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Introduction

A key question in biology is to understand the relationship between structure and function. Although
structures are being mapped with increasing precision using a whole range of techniques such as
Cryo-EM or super-resolution microscopy, this link remains imperfect because we do not understand
how dynamic features such as the motion of proteins are involved in mediating the structure-function
relationship.

Proteins can exist in many states, that cannot be resolved using bulk assays and single-molecule
techniques such as single-particle tracking (SPT) have been developed to track the motion of proteins
in live cells. SPT has experienced a growing attention since its inception in live cells in the early 2000s.
Despite two decades of development, however, it is still unclear how SPT data should be analyzed.

In this dissertation, we present several projects developed during my PhD:

1. The development of SPT analysis tools, that can be used to analyze real-life SPT data. We first
implemented a propagator-based method, called Spot-On, and made it widely available through
a web-interface.

2. The implementation of a simulation tool to benchmark Spot-On, that incorporates realistic biases
and can simulate the motion of diffusing particles under various types of motion.

3. The evaluation of Spot-On in an in vitro SPT setting, in an application related to catalysis-
enhanced diffusion.

4. The preliminary analysis of the diffusion behaviour of the transcription factor c-Myc, with a
focus on its biophysical properties.
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Background
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Chapter 1

Short introduction: why do we care about
protein diffusion?

In this section we provide a quick and broad introduction/entry-point to motivate the rest of the
dissertation. We explicitly refer the reader to more detailed sections or introduction when needed.

1.1 The regulation of biological processes

The main focus of this dissertation is to produce tools to dissect the regulation of biological processes.
In very abstract terms, one can see a biological process as a chemical reaction that turns one or many
reagents (for instance A and B) into one or many products (C), leading to the formal chemical reaction:

A + B→ C

Chemical reactions are usually associated with a kinetic rate, or kinetic constant k. To say that
a biological process is regulated means that this kinetic constant is not a real constant, but a func-
tion of the concentration of external factors: k = k([external factors]). Canonical examples of reg-
ulated processes in biology include the regulation of the first step of glycolysis, during which the
enzyme Phospho-Fructo-Kinase (PFK1) catalyzes the phosphorylation of its substrate, the fructose-6-
phosphate in fructose-1,6-bisphosphate (Figure 1.1a). This step is regulated by the concentration of
many factors, termed allosteric regulators.

Another, simplified example is the regulation of the Lac operon (Pardee, Jacob, and Monod 1959):
the formal reaction that turns a DNA segment, the bacterial RNA polymerase and many other cellular
factors into a mRNA product (the expression of the LacZ gene; Figure 1.1b). The expression of this
gene is known to be highly regulated, and one factor that regulates the rate of mRNA production is
the concentration of lactose.

A third example, closer to the topic of this dissertation, is the regulation of transcription in mam-
malian cells. (Figure 1.1c). In mammalian cells, the production of a mRNA depends on the step-wise
assembly of a huge multi-protein complex termed the transcription pre-initiation complex (PIC; pre-
sented in section I.3). Each step of the assembly is regulated by the presence/absence or the concen-
tration of molecules named transcription factors (TFs). As such, transcription regulation is another
example of regulated biological process.
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Figure 1.1: (a) The first step of glycolysis is regulated by the concentration of many allosteric mod-
ulators. (b) In bacterial systems, the expression of the LacZ gene in the Lac operon is regulated by
the concentration of lactose in the medium. (c) In mammalian systems, the expression of a messenger
RNA (mRNA) is regulated by the presence/absence of many TFs that can affect the step-wise assembly
of the PIC at many critical steps (source: Nikolov and S. K. Burley 1997 and Wikipedia).

1.2 Why diffusion matters

According to traditional kinetics, once the partners (concentration of reagents and products) involved
in a bio-molecular reaction and the function that links the concentration of regulatory molecules to the
reaction rate are known, the concentration and time evolution of the reagents and products is known.

However, we know since 1906, thanks to the Polish chemist Marian von Smoluchowski, that in a
dilute medium, the reaction rate k (more specifically, the association rate of the reactants or diffusion
limited on-rate) of a bi-molecular reaction can be decomposed into:

k = 4πDA,

where D is the (sum of the) diffusion coefficients of the reacting species, and A is a factor that
has the unit of space, and that incorporates information about the relative conformation of the two
reacting species, and can be used to reflect the chemistry of the molecules.

This finding is absolutely critical. It means that to determine the reaction rate of any bio-molecule,
one cannot only have some information about the partners involved in the reaction, but also about
the space in which these particles diffuse. If for some reason they diffuse faster, then the reaction
rate is increased. If they diffuse slower, the reaction rate is decreased. Thus, transcription can be
directly regulated by tuning the diffusion coefficient of one molecular species. Section 3.3 details how
the spatial organization of the nucleus can affect transcription.

Furthermore, one can compare two situations: a first one in which a protein diffuses freely into
a confinement volume (such as the nucleus; illustrated in Figure 1.2a-left), and one in which the
protein diffuses in the same volume, but the volume is randomly and uniformly filled with obstacles.
In real life, these obstacles can be the cytoskeleton, DNA and chromatin, nucleoli, phase-separated
compartments, etc. In such a situation, one can mathematically and numerically show that a key
parameter to characterize diffusion, the mean first passage time (MFPT) shows qualitative differences:
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• In the case of the empty volume, the protein has a constant MFPT across space (Figure 1.2b-left):
regions of space that are close and far from the starting point are equally likely to be visited,
and in this situation, it does not really matter whether the diffusing protein and the target are
far apart: distance does not matter. This type of exploration is termed non-compact, since all
sites are visited with equal probability.

• In the case of the volume filled with obstacles, distance matters (Figure 1.2b-right): the MFPT
is much lower for regions close in space than in regions far in space. This type of exploration is
termed non-compact.

If diffusion of TFs in cell were non-compact, then spatial proximity relationships in the nucleus
would not really matter. It would be very difficult to explain why co-regulated genes tend to co-
localize genomically, why the genome is organized in topologically-associated domains (TADs) and
why enhancer-promoters come into contact. As such, knowing about the structure of the space, and
how it is filled with obstacles actually provide critical information about how proteins diffuse in cells,
and how this might affect transcription.

To sum up, one can see this mean first passage time using the following analogy: a chocolate cake
(the target) is hidden in a complex space (a medium filled with obstacles), such as the house in Figure
1.2c, a complex medium with lots of different floors, different stairs and filled with people with funny
hats. When kids (the diffusing proteins) search for the cake (pictured in Figure 1.2d), it takes them a
long time to find it, because the house is intricate and complicated. However, when the kids encounter
the cake, the reaction takes place instantly and the cake "magically disappear".

Figure 1.2: (a). Two diffusion volumes (left) an empty container, in which molecules can diffuse freely
and (right) a container full of –randomly placed– obstacles that hinder diffusion. (b). Representation
of the mean first passage time for the two geometries presented, (from Izeddin, Récamier, et al. 2014).
(c). A metaphor for a complex geometry: a house with a lot of floors, stairs, rooms and people with
funny hats, (from La Vie Mode d’Emploi, Georges Perec), (d). An instantly reacting species: the
chocolate cake is instantly catalyzed into stomach-ache when the children-macro-molecular complex
encounters it.
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1.3 The nucleus as a complex space

In biology, the nucleus is a good candidate for such an intricate space, in which the spatial organization
of chromatin and the nucleus can significantly affect diffusion. Section I.2 highlights some features of
nuclear organization in more details. Briefly, each human cell contains approximately two meters of
DNA that are folded in a 10 µm nucleus (section 2.2). This folding takes place at many levels: nucle-
osomes (section 2.3), TADs (section 2.4) and compartments (section 2.5). In addition to chromatin,
mammalian nuclei contain a hierarchy of macro-molecular structures (pictured in Figure 1.3), many
of them are now termed membrane-less organelles. Membrane-less organelles include, among many
others, nuclear speckles, nucleoli and PML bodies. These organelles bear various chemical properties
and can differently affect diffusion.

Figure 1.3: An overview of frequent membrane-less organelles and phase-separated bodies in a mam-
malian nucleus (source: David L Spector and Gasser 2003).

1.4 Single-particle tracking to study nuclear diffusion

In such a complex nucleus, there is a need to characterize how proteins diffuse. This will bring valuable
insights on how nuclear organization an protein dynamics intertwine. Many techniques have been used
to study diffusion of proteins in cells, and some of them are reviewed in section I.4. Among them,
single-particle tracking (SPT) has emerged as a key technique, since it provides precise information
about single molecule diffusion in a live cell context.

In a conventional SPT experiment (reviewed in more details in section 4.1), the protein of interest is
labeled, for instance using a HaloTag fusion protein conjugated to a fluorescent dye (Figure 1.4a). Then
using a microscope with single-molecule sensitivity, high-speed cameras and an ad-hoc illumination
scheme (Figure 1.4b), the fluorescence emitted by the dye is recorded over the lifetime of the fluorescent
molecule. If the labeling has been performed in a sufficiently low density (for instance if photo-
activation has been used, or if the fluorescent dye is the limiting reagent in the conjugation reaction),
single molecules appear as isolated spots that can be detected and tracked over time (Figure 1.4c),
allowing to extract the coordinates of the spots, and to reconstruct trajectories (Figure 1.4d). The
trajectories can then be analyzed using statistical methods to extract meaningful information about
diffusion (Figure 1.4e).
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Figure 1.4: A procedure to perform single-particle tracking. (a) The protein of interest is
labeled for instance using a HaloTag-fusion protein and a photo-activatable organic dye (PA-dye).
Under UV illumination, this dye can be converted into a fluorescent state. (b) Single molecules can
then be tracked over time under a fluorescence microscope, using a detection and fitting algorithm
followed by a tracking method. (c) To see single molecules, specific illumination schemes usually need
to be employed in order to reduce out-of-focus illumination. One of them, depicted in the picture,
is HiLo illumination (Tokunaga, Imamoto, and Sakata-Sogawa 2008). (d) Trajectories can then be
extracted fro the movies and (e) statistical analysis, here modeling with Spot-On can be performed
(source: Anders S. Hansen, Woringer, et al. 2018).

The analysis of SPT is the subject of intense research, and we present an example of analysis
technique, Spot-On, in section 1.3. An overview of existing analysis techniques is presented in section
4.4.
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Chapter 2

General structure and function of the
nucleus

Understanding how transcription factors (TFs) regulate mammalian gene expression in space and time
is a central topic in biology. To activate a gene, a TF has first to diffuse in the available space of the
nucleus until it reaches a target DNA sequence or protein (target site). This eventually results in the
recruitment of the whole transcriptional machinery.

All these processes take place in the mammalian nucleoplasm, a highly organized and dynamic
environment, in which some complexes transiently assemble and break apart, whereas others appear
more stable. This diversity of dynamic behaviors arises from the number of bio-molecules that make
up the nucleoplasm and their pairwise interactions. Indeed, interactions energies that span several
orders of magnitude, from covalent bounds to transient and dynamic interactions can shape nuclear
landscapes. Thus, the nuclear environment determines how frequently and how fast a TF contacts its
target site, and it indirectly regulates gene expression.

Among the nuclear constituents is the genome. Mammalian genomes in particular are under con-
siderable constraints. The DNA double helix has a diameter of ∼ 2 nm, and in human cells, its total
length if stretched out would be ∼ 2 m, but it is folded inside a nucleus ∼ 10 µm in diameter, roughly
five orders of magnitude smaller. Despite this tight folding, the genome needs to remain accessible to
key biological processes, including DNA replication and gene expression. How genome architecture and
biological processes intertwine has puzzled generations of biologists, and a more comprehensive picture
of the key determinants of these interactions is just starting to be unraveled. Over the last decade,
the field has undergone a dramatic acceleration thanks to the development of powerful sequencing-
based assays and microscopy techniques, which have revealed previously unknown levels of chromatin
organization. Together with polymer-based modeling, these data have helped to uncover some of the
fundamental mechanisms that shape chromatin organization.

In this section, we review some general knowledge about the structure and function of the nucleus,
with a focus on chromatin organization and membrane-less organelles. We try to simultaneously
highlight the biophysical mechanisms leading to the current organization of the nucleus. The goal of
this section is to set the stage where diffusion occurs. Concretely, section 2.1 draws a broad overview
of our current understanding of "what is in the nucleus". The next sections progressively details how
chromatin is organized in the nucleus.

Most of the content is extracted from three reviews that we wrote with Jyotsana, Ignacio and
Xavier:

• "Geometry of the nucleus: a perspective on gene expression regulation", published in Current
Opinion in Chemical Biology (Woringer, Darzacq, and Izeddin 2014),

• "Protein motion in the nucleus: from anomalous diffusion to weak interactions", published in
Biochemical Society Transactions (Woringer and Darzacq 2018),
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• "How the Genome Folds: The Biophysics of Four-Dimensional Chromatin Organization", pub-
lished in Annual Reviews of Biophysics (Parmar, Woringer, and Zimmer 2019).

We apologize to our colleagues whose work could not be cited due to limited space. We thank
Elena Rensen and Anders S. Hansen for critical feedback on the manuscript and Vincent Récamier,
Raphaël Voituriez, Leonid Mirny, Yitzhak Rabin, Lana Bosanac and Benjamin Guglielmi.

2.1 What is in a nucleus?

Mammalian gene expression and its regulation take place in the nucleus, a highly complex and sub-
compartmented organelle. Interactions strengths between nuclear constituents span several orders
of magnitude, from covalent bounds to “strong” non-covalent interactions. These interactions lead
to the formation of macro-molecular structures, either stable (Figure 2.1-left; for instance double-
stranded DNA or biochemically purifiable macro-molecular complexes such as the ones involved in
gene expression) or transient but specific, leading to preferential associations of classes of proteins
(Figure 2.1-right). This section briefly highlight some of these constituents.
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Figure 2.1: Biological interactions cover a wide spectrum in terms of complex stability (a) and number
of molecules involved (b). This spectrum spans from stable protein complexes that can be purified
and further imaged by techniques such as X-ray diffraction (left) to very labile, transient interactions
that can involve thousands of proteins in vivo, whereas none of the interactions can be captured by
traditional biochemistry (right). As one goes from one end of the spectrum to the other end, distinct
sets of techniques (c) and types of representations (d) are needed. For instance, as the valency of
interactions increases from a few strongly interacting partners to many weakly interacting partners,
new graphical representations are needed, since traditional schematics representing macro-molecular
complexes whose stoichiometry is known as the juxtaposition of monomers (center) become difficult
to read when depicting one protein weakly interacting with dozen of partners (right). In that case,
matrices of pairwise interactions between proteins A-I might be more relevant. SAXS: Small-Angle X-
Rays Scattering, NMR: Nuclear Magnetic Resonance. Photographs are courtesy of Jeff Dahl, Vossman
and Shasha Chong, respectively from left to right.

2.1.1 Content of a mammalian nucleus

It is surprisingly hard to find information on the macro-molecular content of the nucleus of a mammalian
cell, and most of the information that I managed to find are highly approximate. Nonetheless, RNA,
DNA, proteins are abundant in the nuclear space, and also some other elements such as ATP or
aminoacids.

1. Available space in the nucleus. High molecular weight components in the nucleus, such as
prominently but not exclusively chromatin, effectively reduce the accessible volume in which TFs
are free to diffuse, potentially regulating the process of gene expression. A "rule of thumb" for
the volume of a DNA is 1 nm3/bp, according to Bionumbers (accession number 103778). Thus,
neglecting adsorbed water, the volume of human DNA is ∼ 2x3x109 = 6x109 nm3. Similarly, the
exclusion volume of nucleosomes can be computed (crystal structure of the human nucleosome
core, 10.2210/pdb2cv5/pdb, and Bionumbers, accession numbers: 102977 and 102987), leading
to an estimated volume of chromatin of ∼ 25 µm3, which is a fraction of 12% of the volume of
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a human nucleus (∼ 6 µm diameter). Other estimates (10% in Rippe 2007, 20–50% in Bancaud
et al. 2009) give similar order of magnitude. In a simple model of first order reaction, such exclu-
sion volume would at most change by a mere factor of two the rate of homogeneous biochemical
reactions. We must thus take into consideration other characteristics such as the complex geom-
etry of nuclear organization or the heterogeneity of local molecular concentration. The former, as
discussed below, renders the calculations of exclusion volume invalid; regarding the latter, many
nuclear components do not show a homogeneous spatial distribution in the nucleus (Dowen et al.
2013), and it has been shown that the local concentration of Pol II is regulated, giving rise to
significant differences at the local level throughout the nucleoplasm (Cisse et al. 2013).

2. Heterogeneities in the nucleus. At a finer scale, many of the constituents of the nucleus are
heterogeneous, giving rise to changes in concentration. The main heterogeneities studied con-
sider the alternance between DNA-rich and DNA-poor regions, investigated by super-resolution
microscopy (Szczurek et al. 2014; Récamier et al. 2014) or Cryo-EM (Ou et al. 2017). Further-
more, it was proposed (T. Cremer, M. Cremer, et al. 2015) and recently evidenced that DNA-rich
and RNA-rich regions are spatially segregated, based on SIM and STED imaging (Miron et al.
2019; Hilbert et al. 2017). Finally, provided the potential of multivalent RNA to facilitate phase-
separation (see for instance Jain and Vale 2017 for a recent example), the interplay between DNA,
RNA and proteins becomes of paramount importance, and several efforts have been made to map
DNA-RNA interactions (see for instance the ChAR-seq and other techniques; Bell, Jukam, Teran,
Risca, O. K. Smith, Johnson, J. Skotheim, et al. 2017; Morf et al. 2017).

2.1.2 Weak interactions in the nucleus

Unlike inert tracers whose diffusion is only determined by volume exclusion, proteins have both a
relevant shape and charge pattern that determine their interaction landscape and thus their diffusive
properties. These non-covalent interactions are obviously crucial to form biochemically stable com-
plexes such as the transcription pre-initiation complex or the spliceosome (Figure 2.1-left), but also to
form dynamic emergent structures of reduced dimensionality upon which TFs can transiently adsorb
and diffuse (Figure 2.1-right). Under this model, proteins do not form stable complexes anymore, but
rather have a high number of weakly-interacting partners. Indeed, simulation studies have shown that
phase separation yielding structures of reduced dimensionality can occur under very minimal hypothe-
ses, such as weak overall protein-protein attraction (Osmanović and Rabin 2016; Shagolsem and Rabin
2016).

In this context, the traditional representation of protein-protein interaction networks as graphs and
arrows becomes less informative as the protein network gets fully connected, and can be replaced by
representations such as pairwise interaction matrices (Figure 2.1d-right) (Bergeron-Sandoval, Safaee,
and Michnick 2016).

Furthermore, the list of proteins exhibiting phase separation (that is, a state of matter in which
part of the soluble protein fraction segregates into a liquid or liquid-like droplet) in vitro or in vivo is
quickly growing, supporting the vision that the emergence of structures of reduced dimensionality is
closer to a general organizing principle than an anecdotal biophysical phenomenon, and some of them
were linked with transcriptional regulation (A. Tsai et al. 2017; Kwon et al. 2013; A. G. Larson et al.
2017; Sherry et al. 2017; S. Chong, Dugast-Darzacq, Z. Liu, Dong, G. Dailey, et al. 2017).

1. Implications of phase separation. First, transient structures of reduced dimensionality, in-
cluding protein aggregates, phase separated domains or sub-nuclear compartments require at least
one multivalent partner, that can nucleate the aggregation. As such, many abundant constituents
of the mammalian nucleus have been shown to nucleate a structure of reduced dimensionality.
These structures include the formation of nucleoli in which diffusion is highly constrained, phase-
separation of heterochromatin protein 1 domains (HP1; A. G. Larson et al. 2017; Strom et al.
2017) and highly active chromatin domains, whose center has reduced accessibility to diffusing
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proteins, restricting most diffusing proteins to the surface of the domain (S. Chong, Dugast-
Darzacq, Z. Liu, Dong, G. Dailey, et al. 2017). The constituents include low complexity protein
domains, that constitute the majority of the mammalian proteome (Shammas 2017; Kato et al.
2012), especially TFs (Jiangang Liu et al. 2006), repeated DNA (Nott et al. 2015) or RNA se-
quences (Jain and Vale 2017; P. Li et al. 2012; Molliex et al. 2015) or small amphiphilic molecules
(Patel, Malinovska, et al. 2017; Patel, H. O. Lee, et al. 2015). Once nucleated, these structures
can have a highly tortuous, potentially fractal architecture, and can serve as a scaffold that can
weakly trap other proteins, leading to anomalous diffusion.

Second, the partners have to exhibit compatible interactions: it is chemically unlikely that both
highly charged and hydrophobic proteins will coexist in the same structure without the help of
additional compounds acting as counter-ions (Pak et al. 2016), setting the basis of a “grammar of
interactions” (Gimona 2006), that is being progressively deciphered (Brady et al. 2017; Reichheld
et al. 2017; Rahul K Das, Ruff, and Rohit V Pappu 2015; Sherry et al. 2017; Patel, H. O. Lee,
et al. 2015; Quiroz and Chilkoti 2015).

Third, structures of reduced dimensionality emerging from weak interactions exhibit the follow-
ing properties: (1) they usually exist as an extremely dynamic equilibrium rather than a stable
structure (Strom et al. 2017; Wei et al. 2017; Molliex et al. 2015), and can thus be at the same
time prevalent in the nucleus and hard to purify by traditional biochemistry that preferentially
capture stable interactions. (2) Moreover, they emerge from a dynamic mesh of pairwise chem-
ical interactions. They can show a high level of specificity, and several structures of reduced
dimensionality can coexist in the same nucleus without intermixing (S. Chong, Dugast-Darzacq,
Z. Liu, Dong, G. Dailey, et al. 2017; Shav-Tal et al. 2005; Pak et al. 2016; Kwon et al. 2013; Nott
et al. 2015). Furthermore, the number and spatial relationships of such structures is only limited
by the combinatorics of chemical interactions. (3) Finally, these structures can be regulated
by the well-studied post-translational machinery of eukaryotic cells. For instance, phosphory-
lation of one of the proteins involved in such structure can trigger the timely disassembly of
the whole structure and free all the factors interacting with it (Cisse et al. 2013; Kwon et al.
2013; J. T. Wang et al. 2014; Cho, Jayanth, Mullen, et al. 2016; A. G. Larson et al. 2017). All
those factors will then exhibit a dramatically different dynamics and target search properties,
potentially switching from a compact exploration mode to a non-compact one. As such, a spe-
cific (and potentially functional) group of factors can be regulated at once by modulation of the
post-translational modifications of one scaffolding protein (P. Li et al. 2012; Nott et al. 2015).

2. An example of weak interactions in the nucleus: the histone tails. An recurrent question
in nuclear biology is to what extent histone tails can behave as surfaces of reduced dimensionality.

In most pictures we usually see, the histone tails are based on the nucleosome PDB structure
1AOI by Luger et al. 1997. It only has partial histone tails, and as such it cannot provide a
full picture of the volume occupied by the tails. Conversely, (Arya and Schlick 2006) simulate
histone tails in a nucleosome. They take full histone tails into account and it is clear that at a
given instant the histone tails occupy a volume much lower than the core nucleosome (see the
top panel of Figure 2.2). The simulation of histone tails, including histone tails modifications, is
the subject of intense research (Grauffel, Stote, and Dejaegere 2010).

On the other hand, the authors of (Arya and Schlick 2006) also simulate using a coarse grained
model the "volume" occupied by histone tails (that is, the volume explored over time by the
tail), and this volume more or less doubles the volume occupied by the nucleosome. It is unclear
whether we could say that the capture radius of the nucleosome doubles (because the tail occupies
only one conformation at a time). See the 4 bottom panels of Figure 2.2. The authors also
quantify the extension of the tail, to be around 1-3 nm.
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Figure 2.2: Evaluation of the volume occupied by histone tails. top panels b-g sample
conformations and tail extension for various chromatin conformations. bottom panels a-d sample
conformation and "volume" explored by histone tails over a long period of time (source: Arya and
Schlick 2006).

3. Conclusion. The characterization of structures of reduced dimensionality emerging from weak
interactions is still in its infancy, but appears more and more strongly as a clear organizing
principle of mammalian nuclei. These structures create the matrix upon which fast-diffusing
factors can specifically and transiently bind, diffuse and unbind, thus dynamically shaping the
“diffusion landscape” of the whole transcriptional machinery. In the next sections, we review how
chromatin is organized within the nucleus.
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2.2 DNA and chromatin as polymers

The DNA double helix in a typical human chromosome consists of hundreds of millions of base pairs
covalently chained together by sugar-phosphate backbones. Thus, DNA perfectly fits the definition
of a polymer, as a molecule built from many similar elements (called monomers) bonded together.
Polymers obey a wide range of properties that arise solely from the fact that they consist of many
monomers and are largely independent of their precise chemical nature. This universality means that
many concepts and results from polymer theory (Doi and Edwards 2007; Rubinstein and Colby 2003)
can be applied to understand the structure and dynamics of DNA and chromatin in cells; we briefly
recall some of them below.

A key property of polymers is semi-flexibility: On short length scales, a polymer behaves as a
rigid rod, while on larger scales it can bend in arbitrary directions due to thermal agitation alone
(Figure 2.3a). The length scale that separates rigid from flexible behavior is called the persistence
length. As a consequence of this semi-flexibility, polymers can adopt an infinite number of three-
dimensional (3D) arrangements, or conformations. Individual conformations cannot be predicted,
much like the positions of individual molecules in a gas cannot be predicted. However, polymer
theory can predict statistical quantities, such as the mean distance between the two ends of a polymer
chain (Figure 2.3b) or the frequency with which two monomers contact each other (Figure 2.3c).
These quantities are predicted to obey scaling laws, which describe how they vary with the number of
monomers N or, equivalently, the contour length s of the chain. In the simplest model, the ideal chain,
bonds between monomers have random orientations and monomers ignore each other (i.e., neither
repel nor attract each other) (Rubinstein and Colby 2003). At equilibrium, in absence of any external
constraints or forces, the root mean squared end-to-end distance increases as

√
s or
√
N (Figure 2.3b),

while the contact frequency decays as s−3/2 (Figure 2.3c). The more realistic real chain model accounts
for the fact that a polymer cannot self-intersect. This constraint leads to a swelling of the chain and
a faster scaling of end-to-end distances (Figure 2.3b). In a confined and crowded volume such as the
nucleus, however, this swelling can be counterbalanced by the presence of other chains (and other
segments of the same chain). In that case, the scaling laws become similar to the ideal chain up to a
distance where monomers behave as if they were no longer part of the same chain, at which point they
level off (Figure 2.3b,c).
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Figure 2.3: Basic properties of polymers. (a) A polymer is a semi-flexible structure whose rigidity
can be defined by the bending persistence length, lp. The average cosine of ∆, the angle between the
tangent vectors at two loci separated by a curvilinear distance, s, decreases as exp(−s/lp). (b) The
root mean squared (RMS) end-to-end distance, 〈R2〉1/2 , as a function of the number of monomers,
N , for an ideal chain (red), a real chain (blue), and a chain in confinement (dashed black). (c) The
contact probability, Pc(s), as a function of s between loci for an equilibrated polymer (red), a fractal
(or crumpled) globule (blue) (A. Yu Grosberg, Nechaev, and Shakhnovich 1988), and a confined
polymer (dashed black). (d) A schematic showing the dynamics of a Rouse polymer where monomers
are connected by harmonic springs (Rubinstein and Colby 2003). (e) Mean squared displacement
(MSD), 〈r2(t)〉, as a function of time for a freely diffusing monomer (red) and a monomer embedded
in a polymer chain undergoing Rouse subdiffusion (green). (f) A snapshot of a molecular dynamics
simulation of multiple chromosomes in the nucleus. Panel f courtesy of J.J. Parmar (unpublished
manuscript).

Theory can also predict properties of polymer motions. The simplest model, the Rouse model,
describes how the random motion of a single monomer is influenced by that of other monomers to which
it is connected (Figure 2.3d). According to this model, the mean squared displacement (MSD) of a
monomer grows like the square root of time over short timescales (Rosa and Zimmer 2014; Rubinstein
and Colby 2003), unlike a free particle, for which the MSD is simply proportional to time (Figure 2.3e).

These predictions are based on a number of important assumptions, most importantly, that the sys-
tem is in equilibrium and that the polymers consist of identical monomers (homopolymers). Neither of
these two assumptions holds true for DNA and chromatin fibers, which are subject to ATP-consuming
(i.e., energy-driven) processes such as transcription and replication, and have a nonuniform compo-
sition determined by the DNA sequence and epigenetic histone modifications. One might therefore
expect the above relationships to utterly fail when applied to chromatin fibers in real biological nuclei.
Surprisingly, however, basic homopolymer physics has proven quite effective at explaining some key
features of nuclear architecture in a variety of organisms (Rosa and Zimmer 2014). Discrepancies be-
tween predictions of basic polymer models and observations are useful because they hint at additional
mechanisms of potential biological significance and motivate the development of more realistic and
complex models. Examples are heteropolymer simulations, where monomers have distinct types and
are subject to different interactions (Figure 2.3f) defined by DNA sequence or epigenetic information,
some of which are discussed below (Fudenberg and Leonid A Mirny 2012; Rosa and Zimmer 2014;
Bianco et al. 2017; Sazer and Schiessel 2018).
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2.3 Nucleosomes and chromatin fiber structure

2.3.1 Beads on a String

The DNA double helix contains approximately three base pairs (bp) per nanometer of length and has
a persistence length of ∼ 50 nm, i.e., 150 bp, as estimated from in vitro experiments (Wiggins et al.
2006). According to the ideal chain model (Figure 2.3b), an average human chromosome would then
have an average size exceeding 50 µm, much larger than typical nuclei. The first level of genome
packaging is achieved by nucleosomes, histone octamers whose shape can be approximated by a short
cylinder 10 nm in diameter and 5 nm in height. Despite the stiffness of DNA at this scale, 147
bp of DNA wrap around each nucleosome, taking 1.7 turns. This interaction occurs because the
positively charged histones are attracted to the negatively charged DNA, resulting in a net free energy
gain of ∼ 40 kBT (Mack et al. 2012; Jie Yan et al. 2007). Nucleosomes are spaced by 20–40 bp
of linker DNA, such that a stretched array of nucleosomes appears as beads on a string in electron
micrographs (Figure 2.4a). Nucleosomes are dynamic and can be repositioned by ATP-dependent
chromatin remodelers (Narlikar, Sundaramoorthy, and Owen-Hughes 2013; Z. Zhang et al. 2011).
Several equilibrium and non-equilibrium models, with (un)binding and sliding kinetics, have been
successful at explaining the positioning and dynamics of nucleosomal arrays (Figure 2.4a) (Kornberg
and Stryer 1988; Padinhateeri and Marko 2011; Parmar, Marko, and Padinhateeri 2014).
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Figure 2.4: Different levels and mechanisms of chromatin organization. This figure highlights
distinct features of 3D genome architecture and some proposed explanations for their formation (blue
boxes). (a) Chromatin fiber: Wrapping DNA around nucleosomes results in the ∼ 10-nm beads-
on-a-string fiber. The positioning of nucleosomes is determined by energetic barriers (green), steric
hindrance by other nucleosomes, and by ATP-dependent chromatin remodelers that can assemble,
disassemble, or slide nucleosomes (blue box ) (Chereji and Clark 2018; Padinhateeri and Marko 2011;
Parmar, Marko, and Padinhateeri 2014). The compaction of nucleosomes in the chromatin fiber is
affected by post-translational modifications of histone tails, such as methylation (me) or acetylation
(ac). (b) TADs (topologically associated domains) and loops: TADs appear as blocks of higher contact
frequency on the Hi-C map diagonal. Loops show up as peaks, often located at TAD corners. The
blue box shows chromatin regions undergoing cohesin-mediated loop extrusion (Fudenberg, Abdennur,
et al. 2018). In this scenario, cohesin is loaded on DNA by NIPBL and, once loaded, extrudes DNA
until reaching a properly oriented CTCF boundary. Cohesin can be released from the chromatin by
WAPL and PDS5A/B factors. (c) Compartments and LADs (lamina-associated domains): Euchro-
matin (A, green), facultative heterochromatin (B, red) and constitutive heterochromatin (C, blue)
compartments segregate radially in the nucleus, as seen by microscopy and the checkerboard pattern
of Hi-C maps. LADs strongly correlate with B compartments. In inverted nuclei (Solovei et al. 2009),
the radial organization is reversed, but the contact pattern remains similar. Both can be explained
by a heteropolymer model that involves attractions between heterochromatic regions, and additional
lamina-dependent interactions with the nuclear envelope to model conventional nuclei (blue box) (Falk
et al. 2018) (d) Nuclear bodies, including speckles and nucleoli, form membrane-less compartments in
the nucleus that appear to be driven by liquid–liquid phase separation (Zhu and Brangwynne 2015).
(e) Chromosome territories: Distinct chromosomes (shown in color) take separate, non-overlapping
positions in the nucleus, with the more transcriptionally active chromosomes preferentially occupying
the nuclear center (T. Cremer and M. Cremer 2010). Hi-C maps show high-intrachromosomal and
low-interchromosomal contact frequencies. One proposed mechanism of chromosome territory forma-
tion (blue box) assumes an activity-dependent dynamics. Red beads represent gene-rich regions (more
dynamic), and purple beads represent gene-poor regions (less dynamic) (Ganai, Surajit Sengupta, and
Menon 2014).
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2.3.2 The Elusive Chromatin Fiber Structure

How are nucleosomes arranged with respect to each other in three dimensions? Early in vitro transmis-
sion electron microscopy (EM) and X-ray experiments suggested that the beads-on-a-string fiber would
fold in a higher-order chromatin fiber of ∼ 30 nm in diameter in which nucleosomes are tightly packed
together (Bak, Zeuthen, and F. H. Crick 1977; Dorigo et al. 2004; Finch and Klug 1976; Gerchman
and Ramakrishnan 1987; Kruithof et al. 2009; Robinson et al. 2006; Schalch et al. 2005; Song et al.
2014; Widom 1985). This structure was thought to arise from the supercoiling of regularly spaced
nucleosomes and stabilized by linker histone and electrostatic interactions between the histone tails
(Robinson et al. 2006), resulting in DNA compactions far exceeding 100 bp/nm. However, this charac-
teristic structure has not been confirmed in vivo (Fussner et al. 2011; J. C. Hansen et al. 2018; Razin
and Gavrilov 2014), and more generally, the intermediate folding of chromatin remains elusive. Recent
3D high-resolution EM data of specifically labeled chromatin (Ou et al. 2017) revealed a complex and
irregular folding of the DNA, without 30-nm fiber but with various diameters, ranging from 5 nm to
24 nm (Figure 2.5f). Recent fluorescence super-resolution imaging data are also consistent with the
absence of 30-nm fibers and a polymorphic structure (Nozaki et al. 2017; Ricci et al. 2015).

Modeling studies (Figure 2.5g) can also provide information about the chromatin fiber structure
and estimates of its compaction and rigidity based on contact frequency measurements from Hi-C
techniques or its ancestors (Figure 2.5a) (Dekker et al. 2002) and distances between loci from imaging.
In yeast, an analysis using a whole nucleus simulation inferred an average compaction of 53–65 bp/nm–
also arguing against a 30-nm fiber– and a persistence length of 52–85 nm, i.e., ∼ 3–6 kb (Arbona et al.
2017). Based on these numbers, the ideal chain model would predict a human chromosome size of
∼ 15 µm. This is much larger than the actual size of chromosomes, calling for other explanations, as
discussed in section 2.6.
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Figure 2.5: Techniques to study chromatin organization. They fall into three main categories:
genomics (a–d), imaging (e,f), and modeling (g,h). (a) In Hi-C (Lieberman-Aiden et al. 2009), different
chromatin regions that are in close spatial proximity are cross-linked, fragmented, ligated, and marked
with adapters (pink). Fragments are then reverse cross-linked, purified, sequenced, and mapped to
their genomic locations, yielding genome-wide contact frequency matrices. (b) In GAM (genome
architecture mapping), nuclei are cryo-sectioned into thin slices and their DNA is sequenced (Beagrie
et al. 2017). Analysis of locus co-occurrence in many sections allows one to infer proximity, including
multiway interactions, without ligation. (c) In SPRITE (split-pool recognition of interactions by tag
extension), DNA and RNA fragments are barcoded in a sequential manner that allows one to detect
both DNA–DNA and DNA–RNA associations by sequencing (Quinodoz et al. 2018). (d) In DamID
(DNA adenine methyltransferase identification), chromatin regions close to the nuclear lamina are
marked by the Dam methyl transferase and are mapped genome-wide by sequencing (Guelen et al.
2008; van Steensel and Henikoff 2000). (e) DNA FISH (fluorescence in situ hybridization) methods
allow one to visualize targeted chromatin domains or entire chromosomes in single cells (Beliveau et al.
2015; Bolzer et al. 2005; S. Wang et al. 2016). (f) Electron microscopy, in combination with DNA-
specific labeling, can reveal nanometer-scale 3D chromatin structures in frozen samples (Ou et al. 2017).
(g) Molecular dynamics simulations can model time-dependent changes in chromosome configurations
by computing the displacement of monomers based on internal and external forces (Arbona et al.
2017; Rosa and Everaers 2008; Rosa and Zimmer 2014). Such models can predict contact frequencies
and average locus positions from a relatively small number of assumptions. (h) Inverse modeling
approaches typically use Hi-C data to reconstruct a population of 3D structures consistent with the
data (Kalhor et al. 2011; Rosa and Zimmer 2014).
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2.4 Topologically Associated Domains and loops

2.4.1 Topologically Associated Domains, Loops, and Stripes

While EM and light microscopy have allowed insights into the structure of chromatin and chromosomes
at small (nucleosome-level) and large (nuclear) scales (see section 2.6), intermediate scales of chromatin
folding have long remained obscure. A major milestone enabled by Hi-C was the discovery that
intrachromosomal contact frequency matrices display squared blocks of higher frequencies along the
diagonal, reflecting regions within which contacts occur more frequently than with any other parts of
the genome, and where the average contact frequencies decay slower than the genome-wide average
(Dixon et al. 2012; Nora, Lajoie, et al. 2012) (Figures (Figures 2.4b), 2.6a, and 2.7). These domains
were called topologically associated domains (TADs) (note that in this context "topological" does not
carry its physical meaning). Although dependent on the algorithm used to define them, the number
of TADs in human cells has been reported as ∼ 10,000, with a median size of ∼ 200 kb (S. S. Rao
et al. 2014). While TADs were first characterized in population-averaged Hi-C maps, later imaging
experiments support their presence as physical units in single nuclei (Szabo et al. 2018). Another
prominent feature uncovered by Hi-C are chromatin loops, identified as peaks in the contact maps
(Figure 2.6b). A large fraction of TADs have such peaks at their corners and conversely, many loops
are associated with TADs (S. S. Rao et al. 2014). With sufficient sequencing coverage, smaller TADs
can be found nested within bigger ones, and these sub-TADs tend to share common contact peaks.
In addition, many TADs feature stripes at their edges, indicating that contacts between a locus at
the boundary and all other loci within the TAD are more frequent than between random pairs of loci
within the TAD (Figure 2.6c) (Vian et al. 2018).

2.4.2 Loop Extrusion

What mechanism can explain the formation of loops, TADs, and stripes? Arguably the simplest sce-
nario is that contacts between distant sites first occur because of random collisions between monomers
in a polymer undergoing thermal fluctuations. Most of these random contacts will be short-lived;
however, if two colliding loci are bound by molecular factors that can form longer-lived interactions,
these will stabilize contacts and create local peaks in the Hi-C matrix. Indeed, the boundaries of TADs
are strongly enriched in specific proteins, most notably the insulator protein CTCF and cohesin (S. S.
Rao et al. 2014). However, the random collision model should also generate contact enrichments with
other domains on the same chromosome, and even with other chromosomes, leading to off-diagonal
blocks in the contact maps –a prediction that is not borne out by Hi-C data. This model also fails to
explain another key observation, namely that the boundaries of TADs correlate strongly with converg-
ing CTCF sites, i.e., motifs oriented towards each other, while the three other possible orientations of
these motifs are strongly disfavored (S. S. Rao et al. 2014). Finally, how TADs with only one stripe
can arise in this scenario is similarly unclear.
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Figure 2.6: Loop extrusion scenarios and the resulting contact maps. (left) Multiple conformations
of the same chromatin region in different cells, and (right) the resulting population-averaged contact
frequency maps (i.e., the expected Hi-C maps). (a) TAD (topologically associated domain) formation:
Loops extruded bidirectionally by cohesin landing at random positions generate an enrichment of
contacts within a domain (defined by converging CTCF sites), as reflected by a square on the main
diagonal of the contact map. (b) Loop extrusion stops at converging CTCF sites, giving rise to a
contact frequency peak at the TAD corner. (c) Cohesin landing near a CTCF site and extruding
chromatin unidirectionally yield a stripe at the TAD boundary.

By contrast, all of these observations can be simultaneously recapitulated by a very different mech-
anism known as loop extrusion (Alipour and Marko 2012; Fudenberg, Imakaev, et al. 2016; Nasmyth
2001; Nuebler, Fudenberg, Imakaev, Abdennur, and Leonid A. Mirny 2018; S. S. Rao et al. 2014; San-
born et al. 2015) (Figures 2.4b and 2.6). According to this model, cohesin rings land on chromatin and
actively pull out (extrude) the DNA until they fall off or encounter obstacles such as CTCF bound sites
(with the right orientation) or other cohesin complexes. Although assuming some ad hoc parameters
(e.g., an average processivity of ∼ 200 kb, a 10% permeability of CTCF boundaries, and uni- or bidi-
rectional movements), molecular dynamics simulations of loop extrusion (Fudenberg, Imakaev, et al.
2016; Nuebler, Fudenberg, Imakaev, Abdennur, and L. Mirny 2017; Sanborn et al. 2015; Vian et al.
2018) are remarkably successful at explaining almost all the experimental evidence mentioned above,
as well as the effect of several experimental perturbations summarized below (Fudenberg, Abdennur,
et al. 2018).

2.4.3 Molecular and Energetic Determinants of Topologically Associated Domains

Several lines of evidence directly or indirectly support the loop extrusion model and indicate the role
of key molecular determinants of TAD formation. Induced degradation of the cohesin subunit Rad21
leads to the complete disappearance of TADs in less than 40 min, but restoration of cohesin recovers
TADs within 15–40 min, demonstrating the crucial role of cohesin in TAD formation (Figure 2.7a)
(S. S. P. Rao et al. 2017; Wutz et al. 2017). Deletion of NIPBL, a protein that loads cohesin on the
DNA, results in similar effects (Figure 2.7c) (Schwarzer et al. 2016), implying that cohesin must be
loaded repeatedly on chromatin to maintain TADs. While ∼ 90% of cohesin binding sites coincide
with CTCF sites, only 29% coincide with Nipbl sites, and only ∼ 11% of CTCF sites coincide with
Nipbl sites, indicating that cohesin is loaded outside of CTCF sites and, once loaded, translocates very
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fast from the loading site to CTCF sites (Busslinger et al. 2017; Vian et al. 2018; Zuin et al. 2014).

Figure 2.7: Molecular determinants of chromatin domains, showing the effect of depleting or deleting
individual architectural proteins on Hi-C contact maps at the scale of TADs (topologically associated
domains) and compartments and on microscopy images of the cohesin component RAD21 (SCC1).
(a) Depletion of SCC1 removes TADs and strengthens compartments. Imaging shows no Scc1 signal
when the cohesin subunit Smc3 is deleted, indicating depletion of the cohesin complex. (b) CTCF
depletion blurs TAD boundaries but has no effect on compartments. Imaging shows no visible change
of Rad21. (c) Degradation of the cohesin loader NIPBL has similar effects on TADs and compartments
as degradation of cohesin and leads to a strongly decreased Rad21 signal. (d) Degradation of WAPL
along with its cofactors PDS5A and PDS5B results in the appearance of new loop peaks, enlargement
of TADs, and removal of compartment structures. Imaging of Rad21 shows condensed chromatin
structures similar to those seen during mitosis. Depletion of WAPL or the two cofactors alone results
in similar, but less pronounced, effects (not shown). Hi-C data from (a) HCT116 (human) (S. S. P. Rao
et al. 2017), (b,d) HeLa (human) (Wutz et al. 2017), and (c) hepatocytes (mouse) (Schwarzer et al.
2016). Visualization of contact maps was done with Juicebox (Durand et al. 2016). Microscopy images
are of (a,b) embryonic fibroblasts (mouse) (Busslinger et al. 2017), (c) HAP1 cells (human) (Haarhuis
et al. 2017), and (d) HeLa (human) (Wutz et al. 2017).

Conversely, deletion of WAPL or PDS5A and PDS5B, proteins that cooperate to release cohesin
from the DNA, yields an enlargement of TADs by more than 200 kb and a proliferation of loops
(Figure 2.7d) (Haarhuis et al. 2017; Wutz et al. 2017). In absence of WAPL, cohesin can travel far
distances and even bypass CTCF, resulting in a loss of interphase chromatin organization characterized
by condensed mitotic-like chromatin termed vermicelli (Figure 2.7d) (Busslinger et al. 2017; Haarhuis
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et al. 2017; Tedeschi et al. 2013; Wutz et al. 2017). These observations suggest that turnover of cohesin
is necessary for proper chromatin organization during interphase and that, if left on chromatin, cohesin
keeps extruding longer lengths of DNA, resulting in very condensed chromosomes.

The degradation of CTCF proteins does not remove TADs but makes their boundaries fuzzier,
in accordance with the above idea that CTCF is not directly involved in TAD formation but rather
in defining the boundaries (Figure 2.7b). Disruption or flipping of CTCF binding sites by genome
editing results in changes of TAD boundaries (Nora, Lajoie, et al. 2012), e.g., fusion of consecutive
TADs, in excellent agreement with simulation predictions (Sanborn et al. 2015). Moreover, disruption
of Ctcf (in mouse) results in several new cohesin peaks at the active transcription sites (Busslinger
et al. 2017), suggesting that absence of CTCF allows cohesin to travel longer distances until it finds
another roadblock, which in this case could be active transcription. How CTCF or active transcription
sites block cohesin is still an open question.

While some models assume that extrusion relies on an energy-driven activity of cohesin as a molec-
ular motor (Fudenberg, Imakaev, et al. 2016; Sanborn et al. 2015), others propose extrusion without
such activity, powered by either transcriptionally induced super-coiling or even mere thermal diffusion
(Pereira et al. 2018; Racko et al. 2018). Experimentally depleting the cells of ATP shifts the genome-
wide distribution of cohesin away from CTCF sites and toward Nipbl binding sites, and prevents the
reformation of TADs when restoring cohesin levels after induced degradation. These experiments sup-
port an energetic requirement for cohesin translocation from the loading sites and for TAD formation
(Vian et al. 2018).

Further independent evidence in favor of the extrusion model comes from in vitro single-molecule
imaging experiments showing that the human cohesin complex can translocate on DNA and bypass
single nucleosomes and DNA-bound proteins, but not CTCF (Davidson et al. 2016). However, in
this study translocation was independent of ATP, whereas in yeast, cohesin loading is ATP-dependent
(Murayama, Samora, et al. 2018; Murayama and Uhlmann 2014; Murayama and Uhlmann 2015).
Another recent single-molecule experiment with the related yeast condensin complex showed fast,
unidirectional, ATP-dependent loop extrusion (∼ 1500 bp/s, step size ∼ 50 nm) on linear DNA (Ganji
et al. 2018). The dynamic nature of loops is also supported by single-molecule tracking of cohesin and
CTCF in vivo (Anders S. Hansen, Pustova, et al. 2017). Further experimental studies are required to
definitively establish active loop extrusion as the mechanism of TAD formation.

Finally, although the role of cohesin in TAD formation is supported by many Hi-C experiments, a
recent imaging study showed that even in the absence of cohesin, TAD-like structures remain present
in single cells; however, their boundaries become randomized along the genome and no longer prefer-
entially associate with CTCF sites (Bintu et al. 2018). Moreover, the TAD-like domains were reestab-
lished after mitosis in the absence of cohesin. These new results question the role of cohesin in defining
chromatin domains in single cells and call for more investigations.

2.4.4 Functional Role of Topologically Associated Domains

A key property of TADs is their high degree of conservation between cell types and species (Dixon
et al. 2012; S. S. Rao et al. 2014). In line with this, TADs and loop extrusion are thought to be both
associated and crucial to several biological processes.

1. Transcription. In terms of gene expression, TADs can be seen as highly functional units:
Genes within the same TAD tend to be co-regulated (Zhan et al. 2017) and loops correlate with
enhancer–promoter interactions (S. S. Rao et al. 2014). Alterations of TADs can lead to abnormal
expression patterns. For instance, disruption of a single TAD boundary in mice was sufficient to
induce polydactyly, a severe developmental malformation (Lupiáñez et al. 2015). This effect was
explained by the induction of contacts between an enhancer and the promoter of a developmental
gene that were previously insulated from each other by the TAD boundary. Similarly, it was
shown that loss of CTCF at a TAD boundary in patient-derived cells leads to aberrant contacts
of a constitutive enhancer with an oncogene and hyper-activation of its expression, resulting in
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increased cell proliferation (Flavahan et al. 2016). Such evidence underlies the view that TADs
provide a means to constrain the action of enhancers to a small number of promoters. However,
this immediately raises the question as to how the relatively moderate contact insulation afforded
by TADs –contacts within TADs are on average only ∼ 2–3 times more frequent than across TADs
(Merkenschlager and Nora 2016)– can explain the fact that gene expression essentially follows
an all-or-nothing behavior depending on whether both an active enhancer and a promoter reside
in the same TAD (Flavahan et al. 2016; Lupiáñez et al. 2015). One possible solution to this
conundrum might be the unidirectional extrusion mentioned above to explain contact stripes
(Figure 2.6c) (Vian et al. 2018). If one of the loop anchors is fixed at a promoter, DNA extrusion
can bring this locus in contact sequentially with the entire TAD domain, including all potential
enhancer sequences, without having to rely on random 3D collisions. This process might greatly
increase the frequency of interactions between pairs of enhancers and promoters that share a
TAD (and a stripe) compared to pairs that do not.

Another potential answer might come from the timescales of promoter activation by enhancer in-
teractions. In the traditional view of mammalian gene expression, a physical contact between the
enhancer sequence bound by activating transcription factors and the transcription pre-initiation
complex is required to initiate transcription, and many lines of evidence support this model (Deng
et al. 2014). However, it is unclear whether this physical contact is actually required for the RNA
polymerase to initiate transcription, or whether it simply potentiates the polymerase, enabling
it to initiate transcription later, even in absence of enhancer–promoter contact. In Drosophila
melanogaster, enhancer–promoter contacts and transcription seem to be highly synchronized,
and more generally, FISH (fluorescence in situ hybridization) experiments (Figure 2.5e) clearly
demonstrate a lower enhancer–promoter distance in active genes than in inactive genes, argu-
ing for a direct link between contacts and transcription (Hongtao Chen et al. 2018; B. Lim et
al. 2018). On the other hand, both cohesin and CTCF depletion only show minor effects on
gene expression over a six-hour window, suggesting that on a population scale, transcription
is already potentiated and proceeds as before, even in the absence of TAD delimitation (Nora,
Goloborodko, et al. 2017; S. S. P. Rao et al. 2017). These findings are corroborated by recent
single-locus imaging in mouse embryonic stem cells, in which no correlation was found between
enhancer–promoter distance and transcript production (Alexander et al. 2018). It also remains
unclear to what extent specific histone modifications could mediate this potentiation.

While there is evidence of a role for TADs in regulating transcription, there is also evidence of
a reverse role of transcription in TAD organization, such as the fact that, in D. melanogaster,
a large portion of TAD boundaries are enriched in active RNA polymerase instead of CTCF,
and that in those cases, TADs are much better defined by active histone marks than by CTCF
(Busslinger et al. 2017; Ulianov et al. 2016). In general, however, the interplay between TADs,
loops, and transcriptional activation is far from understood and remains to be further elucidated.

2. Replication. To enable the replication of the entire human genome in a few tens of minutes,
DNA polymerases initiate replication in parallel at several points along chromosomes, leading to
replication domains that grow and merge until the entire chromosome is replicated. Surprisingly,
TADs coincide almost perfectly with replication domains (Pope et al. 2014), suggesting that TADs
might also orchestrate replication, in addition to transcription. This co-localization of TADs and
replication origins has recently been used to visualize TAD dynamics in live cells (W. Xiang
et al. 2018). One recent study found that the progressive establishment of TADs in early zygote
development was prevented by replication inhibition as opposed to transcription inhibition (Ke
et al. 2017), but another study found that loop domains can reform after restoration of cohesin
despite inhibition of replication (Vian et al. 2018). Clearly, more work is needed to address the
mechanistic links between replication and TAD formation.
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2.5 Chromatin compartments

2.5.1 A and B Compartments and Lamina-Associated Domains

EM images of interphase nuclei typically show dense heterochromatic regions near the nuclear enve-
lope and around nucleoli, with less compact euchromatin in the center of the nucleus and beneath
nuclear pores. Notable exceptions to this general rule are retinal cells of nocturnal mammals, which
display an inverted nuclear architecture where euchromatin relocates to the periphery while constitu-
tive heterochromatin resides at the nuclear center (Solovei et al. 2009). A new view of this partitioning
of the genome resulted from the identification of chromatin compartments in the first Hi-C study
(Lieberman-Aiden et al. 2009). Compartments appear as a checkerboard pattern in the Hi-C map
after correcting for the average dependence of contact frequencies on genomic distance (the pattern
becomes more apparent when computing the corresponding correlation matrix) (Figures 2.4c and 2.7)
(Lieberman-Aiden et al. 2009). This pattern and an eigenvector analysis suggest that the entire genome
is partitioned to first order in alternating regions of a few megabases belonging to two compartments
(called A and B) –subsequent Hi-C experiments with higher resolution further refined this partitioning
into six sub-compartments (S. S. Rao et al. 2014). Unlike for TADs, a locus belonging to the A com-
partment exhibits enriched contacts with other loci from the A compartment throughout the genome
but has less frequent contacts with loci from the B compartment (and vice-versa). Comparisons with
ChIP-Seq (chromatin immunoprecipitation and sequencing) data show a strong correlation of A regions
with transcriptionally active histone marks and decondensed chromatin, while B regions correlate with
inactive histone marks and dense regions, thereby providing a new definition of euchromatin and het-
erochromatin. Imaging experiments have later confirmed the existence of A and B compartments (as
well as TADs) with different levels of compaction in single cells of D. melanogaster (Lieberman-Aiden
et al. 2009; S. Wang et al. 2016). The B compartment identified by Hi-C also exhibits very high correla-
tion with lamina-associated domains (LADs), chromatin regions in contact with the nuclear envelope,
as identified by DamID (DNA adenine methyltransferase identification) (Figure 2.5d) (Guelen et al.
2008; van Steensel and Belmont 2017).

2.5.2 Compartmentalization Mechanisms

Although A and B compartments were identified several years before TADs, our understanding of the
mechanisms underlying their segregation is comparatively less advanced. Most explanatory models
derive from the observation that A and B compartments are enriched for specific histone modifications
(Lieberman-Aiden et al. 2009). These modified histones can act as scaffolds for other proteins capable
of interacting with more than one histone or proteins exhibiting a high level of self-interaction, both of
which can potentially mediate phase separation (Erdel and Rippe 2018). Alternatively, compartment
segregation might result from associations to (at least) two types of anchors: the nuclear lamina, which
contains several proteins known to interact with modified histones, and nuclear speckles, which are
located more centrally (see section 2.6.2) (W. Chen et al. 2018; Yu Chen et al. 2018; van Steensel and
Belmont 2017). Other proposed models invoke differences in chromatin dynamics or transcriptional
activity (Ganai, Surajit Sengupta, and Menon 2014).

In recent studies (Falk et al. 2018; Nuebler, Fudenberg, Imakaev, Abdennur, and L. Mirny 2017;
Pereira et al. 2018), chromosomes were modeled as heteropolymers (Figure 2.4c) partitioned into three
compartments based on the Hi-C maps (A, B, and constitutive heterochromatin, termed C). The
simulations recovered the inverted nuclear architecture mentioned above as well as the compartment
organization by assigning realistic interactions between the three compartments, e.g., an attractive
energy potential of 0.5 kBT for interactions between B compartment monomers of 30 kb. Keeping
the same model but adding interactions of B and C monomers with the nuclear envelope recovers the
conventional nuclear architecture. This suggests that the compartment segregation may be explained
by attractive interactions between heterochromatin regions, rather than between euchromatin regions,
and is unrelated to tethering at the nuclear lamina, and that the default organization of chromatin (in
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absence of tethering with the lamina) is the inverted one (Falk et al. 2018). Although the model does
not specify the molecular nature of the assumed heterochromatic interaction, one plausible candidate
is heterochromatin protein 1 alpha (HP1α), which has been shown to undergo phase separation both
in vitro (A. G. Larson et al. 2017) and in vivo (Strom et al. 2017). Clearly, more work is needed to
expand on such early results and fully address the molecular and physical mechanisms that underlie
chromatin compartmentalization at the megabase scale.

2.5.3 Functional Implications

The partitioning of the genome in compartments and LADs correlates with functional processes: B
compartments and LADs tend to be transcriptionally inactive and late replicating, and A compartments
tend to be transcriptionally active and early replicating. A central question is to what extent these
correlations reflect causes or consequences. Segregation provides spatially separated sub-compartments
that are amenable to different types of reactions with different kinetics (Woringer and Darzacq 2018).
For example, the high density of heterochromatin, as evidenced by, e.g., recent EM data (Ou et al.
2017), might prevent the assembly of the multiple-megadalton pre-initiation complex and thereby
silence gene expression. Consistent with this view, experimental tethering of genes to the nuclear
membrane can lead to their transcriptional repression (Akhtar et al. 2013; Reddy et al. 2008). However,
experimentally induced chromatin decondensation by recruitment of an acidic peptide did not lead
to transcriptional activation, arguing against a direct link between chromatin compaction and gene
expression (Pierre Therizols et al. 2014). Thus, a complete picture is missing and future research
should further explore the causal relations between compartments, LADs, and gene expression.

2.6 Nuclear-scale organization

2.6.1 Chromosome Territories

After mitosis, chromosomes decondense, and owing to their large size, limited compaction, and flexi-
bility, they would be expected to intermingle and fill out the entire nucleus (Rosa and Zimmer 2014).
However, microscopy has shown that the interphase nuclei of many mammalian cells are partitioned
into largely disjoint chromosome territories (Figure 2.4e) (T. Cremer and M. Cremer 2010) whose
radial positions display statistical preferences. For instance, gene-rich chromosomes tend to occupy
central positions while gene-poor chromosomes tend to be more peripheral (Bolzer et al. 2005; Croft
et al. 1999). In yeast, by contrast, chromosomes strongly intermingle despite their much smaller size
(Berger et al. 2008; P. Therizols et al. 2010).

1. Mechanisms. What might explain the different organization of chromosomes in these organ-
isms? One line of explanation is based on the timescale needed for chromosomes to relax after
mitosis. Because topological constraints (the assumed inability of distinct polymer chains to
cross each other) increase the relaxation time of polymers as the third power of their length,
this time was predicted to be much longer than the cell cycle for mammalian genomes, but
not for yeast. Thus, human chromosomes might simply not have enough time to equilibrate
and mix, and interphase territories could reflect the individuality of mitotic chromosomes (Rosa
and Everaers 2008). Support for the prediction that mammalian chromosomes are in an out-of-
equilibrium state came from the first Hi-C study, which indicated that the genome-wide average
contact frequency is inversely proportional to genomic distance, s (that is, Pc(s) ∝ s−1) (at least
between ∼ 500 kb and ∼ 5 Mb), in contrast to the Pc(s) ∝ s−3/2 scaling expected for equilib-
rium (Figure 2.3c) (Lieberman-Aiden et al. 2009). A fractal (or crumpled) globule model, where
the polymer remains untangled in contrast to an equilibrated model, was proposed to explain
this scaling (A. Yu Grosberg, Nechaev, and Shakhnovich 1988). Conversely, the prediction that
yeast chromosomes are at equilibrium is supported by the fact that a Brownian dynamics simula-
tion can successfully account for imaging and Hi-C data, including the contact frequency scaling
(Arbona et al. 2017; H. Wong et al. 2012).
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However, despite the attractiveness of these generic and largely parameter-free models, several
questions remain. First, the action of topoisomerase II—which cuts both strands of the DNA
double helix—was ignored in these simulations but is expected to strongly reduce equilibration
time by relaxing topological constraints. Whether chromosome territory formation can be ex-
plained with realistic modeling of topoisomerase II action remains to be seen, particularly for
post-mitotic cells such as neurons. Second, the incomplete relaxation model (Rosa and Everaers
2008) assumed homopolymers and ignored the presence of both compartments, TADs, and dif-
ferences in transcriptional activity, which other models predict to affect chromosome positioning
(Ganai, Surajit Sengupta, and Menon 2014). It will therefore be interesting to revisit the for-
mation of chromosome territories in the context of interactions –e.g., electrostatic (Strom et al.
2017)– between compartments, loop extrusion, and differential dynamics, all of which affect the
size of interphase chromosomes, even at steady state.

2. Functional implications. Much as for A/B chromatin compartments, the functional relevance
of chromosome territories remains unclear. It has been proposed that chromosome territories fa-
cilitate chromosome condensation prior to mitosis (Rosa and Everaers 2008). Moreover, because
the spatial proximity of loci or chromosomes correlates with increased translocations, a hall-
mark of cancer cells, it has been proposed that the organization in territories acts to minimize
interchromosomal rearrangements (Branco and Pombo 2006; Nikiforova 2000).

2.6.2 Nuclear Bodies

Nuclear bodies are sub-compartments of the nucleus that lack a bona fide membrane. They are usually
visible by phase contrast microscopy as spheroid, often dynamic structures comprising a dense aggre-
gate of proteins, RNA, and potentially many other macromolecules and are associated with specific
functions such as transcription of certain genes, splicing, DNA damage repair, etc. (Figure 2.4d).
The prototypical nuclear body is the nucleolus, the site of ribosomal RNA biogenesis (Boisvert et al.
2007). Since its discovery, many other ubiquitous or species-specific nuclear bodies have been identi-
fied, including nuclear speckles, Cajal bodies, promyelocytic leukemia bodies, histone locus bodies, and
paraspeckles (Matera 1999). The nucleation or morphology of nuclear bodies intimately depends on
their activities, for example, inhibition of ribosomal DNA transcription strongly reduces the nucleolar
volume (P. Therizols et al. 2010) and can be regulated by post-translational modifications such as
phosphorylation of RNA polymerase II (Kwon et al. 2013).

1. Mechanisms. The mechanisms underlying nuclear body formation are under active investiga-
tion, with increased attention on liquid–liquid phase separation (Figure 2.4d) (Hyman, C. A.
Weber, and Jülicher 2014). Several examples of phase separation inside the nucleus have been
reported, often mediated either by proteins bearing unstructured domains (A. G. Larson et al.
2017; Strom et al. 2017), RNAs (Feric et al. 2016), or other small molecules (Altmeyer et al.
2015; Patel, Malinovska, et al. 2017). For example, the C-terminal domain of RNA polymerase
II has been shown in vitro to perform reversible and regulatable phase separation (Kwon et al.
2013), and recent evidence suggests that similar mechanisms exist in vivo as well (Boehning,
Dugast-Darzacq, Rankovic, Anders S. Hansen, T. Yu, et al. 2018). Another example mentioned
above is HP1α, which was observed to form droplets in live-cell fluorescence microscopy of D.
melanogaster (Strom et al. 2017). In addition, de-phosphorylation promotes droplet disassembly,
suggesting a mechanism by which demixing can be regulated. A challenge for coming years is
to integrate quantitative models of phase separation with the additional constraints imposed by
the physics of polymers (Rosa and Zimmer 2014).

2. Functional implications. Although lacking a strict membrane, nuclear bodies can sequester
some molecules and exclude others, thereby acting as chemical reactors to catalyze specific re-
actions, decoupling them from different pathways. An interesting property of nuclear bodies
created by phase separation is that their very existence can depend on whether their molecular
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constituents exceed a concentration threshold. This nonlinear behavior could endow the cell with
a switch-like response to external stimuli (Zhu and Brangwynne 2015).

Another potential function, or consequence, of nuclear body formation is the very organization
of chromatin itself. Indeed, it has been shown that chromatin organizes non-randomly around
nuclear bodies. While it is difficult to chart sequences in close proximity to a nuclear body with
traditional methods, novel techniques have recently been developed that dispense of proximity
ligation to probe for DNA sequences located within much larger distances of other DNA or
RNA sequences (Figure 2.5c,d) (Quinodoz et al. 2018) or even a specific protein (W. Chen et
al. 2018; Yu Chen et al. 2018). These techniques reveal a key role for nuclear speckles, and
either LADs (W. Chen et al. 2018; Yu Chen et al. 2018) or nucleoli (Quinodoz et al. 2018),
in overall chromatin organization and suggest a plausible mechanism for locus positioning that
merits further investigation.

2.7 Interactions between levels

A natural question is how the different levels of organization discussed above interact with each other,
either cooperatively or antagonistically. Since chromosomes are single connected structures, one might
surmise that these levels are all closely interleaved and hard to disentangle. Therefore, studies that
peel off individual layers of organization are particularly instructive. One striking recent example is
the experimentally demonstrated partial decoupling of TADs and compartments (S. S. P. Rao et al.
2017; Schwarzer et al. 2016). In absence of cohesin or its loader Nipbl, the segregation of A and
B compartments not only persists but is actually strengthened (Figure 2.7a,c): Boundaries between
compartments become sharper, and their correlations with histone modifications increase. Conversely,
deleting the cohesin release factors (WAPL or PDS5A/B) leads to an enlargement of TADs and to
a destruction of A/B compartments (Figure 2.7d) (Wutz et al. 2017). These experiments indicate
that the formation of TADs and the formation of compartments rely on distinct mechanisms that
partly counteract each other. A similar antagonism is at work between the mechanisms that tend to
keep chromosomes in distinct territories and those that create A/B compartments, which tend to mix
regions of different chromosomes belonging to the same compartment. Another salient finding is the
above mentioned study showing that A/B compartments subsist in the absence of tethering to the
nuclear lamina, hence decoupling compartmentalization from LADs (Falk et al. 2018).

Although a general model linking all four levels of chromatin organization, from nucleosomes to
the entire nucleus, is still lacking, such experiments and modeling approaches point to future unifying
frameworks. Further studies are needed to disentangle the competing forces that shape chromatin
architecture in the context of transcription and other functional processes.

2.8 Dynamic organization of the nucleus

The 3D architecture of the genome is by no means static, since chromatin is in constant motion, as
expected from basic polymer dynamics (Figure 2.3e) and evidenced by live-cell microscopy in yeast
(Herbert et al. 2017; Heun 2001) and mammalian cells (B. Chen et al. 2013; S. Chong, Dugast-
Darzacq, Z. Liu, Dong, G. M. Dailey, et al. 2018). By itself, this mobility leads to stochastic variations
in chromosome configurations in cell populations. The variability in chromatin organization can also
be analyzed in fixed cells using imaging (Boettiger et al. 2016) or single-cell Hi-C methods (Nagano,
Lubling, Stevens, et al. 2013; Ramani et al. 2017) or even can be inferred from population Hi-C by
computational reconstruction methods (Figure 2.5h) (Kalhor et al. 2011). In addition to the dynamics
over short timescales in interphase cells, chromatin organization changes dramatically during each cell
division and is altered during differentiation, as briefly discussed below.
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2.8.1 Chromatin Organization During the Cell Cycle

It has long been known from light microscopy that chromosomes undergo major structural changes
during mitosis, when the sister chromatids condense and align on a metaphase plate before being
pulled apart into the two future daughter cells. Hi-C in mammalian and yeast genomes has provided
new insights into how chromosome structure changes during the cell cycle (Gibcus et al. 2018; Kakui
et al. 2017; Lazar-Stefanita et al. 2017; Nagano, Lubling, Várnai, et al. 2017; Naumova et al. 2013;
Schalbetter et al. 2017). A first analysis of synchronized cells showed that both TADs and compart-
ments remain mostly unchanged throughout interphase, with only moderate changes in strength and
few changes in boundaries, but are completely lost during mitosis. Mitotic chromosomes assume a
universal folding structure independent of cell type that was well described by an array of random
∼ 100-kb-long loops (Naumova et al. 2013). In a subsequent study (Gibcus et al. 2018), the time
line was further refined to analyze the successive stages of mitosis every few minutes and the role of
condensin proteins in shaping mitotic chromosomes. Especially noteworthy was the appearance of a
second diagonal in the Hi-C matrix at prometaphase, indicative of a helical chromosome structure,
which disappeared upon degradation of condensin II. To explain their Hi-C and imaging data, the
authors developed sophisticated polymer models where condensin II creates progressively bigger loops
of up to ∼ 700 kb by the same extrusion process discussed for cohesin in Section 4.2, in agreement
with single-molecule experiments showing condensin-mediated extrusion (Ganji et al. 2018). These
big loops are further folded into smaller (∼ 80 kb) loops extruded by condensin I. The condensin II
loop anchors are assumed to form a scaffold that adopts a helical structure from which the nested
loops emanate radially in a spiral staircase arrangement. Interestingly, a super-resolution imaging
study of condensin I and II in mitotic chromosomes provides independent support for the nested loop
arrangement (although the helicity could not be ascertained), with similar quantitative estimates of
loop sizes (Walther et al. 2018). Importantly, even though deletion of condensin I and II resulted in
some morphological changes in mitotic chromosomes, chromosomes remained condensed, suggesting
the involvement of some other unknown proteins in mitotic condensation (Gibcus et al. 2018).

2.8.2 Chromatin Reorganization During Early Development

Although interphase chromatin organization is completely lost during mitosis, it is reestablished in the
daughter nuclei. The restoration of TADs can be explained by cohesin loading and loop extrusion, since
the CTCF binding sites that demarcate most TAD boundaries are encoded in the DNA. Similarly, the
reestablishment of compartments can be determined by histone marks that are inherited after mitosis
(Alabert et al. 2014; Festuccia, Dubois, et al. 2016; Teves, An, Anders S Hansen, et al. 2016). However
the question remains how chromatin organization is established in the first place during early develop-
ment. Recent single-cell (or low-input) Hi-C studies in mouse oocytes and zygotes after fertilization
provided some initial insights into this process (Du et al. 2017; Flyamer et al. 2017; Gassler et al. 2017).
Interestingly, Hi-C data show a marked compartmentalization in mouse sperm but not in oocytes. This
striking difference is attributed to (a) differences in compaction (a tightly compacted paternal genome
versus a more decondensed maternal genome) and (b) differences in transcription during G1 phase.
However, after fertilization, the difference is gradually decreased, and after eight cell divisions, both
maternal and paternal genomes acquire fully fledged A and B compartments. Future work may use
single-cell transcriptomics approaches to further understand the links between the observed chromatin
reorganization and transcription in early developmental stages.

Conclusion. In this review, we have tried to summarize current knowledge about the 4D or-
ganization of the chromatin fiber, our understanding of its mechanisms, and some of the functional
consequences of this organization, while also pointing to open questions and future research. Although
necessarily incomplete, we hope that this review will help stimulate further work in this highly dynamic
field at the crossroads of genetics, cell biology, and physics.
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Future issues.

1. Development of a complete polymorphic model of chromatin fiber from the scale of nucleosomes
to entire chromosomes would further enhance our understanding of chromatin folding at various
scales.

2. Visualizing loop extrusion by cohesin in live cells will be important to test current models of
TAD (topologically associated domain) formation.

3. New methods are needed to understand the effect of TADs on enhancer–promoter interactions
and in the initiation or potentiation of transcription.

4. The molecular mechanisms underlying the segregation of A/B compartments require further
investigation.

5. Formation of chromosome territories and nuclear bodies in the context of compartments, TADs,
and phase separation needs to be clarified.

Glossary.
ChIP-Seq: an immunoprecipitation technique that provides the genomic locations where a protein of
interest binds.

Chromosome territories: largely non-overlapping nuclear substructures first identified by FISH
experiments using probes that specifically cover entire chromosomes.

Cohesin: a ring-like complex previously known for its role in holding the two sister chromatids
together after replication.

Contour length: the distance between two points on a polymer as measured when walking along
the chain, which can be much larger than the Euclidian distance between these points.

Compartments: megabase-scale regions of the genome, originally evidenced by checkerboard
patterns in Hi-C maps, representing domains of increased interactions.

Enhancer: a non-coding region of DNA that can exert regulatory control on nearby or distant gene
promoters by bringing transcription factors in contact with the transcription pre-initiation machinery.

Equilibrium (thermodynamic): the state of lowest free energy, where there is no net force
acting on the system and statistical quantities such as temperature or pressure remain constant.

Euchromatin: initially identified by electron microscopy as less electron-dense chromatin regions
in the nucleus, it contains most active genes.

Heterochromatin: initially identified by electron microscopy as electron-dense chromatin regions,
it is subdivided into constitutive heterochromatin (never transcribed) and facultative heterochromatin
(reversibly silenced genes).

Hi-C: a genomic technique that maps the contact frequency of any two DNA fragments sufficiently
close in space to be captured by cross-linking.

Histone modification: the addition of small residues (e.g., acetyl, methyl, or phosphate groups)
to different histones at different amino acid positions.

LAD: a megabase-scale chromatin domain shown to physically interact with the nuclear lamina
by DamID.

Liquid–liquid phase separation: a thermodynamic process where two immiscible liquids pro-
gressively segregate into two phases, like oil and water (also termed demixing or coacervation).

Loop: two distant loci of the same chromosome maintained in close proximity, at least transiently,
by other molecules; identified as peaks in Hi-C maps.

Nucleolus: the largest membrane-less organelle of the nucleus; it contains a low level of DNA and
a high level of ribosomal RNA.

Persistence length: a measure of the rigidity of a polymer; it can be defined geometrically as
the length over which tangent vectors remain correlated to each other.
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Stripe/flame: a line of high contact frequency along a TAD border, arising when a locus is in
contact with the entire TAD region.

TAD: a chromatin region of 40 kb to 3 Mb in size appearing along the diagonal of Hi-C maps as
regions of enriched intrachromosomal contacts.
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Chapter 3

Transcription in the nucleus

After a description of the content of the nucleus (section I.2), we now turn to a review of recent
knowledge about transcription in mammalian cells and its regulation. We emphasize how the spatial
constraints presented above and the complexity of the protein-protein interactions taking place in the
medium influence the diffusion of transcription factors, and thus transcription itself.

More specifically, we review in section 3.1 some of our understanding of transcription in mammalian
cells, and how chromatin and the arrangement of genomic elements (section 3.1.1) interplay with the
complex core transcriptional machinery (section 3.1.2). In section 3.2, we review key concepts involved
in the regulation of transcription, including cooperativity among transcription factors (TF; section
3.2.1), histone modifications, changes in the nuclear environment, such as chromatin density or mobility
(section 3.2.2), phase separation (section 3.2.3) and enhancer-promoter contacts (section 3.2.4). In the
last section, (section 3.3), we put a specific emphasis on the diffusion of transcription factors. After a
brief theoretical introduction (section 3.3.1), we highlight some of the main findings that were provided
by the study of TF diffusion (section 3.3.2).

3.1 Overview of transcription in mammalian cells

Transcription is the process by which a gene is being transcribed in a messenger RNA. Despite the fact
that in in vitro, viral and bacterial systems, very few protein complexes are needed for RNA production,
mammalian systems have evolved a considerable amount of regulations that are organized at various
levels, from regulatory genetic sequences to a complex cocktail of co-activators called transcription
factors.

In this section, we highlight some basic concepts about transcription in mammalian cells. Another
introduction can be found in (Levine, Cattoglio, and Tjian 2014). We aim at detailing the basic
concepts needed to motivate our study of the dynamics of the transcription factors c-Myc, as highlighted
in section II.3.

3.1.1 Genomic elements

We first start by a description of genomic elements involved in transcription. In mammalian cells, it
is usually acknowledged that to activate a gene, it must be located downstream of an active promoter
sequence, bound by the RNA polymerase. Furthermore, additional factors and enhancer-promoter
contacts are required to transcribe a gene.

1. The promoter. The first key genomic element to activate a mammalian gene is a promoter
sequence. It is located upstream of the gene body. The core promoter, a ∼ 80 bp sequence, is
the place where the pre-initiation complex (PIC) assembles (detailed in 3.1.2). The extended
promoter sequence is usually bound by co-activator proteins and other TFs that can enhance or
repress transcription.
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The structure and function of the core promoter has been dissected in details, and many motifs
involved in the recruitment of some PIC subunits have been identified (see James T. Kadonaga
2012 for a review). For instance, the most widely known TATA-box recruits the TATA-box
binding protein (TBP), a TFIID subunit. The BREu and BREd elements are bound by TFIIB,
the initiator sequence (Inr) is bound by TAF1 and TAF2, the downstream promoter element
(DPE) is bound by TAF6 and TAF9 (Tamar Juven-Gershon and James T. Kadonaga 2010).
Not all these elements are present in all core promoters. For instance, only 10-20% of the human
promoters contain a TATA-box element (Tamar Juven-Gershon, Cheng, and James T. Kadonaga
2006). Finally, from a functional perspective, the presence/absence of some elements has been
shown to influence the regulation of different transcriptional regulation programs (T. Juven-
Gershon, Hsu, and J. T. Kadonaga 2008; Tamar Juven-Gershon and James T. Kadonaga 2010;
Weingarten-Gabbay, R. Nir, et al. 2017, reviewed in Weingarten-Gabbay and Segal 2014).

Figure 3.1: a. Some core promoter elements for transcription by RNA polymerase II. The locations
of the motifs are drawn roughly to scale. The BREu, TATA, Inr, MTE, DPE, and TCT motifs
have been found in both Drosophila and humans. These motifs are typically found in focused core
promoters, although there are probably Inr-like elements in dispersed promoters. There are no universal
core promoter elements that are found in all promoters. Moreover, it is likely that many other core
promoter motifs remain to be discovered. The functional properties of a core promoter are determined
by the presence or absence of specific core promoter motifs. For example, some enhancers will activate
transcription from DPE-dependent core promoters but not from TATA-dependent core promoters.
(source: James T. Kadonaga 2012).

2. Enhancers. In mammalian cells, most genes display reduced activity in the absence of distal
regulatory sequences called enhancers (Leemans et al. 2018). Enhancers are short genomic se-
quences (50-1000 bp) that display a regulatory potential. Although difficult to precisely quantify,
most of the distal enhancer sequences identified so far are located within 500 kb or a gene (median
distance of 125 kb; van Arensbergen, van Steensel, and Bussemaker 2014), but some of them have
been found as far as 1.7 Mb downstream of their target genes (von Paleske et al. 2014) and more
than half of them can skip one or two genes to activate their target gene (van Arensbergen, van
Steensel, and Bussemaker 2014). In some cases, authors have argued that megabase-size genomic
sequences carry an enhancer-type property, leading to the concept of "regulatory archipelago",
in which many different, weak enhancers are scattered over long genomic distances (Montavon
et al. 2011).

The identification of enhancer sequences has been a long-lasting quest, and so has been the
identification of the target genes of a given promoter. The number of enhancers sequences in
cells could be as high as 1 million, giving an average of 50 enhancers per gene.

Some transcription factors (TFs) are thought to be the proteins mediating the interaction between
enhancers and promoters. TFs bind to a specific sequence, termed the binding motif, through
their DNA-binding domain.
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3. Transcription factors binding motifs. TF binding motifs, or TF binding sites (TFBS) are
short (6-20 bp) DNA sequences specifically recognized by TFs. Some TFs can bind a family
of motifs, or degenerate motifs. The role of this low specificity has been demonstrated as an
evolutionary strategy to regulate with one factor (one Hox TF) many genes (Crocker et al.
2015). It is thought that these motifs appeared in the genome through random point mutations,
but also through radiation of transposable elements that contained clusters of TFBS. This latter
mechanism could explain the complex transcriptional co-regulation of mammalian cells.

Unlike in bacteria that have a short genome and TFs that recognize long motifs (16-20 bp motifs),
mammals have larger genomes and their TFs usually recognize short motifs (6-8bp). Wunderlich
and Leonid A. Mirny 2009 estimated the information contained in these motifs, and found that a
6-bp sequence was not sufficient to precisely specify a given binding region in such a big genome
(to target a TF to a unique location in the genome), contrary to the bacterial case (a long motif
in a small genome). In this setting the only way of getting single-locus specificity is to enable
some cooperativity between TFs.

Considerable efforts have been dedicated to the identification of the binding motif of DNA-
binding proteins, and many approaches have been implemented, ranging from in vitro assays
to bioinformatics based on ChIP-seq or massively parallel reporter assays (Kinney, Tkačik, and
Callan 2007; Barnes et al. 2018)

Having a TFBS at a given locus doesn’t mean that a TF will be found there, and the link between
the presence of a TFBS and the binding of the TF is not fully understood. It at least involves
chromatin accessibility and the presence of cofactors (Jian Yan et al. 2013).

3.1.2 The core pre-initiation complex (PIC) machinery

To transcribe a gene, the RNA polymerase II (RNA Pol II) must be loaded on its promoter. This
operation involves the step-wise assembly of a multi-protein (dozens of proteins), megadalton size
complex called the transcription pre-initiation complex (PIC).

The assembly of the PIC is regulated by many external factors that can facilitate or repress tran-
scription. Several series of techniques have greatly advanced our understanding of PIC assembly. The
first ones are biochemical purification, cryo-electron microscopy (cryo-EM) and crystallography. The
second ones are live imaging. Both draw a complementary picture of transcription.

1. Static picture. Transcription is usually divided in several, independently regulated steps: initi-
ation, pause, elongation, termination. Most of the regulation studies focused on initiation, pause
and elongation.

(a) Step-wise assembly of the PIC. A combination of biochemical studies, cryo-EM and other
biochemical characterizations, including the use of a collection of transcription inhibitors
(Bensaude 2011) allowed to draw a picture of the step-wise assembly of the PIC (reviewed
in Sainsbury, Bernecky, and Cramer 2015).
The PIC is subdivided in several complexes: TFIIA, TFIIB, TFIID, TFIIF, TFIIH, each
of them composed of several proteins. For most of them, the exact structure has been at
least partially resolved (for instance Murakami et al. 2015; Louder et al. 2016). A canonical
vision of PIC assembly is as follows (Nikolov and S. K. Burley 1997; Sainsbury, Bernecky,
and Cramer 2015): (1) the core promoter sequence is recognized by the TATA-box binding
protein (TBP; a TFIID subnit, that also contains ∼ 15 TBP-associated factors, or TAFs),
(2) the subsequent recruitment of TFIIA and TFIIB in an intermediate complex, (3) the
recruitment of PolII and TFIIF to form the core PIC, (4) the recruitment of the regulatory
subunits TFIIE and TFIIH, (5) the creation of a transcription bubble and the unwinding
of DNA and (6) the onset of elongation and the disassembly of the PIC leaving PolII alone
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along the gene body, (7) promoter-proximal pausing and finally (8) the elongation step
(Figure 3.2).
Interestingly, these transitions were first biochemically evidenced before being imaged with
cryo-EM and crystallography. This was possible by the use of various transcription inhibitors
(Bensaude 2011) that allowed to lock transcription in a given state. For instance, DRB and
flavopiridol acts on CDK9 and blocks the transition from initiation to elongation.

Figure 3.2: Overview of mammalian transcription at a single locus. Step-wise progression of
transcription from PIC assembly to transcription termination. The main steps of transcription are
presented, together with the main proteins and complexes involves (source: Jeronimo, Collin, and
Robert 2016).

(b) Pol II C-terminal domain (CTD). Many of these transitions have also be linked to a change
in the phosphorylation of the C-terminal domain (CTD) of the Rpb1 subunit of RNA PolII.
PolII CTD is a highly repetitive sequence, that contains 52 repeats of seven aminoacids:
YSPTSPS, many of them acting as phosphosites. Crucially, most of these 52 repeats undergo
dramatic changes in phosphorylation that are coupled to the transitions between the various
states of transcription, as detailed above (and in Figure 3.2), (Palancade and Bensaude
2003).
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In particular, initiating polymerase is characterized by a CTD phosphorylated on Ser5 (on
the 5th serine of the repeats), and the transition to elongation is characterized by the removal
of Ser5 and the addition of Ser2 phosphorylation by P-TEFb. Getting to know which repeat
of the CTD is preferentially phosphorylated has been extremely challenging, but several
studies indicate that not all repeats are functionally equivalent. Studies are complicated
by the high number of repeats that prevent traditional mass-spectrometry analysis. Recent
genome-editing techniques might overcome this limitation by adding identifiable spacers in
the PolII-CTD sequence (Schüller and Eick 2016).

(c) Around the PIC. Most of the transcription regulation (briefly reviewed in section 3.2) occurs
at the transition between these steps. Indeed, many transcription factors and co-regulators
transiently interact with the PIC. For instance, in many organisms including yeast and
human, the SAGA (Spt-Ada-Gcn5 acetyl-transferase; Warfield et al. 2017; Baptista et al.
2017) and the Mediator (Kagey et al. 2010; Koutelou, Hirsch, and Dent 2010) complexes
are involved in transcription initiation. Some evidence suggest that the Mediator complex
might be involved in enhancer-promoter looping.
Similarly, many other co-activators and cofactors are involved in transcription regulation.
Key questions that usually arise are (1) what is their precise role in the sequence of events
leading to transcription elongation? (2) how are they recruited to the PIC? (3) what is their
dynamics of recruitment. We briefly review some of the knowledge of the PIC assembly in
the next section.

2. Dynamics. Most of the findings presented in the previous section are derived from biochemical
analysis and provide little information about the dynamics and timing of transcription. In
this section, we present how imaging approaches provided more precise information about how
transcription happens in time.

(a) Global picture of the dynamics of transcription initiation. A first understanding (Darzacq
et al. 2007) of the dynamics of transcription was provided by a FRAP study that combined
transcription on an artificial gene array inserted at one locus of U2OS cells (Janicki et al.
2004) and transcription inhibitors (Bensaude 2011) through kinetic modeling.
The authors evidenced that transcription initiation is a highly inefficient process, with more
than 99% of assembled polymerases not giving a full-length messenger RNA, with a poly-
merase spending ∼ 1 min in the initiation state. These results were later confirmed using
an endogenous Rpb1-GFP knock-in (Steurer et al. 2018; Price 2018), and the steps around
promoter-proximal pausing were further dissected.
Furthermore, the residence time of TBP on a given promoter has been quantified, and is on
the order of minutes (Zaidi, Auble, and Bekiranov 2017; Teves, An, Bhargava-Shah, et al.
2018)

(b) Getting up to speed: measuring PolII speed. Once PolII has escaped from the promoter, it
usually undergoes a promoter-proximal pause followed by the full elongation (Jonkers and
Lis 2015). Using a knock-in and a different set of inhibitors, Steurer et al. 2018 gained
more insights on how PolII pauses and elongates. First, they found that in cells, PolII
spends ∼ 40 s in the paused state. Second, this study found that PolII elongates at a rate
around 2 kb/min, where Darzacq et al. 2007 estimated a rate of 4.3 kb/min. More generally,
the elongation speed of PolII has been estimated using several techniques, yielding usually
consistent results (see for instance D. R. Larson et al. 2011, that estimates an elongation
speed between 1.2 and 2.7 kb/min, depending on the gene, or Garcia et al. 2013 that estimate
a rate of 1.5 kb/min in Drosophila).
Finally, the dynamics of PolII on a gene has also been studied in vitro at the single-bp
level using optical trap (Righini et al. 2018). Such an approach provides complementary
biophysical information about PolII dynamics.
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(c) Producing multiple mRNAs: gene bursting. Taking a step back, the number of polymerases
at a given promoter and elongating on a gene is also regulated. First, the transcription of
many genes occurs in bursts: several mRNAs are produced during short period, interspersed
by long periods of gene inactivity. The factors that influence bursting have not been fully
elucidated, but probably include the dynamics of TBP turnover (Werven et al. 2009; Sprouse
et al. 2008) accumulation of torsional stress on DNA, the presence of cofactors such as the
Mediator complex (Tantale et al. 2016), the mode of exploration of TFs (compact vs. non-
compact; Meyer et al. 2012) and PolII pausing dynamics at this gene (W. Shao and Zeitlinger
2017).

3.1.3 Histones on the path of transcription

The vision of transcription presented in the previous section assumes that DNA behaves nicely as
a substrate for transcription. However, as detailed in section I.2, DNA is wrapped with high affinity
around nucleosomes, a ∼ 10 nm diameter structure that can block (or at least slow down) transcription.
Furthermore, histones contain low-complexity tails (N-terminal domains; NTD) that can be heavily
post-translationally modified, and whose modifications are strongly correlated with transcription.

1. Getting through nucleosomes. First of all, nucleosomes act as a barrier to transcription,
since a significant amount of energy needs to be spent to unwind DNA from a nucleosome such
that a transcribing PolII can come across (∼ 40kBT ; Mack et al. 2012). How mechanistically
PolII gets across nucleosomes is not fully understood, but a recent cryo-EM studies proposed
preliminary models (Kujirai et al. 2018). Furthermore, in vitro NMR and single-molecule studies
demonstrated how chromatin remodelers greatly help the polymerase to get through nucleosomes
(K. K. Sinha, Gross, and Narlikar 2017; Fitz et al. 2016).

Finally, because promoters are occupied a significant fraction of the time by inefficiently initi-
ating polymerases, a "phasing" of nucleosomes has been shown to arise from the stochasticity
of nucleosome remodeling: nucleosomes appear regularly spaced around the promoter (Parmar,
Marko, and Padinhateeri 2014; Chereji and Clark 2018). For long, it has been thought that nu-
cleosomes had a more regular spacing in active regions compared to inactive region, but a recent
study using nanopore sequencing suggests that inactive regions might actually exhibit stronger
phasing than the active ones (Baldi et al. 2018).

2. Role of histone modifications. Histone tails can be post-translationally modified, and these
histone modifications constitute transcriptionally-relevant landmarks. A complex collection of
factors is involved in modifying and de-modifying histones, and these factors are under tight regu-
lation. The collection of existing histone modifications is enormous (Figure 3.3; reviewed in Ban-
nister and Kouzarides 2011), and new histone modifications are regularly discovered (Lawrence,
Daujat, and R. Schneider 2016). Many of the PIC components display a kinase (or other) activity
and can target or nucleosomes directly or recruit chromatin modifiers.

(a) At the genome-wide level. Histone modifications are not evenly spaced on the genome, and
immunofluorescence microscopy of mitotic chromosomes showed large clusters of regions
preferentially modified histones (Figure 3.3b; Terrenoire et al. 2010), this discovery gives a
foundation to the genomic compartments phase-separation models presented in section 2.5.

(b) At the genomic element level. It has been shown that many genomic loci can be character-
ized by a specific pattern of histone modifications. For instance, active genes are usually
associated with H3K4me3 (trimethylation of lysine 4 of histone 3) and H3K27ac. Con-
versely, inactive genes usually display a low level of these modifications and a high level of
H3K27me3. Furthermore, enhancer sequences will also be characterized by a specific histone
pattern: high level of H3K4me1 and medium level of H3K4me3. As such, whole genomic
partitions can be derived almost solely based on the sequencing of histone modifications.
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(c) At the single-gene level. Around a prototypical active gene body, histone modifications are
specifically positioned, and some of them are shown in Figure 3.3c. The promoter of active
genes is enriched in H3K4me3, while the levels of H3K36me increases across the gene body.
The mechanisms by which this pattern arises is unclear, but the co-localization of histone
modifiers might explain part of this distribution (Morris et al. 2013).

(d) Histone modifications and transcription: cause or consequence? Despite a very clear associ-
ation between histone modifications and transcription (histone modifications are predictive
for gene expression; Karlic et al. 2010; Pradeepa et al. 2016), the exact link between them is
not clear, and whether histone modifications are a cause or a consequence of transcription
is still an open question (Figure 3.3d and a review in Howe et al. 2016).
Several conflicting lines of arguments exist: a first one looks at the effect of the removal of
H3K4me3, one of the main marker of active genes, and find little effect on transcription. Sec-
ond, in vitro transcription of a chromatinized sequence using the mammalian transcription
machinery does not require H3K4me3 (both reviewed in Howe et al. 2016).
Another line looked at the impact of histone acetylation on transcription. A first study
(Stasevich et al. 2014) looked at the level of histone acetylation on induced gene expression
(during an induced glucocorticoid response) and found that arrays with initially more histone
acetylation had higher levels of PolII binding after the response. Another study looked at
burst frequency (Nicolas et al. 2018) and showed using live imaging that perturbations in
acetylation influenced mRNA production. Finally, on the enhancer side, it has been shown
that occupancy by a given set of TFs is a more accurate predictor of active enhancer than
histone modifications or chromatin accessibility (Dogan et al. 2015).
All in all, more studies are needed to clearly disentangle the role of histone modifications in
transcription.
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Figure 3.3: a. Histone tails can be post-translationally modified (source) b. Global pattern of his-
tone modifications at the scale of a chromosome (from Terrenoire et al. 2010) c. Pattern of histone
modifications around a typical mammalian genes, and some chromatin modifiers responsible for these
modifications. co-transcriptional histone modifications by the Rpb1 and Spt5 CTDs. Arrows connect
the transcription-associated CDKs to their targets on the Rpb1 or Spt5 CTDs above the three major
co-transcriptional histone modifications (H3K4me-histone H3 lysine 4 methylation, H2Bub1-histone
H2B ubiquitylation, H3K36me-histone H3 lysine 36 methylation). Solid arrows indicate positive regu-
lation through the indicated phosphorylation event, whereas dotted arrows indicate de-phosphorylation
event (source: Tanny Lab, McGill University) d. Potential causal relationship between gene expression
and histone modifications (borrowed from a joint presentation with J. J. Parmar).

3.1.4 Transcription factors, pioneer factors & mitotic bookmarking

The previous sections emphasized the role of genomic elements (section 3.1.1) and of the PIC (section
3.1.2). We now turn our attention to the proteins involved in transcription, and in particular to
transcription factors. Transcription factors are proteins involved in transcription regulation. They
are usually subdivided between general transcription factors (GTFs; that are needed at the promoter
of all active genes and regulatory transcription factor (that are involved in the specific regulation of
some genes), despite these categories being loosely defined in practice. The components of the PIC are
GTFs.

Many other TFs are involved in the regulation of transcription. We briefly highlight here two of
their properties. They are usually proteins constituted of at least two domains: a DNA-binding domain
that contains a motif recognition sequence, and a trans-activation domain (TAD), that is responsible
for gene activation. Some factors are particularly important in transcription since they can bind to
nucleosomes, and are thought to be able to activate transcription from a silent locus.

1. Trans-activation domains. The properties of DNA-binding domains are understood in more
and more details. Indeed, these domains are usually well structured in complex with DNA, and
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can be crystallized. As such, we now have the crystal structure of a high diversity of DNA binding
domains.

Conversely, trans-activation domains of TFs are usually low complexity sequences, disordered
and can contain tens of repeats of the same amino-acid sequences: the traditional lock-and-key
mechanism at play to explain DNA specificity does not work for unstructured domains and they
cannot be easily crystallized. Most (82-94%) mammalian TFs have a disordered domain (Jiangang
Liu et al. 2006), and most of them (73-94%) have a disordered TAD. How these domains achieve
trans-activation is not clear.

Several properties of TADs have been proposed to explain their function, and many experiments
focused on the charge pattern of the TAD. For instance, the charge of the domain has been
shown to influence TF properties (Y. Gao et al. 2017). Also, the patterning of charges has
been shown to be a major driver of trans-activation properties (Sherry et al. 2017). Finally, the
number of disordered repeats has also been studied (Gemayel et al. 2015). On a more systematic
analysis (Marsh and Forman-Kay 2010) measured the compaction of 32 proteins and linked it
with sequence properties.

2. Pioneer factors. A second property of some transcription factors is their ability to bind nu-
cleosomes. This property is thought to be key to gene reactivation (Zaret et al. 2008). Indeed,
inactive genes are thought to be entirely nucleosomal, and their promoter is usually not accessible.
Thus, a factor able to bind nucleosomes might be able to recruit chromatin remodelers and to
progressively remove the histones from the promoter, allowing a gene reactivation. This hypothe-
sis was investigated in (Soufi et al. 2015) and evidenced that Oct4, Sox2 and Klf4 have the ability
to bind nucleosomes. Over the time, some other factors such as FoxA2 and GATA4 have been
shown to exhibit pioneering properties (Donaghey et al. 2018). More generally, there is a complex
interplay between genome organization and TF activation, and (Stadhouders et al. 2018) found
that TFs drive genome reorganization at multiple architectural levels during reprogramming.

3. Bookmarking. While pioneer activity allows to reactivate a silent gene, another key question
is how to know which genes were active before mitosis, to reactivate only these ones. In other
terms, how do cells bookmark gene activity? This question has lead to several hypothesis. One
of them proposed that some general or specific transcription factors remain bound to chromatin
during mitosis. This hypothesis is consistent with the fact that the promoter of active genes
remains accessible in mitosis (Teves, An, Anders S Hansen, et al. 2016) and that TBP and Esrrb
remain bound to their promoters (Festuccia, Dubois, et al. 2016; Teves, An, Bhargava-Shah,
et al. 2018). As such, TBP has been proposed to be one bookmarking factor, since it can remain
associated with DNA for the duration of mitosis. Conversely, other TFs such as Oct4 and Sox2
clearly do not act as bookmarking factors (Teves, An, Anders S Hansen, et al. 2016; Festuccia,
Owens, et al. 2018).

3.2 Mechanisms of transcription regulation

In section 3.1, we presented the main categories of factors involved in transcription. This initial picture
explains how a gene can be transcribed, but it does not explain why a given gene can be transcribed
and not another. In this section we review some mechanisms involved in transcriptional regulation.
These mechanisms can be classified in four categories: (1) the cooperative effect of TFs (section 3.2.1),
(2) changes in the chromatin environment (section 3.2.2), (3) changes in local concentrations and phase
separation (section 3.2.3) and (4) regulation of enhancer-promoter contacts (section 3.2.4).

3.2.1 Combinatorics of the presence of TFs

1. Presence/absence of a single TF. A first level of regulation takes place by the regulated
expression of TFs. Indeed, the expression of some transcriptional program is under the control of
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some TFs that are only expressed in a given cell type. This is for instance the case for many TFs
involved in development, such as GATA4, a factor specifically expressed in the heart and that
regulates cardiac development (RNA profile). More interestingly, some components of the PIC
(TAFs), such as TAF9B are differentially expressed and regulate different groups of genes (despite
being usually termed as GTFs). For instance, TAF9B is specifically induced and required for
motor neuron differentiation (Herrera et al. 2014).

2. TFs cooperate to activate a gene. Second, many studies show that a combination of factors
(or the multiple binding of one factor) is required to activate a gene (for a theoretical justification,
see Wunderlich and Leonid A. Mirny 2009).

(a) Several copies of the same TF. In some cases, gene activation requires the binding of several
copies of the same protein. For instance, it has been proposed that multiple copies of
P-TEFb are needed in order to release a paused polymerase (X. Lu et al. 2016).

(b) Cooperation between several types of TFs. The recruitment of some GTFs is mediated by the
binding of some TFs. For instance the oncogene p53 mediates the recruitment of the GTF
TFIID (Coleman et al. 2017). In most of the cases, the cooperation between TFs involves
TFs from different families, a theory that matches the genome-wide binding pattern of TFs,
that tend to bind in clusters. For instance, Oct4, Sox2 and Klf4 tend to bind the same
enhancer elements, and it is known that Oct4 and Sox2 bind cooperatively (Chronis et al.
2017). More generally, classes of TFs that bind cooperatively can be defined based on their
ChIP-seq patterns (Beck et al. 2014 and Alexander Stark, personal communication).
Cooperativity can also be evidenced by the fact that not only the DNA-binding domain is
important in directing a TF to a specific locus but also the trans-activation domain. Indeed,
a change in trans-activation domain can dramatically modify the DNA-binding pattern of
a TF, as evidenced in (W. F. Lim et al. 2016).
Mechanistically, cooperativity can either be mediated through direct protein-protein inter-
actions, but also be indirect. A biophysical model suggest that nucleosomes can also mediate
TF cooperativity without any direct contact (Leonid A. Mirny 2010).

3.2.2 Chromatin environment

A second level of regulation takes place at the level of the chromatin environment, in which param-
eters such as the position with respect the nuclear periphery, the local density of chromatin and the
fluctuations of chromatin have been occasionally shown to influence gene expression. The mechanisms
of this regulation, however, are still unclear.

1. Chromatin environment and gene (re)-positioning. Chromatin environment might influ-
ence gene regulation in several ways.

(a) Lamina-Associated Domains (LADs) constitute a repressive environment. First, a gene
located in a lamina-associated domain is usually repressed compared to the activity it would
have outside the LAD (Guelen et al. 2008; Akhtar et al. 2013; Leemans et al. 2018 and
van Steensel and Belmont 2017 for a review). Why LADs constitute a specific repressive
environment is not specifically understood.

(b) Gene reposition to the center of the nucleus when they activate. Second, it has been shown
that some genes relocate to the center of the nucleus when they activate (Tumbar and
Andrew S. Belmont 2001). The mechanism of such process is not known, but nuclear F-
actin might be involved, as it is for the re-localization of DNA breaks (Caridi et al. 2018),
or other, still unexplored processes might be at play (J. Kim et al. 2018).

47

http://biogps.org/#goto=genereport&id=2626


2. Chromatin density. For long, chromatin density itself has been proposed as a way of explaining
why some regions are active and other inactive. In the initial theory, regions of high chromatin
density would be less accessible and thus not permissive for transcription. This idea, however,
can be discussed in several ways.

(a) Can dense regions prevent transcription? First, in terms of accessibility, dense heterochro-
matin and less compacted euchromatin are often similarly accessible to a diffusing tran-
scription factor (see section 3.3.1). On the other hand, ChromEMT images produced by the
O’Shea lab (Ou et al. 2017) showing nucleus slices at the single-nucleosome level revealed
that in dense regions, the PIC might not have the space to assemble, despite all the factors
being able to diffuse (Clodagh O’Shea, personal communication). Furthermore, it has been
suggested that decondensation is sufficient to induce gene expression (Pierre Therizols et al.
2014; Benabdallah et al. 2017).

(b) From density to accessibility. This idea that dense regions are less permissive to transcrip-
tion got further complicated by the fact that "chromatin accessibility" measurements were
performed using several enzymes followed by sequencing (DNAse hypersensitivity assay and
ATAC-seq for instance). It is not exactly clear what these assays measure, and whether
their output is also a proxy for chromatin density is still unclear.

3. Chromatin dynamics. Finally, it has been proposed that chromatin fluctuations, rather than
chromatin density, might explain gene activation. Indeed, at very small scale a slow-moving
chromatin might hamper the assembly of the PIC, while a fast-moving chromatin might sample
a sufficient number of conformations to allow the scaffold to build, even in high-density environ-
ments. This idea was proposed based on data on harshly treated cells followed by fluorescence
lifetime imaging (FLIM; Auduge et al. 2018). This idea is reinforced by the fact that NMR stud-
ies have shown that the presence of the linker histone H1 involved in heterochromatin reduces
the fluctuations of chromatin (Stützer et al. 2016). Also, the rigidity and dynamics of chromatin
seem to evolve as transcription progresses (Germier et al. 2017).

3.2.3 Phase-separation & local concentrations

A third level of regulation occurs when concentrations of factors are locally increased, which can
lead to locally increased reaction rates. More and more, this concept is mixed with the concept of
phase separation, in which phases made of different components separate because they share different
chemical properties.

1. Genes local enrichment From a genomic perspective, co-regulated genes tend to cluster. They
tend to be located in the same TAD, or to form large clusters in Hi-C or derived techniques. This
was initially evidenced using 3C (Osborne et al. 2004; Schoenfelder et al. 2010). This way, co-
regulated genes might share some limiting resources such as PolII, whose high local concentrations
is required to overcome its inefficient initiation.

2. PolII local enrichments. In addition to heterogeneities in RNA and DNA concentrations,
(reviewed in section 2.1.1), PolII displays strong and dynamic local enrichments.

Indeed, live PALM imaging suggested that short-lived clusters (a few seconds) existed in the cells
(Cisse et al. 2013; Rickman and Bickmore 2013). Despite some initial criticisms (Z. W. Zhao
et al. 2014), this finding was confirmed and it was shown that these clusters co-localized with
active genes on a selected example (Cho, Jayanth, Mullen, et al. 2016) and that a link could be
found between the size of the cluster (ie. the increase in local concentration) and gene expression
(Cho, Jayanth, Brian P. English, et al. 2016).
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3. Pol II phase-separation. Going beyond local enrichment, it was suggested that PolII can
undergo reversible phase-separation, and that this phase-separation is regulated by phosphory-
lation (Kwon et al. 2013). Furthermore, this phase-separation behaviour was linked to the CTD
of Rpb1, and in vivo modifications of the length of the CTD lead to changes in the size of the
Rpb1 clusters (Boehning, Dugast-Darzacq, Rankovic, Anders S. Hansen, T.-K. Yu, et al. 2018).

4. Transcriptional phase-separation. Finally, it has been proposed more recently that transcrip-
tion might occur through a phase-separation process, in which the whole PIC scaffold, enhancers
and co-activators would undergo a phase-transition. This was theoretically proposed in (Hnisz
et al. 2017). Several lines of evidence tend to suggest that such a phenomenon might be at play.
First, many TFs can undergo in vitro reversible phase separation (Boija et al. 2018), and thus
they can contribute to such transcription aggregate. Second, such phase-separated aggregates
seem to be also present in vivo (Sabari et al. 2018; Saey 2018). Third, it has been proposed that
TF-induced phase separation might be sufficient to explain the presence of some TADs (Pereira
et al. 2018). Fourth, in Drosophila, some genes appear to be simultaneously ON and OFF at
the same time, suggesting that they might be residing in the same regulatory unit (B. Lim et al.
2018).

3.2.4 Enhancer-promoter contacts

Under the current dogma, (at least) one enhancer must contact a gene in order to produce mRNAs.
This is thought to be mediated by enhancer-promoter looping, a phenomenon that has been widely
investigated using 3C-based techniques. In this section we provide a critical review of the recently
published literature that links enhancer and promoter contacts with gene expression, and show that
an emerging body of experiments suggest that additional mechanisms compared to simple enhancer-
promoter contacts might be at play. Previous perplexing questions were reviewed in (Andrew S Belmont
2014).

1. How to transcribe a gene? Let us first remind that outside mammalian systems, enhancers
are neither present nor required to activate a gene. In bacteria, distal regulatory sequences
are not needed for the RNAP to initiate transcription. Furthermore, an in vitro transcription
reactions usually contains the following ingredients: (1) DNA template, (2) T7 RNA polymerase
(from T7 phage, structure 1MSW), (3) nucleotides, (4) water. Thus a very minimal number of
components are needed to transcribe a gene and the emergence of enhancer-promoters contacts
is important for the regulation of this process, but not as a core requirement.

2. Genome organization and enhancer-promoter contacts: evidence from 3C/Hi-C. Let
us then examine generous evidence from 3C and Hi-C. A long stream of papers focuses on "loops",
that are regions of increased contact probability and that appears to link enhancer sequences
with promoters and correlates with gene activity (S. S. Rao et al. 2014). Some of these enhancer-
promoter contacts have been convincingly validated using multi-color FISH, where it was shown
that indeed loci that appear in the same "loop" have a lower physical distance distribution than
random loci located at the same genomic distance. This finding was reiterated when higher-
resolution Hi-C and micro-C (Hsieh et al. 2016) were published (Bonev et al. 2017 and Stanley
Hsieh, unpublished data). Thus, strong correlative evidence support the fact that enhancer-
promoter contacts are associated with gene expression.

3. Induction/disruption of enhancer-promoter contacts regulate gene expression. Fur-
thermore, in some limited cases, it was causally proven that disruption of an enhancer-promoter
contact can result in transcriptional alteration and developmental defects. Indeed, (Lupiáñez
et al. 2015) disrupted an enhancer-promoter contact by triggering a genomic inversion in the
EPHA4 locus. This genomic inversion mimicked a genetic anomaly present in a patient, and
could reproduce the same phenotype (a polydactyly disorder). Another example, detailed in
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(Deng et al. 2014) in which the authors used an engineered zinc-finger protein to bring into con-
tact an enhancer and a promoter in the beta/gamma-globin locus. This lead to the apparition
of a "loop" in 3C and to the reactivation of a gene, further reinforcing the notion that when
enhancer and promoters come into contact, gene activation occurs. A third example directly
visualizes enhancer-promoter distances in Drosophila (Hongtao Chen et al. 2018) and finds that
enhancer-promoter distances are lower when a reporter gene is active than inactive.

4. Conflicting evidence about the function of enhancer-promoter proximity. We now turn
to a few recent papers that provide puzzling counter-evidence to the above-presented dogma.

First of all, (van Arensbergen, FitzPatrick, et al. 2016) used a genome-wide sequencing approach
to evaluate the ability of promoters to initiate transcription in the absence of any enhancer (in
an episomal context). They found that there is a significant correlation between the expression
level of the promoters in cells and without any enhancer, suggesting that promoters are the main
determinant of gene expression, and not enhancer sequences.

Second, in (Benabdallah et al. 2017), the authors focused on the Shh locus and observed an
increase in the enhancer-promoter distance when the Shh gene is reactivated during develop-
ment, where the traditional enhancer-promoter model would suggest a reduced distance. They
progressively dissect the mechanism and find that gene expression is impaired when a "road-
block" is inserted between the enhancer and promoter. This experiment suggest that instead of
a direct enhancer-promoter contact, a "message" might spread along the genomic DNA from the
enhancer to the promoter. The authors also show that this mechanism relies on the poly-ADP-
ribose polymerase.

Finally, (Alexander et al. 2018) performed live cell imaging in mESC on the Sox2 locus in which
the location of the enhancer and promoter were tracked, in addition to the Sox2 expression
using a MS2 reporting system. Using a series of statistical analysis, the authors find that across
the time scales they considered (up to several tens of minutes), there is no correlation between
enhancer-promoter distance and gene expression.

5. Towards a resolution? Currently, the traditional enhancer-promoter contact model has a
strong experimental support. However, it is not clear how accurate this model is in terms of
dynamics. Can one imagine that a promoter remain "potentiated" several minutes after an
enhancer-promoter contact? In that case, how to explain that the probability of inter-TAD
contacts is only two-fold lower than intra-TAD contacts? Indeed, if only one enhancer-promoter
contact is needed for gene activation, then a total insulation would not be possible. Alternatively,
can one imagine a "phase-separation" model in which both the enhancer and the promoter would
switch to a potentiated state as demixing proceeds? So far, no strong mechanistic conclusion can
be drawn from the existing literature, and additional time-resolved experiments are needed.

3.3 Diffusion of transcription factors

3.3.1 Diffusion in a complex media

Most of the content is extracted from the review we wrote with Xavier: "Protein motion in the
nucleus: from anomalous diffusion to weak interactions", published in Biochemical Society Transactions
(Woringer and Darzacq 2018).

How exactly transient interactions are involved in the regulation of TF diffusion is unclear, but are
reflected by live cell imaging techniques, including single-particle tracking (SPT). Overall, the macro-
scopic result of these microscopic interactions is almost always anomalous diffusion, a phenomenon
widely studied and modeled.

Here, we review the connections between the anomalous diffusion of a TF observed by SPT and
the microscopic organization of the nucleus, including recently described topologically associated do-
mains and dynamic phase-separated compartments. We propose that anomalous diffusion found in
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single particle tracking (SPT) data result from weak and transient interactions with dynamic nuclear
substructures, and that SPT data analysis would benefit from a better description of such structures.

1. Introduction. Within this framework, the understanding of gene expression regulation reduces
to elucidating how external factors (including TFs) affect the kinetic constants k. Although it can
be assumed that kinetic rates are characterized only by the nature and concentration of enzyme,
substrate and cofactors, it was shown in 1906 by Marian Smoluchowki (von Smoluchowski 1906)
that the kinetic rate of a well-mixed, diffusion limited reaction can be decomposed as k = 4πDa.
Thus, the kinetic rate k is a function of both the cross-section of interaction a (reflecting the
chemical properties of the partners and usually studied by biochemical approaches) and the
diffusion constant D of the species.

Since D is determined by the local environment, this finding is striking in the context of gene ex-
pression regulation: now the kinetics of one reaction depend on the whole nuclear structure. More
specifically, any factor that affects diffusion in any specific or non-specific way will ultimately
influence reaction rates. Indeed, interactions resulting in facilitated diffusion on a substructure
(such as a TF on DNA, Hammar, Leroy, et al. 2012; Normanno et al. 2015; Anders S. Hansen,
Pustova, et al. 2017) or (transient) segregation inside a membrane-less compartment in a phase-
separated manner (A. G. Larson et al. 2017; Strom et al. 2017) can all be seen under the unifying
framework of diffusion on a surface of reduced dimensionality. Diffusion on surfaces of reduced
dimensionality yields kinetics that are qualitatively different than in free, 3D diffusion and leads
to potentially dramatically increased reaction rates (Kopelman 1988).

Anomalous diffusion, a phenomenon occurring when a molecule explores a volume lower than
predicted by diffusion, affects all proteins inside a cell. Numerous physical models can describe
anomalous diffusion (Metzler, Jeon, et al. 2014), and several have been applied to the motion
of nuclear proteins. However, many of them only provide a phenomenological description of
diffusion, rather than mechanistic insights, and radically distinct models can often fit the available
data equally well.

In light of these considerations, it is worthwhile to examine recent discoveries describing either
stable sub-nuclear compartments or their more transient, weak-interactions-induced counterparts
to highlight their influence on the diffusion of factors through dimensionality reduction. This in-
cludes TADs (topologically associated domains), lamina-associated domains, nucleoli, non-coding
RNAs, transcription factories, phase-separated domains, etc. They constitute substructures with
a high valency amenable to weak interactions that can qualitatively influence diffusion and target
search.

Here, we first review anomalous diffusion models applied to protein motion and relate them to a
potential physical generative model. Then, we emphasize recent advances in the characterization
of regions of reduced dimensionality in mammalian nuclei, both aspecific through volume exclu-
sion and specific through transient, weak-but-specific interactions. Finally, we propose that these
weak interactions shape TF dynamics, and that single particle tracking (SPT) analysis would
greatly benefit from a better understanding of the pairwise interaction map between nuclear
proteins.

2. Most anomalous diffusion models reflect underlying networks of weak interactions.
The technique of choice to investigate protein motion in the nucleus of live cells is light microscopy
of fluorescently tagged proteins. Different imaging and modeling modalities have provided signif-
icant insights, including fluorescence recovery after photobleaching (FRAP), fluorescence correla-
tion microscopy (FCS) or single-particle tracking (SPT). In this review, we focus on single-particle
tracking, because it directly provides access to the dynamics of single diffusing molecules. In a
SPT experiment, a small subset of the proteins of interest are imaged and tracked over short
times at the resolution of a few tens of nanometers, allowing to resolve isolated single molecules
even within clusters of high densities.
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In solution, the diffusion coefficient D of a protein is inversely proportional to the hydrodynamic
radius of the protein (r) and the viscosity of the medium (η) through the Stokes-Einstein rela-
tionship D = kBT

6πηr where kBT reflects thermal agitation, with kB the Boltzmann constant and T
the absolute temperature. This description, however, is too simplistic in the complex cellular en-
vironment. Indeed, with the exception of inert tracers of small molecular weight (Seksek, Biwersi,
and A. S. Verkman 1997; M. Weiss et al. 2004), it is well acknowledged that (a) macromolecules
in a cell diffuse much slower than in a medium of comparable viscosity, (b) that complexes of
high molecular weight can diffuse faster than small proteins, and (c) that most molecules exhibit
anomalous diffusion.

Thus, the diffusion of TFs cannot be described by simple friction/viscosity relationships, and
their behavior, perhaps unsurprisingly, has to be seen from the angle of transient interactions
with a dense matrix of interactants. In the context of this review, we define transient (or “weak”)
interactions as interactions that are usually too short-lived to be captured by traditional biochem-
istry techniques, that typically involve one or several wash step, during which proteins interacting
specifically but transiently get diluted and washed out.

Furthermore, diffusion of many factors does not follow free, Brownian diffusion (Figure 3.4a,c).
Such diffusion is termed anomalous (more specifically, sub-diffusive), meaning that the space
explored over time by one factor is lower than expected by free diffusion (reviewed in Höfling and
Franosch 2013; Metzler, Jeon, et al. 2014). Anomalous diffusion is usually characterized by a sub-
linear growth of the mean squared displacement (MSD) as a function of time (that is,MSD(t) ∼
tα with α < 1; Figure 3.4a) and α is called the anomalous diffusion exponent. This anomalous
diffusion exponent does not fully characterizes the type of diffusion and additional metrics such
as the distribution of translocation angles (Figure 3.4b) provide valuable information about the
dynamics. Anomalous diffusion of proteins have been fitted with success by phenomenological
anomalous diffusion models, and include fractional Brownian motion (Figure 3.4d) (Tejedor et al.
2010; Guigas and M. Weiss 2008; Shinkai et al. 2016; R. P. Ghosh et al. 2017), continuous time
random walks (CTRW; Figure 3.4e) (Weissman, G. H. Weiss, and Havlin 1989; Saxton 2007a)
and diffusion in fractal media (Figure 3.4f) (Ben-Avraham and Havlin 2000; Bancaud et al. 2009;
Izeddin, Récamier, et al. 2014). Although useful as phenomenological descriptions, these models
are often agnostic regarding the underlying reality of the process. In any case, the explanation
of diffusion has to rely on physics and chemistry of the nucleus.
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Figure 3.4: Models of anomalous diffusion and plausible underlying physical structures. (a) and
(b) characterizations of anomalous diffusion. (a) Sub-linear mean-square displacement plotted as a
function of time characterizes subdiffusion, and reflects how a diffusing particle explores space, the
degree of anomalous diffusion is characterized by the exponent α, the lower the α the more sub-
diffusive the process. (b) Free diffusion is characterized by isotropic distribution of angles – subpanel
(i) – whereas anisotropic distribution indicates anomalous diffusion – subpanels (ii) and (iii) –. (c) 3D
free diffusion (dw = 2), as usually encountered in a homogeneous media (df = 3). (d)-(f) Several types
of heterogeneous media can yield anomalous diffusion, including (d) diffusion within a viscoelastic
polymer, in which a protein “bounces against” an elastic structure, a process traditionally described by
fractional Brownian motion (fBm) and (e) free diffusion interspersed by long binding times –red stars–,
a process called continuous time random walk –CTRW–, and (f) diffusion within a fractal media, that
is a space obstructed by obstacles of all sizes.

From a physical perspective, proteins can adsorb and diffuse on nuclear substructures. When
this happens, the exploration properties of the protein are universally given by two parameters:
first, the dimension of the random walk dw (deduced from the anomalous diffusion exponent:
dw = 2

α , i.e. the scaling of the MSD: MSD(t) ∼ t2/dw), and second, the dimension of the
space available to diffuse df . df can be integer (df = 1 for instance for sliding on DNA without
jumps, df = 2 for a factor freely diffusing on the surface of a sub-compartment), or non-integer,
a feature that characterizes self-similar structures, that is, fractals (Figure 3.4f). For instance,
highly obstructed media or dense environments where the available volume is reduced to small
pores are often accurately described by their non-integer fractal dimension df . Such a case can
occur in dense sub-compartments such as phase-separated domains. For the sake of this review,
we will denote structures of df < 3 as structures of reduced dimensionality.

Depending on df and dw, the motion of the protein falls into two universal categories, termed
compact and non-compact (de Gennes 1982; Condamin, Bénichou, et al. 2007; Bénichou et al.
2010). In a compact exploration (dw > df ), exploration is local and distance-dependent and a
given site is explored repeatedly over time, in a highly recurrent manner. Conversely, in a non
compact exploration (dw < df ), the exploration is global, and every site on the structure has
a constant probability to be explored (distance independence); the exploration is non-recurrent
(transient). For instance, a particle freely diffusing has a df of 2. When diffusion takes place in
a 3D space (df = 3) the particle tends not to revisit sites, adopting a non-compact exploration
(indeed, dw < df ). Conversely, a particle in free, Brownian diffusion (dw = 2) constrained to
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diffuse in 1D (df = 1; hypothetically along a DNA fiber) will repeatedly sample the same sites
(compact exploration, dw > df ). Consequently, target search times are decreased and reaction
rates are increased in the compact case.

Structures of reduced dimensionality, including fractals, emerge naturally from various processes,
including diffusion-limited aggregation and hierarchical assembly of macro-molecular scaffolds,
such as the multi-scale organization of chromatin. The goal of the next sections is to highlight a
few structures of reduced dimensionality in the nucleus and how they influence kinetics of TFs.

3. Steric hindrance in the nucleus. Far from constituting a homogeneous medium, the nucleus
is a highly organized and sub-compartmentalized organelle. The main organizing structure,
chromatin, constitutes approximately 10-30% of the nuclear volume (Milo and Phillips 2016;
Ou et al. 2017) and likely accounts for a significant part of the diffusion slowdown (Matsuda
et al. 2014). Since every molecule has to slalom around a dense and heterogeneous chromatin
environment, diffusion is impaired. Note that, however, similar diffusion coefficients are usually
observed in the cytoplasm and the nucleoplasm (Guigas, Kalla, and M. Weiss 2007), suggesting
that protein crowding can also account for diffusion slowdown (Ando and Skolnick 2010; McGuffee
and Elcock 2010 and Bancaud et al. 2009 for a discussion).

Over the past years, organizing principles of chromatin have emerged: at large scale, the genome
is segregated in chromosome territories and regions of heterochromatin/euchromatin, lamina-
associated domains at the periphery and nucleoli lying more at the center. At higher magnifica-
tion, chromatin is organized in areas of preferential interactions such as A/B compartments and
topologically associated domains (TADs) that reflect the functional organization of chromatin
(Pueschel, Coraggio, and Meister 2016).

Overall, although highly heterogeneous, chromatin in the mammalian nucleus is well described
by a self-similar, fractal structure that occupies a non-zero volume. This was initially postulated
(A. Grosberg et al. 1993), and later evidenced by spectroscopic (D. Lebedev et al. 2005; D. V.
Lebedev et al. 2008), genomic (Lieberman-Aiden et al. 2009; A. Yu. Grosberg 2012) and imaging
techniques (Bancaud et al. 2009; Récamier et al. 2014; Shinkai et al. 2016; Shinkai et al. 2017;
S. Wang et al. 2016). Note that this description as a fractal, however, cannot be exact, even
from a mathematical standpoint, and some properties usually applicable to fractals might not be
relevant for chromatin (K. Huang, Backman, and Szleifer 2018).

As a consequence, factors diffusing in the available volume are constrained by this structure
(Goulian and Simon 2000), possibly experiencing diffusion in a medium of reduced dimensionality,
as evidenced by numerous reports (Bancaud et al. 2009; Anders S. Hansen, Woringer, et al. 2018).
In a model where only volume exclusion happens, proteins of the same size and shape should
have the same diffusion coefficient. Thus, the embedding structure of the nucleus only sets a
lower bound on the level of anomalous diffusion that can be observed.

Several lines of argument point to the fact that although steric hindrance induces a significant
decrease in the diffusion coefficient (D), its effect on anomalous diffusion (α) is mild for proteins
of weight < 150 kDa (that is, about the weight of a histone octamer wrapped with 150 bp
DNA). Indeed, FRAP experiments performed with protein or non-protein tracers of increasing
molecular weights suggest that low molecular weight tracers diffuse almost freely in the nucleus,
allowing to infer a viscosity close to the one of water (Seksek, Biwersi, and A. S. Verkman 1997).
At molecular weights > 150 kDa, anomalous diffusion becomes more prominent (Guigas, Kalla,
and M. Weiss 2007; M. Weiss et al. 2004; Bancaud et al. 2009), sometimes leading to particles
occasionally being trapped in the chromatin mesh. This effect is consistent with the relatively
limited volume occupied by chromatin (Milo and Phillips 2016; Ou et al. 2017), that can trap
big complexes but not smaller proteins.

In conclusion, although volume exclusion by chromatin and other nuclear constituents is real,
it affects all proteins of the same size in a similar manner. In contrast, a protein weakly but
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specifically interacting with such a structure (for instance, TFs sliding/hopping on DNA; Wun-
derlich and Leonid A. Mirny 2008; Hammar, Leroy, et al. 2012; Coppey et al. 2004; Iwahara,
Zweckstetter, and Clore 2006; Doucleff and Clore 2008) will immediately show a much higher
level of anomalous diffusion. Furthermore, even without considering a fractal structure, simple
dimensionality reduction to 1D or 2D can yield non-traditional kinetics termed fractal kinetics
(Kopelman 1986; Kopelman 1988; Berry 2002). Fractal kinetics are characterized by a time-
dependent reaction rate: for a A+A→ products reaction, the reaction rate kapp can be expressed
as kapp = kt−h, with h that depends on the (fractal) dimension of the space. Fractal kinetics
arise when the reaction cannot be assumed to be well-stirred, which is the case of diffusion on
surfaces of reduced dimensionality. For instance, fractal kinetics in 2D could occur by weak in-
teraction with the nuclear lamina, Figure 3.4b. All in all, weak and transient interactions shape
the nuclear landscape and can give rise to emergent structures and properties, as exemplified in
the next section.

Even though live imaging approaches specifically characterize the behavior of one single factor,
they are blind to all these substructures. Indeed, SPT reflects the dynamics of proteins transiently
interacting with those structures of reduced dimensionality and one TF potentially visits several
of them in the span of a few tens of milliseconds (S. K. Ghosh, Cherstvy, and Metzler 2015). Such
complex behavior therefore appears macroscopically as various kinds of anomalous diffusion.

4. Perspectives: seeing beyond the dots. In a complex mammalian nucleus, the diffusion of a
TF is ruled by transient interactions with underlying structures of reduced dimensionality. From
a more general perspective, the question arises of how gene expression regulation processes relate
to the multiplicity of structures of reduced dimensionality?

Proteins often harbor several domains (Figure 3.5), holding the potential to interact successively
and repeatedly with multiple classes of structures of reduced dimensionality. Thus, depending on
its interaction domains, a TF will “see” a different landscape and will interact with some structures
whereas other factors will either be excluded or cross them without any additional interactions
than limited steric hindrance. In this respect, the nucleus can be described as a “multiverse”,
in which some factors coexist in the same physical space but exhibit radically distinct dynamics
and interactions (Figure 3.5).
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Figure 3.5: Weak interactions of individual protein domains shape TF dynamics. (a)-(c) individual
protein domains have specific transient interactions: the round domain (a) does not interact with any
particular structure (represented by the two columns of the table), (b) the square domain interacts with
a given pink structure (first column), and (c) the triangle domain interacts with the green structures
(second column). This results in domain-specific dynamics (third column). (d-e) When protein domains
are combined within a protein or TF, the observed SPT is a mixture between the interactions of each
single domain. (f-g) When individual domains are mutated, the protein loses some transient specific
interactions, and its dynamics can dramatically change (compare panels e and g).

Furthermore, structures of reduced dimensionality have been proven to be functionally relevant.
For example, the dynamic and regulated switching of a TF between structures of reduced di-
mensionality determines its dynamics (Figure 3.5a-e) and function. It has been shown that TF
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exhibit radically different dynamics before/after a post-translational modification (Loffreda et al.
2017; Speil et al. 2011), or an artificial deletion of a domain (Figure 3.5f-g), (Anders S. Hansen,
Pustova, et al. 2017; J. Elf, G.-W. Li, and X. S. Xie 2007; D. Mazza et al. 2012; Sekiya et al.
2009; Clauß et al. 2017; Zhen et al. 2016). In that case, the observed diffusion will be arising
from the remaining interactions from the other interaction domains, or ultimately from simple
volume exclusion (Isaacson, McQueen, and Peskin 2011).

Although theoretical and experimental support for the importance of weak interactions as an
architectural principle of the nucleus and gene expression regulation is being actively investigated,
several questions remain unaddressed:

First, how many distinct types of structures of reduced dimensionality exist? Since the numbers
of types of low-complexity domains is likely to be limited, one can expect that a limited number
of such structures actually coexist at a given time in a nucleus (Rahul K Das, Ruff, and Rohit
V Pappu 2015). This implies that the SPT dynamics of TFs will fall in a limited number of
categories, which in turn is determined by their combinatorial interactions with one or several
of these structures. To take into consideration such processes paves the way for a higher-order
understanding of gene expression regulation and key transitions occurring for instance during
mitosis or development.

Second, can we determine the pairwise interaction matrix between low-complexity protein do-
mains, which would allow to derive predictive dynamics of a given TF modification? Ideally,
such matrix will encompass all known low-complexity domains, but also abundant multivalent
RNAs and DNA sequences, and each element of this matrix will reflect the affinity between two
domains under physiological conditions (Figure 2.1d).

Third, how much detail is required to describe these structures of reduced dimensionality? Is
the pairwise interaction between protein domains a good approximation of the properties of
the nucleus? Conversely, one can imagine substructures of reduced dimensionality arising from
interactions more complex than simple pairwise-interactions. Indeed, it is widely known that
cooperativity plays a role in the assembly of many more or less stable macromolecular structures
(Chronis et al. 2017), including some phase-separated domains (Pak et al. 2016).

Fourth, how do key biological transitions such as differentiation intertwine with these structures
of reduced dimensionality? In a similar way as pluripotency or cell-type specific TF networks
have been identified, can pluripotency or cell-type specific structures of reduced dimensional-
ity be evidenced, integrating the expression levels of TFs and providing a framework to better
understand such key processes?

To answer those questions, our understanding of nuclear processes need to be drastically ex-
panded. Hitherto, a dynamic picture of spatially segregated factors, together with their interac-
tion matrix, is currently missing. Promising tools to access those parameters include quantitative
FRET (Sukenik, Ren, and Gruebele 2017), in cell NMR (Maldonado, Burz, and Shekhtman 2011;
Freedberg and Selenko 2014; Theillet et al. 2016), low-photons SPT (Balzarotti et al. 2017), track-
ing FCS (Limouse et al. 2017), spatially resolved FCS (A. P. Singh et al. 2017) and computational
methods (Quiroz and Chilkoti 2015; Harmon et al. 2016).

Conclusion.

Although the so far identified key players in gene expression regulation are biochemically sta-
ble complexes that can be purified using traditional methods, increasing evidence suggest that
higher-order, weaker-interaction structures, acting as structures of reduced dimensionality, play
a central role in transcriptional regulation. They do so by providing a remarkably versatile way
of specifically and timely regulating TF target search dynamics and thus gene expression. All in
all, it appears that the functional properties of the nucleus are not only shaped by stable macro-
molecular complexes but also transient structures (arising from a continuum of weak interactions
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that might seem spurious). In this context, the saying from Heraclitus makes probably more
sense than ever: "The fairest order in the world is alike a heap of random sweepings".

Glossary.

Anomalous diffusion: a phenomenon occurring when a molecule explores over time a volume
lower than predicted by Brownian diffusion. It is usually characterized by a sub-linear growth of
the mean squared displacement (MSD) as a function of time (MSD(t) ∼ tα with α < 1), with α
the anomalous diffusion exponent.

Fee diffusion: (also termed Brownian diffusion) characterizes the motion of a particle in a fluid
arising from thermal agitation only. Seen as a “null” model in SPT.

Phase separation: a state of matter in which part of the soluble protein fraction segregates
into a liquid or liquid-like droplet.

Fractals: structure exhibiting (statistical) self-similarity, that the (statistical properties of the)
structure remain similar at various zoom levels. Fractals can be described by their (potentially
non-integer) fractal dimension df . The fractal dimension of an object describes its space-filling
property. Many types of biological objects exhibit fractal properties, such as the branching
pattern of the lung, or the hierarchical folding of DNA in the nucleus.

Weak interactions: (in this review) interactions that are usually too short-lived to be captured
by traditional biochemistry techniques, that typically involve one or several wash step, during
which proteins interacting specifically but transiently get diluted and washed out.

Facilitated diffusion: biophysical phenomena allowing a molecule to find its target faster
than predicted by traditional, 3D free diffusion. This includes diffusion on a surface of reduced
dimensionality such as DNA.

Surface of reduced dimensionality: an object whose fractal dimension df < 3, meaning that
it exhibits some properties similar from the ones of 1D or 2D structures.

Compact exploration: universal mode of diffusion in which the exploration of the diffusing
molecule is local and distance-dependent and a given site is explored repeatedly over time, in a
highly recurrent manner. Within the compact exploration mode, several strengths of compaction
can be distinguished.

Non-compact exploration: universal mode of diffusion in which the exploration is global, and
every site on the structure has a constant probability to be explored (distance independence).

Fractal kinetics: type of kinetic reactions happening within a reactor that is not well-stirred.
This notably includes most reactions happening on a surface of reduced dimensionality. Fractal
kinetics are characterized by a progressive segregation between reagents and products. The
kinetic rate k of the reaction is time-dependent

3.3.2 Overview of the diffusion of known TFs

In the previous sections, we progressively detailed how the nuclear environment is organized (section
I.2), and how transcription proceeds and is regulated (section 3.1). We then motivated the importance
of studying how TFs diffuse in the cell to understand how transcription is regulated (section 3.3.1).
We now turn to a review of the current knowledge of TF dynamics. Indeed, the nuclear dynamics of
several TFs has been studied, and we highlight here some of the findings that were obtained.

1. Most TFs diffuse relatively slowly compared to the viscosity of the medium. A
first series of results looked at the diffusing fraction of TFs in the nucleus. Compared to their
expected diffusion coefficient based on the viscosity of the medium (section 3.3.1), most TFs
exhibit a reduced diffusion coefficient by at least an order of magnitude.
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(a) Common Mode of Transcription Factor Interaction with Chromatin. For instance, the
pluripotency factor Sox2 has been shown to exhibit differential diffusion coefficients de-
pending on which sub-nuclear compartment is observed. In the whole nucleus, 62% of the
Sox2 protein diffuses at a diffusion coefficient of 2.7 µm²/s (the rest being bound to DNA),
whereas in enhancer clusters, 36% of the proteins only are diffusing and diffuse at an even
reduced diffusion coefficient (1.4 µm²/s). In heterochromatin (HP1 domains), Sox2 exhibits
3 fractions, one bound fraction (16%), a slow fraction (D=0.6µm²/s; 26%) and a fast fraction
(1.6 µm²/s; 58%; Z. Liu, Legant, et al. 2014).
On a more general note, most of the TFs ever observed display a diffusion coefficient around
1-10 µm²/s. For instance the glucocorticoid receptor (GR) have been shown to diffuse at
3.4-5.2 µm²/s (Mueller, Wach, and McNally 2008; J. Christof M. Gebhardt et al. 2013),
p53 diffuses around 4.3-4.4 µm²/s, Max around 8.0 µm²/s (Mueller, Wach, and McNally
2008), SRF (a PRC2 component) displays three noticeable fractions (35% bound, a slow
fraction diffusing at 2.18 µm²/s and fast fraction diffusing at 10.82 µm²/s; Hipp et al. 2019).
PRC2 also displays two fractions (20% bound; 80% free diffusing at 2.09 µm²/s; Youmans,
Schmidt, and Cech 2018). When inserted in mammalian cells, the bacterial TF TetR also
displays three sub-populations (24% slow, <0.1 µm²/s; 43% medium at 1 µm²/s and 33%
diffusing fast, around 8 µm²/s; Normanno et al. 2015).
All these findings confirmed a foundatory analysis (Mueller, Wach, and McNally 2008)
that highlighted the similarities in the dynamics of several transcription factors, suggesting
common modes of exploration of the nucleus and of DNA-binding.

(b) A database of dynamic parameters of transcription factors. To undertake a more systematic
analysis, Stephan Ortiz, under the supervision of Mustafa Mir, and with the help of Anders
Hansen, started to compile an exhaustive list of published TF dynamics measurements,
with the goal to provide an integrated database about the dynamics of TFs, but also to
easily perform some meta-analyses. I provided some help to compile this database, that
now contains several hundreds of entries.

2. Most TFs bind DNA for a few seconds. A second "general rule" learned from single-
molecule imaging is the fact that despite being crucial for gene activation, most TFs bind DNA
for only a few seconds.

(a) Most TFs contact DNA for short periods of time. . . This has been evidenced for many
factors, including Sox2, that has a residence time of ∼ 7s, with ∼ 88% with a residence time
< 3s (Z. Liu, Legant, et al. 2014). This estimate was then split in two sub-populations of
bound molecules, with a "fast binding" faction (binding in average less than a second; 0.8 s)
and a "long binding" fraction (12s in average; J. Chen et al. 2014). p53 bound fraction can
also be divided between a long binding (6.5 s; 75%) and a fast-binding (1.8 s; 25%; Loffreda
et al. 2017). Similarly, NFκB displays a short binding fraction (0.53s; 96%) and a long
binding fraction (4.1s; 4%; Bosisio et al. 2006; Callegari et al. 2018). Moreover, p53 and GR
display distinct residence time when they are closed to active genes (Morisaki et al. 2014)
Even pioneer factors such as FoxA1 display very similar dynamics as non-pioneer factors
(Swinstead et al. 2016).

(b) But there are some exception. Among the few exceptions are SRF, a TF whose residence
time is around 1 min (Hipp et al. 2019). This residence time is exceptionally long for a
TF, but common for other DNA binding proteins such as histones (that reside on DNA for
hours) or CTCF (Anders S. Hansen, Pustova, et al. 2017). Also, the TFIID core protein TBP
binds DNA for seconds to minutes, an estimate that was provided by several techniques,
including SPT in various models (Reisser and J. Christof M. Gebhardt 2017; Teves, An,
Bhargava-Shah, et al. 2018) and temporal ChIP (Poorey et al. 2013).
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(c) Facilitated dissociation. In a simple kinetic model, the time spent on chromatin follows a
simple exponential law: it assumes a first order kinetic. If two types of sites (resp. long
and short residence times) are observed simultaneously, the residence time estimate will be
a mixture of several exponentials. Under this model, the residence time only depends on
the affinity of a given TF for the specific DNA sequence.
However, under some conditions, dissociation from DNA can be related to a non-first order
reaction: a phenomenon termed facilitated dissociation. Under this model, freely floating
proteins transiently associate with a bound molecule and destabilize it. Under this model,
the residence time of the protein depends on the concentration of external factor, which is
not the case under first-order kinetics. Facilitated dissociation has been initially observed
in bulk for the bacterial TF Fis (Giuntoli et al. 2015), then simulated using molecular
dynamics (M.-Y. Tsai et al. 2016) and finally observed at the single-molecule level (Kamar
et al. 2017).

(d) Hopping. Finally, when a TF dissociates, it might either diffuse freely in 3D for a long
time, or quickly re-associate with chromatin, a phenomenon termed hopping, that is par-
ticularly enhanced in high density chromatin, as evidenced by a series of theoretical models
(Wunderlich and Leonid A. Mirny 2008; Cortini and Filion 2018; Amitai 2018). Some of
them predicted increased gene expression at some loci (Avcu and Molina 2016). From an
experimental perspective, several NMR studies have shown that TF hopping and segment
inter-transfer are present, at least in an in vitro setting (Iwahara, Zweckstetter, and Clore
2006; Doucleff and Clore 2008; Speil et al. 2011).

3. TF dynamics are regulated. Second, emerging experiments show that the dynamics of a TF
is not an intrinsic property, but that it can rather be regulated. For instance, the acetylation of
the C-terminal domain of p53 correlates with its residence time (Loffreda et al. 2017).

Another series of experiments comes from the observation of the dynamics of TBP. In Zebrafish,
the bound fraction of TBP increases across development, a phenomenon that correlates with the
reduced cell volume (Reisser and J. Christof M. Gebhardt 2017). During mESC mitosis, the
bound fraction of TBP decreases from 34.6% in interphase to 18.6%. The diffusion coefficient of
TBP also drops from 3.2 µm²/s in interphase to 2.4 µm²/s in mitosis. TBP experiments show
how there can be an interplay between chromosome structure and TF dynamics.

Finally, not only the diffusion coefficient and bound fraction of a protein can be modified, but
also the way it explores space (section 3.3.1). Indeed, (Izeddin, Récamier, et al. 2014 and Bosanac
et al, unpublished data) found that the P-TEFb transcription factor switches from a compact
to a non-compact mode of exploration when interaction with the 7SK RNA is impaired. These
findings can be explained theoretically, and a model linking the mode of exploration with bursting
parameters has been proposed (Meyer et al. 2012).

4. Detecting co-recruitment and oligomerization states. Single-molecule dynamics can also
be used to assess protein-protein interactions. We just highlight two examples. First, (Anders
S. Hansen, Pustova, et al. 2017) measured distinct diffusion coefficients for CTCF and cohesin,
which lead to the conclusion that the two complexes could not be diffusing together in the nucleus.

Another example looked at HP1 oligomerization dynamics using fluorescence correlation spec-
troscopy (FCS), and found that HP1 diffuses as a dimer and tetramerizes upon DNA binding
(Hinde, Cardarelli, and Gratton 2015).

5. The long quest for specific DNA binding. The residence time of most TFs can be decom-
posed in two main components, a "fast" and a "slow" component, which lead the authors to
propose that the "slow" (long residence time) sub-population might represent specific binding of
a TF with a cognate TF binding site while the short might be transient, non-specific interactions.
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This vision is usually supported by experiments deleting the DNA-binding domain and observ-
ing changes in the "slow" fraction. However, this relationship between the duration of binding
and specificity has not been entirely demonstrated, and a clear way of determining a specific vs.
nonspecific contact is not available yet, as initially discussed in (Mueller, Stasevich, et al. 2013).

In some contexts (TF used in an exogenous context where no specific binding site exists), non-
specific binding has been measured and shown to be of the order of 100-200 ms (159 ms for TetR
transfected in mammalian cells; Normanno et al. 2015, 182 ms for LacI in mammalian cells;
Caccianini et al. 2015), supporting the idea that non-specific interactions are usually short-lived.

However, some recent experiments challenged this view recently. First, (McSwiggen et al. 2018),
measured the dynamics of RNA PolII when it is hijacked to transcribe the HIV rather than
the host genome. They found that despite the fact that the HIV is not particularly enriched
in PolII motifs, it gets almost entirely recruited to the HIV genome. The authors suggest that
this happens because the HIV genome is artificially maintained nucleosome-free. Within the
framework of specific/unspecific interactions, PolII is having mostly non-specific interactions
with the HIV genome, while spending a lot of time on chromatin, which contradicts the initial
guess that non-specific interactions are short-lived.

Second, (Raccaud et al. 2018) measured the link between mitotic binding of TFs a properties
and their properties in interphase dynamics. They found very little correlation between the
number of ChIP-seq peaks (supposedly related to specific interactions) and the dynamics of the
TF (with the exception of the pseudo on-rate), further suggesting that disentangling specific from
non-specific binding using only dynamics remains an open challenge.
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Chapter 4

Imaging approaches to study nuclear
diffusion

Introduction In the previous sections, we highlighted the interplay between nuclear organization, TF
dynamics and transcription regulation and demonstrated the need to perform live-cell imaging in order
to better understand transcription regulation.

In this section, we review existing imaging and analysis techniques that were used to image
transcription-related processes. We put a special emphasis on single-particle tracking (SPT). In section
4.1, we detail the traditional workflow of a SPT experiment. In section 4.1.3, we provide an overview
of other complementary imaging techniques. We then review in section 4.2 some mathematical basics
behind the analysis of diffusion and in section 4.4, we provide a critical comparison of SPT analysis
techniques.

4.1 Single-Particle tracking

Single-particle tracking (SPT) is a fluorescence, live cell, single-molecule technique that follows across
time individual molecules (see Z. Liu, L. Lavis, and Eric Betzig 2015 for a comprehensive review).
In practice (detailed in section 4.1.1), proteins of interest are labeled and imaged at low density
using a high sensitivity microscope. Computational analysis then allows to extract detections and to
reconstruct the track of each single molecule observed. Once the tracks are recovered, several analysis
techniques can be implemented (section 4.4)

4.1.1 A standard pipeline to perform SPT

In this section, we present a traditional SPT experiment. We briefly review some key steps of SPT,
from the preparation of the cell to data analysis.

1. Fluorophores & labeling. First, the protein of interest has to be labeled. Several parameters
should be taken into account at that step:

(a) Choice of the labeling technique. In order to perform live cell imaging, the protein is most of
the time fused to either a fluorescent protein or a reactive tag (such as a HaloTag or a SNAP-
tag So, Yao, and J. Rao 2008). Alternative approaches include imaging with nanobodies
(small antibody-like peptides) or ad-hoc reporters (Tanenbaum et al. 2014; Delachat et al.
2018).
When opting for a fusion protein, one can either transfect a construct, generate a genome-
edited cell line that would carry the fusion protein at the endogenous locus, or use micro-
injection to directly inject labeled proteins. Transient transfections are simple to perform
but give poor control over the expression level. Genomic knock-ins are tedious to perform,
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even with CRISPR-Cas9, but can fully reproduce the expression level and regulation of the
endogenous protein. Micro-injection allows to use direct labeling of the protein with the
dye, without the synthesis of a heavy fusion protein.
To obtain a sufficiently low number of visible fluorescent proteins at a time, one can rely on
either a transfection with a low amount of plasmid, the labeling with a low concentration
of dye, or stochastic labeling (Hui Liu et al. 2017)

(b) Choice of the fluorescent protein or dye. When using a fluorescent protein, brightness and
photo-stability are usually the limiting factors to perform SPT. Furthermore, the choice of
a photo-convertible or photo-activatable protein greatly facilitates imaging (van de Linde
and Sauer 2014). Such proteins include Dendra2 (Gurskaya et al. 2006) and mEOS (Paez-
Segala et al. 2015). When using a conjugation with a reactive tag, the choice of the synthetic
dye is also crucial. Limiting factors are usually the cell permeability of the dye, and their
cytotoxicity (B. R. Martin et al. 2005; Yang et al. 2011; D. S. Liu et al. 2014; Butkevich
et al. 2017; R. P. Ghosh et al. 2017; Jonathan B. Grimm et al. 2017; Kolmakov et al. 2015).
To choose a fluorophore is usually complicated, and few objective comparisons of fluorescent
proteins are available in the literature. However, some recent preprints provided a few hints.
Dunsing et al. 2018 benchmarked fluorophore pairs to assess the fraction of proteins that
actually emit fluorescence. Balleza, J. M. Kim, and Cluzel 2017 evaluated the maturation
time of several fluorescent proteins. Banaz, Makela, and Uphoff 2018 compared fluorescence
proteins and organic dyes with a focus on SPT.

2. Imaging. Imaging is then performed on live cells using a high sensitivity microscope equipped
with high-power laser. Several critical parameters should be considered when performing imaging:

(a) Exposure time. The faster the imaged protein moves, the faster one should image, and SPT
of nuclear factor is usually performed at 5–10 ms exposure time. Furthermore, in order to
avoid motion blur (detailed in section 1.2), one might want to use exposure strobes that are
shorter than the acquisition time of the camera, a technique called stroboscopic illumination
(reviewed in section 4.1.2).

(b) Signal-to-noise ratio. Second, SPT is a single molecule technique, and the signal of a
specific protein can quickly be overwhelmed by out-of-focus background fluorescence. A
good signal to noise ratio (SNR) is ensured by the use of low-auto-fluorescence samples
with clean coverslip and a proper choice of wavelength (cells are strongly auto-fluorescent
in the blue-green region of the spectrum). Furthermore, imaging techniques that provide
higher axial sectioning improve the SNR. Such techniques include TIRF, HiLO and light
sheet techniques (Tokunaga, Imamoto, and Sakata-Sogawa 2008,Greiss et al. 2016; Tang
and K. Y. Han 2018).

3. Detection & tracking. Once imaging has been performed and images of single molecules
collected, the next step is to extract the localization of the molecules and to link them to form
trajectories.

(a) Detection. The literature on spot detection and single-molecule detection is extensive, and
many of the advances from the PALM/STORM community can be readily used for SPT.
Detection algorithms include ThunderSTORM (Ovesnỳ 2016), QuickPALM (Henriques et
al. 2010), MTT (Sergé et al. 2008) and Picasso (Schnitzbauer, Strauss, et al. 2017). Many
others are presented in (R. Sun, Archer, and Paninski 2016; Gustafsson et al. 2016; Bernhem
and Brismar 2017; Przybylski et al. 2017; Boyd et al. 2018) and reviewed in (Sage, Pham,
et al. 2018).

(b) Tracking. Tracking, especially in high density conditions, has been the subject of intensive
research, including a tracking challenge to benchmark existing algorithms (Chenouard et
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al. 2014). The longer the track, the more critical the tracking algorithm (Saxton 2008).
Examples of tracking algorithms include (Karrenbauer and Wöll 2013; I. Sbalzarini and
Koumoutsakos 2005; Jaqaman et al. 2008; Sergé et al. 2008; Matysik and Kraut 2014; R.
Sun and Paninski 2018; El Beheiry, Türkcan, et al. 2016). Most of them rely on linear
programming and discrete optimization in order to split/merge tracks when ambiguities
arise due to spots being close from one another. It is important to note that despite intense
efforts to reconstruct tracks in a high density setting, some level of ambiguity will always
remain, potentially hampering dramatically downstream analyses. As such, low density
imaging conditions are preferable for SPT (Anders S. Hansen, Woringer, et al. 2018).

4. Formats. Once tracks have been extracted from the images, such results can be stored in a file
format suitable for analysis and sharing. The literature is relatively poor, and little standards
exist. Nonetheless, a SPT format based on the JSON format was proposed in Greenfeld et al.
2015. This format has not been maintained in the past four years, and this is why we decided to
propose a new SPT standard (section 4.4).

5. Conventional metrics and analysis. Depending on the analysis technique, SPT traditionally
yields some information on the existence of sub-populations of diffusing molecules and their
respective diffusion coefficients (D). It also provides information on the residence time on DNA
spent. To extract these parameters and many others, various analysis algorithms have been
proposed. We review some of them in section 4.4.

4.1.2 Techniques to perform SPT

We now detail a few flavours of imaging techniques, that were designed to provide different types of
data. We highlight some of their assets and drawbacks. Many questions can be answered using SPT
(Figure 4.1), and include transcription-related questions and many others.

1. spaSPT and other "fast SPT". A first approach relies on fast/short exposure time such
that individual molecules can be accurately followed over time. It is hard to tell when the
technique was pioneered, but SPT inside cells seems to date back to 2000-2008 (Goulian and
Simon 2000; Grünwald, Hoekstra, et al. 2006; Grünwald, R. M. Martin, et al. 2008). "fast SPT"
is the "traditional" SPT, used in many studies to study transcription factors dynamics (see for
instance Davide Mazza, Ganguly, and McNally 2013; Izeddin, Récamier, et al. 2014; Miller et al.
2017; Anders S. Hansen, Pustova, et al. 2017; Anders S. Hansen, Woringer, et al. 2018; Anders S
Hansen et al. 2018). "fast SPT" has also been used to study non-transcription related processes,
such as DNA repair in bacteria and on DNA curtains (Gorman et al. 2012; Stracy et al. 2016),
the dynamics of the Cas9 protein in mammalian cells (Knight et al. 2015), the spatially-resolved
switching dynamics of RNA-binding proteins in C. elegans (Wu et al. 2018), the dynamics of
telomerase subunits (Schmidt, Zaug, and Cech 2016) or chromatin itself (Shinkai et al. 2017;
Nozaki et al. 2017).

Significant effort has been devoted in order to validate that SPT provides similar estimates as
other techniques, such as FRAP and FCS (D. Mazza et al. 2012; Davide Mazza, Mueller, et al.
2013).

Using this technique, the proteins are illuminated to maximize the quality of the tracking of fast
moving particles. This implies the use of (a) fast exposure, typically 5-10 ms, and potentially
stroboscopic illumination (b) high laser power, to be able to detect molecules despite the short
exposure time. Because high laser power is used and because fast molecules go out-of-focus
quickly, the obtained trajectories are usually short, which hampers correlation analyses and
residence time analyses.

2. Slow SPT. "slow SPT" was designed to focus on DNA-bound molecules. By adopting a long
exposure time, fast moving (non-DNA bound) molecules undergo motion blur and only immobile
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proteins appear as detectable spots. A typical exposure time is 500 ms, although more complex
exposure schemes have been proposed (Reisser and J. Christof M. Gebhardt 2017; Hettich and
J Christof M Gebhardt 2018). The technique was pioneered in (J. Elf, G.-W. Li, and X. S.
Xie 2007), and further used to characterize the residence time of many factors on DNA (see for
instance Etheridge et al. 2014; J. Chen et al. 2014). This technique was also used to suggest that
facilitated diffusion on DNA occurs in cells (Hammar, Leroy, et al. 2012) and to dissect complex
kinetics of transcriptional regulation (Hammar, Walldén, et al. 2014).

3. 3D SPT. Performing 3D tracking is comparatively harder than performing 2D SPT. We highlight
some of the reasons in section 1.2. Nonetheless, at least one study performed 3D SPT in cells
using PSF shaping (Thompson et al. 2010). This study focused on mRNA tracking. We build
on this idea to propose a protein 3D SPT scheme in section 1.2.

4. Other techniques. Finally, a few other techniques disrupted the traditional trade-off between
quality of the SPT data and quantity of data that could be acquired. A first one (Tsunoyama et
al. 2018) performed regular fast SPT using an oxygen-scavenging system to increase the stability
of the fluorophore.

A second one, (Balzarotti et al. 2017) used a mechanical closed-loop feedback system to track
one fluorophore at a time using a donut-shaped PSF: the diffusing molecule is properly tracked
when the protein is inside the donut (in the dark space). Thus, the fluorophore is not excited
and has a very low probability of photobleaching. When the protein moves, it enters the donut
of light and emits photons. The collected photons are used to adjust the feedback system and
move the donut so that the protein is again inside the donut. In this system, the motion of the
donut reflects the location of the protein.
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Figure 4.1: Biological objects in the nucleus that can benefit from single-molecule imaging
for mechanistic studies. The red-star-labeled objects indicate objects that have been studied by
single-molecule imaging. (a) The labeling of the chromatin locus is shown. Chromatin loci in different
states (cell cycles, epigenetics, and nuclear position) can have different motion behaviors. (b) RNA
single molecules get through the nuclear pore complex. The transcripts leave the transcription sites
and diffuse through the pathways intertwined between compact chromatin domains and compartments
until the nuclear pore complex. (c) CTCF/YY1 and cohesin anchor the chromatin loop. (d) The
dynamics of nucleosomes and chromatin fibers. (e) Transcription factors (TFs) search the genome by
3D diffusion and one-dimensional sliding with fast kinetics until the target site in the enhancer region is
encountered. (f) Epigenetic effectors dynamically interact with chromatin. (g) The chromatin remod-
eling process. (h) DNA repair machinery. (i) Telomeres form T-loops, which consist of complicated
ribonucleoprotein. (source: S. Shao, Xue, and Y. Sun 2018)
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4.1.3 Alternatives to SPT to image transcription

SPT is not the only imaging technique that can provide information about transcription. For com-
pleteness, we present a few techniques alternative to SPT.

1. Imaging single locus. Despite its attractiveness, most SPT techniques do not provide sequence
specificity: it is not possible to know on which sequence a specific DNA-binding event happens.
Several techniques were developed to image specifically a given locus.

(a) In fixed cells. One of the first techniques to image transcription is fluorescence in-situ
hybridization (FISH), that uses a DNA probe complementary to the sequence of the locus
to be imaged. FISH has been of tremendous use to image transcription, but is restricted
to fixed cells. In the recent years, FISH has been scaled up so that hundred of loci can be
imaged in a single cell (Fields et al. 2018; G. Nir et al. 2018; Mateo et al. 2019).

(b) In live cells, using Cas9 imaging. Intense efforts have been devoted to translate locus
imaging to live cells. To do so, the RNA-guided Cas9 protein is fused to a fluorescent
protein, and a specific gRNA complementary to the target sequence is transfected into cells.
Imaging and tracking of a single locus has been shown using this technique (B. Chen et al.
2013; Qin et al. 2017; Martens et al. 2018).

(c) Imaging genomic regions. When one focuses on a given nuclear compartment, such as active
genes, other labeling techniques have been used, that trade the single-gene specificity for a
genome-wide labeling. For instance, the ATAC-see technique labels all accessible regions,
that can then be imaged, and further correlated with other labelings (X. Chen et al. 2016).
ATAC-see uses the property of the Tn5 transposase, that only integrates at accessible regions
of the genome. Similarly, active gene compartments can also be visualized in live by looking
at the incorporation of labeled modified nucleotides (D. K. Sinha et al. 2008; W. Xiang
et al. 2018).

2. Imaging single mRNAs.

(a) In fixed cells. Similar to DNA FISH, RNA FISH has been developed to image single mRNAs
in cells. Similar to DNA FISH, the technique was scaled up to image up to 10,000 mRNA
species in parallel using a multiplex FISH technique (Eng et al. 2019). Similar to DNA
FISH, RNA FISH can only be applied to fixed cells.

(b) In live cells. Several techniques have been developed to image single mRNAs in live cells.
The first one is the MS2 and MS2-derived system: a series of MS2 stem loops are added to
the DNA sequence in 5’ or 3’ of the gene. When transcribed into RNA, the stem loops can
be specifically bound by a protein, fused to a fluorescent protein. This technique allows to
investigate the dynamics of single mRNA molecules in live cells.
Other techniques avoided the editing of the gene by relying on the complementarity between
RNA and other fluorescently labeled species, such as RNAi (Avivi et al. 2017) or morpholinos
(Hadzhiev et al. 2018) and provided a live-cell view of mRNA dynamics.

3. Imaging proteins. Several techniques have been developed to image proteins, without the need
to image individual molecules. We briefly review the main existing techniques in this section.

(a) Fluorescence imaging after photobleaching (FRAP). FRAP is probably the most widely
known live-cell imaging technique. In FRAP, the cell expresses labeled fusion proteins,
and a high power laser is used to quickly bleach a defined region of the cell. Due to the
combined effect of diffusion and binding/unbinding of the fluorescent proteins, the bleached
region progressively "recovers" and becomes fluorescent again (Phair and Misteli 2001). The
recovery of fluorescence within the bleached spot is monitored over time, and the speed and
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shape of this recovery provides information on the diffusion of the protein of interest. It
is then possible to perform modeling and model fitting in order to extract the number of
diffusing species and their diffusion coefficients. A vast literature exists on the estimation
of diffusion parameters from FRAP (Periasamy and A S Verkman 1998; Phair, Gorski, and
Misteli 2003; Mueller, Davide Mazza, et al. 2010; Daddysman and Fecko 2013; Lorén et al.
2015).

(b) Fluorescence correlation spectroscopy (FCS). In FCS, the fluorescence intensity inside a
confocal volume is tracked across time: it increases when one fluorescent molecule enters the
confocal volume and decreases when it exits it. Fast-diffusing molecules cross the confocal
volume faster than the slow-diffusing ones, yielding a detectable signature. Despite being a
conceptually simple technique, there is a proficient literature on how to analyze FCS data.
Most of the analysis focused on computing aggregated statistics such as auto-correlation
curves followed by model fitting (McHale, Berglund, and Mabuchi 2004; S.-M. Guo et al.
2012; J. He, S.-M. Guo, and Bathe 2012; G. Sun et al. 2015; Tsekouras et al. 2015). More
recent development use the full temporal information: the timestamp of photon arrivals at
the detector and require much shorter acquisition times (Jazani et al. 2018), simultaneously
quantify diffusion and anomalous diffusion (F. Schneider et al. 2018) or combine it with
SPT (Limouse et al. 2017).

(c) Assessing protein-protein interactions: Förster resonance energy transfer (FRET). In
FRET, two fluorophores with compatible spectra are used: one "donor" fluorophore on
one protein or one protein domain, and one "acceptor" on another protein or the other
protein domain. When the two fluorophore are close enough (< 1nm), excitation of the
low wavelength fluorophore yields a non-radiative energy transfer towards the other fluo-
rophore, that starts emitting light, despite not being directly excited. As such, the ratio of
fluorescence between the two colors provide a quantitative estimate (Hellenkamp et al. 2018)
of the distance between the two fluorophore, and indirectly of protein-protein interactions
(Margineanu et al. 2016). FRET is widely used in vitro and has been repeatedly used to
monitor histone modifications dynamics in live cells (Sasaki et al. 2009; Peng et al. 2018).

4.2 Introduction to diffusion

Diffusion is the physical process by which atoms, molecules and small objects move under thermal
agitation. It is unclear when it was first observed, but some modern Latin poems mention the diffusion
of dust (Lucretius’s scientific poem "On the Nature of Things"; c. 60 BC). Despite an early description,
a mathematical formulation of diffusion has been lacking for long, and was only proposed in the 18th
and 19th century.

In this section, we introduce some mathematical background about diffusion and diffusion processes.
This chapter might be a little bit technical but can be skipped without problem. We present here a
mathematical formulation of diffusion, and derive some useful characterizations, such as the mean
squared displacement.

4.2.1 Free diffusion and Brownian motion

Free diffusion (or Brownian motion) can be derived using various approaches. Indeed Brownian motion
connects the fields of continuous time and discrete time analysis, and of stochastic and partial differ-
ential equations. We present here three complementary perspectives on Brownian motion (Grebenkov
2009; Briane, Vimond, and Kervrann 2018):

1. Partial Differential Equation (PDE) formalism. Brownian motion can first be derived
from Fick’s law, following an approach developed by Einstein in 1905. Fick’s law relates the flow
of particles to the concentration gradient and states that the flow is proportional to the gradient,
with a proportionality constant D, the diffusion coefficient:
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J = −D∇C,

with J the flow (in units of particles per surface area per time unit; mol.m−2.s−1), D the diffusion
coefficient (in units of surface area per time unit; m2s−1) and C the concentration of diffusing
particles (in mol.m−3).

Then, it is easy to derive the diffusion equation, analogous to the heat equation:

∂C(x, t)

∂t
= −D∆C(x, t), (4.1)

Where ∆ is the Laplace operator : in 1D, the second spatial derivative, ∆ = ∂2/∂x2. The
diffusion equation thus relates the spatial and temporal evolution of particles.

As with any partial differential equation (PDE), one can find a solution when boundary conditions
and initial conditions are specified. For diffusion equations, the solution corresponding to an
initial condition where a point source of particles (a Dirac, δ(x)) is placed at position x bears a
particular name: it is called the fundamental solution, the propagator or the Green function.

The Green function is a key solution of such family of equation for two reasons: (1) if the
Green function of a PDE can be determined, then the solution of the PDE with arbitrary initial
condition is known through a simple convolution and (2) for the special case of single-molecule
considerations, the propagator describes the motion of an individual diffusing particle.

One can easily check that the following function is a solution to equation 4.1:

p(x, t) =
1√

4πDt
e
−x2

4Dt (4.2)

This perspective benefits from the very strong power of PDE analysis, and many computations
can be performed easily and analytically. However, the PDE formalism does not give access to
single trajectories, and only presents average concentrations. These limitations are addressed in
the next two subsections.

2. Discrete time formalism. A single-trajectory perspective can be intuited from the propagator
of the random walk. One can make the analogy between a point-like source of molecules (a
Dirac, δ(x)) and a single-molecule. Then, the evolution of the concentration over time, properly
normalized, can be seen as a probability of presence over time. Thus, the propagator can be
interpreted as the probability density of a particle moving from the origin to a given point.

Thus, the displacement of a particle between time t and t + t can be drawn from the following
probability distribution p:

p(x, dt) =
1√

4πDdt
e
−x2

2Ddt ,

that is, the displacements X follow a centered normal law with variance 2Ddt: X ∼ N (0, 2Ddt).

This discrete formalism provides a straightforward approach to simulate single trajectories, in a
step-by-step manner.

3. Stochastic Differential Equation (SDE) formalism. Finally, one can formally take the
limit of infinitely small time steps, to obtain a (stochastic) function that describe the continuous
motion of a particle. This approach is called a "diffusion approximation". It allows to rigorously
describe the motion of a particle for arbitrary time steps. Brownian motion can be written as
the following stochastic differential equation (SDE):
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dXt =
√

2DdBt,

where Bt represents a normal Brownian motion (Bt−s ∼ N (0, t− s)).

4.2.2 Characterization of diffusions

After introducing various formalisms related to free diffusion, we provide two important characteriza-
tions of diffusions, and provide results for the case of free diffusion.

1. Mean Squared Displacement (MSD). First, diffusion can be characterized by its mean
squared displacement (MSD). The MSD describes how a particle explores space over time. It is
defined as (assuming a discrete trajectory of N points):

MSD(t) =
1

N

N∑
n=1

(xn(t)− xn(0))2 , for the continuous case

MSD(t) = E
(
||Xt −X0||2

)
, for the SDE case.

Under free diffusion, using the fact that the propagator follows a normal law of variance 2Dt one
can easily compute that:

MSDnormal(t) = 2Dt.

Thus, computing the slope of the MSD allows to get an estimate of the diffusion coefficient.
When the diffusive process observed deviates from free diffusion, a phenomenon called anomalous
diffusion, the MSD can no longer be fitted by a straight line, but often by a power law:

MSDanomalous(t) ∼ tα,

with α the anomalous diffusion exponent, between 0 and 1. When α = 1, one recovers normal
diffusion. The computation of the MSD is illustrated in Figure 4.2-left.

2. Jump length distribution. A second characterization of diffusion can be derived by looking
at the distribution of jump lengths, rather than the mean squared displacement, thus providing
a richer information. The jump length distribution gives the probability for a particle to make a
jump of given length r as function of the time lag (∆t). For free diffusion, it can be derived by
radially integrating the propagator:

p(r,∆t) =
r

2D∆t
e−

r2

4D∆t .

Again, this formula provides another manner to estimate the diffusion coefficient, by performing
for instance a non-linear least squares fit. This is the strategy adopted by the Spot-On tool,
presented in section 1.3. It is illustrated in Figure 4.2-right.
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Figure 4.2: Computation of the MSD (left) and the jump length displacement histogram (right).

4.3 Difficulties in analyzing SPT data

In the previous section, we presented three mathematical descriptions of Brownian motion. In this
section, we highlight some of the frequent deviations from ideal diffusion processes that are usually
observed, and that greatly complicate the analysis of SPT data. These biases need to be taken into
account when designing a SPT analysis algorithm (such as the ones detailed in section 1.3).

4.3.1 Noise

First of all, when single molecules are imaged under a fluorescence microscope, a localization error, σ,
is associated with each molecule, that depends, on a first approximation, on the number of photons
collected and the background level (Mortensen et al. 2010).

In practice, the true position of the particle is corrupted by an (assumed) normal Gaussian noise
of standard deviation σ. Fortunately, the two metrics presented above can be easily adjusted to
incorporate localization error, under a free diffusion assumption. The MSD is given by:

MSDσ
free(t) = 4σ + 2Dt.

Note that this estimator is usually regarded as a poor estimator, and many criticism has been voiced
against the use of MSD to characterize protein motion. Indeed, at low time intervals, the estimate of
the MSD is contaminated by localization error. At higher intervals, little data is available. Thus the
range where data can be used is narrow (Michalet 2010). More detailed calculations accounting for
noise were performed in (Deschout, Neyts, and Braeckmans 2012).

The jump length displacement is given by:

pσfree(r,∆t) =
r

2(D∆t+ σ2)
e
− r2

4(D∆t+σ2) .

4.3.2 Confinement

Second, these two formulas are valid when no boundary conditions are assumed. When a particle
diffuses inside a cell, it is confined within the cell membrane. Confinement yields non-linear MSD, that
saturates for high times considered. The MSD of a particle confined in a 3D sphere of radius a can be
computed as (Bickel 2007):

MSD(t) =
6a2

5
− 12a2

∞∑
n=1

exp

[
−β2

1n

Dt

a2

]
1

β2
1n

(β2
1n
− 2)

,

with β1n the (non-zero) zeros of the derivatives of the spherical Bessel functions, j′l(βln) = 0. One
can see that at long time scales (t >> 1), the MSD reaches a plateau: limt→∞MSD(t) = a2.
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4.3.3 Motion blur

When a particle in motion is imaged under a constant exposure time, it appears blurred: the photons
emitted by the diffusing particle are spread out. Motion blur has several consequences. Because
photons are spread out, localization accuracy is reduced and most fitting algorithms might miss the
detection. Furthermore, many metrics to quantify diffusion are biased when motion blur is present
(Berglund 2010). Thus, a rigorous treatment of motion blur (either at the experimental or the analysis
level) is needed. In section 1.3, we present an experimental approach to avoid motion blur. Conversely,
the detection technique presented in section 1.2 includes motion blur, that will have to be taken into
account at the analysis level.

4.3.4 Trajectory length

Third, the length of trajectories that can be observed using SPT is limited by two factors. The lifetime
of the fluorophore under the high laser exposures required for high signal-to-noise ratio leads to short
trajectories. Moreover, particles tend to exit the focal plane as they diffuse, thus limiting the length
of the observed trajectories (Matsuoka, Shibata, and Ueda 2009; Kues and Kubitscheck 2002). This
effect is exemplified in Figure 4.3.

Figure 4.3: Empirical limits on the trajectory length. (a) Because the axial detection range
of the objective is limited, diffusing particles move in and out of focus, leading to artificially short
trajectories. (b) Sample trajectories simulated with D = 0.5µm2/s and D = 4µm2/s, note the longer
displacements for the fast diffusion. (c) Histogram of trajectory length for two sets of simulations.
Fast-diffusing particles yield significantly shorter trajectories (mean length of 2.6 frames vs. 3.6 frames).
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4.4 Critical review of existing SPT analysis techniques

4.4.1 Slow SPT analysis techniques

1. Canonical slow SPT analysis. In slow SPT, only the particles bound to DNA are visible.
By tracking over time bound particles, one can estimate the residence time of the protein on
DNA. This is usually done by computing the distribution of residence time from multiple tracks
(that is, the distribution of track lengths), and performing a model fit to extract one or several
residence times.

Briefly, and following (Anders S. Hansen, Pustova, et al. 2017), the residence time on chromatin
is usually assumed to follow a first order kinetic: the time spend on chromatin (tON ) then follows
an exponential distribution of parameter k = 1/tON , and a constant dissociation rate can be
estimated. Under this simple hypothesis, the time spent on chromatin for a single binding event
follows the following distribution P (t), also termed the survival probability:

P (t) = Ae−kt,

with A a normalization constant. This model is too simplistic, however, and needs to be refined,
for instance to incorporate two biases: (1) photobleaching can happen a rate kpb and (2) truly
bound molecules can occur as a mixture of populations, for instance some molecules binding at
specific (S) sites, and some binding at non-specific site (NS). Under this condition, the survival
probability can be expressed as:

P (t) = Ae−(kns+kpb)t +Be−(ks+kpb)t.

Often, kns >> kpb and kpb can be neglected in this term of the equation. Additional biases can
be taken into account, such as the slow defocusing of the nucleus over time (Anders S. Hansen,
Pustova, et al. 2017).

2. Other analysis techniques. Under this model, it is very difficult to disentangle kpb and
ks because they have the same magnitudes. Some approaches were developed in order to get
more precise estimates of ks. One of them replaces the long exposure times (2 Hz) by short
frames interspersed by long dark times. By varying the dark time, it is possible to decouple
photobleaching from the specific binding rate (Presman et al. 2017; Ho et al. 2019). Such
approach has been extended to estimate any number of states (Reisser and J. Christof M.
Gebhardt 2017).

4.4.2 Fast SPT analysis techniques

The analysis of SPT has been intensively investigated, and one can distinguish several families of
techniques (see also for reviews: Metzler, Tejedor, et al. 2009; Récamier 2013; Ernst, Köhler, and M.
Weiss 2014). In the field of stochastic processes, the inference of a diffusion coefficient from a sampled
process is a common problem (see for instance Florens-Zmirou 1993; Hoffmann 2001). However, this
theory cannot be applied when moving to experimental trajectories, and other approaches have been
proposed.

1. MSD-based techniques. A first family of SPT analysis algorithms tries to perform robust
MSD inference. The use of MSD to study diffusion was introduced by Einstein in 1906, and
was revived in biology by (Qian 2000). MSD analysis can either be performed by inferring a
diffusion coefficient from a single trajectory (a setting studied in Michalet and Berglund 2012) or
by pooling various trajectories (Z. Liu, Legant, et al. 2014), and many refinements and estimators
based on the MSD have been proposed (Michalet 2010; Boyer, Dean, Mejía-Monasterio, et al.
2012).
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When inferring kinetic parameters from a series of single trajectories, one faces the issue that
for common trajectory lengths obtained in nuclear SPT (length of << 20 points per track)
and common localization error, inaccuracy reach 100% (Michalet and Berglund 2012; Fig 1 and
Anders S. Hansen, Woringer, et al. 2018). As such, any approach that uses MSD on short
trajectories should be evaluated with a lot of suspicion. For longer trajectories (such as diffusion
in a membrane), approaches have been proposed that can segment trajectories based on the type
of motion (Monnier, S.-M. Guo, et al. 2012).

2. Hidden Markov Models (HMMs). A second family of SPT analysis algorithms derived from
Markov models and Hidden Markov Models. Most of them were derived to perform trajectory
segment classification, the hidden value inferred being the state of diffusion, or the current
diffusion coefficient. For instance, (Monnier, Barry, et al. 2015) introduces the HMM-Bayes
technique to infer whether a trajectory segment is in one (or several) diffusive or active transport
states. Moreover, (Paddy J. Slator, Cairo, and N. J. Burroughs 2015) implemented the inference
of localization noise to infer switches in diffusion coefficient within one trajectory. A similar
approach was used to detect confinement (Paddy John Slator and N. Burroughs 2018).

These methods often rely on a fixed number of states, which comes from significant mathematical
limitations. Some of these limitations were overcome using so-called variational Bayesian infer-
ence (Blei, Kucukelbir, and McAuliffe 2016). The prototypical algorithm performing variational
Bayesian inference on a HMM is vbSPT (Persson et al. 2013). This algorithm can estimate the
number of diffusive states and progressively consolidate increasing information about these states
as trajectories are analyzed. The algorithm was further refined to incorporate the estimate of
localization error (Lindén and Johan Elf 2018).

3. Inferring maps of diffusion coefficients. A third family of SPT analysis algorithms not only
infers the diffusion coefficient over the population of diffusing molecules, but also a spatial map
of diffusivity (J.-B. Masson et al. 2009; El Beheiry, Dahan, and Jean-Baptiste Masson 2015).
This approach has been pioneered in membranes, where a high density of tracks can easily be
obtained. Inside cells, these promising techniques have not been tested, but the high diffusion
coefficients of nuclear proteins might render such a map difficult. Moreover, unlike in membranes,
proteins can reside at the same location with different diffusion coefficient, depending on whether
they are interacting with a given structure or not.

4. Inferring anomalous diffusion. Fourth, many approaches have been proposed to infer anoma-
lous diffusion in cells. Some of them are reviewed in (Guigas and M. Weiss 2008). A direct
technique can be used by fitting the MSD with a power law to estimate the anomalous diffu-
sion coefficient α. However, alternative techniques have been proposed. Many of them focus
on the inference of model-specific parameters, or on techniques to distinguish between types of
anomalous diffusion.

(a) Inferring diffusion parameters for anomalous diffusion. Several methods have been proposed
to infer diffusion parameters for several anomalous diffusion models. For the case of diffusion
in disordered (fractal) media, (Shkilev 2018) propose estimators that can be applied to SPT,
FCS and FRAP.
For the case of fractional Brownian motion, techniques to infer both the anomalous diffusion
coefficient (α) and the generalized diffusion coefficient (Dα) have been proposed. The former
approach (Krog et al. 2018) takes into account noise (localization error) and drift. It uses
Bayesian inference. The latter (Boyer, Dean, Mejia-Monasterio, et al. 2013) relies on squared
displacements and uses least squares to estimate Dα.

(b) Distinguishing between anomalous diffusion models. While the previous section focused on
identifying model parameters, assuming that the type of diffusive process is known, other
authors tried to infer the type of diffusive process itself. They try to distinguish between

74



various anomalous diffusion models. A prototypical approach (Robson, Burrage, and Leake
2012) used Bayesian inference to distinguish between Brownian, anomalous, confined and
directed diffusion, and uses the propagators associated with each different diffusion model.
Getting more into details, (Hellmann et al. 2011) found using a simulation study that it
is very hard to distinguish between fBm and obstructed diffusion when localization noise
is present, both in SPT and FCS. The authors used a combination of techniques for the
inference, including MSD and p-variation techniques. In (Burnecki et al. 2012), the authors
propose a series of test to "unambiguously" identify fBm, by progressively proving that
several other models are wrong. Other tests were proposed to distinguish fBm from a
CTRW (Magdziarz et al. 2009) using a test based on p-variations. The p-variations are
the finite sum of the p-th powers of the increments of the trajectory. Finally, approaches
inferring the mean first passage time of a particle were used to distinguish between CTRW
and diffusion in fractals (Condamin, Bénichou, et al. 2007; Condamin, Tejedor, et al. 2008).

5. Other approaches. Finally, many other families of techniques were proposed. Some relied on
maximum likelihood estimates (Thapa et al. 2018), auto-correlation functions (S. C. Weber et al.
2012) or on more exotic estimators (Vestergaard, Blainey, and Flyvbjerg 2014).

Another line of progress was made in the type of models being simulated. For instance, (Amitai
2018) introduced a model in which TFs can bind and rebind in a dense chromatin mesh. This
model was successively fitted to explain anomalous diffusion of CTCF dynamics (Anders S.
Hansen, Amitai, et al. 2018).

Finally, we note that many models were developed to infer trapping potential in membranes
(Türkcan, Alexandrou, and Jean-Baptiste Masson 2012; Jean-Baptiste Masson et al. 2014 for
instance). We do not review them here since their application seems limited to membranes.

4.4.3 Techniques from locus tracking

Some of the models presented above were never used in the challenging context of nuclear SPT. It
is likely that many will not perform well under the conventional imaging conditions of the nucleus.
However, the diffusion of brighter and slower-diffusing objects such as DNA loci has been investigated.
We mention them here as first examples of experiments bridging the gap between some inference models
and real-life experiments.

In addition to anomalous diffusion and its heterogeneity, that can easily be inferred from locus
tracking (for instance for telomeres in Bronstein et al. 2009), it has been shown that more specific
metrics such as the mean first passage time and the type of diffusion can also be inferred, for instance
in the case of the VDJ recombination in B-cells, a key process in the production of antibodies in response
to an infection (Lucas et al. 2014). Moreover, inference based on more complex chromatin models, for
instance deriving from a spring-and-binder model have been proposed to explain the dynamics of loci,
for instance when a DNA break occurs (Amitai et al. 2017). Finally, specific analysis techniques such
as two-loci tracking have been developed for the case of DNA tracking (Shukron and Holcman 2017)

4.4.4 Perspectives

We conclude this section by a discussion on SPT analysis techniques.

1. Seeing anomalous diffusion. A first comment is the extent by which anomalous diffusion really
exists in cells for diffusing proteins. This question was raised by Saxton in one of its last paper
published (Saxton 2012). Indeed, despite decades of research, clear benchmarks of anomalous
diffusion are missing. Non-linear MSDs have clearly been observed repeatedly. However, whether
the anomalous diffusion observed is caused by transient or permanent anomalous diffusion is not
clear, and the range of anomalous diffusion has not been fully investigated.
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2. Towards a challenge for a critical evaluation of those techniques. To do so, in addition
to high-quality benchmark materials, good quality analysis algorithms are needed. So far, only
limited comparisons have been performed between algorithms (see for instance Weimann et al.
2013; Anders S. Hansen, Woringer, et al. 2018) and a comprehensive benchmark of techniques
is missing, despite some framework being proposed (Rigano, Galli, et al. 2018). We propose a
collaborative challenge to tackle this issue in section II.4.

3. What do we care about? Finally, as highlighted in section 2, it is often possible to gain a
lot of information on the diffusive process without getting a fine characterization of the type of
diffusion. This idea was put forward in (Bénichou et al. 2010), and suggests that a key parameter
to estimate is whether the random walk is doing a compact, recurrent walk, or a non-compact,
transient walk, since this parameter determines most of the useful properties of the particle.
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Part II

Results
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Chapter 1

Developing tools to analyze SPT

Introduction. The main part of my PhD was to develop tools to analyze single-particle tracking
(SPT) data, with a focus on SPT data acquired in the nucleus of live cells.

In order to be efficient, a SPT analysis tool should satisfy several properties: (1) performance:
it should be good at estimating diffusion parameters, (2) robustness: it should be able to provide
good estimates, despite the limitations and biases of the acquisition system, (3) ease of use: a non-
programmer user should be able to use it and understand the basic principles of the program. Moreover,
the tool should be widely available.

In practice, such a tool has then to: (1) be designed with many of the biases of SPT in mind. (2)
be validated against a wide range of simulated and experimental conditions. (3) be available as an
open-source tool and sufficiently documented.

In this section, we will review the analysis techniques that we developed. First, we designed a tool,
simSPT (Anders S. Hansen, Woringer, et al. 2018; section 1.1, also used for the challenge II.4), to
simulate very quickly realistic SPT data. Then, we preliminary explored the possibility to perform 3D
SPT, rather than 2D (section 1.2). Finally, we explored various options to analyze SPT data:

• an approach based on the modeling of the jump length distribution, inspired from D. Mazza
et al. 2012 (section 1.3)

• a refinement of the previous approach, that takes into account anomalous diffusion processes
(section IV.2)

• an approach based on the joint modeling of the jump length distribution and the distribution of
angles (section IV.3)

1.1 Development of a simulation tool

Introduction. During the development of any inference algorithm, one should perform benchmarks
against a "ground truth" (a series of measurements in which the "true" value is known). In the case of
SPT, this ground truth can be obtained from experiments using calibrated solutions of known viscosity
in which particles of known size diffuse. Another way of getting a ground truth is to perform SPT
simulations in silico.

Thus, in order to validate the data analysis tools that we produced, we wrote a fast simulation
tool, simSPT. This tool tries to balance three variables: simulation speed, ease of use and realism of
the simulations. simSPT can simulate both Brownian and non-Brownian motion of proteins confined
in a sphere or in a cube, and takes into account several photo-physical parameters such as the photo-
bleaching rate and the number of photons emitted, through the localization error. In this section, we
review the rationale and implementation of simSPT.

78

https://gitlab.com/tjian-darzacq-lab/simSPT
https://gitlab.com/tjian-darzacq-lab/simSPT
https://gitlab.com/tjian-darzacq-lab/simSPT
https://gitlab.com/tjian-darzacq-lab/simSPT


1.1.1 The simSPT framework

Despite the fact that Brownian motion can be trivially simulated in a few lines of code (section 4.2),
several significant barriers need to be overcome in order to make the simulation realistic.

Several approaches can be undertaken in order to simulate SPT. One one side, simulations based
on molecular dynamics (MD) with explicit solvent have no limitation in terms of the type of motion
they can simulate, the choice of the confinement geometry, etc. MD simulation, however, are usually
difficult to parametrize and time consuming. On an intermediate scale, some tools simulate (Lindén,
Ćurić, Boucharin, et al. 2016) TIFF images of Brownian motion or trajectories (Drawert et al. 2016).

SMeagol by (Lindén, Ćurić, Boucharin, et al. 2016) is one of the most advanced simulation tools. It
simulates "3D diffusion in cellular compartments, diffusion limited reaction kinetics, surface adsorption,
reactions in membranes and other complex aspects of reaction diffusion kinetics that do occur in cells,
but are not considered in SPT analysis algorithms". The tool also integrates the simulation of a 3D
PSF, the kinetics of photo-activation, blinking and bleaching of the simulated fluorophores, background
noise and camera specific parameters. Despite being highly versatile, the code of SMeagol suffers a few
limitations. First of all, it is limited in terms of speed. It requires that many parameters are provided
by the user, and finally, it is limited to the simulation of Brownian motion. simSPT can be seen as a
simpler alternative to SMeagol.

simSPT is a small tool to simulate single particle trajectories of freely diffusing molecules in a
confined geometry (so far, a cube or a sphere) observed in fluorescence microscopy. simSPT tries to
be realistic about that, that is it takes into account (uneven) photobleaching (simulating fluorophore
lifetime and a HiLo beam; Tokunaga, Imamoto, and Sakata-Sogawa 2008), it also takes into account
a user-defined detection probability along the z axis. Finally, simSPT can simulate state transitions
(using the Gillespie algorithm). In all cases, simulations are performed starting from a steady state.
Furthermore, in its latest version, simSPT can handle several models of non-Brownian diffusion. Also,
simSPT is written in C, and is fast (that is, >> 20 times faster than the corresponding Python/Matlab
implementation).

We are very thankful to Anders S. Hansen who designed the initial simulation scheme, for com-
ments and insightful suggestions. simSPT incorporates read.c from Scott Brueckner (Sept. 1999) and
fractional Brownian motion simulation routines by Ton Dieker (Dieker 2004). This section borrows
some text from the simSPT documentation.

1.1.2 Simulation of realistic Brownian motion

1. Brownian motion & photophysics As explained in section 4.2, Brownian motion, that is the
trajectory over time of one freely-diffusing particle, can be simulated by drawing normal random
numbers with mean 0 and standard deviation

√
2Ddt where D is the diffusion coefficient of the

particle and dt the exposure time. Indeed, for Brownian motion, the position Xt+dt of the particle
at time t + dt can be computed as Xt+dt = Xt +

√
2DdtdBt, with dBt a unit, normal random

number (dBt ∼ N (0, 1)). This approach is called the Euler-Maruyama scheme1.

When several sub-populations of particles should be simulated, simSPT successively simulates the
various individual populations, unless the option to account for state changes has been selected
(section 3). In the former case, populations are defined by a diffusion coefficient (D), a proportion
(p), a fluorophore lifetime (β). In the later case, the tool uses a modified Gillespie algorithm to
simulate state changes.

The particles are simulated with a given lifetime: they photobleach when their photon budget is
exhausted. Particles are illuminated when they get inside the HiLo beam (HiLo beam is assumed
to be parallel to the (x,y) plane, has the shape of a step function). Inside the HiLo beam, particles
are progressively bleached with a constant probability per frame.

1In practice, we used an updated version of the Mersenne-Twister algorithm (as implemented in the GNU Scientific
Library –GSL–) to generate uniform random numbers. Then, to obtain Gaussian random numbers, we use Marsaglia’s
ziggurat method (Leong et al. 2005). Prior to version 1.6, simSPT was using the Marsaglia Polar Method.
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This formulation adopts the formalism of exponential clocks: every time a particle is created, the
software associate a lifetime. This lifetime is an integer number of frames that is drawn from an
exponential distribution whose mean lifetime is provided by the user. Then, every frame where
the particle lies within the HiLo volume, this lifetime parameter is decremented by one. When
it reaches zero, the particles is considered as bleached and is removed from the simulation.

Figure 1.1: Principle of simSPT. (a). simSPT simulates diffusion in a 3D volume (sphere), and
diffusing particles are only detected when they are inside the HiLo volume (orange region) and within
the depth of field of the objective (red region). (b). Principle of specular reflections. (c). Example of
a simulated trajectory crossing the focal plane.

2. Confinement and geometry parameters. Unlike free, unconfined Brownian motion, diffusion
in live cells is restricted by the nuclear envelope, or by the cell membrane. It is widely accepted
that confinement has a strong influence on the observed trajectories, and thus it should be taken
into account.

More precisely, confinement means that a diffusing particle must remain inside the confining
volume (for instance, a sphere representing the nucleus of a cell). From a numerical point of
view, this can be achieved by three ways:

(a) By resampling : every time a jump brings a particle outside the confinement volume, this
jump is discarded and a new jump is sampled.

(b) By substeps: the whole trajectory is simulated using very fine substeps. For instance,
one jump is simulated as the summed displacements of 20 substeps, each representing the
motion of the particle over dt/20 timesteps. At such a small scale, resampling can easily be
performed without introducing major biases.
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(c) By specular reflections: one assumes that the particle makes "elastic reflections" on the
confining surface.

simSPT implements the third approach (specular reflections; Figure 1.1b). This choice has been
motivated in the literature (Sharp et al. 1987) and many approaches allow a fast computation
of such reflections. Conversely, the resampling approach strongly biases many statistics of the
random walk, leading to unreasonable distribution of jump lengths. On the other side, simulation
using substeps is time consuming: simulating 20 substeps per step is twenty times slower.

In practice, we thus implemented confinement by performing specular reflections on the limits
of the simulation volume (see Figure 1.1). The details of the calculations and implementation of
3D specular reflections can be found on the internet.

3. Usage. Once compiled (simSPT is written in plain C), simSPT is a command-line tool. All
the parameters are then accessible through command-line arguments, or by providing an input
file (only for the case of the simulation of heterogeneous diffusion). Thus, the command line
can be used to specify the exposure time (-dt), the localization error (-sigma), the number of
trajectories to simulate (-n_traj), the radius of the confinement sphere (-radius), the seed of
the pseudo random number generator, in order to obtain reproducible simulations (-seed), etc.
An exhaustive list of the parameters is available in the documentation of the software.

As an illustration, we present the procedure to simulate a two states model, with a slow fraction
diffusing at 0.001 µm²/s, a fast fraction diffusing at 1 µm²/s, and a relative fraction of 50/50%.
The localization error (-sigma) is set to 35 nm, the frame rate to 10 ms (-dt). 100000 trajectories
are simulated and stored in out.csv. The pseudo-random number generator (PRNG) is initialized
at 0 (meaning that this simulations is reproducible, and will always provide the same result).
This option can be removed to get a random initialization of the PRNG. An illustration of a
sample trajectory is presented in Figure 1.1c.

./simSPT -D1=0.001 -D2=1.0 -p1=0.5 -p2=0.5 -sigma=0.035 -dt=0.01 -n_traj=100000
-file=out.csv -seed=0

4. Performance. simSPT has been designed to simulate data as fast as possible. Benchmarks by
Anders Hansen indicate that simSPT can generate half a million trajectories in just a few seconds.
The entire dataset used in (Anders S. Hansen, Woringer, et al. 2018) is about 80 GB in size and
was generated in less than an hour.

1.1.3 Beyond Brownian motion

In addition to the simulation of mixtures of Brownian motion, we implemented the simulation of
various types of anomalous diffusion models. The simulation of anomalous diffusion has been the
subject of intense research, and each anomalous diffusion model has to be simulated using specific
methods (Saxton 2007b).

Most of the existing programs to simulate anomalous diffusion focus on one type of models. Here,
we try to implement a diversity of models.

1. Anomalous diffusion. So far, we have only considered two simple cases: (1) one sub-population
case: all the particles follow the same laws of diffusion throughout the entire observation time;
Figure 1.2a (2) multiple sub-population case: all the particles follow the same laws of diffusion
throughout the observation time, but the particles can belong to different sub-populations with
different diffusive properties. These two cases can be considered as instances of Brownian motion,
since when one follows one given particle through time, this particles displays a (potentially
confined) Brownian motion (Figure 1.2b).

81

https://math.stackexchange.com/questions/225614/tangent-plane-to-sphere
https://en.wikipedia.org/wiki/Specular_reflection#Vector_formulation
https://gitlab.com/tjian-darzacq-lab/simSPT/
https://anderssejrhansen.wordpress.com/code/


However, as explained in section 3.3, many features of the nucleus of a cell can induce a departure
from Brownian diffusion. Among them: the existence of regions of space (clusters) where diffu-
sion is modified (section 2), the existence of state changes through time (a particle can switch
between states; Figure 1.2c and section 3), diffusion interspersed by long binding times (sec-
tion 4), diffusion in a viscoelastic medium (section 6) and diffusion in a highly crowded medium
(section 5).

Figure 1.2: Particles diffusing under a mixture of diffusion coefficients. (a) One population.
(b) Two populations without state changes. (c) Two populations with state changes.

All these phenomena lead to a departure from normal diffusion, namely, anomalous diffusion.
Their initial characterization was performed using the mean squared displacement introduced in
section 4.2. When diffusion is anomalous, the MSD scales as MSD ∼ tα instead of MSD ∼ t,
with 0 < α < 1. As such, anomalous diffusion is usually characterized solely by the non-
linear scaling of the MSD. However, the α exponent, despite being very informative (Bénichou
et al. 2010), does not provide mechanistic insights into the process that leads to the observed
motion. Thus, more refined characterization of anomalous diffusion are needed. A first step
was the implementation of simulation tools, that allowed to simulate anomalous diffusion in the
same context as for the Brownian simulation (nuclear confinement, short fluorophore observation
duration, etc).

2. Clusters/heterogeneous diffusion. The nucleus of a cell is not a homogeneous medium. It
can contain zones of fast and slow diffusion, regions of enrichment, etc.

simSPT has basic support for diffusion of a particle in a heterogeneous medium (Figure 1.3). This
support so far is limited to the following hypotheses:

• Depending on which region of space it resides in, the particle has a different fraction bound
and enrichment compared to the baseline of the nucleus

• There is no between regions of space

• Those regions of space can be specified using a specific text file that lists all the clusters,
their location and sizes.
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Figure 1.3: Simulation of clusters of various densities in simSPT. (a) Simulation of one cluster,
located slightly under the focal plane (red circle and orange dot), the cluster has a ten times enrichment
compared to the rest of the nucleus. (b) Simulation of several clusters, under the same conditions as
above. Left. localizations in the (x,y) plane, center localizations in the (x,z) plane, right density of
localizations in the (x,y) plane.

3. State changes. So far, we only presented a simulation setting in which particles of one sub-
population always remain in this sub-population. In practice, this is rarely the case and proteins
can switch state. For instance, a transcription factor bound to DNA can detach and become freely
diffusing. This is traditionally taken into account by assuming single-order kinetics: transition
between states a and b can be expressed using the kinetic rates ka→b and kb→a. When more
states are present (a, b, c, representing a fast, slow and bound sub-population for instance), one
can define K, a matrix of transition rates, where the element Kij corresponds to the rate ki→j
(Figure 1.2.

In practice, simulations can be performed using the fact that when first-order kinetics are as-
sumed, the time spent in a state a follows an exponential law of parameter ka→b. When more
than two states are considered, the time spent in state b is the minimum of the exponential vari-
ables of parameters ka→b and ka→c, . . . This formalism can be easily simulated using a modified
Gillespie algorithm. Once initialized at steady-state, the time spent in one state is determined
as specified above and particle motion is simulated using the diffusion coefficient of this state.
When a state change occurs, the time spent in this new state is also determined and the new
diffusion coefficient is used. In case a state change occurs between two frames, we recursively
simulate substeps so that the jump length is also computed exactly at this step.

(a) Initialization at steady-state. In order to initialize the simulations, simSPT computes the
equilibrium fractions ("relative concentrations" at steady-state) achieved under this matrix
of transition states. The steady-state distribution is determined by extracting the discrete
Markov Chain probability matrix P from the matrix of transition rates K. This is done by
normalizing the matrix by the transition rates.
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Then, the discrete-time steady state π is determined as the solution of the πP = π equa-
tion (Moler and Van Loan 2003). The continuous-time steady state is finally derived by
renormalizing π by the transition rates.

(b) Simulation of a two-state model with state changes. As an example, this simSPT command-
line will simulate two sub-populations with inter-conversion:

• k1→2 = 25.0s−1 (k1_2=25.0)
• k2→1 = 25.0s−1 (k2_1=25.0)

./simSPT -D1=0.001 -D2=1.0 -k1_2=25.0 -k2_1=25.0 -sigma=0.035 -dt=0.001
-n_traj=100000 -file=170621_D1_p0.5_dt0.001s.csv -seed=0

4. Continuous time random walk. A first model of anomalous diffusion is the Continuous Time
Random Walk (CTRW). Imagine a scenario where a particle alternates between free diffusion
and transient binding (immobilization) as exemplified in Figure 1.2c. If the binding/unbinding
rates follow a first-order kinetics (characterized by two kinetic constants, kunbound→bound and
kbound→unbound and a time in each state characterized by exponential distributions), then two
time regimes can be distinguished:

• At short time scales, diffusion is similar to the two-states model described above (section
3).

• At long time scales (observation time much longer than the characteristic time in one state),
diffusion and binding times are averaged, and the motion appears Brownian, a consequence
of the Central Limit Theorem.

In the case where the bound time follows a heavy-tailed distribution rather than an exponential
distribution, a specific case of CTRW is visible, in which anomalous diffusion is visible. Mathe-
matically (Weissman, G. H. Weiss, and Havlin 1989), a heavy-tailed CTRW can be described by
two probability distributions:

• The (spatial) distribution of jump lengths Φ, that is the same as for Brownian motion,
namely Φ(x) ∼ N (0, < dr2 >

• The (temporal) distribution of jump times Ψ, that follows heavy tail distribution, such as
a power law: Ψ(t) ' αtα0

Γ(1−α)t1+α .

In that case, the time-averaged MSD displays normal, Brownian diffusion (Figure 1.4d-e), whereas
the ensemble-averaged MSD displays anomalous diffusion (Figure 1.4b-c; Y. He et al. 2008).

Following this formulation, it is very easy to adapt the Gillespie simulation algorithm to simulate
CTRW, the jump times just have to be drawn from a heavy-tailed distribution (chosen as a power
law in simSPT) instead of an exponential distribution.
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Figure 1.4: Simulation of CTRW. (a) A 1D trajectory of CTRW, consisting of 250 jumps over 327
time points. (b) Comparison of the ensemble averaged MSD between simulated CTRW (alpha) and
the theoretical MSD (theo) for two levels of anomalous diffusion (α = 0.6 and α = 0.8). (c) Same as
(b) but in a log-log scale. (d) time-averaged MSD for a simulated CTRW of 100000 steps and (e) in
log-log scale.

5. Fractals. Diffusion on fractals is another type of diffusion that yields anomalous diffusion. A
fractal is a self-similar structure that reproduces at various scales. When a particle is said to
diffuse on a fractal, it is assumed that it diffuses freely on this self-similar structure, and the
anomalous diffusion exponent α is observed in the regular Euclidian space. When a particle
diffuses in a fractal media, it macroscopically exhibits anomalous diffusion, and the degree of
anomalous diffusion depends on a characteristic of the fractal, its fractal dimension df .

In practice, in biology, structures are never self-similar at all scales, because the size of the
objects considered are bounded by the size of the nucleus and the size of an atom, thus defining
a self-similarity regime. Within this regime of sizes, anomalous diffusion can arise. Despite the
fact that many processes can generate fractal structures, biophysicists often rely on a simple,
stochastic process and generate so-called percolation clusters.
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Percolation clusters are generated by taking an empty (3D) matrix and randomly adding "obsta-
cles" (non-zero) elements to the matrix. When the fraction of non-zero elements reaches a certain
threshold, called the percolation threshold, the size distribution of the contiguously accessible
elements (cluster) follows a power law and diffusion in such a cluster is anomalous (Ben-Avraham
and Havlin 2000; Havlin and Ben-Avraham 1987). For each simulation setting, a new percolation
cluster should be drawn.

Unfortunately, we did not have time to implement diffusion inside fractals in simSPT, although
the simulation scheme is relatively easy to implement on a lattice.

6. Fractional Brownian motion. Fractional Brownian motion is the type of dynamics that
arises when a particle diffuses and "bounces back" on a viscoelastic medium. In such a medium,
anomalous diffusion arises from the interaction between the viscoelastic medium and the particle.

In practice, fractional Brownian motion can equivalently be described as a generalization of
the Brownian motion described above. In a traditional Brownian motion B, the increment are
independent, which implies that the covariance of the process between two time points (s and t)
is zero (assuming s 6= t):

E(B(s)B(t)) = δ(s− t)

In the case of a fractional Brownian motion (characterized by its Hurst parameter H ∈ (0, 1]),
the increments are not independent, and the covariance between two time points is non-zero:

E(BH(s)BH(t)) =
1

2
(|t|2H + |s|2H − |t− s|2H)

The Hurst parameter is directly related to the anomalous diffusion coefficient α, with α = 2H.
When H > 0.5, the process displays a positive correlation: if it tended to go in one direction at
time t, it is more likely than by chance to go in the same direction at time t + dt. Conversely,
the process displays anti-correlation if H < 0.5, and it it more likely to go in opposite direction
at t+ dt than at time t. When H = 0.5, one exactly recovers Brownian motion.

The simulation of fractional Brownian motion is not as straightforward as with Brownian motion
or CTRW, because the definition of the fBm is implicit (the fBm is defined by its correlation
properties). Indeed, many techniques have been developed to simulate fBm (Coeurjolly 2007;
Shevchenko 2015) and a very exhaustive review in (Dieker 2004). The core difficulty lies in the
fact that because the covariance is non-zero, one can say that this process has memory, which
means that a fBm jump at time n can be computed given the position of the process at all
times [0, . . . , n − 1]. Furthermore, the simulation usually requires to compute (and invert) the
full covariance matrix

They can broadly be divided in two classes:

• Approximate simulation methods: they can either simulate a specific sub-type of fBm (not
any fBm sequence of numbers can be produced), or rely on assumptions on how to com-
pute/invert the covariance matrix. Most of them were developed for the case of H > 1/2,
which is not applicable to motion in a viscoelastic medium and are usually inaccurate for
short delta-t. These include the approximate circulant method, the Paxson method and
wavelet-based methods (all reviewed in Dieker 2004).

• Exact simulation methods: one can prove that these simulations exactly simulate fBm.
They differ in the way the covariance matrix is computed/inverted, depending on the math-
ematical decomposition/reformulation that is being used. Since these are exact methods,
they all produce the same fBm in the end, and only differ in the time/memory they require.
Depending on the size of the fBm to be generated, one method or another could be more
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efficient. Exact methods include the Hosking method, the Cholesky method and the Davies
and Harte method. This latter relies on a Fast Fourier Transform to compute the covariance
matrix, highly speeding up the simulation when long trajectories are to be simulated.

simSPT implements the fBm simulation library developed by Ton Diecker (Dieker 2004). We
chose to use the Hosking method because it appeared faster for the size of problems we simulated
(trajectories with less than 512 steps).

State changes are not implemented in simSPT when anomalous diffusion has been selected. Frac-
tional Brownian motion has only one parameter, the Hurst parameter H (that is equal to half of
the anomalous diffusion parameter, that is H = α/2.

A small example is specified below:

./simSPT -motion=fbm -H=0.2 -D1=3.0 -p1=1.0 -n_traj=50000 -sigma=0
-file=./outL2.txt -seed=22

1.1.4 Perspectives and conclusion

In this chapter, we presented a SPT simulation tool, simSPT, that balances ease-of-use with the incor-
poration of relevant biases usually encountered in nuclear SPT. In particular, the tool can reproduce
the distribution of trajectory lengths encountered in regular SPT experiments. It can simulate one
or several sub-populations of molecules undergoing Brownian motion, and can also incorporate inter-
conversion between an arbitrary number of states. The tool was used to generate the simulations to
benchmark Spot-On and other tools, as described in (Anders S. Hansen, Woringer, et al. 2018).

The strengths of simSPT are the fact that the tool is properly documented and packaged. Most of
the options are available through the command-line, allowing to build complex simulations in one line
of code, and to generate scripts to produce series of simulations. Second, because the tool is focused
on SPT simulation, it requires a comparatively low amount of configuration, which make it easy to
use. Third, as far as we know, simSPT is one of the fastest simulation tool available on the market.
This was instrumental in the case of Spot-On, where we could benchmark our analysis tool against
a wide range of conditions (inter-conversion, diffusion coefficients, localization error, axial detection
range, etc). The tool is used by several members in the lab, and also by collaborators.

Moreover, the implementation of anomalous diffusion simulation routines make it instrumental for
the complex diffusion challenge (section 4).

Finally, simSPT suffers some limitations. The first one is the limitation in terms of geometries that
can be simulated: so far, only spherical and cubic geometries can be simulated. This limitation is easy
to waive, since the routines confining the trajectories are independent of the type of motion (Szilvási-
Nagy 1984). Another, slightly more intricate, is the fact that simSPT simulates out-of-equilibrium
dynamics: particles are drawn at random from the several states, under the assumption that the pool
of fluorescent proteins is never depleted. This is a reasonable approximation for short simulations, but
is not realistic for longer ones. Furthermore, this approach yields out-of-equilibrium dynamics when
clusters enriched in proteins are simulated, with a net flow from the cluster towards the exterior. These
issues will have to be addressed in a new version of simSPT.
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Figure 1.5: Simulation of fractional Brownian motion. (left) MSD computed from simulated data
(blue) and corresponding theoretical MSD in log-log scale. (right) plot of the jump length distribution
at various time intervals. (a,b,c) display three levels of anomalous diffusion (α=1.0, 0.8 and 0.4,
respectively).
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1.2 Better detection tools

Introduction. In the previous chapter (section 4.2) we introduced 2D SPT of 3D-diffusing proteins.
In 2D SPT, the 3D motion of the observed protein is projected in 3D, and the motion in the x and y
dimensions is recorded while the motion in the z dimension is lost (Figure 1.6a).

In practice, doing 2D SPT is relatively easy because most detection algorithms used only detect
molecules that are "in focus" (within the focal plane of the objective) (for instance Sergé et al. 2008;
Tinevez et al. 2017). Indeed, "in focus" particles appear as diffraction-limited spots of minimal width
and maximum intensity. Conversely, as a particle moves out-of-focus, its point-spread function appears
dimmer and more extended. Such molecule is usually excluded by the basic spot detectors used in
2D SPT (Figure 1.6b; in practice, it depends on the magnitude of the displacement and whether the
detector assumes a PSF model). In these conditions, the observation window is usually limited in the
third dimension to approximately 0.7-1.0 µm.

When the observation window is limited to 0.7-1.0 µm in depth, a diffusing protein moves out-of-
focus very quickly, in the span of a few frames, depending on the diffusion coefficient (Figure 1.6a).
All-in-all, regular 2D SPT data of proteins diffusing at diffusion coefficients around 1-3 µm²/s usually
yield a mean trajectory length of ∼ 4 frames, as can be seen in (Figure 1.6c).

Figure 1.6: Limitations of 2D SPT. (a). Particles are observed in 2D while they diffuse in 3D, and
they can move out-of-focus. (b). Experimental Airy PSF over 6 µm: only in-focus particles appear
as bright spots (image courtesy Benoît Lelandais). (c). Plot of the number of molecules remaining
in-focus as a function of time, plotted for various diffusion coefficient and assuming imaging at 100 Hz.
Plot based on simulations of SPT.

With such short trajectories, it is extremely difficult to derive accurate statistics because of the
high magnitude of the statistical noise (theoretically explored by Michalet and Berglund 2012. There
is thus a need to extend the detection range in the third dimension. No matter the technique used, one
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faces a fundamental trade-off when trying to extend the detection range in z: as the particle moves
out-of-focus, the photons are progressively spread, and the PSF is progressively lost in the noise. To
counter-balance this effect, the only solution seems to increase the exposure time. This is done at the
expense of the PSF shape, because diffusing particle will have time to diffuse during one frame, as
described in (section 4.2).

This section presents preliminary simulations and techniques in order to move from 2D to 3D fast
SPT. This project was realized in very close collaboration with Benoît Lelandais from the Zimmer lab.
Benoît developed an extension to ZOLA (Aristov et al. 2018) in order to simulate an arbitrary PSF at
a given (x, y, z) position and he implemented several fitting routines that we had compared together.
I generated the simulations.

We aim at solving the problem of detecting and localizing in 3D a particle that undergoes 3D
diffusion under some level of motion blur. After a short introduction to motion blur (section 1.2.1) and
3D localization methods (section 1.2.2), we formulate the problem as a multi-emitter fitting problem
(section 1.2.3) and propose both a simulation framework (section 1.2.4) and algorithms (section 1.2.5)
to solve it. Preliminary results are also briefly presented.

1.2.1 Origins of motion blur

In cells, most of the transcription factors that have been studied display at least one sub-population
that moves with a diffusion coefficient in the range 1-5 µm²/s (section 3.3). As detailed in (section
4.2) and assuming Brownian motion, the propagator equation gives the probability that a diffusing
particle makes a jump of a given distance r in a time interval texp (equation 4.2). From this equation,
one can easily compute the fraction of molecules that will move more than some number, rmax, during
an exposure time, texp, given a free diffusion constant D using the following equation:

P (r > rmax) = e
− r2max

4Dfreetexp

For example, if we define motion-blurring as moving more than 2 pixels (> 320 nm assuming a 160
nm pixel size) during the excitation, an exposure time of 10 ms and a typical free diffusion constant
of 3.5 µm²/s (e.g. Sox2), we get:

P (r > rmax) = e
− (0.32µm)2

4×3.5µm2s−1×0.010s ' 0.481

Thus, even for a relatively slowly diffusing protein, with a 10 ms exposure we should expect almost
half (48%) of all free molecules to show significant motion-blurring.

Motion blur is usually avoided by using short excitation times, sometimes shorter than the camera
acquisition time, a technique called stroboscopic illumination (J. Elf, G.-W. Li, and X. S. Xie 2007),
as detailed in the spaSPT technique explained in (section 1.3) and in (Anders S. Hansen, Woringer,
et al. 2018). Stroboscopic illumination and short exposure times both require that the laser pulses are
concentrated within a very short time window (usually 0.5-5 ms), and thus necessitate powerful lasers.
In several SPT acquisition settings (e.g: Teves, An, Anders S Hansen, et al. 2016; Anders S. Hansen,
Pustova, et al. 2017; Anders S. Hansen, Woringer, et al. 2018; Boehning, Dugast-Darzacq, Rankovic,
Anders S. Hansen, T.-K. Yu, et al. 2018), laser power is the factor limiting the decrease in exposure
time.

Thus, a diffusing protein moves during the camera exposure. Following equation 4.2, one might
think that this motion blur yields a Gaussian spread, that increases with the exposure time, since the
equation describes a Gaussian with a standard deviation σ =

√
2Dtexp (Figure 1.7a). However, this is

only true when averaging many trajectories, and it has been theoretically and experimentally shown
that individual samples of a Brownian diffusion are never isotropic: a random walk statistically adopts
a given form factor (its its ratio of dimensions, or tensor) or "shape" (Rudnick and Gaspari 1987;
Sciutto 1994; Haber, Ruiz, and Wirtz 2000). This is exemplified in Figure 1.7b.
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Figure 1.7: Towards 3D SPT. (a) In average, a random walk is symmetric and normally distributed,
but (b) every single realization is actually asymmetric (figure from Rudnick and Gaspari 1987). (c)
procedure to recover a 3D position from a 2D, motion-blurred detection. From a motion-blurred
detection (left), the positions of the emitter are estimated (center) and the mean position in 3D is
computed (right).

To sum up, when doing fast, 3D SPT, a certain amount of motion blur is unavoidable for the
following reasons:

• The photons are more spread out than in 2D.

• Whereas in 2D, the exact shape of the PSF does not matter and precise 2D position can be
recovered using simple centroid methods. (Deschout, Neyts, and Braeckmans 2012), in 3D the
position in the third dimension is encoded in the shape of the PSF and small distortions (smaller
than one pixel) might totally compromise the resolution in z.

In the following sections, we propose a framework to account for motion blur in 3D localization.

1.2.2 Introduction to 3D localization using PSF shaping

First, we briefly detail how 3D localization microscopy is usually performed. When a point source is
observed through an objective, its image is not a point, but a diffraction spot called the point-spread
function (PSF). Fourier optics can be used to mathematically determine the shape of the PSF, given
the optical components of the microscope (Goodman 2005).

On an ideal microscope, the PSF is an Airy function, that is reasonably approximated by a sym-
metric Gaussian function. In practice, small deviations (aberrations) from the Airy PSF are present
(Theer, Mongis, and Knop 2014) and one generally tries to avoid them. When PSF shaping is imple-
mented, aberrations are introduced on purpose in the optical path, in order to make the PSF strongly
asymmetric in z, allowing to encode the z position in the shape of the PSF. Initially this was imple-
mented as an astigmatic PSF, in which the PSF appears elongated in one dimension for low z and the
orthogonal direction for high z. Astigmatism can be performed using a cylindrical lens (B. Huang, W.
Wang, et al. 2008). Later on, new engineered PSFs were developed using deformable mirrors (Izeddin,
Beheiry, et al. 2012; Aristov et al. 2018), spatial light modulators and phase masks.

In parallel to the development of PSF shaping, many advances were performed in order to precisely
localize individual fluorophores in 2D and 3D and take into account additional characteristics of the
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microscope, and more complicated PSF than approximately Gaussians. This includes theoretical work
to accurately determine the localization error (Mortensen et al. 2010; Rieger and Stallinga 2014) and
the effect of fluorophore polarization (Enderlein, Toprak, and Selvin 2006), but also the design of entire
localization algorithms (Basset et al. 2015; Aristov et al. 2018; Siemons et al. 2018; Yi, Piestun, and
S. Weiss 2019; Fazel et al. 2019, compared in Sage, Pham, et al. 2018). The combination of both PSF
shaping and efficient reconstruction algorithms allowed to reach a precision of ∼ 10 nm in x,y and ∼
50 nm in z.

In the next section, we present how motion blur can be incorporated in order to recover 3D local-
izations.

1.2.3 Mathematical framework

1. Problem formulation. When an image of a freely-diffusing protein is made through a micro-
scope with active PSF shaping, the following mathematical description can be made:

(a) The particle diffuses with a diffusion coefficient D, and its 3D position Xt across time t can
then be described by the following stochastic differential equation: dXt =

√
2DdBt, with

Bt a standard Brownian motion.

(b) The particle is observed during the exposure time of the camera, texp.

(c) At a given time t, the particle emits photons and behaves as a point source. The image of
this point source is then given by the (3D, shaped) PSF σPSF (x, y, z) of the microscope.

(d) When the photons arrive on the camera detector, the recorded "motion-blurred PSF" is then
an image I of the motion blur due to the diffusion of the particle during texp, convolved by
the 3D PSFs.

2. Motion blur as a stochastic deconvolution problem. Mathematically, the recorded image
I at pixels (i, j) can then be described as, assuming constant intensity (photon emission) of the
particle during Texp:

I =

∫ Texp

0
σPSF (Xt(x, y, z)) dt

This can be recasted as a convolution problem, by defining the "image trajectory" St ∈ R3 of
the random walk, namely the curve in 3D described by the random walk until time t:

St =

∫ t

0

∫
R3

1Xtdxdydzdt̂

Then, the resulting 2D image I can be expressed as a convolution with a 3D PSF:

I = St ∗ σPSF

The deconvolution problem aims at recovering St given σPSF and I. Three major difficulties
arise when comparing this problem with a traditional deconvolution problem:

• St should be 3D, whereas I is 2D only (the third dimension is encoded in the shape of the
PSF.

• St should be super-resolved compared to I, in order to achieve sub-pixelic localization.

• St is the "image trajectory" of a random walk, and as such displays no regularity that could
be exploited, as usually used in 3D deconvoluion algorithms.
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3. Motion blur as a multi-emitter fitting problem. Thus, we realized that most of the
deconvolution algorithms could not be used to perform such task. We also realized that our
approach did not require the identification of the entire St at high resolution, but is sufficient to
calculate some statistical descriptors of St. Indeed, our aim is for each motion-blurred PSF to
recover only the mean location of the particle in (x, y, z), which is much less information than
contained in St, which itself contains much less information than Xt.

Indeed, the quantities that we are willing to extract are the mean position of the particle during
the camera exposure time texp. We denote Xx

t (respectively Xy
t , Xz

t ) the x (respectively y, z)
component of the Brownian motion, and express the mean x position: x̄:

x̄ =
1

texp

∫ texp

0
Xx
t̂
dt̂, respectively ȳ and z̄

We thus decided to reformulate the problem as a multi-emitter fitting problem. In such a setting,
we assume that the observed image I can be reasonably expressed as the superposition of N
(discrete) 3D PSFs. This is equivalent to discretizing the random walk. In other words, St
is approximated by a discrete series of N points. Each of these points represents the average
location of the initial walk Xt during a time texp/N . We denote the discretized walk as X̂n, with
n ∈ [0, N ], and X̂n defined as follows:

X̂n =
N

texp

∫ (n+1)/N∗texp

n/N∗texp
Xtdt

Formally, when N increases, then X̂n should converge to Xt. In this setting, an estimate of
(x̄, ȳ, z̄) is given by the average position of the N 3D points:

x̄ ' 1

N

N∑
n=0

X̂x
n , respectively ȳ and z̄

This formulation provides two highlights:

• First, it hints at a simulation methods: one can simulate Brownian motion with N substeps
per exposure time, convolve them in 3D using a simulated 3D, shaped PSF and sum the
resulting images in order to produce the image I.

• Second, it hints at an inference technique, since the problem is now reduced to a parametric
estimation of 3N parameters (x, y, z for each of the N points).

1.2.4 Data simulation

Once the problem was formulated as in (section 3), we decided to first adopt a simulation approach in
order to:

1. Gain a better understanding of the effect of motion blur, and determine how symmetric are
the PSF generated. Indeed, the trajectory of a random walks is known to be highly non-
symmetric (Rudnick and Gaspari 1987; Sciutto 1994) and to adopt in 3D an aspect ratio in
average Rx, Ry, Rz = 11.80 : 2.69 : 1.00. Furthermore, one can assume that the z information
is lost as soon as the particle moves by more than half a pixel (80 nm) in any direction. The
fraction of molecules in which the z information is lost in motion blur can then be approximately

estimated using (equation 4.2; P (r > rmax) = e
− r2max

4Dtexp ). For a typical transcription factor dif-
fusing at 3 µm²/s exposed for texp = 10ms, this represents a 95% loss of molecules. If the frame
rate is brought down to 2 ms, this value is still very high, about 75%. Coupled with simulations,
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this first back-of-the-envelope calculation motivates the development of a multi-emitter fitting
algorithm.

2. Determine the effect of the diffusion coefficient and the choice of the shape of the PSF on the
quality of the estimation.

3. Provide a ground truth so that we can benchmark several fitting approaches.

1. Choice of PSFs. Several approaches exist to simulate realistic 3D PSFs, using various decompo-
sitions or optical models (Y. Li et al. 2017; Douglass 2017; Fast and Accurate Three-Dimensional
Point Spread Function Computation for Fluorescence Microscopy - Jizhou Li’s Homepage 2017).
We used ZOLA (Zernike Optimized Localization Approach, described in Aristov et al. 2018) that
incorporates an analytical generative PSF model that can generate any PSFs provided that its
phase is continuous. ZOLA can infer the Zernike decomposition of a PSF using a z-stack of a
bead. As such, one can gain a fully generative model of a given empirical PSF. We decided to
use an extension of ZOLA developed by Benoît, in which the user can specify lists of (x, y, z)
coordinates and the corresponding PSFs are simulated.

Figure 1.8: Simulation of 3D, shaped PSFs. (a) (respectively, b, c) Phase (at the back-focal plane
of the microscope) corresponding to an astigmatic PSF (respectively, a saddle-point and a tetrapod
PSF). (d) (respectively, e, f) Corresponding (experimental) z-stack of the astigmatic PSF, over a 4
µm range (respectively saddle-point PSF and tetrapod PSF). Source: Aristov et al. 2018.

We simulated four types of PSF: (1) a symmetrical, Airy PSF, (2) an astigmatic PSF, (3) a saddle-
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point PSF and (4) a tetrapod PSF, pictured in Figure 1.8d-f. All these PSFs can be implemented
in a microscope using a deformable mirror device (DMD), resulting in a shaped phase (Figure
1.8a-c). For the case of astigmatic PSF, a cylindrical lens can be used in replacement of the
DMD.

2. Trajectory simulation. We simulated the motion of a protein during one exposure frame.
We simulated a wide range of conditions and varied the following parameters (Table 1.1). For
each condition, we simulated 500 substeps and performed 100 replicates. For instance, when
simulating one exposure frame of 10 ms, Brownian diffusion was simulated on 500 substeps of
0.02 ms (10 ms/500).

Table 1.1: Parameters used for the simulations of motion-blurred PSFs.
Parameter name unit range explored number of conditions
Exposure time dt ms 1-100 14
Diffusion coefficient D µm²/s 0.1-10 8

In total, we generated 11200 trajectories. Then, for each of the 500 simulated (x, y, z) positions
per trajectory, we used ZOLA to produce a corresponding PSF, using the four PSF shapes
mentioned above. Finally, for each trajectory, the 500 PSF images were summed in order to
produce motion-blurred images (Figure 1.9).

Figure 1.9: Procedure to simulate and validate 3D SPT. (a) 500 substeps of a trajectories are
simulated, for a total time of one exposure frame, (b) 500 PSFs are computed using a realistic model
used in ZOLA-3D, (c) The 500 frames are summed, and noise can be further added. (d) Illustration
of two metrics used to characterize the trajectories: the asphericity (A) and the root mean square
deviation (RMSD).

3. Trajectory statistics. We then characterized the simulated trajectories. Our goal was to get
an overview of the simulated dataset, but also to select PSF that are expected to be "hard to
fit". How to define an "Hard-to-fit" PSF? We decided to rely on two criterion applied to the
underlying trajectory (illustrated in Figure 1.9d): the root mean squared deviation (RMSD) and
the asphericity (A). The RMSD quantifies the spread of the detections whereas the asphericity
quantifies whether the trajectory appears elongated in one dimension.

The RMSD is defined as: RMSD =
√

1
N

∑N
t=1 ((x̂− xt)2 + (ŷ − yt)2 + (ẑ − zt)2).
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The asphericity is defined as follows (Sciutto 1994; eq. 12): A = 1
d−1

∑d−1
i=1

∑d
j=i+1(λi−λj)2∑d
i=1 λi

with
the λi the eigenvalues of the inertia matrix, and d = 3 for the 3D case.

The distribution of asphericities and radii of gyration is represented in Figure 1.10. The fact
that most trajectories exhibit an asphericity higher than 0.5 suggests that motion blur should be
accounted for in order to perform a fit of good quality, and that it cannot be neglected.

For the rest of the analysis, we mainly focused our efforts on the 10 trajectories with the highest
asphericity and the 10 trajectories with the highest RMSD (Figure 1.10c). If the algorithm
performs well on such "bad-behaved" examples, we expect that the algorithm will perform well
generally (and further validations will be required).

Figure 1.10: Statistics of simulated trajectories and PSFs. (a) Distribution of asphericity
and (b) RMSD for the simulated trajectories. On average, the trajectories exhibit a relatively high
asphericity (with a mode around 0.8) and a highly variable RMSD. (c) The 20 trajectories with the
highest RMSD (two top rows) and the highest A (two bottom rows).
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4. Noise models. As a first attempt, we assumed a noiseless model and fitted the data assuming an
infinite signal-to-background ratio. Then, in order to simulate more realistic imaging conditions,
Poissonian noise was added to the images. We tested one noise condition, consisting in np = 1000
photons per PSF and a background of nbg = 1 photon per pixel.

Thus, the noisy image Inoise is a realization of a Poisson process whose intensity derives from I.
We now assume that I is normalized (the sum of all the pixel values is 1). Representative images
are plotted in Figure 1.11.

Then, Inoise can be expressed in the units of number of photons as follows:

Inoise = P (np ∗ I + nbg)

Figure 1.11: Example of noisy PSFs. (a) 10 simulated PSFs and (b) the same PSFs, with noise
added (1000 photons and background of 1 photon/pixel).

1.2.5 Fitting

Once the data has been simulated, one can run a fitting algorithm in order to estimate the position of
n PSFs and recover 3N parameters. In practice, before choosing an algorithm, one should be aware
that depending on the the PSF, identifiability issues may arise: more than one solution can come out
of the optimization routine (section 2). Second, multi-emitter fitting is known to be more challenging
than single-emitter fitting due to both the dimensionality of the problem and the existence of many
symmetries, that lead to non-unique solutions, and adequate optimization algorithms are needed. We
present below some results both in the noiseless and noisy cases.

1. Identifiability issues. When performing 3D multi-emitter fitting, the choice of the PSF is
critical. Indeed, it might be very often impossible to distinguish some localizations if the PSF
is not identifiable. An example is provided in (Figure 1.12), in which an astigmatic PSF was
used. In that case, it is impossible to decide whether one observes an in-focus particle undergoing
directional motion in the vertical direction or an immobile, out-of-focus particle. More complex
PSF shapes reduce (but do not abolish) the identifiability issue.
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Figure 1.12: Identifiability of an astigmatic PSF: provided a spot such as as the one presented at the
top of the figure, it is extremely difficult to state whether it corresponds to an out-of-focus, immobile
particle (bottom left), or to a mobile, in-focus particle (bottom right).

2. Choice of algorithm. In order to solve the multi-emitter fitting problem presented above,
one needs to choose an optimization algorithm. Using non-linear least-squares fitting is usually
a good, by-default choice. However, in the case of multi-emitter fitting, we decided to opt for
other techniques. The optimization problem to solve has many symmetries, and thus many local
minima because the emitters fitted can be swapped. Thus, if S = (X1, . . . , XN ) is a solution to
the optimization problem (where Xi = (xi, yi, zi) the coordinates of one of the emitters), then
any permutation of S is also a solution of the problem. In other words, when the problem is
solved with N emitters, it has N ! equivalent solutions. Such a high number of solutions is known
to cause problems to non-linear least square algorithms.

We instead decided to focus our work on algorithms known to perform well on non-convex
problems, namely cross-entropy optimization and genetic algorithm (Botev et al. 2013; Benham
et al. 2015; Lovinger 2018).

Cross-entropy is an iterative stochastic optimization algorithm in which a population of candidate
solutions are first sampled according to an initial distribution. Second, the quality of the fit of
each of these candidate solutions is evaluated by computing the Kullback-Leibler divergence
between the model corresponding to the candidate solution and the experimental data. Third,
the 10% best-fitting candidate solutions are kept and their mean parameter value and variance is
computed. These mean values and variance are then used to sample a new population of candidate
solutions, and a new iteration can start. As the algorithm iterates, the variance progressively
converges, and the mean value of the parameters of the models converge to accurate parameter
estimates.

Genetic algorithm is another iterative stochastic optimization in which a population of candidate
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solutions is sampled, and the best fitting solutions are selected for the next round. They are
allowed to perform two sets of moves: a local optimization, and recombination between good-
fitting solutions. In practice, it is difficult to perform efficient recombinations because of the high
number of symmetries of the problem. We partially tackled this problem by defining an arbitrary
order to the emitters, using a nearest-neighbour search.

3. Noiseless case. On some preliminary simulations, the cross-entropy method provided better
results, and the following results were obtained using this method. We first assessed the per-
formance of our multi-emitter fitting algorithm on noiseless, motion-blurred PSFs. As described
above, we used a subset of PSFs that displayed either a high RMSD or a high asphericity. Visu-
ally, the fit provided PSFs that resembled the ground truth (Figure 1.13).

We then quantitatively assessed the quality of the fit. To do so, the mean position of the PSF
was computed on both the ground truth and the reconstruction, and the absolute median error
was computed as:

median(1..100)

∣∣∣∣∣∣15
5∑
i=1

x̂i −
1

500

500∑
j=1

xi

∣∣∣∣∣∣
The quantitative results are presented in Figure 1.14. For all the dimensions, the mode of
the recovered median error on the position is around 5 nm, which is encouraging. A closer
examination of the distribution of the error as a function of the diffusion coefficient and the
exposure time reveals that for high diffusion coefficients and exposure times, the localization
error greatly increases, reaching down to 350 nm for some cases.

To provide a more objective comparison, we fitted the same motion-blurred PSFs using a single-
emitter fitting routine: ZOLA-3D, and tried to see whether the multi-emitter fitting improved
the estimates. The results are presented in Figure 1.15. A close comparison between the two
techniques so far does not prove the superiority of the multi-emitter fitting algorithm. The
single-emitter fit seems to always outperform the multi-emitter fit, even in cases of high diffusion
coefficient and long exposure time.

Several reasons might explain why the multi-emitter fitting is under-performing, including the
long convergence of the cross-entropy algorithm compared to the optimization scheme imple-
mented in ZOLA and the difficulty to initialize properly the position of the multiple emitters.
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Figure 1.13: Multi-emitter fitting in the noiseless case. (a) Schematic of the problem solved:
a cross-entropy algorithm is used to recover the (x, y, z) localization of single-point emitters from a
motion-blurred PSF. (b) PSF used in this example: an Airy PSF. (c) Ground truth motion-blurred
PSFs used as input. (d) Fitted multi-emitter PSFs provided by the optimization algorithm. (e) and
(f) Zoom-in on some of the fitted PSFs. Fits were performed using five emitters.
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Figure 1.14: Quantification of the accuracy of the multi-emitter fitting approach. (a,c,e)
median localization error in (x, y, z, respectively) as a function of the exposure time (rows) and the
diffusion coefficient (columns, in µm2/s). (b,d,f) Histogram of the localization precision in (x, y, z,
respectively). For some motion-blurred PSF, not all emitters could be detected and (g) presents the
number of detected motion-blurred PSFs. Fits were performed using five emitters.
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Figure 1.15: Quantification of the accuracy of the single-emitter fitting approach. (a,c,e)
median localization error in (x, y, z, respectively) as a function of the exposure time (rows) and the
diffusion coefficient (columns, in µm2/s). (b,d,f) Histogram of the localization precision in (x, y, z,
respectively). For some motion-blurred PSF, not all emitters could be detected and (g) presents the
number of detected motion-blurred PSFs.

4. Noisy case. As an extra test, we also assessed the performance of the multi-emitter fitting
algorithm in the presence of noise. The results are presented in Figure 1.16. Clearly, symmetric,
out-of-focus PSFs tend to be reasonably fitted, however, highly motion-blurred PSFs appear
poorly fitted, with the algorithm getting confused by the motion of the particle.
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Figure 1.16: Quality of the multi-emitter fitting in the presence of noise. (a) Ground truth
PSFs. (b) Noisy PSFs. (c) Fitted PSFs.
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1.2.6 Conclusion

In this section we presented a multi-emitter fitting approach to recover the 3D spatial position of a
diffusing particle under motion blur using PSF shaping. We provided a theoretical framework and
a proof-of-concept implementation of an algorithm based on cross-entropy optimization. We bench-
marked it against state-of-the-art PSF fitting algorithms in noiseless and noisy conditions.

Our approach can successfully recover the mean position of a motion-blurred particle, even in the
case of high diffusion coefficients and long exposure times. However, when compared with ZOLA
(Aristov et al. 2018), our method under-performs this single-emitter fitting technique. It is not clear
why this is the case, but issues related to convergence and initialization of the cross-entropy routine
might be at play and will have to be resolved.

Building on these multi-emitter fitting approach, and assuming a Brownian diffusion model, it is
possible, at least theoretically, to infer an estimate of the diffusion coefficient of the particle. Indeed,
metrics such as the mean maximal excursion method are typically designed to analyze the type of
information recovered by the algorithm (Tejedor et al. 2010). Such a setting could also be coupled
with fluorescence lifetime imaging (FLIM), in order to extract both the instantaneous single-molecule
diffusion coefficient and information about the local environment, as detailed in (Bouchet et al. 2019).

To our knowledge, this problem has never been considered before. However, some related problems
need to be mentioned. First, (Spille et al. 2012) performed 3D mRNA tracking in yeast using PSF
shaping. In this imaging setting, motion blur is minimal because the studied mRNA diffuses slowly.
Second, recent deep learning techniques were proposed to perform high density super-resolution de-
tection (Nehme, L. E. Weiss, et al. 2018; Nehme, Hershko, et al. 2019). High-density super-resolution
detection is identical to multi-emitter fitting, and as such, algorithms that perform well in one set-
ting are expected to perform well in the other setting. To assess whether the approach introduced in
(Nehme, Hershko, et al. 2019) can be used for live-cell imaging, we contacted the Shechtman lab to
initiate a collaboration.
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1.3 Inference tools

The detection and PSF-fitting tool presented in the previous section (section 1.2) is still very prelim-
inary, and the acquisition of "long" trajectories remains an ethered dream. By long we mean "long
enough so that single-trakectory statistics could be extracted" (Michalet and Berglund 2012). As a
consequence, we decided to develop tools that would allow non-programmer users to extract more
information from current state-of-the-art SPT data. To do so, we developed two approaches:

• Spot-On, a web interface and accompanying Python/Matlab codes that infer multi-population
diffusion models based on the approach developed by (D. Mazza et al. 2012) and refined in
(Anders S. Hansen, Pustova, et al. 2017). The published version of Spot-On is presented in this
section and current developments in section IV.2.

• We developed a second approach that integrates information about the angle distribution of
displacements in the propagator (section IV.3).

1.3.1 Summary of the work

Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biol-
ogy since it allows direct observation of protein binding and diffusion dynamics in live cells. However,
accurately inferring information from SPT studies is challenging due to biases in both data analysis
and experimental design. To address analysis bias, we introduce ‘Spot-On’, an intuitive web-interface.
Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules
moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-
molecule trajectories. To minimize inherent experimental biases, we implement and validate strobo-
scopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We
validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other
methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range
of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation
fractions and diffusion constants.

Figure 1.17: Logo of Spot-On

In this section, we present Spot-On. The development of a SPT analysis technique and web interface
was done in close collaboration with Anders S. Hansen. He initially extended and reimplemented an
approach previously developed. Together, we further extended the code and performed extensive
validations, both on simulations and experimental data. Anders took care of the Matlab version,
and generated 1064 single-particle tracking experimental datasets. I ported Spot-On to Python and
to a web-interface. The experimental datasets are freely available in Spot-On readable Matlab and
CSV file formats in the form of SPT trajectories at Zenodo. The experimental data is available
at: https://zenodo.org/record/834781). I wrote simSPT (section 1.1), the code to produce the
simulations used to validate Spot-On and explore its accuracy over a large range of parameters. The
simulations are available in Matlab format at: https://zenodo.org/record/835541; The simulations
are available in CSV format at: https://zenodo.org/record/834787. This section borrows entire
paragraphs from (Anders S. Hansen, Woringer, et al. 2018) and from the Spot-On documentation.
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1.3.2 Introduction.

Advances in imaging technologies, genetically encoded tags and fluorophore development have made
single-particle tracking (SPT) an increasingly popular method for analyzing protein dynamics (Z. Liu,
L. Lavis, and Eric Betzig 2015). Recent biological applications of SPT have revealed that transcription
factors (TFs) bind mitotic chromosomes (Teves, An, Anders S Hansen, et al. 2016), how Polycomb
interacts with chromatin (Zhen et al. 2016), that ‘pioneer factor’ TFs bind chromatin dynamically
(Swinstead et al. 2016), that TF binding time correlates with transcriptional activity (Loffreda et al.
2017) and that different nuclear proteins adopt distinct target search mechanisms (Izeddin, Récamier,
et al. 2014; Rhodes et al. 2017). Compared with indirect and bulk techniques such as Fluorescence
Recovery After Photobleaching (FRAP) or Fluorescence Correlation Spectroscopy (FCS), SPT is often
seen as less biased and less model-dependent (Goulian and Simon 2000; Mueller, Stasevich, et al. 2013;
Shen et al. 2017). In particular, SPT makes it possible to directly follow single molecules over time
in live cells and has provided clear evidence that proteins often exist in several subpopulations that
can be characterized by their distinct diffusion coefficients (Mueller, Stasevich, et al. 2013; Shen et al.
2017). For example, nuclear proteins such as TFs and chromatin binding proteins typically show a
quasi-immobile chromatin-bound fraction and a freely diffusing fraction inside the nucleus.

However, while SPT of slow-diffusing membrane proteins is an established technology (Weimann
et al. 2013), 2D-SPT of proteins freely diffusing inside a 3D nucleus introduces several biases that must
be corrected for in order to obtain accurate estimates of subpopulations.

• First, while a frame is acquired, fast-diffusing molecules move and spread out their emitted pho-
tons over multiple pixels causing a ‘motion-blur’ artifact (Berglund 2010; Deschout, Neyts, and
Braeckmans 2012; Frost, H. E. Lu, and Blanpied 2012; Goulian and Simon 2000; Izeddin, Ré-
camier, et al. 2014), whereas immobile or slow-diffusing molecules resemble point spread functions
(PSFs; Figure 1.18A). This results in under-counting of the fast-diffusing subpopulation.

• Second, high particle densities tend to cause tracking errors when localized molecules are con-
nected into trajectories. This can result in incorrect displacement estimates (Figure 1.18B).

• Third, since SPT generally employs 2D imaging of 3D motion, immobile or slow-diffusing
molecules will generally remain in-focus until they photobleach and therefore exhibit long trajec-
tories, whereas fast-diffusing molecules in 3D rapidly move out-of-focus, thus resulting in short
trajectories (we refer to this as ‘defocalization’; Figure 1.18C). This results in a time-dependent
under-counting of fast-diffusing molecules (Goulian and Simon 2000; Kues and Kubitscheck 2002).
Fourth, SPT analysis methods themselves may introduce biases; to avoid this, an accurate and
validated method is needed (Figure 1.18D).
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Figure 1.18: Bias in single-particle tracking (SPT) experiments and analysis methods. (A)
‘Motion-blur’ bias. Constant excitation during acquisition of a frame will cause a fast-moving particle
to spread out its emission photons over many pixels and thus appear as a motion-blur, which make
detection much less likely with common PSF-fitting algorithms. In contrast, a slow-moving or immobile
particle will appear as a well-shaped PSF and thus readily be detected. (B) Tracking ambiguities.
Tracking at high particle densities prevents unambiguous connection of particles between frames and
tracking errors will cause displacements to be misidentified. (C) Defocalization bias. During 2D-SPT,
fast-moving particles will rapidly move out-of-focus resulting in short trajectories, whereas immobile
particles will remain in-focus until they photobleach and thus exhibit very long trajectories. This
results in a bias toward slow-moving particles, which must be corrected for. (D) Analysis method.
Any analysis method should ideally avoid introducing biases and accurately correct for known biases
in the estimation of subpopulation parameters such as DFREE , FBOUND, DBOUND. Source: https:
//doi.org/10.7554/eLife.33125.003.

Here, we introduce an integrated approach to overcome all four biases. The first two biases must
be minimized at the data acquisition stage and we describe an experimental SPT method to do so
(spaSPT), whereas the latter two can be overcome using a previously developed kinetic modeling frame-
work (Anders S. Hansen, Pustova, et al. 2017; D. Mazza et al. 2012) now extended and implemented in
Spot-On. Spot-On is available as a web-interface (https://SpotOn.berkeley.edu) as well as Python
and Matlab packages.
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1.3.3 Overview of Spot-On

Spot-On is a user-friendly web-interface that pedagogically guides the user through a series of quality-
checks of uploaded datasets consisting of pooled single-molecule trajectories. It then performs kinetic
model-based analysis that leverages the histogram of molecular displacements over time to infer the
fraction and diffusion constant of each subpopulation (Figure 1.19). Spot-On does not directly analyze
raw microscopy images, since a large number of localization and tracking algorithms exist that convert
microscopy images into single-molecule trajectories (for a comparison of particle tracking methods, see
(Chenouard et al. 2014); moreover, Spot-On can be one-click interfaced with TrackMate (Tinevez et al.
2017), which allows inspection of trajectories before uploading to Spot-On).

Figure 1.19: Overview of Spot-On interface. To use Spot-On, a user uploads raw SPT data in the
form of pooled SPT trajectories to the Spot-On web-interface. Spot-On then calculates displacement
histograms. The user inputs relevant experimental descriptors and chooses a model to fit. After model-
fitting, the user can then download model-inferred parameters, meta-data and download publication-
quality figures. Source: https://doi.org/10.7554/eLife.33125.004

To use Spot-On, a user uploads their SPT trajectory data in one of several formats (Figure 1.19).
Spot-On then generates useful meta-data for assessing the quality of the experiment (e.g. localization
density, number of trajectories etc.). Spot-On also allows a user to upload multiple datasets (e.g.
different replicates) and merge them. Spot-On then calculates and displays histograms of displace-
ments over multiple time delays. The next step is model fitting. Spot-On models the distribution of
displacements for each subpopulation using Brownian motion under steady-state conditions without
state transitions (full model description in section 1.3.4). Spot-On also accounts for localization errors
(either user-defined or inferred from the SPT data). Crucially, Spot-On corrects for defocalization bias
(Figure 1.18C) by explicitly calculating the probability that molecules move out-of-focus as a function
of time and their diffusion constant. In fact, Spot-On uses the gradual loss of freely diffusing molecules
over time as additional information to infer the diffusion constant and size of each subpopulation.

Spot-On considers either 2 or 3 subpopulations. For instance, TFs in nuclei can generally exist in
both a chromatin-bound state characterized by slow diffusion and a freely diffusing state associated
with rapid diffusion. In this case, a 2-state model is generally appropriate (‘bound’ vs. ‘free’). Spot-On
allows a user to choose their desired model and parameter ranges and then fits the model to the data.
Using the previous example of TF dynamics, this allows the user to infer the bound fraction and the
diffusion constants. Finally, once a user has finished fitting an appropriate model to their data, Spot-
On allows easy download of publication-quality figures and relevant data (Figure 1.19; Full tutorial on
the the Spot-On website).

1.3.4 Theory and implementation

1. Spot-On model.

Spot-On implements and extends a kinetic modeling framework first described in(D. Mazza et al.
2012) and later extended in (Anders S. Hansen, Pustova, et al. 2017). Briefly, the model infers the
diffusion constant and relative fractions of two or three subpopulations from the distribution of
displacements (or histogram of displacements) computed at increasing lag time (1∆τ, 2∆τ, . . . ).
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This is performed by fitting a semi-analytical model to the empirical histogram of displacements
using non-linear least squares fitting. Defocalization is explicitly accounted for by modeling the
fraction of particles that remain in focus over time as a function of their diffusion constant.

Mathematically, the evolution over time of a concentration of particles located at the origin as a
Dirac delta function and which follows free diffusion in two dimensions with a diffusion constant
D can be described by a propagator (also known as Green’s function). Properly normalized, the
probability of a particle starting at the origin ending up at a location r = (x, y) after a time
delay, ∆τ , is given by:

P (r,∆τ) = N
r

2D∆τ
e−

r2

4D∆τ

Here N is a normalization constant with units of length. Spot-On integrates this distribution
over a small histogram bin window, ∆r, to obtain a normalized distribution, the distribution of
displacement lengths to compare to binned experimental data. For simplicity, we will therefore
leave out N from subsequent expressions. Since experimental SPT data is subject to a significant
mean localization error, σ, Spot-On also accounts for this (Matsuoka, Shibata, and Ueda 2009):

P (r,∆τ) =
r

2 (D∆τ + σ2)
e
− r2

4(D∆τ+σ2)

Many proteins studied by SPT can generally exist in a quasi-immobile state (e.g. a chromatin-
bound state in the case of transcription factors) and one or more mobile states. We will first
consider the 2-state model. Under most conditions, state transitions can be ignored (Anders S.
Hansen, Pustova, et al. 2017 and Figure 1.20). Thus, the steady-state 2-state model considered
by Spot-On becomes:

P (r,∆τ) = Fbound
r

2 (Dbound∆τ + σ2)
e
− r2

4(Dbound∆τ+σ2) +(1− Fbound)
r

2 (Dfree∆τ + σ2)
e
− r2

4(Dfree∆τ+σ2)
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Figure 1.20: Sensitivity of Spot-On to state changes and comparison with vbSPT. For six different representative
conditions (combinations of DFREE and FBOUND; DBOUND = 0.001 µm²/s; σ = 25 nm), we simulated 100,000 trajectories using
simSPT and included state transitions (e.g. transition from bound to free) considering six different lag time (1, 4, 7, 10, 13 and
20 ms) and kON values from 0.1 s-1 to 200 s-1 yielding a total of 396 simulations. The data were analyzed using Spot-On (all) as
in Figure 1.23A-B. (A) For one example parameter set, (A) shows how the histogram of displacements and the goodness of the
Spot-On model-fit changes as state transition go from more frequent than the frame rate (left) to very infrequent (right). (B-G),
First row : shows sensitivity of the Spot-On estimate of DFREE to the timescale of state transitions. The values of DFREE and
FBOUND are shown above the plot. (B-G), Second row : shows sensitivity of the Spot-On estimate of FBOUND to the timescale
of state transitions. (B-G), Third row : shows sensitivity of the vbSPT estimate of DFREE to the timescale of state transitions.
The values of DFREE and FBOUND are shown above the top plot. (B-G), Fourth row : shows sensitivity of the vbSPT estimate
of FBOUND to the timescale of state transitions. As expected, since Spot-On ignores state transitions, the inference breaks down
when the timescale of state transitions becomes comparable to the frame rate. Perhaps surprisingly, vbSPT also breaks down when
state transitions are frequent despite explicitly modeling this in the Hidden Markov Model. Also as expected, a faster frame rate
(e.g. 1 ms in dark blue) can support a faster state transition rate. Nevertheless, as long as the timescale of transitions is at least a
few hundred milliseconds, Spot-On is not strongly affected. For comparison, the residence time of most mammalian transcription
factors is tens of seconds. Source: https://doi.org/10.7554/eLife.33125.016
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Here, the quasi-immobile subpopulation has diffusion constant, DBOUND, and makes up a frac-
tion, FBOUND, whereas the freely diffusing subpopulation has diffusion constant, DFREE , and
makes up a fraction, FFREE = 1− FBOUND. To account for defocalization bias (Figure 1.18C),
Spot-On explicitly considers the probability of the freely diffusing subpopulation moving out of
the axial detection range, ∆z, during each time delay, ∆τ . This is important. For example,
only ∼ 25% of freely-diffusing molecules will remain in focus for at least five frames (assuming
∆τ = 10 ms; ∆z = 700 nm; one gap allowed; D = 5µm2/s), resulting in a 4-fold undercounting
if uncorrected for. If we assume absorbing boundaries such that any molecule that contacts the
edges of the axial detection range located at zMAX = ∆z/2 and zMIN = −∆z/2 is permanently
lost, the fraction of freely diffusing molecules with diffusion constant, DFREE , that remain at
time delay, ∆τ , is given by (Carslaw and Jaeger 1986; Kues and Kubitscheck 2002):

Premaining(∆τ) =
1

∆z

∫ ∆z/2

−∆z/2

{
1−

∞∑
n=0

(−1)n

[
erfc

(
(2n+1)∆z

2 − z√
4Dfree∆τ

)
+ erfc

(
(2n+1)∆z

2 + z√
4Dfree∆τ

)]}
dz

However, this analytical expression overestimates the fraction lost since there is a significant
probability that a molecule that briefly contacted or exceeded the boundary re-enters the axial
detection range. The re-entry probability depends on the number of gaps (g) allowed in the
tracking, ∆τ , and ∆z and can be approximately accounted for by considering a corrected axial
detection range, δzcorr, larger than ∆z: ∆zcorr > ∆z:

∆zcorr(∆z,∆τ,D) = ∆z + a(∆z,∆τ)
√
D + b(∆z,∆τ)

Although ∆zcorr depend on the number of gaps (g) allowed in the tracking, we will leave it out for
simplicity in the following. We determined the coefficients a and b from Monte Carlo simulations.
For a given diffusion constant, D, 50,000 molecules were randomly placed one-dimensionally
along the z-axis drawn from a uniform distribution from zMIN = −∆z/2 to zMAX = ∆z/2.
Next, using a time-step ∆τ , one-dimensional Brownian diffusion was simulated along the z-axis
using the Euler-Maruyama scheme. For time delays from 1∆τ to 15∆τ , the fraction of molecules
that were lost was calculated in the range of D = [1; 12]µm2/s. a(∆z,∆τ, g) and b(∆z,∆τ, g)
were then estimated through least-squares fitting of Premaining(∆τ,∆zcorr, D) to the simulated
fraction remaining. The process was repeated over a grid of plausible values of (∆z,∆τ, g) to
derive a grid of 134,865 (a, b) parameter pairs. This pre-calculated library of (a, b) parameters
enables Spot-On to perform model fitting on nearly any SPT dataset with minimal overhead.

Thus, the 2-state model Spot-On uses for kinetic modeling of SPT data is given by:

P (r,∆τ) =Fbound
r

2 (Dbound∆τ + σ2)
e
− r2

4(Dbound∆τ+σ2) (1.1)

+Zcorr(∆τ) (1− Fbound)
r

2 (Dfree∆τ + σ2)
e
− r2

4(Dfree∆τ+σ2) (1.2)

where:

Zcorr(∆τ) =
1

∆z

∫ ∆z/2

−∆z/2

{
1−

∞∑
n=0

(−1)n

[
erfc

(
(2n+1)∆zcorr

2 − z√
4Dfree∆τ

)
+ erfc

(
(2n+1)∆zcorr

2 + z√
4Dfree∆τ

)]}
dz

Having derived the 2-state model, generalization to a 3-state model with 1 bound and 2 diffusive
states is straightforward. If the three subpopulations have diffusion constants DBOUND, DSLOW ,
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DFAST , and fractions FBOUND, FSLOW , FFAST , such that FBOUND + FSLOW + FFAST = 1,
then the 3-state model considered by Spot-On becomes:

P3(r,∆τ) =Fbound
r

2 (Dbound∆τσ2)
e
− r2

4(Dbound∆τ+σ2) (1.3)

+Fslow
r

2 (Dslow∆τ + σ2)
e
− r2

4(Dslow∆τ+σ2) (1.4)

+ (1− Fbound − Fslow)
r

2 (Dfast∆τ + σ2)
e
− r2

4(Dfast∆τ+σ2) (1.5)

Where ZCORR(∆τ,∆zcorr, D) is as described above.

2. Numerical implementation of models in Spot-On.

Spot-On calculates the empirical histogram of displacements based on a user-defined bin width.
Spot-On allows the user to choose between PDF- and CDF-fitting of the kinetic model to the
empirical displacement distributions; CDF-fitting is generally most accurate for smaller datasets
and the two are similar for large datasets (Anders S. Hansen, Woringer, et al. 2018; Figure
3—figure supplement 9). The integral in ZCORR(∆τ ,∆ zcorr) was numerically evaluated using
the midpoint method over 200 points and the terms of the series computed until the term falls
below a threshold of 10−10. Model fitting and parameter optimization was performed using a
non-linear least squares algorithm (Levenberg-Marquardt). Random initial parameter guesses
are drawn uniformly from the user-specified parameter range. The optimization is then repeated
several times with different initialization parameters to avoid local minima. Spot-On constrains
each fraction to be between 0 and 1 and for the sum of the fractions to equal 1.

3. Theoretical characteristics and limitations of the model.

Although Spot-On performs well on both experimental and simulated SPT data, the model
implemented by Spot-On has several limitations. First, the kinetic model assumes diffusion
to be ideal Brownian motion, even though it is widely acknowledged that the motion of most
proteins inside a cell shows some degree of anomalous diffusion. We propose an extension of
Spot-On to take into account anomalous diffusion in section IV.2. Nevertheless, 1.26G–H and
(Anders S. Hansen, Woringer, et al. 2018; Figure 4—supplement 2) show that the parameter
inference for experimental data of proteins presenting various degrees of anomalous diffusion is
quite robust.

Second, Spot-On models the localization error as the static mean localization error and this
feature can be used to infer the actual localization error from the data. However, the localization
error is affected both by the position of the particle with respect to the focal plane (Lindén, Ćurić,
Amselem, et al. 2017) and by motion blur (Deschout, Neyts, and Braeckmans 2012). Even though
a high signal-to-background ratio and fast framerate/stroboscopic illumination help to mitigate
these disparities, it is likely that the localization error of fast moving particles will be higher than
the bound/slow-moving particles. In that case, one would expect Spot-On to infer a localization
error that is the weighted mean of the ‘bound/static’ localization error and the ‘free’ localization
error. However, in many situations Dfree∆τ >> σ2 (even assuming a 2µm2/s particle imaged at
a 5 ms framerate with a ∼ 30 nm localization error, there is still an order of magnitude difference
between the two terms). As a consequence, the estimate of σ reflects the static localization error
(that is, the localization error of the bound fraction), and the localization error estimate becomes
less reliable if the bound fraction is very small (Figure 1.21).
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Figure 1.21: Robustness of localization error estimates from Spot-On. For six different rep-
resentative conditions (combinations of DFREE and FBOUND; DBOUND = 0.001 µm²/s), we simulated
100,000 trajectories using simSPT keeping everything as in Figure 1.23A–B except varying the lo-
calization error (σ) from 10 nm to 75 nm in 5 nm steps and considering six different lag time (1,
4, 7, 10, 13 and 20 ms) yielding a total of 504 simulations. The data were analyzed using Spot-On
(all) as in Figure 1.23A–B except here the localization error was inferred from the fitting. (A-F),
top row: show how well the Spot-On inferred the localization error vs. the simulated localization
error and the lag times are color coded. The values of DFREE and FBOUND are shown above the plot.
(A-F), bottom row: histograms showing the distribution of errors in the localization error estimate
across all lag time and σ-values for a given combinations of DFREE and FBOUND. (G) Table showing
summary statistics from the fitting in (A-F). We note that in all cases where the bound fraction is
significant (>10%), Spot-On robustly infers the localization error (mean error below 1.5 nm), whereas
in cases where the bound fraction is small (10% or below), the localization error estimate becomes
less robust (mean error ∼ 3–6 nm). This is because Spot-On can most reliably use how the dis-
placement distribution of the bound fraction changes over time to infer the localization error. Source:
https://doi.org/10.7554/eLife.33125.017

Third, following (Kues and Kubitscheck 2002) the axial detection profile is assumed to be a step
function, which is an approximation. However, all simulations here were performed using a detec-
tion profile with Gaussian edges (Anders S. Hansen, Woringer, et al. 2018 Figure 3—supplement
1) and as shown in Figure 1.23A–B Spot-On still works quite well and moreover is relatively
robust to slight mismatches in the axial detection range (Anders S. Hansen, Woringer, et al.
2018 Figure 3—figure supplement 7).

Fourth, unlike the original implementation by (D. Mazza et al. 2012), Spot-On ignores state
transitions. This reduces the number of fitted parameters and simplifies the generalization to
more than two states, but as shown in Figure 1.20 it also causes the parameter inference to fail
unless the timescale of state changes is at least 10–50 times longer than the frame rate. Thus,
in cases where a molecule is known to exhibit state changes on a time-scale of tens to a few
hundreds of milliseconds, Spot-On may not be appropriate.
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Fifth and finally, Spot-On ignores correlations between adjacent displacements, although taking
such information into account can potentially improve the parameter inference (Vestergaard,
Blainey, and Flyvbjerg 2014).

1.3.5 Validation of Spot-On using simulated SPT data and comparison to other
methods

We first evaluated whether Spot-On could accurately infer subpopulations (Figure 1.18D) and success-
fully account for known biases (Figure 1.18C) using simulated data. We compared Spot-On to a popular
alternative approach of first fitting the mean square displacement (MSD) of individual trajectories of
a minimum length and then fitting the distribution of estimated diffusion constants (we refer to this as
‘MSDi’) as well as a sophisticated Hidden-Markov Model-based Bayesian inference method (vbSPT)
(Persson et al. 2013). Since most SPT data is collected using highly inclined illumination (Tokunaga,
Imamoto, and Sakata-Sogawa 2008) (HiLo), we simulated TF binding and diffusion dynamics (2-state
model: ‘bound vs. free’) confined inside a 4µm radius mammalian nucleus under realistic HiLo SPT
experimental settings subject to a 25 nm localization error (Figure 1.22). We considered the effect
of the exposure time (1 ms, 4 ms, 7 ms, 13 ms, 20 ms), the free diffusion constant (from 0.5µm2/s
to 14.5µm2/s in 0.5µm2/s increments) and the bound fraction (from 0% to 95% in 5% increments)
yielding a total of 3480 different conditions that span the full range of biologically plausible dynamics
(Figure ?? and Anders S. Hansen, Woringer, et al. 2018 Figure 3—figure 3; Appendix 1).

Figure 1.22: Overview of SPT simulations. (A) Trajectories were simulated in a confined volume:
a ‘nucleus’ of 8 µm diameter, in which molecules are photoactivated at random and photobleach
when located within the HiLo volume (a ∼ 4 µm thick slice). Molecules are detected when they are
within the axial detection range of the objective (∼ 700 nm). (B) confinement within the nucleus
was achieved by specular reflections against the nuclear envelope: a particle bumping on the nuclear
envelope is ballistically reflected inside. (C) axial detection profile used for the simulation (blue): flat-
top Gaussian with 600 nm plateau and 100 nm FWHM for the Gaussian edges. (red): approximated
axial detection profile assumed by Spot-On (step function with 700 nm width). Source: https:
//doi.org/10.7554/eLife.33125.007

Spot-On accurately inferred subpopulation sizes with minimal error (Figure 1.23A–B, Table 1.2),
but slightly underestimated the diffusion constant (-4.8%; Figure 1.23B; Table 1.2). However, this
underestimate was due to particle confinement inside the nucleus: Spot-On correctly inferred the
diffusion constant when the confinement was relaxed (Anders S. Hansen, Woringer, et al. 2018 Figure
3—supplement 4; 20µm nuclear radius instead of 4µm). This emphasizes that diffusion constants
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measured by SPT inside cells should be viewed as apparent diffusion constants. In contrast, the MSDi
method failed under most conditions regardless of whether all trajectories were used (MSDi (all)) or
a fitting filter applied (MSDi (R2 > 0.8); Figure 3A–B; Table 1). vbSPT performed almost as well as
Spot-On for slow-diffusing proteins, but showed larger deviations for fast-diffusing proteins (Figure ??
and Anders S. Hansen, Woringer, et al. 2018 Figure 3—figure 3).

Figure 1.23: Validation of Spot-On using simulations and comparisons to other meth-
ods. (A–B) Simulation results. Experimentally realistic SPT data was simulated inside a spherical
mammalian nucleus with a radius of 4 µm subject to highly-inclined and laminated optical sheet illu-
mination (Tokunaga, Imamoto, and Sakata-Sogawa 2008) (HiLo) of thickness 4 µm illuminating the
center of the nucleus. The axial detection window was 700 nm with Gaussian edges and particles
were subject to a 25 nm localization error in all three dimensions. Photobleaching corresponded to
a mean trajectory length of 4 frames inside the HiLo sheet and 40 outside. 3480 experiments were
simulated with parameters of DFREE = [0.5; 14.5] in steps of 0.5µm2/s and FBOUND = [0; 95%]
in steps of 5% and the frame rate correspond to ∆τ = [1, 4, 7, 10, 13, 20] ms. Each experiment was
then fitted using Spot-On, using vbSPT (maximum of 2 states allowed) (perssonextracting2013 et al.,
2013), MSDi using all trajectories of at least five frames (MSDi (all)) or MSDi using all trajectories
of at least five frames where the MSD-curvefit showed at least R2 > 0.8 (MSDi (R2 > 0.8)). (A)
shows the distribution of absolute errors in the FBOUND–estimate and (B) shows the distribution
of relative errors in the DFREE–estimate. (C) Single simulation example with DFREE = 2.0µm2/s;
FBOUND = 70%; 7 ms per frame. The table on the right uses numbers from CDF-fitting, but for sim-
plicity the fits to the histograms (PDF) are shown in the three plots. (D) Single simulation example
with DFREE = 14.0µm2/s; FBOUND = 50%; 20 ms per frame. Full details on how SPT data was
simulated and analyzed with the different methods is given in Anders S. Hansen, Woringer, et al. 2018;
Appendix 1. Source: https://doi.org/10.7554/eLife.33125.006
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Table 1.2: Summary of simulation results and comparison of methods. The table shows the
bias (mean error), ‘std’ (standard deviation) and ‘iqr’ (inter-quartile range: difference between the
75th and 25th percentile) for each method for all 3480 simulations. The left column shows the relative
bias/std/iqr for the DFREE-estimate and the right column shows the absolute bias/std/iqr for the
FBOUND-estimate. Source: https://doi.org/10.7554/eLife.33125.019

Analysis method DFREE FBOUND
bias std iqr bias std iqr

Spot-On (all) -4.8% 3.3% 3.5% -1.7% 1.2% 1.8%
vbSPT (2-state) 0.8% 12.5% 6.8% 5.0% 4.6% 6.1%
MSDi (R2 > 0.8) 8.0% 28.5% 4.9% -20.6% 26.4% 32.1%
MSDi (all) -39.6% 41.8% 19.0% 22.0% 15.8% 17.8%

To illustrate how the methods could give such divergent results when run on the same SPT data, we
considered two example simulations (Figure 1.23C–D; more examples in Anders S. Hansen, Woringer,
et al. 2018; Figure 3—figure supplement 3). First, we considered a mostly bound and relatively slow
diffusion case (DFREE : 2.0µm2/s; FBOUND: 70%; ∆τ : 7 ms; Figure 3C). Spot-On and vbSPT ac-
curately inferred both DFREE and FBOUND. In contrast, MSDi (R2 > 0.8) greatly underestimated
FBOUND (13.6% vs. 70%), whereas MSDi (all) slightly overestimated FBOUND. Since MSDi-based
methods apply two thresholds (first, minimum trajectory length: here five frames; second, filtering
based on R2) in many cases less than 5% of all trajectories passed these thresholds and this example
illustrate how sensitive MSDi-based methods are to these thresholds. Note that although we show
the fits to the probability density function since this is more intuitive (PDF; histogram), we per-
formed the fitting to the cumulative distribution function (CDF). Second, we considered an example
with a slow frame rate and fast diffusion, such that the free population rapidly moves out-of-focus
(DFREE : 14.0µm2/s; FBOUND: 50%; ∆τ : 20 ms; Figure 3D). Spot-On again accurately inferred
FBOUND, and slightly underestimated DFREE due to high nuclear confinement (Anders S. Hansen,
Woringer, et al. 2018; Figure 3—supplement 4). Although vbSPT generally performed well, because
it does not correct for defocalization bias (vbSPT was developed for bacteria, where defocalization
bias is minimal), vbSPT strongly overestimated FBOUND in this case (Figure 1.23D). Consistent with
this, Spot-On without defocalization-bias correction also strongly overestimates the bound fraction
(Anders S. Hansen, Woringer, et al. 2018; Figure 3—supplement 5). We conclude that correcting for
defocalization bias is critical. The MSDi-based methods again gave divergent results despite seemingly
fitting the data well. Thus, a good fit to a histogram of log(D) does not necessarily imply that the
inferred DFREE and FBOUND are accurate. A full discussion and comparison of the methods is given in
(Anders S. Hansen, Woringer, et al. 2018; Appendix 1). Finally, we extended this analysis of simulated
SPT data to three states (one ‘bound’, two ‘free’ states) and compared Spot-On and vbSPT. Spot-On
again accurately inferred both the diffusion constants and subpopulation fractions of each population
and slightly outperformed vbSPT (Figure 1.24).

Having established that Spot-On is accurate, we next tested whether it was also robust. Spot-
On’s ability to infer DFREE and FBOUND was robust to misestimates of the axial detection range of
∼ 100–200 nm (Anders S. Hansen, Woringer, et al. 2018; Figure 3—supplement 7), was minimally
affected by the number of timepoints considered and fitting parameters (Anders S. Hansen, Woringer,
et al. 2018; Figure 3—supplements 8–9; see also Appendix 2 for parameter considerations) and was not
strongly affected by state changes (e.g. binding or unbinding) provided the time-scale of state changes
is significantly longer than the frame rate (Figure 1.20). Moreover, Spot-On inferred the localization
error with nanometer precision provided that a significant bound fraction is present (Figure 1.21).
Finally, we sub-sampled the data sets and found that just ∼ 3000 short trajectories (mean length ∼
3–4 frames) were sufficient for Spot-On to reliably infer the underlying dynamics (Figure 1.25). We
conclude that Spot-On is robust.
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Figure 1.24: Evaluation of the 3-states model. Trajectories were simulated using simSPT for a
3-state model. Three representative fractions were picked and for each of them, one state was always
bound (DBOUND = 0.001 µm²/s) and the two other states were varied (0.5–11 µm²/s), together with
the framerate (1–20 ms), yielding 720 conditions. The simulations were then either fitted with Spot-
On or vbSPT constrained to infer up to three states. (A) Distribution of the error of five of the
inferred parameters (DSLOW, DFAST, FBOUND, FSLOW, FFAST) with respect to ground truth for Spot-
On (red) and vbSPT (blue). The top row shows the distribution and the bottom row the cumulative
distribution. (B-G) For each of the three fractions configurations (25/25/50, 25/50/25, 50/25/25%,
for B-C, D-E, F-G, respectively), detailed error on five inferred parameters (columns) for different
frame rates (rows) and various DSLOW and DFAST (rows and columns of the matrix, respectively). (H)
summary table showing the mean error (bias) and standard deviation over all the simulations. Source:
https://doi.org/10.7554/eLife.33125.012
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Figure 1.25: Sensitivity of Spot-On, vbSPT and MSDi (R2 >0.8) to sample size. (A)
Jack-knife data sampling for simulation with DFREE = 2.0 µm2/s; FBOUND = 75%; 1 ms per frame.
Simulated data (inside a 4 µm radius nucleus) was used. 100,000 trajectories with a mean photo-
bleaching life-time of 4 frames were simulated and then subsampled 50 times without replacement.
Sample sizes of either 30, 100, 300, 1,000, 3,000, 10,000, 30,000 or 100,000 trajectories were then
fit using Spot-On (all), vbSPT (2-state model) or MSDi (R2 >0.8) as described in the analysis of
simulations section. Error bars show standard deviation among the 50 sub-samplings. We note that
occasionally, no more than ∼ 5% of the time in the case of 30 trajectories, not a single trajectory of
sufficient length for Spot-On or MSDi (R2 >0.8) was found. In these cases, we re-sampled to obtain at
least one trajectory of sufficient length. Left plot shows effect of sample size on the DFREE–estimate.
Right plot shows effect of sample size on the FBOUND–estimate. The dashed line shows the ground
truth used to simulate the SPT data. (B) Jack-knife data sampling for simulation with DFREE =
10.0 µm2/s; FBOUND = 10%; 4 ms per frame. Everything else is as described in (A). (C) Jack-knife
data sampling for simulation with DFREE = 3.5 µm2/s; FBOUND = 50%; 7 ms per frame. Everything
else is as described in (A). (D) Jack-knife data sampling for simulation with DFREE = 3.5 µm2/s;
FBOUND = 70%; 13 ms per frame. Everything else is as described in (A). (E) Jack-knife data sampling
for simulation with DFREE = 13.0 µm2/s; FBOUND = 55%; 20 ms per frame. Everything else is as
described in (A). https://doi.org/10.7554/eLife.33125.018

Taken together, this analysis of simulated SPT data suggests that Spot-On successfully overcomes
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defocalization and analysis method biases (Figure 1.18C–D), accurately and robustly estimates sub-
populations and diffusion constants across a wide range of dynamics and, finally, outperforms other
methods.

1.3.6 Validations on experimental data

Having validated Spot-On on simulated data, which is not subject to experimental biases (Figure
1.18A–B), we next sought to evaluate Spot-On on experimental data. To generate SPT data with
minimal acquisition bias we performed stroboscopic photo-activation SPT (spaSPT; Figure 1.26A),
which integrates previously and separately published ideas to minimize experimental biases. First,
spaSPT minimizes motion-blurring, which is caused by particle movement during the camera exposure
time (Figure 1.18A), by using stroboscopic excitation (J. Elf, G.-W. Li, and X. S. Xie 2007; Frost,
H. E. Lu, and Blanpied 2012). We found that the bright and photo-stable dyes PA-JF549 and PA-JF646
(Jonathan B Grimm, Brian P English, J. Chen, et al. 2015) in combination with the HaloTag (‘Halo’)
labeling strategy made it possible to achieve a signal-to-background ratio greater than 5 with just 1 ms
excitation pulses, thus providing a good compromise between minimal motion-blurring and high signal
(Figure 1.26B). Second, spaSPT minimizes tracking errors (Figure 1.18B) by using photo-activation
(Figure 1.26A) (Jonathan B Grimm, Brian P English, J. Chen, et al. 2015; Manley et al. 2008).
Tracking errors are generally caused by high particles densities. Photo-activation allows tracking at
extremely low densities (≤ 1 molecule per nucleus per frame) and thereby minimizes tracking errors
(Izeddin, Récamier, et al. 2014), whilst at the same time generating thousands of trajectories. To
consider the full spectrum of nuclear protein dynamics, we studied histone H2B-Halo (overwhelmingly
bound; fast diffusion; Figure 1.26C), Halo-CTCF (Anders S. Hansen, Pustova, et al. 2017) (largely
bound; slow diffusion; Figure 1.26D) and Halo-NLS (overwhelmingly free; very fast diffusion; Figure
1.26F) in human U2OS cells and Halo-Sox2 (Teves, An, Anders S Hansen, et al. 2016) (largely free;
intermediate diffusion; Figure 1.26E) in mouse embryonic stem cells (mESCs). We labeled Halo-tagged
proteins in live cells with the HaloTag ligands PA-JF549 or PA-JF646 (Jonathan B Grimm, Brian P
English, J. Chen, et al. 2015) and performed spaSPT using HiLo illumination (Anders S. Hansen,
Woringer, et al. 2018; Video 2). To generate a large dataset to comprehensively test Spot-On, we
performed 1064 spaSPT experiments across 60 different conditions.
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Figure 1.26: Overview of spaSPT and experimental results. (A) spaSPT. HaloTag-labeling
with UV (405 nm) photo-activatable dyes enable spaSPT. spaSPT minimizes tracking errors through
photo-activation which maintains low densities. (B) Example data. Raw spaSPT images for Halo-
CTCF tracked in human U2OS cells at 134 Hz (1 ms stroboscopic 633 nm excitation of JF646). (C–F)
Histograms of displacements for multiple ∆τ of histone H2B-Halo in U2OS cells (C), Halo-CTCF in
U2OS cells (D), Halo-Sox2 in mES cells (E) and Halo-3xNLS in U2OS cells (F). (G–H) Effect of
frame-rate on DFREE and FBOUND. spaSPT was performed at 200 Hz, 167 Hz, 134 Hz, 100 Hz, 74 Hz
and 50 Hz using the 4 cell lines and the data fit using Spot-On and a 2-state model. Each experiment
on each cell line was performed in four replicates on different days and ∼ 5 cells imaged each day. (I)
Motion-blur experiment. To investigate the effect of ‘motion-blurring’, the total number of excitation
photons was kept constant, but delivered during pulses of duration 1, 2, 4, 7 ms or continuous (cont)
illumination. (J–K) Effect of motion-blurring on DFREE and FBOUND. spaSPT data was recorded
at 100 Hz and 2-state model-fitting performed with Spot-On. The inferred DFREE (J) and FBOUND
(K) were plotted as a function of excitation pulse duration. Each experiment on each cell line was
performed in four replicates on different days and ∼ 5 cells imaged each day. Error bars show standard
deviation between replicates. Source: https://doi.org/10.7554/eLife.33125.020

1. Validation of Spot-On using spaSPT data at different frame rates

First, we studied whether Spot-On could consistently infer subpopulations over a wide range of
frame rates. We experimentally determined the axial detection range to be ∼ 700 nm (Anders S.
Hansen, Woringer, et al. 2018; Figure 4—figure supplement 1) and performed spaSPT at 200 Hz,
167 Hz, 134 Hz, 100 Hz, 74 Hz and 50 Hz using the four cell lines. Spot-On consistently inferred
the diffusion constant (Figure 1.26G) and total bound fraction across the wide range of frame
rates (Figure 1.26H). This is notable since all four proteins exhibit apparent anomalous diffu-
sion (Anders S. Hansen, Woringer, et al. 2018; Figure 4—supplement 2) and this demonstrates
that Spot-On is also robust to anomalous diffusion despite modeling Brownian motion. While
the ground-truth is unknown when considering experiments, Spot-On gave biologically reason-
able results: histone H2B was overwhelmingly bound and free Halo-3xNLS was overwhelmingly
unbound (comparison with vbSPT: Anders S. Hansen, Woringer, et al. 2018; Figure 4—figure
supplement 3). These results provide additional validation for the bias corrections implemented
in Spot-On. We also note that although Spot-On was validated on spaSPT data, SPT data
with non-photoactivatable dyes is also suitable for Spot-On analysis provided that the density
is sufficiently low to minimize tracking errors (see also Anders S. Hansen, Woringer, et al. 2018;
Appendix 3: "Which datasets are appropriate for Spot-On?”). Finally, we demonstrated above
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that just ∼ 3000 short trajectories (mean length ∼ 3–4 frames) were sufficient for Spot-On to
accurately infer DFREE and FBOUND (Figure 1.25). Here we obtain well above 3000 trajectories
per cell even at ∼ 1 localization/frame. More generally, with spaSPT this should be generally
achievable for all but the most lowly expressed nuclear proteins. Thus, this now makes it possible
to study biological cell-to-cell variability in TF dynamics.

2. Effect of motion-blur bias on parameter estimates

Having validated Spot-On on experimental SPT data, we next applied Spot-On to estimate
the effect of motion-blurring on the estimation of subpopulations. As mentioned, since most
localization algorithms (Chenouard et al. 2014; Sergé et al. 2008) achieve super-resolution through
PSF-fitting, this may cause motion-blurred molecules to be undersampled, resulting in a bias
towards slow-moving molecules (Figure 1.18A). We estimated the extent of the bias by imaging
the four cell lines at 100 Hz and keeping the total number of excitation photons constant, but
varying the excitation pulse duration (1 ms, 2 ms, 4 ms, 7 ms, constant; Figure 1.26I). For
generality, we performed these experiments using both PA-JF549 and PA-JF646 dyes (Jonathan
B Grimm, Brian P English, J. Chen, et al. 2015). We used Spot-On to fit the data and plotted
the apparent free diffusion constant (Figure 1.26J) and apparent total bound fraction (Figure
1.26K) as a function of the excitation pulse duration. For fast-diffusing proteins like Halo-3xNLS
and H2B-Halo, motion-blurring resulted in a large underestimate of the free diffusion constant,
whereas the effect on slower proteins like CTCF and Sox2 was minor (Figure 1.26J). Regarding
the total bound fraction, motion-blurring caused a ∼ 2 fold overestimate for rapidly diffusing
Halo-3xNLS (Figure 1.26K), but had a minor effect on slower proteins like H2B, CTCF and Sox2.
Similar results were obtained for both dyes for proteins with a significant bound fraction, but
we note that JF549 appears to better capture the dynamics of proteins with a minimal bound
fraction such as Halo-3xNLS (Figure 1.26J–K). Finally, we note that the extent of the bias due to
motion-blurring will likely be very sensitive to the localization algorithm. Here, using the MTT-
algorithm (Sergé et al. 2008), motion-blurring caused up to a 2-fold error in both the DFREE

and FBOUND estimates.

Taken together, these results suggest that Spot-On can reliably be used even for SPT data
collected under constant illumination provided that protein diffusion is sufficiently slow and,
moreover, provides a helpful guide for optimizing SPT imaging acquisitions (we include a full
discussion of considerations for SPT acquisitions and a proposal for minimum reporting standards
in SPT in Anders S. Hansen, Woringer, et al. 2018; Appendix 3 and 4).

1.3.7 Discussion

In summary, SPT is an increasingly popular technique and has been revealing important new biological
insight. However, a clear consensus on how to perform and analyze SPT experiments is currently
lacking. In particular, 2D SPT of fast-diffusing molecules inside 3D cells is subject to a number
of inherent experimental (Figure 1.18A–B) and analysis (Figure 1.18C–D) biases, which can lead to
inaccurate conclusions if not carefully corrected for.

Here, we introduce approaches for accounting for both experimental and analysis biases. Several
methods are available for localization/tracking (Chenouard et al. 2014; Sergé et al. 2008) and for
classification of individual trajectories (Monnier, Barry, et al. 2015; Persson et al. 2013). Spot-On
now complements these tools by providing a bias-corrected, comprehensive open-source framework
for inferring subpopulations and diffusion constants from pooled SPT data and makes this platform
available through a convenient web-interface. This platform can easily be extended to other diffusion
regimes (Metzler, Jeon, et al. 2014; an approach is presented in section IV.2) and models (Antony Lee
et al. 2017) and, as 3D SPT methods mature, to 3D SPT data (section 1.2. Other extensions of Spot-
On are presented in section IV.2 and in section IV.3. Spot-On is published as an open-source software2.

2Computer code: Spot-On is fully open-source. The web-interface can be found at: https://SpotOn.berkeley.edu.
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Moreover, spaSPT provides an acquisition protocol for tracking fast-diffusing molecules with minimal
bias. We hope that these validated tools will help make SPT more accessible to the community and
contribute positively to the emergence of ‘gold-standard’ acquisition and analysis procedures for SPT.

About one and a half year after the publication of Spot-On, several labs have across the world
started to use Spot-On. Several metrics can be used to determine the popularity of the tool. First,
Spot-On has been cited in 9 publications. Second, the official Spot-On server has seen about 3000
visits from all over the world (figure 1.27) since its launching, a number known to be an underestimate,
since computers with privacy blockers installed are not counted.

Moreover, ∼ 1500 analyses were created on this server. This number is also known to be an
underestimate for Spot-On usage, since Spot-On can also be used standalone using either a Python or
Matlab interface.

Figure 1.27: Frequentation of the Spot-On website. (a) By country. (b) Over time.

All raw code is available at GitLab: https://gitlab.com/tjian-darzacq-lab. The web-interface code can be
found at https://gitlab.com/tjian-darzacq-lab/Spot-On; the Matlab command-line version of Spot-On can be found
at: https://gitlab.com/tjian-darzacq-lab/spot-on-matlab; the Python command-line version of Spot-On can be
found at https://gitlab.com/tjian-darzacq-lab/Spot-On-cli; the SPT simulation code (simSPT) can be found at:
https://gitlab.com/tjian-darzacq-lab/simSPT; finally, the ‘TrackMate to Spot-On connector’ plugin, which adds an extra
menu to TrackMate which allows one-click upload of datasets to Spot-On can be found at: https://gitlab.com/tjian-
darzacq-lab/Spot-On-TrackMate.
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Chapter 2

In vitro application: catalysis-enhanced
diffusion

Introduction Spot-On (section 1.3) was developed with the goal of analyzing in-nucleus single-particle
tracking data. It accounts for several biases occuring when a 3D medium is imaged in 2D. Furthermore,
because Spot-On models general Brownian diffusion, it can also be used outside the context of a cell.

Indeed, Spot-On is expected to perform well in the presence of short trajectories, a setting where
MSD is known (Michalet and Berglund 2012) to perform very poorly (see discussion in Appendix 1
from Anders S. Hansen, Woringer, et al. 2018). As such, we decided to apply the Spot-On to study
the diffusion of enzymes freely diffusing in solution (in vitro diffusion), a setting in which diffusion is
expected to be totally Brownian. This experiment served two goals:

• To provide a positive control to show that Spot-On actually models realistic jump length dis-
placements, and that the deviations observed are due to deviation from Brownian motion inside
the cell rather than our model not properly describing Brownian diffusion.

• To provide rare, additional data to the field of catalysis-enhanced diffusion, a field that studies
the impact of enzyme catalysis to its diffusion coefficient.

This was a collaborative effort between Alan Shaw and Zhijie Chen (both affiliated with the Mar-
qusee lab and the Bustamante lab, UC Berkeley), who were trying to perform SPT acquisitions. They
prepared all the reagents (enzyme purification and characterization) and we discussed together the SPT
experimental plan and I acquired the SPT images. Some of the sections of this chapter are extracted
from a manuscript in preparation.

2.1 The catalysis-enhanced diffusion controversy

At the nanoscale, passive Brownian diffusion dominates the mobility of molecules. Molecular motors
such as RNA polymerase can hydrolyze NTPs and generate force for directional movement along tem-
plate DNA. Whether freely-diffusing enzymes can also harness chemical energy to generate additional
mobility on top of Brownian motion is not well understood (Günther, Börsch, and Fischer 2018). Such
a possibility seems to be supported by recent fluorescence correlation spectroscopy (FCS) measure-
ments, which have shown that a number of non-motor enzymes including F1-ATPase (Börsch et al.
1998), urease (Muddana et al. 2010; Riedel et al. 2014; Jee et al. 2018), catalase (Riedel et al. 2014;
Samudra Sengupta et al. 2013), ALP (Riedel et al. 2014), fructose bisphosphate aldolase (Illien et al.
2017), acetylcholinesterase (Jee et al. 2018) and hexokinase (Xi Zhao, Palacci, et al. 2018), enhance
their diffusivities in the presence of substrates.

Accordingly, various mechanisms including fluctuations in pH (Muddana et al. 2010), global tem-
perature increase of the solution (Golestanian 2015), force and charged product generation (Muddana
et al. 2010), and enzyme chemotaxis toward substrates (Samudra Sengupta et al. 2013), have been
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proposed to account for this phenomenon. Using FCS, the Bustamante and Marqusee labs previously
uncovered a mechanistic link between the enhanced diffusion of catalase, urease and ALP, and the
heat released in those exothermic reactions (Riedel et al. 2014). Within the framework of a stochas-
tic theory, we proposed a “chemoacoustic effect” in which the heat released during catalytic turnover
generates an asymmetric pressure wave that displaces the centre-of-mass of the enzyme, manifesting
as catalysis enhanced enzyme diffusion. Arguing against this hypothesis, (Illien et al. 2017) further
shown that aldolase, an enzyme that catalyzes a slow and endothermic reaction, exhibits enhanced
diffusion in the presence of its substrate or competitive inhibitor. They proposed that the enhanced
diffusion of aldolase is independent of the overall turnover rate of the reaction, but due to confor-
mational fluctuations that alters the enzyme’s hydrodynamic radius. More surprisingly, inert passive
tracer has also been shown to diffuses faster in active enzyme solutions (Xi Zhao, Dey, et al. 2017),
suggesting that the energy released during enzyme catalysis can be transferred to and harnessed by its
environment. Recently, contrasting the aldolase diffusion enhancement observed by Illien et al., Zhang
et al. studied the diffusion of aldolase with dynamic light scattering (DLS) and observed no diffusion
enhancement in the presence of saturating concentration of substrates (Y. Zhang et al. 2018). DLS
measures the D of molecules without the need of fluorescence, therefore its readout is independent of
dye photophysics. These results are in direct conflict with one and another; and it’s unknown what
caused these discrepancies. To date, the vast no unified theory has been proposed to rationalize these
experimental observations, which have all been made using FCS (Günther, Börsch, and Fischer 2018).

To date, the vast majority of publications describing enzyme diffusion enhancements, either ex-
perimental or theoretical, dependent on the validness of FCS measurements, which are sensitive to
dye photophysics, and mounting evidences from non-FCS measurements and theory start to challenge
the foundation of this field (Günther, Börsch, and Fischer 2018; Y. Zhang et al. 2018; Feng and
Gilson 2019). In FCS, time traces of photons emitted while fluorescently labeled enzymes traverse
a diffraction-limited confocal volume are recorded and analyzed with the autocorrelation function to
derive the enzymes’ ensemble-averaged translational diffusion coefficient (D, µm2/s) (Krichevsky and
Bonnet 2002). As such, factors other than fluorophore diffusion that cause fluorescence fluctuations
within the confocal volume can interfere with D determination. Unstable fluorophore emission, fluo-
rophore quenching, subunit dissociation of enzymes in diluted concentrations, and sticking of enzymes
to surface of the coverslip can all contribute to erroneous D (Günther, Börsch, and Fischer 2018).
Indeed, failure to rule out some of these factors have led to false claims in the diffusivity enhancement
of F1-ATPase, which sticks to surface of the coverslip and undergoes substrate-induced dissociation of
enzyme subunit (Günther, Börsch, and Fischer 2018; Börsch et al. 1998; Shah et al. 2013). Similar
subunit dissociation has also been observed for aldolase (Woodfin 1967). Additionally, p-nitrophenyl
phosphate (pNPP), a common substrate of ALP, has been shown to decrease fluorophore lifetime (Gün-
ther, Börsch, and Fischer 2018). These effects prompted us to cross-validate existing FCS observations
with alternative techniques, ideally ones that allow the determination of D at the single molecule level
and suffer less from dye photophysics.

SPT has emerged as a powerful approach to track the movement of individual molecules (Shen et al.
2017). By imaging fluorescent molecules at high speed and tracking the same molecule that appears
in successive frames, trajectories of single molecules can be faithfully reconstructed. The jump length
distribution from these trajectories can then be fit to theoretical models to derive D (Anders S. Hansen,
Woringer, et al. 2018). Unlike FCS, this method is less sensitive to dye photophysics, as dark state or
blinking fluorophores will not appear in successive images for reconstruction of diffusion trajectories.

ABEL trap is an advanced single-molecule technique that gives real-time position sensing via flu-
orescence detection and applies electric field feedback to counteract the molecule’s Brownian motion,
allowing ∼ 1-10 s continuous trapping—an observation time window three to four orders magnitude
longer than that in FCS—of single molecules of various sizes (Quan Wang and W. E. Moerner 2011;
Quan Wang and W E Moerner 2014; Quan Wang, Goldsmith, et al. 2012; Adam E. Cohen and W. E.
Moerner 2005; A. E. Cohen and W. E. Moerner 2006). The voltage feedback is then used to recon-
struct the molecule’s diffusion trajectory and to derive D of single molecules (Q. Wang and W. E.
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Moerner 2010). Apparent advantages of ABEL trap over FCS in measuring diffusion are that it 1) is
independent of dye photophysics; 2) resolves sample heterogeneity such as different oligomeric states
(Quan Wang, Serban, et al. 2018) and presence of free dyes; and 3) directly measures D of each
individual molecules, what we term “single-molecule diffusometry” (Figure 2.1).

Here, we use SPT and ABEL trap to measure the D of single ALP molecules and show that
catalysis, contrary to previous findings based on FCS, does not enhance their diffusivities at the single-
molecule level. We uncovered surprising effect of pNPP-induced dye photophysics that mounted to
artifact of ‘apparent’ diffusion enhancement of ALP in FCS. These new results urge a crucial revisit of
previous FCS measurements on enzyme diffusion as well as various theoretical models, including those
of our own, that relied on solely on FCS data. We further suggest use of control experiments, SPT,
and ABEL trap as alternatives to substantiate other observations made using FCS.

Figure 2.1: Revisiting Catalysis Enhanced Diffusion of ALP (A) Structure of ALP (left panel)
and the reaction it catalyzes (right panel). The two protomers of ALP are colored in green and grey,
respectively. pNPP and Zinc (black) are shown as spheres. During a reaction, ALP removes the
phosphate group from pNPP and it has been proposed that catalysis enhances the diffusivity of ALP.
(B) Control experiments including pNPP with free dye, pNPP with wrong catalyst, ALP reacting with
alternative substrates are needed to examine the role of catalysis on ALP diffusivity. (C) Previous
interpretation of enhanced enzyme diffusion are based on measurements from FCS, which detects the
averaged fluorescence burst in confocal volume and is prone to photophysical artifacts. (D) ABEL
trap uses electric feedback to counteract a molecule’s Brownian motion and allows real time feedback
trapping of a single biomolecule for seconds, an observation time window orders of magnitude longer
than that of FCS. The feedback voltage is then used to reconstruct a molecule’s diffusion trajectory,
from which D of single molecules are derived (termed here ‘single-molecule diffusometry’).
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2.2 Non-SPT experiments do not show enhanced diffusion

2.2.1 Catalysis is neither necessary not required for apparent diffusion enhance-
ment of ALP in FCS

Among enzymes that have been reported to exhibit catalysis-enhanced diffusion, ALP shows the high-
est diffusion enhancement of up to 80% (∆D/D0) with its substrate pNPP (Riedel et al. 2014) (Figure
2.1A). Such a big magnitude of catalysis enhanced diffusion deviates from the typical ∆D/D0 of
10-30% reported of other enzymes and is difficult to reconcile with theoretic predictions based on ther-
modynamic coupling between the swimming enzyme and its environment (Bai and Wolynes 2015). We
therefore sought to investigate the enhanced diffusion of ALP by performing extra control experiments
in FCS (Figure 2.1B) and use alternative techniques such as SPT and ABEL Trap to measure diffusion
(Figure 2.1C).

We purified ALP from bovine intestinal mucosa to homogeneity through size-exclusion chromatogra-
phy and fluorescently labeled the enzyme with JF646-NHS. JF646 was chosen for its superior brightness
and photostability (Jonathan B Grimm, Brian P English, Choi, et al. 2016), and that it has improved
SPT and localization microscopy experiments (Basu et al. 2018). Using FCS, we recorded the raw pho-
ton intensity of ALP for 300 seconds, calculated the autocorrelation function G(τ) of every 10 seconds
of the data, and fitted G(τ) with a simple model of diffusion of a single species in a dilute solution to
derive D (Figure 2.2A-C). Averaging the diffusion constants over the 300-second time window gives a
mean D of 45.6 ± 2.9 µm2/s (Figure 2.2C, data from 0 to 300s). Importantly, this analysis gives us
an otherwise overlooked knowledge of the fluctuations of D over the experimental time window, which
can be caused by interfering factors such as sticking of protein to the glass coverslip surface, large
fluorescent spikes, evaporation of protein solution, and protein aggregation/dissociation. Addition of
2 mM pNPP to the same solution immediately quenched the raw fluorescence signal by ∼ 50 % (Fig-
ure 2.2A, right panel). The fluorescence signal recovered to 70 % of the initial intensity within 150
seconds and remained relatively stable thereafter. Such pNPP-induced fluorescence quenching effect
also occurs on free dyes, as confirmed by quantifying fluorescence intensity of the free dyes in bulk
using a fluorometer. Performing the same D analysis to the 300 seconds of data obtained post pNPP
addition gives a mean D of 56.1 ± 4.7 µm2/s (Figure 2.2C, data after 300s), corresponding to a 23 %
apparent diffusion enhancement. Notably, the fluctuation of difusion coefficients is greatly enhanced
post pNPP addition (Figure 2.2C, red crosses). Consistent with the previous finding (Riedel et al.
2014), the apparent D enhancement in FCS is pNPP concentration dependent (Figure 2.2D, the first
4 groups with pNPP). Experiments with addition of buffer only did not give rise to any apparent D
enhancement, demonstrating that the apparent D enhancement was not due to perturbation of the
system during sample addition (Figure 2.2D, buffer group).

To test whether the apparent D enhancement of ALP in the presence of 2 mM pNPP originated
from enzyme catalysis, we carried out several crucial control experiments. First, we measured the D
of free JF646 dye before and after addition of 2 mM pNPP. As shown in Figure 2.2E, pNPP addition
induced significant D fluctuations and 15% apparent D enhancement of free JF646 dyes (Figure 2.2E,
free dye group), similar to those seen in experiments with ALP-JF646. Second, we measured the D
of Atto647N-labeled Streptococcus gordonii inorganic pyrophosphatase (Ilias and Young 2006) (sgPP-
Atto647N) before and after addition of 2 mM pNPP. As pNPP is not a substrate of sgPP-Atto647N
(i.e. wrong protein for catalysis), there should be no catalysis in this situation. However, we again
observed similar D fluctuations and 17% apparent D enhancement (Figure 2.2E, sgPP group). Third,
we measuredD of ALP-JF646 in the presence of other ALP substrates including 2 mM AMP (Adenosine
monophosphate), 4 mM ADP (Adenosine diphosphate) and 2 mM PEP (Phosphoenolpyruvate). ALP
is fully active with these substrates but no apparent D enhancement is observed with any of them
(Figure 2.2D, ADP, AMP, PEP groups). The low level of D fluctuations over time also suggest that
these compounds did not interfere with D measurement in FCS. Unlike pNPP, these compounds do
not quench the fluorescence of JF646 dye in bulk. Collectively, these data indicate that catalysis
is neither necessary nor required for the apparent D enhancement of ALP in the presence of pNPP
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(Figure 2.2D-E).

Figure 2.2: Catalysis is Neither Necessary nor Required for Enhanced Diffusion of ALP
in FCS (A) FCS time trace of ALP-JF646 before (left) and after (right) adding 2 mM pNPP. (B)
Normalized autocorrelation curves of data in black, blue and red rectangle boxes in (A). (C) Ds derived
from fitting every 10s of data in (A). After adding 2 mM pNPP, the fluctuations of Ds become larger.
(D) pNPP, but not other substrates causes apparent diffusion enhancement of ALP. Mean D of 300s of
data before (black bars) and after (red bars) adding the indicated solutions. Error bars are standard
deviations of 30 Ds. The percentage of mean D enhancement under each condition is labeled in
cyan above the corresponding bars. The orange horizontal line indicates experiments with alternative
substrates of ALP. (E) pNPP not only causes apparent diffusion enhancement of ALP, but also that of
free dye and wrong catalyst. The apparent diffusion enhancement can be abrogated with a dye triplet
state quencher, Trolox. The data is processed and represented similar to that of (D).

2.2.2 pNPP induces dye quenching and blinking

To directly measure the D of ALP at the single molecule level, we trapped single ALP-JF646 molecules
in ABEL trap (Figure 2.3A). Most ALP molecules carry one or two dyes and the relative brightness of
each molecule do not interfere with D estimation (Figure 2.3A). Extracting D from single molecules
(Figure 2.3A, bottom panel) indicates that the enzyme exists as a single population in solution, with
a narrow distribution of D (54.8 ± 0.2 µm2/s, N = 216) (Figure 2.3A, right histogram). This value
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matches well with D predicted from a hydrodynamic model (Basu et al. 2018) based on the enzyme’s
crystal structure (PDB 4KJG), suggesting that the enzyme behaves as a stable homodimer within our
experimental time window (< 2 hours) and enzyme concentration (20 pM).

Next, we repeated the trapping experiment under catalysis condition by adding 2 mM pNPP. To our
surprise, we observed rapid and frequent blinking of the dye. Because ABEL trap relies on continuous
photon detection to provide voltage feedback to counteract Brownian diffusion, the enzyme molecules
therefore can no longer be stably trapped due to rapid loss of fluorescent signal. It is known that dye
photobleaching and blinking can occur through oxidization or reduction of the dye triplet state into
charge-separated states (Vogelsang et al. 2008). For example, a previous model on dye blinking and
photobleaching suggests that both oxidizing and reducing agent of the dye triplet state are required for
stable emission (Vogelsang et al. 2008). Accordingly, reducing and oxidizing systems (ROXS) are often
used in single molecule fluorescence spectroscopy experiments to suppress these photophysical effects.
Indeed, when we included a commonly used ROXS system (Trolox + PCA/PCD) in our trapping
buffer, the pNPP-induced dye blinking effect was greatly ameliorated, allowing us to stably trap single
ALP molecules in the present of pNPP (Figure 2.3D, left panel). Together, these results suggest that
pNPP induces dye quenching and blinking, which likely acts through redox related pathways of the
excited state of the dye.

2.2.3 ABEL trap reveals no catalysis enhanced diffusivity of ALP

Next, we trapped single ALP molecules in ABEL trap using the Trolox-PCA/PCD buffer (Figure
2.3C-D). Without substrate, ALP molecules showed a narrow distribution of D (53.3 ± 0.2 µm2/s,
N = 189) (Figure 2.3C, histogram on the right panel), similar to the above value determined in the
buffer without Trolox-PCA/PCD (Figure 2.3A, right histogram of the top panel). In the presence of
2 mM pNPP, surprisingly, the distribution and mean of D (52.3 ± 0.2 µm2/s, N = 198) (Figure 2.3D,
histogram on the right panel) remained the same as those obtained without substrate. We confirmed
that the enzyme remains active in all buffer conditions. Thus, the ABEL trap data does not agree
with FCS results; and instead, suggest that there is no catalysis enhanced diffusivity of ALP at the
single molecule level.
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Figure 2.3: ABEL trap Measurements Reveals no Catalysis Enhanced Diffusion of ALP
(A) A representative ABEL trap trace of ALP-JF646 with no substrate. Top left panel, intensity
plot (photon counts per 5 ms) of the detected fluorescence signal. A single fluorophore corresponds
to a signal of ∼ 130, whereas dual-fluorophore corresponds to ∼ 260, allowing the assignment of the
number of dyes per molecule. Orange arrowhead (diffuse in) denotes the successful trapping of a single
molecule. Magenta arrowheads denote the signal corresponding to one or two dyes. Green arrow
denotes the loss of signal due to photobleaching or escape of the trapped molecule. Top right panel, D
histogram of ALP-JF646 without substrate. Mean ± std of D and number of single molecules trapped
(N) are displayed on the top left corner. Middle panel, the corresponding feedback voltage (x in black,
y in red) applied in order to counteract Brownian motion and keep the molecule in trap. The feedback
is on only when there is a molecule in the trap. The orange and green dashed lines denote timeframes
when the trapping are on or off. Bottom panel, D of each trapped molecule calculated in real time
(binned per 100 ms, black trace). The red lines indicate the mean D of each molecule, with the value
written under the red lines and denoted with red arrowheads. The mean D of each molecule is used
to derive the histogram on the top right panel. (B) A representative ABEL trap intensity trace (left)
and D histogram (right) of ALP-JF646 with no substrate in the Trolox + PCA/PCD buffer. (C) A
representative ABEL trap intensity trace (left) and D histogram (right) of ALP-JF646 with 2 mM
pNPP in the Trolox + PCA/PCD buffer.
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2.2.4 The apparent diffusion enhancement of ALP in FCS is caused by pNPP-
induced photophysics of the dye

These new findings prompted us to reexamine previous FCS measurements. Because FCS measure-
ments are sensitive to dye photophysics, we hypothesize that pNPP induced dye blinking and quench-
ing, as observed in SPT and ABEL trap experiments, might play a role in the apparent D enhancement
in FCS. To this end, we carried out FCS experiments in Trolox-PCA/PCD buffer, which alleviated
pNPP induced dye blinking in ABEL trap (Figure 2.3C). Surprisingly, all the previously observed
pNPP-induced apparent D enhancement of ALP-JF646, free JF646 dye and sgPP-Atto647N were no
longer evident (Figure 2.2E, + Trolox groups), lending support to the hypothesis that pNPP-induced
dye photophysics contributes to the observed apparent D enhancement of ALP in FCS.

To test whether pNPP-induced fast dye blinking contributes to apparent D enhancement, we
extracted the fluorescence intensity traces of ABEL trap data obtained in the absence and presence of
2 mM pNPP and fit them to autocorrelation. As shown in Figure 2.4A, pNPP induced millisecond time
scale fluorophore blinking (ktot = 116 s-1) that could contribute significantly to fluorescence intensity
fluctuations in confocal volume and D determination in FCS. We estimated the effect of blinking on
the apparent diffusion enhancement using Monte-Carlo simulation. (Figure 2.4B).

To directly measure the effect of pNPP on dye photophysics, we conjugated JF646-NHS dye to a
45-bp biotinylated dsDNA and immobilized the labeled DNA on the surface of a coverslip through
streptavidin and biotinylated BSA (bovine serum albumin) interactions. We optimized dsDNA-JF646
concentrations until single fluorophores were sparsely distributed on the surface. In normal buffer
conditions (1x PBS), we obtained stable emission of single dye molecules that bleaches in a single
step. When 2 mM pNPP was added to the buffer, we observed complicated photophysical behaviors of
the dye that varies from molecule to molecule but can be categorized into three distinct groups. The
first group of molecules has a very short-lived fluorescence signal before it was quickly and irreversibly
quenched. The second group of molecules shows unstable emission intertwined with blinking and stable
emission. The third group of molecules shows fast blinking. These observations are consistent with the
data from ABEL trap, confirming that pNPP indeed induced complicated photophysics of the dye. In
addition, we repeated the surface experiment with Atto647 dye, which showed similar pNPP-induced
fast dye blinking that was more consistent from molecule to molecule. These results indicate that
pNPP may affect dye photophysics through a general mechanism.

To further explore the mechanism of pNPP’s effect on dye photophysics (Figure 2.4C, left diagram),
we conducted a series of trapping experiments with different ROXS conditions (Figure 2.4C, table on
the right). Trolow has both oxidizing and reducing component, while PCA is a known reducing agent
for the excited state of the fluorophore. In the presence of equimolar pNPP and PCA (2 mM each),
the blinking was suppressed; while a concentration imbalance of pNPP (0.2 mM) and PCA (2 mM)
caused rapid dye blinking. pNPP-induced dye blinking can also be suppressed by addition of Trolox (3
mM). Together, these experiments suggest that pNPP may acts as a dye excited state oxidizing agent,
which alone quenches and causes blinking of fluorophores, but can work together with PCA and/or
Trolox for stable dye emission (Figure 2.3C).
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Figure 2.4: pNPP-induced Dye Photophysics is Responsible for the Apparent D Enhance-
ment of ALP in FCS (A) Autocorrelation curves of ALP-JF646 intensity traces in ABEL trap
without (green) and with 2 mM pNPP (black). The data are from trapping traces without Trolox
+ PCA/PCD. (B) Simulation of the pNPP-induced dye blinking kinetics into the diffusion of ALP-
JF646 without substrate indicate a pNPP concentration dependent apparent D enhancement of ALP.
(C) Left, a proposed model of pNPP-induced dye photophysics through a redox-mediated pathway
of the dye triplet state. The dye triple state (T1) can be oxidized or reduced into charge separated
states (F•+ and F•-) which is prone to photo bleaching (P, dark state). Rescuing the charge separated
state with oxidizing or reducing agents returns the system to the ground state (S0) and suppress dye
blinking and photobleaching. Right, ABEL trap data of ALP-JF646 with tuned redox condition of the
trapping buffer. The data suggest that pNPP may act as a dye triplet state oxidizer and cause dye
blinking. The photophysical effect of pNPP that can be suppressed with Trolox and/or PCA/PCD.

2.3 SPT reveals no catalysis enhanced diffusivity

2.3.1 Rationale

As an orthogonal approach to FCS and ABEL trap, we used SPT to characterize the diffusion enhance-
ment of the enzymes in the presence of substrate. To do so, using the purified and labeled enzymes,
we first characterized our microscope setup to estimate how fast we could observe diffusion. The, we
performed acquisitions to measure the diffusion coefficient of the the enzyme with and without the
substrate.

In order to obtain comparable results with FCS and to preserve the activity of the enzyme, we had
to work in buffers of low viscosity. This required to optimize our SPT microscope to perform very
high speed acquisitions. Indeed, whereas most transcripton factors observed in cells have a diffusion
constant around 1-5 µm²/s, enzymes in solution have a diffusion constant around 20-60 µm²/s. To
gain a factor of ten in the diffusion speed being captured, we took care of the following acquisition
parameters:

• The passivation of the coverslips, in order to reduce out-of-focus fluorescence, and to be able to
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image as close to the coverslip as possible (while keeping the coverslip out of the detection range,
to avoid biases in the estimates of diffusion coefficients)

• The use of high laser power and short exposure time: we went down to 1.6 ms (∼ 600 Hz)
acquisition, in order to be able to track single molecules.

At that speed, most of the enzymes cross the axial detection range of the objective in about one
frame, and most of the trajectories we obtain are composed of two points (median length: 1 frame).
Thus, MSD-based techniques cannot be used to analyze such dataset. Conversely, Spot-On (section
1.3, because it builds a displacement histogram from two consecutive detections, can use the full
information embedded in the data.

We assessed the diffusion of the following enzymes labeled with Atto-647N:

1. Catalase (an increase of 30% increase in D is expected)

2. Alkaline Phosphatase (ALP, increase of 80% in D expected)

3. Triose Phosphate Isomerase (TIM, ∼ 0%)

We present below the results obtained for these proteins. The results are also summarized in Table
2.1.

2.3.2 Diffusion of Alkaline Phosphatase (ALP)

To further confirm this surprising single molecule observation, we performed fast, in-solution SPT
experiments and directly measured the diffusion coefficient of ALP with and without pNPP. In-solution
SPT is an advanced single-molecule technique that allows tracking of individual fluorescently-labeled
molecules over the course of several frames (Figure 2.5A) (Anders S. Hansen, Woringer, et al. 2018;
Anders S. Hansen, Pustova, et al. 2017). Importantly, SPT is not affected by the photophysics of the
dye, in particular by quenching as is the case with pNPP. Since the diffusion rate of freely-diffusing
molecules in solution are above the tracking speed limit of our imaging setup, we assessed the diffusion
of TIM-Atto647N dyes in buffers with different glycerol concentrations (10-25%) (Figure 2.6A). By
tuning the viscosity of the buffer, we verified that the experimental D values of the dye in these buffers
agree well with those predicted from theory (Figure 2.6B), confirming that this in-solution tracking
strategy is sensitive enough for diffusion measurements. Moreover, we tested SPT of a fluorescently
labeled protein, TIM-Atto647N (a protein with similar D to that of ALP), in a buffer with 10%
glycerol. The data shows no differences in D with and without substrate (Figure 2.6C), confirming
previous finding in FCS (Riedel et al. 2014). Next, we imaged ALP-Atto647N in a buffer with 10%
glycerol, at ∼ 600 Hz (1.7 ms per frame) and used 1 ms stroboscopic illumination in order to minimize
the motion blur of the protein during one exposure frame (Anders S. Hansen, Pustova, et al. 2017).
The acquired traces (in the order of tens of thousands) were then analyzed using a population model
(Anders S. Hansen, Woringer, et al. 2018) that expresses the distribution of jump length under a
Brownian, free diffusion model (Figure 2.5B). Fitting both histograms of jump lengths to the model
yielded a similar D with and without substrate (22.5 µm²/s with no substrate, and 23.3 µm²/s with 5
mM pNPP, Figure 2.5C). These two values differ by only 3.5%––within the experimental uncertainty,
lending further support to the ABEL trap finding that catalysis does not enhance the diffusivity of
ALP at the single molecule level. In the presence of pNPP, we detected approx 10x less particles
(Figure 2.7A) and the spot intensity of detected particles were also dimmer (Figure 2.7B), consistent
with the quenching effect of pNPP.
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Figure 2.5: SPT Reveals no Catalysis Enhanced Diffusion of ALP. (A) Representative images of
fast SPT acquisition and tracking of single molecules. The red circle denotes the center of the detected
molecule in each frame. The blue line denotes the molecule’s diffusion trajectory. (B) Modeling jump
length distribution under free diffusion assumptions. Jump length distribution histograms of molecules
with low and high D are plotted in blue and orange, respectively. (C) Jump length distribution
histograms of ALP-Atto647N with no substrate (left) and with 5 mM pNPP (right). The yellow,
green and purple histograms are distributions of jump lengths between 1∆ t (1.6 ms), 2∆ t and 3∆ t,
respectively. The calculated D and total jumps are written on the top of the histograms.
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Figure 2.6: Tuning Buffer Viscosity for in-solution SPT of an Enzyme (A) Jump length
distributions of TIM-Atto647N in buffers with different glycerol concentrations. (B) SPT calculated
Ds of TIM-Atto647 match well with theoretically predicated values in buffers with different glycerol
concentrations. (C) Jump length distribution histograms of TIM-Atto647N with no substrate (left)
and with 27.6 mM D-glyceraldehyde 3 phosphate (right). The yellow, green and purple histograms are
distributions of jump lengths between 1∆ t (1.6 ms), 2∆ t and 3∆ t, respectively. The calculated D
and total jumps are written on the top of the histograms.
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Figure 2.7: pNPP quenches dye fluorescence in SPT (A) Number of detected particles (per 1000
frames) of ALP-Atto647N without (pink) and with 5 mM pNPP (blue) in SPT measurements. Much
fewer particles are detected in the presence of pNPP due to quenching or blinking of the fluorophore.
(B) Histograms of detected spot intensites without (pink) and with 5 mM pNPP (blue). The spot
intensities are lower in the presence of pNPP.

2.3.3 Diffusion of other enzymes

In addition to ALP, we also investigated the diffusive behaviour of other enzymes. We present results
for triose phosphate isomerase (TIM), sgPP and aldolase in Table 2.1. Jump length displacements of
sgPP are presented in Figure 2.8. For all the enzymes tested, SPT could not reveal any change in the
diffusion coefficient.

Table 2.1: Summary of SPT experiments with various enzymes and substrates. (∗) Incon-
sistent results, (∗∗) Strong result (≥ 2 replicates).

Enzyme D (no substrate) D (substrate) [substrate]
(µm²/s) (µm²/s) (mM)

TIM** ∼ 38 ∼ 39 27.6
SGPP* 32 32 10
SGPP 32 33 10 (inhibitor)
Aldolase 33 33 10
bALP** 29 30 20 (PEP)
bALP** 29 28 5 (pNPP)
catalase N/A 34 100
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Figure 2.8: Diffusion of sgPP. Jump length displacement histograms at various time lags (a) In the
absence of substrate. (b) In the presence of substrate. (c) In the presence of substrate and competitive
inhibitor of sgPP. Quantified results are presented in Table 2.1.

2.4 Discussion

Propulsion of biomolecules at the nanoscale is no doubt a fascinating concept and has potential ap-
plications in the field of nanoscience and medicine. However, mounting experimental and theoretical
evidences argue against the mechanism, scale and even the existence of such phenomenon (Günther,
Börsch, and Fischer 2018; Y. Zhang et al. 2018; Feng and Gilson 2019). The vast majority of publica-
tions documenting enhanced enzyme diffusion upon catalysis were performed with FCS, which is prone
to artifacts, such as free dye contamination, enzyme multimer dissociation and dye photophysics, that
can result in false interpretations of enhanced diffusion, and often these artifacts are not accounted for
in previous studies. Recently, Günther et al. characterized the impact of pNPP on the photophysics
of Alexa 488, and concluded that pNPP reduces the fluorescent lifetime and quenches the dye in a
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concentration dependent manner, resulting in a shorter correlation time measured in FCS (Günther,
Börsch, and Fischer 2018). Zhang et al. utilized a non-fluorescent based technique, DLS, to moni-
tor the diffusion of unlabeled aldolase upon catalysis, and showed that in contrast to previous FCS
measurements, aldolase does not diffuse faster when catalytically active, and suggested that multimer
dissociation may be the cause of the observed diffusion enhancement in FCS (Y. Zhang et al. 2018).

Here we show that, in agreement with Günther et. al., pNPP affects the photophysics of both
JF646 and Atto647 dyes, which translates into a faster diffusion observed with FCS. Careful control
of the buffer environment with ROXS can reduce the dye blinking significantly, allowing us to trap
single ALP molecules with the ABEL trap in the presence of pNPP. Using both SPT and ABEL
trap, we showed that at the single molecule level, the D of ALP does not increase in the presence of a
saturating concentration of pNPP. By using several crucial control experiments, directly measuring dye
photophysics, and simulation, we conclude that the apparent diffusion enhancement of ALP observed
in FCS is primarily due to pNPP-induced dye photophysics. Although subunit dissociation was not
observed in our ALP experiments, we note that ABEL trap is capable of resolving the diffusion of an
enzyme with mixed multimeric states (Quan Wang, Serban, et al. 2018). Thus, we recommend the use
of single molecule techniques such as SPT and ABEL trap that are not sensitive to dye photophysics
to cross validate D measurements of fluorescent labeled biomolecules made in FCS.

Now that we have proved the validity and attractivity of Spot-On in such an in vitro setting, we
decided to apply it to the study of a key transcription factor and oncogene: the c-Myc protein.
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Chapter 3

In vivo application: sequence
determinants of c-Myc dynamics

Introduction The nucleus of a mammalian cell is a highly complex organelle that governs the life of
the cell through its ability to regulate transcription and metabolism, to integrate signalling responses
and to control many division-related processes. In the past twenty years, our understanding of the
nucleus has seen many revolutions, among them the rise of sequencing techniques (ChIP-seq and Hi-C)
and imaging techniques (including FISH and live-cell imaging).

As detailed in section I.2, these tools helped to build a nuanced picture of the constitution and
dynamics of the nucleus: it behaves as a complex aqueous medium filled with a high concentration of
DNA, RNA, protein and other macromolecules. These molecules all exhibit some levels of interaction,
from extremely weak to nearly-covalent bonds.

In this context, a key question in biology is to understand what are the biophysical parameters
that determine the regulation of transcription. As explained in section I.3, the (potentially fractal)
structure of nucleus and the surface characteristics of the TF both influence the dynamics of proteins.

Generally, the determinants of the dynamics of a TF (and furthermore its influence on transcription)
are poorly understood. Even though it is thought that transcription efficiency is correlated with binding
time to DNA (Clauß et al. 2017), our knowledge of the dynamics of TF is limited. Are protein-DNA
interactions the main driver of a TF’s dynamic? (in that case, one can expect significant changes in
the dynamics when the DNA-binding domain of the protein is deleted). Contrary, and as suggested in
(W. F. Lim et al. 2016), are protein-protein interactions the main drivers of the dynamics, and possibly
of the choice of the DNA-binding location?

We decided to use the oncogene c-Myc as a model protein to address those questions. Briefly,
c-Myc was chosen because it is a biomedically relevant protein (it is deregulated in most cancers,
section 3.1.1 and is considered as a key therapeutic target, section 3.1.6), but also because preliminary
experiments point to a unique behaviour in cells (section 3.1.7). In addition, it can also be used to ask
basic biophysical questions about diffusion in the nucleus.

In this section, we decided to focus on understanding the sequence-determinants of the dynamics
of the c-Myc protein. Concretely, we designed an experiment to evaluate how the dynamics of c-Myc
changes when some of its protein domains are deleted. We motivate in more details this approach of
the problem in section 3.2.1.

In order to make progress in this project, I received a huge amount of help from Lana Bosanac,
Frank Liangqi Xie (genome editing attempts in NT2 cells), Claudia Cattoglio (biochemistry), Christian
Weber (clonings and genomics), Gina Dailey (clonings), Claire Darzacq (biochemistry), Anders Hansen
(SPT imaging) and Mickaël Lelek (microscope maintenance). Some preliminary experiments for this
work were performed in 2014 and this section borrows some figures and text from my masters thesis
(Woringer 2014).
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3.1 Background, Myc as a. . .

3.1.1 Myc in cancer: discovery and epidemiology

1. Myc as a prototypical oncogene. Myc was initially discovered as an oncogene causing
fulminant chicken tumor (Dang 2012), leading to the discovery of the v-Myc gene in the late
1970s. Soon after, orthologs genes were discovered and sequenced in several organisms, including
mice and human (Bernard et al. 1983). A translocation involving the c-Myc gene in Burkitt
lymphoma (a cancer affecting the white blood cells) lead to the discovery of this gene in humans
in the early 1980s (Manolov and Manolova 1972; Dalla-Favera et al. 1982). More specifically,
Myc is usually regarded as a proto-oncogene, since its transcription at normal expression levels
does not usually lead to cancer.

2. Myc epidemiology. Since its discovery, Myc has been linked to many cancers. First, c-Myc
causes Burkitt lymphoma through several chromosomal translocation. c-Myc is also mutated
in many cancers (in 14% over all cancers; 20% of breast cancers, 30% of ovary cancers, almost
50% of some prostate cancers, etc.; Yinghua Chen et al. 2011; Kalkat et al. 2017), and several
mutational hotspots have been identified in the protein (Nesbit, Tersak, and Prochownik 1999).

Second, Myc expression has been shown to be elevated or deregulated in most (70%) human
cancers (Beroukhim et al. 2010; Dang 2012), and is now associated with most cancers. Cancers
in which Myc is deregulated are usually associated with "aggressive disease, metastatic potential,
therapeutic resistance and poor patient outcomes" (Kalkat et al. 2017), especially when combined
with other mutations or deregulations (Hartl 2016). As such, any drug that could repress Myc
expression could globally improve the prognosis of the majority of cancer patients. In 1999, it
was estimated that ∼ 70000 US cancer deaths were related to changes in c-Myc expression (Dang
1999).

3. Various families of Myc. Several related families have been discovered and include MYC
(c-Myc), MYCL (L-Myc) and MYCN (N-Myc). Often, c-Myc and N-Myc can substitute for one
another, in particular during murine development (Varlakhanova et al. 2010; Dang 2012). More
precisely, the authors of (Varlakhanova et al. 2010) find that mice with c-Myc KO die in E10.5
and exhibit hematopoiesis and vascular defects (a link investigated in details in Kókai 2010).
Furthermore, mice with a N-Myc KO die in E11.5 and display both lung and neuroectoderm
defects. In general, the role of L-Myc is less clear, and L-Myc seems to be dispensable for
mice embryonic development. Finally, when both c-Myc and N-Myc are deleted (dKO), the
cells differentiate and lose pluripotency, suggesting a functional redundancy between c-Myc and
N-Myc in mESC (K. N. Smith, A. M. Singh, and Dalton 2010; Fagnocchi and Zippo 2017).

4. The Myc locus. In this study, we focused on mice c-Myc. The c-Myc gene is located on
chromosome 8 in human (gene identifier ENSG00000136997) and on chromosome 15 in mouse
(ENSMUSG00000022346). It has three exons.

c-Myc promoter. Transcription of the MYC gene can occur from several promoters named P0,
P1, P2 and P3 (Bentley and Groudine 1986; Bardales et al. 2018; Carter, Jarquin-Pardo, and
De Benedetti 1999). Transcripts starting from P1 and P2 seem to allow the production of the
full-length protein. This first level of complexity at the promoter level is increased by the high
number of enhancer sequences interacting with MYC.

c-Myc enhancers. The regulation of c-Myc is thought to be extremely complex. First of all
because the MYC promoter is surrounded and thought to be regulated by hundreds of enhancers
(Enhancer Atlas lists 275 enhancers, T. Gao et al. 2016). Second, because some of the c-Myc
enhancers are acting at extremely long distance, up to 1.7 Mb downstream, where most enhancers
are located less than 100 kb from their target gene (von Paleske et al. 2014; Uslu et al. 2014).
The complexity of this locus motivated the mapping of enhancers, first in a manual fashion (
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Yochum 2011 for instance), and then through the development of specific enhancer screens using
CRISPR interference (Fulco et al. 2016) and high-sensitivity 3C derivatives (Sumida et al. 2018).

3.1.2 The protein

1. Protein domains. The main c-Myc isoform is a 439 aa protein subdivided in several protein
domains. As most transcription factors, c-Myc has a DNA binding domain and a trans-activation
domain (Figure 3.1a).

The DNA binding domain is a basic-region helix-loop-helix (bHLH) domain. This domain, char-
acterized in (Fieber et al. 2001) is mostly unstructured when the protein is alone. However, the
domain folds upon binding with its bHLH partner MAX, yielding what is considered as a fully
functional DNA-binding domain that can be crystallized (Nair and Stephen K. Burley 2003 and
Figure 3.1b). The rest of the protein is less ordered (see section 4), but has been divided in
several Myc boxes (MB) based on functional characterizations. The bHLH domain is conserved
across various branches, from human to Drosophila.

The Myc boxes MBI, MBII and MBIII have been associated with transcriptional activation in
deletion studies (Herbst, Hemann, et al. 2005; Cowling et al. 2006). MBII is a very conserved
domain, from human to Drosophila. MBIV has been identified through conservation analysis.
Despite being outside the DNA-binding domain, deletion of MBIV yields reduced DNA binding
and reduced trans-activation (Cowling et al. 2006).

Figure 3.1: Overview of the c-Myc protein. (a) Domains identified in the c-Myc protein (b)
Crystal structure of the CTD. source: adapted from (Pelengaris, Khan, and Evan 2002; Nair and
Stephen K. Burley 2003)

2. c-Myc isoforms. The c-Myc protein can be found as two main distinct isoforms, termed Myc1
and Myc2. Myc1 starts at a non-canonical CUG codon and is 14 aa longer than Myc2, that
starts from a regular AUG codon. Translation of Myc1 is initiated by a "scanning mechanism"
whereas the translation of Myc2 is initiated by an Internal Ribosome Repositioning Element
(IRPE) (Carter, Jarquin-Pardo, and De Benedetti 1999).

Despite the minor difference in size (14 aa), the two isoforms are easily distinguishable by Western
Blot for reasons that have not been totally elucidated (Myc1 runs at 70 kD whereas Myc2 runs
at 64 kD). Furthermore, the ratio of Myc1/Myc2 concentrations has been shown to be regulated.
Under normal cell culture growth conditions, the Myc1 isoform represents 10-15% of the total
Myc pool. When cells are stressed by methionine deprivation or reach confluency, the Myc1
isoform gets preferentially translated (Stephen R. Hann, Sloan-Brown, and Gerald D. Spotts
1992). Finally, it has been proposed that Myc1 and Myc2 might be needed in precise proportions
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to induce transcription, while the transcription of either Myc1 or Myc2 lead to the repression of
the E-cadherin gene studied (Batsche and Cremisi 1999).

3. Protein lifetime and stability. Both the expression levels of the MYC mRNA and the c-Myc
protein have been shown to be crucial for proper cell function. The stability of the c-Myc protein
is tightly regulated through a complex mechanism of phosphorylation lock-in and its lifetime has
been estimated around 20-30 minutes (GERALD D. Spotts and STEPHEN R. Hann 1990; Sears
2004; J Liu and Levens 2006).

Concretely, c-Myc stability is controlled by the presence of post-translational modifications
(PTMs, some of them represented in Figure 3.2) that target it to the proteasome for degra-
dation. The two phosphorylations involved are Threonine 58 (Thr58) and Serine 62 (Ser62).
When Thr58 is phosphorylated (by GSK3β), c-Myc is destabilized. This is only possible if
Ser62 is already phosphorylated. Conversely, when Ser62 is phosphorylated (by ERK), c-Myc is
stabilized. These two PTMs are located in a mutation hotspot present in cancer.

Figure 3.2: Location of main c-Myc post-translational modifications (PTM). Source.

From a series of experiments, one can infer the following timing of events (summarized in Figure
3.3: (1) Ser62 is phosphorylated by ERK, (2) Thr58 is phosphorylated by GSK3β, (3) c-Myc
proline 63 is isomerized by the prolyl-isomerase Pin1, (4) Ser62 is dephosphorylated by phos-
phatase PP2A, (5) c-Myc is ubiquitylated by Fbw7 and degraded by the proteasome (Yeh et al.
2004; Sears 2004; Garrison and Rossi 2010; X.-X. Sun et al. 2018).
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Figure 3.3: A proposed mechanism to regulate c-Myc stability and degradation. source: Sears 2004

4. c-Myc structural dynamics.

Similar to most transcription factors (section I.3), Myc is entirely disordered in solution. When
bound to its obligatory partner MAX, the DNA-binding domain, bHLH, of c-Myc folds upon
binding, but the rest of the protein remains disordered. Both experimental and computational
approaches have been used to estimate the disorder of the c-Myc protein, and a consensus is
presented in Figure 3.4. Furthermore, following a classification established by Das, Ruff and
Pappu (Rahul K Das, Ruff, and Rohit V Pappu 2015) based on the amino-acid sequence of the
protein, c-Myc belongs to the category of "Janus proteins", intermediate between well-folded and
disordered proteins, a classification corroborated by experimental studies (Figure 3.5).

Figure 3.4: Disorder score across the c-Myc sequence, as predicted by a consensus method. source:
http://mobidb.bio.unipd.it/

Some of the domains of c-Myc have been studied independently using various experimental or
computational studies.

The bHLH domain of c-Myc was shown to have a low α-helical propensity (it tends to be disor-
dered) and it very quickly dimerizes with MAX (Fieber et al. 2001). Moreover, a series of related
bHLH domain were shown to be disordered when not bound to other proteins/DNA by both
circular dichroism experiments and molecular dynamics simulations (Rahul K. Das, S. L. Crick,
and Rohit V. Pappu 2012).

A region encompassing MBI (aa 1-88) was studied by nuclear magnetic resonance (NMR) chem-
ical shift analysis, relaxation measurements and Nuclear Overhauser effect (NOE) analysis (An-
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dresen et al. 2012) found that the region was mostly unstructured but seemed to interconvert
with sub-regions of transient secondary structure. These sub-regions tend to be more conserved
than the rest of the protein and are known to be involved in protein-protein interactions. Finally,
based on these results, the authors also predicted that deletion of an entire domain might have
adverse consequences, by bringing into contact two domains that might then adopt previously
unexplored conformations.

Figure 3.5: Location of c-Myc (NP0013) within the Das & Pappu diagram, representing its propensity
to be disordered. c-Myc is located in the region of "Janus proteins".

Finally, as many transcription factors and nuclear proteins, results suggest that purified c-Myc
may undergo phase separation in vitro (Boija et al. 2018), a process that might be highly relevant
for transcription regulation (section 3.2.3).

3.1.3 Oncogene or General Transcription Factor (GTF)?

The role of c-Myc as a transcription factor still remains elusive, despite several decades of intense inves-
tigation. Indeed, several questions remain open, including: the nature of the main c-Myc-interacting
partners (section 2), the identity of c-Myc target genes remains controversial (section 3.1.4) and the
mechanism by which c-Myc binds to specific binding sites (section 1).

1. c-Myc binding site. Soon after the sequencing of the MYC gene, in vitro experiments
characterized the DNA affinity of the protein (Halazonetis and Kandil 1991) and found that
c-Myc has a canonical binding motif CACGTG. The authors also found that c-Myc has weaker
affinity for non-canonical, degenerate binding sequences: CANNTG. The genomic loci bearing this
sequence were termed E-boxes. Sequences flanking this motif were shown to influence c-Myc in
vitro affinity.

This degenerate motif makes E-boxes an extremely abundant sequence in the genome (the canon-
ical motif is expected to occur once every 4 kb and the degenerate motif once every 256 bp). As
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it is common with transcription factors, ChIP-seq experiments quickly demonstrated that the
knowledge of the transcription factor binding motif is not sufficient to predict c-Myc binding on
the genome (Guccione et al. 2006), and that the specificity of c-Myc binding had to be exam-
ined along two additional axes: (1) the existence of partners that might restrict c-Myc binding
(section sec:myc-partners) and (2) the chromatin accessibility.

2. c-Myc interacting partners. In order to understand how c-Myc can act as an oncogene,
many of its protein interacting partners were progressively identified. One of the first partners
identified was MAX (Amati et al. 1992). MAX is a bHLH protein that can either oligodimerize
(MAX-MAX dimer) or form several heterodimers (cMyc-MAX, or MAD-MAX; Zada et al. 2006).
In order to bind DNA, c-Myc has to form an obligatory dimer with MAX. Thus, the abundant
protein MAX acts as a regulator of c-Myc: when MAX is sequestered in its interaction with
proteins from the MAD family, it does not dimerize with c-Myc and the protein cannot trans-
activate its target genes.

Beyond this obligatory interaction, c-Myc has been shown to interact with many other proteins or
complexes. It interacts with histone acetyltransferases and deacetylases like TRRAP and GCN5
and has thus been suggested to play a role in keeping chromatin in an "open environment"
(Eberhardy, D’Cunha, and Farnham 2000; McMahon, Wood, and Cole 2000; Frank et al. 2001;
Kurland and W. P. Tansey 2008).

Moreover, additional mass spectrometry-based screens identified or confirmed series of more
than a hundred partners (Dingar et al. 2015). Some of them were further investigated, such
as Mediator subunits, the SWI/SNF chromatin remodeling complex (Stojanova et al. 2016),
the methyltransferase complex SET/MLL (Thomas et al. 2015), its link with histone modifiers
(Lüscher and Vervoorts 2012) or many other core components of the transcription and replication
machinery (including Aurora A, pTEF-b,RNA PolII, etc; Büchel et al. 2017; Myant et al. 2015,
some of them reviewed in Tu et al. 2015).

3. Towards a mechanism. The extremely high number of c-Myc partners drew a very complex
picture of its role as an oncogene, and many conflicting hypothesis co-exist to explain its mode
of action.

(a) Myc as a general transcription factor. A first series of hypotheses stemmed from ChIP-
seq and pre-ChIP-seq experiments (Guccione et al. 2006; Zeller, XiaoDong Zhao, et al.
2006; Nie et al. 2012; Lin et al. 2012), found that c-Myc could be found bound to the
promoters of virtually all active genes, and that the intensity of the c-Myc peak correlated
with the expression level of the gene. These experiments thus pointed to the fact that
c-Myc could almost be considered as a general transcription factor, very close to the core
transcriptional machinery. These results were in agreement with experiments that found
that c-Myc interacted with the positive transcription elongation factor (pTEF-b), a key
complex involved in the regulation of of transcriptional RNA PolII pausing (Rahl et al. 2010).
c-Myc was proposed as a factor promoting pause release, and thus favorizing transcription.
These experiments resonated with the previous hypothesis that linked the interaction of
c-Myc with histone acetyltransferases, leading to the idea that c-Myc might act as a global
genome organizer that keeps chromatin in an open environment by recruiting histone modi-
fiers to promoters (Niwa 2007; Knoepfler et al. 2006; Knoepfler 2008; Cotterman et al. 2008;
Kieffer-Kwon et al. 2017).

(b) The metabolism hypothesis. Another series of hypotheses emerged from the initial identi-
fication of c-Myc as a key metabolic regulator. Indeed, c-Myc has been implicated in the
regulation of genes involved in key metabolic reactions, including the synthesis of purine and
pyrimidine nucleotides and glucose metabolism (Dejure and Eilers 2017). As such, Dejure
and Eilers developed the concept of Myc-induced metabolic reprogramming: in order for a
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tumor to develop (tumors tend to rely more on anaerobic reactions than non-tumor cells),
several Myc target genes involved in nucleotide synthesis and glucose metabolism need to
be over-expressed.

3.1.4 The target gene controversy

Results presented in section (section 3.1.3) pointed to the fact that the role of c-Myc in several contexts
could be better understood by dissecting its target genes. Indeed, the quest of c-Myc target genes spans
more than two decades, and it is only this year that clear answers seem to emerge.

1. Initial experiments. The first c-Myc target genes were determined by trial and error with
scientists making educated guesses about Myc potential target genes. As such, one of the first
target gene identifies was the ornithine decarboxylase (Bello-Fernandez, Packham, and Cleveland
1993) gene. Other target genes were identified similarly (Dang 1999), and most of the efforts were
focused on metabolism-related genes. A comprehensive, genome-wide picture was still lacking.

2. First genome-wide screens. The first genome-wide screens were performed using differential
expression systems, in which the cell transcriptome was assayed with and without the c-Myc
protein, or by using pre-ChIP-seq techniques (Menssen and Hermeking 2002; Zeller, Jegga, et al.
2003; Fernandez et al. 2003; Zeller, XiaoDong Zhao, et al. 2006; Seitz et al. 2011, reviewed in
Dang et al. 2006). These studies confirmed that in vivo, c-Myc mostly binds to E-boxes. They
lead to the identification of thousands of potential binding sites and thousands of potentially
regulated genes without any clear unifying mechanism. In the late 2000s, the mechanism of
action of c-Myc remained elusive.

3. c-Myc as a genome-wide amplifiers. In 2012, however, two back-to-back papers tried to
provide the missing unifying framework (Nie et al. 2012; Lin et al. 2012). First, these papers
confirmed that c-Myc binds at virtually all active genes. Furthermore, by performing RNA-seq
with careful spike-in controls, the authors found that when c-Myc is over-expressed, the global
RNA levels are increased: all expressed genes become over-expressed, leading to what has been
named as a "global genome amplification".

Further ChIP-seq-based studies found that when over-expressed, c-Myc tended to occupy previ-
ously unoccupied binding sites, termed "lower affinity binding-sites", and thus to activate new
genes (Lorenzin et al. 2016), a vision that nicely complemented the two 2012 papers.

These studies concluded that the question about c-Myc target genes had been phrased wrongly,
since c-Myc seemed to regulate all genes. Furthermore, these studies provided an attractive
explanation for the role of c-Myc in cancer: when c-Myc is over-expressed, all genes tend to be
over-expressed (global genome amplification), leading to an expected cancer-like phenotype.

4. From indirect to direct targets. These unifying results were, however, rapidly challenged by
several studies, mostly originating from the Bruno Amati group. Indeed, most of the previous
studies could not distinguish between a direct and an indirect effect on target genes. Is the
global genome amplification a direct consequence of c-Myc over-expression or a consequence of
the activation of one of c-Myc target genes?

First, a ChIP-seq-based study (Sabò, Kress, et al. 2014) identified classes of genes that responded
differently to c-Myc over-expression in B cells. This started to challenge the "global amplifier
vision". This study highlighted complex feedback mechanisms that might explain mRNA ampli-
fication. Second, using a Myc-inducible system, classes of repressed genes were identified when
c-Myc was induced (Walz et al. 2014), painting a more complex picture, in which it is actu-
ally necessary to finely characterize c-Myc targets to understand its role as a transcriptional
regulator. Along this line of evidence, the c-Myc-Max dimer was associated with a specific in-
teraction with Polycomb repressive complexes (Krepelova et al. 2014; Benetatos, Vartholomatos,
and Hatzimichael 2014).
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Third, this vision was refined by a reanalysis that investigated which step of transcription was
regulated (de Pretis et al. 2017), pointing to PolII loading as the c-Myc regulated step, a result
that contrasts with previous papers hinting at pause release (Rahl et al. 2010).

Despite being more and more precise, these studies were still providing rather indirect evidence
that could not distinguish direct from indirect target genes. The most recent studies to date used
a quickly-inducible system that reacts in less than one hour, allowing to distinguish between direct
effects of c-Myc induction and the subsequent activation cascade (Muhar et al. 2018; Sabò and
Amati 2018). This study confirmed that c-Myc directly activates a distinct set of genes, and that
many indirect, cascade effects occur later on.

3.1.5 c-Myc in pluripotency & development

1. c-Myc and reprogramming. In addition to the long-lasting interest in c-Myc due to its central
position in cancer biology, c-Myc has experienced a renewed interest in 2006 when the Yamanaka
group first generated induced pluripotent stem cells (iPSCs) by over-expressing a cocktail of four
pluripotency-related factors: Oct3/4, Sox2, c-Myc, and Klf4 (Takahashi and Yamanaka 2006).
This pioneer work demonstrated that only four variables (the concentration of four factors) was
sufficient to de-differentiate fibroblasts in mES-like cells, and suggested that these factors could be
master regulators in pluripotency and development. Reprogramming was later shown in human
cells, and finally cruelly demonstrated inside live mice (Abad et al. 2013) This finding also made
sense in light of c-Myc’s interaction with chromatin modifiers an its alleged role in maintaining
an "open chromatin environment".

Further studies, however, found that despite the fact that reprogramming efficiency was improved
in the presence of c-Myc, it was also possible to de-differentiate cells in the absence of c-Myc
(Yeo and Ng 2013).

2. c-Myc and pioneer factors. Since c-Myc was a facilitating factor to induce iPSCs, questions
arose about the mechanism of reprogramming: how could initially silent (and nucleosomized)
sequences be reactivated?

An explanatory model was proposed by the Zaret lab (Zaret et al. 2008). To be able to activate a
previously nucleosomal locus, specific transcription factors need to be able to bind nucleosomes.
These factors are termed pioneer factors. Despite its role in reprogramming, and unlike Oct4
and Sox2, c-Myc did not show any pioneer activity (Sekiya et al. 2009; Soufi et al. 2015).

3. c-Myc during mice development. We highlight here two aspects of the interaction between
c-Myc and development, as an example of the amplitude of the cross-talks between c-Myc and
developmental processes.

c-Myc in the early embryo. Similar to Nanog (Filipczyk et al. 2015; Hastreiter and Schroeder
2016), c-Myc has been shown to display heterogeneous levels across cells at the same time, both
in mESC and in the early embryo (Clavería et al. 2013; Díaz-Díaz et al. 2017). The reason of such
natural heterogeneity is still unclear, but has been shown to be linked to cell survival, cell-to-cell
competition and regulation of necrosis, all mechanisms that have been shown to be crucial in the
early embryo.

c-Myc during hematopoiesis. In addition to being involved redundantly with N-Myc in early
embryo development, the role of c-Myc in hematopoiesis and angiogenesis has been investigated.
c-Myc is necessary for the maintenance of bone marrow hematopoietic stem cells (Wilson 2004).
Conversely, a conditional over-expression of c-Myc in mice leads to severe defects in the vascular
system, including a reduced branching followed by the death of the embryos between E14.5 and
E17.5 (Kókai 2010).
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3.1.6 Inhibiting c-Myc

Due to its central place in cancer (section 3.1.1), any drug that could target c-Myc transcription, the
stability of the protein or its interaction with key protein partners is of extremely high therapeutic
values. This is especially true since the over-expression of c-Myc is an aggravating factor and indicates
a poorer prognosis in most cancers.

As such, the quest for c-Myc inhibitors has been extremely active (reviewed in Fletcher and Pro-
chownik 2015 and Hui Chen, Hudan Liu, and Qing 2018). This quest has been made difficult by the
fact that most of the c-Myc protein is unstructured. In this setting, the traditional computational
biology and drug design approaches fall short because most of them rely on "molecular docking". In
molecular docking, a virtual database of small chemical molecules is virtually "screened" against the
structure of a known, structured protein. Good compounds usually dock in a "pocket" close to the
active site of the protein, with the potential to disrupt the function of the protein. Since most of the
sequence of the c-Myc protein has not been crystallized, this approach is not possible. Moreover, the
bHLH domain of c-Myc that was obtained in (Nair and Stephen K. Burley 2003) revealed an extremely
simple dimer, with a coil-coil that does not contain any targetable region.

To overcome this problem, several approaches were undertaken.

1. Influencing the expression of the c-Myc gene. Based on the existing knowledge on c-Myc
promoters (reviewed for instance in Levens 2008), several approaches describe how to influence the
transcription of c-Myc. (Kumar et al. 2008) identified an unstable structure, a G-quadruplex, in
the P1 promoter, one of the main c-Myc promoters and stabilized ("trapped") it using synthetic
modified oligonucleotides (Locked Nucleic Acids; LNA). Such a silencing approach was later
generalized by the delivery of antisense LNA, a technique similar to siRNAs (Stein et al. 2010).

2. Targeting the c-Myc protein or the c-Myc/MAX dimer The most widely cited drugs
that target c-Myc were identified in 2002-2003 and are named 10058-F4 and 10074-G5 (reviewed
in Fletcher and Prochownik 2015). They were identified using a yeast-two-hybrid approach, in
order to screen both for potent c-Myc inhibitors, but also for compounds that are cell-permeable
and that specifically disrupt c-Myc/Max interaction. 10058-F4 has a 49 µM affinity whereas
10074-G5 had a 2.8 µM affinity.

Compounds with higher affinity were later synthesized and screened. For instance, (Hart et al.
2014) designed a fluorescence polarization screen for the Myc/MAX interaction and identified
KJ-Pyr-9, an inhibitor with a 6.5 nM affinity. In parallel, assays to screen compounds faster
based on fluorescence were developed (Raffeiner et al. 2014).

Another stream of research focused on the design of molecules bigger than the regular inhibitors,
such as α-helix mimetics that interfere with the c-Myc/MAX binding interface (Jung et al. 2015).

Finally, some authors tried to apply a more conventional screening approach by first using molec-
ular dynamics to simulate the (unstructured) conformations of the c-Myc protein, and then try
to find small-molecules that will stabilize one of these conformations, thus "trap" the protein in
one conformation (C. Yu et al. 2016; Bayliss et al. 2017).

3. Influencing c-Myc protein-protein interactions Rather than directly targeting c-Myc or
the obligatory c-Myc/MAX dimer, other researchers tried to specifically disrupt or stabilize
given protein-protein interactions. The rationale behind these approaches is the folding-upon-
binding mechanism: when an unstructured protein binds to one of its protein partner, it can
undergo a folding-upon-binding transition to a well-folded, crystallizable protein complex. If one
can derive a crystal structure of the protein complex, it is then possible to derive an inhibitor
that will stabilize the protein complex, likely sequestering c-Myc in a potentially nonfunctional
conformation.

This approach was implemented by stabilizing the c-Myc/Aurora A complex using a drug
(Gustafson et al. 2014; Richards et al. 2016), or by simply over-expressing HHex, a negative
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regulator of c-Myc/Max (Marfil et al. 2015)

One more indirect study inhibited cIAP1, an E3 ubiquitin ligase that interact with a natural
competitor of c-Myc with Max: MAD1. When MAD1 degradation is inhibited, it competes more
with Max and Myc is ejected from its usual binding sites. This approach lead to the design of
an efficient c-Myc indirect inhibitor (H. Li et al. 2018; Torchia and Ashwell 2018).

3.1.7 Biophysics of c-Myc in the nucleus

Several biophysical characteristics of c-Myc in mammalian cells have been determined, that help to
understand how c-Myc could be involved in transcriptional regulation.

1. A bulk vision. First, despite having one degenerate binding site every 256 bp in average, not all
the c-Myc motifs are equally occupied, and the main predictor of c-Myc binding is that the motif
is located on the promoter of active genes (Nie et al. 2012; Lin et al. 2012). ChIP-seq indeed
yields a few thousands binding sites (around 6000, depending on the analysis), which roughly
corresponds to the number of active genes in mESC.

Second, it is unlikely that all these binding sites are occupied 100% of the time in cells by c-
Myc. Indeed the number of c-Myc protein in a single human (P493) cell has been estimated
to be around 13000 (Lin et al. 2012) and one can determine (Izeddin, Récamier, et al. 2014)
the bound fraction of c-Myc using live cell imaging, which was estimated to be around 10%,
suggesting that even at the promoter of active genes, c-Myc could be very dynamic. Other
estimates using quantitative Western Blots provide a similar order of magnitude, ranging from
6300 molecules per cell to 33000 in human lung fibroblasts (Rudolph, Adam, and Simm 1999).
So far, mass-spectrometry-based techniques have not been investigated to quantify c-Myc (Vogel
and Marcotte 2008; Zhou et al. 2013).

Third, when c-Myc is progressively over-expressed during induction, the protein copy number
can jump from 13000 to 360000 after 24h (Lin et al. 2012). In that case, the already bound sites
show more intense peaks, and c-Myc starts to bind at so-called "lower affinity sites", such as
enhancers.

At the level of a whole organism, Fan-Minogue et al. 2010 used a split-luciferase system to monitor
the interaction between c-Myc and the GSK3β kinase that phosphorylates c-Myc on Thr58.

2. A single-cell picture of c-Myc. At the single-cell level, few studies characterized the local-
ization and dynamics of c-Myc. It has been long known that c-Myc is mostly a nuclear protein
(with an estimated 4000 molecules in the cytoplasm and 29000 in the nucleus; Rudolph, Adam,
and Simm 1999). At higher resolution, it seems that different phospho-isoforms of c-Myc tend to
reside at different locations in the nucleus, with c-Myc-Ser62P being located at the periphery of
the nucleus (Myant et al. 2015). This suggests an obligatory trajectory for c-Myc activation, in
which every single protein will have to interact with the nuclear lamina in order to be activated.
At super-resolution, we are not aware of any study looking at the nuclear organization of c-Myc.

Finally, the question whether c-Myc might form highly heterogeneous clusters, or phase-separated
droplets is still open, and in vitro experiments suggest that c-Myc can undergo phase separation
under specific conditions (Boija et al. 2018).

3. Dynamic picture of c-Myc. Similar to many transcription factors, little is known about c-Myc
dynamics. A first study published in 2009 (Sekiya et al. 2009) by the Zaret lab first suggested
a link between the fast FRAP recovery of c-Myc and the fact that it does not act as a pioneer
factor, which would explain its relatively low bound fraction.

At the single-molecule level, c-Myc has been shown to exist in three sub-populations: an "im-
mobile" fraction (9.5%), a slow fraction (diffusion coefficient D=0.5 µm²/s; 20.5%) and a fast
fraction (13.5 µm²/s; 70%), and to explore the nuclear space in a relatively free, unconstrained
manner, unlike P-TEFb (Izeddin, Récamier, et al. 2014).
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3.2 Open questions in Myc biology

As of today, and despite decades of studies, a clear vision of how c-Myc regulates transcription is still
missing, and many questions remain open. We propose an approach that could elucidate some of them
in the next sections.

First, the determinants of the specificity of c-Myc for a given binding site are not known. Clearly,
the presence of an E-box (CACGTG or a degenerate motif) seems to be necessary for c-Myc recruitment
to a given locus, yet not sufficient (J. Guo et al. 2014). If chromatin accessibility is considered, then
one can explain a little bit better the binding of c-Myc.

However, the preference of c-Myc for the promoters of active genes cannot be explained by sequence
only, it is likely that protein-protein interactions are involved in the DNA specificity of c-Myc. This idea
is supported by the fact that the deletion Myc-Box IV (MBIV) seems to impair DNA binding (Cowling
et al. 2006). Furthermore, synthetic biology approaches have shown that the trans-activating domain
of a TF can determine its sequence specificity (W. F. Lim et al. 2016). What are the relevant protein
domains and/or protein-protein interactions that determine c-Myc DNA binding and dynamics?

Second of all, the kinetics of c-Myc binding on DNA are not known: how long does c-Myc stays
on a promoter sequence? Does this time correlate with gene activation, as suggested by Clauß et al.
2017)?

Third, what are the post-translational modifications required for c-Myc activity? It seems that
Thr58P and Ser62P are key for maintaining c-Myc stability (Sears 2004), but also SUMOylation
(X.-X. Sun et al. 2018).

3.2.1 Approach

To understand the determinants of the dynamics of c-Myc, we decided to adopt the following approach,
summarized in Figure 3.6:

• First, to build a cell line in which the c-Myc gene has been homozygously replaced by a tagged
version amenable to single-particle tracking. To validate this cell line to show that it behaves
indistinguishly from WT cells (section 3.3.1).

• Second, to build a series of constructs that could be transfected into the cells and that contain
individual domain deletions of the main c-Myc domains (section 3.3.2)

As a readout, we initially decided to measure the following metrics:

• The diffusion coefficients of the various sub-populations of proteins using fast SPT

• The residence time of c-Myc on DNA using slow SPT
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Figure 3.6: Investigating the determinants of c-Myc dynamics. Using three biological settings
(top row : under "normal" conditions, in an endogenous context, middle row : when a protein domain
of the c-Myc protein is deleted, in a transfection context, and bottom row when c-Myc interactome
has been disrupted by inhibitors), our project aims at (left column) validating those models, then
(middle column) to perform imaging (SPT, STORM) and (right column) to analyze the data using
tools presented in previous sections.

Despite the fact that we only obtained preliminary results on this project, we made significant
progress towards this goal, and in particular we validated most of the tools that could be used to
answer these questions. We clarify some of the choices we made in section 3.2.2 and we discuss some
of the difficulties we faced in the next sections.

3.2.2 Motivation

In this section we motivate a few of the technical choices made for this project.

1. Choice of mouse embryonic stem cells (mESC). First, we decided to conduct our experi-
ments in mESC, a cell line in which c-Myc is expressed and essential. The choice of this cell line is
motivated by the high number of genomic datasets published, the expertise of the Tjian-Darzacq
lab in imaging and genome-editing this cell line. Furthermore, the choice of a non-cancer cell
line was guided by the fact that mESC are likely to give more reproducible results. Finally, the
role of c-Myc in the regulation of pluripotency justifies the use of mESC.

2. Choice of the deletions. Second, we decided to delete entire domains of the c-Myc protein.
We decided to operate full-domain deletions as a first screen that could be refined later. This
choice was motivated by the fact that many protein-protein interactions that have been mapped
in c-Myc have been mapped within some of the Myc boxes (Figure 3.1 and 3.7). Our goal
was to later refine the deletions, in order to more precisely target some specific protein-protein
interactions.
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Figure 3.7: Some of the mapped protein-protein interactions Source: Tu et al. 2015

3. Choice of the imaging technique We decided to primarily use single-particle tracking (SPT)
rather than other imaging or genomics technique. Our choice is motivated by the fact that SPT
has been shown to be able to characterize subtle phenotypes in the dynamics of transcription
factors. Such differences are expected to be difficult to highlight using traditional genomics such
as ChIP-seq. Second, SPT provides a direct access to the dynamics of molecules, a key parameter
to explain transcription regulation (section I.4).

3.3 Generation and validation of an endogenous knock-in cell line &
plasmids

3.3.1 mESC cell line generation

1. General approach. In order to generate a model cell line amenable for imaging, and provided
the dramatic effect of slight c-Myc over- or under-expression in cells, we opted to homozygously
knock-in a tag (HaloTag Los et al. 2008; So, Yao, and J. Rao 2008, Dendra2 Gurskaya et al. 2006
or mEOS Paez-Segala et al. 2015) in mESC.

This approach has several benefits: (1) the c-Myc-tagged protein will be under endogenous
regulation, and should be expressed at endogenous levels. (2) Since all the c-Myc proteins are
tagged, one can be reasonably confident that the tag does not alter the function of the protein,
since no compensation will be possible with the wild type (WT) protein. (3) Genomics will be
easier to perform than with regular transient transfections.

CRISPR-Cas9 genome editing. We decided to use genome-editing techniques (Topaloglu 2005;
Berdougo, Terret, and Jallepalli 2009; Urnov et al. 2010; Mata et al. 2012; Gaj, Gersbach,
and Barbas 2013; Y. Kim et al. 2013; Mussolino et al. 2014), and more precisely CRISPR-Cas9
genome editing to replace the WT Myc gene by a tagged version. The CRISPR-Cas9 has become
the tool of choice for targeted genome-editing, since a knock-in cell line can be derived in just a
few weeks. The Cas9 protein targets preferentially all accessible regions (Horlbeck et al. 2016)
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and is specifically targeted to a specific locus with a complementary RNA sequence, the sgRNA
(Figure 3.8).

Figure 3.8: Use of the CRISPR/Cas9 for genome editing. Parts of the figure are derived from
(31), figure 5. Source: Woringer 2014

Design of the vectors. We first used online tools to design the sgRNA sequence (http://crispr.
mit.edu, not online anymore, but other tools exist, Spahn et al. 2017). We designed two sgRNA
sequences and cloned them into two separate vectors that also contained the Cas9 sequence.
Second, we used Gibson cloning (Gibson et al. 2009) to design a repair vector that contained ∼
500 bp homology for the 3’-end of the MYC gene and the sequence of the tag to insert. These
vectors were then transfected into mESC and we proceeded to FACS sorting and clonal selection.
The editing process is pictured in Figure 3.9).
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Figure 3.9: Targeting the MYC gene. (top). location of the MYC gene on chromosome 15 and
detail of the three exons, four introns MYC gene. (bottom). MYC structure after editing.

2. Choice of sequences. We decided to clone the tags in C-ter of c-Myc to avoid disruption
of any known regulatory function of c-Myc (as reviewed in section 3.1), including potential
interaction with the various promoters and alternative transcription start sites present in the
locus. Furthermore, a previously described C-ter fusion has been published (c-Myc-GFP; Nie
et al. 2012). Note, however, that tagging in the N-ter of the c-Myc protein seems also viable,
and a GFP-Myc mice has also been published (C.-Y. Huang et al. 2008).

Furthermore, a tag in N-ter is hard to characterize, because if it disrupts protein-protein in-
teractions, it is likely to disrupt poorly characterized interactions between MBI and unknown
proteins. Conversely, the tagging strategy we chose places the tag close to the DNA-binding
domain, bHLH of c-Myc. It is easy to check with high sensitivity by ChIP-seq to what extent
the binding profile of c-Myc is affected by the tag: it is easier to check for DNA binding defects
than for (uncharacterized) protein-protein interaction defects.

In terms of tags, we initially opted for a HaloTag (Los et al. 2008; So, Yao, and J. Rao 2008),
since it can be conjugated to a wide variety of photostable fluorophores of different colors and
properties. After a first unsuccessful genome-editing attempt, we also generated constructs and
cell lines with a different linker, and with two different tags: Dendra2 (Gurskaya et al. 2006) and
mEOS3.2 (Paez-Segala et al. 2015). Both mEOS and Dendra2 are photo-convertible proteins.
They are less bright and less photostable than synthetic dyes conjugated to HaloTags, but should
guarantee that the protein fusion is not fluorescent anymore when c-Myc gets degraded, which
is not the case with organic dyes that might remain in the cell long after the degradation of the
fusion protein. A summary of the genotypes derived is presented in Figure 3.10.
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Figure 3.10: Summary of the genotypes of the cell lines generated

3. Cell line selection. We first transfected the c-Myc-TEV-HaloTag construct (Figure 3.10), to-
gether with one (sgRNA, Cas9-Venus) construct. After one day, the Venus-positive cells (approx.
10%) were FACS sorted in order to enrich for transfected cells. 48 h later, the cells were labeled
with the TMR-Halo dye and FACS-sorted, in order to keep only the HaloTag-positive cells. These
cells were plated at low density and colonies were left to grow for 7-15 days. When colonies were
big enough to be visible, we picked ∼ 96 of them and genotyped them using direct PCR.

To our surprise, no cell was above the FACS threshold, suggesting either an issue in the genome-
editing, or that c-Myc levels were too low to provide a good contrast. We thus kept the 0.1%
of the cells that had the highest fluorescence (approx 5000 cells) and plated them as described
above. Most of the genotyped clones were heterozygous, and the homozygous clones displayed a
slower growth rate and abnormal morphology.

We thus generated three additional transfections, with the c-Myc-GDGAGLIN-Halo construct
(c-Myc-HaloTag with a different linker), with c-Myc-Dendra2 and c-Myc-mEOS. In all cases, and
as with the previous experiment, we obtained very few cells above the FACS sorting threshold (no
cell above the FACS threshold for the c-Myc-Halo line, ∼ 600 cells for Dendra2/mEOS). Of these
cells, we derived very few colonies (12 colonies for Dendra2, 7 colonies for mEOS). Nonetheless,
most of them were properly edited (Figure 3.11), and we obtained homozygous and heterozygous
clones for all the constructs.
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Figure 3.11: Genotyping of several clones using a genomic PCR. Four constructs were trans-
fected: cMyc-TEV-Halo (TEV), cMyc-GDGAGLIN-Halo (GDGAGLIN-Halo), cMyc-mEOS (mEOS)
and cMyc-Dendra2 (Dendra2). They are compared to the wild type cell line (right lane; WT). Non-
edited cell lines appear as WT, heterozygous lines appear with two (or more) bands, homozygous with
a single band running slower than the WT. The MYC locus of the cell lines was further sequenced.

The MYC locus of the homozygous clones was sequenced, and the insertion was identical to
the repair vector. The cells were checked for mycoplasma contamination (Figure 3.12). At this
step, we had derived homozygous clones with c-Myc tagged with a HaloTag (with two different
linkers), with Dendra2 and with mEOS.

Figure 3.12: The selected clones are negative for Mycoplasma contamination.

We then observed the cell for morphology and in fluorescence. The c-Myc-Halo clone displayed
a normal morphology (Figure 3.13-a-center). On the other hand, the only homozygous c-Myc-
Dendra2 clone displayed an abnormal phenotype, resembling differentiated or neuron-like cells
(Figure 3.13-a-left). This clone was not used for subsequent analysis. Finally, the mEOS cells
also displayed a normal morphology in transmission light (Figure 3.13-a-right). However, when
observed in fluorescence, the c-Myc protein displayed a totally abnormal localization: the c-
Myc protein is supposed to be relatively uniform in the nucleus, and not focused in puncta, as
displayed in Figure 3.13b. We then decided to only use the c-Myc-Halo cell line, since we derived
independent clones for this construct.
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Figure 3.13: Morphology of three clones of edited cells. (a) As observed in transmission light
microscopy. (b) c-Myc mEOS and c-Myc-GDGAGLIN-Halo (E10) protein localization. c-Myc-Halo
was labeled with 250 nM TMR. The nuclei were hand-drawn for readability. (In this plot careful the
scale bars differ and also the exposure times).

3.3.2 Transient transfection approach

1. General approach. In order to build constructs that could be use to assess the effect of domain
deletions in the c-Myc protein, we generated a series of constructs in which we individually deleted
the main domains of c-Myc: MBI, MBII, MBIII, MBIV, bHLH and LZ. For all these constructs,
we initially generated a HaloTag, a mEOS and a Dendra2 version.

We chose to place the c-Myc-tag sequence under a ribosomal protein L30 promoter (L30 pro-
moter), in order to ensure mild expression of the vector, and also because the traditional viral,
CMV promoter is methylated and silenced in mESC (Herbst, Ball, et al. 2012).
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In practice, we used a combination of traditional cloning and Gibson assemblies to generate the
vectors. The vectors also included a second ORF, EGFP-nuc. This second construct will be
used to quickly screen for transfected cells in the case where photo-activatable dyes, that reside
in the dark state without photo-activation, are used in combination with HaloTagged proteins.
An example vector is presented in Figure 3.14a.

Figure 3.14: (a) Sample plasmid map of a c-Myc-Dendra2 construct. (b) Western Blot of transfected
constructs in 293T cells using an anti-c-Myc antibody.

2. Plasmids generated. All in all, we generated the 15 constructs, summarized in Table 3.1.

Table 3.1: The numbers correspond to the identifier in the plasmid library. Due to the localization
issue of the mEOS cell line, we prematurely interrupted the construction of the mEOS library.

Domain deletion v Tag > Halo mEOS Dendra2
none (WT) #76 #91
MBI #77 #92
MBII #78 #93
MBIII #79 #88
MBIV #80 #90
bHLH #81 #94
LZ #82 #100 #89

3. Plasmid functional validation. As a first validation, we verified the expression of the con-
structs by transfecting them into the easily transfectable 293T cells and performed a Western
Blot against c-Myc (Figure 3.14b). All the constructs expressed reasonably well, which justified
their use in further experiments.

3.3.3 Cell line controls

1. General approach. Once the cell lines and constructs were built, we aimed at validating them.
More specifically, we wanted to make sure that the cell line we designed was only minimally
affected by the addition of the tag on the c-Myc protein, that the protein expressed properly and
that the cells were amenable to live cell imaging. In this section and the following, we compared
the characteristics of the non-edited mESCs with those of the c-Myc-tag cell lines. Our goal was
to prove that the cell line we generated is amenable to single-cell molecule imaging.
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We assessed that the cells still displayed regular mESC markers (section 2), and we tried to assess
that the expression of c-Myc target genes was not affected by the addition of the tag (section 3).

2. Pluripotency genes expression. As a second control (after morphology assessment, Figure
3.13), we verified that the cells still expressed key pluripotency markers: Oct4, Nanog, Sox2.
Non genome-edited cells and genome-edited cells were grown on coverslips and we performed im-
munofluorescence (IF) on the samples with specific antibodies and DAPI staining. The cells were
then imaged under similar conditions and the average nuclear fluorescence level was quantified
using Fiji (Schindelin et al. 2012).

We decided to opt for IF characterization rather than a more conventional qPCR because IF
not only gives access to the expression level of the pluripotency genes, but also to more subtle
phenotypes (change in localization and cell-to-cell variability, documented in Clavería et al. 2013;
Díaz-Díaz et al. 2017) that are not usually assessed using qPCR. However, it should be noted
that IF-based imaging approaches usually suffer limitations when one tries to characterize sub-
nuclear patterns. These artifacts are most of the time due to the fixation protocol (Huebinger
et al. 2018; Bedino 2003).

Overall, the cells expressed properly the pluripotency markers, with an expression pattern that
matched the WT control (Figure 3.15, left column). However, compared to the WT reference,
the c-Myc-Halo G7 clone had a reduced expression of the (Oct4, Sox2, Nanog, c-Myc) proteins.
Even though a precise quantification is difficult when using IF, it seems that the edited clone has
a 30-50% lower expression of the pluripotency markers compared to WT. A precise quantification
of the fluorescence intensity levels would be interesting, and automated segmentation tools based
on the DAPI signal could greatly help in this direction.
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Figure 3.15: Immunofluorescence of the Sox2, Oct4, Nanog and Myc pluripotency factors in wild type
cells (left) and a c-Myc-Halo clone (right).

3. RNA-seq. Having demonstrated that the genome-edited still expressed common pluripotency
markers, although at reduced levels, we set out to determine whether the transcriptional program
differs between the WT and the genome-edited cells by RNA-seq of the messenger RNAs.

We prepared triplicate samples of the WT and the genome-edited cells and harvested them on
three different days using the triZOL reagent. Total RNAs were then purified, quality-controlled
using the BioAnalyzer and sent to the sequencing facility, who prepared the libraries and per-
formed NGS. As of today, the sample have not come back from the sequencing facility.

3.3.4 Protein expression

1. General approach. After verifying that the cell line displayed the expected embryonic stem
cell phenotypes by morphology inspection, immunofluorescence (section 2) and possibly RNA-seq
(section 3), we focused more on the characteristics of c-Myc expression.

Indeed, in order to derive reliable measurements on c-Myc dynamics, one needs first to check
that the background is not modified, and then that the properties of the protein are not measur-
ably changed. In order to perform single-molecule imaging, focused on measuring the following
parameters:

• The expression level of c-Myc (section 2)
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• The interaction with c-Myc’s main interacting partner, MAX (section 3)
• The lifetime of the protein (section 4)
• Protein-DNA interactions (section 5)

2. c-Myc expression level. First, we verified that the tagged version of c-Myc expressed properly.
We performed a Western Blot (WB) using an anti-c-Myc antibody, and paid attention to existing
degradation products that might indicate the presence of free HaloTag proteins (unfused to the
c-Myc protein), Figure 3.16. This blot was realized with the help of Claire Darzacq.

Despite the uneven loading of the gel, one can make a few remarks. (1) Compared to the actin
control, the c-Myc protein seems to express at comparable levels in WT and cMyc-Halo cells,
although a quantitative WB is needed to provide definitive conclusions. (2) The c-Myc antibody
stains a single (doublet) band, suggesting that no major degradation occurs in the HaloTag. (3)
Each band appears as a doublet, that is thought to represent the two isoforms of c-Myc (Myc1
and Myc2, section 2). These two bands are present in the c-Myc-Halo cell line, suggesting that
the translational regulation of c-Myc has not been affected.

Figure 3.16: Western Blot of several genome-edited c-Myc lines. WT represent the Wild type lanes.
The WT c-Myc runs around 60 kD, the c-Myc-Halo fusion around 150 kD.

A second, complementary question remains, whether there exists in cells a fraction of partially
degraded c-Myc proteins that will not be detected by the c-Myc antibody we used (Abcam’s
ab32072, that recognizes c-Myc N-ter region, on amino-acid 69), but will still carry a partially de-
graded or full-length HaloTag. Such products are unwanted because they correspond to degraded
c-Myc proteins but will contribute some fluorescence signal until the Halo-ligand fluorophore is
degraded.

We tried to address this question by performing a fluorescence-based Western Blot. The cells
were labeled using TMR-Halo and incubated for zero or one hour. We then tried to reveal
the blot using a fluorescence scanner. The bands should have provided us with an idea of the
fractions of fluorescent peptides present in a cell. Unfortunately, this experiment did not yield
conclusive results. We thought about relying on the characterization of full-length HaloTag, and
to perform a WB against the HaloTag, using an antibody (Promega’s G928A) targeting the
HaloTag peptide, but did not have time to perform the experiment.
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3. Interaction with MAX. Second, we wanted to check whether the interaction between c-
Myc and MAX was preserved, despite the tag being close to the c-Myc/MAX interface (the
bHLH region). Even though it appears unlikely that the cells will retain an embryonic stem cell
phenotype without a properly functioning c-Myc/MAX interaction, we decided to check whether
c-Myc co-immunoprecipitates (Co-IPs) with MAX.

This experiment was performed in 2014 with the help of Claudia. c-Myc fusion proteins were
transfected into N-Tera2 cells (Haile et al. 2014), and the pull-down was performed using an
anti-c-Myc antibody. The pull-down was then blotted against c-Myc and MAX (Figure 3.17).
Because these experiments were performed very early compared to the genome-editing process,
they were performed using a different cell system (NT2 cells), and different tags (YFP, GFP and
Dendra2). These results indicate that the addition of several tags does not disrupt the interaction
with Max.

Figure 3.17: c-Myc-YFP, c-Myc-GFP and c-Myc-Dendra2 all co-immunoprecipitates with MAX.

4. c-Myc protein lifetime.

(a) Lifetime changes with respect to WT. Third, we assessed whether the lifetime of the c-
Myc protein was changed by the addition of the tag. To do so, we performed a standard
protein lifetime assay using a cycloheximide block (Kao et al. 2015). Cycloheximide is a
fast inhibitor of protein synthesis. When the cells are treated with cycloheximide, no new
protein synthesis occurs, and one can follow the degradation rate of a protein using a time
course of Western Blots.
We performed a cycloheximide block using previously published concentrations for mESC
(Tichy et al. 2012) and collected samples of the WT cells and the genome-edited cells at
various time points. We assessed the lifetime of the c-Myc-HaloTag and the c-Myc-mEOS
cell lines over a 6-hours time course. The results are given in Figure 3.18. No clear difference
emerged in the lifetime of the tagged proteins versus WT.
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Figure 3.18: Estimate of c-Myc lifetime using a cycloheximide block. (a) Raw time course
(b) Quantification of the gel.

(b) Half-life of the c-Myc protein. We then compared the half-life of the proteins, based on the
quantification of the WB (Figure 3.18). The WT c-Myc appeared to have a half-life around
90 minutes (higher than what has been previously proposed, where c-Myc is known to have
a 20-30 minute half-life), whereas both tagged cells exhibit a ∼ 45’ half-life. Nonetheless,
these results were not replicated so far and await confirmation.
All-in-all, these results also suggest that experiments using a Halo ligand should be con-
ducted within 30-40’ after labeling, in order to avoid that a too high fraction of the dye
ends up in degraded forms of of the protein.
To complement this WB-based approach, we performed time-lapse, live-cell imaging (Figure
3.19. We observed that ∼ 20 minutes after the beginning of the imaging, the dye (and
presumably the c-Myc protein) started to accumulate in perinuclear bodies that could be
lysosomes or degradation bodies. This observation further reinforced the need to proceed
with imaging relatively quickly after labeling.
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Figure 3.19: Degradation of the c-Myc protein over time, observed by labeling the c-Myc-Halo cell line
E10 with 250 nM TMR. Cells were exposed for 150 ms every minute. Cells die after 35-40 minutes.
One screenshot every 5 minutes

5. Protein-DNA interactions. Then, we aimed at determining whether the tag perturbed
c-Myc binding pattern to DNA by ChIP-seq. The goal was to determine whether the binding
pattern of c-Myc might be differentially affected depending on the locus, reflecting for instance
the impairment of the interaction with one recruitment-related partner. This experiment is
particularly important because the tag is located close to the bHLH DNA-binding domain.

ChIP-seq protocol. We used a previously validated c-Myc antibody to perform ChIP-seq (Chronis
et al. 2017), that was also validated using qPCR by Inma Gonzalez (Navarro lab) and gave a "not
very strong signal, but still ok". For each cell line tested, we performed three biological replicates.
For each replicate, we grew a few million cells and followed standard ChIP-seq protocols (Testa
et al. 2005; Carey, Peterson, and Smale 2009; Ma and W. H. Wong 2011) to obtain purified
chromatin samples. We decided not to perform a spike-in control, and thus only compare relative
binding at one locus (K. Chen et al. 2016).

qPCR design. We designed qPCR primers to validate the efficiency of the ChIP. We focused on
two well-characterized c-Myc target genes: ODC1 (ornithine decarboxylase) and NPM1 (Bello-
Fernandez, Packham, and Cleveland 1993; Zeller, XiaoDong Zhao, et al. 2006 and section 3.1.4.
The primers were designed based on previously published ChIP-seq (Chronis et al. 2017), cross-
referenced with existing qPCR publications. For each of these genes, a primer was designed on
the corresponding ChIP-seq peak, and another one in a control region (Figure 3.20).

Due to the imaging issues presented in section 3.4, the collected samples have not been sent for
sequencing yet.

163



Figure 3.20: Location of the qPCR primers to validate the antibody and the ChIP. The location of the
primers is highlighted in purple. The location of the c-Myc binding peaks is presented with red boxes.

3.3.5 Protein number characterization

The quantification of the absolute number of proteins per cell is a key biophysical parameter, but it is
usually complicated to derive. For instance, a popular approach involves the purification of the protein
of interest followed by an absolute in vitro titration, followed by a quantitative Western Blot. Another
approach, used in the quantification of the Bicoid gradient in Drosophila, relies on the purification of
fluorescence protein, and to incubate the cells in a medium that contains a given concentration of the
fluorescent protein (Morrison et al. 2012).

These two approaches rely on complex protein purification techniques. Recently, a FACS-based
technique that uses a calibrated cell standard was proposed to quantify the expression level of flu-
orescently tagged, endogenous proteins (Cattoglio et al. 2018). In this approach, one compares the
expression level of a tagged, knocked-in proteins such as our c-Myc-Halo cell line with a reference cell
line with the same tag (such as CTCF-Halo or Rad51-Halo), in which the absolute protein number
has been determined using a biochemical method. Once grown in the same conditions, the cells are
labeled similarly and analytical FACS is performed for the two cell lines. Then, the ratio of the mean
fluorescence gives the ratio of mean protein numbers between the two cell lines. Since the number of
proteins per cell is known in the reference cell line, one can retrieve the protein copy number in the
sample cell line (Figure 3.21. The authors provided us with the reference cell lines.

Figure 3.21: (1) Grow cells expressing the Halo-tagged protein of interest together with one of the
standards described here (e.g. C45; Figure 1B). (2) After labeling with a fluorophore (e.g. TMR or a
JF-dye), the relative fluorescence intensity can be measured using either flow cytometry or microscopy
(4) and thus the absolute abundance calculation (5).(source: Cattoglio et al. 2018)

We followed the procedure proposed by Cattoglio and colleagues and quantified the absolute protein
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number in two independent c-Myc-Halo clones and we find that there are approximately 61000-78000
c-Myc molecules per cell (∼ 25 minutes after washing the medium), Figure 3.22. However, we only
performed the FACS quantification once, and thus do not have reliable error estimates on this number.

Figure 3.22: Distribution of the fluorescence intensity of TMR labeled cell lines, assessed by analytical
FACS. The cell lines observed are mESC, either WT (top row), a c-Myc-Halo knock-in (two middle
rows, clones E10 and G7) or a Halo-CTCF cell line (bottom row).

3.3.6 Inhibitors

We screened a part of the literature and the ChEMBL database for c-Myc-interacting compound,
yielding ∼ 60 compounds. The results were then manually selected based on the quality of the inhibitor
and other characteristics. We then focused on the commercially available compounds, and ordered some
of them.

We didn’t have the time to validate the c-Myc inhibitors that we initially planned to use for the
imaging experiments.
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3.4 Preliminary SPT experiments

3.4.1 Reanalysis of previously published data

In order to validate our own SPT data, Ignacio Izeddin kindly provided us with c-Myc-Dendra2 SPT
data acquired in U2OS cells at fast frame (10 ms/frame). The authors had derived a kinetic modeling
approach very similar to ours (Izeddin, Récamier, et al. 2014). Using Spot-On, we compared the jump
length distribution with fitted theoretical model and obtained a reasonable fit (Figure 3.23. Table 3.2
compares the fitted values in the original publication and in our reanalysis. We consider that these
results are globally concordant, and validate that our analysis pipeline will produce results that can
be compared with existing literature.
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Figure 3.23: Jump length distribution and corresponding model fit of the data published in Izeddin,
Récamier, et al. 2014.

Table 3.2: Analysis (left) and reanalysis using Spot-On (right) of the dataset published in Izeddin,
Récamier, et al. 2014.

Parameter Izeddin et al., 2014 Spot-On reanalysis
Dbound (Fbound) <0.1 µm²/s (10%) < 0.1 µm²/s (6%)
Dslow (Fslow) 0.5 µm²/s (20%) 2.7 µm²/s (20%)
Dfree (Ffree) 13.5 µm²/s (70%) 17.9 µm²/s (74%)
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3.4.2 Preliminary imaging in UC Berkeley

Once we obtained and reanalyzed existing c-Myc SPT data, we decided to perform preliminary SPT
imaging. The cells were labeled using PA-JF549 and imaged at high frame rate (6.5 ms/frame) using
stroboscopic illumination (2 ms). The recorded trajectories were then analyzed using Spot-On (Figure
3.24).

Our preliminary results are summarized in Table 3.3. They are surprisingly close to our reanalysis
of the data by (Izeddin, Récamier, et al. 2014), suggesting that our model behaves similarly as the one
developed previously, despite the change in cell line (U2OS vs. mESC), labeling strategy (transfected
c-Myc-Dendra2 vs. homozygous knock-in c-Myc-Halo) and acquisition setting (different microscopes,
exposure times and illumination schemes).

Given these encouraging results, we decided to import in Paris the SPT imaging approach, and use
this preliminary data as a reference point to optimize the setup in Paris.

Table 3.3: Parameters extracted from the preliminary SPT experiment presented in Figure 3.24.
Sub-population D (µm²/s) Fraction
Bound <0.1 4%
Slow 2.9 31%
Fast 12 65%

Figure 3.24: Spot-On analysis of SPT of c-Myc performed at 6.5 ms/frame. The extracted coefficients
are presented in Table 3.3.

3.4.3 Preliminary imaging in Institut Pasteur

1. The microscope. Despite the strong experience of the Zimmer lab in single-molecule imaging,
to move from PALM/STORM imaging to SPT requires a few adaptations to the microscope,
that we conducted jointly with Mickaël Lelek.

First of all, we installed a 37°C+CO2 incubator stage on the microscope and calibrated it, in
order to keep the cells alive for an extended period of time.
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Second, after preliminary experiments, we decided to recollimate the laser beam in order to
illuminate a ∼ 15x15 µm² region rather than a 50x50 µm² region, in order to multiply the
incident power per area by a factor of ∼ 10. This operation was performed by Mickaël and
necessitated to create an alternative light path, so that the microscope could be used in both
"large illumination" and "narrow illumination" modes.

Third, we rewired the AOTF system so that stroboscopic illumination (J. Elf, G.-W. Li, and
X. S. Xie 2007) was synchronized to the camera, allowing to illuminate the sample with 405
nm laser during the transfer ("dark time") of the camera, and to pulse the excitation laser
during only a fraction of the acquisition frame Figure 3.25. We also modified a control interface
provided in QuickPALM (Henriques et al. 2010) in order to switch quickly between stroboscopic
and non-stroboscopic illumination modes.

Figure 3.25: Principle and implementation of a stroboscopic illumination scheme. (left)
Principle of stroboscopic illumination. (middle) Arduino and Digital-to-Analog converter used to
implement stroboscopic illumination. (right) Interface (adapted from Henriques et al. 2010) to control
stroboscopic illumination.

2. Cell labeling. To perform spaSPT (Anders S. Hansen, Woringer, et al. 2018), one has to use
photo-activatable fluorophores, such as the ones of the Janelia Fluor series (PA-JF), such as
PA-JF646 and PA-JF549. We thus imaged the c-Myc-Halo cell lines under various conditions of
labeling of PA-JF646 and PA-JF549. Unfortunately, the SPT data obtained was highly inconsis-
tent with previously published data, yielded very few detections, with most of them not being
located in the nucleus (Figure 3.26c, compare with Figure 3.26b).

These results were extremely puzzling because both IF (section 2) and labeling with non-
photoactivatable dyes such as JF635 or TMR yielded normal nuclear localization. In order to
disentangle this issue, we performed imaging with a dual labeling (∼ 50 nM TMR and ∼ 100 nM
PA-JF646). The TMR signal allows to locate the cells, but also to monitor the degradation state
of the Myc protein (estimated to be ∼ 30 min based on live cell imaging). We acquired movies
at 8ms/frame with no stroboscopic illumination. The TMR signal is mostly nuclear (but clearly
not exclusively, and this is expected), but most of the PA-JF646 detections are perinuclear.
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Figure 3.26: (a) Sample single-molecule image of c-Myc-Halo-PAJF549. The detected molecules are
circled in pink. (b) Trajectories reconstructed in this experiment, performed in Berkeley. Most of
the trajectories are located within the nucleus, as expected, unlike in (c) c-Myc-Halo cell dual-labeled
with TMR (widefield) and PA-JF646 (SPT). Both are conjugated to HaloTags, but display distinct
localization patterns, suggesting a fluorophore defect.

Various personal communications (From the Darzacq lab: Anders S. Hansen, Wulan Deng, David
McSwiggen, Alec Heckert, the Heliot lab, the Mazza lab and the Dahan lab and directly from Luke
Lavis, who synthesized the dyes) sketched a coherent picture in which the PA-JF dyes, unlike
the normal JF dyes, tend to degrade over time, no matter how they are stored or handled. Based
on this feedback, we decided to abandon the use of PA-JF dyes, and to use non photoactivatable
dyes. Unfortunately, due to the time spent troubleshooting these issues, we did not have the time
to start optimizing different imaging conditions, in which the density of fluorophores cannot be
precisely controlled.

3.5 Discussion and conclusion

In this chapter, we proposed an approach to specifically characterize the sequence-determinants of
c-Myc dynamics. As explained in section 3.2, the dynamics of a TF and transcription regulation are
deeply intertwined, and a more precise understanding of the domains and interactions determining
these interactions are of high basic and applied interest.

In this work, we aimed at characterizing the dynamics of c-Myc in mESC using SPT, and to
compare it with various mutants (deletion of some protein domains) and drugs that disrupt c-Myc
interactome, with the aim of determining what are the key drivers of c-Myc dynamics.

This discussion is organized as follows: we first review the work we achieved, and provide a critical
reading of the difficulties we faced. After a series of perspectives to resolve these issues, we finally
envision the experimental perspectives of this work. A more general discussion is presented in section
III.

3.5.1 Summary of the work

1. Generation of a cell line to study c-Myc dynamics. During the course of the PhD, we
developed and validated a biological mESC model to study the dynamics of the c-Myc oncoprotein
in live cells. We generated a series of c-Myc knock-in cell lines with various tags (Halo, Dendra2,
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mEOS) and validated them using morphological, functional and genomic characterization. The
current state of the results strongly suggests that the generated cell lines behave like mESC,
and that neither the expression or regulation of c-Myc or key pluripotency genes is dramatically
affected, despite statistically significant differences in the expression levels of some pluripotency
factors (Oct4, Sox2, Nanog).

Nonetheless, we point out that a definitive validation of whether c-Myc-Halo protein is functional
is incomplete/indirect. Our current arguments mostly rely on the fact that c-Myc is a key
pluripotency factor and that mESC are expected to show a strong phenotype in the absence of the
c-Myc protein (they are expected to display a differentiated phenotype, and severe transcription
defects). The absence of such phenotype suggests that the tagged c-Myc protein is functional.
Clearly, a definitive demonstration will involve a ChIP-seq experiment, as described in section 5.
We performed the first steps of the ChIP-seq protocol and stopped before the library preparation,
since we had to re-optimize the imaging protocol.

2. Determination of key experimental parameters for SPT. We successfully determined the
lifetime of the edited protein and showed that it was similar to the WT cell line, and that c-Myc
has a short half-life in mESC (around 20-40 min), as previously reported. We also used a recently
published, FACS-based approach to determine the absolute number of c-Myc proteins in a mESC
and found it to be around 60000 copies. This number is key to biophysical modeling. Finally,
we examined the localization of the fluorescence as the c-Myc protein gets degraded. From these
experiments, we deduced that the imaging should be performed promptly after labeling, that is
in a window of 5-30 minutes after labeling, in order to mostly observe undegraded proteins.

3. Preliminary imaging. We then performed preliminary imaging in fast SPT. The experiment
was initially performed in the Darzacq lab, and then we developed a system in Paris to perform
similar experiments. The first experiments yielded encouraging results, but recurrent issues with
the fluorophores in use lead us to temporarily stop the experiments.

4. Work in progress. Indeed, it became clear that the photo-activatable dyes synthetized in
Janelia (the PA-JF549 and PA-JF646 dyes) suffered irreversible degradation, and that they could
not be used for SPT. In such a context, spaSPT, as presented in section 1.3 cannot be performed,
and one needs to rely on non-photoactivatable fluorophores such as TMR or the regular JF dyes
(JF549, JF646 and JF635 for instance). We are currently exploring this option with the help of
Mickaël.

3.5.2 Issues encountered during the project

1. Choice of serum. We begin by briefly mentioning the fact that c-Myc is involved in the
signalling pathway that maintains cells in an ES phenotype (Cartwright 2005). As such, the
choice of the serum is critical, and it is difficult to know which serum conditions should be used.
In particular, knowing whether synthetic serum replacements (Tanimoto et al. 2008; Kalaskar
and Lauderdale 2014) would provide more reliable results is not known.

2. Issues with imaging. Most of the project on c-Myc dynamics relied on stroboscopic, photo-
activatable SPT (spaSPT; section 1.3). We generated three different cell lines amenable to
spaSPT (one with a HaloTag, one with mEOS and one with Dendra2). Unfortunately, the mEOS
and Dendra2 displayed an abnormal phenotype and could not be used for further experiments,
and we were left with only one cell line and no option to cross-validate our results with alternative
tags. We briefly discuss our difficulties with tagging the C-ter part of c-Myc in section 3. To
perform spaSPT with a c-Myc-HaloTag cell line, one needs to conjugate a photoactivatable dye.
The only available photoactivatable dyes are the PA-JF549 and PA-JF646. Due to stability issues,
it became unfortunately impossible to use those dyes for SPT.
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Fortunately, it is possible to perform SPT without such dyes, and relies on non-photoactivatable
fluorophores. The loss of photo-activation is always performed at the expense of the quality of
tracking and of the number of trajectories per cell obtained.

Another limit should be mentioned: the fact that we used only one type of tag, the HaloTag,
to perform experiments. In this context, it is very difficult to cross-validate the results we
obtained. This cross-validation is important because the HaloTag, like any tag, is known to
influence diffusion. It is suspected that the charges of the protein yield some residual non-specific
interactions with DNA (L. Xiang et al. 2019).

3. Issues with the generation of the cell line. Many reasons can explain why it was technically
difficult to obtain homozygous clones of genome-edited c-Myc-Halo (we had to change linker), and
that we obtained only a handful clones of c-Myc-Dendra2 clones and c-Myc-mEOS. Furthermore,
the success rate of the genome-editing procedure seems to correlate with the choice of the tag.

This hints to the fact that despite a mild phenotype, the tag on c-Myc is likely to affect the cells
in several ways. First of all, since c-Myc is involved in transcription elongation and the tag is
located close to the DNA binding domain, it is possible that the binding of c-Myc to DNA is
impaired. This issue can be easily assessed, and we initiated a ChIP-seq experiment to confirm
it. The results are still pending.

Second, it is possible that the tag affects other key functions of c-Myc. It is possible that the
tag interferes with a known or unknown partner of c-Myc, for instance through steric hindrance
with the leucine zipper (LZ) domain, located at the very C-ter of the protein.

Finally, alternative explanations might relate to the fact that the tag might also alter the dynamic
properties of the protein, or its aggregation properties. Further experiments are needed to assess
these behaviours.

3.5.3 Experimental perspectives

In addition to the use of non-photo-activatable dyes, our work could be brought forward in several
ways.

1. Automated segmentation. On a very operational side, many of the quantifications that we
performed on images to assess the pluripotency of cells were done manually, which limited strongly
the sample size that we could analyze, and forced us to work in 2D. New 3D, deep-learning-based
segmentation techniques are being more and more widespread and should be used to perform
automated quantification (Qu et al. 2011; Machado, Mercier, and Chiaruttini 2018).

2. From transfections to induction techniques. To transfect the c-Myc mutants constructs
is a choice mainly driven by simplicity. Indeed, transfections have several drawbacks. First,
it is extremely difficult to control the expression level of the protein. In our case, we decided
to tackle this issue by performing a dual-labeling: a high-density label to assess the expression
level of c-Myc and a low-density level to perform SPT. Such a labeling approach was proposed
in (McSwiggen et al. 2018). Second, transfections do not provide timely information, and thus
prevents to distinguish between direct and indirect effects.

In a transfection setting, the plasmid is introduced in the cells around 24 hours before imaging.
Other techniques have been pioneered that allowed timely induction of a TF. One seminal ap-
proach consisted in the fusion of the c-Myc protein and an estrogen receptor (ER): upon induction
of an estrogen analog, the c-Myc-ER fusion translocates to the nucleus (Medh et al. 2001).

Since then, several techniques have been proposed to either "anchor away" a protein of interest, to
"uncage" a factor, or to actively degrade it (Cambridge et al. 2009; Terai et al. 2011; Strickland
et al. 2012; Dagliyan et al. 2013; Konermann et al. 2013; Martell et al. 2016; Wehler et al.
2016). These techniques should definitively be investigated to perform cleaner c-Myc imaging
experiments.
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3. Characterize the spatial point patterns of Myc/Myc localization. Second, our dynamics
measurement cannot be envisioned without a spatial perspective on c-Myc organization. It
is indeed critical to characterize not only the dynamics of c-Myc, but to correlate it with its
spatial distribution and the distribution of c-Myc interaction partners. In particular, it would
be extremely interesting to locate the phospho-isoforms of c-Myc in the nucleus, following an
existing low resolution study (Myant et al. 2015).

This is usually achieved through super-resolution microscopy (PALM, STORM, PAINT or ex-
pansion microscopy; E. Betzig et al. 2006; Hess, Girirajan, and Mason 2006; Rust, Bates, and
Zhuang 2006; Manley et al. 2008; Jungmann et al. 2016; Schnitzbauer, Strauss, et al. 2017;
Cahoon et al. 2017; M. Gao et al. 2018; Gambarotto et al. 2018, reviewed in B. Huang, Bates,
and Zhuang 2009), good error correction (including sample drift; Theer, Mongis, and Knop 2014;
Carlini et al. 2015; R. Han et al. 2015; Culley et al. 2017) and corresponding analysis techniques
(Ogata and Katsura 1991; Bolte and Cordelieres 2006; Kiskowski, Hancock, and Kenworthy
2009; Helmuth, Paul, and I. F. Sbalzarini 2010; Baddeley, Cannell, and Soeller 2010; P. Sen-
gupta, Jovanovic-Talisman, Skoko, et al. 2011; Veatch et al. 2012; Shivanandan, Radenovic, and
I. F. Sbalzarini 2013; P. Sengupta, Jovanovic-Talisman, and Lippincott-Schwartz 2013; Rollins
et al. 2015; Mlodzianoski et al. 2011; Levet et al. 2015; Andronov, Lutz, et al. 2016; Andronov,
Orlov, et al. 2016; Pageon et al. 2016; Andronov, Michalon, et al. 2017; Andrews et al. 2017;
E. A. K. Cohen, Abraham, and Ober 2017; Schnitzbauer, Y. Wang, et al. 2018; Laine et al. 2018;
Pike et al. 2018).

Albeit seducing, all these techniques require the sample to be fixed. Fixation has been a subject
of intense debate, and as of today, no artifact-free fixation method exists. It is widely acknowl-
edge that even after long fixation times (tens of minutes), proteins can still move, and that the
ultrastructure of cells can be deeply modified (Schnell et al. 2012; Y. Wang et al. 2014). Alter-
natives to slow and denaturing fixations come from the field of EM, in which fixation is often
performed in two steps: first the sample is rapidly frozen, which stops all cellular processes. In a
second step, the frozen water is substituted with a regular fixative agent such as paraformalde-
hyde. This technique is called high-pressure freezing followed by freeze substitution (HPF-FS;
McDonald et al. 2007; Schorb and Briggs 2014; Paez-Segala et al. 2015). So far, super-resolution
has been extremely challenging to perform on such samples.

4. Myc aggregation and phase separation properties. A complementary approach to the
imaging of c-Myc in live cells and fixed cells is the characterization of its aggregation properties.
Indeed, c-Myc as a transcription factor is known to interact with hundreds of protein partners,
and the purified c-Myc protein (Yeh et al. 2004) has been shown to phase-separate in vitro (Boija
et al. 2018). The exact determinants of this phase-separation behaviour, its effective existence
inside cells and the functional consequences of it are not known and should be investigated, as
they appear today at the crossroad between spatial organization of the genome and transcription
regulation (Hnisz et al. 2017; Sabari et al. 2018; S. Chong, Dugast-Darzacq, Z. Liu, Dong, G. M.
Dailey, et al. 2018).

Key information on the behaviour of c-Myc in cells could come from non-imaging techniques,
including in-cell NMR (Serber and Dötsch 2001; Selenko and Wagner 2007; Maldonado, Burz,
and Shekhtman 2011; Freedberg and Selenko 2014; Barbieri, Luchinat, and Banci 2016). In live-
cell NMR, the NMR relaxation properties of a specifically labeled protein of interest are followed,
allowing to derive information such as its disorder behaviour in cells or its existence within a
complex. Comparison with in vitro NMR allows to draw conclusions about the specific cellular
environment (see for instance a study on p53 Borcherds et al. 2014, α-synuclein Theillet et al.
2016 and on ataxin Sicorello et al. 2018). c-Myc, as a relatively high expression protein, is a
good candidate for such approach.

Such approaches should be complemented by in silico simulations of the behaviour of the pro-
tein, using molecular dynamics (Lindahl, Hess, and van der Spoel 2001) of related methods.
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It is traditionally difficult to simulate low complexity and intrinsically disordered proteins, and
additional difficulties arise when trying to simulate a protein in which some domains (such as
the DNA-binding domain) are folded and others (such as the trans-activation domain) are not.
Fortunately, recent progress has been made in the simulation of these proteins (see for instance
Vitalis and Rohit V. Pappu 2009; Gibbs and Showalter 2016; Robustelli, Piana, and Shaw 2018)
and in the simulation of protein-protein interactions between disordered proteins (Grauffel, Stote,
and Dejaegere 2010; Zwier et al. 2016; Saglam and L. Chong 2018).

5. Towards a good null model of Myc dynamics. In addition to a precise characterization
of c-Myc dynamics in the absence of protein domains, a null model of c-Myc dynamics should
be progressively built. We call a null model a series of proteins that would decouple the various
influences of external factors on c-Myc proteins.

This model could be deduced from various types of experiments. Firstly, as presented above,
c-Myc protein-protein interaction inhibitors are likely to provide instrumental information about
how c-Myc dynamics are shaped, potentially allowing to determine which (series of) protein-
protein interaction governs the dynamics of c-Myc. Second, c-Myc mimetics, such as synthetic
domains mimicking the bHLH domain of c-Myc (Ruiz García et al. 2017) might provide another
part of the picture. Finally, the use of targeted point mutations to disrupt specific protein-protein
interactions will help to finally get a precise idea of the sequence-to-dynamics map of c-Myc.
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Chapter 4

Going further: the complex diffusion
analysis challenge

4.1 Context

The complex diffusion analysis challenge is an ongoing project that aims at both benchmarking existing
complex-diffusion analysis algorithms and at fostering the development of new analysis techniques. It
focuses on nuclear and membrane samples and on the FCS and SPT modalities. It was initiated with
Ignacio Izeddin, Cyril Favard and Hugues Berry. The following chapter is inspired from a manuscript
in preparation:

Anomalous diffusion in live cells : bridging the gap between experiments and models through collab-
orative challenges. (Maxime Woringer, Hugues Berry, Dominique Bourgeois, Cyril Favard, and Ignacio
Izeddin).

4.2 Introduction

The life of a cell is governed by highly dynamics microscopic processes. Two notable examples are the
diffusion of membrane receptors and the kinetics of transcription factors governing the rates of gene
expression. Different fluorescence imaging techniques have emerged to study (macro)molecular dy-
namics. Among them, fluorescence correlation spectroscopy (FCS) and single-particle tracking (SPT)
have proven to be instrumental to our understanding of cell dynamics and function.

These techniques have unraveled an unforeseen complexity and diversity of mechanisms of protein
diffusion. Many efforts have been devoted to analyze datasets generated by FCS or SPT, ranging from
diffusion coefficient estimations to inference approaches. However, choosing the appropriate algorithm
can be challenging. Indeed, the richness of experimental data often makes it difficult to determine
which are the models to be considered and the relevant biophysical parameters to be estimated.

In such a setting, both the imaging and machine learning communities have often relied on col-
laborative challenges, where labeled (training) and unlabeled (evaluation) simulated data are provided
to competitors all over the world. The challenges foster the development of state-of-the-art analysis
algorithms. They provide a unified data benchmark based on biologically-relevant metrics in order to
compare the diffusion analysis software available for the community.

In a previous section we briefly reviewed key anomalous diffusion models relevant to cell biology
and some of the existing techniques to either infer model parameters or perform model selection. We
here stress the importance of designing realistic datasets, closely mimicking the type of data obtained
in the field by biologists. We highlight often overlooked limitations in current acquisition methods and
emphasize the noise levels and expected biases of these techniques.

With this perspective, we hope to provide the molecular imaging community with a comprehensive
set of data and metrics allowing to objectively evaluate existing and new analysis tools, as well as
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instigating an open discussion about the limitations and challenges of analyzing and modeling diffusion
of molecules in the complex environment of the cell.

4.3 From imaging to analysis: strength and gaps

4.3.1 Why we care about anomalous diffusion in cells

As explained in section I.1, to understand how proteins move in a cell is key to the understanding of
many biological mechanisms of paramount importance, ranging from the regulation of transcription,
signalling and neuro-degenerative diseases.

For instance, how neurotransmitters diffuse inside and outside cells strongly determines many pa-
rameters of neuronal transmission. Similarly, the reaction rates of transcription factors are intrinsically
coupled to the way they diffuse in cells. There is then a crucial need to better understand how protein
diffuse in cells.

Over the years, researchers have developed various imaging-based techniques to assess diffusion in
live cells. Among them, two stand out particularly: single-particle tracking (SPT) and fluorescence
correlation spectroscopy (FCS). In SPT, a low number of fluorescently-labeled proteins are visible at
a given time, so that their density is low enough to discern single molecules. In this regime, individual
proteins can be tracked over time, and the coordinates of the protein can be extracted, yielding
trajectories that need to be analyzed further. In FCS, a confocal-inspired beam is focused at one
given location in the cell and the fluctuations of light intensity collected are recorded. When a fast
diffusing molecule crosses the confocal region, its emitted photon are collected for a very short period
of time. Conversely, when a slow-diffusing protein crosses the confocal region, it takes it a lot of time
to exit the volume, and photons are collected for a longer time. The averaging over many events and
corresponding modeling then allows to recover the existing species in the solution.

Using these imaging modalities, researchers progressively mapped the dynamics of a high variety of
proteins. They also noticed that often, proteins and particles diffusing in cells did not exactly follow the
laws of Brownian diffusion, but rather displayed anomalous diffusion. This is exemplified in (Figures
4.1). Indeed, in (Izeddin, Récamier, et al. 2014), the authors used SPT to characterize the anomalous
diffusion of two key proteins in a mammalian cell: c-Myc and P-TEFb. When they computed their
MSD, they found that it did not follow a straight line, but could rather be fitted using a power-law
with exponent α 6= 1, indicating that more complex processes than pure Brownian diffusion happen in
cells. The complexity picture is traditionally further reinforced by the fact that it is not only the size of
a particle that determines its diffusion properties, but also its chemical properties. This is exemplified
in (Etoc et al. 2018), in which the authors used nanoparticles of constant diameter (25 nm) but bearing
different chemical reactivities (through different passivations). Surprisingly, despite the fact that the
particles had the same size, they exhibited dramatically different diffusive properties, from fast and
almost free-diffusing to slow and highly anomalous. These experiments suggest that diffusion in cells
is influenced by complex mechanisms, and that elucidating these processes would yield to important
discoveries in how a cell is organized.
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Figure 4.1: Two examples of non-Brownian diffusion in cells (A,B,C) anomalous diffusion of
the P-TEFb complex. (D) Anomalous diffusion of injected nanoparticles in cells. The panel described
the distribution of diffusion coefficients (D) and anomalous diffusion exponents (α) for various particles
of the exact same size. Source: (A,B,C: Izeddin, Récamier, et al. 2014, D: Etoc et al. 2018)

From a biophysical standpoint, anomalous diffusion can arise from two (non-exclusive) types of
mechanisms:

• Because the protein diffuses in a complex, tortuous media. In that case, macroscopic anomalous
diffusion comes from the fact that diffusion is spatially impaired. Thus, a fine characterization
gives information about the space in which the protein diffuses

• Because the protein interacts with other elements of the media, and thus has a tendency to
transiently "stick" to it, and to be funneled, depending on the complementarity of the surface of
the protein and the structure. Diffusion is temporally impaired, as a first approximation.

Crucially, protein dynamics thus not only provide us with key parameters to explain their reactivity,
they also carry information about the global cellular organization and the reactivity of the abundant
surfaces. From an inverse problem perspective, one can then ask whether one could use SPT, FCS, or
a combination thereof to solve the structure and reactivity of a live cell Figure 4.2.

As usual with inverse problems, to recover the structure and reactivity of the space is usually an ill-
posed problem. For the case of SPT and FCS, the amount of available data is extremely low compared
to the size of the space to be mapped, and it is thus necessary to rely on simplifying hypotheses. These
hypotheses are physical or mathematical models of anomalous diffusion of proteins (Figure 4.2). In this
setting, it becomes possible to get estimates of the parameters of the models, and to perform model
selection, which is a first step to the mapping of the environment of a cell. In the next sections, we
discuss the current strengths and limitations of SPT and FCS, and how additional information could
be extracted from this data using advanced analysis techniques.
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Figure 4.2: Solving the inverse problem of SPT/FCS: to recover the structure and reactivity of the
cellular space from SPT or FCS is not possible. Conversely, mathematical models can be used to
constrain this inference, and one revert to traditional model selection and parameter inference problems.

4.3.2 State of the art of current data

1. Membrane tracking traditionally provides high quality data. For many years, tracking
of proteins in membranes provide a gold standard in terms of the quality of the data that can be
obtained. Moreover, this field has concentrated many advances that significantly improved data
quality. A few of them can be listed:

Imaging system. the use of Total Internal Reflection Fluorescence (TIRF; Ambrose 1956) pro-
vided a very high sectioning (the collected fluorescence comes from ∼ 200 nm above the coverslip),
and the apparition of PSF-shaping allows to perform 3D SPT.

Labeling systems. brighter and brighter dyes were designed, initially starting from antibodies
conjugated to very stable fluorophores such as Alexa 647, and then to Quantum Dots or nan-
odiamonds conjugated using nanobodies. These latter allow almost infinite imaging time, since
they photobleach extremely slowly.

In this setting, a membrane SPT experiment traditionally yields thousands of tracks, in which
the tracks are long (several tens of points) and with a high pointing accuracy (often below 10
nm). This setting can be regarded as the best imaging conditions that can be obtained in cells.

2. Current limitations of nuclear imaging. These ideal membrane conditions have never been
reproduced in the cytoplasm or in the nucleus. Several factors explain why imaging inside the
cell is more challenging:

Distance to the coverslip. Reaching the nucleus requires to image at least 1 µm from the cover-
slip. At this distance, TIRF imaging cannot be applied and more out-of-focus light is collected,
leading to reduced signal-to-noise ratio. Several approaches have been proposed to increase the
z-sectioning in the nucleus, including Highly Inclined and Laminated Optical sheet (HILO; Toku-
naga, Imamoto, and Sakata-Sogawa 2008) or various designs of light-sheet imaging, such as the
lattice light sheet (B.-C. Chen et al. 2014). These techniques dramatically reduce the collection
of out-of-focus light, but not to the point of TIRF microscopy.

3D diffusion in cells. Second, unlike in membranes in which proteins diffuse slowly in two
dimensions, proteins in the nucleus diffuse in 3D 10-100 times faster. Fast-diffusing proteins
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are more difficult to track, require higher laser powers and faster imaging. Moreover, proteins
can move in 3D and diffuse outside the focal plane, thus limiting the length of the trajectories
obtained by SPT.

Cell permeability. Third, labeling such as quantum dots (QD) or nanobodies are not really
available to track proteins in cells. QD are usually too big to freely move in the nucleus, and
antibodies/nanobodies are tedious to transfect in cells. Finally, most photostable organic dyes
such as Alexa647 or Atto647 are not membrane permeable and thus cannot be used with live
cells.

When moving to the analysis step, nuclear SPT is currently often corrupted by the following
limitations: high noise levels, short trajectories, poor spatial and temporal sampling. To tackle
this issues, two options are available: (1) improve the quality of the data generated (we presented
an approach in section 1.2, but see also MINFLUX; Balzarotti et al. 2017) or (2) improve the
quality of the analysis.

4.3.3 Limitations of current analysis techniques

Despite the high number of analysis techniques to analyze FCS and SPT (briefly reviewed in section
4.1), several questions remain unanswered and key features missing:

1. Incorporating good models. The diversity of anomalous diffusion models is extremely high
(see for instance Metzler, Jeon, et al. 2014), but for most of them, it is not known whether they
could be relevant to interpret SPT in cells. Furthermore, most of the existing SPT analysis
softwares only consider pure diffusion, or mixtures of pure diffusion. Thus, modeling of dynamics
data that goes beyond free diffusion is currently a blind spot in the literature.

2. Adapted to real data. As briefly detailed in the previous section, nuclear imaging suffers
difficult imaging conditions. Many of these conditions have been documented, but most analysis
algorithms available on the market are not suitable for real-life datasets. The situation is further
complicated by the fact that at the time of writing, virtually no nuclear SPT dataset is available
online, seriously impairing the development of new analysis algorithms.

3. Benchmarked. Finally, even when algorithms to analyze the available data exist, there is no
clear benchmark that allows to opt for one technique or the other.

To tackle these issues, we took two approaches: (1) In collaboration with Anders Hansen, we
proposed a standard to share SPT data, and pushed for the integration of SPT data into the
4D nucleome data sharing platform (section 4.4). (2) In collaboration with Hugues Berry, Cyril
Favard and Ignacio Izeddin, we currently organize a collaborative challenge to foster the devel-
opment of limitations-aware tools (section 4.5).

4.4 Data sharing project

After a rapid inspection of the literature, it appeared to Anders and I that virtually no SPT dataset
tracking proteins in the nucleus of live cells was publicly available on the internet. As a first response,
we initially shared the SPT data produced in our lab on Zenodo, a general server to share experimental
datasets. We then teamed-up with the 4D-nucleome in order to propose a SPT file standard and a
structured data sharing platform, in order to make these datasets widely available.

4.4.1 Sharing with Zenodo

We first decided to share the datasets generated for Spot-On (Anders S. Hansen, Woringer, et al.
2018) under a permissive license. The tracked datasets were deposited on Zenodo (1064 movies;
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zenodo:834781; doi: 10.5281/zenodo.834781). This initiative was continued, and additional datasets
have also been published:

• McSwiggen et al. 2018: (zenodo:1313872; doi: zenodo.1313872)

• Anders S. Hansen, Amitai, et al. 2018 (zenodo:2208323; doi: zenodo.2208323)

• Oomen et al. 2019 (zenodo:1306976; doi: zenodo.1306976)

In total, more than 3000 single-cell movies, and tens of millions of detections are now available
online.

4.4.2 The 4D nucleome

The 4D nucleome (4DN) is a NIH-funded consortium that aims at fostering collaboration among the
participating labs, in a similar way as the human genome project or the ENCODE project. It is de-
scribed as : "The 4D Nucleome program aims to understand the principles behind the three-dimensional
organization of the nucleus in space and time (the 4th dimension), the role nuclear organization plays
in gene expression and cellular function, and how changes in the nuclear organization affect normal
development as well as various diseases." (source: NIH website)

It encompasses labs from various countries, mostly focused around two axes: omics (Hi-C and
derivative, genomics) and imaging (multiplexed FISH and SPT). The 4D nucleome has a strong open
access policy (preprint policy, data sharing policy) and a mature data sharing portal: https://data.
4dnucleome.org/.

Since the Tjian/Darzacq lab is part of this initiative, we decided to get in touch with other 4DN
and non-4DN labs producing SPT data and the 4DN "operational hub" in order to design a SPT data
format that could be used to share these datasets, and to develop a suitable extension to the 4DN data
platform.

4.4.3 The SPT format

Despite SPT being an old technique, no effort has been devoted into standardizing the data format to
share the trajectory data, unlike what is usually seen in the genomics community, were several standards
are usually broadly discussed and implemented. To our knowledge, only one article describes a SPT
format (Greenfeld et al. 2015), but the project seems to be abandoned (no update on the Github
repository since 2014). In 2017, Rigano and Strambio De Castillia 2017 proposed a data structure
and a proposed standard on FAIRshare to share SPT data. We got in touch with the authors (the
Strambio lab) in order to foster collaboration. Some of the paragraphs in this section are excerpted
from the description of the SPT format.

After discussing with the 4DN operational hub (Burak Alver, Koray Kirli), the David Grunwald
lab, the Strambio lab (Caterina Strambio, Alessandro Rigano), the Liphardt lab and Joan Ritland, we
came with a plain-text, tab-separated format. We then gathered feedback from a wide sample of the
nuclear SPT community:

• Tjian-Darzacq lab at UC Berkeley and Sheila Teves

• Xiaojun Ren and lab at University of Colorado, Denver

• Stephan Uphoff at Oxford University

• Brian English and Zhe Liu at Janelia Farm

• Ignacio Izeddin, ESPCI Paris

• Gordon Hager, Diego Presman, David Garcia, Gregory Fettweis, Ville Paakinaho, NIH/NCI
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• Robert Coleman, Charles Kenworthy, Albert Einstein College of Medicine

• Caterina Strambio De Castillia and Alex Rigano

Briefly, the SPT format is split in several parts:

1. a metadata part, that describes the biological experiment, the tested conditions, etc. that is
handled according to a pre-existing 4DN-data portal standard.

2. A file header, that described the format version, the units used, the available columns (some of
them are optional), and the reference to the definition of the localization error provided.

3. The data itself, in a tab-separated format.

4.4.4 The 4D-data platform

Once a SPT format defined among most of the labs operating nuclear SPT, the 4DN operational
hub kindly agreed to implement a new data type in the 4DN data portal. This new feature allows
to upload, share and browse SPT datasets in a similar manner as the previously available genomics
datasets (Figure 4.3).

Figure 4.3: The 4DN data sharing platform, with SPT datasets highlighted.

4.5 The complex diffusion analysis challenge

4.5.1 Principle

Since the offer of dynamics analysis algorithms is relatively limited, poorly adapted to currently avail-
able data and can rarely compared one with another, we decided to start an international collaborative
challenge in order to foster the comparison of existing algorithms and the development of new softwares.
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We drew inspiration from challenges in the machine learning community and decided to release
two datasets: (1) a training dataset, in which the models generating the data are known, and that
can either be used to train a machine learning algorithm or to benchmark it, (2) a test dataset, for
which the generating model is kept secret and not known by the participants, allowing for an unbiased
benchmark of the tested softwares. This challenge can be seen as a follow-up of the 2D and 3D single-
molecule detection challenge (Sage, Kirshner, et al. 2015; Sage, Pham, et al. 2018), and of the tracking
challenge (Chenouard et al. 2014).

4.5.2 Modalities

More precisely, we agreed on generating both SPT and FCS data in different modalities (2D in mem-
branes and 3D in the nucleus; Figure 4.4) using simSPT (section 1.1). In this setting, we decided
to simulate various types of normal and anomalous diffusion (Brownian motion, fractional Brownian
motion, CTRW and diffusion in fractals), and mixtures of them (Figure 4.5).

Figure 4.4: Types of imaging modalities considered for the challenge: 2D and 3D setting, and SPT
and FCS.

The participants can then get involved in two classes of challenges: (1) a parameter inference
challenge, in which the generating model is known, but not the exact value of the parameters, and (2)
a model selection challenge in which both the right model and the right parameters have to be inferred.

The challenge was announced at a few national conferences and a mailing list has been created to
facilitate the discussion around the data generation procedure (diffusion.challenge@services.cnrs.fr).
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Figure 4.5: Types of models simulated for the challenge.

4.6 Conclusion

Unlike the genomics community, the imaging community really lacks structure and clear objectives.
For instance, little to no infrastructure exists to store imaging data, most raw images are not publicly
available, and it is often the case that PIs will refuse to share their raw imaging data. Furthermore,
despite the existence of image formats and standards, there is neither an accepted standard to share
processed data (such as the BED files in genomics for instance, to share ChIP-seq peaks), or clear
consensus on which questions the analysis techniques should answer, not to mention a consensus on a
way of analyzing data.

Structuring the image community is a long process, that has started on many fronts. Here, we
participated in two manners: (1) by the development of a simple SPT standard, and by creating a
SPT entry on the 4DN data portal, in order to host the SPT datasets generated among the labs
belonging to the consortium. This initiative is followed in parallel by a project to put all FISH imaging
data online. (2) By the elaboration of a collaborative challenge to analyze single molecule data.

To be honest, the goal of the challenge is not really to show which software is the best, but rather
to foster common thoughts on what should be the metrics to choose one analysis algorithm or another,
what are the main caveats of the existing experimental setups, and what are the limits on our ability
to analyze noisy data. Thus, we hope to create a community around the challenge, in which SPT and
FCS analysis techniques could be openly discussed.

As many ongoing projects, the future will tell whether this initiative is successful.
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Chapter 1

Wanted: the map of the nucleus

1.1 Introduction

In this section, we briefly summarize our work. Rather than listing many experimental discussions,
we refer the reader to the cited sections for specific discussions. We present in this section some more
general discussions and perspectives. We decided to focus on the quest of the "map of the nucleus".

1.2 Summary of the work

First, in the introduction, we identified the strength and challenges faced by researchers in the field of
transcription regulation (section 3.1). One of them is the need for information about the dynamics.
SPT appeared as the technique of choice to investigate TF dynamics.

1.2.1 Towards tools to analyze SPT

1. Spot-On. After identifying the limitations of existing SPT analysis techniques, we designed
Spot-On (section 1.3; Anders S. Hansen, Woringer, et al. 2018). Spot-On addresses several
limitations of conventional SPT. It can work even with a large collection of very short trajectories,
it accounts for defocalization bias and robustly infers existing sub-populations and localization
error. We extensively benchmarked Spot-On in many conditions, and evaluated the sensibility
to many parameters. In a second part of the PhD, we improved Spot-On to take anomalous
diffusion into account (section IV.2). We also theoretically derived the distribution of angles
between consecutive jumps under a Brownian motion with noise hypothesis (section IV.3). This
opens new avenues to analyze protein motion in the nucleus.

Together with the Spot-On software (Anders S. Hansen, Woringer, et al. 2018), we proposed
stroboscopic, photo-activatable SPT as a reliable approach to study protein dynamics in the nu-
cleus. This technique relies on the use of HaloTag and photo-activatable dyes. These fluorophores
allow to acquire a high number of high quality trajectories per cell, and open the way to the
characterization of single-cell dynamics. However, the degradation of the PA-JF dyes question
the strategy adopted in the manuscript, since no other synthetic photo-activatable is available on
the market. Thus, spaSPT cannot be performed anymore, until new synthetic photo-activatable,
membrane permeable fluorophores are synthesized or more photostable photo-convertible fluo-
rescent proteins are discovered. This is sad.

2. simSPT. In order to benchmark Spot-On, we developed a simulation tool. This tool was designed
to simulate SPT trajectories and incorporates biases and limitations usually encountered when
imaging mammalian nuclei, including the limited axial detection range, the high localization error
and the effect of confinement. We then extended the tool to simulate non-Brownian diffusion.
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3. Complex diffusion analysis challenge. The tools we developed will not be the ultimate
solution to the current limitations of SPT analysis. Rather, a culture of openness and collabo-
ration between experimentalists and theoreticians is needed to address the issues raised by SPT.
Building on the fact that little to no SPT of proteins in the nucleus is available, we developed,
in collaboration with the 4D-nucleome consortium (1) a documented SPT format, so that SPT
trajectories can be shared without ambiguities, (2) we worked with the operational hub of the
4D-nucleome consortium to put the SPT data generated in the lab online and (3) together with
Cyril Favard, Hugues Berry and Ignacio Izeddin, we started the complex diffusion analysis chal-
lenge in order to foster collaboration around analysis techniques, to identify blocking issues and
encourage the development of new analysis methods.

4. In vitro imaging. Once these analysis techniques were developed, we applied Spot-On to a
setup where most existing tools available will perform poorly: the case of extremely fast in vitro
diffusion. In such a setting, most labeled proteins move out-of-focus in less than two frames, and
long trajectories are extremely rare. Because Spot-On can build displacement histograms from
single jumps, it can analyze this type of data without major issues. In collaboration with Zhijie
Chen and Alan Shaw, we used Spot-On to demonstrate that the presence of the substrate of an
enzyme did not increase significantly its diffusion coefficient. These experiments bring valuable
data in a longstanding controversy (detailed in section II.2).

1.2.2 A model to study c-Myc diffusion

Once the analysis tools presented above were validated, it became possible to apply them to a
transcriptionally-relevant problem. We focused on elucidating the sequence-determinants of c-Myc
diffusion, namely, identifying the protein domains that drive c-Myc diffusion. An answer to this ques-
tion would advance our basic understanding of transcription factors biology in general, and of c-Myc
in particular. For instance, the determinants of c-Myc in vivo sequence specificity are not known, and
rely on domains located far from the DNA binding domain (J. Guo et al. 2014; W. F. Lim et al. 2016).

During the course of this PhD, we developed and successfully validated a set of tools to answer this
question. We developed a mESC system in which we used the CRISPR-Cas9 system to homozygously
knock-in a HaloTag in C-ter of the c-Myc protein. The HaloTag can then be used for SPT imaging.
We validated that the cell line displays ESC morphology and phenotype.

However, our results are incomplete, for several reasons. First of all, some of the validations we
performed are still incomplete. We performed a RNA-seq experiment to check to what extent the
transcriptome of the edited cells differs from the non-edited cells. The samples have been sent for
sequencing. We also wanted to verify to what extent the c-Myc binding profile on DNA was modified
by the addition of the tag. Due to difficulties with imaging, we decided not to send the samples for
sequencing so far. Second, we could not perform reliable SPT imaging, due to the issues mentioned
above with degraded photo-activatable fluorophores. Troubleshooting the issues with fluorophores took
us several months, and we did not have the time during the course of the PhD to fully implement an
imaging technique with other fluorophores. Nonetheless, this approach is now in progress, and we hope
to be able to get SPT images in the next few months.

1.3 Perspectives on dynamics: from atoms to a full nucleus

1.3.1 Dynamics as the result of protein-protein interactions

Transcription factors that diffuse in the nucleus of a cell is influenced by many factors, ranging from the
individual properties of the protein to collective emerging behaviours of collections of macromolecules
in the nucleus.

1. Effect of size. In the traditional framework of diffusion, the size of the diffusion molecule is
thought to be the major determinant of the diffusion coefficient, that is inversely proportional
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to the hydrodynamic radius of the protein. This framework, however, is of little use in cells.
Indeed, the cytoplasm and nucleoplasm of a cell cannot be characterized by a single viscosity
coefficient, and rheology-like experiments have shown that at least a size-dependent viscosity
coefficient should be applied. Such a setting often arises when particles diffuse in a complex
mesh or within a crowded medium.

2. Charges patterns and diffusion. Second, diffusion not only depends on the physical param-
eters of the diffusing medium and the proteins, but only on its chemical environment. This has
been shown repeatedly. For instance, (Etoc et al. 2018) looked at the diffusion behaviour of 25
nm diameter nanoparticles and found that depending on the chemical properties of the surface,
the particles displayed dramatically different diffusion properties (Ferritin was diffusing relatively
fast and showing normal diffusion whereas quantum dots coated with carboxylic acids were dif-
fusing up to 1000 times slower and displayed a diffusion much more anomalous. This qualitative
change in the diffusive properties connects with studies on intrinsically disordered proteins and
the conditions required for phase separation of some proteins. It has been shown theoretically
(Vekilov 2010) and experimentally (Pak et al. 2016) using solutions with compounds of increasing
charges, that the aggregation behaviour of proteins was modulated by the charge of the protein
and the presence of charges in the environment.

This is particularly interesting in the setting of transcription factors, that usually bear a disor-
dered trans-activation domain. The chemical properties of this domain have been shown to be
relevant for phase-separation (Boija et al. 2018) and for the control of transcription (Sherry et al.
2017). Moreover, many transcription factors are under tight regulation by post-translational
modifications (PTMs). For instance, c-Myc can be phosphorylated, acetylated, ubiquitylated,
SUMOylated, etc. The addition of these residues have the potential to totally modify the set of
nuclear components it interacts with. As such, there is a need to characterize the link between
PTMs and diffusive properties of TFs.

3. Towards a map of protein-protein (weak) interactions. This link can be investigated in
several ways, and we proposed a basic approach in (Woringer and Darzacq 2018). A much clearer
picture of the dynamics at play in the nucleus could be derived by a more precise knowledge of
the "interaction profile" of a TF with the abundant constituents of the nucleus (proteins, RNAs,
DNA, etc). With the knowledge of this map, it would be easier to determine the effect of
disrupting a given protein-protein interaction.

To determine this map of protein-protein interactions, several techniques could be useful. A first
one is NMR, that was used to characterize the order/disorder state of proteins in vivo (Borcherds
et al. 2014; Theillet et al. 2016; Sicorello et al. 2018) and to determine the activity of kinases on
various substrates (Thongwichian et al. 2015).

1.3.2 Dynamics of proteins on DNA

In addition to protein-protein interactions, many other interactions deserve some interest: protein-
DNA, protein-RNA, RNA-RNA, RNA-DNA, protein-other, etc. We present here some thoughts on
protein-DNA interactions, since they are key to transcriptional regulation, but also appear fundamental
to the formation of some cellular aggregates (S. Chong, Dugast-Darzacq, Z. Liu, Dong, G. M. Dailey,
et al. 2018).

It is usually thought that a TF can interact with DNA through two different modes: a "specific"
and a "non-specific" mode. This distinction was initially put forward by the study of the LacI protein
(Marklund et al. 2018), in which this prototypical TF adopts structurally distinct conformations when
"scanning" DNA and interacting specifically with its cognate DNA binding motif. From this seminal
finding, it was logically deduced that specific and non-specific interactions would have different kinetic
and diffusive signatures. Several experiments that deleted the DNA-binding domain of a TF indeed
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found that its residence time on DNA was affected (see for instance Anders S. Hansen, Pustova, et al.
2017).

However, the picture of a clear structural difference between "specific" and "non-specific" inter-
actions has been challenged. A first series of evidence comes from the study of other TFs, such as
HoxD9 (Iwahara, Zweckstetter, and Clore 2006), that adopts very similar conformations when binding
specific and non-specific DNA. Second, even in the absence of any DNA-binding domain, the proteins
usually retain some affinity for DNA (see for instance Anders S. Hansen, Pustova, et al. 2017). It was
hypothesized that the charge pattern, and especially the nuclear localization signal (NLS) could have
some residual affinity for DNA. In that case, the affinity for DNA is more the result of the chemical
properties of the factor than a regulated parameter of the TF. The distinction between specific and
non-specific binding was also discussed in length in (Mueller, Stasevich, et al. 2013). Moreover, pro-
teins can undergo non-first order reactions, and especially have DNA-interaction times that do not
follow a single-exponential, but rather a power law. In that case, the concept of specific/non-specific
interactions, or even slow/fast-binding should be reconsidered (see Grossman-Haham et al. 2018 for
an evidence of power-law kinetics at the single-molecule level). Finally, it was shown in (Raccaud
et al. 2018) that properties such as the charge composition of the DNA-binding domain (accounting
for non-specific interactions) explained the bound fraction of the TF on DNA better than ChIP-seq
binding profile (accounting for specific interactions). All-in-all, these findings seriously question the
definition of a "specific" and "non-specific" interaction. Is a "long" interaction characteristic of a TF
binding to its cognate site? Or is our model of TF-DNA interaction still incomplete. In any case, there
is room for further research.

1.3.3 Large-scale macrodynamics

At a larger scale, proteins can adsorb on many structures, described above as "structures of reduced di-
mensionality". These structures include several phase-separated organelles, and potentially chromatin
itself. Several of them were discovered very early in the history of biology (such as the nucleolus),
and others were discovered more recently. These structures are dynamic and appear more and more
connected to the rest of the nucleus (see for instance research on the structure and dynamics of the
nuclear speckles, that strongly correlate with A compartments and transcriptionally active regions
(David L. Spector and Lamond 2011; Fei et al. 2017; W. Chen et al. 2018; J. Kim et al. 2018).

To understand diffusion in a nucleus, a precise characterization of these structures is needed: what
are the proteins that diffuse "freely" within and across them, what are the molecules that are trapped,
etc. For instance, the phase-separated heterochromatin compartment is regulated by the HP1α protein,
and clearly excludes some proteins (A. G. Larson et al. 2017; Strom et al. 2017).

For years, chromatin and chromatin compartments have been seen as the major architectural fea-
tures of the nucleus, and the main drivers of nuclear organization and rearrangements. It now becomes
more and more supported by the data that membrane-less organelles can also play an architectural
role, and are crucial in the organization of the nucleus. They sequester molecules, move passively and
actively, assemble and disassemble, respond to PTMs cues, etc.

1.3.4 The map of the nucleus

1. Pending questions in nuclear biology. Taking one step back, one key element in our under-
standing of nuclear biology is as simple as a map of the nucleus. Indeed, basic questions such as
the following have as of today no clear answer:

• We know how DNA is arranged in the nucleus, but how is RNA arranged, what are the
most abundant RNAs in the nucleus, how to they arrange with respect to DNA?

• Are there zones of locally high macro-molecule concentration in the nucleus? Where are
proteins concentrated? Do these concentrations correspond to a specific membrane-less

187



organelle ? To a transcription site? Same question for RNAs: do they co-localize with DNA
or another nuclear structure?

• What is the dynamic range of protein concentrations in the nucleus? Same question for
RNA?

2. What is a map of the nucleus? Following these questions, we propose that one the main
missing piece to understand nuclear organization of function is a 3D super-resolution map of the
nucleus, that would overlay DNA, RNA and proteins. Here the idea is not to get the specific
coordinate of each RNA species, protein copy and DNA locus, but rather to know at the scale
of ∼ 15 nm, how are proteins, DNA and RNA arranged, without specificity.

Such a map would allow to clarify the following points: (1) the proximity/exclusion relationship
of DNA wrt. RNA, (2) how diffusion of a TF can be envisioned in the cell: is it impaired
by DNA, RNA, protein complexes, etc. (3) Provide an exhaustive vision on phase-separated
compartments.

3. Existing approaches. We are not aware of any study that presents such a map. Conversely,
some efforts were developed that go in that direction. First of all, the spatial organization of
chromatin has been mapped at high resolution using Cryo-EM using the Chrom-EMT technique
(Ou et al. 2017), providing a precise map of DNA and nucleosome organization at the single-
nucleosome level. Second, sequencing approaches such as (Bell, Jukam, Teran, Risca, O. K.
Smith, Johnson, J. M. Skotheim, et al. 2018) have mapped RNA-DNA interactions, at the
population level. Third, recent imaging papers imaged both RNA and DNA in super-resolution
microscopy and found an anti-correlation between DNA-rich and RNA-rich regions (Hilbert et al.
2017; Miron et al. 2019).

Taken together, one key element is totally missing from these studies: the spatial distribution
of proteins. Several approaches could be undertaken to derive this map. A first one relies
on unspecific labeling of proteins followed by super-resolution fluorescence microscopy (see for
instance the approach in Rhee et al. 2013, that might be repurposed for fluorescence imaging
using streptavidin-labeled proteins as fluorescent probes). Another one relies on a seemingly
abandoned technique called electron-spectroscopic imaging (ESI) (Bazett-Jones et al. 2008). In
ESI, incident electrons that cross the specimen lose some energy when contacting some elements.
This energy loss is element-specific. This property was used to identify in the same cell RNA-rich,
DNA-rich and protein-rich regions. However, at that time, the resolution was too low to perform
an in-depth analysis. Since 2008, I have not found any development in this field. These two
approaches constitute two options to derive this map of the nucleus.

1.3.5 Uncovering the links between the structures in the nucleus

In other terms, many proteins with dramatically different diffusion properties coexist within a cell.
Some proteins do not appear to move much, sometimes for unknown reasons (e.g: histones; Figure
1.1a). Others move, but are channeled on a given structure of reduced dimensionality, such as depicted
in (e.g: nucleolus-associated proteins; Figure 1.1b). Multiple structures of reduced dimensionality can
coexist, and carry different types of proteins (chromatin-associated proteins; Figure 1.1c). Despite the
complex motion of some proteins, other proteins seem to diffuse without interacting with any of the
existing structures (e.g: c-Myc; Figure 1.1d), and other have uncharacterized behaviours (Figure 1.1e).

It is striking to realize that all these proteins actually live in the same volume, the same complex
nuclear space, despite the fact that they seem to experience a dramatically different environment
(Figure 1.1f). Single molecule measurements only reveal the dynamics of a protein at a time, without
providing information about the surrounding space (Figure 1.1g-h). Only a clear understanding of the
relationship between the diffusing molecules and the surrounding environment will allow to explain
their observe behaviour.
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Figure 1.1: A living forest, a metaphor of the nucleus. Images from the rich universe of Claude
Ponti.
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Chapter 2

Spot-On v2

The version of Spot-On presented in the (section 1.3) has been validated against a wide range of
conditions, both using realistic simulated data and against experimental data, making it a tool that
can be used by biologists to obtain trustable results.

Nonetheless, Spot-On still suffers some limitations, both in terms of available features and in terms
of choice of the fitting method. More specifically, the limitations and how I tried to overcome them
were as follow:

• Choice of the fitting algorithm: the fitting routine used in Spot-On (all versions) is not the right
one, from a mathematical standpoint. We thus explored alternative fitting routines (section 2.1).

• Choice of the model: although a multi-state, Brownian model is suitable for the study of many
diffusing proteins and protein complexes, most nuclear factors are known to exhibit a variable
degree of anomalous diffusion (see for instance Woringer and Darzacq 2018). We thus explored
how simple anomalous diffusion models could be implemented in Spot-On (section 2.2).

2.1 Improved fitting

2.1.1 Issues with least-squares fitting

In the published version of Spot-On, the mixture model is fitted to the empirical jump length dis-
tribution P̂ (r,∆τ) using a non-linear least squares routine. The parameters are optimized within a
given range specified by the user. In mathematical terms, Spot-On determines a set of parameters Sfit
(for instance Sfit = (Dfree, Dbound, p, σ)) by fitting a parametric model M(Sfit, Suser, r,∆τ), in which
Suser are user-provided parameters, such as the axial detection range ∆z. We denote the estimated
parameters by Ŝfit. Using least-squares, Spot-On computes Ŝfit ∈ Σfit as follows:

Ŝfit = arg min
S∈Σfit

||P̂ (r,∆τ)−M(Sfit, Suser, r,∆τ)||2,

where ||.||2 represents the `2 norm.
Nonlinear least-square optimization algorithms offer many benefits. The main one is speed. In-

deed, significant speed-up are obtained because several second-order methods have been implemented
(nickmayorov 2017). The second main advantage is that under a Gaussian model (the errors on the
estimate of P are normally distributed), then a least-square formulation of the problem is mathe-
matically equivalent to a maximum likelihood estimate, thus opening the way to derive well founded
statistical estimates, errors, etc.

In the case of Spot-On, the non-linear least-squares is performed on the jump-length distribution,
and the errors on the estimate of the jump-length distribution are not normally distributed (one cannot
write P̂ (r,∆τ) = P (r,∆τ)+ε, with ε normally distributed. As such, it is incorrect to assume that least-
squares optimization of the parameters when fitting a theoretical PDF on the empirical distribution of
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jump lengths will produce a result equivalent to a maximum likelihood estimate: distributions cannot
be compared using a `2 norm.

One solution to this problem would be to derive a maximum likelihood approach that uses the indi-
vidual jump lengths (and not its distribution as inputs). This approach seems relatively straightforward
but we did not pursue it.

2.1.2 The Kullback-Leibler divergence

Another approach consists into finding a better metric to compare empirical and theoretical distribu-
tions. Metrics suitable to compare distributions include the Bhattacharyya distance and the Kullback-
Leibler (KL) divergence. We decided to reframe our optimization problem in order to minimize the
KL divergence rather than the `2 norm between the empirical jump length distribution P̂ and the
model M . Now, ŜKLfit is defined as follows:

ŜKLfit = arg min
S∈Σfit

DKL

(
P̂ (r,∆τ)||M(Sfit, Suser, r,∆τ)

)
,

with theKL divergence, DKL(P ||Q), between two continuous distributions P and Q (with densities
p and q, resp.) defined as:

DKL(P ||Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx (2.1)

2.1.3 Comparing distributions using KL divergence

It is usually straightforward to compute DKL between two continuous distribution or between two
discrete distributions (using a discretized version of equation 2.1). However, in the Spot-On setting,
we derive a discretized version of the jump length distribution (a histogram whose binning is user-
specified) and want to minimize the distance with a continuous model M .

Several approaches were develop in order to perform such comparisons. One of the first approach
developed relied on performing a kernel density estimate of the discrete distribution to turn it into a
continuous one, and then to compute the continuous KL divergence. This approach is usually time
consuming. We decided to rely on a different approach described in (Pérez-Cruz 2008), in which a
convenient discretization is applied to the continuous distribution, allowing to compute the discrete
DKL. An implementation in the R language has been proposed.

2.1.4 Optimization

Once a metric, DKL has been chosen, one needs to implement an optimization routine. Indeed, the
Levenberg-Marquardt solver used in Spot-On only works to minimize `2 norms and is unsuitable to
KL divergence.

A natural approach to this optimization problem would be to use cross-entropy optimization Botev
et al. 2013, a Monte-Carlo, population-based optimization technique based on the KL divergence.
Cross-entropy optimization is particularly suited for solving difficult optimization problems, and might
be of high relevance when the number of parameters increases (for instance as additional diffusion states
are added). However, as most Monte-Carlo, population-based methods, cross-entropy optimization is
expected to be relatively slow, even in the most optimized implementations (Benham et al. 2015).

We thus decided to use the standard non-linear optimization routine provided in the Scipy package:
scipy.optimize.minimize, that uses the BFGS method (Broyden-Fletcher-Goldfarb-Shanno).

2.1.5 Results

A preliminary version has been released on the Spot-On development website (git repository). Prelim-
inary tests indicate that the method provides valid results, but an in-depth characterization is deeply
needed before this KL-based can be used by biologists.
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2.2 Anomalous diffusion

Spot-On provides fits of remarkable quality when applied to simulated data (section 1.3) and to in vitro
diffusion data (figure II.2). However, when moving inside living cells, one usually sees bigger deviations
from the theoretical model. Indeed, jump length displacement histograms of proteins diffusing inside
the nucleus are often imperfectly fitted using a 2-state model, because the immobile fraction seems to
expand a little bit. In the current version of Spot-On, this is usually solved by adding a third diffusion
state to the model, and fitting a 3-state model with two free states.

One can question the relevance of this approach, however. As of today, it is to our knowledge
unknown whether a simple non-Brownian diffusion model can fit the available data.

We thus undertook the following approach, in which we decided to first use simSPT to simulate
anomalous diffusion. In parallel, we performed a literature search in order to obtain the propagators
(theoretical jump length displacement distributions) for various anomalous diffusion models.

The project was motivated by Anders Hansen, and the literature search was performed jointly. We
present preliminary results in this section.

2.2.1 Simulation of anomalous diffusion using simSPT

We used simSPT (section 1.1) to simulate anomalous diffusion models and computed their empirical
jump length distribution using Spot-On, for various levels of anomalous diffusion. Figure 2.1 presents
how the simulated jump length distribution evolves under fractional Brownian motion as an example.

Figure 2.1: MSD (left) and jump length displacement histogram (right) of (a) normal Brownian
diffusion and (b) Fractional Brownian motion, with α=0.4.
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2.2.2 Derivation of the propagator for anomalous diffusion models

Spot-On relies on an analytical description of the propagator in order to perform a reasonably fast
fitting. It also relies on tabulated defocalization values that depend on the type of anomalous dif-
fusion model used. The propagators for the main diffusion models are as follows (Weigel et al.
2012,metzlerrestaurant2004):

• Brownian motion: P (r,∆τ) = 1√
4πDτ

e−r
2/4Dt

• Fractional Brownian motion: P (r,∆τ) = 1√
4πDα∆τα

e−r
2/4Dα∆τα

• Diffusion inside fractals: P (r,∆τ) =
dwΓ(df/2)

2π
df /2Γ(df/dw)

(
1

4DF∆τ

)df/dw
e
− rdw

4DF∆τ (O’Shaughnessy and

Procaccia 1985)

• CTRW: P (r,∆τ) ∼ c1∆τ−α/2ξ−(1−α)/(2−α)e−c2ξ
1/(1−α/2) with ξ = |r|/tα/2

These propagators are 1D propagators. In order to be used in Spot-On, one needs to (1) compute
the 2D propagator by performing a radial integration in (x, y) and (2) take into account localization
error, by convolving the resulting propagator by a Gaussian of standard deviation σ.

2.2.3 Conclusion

As of today, this new version of Spot-On, with anomalous diffusion, remains a work in progress. Several
steps need to be undertaken: (1) the implementation of the models in the least squares fitting routines.
(2) The derivation of new sets of defocalization correction coefficients through Monte Carlo simulations
and (3) the validation of these models using simulations and experimental data.
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Chapter 3

Taking the angles distribution into
account

We started in section 1.3 by characterizing diffusion by modeling the radially integrating propagator
using a Brownian diffusion model, and a mixture of Brownian motions. We validated this approach
using thorough comparisons with a wide range of realistic simulations and with experimental data.

In section IV.2, we proposed a refined characterization by proposing a method to incorporate non-
Brownian motion and a mixture of non-Brownian motion in the estimate, making Spot-On (in theory)
capable of inferring several types of motion and mixture thereof.

The current approach of Spot-On, however, suffers critical limitations: the estimated propagator is
memory-less: it does not take into account the correlation that might exist between translocations. As
such, Spot-On should not be seen as a replacement of analysis approaches based on auto-correlation
functions (that study the "memory" of the process), but rather as a complement.

We decided to develop an analytical approach in order to incorporate a second dimension in Spot-
On: the 2-translocation angular correlation, by computing the angle distribution between consecutive
translocations.

3.1 Rationale

The propagator, as computed in Spot-On and other tools, does not use all the information included
in SPT data. In particular, angular correlations between jumps are ignored in Spot-On. In biology,
few publications focus on angular distributions in a SPT setting (Bouzigues and Dahan 2007; Bhatia
et al. 2016). Angular distributions nonetheless carry crucial information about anomalous diffusion, as
detailed in (Burov et al. 2013) and used in (Izeddin, Récamier, et al. 2014; Anders S. Hansen, Amitai,
et al. 2018). Indeed, at constant localization error, how often a particle "backtracks" is indicative of
the type of motion. The computation of the distribution of angles between translocations provides
information is then an under-represented metric, and no null model of the the distribution of angles
exists under free diffusion.

Under free diffusion, the angle between successive translocations is isotropic. However, when non-
zero localization error is taken into account, one expects an angle distribution skewed towards "back-
ward" moves. After a short literature review, we realized that such analytical distribution did not
exist.

An estimate of the distribution of angles under a model of Brownian motion with localization error
can provide: (1) a more robust estimate of the localization error. (2) a more robust estimate of the
diffusion coefficient D and (3) a quantitative indicator of deviations from free diffusion.

Our work has connections with the fields of wrapped distributions and directional statistics (F.
Wang and Gelfand 2013; Alan Lee 2010). In particular the distribution of the dot product between two
unit vectors has been investigated (Craig 1936; Saw 1983; Nadarajah and Pogány 2016), and specific
families of angular distributions, such as wrapped normal distributions and von Mises distributions
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(F. Wang and Gelfand 2013; F. Wang and Gelfand 2014; Hernandez-Stumpfhauser, Breidt, and van
der Woerd 2017)

3.2 Theory

We first define the process we want to study. It corresponds to a null model of SPT data that we
currently acquire, namely it models a particle freely diffusing with a diffusion coefficient D, observed
under a given localization error σ at a frame rate ∆t. This process can be mathematically expressed
as a Brownian motion with noise Ξt:

Ξt =

∫ t

t′=0

√
2Ddt′dBt′ + σ2dGt,

with dBt and dGt two normal unit Brownian processes. We note that the localization error term
(starting with σ2) does not depend on the framerate: even for an immobile particle (D = 0), the
particle displays some apparent motion.

Consider three consecutive steps (X,Y, Z) of a 2D Brownian motion sampled at times ∆t, 2∆t, 3∆t),
that is, for a given time t, X = Ξt, Y = Ξt+∆t , Z = Ξt+2∆t. Following the properties of Brownian
motion, it follows:

Figure 3.1: Computing the distribution of angles between two consecutive jumps, U and V , on per-
formed between t and t+ ∆t and the second between t+ ∆t and t+ 2∆t.

X ∼ N (0, 2D∆t+ σ2) (3.1)

Y ∼ N (0, σ2) (3.2)

Z ∼ N (0, 2D∆t+ σ2) (3.3)

since the intervals [0,∆t] and [0, 2∆t] are distinct,
Let U = Y − X and V = Z − Y the two 2D displacement vectors. Consider the couple of 2D

random variables W = (U, V ):

W =

(
U
V

)
=


Ux
Uy
Vx
Vy

 , (3.4)

197



and let Σ its covariance matrix:

Σ =


1 0 ρ 0
0 1 0 ρ
ρ 0 1 0
0 ρ 0 1

(2D∆t+ 2σ2
)
, with ρ =

−4σ2

2D∆t+ 2σ2
(3.5)

Since the vector (Ux, Uy, Vx, Vy) is a Gaussian vector, its multi-dimensional density is given in
Cartesian coordinates by:

f cartW (ux, uy, ux, uy) =
1√

(2π)4|Σ|
e−

1
2
WTΣ−1W

From this general expression, we want to express the dependency of the density on the relative
angle between the vectors U and V . Let r1 and θ1 (resp. r2 and θ2) the parameters of the polar
decomposition of U (resp. V ) in the 2D plane:

w =


ux
uy
vx
vy

 =


r1 cos θ1

r1 sin θ1

r2 cos θ2

r2 sin θ2

 (3.6)

and compute f cartW (w) = f cartW (r1 cos(θ1), r1 sin(θ1), r2 cos(θ2), r2 sin(θ2)). One first derives:

Σ−1 =


1

1−ρ2 0 ρ
ρ2−1

0

0 1
1−ρ2 0 ρ

ρ2−1
ρ

ρ2−1
0 1

1−ρ2 0

0 ρ
ρ2−1

0 1
1−ρ2

 , (3.7)

and |Σ| = 1− 2ρ2 + ρ4. One can then express: wTΣ−1w:

wTΣ−1w =
1

1− ρ2

(
r2

1 + r2
2 − 2ρr1r2 cos(θ1 − θ2)

)
One notes that the expression only depends on the relative angle between U and V (θ1− θ2). This

expression naturally leads to the distribution of angles, that we express as a function of (r1, r2, θ1−θ2):

fpolarW (r1, r2, θ1 − θ2) =
1√

(2π)4(1− 2ρ2 + ρ4)
exp

[
− 1

2(1− ρ2)

(
r2

1 + r2
2 − 2ρr1r2 cos(θ1 − θ2)

)]

3.3 Detailed calculations

3.3.1 Computation of the density

Let (x, y, z, t) as a simplified notation: wT =
(
r1 cos θ1, r1 sin θ1, r2 cosθ2, r2 sin θ2

)T
= (x, y, z, t)T and

compute wTΣ−1w. We remind that:

Σ−1 =
1

1− ρ2


1 0 −ρ 0
0 1 0 −ρ
−ρ 0 1 0
0 −ρ 0 1

 (3.8)

It then follows:
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wTΣ−1w =
1

1− ρ2
(x, y, z, t) (x− ρz, y − ρt, z − ρx, t− ρy)T (3.9)

=
1

1− ρ2
(x(x− ρz) + y(y − ρt) + z(z − ρx) + t(t− ρy)) (3.10)

=
1

1− ρ2

(
x2 + y2 + z2 + t2 − ρ(xz + yt+ zx+ ty)

)
(3.11)

Reverting to original notations, one then notices that:{
x2 + y2 = (r1 cos θ1)2 + (r1 sin θ1)2 = r2

1

z2 + t2 = (r2 cos θ2)2 + (r2 sin θ2)2 = r2
2

(3.12)

leading to:

wTΣw =
1

1− ρ2

(
r2

1 + r2
2 − 2ρ(xz + yt)

)
(3.13)

=
1

1− ρ2

(
r2

1 + r2
2 − 2ρ(r1r2 cos θ1 cos θ2 + r1r2 sin θ1 sin θ2)

)
(3.14)

=
1

1− ρ2

(
r2

1 + r2
2 − 2ρr1r2 cos(θ1 − θ2)

)
. (3.15)

3.3.2 Case ρ = 0

The case ρ = 0 arises when there is no localization error σ = 0. In that case, the angles distribution
density reduces to:

fpolarW (r1, r2, θ1 − θ2|ρ = 0) =
1

2π
exp

[
−r

2
1 + r2

2

2

]

3.4 Conclusion

This result provides an analytical expression for the distribution of angles between two consecutive
jumps undergoing Brownian motion, under a non-zero localization error.

Further steps include to perform simulations to determine how quickly an estimator based on the
distribution of angles can be estimated, and to develop fitting routines.
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Chapter 4

Compressed sensing

4.1 Introduction

In parallel of our work on SPT, we developed another imaging approach, based on the technique of
compressed sensing. Indeed, many objects need to be imaged in 3D at a fast rate, and often the amount
of light needed to perform such acquisitions causes significant photodamage/phototoxicity.

In order to circumvent this issue, we proposed an imaging scheme that assumes some characteristics
of the image (the type of observed sample is known) in order to acquire less information. The images
are acquired at high speed using a so-called "compressed" imaging scheme and decompressed using
sparse reconstruction algorithms, with the knowledge of the type of object to be observed.

4.2 Publication
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planes faces harsh trade-offs between acquisition time, light exposure, and signal-to-noise. We
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intensity during axial stage sweeping and can be adapted to fluorescence microscopes without
hardware modification. We describe implementations on a lattice light sheet microscope and
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1. Introduction

Imaging fluorescently labeled biological structures with high spatio-temporal resolution requires
judicious compromises between the conflicting goals of achieving high signal-to-noise ratio
(SNR) and temporal resolution while keeping the excitation power low to minimize photobleach-
ing and phototoxicity. For example, to obtain a higher SNR, one can either increase the exposure
time, thereby reducing imaging speed, or increase the illumination power, thereby increasing
photodamage. These tradeoffs are further exacerbated in 3D imaging, which is often required
in biological applications, such as calcium imaging in neurons or transient mitotic events in a
developing embryo. Traditionally, 3D microscopy images are obtained by sequentially acquiring
2D images of individual focal planes, where axial spacing is dictated by the Nyquist sampling
criterion to achieve optimal spatial resolution in all dimensions. As a consequence, hundreds or
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thousands of planes are needed to image samples 10-1,000 µm thick, dramatically increasing
acquisition time and light exposure. Although light sheet illumination considerably reduces
photodamage and allows prolonged imaging of living cells in 3D, the required hardware systems
are often costly and scarce, and the acquisition time for each volume still remains constrained by
the Nyquist criterion [1–3].

The field of compressed sensing, introduced over a decade ago, offers an avenue to overcome
these limitations [4–7]. Compressed sensing leverages the fact that natural images are highly
non-random and harbour intrinsic redundancies, which can be formulated as sparsity in an
appropriate linear basis [8]. This sparsity can be exploited in order to reconstruct images from
fewer measurements than specified by the Nyquist criterion, provided that measurements are
taken in an appropriate manner. Compressed sensing has been successfully applied in diverse
imaging applications in fields including astronomy [9], magnetic resonance imaging [10], lensless
imaging [11, 12] and ultrafast imaging [13, 14], where it has enabled a considerable increase in
acquisition speeds.

In biological microscopy, compressed sensing should in principle enable similar benefits
in reducing acquisition time and light exposure without compromising SNR [15]. However,
despite several proof of concepts, fluorescence microscopy has benefited relatively little from
compressed sensing approaches in practice. One reason for this is that most compressed sensing
strategies proposed to date require considerable modifications of the optical system, an important
impediment for application on routinely used microscopes [16–21]. We note however, that a
compressed sensing scheme without modification of the light path was recently used in confocal
laser scanning microscopy to achieve a 10-15 fold speedup in 2D imaging [22].

Here we introduce a compressed sensing scheme for 3D fluorescence imaging that relies on
compression along the optical axis (z axis) and is applicable to a large range of fluorescence
modalities without modification of the optical path. We show that for a given SNR, our method
can reconstruct a z stack from a 2-10 times faster acquisition than traditional plane-by-plane
imaging with Nyquist sampling. For dynamic microscopy of live samples, this approach opens
the door to either lower excitation power and photodamage (at constant acquisition speed and
SNR) or to higher temporal resolution (at constant excitation power and SNR).

In Section 2, we first describe our method conceptually, starting with a brief reminder of the
basics of compressed sensing. In Section 3, we present results on simulations. Implementation on
a lattice light sheet microscope and a conventional epifluorescence microscope are demonstrated
in Sections 4 and 5 respectively. Sections 6 and 7 provide a brief discussion and conclusion.

2. Method

2.1. Basics of compressed sensing

Compressed sensing is based on the realization that under certain (broad) conditions, natural
signals such as images can be reconstructed from a smaller number of measurements than
prescribed by Nyquist sampling. If X is a (vectorized) image of size N × 1 and A a known
M × N matrix that transforms X into a signal Y = AX of smaller size M × 1 (M < N), then
the goal is to recover X (or a good approximation thereof) from Y . The matrix A, which is
independent of the data, specifies how the N pixels of the image are scrambled into the M
"compressed" measurements and is called the sensing (or measurement) matrix.

In order to recover X from Y , compressed sensing reconstruction algorithms exploit the
structural redundancy of images. In the simplest setting, it is assumed that the image X is
sparse, i.e. that the number of non-zero values, K = | |X | |`0 is small (K << N), or that X can
be represented sparsely in a suitable basis, i.e. that X = Ψα, where Ψ is an invertible (e.g.
orthonormal) N × N matrix and α is a sparse vector of size N × 1. Note that this setting can
easily be adapted to incorporate a redundant dictionary Ψ of size W × N with W > N instead of
an orthogonal basis, allowing for improved reconstructions [23]. The reconstruction algorithms
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aim to determine the sparsest representation α consistent with the data, i.e. such that X = AΨα.
While minimizing the `0 norm to enforce sparsity is NP-hard and computationally unfeasible,
minimizing the `1 norm (| |α | |`1 = ΣN

i=1 |αi |) leads to computationally tractable optimization
algorithms that recover the exact solution.

In practice, images are noisy and only approximately sparse, therefore compressed sensing
algorithms seek to recover approximations of X by determining the sparsest representation α
such that Y ≈ AΨα. For additive gaussian noise, this is typically done by solving the optimization
problem : α∗ = arg minα F (α) for objective functions F (α) such as:

F (α) = | |α | |`1 + λ | |A¯α − Y | |2`2
(1)

where `2 is the Euclidian norm and λ a Lagrange multiplier.
Under suitable conditions for A, such as the restricted isometry property (which is fulfilled

in particular for random Gaussian matrices), it was shown that a good approximation of the N
values in α can be recovered from a number of compressed measurements M = O (

K log(N/K )
)
,

which can be much smaller than N [6,24–26]. The reconstructed image is then simply obtained as
X ∗ = Ψα∗. For images corrupted by Poisson noise, the appropriate objective function becomes:

F (α) = | |α | |`1 + λL(α) (2)

and its minimization is subject to the positivity constraint: Ψα ≥ 0, where L(α) designates the
negative Poisson log-likelihood L(α) = 1TAΨα − ΣM

i=1Yi log
(
eTi AΨα

)
, 1 is a M × 1 vector

of ones, ei is the canonical basis vector i and the T superscript denotes transposition [27]. A
variety of efficient algorithms for compressed sensing recovery have been proposed, mostly for
Gaussian noise, but also for Poisson noise [27, 28]. See [7, 8, 29] for in-depth introductions to
sparsity and compressed sensing.

2.2. Axially compressed imaging scheme

The traditional way to image a 3D volume is to successively scan the focal plane of the microscope
along the z axis in a step-wise fashion, with spacing ∆z, and acquire a 2D image at each z = k∆z
position (k = 1 . . . N). We hereafter refer to this imaging scheme as plane-by-plane acquisition,
see Fig. 1(a). In this scheme, the focal plane position is given by:

z f (t) = E
( t
∆t

)
× ∆z

where ∆t is the camera exposure time and E(x) is the next smallest integer to x. The spacing ∆z
is usually dictated by the point spread function (PSF) width along the z-axis (Nyquist sampling).
In plane-by-plane imaging, the k-th camera frame, Fp .−by−p .

k
, k = 1 . . . N carries information

from the z = k∆z-plane only and is given by:

Fp .−by−p .
k

(x , y) = L0 × ∆t × (I ∗ PSF)(x , y, k∆z) for k = 1 . . . N (3)

where I (x , y, z) designates the 3D distribution of fluorophores in the sample, L0 is the laser
intensity, PSF is the 3D PSF of the microscope and ∗ stands for convolution. In this setting, the
acquisition time for a full 3D z-stack with N focal planes is N∆t and the light dose received by
the sample is N L0∆t.

In the compressed sensing imaging scheme proposed here, the axial dimension of a 3D
stack is acquired in a compressed fashion, such that the k-th acquired frame no longer contains
information from the z = k∆z position only, but is a linear combination of information from
multiple z-planes:
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Fcomp
k

(x , y) = L0×∆t×
∫ (N−1)∆z

0
Ak (z)× (I∗PSF)(x , y, z)dz for k = 1 . . . M < N (4)

where Ak (z) is a function that describes how the image intensity profile along the z-axis is
combined into the single frame k. Note that this scheme is compressed in the sense that it
requires M < N frames. This expression can be approximated and discretized as:

Fcomp
k

(x , y) = L0 × ∆t ×
i=N∑

i=1

Ak ,i × (I ∗ PSF)(x , y, i∆z) for k = 1 . . . M < N (5)

In Eq. 5 above, the matrix A is the discrete counterpart of Ak (z) (k = 1 . . . M) and describes
how the image intensity from each of the N z-planes of the stack is combined into a single value.
Note that in the case where the measurement matrix is the identity matrix (Ak ,i = δ(i, k) with
N = M and δ the Kronecker symbol), this scheme reduces to the plane-by-plane imaging scheme
of Eq. 3, see Fig. 1(b).

The connection with the compressed sensing setting outlined in Section 2.1 is immediate. For
any fixed (x , y) location, Yk = Fcomp

k
(x , y) (k = 1 . . . M) defines a M × 1 vector Y , that is a set

of compressed measurements obeying Y = AX , where X = Ĩ is the N × 1 vector corresponding
to the intensity profile along the z axis convolved with the PSF and sampled every ∆z, i.e.:
Ĩi = (I ∗ PSF)(x , y, i∆z) for i = 1 . . . N . Thus, the matrix formulation of compressed sensing
for a given (x , y) location is: Fcomp = AĨ. Applying the results mentioned in Section 2.1, under
suitable conditions, approximate recovery of Ĩ should therefore be possible from the compressed
measurements Fcomp .

2.3. Physical implementation

In practice, our microscopy system achieves axial compression in the following way. During each
camera exposure, the stage is swept at constant speed across the entire z-range of the volume to
be imaged, see Fig. 1(c):

z f (t) = N∆z
( t
∆t
− E

( t
∆t

))

In this way, each pixel (x , y) of the camera records an integration of the emitted fluorescence
along the z axis. During this axial sweep, the excitation laser intensity at the sample, L(t) =

L0T (t) is modulated over time, such that:

Fcomp
k

(x , y) = L0

∫ k∆t

(k−1)∆t
T (t) × (I ∗ PSF)(x , y, z f (t)) dt

=
∆t

N∆z
L0

∫ (N−1)∆z

0
T (z) × (I ∗ PSF)(x , y, z) dz

is an average of the fluorescence distribution along z weighted by the modulated excitation light
intensity. In the discrete approximation, we have:

Fcomp
k

(x , y) = L0 × ∆t × 1
N

i=N∑

i=1

Tk ,i × (I ∗ PSF)(x , y, i∆z) (6)

where L0 × Tk ,i is the laser power applied during frame k when the focal plane is at z = i∆z.
This modulation obeys a user-defined pattern specified by the k-th row of the measurement
matrix A, as in Eq. 5, see Fig. 1(c), i.e. we set T = NA.
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This procedure is repeated for all M rows of the measurement matrix, resulting in M com-
pressed 2D images Fcomp

1 , . . . Fcomp
M . For a given constant exposure time ∆t, the acquisition

speedup compared to plane-by-plane imaging is thus simply given by the ratio: κ = N/M . Figure
1(c) jointly shows the z position of the stage and the illumination intensity for a measurement
matrix A consisting of a truncated Fourier basis shown in Fig. 1(d).

A major advantage of this scheme is that it can be implemented without modification of
the light path and simply requires a synchronization of two microscope components: (1) the
z-piezo, which allows precise control of the axial focus (sample or objective) and (2) the AOTF
(acousto-optic tunable filter) which allows to precisely and rapidly modulate the excitation light
intensity transmitted to the sample (T). Instead of using an AOTF, it is in principle possible to
modulate the intensity of the light source directly.

Note, that since the optical coding is performed by light modulation, this setup leaves absolute
freedom of choice for the measurement matrix A, as long as its values are all positive. For
example, random sensing matrices, which allow compressed sensing reconstruction for images
sparse in any transform basis Ψ (universality property), can be implemented in a straightforward
manner. In this paper, we choose a Fourier matrix, which is an optimal sensing matrix for images
that are sparse in the direct spatial domain, taking the M first rows of the matrix, from low
to high frequencies, see Fig. 1(d). Importantly, we linearly scale the matrix A such that all its
values fall between 0 and 1/N . This ensures that during each frame k, the sample receives a light
dose of L0∆tN−1 ∑N

i=1 Tk ,i = L0∆t
∑N

i=1 Ak ,i ≤ L0∆tN 1
N = L0∆t, i.e. less or equal to the dose

received in plane-by-plane imaging. Therefore, the total light dose received by the sample during
a compressed imaging acquisition with M frames is at least κ = N/M times less than in the
plane-by-plane acquisition, where κ is the compression ratio with respect to the plane-by-plane,
Nyquist sampling.

2.4. Sparsity prior and PSF model

In this paper, we assume for simplicity that the 3D distribution of fluorescent structures is sparse
in the spatial domain, but we take into account the 3D blurring caused by diffraction. This is
done by incorporating a model of the 3D PSF into the W × N redundant dictionary Ψ, such
that the 3D image can be modeled as: X = Ψα, where α represents the 3D distribution of
fluorescent structures and is assumed to be (approximately) sparse. In practice, we first measure
the empirical PSF of the microscope using a conventional plane-by-plane z-stack and derive
one cropped 2D image in the (x , z) plane. We then build the dictionary Ψ: each element of the
dictionary is defined as a translation in the (x , z) plane of the empirical PSF within a given 2D
reconstruction window. Thus, the dictionary is a collection of PSFs at various locations. Before
reconstruction, both the compressed stacked and the elements of the dictionary are flattened into
1D vectors. Therefore, although our scheme performs compression only along the z axis, the
reconstruction algorithm incorporates a 2D sparsity prior [30].

2.5. Numerical implementation

The reconstructions are performed using a custom port in Python of the previously published
SPIRAL-TAP algorithm [27], which solves the optimization problems (1) or (2) above. Our
port is publicly available, together with sample data and analysis scripts (see Section Software
and data availability).

In practice, performing a reconstruction on a full 3D (or even 2D) image is not computationally
tractable. Since we use a PSF model with a restricted spatial support, we assume that two (x , y)
positions located farther apart than the characteristic width of the PSF are independent and
reconstruct them in parallel on a computing cluster. We then calculate a single 2D image by
averaging small overlapping chunks, and stack them together to obtain a 3D image.
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Fig. 1. Principle of the proposed 3D compressed imaging method compared to traditional
3D plane-by-plane imaging. (a) Plane-by-plane imaging: for each camera frame (green
curve indicates if the shutter is open or closed), one plane of the sample (red curve indicates
z position) is illuminated at a constant laser intensity (blue curve shows transmission
percentage of the excitation light source). The process is repeated for each plane (N = 101
times) to acquire a z-stack. Finally, the full imaging sequence is repeated n times to acquire
a 4D movie for a total of N ∗ n frames. The blue and red dots represent the illumination
intensity and stage position at each time point respectively. This imaging scheme can be
represented as the application of a square diagonal measurement matrix A as shown in
(b): for each camera frame (row), only one z plane is illuminated (column). (c) Axially
compressed imaging: the stage continually sweeps through the entire axial range while the
illumination is modulated to create a specific axial light pattern. In this scheme, multiple
planes of the sample are illuminated during a single camera exposure frame. This process
is repeated M = 10 < N times with different light patterns, thus performing an opto-
mechanical implementation of a compressed measurement matrix, as shown in (d). Finally,
the full imaging sequence is repeated n times to acquire a 4D dataset with a total of M*n
(10*101) frames.
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3. Compressed imaging on simulated images

3.1. Generation of test images and metrics

We first tested our compressed sensing approach on simulated images. For this purpose, we
generated a series of 100 synthetic images, termed ground truth (GT). The images contained
features at different scales and sparsity levels (see Fig. 2(a, top)) along the compression axis (z
axis). The images are scaled so that the pixel of highest intensity had a value of Imax = 10, 000
counts. For simplicity, the effects of diffraction blurring is ignored here.

Next, to simulate an acquisition in realistic conditions in the conventional plane-by-plane
scheme, we corrupted the ground truth images GT using Poisson noise (P) and additive half-
normal noise (|N |). This resulted in noisy reference images (NRSNR) for different SNRs (see
below): NRSNR = P (GT) + |N |(σ√π/2) where σ corresponds to the expected number of
background photons to achieve a given SNR, that is: σ = Imax/SN R. We also simulated images
acquired by reducing the exposure time per frame by a factor of ten, allowing us to compare
the plane-by-plane and the compressed acquisition scheme at a constant acquisition time per
z-stack. To do so, we assumed that the SNR scales with the exposure time ∆t as SN R ∝ √∆t
and simulated plane-by-plane images with the corresponding SNR. We denote those images as
NR10x

SNR.
In parallel, we computed compressed versions of the same ground truth image by applying the

measurement matrix A to GT (for different compression ratios κ, i.e. varying numbers of rows
of A), and subsequently applied Poisson and additive Gaussian noise as for the images in the
plane-by-plane acquisition (Fcomp = P

(
AĨ

)
+ |N |(σ√π/2)).

Then, we computed reconstructions from these noisy compressed images, and denote the
resulting 3D images as CSκSNR. The reconstructions were performed without a PSF model, thus
assuming sparsity of the reconstructed image and using Ψ = IN. The SNR was computed as the
mean of the non-zero pixels of the ground truth image divided by the mean of the additive noise,
see Fig. 2(b).

Finally, we quantified reconstruction quality by computing the mean square error
MSE(GT,CSκSNR) between the ground truth images GT and the compressed sensing reconstruc-
tions CSκSNR. For comparison, we also computed the MSE between the ground truth images and
the plane-by-plane acquisition image obtained for the same SNR, MSE(GT,NRSNR) and with
a ten times lower exposure time (MSE(GT,NR10x

SNR)).

3.2. Results on simulated images

We first compare reconstructions for a fixed SNR=20 and increasing compression ratios κ, see
Fig. 2(b). At low compression ratios (1:2, corresponding to a two fold speedup compared to the
plane-by-plane acquisition), all features of the simulated images are accurately reconstructed,
including both high and low frequency details. Minor artifacts are visible in the regions of
moderate sparsity (arrow x1). As the compression ratio increases, fine features are progressively
lost (arrow x2), whereas larger objects remain visible at their correct location (arrows x1 and
x3). At high compression ratios, the reconstructed intensity significantly diverges from the
ground truth. Nevertheless, this first example illustrates that object positions and shapes can be
approximately reconstructed from compressed images with high compression ratios, even when
the ground truth images exhibit quite variable levels of sparsity.

We then evaluate the influence of different noise levels on reconstruction quality by computing
the MSE for SNR ranging from 1 to 80 and for compression ratios ranging from 1:2 to 1:30,
see Fig. 2(c). At high SNR, the noisy plane-by-plane reference (NRSNR) exhibits a much lower
MSE than the compressed sensing reconstruction. However, as mentioned in the introduction,
compressed sensing is most useful for conditions in which photodamage and/or acquisition
speed are limiting, i.e. for low SNR images. Figure 2(c) shows that for low SNR (≤ 15), the
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MSE of the noisy reference and the reconstruction become close. Furthermore, in this SNR
range, the reconstruction from a 1:10 compression ratio shows a significantly lower MSE than
a plane-by-plane acquisition performed in the same overall time, see the dash-dotted line in
2(c). This suggests that our compressed sensing approach can recover images of similar quality
as plane-by-plane imaging, but with a considerable reduction of acquisition time and light
exposure, and with a higher quality than simply decreasing the exposure time in the traditional
plane-by-plane-mode. Equivalently, using the same acquisition time and light exposure as in
plane-by-plane imaging, compressed imaging enables reconstructions of higher quality images
as measured by the MSE metric.

We note that the reconstructions from a higher compression ratio tend to have a lower MSE
than the ones from a higher compression ratio, a result that does not match the visual quality of
images shown in Fig. 2(b).This is due to the smoothing (loss of high frequency content) that is
observed in the higher compression reconstructions.

Thus, our simulation results suggest that axially compressed sensing acquisition might be a
worthwhile alternative to plane-by-plane imaging for faster and less phototoxic 3D microscopy.

4. Compressed lattice light sheet imaging

4.1. Lattice light sheet implementation

Having demonstrated our technique on simulated images, we implemented our compressed
sensing scheme on a lattice light sheet microscope (LLSM). In a light sheet microscope [31], one
objective is used to produce a very thin sheet of light that illuminates the sample at a 90◦ angle
with the axis of another objective used for detection. Due to its excellent axial resolution, a lattice
light sheet microscope is an ideal candidate to implement our compressed sensing scheme.

In LLSM, the focus is adjusted by moving the light sheet (using a scanning galvanometer mir-
ror) and the focus of the 20x/1.1 NA water immersion observation objective Nikon MRD77220
(which is mounted on a piezo stage) in a synchronized manner across the sample, see Fig. 3(a).
For the compressed sensing acquisitions, we modified the software generating the FPGA control
command (Coleman Technologies) in order to synchronize the motion of the sheet and the
observation objective with a custom light modulation produced by the AOTF (AOTFnC-400-
650-TN, AA Optoelectronics) during a single camera exposure. Our modified software also
allows to load a predefined measurement matrix A and to set exposure parameters.

For the experiments reported below, we performed two sets of acquisitions: (i) one plane-by-
plane acquisition for reference, and (ii) one compressed sensing acquisition. The plane-by-plane
acquisition was performed by setting the measurement matrix A equal to the identity matrix
in the acquisition software (A = IN) (Fig. 1(b)), in order to facilitate comparisons with the
compressed imaging scheme and acquiring a z-stack with 101 frames at a fixed exposure time
of ∆t =100 ms or 200 ms depending on the sample (see below), corresponding to a SNR of
the reference image of ∼ 10-15. For the compressed sensing acquisition, we used a Fourier
measurement matrix, depicted in Fig. 1(d), with the appropriate scaling (see Section 2.3) to
ensure that the light dose delivered to the sample for each camera exposure was equal to or
lower than in the plane-by-plane acquisition. We acquired 50 frames Fcomp

1 , . . . Fcomp
50 with

the same exposure time ∆t, i.e. corresponding to a compression ratio of 1:2. To analyze higher
compression ratios, we simply considered subsets of these frames Fcomp

1 , Fcomp
2 . . . Fcomp

M ,
with M < 50. The highest compression ratio, 1:50, was obtained by keeping only the two first
compressed frames Fcomp

1 and Fcomp
2 . Varying the compression ratio in this manner allowed us

to assess the minimum number of measurements required to obtain an acceptable reconstruction
quality.
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Fig. 2. Simulations comparing the compressed sensing scheme with the traditional plane-by-
plane scheme under various compression ratios and SNR. (a). Principle of the simulation:
from a generated ground truth image (GT) and a specified SNR, (left) a noisy reference
(NRSNR) is generated by adding Poisson and Gaussian noise to the ground truth. In parallel
(right), the ground truth is compressed (along the z axis) with a compression ratio κ and an
equivalent amount of noise is added at the same time as the compression (see main text for
details). The compressed images are further decompressed (image CSκSNR) and the mean
square error (MSE) is computed with respect to the ground truth. (b). Examples of simulated
images in the (x , z) plane. From top to bottom: (plane-by-plane) GT, (1:2) to (1:20) CSκSNR
image reconstructed at a SNR of 20 and with a compression ratio of 1:2 to 1:20. The blue
arrows represent lines of low sparsity, high sparsity and medium sparsity (respectively x1,
x2 and x3). (c). quality of the reconstruction (assessed by the MSE with respect to GT) for
various SNR and compression-ratios. The dashed line is the MSE of the noisy reference
NRSNR with respect to the ground truth GT. The dash-dotted line is the MSE of the noisy
reference acquired with a ten times lower exposure time NR10x

SNR. Inset: close-up of the low
SNR region (SNR=1-10).
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4.2. Results on fluorescent beads

We first imaged fluorescent beads (Tetraspeck 100 nm beads) on a glass coverslip illuminated
with a 488 nm laser. The exposure time for a single frame was set to ∆t = 100 ms and the stage
was scanned over a 20 µm range (i.e. ∆z = 0.2µm).

Figure 3(c) compares a 3D image of two fluorescent beads obtained through plane-by-plane
imaging to 3D images reconstructed from the compressed acquisition for increasing compression
ratios κ (from 1:2 to 1:50). It is apparent that qualitatively, the bead signal is reconstructed in
the correct position for all compression ratios, including the highest (1:50), which corresponds
to only 2 frames (instead of 101 in the plane-by-plane acquisition). As the compression ratio is
increased from 1:2 to 1:50, the reconstructed images of the two beads (i.e. PSFs) progressively
deteriorate and became significantly distorted for compression ratios ≥ 1:20. However, up to
a compression ratio of 1:10, all the beads and the fine features of the PSF shape are properly
and accurately reproduced, see Fig. 3(b). This is also apparent in the line profiles in Fig. 3(d).
Thus, this experiment illustrates that high quality reconstruction of 3D images is possible in
compressed imaging using 1s of total acquisition time, compared to 10s in the plane-by-plane
imaging scheme, thereby representing a 10 fold speedup.

4.3. Results on fixed cells

Encouraged by these results on beads, we proceeded to imaging fixed cells. Mouse embryonic
stem cells (mESCs) were seeded on glass coverslips and fixed in 4% paraformaldehyde (PFA).
The cells were then stained for actin with a fluorescently labeled probe (phalloidin-RFP) and
imaged in an oxygen-scavenging medium. The camera exposure time was set to ∆t = 200 ms
and the z scanning range to 20 µm (∆z = 0.2µm).

Results are shown in Fig. 4(a), where the 3D reconstruction of a sample imaged with 1:5
compression (right) is compared to the plane-by-plane acquisition (left). It is apparent that in
both lateral (x , z) and axial (x , y) sections, fine and large details are successfully reconstructed.
Although some high frequency details are lost in the (x , z) plane, most features are faithfully
reproduced. This observation is further confirmed by the maximum intensity projection of the
reconstructed stacks at various compression ratios, see Fig. 4(b). For compression ratios up
to 1:5, the reconstructions show intensity profiles very similar to those of the plane-by-plane
reference image. At higher compression ratios, however, significant artifacts become visible
along the z axis (profiles in Fig. 4(a) and 4(b) bottom). Artifact-free reconstructions with higher
compression ratios might be possible using a number of possible improvements (see Discussion).
Nevertheless, these results already indicate that our compressed sensing approach is a viable
method to achieve substantial reductions of acquisition time (and light exposure) for 3D imaging
of biological samples.

5. Compressed epifluorescence microscopy

5.1. Implementation

We also implemented our compressed sensing scheme on a standard epifluorescence microscope,
an almost ubiquitous instrument in cell biology labs. Since our imaging strategy relies only on
the synchronization of the stage position and the light modulation, it is very versatile and suitable
for a wide range of microscopes.

An epifluorescence microscope (Nikon Eclipse TI) equipped with an AOTF (AOTFnC-400-
650-TN, AA Optoelectronics) and a z piezo stage (Nano-ZL 500, Mad City Labs) is controlled
using an Arduino microcontroller (Genuino Uno) to synchronize the AOTF and the stage through
their analog input, based on the camera fire signal, see Fig. 5(a).

The microscope was controlled using MicroManager [32], and custom firmware was written
for the Arduino, allowing for a software switch between plane-by-plane and compressed sensing
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Fig. 3. Compressed imaging reconstructions of fluorescent beads acquired with a lattice 
light sheet microscope. (a). Principle of a lattice light sheet microscope: two objectives at a 
90◦angle are used to observe the sample. The light sheet is generated through a spatial light 
modulator (SLM) and associated optics. The focus is adjusted by a coordinated move of 
the z piezo (that translates the observation objective) and of the z galvo (that translates the 
light sheet). Synchronization is achieved by a FPGA (Field-Programmable Gate Array). (b). 
Sample reconstructions (compressed) in the (x , z) plane from a 1:10 compressed acquisition 
and the corresponding acquisition in the plane-by-plane imaging scheme for two y positions 
(termed position 1 and position 2). (c). Compressed imaging sample reconstructions at 
increasing compression ratios (from 1:2 to 1:50) compared to the plane-by-plane scheme 
(top). For each reconstruction, a close-up of the PSF is displayed (PSF column) and the 2D 
frequency content of the PSF is displayed next to the PSF (FFT column). The PSF shown 
in red is the typical response of the LLSM whereas the shape of the yellow PSF is likely 
due to a defect in the bead. (d). Line profile across the two highlighted PSFs (in yellow 
and red, respectively left and right). top Close-up along the x axis, bottom close-up along 
the z axis. The colors correspond to different compression ratios and the dotted line to the 
plane-by-plane reference. Horizontal axis in µm. A field of view in the (x , z) plane is 50x20 
µm (512x101 px). A full 3D reconstructions is provided in blue)Visualization 1.
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Fig. 4. Compressed imaging reconstruction of phalloidin-RFP-stained, fixed mouse em-
bryonic stem cells (mESCs) acquired with a lattice light sheet microscope. (a). Example 
reconstruction from a 5 fold compression ratio (right) and the corresponding plane-by-plane 
reference acquisition (left) (1., top in the (x , y) plane and (2., middle) in the (x , z) plane. 
Dotted lines indicate the location of the line profiles presented in (panel 3., bottom) (left) 
profile along the x  axis (yellow dotted line of panel 2.) for increasing compression ratios.
(right) profile along the z axis (red dotted line of panel 3.) the curves are the average over 3 
planes in the y dimension. (b). Maximum intensity projection in the (x , y) plane (1., left) 
and in the (x , z) plane (2., right) of the plane-by-plane stack (top) and reconstructed stack 
at increasing compression ratios (two bottom pictures). The orange dotted line shows the 
location of the line profile displayed in panel 3., bottom: line profile of the reconstruction 
at increasing compression ratios (dotted line) compare to the plane-by-plane reference 
(continuous line). A field of view in the (x , z ) plane is 25x20 µm (256x101 px) and a field 
of view in the (x , y) plane is 25x25 µm (256x256 px). A full 3D reconstructions is provided 
in blue)Visualization 2.

acquisition. In practice, the measurement matrix A is first loaded to the Arduino, then the focus
is adjusted in the plane-by-plane imaging mode and an acquisition sequence is set using a custom
MicroManager plugin. Finally, the Arduino is switched to the compressed sensing mode and the
images are acquired and handled using the usual MicroManager logic.

5.2. Results on fluorescent beads

We imaged fluorescent beads on a glass coverslip with an axial range of ∼ 100 µm with a 60x/1.3
NA oil immersion objective, an exposure time of ∆t = 200 ms illuminated with 561 nm laser,
leading to an average SNR of 15. Results are shown in Fig. 5(b)–Fig. 5(d) for varying compression
ratios κ. It is apparent from Fig. 5(c) that the reconstructed images qualitatively recover the
beads position accurately for compression ratios up to 1:10. Interestingly, the reconstructed
images display a decreased level of background noise, revealing the PSF shape of out-of-plane
beads (i.e. beads in another y = constant plane) that are not visible in the noisy, plane-by-
plane imaging reference, see Fig. 4(b). Although the location of the PSF in the reconstructed
image is consistent with the plane-by-plane reference depicted in Fig. 4(d), the PSF in the
latter is significantly sharper than in the reconstructed image. This might be due either to an
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insufficient synchronization of the AOTF with the stage or to an inaccurate PSF model used for
the reconstruction. For higher compression ratios (≥ 1:20), the PSF is no longer well localized in
z.

These results indicate that our compressed sensing approach can be successfully applied
to an epifluorescence setup and achieve roughly ten-fold compression ratios. Given the large
availability of epifluorescence microscopes, this shows that the benefits of our compressed
imaging approach can be made widely accessible with little effort.
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Fig. 5. Compressed imaging reconstructions of fluorescent beads acquired with an epifluores-
cence microscope. (a). Principle of the epifluorescence microscope: both the AOTF and the 
motorized stage in z are synchronized by hardware (Arduino). (b). Example reconstructions 
(compressed) in the (x , z) plane from a 1:10 compressed acquisition and the corresponding 
acquisition in the traditional imaging scheme (plane-by-plane) for two y positions (termed 
position 1 and position 2). (c). Sample reconstructions at increasing compression ratios (from 
1:2 to 1:50) compared to the plane-by-plane imaging scheme (top). (d). x and z profiles of 
one selected PSF (highlighted in panel c) reconstructed from various compression ratios. 
The black dotted line represents the plane-by-plane reference. A full 3D reconstructions is 
provided in blue)Visualization 3.
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6. Discussion

In this paper, we present a new compressed sensing scheme for 3D fluorescence microscopy that
can be applied to a wide range of microscopes. We validate our method through simulations,
and demonstrate its feasability on a lattice light sheet microscope and on an epifluorescence
microscope. We achieve reductions in image acquisition time and light exposure (compression
ratios) of up to ten fold on both setups.

Most previously proposed compressed sensing strategies for biological microscopy require
non-trivial modifications to microscope hardware, such as adding a digital micromirror device
to the light path [17], or conjugating the camera with the back pupil plane to perform Fourier
space imaging [16]. By contrast, our compressed sensing scheme is adaptable to any type of
epifluorescence microscope, as long as the user can control both the stage position and the
illumination intensity. Our lattice light sheet microscope implementation required software
adjustments due to its complex nature, while implementation on an epifluorescence microscope
required only one extra microcontroller (to ensure proper synchronization of the camera, AOTF
and stage). We provide full schematics of the Arduino setup, together with a MicroManager
plugin, which allows to quickly switch between plane-by-plane imaging and the compressed
sensing imaging scheme.

Since our approach modulates the light intensity before it reaches the sample it results in a
reduced excitation light dose to the sample. This is of crucial importance, since fluorescence
imaging causes damage to the sample, ranging from photobleaching of the fluorescent probes to
various metabolic and developmental defects. Furthermore, the light dose delivered to the sample
is inversely proportional to the compression ratio: a ten fold compression ratio yields a ten fold
reduction of the light dose at the sample compared to plane-by-plane imaging. Since phototoxicity
is a nonlinear effect [33], we expect our compressed imaging method to allow dramatic reductions
in photodamage. We note that due to the loss of high-frequency information in the implementation
described here, the current approach is best suited for applications where long-term or high-
temporal resolution 4D observation of larger scale fluorescently labeled structures is required.
Potential applications of our scheme include long term imaging of transient cell cycle events
in a developing fly embryo, the propagation of calcium influx in beating cardiomyocytes, the
observation of signaling events or motility in live organisms or in cells growing in 3D matrices.

Another major benefit of our compressed imaging scheme is an increase in the temporal
resolution of 3D imaging, thus allowing faster acquisition at a given SNR. For example, if
plane-by-plane imaging requires 200 planes with 10 ms exposure each, i.e. a total of 2 s to
acquire a given 3D volume, a compressed imaging scheme with a compression ratio of 10 will
require only 200 ms for the same volume. Our simulations in Fig. 2 demonstrate that this scheme
yields images of lower MSE than a plane-by-plane z-stack acquired with a 1 ms exposure time
(that is a 200 ms overall acquisition time). This reduction in acquisition time should enable an
equivalent increase in the temporal resolution of dynamic 3D microscopy of living biological
samples. We anticipate that future work will build on the proposed approach to explore the
potential of axially compressed imaging for faster 3D live cell imaging.

In this context, several challenges and perspectives for improvement are worth mentioning.
First, better piezo hardware and/or calibration could reduce the mismatch between the theoretical
sensing matrix and its experimental counterpart. Second, as in plane-by-plane imaging, our
current method assumes that the imaged structure remains immobile throughout compressed
acquisition of the 3D volume, which is rarely true in living samples. While sample movements
can result in a blurred image or duplicated objects with traditional plane-by-plane imaging, it
remains to be explored how these movements may distort reconstructed images in our compressed
sensing scheme. As previously shown in the MRI field, methods to address these problems can be
developed [30]. Third, computational strategies to accelerate image processing will be important
to efficiently analyze the thousands of images generated in dynamic 3D imaging [34,35]. Finally,
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our method currently assumes sparsity in the image domain along the optical axis only and used
a Fourier sensing matrix. Ten fold compression ratios were achieved on images with moderate
degrees of sparsity, for which this sensing matrix is not optimal. We therefore expect that larger
compression ratios can be achieved using 3D sparsity models better adapted to the imaged
structures, e.g. using dictionary learning, or optimized sensing matrices [23, 36].

7. Conclusion

In this work, we demonstrate a widely applicable 3D compressed sensing scheme in which
images are compressed along the z axis during acquisition. This scheme can be implemented
with little or no hardware modification on a wide range of microscopes. We first validated the
feasability of our approach under noisy conditions using simulations, and then demonstrated the
method experimentally on a lattice light sheet microscope and on an epifluorescence microscope,
where we achieved roughly ten fold imaging speedup. This approach can be used to increase the
temporal resolution or extend imaging time (through a reduction in light dose) in 3D fluorescence
imaging applications.

Software and data availability

A Python port of SPIRALTAP [27] is available on GitHub https://github.com/
imodpasteur/pySPIRALTAP (doi:10.5281/zenodo.439691. The datasets used in this
work are available on the Zenodo repository (doi:10.5281/zenodo.439689) and the
analysis scripts were deposited on GitHub https://github.com/imodpasteur/
CompressedSensingMicroscopy3D (doi:10.5281/zenodo.439690). The MicroMan-
ager plugin and Arduino device adapter are available on https://github.com/
imodpasteur/ArduinoCompressedSensing.
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