cells is modified as they
undergo an epithelial to mesenchymal transition 2632,

Once in the peritoneal cavity, ovarian cancer cells undergo two different paths. Isolated cells
undergo anoikis as they lost interaction with extracellular matrix and other cells while
multicellular aggregates®® formed in the peritoneal cavity form spheroids that can seed in
multiple distal sites. The invasion of secondary sites is facilitated by the remodelling of the
extracellular matrix of the mesothelial lining at these locations by matrix metalloproteases.
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Figure 2: Modification of the membrane expression profile of the cells in the primary tumour
to their dissemination®.

Dissemination of ovarian cancer cells from the primary tumour to the peritoneal cavity through
ascitic fluid is accompanied with cadherin switch allowing the formation of spheroids which
can land on the mesothelial lining of the abdominal cavity. This attachment leads to a second
set of modifications of the cellular properties in their interactions with other cells and cancer
cells acquire the ability to go through the peritoneum.

The colonisation of secondary sites involves the interaction between ovarian cancer cells and
mesothelium cells of the peritoneal cavity?® switching the cancer cells from a proliferative to
an invasive phenotype that is translated by an increase of integrin expression®2,

The adhesion of the spheroids on the surface of the mesothelium causes a decrease of E-
cadherin and increase of CD443%3, This docking triggers the expression of fibronectin by the
mesothelium increasing the interaction with the integrin of the cancer cells®®. CD44 and
L1CAM are crucial for secondary tumour formation®®. Blocking CD44 or LICAM expression
has been shown to reduce mesothelial adhesion®’ (Figure 2). Once docked the spheroids initiate
infiltration and spread to surrounding tissues.

The dissemination through the peritoneum is a passive mechanism involving the circulation and
accumulation of ascitic fluid?’. In comparison with the surrounding environment of other solid
tumours, the malignant ascitic fluid accumulating in the peritoneal cavity during ovarian cancer
progression is uniquely constituted forming of highly inflammatory environment due to
macrophage activation®. The circulation of ascitic fluid transports the spheroids allowing them
to spread and attach throughout the peritoneal cavity forming nodules mainly on the omentum
but also on the diaphragm, liver or lungs?=°. The ascitic fluid is constantly changing with the
evolution of the pathology and plays a major role in tumour progression, spheroid formation,
tumour dissemination. For example, lysophosphatic acid which is present in ascites or ovarian
cancer patients promotes motility and invasiveness of cancer cells via induction of expression
of metalloproteases that modify the extracellular matrix of the mesothelium3. Moreover the
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increase of CXCL12 released by epithelial ovarian tumoral cells in the ascitic fluid acts as
autocrine and paracrine stimulation inducing increased expression of integrins by ovarian
cancer cells leading to increased migratory potential. Finally after cancer cell implantation,
synthesis of pro-inflammatory TNF-o by ovarian cancer cells stimulates endothelial cells*® to
secrete interleukins enhancing angiogenesis at metastatic tumour sites. The accumulation of
ascitic fluid is not well understood but it is thought that vascular endothelial growth factor
(VEGF) is involved®. VEGF promotes angiogenesis inducing in vitro the formation of
confluent microvascular endothelial cells that invade collagen gels and form capillary
structures. Its overexpression has been detected in some cancer patients and allow the creation
of a more favourable environment for the new implant.

iii. Different forms of Ovarian Cancer

Ovarian cancer cells can originated from cells of ovarian epithelial surfaces*?, from the
epithelium of distal fallopian tubes *® or from peritoneal cavity epithelium?®. Epithelial ovarian
cancer is the most common tumour type accounting for 90% of the cases*. They are separated
in 2 categories depending on the pathway of tumorigenesis (Histotypes are detailed in figure
3).

Type | is comprised of low grade serous, endometrioid, mucinous and clear cell carcinomas
originating from lesions in the ovary*. They are slow growing tumours and characterized by a
stable genome and do not carry a p53 mutation, however they have a mutation in KRAS gene,
which is involved in the RAS/MAPK pathway controlling cell growth, proliferation or
maturation*.

Type Il are high grade serous or undifferentiated carcinomas and carcinosarcomas. They are
fast growing tumours with a high metastatic potential and a low level of detection. They
represent about 75% of the Epithelial Ovarian Cancer diagnosis*®4’.

Recent studies have been suggesting that High Grade Serous Ovarian Cancer originate from the
distal end of fallopian tubes before crossing the surface epithelium of the ovary*®. They are
characterized by the absence of architecture and dysmorphic nuclei*®. Other features include
high nuclear to cytoplasmic ratio, atypic mitotic figures*, high mitotic/apoptotic rates®® and a
high Ki-67 protein concentration®.
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Figure 3%: Histopathology of ovarian cancer

Ovarian cancer is defined by any any primary malignant tumour initiating from the ovary, the
endometrium or from fallopian tubes. More than 85% of ovarian cancers are carcinomas,
meaning they are derived from epithelium. Amongst them 70-74% are High Grade Serous
Carcinoma, 3-5% are Low-Grade Serous Carcinoma, 10 to 26% are Clear Cell Carcinoma, 2-
6% are Mucinous Carcinoma and 7-24% are Endometrioid Carcinoma.

2. Biomechanical process during cancer progression

Dissemination of cancer cells following Epithelial to Mesenchymal Transition (EMT) is
sustained by modification of cell-cell, cell-matrix interactions and cytoskeleton modifications.
The cell cytoskeleton is formed of actin filaments, microtubules and intermediate filaments that
all influence cell morphology®:. These different structures interact with each other providing
mechanical stability of cells. The effect of chemical drugs targeting cytoskeleton been used to
reveal the role of each type of fibre in cell elasticity. For example the depolymerization of actin
fibres resulted in rounder cells related to softening of the cells>.

Invasive properties in HEY/HEY A8 ovarian cells have revealed that modified morphology is
linked to cytoskeleton modifications increased the migration capacity of these cells®->’. Such
observations are not directly applicable to in vivo mechanisms as in the tumour environment
cell-cell contacts and extracellular matrix are strongly affecting cell stiffness®®-!. Notably
during the metastatic process, the cells acquire motility and increased deformability. Those
morphological changes influence cell stiffness®.

The adhesion of cells to the extra cellular matrix is a key property that has important functions
in cell physiology. Indentation experiments in breast epithelial cancer cells have shown that
matrix stiffness dictates intracellular mechanical state of those cells®2. Moreover the comparison

6
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between cirrhosis tissue and hepatocellular carcinoma tissue did not show any stiffness
differences suggesting the hardness of the liver is increased during carcinogenesis®.

Such modifications are studied using instruments, such as the atomic force microscope (AFM)
which can measure nanomechanical changes. The measure of a force necessary to indent a cell
(Young’s modulus) in different cancerous cells such as breast®%, prostate®*%, ovaries®’, or
kidney®® cancer has been shown to be less than their normal counterparts. It appears that
modification of the Young’s modulus can indicate the transition to a cancerous state for
individual cells.

3. Current diagnostics and new developments

Current diagnostics
Different symptoms of early stage ovarian cancer have been identified, however, they are not

specific to ovarian cancer, including abdominal and pelvic pain, irregular menarche, change in
bowels habits and increased urinary frequency®. These benign gastrointestinal and
gynaecological problems are often symptoms attributed to stomach or colon diseases.

The familial history of cancers plays an important role in deciphering the cancer risk.
Importantly it can be related to the presence of an inherited mutation in the germline such as a
BRCA genes mutation®,

Ovarian cancer detection is currently based on circulating cancer antigen 125 (CA-125)
glycoprotein concentrations as is has been shown to be elevated in 50% of cases with early
stage ovarian cancer®®, but is also increased in pregnancy and endometriosis and other benign
clinical conditions’™, which reduces its specificity. The lack of specificity and sensitivity of
current early detection biomarkers severely impacts screening efficacy’"2. Population
screening is also limited due to the rarity of the disease, and therefore cost implications related
to such testing. However CA-125 remains an effective approach for sequentially monitoring
the response to chemotherapy from patients and detecting relapse?®.

Transvaginal ultrasonography (TVU) is used in addition with CA-125 to screen symptomatic
patients to detect ovarian cancer and rule out the false positives caused by weak or absent CA-
125 signal. TVU enables precise imaging of the ovaries and helps to identify simple cysts,
complex pelvic masses and solid tumours. However, only a fraction of metastatic tumours reach
a sonographically-detectable size which may lead to false negatives in the detection of early-
stage ovarian cancers’#,

Additionally, magnetic resonance tomography imaging (MRI) can be used when the other two
tests give opposing results. The low spatial resolution of ovarian cancer hinders the detection
of small tumours™. If the result of the diagnostic test raises suspicions, surgical approaches are
adopted depending on the stage of the tumours’®.

The staging system (Table 1) for ovarian cancer is derived from the International Federation of
Gynaecology and Obstetrics’’.
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Table 1: Summary of the international staging system for ovarian carcinomas.

Stagel Limited to ovary or ovaries
1A One ovary, surface involvement or rupture
IB Both ovaries, surface involvement or rupture
IC Malignant ascites
Stage Il Pelvic extension
A Involvement of the uterus or the fallopian tubes
1B Involvement of the other pelvic organs (bladder, rectum)
Stage 111 Involvement of the upper abdomen or lymph nodes
A Microscopic peritoneal metastases outside pelvis
B Macroscopic peritoneal metastases , 2cm diameter
IIC Macroscopic peritoneal metastases >2cm diameter
Stage 1V Distant organ involvement
IVA Pleural effusion with positive cytology
VB Metastases to extra-abdominal sites

Development of a new blood-based biomarker
Stable and radioactive isotopes have been used in earth science in numerous fields

(paleoclimate, paleocirculation, chemical evolution of earth, pollution). Recent improvements
of Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS), thermic
ionization (TIMS) and isotopic ratio mass spectrometry (IRMS) allowed new measurements of
small isotopic elemental variations. While those techniques were common in archaeology, they
have recently been used in human and animal medicine’®®!. Alkaline earth metals such as
Calcium and Magnesium and the transition elements Iron, Copper, and Zinc have been studied
due to their functional roles in biology and because their turnover rates in the body are relatively
short.

Dietary intake of copper in human needs to be around between 1 and 3mg/day®28. A portion is
absorbed by the intestinal cells, after being reduced from Cu?* to Cu* by the membrane protein
STEAP®, through the CTR1 transporter. In cells, chaperons ATOX1 or COX178% pind to
copper Cu™and deliver copper to different organites where it is used as cofactor of cytochrome
c oxidase in mitochondria, or the superoxide dismutase SOD1 that catalyses the scavenging of
ROS producing oxygen and hydroperoxide. Copper is transported through the intestinal cells
and delivered to the blood through the ATP7A copper transporter®®. Copper is then transported
in blood by the ceruloplasmin to the liver®’. The liver is the main site of copper accumulation,
controlling concentrations in blood®, Liver synthesizes ceruloplasmin® which can transport up
to seven copper® atoms due to a methionine rich domain and cysteine-histidine domains.
Excess copper is excreted in the duodenum or in urine via the kidneys. Demands of copper in
organs depend on their metabolic functions such as mitochondrial content and activity. For
example in muscles, the high amount of mitochondria increase the demand of copper for
cytochrome ¢ function. This transmembrane protein contains 2 copper centres®®. Their functions
are to transport electrons from the soluble cytochrome c to the oxygen that is reduced into water.

Modifications of Cu concentration and relative abundance of Cu isotopes (fractionation) have
been linked to modified metabolic processes (oxidative phosphorylation, hypoxia) or in
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angiogenesis, and thus to health and disease®. In different cancers it has been shown that copper
is required for angiogenic processes®, stimulating proliferation and migration of endothelial
cells®. In the liver tissue of colon tumour bearing mice, gene expression the copper transporters
ceruloplasmin, and CTR1 and ATP7B was increased significantly, which can explain elevated
copper serum levels®® and suggesting its potential use as a diagnostic marker of cancer. Isotopic
ratio between heavy isotope *Cu and the light isotope %3Cu has been measured in different
healthy and human materials® (Table 2).

Table 2 °® Cu isotope composition in blood and bones of human samples

Material 885Cu Variation (%) Average 8%3Cu (%, 2SD)
Healthy women serum —0.80~0.04 —0.28 £ 0.41
Healthy men serum —0.64~0.06 —0.28 + 040
Healthy womenerythrocytes —0.04~0.80 0.46 + 047
Healthy menerythrocytes 0.23~0.91 0.67 £ 0.36
Healthy womentotal blood —0.52~0.32 0.00 £ 0.41
Healthy mentotal blood —0.21~0.43 016 £0.33
Cancer patients (HCC) serum —0.66~0.47 —0.02 £ 0.54
Control group serum —0.39~0.38 010 £ 045
Cancer patients (HCC) red blood cell —0.07~0.92 0.51 £ 0.56
Control group red blood cell 0.57~1.24 0.88 £ 0.44
Breast cancer patients serum —1.45~0.12 —0.51 + 052
Colorectal cancer patients serum —0.65~0.04 —0.29 £0.30
Aging men blood 0.68 = 0.49
Control group (Young men) 0.67 £ 0.36
Postmenopausal women 071 +£0.54
Control group (Premenopausal women) 043 £ 0458
Liver —0.26 + 0.22
Vegetarian female blood —0.75~-0.29 —0.51 £ 0.46
Vegetarian male blood —0.22~0.23 —0.07 £ 0.52
Omnivorous female blood —0.14~017 —0.02 £ 034
Omnivorous male blood —0.28~0.09 —0.05 + 041
Russian and Yakut blood —137~—0.22 —0.68 + 0.62
Archeological women bones —0.20 £ 0.25
Archeological men bones —011 £0.16

Cu isotope data were obtained by MC-ICP-MS and expressed as 4%°Cu (%o) notation with a
comparison between ®Cu/%3Cu ratio of the samples with the ratio of the Cu standard solution

65 63 65 63
and calculated by the formula : s, (~Cu/*Cy) sample - (“Cu™Cu) ref |
(*curcu) ref

Cu is more concentrated in erythrocytes compared with serum (Table 2). Moreover Cu isotopic
composition is lower in serum (-0.28%.) and higher in erythrocytes (0.46 to 0.67%.). To explain
this difference, it has been suggested that enrichment of %°Cu in red blood cells is due to the
strong binding of %°Cu with nitrogen of histidines and sulphurs of cysteines of the superoxide
dismutase 1 or ceruloplasmin inducing enrichment of ®3Cu in the serum®:%. Although Cu is
more concentrated in serum in women relative to men >%, the slight isotopic enrichment in
women blood compared to men (6%°Cumen= -0.24 + 0.36 %o and §%Cuwomen= -0.28 + 0.40 %o)
shows that sex does not affect copper fractionation in humans %',

The potential of measuring the variability of copper isotopes as a new diagnostic tool for cancer
detection has been evaluated in colorectal and breast cancer patient serum. For all patients a
decrease of ®*Cu concentration was observed'® and related with an increase of tumour ®Cu
concentration. By following the evolution of the isotopic composition over time a faster shift
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of §%°Cu was correlated with a more severe tumour, and with the CA15-3 (MUC1 blood
concentration) marker. A decrease by 0.25%. in serum of breast cancer patients, 0.14%o 1% in
colorectal cancer patients and 0.5%e in cirrhosis patients'®* has been measured. Moreover, this
shift in Cu isotopic composition has also been observed on other mammals such as dogs®® and
felines®..

So far no direct link has been established between the increase of the copper concentration in
the blood and the modifications of the isotopic compositions. However the analysis of tumour
and peri-tumoral hepatocarcinoma cells has highlighted an increase of §°°Cu by 0.5 to 1% in
tumour cells!®,

Moreover hypoxic growth of primary tumour cells have revealed the same type of shift of the
5%Cu™1%2 These results suggest that §°°Cu ratio could be a cancer marker candidate for
detection of Ovarian Cancer.

4. ‘Classic’ Ovarian Cancer treatments

Ovarian cancer treatment depends on disease stage. If the tumours are confined to one ovary
(type la), the surgical removal of one ovary is performed®®. If both ovaries have developed
tumours (stage Ib), platinum and taxane (cisplatin and paclitaxel) treatment is given. Treatment
for stage Il and above where cancer has spread beyond the ovaries, involves chemotherapy and
surgical reduction of the tumour mass®*1%, The timescale for medical intervention depends on
the size of the tumours. A high tumour load involves chemotherapy treatment before surgery.
Intravenous or more recently intraperitoneal delivery of platinum based chemotherapy with
paclitaxel infusion can be used!®1%, |n the case of severe side effects of the treatment, the use
of liposomal doxorubicin can also be used'®To gauge treatment efficacy, the monitoring of
CA-125 levels and physical examination are performed%,

A major obstacle in the use of chemotherapy to treat ovarian cancer is its high recurrence rate
(70%) due to the development of resistance to platinum treatment within 18 months which
reduces dramatically the survival rate!®. Resistance to treatment is defined by patients not
responding to treatment or relapse within 6 months after first treatment?®®. The recurrence is
due to the multiplication of subpopulation of cells that have adapted to the chemotherapy!*®1?,
In most cases this is due to acquired resistance to chemotherapy via overexpression of drug
efflux pump®>!12 | Restoration of BRCA genes in subpopulations of tumour cells thus regaining
more effective DNA repair capabilities results in enhanced resistance to chemotherapy?®3,
BRCA gene mutation is therefore both a risk factor for ovarian cancer development due to the
lack of repair of DNA breakage, but also a risk factor if it is unregulated in ovarian cancer cells
which can overcome chemotherapy.

To overcome the acquired resistance to treatment, Paclitaxel has been developed and is
considered as the standard for platinum resistant ovarian cancer. Paclitaxel blocks cell division
by binding to beta-tubulin that stabilize microtubules which leads to cell death'®. However,
like platinum treatment, taxane based chemotherapy induces oxidative stress and selects cancer
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cell populations that resist treatment. The side effects of chemotherapy are a reduced immunity,
gastrointestinal disruption, neuropathy and breathing difficulties!!4,

The development of more specific and less harmful treatments is highly needed in order to
target specific cancer cell populations allowing better life preservation and quality of life'®

5. ‘New’ Ovarian Cancer treatments

New therapeutics have been developed that are more effective against ovarian cancer than
platinum and taxane based treatments, and can be used as second line treatments. Olaparib and
Veliparib, PARP inhibitors, have shown good efficacy in 50% of HGSC patients® carrying
BRCAL1 and 2 mutations®>!!8. The inhibition of PARP leads to accumulation of single strands
breaks and unrepaired forks in DNA. PARP inhibitors have been proven to selectively kill cells
with defects in DNA repair pathway*'®. PARP inhibitors are preferentially used in treatment of
recurrent, BRCA-associated ovarian cancer patients but can also be used in maintenance
following platinum-based chemotherapy for recurrent epithelial ovarian cancer!’.

Antibody therapies targeting human epithelial growth factor receptor 2 (HER2) and folate
receptor!*®11® have been developed which block signalling that drives cell proliferation. Recent
use of Trastuzumab (Herceptin) in ovarian cancer, a therapeutic monoclonal antibody directed
against HER2, which is overexpressed in some ovarian cancer patients and related with poor
prognosis'?® has raised good hopes. However only 6.7% of advanced ovarian carcinomas
overexpresses HER2?! therefore only a limited number of patients would benefit from this
treatment.

6. Nanomedicines and Ovarian Cancer

Definition

Nanomedicines include a range of nanomaterials and nanosize biological entities (e.g.
exosomes and antibody drug conjugates) that have been ‘engineered’ and are applied to cancer
treatment. In some cases nanocarriers have been developed to transport drugs in order to
overcome the low solubility, low stability or strong side effects of classic chemotherapy!?2.
Nanocarriers have specific properties such as their size, high surface/volume ratio, physical or
chemical specificities, while loading drugs into nanocarriers improves the pharmacokinetic and
dynamic profiles of drugs enhancing therapeutic index by increasing accumulation to tumour
sites 122, Other nanomedicines use intrinsic properties of nanomaterials to elicit an anti-cancer
effect. For example, gold nanoparticles have been used for local thermal ablation of tumour due
to the ability of such particles to be manipulated by magnetic fields of radio frequency to
generate heat locally'?,
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Passive targeting

Nanocarriers/nanoparticles can be passively targeted to tumour sites via the so called EPR
(Enhanced Permeability and Retention) effect to deliver pharmacologically active compounds.
The EPR effect involves the accumulation of drugs in the tumour sites due to the movement of
particles from the circulatory system through ‘leaky’ intratumoral blood vessels!?® with
fenestrated endothelium allowing the passive transport of the nanomedicines through gaps in
the vessels. The main limitations of passive targeting are heterogeneity'?® of the tumours
impacting delivery of the drugs, interstitial pressure, extracellular matrix secreted by tumours
and accumulation of nanocarriers to other organs. The escape from the opsonization by the
immune system is also important to prevent the clearance of the drug before it has any effect
on tumours.

Active targeting

Actively targeted nanomedicines are directed to tumours via high affinity ligand attached to
their surfaces, selectively binding to a receptor of the targeted cells. Targeting moieties can
include sugars, proteins, antibodies, and oligonucleotides. The targeting molecule needs to be
stable in the blood in order to deliver specifically the nanocarrier to a tumour. The particle is
still reliant on the passive EPR effect to reach the tumour, but then targets the tumour once
escaped from the neovascular system?, Once at the tumour site, cancer cells can internalise
the nanocarriers allowing the accumulation of drugs.

Diversity of nanocarriers in cancer care
Various type of nanomedicine have been developed and tested in clinical trials including drug
conjugates, lipid based nanocarriers, polymer-based nanocarriers or inorganic nanoparticles.

Drug conjugates are defined as binding of the drug of interest with antibodies, peptides or
polymers. Polymer HPMA (hydroxypropyl methacrylamide) drug conjugates are passive
targeting nanocarriers based on the EPR effect that have been used due to the high
biocompatibility of HPMA. Conjugated with oxaliplatin such nanomedicines have reached
phase 2 clinical trials for recurrent ovarian cancer patients with equal or superior efficacy than
oxaliplatin alone and demonstrating excellent tolerability with low accumulation in livert?”.

Active targeting such as antibodies drug conjugates (ADCs) have been developed against
specific receptors overexpressed on cancer cell membrane such as HER2 (Human Epidermal
growth factor Receptor 2) in breast cancer and in some ovarian cancers. Herceptin has been in
clinical use and proved its efficacy as adjuvant in conjugation with emtansine inhibiting
microtubule polymerisation increasing Herceptin efficacy.

Lipid based nanocarriers such as liposomes or micelles are able to transport greater amounts of
drug in comparison with ADCs and use the EPR effect to accumulate tumour tissue. Paclitaxel
loading lipid nanoparticles have been used in ovarian cancer and proved equivalent to Paclitaxel
infusions in phase 2 trials, and effectively reduced side effects!?®. Despite the ability of
liposomes nanocarriers to concentrate drugs, they do not actively target tumours. However
functionalisation of liposomes with anti HER2, anti EGFR, anti VEGFR2 antibodies has been
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developed, and overcame the multidrug resistance in xenograph mouse models and in breast
and gastric cancer patients!?%-131

Polymer based nanocarriers include protein or peptide nanocarriers, polymers such as
PEGylation or sugars. Albumin (BSA) based nanocarriers are mainly used due to its high
bioavailability and stability in blood. Albumin coated particles/conjugates allow increased
solubility of the chemotherapeutic drugs such as paclitaxel. A major drawback is the
immunogenicity induced by this kind of coating leading to opsonization. Glycan nanocarriers
such as chitosan based nanoparticles have been used for loading gemcitabine resulting in
increased uptake by intestinal cells compared to free oral gemcitabine improving the stability
of the drug in preclinical trials!32, Chitosan coated nanocarriers are uptaken by endocytosis after
binding to the phospholipids of the membrane. With a pKa of 6.5 for its primary amine groups,
chitosan is highly soluble at acidic pH allowing the swelling of the chitosan nanostructure
leading to the leak of drug of interest through the nanoparticle to the cells'®,

Inorganic nanoparticles are made of different materials and used for variety of applications
including theragnostic. For example MRI studies have been using superparamagnetic iron oxide
nanoparticles to image tumours!3*. Moreover iron oxide nanoparticles are used for their
magnetic properties to induce thermal ablation'*® (magnetic hyperthermia). Gold nanoparticles
are also extensively used in the synthesis of nanocarriers. Pegylated gold nanoparticles binding
TNF-a to deliver necrosis factor to solid tumours have been tested in phase one clinical trial
but hasn’t reached the next stage yet'®,

Development of nanocarriers for ovarian cancer treatment

Nanocarriers such as those described above have been developed in both in vitro and in vivo
ovarian cancer models (summarised in table 3), with several progressing to clinical trials
(summarised in table 4).
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Table 3: In vitro and in vivo nanocarrier development in ovarian cancer models (adapted from

126)_
Passive System Drug Description Model
targeting Nanoparticles | Cisplatin Poly ethylene glycol (PEG) based polymer | SKOV-3
nanocarriers Paclitaxel A2780
Female
athymic
mice
Polymeric Cisplatin Chitosan A2780
nanocarriers | Paclitaxel
Lipid based | Cisplatin Phosphatidylcholine, and cholesterol PEG | OVCAR-3
nanocarriers | Paclitaxel A2780
Doxorubicin SKOV-3
Polymeric Paclitaxel Pegylated liposomes, poly-ethylene based, | CAOV-3
micelle Doxorubicin | polystyrene based SKOV-3
Nanocapsule | Cisplatin DOPC based or alginic core shell OVCAR-3
Paclitaxel Female nude
mice
Dendrimer Cisplatin Polyamidoamine dendrimers SKOV-3
Paclitaxel A2780,
female
athymic
nude mice
Hydrogel Paclitaxel Hyaluronic acid based hydrogel SKOV-3,
Female
BALB/cmice
Polymer-drug | Doxorubicin | PolyL-lysine citramide and DOX copymer | SKOV-3,
conjugate Female
BALB/cmice
Actlvg Targeted Carrier Description Model
targeting receptor system
nanocarriers | Folate AuNP PEG conjugated AuNP SKOV-3
receptor Liposome Phosphatidylcholine-PEG-cholesterol
NP Folicacid-PEG-chitosan OVK18
Paclitaxel-glucose OVCAR-3
Luteinizing Nanogel PEG based + cisplatin A2780
hormone Magnetic NP | lron-platinum-PEG copolymer
releasing
hormone
receptor
HER2 rceptor | Polymeric NP | Paclitaxel loaded poly lactic acid PEG NP | SKOV-3
Dendrimers Polyamidoamine dendrimers OVCAR-3
Transferrin Micelles Tf PEG-PE micelles A2780
receptor
Integrin NP Cyclic pentapeptide containing gemcitabine | SKOV-3
receptors hydrochlorine
CA125 Liposome Chain of anti CA25 fused to streptavidin OVCAR-3
Angiogenesis | NP SilicaNP loaded with candesartan SKOV-3
Magnetic NP | NP Carboplatin Fe304NP A2780

SKOV-3, A2780, OVCAR-3, CAOV-3 cited in the table are commercial ovarian cancer cell

lines.
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Table 4: Nanocarriers under clinical trials (from searchtrials.com)

When typing Nanoparticles in Ovarian Cancer in clinicaltrials.gov, we summed up the actual
drugs in test in clinical trial.

Chemotherapeutic I Number CI_|n|caI
Name Description of trial Goal / Effect
agent .
patients phase
PIPAC Paclitaxel Albumin (nab) shell Recruiting | Phase 1 | Single-agent activity and
covering paclitaxel a favourable toxicity
Pressurized profile
intraperitoneal aerosol
Paclitaxel- | Intraperitoneal Albumin shell 27 Phase 1 | Determine the potential
Albumin injection of covering paclitaxel pharmacokinetic
Stabilized | Paclitaxel advantage of the
NP nanoparticles
Determine the favorable
ratio of nab-paclitaxel
(Abraxane)
concentration in the
peritoneal cavity vs.
plasma
Paclitaxel- | Blood infusion of | Albumin shell 51 Phase 2 | 30% of reduction of
Albumin | Paclitaxel covering paclitaxel tumour size
Stabilized
NP
CriPec Docetaxel Polymeric NP loading | 27 Phase lla | Inhibit VEGF, cell cycle
docetaxel (analogue of in Pt- arrest in G2/M, Inhibit
paclitaxel) resistant | microtubule
patients | disassembly.
IMX10 Curcumin Curcumin Doxorubicin | 70 Phase 1 | Coupling the role of
Doxorubicin encapsulated NP curcumin as a signal
transducer, activator of
transcription Stat3,
NFKB to doxorubicin
which is antineoplasic
EGEN- Doxorubicin IL12 based 16 Phase 1 | Stimulate immune
001 immunotherapeutic system, stop tumour
coupled with pegylated growth
liposomal doxorubicin Increased cell death in
comparison with
separated drugs
CRLX101 | Bevacizumab Camptothecin in 63 Phase 2 | Would inhibit together
nanoparticle (structure distinct step along HIF->
not detailed) CAIX->VEF-VEGFR2
pathway.
CRLX101 inhibits
HIF1a hypoxia
inductible transcription
factor and HIF1a
associated resistance to
VEGFR inhibitors.
9-ING41 Single agent therapy 350 Phase 2 | GSK3b inhibitor
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. Epigenetics
1. Definition

Epigenetics refers to reversible!® chemical modifications of chromatin organization and

structure®® that result in alterations in gene expression profiles, cellular function, and which
are in some cases heritable. These chromatin related epigenetic mechanisms allow cells to
modify gene expression in response to chemical and environmental stimuli for example.
Distinct mechanisms of epigenetic alterations include DNA methylation, histone acetylation,
methylation or phosphorylation, and microRNA (miRNA) expression and regulation!3®, These
mechanisms (except miRNA) are affected by enzyme families that transfer or remove small
chemical moieties that function as activating and repressing ‘marks’ from histones or DNA,
that are then recognised by regulatory proteins that control transcription.

Histone structure and modifications

Epigenetic changes can result in aberrant oncogene activation or inactivation of tumour
suppressor genes, allowing cancer progression'®’. DNA is packaged in the nucleus, wound
around nucleosomes that are composed of segments of 147 base pairs of DNA wrapped around
a histone core, comprising of 2 copies of histones 2A, 2B, 3 and 4°"°8, These 14kDa basic
proteins are positively charged due to high numbers of lysine and arginine amino acids,
enabling them to bind to the negatively charged DNA. Sequences of nucleosomes are then
organized in a relatively open and uncompacted form, termed euchromatin associated with
open, active chromatin regions or more densely packed, closed chromatin, termed
heterochromatin which is associated with silent or inactive gene expression. Chromatin
compaction is controlled by combinations of post translational modification of histones tails
141 The main histone modifications include methylation, acetylation, phosphorylation or
ubiquitination!*? to lysines and arginines, present in the histone tails (Figure 4). The different
modifications are controlled by enzyme families such as methyltransferases or demethylases,
acetylases or deacetylases!3®141:143,
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Figure 4: Main post translational modification sites of the histones affecting epigenetics.
Nucleosomes are composed of segments of 147 base pairs of DNA wrapped around a histone
core, comprising of 2 copies of histones 2A, 2B, 3 and 4°"°8, These 14kDa basic proteins are
positively charged due to high numbers of lysine and arginine amino acids, enabling them to
bind to the negatively charged DNA. The post translational modifications of the histone on the
amino acids of their N-terminal end, also called tail, induce modifications in gene expression
by altering chromatin structure and recruiting transcription factors. These modifications
activate or inactivate transcription, induce chromosome packaging or recruit factors for DNA
repair.
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Histone methylation

Histone H3 consists of a main globular domain and a long N-terminal tail that contains 6 sites
of modifications for methylation that have different consequences on chromatin compaction
and genetic expression. The methylation sites are constituted of lysines (K) or arginines (R) and
their methylation is catalysed by a range of different histone methyltransferases (HMT) (Figure
5).
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Figure 5 : Enzyme responsible for histone tails methylation#

Histones H3 and H4 are part of the nucleosomes and their N terminal domain (tails) can be
modified through the activity of different methyltransferases using S-adenosylmethionine
(SAM) methyl donor.

The number of methyl groups that can be added to each lysine (K) or arginine (R) is controlled
by the HMT which can transfer up to 3 methyl to each post-translational modification site
(Figure 5, 6). The PRDM/SMYD family of HMTs family catalyse the addition of one to three
methylation of H3K44%, where as enhancer Zeste Homolog 2 (EZH2) can mediate the addition
of one to three methylation on H3K27*¢, and G9a (EHMT2) is able to mediate the addition of
one or two methylation on H3K943,

Methylation of lysines and arginines is mediated by the transfer of a methyl from SAM by
HMTs (Figure 6). The product of this reaction is a methylated lysine/arginine and S-
adenosylhomocystein (SAH) which is cleared into homocysteine and recycled into methionine
through remethylation by Betaine Homocysteine MethylTransferase (BHMT) (Figure 6).
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Figure 6 : Histone lysine methylation#*

SAM methyl donor can transfer up to 3 methyl groups onto lysines or arginines in histone by
methyltransferase enzymes (HMTSs). The methyl group changes the interaction of the histone
tails with the DNA and modulating the binding of transcription factor hence the DNA
expression.

2. Transcription activation mark (H3K4)

The methylation of H3K4 has been shown to result in gene activation'#142147 (Figure 7).
H3K4me3 is highly enriched near the Transcription Start Sites.'*8, and appears to be an
epigenetic signature in tumour-suppressor genes in normal cells'#’. Genetic domains covered
by H3K4me3 are broader (>4kb) in genes controlling cell-type specific functions in normal
cells, where transcription is increased'4"4%, The shortening of broad H3K4me3 in cancers is
associated with repression of tumour suppressors. Patient studies have demonstrated that
decreased levels of H3K4me3 are associated with poor prognostic factors in lung and kidney
cancerst®0151,

H3K4 methylation is mediated by SET1 complex which is composed of methyltransferase and
seven subunits®®2, The PR/SET domain gene family (PRDM) encodes for 19 zinc-finger domain
containing proteins involved in gene expression regulation modifying chromatin structure
through methyltransferase activity or recruitment of chromatin remodelling complex531%4,
While PRDMs have been mainly identified as tumour suppressors, some family members have
been associated with mutations, epigenetic silencing or overexpression in multiple cancer types.
PRDMs have two isoforms differing by the presence of a PR domain with the short isoform
being oncogenic!®3,

SMYD histone methyltransferases have also been implicated in cancer development with
increased expression of SMYD3 in ovarian cancer inducing high H3K4me3™, SMYD3 is
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known to interact with RNA Pol Il and H3K4me3, and functions as a selective transcriptional
amplifier for oncogenes. A meta-analysis of 1474 patients from 10 clinical studies accross
different cancers indicated that lower levels of H3K4me2 were characteristic of shorter overall
survival, whereas patients with lower level of H3K4me3 expression had a longer overall
survival'® and raises the importance of investigating patterns of H3K4 methylation on
prognosis of patients with malignant tumours.

3. Transcription repression mark (H3K27)

H3K27me is regulated by EZH2 a catalytic component of polycomb repressive complex 2
(PRC2). Through H3K27me2 and H3K27me3, EZH2 represses gene expression (Figure 7),
triggering the differentiation or maintenance of stem cell self-renewal capacity °°1°8, The
expression of EZH2 increases in prostate cancer, esophageal squamous cell carcinoma, and
breast cancer!>®!% 161 EZH2 knockdown often leads to reduced invasive potential of cancer
cellst2, H3K27 methylation has also been related to increased DNA breaks, since EZH2 is
found in PRC2 complex that is recruited to damage sites through PARP activity (poly ADP-
ribose polymerase) where it increased H3K27 methylation 6-16°, The induction of apoptosis
by staurosporine lead to PARP cleavage and increased H3K27me in osteosarcoma cellst®®.
EZH2 accumulates in promoters of actively transcribed genes inducing repression upon DNA
damage by recruiting remodelling factors, which may facilitate repair of DNA lesions and
organize response to DNA damage®®’.
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4. Heterochromatin mark (H3K9)

The H3K9me2 or 3 marks are catalysed by the G9a (EHMT2) methyltransferases®® . The
position of these marks are important in their role in chromatin expression. H3K9me2 and 3
have been associated with gene silencing and heterochromatini®® (Figure 7) when they
accumulate in the 5’UTR regions of genes. In contrast increase of H3K9me3 within the body
of a gene has been linked to active gene expression. H3K9me?2 is rarely found within silenced
genest’®. H3K9me2 has been described as a repressive mark and has been located within
LaminB1 bound regions (nuclear periphery, nuclear lamina, associated with inactive genes).
LaminB1 regions are areas of low gene expression indicating that Lamin B1 rich regions
represents a repressive chromatin environment. H3K4me3 and RNAPol 11 are also absent from
LaminB1 regions which strengthens the idea of H3K9me2 being a repressive mark that
separates active and inactive genest’,

G9a is highly expressed in different cancers such as hepatocellular carcinoma®’, colorectal
cancer'”® and breast cancer*’®. The knockdown of G9a induced apoptosis and growth inhibition
with increased cell population in sub-G1 phase 437>, Moreover, G9a downregulation induced
centrosome disruption and chromosomal instability leading to cell senescence in prostate cancer
cells’®.
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Figure 71'": Histones methylation regulating the euchromatin and heterochromatin forms.
Among the different histones marks described in the literature, we focus here on three important
ones. H3K4me3 has been described as translational activation mark and H3K27me3 and
H3K9me3 have been described as repressive marks. The methylation is orchestrated by
different regulators which are specific of each mark. Addition of methylation is permited by
histone methyltransferase (HMT) while methyl removal is mediated by histone demethylase
(HDM). H3K9 is methylated by G9a, SUV39H1/2 or SETDB1 and lead to chromatin
condensation, e.g. hetetochromatin. The JMJD family of HDMs remove methyl from H3K9
leading to decondensation of the chromatin. In euchromatin, the marks H3K4 and H3K27 are
respectively modified by SET1 complex (SMYD or PRDM families) and EZH1/2 Polycom
complex. These marks are present on the histones and the balance between both leads to
activation or repression of the transcription.
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5. Current knowledge of the effect of epigenetics in
ovarian cancer

Recent studies of ovarian cancer cell populations identified sub-populations that are stem-cell
like nature!’®, This is supported by the presence of the methylation bivalent chromatin mark
H3K4/H3K27 at the transcription start site of silenced genes!’®. This mark is required for
silencing of developmental genes which keeps cells in a stem cell nature conducive to the
formation of tumours.

The balance between the different epigenetic marks has been linked to the aggressiveness of
the ovarian cancer!”. In high grade serous ovarian tumours H3K4me3 and H3K27me3 marks
at transcription start sites are specific for malignancy progression'’®. The overexpression of
EZH2 lead to H3K27me3 mediated gene silencing driving tumorigenesis in subpopulation of
cells.

Following treatment with chemotherapy, subsequent development resistance to treatment by
ovarian cancer cells is prevalent*’2, with specific populations of cancer cells thought to retain
pluripotent embryonic stem cell-like features, with high H3K4me3 and H3K27me3 repressing
transcription factor networks and subsequent patterns of gene expression'®. In platinum-
resistant PEO4 cell lines (derived from malignant effusion from the peritoneal ascites), the
presence of the bivalent mark (H3K4me3 and H3K27me3) or repressive H3K27me3 mark were
generally expressed at a lower level than in PEO1 platinum-sensitive cell lines.

In ovarian cancer spheroids, SMY D3 expression was elevated'®® and associated with increased
H3K4 methylation. A knockdown of SMYD3 decreased spheroid invasion and adhesion
associated with a downregulation of integrin family members. Patients with high SMYD3
expression have been related with ovarian cancer cells proliferation®s.,

In OVCAR-3 cells, H3K27me3 relates to the development of resistance to cisplatin and tumour
progression'’®. However in human studies, the expression of H3K27me3 was lower in ovarian
cancer tissues than in normal tissues'®. This has also been observed in clinical studies
comparing different ovarian cancer (cystadenomas, borderline tumour or carcinomas) where
between 30 to 50% of cases displayed a decrease in H3K27me3 mark expression®. The use of
inhibitors of PRC2 like metformin caused reduced methylation of H3K27, reducing cancer cells
proliferation and migration, and triggering apoptosis®*. In SKOV-3 cells, when epithelial to
mesenchymal transition was triggered by TGF-B, EZH2 expression was reduced leading to
reduced H3K27me3%2, Moreover, the inhibition of EZH2 triggered EMT-like changes in
SKOV-3 cells. EZH2 is thought to be required for the maintenance of epithelial phenotype in
ovarian cancer cells'®2, During metastatic process, cells undertake the EMT. However in
ovarian cancer, after dissemination from primary tumour site, cells adopt epithelial phenotype
to adhere to the mesothelium. EZH2 is thought to facilitate this process during tumour
metastasis, as it is overexpressed, tilting the balance EMT/MET in favour of MET?62,

G9a overexpression has been identified as a marker of aggressiveness and can promote the
peritoneal metastasis*®®. Knockdown of G9a expression suppressed prometastatic cellular
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activities including adhesion, migration and invasion in cell lines. It significantly attenuated the
development of ascites and tumour nodules in a peritoneal dissemination model'®. The
expression levels of G9a were higher in metastasis in comparison with primary tumours. The
expression of G9a is correlated with late stage of ovarian cancer, predicting a shorter survival
in patients expressing high levels of G9a'®.

23



Introduction

1. Selenium in cancer treatment
1. Dietary window of selenium and metabolism

Dietary window

The amount of Selenium (Se) in food and thus in the diet is highly dependent on the amount of
Se in soil and water which is regionally dependent'®®. The optimal dose range of Se intake in
human nutrition is narrow and has been shown to be between 100 and 200 pg/day (Figure 8)
187,188 " In contrast, consumption of over 1500 pg/day of Se can induce single and double strand
DNA breaks'®® that progressively worsen with increasing dose leading to selenosis!®*%
characterised in acute phase by necrosis and haemorrhage resulting from capillary damage and

in chronic poisoning by degenerative and fibrotic changes of the liver and skin%,

To prevent adverse effects due to excessive intake of selenium, the USA Institute of Medicine
set a tolerable upper intake level of selenium at 400pg/day*®®. The consumption of selenium
between 200 and 400ug/day has been shown to be protective against liver necrosis by
increasing glutathione peroxidase and thioredoxin reductase levels®4. The role of selenium in
ROS protection lead to the study of the effect of supranutritional doses of selenium (>200pg)
in cancer. While doses of selenium between 200 and 400ug/day*®1% of selenium were shown
as protective, doses above 400ug/day were shown to have a strong inhibitory effect on cancer
cells growth and impaired cancer development in vitro and in vivo. Various organic
(selenomethionine, methylseleninic acid) and inorganic (selenite, selenate) selenium forms
have been tested over the years allowing to describe different biological activities highlighting
the need of better characterisation of toxicology of each selenium species!®*%¢-1%  Those
studies raise the challenge of the definition of the dietary window of selenium.
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Figure 8 : Dietary range of selenium in human diet'%

Selenium is a nutrient with a narrow dietary range with a requirement of 100 to 200 g of
selenium per day. Under this intake selenium deficiency can cause diseases, notably Kashin-
Beck disease which is a skeletal disorder due to necrosis of the growth plates of bones and joint
cartilage. Above this dietary window, selenium may prevent cancer development up to 400ug
per day however becomes toxic above this dose. Selenosis is an intoxication to selenium
characterized by nail and hair loss which can lead to death.

Cell Metabolism

Assimilation of selenium in human nutrition occurs through different mechanisms. As
elemental selenium 0 is insoluble, it is not likely to cross the cell membrane?®. To transit
through the gut wall, selenium can enter the cells as selenite (SeOs?) using sulphate
transporters?®, Moreover, phosphate transporters can also be involved in selenium transport.
Selenite uptake kinetics have been correlated with phosphate uptake kinetics®. While high
affinity phosphate transporters are not affected by the presence of selenite in vitro, low affinity
phosphate transporters poorly discriminate selenite from phosphate, enabling selenite to enter
cells when phosphate concentration increases?®. Once inside the body, selenate and selenite
can be directly transported to other cells through blood transport bound to proteins®®? and/or
transformed into selenocysteine in intestinal cells?®. Selenoaminoacids (selenomethionine and
selenocysteine) from food are transported through the bloodstream to the liver (Figure 9) where
they are incorporated into selenoprotein P (SELENOP) that is then transported to cells requiring
Se through blood. SELENORP is a secreted glycoprotein that bind to glycosaminoglycans using
heparin of endothelial cell membrane. SELENOP have antioxidant properties and the numerous
selenocysteines it transports is a source of selenium for the cells absorbing it by endocytosis. In
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the cells, selenium spontaneously reacts with other compounds producing organic selenium
metabolites such as selenides (R2Se), diselenide (R2Se;) and selenols (RSeH)?** (Figure 9).
Selenite is metabolized by glutathione (GSH) or glutathione reductase as a seleno-di-
glutathione (GS-Se-SG) which can be utilised by cells as an antioxidant in the presence of
reactive oxygen species!®2052%_ However, seleno-di-diglutathione has a short lifetime due to
its catabolism by glutathione reductase®®’, which results in its conversion back to selenide
(H2Se) and GSH.

Dietary forms
Metabolic forms
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Figure 9 : Dietary and metabolic forms of selenium in cells?%32%8

Selenium from diet (as selenite or seleno amino acids) enters intestinal epithelial cells and is
transported through the blood to the liver where its involved in synthesis of the SePP1 or seleno-
sugars. Those selenium forms are circulating forms and are distributed to organs where they
are involved in selenoprotein synthesis. Selenium can be methylated via the methyl donor SAM
into dimethylselenium which is volatilized through lungs or into trimethylselenium in kidneys
where it is then excreted through the bladder. Selenium as selenite can also circulate in the
blood and be absorbed in organs through sulphate or phosphate transporters. Once in the cells,
selenium is metabolized through the glutathione system leading to the production of H,Se that
can either enter the pathway for synthesis of selenocysteine or be methylated and excreted.

The proximity between sulphur (S) and selenium (Se) allows for substitutions in organic
molecules to occur, especially in proteins such as selenomethionine, which is randomly
included in proteins or selenocysteine, the 215 amino acid?®. This seleno amino acid is inserted
into proteins in the same way as serine; each selenoprotein is synthetized by a selenoprotein
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MRNA that contains a UGA codon and a unique SElenoCysteine Insertion Structure (SECIS).
The Selenocysteine-Serine tRNA is used for the integration of the selenocysteine into the amino
acid sequence that forms selenoproteins?®#2%, This system produces a group of around 25
identified proteins in the human proteome?'° that are mainly involved in antioxidant and anti-
inflammatory activities?!,

Modifications of the level of selenium in the cells has been shown to influence selenoprotein
activity and production!2, Thioredoxine reductase for example, which contain selenocysteines,
is present in the cytosol (TrxR1, thioredoxin glutathione reductase TGR-TrxR3) and the
mitochondria (TrxR2). These proteins are involved in the reduction of oxidized thioredoxins,
can catalyse NADPH, control ascorbate levels and regulate metabolism??. Glutathione
peroxidases (GPX) are found in the cytosol and mitochondria (GPX1), extracellular matrix
(GPX3), and embryonic cells (GPX4)?12213, GPXs have been shown to protect cells against
oxidative damage by reducing lipo hydroperoxides and hydrogen peroxide?'?. GPX1 is known
to be highly sensitive to selenium content and oxidative conditions in cells. Selenoprotein P
meanwhile, is a selenocysteine rich secreted glycoprotein is endocytosed?** through ApoER2
receptor by cells that subsequently break down the protein and use selenium as SeCys, therefore
regulating Se distribution in the body?!2. Importantly, selenoproteins in combination with
vitamin C, E beta-carotenes, has been proven to enhance the control of free radicals, protecting
cellular functions?15218,

Selenium is also involved in the biosynthesis of diverse molecular components that are required
for important cellular functions, from deoxyribonucleoside triphosphates (ANTPs) for DNA, to
the reduction of oxidized proteins and/or membranes, to roles in diverse regulation mechanisms
such as redox, apoptosis, immunomodulation, thyroid hormones and the formation of methyl
donor compound?'’ (S/Se adenosylmethionine). Selenium, is therefore an important trace
element which is fundamental to human health.

2. Low dose of selenium triggers ROS scavenging

As a naturally occurring element with both nutritional and toxicological properties, selenium
deficiency has been linked to cancer development. Indeed, a meta-analysis of the
epidemiological literature shows that selenium deficiency is linked with higher cancer
development risk?8, Cancer risk is 2 to 6 times lower when blood serum selenium
concentrations are between 100 and 400 ng/mL; corresponding to a consumption of 55 to 200
ug/day of selenite?'®. However a stratified analysis of SELECT results based on genotype
examining the nutritional prevention of prostate cancer, with a group of men taking 200ug of
selenium per day over a period of 7 years, showed a no effect of Selenium and Vitamin addition
for cancer prevention compared to the treated group®®. Moreover, analysis of randomized
controlled trials has failed to show any beneficial effect of Se supplements in reducing cancer
risk in humans*®,

Major impacts of different selenium forms on human health are currently not well understood.
This is mainly due to the lack of knowledge in requirements of the different selenium forms for
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therapeutic application. In vitro and murine model studies have focused on the treatment of
various cancer cell models with selenite (SeOs*, the most toxic form of free selenium),
MethylSelininic Acid (MSA) or SeMet. It appears that at levels below 5uM most forms of
selenium tend to have a protective effect against DNA damages and ROS production?21:222:223-
225 However above 10uM studies have shown a strong inhibitory and cytotoxic effect of
different forms selenium leading to cell cycle arrest and ROS production leading to
mitochondria or DNA damages triggering cell-type dependent cell death??%22644%0 Several
mechanisms have been suggested to explain the effect of selenium in cancer therapy depending
on the concentration of treatment applied to the cell culture and murine models (summarised in
Table 2).
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Table 2 : Main effects of different dietary forms of selenium on cancer cell lines and in vivo

models.
Cells Selenium form Dose Effect Ref
PC3  Prostate | Methylseleninic 10uM for 12h | Reducing DNA damage 221,222
cancer acid
LNCaP Prostate | Selenite 1uM
Cancer
Whole blood Selenite 30nM
Mouse Selenomethionine | 10uM 15h Improving DNA repair 234-236
embryonic
fibroblasts
Human 10uM 24h
fibroblast
LNCap Prostate | Selenite 30nM 72h
cancer
MCF7  Breast 30nM 72h
cancer
Human Blader | Selenite 10uM 12h Increasing DNA damage 225,226
Cancer Cell
Glioma cells 7UM 24h
Rat pancreatic | Selenite 30nM 1 to 6 | Reduction of oxidative stress by | 22322
islets days increase of selenoproteins
Prostate cancer 1.5uM 6h expression
LnCaP
Glioma cells 1uM 24h
Glioma cells Selenite 7uUM 24h Induce ROS production 225,226
Human bladder
cancer cells 10uM 12h Mitochondria damages
RT-112
Prostate cancer | Selenite 1uM Alteration of DNA methylation for | 213217
PC3 LNCaP and tumour suppressor genes
Du145 cells
DU145 prostate | Selenomethionine Cell cycle arrest in G1 221229
cancer
HT1080 Cell cycle arrest in G2
Fibrosarcoma Methylseleninic 5uM Altering functions of cyclins (C,
cells acid D1 cyclin-dependent kinases (1, 2,
TM6 mammary 4) and protein kinases AKT
hyperplastic
epithelial cell
SW982 Selenite 10uM Induce apoptosis 230-233
Synovial
sarcoma 2.5uM 5d
LNCaP Prostate
cancer
OVCAR-3 10uM 72h
Ovarian cancer
Glioblastoma 5uM 24h
RT-112 Blader | Selenite 10uM 24h Necroptosis 226,231
cancer
PC3  Prostate
cancer
Glioma cells Selenite 7uM 12h Autophagy 225
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3. High doses of selenium are cytotoxic

I.  Effect of selenium on ROS production

Reactive oxygen species (ROS) are free radicals formed within cells during oxidation processes
that are characterized by one or more unpaired electrons?®®, The major ROS found in cell
systems are superoxide (O2°-), hydroxyl radical (HO®) and nitric oxide (NO°). These transitory
but highly reactive species are implicated in cellular reactions as second messengers at
physiological concentrations?*®. When ROS concentrations increase in cells, a range of cellular
damage can be induced such as lipid oxidation, DNA and protein damage*°. The control of
ROS concentration is mediated by antioxidant molecules such as vitamins (A, E, C), peptides
(Glutathione GSH) and proteins (GPx, TRx). In cancer, high metabolic activity, cellular
signalling and mitochondrial dysfunction elevate ROS levels?®®. Supplementation with
selenium in human studies have failed to prove beneficial chemopreventive effects'®, However
in cells, low doses of selenium have been proven to decrease the amount of ROS??®, with higher
doses inducing levels of ROS?232%5, As a result, two parameters for ROS production need to be
studied; the time of exposure with selenium and the concentration of the selenium species used
(Figure 8).

In vitro, glutathione spontaneously reacts with selenite (SeOs*) to form various
selenocompounds: selenodiglutathione (GS-Se-SG), glutathioselenol (GS-Se-), hydrogen
selenide (HSe) and elemental selenium (Se®) 2%° through reduction by thiols and NADPH-
dependent reductases (Figure 10). This leads to an oxidized inactive thioredoxin system by
oxidation of structural cysteine?** and depletion of NADPH?*2, Hydrogen selenide is known to
quickly and spontaneously react with dioxygen to form elemental selenium Se°, water, and ROS
(Figure 10). It can also react with sulphur forming intramolecular disulphide bonds that have
been related with inactivation of voltage sensors in the mitochondrial permeability transition
pore?*3, Moreover HySe promotes inhibition of heme containing enzymes belonging to
respiratory chain®424, This reaction leads to leakage of electrons which react with oxygen
forming superoxide ions (ROS). This formation of ROS is then amplified by mitochondria?#.
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Figure 10 : Effect of selenium on ROS production 24/

Selenate is transformed into selenite in cells under redox conditions. Selenite interacts with the
glutathione system and is processed into selenide. The reaction of selenite with oxygen liberates
ROS and aggregates of Se°. Selenide can also be used in selenocystein production and can be
eliminated through a methylation process.

ii. Effect of selenium on cell death

Apoptosis

Apoptosis is a regulated suicide mechanism that is involved in development and defence of
multicellular organisms and can occur via two (intrinsic and extrinsic) pathways®*®. The
extrinsic pathway is initiated by attachment of a ligand to the death receptor on cell membrane
activating caspase 8 inside the cells. The intrinsic pathway is initiated within the cell through
caspase 9 and caspase 3 due to DNA damage or internal stress, such as mitochondria membrane
leakage®*®. BCL-2 family proteins regulate this pathway, controlling the release of the
mitochondrial cytochrome ¢ which activates the caspases (Figure 11).
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Figure 11 : Effect of selenium on cell death?%%-2%3

Selenite triggers the production of ROS which leads to DNA, ER and mitochondrial damage
triggering apoptosis. The accumulation of ROS can trigger the activation of Beclin-1 which
triggers the autophagy in cells.

In normal conditions, the mitochondrial respiratory chain reduces oxygen into water, however,
intermediaries of this reaction produce ROS?°. With the greater metabolic rates of cancer cells,
this ROS production is increased. Treatment of cells with cytotoxic doses of selenium induces
mitochondrial damage through an overproduction of ROS in the cytosol?®. The increase of
mitochondrial permeability following selenium treatment has been measured by the decrease
of Bel-xI prosurvival family proteins?, the increase of pro-apoptosis Bad family proteins®®,
and the liberation of the cytochrome ¢ from the mitochondrial membrane®®. The leakage of
ROS in the cytosol saturates the redox management systems such as glutathione or thioredoxin
reductase®’ and induces in vivo chromosome fragmentation and DNA phosphodiester bond
break via O, dependent reactions?*42%8, Downstream effects of DNA damage and mitochondrial
membrane disruption include the activation of the caspase 3, and the increase of cleaved PARP
(poly (ADP-ribose) polymerase, a polymerase activated by single strand DNA)?*°. Resultant
cell death then inhibits tumour growth?°,

Autophagy

Autophagy, related to cell survival, is a cellular process characterized by the formation of
autophagosomes including cytoplasmic contents, such as proteins and organelles, in response
to starvation or oxidative stress?3261262_ The formation of autophagosomes is initiated by the
formation of protein complex ULK, PI3K (which contains Beclin-1) and ATG5-ATG12. The
fusion of autophagosomes with lysosomes induces degradation of the autophagosome
content?? (Figure 11). Selenite treated cancer cells have been shown to display increased levels
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of autophagy #°2%32%4 |n colon cancer cells, 10 uM selenite induced ROS-related DNA
damages leading to p53 (protein signalling DNA damages) mediated apoptosis in HCT116.
However, in p53 Knock Out HCT116, autophagy was triggered through selenite treatment?°.
In both cell lines, when autophagy was inhibited, the apoptotic response to treatment was
increased suggesting that the autophagic response is actually a defence mechanism against
selenite treatment?®®, This is also supported by the fact that cell death decreased following
autophagy activation in these cells?®*. This crosstalk was mediated via BCL-2 family proteins
that are bound to Beclin-1 under normal conditions, which is cleaved by apoptotic caspases®®2.
This prosurvival autophagy activation against selenite treatment phenotype has not been shown
for all cancer cells. In glioma cells 7 umol/L of selenite triggered autophagy that lead to
increased cell death??® through ROS overproduction, suggesting that the type of cell death is
dependent on the cancer cell line.

4. Effect of selenium on epigenetic mechanisms

Cell and murine models have both revealed that selenium triggers DNA methylation
modifications  through  dose  dependent DNA  methyltransferases = (DNMT)
activation/inhibition?®2!7 Se deficiency have been reported to inhibit liver expression of
enzymes involved in the one-carbon metabolism 2°"?17, Low doses of selenium increase DNA
methylation while higher doses decrease levels of methylation of promoters?!’ through
modification of the activity of DNMTSs.

The effect of selenite and methylseleninic acid on H3K9 modifications has been measured in
prostate cancer cell lines. In LNCap prostate cancer cells, treatment with 1.5uM of selenite for
7 days reduced the activity of histone deacetylases either by binding to the catalytic site of the
enzyme or by modifying cysteine residues in HDAC proteins leading to increased acetylated
H3K9. Investigators have also measured a decreased amount of H3K9me in this cell line.
Overall this induced the activation of gene expression. Decreased methylation of histone might
be due to a decrease of the DNMT1 following selenium treatment as inhibition of DNMT by 5-
aza-dC has been shown to result in decrease of H3K9 methylation?%®. This was concomitant
with decrease of the DNA methylation on promoter of tumour suppressor genes. In
glioblastoma spheroids, LN229 cells were treated with 2.5uM selenite resulting in a 30%
reduction in of H3K9 methylation in comparison to control, whereas treatment of U87 (O(6)-
methyguanine-DNA-methyltransferase (MGMT) negative cells) with 10uM selenite treatment
increased the methylation of H3K9 2%, and methylseleninic acid (MSA) inhibited DNMT1
expression and decreased methylation of H3K92°,

5. Selenium Nanoparticles

The toxicity of selenium is critically dependent on its redox state and concentration making it
difficult to use in pharmacology. Selenium in solution has been extensively studied in different
cancer cell types overall showing induction of redox functions at low doses?'#?% and apoptosis
at higher doses?®® depending on the form of selenium and the type of cells used.
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Preclinical and clinical studies have suggested a protective effect of selenium against prostate
cancer??® however higher (>90ug/day) didn’t prove any chemotherapeutic effect. Higher doses
of aqueous selenium are toxic and lead to selenosis'®®?%, To overcome the limitations of high
dose systemic toxicity the use of selenium in the form of nanoparticles (SeNPs) has been
initiated, with initial promising results including preferential uptake by cancer cells in
comparison with normal cells?®"?°, Similarly to the aqueous selenium studies, SeNPs
demonstrate an antioxidant activity in cancer cell lines?® at low doses and demonstrating
cytotoxic effect at higher doses. Moreover, SeNPs reduced toxicity of selenium up to four times
in mouse models®™ in comparison with selenium in solution and the toxic effect on livers have
been significantly reduced?2. A major drawback of bare SeNPs appears to be the poor cellular
intake, which has been overcome by conjugation to stabilizing and targeting ligands on the
exterior surface of the nanoparticles?’*27,

Coated SeNPs

In order to increase the reactivity, bioavailability and stability of SeNPs but also to control their
size, different coatings can be added during the process of synthesis. The addition of proteins
(albumin), oligosaccharides (sucrose) and polysaccharides (chitosan) at different
concentrations or at different times of preparation of the SeNPs influences size, morphology
and stability?"® of the NPs in liquid dispersion?’’.

In early 2000’s SeNPs were synthesized in presence of different concentrations of albumin
(BSA). It appeared that the higher the concentration of BSA, the smaller the nanoparticles?’#278,
The albumin bind the selenium through interaction by the cysteines as Cys-S-Se?’*27, It allows
the stability of the nanoparticles which would aggregate as micro particles in absence of
proteins.

BSA-SeNPs have been proven to be 7-fold less toxic than selenite in mice with respectively
113 and 14mg Se/kg body weight to reach toxic doses. However in hepatic cancer cells (HepG2)
no differences have been measured in growth inhibition between selenite and SeNP treatment
after 72h of 25uM of Se?”® while GPx and TRx were upregulated. BSA allow stabilization of
the nanoparticles and doesn’t elicit toxic biological responses as well as being largely available.
However non specific binding of albumin to other proteins inhibit their functions disturbing
cellular processes. While paving the way for selenium nanoparticles study, BSA-SeNPs effect
on cancer cells have been barely studied.

The use of chitosan for SeNP coating results in the nanoparticles having the ability to bind cell
membrane phospholipids via exposed NHsz* groups®®°. Compared to bare SeNPs, chitosan
coated SeNPs are better internalized by cancer cells through endocytosis?1282, In mouse model,
chitosan coated SeNPs were 10 fold less toxic than aqueous selenite with a 50% mouse
mortality of 24 mg selenite/g of body mass and 250 mg/g of bodymass chistosan-SeNPs/g?’®.

Cancer cell specific properties can also be used to enable the targeting of SeNPs. The
overexpression of folate receptor (vitamin B9) in different cancer tumours (kidney, liver, skin,
lung)*641%5 has been used in order to specifically target cancer cells. In 4T1 breast cancer cells,
folic acid (C19H19N70e) modified SeNPs increased cell mortality by 68% compared to bare
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SeNPs?%, Moreover, folic acid targeting of coated SeNPs induced apoptosis?®>28" in liver
HepG2, osteosarcoma MG-63 and kidney HK-2 cells. In mouse models SeNP-folate decreased
the tumour growth rate?®,

Interestingly chitosan and folate combined coatings resulted in targeting folate receptor and
negatively charged membrane?®. After internalization, when pH increase above 6.5, the amino
groups of chitosan become positively charged and chitosan precipitate which induce an
increased intracellular drug accumulation?8,

SeNPs combined with chemotherapy

Classic chemotherapy increases the oxidative stress in cancer cells but also in other normal
cells. The preclinical and clinical studies using inorganic selenium supplements increased the
antioxidant capacities of the cells!®%, Recent studies conjugated SeNPs with
chemotherapeutics such as paclitaxel (PTX) or cisplatin, have any combined (additive or
synergistic) cytotoxic effect?>*28%2% against cancer cells. Further development is needed to
investigate the low impact of these treatment toward normal cells.

Paclitaxel has been loaded on 20-100 nm SeNPs by adsorption on pluronic F-127 detergent.
The NPs demonstrated an anti-proliferative activity against lung (A549), breast (MCF7) and
cervical (Hela) cancer cells®°. Cell cycle analysis demonstrated a G2/M arrest in a dose
dependent manner of SeNP-PTX leading to apoptosis due to ROS induced mitochondrial
membrane disruption and activation of caspases without deciphering whether SeNPs or PTX
had this effect. PTX-SeNPs used on these cancer cell types showed a greater cytotoxic effect at
much lower concentrations than treatment with SeNPs or PTX alone and is thought to decrease
the side effects of the different drugs?®°.

Cisplatin the most widely used treatment in ovarian cancer causes side effects including
nephrotoxicity and genotoxocity mediated via activation of the inflammatory pathway due to
high oxidative stress in cells®®. SeNPs reduced cisplatin toxicity against reproductive system
in Wistar rats®®®. SeNP-cisplatin also reduced toxicity in mice against osteoblasts?®, thyroid
gland?®?, intestinal cells?®2% py limiting nuclear and mitochondrial damages and apoptosis In
brain and hepatocytes SeNP-cisplatin reduced the number of pro-apoptotic B-cells?®.

Building a more comprehensive approach of the effect of selenium nanoparticles in cancer
models, we decided to review the literature in order to describe the different type of SeNPs that
have been synthesized and used as treatment toward cancer cells or tumour bearing mice since
the beginning of the 21% century. Table 3 sums up the main outcomes of those trials.
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Table 3: 2000 to 2020 selenium nanoparticle preparations and effect in cancer cells.

charged SeNP

HT29 colon
cancer cells

NP Type Size Shell Model Outcomes Ref
HelLa cercical
SeOz2 in vitamin cancer cells .
C NC None MDA-MB-231 | Cell cyclearrestin S phase | 2%
breast  cancer
cells
MCF-7  breast | SeNP induce cell death
40 to cancer (ERo+) | expression Bax/Cytc in |
Nano Se gonm | None MDA-MB-231 | ERa+ cells. Scavenging
(ERo-) ROS
. Better free radical
Nano Se Sto BSA In vitro ROS scavenging efficiency for | 27427
200nm scavenging !
lower size NP
GST/GPx .
36 to BSA activity Size effect of_ NanoSe as o
Nano Se .| chemopreventive
90nm measurement in
mice liver/blood
Lower  toxicity  than
. selenomethionine  with | ,;,
Nano Se 20-60nm | BSA Mice increase  selenoenzyme
producton
. . Antiproliferative,
Folic Acid 70nm | Folic Acid MCF-7  breast Mitochondria-dependent 287
modified SeNPs cancer cells .
apoptosis
Light and heavy BABLC-3T3 Inhibit ROS Production
Chitosan on 50 to . skin cells . 276
. Chitosan . (GPx increase).
synthesized 103nm Caco2 viscera . .
Chitosan stabilize NP
SeNP cells
Sialic Acid 70- Sialic Acid HelLa Cervical | Apoptosis and increased | ,o5
coated SeNPs 170nm cancer cells uptake
MCF-7 breast
HepG2
Transferrin . hepqtocellular Cytotoxicity against
. Transferrin carcinoma
conjugated o cancer  cells  through | 5
s 130nm | Doxorubicin | A375 melanoma . .
doxorubicin (DOX) HUVEC apoptosis (p53 activation,
loaded SeNP - .| ROS overproduction)
umbilical  vein
endothelial
cancer cells
subG1l arrest apoptosis
5FU surface
functionalized 70nm 5- - A375  human | (casp9) due do DNA | 59209
SeNP fluorouracil | melanoma da_mages o _
Mitochondrial disruption
A549 lung
Paclitaxel MCF7 breast G2/M arrest apoptosis
74nm | Paclitaxel HeLa cervical (casp3) 289

Mitochondrial disruption
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IVV. Objectives

Hypothesis: Selenium nanoparticles accumulate in ovarian cancer cells and limit the growth of
these cells more effectively then free forms of selenium that display inherent in vivo toxicity.
Moreover the use of copper isotopes ratio in blood and samples are informative in Ovarian
Cancer early detection.
Main objectives:
1. Determine the effects of selenium nanoparticles on ovarian cancer cells by investigating
nanoparticle accumulation, cell death, cytotoxicity, migration of cancer cells.
2. Characterise the effects of selenium nanoparticles on cell biomechanics to understand
if selenium impairs metastatic potential by affecting cytoskeleton.
3. Determine the molecular process triggered by selenium nanoparticles in ovarian cancer
cells to understand underlying mechanisms of action
4. Evaluate ®*Cu/%3Cu ratios (6%°Cu) in serum samples from cancer patients as a potential
complementary ovarian cancer biomarker.

37



Selenium Nanoparticles triggers alterations in ovarian cancer cells biomechanics

Selenium Nanoparticles triggers alterations
In ovarian cancer cells biomechanics

I. Presentation of the article

Metastasis is the leading cause of cancer death in 90% of ovarian cancer cases?®. The ability to
limit this process is paramount in the treatment of ovarian cancer, where metastasis seems to be
triggered by the accumulation of highly inflammatory peritoneal ascitic fluid, which contains
growth factors that can induce epithelial to mesenchymal transition (EMT). In addition to these
biochemical factors, the sheer stresses that cells are exposed to as a result of ascitic fluid
circulation, may help tumour cell dispersion?’. EMT is defined by the loss of cellular polarity,
modifying their interactions with neighboring cells while gaining migratory and invasive
properties. During this process, cells exhibit modified mechanical properties as a result of
altered architectural changes of their cytoskeleton? %3, Principal cytoskeletal components such
as actin microfilaments, intermediate filaments and microtubule polymer networks play
important roles in locomotion and cell integrity, influencing cell adherence, interactions with
other cells and motility®8-°,

With Ovarian cancer motility and mechanical transformation being a central theme to both local
and distal metastasis, selenium nanoparticle effect on ovarian cancer cell lines, SKOV-3 and
OVCAR-3 biomechanical properties were assessed in vitro. SKOV-3 are metastatic epithelial
cancer cells originally derived from the ascitic fluid. OVCAR-3 are also epithelial cancer cells,
however are derived from slow growing adenocarcinoma and are associated with resistant
phenotypes. Expression of EMT markers in SKOV-3 and OVCAR-3 cell were assessed using
western blotting, alongside cellular morphology, membrane roughness and mechanical
properties (elasticity and adhesion), in the presence and absence of selenium nanoparticles
coated with BSA and chitosan. BSA is used in nanoparticles synthesis for its ease of use and
high bioavailability and stability in blood. However, it can non selectively bind to proteins
impairing cellular functions. Chitosan is highly soluble when pH<6.5 thanks to the positive
charges of the nitrogen groups and the coating disaggregate allowing the drug release*3. Free
selenite was used as a control to show evidence for the increased efficacy and uptake of
selenium nanoparticles.

Dissemination of cancer cells following EMT is sustained by modification of cell-cell, cell-
matrix interactions and cytoskeleton modifications. Such modification can be studied using
nanomechanical tool such as atomic force microscopy. Atomic Force Microscopy is composed
of a mobile cantilever on which a laser detects its deflection through its interaction with the
surface studied. While the cantilever is moving, the surface elasticity and roughness impacts
the way the cantilever bends. This is detected by the laser receptor which translates the
properties of the material studied into force curves using the Hertz model allowing the
estimation of Young’s Modulus (force necessary to indent into the cells). Literature data
demonstrate®3°6:3% that cellular elasticity is strongly correlated with cell cytoskeleton.
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Graphical Abstract: Selenium nanoparticles triggers nanomechanic properties
modifications in ovarian cancer cell lines

Treatment of high grade serous ovarian cancer cells OVCAR-3 and SKOV-3 with coated
selenium nanoparticles highlighted two opposite behavior depending on the aggressiveness of
the cell type. Biomechanical modifications in metastatic SKOV-3 and aggressive OVCAR-3
assessed by Atomic Force Microscopy measurement led us to decrease the metastatic potential
of SKOV-3 cells and decrease viability of OVCAR-3 cells.

We assessed the EMT markers and the mechanical properties of SKOV-3 and OVCAR-3 using
AFM before and after treatment with selenite or coated selenium nanoparticles (see Figure
above). SeNP penetration in SKOV-3 and OVCAR-3 ovarian cancer cells was assessed by
measuring the levels of selenoprotein transcript GPX1 after treatment. It appeared that selenium
can’t affect EMT markers in the two different ovarian cancer cell lines. The analysis of
nanomechanical parameters revealed opposite phenotype between SKOV-3 and OVCAR-3
after treatment with SeNPs. While SKOV-3 increased stiffness and roughness, OVCAR-3
became more elastic and softer. In addition we acquire we hypothesized the SeNPs are effective
for cell proliferation inhibition but in different mech anisms depending on the cell type.
We tried to elucidate those mechanisms in the following part constituted by the paper entitled
“Selenium nanoparticles induce global histone methylation changes in ovarian cancer cells”.
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Abstract

High dosc selenium acts as a cytotoxic agent, with potential applications in cancer treatment. However, clinical trials have failed to show
any chemothermpeutic value of selenium at safe and tolermied doses (<" pgiday). To enable the successful exploitaion of selenium for
cancer treatment, we evaluated inorganic selenium nano particles (SeNP), and found them effective in inhibiting ovarian cancer cell growth.
In both SKOV-3 and OVCAR-3 ovarian cancer cell types ScNP reatment nesulted in significant cyiotoxicity . The two cell types displayed
contrasting nanomechanical responses to SeNPs, with decreased surface roughness and membrane stiffness, characteristics of OVCAR-3 cell
death. In SKOV-3, cell membrane surface roughness and stiffness increased, both properties associated with decreased metnstatic potential.
The beneficial effects of SeNPs on ovarian cancer ccll death appear cell type dependent, and due o their low in vive toxicity offer an exciting
opporunity for fitune cancer treatment.

D 22 The Authon(s). Published by Elsevier Inc. This is an open access article under fhe CC BY-NC-MND hcense (http://oreativeco mmons.

org/licensesTy-nc-nd & 00,

Key wonds: Selemum; Nanoparticles; Manomechanics; (vanan Cancer; Meladas

Selenium (Se) is an essential trace element, obtained
primarily thmugh the diet as selenium containing amino acids, '
however it has a namow safe range of exposure and becomes
toxic at levels above the recommended dietary imtake (30290 pg/
day). Selenoproteins are imphcit in human health due to thar
antioxidant activity and are associated, for example, with anti-
inflammutory, and antiviral properties.” Selenocysteine (SeCys)
is present in Se contaming proteans, predomimantly glotathione
peroxidase (GFX) in the liver, and is involved in reactive oxygen
species (ROS) scavenging through its redox fundion.” GFX
reduces lipid hydropemxdes in alechols and reduces free
hydmgen permoxide to water.

Observational studies revealed that Se can inhibit cancer cell
growth, This effect occurs through increasing ROS-mediated
necTosis in prostate cancer, * autophagy in eolorectal cancer,” and
apoptosis in skin, bresst, and liver cancer.® However, 1 mets

The auwthors declare o conllict of inlenest.

analysis of mndomized controlled trials, 25,000 patients, failed
to show any significant effed of Se dietary supplementation in
reducing the incidence of colomctal, skin, lung, bladder or
prostate cancer.” High supplementation levels induced toxicity
limiting the ublity of S¢ contmmng compounds as potential
chemotherapeutic agents.” To overcome the toxicity associated
with soluble Se, Se-nanoparticles (SeNFs) have been synthesized
and evaluated for their anticancer properties. Both free-SeNPs”
and encapsulated-SeNPs™ are effective in reducing cancer cell
proliferation in vitro. Furthermone, SeNPs appear to be effective
and well tolemted in vive "', enabling Se to be used effectively at
doses that would be toxic if administered as soluble Se.
Orvarian cancer is the seventh most common cancer in women
with five-year survival mtes of less than 45%,* and only 2066 of
cases are detected at early stages of the disease,” The ovarian
micm-envirnment cancer is highly inflammatory, and the use of

*Comesponding suthor st Centre for ManoHealth, Swanses University Medical School

E-mail addrese YN 14 @ ayvanszaac.uk. (B, Toubhans),

T Sk awrggf 1L 1016 aane 20000, 1 (2258
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Figune 1. SeNF characte rization and internalization. Representative TEM images of the SeNP-BEA (A) and SeNP-chilosan (B ). Images have boen taken with
A 23000 magnification. Treatmen for 48 h with sublethal doses of selenie, SeNP-BS A and SeNP-chiosan resulled m significant alterstion (C) m SKOV -3 (1efl)
or OV CAR-3 (nght) cells e xpresdon of GPX 1. In uniresied SKOV -3 nelative GPX 1 expresdon levels were respectively (008 +/~ (L0 for control, (025 +— 0,03
for selenite, (.26 +— (UG SeMP-BSA, 019 +— 0003 for SeMP-Chilosan. Same patiem have been obaerved in OV CAR with 0.13 +— 0001 for contred, (028 +-
(L8 for Selenile, (034 +4~ 003 SeMP-BSA, (L.26 +/~ (005 SeNP-Chilosan. All messure menl represeniative of & minmum 3 biologeal nepests.

antioxdant supplements has besn cormzlated with a deoreased
risk of cancer development™ | possible due to the form of
selenite wsed in supplements forming endogenous SeNPs that
inhibit glycolysis, causing mitochondrial dysfunction, autophagy
and cytoskeletal depolymenization, ™

Tumor metastasis in advanced ovaran disease is the leading
canse of death and 15 an mwherntly mechanical process where
these properties are known to be altered. ™ "7 The sequisition of
invasiveness by tumor initiating cells is accompanied by the loss
of the epithehal feaures and the gain of a mesenchymal
phenotype, termed epithelial to mesenchymal transition
(EMT)."" Chemotherapeutic drugs have been shown to modify
such cellular bwomechamcal features, through achitectuml
changes to the cell cytoskelston.™ Similardy cellular cytoskeletal
components such as actin micmofilaments, intermediate fila-
ments, and microtubule polymer networks play determinant roles
in cellular mechanical poperties, looomotion, while regulating
cellular integrity during differentiation.”® Modifications to those
networks mfluence cyvtoadberence, migmbton, invasion and
tumar metastasis,

Here, we mssessed the anticancer activity of pmtein (B5A)
and carbohy drate {chitosan) surface coated SeNPs in two distine
high gmde semus ovanan cancer cell lines, OVCAR-3 and
SKOV-3, Both SeMNPs were significantly more cytotoxic than
soluble S in OVCAR-3 cells at high doses >=40ug/mL), but
similar to soluble Se with SKOV-3 cells, which were more
sensitive to Se treatment than OV CAR-3 cells, mghhghting the
differences between cell types. Further analysis revealed SKOV-
3 cells exhibited stable EMT markers and decreased motility, and

interestingly, an increase cell surface mughness and cellular
stiffness. In contrast OVCAR-3 cells displaved a decrease in
cellular stiffness indicative of altered cytoskeletal dynamics that,
alongside decressed vimentin expression levels and amtophagy,
can he interpreted as sensitization toward apoptosis, %" 1t
appears that rduction in cell viability following SeNP expos ure
occurs through different mechamsms that mesult in contrsting
perturhations in cellular mechanics in serous ovarian cancer
subtypes. SeMPs may therefore offer the potential for pan-cancer
treatments, not least in ovanan cancer, that s a complex and
multifsceted diszase with a very poar pmgnostic outcome,

Methiods
Cell culture

The OVCAR-3 (ATCC, Rockwille, MD, USA) ovarian
cancer cells were cultured i RPMI-1640 (Sigma-Aldnch,
Grillingham, UK) supplemented with 20% bovine serum alburmin
(B5A, Sigma-Aldrich, UK), 5 pg/mb insulin (Sigma-Aldrich,
Gillingham, UK), and 1% penial in-streptomycin (v/v) solution
(Sigma-Aldnch, UK). The SKOV-3 (ATCC, Rockville, MD,
US) ovanan cancer cells were cultured in MoCoy's 5A (Sigma-
Aldrich, Gillingham, UK) supplemented with 1066 bovine serum
albumin (BSA, Sigma-Aldrich, UK), and 1% penicillin-
streptommyein (vivl (Sigma-Aldrich, Gillingham, UK). Cells
wenz maintained at 37°C and 5% C0; and moutinely passaged
using 0.25% trypsin - 0.1% EDTA (viv).
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Figure 2 SeNP cytotosicity. Ovanan cancer cell SKOWV-3 (lop) and (WVCAR-3 (bollom) wene grown in the presence of Selenite, BSA ooated @ lenium
nandpraniicles or chilosan ooated selenjum nanoparticles over 48 h and mondioned for cellular cytotonicity. Both oell lnes wene teated for 48 h withan incnsasdng
range of concentration from O fo B0 pgéml. Cyiodoxicity was evaluwsted by RTGlo and mean (+-5D) lummescence values shown) from four mdependent
expermmenis. SEOV-3 and OVCAR-3 vishility ane presenied in oompanison with control m aupplementary figune 1.

SeNP characterization

SeNPs were purchased from NANCGCS (New York, USA)
with two different coatings, BSA and chitosan. Mamfacturer
specifications stated 25 — 50 nm of dismeter for both
nanoparticls. Stze shape and charge analysis was condocted
by Dyvnamic Light Scattering and Zeta Potential measurement
using a fetaSizer Nano (Malvern Instruments, Malvem, UK)
with a 173" scattening angle using SeNPs at lpg/mL in water
(meflexive index of 1.33) at 25°C.

Cell growth and 8¢ treatment

Both SKOV-3 and OVCAR-3 cells were cultured in growth
medium until 80% confluency, trypsinized per megular passage
and seeded to sterile petn dishes (Coming, UK) at 37° C and 5%
CCh;. After 48 h incubation culture medium was removed and 2
mL of fresh medinm containing the expected concentration of
aqueous Se (selemite Se*') or SeNPs added for a further 48 h
prior to analysis, with a minimum of three biological repeats,

Cell vighility assay

Orwarian cancer cell viability in the presence and absence of
Se treatments was determined wsing the Real-Time Glo assay
(RTGlo, PROMEGA, Southampton, UK). 1 = 107 ovarian
cancer cellsfwell were plated within 96-well white plates
(Coming, UK) Aftr 24 h of growth, milture media was
aspirated and 100 pL. of fresh medium containing agqueous Se
{selenite Se*') or SeNPs (BSA or chitosan) were added. An
inareasing dose range (0.06 pg/mL to 40 pgéml) was applied by
dilution in appropriate medium for 48 h. The RTGlo with EPMI-
1640 medium was added 1:1 with treatment medivm. A BMG

Labtech Fluostar Omega was used to measure luminescence
every 24 h and presented as absolute values. IC20VICS0 doses
were determined a5 the concentration of treatment that reduced
by M550 the luminescence signal comparad to untreated
comral. The IC2OMCS0 values shown (average + standard
deviation) are from a minimum of four independent experiments
performed with & techmical repeats.

Migration assay

2% 107 SKOV-3 cells/per well were seeded in 12 well plates
and cultured in complete culture medium until the cells reached
confluence. A scratch was then introduced to the monolayers,
usinga sterile (20l pipette) tip. The media was then aspimted
and a fresh, fetal bovine serum (FBS, Gibeo, UK) free medium
containing IC20 sel enium treatment was added to each we ll and
cultured for 48 h. The scratch was imaged at 0, 24, 48 husing a
Primo Vertinverted light microscope (Zeiss, Cambridge, UK).
Average scratch width measurements were measured at three
random areas, n three wells for each condibon, as previously
J'f.zpi.u'tra-u.i.33 The migration rate was calculated acconding to the
following equation: cell motilities (%) = [1 - (distance of
seratched area at 24 hidistance of semtched area at O h))
x 1005%.

Protein bloting

Total cellular protein was extracted using TREol™ reagent
(Sigma, Gillingham, UK) and quantified using the D™ Prote in
Aszay (BioRad, Deeside, UK) Protein from each sample
wis mined with Laemmli sample buffer containing f-
mercaptoethanal (5%) and boiled at 95°C for 5 min. Equal
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Fagune 3. Effect of SeNPs on EMT phenotype. Scratchiwound healing asay (A) nesulls showed that selendle, Se NP-chilosan and SaNP-BSA treatments ail 1020
sdgmilicanily decressed migration of SEOV-3 cells during 48 h. SeNP-BSA restment decnsases e recovery rabe by 25% (+/—4 8% ), Se NP-chilosan ineatmeni
by 16.5% (+'—3 8%) and selenile treatment by 156 (+~52%) in comparison with control (7 < (L0G). [ was nol possible o complete the migration asay with
OVCAR-3 celk & they donol survive when depleted wath FB S, Trestment for 48 hwith 1020 selenile, Se NP-BSA and Se NP-chiiosan resulled in no s gmlicant
alleration in SKOV-3 ar IWCAR-3 @ik ]'mll"i]'hlg of EMT markers (BE-cadbenn, N-calherm, Vmmenlm) (O, D). In unlrested SEOV-3 (C) relabve wimenbn
expresson kevels were samilar between condilions wath nespectively (09 (=2} for contral, 100 (+/=0.1 ) for selendie, 114 {+—~002 ) for BSA SeNP, 087 (+
=1 11 for chilosan SeNP. Relative expresion of E-cadherin wis Jow (000 o (0020 . N-cadherine sqpnesson wis s Lar between condiions with nespect vely (L8
(=8 ) Tor connol, (067 (+'=0001) for selende, (09 (#0001 ) Tor BSA S2NP, (0% (+~0.068 ) for chilosan SeN P In unimested OV CAR-3 (D) relaive vimentn
expresaon level werne (L45 (=R whale il wias decreased 1n Ureated cells wath 0031 (/=01 ) wath selemie, 00200+ 003 ) for BSA SeMN P and (0.1 8+ (006 ) lor
chitosan SeNP. Relative expresion of N-cadherin was very low (002 w0005 ). E-cadher in expressions wene the same between the difTe rent conditions with (.50
(+~0L06 ) Tor contral, (045 (+—=0.2) Tor selenie, 047 (+50005) for SeNP-BSA and 05 (+—0002) for chitosan SeNP. Examples of wedem blots have been

digplayed m (Bl

amounts of protein (30 pg) wens separated by SDS-PAGE (4-
20% gels) and subsequently trans ferred onto a PV DF membrane
(Biomd, Deeside, UK). The membmnes were blocked for 1 hin
5% BSA prepared in 0.1% Tns-buffered saline-Tween 28
(TBS-T). Blots were then incubated with the comesponding
primary antibody (E-cadherin: mouse monoclonal (Abcam
abl416, Cambrdge, UK), vimentn: mouse monoclonal {Santa
Cruz sc-6260, Wembley, UK), N-cadhenn: rabbit polye lonal
{Abcam abl8203, Cambridge, Wembley, UK) or GAPDH:
mouss monoclonal (Santa Cruz sc-47724, Wembley, UK)) at a
concentration of 200 pg/mL overnight at 4°C. Blots were then
washed 3 times with TBS-T and incubated at mom temperature
for 1 h with the appmpriate secondary antibody (goat anti-
mouss Abcam abl 50113 or goat anti-rabbit Abcam abh721
HEF secondary, Cambridge, UK) at a concentration of 400 pg/
mL. For signal detecton, membrnes were processed using the
Clarity™ Westemn ECL Substmte kit (BioKad, Deeside, UK)
according to the manufacturer’s reommendations and visoal-
ized using a ChemilDoc XRS system (BioRad, Deeside, UK).
Amnalysis of the ntensity of the bands was done using Image
Lab (BioRad, Deeside, UK) software tracing fined size-1imted

mctangle around the bands of interest and reporting the
Adjusted Volume (Intensity corrected by the background
noise). Protein expression was nomalized GAPDH and
mlative expression expressed as the mean fold mducton =
standard deviation.

gRT-PCR

Following RMA extraction and guantficaton, gPCR
was carmied out in accordance with the manufacturers’ recom-
mendations, wsing the RETROscnpt® kit two-step
method (Ivitmogen Lid., UK). Following ¢DNA  synthesis
from 100 ng of RMA, each sample was analveed by gPCR in
tmplicate uwang 0} SYBR Green supermix (BioBad, Deeside,
UK) and gene specific primers (Sigma-Aldrich, Gillingham, UK)
o evaluate differemt gene expression GAFDH (GAPDH
Forward: GTCCACTGGCGTCTTCAC, Reverse:
CTTGAGGCTGTTGTCATACTTC) and GFX1 (GPX1 For
wand: GTGCTCGGCTTCCOGTGCAAC, Reveme: CTUGAA-
GAGCATGAAGTTGGGC). Seral dilutions of cDNA were
wsed to plota calibration curve, and gene expression guantified
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Figure 4. Effect of SeNP on SKOV-3 mar phology and topography. SKOV -3 cells were trested wath Se-NPs for 48 h and compared o selemie (1C20) and an
untrested control. High resolution AFM imagmg was performad and subsequent image analysss. No morphological and/or topograplical cell changes were
detected with stshle morphological festures observed in the Control (A), 1C20 Selenite (B ), ICX) BSA costed SeNP (C), ICX) chitosan conted SeNP (D) usng
brght fiekl, AFM height and Pesk Rorce error signal respectively. The shown image & representstive of the morphology of SKOV-3, from imaging 15 cells from

3 hologcal repeats.

by plotting threshold cycle values. Expression levels were
nomalized to values obtained for the reference gene (GAPDH)
and relative expression expressed as the mean fold induction +
standard dewiation. Statistical differences between the treat-
ment groups and the control were determined by analysis of
variance (ANOVA) (where P < 0.05 was considered
sigmficant).

AFM analysis

Young modulus, indentation and adhesion

Force-indentation curves were obtained using a Nanowizard
II AFM (JPK, Berlin, Germany) mounted on a ZEISS 510
confocal microscope (Zeiss, Cambridge, UK) as described in ™.
Duning AFM, cells were kept alive in serum free, pH indicator
free culture media at 37°C in a petri dish using a standard stage
heater and analyzed for a maximum of 3 h. The inverted optical
microscope was used to position the tip on the cell and force
volume conducted using borosilicate colloidal (Novascan, UK)
cantilevers, with a nominal spring constant of 0.35 N/m with a
radius of 2.5 ym. Prior to measurements, deflection sensitivity
and spring constant were experimentally determined, the latter

using the subroutine of the JPK software. Three individual force
curves (ramp size of 6 ym) were taken on a total of 25 cells,
acrass 3 independent biological expenments, using a maximum
force indentation of 6 nN was used. JPK Data Processing
program was used to process the acquired force curves. For each
farce curve the baseline was comected to 0 and the approach
curve in the contact regime of each farce curve was fitted using
the classical Hertz model according to Eq. 1. In both cases, the
fitting module in the JPK software was used and only curves with
a goodness of fit between 0.85 and 1 were considered for
statistical analysis.

I 72
| £ <4
Rems = VT (1)

In this equation, F is the force applied by the cantilever tip to
the cell, E is the Young's modulus (fit parameter), v is the
Poisson’s ratio (0.5), R the radius of the indenter, § is the
indentation depth and a is the half-angle of the indenter (18° for
the used sharp probes).

45



Selenium Nanoparticles triggers alterations in ovarian cancer cells biomechanics

Bright Field

8um

B. Toubhans et al / Nanomedicine: Nanosechnology, Biology, and Medicine 29 (2020) 102258

C D

9um

8um

26nN

Peak Force Error

7 um Bpum

33nN

10 um 9 pm

3N 33nN

10 pm

Qum

Figure 5. Effect of SeNP on OVCAR-3 morphology and topography. OVCAR-3 cells were wreated with Se-NPs for 48 hand compared © seknike (1CX)) and
an untrested control. High resolution AFM maging was performed and subsequent mmage analyss. No morphological and/or opographacal cell changes were
detected with stable morphologacal festures observed in the Control (A), 1C20 selenite (B), IC20 BSA costed SeNP (C), ICX) chitosan costed SeNP (D) wing
bright fiekd, AFM height and Pesk Force emmor signal respectively. The shown image 1 representative of the marphology of OVCAR -3, from maging 15 cells

from 3 hiologcal repeats,

Tapography and surface roughness

In order to resolve the membmne architecture, cells were
fixed for imaging according to the protocols outlined in Francis
et al. ** Briefly cells were washed 2 times with PBS then fixed
for 30 min in 4% PFA (Merck, UK) diluted in PBS at RT. PFA
was subsequently removed and replaced by phasphate buffered
saline (PBS). at RT. SKOV-3 and OVCAR-3 cell morphology
and topography were amalyzed using a BioScope Catalyst
{Bruker Instruments, USA) mounted on a Nikon Eclipse Ti-S
inverted optical micrascope (Nikon Instruments, Netherlands).
The inverted optical microscope was used to carefully position
the tip on the desired cell and tapping mode imaging undertaken
using MLCT-E silicon mtride cantilevers (Bruker-Nano, UK).
Offline processing for AFM height data consisted of fistorder
flattening and plane fitting. The membrane mughness was
measured using the subroutine in the Nanoscope Analysis
software v1.50, on areas of 25 pm” each on five cells for control
and treated, from a minimum of 3 biological repeats. Membrne
roughness was calculated using Eq. 2,

J

(> Z¢
Roae =y =221 (2
RMS \,' N 12)

where N is the number of height points in the analyzed area
and Zi is the vertical distance of data point i from the mean image
data plane. Sixteen mughness measurements were calculated per
image, with 1 um? areas of measurement.

Statistical analysis

All data presented are calculated from a minimum of three
biological repeats, with technical repeats included per sample, as
denoted. Data nomality was anal yzed using the Kolmogorow
Smirnov test, with normally distributed data analyzed with the
one-way and two-way analysis of vanance (ANOVA) or the
Mann-Whitney pairwise test for non-pammetnic data. In all cases
in which ANOVA was significant, multiple comparison methods
were used. Differences were considered si gnificant for P < 0.05
(*P < 0.05, **P < 0.01, ***P < 0001). All data were analyzed
in MimTab 14.

Results

Physicochemical and biological characterization of SeNPs

Basad on previous observations showing Se has anti-proliferative
effects on ovarian cancer cells, ** ™ and the good tolerahility of
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25um” sress measurement and 1pm® analysis squares in all groups. Images of example sress are displayed in A. SKOV-3 contral cell surfsce roughness (Ryss=
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than that observed in trested cells (R gy =28.41 +~ 182 nm in selentte trested cells, Ry =27.92 +/- 1.75 nm in BS A costed SeNP trested cells and Ry o=

05 +/= 1.11 nmn m chitosan coated SeNP).

SeNPs in vivo in other disease models™ ™ we evaluated

cytotoxicity of BSA and chitosan coated SeNP on SKOV-3 and
OVCAR-3 cells. Chamcenization of SeNPs (see supplementary
figure 2) aggregation and charge demonstrated SeNP-BSA had a
negative charge (-51.2 = 158 mV) and an average size of 108 = 30
nm and PDI of 0.123 £ 0.002 which was considered monodisperse,
and the 30-100 nm sizz range confirmed by transmission
ckectron microscopy (TEM) (Figure 1, A and B). SeNP-chitosan
had apasitive charge of 16 4 £4.4mV, anaverage sizeof 320 £ 221
nm and PDI of 0220+ 0.012 and was considered as polydisperse.
SeNP-chitosan size values with the ZetSwer measurement
were higher than the suppliar’s specification of S0nm average siz
however TEM images confirned thase specifications (Figure 1, A
and B)

To demanstrate that SKOV3 and OVCAR3J cells were
responding to Se treatments, and therefore confirming that Se
had been effectively taken up by cells, GPX1 mRNA levels were

measured.™ GPX mRNA levels inareased 2-2.5-fold following
Se treatment in both cell types (Figure 1, ).

Ovarian cancer cell line dependent SeNP cytotoxicity

SKOV-3 and OVCAR-3 cell monolayers were treated with
increasing concentrations of SeNP-BSA, SeNP<chitosan or sodmm
selenite (0— 80 pg/mL) over 48 h and cell vability measured. For
SKOV-3 (Figure 2) cells selenite trestment had a greater cytotoxic
than SeNP-BSA and SeNP<hitasan. The 1C20 for selenite was 3 g/
mL a 48 h (Figure 2). whereas the 1C20 for SeNP-BSA and SeNP-
chitosan were 6 ug/mLand 13 pg/ml respectively (P < 0.05). Above
Sug/mL of selenite, SKOV-3 cell viability was significantly reduced
compared to untreated control after 48 h (P < 0.05). Whereas for
SeNP-BSA and SeNP-chitosan the concentration required o casea
significant reduction i cell viability was 10 pg/mL and 20 pg/mL
respectively (P < 005).
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In contrast, OVCAR-3 cells were more sensitive to both types
of nanoparticles than selenite (Figure 2), the IC20 at 48 h was
not significantly different between SeNP-BSA and SeMNP-
chitosan treatment at 30 pg'mL and 18 pg/ml respedively
(P = 0.06), wherzas the IC20 for selenite was 40 pg/ml. (Figure
2, P = (.05).

IC50 values confirmed SKOV-3 cells were mone sensitive
than OVC AR-3 to both selenite and SeNP-BSA treatments (8 vs
56 pg'mL and 19 vs 42 pe/ml mspectively, P< (L05), whenzas
the 1CS0 for SeMNP-chitosan the same (40 pg/mL) for both
SKOV-3 and OVCAR-3 (Figure 2, & and C). It appears that
selenite has a greater cytotoxic effet on SKOV-3 cells than
SelNPs, whereas the opposite was observed for OVCAR-3 cells,
which are more sensitive to SeNPs than selenite. The
concentrmtions of SeNPs mquired to decrease cell viahility are
all significantly higher in OVCAR-3 than SKOV-3 suggesting
that the two cell types ane responding differently to Se treatment
despite the GPX stmulation being similar,

Epithe lisl-mesenchymal transition (EMT) is a cellular
mechanism linked to differentiation during cancer progression,”™
and mclodes alterations i E- and N-cadherin and vimentin
expression, and increased cell migrtion,** Efforts to reverse
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these fransitions are an imporant consideration in treating
ageressive cancers, The effect of Se on cell motlity was
assessed using a seratch assay, treating cells with K30 levels of
selenite and SeMNPs for 48 h. Motility rates were decreased by
25% following SeNP-BS A treatment, 17% after SeNP-chitosan
trestment and 19% with selemite (P < (.05, Figure 3, A),
suggesting that whilst selenite was move cytotoxic the three
treatments has a s lar extent in reducing cell motility. Seratch
assays wene not possible with OV CAR-3 cells as these cells do
not survive when depleted with FBS. In SKOV-3 cells
assessment of EMT markers revealed that selenite and SeNPs
had no effect with E-cadherin expression remaining at very low
levels, and M-cadherin and vimentin remaining highly
expressed consistent with an unaltered mesenchymal pheno-
type. (Figure 3, B and C. In OVCAR-3 cells the E-cadherin:N-
cadherin was the opposite to that observed in SKOV-3 cells
suggestive of a mone epithelial phenotvpe (Figure 3, B and ),
however neither marker responded to selenium treatments. In
contrast, vimentin levels significantly (F < (.05) decreased
following treatment with SeMPs, an effect that has previously
heen commelated with a decrease in cancer cell mechanical

integrity."®
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Figure 7. Effect of SeNF on SKOV-3 and OVCAR -3 cell stiffnes and nano-indentation. AFM probe with a colloidal tp was used & @ emo-mdentor o
mmiior changes in cell elagicity following 48 h of restment. Using Herte mechanics, eladicily wias calculsted from the obearved changesin the contact regime
of the force curve. The (b point in the x-axis mdicates when ihe cantilever lip makes conlsct with the cell surface. Todal cell elagicily values are drawn i
frequency curve for control and rested cells sl 48 h. Highly sgnificant alerstions in median valoes wene detected between control and reated cell. Indentstion
dsita reporied thal were applying the same lorce resnlis m trested OVCAR-3(B ) cell deformung mone than contnol celle. SKOV-3 (A) celk seem 1o defom les
afler trestment Statitical significance was determmned usang the Mann-Whilney lest with the following used symbaols NS=F = 0005, *F < (005 =P <001, =P
<= (b
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Effect of 8NP treatment on surface roughners and biomechanics

Previously ovanan cancer cell biomechanics have besn
shown to differ depending on the invasive potential of cells,'®
and perturbations in gene expression pattems linked to enhanced
cellular movement, migration, and invasion.” Given the
decreases i motility rates described above we reasoned that
this may be linked to altered biomechanical properties following
SeNP exposure, Using high-resolution tapping mode AFM we
initially resolved gmss cellular morphology and nanoscale
surface topography.

SKOV-3 had an elongated, mesenchymal hke, morphalogy
and a smooth membrane ultmstructure that remained unaltered
following trzatment (Figure 4, all panels). No sigmificant change
in cell height was observed between untreated cells (24 =03
pm) and those treaed with selemte (2.8 = 06 pm), SeNP-BSA
(27 £ 0.3 yum) or SeNP-chitosan (2.3 £ 0.8 pm).

OWCAR-3 cells had a spherical, epithelial like morphalogy
that eemained unaltered following SeMP treatment (Figure 5, all
panels) consistent with the observed N-cadherin and E-cadherin
expression ratios, Mo significant changes in the height of
OVCAR-3 were observed betwesn untreated (5.2 £ 0.6 pm) and
selenite (4.8 £ 04 pm), SeNP-BSA (5.1 £ 05 pym) or SeNP-
chitosan (4.0 = 05 pm) treated cells (P > 0.05; Figure 5). An
inareass in intra-cellular vesicles was apparent in cells with all Se
trestments in bright filed images.

Membrane topography is sensitive to changes of baoth
physical or chemical factors, and NP exposure has been shown
to modulate cell membranes. ™ To investigate any SeNP effects
on membmne mughness, 1pm® aress of the cell surface selected
at random from a 25 pm® tmage anza and analyzed for roughness,
Surface roughness increased in SKOV-3 cell treated with SeNP-
BSA (37.31 = 158 nm) and SeNP-chitosan (4289 + 237 nm),
compared to untreated cells (33.08 £ 1.5 nm), whemrsas no
change was detected following selenite treatment (2641 + 1.15
nm) (F = 005, Figure 6). For OVCAR-3 cells the surface
roughness of SeNP trested was significantly decreased from
3939 + 248 nm in untreated controls to 2841 £ 182 nm with
selenite, 27,92 £ 1.75 nm with SeNP-BSA, and 3005 = 1.11 nm
with SeMP-chitosan treatment (F < 0.05). There was no
significant difference in OVCAR-3 sudface mughness was
observed between selenite and 5eNP tresments (F > 0,05,
Figure 6.

The mechamical properties of cells change dunng cancer
progression, with metastatic cells becoming maore elastic’”
after nitial transformation to enable hasement membmne
penetration. ™™ To investigate whether Se tremment resulted
in any changes in cell elasticity, both SKOV-3 and OVCAR-3
cells were characterized using AFM based nanoindentation, with
a colloidal probe (Figune 7).

A significant inorease m cell stffness was observed for
SKOV-3 cells following treatment with ather SeNP-BSA (39 +
0.2 kPa) or SeMNP-chitosan (3.4 £ (.1 kPa) compared to contml
(28 2 0.1 kPa; P < (L05), whereas no alterations were detectable
following selenite treatment (28 = 0.2 kPa: P > 005)
Indentation analysis mevealed a sigmficant decrease for SeNP
treated SKOV-3 cells (Figure 7, A) with 600 £ 20nm (F-=<0.001)
for SeNP-BSA and 668 £ 30 nm (P < (.05 for SeNP-chitosan in
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companson with contral (756 £ 30 nm) and selenite treated cells
(TE0 £ 31 nm). In OVCAR-3 cells the Young's modulus was
decreased following SeNP-BSA (1.5 = (L1kPa), SeNP<hitosan
(1.9 =+ 0.1kPa) or selenite (1.5 + 0.1kPa) treatment compared to
the untreated contml (2.5 £ 0.1kPa; P < 0.001), which together
with significantly increase in cell indentation (Figure 7, H)
following each treatment (selenite 1,141 + 25 nm, SeNP-BSA
1,157 £ 29 nm, SeNP-chitosan 1,021 34 nm)) demons trated that
cell membmnes had become more deformable in comparison
with contral (825 = 28 nm, P < (0.00H). Example typical force
curves have been collected and are shown in Supplementary
Figume 3,

Cellular adhesion to the AFM probe was also analyeed, with
no significant alterations in SKOV-3 or OVCAR-3 cells
respectively, as shown in Supplementary Figure 4.

Discussion

Despite the anticancer properties associated with seleniom, its
use a5 acancer therapy has not yet been realized due to systemic
toxicity when administered in an agueous form. Hem we
demonstrated that, ke selemte, SeNPs ane dffective at inducing a
cytotoxic effect on two different serous ovanan cancer denived
cell lines and observed distinct responses for each cell tvpe. Both
selenite and SeNPs were cytotoxic to SKOV-3 cells, with
selenite having a 2.5- and 5- fold lower KC50 than SeNP-BSA
and SeNP-chitozan mespectively. However, given that aqueous
selenium is significantly more toxic when administersd system-
ically in murine models, ™™ ™ the use of SeNP-BSA is likely to
provide an opportunity to deliver cytotonic doses of Se in viva,
In additon, tumor specific delivery could occur through the
enhanced permeability and retention effect,” further reducing
toxicity. For OVCAR-3 cells SeNP-BSA and SeNP-chitosan had
an approximately 2-fold greater cytotoxe effect than selenite,
Given the above considertions, and that the IC50 for S2NPs in
OVCAR-3 cells was almost five imes greater than for SKOV-3
cells, both types of 5eNP ame likely to be the only safe and
tolemble mute for Se administration to target cancer cell growth
in viva,

Changes in cell mobility in SKOV-3 led us to investigate ozl
membrane dynamics in response o selenum tratment as we and
others have previously observed differences in ovarian cancer
cell biomechanics which weme dependent on the invasive
potential of cells,’® and associated with genes mvaolved in
enhanced cellular movement, migration, and invasion,”” De-
tailed AFM analysis revealed that SKOWV-3 cells become less
elastic following SeMPs treatment bt remained unchanged when
treated with selenite, This suggests that SeNPs are triggenng a
mechanism that results in a lower metastatic potential, and
agmeement with the meduced migmtory capacity of these cells
following treatment. ™™ In contrast, AFM analysis revealed that
OVCAR-3 cells became maore elastic following trestment with
the higher 1C20 concentmtions of S2MNP and selenite requined to
induce a cytotoxc effect with these cells. These results highhght
specific differences in membmne acchitectre between SKOV-3
and OVCAR-3 and indicate that S5eNP treatment can cause
differential cell type spedfic cytoskeletal effects.
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Further contrasting effects wene seen with surface mughness,
which incressed following SeNP treatment in SKOV-3 cells,
possibly as a mesult of nanoparticle internahzation as previous
studies have shown that BSA coated S e Ps, similar to those used
in the present study, were internalized through endocytsis or
clathrin medisted vesicles, ™ As selenite would be expected to
be taken up by anion transporers™ this difference in surface
roughness was anticipated. Surprisingly, the surface mughness
of OVCAR-3 cells decreased following SeNPs and selenite
treatment and was accompanied by the appearance of intmcel-
lular vesicles which are hikely to be autophagosomes (Figure 5,
B-0).*"* This suggests that, uniguely, Se forms may induce
autophagy which would act as a mesistnce mechanism in
OVCAR-3 cells* and offers an explanation as to why the levels
of SeMPs required to illicit a response is higher for these cells,
This detailed nanomechanical assessment of two distinet ovarian
cancer cell tvpes has established that changes in the mechanical
properties of ovarian cancer cells, which are likely to result from
reorgamzation of the actin cytoskeleton mduced by selenium.
SeM Ps ane effective at preventing cell prolifemtion in high grude
serous ovarian cancer cells, apparently through different
biological pathways. High grade semus ovanan cancers
continues to present obstacles to cumently available trestment
through the presentation of advanced and highly aggressive
forms of the disease, msulting in a high mte of morality.* The
observations made here pave the way for further investigations
into evaluating the utility of SeNPs as a pan-cancer treatment, at
least in ovarian cancer, although Se is known to be effective in
many other cancer types.

Ack nowledgments

This project recetved support from the Welsh Government
ERDF SMART Expertise grant RISE (301 7/COLANN), the
Medical Research Council UK Confidence in Concept grant
(MC_PC_19053) and the Institut Mational de la Santé et de la
Recherche Médicale, Frnce, grant SEDMAC (PC201607).

Benoit Toubhans recetved a scholaship co-funded by the
Univerité Grenoble Alpes and Swansea Univemsity.

Appendix A. Supplememtary data

Supplementary data to this anticle can be found online at
https:fdotong/ 10, 1006/) nano, 2020102258,

References

1. Fernandes AP, Gandin V. Selenium compounds as therapeutic agents in
caneer. Binchin Biophys Actn 18502301 5:1642-6(0

2. Combs F. 1. Biomearkers of selenium sstus. Nagriensr 20057 2200-36.

3. Khurana A, Tekula §, Saifi MA, Venkatedh P, Godugu C. Therapeutic
applicaims of selenum nanopanticles. Biomedicine & Pharmaceother
apy 20191 11:R802-12,

4. Sonkusre P, Cameotra 55, Biogenic selenium nanogentie ks mduse ROS-
mediaed necroplosis in PC-3 cancer cells through TNF activation
Jowrnal of Nanerbiote chnology 201 7;15:43.

5. Humg G, Liv 2, He L, Luk K-H, Cheung 5T, Waong E-H, el
Auophagy ©# an mmporand action mode for hmetiomabized selenium

3

nandpancles o exhabal anlbrcolorectal cancer actwvily. Siomater Sci
2008 6:2508-17.

. Chen T, Wong Y-5. Selenocystine mduces nesclive OXygen specie-

medised apoplosis in human cancer cells Hiomed Pharmacother
20096310513,

. Winceti M, Filippini T, Del Ghiovane C, Dennen G, Zwahlen M,

Brinkman M, etal Selemum for prevenling canocer, Cochrne Databare
Syt Rev 2018 1CID05195.

. Webb PM, Jordan S1. Epidemiology of epithelisl ovarian cancer. Bes

Praci Rex Clin (xier f@wmﬂf}fﬂ?;‘-lﬁ-]&

. CreadTnen LD, Hesbizadeh T, Medma-One [, Kisper M, Taylor P,

Vemnet-Crua A, el al. Naked s lenum nanopanticles Tor antibacienial and
anticancer eatmenis ACY Owmege X20:52660-9.

. Song X, Chen Y, #hao G, Sun H, Che H, Leng X. Hfecl of molecular

weight of chilkan and ils oligeacchandes on antilumor activities of
chilosm-selenium nanoparticles. Carbohydr Polym 2000:231:1 15689,

. Shahverdi AR, Shahverdi F, Faghlun E Reza Khoshayand M,

Mavandadnead F, Yardi MH, el al Charscersstion of fole acd
surface-coated slenium manopaticks and comesponding in vitre and in
vive effects agained bressi cancer. Arch Med Res 2001 8:49:10:7.

. Faorky NG, Clurilla ™™, Egledon BL, Fisher S0, Ridge 1A, Horwilz

EM, e al Casuses of death among cancer palienis. Ann Oneol
20017 284007,

. Bertone ER, Hankinson SE, Mewoomb PA, Rosner B, Willet WC,

Siampler ML e al. A population-hised case-conirol @udy of canenod
amd vilamm A inlake and ovanan cancer {Umited States ). Cancer Cinmer
Congral 20001 :12:43-90.

. Bao P, Chen 7, Tal R-Z Shen H-M, Mariin FL, Fho Y-0. Selenite-

induced wdeity in cancer cell & medisied by metsholic generation of
endogenos wlenum nanoparticles. J Profeome Kex 2005 14:1127- 36,

. Paltahiramsm DR, Wemberg BA. Tackling the cancer dem cells - whal

challenges do they pose? Nar Rev Drug Discov 2001413497512,

. Xu W, Mezencev B, Kim B, Wang L, McDonald I, Sulchek T. Cell

atifTnes i & bomarker of the melastatic polential of ovanan cancer cells
Fla8 Ome 20127, hipsidoiorg 0,137 fournal pone. (046004,

. Quaniela M, Sieglall DH, Gaeee AS, Zhang A Gonezaler 1), Franes L el

al. HE(H directs hidone H4 specilic acetylation, poentistng mec hano-
Lrarsduc bon pathways and membrane elatcly m ovanan cancer cella
Nenomedic ine A% 17:254-65.

. Ffe OM, McCamoll 1A, Kavallars M. Movers and shakers: cell

cylskeleln in cancer meladais. Br J Pharmacel 2004:171:55(7-23,

. Suresh §. Biomechanics and biophysics of cancer celk. Acta Magerinlia

207 5530804014,

. Kabla Alexandre 1. Collective cell migration: leadership, invasion and

sepregalion. foumal of The Royal Society Inferjoce 20029326878,

. Bidksr AP, Ssnpui P, Ghosh S8 Eificient induetion of apoploss in

canoer cells by paclilaxel-loaded selenum nanoparticles. Nonamedicine
(Lonad) 2007;02:2641-51.

. Limg C-C, Park AY, Guan F-L. In vilro seraich assay: a convenient and

inexpenave method for analyas of cell mugralion m vilmo, Masure
FProvorols 2000 2:329-33.

. Pan-Caaillo B, Garee SA, Thomas 8, Luess O, Marganil L, Gonezalez D,

el al Maophophysical dynamics of human endometnal celk during
decidual estion. Nemomedicine: Nanotechnology, Biology and Medicine
2018;14:2235-45.

. Francis LW, Gonzaler D, Byder T, Baer K, Rees M, While K, el al

Otz esd s ple preparation Tos high lutan AFM charscie rizalion
of Tixed humen cells. fowrnal of Micraccopy 2000;240:111-21.

. Brozmanova 1, Minikova D, VIiEova V, Chovanes M. Selenum: a

double-edied sword for defense and offence in cancer. Anch Toxical
20084 91938,

. Fhao G, Wu X, Chen P, Zhang L, Yang C5, Zlang 1 Selenum

nanopaniicles are mone efficient than sodium selenie m producing
reaclive guygen species and hyper-accumulation of selenium nanog.ar-
Licles in cancer cells generates polent therapeutic effec k. Free Radic Bidl
Med 2018, 126:55-66.

50



Selenium Nanoparticles triggers alterations in ovarian cancer cells biomechanics

er A

28

24

3

Ed

iz

3i

34

s

B. Toubhans er al & M

Bai K, Hmg B, Hmg £, Sun J, Wang C. Selenium nanopanticle s-loaded
chisanairale complex sand i prolecion sl aadstve siness in d-
galaciose-induced aging mice. Jowrnal of Nanobistechnology
20171592

Zhang I, Wang H, Yan X, Fhang L Comparion of short-lem oty
between Mano-Se and s lenile in mdce. Life Sei 2006 ;76 106040104,
Clayton KN, Salameh JW, Wereley ST, Kinzer-Ursem TL. Physical
characierization of nanoparticle sze and swface modification usng
particle scatiering dilfusometry. Bivoric egffuidics 2006;10, hops:Sdo.
org T 060002,

Fhamg 15, Gao XY, Zhang LI, Bao YP. Biological effectsof a nano ned
eleme nlal selenum . Kiscrors 2000 15:27-38

Tang HM, Euay KT, Koh PF, Assd M, Tan TZ, Chung VY, el al An
epithelial marker promokr mduction sonsen identifies haone deacety-
late mhibitors W redone epithelal differentistion and abolidhes
anchorage independence growth in caneers. Cell Death Dixcow
20162 161

Wheslock ML, Shintand Y, Masda M, Fulumodo ¥, Johnaon KR,
Cadherin switching. J Cell Sci 2008;121:727-35,

Lesniak A, Salvan A, Sanos-Manme: M, Eadomski MW, Dawsm
Ko, Aberg C. Nanoparticle adhesion 1o the cell membrane and it effect
on mnoparticle uptake efficency. J Am Chem Soc 200 3:135: 143844,
Mierke CT. Physical bresk-down of the classdeal view on cancer ell
invasm and melssmis Ewr J Call Bind 200 39280104

. Tadeo I, Berbegall AP, Bicuders LM, Alvaro T, Noguera E.

Baoense grity of the exiracellular matris: physiology, dyname mechan-
1cal balance, and mmplicaions in oncolegy and mechanmotherapy. Froas
One ol 2114439,

36.

a7

38

30

41

dicine: Naonotechnology, Bolygy, and Medicine 20 (2020 (02258 11

Cross SE, Kreth L Zho L, Sollivan B, Sl W, (i F, e al
MNanomechanical properties of glucam and asocsied oellsuriace
adheson of Sreplococeus mutans probed by alomic fonce monoscopy
under in siln conditions. Microbiology (Keading, Engl)
215331 24-32

Fhai (), Xiso Y, Li P, Tian F, Fhao I, Zhang H, el al. Vaned doses and
chemical forms of selenium supplementation differentially alTect mouse
intedingl physdogy. Food Func 2019:10:5308-412

. Xia Y, Chen Y, Hua L, #haeo M, Xu'T, Wang C, et al. Functional ired

selenium nanopanticles for targeted delivery of doxombicin Lo improve
non-small-cell lung cancer therapy. far J Nanomedicine
ANEARGY293D,

Lara-Cruz O, hménes-Salses |, Ramin-Gallegos E, Damim-Mako
mura P, Batina N. Ineressing roughnes of the human breaa cancer cell
membrane hrough incomporation of okl nanopenticles, fnd  Nenome-
alicine 200016:11:5149-51.

. {h N, Park JFH. Endocylosts and exocylods of nanoparticles in

mammahan cella fnd J Namome dicine 200 49:51-683.
Canye [, Sell WT. High allmity selenium uplake n a8 keratinocyk
mndel . FEBS Les 26582 209304,

. Jamel &, Popodl M, Barods N, Werkmeiger E Divoux 5§, Perez F, el al.

Sdffness womography of euksryotic miracellula compariments by
smie foree microsoopy. Nanaseale 20090 1:10320-8.

. Wang ¥, Xu C, hang N, Zheng L, Feng I, (iu C, et al. Quantitstive

amalysds of the cell-arfsce roughness and viscoslastcily for boeast
cancer cell discrimmation wing atomic Toroe micrsoogy. Scanaing
A1 3855063,

51



Selenium nanoparticles induce global histone methylation changes in ovarian cancer cells

Selentum nanoparticles induce global
histone methylation changes in ovarian
cancer cells

I. Presentation of the article

Selenium has been proven to be useful as a potential cancer preventive agent, especially in
populations with demonstrable poor intake. Despite selenium toxicity increases at doses slightly
higher than nutritional requirements, clinical trials investigating selenite as an anti-cancer
therapy, have revealed its protective effect against liver cancer. Null or adverse effects have
been found in breast cancer. These in vivo results contrast with the promising results found in
in vitro cell culture models®®. SeNPs, have led to increased possibilities when compared to
aqueous selenium, due primarily to their increased accumulation and specificity against cancer
cellsZ57'27°.

Selenium nanoparticles have been shown to induce cell death mechanisms in hepatocarcinomas
and breast cancers®®> 2% Moreover, selenium has been shown to influence the epigenome,
regulating cancer development and influencing the expression of selenoproteins. High doses of
selenium treatment have been shown to inhibit DNA methyltransferase activity and expression;
however, the mechanism remains unclear. At low selenium doses, reduced DNA methylation
has been observed, due to disrupted restoration of the S-adenosylmethionine methyl donor, as
a result of redirection of homocysteine toward glutathione synthesis. High doses of selenium
have also been shown to trigger DNA hypomethylation due to DNMT inhibition and
competition of selenium with DNA for the methyl group. At intermediate doses, DNA
methylation is increased in a dose dependent manner.

Epigenetic mechanisms are abundant, complex and altered in cancer cells. The link between
selenium and other relevant post translational modifications such as histone methylation has
never been studied and is an important gap in the epigenetic knowledge related to selenium. In
this study we investigated the effect of sub lethal dose selenium treatment on histone H3
methylation, particularly on lysines K4, K27 and K9. These marks are gross marks of DNA
compaction transcription activation. We utilized 2D and 3D culture in the presence and absence
of SeNP (24 to 72 hours) and combinations of epigenetic enzyme inhibitors to reveal potential
pathways for histone methylation mediated selenium mechanisms in ovarian cancer cells (see
Figure below).
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Graphical Abstract: Simplified proposed selenium mechanisms of action for histone
methylation induction in ovarian cancer cells

Selenium can influence histone methylation through three different pathways. The selenite from
the addition of SeNPs or sodium selenite to cancer cells reacts with the glutathione GSH
through the Transulfuration pathway pulling the equilibrium of the methylation SAM-SAH cycle
towards the homocystein clearance into transulfuration pathway leading to the formation of
selenide HaSe. H»Se can then react with oxygen forming ROS damaging cells and aggregates
of Se0. The increase of H2Se also increases the synthesis of SeCys through selenocysteine lyase
increased expression which could enter in the Methionine cycle. Moreover, selenium increased
the activity of the HMTs by increasing their level of expression.

The lysine methyltransferase (KMT) inhibitors used were provided by the Structural Genomic
Consortium. We targeted G9a which is the main histone methyltransferase allowing
methylation of H3K9 which is a mark of heterochromatin. We also targeted EZH2 regulating
the methylation of H3K27, associated with repression of the transcription. Finally we targeted
PRDM?9 regulating the methylation of H3K4, an active transcription mark. We studied the
effect of selenium treatment after inhibition of those marks, showing that selenium, at sublethal
doses, increased histone methylation by increasing the activity of histone methyltransferases.
Treatment may also drive the clearance of S-adenosylhomocysteine through the transulfuration
pathway, avoiding its inhibitory effect on histone methyltransferase, leading to increased
methylation of histone lysines. Moreover when HMT were inhibited, selenium is able to
increase histone methylation. This increase may be related to the increased expression of other
methyltransferases, upregulated after selenium treatment. Interestingly the activated
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methyltransferases were different between SKOV-3 and OVCAR-3 cell types, as shown using
RNA-seq analysis, with increased autophagy in OVCAR-3 and increased apoptosis in SKOV-
3. The consequence of these different phenotypes highlight an increased resistance of OVCAR-
3 against SeNP treatment.
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Abstract

The trace element selenium plays a key role in redox reactions through its incorporation in
selenocysteine in antioxidant enzymes. Selenium has also been shown to affect DNA
methylation through modulating the expression of DNMT1. Here we identified novel effects of
selenium on histone methylation using ovarian cancer cell models treated with inorganic
selenium nanoparticles (SeNP). As well as inducing oxidoreductase expression, ROS activity
and cancer cell cytotoxicity, selenium caused significant increases in histone methylation.
Specifically, selenium triggered an increase in the methylation of histone 3 at lysine’s K4, K9
and K27, histone marks involved in both the activation and repression of gene expression,
suggesting a fundamental role for selenium in these epigenetic processes. This direct function
was confirmed using chemical inhibitors of the histone lysine methyltransferases EZH2
(H3K27) and G9a/EHMT2 (H3K9), both of which blocked the effect of selenium on histone
methylation. This novel role for selenium supports a distinct function in histone methylation
that is likely to occur though interference in the one-carbon metabolism pathway responsible
for providing the methyl donor S-adenosylmethionine in both DNA and histone methylation.
These observations provide important insights into the action of selenium, and the effects of
SeNPs which, unlike selenite, are well tolerated in vivo. It will be important to consider both
the classic antioxidant and novel methylation effects of this key redox element in its
development in cancer therapy and other applications.
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Graphical Abstract: Proposed selenium mechanisms of action for histone methylation

induction in ovarian cancer cells
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Selenium can influence histone methylation through three different pathways. The selenite from the
addition of SeNPs or sodium selenite to cancer cells reacts with the glutathione GSH forming GS-Se-
SG in ovarian cancer cells pulling the equilibrium of the methylation SAM-SAH cycle towards the
homocystein clearance into GSH leading to the formation of selenide H,Se. H.Se can then react with
oxygen forming ROS damaging cells and aggregates of Se0. The increase of H.Se is also increasing the
synthesis of SeCys through selenocysteine lyase increased expression which could enter in the
Methionine cycle. Moreover, selenium increased the activity of the HMTs by increasing their level of

expression.
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Introduction

Selenium compounds contribute to the maintenance and integrity of cellular systems by
influencing cellular redox states and capacity to detoxify compounds, free radicals and reactive
oxygen species (1).

Thioredoxin reductases for example, which contain selenocysteine, are present in the cytosol
(TrxR1) and mitochondria (TrxR2) and involved in the reduction of oxidized thioredoxins, can
catalyse NADPH, control ascorbate levels and regulate metabolism. Selenium is also involved
in the biosynthesis of diverse molecular components that are required for important cellular
functions including deoxyribonucleoside triphosphates for DNA, the reduction of oxidized
proteins, and has roles in diverse regulatory mechanisms such as redox, apoptosis,
immunomodulation and the formation of methyl donor compounds. In cancer increased
H3K27me3, catalysed by histone lysine methyltransferases (HMTs) including EZH2, has been
associated with chemoresistance (2) and demethylation linked to more aggressive phenotypes
(3). Similarly knockdown of G9a/EHMT?2, which catalyzes H3K9me2, is linked to ovarian
cancer peritoneal metastasis and decreased invasiveness in ovarian cancer cell models (4), as is
a second putative HMT SMYD3 (5). Here we show that exposure of two pathologically distinct
ovarian cancer cell models to selenium results in different redox responses and effects on cell
viability, and that selenium delivery via SeNP, that are well tolerated in vivo, is as effective as
selenite (6, 7). Interestingly we found that selenium treatment stimulated an increase in histone
methylation at the distinct epigenetic marks H3K4me3, H3K27me3 and H3K9me2.
Remarkably this effect was inhibited by specific histone lysine methyltransferase inhibitors
targeting EZH2 (H3K27) and G9a/EHMT2 (H3K9) demonstrating that selenium can directly
modulate histone methylation, and thus cellular epigenomics. These findings highlight the
importance of this micro-nutrient and that its role in redox biology should be evaluated together
with its effects on epigenetic processes, particularly when considering potential applications in

cancer therapy.
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Results

SeNP penetration and response in ovarian cancer cells.

In contrast to selenite, SeNPs are well tolerated in vivo and appear to offer a route to unlocking
the potential of Se as a therapeutic agent (6). We compared the effect of SeNPs to selenite using
two distinct 3D spheroid ovarian cancer models, OVCAR-3 and SKOV-3, and demonstrated
that SeNPs were able to penetrate at least 80 pm into tumor models. 30 nm electron dense
particles corresponding to selenium aggregates were observed by TEM in vacuoles and
mitochondria in cells treated with SeNP-BSA (Figure 1A, Figure 1B) or SeNP-chitosan
(Supplementary Figure 1) and confirmed using FITC-tagged SeNPs (Figure 1C). To determine
whether the observed vacuolar structures were autophagosomes, autophagy markers were
assessed (8) and ATGS5S levels found to be up-regulated by SeNP-BSA, but unaffected by
selenite or SeNP-chitosan in SKOV-3 (Figure 1C), whereas there was an increase of LC3B with
selenite, but not with either SeNP (Figure 1C). In OVCAR-3, ATG5 expression and levels of
LC3 maturation increased following all treatments, consistent with these cells being more
resistant to selenium, and with constitutively activated autophagy (9).
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Figure 1: SeNP accumulation in SKOV-3 and OVCAR-3

SeNP penetrate and accumulate in SKOV-3 and OVCAR-3 spheroids. SKOV-3 (A) and OVCAR-3 (B)
cells spheroids were treated with BSA-SeNPs at sublethal doses for 24 h and imaged by TEM. Scale
bars are displayed on the images (between 0.5 and 5um). Loose contact between OVCAR-3 cells a high
number of autophagosomes were observed. SeNP accumulation was observed in vesicles and
mitochondria. SKOV-3 show limited accumulation of SeNPs. All images are representative of a
minimum 3 biological repeats. In order to determine nanoparticle penetration, SKOV-3 cells were
treated with FITC-tagged-SeNP-BSA (D) for 24 h. Confocal microscope (Ex 495nm / Em 521nm)
imaging shows 50um z-stacks of a 300pum diameter spheroid (scale bare 100um). Local fluorescence
was observed inside the spheroid demonstrating nanoparticle penetration.

SKOV-3 and OVCAR-3 cell spheroids treated for 24 h with selenite or SeNPs and profiling autophagy
markers (C). Control and selenite treated SKOV-3 displayed similar levels of ATG5 (respectively 0.53
and 0.59), whereas SeNP-BSA treated cells showed a significant increase (0.79, p=0.05) of ATG5 levels.
SeNP-chitosan treated SKOV-3 cells showed non-significantly elevated level of ATG5 (0.68). Selenite,
but not SeNPs, significantly increased LC3B levels in SKOV-3 cells. OVCAR-3 cells displayed a general
increase the expression of ATG5 in the different conditions (selenite 0.65, SeNP-BSA 0.56, SeNP-
chitosan 0.87) compared to the control (0.46) but was only significant for SeNP-chitosan (p<0.05).
Selenium treatments increased LC3A to LC3B maturation.

Data represent mean +/- SD of three biological replicates.
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Gene expression analysis by PCR demonstrated an expected increase in thioredoxin reductase
1 (TrxR1) expression following treatment (Figure 2A). Additionally, RNA-seq analysis
identified several selenium-related genes that were differentially regulated in response to
treatment (Figure 2B&C). Expression of selenoproteins I, S and T and the selenocysteine lyase
(SCLY) were increased in both cell types, with increased SCLY expression suggesting the
transformation of selenium to selenocysteine SeCys is likely to be occurring (10). Oxidative
stress response decreased by 20-50% over the first 3 h following SeNP treatment, but steadily
increased thereafter (Figure 2D&E).
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Figure 2: Effect of selenite and coated selenium nanoparticles on selenium related gene expression
and ROS production in OVCAR-3 and SKOV-3 cells.

Increases in expression of Trx1 (D) after 24 h of sublethal treatment with selenite or SeNPs
demonstrated an expected effect of selenium on cells. Selenium treatments increased significantly
(p<0.001) Trx1 RNA levels in SKOV-3 (Relative value of 0.01 control, 0.05 selenite and SeNP-BSA,
0.03 SeNP-chitosan) and OVCAR-3 (Relative value of 0.01 control, 0.06 selenite, 0.07 SeNP-BSA and
0.04 SeNP-chitosan).
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SKOV-3 (A) and OVCAR-3 (B) cells were treated for 24 h with sublethal doses of selenite or coated
selenium nanoparticles. RNA was extracted and sequenced by the sequencing platform of the Ecole
Normale Supérieure de Lyon (IGFL). Heatmaps show the log10 of the ratio between the selenium treated
and control conditions for selenium related proteins.

SKOV-3 (D) and OVCAR-3 (E) cells were grown as a 2D layer at 50 x 10° cells per well, incubated with
ROS probes, and treated IC50 concentrations of selenite, SeNP-BSA or SeNP-chitosan. ROS red
fluorescent assay results showed that selenite, and SeNPs treatments at IC50 decreased the production
of ROS in SKOV-3 cells. In OVCAR-3 cells, selenite and SeNP-BSA ROS production peaked above
control levels after 6h. The data represents the mean +/- SD of three individual experiments.

Treatment of spheroids resulted in significant reductions in cell viability with selenite (>0.6
pg/mL), SeNP-BSA (>1.25 pg/mL) and SeNP-chitosan (>3 pg/mL) for SKOV-3 (Figure 3A),
and OVCAR-3; selenite (5 pg/mL) or SeNP-BSA or SeNP-chitosan (10 pg/mL for both).
Further analysis revealed that SeNP exposure increased caspase-3 cleavage levels in SKOV-3
(2.5 fold, Figure 3C) suggesting increased apoptosis (11), whereas apoptosis was not induced
in OVCAR-3 (Figure 3D). Gene ontology analysis supported these observations showing that
in SKOV-3 SeNPs triggered intrinsic pathways involved in apoptotic signalling in response to
DNA damage and response to oxidative stress (Table 1), whereas in OVCAR-3 exposure caused
changes in cell mobility, with the activation of epithelial cell migration, epithelial to

mesenchymal transition (EMT) and extracellular matrix organisation (Table 1).
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Figure 3: Ovarian Cancer Cytotoxicity in the presence of SeNP formulations. SKOV-3 (A) and
OVCAR-3 (B) were grown as 5 x 10° cell spheroids for 24 h then treated with an increasing range of
concentration (0 to 20 pg/mL) of selenite, BSA-SeNP or chitosan-SeNPs over 24 h and cellular
cytotoxicity monitored. Both cell lines were treated for 24h with an. Cytotoxicity was evaluated by
CellTiterGlo endpoint experiment. OVCAR-3 cells were more resistant to selenium treatment than
SKOV-3 cells. Mean (+/- SD) relative to control luminescence values are shown from five independent
experiments.

In SKOV-3 relative Caspase 3 levels (C) were similar between control and selenium treated levels, 0.65
control, 0.68 selenite, 0.70 SeNP-BSA and 0.68 SeNP-chitosan. Selenite and SeNP-chitosan treatments
caused significant levels (p<0.05) caspase 3 cleavage with levels of 0.29 and 0.23 detected respectively.
Only moderate increase in caspase 3 cleavage was observed for SeNP-BSA treatment (0.09). In OVCAR-
3 no changes in caspase 3 (D) were seen for selenite (0.47), SeNP-BSA (0.62) and SeNP-chitosan (0.67)
in comparison with control (0.55), and cleaved caspase levels were very low for each condition. The

data represents the mean +/- SD of three individual experiments.
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Selenium enhances global histone methylation.

Table 1
Fold
Sample Over-representation GO biological processes Enrichment | FDR
(log value)
Positive regulation of cell cycle arrest 1.83 4.865-02
Untreated | Negative regulation of epithelial cell proliferation 1.78 7.45E-03
Extracellular matrix organization 1.68 7.595-06
Intrinsic apoptotic signaling pathway in response to DNA | 2.50 3.365-02
o | Selenite | damage 1.87 7.775-03
> Cellular response to oxidative stress
S SeNP- Glutathione metabolic process 2.90 1.365-02
N BSA Cellular response to oxidative stress 1.96 2.225-03
Intrinsic apoptotic signaling pathway 1.96 4.96E-02
SeNp- DNA-dependen_t DNA replication maintenance of fidelity | 4.07 7.065-03
chitosan Response t_o oxidative stress 1.69 8.105-03
DNA repair 1.68 1.305-03
Positive regulation of cell cycle arrest 1.90 4.78E-02
Untreated Negative regulation of epithelial cell proliferation 1.79 7.215-03
Extracellular matrix organization 1.68 5.67-06
. Positive regulation of autophagy 1.66 4.65-02
o | Selenite Regulation of cell death 1.31 3.115-02
S SeNPp- Positive regulation of EMT 2.73 3.865-02
C>> BSA Epithelium migration 2.35 1.055-02
Extracellular matrix organization 1.76 8.565-04
SeNp- Regulgtion of rea_lctive oxygen sp(_ecies metabolic process 2.11 1.725-02
chitosan Negative regulation of cell adhesion 1.80 4.13E-02
Regulation of cell motility 1.44 1.955-02

Selenium has been shown to modulate DNA methylation, mainly through the regulation of
DNMT expression; any wider involvement in epigenetic mechanisms involving methylation
have yet to be explored (12, 13). We investigated whether selenium had a role in histone
methylation and very interestingly observed that SeNPs triggered an increase in the levels of
H3K4me3 (Figure 4A), H3K27me3 (Figure 4B) and H3K9me2 (Figure 4C), thus revealing an
important role for selenium in this process. Detailed RNAseq analysis was undertaking to
understand whether, as for DNA methylation, these effects were due to selenium-induced
changes in HMT expression. The H3K4me3 HMT PRDM9 was not expressed in the cell lines
used, whereas SETD7 (14) and SUV39H2/KMT1B (15, 16) expression was consistently
upregulated by selenium. EZH2, which methylates H3K27me3 was also upregulated, whilst the
expression levels of the H3K9me2 HMT EHMT2/G9a along with EHMT1/GLP were relatively
unaffected (Figure 5 A&B). Changes in the expression level of other potential HMTs (as well

as lysine demethylases, KDMs) were observed, although these HMTs require further
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experimental validation to define their precise roles (Supplementary Figure 2), and DNMT3A

and DNMT3B (18) expression was also increased.
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Figure 4: Histone methylation markers in ovarian cancer cells treated with selenium and
epigenetic probes.

SKOV-3 (left) and OVCAR-3 (right) cells were grown as a monolayer then treated for 72 h with the
epigenetic probe MRK740 (A), 24h with GSK343 (B) or 72h with A366 or UNC0642 (C) then 24 h with
selenium treatments.

Figure 4A: Cells were treated for 72 h with the epigenetic probe MRK740, an inhibitor of the H3K4
HMT PRDMY, followed by 24h with selenite or SeNPs. An inactive probe MRK740N was used as a
control. Selenium treatment significantly (p<0.001) increased H3K4me3 levels in SKOV-3 by 2.5 fold.
In OVCAR-3 selenite increased levels by 3 fold (p<0.001) and by 2 fold with SeNPs (p<0.05). The
presence of the inhibitor MRK740 did not affect H3K4me3 levels in control or treated samples (p<0.05).
Figure 4B: Cells were treated for 24 h with the epigenetic probe GSK343, an inhibitor of the H3K27
HMT EZH2 followed by 24 h with selenite or SeNPs. No control probe was available for GSK343.
Selenium treatments significantly (p<0.01) increased H3K27me3 levels by 2 fold in SKOV-3. In
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OVCAR-3 selenite and SeNP-chitosan increased levels by 4 fold (p<0.001) and by 2 fold with SeNP-
BSA treatment (p<0.01). The presence of GSK343 inhibited H3K27me3 methylation in SKOV-3 cells
(p>0.05) but not significantly in OVCAR-3 although expression was slightly decreased.

Figure 4C: Cells were treated for 24 h with epigenetic probes A-366 or UNC0642, inhibitors of the
H3K9 HMT EHMT2/G9a followed by 24 h with selenite or SeNPs. No control probe was available for
A-366 or UNC0642. Selenium treatments significantly (p<0.001) increased H3K9me2 levels by 2 fold
in SKOV-3. In OVCAR-3 selenite and SeNP-chitosan increased levels by 2 fold (p<0.001) and 1.5 fold
with SeNP-BSA treatment (p<0.01). In SKOV-3 UNC0642 and A-366 decreased levels of H3K9me2 to
almost undetectable levels after 24 h and blocked any effect of selenium treatments. In OVCAR-3,
UNCO0642 and A-366 decreased levels of H3K9me2 (p<0.05), and reduced the ability of selenium
treatments to increase H3K9me2 levels

Figure 4D: Methyl transferase expression patterns in SKOV-3 and OVCAR-3 spheroids treated
with sublethal doses selenium nanopatrticles.

Heatmap of methyltransferase (D left SKOV-3, right OVCAR-3) gene expression after 24h of selenium
treatments of SKOV-3 and OVCAR-3 at sublethal doses.

Selenium induced histone methylation occurs via histone methyltransferase activity.
Whilst upregulation of SETD7 and EZH2 gene expression by selenium could account for
increases in H3K4me3 and H3K27me3 methylation, there were no changes in EHMT2
expression. This suggested that for H3K9me2 at least selenium may also affect other histone
methylation processes. To determine if this directly involved the methylation of histones,
inhibitors blocking the activity of specific HMTs was investigated. As expected inhibition of
PRDM9 using MRK740 (19) (or the inactive analogue MRK740N) did not result in a decrease
in H3K4 tri-methylation as PRDM9 was not expressed in either cell line. Inhibition of the
H3K27 methylase EZH2 using GSK343 (20) resulted in a significant decrease in H3K27me3
levels in SKOV-3 demonstrating that the effect of selenium occurs via the activity of EZH2 in
these cells (Figure 4C), and likely also in OVCAR-3 cells where, whilst the effect of GSK343
was less pronounced, a decrease in H3K27me3 levels was apparent. Finally, two different
EHMT?2 inhibitors, UNC0642 (21) and A-366 (22), essentially ablated H3K9me2 in SeNP
treated SKOV-3 (Figure 4D), and again there was a general decrease in H3K9me2 in OVCAR-
3. These data support a mechanism whereby selenium-mediated increases in histone
methylation occur through a biochemical process involving HMTs, as despite selenium-induced
increases in expression of some HMT genes including EZH2, HMT inhibitors can abrogate this
effect.
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Discussion

Selenium in the form of selenite has been explored as a mode of cancer therapy but has to date
failed due to systemic toxicity (23). Here we have shown that as well as triggering enhanced
redox activities, SeNPs induce cytotoxicity in ovarian cancer cell lines, with cell-type specific
responses, and could therefore offer significant benefits as these nanoparticles can be delivered
at cytotoxic doses in vivo (24, 25). In OVCAR-3 cells autophagy was constitutively activated
resulting in the intracellular accumulation of SeNPs offering an explanation as to the greater
resistance of these cells to high levels of selenium. In contrast, SKOV-3 cells displayed
increased levels of apoptosis. To understand the mechanisms underlying the differential
responses to SeNPs, we investigated the possibility of selenium inducing epigenetic effects
beyond DNA methylation and identified increased levels of histone H3K4me3, H3K27me3 and
H3K9me2. To understand whether this selenium induced histone methylation occurred through
HMTs known to methylate each of these histone marks, specific HMT inhibitors were
evaluated. The PRDM9 inhibitor MRK740 had no effect on reducing methylation H3K4 as this
HMT is not expressed in the cell lines used, H3K4 methylation increases could be attributed to
SeNP induced expression of SETD7 (26). Inhibition of EZH2 by GSK343 blocked SeNP
induced H3K27 methylation despite associated increases in EZH2 gene expression levels,
suggesting that selenium-induced H3K27 methylation may in part be due to HMTs, or
mechanisms impacting EZH2 function. Increases in H3K9 methylation were effectively
blocked by the EHMT2 inhibitors A-366 and UNC0642, and as EHMT2 mRNA expression
was unchanged following SeNP treatment supporting the view that a mechanism distinct from

the modulation of G9a/EHMT2 expression is involved in increasing histone methylation.

The inhibition of SeNP mediated methylation by HMT-specific inhibitors led to the notion that
this could occur through a ubiquitous process linked to histone methylation. The methionine
metabolic pathway generates SAM, the principal substrate for DNA and histone methylation
(27). One possibility (Figure 5) that would result in an increased pool of SAM is the
upregulation of MAT1, that synthesises SAM from methionine, by SeNP. This was effectively
ruled out in the current study as no significant changes in MAT gene expression levels were
observed (Figure 5). Uniquely the elements selenium and sulphur share many chemical
properties, and as they are so tightly coupled it has been assumed that selenium may follow the
same metabolic pathways as sulphur. More speculatively therefore, selenium could be
incorporated into Se-adenosylmethionine (SeAM) and function as a SAM analogue to increase

the methyl-donor pool. The synthetic SeAM analogue ProSeAM appears to be processed by
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G9a/EHMT2 in a cellular context suggesting that SeAM could be used as an HMT substrate
(28). However, genetic studies in yeast lacking both saml/sam2 (MAT1/MAT2 orthologs)
demonstrated whilst SeAM synthesis can occur it is highly toxic accounting for the toxicity
associated with its precursor Se-methionine (SeMet) (29). Whilst SeMet was not present in the
cell culture media used here, it can be synthesised from seleno-homocysteine (SeHCys) by
betaine-homocysteine S-methyltransferase (BHMT) (10, 27) which is expressed in the cell lines
used here (Figure 5). Another explanation is that the product of histone methylation reactions,
SAH, which is an HMT inhibitor, is removed from the cellular system due to the presence of
high levels of selenium. Indeed selenium supplementation in murine models has been shown to
decrease the ratio of SAM/SAH suggesting that this clearance of SAH occurs in vivo (30, 31).
SAH levels could be decreased following SeNP treatment, resulting in increased HMT activity,
by diverting HCY into the transulfurication pathway as the introduction of selenite to this
pathway leads to the formation of selenoglutathione (GS-Se-SG) and ultimately selenide (H.Se)
(32).

Conclusion

We propose that selenium driven increases in histone methylation are likely to occur through
distinct processes (Graphical Abstract) including 1) increasing the activity of HMT due to
increasing the levels of expression of the genes encoding these enzymes and 2) clearance of
SAH, likely due to a ‘pull’ of homocysteine to H>Se due to selenium activating the trans-

sulfuration pathway.

The discovery that selenium, though the activity of HMTs, can directly modulate histone
methylation, a key process in the regulation of global gene expression, highlights the
importance of this micro-nutrient. Selenium’s pivotal role in redox biology, and its potential
applications in cancer and viral therapy, should now also consider its wider role in the

mechanism of action pertaining to epigenetic processes.
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Materials

Nanoparticles
BSA and chitosan coated SeNPs were purchased from NANOCS (New York, USA) with a

manufacturer defined diameter of 25 — 50 nm for both nanoparticles. SeNP characterisation and

IC20 treatment levels used in 2D culture experiments have been reported previously (7).

Cell culture

OVCAR-3 (ATCC, Maryland, US) ovarian cancer cells were cultured in RPMI-1640 (Sigma-
Aldrich, UK) supplemented with 20% bovine serum albumin (BSA, Sigma-Aldrich), 5 pg/mL
insulin (Sigma-Aldrich, UK), and 1% penicillin-streptomycin (v/v) solution (Sigma-Aldrich,
UK). SKOV-3 (ATCC, Maryland, US) ovarian cancer cells were cultured in McCoy’s 5A
(Sigma-Aldrich, UK) supplemented with 10% bovine serum albumin (BSA, Sigma-Aldrich,
UK), and 1% penicillin-streptomycin (v/v) (Sigma-Aldrich, UK). Cells were maintained at 37°
and 5% CO- and routinely passaged using 0.25% trypsin-0,1%EDTA (v/v).

Spheroids growth, treatment and viability assay
Cell viability was determined using a CellTiterGlo assay (PROMEGA, UK). 5,000 cells/well
were plated in 96-well Ultra Low Attachment coated round bottom plates (Corning, UK). After

spheroid formation (usually after 24h), 100 pL of fresh medium containing a 2X concentration
of Sodium Selenite (Na2SeQOz) or selenium nanoparticles (BSA or chitosan) were added. For
the viability assay, an increasing dose range (0.01 pg/mL to 20 pg/mL) was applied by dilution
in appropriate medium for 24, 48 or 72 h. After the treatment, 100uL of media was removed
from wells and 100 pL of CellTiterGlo added. Plates were shaken for 5 min and equilibrated at
room temperature for 25 min before luminescence measurements were taken (BMGLabtech
Fluostar Omega, UK). 1C20 and I1C50 doses were determined as the concentration required to
reduce the luminescence signal by 20/50%. The 1C20/50 values shown are the result of a

minimum of five independent experiments performed with 4 technical repeats.

High-pressure freezing and freeze substitution

TEM sections were prepared as previously described (33). Briefly spheroids were pelleted and
vitrified by high pressure freezing (HPM100, Leica Microsystems) to -90°C for 80 h in acetone
with 1%0s0O4. The temperature was then raised 1°C/h to 30°C and samples rinsed 4 times in

acetone. Samples were infiltrated with agar low viscosity resin (LVR, Agar scientific) in

69



Selenium nanoparticles induce global histone methylation changes in ovarian cancer cells

acetone for 3h. After polymerisation for 24 h at 60°, 70 to 400nm sections were obtained using
an ultra-microtome (UC7, Leica Microsystems). Sections were collected on formvar-carbon-
coated 100mesh copper grids and post-stained for 10min with 2% aqueous uranyl acetate, rinsed
and incubated for 5 min with lead citrate. Grids were analysed using Tecnai 12 FEIMicroscope
(120kV) at different magnification.

ROS assay
SKOV-3 and OVCAR-3 cells were seeded as monolayers at 20,000 cells per well in a dark 96-

well plates and cultured overnight. Following removal of media, cells were washed once with
PBS, then incubated for 1 h with the Cellular Reactive Cellular Reactive Oxygen Species
Detection reagent (Red Fluorescence, Abcam186027). A 6x 1C50 concentration of selenite or
SeNPs was then added and the plate incubated at 37°C for the duration of the assay.
Fluorescence was analysed at different time points from 30 min to 10 h (excitation filter 520nm,
emission filter 605nm, BMGLabtech Fluostar Omega, UK).

Protein blotting

Total cellular protein was extracted, and equal amounts of protein separated by SDS-PAGE and
transferred to an acrylamide membrane (BioRad, UK). After blocking in 5%BSA TBS-T for 1
h, blots were incubated with primary antibody (Caspase 3: rabbit polyclonal (CellSignal9662,
UK), ATGS5: rabbit polyclonal (CellSignal 2630, UK), H3K4me3: rabbit polyclonal (Thermo
PA517420), H3K27me3: rabbit polyclonal (Thermo PA531817), H3K9me2: rabbit polyclonal
(CellSignal 4658, UK), H3 (1B1B2): mouse monoclonal (CellSignal 14269, UK) or GAPDH:
mouse monoclonal (Santa Cruz sc-47724, UK)) at a concentration of 200 pg/ml overnight, at
4°C. Blots were washed, then incubated with the appropriate secondary antibodies (goat anti-
mouse Abcam ab150113 or goat anti-rabbit Abcam ab6721 HRPsecondary, UK) at a
concentration of 400 pg/ml. Cross-reacting proteins were visualised (ChemiDoc XRS, BioRad,
UK), and band intensities quantified using ImageLab software normalising expression to
GAPDH.

gPCR
Following RNA extraction and quantification, qPCR was carried out in accordance with the

manufacturers' recommendations, using the RETROscript® kit two-step method (Invitrogen
Ltd., UK). Following cDNA synthesis from 100 ng of RNA, each sample was analysed by
gPCR in triplicate using iQ SYBR Green supermix (BioRad, UK) and gene specific primers
(Sigma-Aldrich, UK) to evaluate different gene expression GAPDH (GAPDH Forward:
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GTCCACTGGCGTCTTCAC, Reverse: CTTGAGGCTGTTGTCATACTTC) and TrxR1
(TrxR1 Forward: CTACAGACCATTGCCTTGCT, Reverse:
ACCTCCTACCCACAAGATCC). Serial dilutions of cDNA were used to plot a calibration
curve, and gene expression quantified by plotting threshold cycle values. Expression levels
were normalized to values obtained for the reference gene (GAPDH) and relative expression
expressed as the mean fold induction * standard deviation. Statistical differences between the
treatment groups and the control were determined by analysis of variance (ANOVA) (where

p<0.05 was considered significant).

RNA-Sequencing

For each condition a total of 96 independently cultured spheroids were pooled. Extracted RNA
from pooled samples underwent quality control assessment using the RNA Tapestation 2200
(Agilent). cDNA libraries were prepared using the SENSE mRNA-Seq Library Prep Kit V2
(Lexogen) prior to RNA-sequencing (RNA-Seq, genomic platform, Ecole Normale Supérieure
de Lyon). Raw fastq files were quality-checked using FastQC, a quality-control tool for high
throughput sequencing data, prior to alignment to the hg38 indexed transcriptome using
Bowtie2 (34). The eXpress software (35) was used to quantify expression from the
transcriptome mapping and derive count data and the differential expression tool package
DESeq?2 (36), implemented within R, was used to correct for multiple hypothesis testing and
determine significantly modified transcripts (FDR < 0.1) (Supplementary 1). Raw and
processed RNA-Seq data is deposited in the GEO Dataset with accession number GSE149397.
The PANTHER platform was used to perform statistical overrepresentation/enrichment tests
(38, 39). All major PANTHER terms were tested for over-representation (GO-Biological
Processes or Reactome, e.g. binomial) and gene-set enrichment comparing the lists of genes
expressed in different experimental conditions. The results are displayed showing the
differential distribution of significantly enriched clusters of genes compared to the overall

expression tendency within samples.

Epigenetic probes

Epigenetic probes were supplied by the Structural Genomics Consortium under an Open
Science Trust Agreement: https://www.thesgc.org/click-trust. Probes were diluted in DMSO to

a final concentration of 20 puM. UNC1999 and GSK343 inhibitors and an inactive control probe
UNC2400 were used to evaluate EZH1/2. The inhibitor MRK-740 and inactive control probe
MRK-740N were used for PRDM9. UNCO0642 and A-366 were used to evaluate G9a/EHMT?2.
Cells were treated for 1 to 3 days with the different probes to reach 1C90 of the targeted
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methyltransferase. Cells were then treated for 48 h with selenite or SeNP at sub-lethal doses,
protein was extracted and probed using antibodies targeting specific histone modifications as
described above.

Statistical Analysis.

All data presented are from a minimum of three biological repeats, with technical repeats
included per sample, as denoted. Data normality was analysed using the Kolmogorov Smirnov
test, with normally distributed data analysed with the one-way and two-way analysis of variance
(ANOVA) followed by the Mann—Whitney pairwise test for non-parametric data. In all cases
in which ANOVA was significant, multiple comparison methods were used. Differences were
considered significant for P < 0.05 (*P < 0.05, **P < 0.01, ***P < 0.001). All data were
analysed in MiniTab 14.

Supplementary

Supplementary 1: TEM images of SKOV-3 (A) and OVCAR-3 (B) treated with 1C20 of SeNP-
chitosan
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Supplementary 2 : Heatmap of methyltransferase and demethylases (A and C SKOV-3, B and

D OVCAR-3) gene expression after 24h of selenium treatments at sublethal doses.
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Cu isotope ratios are meaningful iIn
ovarian cancer diagnosis

I. Presentation of the article

Ovarian cancer detection is currently based on intraperitoneal cavity imaging and a blood test
to measure the levels of circulating CA-125 concentrations. CA-125, or MUC16, is a
glycoprotein secreted by the ovarian epithelium during cancer development, particularly in
advanced high-grade serous sub types, with well-known limits to sensitivity and specificity for
other cancer sub types. New biomarkers are required to complement CA-125 testing to increase
effectiveness. However, it remains an effective approach for following patient response to
chemotherapy and detecting relapse.

In the last decade, there has been significant interest in the use of blood-based metal
concentration and isotopic variations in terms of their diagnostic application in oncology and
other fields. Such measurements, performed using multiple-collector inductively coupled
plasma mass spectrometer (MC-1CP-MS), have been growing in interest as a result of their ease
of use and rapid measurement. Copper isotopes are present in the form of two ions Cu(l) and
Cu(ll) in cells and in blood. Transport and uptake of these two Cu ions is the cause of the
selective distribution (fractionation) of the copper isotopes *Cu(1/11) and *Cu(l/I1) between the
cells and the blood. Copper isotopes are linked to fundamental biological functions such as
extracellular matrix remodulation or mitochondrial metabolism. Ratios between those isotopes
are determined using MC-ICP-MS and the delta value §%°Cu obtained is a measure of the report
of Cu isotope abundances relative to a reference :

65Cu/63Cu) sample - (65Cu/63Cu) ref
(GSCu/“Cu) ref

0%Cu= ( x10°

This represents the relative deviation of the 5Cu/%*Cu ratio in the measured sample from its
value in the reference material NIST SRM 976 in parts per 1000 (%o).

With a typical reproducibility on §°°Cu at the 95 percent confidence level as determined from
multiple replicates of serum samples is 0.05%. in samples containing as low as 30ng of copper,
the quantity of material needed for precise measurement is very low (200uL of serum typically)
Moreover, copper turnover in the body is around 6 weeks, with a concentration of 1mg/L in
blood allowing enough material to measure copper isotopes variations and being sure the
differences in 6%°Cu are due to recent copper metabolism modifications. Recent studies have
focused on the evolution of copper isotopic composition in serum of breast cancer
patient'®(Télouk et al., 2015)(Télouk et al., 2015). For all patients tested, a decrease of
5%°Cuserum by 0.25 %o, which was relative to an increase in ®°Cu concentration in tumours, was
observed. Measuring the temporal evolution of isotopic composition in blood demonstrated that
a rapid shift in §°°Cu corresponded to a more advanced tumour, and correlated with CA15-3
(MUC1 blood concentration) levels in breast cancer patients'®. Decreases in §%Cuserym by 0.14
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%o have also been measured in colorectal cancer patients'®, and together indicate that §°°Cu
could be a useful biomarker for cancer detection and progression (See Figure below).
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Graphical Abstract: Proposed mechanisms of copper fractionation between normal cells
and ovarian cancer cell.

Changes in the circulating ®*Cu levels from patients with ovarian cancer may be multifactorial.
The tumour environment is hypoxic and results in an increase in tumour cellular lactate
metabolism leading to the preferentially chelation of heavy copper by lactate thus retaining this
isoform of Cu in the tumour cells. In addition, amino acid sequence composition is selectively
transporting light copper isotope ®3Cu.

When patients are treated with platinum chemotherapy, resistance to treatment can occur. We
proposed the following mechanism: In platinum treated cancer cells the copper transporter
ATP7A would selectively export Cu. This would result in %Cu being selectively retained in
the tumour cells by lactate and increased expression of efflux copper transporter increasing the
relative amount of ®3Cu in blood.
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Using sample biobank of Swansea University we measured copper isotopes in the serum of 44
ovarian cancer patients and in some biopsies we have been able to obtain from the hospital. We
have been able to measure a significant decrease of the 6%°Cu in the serum of ovarian cancer
patients in comparison with controls. This preliminary work brought additional results to
current studies proving the efficacy of isotopic measurements to detect cancer. However a larger
clinical study will be required to define §%°Cu thresholds that would be indicative of the
presence of the disease.

79



Cu isotope ratios are meaningful in ovarian cancer diagnosis

Il1. Article

This paper is Published in Journal of Trace Elements in Medicine and Biology
https://www.sciencedirect.com/science/article/pii/S0946672X20301760

Cu isotope ratios are meaningful in ovarian cancer diagnosis

2Toubhans B., 2Gourlan A.T, *Telouk P., “Lutchman-Singh K., *Francis L W., 'Conlan R
S.,°Margarit L., *Gonzalez D., 2Charlet L.

Affiliations:
!Medical School & Centre for NanoHealth, Swansea University, Singleton Park, Swansea,
SA2 8PP, UK
2|STerre, Université Grenoble Alpes, CS 40700, 38058 Grenoble, France
3Univ Lyon, ENSL, Univ Lyon 1, CNRS, LGL-TPE, 69007 Lyon, France
“Swansea Bay University Health Board, Department of Gynaecology Oncology, Singleton
Hospital, Swansea, SA2 8QA, UK
SCwm Taf Morannwg University Health Board, Department of Obstetrics & Gynaecology,
Princess of Wales Hospital, Bridgend, CF31 1RQ, UK

80


https://www.sciencedirect.com/science/article/pii/S0946672X20301760

Cu isotope ratios are meaningful in ovarian cancer diagnosis

Journal of Trace Elements in Medicine and Biclogy 62 (2020) 126611

A B
e
i

S ) Oy
P

k.
k!

FI1.SFVIER

Journal of Trace Elements in Medicine and Biology

journal homepage: www.elsevier.com/locate/jtemb

Contents 1kis available at Sclence Divect

Pathobiochemistry

Cu isotope ratios are meaningful in ovarian cancer diagnosis
B. Toubhans™™*, A.T Gourlan®, P. Telouk®, K. Lutchman-Singhd, L.W. Francis®, R.S. Conlan®,

ey

L. Margarit®, D. Gonzalez", L. Charlet”

* Miatical Schood & Cene for NamaHealsh, Swanse Unhersky, Singleon Pank, Swansea SA2 8PF, UK

b [5Tere, Univerdsd Gremodle Alpes, ©F 40700, 38058 Gremoble, Frasce

© Uity Lyom, ENL, Undv Dyom 1, (MRS, IGL-TPE, S5007 Lyon, Framce

4 Swemsen Bay University Heslh Boarel, Deparmnens of Gymascology Orncology, Stglecn Hopisl, Swarsas 502 80, UK

* Cwm Tiaf Morarrewg Uretvemity Health Board, Deparmmert of Olsemics & Gymaecology, Princess of Wals Hoplsl, Bidend (F21 183, UE

ARTICLEINFO

Keywards:

Cop peex
Tatopes
Dvarian cancer
Ricmarker

ABSTRACT

Badcground: Onvarian cancer diagnosis is arrent]ly based on imaging and cinoulating CA-125 concentrations with
wellknown limits to sensitivity and specificity. New biomarkers are requirsd to complement CA-125 testing to
inesme effectivenes, Incresses in sensitivity of Botopic sepamaton via multi collector inductively coupled
plasma-mass spedrometry have recently allowed highly scorate mesurement of copper (Cu) isotopic vanis-
tions. Studies in breast cancer patients have revealed changes of s=um @pper Botopic @mpasition demaon-
strating the potential for development as a cancer biomarker. Evalwting **Cu/*'Cu mtios (8%Cu) in serum
samples from cancer patients has revealed a strong correlation with cancer development. In this study blood
samples from farty-four ovarian @ncer patients, and 13 ovarian biopsies wenes investi gated .

Remlx: Here we demomnstrate that changes in Cu isoiopes also ocours in ovarian @ncer patients. Copper omm-
pesition determined by multiple collectar inductvely coupled plesma mess spectrometry revealed that the
copper iatopic mtio 8 Cu in the plasma of 44 ovarian cancer patient mhart was significandy lower than in a
group of 48 healthy donors, and indicatsd] that serum was enriched for “'Cu. Further amalysis revealed that the
isoipic composition of tumour biopsies was enriched for **Cu mmpared with adjascent healthy ovarian tissues.
Coxhbmons We propose that these changes are due to inoesse ladate and Cu tramsparter activities in the
tumour. These ohservations demaonstrate that, combined with existing strategies, 5 Cu could be developed for

use in ovarian cancer sarly detedion.

1. Introduction

Copper (Cu) is a vital nutrient absorbed by intestinal cells and
tramsported to the lver whem it is stored thus contmlling its con-
centration in blood [1,2]. Cu circulates mainly complexed to cer-
uloplasmin (S0-05%) and albumin (10 %) [54] In cells, Cu & com-
plexed to metallochaperomnes including OX17 and ATOX1 [5] which
deliver Cu to cyiochrome ¢ and ATPase 7B respectively. Modifications
o Cu concentration and relative abundance of Cu lsotopes {fractiona-
ton) have been linked to modified metabolic processes (ooddat bve
phosphorylation, hypoxia, anglogenesis), and thus to bealth and disease
[&].

Ovarlan cancer diagnosls & currently based on clreulating cancer
antigen 125 (CA-125) concentrations where it B elevated In 50 % of
early stage ovarlan cancer cases [7], but is also increased in pregrancy,
endometriosis [£] and other bendgn clinical cond itlons, which redusces

Its specificity. However it remains an effective approach for following
the responge 1o chemaotherapy on patients and detecting relapse [9].

To complement clinlcally available diagnostc methods, new bio-
markers including cimeulating temowr DNA, tumowr serum pootelns,
circulating cancer cell or serum levels of metals such as Cu and zine
[10,11] are being developed due to increased sensitivity of muld cal-
lector inductively coupled plasma-mass specirometry (MC-ICP-M5L

Copper |5 present in the form of two lons Cul) and Culll) in cells
and in blood. Transport and uptake of these two Cu lons k& the cause of
the selactive distibution (fractioration) of the copper isotopes ““Cull/
I1) and **Cu{1/10) between the cells and the blood [6,12]. Recent studies
have measured a strong decrease of the mtio (£°Cy, e Eq. 1) of Cu
lsotopes in serum of breast or colorectal cancer patient [13].

The alms of the present study were to compare 5°Cu ratios 1) from
whole blood in group of ovarian cancer patlents compared toa healthy
contml group and i) evaluate a small serles of ovarlan cancer biopsies

* Com=ponding author at: [STerre, Université Grenoble Alpes, OS5 40704, 38058 Grenoble, France.
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2, Material and methods
2. 1. Clindeal samples

Ethical approval for this study was obtalned from NHS HRA Walesé
REC (15/WA/DDES) to collect tasue and serum samples from ovarlan
cancer patlents and non-cancer controls Formal written consent was
obtained from all patents at the time of recrultment into the study.
Patlent s attending general gynaecology clindes or gynsecology oncology
clindes In Swansea Bay and Cwm Tal Morgamwwg NHS University
Health Boards (SBUHB and CTMUHB) were recrulted into this study.
Forty-four women with histdogleally confirmed ovaran cancer werme
mcrulted in the project. These wem posi-menopausal patlents that
presented (o primary care or emergency services with symptoms sug-
gestive of ovarian pathology (pain, abdominal bloating, welght loss and
change in bowel habit). Anovaran mass was subsequently identified on
imaging investgations (ultrasound, T, MR and tumowr marker
measurements [CA-125] performed. The histologleal evaluation of the
ovarian blopsdes and the cancer diagnosis was conflrmed by the
Pathology Department as part of the patient’s routine clinlcal care
However, only patlents with a confirmed ovadan tumour diagoss
were Included in the study. Patlents with infection, chronde inflamma-
ton, autolmmune disease and other cancers were excluded from this
shsdy. Amongst the patents, thineen gave serum and blopsies and 31
gave only serum. Analysis of the CA-125 marker |s reported In Table 1.
Women were between 43 and 83 years old with a mean of &4.4 years
old. Contml serum (from the Etablissement Frangals du Sang, patient
agreement obtained through MTA13 — 1728 ) was obiained from women
between 19 and 65 years old with a mean of 33 yeas old were ana-
lysed. Data are included in sup plementary 1 (Télowk et al, submined o
Joumal of Hepatology). Blosd was sampled into dry test tubes, cen-
trifuged Immediately, and stored at — 80 "C. Two hundred microliters
of serum were mineralized on a ha plate in a mixture of 2 mL of nitric
acld and 0.5 mL of hydrogen peroxide and processed on a macmporows
anlon-exchange resin AGMP1 100-200 mesh (Blorad, UK) t0 separate
Cu [14]. Blopsies {Table 2) placed into culiure medium at the dme of
surgery were cutl in pleces and one plece retalned for lsotopic mea-
surements. These pleces were welghed and mineralized ona hot plate in
a mixiure of 2 mL nlirlc acld and 0.5 mL hydmgen peroxide and pro-
cesed on a macroporows anlon-exchange resin to separate Cu

2.2 Spectromery

Element concentrations were determined & previowsly described
[14,15] by ICP-MS using an (CAP Q) (Thermofisher Sclent ific, Bremen,
Gemany ] *Cu/ Cu ratlos of the blood and blopsy samples wera de-
termined usdng a Nu instrument multiplecdlector indwet vely couplad
plama mas spectrometer (MC-ICP-MS) Mu Flasma HR 500 (Wrexham,
UK). As mass spectrometry isotople measurement by MC-1CP-MS suffers
from a stable blas between samples, a comectlon was systematically
applied. For this, a constant and known standard made of zine was
systematically added in the purfied samples The Zinc acts as a mass
bias corrector and standard in sample bracketing as it Is measured at the
same [ime a8 copper and is wsed as reference. This allow to reduce the
MC-IHP-MS mas bias indwecing woon g measurement compared 1o the
real [sotople compositon in copper.

A conventlonal delta value 5°Cu Is wed throughout to repont the
Cu Botope abundances. 5°Cu k a dimendonless parameter defined az

(“rw “rw)sample-(“cu P ow)ref

Feu= Ecu e

} » 10%sin-18
{1

This mpesets the ralatve davistlon of the **Cw~Cu ratlo in e
measured sample from ts value in the reference material NISTSRM 976

Joesmal of Trace Flemenis in Medicine ond Rinkogy 62 (2020} 126611

in pars per 1000 (%) Typlcal reproducibiity on £°Cu at the 95
percent confldence level as determined from three replicates of serum
samples is 0.05%a. Matwral varlations of 5Cu in inorganic and organic
material do mot ecceed + - 3o [16]. These SCu varations are due to
metabolic proceses and blological varability.

3. Statstical analysis

Normality of the data was analysed wing a Kolmogomy Smimov
test.

Satistically significant diferences on BCu values between healthy
serum ve OC serum samples were assessed ualng a 2-samples -test as
ditributions of the datasets were normal. Statstically significant dif-
ferences on BCu valwes between temdowr vs non e mour ovarian biopses
were assesed using a Mann Whitney test as distibutlons of the dat asets
were il normal

In order to evaluate the corelaton between age and BCu of ovadan
cancer patlents, as the datasets were nomally distributed we wnde ook
a Pearson's Correlaiion Test. In order to evaluate the differences be-
tween number of chemotherapy and 5*°Cu values, we performed a
Mann-Whitney test between the different groups we described in the
results. Floally, the differences betwesn cancer stage and 55Cu values
was assesed uwsing a Kruskal Wallis test between the different groups
deseribed in the results

4. Results
4.1. Clinical diggnoss and meamment

Forty-four ovaran cancer patients were included in this study amd
results compared to data from 48 healthy patlenis (See Supplementary
1. Télouk ef al. unpublished). The mean age of the women with ovaran
cancer in the study was 64.4 years, and women were pod -MenopalkEe
{Table 1). In total 22 women were diagnosed with FIGO (Federation
Internationale de Gynécologle e d'Obstdtrique) stage 3 ovarlan cancer,
seven with FIGO stage 4 cancer and & FIGO stage 1 or 2 and seven
benign masses.

‘We obtained ovarian blopsy samples from 13 patients from one or
from both ovaries, 11 were tumoral and 10 were non temoral (Table ).
The 13 patlent cohort included those diagnosed with high grade semus
ovaran cancer (HGES0C) {n = &), borderline ovaran tumour (n = 1],
endometdold ovartan adenocarcinoma (n = 2Z) and benign tumowr
mases (n = 4). The levels of CA-125 were measured at diagnosis.
Patlents presenting before Pt chemotherapy had high lewels of the
marker (mean of the group = 1301 + 1370). The effect of Pt treai ment
was followed by monltodng CA-125 levek. Samples were taken when
the marker had sigmificantly decressed (mean o the group =
205 + 250).

4.2 Assoeintion benwesn 50t and cancer

Healthy patlent serum 5®Cu values were compared to that of
ovaran cancer patlents (Flg. 1) Ovardan cancer patient serums had a
copper lsstope mtlo mnging from -1.59 to 0.14% (median -0.80%a,
mean -0.78%e + 0.05), a dirlbutlon that was significantly lower
{p < 0001) than the control group (between .71 and 0.05%q, median
-0, 2%%a, mean -0, 23%a + 0.02). Comparison of the copper [sotope ratlo
in eleven ovarian tumour blopsies and ten non-tumour ovarian blopaes
showed that in tumour blopsles, 5**Cu values were between -0.19 and
0.5%%a (n = 11, median -0.0%%, mean 006 = LOEL 5Cu alues
were slgnificantly lower (p = 0.05) in healthy ovarles with values
ranging from -063 to 008 (n = 10, median of -0.16%, mean of
0. 16%a + 0,06 p < 0L05) Fimally, no diference was found between
5%0u of the 13 patlents we obtalned serum and blopsles from and the
31 patients with only serum samples (p = 0.05).
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Table 1
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Onarian cancer: diagnestic, stage, number of gycles of chemotherapy and anahytical data onserum ssmples (G5 = Cancer Serum, * =premenopaws] women, NAA =

nuot applicable, NC = non acommumicated).

Sample Number Age Cancer Diagnosk Stige  Nbof chemotherapy  Initial CA1ZS at CAZS ot recsmuioment in the  SCo{%a)
agmess stndy
a5 43 HEEOC an 3 148 a2 -025
=2 57 HEEOC 48 4 63 19 -098
== 73 Masnse cokeenl sdenoardnoma tothe 48 NC 202 0z -84
ovaries
i1 &8 HESOC a0 3 = 25,000 57 —as7
=5 71 HGEOC 48 4 1857 7 -058
fs13 71 HGEOC 48 & 4248 500 -04T
o7 76 HGSOC a0 4 1656 = —os1
fi= 74 HGSOC ac 3 193 = —a7e
= &2 HGESOC ac ] em2 1154 -0s
=10 & HGSOC ac & ;50 30 —aar
= 50 HGSOC ac & ™ = ~13&
oz 22  HESOC ac & 085 = -5z
o3 &0  HES Primary Pertoneal disease ac 4 =7 <& -9
o4 & HGSOC ac & 796 0 —aar
3 5 HGSOC ac & 11,450 = -os
=16 71 HGEOC ac 5 423 14 —0S
o7 7B HGEOC ac 9 4 Eor) —os8s
s &  HGSOC ac & =1 19 —ET
g T8 Owrkn Curcncmrenma (Taba) ac Mome 10 160 —aar
=20 4 HosOC ac Name 7as 7as —a&T
= 55 Dwrhs Curdncmreoma ac 3 a31 122 —ok1
fi =] 2 HESOC ac 4 =36 155 —0ES
=23 71 HGEOC ac Name 1181 1613 —122
i 8 HGSOC ac 3 2538 06 —1m
25 58 HGSOC ac 4 &34 31 —as3
=26 80  HGSOC ac 4 = = —112
i) & HESOC ac & 40 = —a1m
=28 T2 HGEOC ac 4 204 o -15&
=29 2  HESOC ac 4 &34 31 -15
=30 56 HESOC 2C 4 ;02 4 —11
= 47  Endomesriid adeccarcinema ovary T Name 49z 49z —a14
oz &2  ©Owrhn Cear Cll L2 Nome 241 431 —os8z
f =) &7  Owrin Grannksa cell somoar L2 Nome 38 Y —oas
i =1 68  Owrhn Bordedine Sexas Cpstadeoma L2 Nome = 18 —oss
a5 54 Endomesioid adeccarcinema ovary 1 Name 7 ™ —as3
=36 57  Bordeline Smous Carcinoma 1 Name &7 &7 —an
T 60  Bordeline Ovarin Semns mmear 1 Name &4 = T
=" &0  Owrhn Flheoma Bemign M = &8 —4m
feo=r] 55 Muponous Cystdecama Bedgm N 54 54 -105
40 51 ©wrhn Fheoma Bemign M 72 &4 —a7e
=4 &4  Owrhn Fheoma Bemign M 13 13 —117
4z 51  Mucnous Cysademoma Bemign M = = —1s
43 % HGSOC WA Mome 12 12 T
i 74  Owrhn Flheoma Bemign M = o ET
4.3 Asscigfion berween 5¥Cu and cancer st 5. Digcigsion

Serum FPCu values were compared based on stage of the cancer
disease. Using a Kruskal Wallis test, no assoclation was found between
camper stage and §°Cu in blood, with a median of -0.58% {mean
-.61%a + 0.10) for stage 4, -0.E3%a {mean -0.86%a + 0.07) for stage 3,
A0LETHa (mean -0.79%0 + 0LOE) for stage 2 oand -0UB0%e (mean
0.72%a + 0.12) for stage 1 patlents (p = 0.95) Moreover, no aso-
clation was found between stage in the disase and 5Cu in temowr
mass. The low mumber of tumour mass samples from stage 4 patlents
may explain the lack of correlation

The number of cycles of chemotherapy appeared to influence the
A0 value in the biopsies. Patients recelving at least four cycles of
chemothempy had a signlficantly (p = 005) higher 5*Cu (o = &,
median = 001, mean = 0L12%a0 + (L0E) than patiemts recelving o
chemotherapy (n = 7, median = -0L10, mean = -0.15%a + 0L0&).

Flmally we decided to evaluate if the differences on §*°Cu levels
betwean patients were dependent on the patlents age at the tme of
sample collecton wang a Peamon's Cormelaton Test. No significant
amoclation was observed between the patient's age and 5°°Cu {p-value
= 0,115, r= -0272).

In the present study the degree of copper fmctionation was mesa-
sured in blood and tswe samples obtained from ovaran cancer pa-
tents, and §Cu was uwsed to determine the ratio of the two stable
copper botopes A podtlve 5°°Cu Indicated depletlon of clrculating
3w isotope, possibly die to an uptake by tumour cells, and convemsely
a negative valse indicated an enrichment of the lighter **Cu isotope in
serum. We observed that £*Cu was lower in the serum of ovardan
cancer patlent compared to that from healthy donors. Thus, as in breast
amd oolorectal cancer [13], we observed that patents with ovardan
tumouss have higher levels of **Cu in the tumowr mass than in bleod.
Mo correlation was made betwean the stage of cancer and serum §5Cu.
Thiss, whilst 5*°Cu cormelates with ovarlan cancer disgnosls it displays
no specificity for cancer type or stage [13,17].

The mechanian behind the decrease of 5°Cu in the serum of cancer
patients has been suggested to be a consequence of the hypoxic umour
envimnment that increases the relative level of lactate compared to
nomal dsuve and thus of an increased carboxyl group concentrations
avallable for complexation with Cu [13]. Since the heavy *“Cu copper
Cl 1) dsotope forms more gable bonds with carboxy] groups of lactate
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Table 2
Onvarian cancer: dizgnastic, stage, number of cycle of chemaotherapy and amahtial data onbiopsy samples (CB = Cancer biopsy, * = premenopeusal women, N/A =
nut applicable).
Sample Humber  Age Career Dlagnosk Stage Hbaf Tomewr $Cu Moo Tomow  Comments
chemoterapy (%) SCufa)
R& Righa 71 HER0C 48 & — a9 HER0C
Laf HERDC o HER0C
HI17 Righa T8 HGROC 3C 9 =3 HE0C
Left Mo sam pled
12  Right &7 HGSCof Lallpian mobe 3 & -0.08 Bemign
Left o Benign
IS Right 58 HEEOC aC 4 asF HER0C
Laf os=a HER0C
I7 Righa 66 HESC of L Gllopian tobe aC & -1z HER0C
Laf -a11 HER0C
A28 Right 73 HGSCof LAloplan mobe 3 4 -0z8 Benign
Lt oz HE0C
B3I Right 47 Grade 3 endometricld fype 2 None - am Narmal
Lt Emdoaratriodd sdesseansin o
34 Righa 68  HBordaline R Ovarian sencu 2 Mone — a9 Baorderline R Dwrian snom cpstbdenoema
cysmden oma
Laf oos Several serons o shon cyss
R3S Righa 54 L Owasan endometriodd 1A Mone — oz Emedoametriceis foed
e noanc noma
Laf Emsdoareetriod o adencsrcd noena with big
endomencak and cpsmdenoma
¥ Right 55 HBeignl modnos cpgadmoma Mot cancer  NAA -0z Narmal
L — 026 Bamign L oo dncves ¢ pstndercems
B41  Right &4 Henign R Abroma Mot camcer N Benign R Hbeoma
Laft Ll ] M ool
B42 Right 51 HBenign A modnom cptadmoma Mot cancer  NAA -0z Bemign mocinom cpsadencma
Laf M ool
CB43  Right 45 Lelomyosarccma fawumd o be N Nooe - 063 Celiular spindie cell tumonr with fasiculas
of broad ligam et crigin oW patem W, moderate D severs ayple
Lt -l N armad

than lighter Cu isotopes it would be preferentlally chelated and thus
retained in cancer cells, resulting in an apparent decrease of serum
5%Cu [17]. In cells, copper Is present predominantly as Cull) and is
always complexed with transpont protelns to overcome lis reactvity,
therefore avolding the production of reactive mygen specles that can
cause cellular damage. Ab initio calculations on the ability of organic
maolecules to coordinate with copper have been undenaken [1519]. 0
donor {ghitamine, threondne), N donor (histidine) and § donor (cy-
stedne, methionine) aming aclds19] were found to be preferentally
bind *=Cu lght copper isotopes of Cu(ll), and can also be ssumed 1o
fractionate as Cu(T) [20].

In ovarian cancer, patlents often relapse following an initlal positve
response o platnum chemotherapy, developing resistance and thus
reducing subsequent thempewtic options [9]. The most oommon

g
£
I

¢

P00
40,94

Sarum A7 (%)
&

Fiaary Controt Qv Canes Pares

mechanisms for resistance are the overexpresion of ATP-dependent
efflux pumps sech as MOR1 and ATPases 7A and B [21,22]. The ATP-
dependent copper transporter ATPases 7A and 7B supplies the Golg
with copper needed for enzyme synihesls While ATPases 7A and 7B
allows fine contml of copper concentration in cells, its activity also
allows umour cells to detoxify platinum-based drugs which increase
the resistance of the cells to treatment [25-25]. It seems likely therefore
that copper fractonation in ovadan cancer following chemotherspy
could eecur due to the overexpression of ATP7ase A drug efflux pump
[26,27] to detoxify Pt treated patients (Fig. Z). This Is supported by our
mas spectrometric analysis that revealed a decrease in the 5*°Cu value
in ovardan cancer patlents corresponding 1o a decrease In clrculating
50 in these patients (5*Cu =-0.80%a), and an incmease §Cu valus in
tumotrs (F5Cu =-0.01%:) compared to healthy thsue

-,

0,50

2
5

&

Blopsy d%5Cu (%a)
-]
F-

43,501

0, 75+
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Fig. 1. Comparison of #5Cu betwesn healthy blood donor and ovarian cancer blood and betwesn ovarian @ncer mass and non4umaour ovarian biopsy.

A) Whisker plot of serum #Cu values for healthy women (48) @mmparsd to ovarian cancer patients (44). Boxes represent the 75 percent middle quamtile and the
whiskers 95 pereent quamtiles. Hortzontal line: median Separation betwesn ovarian canceer patients and healthy women is significant (p < Q001]).

B} Whisker plot of 11 ovarian cancer ma=s and 10 contra-lateral ovaries that are sither healthy sither withdw to be checked for @ncer devel opment. Significant

difference has been messured betwesn the two conditions {p <0 0U05).
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Mormal cell

Pt treated cancer cell

6. Conclusion

Here we have demonstrated that Cu serum 55Cu levels am lower in
ovarian cancer patlents than in healhy donors. Conversely, ovarlan
cancer blopsies display a higher 5**Cu than serum from healthy vo-
lunteers Owr study highlights the potental of Cu as a functiosal blo-
marker for the detection of ovarian cancer. Current development of new
automatized teols to perform the chemiary on biological samples and
increased pedformance of measurement of MGICP-MS will alow the
futere implementation of 5**Cu to ald ovarlan cancer detection when
CA-125 and other imaging techniques are not conclusive A larger
clinieal study is now required to define £°Cu thresholds that would be
Indicative of the presence of the d bease

-@

F Clsigoa= ~0.20%
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Fig. 2. Propmed mechanisms of copper factionaton
betwesn nomal cells and platinum tested cancer
cells

Changes in the cirailating ™Cu levels from patients
who have mceived chemotheapy may be multi-
factorial. The tumour emvironment is hypaodc and e
sults in an increase in wmowr cellilar lactate met-
balism leading to the preferentally chelation of heavy
copper by lacaie thus retaining this isoform of Cu in
the wmowr celk In addition, selegivity of copper
tramsporter toward light copper isopes “'Cu acours
due to tramsporter aming ackl ssquence compositon
[20]. In platimum trested @ncer cells the copper
tramsporter ATP7A woukd selectively export “'Cu. This
would result in T Cu being selectively retained in the
tumenur cells by bactate and incressed expression of
efflux copper tramporter increasing the melative
amount of “'Cu in Hood.

FH5CUppeq= =0.80%e

Ethics approval and consent to particpate
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I. Conclusions

The close relationship between the environment and human health is well known, with geo-
medical links furthering our understanding of trace element bioavailability, leading to
innovative therapeutics in a range of diseases. Selenium, a crucial trace element available to
humans through soil, has long been postulated to have anti-cancer properties despite its narrow
toxicity window. This project utilises the principles of geochemistry and biochemistry to test
and develop the use of selenium, in nanoparticulate form, in the treatment of ovarian cancer.
The multidisciplinary approach utilised here, highlights the potential benefits of SeNP for
ovarian cancer treatment, identifying novel histone methylation associated mechanisms of
action and optimal nanoparticle coatings for increased cellular uptake and spheroid penetration.
In ovarian cancer research, SeNP have been used only once as a carrier of doxorubicin in
vitro®°2 and never as a stand alone chemotherapeutic despite their high bioavailability and
proved inhibition of tumour cancer cell growth. To determine the role of SeNPs in ovarian
cancer we adopted a multiscale approach. We have been able to reproduce results from other
cancer research groups proving the anticancer effect of SeNPs in different cancer cell line. We
have also been able to measure cell physical properties after selenium treatment and, for the
first time, the effect of selenium on histone modifications in cancer cells and overall impact on
ovarian cancer.

In this Ph.D. dissertation we evaluated the effect of two types of coated SeNP (chitosan-coated
and albumin-coated) on two ovarian cancer cell lines, OVCAR-3 and SKOV-3. These cell lines
were selected as they represent metastatic and non metastatic phenotypes of high-grade serous
cancer. In addition they have distinctly different cellular phenotypes with regard to growth
characteristics and resistant phenotypes, prevalent in heterogenous in vivo context. SKOV-3
cells are epithelial cells derived from the ascitic fluid, they are metastatic cancer cells. OVCAR-
3 are epithelial cancer cells from slow growing adenocarcinoma. Both SeNPs are cytotoxic in
the two cell lines, however SKOV-3 is more sensitive than OVCAR-3. Moreover, cell
monolayers (2D models) were less sensitive to selenium treatments than cell spheroids (3D
models). Analysis of the mechanical cell membrane properties by AFM revealed an increased
cell surface roughness and cellular stiffness in SKOV-3, while with OVCAR-3 cells, a
decreased cellular stiffness is observed, indicative of altered cytoskeletal dynamics, alongside
decreased vimentin expression level. SeNPs triggered early production of ROS, and a cell line
dependent induction of apoptosis (in SKOV-3) or autophagy (in OVCAR-3), indicative of an
enhanced resistance to SeNP in this cell type. SeNPs stimulated a global increase in histone
methylation, as shown by elevated levels of H3K4me3, H3K27me3 and H3K9me2, involved
in both gene activation and repression. Transcriptome analysis revealed SeNPs had a limited
effect on pathways involved in the metabolism of the ubiquitous methyl-group donor S-
adenosylmethionine (SAM). Whilst some effects appeared to be due to modulation of HMT
activity, a clearance route for the HMT inhibitor S-adenosyl-homocysteine (SAH), possibly due
to enhanced activity of the transulfuration pathway, also appears likely. It appears that reduction
in cell viability following SeNP exposure occurs through different mechanisms that result in
contrasting perturbations in cellular mechanics in serous ovarian cancer subtypes.
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As well as the development of new, advanced therapeutics for ovarian cancer, there is additional
need for the development of new or additional diagnostic procedures. Currently diagnosed via
a blood test for elevated CA-125; Ovarian cancer diagnosis lacks specificity and sensitivity and
is limited to the detection of advanced disease. Numerous attempts are being made to source
alternative or complimentary diagnostics. Copper metabolism is affected in a large range of
disease in human and in mammals. Cancer development have been related to increase of copper
concentration in blood and modification of the copper isotope ratios in liver, colon and breast
cancer patients. Blood copper ratio indicate enrichment in light copper isotopes. On the other
hand, heavy copper isotopes are found preferentially in tumoral cells in comparison with
surrounding tissues. We hypothesized the role of intracellular oxidative conditions and cancer
adaptations to explain the modifications of copper ratios. The accumulation of lactate would
explain the chelation of heavy copper. Moreover copper transporters would also be involved in
the process. Following copper isotopes ratio in blood would give good tool to detect cancer and
follow its treatment.

1. Perspectives

The potential impact of Selenium on cancer is the topic of intense discussion. Understanding
novel SeNP mechanisms of action on cancer cells will enable more effective SeNP-based
treatment to be developed against cancer, not least in ovarian cancer, a complex and
multifaceted disease with a very poor prognostic outcome. As shown in this study, the inclusion
of advanced cell culture models in pre-clinical evaluation, such as the spheroid cultures used
here, will provide significant added value in terms of clinical translation. This project could be
expanded with further explorative work, enhancing our understanding of Selenium speciation,
functional genomics and further establishing links to cell and tissue mechanical properties.
Amongst a myriad of future research lines, | would recommend the following;

Mapping the speciation of selenium in tumours

Conducting 2D or 3D selenium elemental (and speciation) mapping in spheroids and tumours
would enable the nature of the selenium aggregates observed in the cells to be determined.
Extra- and intracellular speciation would to reveal whether assimilatory selenate reduction
occurs, in analogy to S, and whether blood SeMet is preferentially taken up by tumours in
humans. Such a quantitative understanding of S/Se metabolism and its intracellular localisation
would allow known S species, metabolites (sulphate, Cys, Met, SAM, APS and PAPS) and
(potential) Se analogues to be targeted using standard commercially available or newly
synthesised compounds. The identity of the synthesized organic Se compounds will be
determined in situ by XAS technique, and could be compared to ex-situ determination, after
extraction by LC-ICP-MS/MS and - if required - high resolution LC-ESI-MS/MS, for
identification of species for which no analytical standards are available. Synchrotron-based
XAS technigues (HERFD-XAS and u-XANES) could fingerprint in-situ the presence of S/Se
organic or inorganic forms in tissues close to the natural, hydrated state. The recent upgrade (30
times X-ray brilliance increase) at the European Synchrotron Radiation Facility (ESRF) will
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allow bulk speciation tomography to be performed with 30 nm and 0.3 pm spatial resolution
and detection limit, respectively, and in very short times. Larger sections of ovarian tissue can
be exposed to ®Se, and NanoSIMS maps obtained after their metabolism (with a 100 nm, 10
ppm spatial resolution and detection limit). In addition, spatial speciation of S or Se in a thin
layer of flat tissue surface or within a cell, both down to 100 nm thickness, can be obtained at
LBNL, Berkeley, CA, with prototype NMR imaging system using confocal imaging.

Overall, p-XRF and p-XAS around the Se K-edge will be used to distinguish between Se(1V)
or Se°NP uptake by spheroids and their distribution within cell compartments. Moreover it
would allow to decipher the mechanism of aggregation of selenium inside the mitochondria and
vacuoles we observed in the paper entitled “Selenium nanoparticles induce global histone
methylation changes in ovarian cancer cells” whether it is native SeNPs or secondary
aggregated forms.

Expanding knowledge of selenium nanoparticle effect on the genome

We have been able to prove the increase of histone 3 lysine methylation through selenium
nanoparticles treatment in ovarian cancer cells. We also used the RNAseq dataset in order to
determine gross modifications of hallmarks through selenium treatment. We tried to combine
treatment of selenium with DNMT inhibitor (5-aza) and HDAC inhibitor (SAHA) and haven’t
been able to prove any additive cytotoxic effect. This first approach needs to be complemented
with gene expression screening as drug resistance is dependent from chromatin regulators that
cannot be analysed only with genomic analysis but need the help of functional genomic. We
preferentially would study the effect of SeNPs on DNA methylation as it has been done only
with aqueous selenium.

The genetic screening using RNAI of specific epigenetic complexes such as KRAB, GLP, EED,
LSD1 or DNMT3A would lead us to increase the knowledge of the effect of selenium on
transcription factors and the most essential amongst them in drug resistance. Epigenetic and
genetic mediators are influenced by selenium and lead cells to death. We would use this RNAI
genetic screen in order to determine the main cell death actors that are regulated through
selenium treatment. For example, the transient KO experiments of autophagy would lead us to
determine which factors are leading cells to greater cell death. Moreover we would target genes
associated with histone modifications based on stable knockdown cell lines from sensitive and
resistant to selenium ovarian cancer cells. RNAI screening would lead to identify regulatory
molecules responsible for epigenetic modifications in those cell lines.

Increasing our ability to systematically screen gene expression affected by selenium treatment
would lead us to draw a precise pathway of action of selenium within cancer cells and normal
cells.

Better models for ovarian cancer study

The environment surrounding a tumour influences the evolution of this tumour in many cancers
and especially ovarian cancer. In comparison with the surrounding environment of solid
tumours, the malignant ascitic fluid accumulating in the peritoneal cavity during ovarian cancer
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progression constitutes a unique form of highly inflammatory environment. The ascitic fluid is
constantly evolving with the evolution of the pathology and plays a major role in tumour
progression, spheroid formation, tumour dissemination. Ascitic fluid is constituted of a high
cell density fluid with high concentration of growth factors such as vascular endothelial growth
factors (VEGF), transforming growth factors (TGFB, IL6, CXCL2). Dissemination of epithelial
ovarian cancer is mediated through the ascitic fluid which is circulating around the ovaries and
allow the detachment and the survival of ovarian cancer cells leading to the formation of
spheroids, and then tumours, on secondary sites, notably on the peritoneal cavity epithelium
(highly receptive to ovarian cancer seeding) which further lead to ovarian cancer metastasis to
other organs when the epithelial ovarian cancer undergo epithelial-to-mesenchymal- transition
through the peritoneal cavity. However during the dispersion from the primary site to the
peritoneum, epithelial ovarian cancer cells must undergo adaptative changes in tumour to
progress to the next step and most of the time only a fraction of cancer cells are circulating in
the intraperitoneum before landing to the secondary site. This led us to develop a microfluidic
model of the circulation of fluid surrounding a spheroid and assess the effect of selenium on
the structure of the spheroid.

Improving mechanical properties investigation

Importantly, in vivo, tissue shaping, tissue repair and cancer invasion is done through collective
movement of cells. This is possible thanks to the orientation of migration of the cells and made
possible thanks to coordination between the cells that require the cytoskeleton. This
coordination is regulated by multiscale process of mechanical changes within cells occurring at
different timescales.

Following the monolayer mechanical properties analysis we performed, building a
nanomechanical model on 3D spheroids would make these mechanical measurement closer to
the tumoral reality. We applied a Cell-Tak coating as a thin layer on glass slides. The Cell-Tak
is a polyphenolic protein from marine mussels which can bind to the sugar coating of the human
cells in order to immobilize them (https://pubmed.ncbi.nlm.nih.gov/17779975/). The stiffness
of the slide is greater than the spheroid allowing us to be sure we measure the modification of
stiffness of the spheroid without parasite effect of the substrate. It also allows us to place
securely the spheroid avoiding its movement while measuring. We have been able to assess the
effect of selenite on SKOV-3 spheroids measuring a decrease of the overall stiffness of 5,000
cell spheroids. A decrease of the spheroid stiffness is interpreted as a decrease of the interactions
between the cells leading to an erosion of the spheroid structure liberating single cells which
are easier to treat than aggregates and are more prone to anoikis due to lost interactions with
other cells. These types of measurements are giving us insights on what would be the effect of
intraperitoneal selenium treatment and further development might lead to combined treatment
with other intraperitoneal injected drugs to kill cancer cells.

Finally combining AFM and confocal we would be able to draw the relationship between cell
structure, cell mechanics and functions of those parameters. It would allow us to link changes
in cell stiffness following selenium treatment and the metastatic potential of ovarian cancer
cells. We would also be able to draw the relation between changes in nanomechanical properties
and cell death or loss of viability.
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Improving Ovarian Cancer detection

In order to improve the detection of ovarian cancer development, we would also improve our
pilot study on copper isotopes. With only 11 paired serum-biopsy we haven’t been able to find
any correlation between the §Cu of serum and §Cu of the tumoral biopsies. Going further would
involve increasing the number of tumoral biopsy samples paired with serum. Moreover we
would track copper ratio in blood over time through treatment process and assess if the copper
biomarker can detect relapse of cancer. Finally on a biochemistry part it would be interesting
to decipher the mechanism underlying this shift of copper isotopes which remains hypothetical.
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