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Abstract

Being able to predict the macroscopic response of a material from the knowledge of its

constituent at a microscopic or mesoscopic scale has always been the Holy Grail pursued by

material science, for it provides building bricks for the understanding of complex structures

as well as for the development of tailor-made optimized materials. The homogenization

theory constitutes nowadays a well-established theoretical framework to estimate the over-

all response of composite materials for a broad range of mechanical behaviors. Such a

framework is still lacking for brittle fracture, which is a dissipative evolution problem that

(ii) localizes at the crack tip and (iii) is related to a structural one. In this work, we pro-

pose a theoretical framework based on a perturbative approach of Linear Elastic Fracture

Mechanics to model (i) crack propagation in large-scale disordered materials as well (ii)

the dissipative processes involved at the crack tip during the interaction of a crack with

material heterogeneities. Their ultimate contribution to the macroscopic toughness of the

composite is (iii) estimated from the resolution of the structural problem using an approach

inspired by statistical physics. The theoretical and numerical inputs presented in the the-

sis are finally compared to experimental measurements of crack propagation in 3D-printed

heterogeneous polymers obtained through digital image correlation.

Résumé

La compréhension du comportement macroscopique d’un matériau à partir de la donnée

de ses constituants à l’échelle microscopique a toujours été le Saint Graal en science des

matériaux dans la mesure où elle fournit les éléments essentiels à la prédiction de la

résistance d’une structure et au développement de matériaux aux propriétés innovantes.

Si la théorie de l’homogénéisation constitue un cadre théorique établi pour prédire la

réponse effective d’une vaste classe de comportements matériaux, elle ne permet pas à

l’heure actuelle de prédire les propriétés effectives en rupture fragile. S’attaquer à cette

question suppose de tirer profit des caractéristiques uniques de la rupture fragile qui est

(i) un problème d’évolution dissipatif, (ii) localisé en pointe de fissure et (iii) relié à un

problème de structure. Dans ce travail, nous proposons un formalisme théorique fondé sur

une approche perturbative de la mécanique de la rupture afin de (i) modéliser la propaga-

tion de fissure dans les milieux désordonnés de grande taille. L’implémentation numérique

de ce modèle nous permet (ii) d’étudier en détail les mécanismes dissipatifs mis en jeu en

pointe de fissure lorsqu’une fissure interagit avec des hétérogénéités. Leur contribution au

renforcement du matériau à l’échelle macroscopique est finalement (iii) estimée à partir de

la résolution du problème de structure à l’aide d’outils empruntés à la physique statistique.

Les apports théoriques et numériques de la thèse sont finalement confrontés aux résultats

d’expériences de fissuration de polymères hétérogènes imprimés 3D, extraits d’outils de

corrélation d’image.
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Introduction

Contents
1.1 Basic concepts of Linear Elastic Fracture Mechanics . . . . . . . . . . . . . . . . . . . . 10

1.2 Material toughening by heterogeneities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Computational modeling of crack propagation in heterogeneous materials . . . . . . . . 17

1.4 Challenges in heterogeneous brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Outline of the PhD thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Whether of a material or structural nature, failure constitutes a major threat to popula-

tion safety, environmental protection and economic growth. From the collapse of the Bouzey

dam in 1895, the failure of the Liberty ships in 1943, the crash of the Comet commercial

airplanes in 1953 to the latest collapse of the Genoa bridge in 2018, catastrophic failures

of man-made structures have occurred in recent human history. Associated with dramatic

human cost, notable environmental pollution and significant economic losses, these spectac-

ular accidents have also driven substantial progress in the understanding of the underlying

failure mechanisms. For a long time, engineers had been focused on preventing the appear-

ance of cracks in anthropogenic structures. Yet progresses in monitoring techniques showed

that cracks were somewhat bound to nucleate in highly loaded structures, so that one has

rather to learn how to live with them. It motivated the development of Linear Elastic Frac-

ture Mechanics (LEFM), a comprehensive theory based on the works of Griffith [1921] and

Irwin [1957], which allows for the quantitative description of the conditions under which

preexisting cracks propagate.

Recent developments in additive manufacturing techniques as well as the emergence of

bio-source and recycled composite materials driven by environmental concerns have in-

creased further the need to rationalize the failure behavior of microstructured solids. If

LEFM constitutes nowadays a well-established theory for the study of crack propagation

in homogeneous materials, it does not currently provide an appropriate theoretical frame-

work to assess the impact of small-scale microstructural heterogeneities of materials on

their macroscopic failure properties. If significant progress has been made recently on the

homogenization of linear and non-linear mechanical behavior, a comprehensive homoge-
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nization theory in fracture is still missing. Such a framework is nonetheless a prerequisite

to the optimization of the performance and the reduction of both the environmental and

economical costs of future man-made structures, which will be built in what may be a

resource-constrained world.

This introduction chapter highlights the current challenges in heterogeneous fracture

mechanics. First are recalled in Section 1.1 some basic concepts on which is built the

homogeneous Linear Elastic Fracture Mechanics theory. In Section 1.2, we investigate the

impact of heterogeneities on crack propagation in composite materials. The interaction

between a crack and heterogeneities often involves multiple and complex mechanisms, which

are difficult to isolate during experiments. It has driven the need for powerful computational

methods that allow for the quantitative description of individual mechanisms and their

subsequent impact on crack trajectory and effective fracture properties. Such computational

methods are detailed in Section 1.3. This brief review of the current state of knowledge in

fracture mechanics allows us to stress out in Section 1.4 the two main challenges we address

in this work : (i) how do microstructural heterogeneities affect the loading conditions under

which crack propagate ? In other words, what is the effective toughness of a heterogeneous

solid, and how does it relate to its microstructural features ? (ii) What traces reminiscent

of this interaction are left on the fracture surface through the surface roughness and which

information can be inferred from the statistical analysis of their topographic map ? The

strategy we adopt to tackle these ambitious challenges is finally outlined in Section 1.5.

1.1 Basic concepts of Linear Elastic Fracture Mechanics

Based on an energetic approach developed all over the twentieth century, Linear Elastic

Fracture Mechanics (LEFM) brings nowadays a tried and tested theoretical framework to

predict how and when cracks propagate in homogeneous media. We briefly summarize the

history of fracture mechanics along with its core elements on which the subsequent chapters

heavily rely.

Brittle fracture, a process governed by material flaws

Quantum-mechanical calculations performed by Marder and Fineberg [1996] showed that

when the atom spacing exceeds 20% of its value at equilibrium, the bond breaks. The

critical stress to failure, or brittle material strength σc, is thus expected to be of the order

of σc ∼ E/5, where E is the Young’s modulus. When compared to experimental results of

fracture tests on glass, this theoretical prediction appears to be three orders of magnitude

larger than experimental measurements, leading Marder and Fineberg [1996] to stress out

the central role played by material flaws in brittle fracture. Inglis [1913] was the first to

study the distribution of stress in an infinite plate containing a single elliptical defect of

semi-axes a in the x-direction and b in the y-direction (see Fig. 1.1.a). He showed that,

when the plate is subjected to some uniform applied tension σ, the opening stress σP
yy acting

locally on the point P , where the curvature is maximal, is amplified by a geometrical factor :

σP
yy =

(
1 + 2

a

b

)
σ (1.1)
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The stress concentrations at the vicinity of material flaws may account for the discrepancy

between the theoretical and experimental strengths mentioned above. In particular, when

the defect is sharp b ≪ a, the local stresses becomes singular. Westergaard [1939] derived

the evolution of the stress field in the neighborhood of a slit crack of length 2a embedded

in an infinite plate loaded in tension σ (see Fig. 1.1.b) :

σyy (x) =





σ√
1−

(
a
x

)2 , when |x| > a

0, when |x| ≤ a

(1.2)

which yields a characteristic square-root singularity.

2a
2b •P

σ

σ

y

x

(a)

2a

σ

σ

y

x

(b)

r
θ

σxx

σyx

σzx

σzz

σyz

σyz

σyy

σxyσzy

z

y

x

Crack front

Crack surface

(c)

Figure 1.1: Flaws in infinite media : infinite plate subjected to uniform applied tension σ with an elliptical

defect of semi-axes a and b (a) or a slit crack of length 2a (b). Semi-infinite plane crack inducing stresses

(σi,j) on a point (r, θ) located in its vicinity (c).

Westegaard’s work triggered a wide range of studies of stress singularity in elasticity. In

particular, following the asymptotic expansion proposed by Williams [1952], Irwin [1957]

introduced the notion of stress intensity factors (Kp) (SIFs) to express the singular elastic

fields at the crack tip :

σij =
∑

p∈{I,II,III}

Kp√
2πr

fp
ij (θ) (1.3)

where fp
ij are universal functions and (r, θ) are the polar coordinates of a point located

ahead of the crack tip where the stresses are evaluated (see Fig. 1.1.c). The stress intensity

factors (Kp) depict the contributions of the tensile Mode I, plane shear Mode II and anti-

plane shear Mode III, respectively (Fig. 1.2). They depend only on the geometry of the

system and the external loading.

A quantitative description of the stress state in the neighborhood of a crack was a prereq-

uisite to derive phenomenological criteria describing the conditions under which propagation

occurs. Given that the stresses are singular in the vicinity of the crack tip, a propagation

criterion cannot rest upon the existence of a critical opening stress. To circumvent this

limitation, Irwin [1958] proposed a propagation criterion in tensile Mode I based on the

associated SIF KI :

Propagation occurs when KI = KIc (1.4)

where KIc is an intrinsic material property called toughness.
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z

y
x

(a)

z

y
x

(b)

z

y
x

(c)

Figure 1.2: The three modes of fracture : tensile Mode I (a), plane shear or plane shearing Mode II (b)

and anti-plane shear or anti-plane shearing Mode III (c).

Crack propagation, a phenomenon ruled by an energy-balance principle

Irwin’s approach gave nonetheless predominant importance to the stress singularity at the

crack tip, which is not physically acceptable since no real material can withstand infinite

stresses. It motivated the construction of a theoretical approach based on energy balance

rather than on the crack tip stresses. The early work of Griffith [1921] proposed an energy-

based criterion stating that a crack propagates only if the decrease in total potential energy

P compensates the energy 2γ required to create new surfaces :




G = −dP

dA ≤ 2γ

(G− 2γ) l̇ = 0
(1.5)

where the total potential energy P = W − φ is the sum of the elastic energy W and the

potential energy of the external loads φ. dA denotes an infinitesimal extension of the crack

surface and l̇ is the crack velocity. Finally, G is the elastic energy release rate (ERR), which

is a finite quantity contrary to the crack tip stresses.

Irwin [1962] major contribution consisted in proving that the ERR G is entirely deter-

mined by the near-tip stresses and consequently by the SIFs (Kp) following the equation :

G =
1− ν2

E

(
K2

I +K2
II

)
+

1 + ν

E
K2

III (1.6)

where E is the material Young’s modulus and ν its Poisson’s ratio. Irwin’s formula connects

Griffith’s energy balance to the square-root singular stress fields existing at the tip of a crack

embedded in an elastic material :

Propagation occurs in Mode I when G = Gc =
1− ν2

E
K2

Ic (1.7)

where Gc is called the fracture energy. With some abuse of terminology, we will refer to Gc

as the toughness of the material.

Equations (1.6) and (1.7) constitute the core of the modern framework of Linear Elastic

Fracture Mechanics. Additional criteria have been since developed to predict the path

that the crack follows during propagation under mixed mode loading (e.g. the Maximal
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Tangential Stress criterion [Erdogan and Sih, 1963], the Maximal Energy Release Rate

criterion [Hussain et al., 1974], the Principle of Local Symmetry [Gol’dstein and Salganik,

1974]) or the loading level at which crack nucleation occurs in a sound material (e.g. the

coupled criterion [Leguillon, 2002]).

Linear Elastic Fracture Mechanics, a question of lengthscale

If the energetic approach allows to circumvent difficulties arising from the singular elastic

fields in the vicinity of the crack tip, the divergence of the stress field remains nonethe-

less physically unacceptable. Most materials develop plastic strains or damage when local

stresses exceed the material yield stress σs. These dissipative processes take place in a

region surrounding the crack tip called the fracture process zone (FPZ). Barenblatt [1962]

predicted the size ℓfpz of the fracture process zone from a cohesive zone model with constant

strength σc. This size reads :

ℓfpz =
π

8

(
KIc

σc

)2

(1.8)

We can thus distinguish three regimes of behavior for the stress field in the crack tip

neighborhood (Fig. 1.3):

• in the process zone, stress is released by dissipative mechanisms ;

• outside of but close to the process zone, the near elastic fields are dominated by the

square-root singular terms and their intensity is prescribed by the SIFs (Kp) ;

• far away from the crack tip, higher-order terms in William’s expansion, such as the

T-stresses (Tij) (constant terms in the asymptotic expansion of the crack tip stresses)

and A-stresses (Ap),(
√
r terms in the asymptotic expansion of the crack tip stresses),

play a significant role in the estimation of the far-field values.

r
θ

Far field zone

Singular zone

Process zone

(a)

−1

2
1

-

ln (`fpz) ln (r)

-ln (σc)

ln (σij)

(b)

Figure 1.3: (a) Stress field regimes in vicinity of the crack tip; (b) stress released by dissipative processes

within the process zone, square-root singular stress near the crack tip and stress dominated by

higher-order terms in the William’s expansion further away.

In brittle materials such as ceramics, rocks or glass, the size ℓfpz of the fracture process

zone is generally smaller than any structural length related to the specimen or structure

size. With this so-called small scale yielding assumption [Rice, 1987], LEFM allows for an

accurate prediction of the physical mechanisms occurring in the vicinity of the crack tip.

For ductile (e.g. metallic alloys) or quasi-brittle (e.g. mortar, clay) materials, the process
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zone may be of the order of the specimen size and some other theoretical framework may

account for a better prediction of crack nucleation and propagation if the specimen size

does not permit to apply the small scale yielding assumption.

To summarize, Linear Elastic Fracture Mechanics provides an energy-based framework

to predict crack behavior in homogeneous materials, as long as the dissipative processes

are confined in a small region surrounding the crack tip. It has been successfully applied

in the past sixty years to predict both material and structural failure for a wide range

of engineering and physical systems. It is thus natural to try extending these powerful

concepts to the description of fracture in heterogeneous materials, that is the impact of

microstructural heterogeneities on the macroscopic behavior of composite materials. This

will lead to the development of a heterogeneous LEFM.

1.2 Material toughening by heterogeneities

Heterogeneous brittle materials are ubiquitous in our modern world, be they natural (e.g.

rocks) or artificial (e.g. composite ceramics, mortar). Because of the stress concentration

occurring at the crack tip, the presence of micro-scale heterogeneities may have a substantial

impact on the failure behavior of heterogeneous materials on a structural scale. This section

is devoted to the experimental investigation of the influence of small-scale heterogeneities

on crack trajectory and the subsequent fracture properties of brittle composites.

Modern materials are increasingly designed for specific applications. The design of tai-

lored materials, even sometimes called meta-materials, is steered by the need to achieve

greater strengths (sensitivity to crack nucleation) as well as higher toughness levels (sen-

sitivity to crack propagation), two properties which are often mutually exclusive [Ritchie,

2011]. Brittle materials such as ceramics and glass are rarely stress challenged so that

material science has been pursuing the Holy Grail of achieving higher toughness levels for

decades [Launey and Ritchie, 2009]. Evans [1990] distinguished two main classes of tough-

ening mechanisms in brittle ceramics : crack-wake processes, which occur in the wake of

a propagating crack and influence propagation through mechanisms acting on the crack

lips/surfaces, and crack-tip processes, which happen in the vicinity of the crack tip.

Crack-wake processes have been shown to toughen efficiently brittle materials by reducing

the crack-driving force (G−Gc) acting locally in the crack tip. Among those processes,

crack bridging occupies a central place in the literature. It occurs when grain or fibers are

left unbroken in the wake of the crack, pinning the crack front (see Fig. 1.4). The pinning

forces hinder the opening of the crack lips, thus reduce the SIFs at the crack tip and higher

loading levels are consequently required to fracture the specimen. Such a mechanism can

be promoted for example by weak interfaces (Fig. 1.4.a), crack nucleation ahead of the

crack tip (Fig. 1.4.b) or by the merging of the crack lips around a tough defect (Fig. 1.4.c).

When crack bridging occurs, the effective fracture properties of the composite are no more

governed by the toughness of the surrounding material but only by the mechanical and

geometrical properties of the bridging heterogeneities. The energy can be dissipated either

through frictional pulling or by fracturing bridging elements (see Fig. 1.4.a). Krstic et al.
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[1981] showed that fractural bridging can increase the toughness of ceramics by a factor

of 10 when the bridging particles are ductile. Recent experimental studies on bio-inspired

materials [Mirkhalaf et al., 2014; Malik and Barthelat, 2016] suggest that frictional bridging

can lead to similar levels of toughening.

FRICTIONAL	BRIDGING

FRACTURAL	BRIDGING

y

x

(a)

STEP	01

STEP	02

STEP	03

STEP	04

CRACK	TIP	POSITION

CRACK	TIP	POSITION

CRACK	TIP	POSITION

CRACK	TIP	POSITION

UNBROKEN	LIGAMENT

UNBROKEN	LIGAMENT

1MM

y

x

(b)

STEP	01	:	TRAPPING STEP	02	:	MERGING

STEP	03	:	BRIDGING STEP	04	:	DEPINNING

x

z

(c)

Figure 1.4: Experimental observations of the crack bridging mechanism : frictional and fractural bridging

along a weak interface in a laser-engraved glass (after [Mirkhalaf et al., 2014]) (a), crack bridging due to

nucleation ahead of the crack tip in 3D printed polymers with elastic heterogeneities (after [Avellar, 2018])

(b), crack bridging during the peeling experiment of an elastomer block from a patterned glass substrate

containing a tougher central defect (after [Chopin, 2010]) (c).

Crack-tip mechanisms act quite differently since they directly change the intrinsic frac-

ture properties of the composite material. They often involve dissipative processes confined

within the process zone (e.g. crack shielding by micro-cracking [Evans and Faber, 1981;

Ortiz, 1987; Ritchie, 1988] or by phase-transformation [Pohanka et al., 1978; McMeeking

and Evans, 1982; Evans and Cannon, 1986; Hannink and Swain, 1994; Guazzato et al.,

2004]), which cannot be grasped within the LEFM framework. Yet, some mechanisms such

as crack trapping and crack deflection have been shown to be quantitatively predicted by

LEFM. In the case of crack trapping, the crack tip is locally pinned by inclusions and the

loading has to increase to ensure further propagation of the crack (Fig. 1.5.a). While the

loading is increasing, the crack front deforms in-plane (Fig. 1.5.b), until the crack crosses

the inclusion and keeps propagating (Fig. 1.5.c). Toughness heterogeneities [Dalmas et al.,

2009; Chopin et al., 2011; Patinet et al., 2013a; Vasoya et al., 2016b], elastic inclusions [Xia

et al., 2013; Wang and Xia, 2017; Hsueh et al., 2018] or residual stresses [Bower and Ortiz,

1993; Lacondemine, 2019] have been shown to induce trapping mechanisms. The ultimate

material reinforcement depends on how long the crack remains pinned by the inclusion

so that the properties of the heterogeneity strongly influence the subsequent toughening.

Crack trapping has been shown experimentally to produce toughening increases up to 50%

[Vasoya et al., 2016b; Wang and Xia, 2017].
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Figure 1.5: Experimental observations of the crack trapping mechanism : crack pinned at an interface

between a weak/tough 3D printed materials (after [Wang and Xia, 2017]) (a), crack front in-plane

deformation during the peeling experiment of an elastomer block from a patterned glass substrate with a

tougher layer at the center (after [Chopin, 2010]) (b), crossing of tough inclusions in a ThO2 soda-lime

glass (after [Lacondemine, 2019]) (c).

While crack trapping is an inherently coplanar mechanism, crack deflection makes the

crack kink around the inclusions (see Fig. 1.6). The properties of the inclusion are no

more involved in the toughening process and material reinforcement is dictated by the me-

chanical properties of the interface and the geometry of the inclusions. Weak interfaces

[Mirkhalaf et al., 2014], high inclusion toughness [He and Hutchinson, 1989], elastic prop-

erties mismatch [Lacondemine et al., 2017] and residual stresses [Lacondemine, 2019] have

been shown to promote crack deflection at the matrix/inclusion interface. The subsequent

material reinforcement can reach 30-50% [Faber and Evans, 1983b; Mirkhalaf et al., 2014].
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Figure 1.6: Experimental observations of the crack deflection mechanism : crack deflected around ThO2

inclusions in a borosilicate glass due to residual stresses (after [Lacondemine, 2019]) (a), out-of-plane

deviation of the crack front around an alumina platelet in a composite glass (after [Kotoul et al., 2008])

(b), crack deflection at the interface of a bioinspired synthetic alumina–PMMA made by freeze-casting

(after [Munch et al., 2008]) (c).

In practice, the reinforcement induced by each toughening mechanisms taken individ-

ually is nonetheless very difficult to estimate experimentally given the interplay between

all of them [Steinbrech, 1992]. A weak interface promotes crack deflection, which does not

induce a substantial toughening of the material and can even be detrimental to the overall

toughness of the composite if the interface is too weak [Ma et al., 2004; Mirkhalaf et al.,

2014]. Yet it can simultaneously lead to frictional bridging of the unbroken particles left in

the wake of the crack (see Fig. 1.6.c), which toughens the material very efficiently [Munch
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et al., 2008; Mirkhalaf et al., 2014]. In the same manner, during crack trapping on very

tough inclusions, the crack lips may merge in front of the crack and make way for crack

bridging [Chopin, 2010]. Alternatively, a crack is often pinned on the matrix/inclusion in-

terface before kinking and being deflected along it. One can observe a transition between

crack trapping and crack deflection if the inclusion is tough enough. In order to design

materials with tailored fracture properties, one must first identify which mechanisms are

liable to take place during crack propagation, estimate the conditions (e.g. inclusion/matrix

mechanical properties, inclusion geometry) under which one mechanism prevails over the

others and finally quantify the toughening induced by the dominant mechanism.

Theoretical analyses of brittle fracture, among which the seminal work of He and Hutchin-

son [1989] plays a central role, have tried to extend LEFM to the heterogeneous case and

estimate the conditions of occurrence of the interaction mechanisms between a crack and

heterogeneities. Yet the complexity of such mechanisms as well as their coupling motivates

their preliminary observation on model systems to stress out the parameters relevant in

their competition. The development of computational methods for brittle fracture during

the last decade provides now mandatory tools to perform numerical experiments and inves-

tigate the mechanisms involved during the interaction between a crack and heterogeneities,

their coupling as well as the toughening they induce.

1.3 Computational modeling of crack propagation in hetero-

geneous materials

Many powerful computational methods have been developed in the last decades to study

brittle fracture. In this section, we describe how these methods can be used to model crack

propagation in heterogeneous materials and the underlying interaction mechanisms, with

particular emphasis on three-dimensional situations. This short review ultimately allows

for a better appreciation of the strengths and limitations of the LEFM-based perturbative

approach that will be developed and detailed in the manuscript.

Early works of Newman and Raju [1984] and Ingraffea and Saouma [1985] marked the

beginning of computational simulation of crack propagation. Cracks were modeled as sharp

interfaces in Finite Element Method (FEM) and their propagation was studied through

LEFM classical theory (see Section 1.1). Given the stress concentration induced by the

sharp crack, a fine mesh is required in the region surrounding the crack tip. In the more

complex context of heterogeneous materials, crack propagation requires powerful remeshing

algorithms which are hardly tractable in three-dimensions [Branco et al., 2015], even if FEM-

based innovating techniques allow to circumvent those difficulties [Kikuchi et al., 2014].

This motivated the development of enriched FEM discretizations to model specificities

associated with fracture mechanics. In the eXtended Finite Element Method (XFEM) [Be-

lytschko and Black, 1999; Moës et al., 1999], the finite element discretization is enriched

with additional nodal degrees of freedom, which involve local discontinuous functions along

the crack lips as well as singular terms at the crack tip (see Fig. 1.7.a). Crack propagation
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can be modeled at a lower computational cost without continuously updating the mesh

through the means of level set functions. This allows to compute efficiently crack propaga-

tion in heterogeneous media [Huynh and Belytschko, 2009; Gao et al., 2018b] (Fig. 1.7.b)

even in a three-dimensional setting [Moës et al., 2002; Gravouil et al., 2002] and/or in a

multi-physics context [Gupta and Duarte, 2014; Paul et al., 2018]. Yet one must rely on

analytical ad-hoc criteria to predict both crack initiation and crack trajectory. If not ex-

perimentally assessed, these criteria may not reproduce the physical mechanisms at play

during the propagation of the crack.
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Figure 1.7: XFEM nodal enrichment for sharp cracks modeling (a) and applications to crack propagation :

two-dimensional interaction of a single crack with a tougher spherical defect (after [Gao et al., 2018b]) (b),

three-dimensional propagation of a penny-shape crack (after [Gupta and Duarte, 2014]) (c)

In contrast, cohesive zone modeling allows to predict both crack propagation and crack

initiation in heterogeneous materials. The cohesive-zone model was introduced by Baren-

blatt [1962] and Dugdale [1960] to solve the issue of the stress singularity at the crack tip.

In these models, the crack tip is smeared through the progressive decrease of the interface

strength of a cohesive zone located ahead of the crack tip. All the dissipative processes,

that occur within the cohesive zone, are modeled through a cohesive law. Yet, cohesive

zone elements cannot be inserted in the bulk material without inducing a mesh sensitivity

of the numerical results [Xu and Needleman, 1994]. Thus, cohesive zone models are mostly

used in the case of prescribed crack trajectory to predict the loading levels at which ini-

tiation and propagation occur [Raous and Monerie, 2002]. Otherwise, cohesive elements

can be inserted gradually [Camacho and Ortiz, 1996; Ortiz and Pandolfi, 1999] at a higher

computational cost, since a remeshing procedure is then required. This allows for the study

of crack propagation in heterogeneous materials both in two-dimensional [Perales et al.,

2008; Li and Zhou, 2013a; Snozzi et al., 2012] and three-dimensional settings [Yilmaz and

Molinari, 2017].

Recently, a variational approach to brittle fracture has been developed starting from

the pioneering work of Francfort and Marigo [1998]. In this model, the crack is no more

considered as a sharp discontinuity but is rather described by an ancillary variable α,

which can be interpreted as a phase-field or a damage variable and is smeared over a

distance ℓ. Both crack initiation and crack propagation result from a variational-based

energy minimization problem, whose solution has been proved to Γ− converge towards the

brittle one when ℓ → 0 by Ambrosio and Tortorelli [1990], who studied the Mumford and
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Figure 1.8: Application of cohesive zone models to crack propagation in heterogeneous materials : crack

interacting with elastic heterogeneities (after [Li and Zhou, 2013a]), dynamic propagation in a

heterogeneous medium containing two-dimensional spherical heterogeneities (b) and three-dimensional

spherical ones (c) (after [Yilmaz and Molinari, 2017]).

Shah [1989] functional. Since no assumption is made on crack trajectory, it constitutes

a powerful tool to investigate how a crack interacts with material heterogeneities. It has

been intensively applied to study crack propagation in heterogeneous materials displaying

anisotropic toughness [Hakim and Karma, 2005, 2009; Bleyer and Alessi, 2018; Li and

Maurini, 2019] as well as crack interaction with material heterogeneities in 2D [Hossain

et al., 2014; Nguyen et al., 2015; Da et al., 2018; Brach et al., 2019a] and 3D [Clayton and

Knap, 2014; Nguyen et al., 2017b,a], taking into account interface debonding [Nguyen et al.,

2016] or inertial effects [Ylmaz et al., 2018]. Moreover, this approach is not restricted to

the brittle case since it can be coupled to plasticity [Alessi et al., 2018; Brach et al., 2019b]

or cohesive-zone models [Verhoosel and Borst, 2013]. The phase-field approach offers one

of the most promising computational frameworks to tackle numerically the question of

heterogeneous brittle fracture. Nonetheless, its computational cost remains high so that

one can only model the interaction of a crack with a small number of inclusions.

NOTCH

CRACK

SPHERICAL	INCLUSION

(a) (b) (c)

Figure 1.9: Application of phase-field models to crack propagation in heterogeneous materials : crack

interacting with a single elastic spherical heterogeneity (after [Clayton and Knap, 2014]), crack

propagation in concrete under compressive loading in two-dimensions (after [Nguyen et al., 2016]) (b) and

three-dimensions (after [Nguyen et al., 2017b]) (c).

Last but not least, a new approach, the Thick Level-Set (TLS) method, has been re-

cently introduced by Moës et al. [2011] to model three-dimensional crack propagation and

initiation at a lower computational cost by constraining the non-local interactions within a

damaged zone of prescribed size. Contrary to phase-field models, the TLS method models
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the crack as a discontinuity to which are associated level-set functions as was the case in

the XFEM framework. The sharp crack is surrounded by a damaged zone, in which all

the dissipative processes are confined and whose size is a parameter of the model. Crack

initiation is governed by damage evolution, which is a function of the level-set functions.

The sharp crack description might allow for a better description of mechanisms associated

to crack lips/surfaces (e.g. contact, friction, fluid exchange in hydraulic fracture), while

the localization of the damage within the damaged zone allows for a coarse mesh away for

the crack and results in a gain in computational efficiency. Moreover, the fact that the

size of the damaged zone is a parameter of the model might allow to study its influence

during the interplay between a crack and material defects. The TLS method has been used

to model crack propagation in heterogeneous material in both two- and three-dimensions

(see examples from Salzman et al. [2016] in Fig. 1.10) and has recently been coupled with

a cohesive zone approach [Lé et al., 2018].

(a) (b) (c)

Figure 1.10: Application of thick-level-set (TLS) models to crack propagation in heterogeneous materials :

two-dimensional multi-cracking with en-passant crack-pairs (a) and crack deflection at a bi-material

interface (after [Moës et al., 2011])(b) and three-dimensional crack propagation in a porous medium (after

[Salzman et al., 2016]) (c).

The last two numerical approaches yield very promising results that reveal the strong

impact of material heterogeneities on the mechanisms of propagation, and the ensuing

increase of fracture properties. They are nonetheless computationally expensive and do not

currently allow to simulate crack propagation in a disordered medium containing thousands

or millions of heterogeneities. As pointed out by Chambolle et al. [2009], one must envisage

all possible geometric configurations of the crack before selecting the path it will follow

during the subsequent propagation event. This specific condition gives a prominent position

to perturbative approaches in fracture mechanics [Leblond, 2003]. Based on Bueckner-Rice

weight function theory [Bueckner, 1970, 1987], these approaches allow to compute local

stress intensity factor variations arising from any small crack front geometrical perturbation

from a reference crack without solving the whole elasticity problem. The SIF calculation

can then be coupled to ad hoc criteria to describe crack propagation in large-scale disordered

materials. It has been implemented numerically to investigate the impact of crack trapping

mechanisms on the effective toughness by Bower and Ortiz [1990] and Lazarus [2003], as

well as its coupling with crack bridging by Bower and Ortiz [1991]. First-order studies have

allowed to investigate numerically crack dynamics resulting from the interaction between a

semi-infinite crack and systems disordered on a large-scale [Bonamy et al., 2008; Laurson
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et al., 2010; Barès et al., 2014; Ponson and Pindra, 2017]. They have been shown to

quantitatively describe non-trivial features observed experimentally in crack propagation

experiments in disordered materials, despite the crudeness of the first-order approximation

[Delaplace et al., 1999; Ponson and Bonamy, 2010; Chopin et al., 2011, 2018]. The numerical

performance offered by the perturbative approach is a prerequisite to study the impact of

material disorder on the effective fracture properties and the statistical properties of the

fracture surface, the two main challenges taken up during the PhD thesis and described in

the next section.

1.4 Challenges in heterogeneous brittle fracture

Linear Elastic Fracture Mechanics is currently facing many challenges when it comes to

the question of heterogeneous materials. In particular, a LEFM-based theory that would

relate microstructural properties to its effective toughness is still lacking. Being able to

predict the macroscopic response of a material from the knowledge of its constituent at a

microscopic or mesoscopic scale has always been the Holy Grail pursued by material science

[Torquato, 2002], for it provides building bricks for the understanding of complex structures

as well as for the development of tailor-made optimized materials. A well-established the-

oretical framework has been developed within the mechanics community to estimate the

overall response of composite materials from their microstructure, for linear static behav-

ior such as elasticity [Hashin and Shtrikman, 1963; Hill, 1965; Herve and Zaoui, 1993;

Ponte-Castañeda and Willis, 1995] by concentrating on the average strain energy. Such

approaches cannot be directly adapted to brittle fracture, which is an inherently dissipative

evolution process. The homogenization theory usually handles dissipative processes such

as plasticity within the limit analysis framework, by considering the volume average of the

dissipation [Hill, 1967; Gurson, 1977; Monchiet et al., 2008; Madou and Leblond, 2012;

Morin et al., 2015]. It has also been extended to tackle the case of non-linear behavior

[Ponte-Castañeda, 1991; Ponte-Castañeda and Suquet, 1997; Lahellec and Suquet, 2007;

Agoras et al., 2016; Lucchetta et al., 2019], through the introduction of some linear com-

parison composite eventually combined with an incremental variational problem, focusing

once again on the volume dissipation. Yet fracture processes are not distributed within the

bulk volume but localized in the crack neighborhood. Moreover, the stress singularity at

the crack tip enhances the impact of microstructural heterogeneities so that rare but tough

heterogeneities can substantially modify the effective fracture properties. Take for exam-

ple a very simple two-dimensional dual-phase composite, composed of a matrix material of

toughness Gmat
c and tougher stripe inclusions Ginc

c ≥ Gmat
c (see Fig. 1.11.a-c). When the

stripes are aligned with the propagation direction, the effective toughness Geff
c is equal to

that of the matrix Gmat
c (Fig. 1.11.a). The situation is quite the opposite when the crack is

facing stripes oriented in the direction perpendicular to the propagation direction : the ef-

fective toughness of the material is determined by the toughness of the tough inclusions Ginc
c

(Fig. 1.11.b). The problem appears to be even more complex since it seems to be indepen-

dent of the inclusion density, an infinitely thin single layer toughening the material in the

same way as multiple thicker layers (Fig. 1.11.b-c); so that averaging the dissipation does
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not produce appropriate results. Yet, all this concerns only two-dimensional case where the

crack only interacts through a trapping mechanism with toughness heterogeneities, whereas

the crack often propagates in the bulk of three-dimensional structures, interacting with

the microstructure displaying different elastic, strength and toughness properties through

various complex mechanisms (see Section 1.2). Moreover, Griffith’s criterion of Eq. (1.7)

states that, when the crack propagates, the elastic energy release rate G, which is inferred

from a structural problem with a growing crack, equals the material toughness Gc. Recent

numerical investigations suggest that the effective fracture properties of heterogeneous ma-

terials may depend on the loading conditions [Hun et al., 2019]. One may even wonder if

the problem of homogenizing brittle fracture properties of heterogeneous materials can be

separated from the influence of the global structure in which the crack propagates, thus

defining the intrinsic material properties.

Geff
c = Gmat

c

(a)

Geff
c = Ginc

c

(b)

Geff
c = Ginc

c

(c)

Gmat
c

Ginc
c

Geff
c =?

(d)

Figure 1.11: Bi-phase composite constituted by a matrix material of toughness Gmat
c and tougher

inclusions Ginc
c ≥ Gmat

c , characterized by its effective toughness Geff
c .

Homogenization of brittle fracture properties appears to represent a particular conun-

drum the solid mechanics scientific community is currently struggling with. Salvation could

come from statistical and condensed matter physics. In the physics community, brittle

fracture has been linked to the depinning transition theory through the framework of the

perturbative LEFM initially proposed by Rice [1985]. Approaches and concepts borrowed

from this theory have been consequently adapted to fracture problems with remarkable

successes [Bonamy and Bouchaud, 2011; Ponson, 2016]. Recent works of Patinet et al.

[2013b], Démery et al. [2014b] and Démery et al. [2014a] renewed the interest in applying

tools borrowed from statistical physics to predict effective fracture properties, an approach

already implemented by Roux et al. [2003]. Yet, these works are restricted to the case of

coplanar crack propagation where the crack can only interact with tough heterogeneities by

a crossing mechanism. An extended framework needs to be developed to grasp the impact

of the various mechanisms of interaction on the reinforcement of composite materials.

Physics of condensed matter also provided clues for considering fracture as a critical tran-

sition. Among them, the remarkable scaling properties of fracture surfaces have attracted

a lot of attention in the last two decades. Since the pioneering work of Mandelbrot et al.

[1984], fracture surfaces have been proven to display a unique scaling behavior referred to

as self-affinity. If one looks at the height difference ∆h between two points located at a
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distance ∆r (see Fig. 1.12), one observes that on average :

∆h ∝ ∆rζ (1.9)

where ζ is the roughness exponent. After a decade dedicated to the experimental charac-

terization of the self-affinity of fracture surfaces for a wide range of materials [Mecholsky

et al., 1989; Bouchaud et al., 1990; Dauskardt et al., 1990; Engøy et al., 1994; Schmittbuhl

et al., 1995; Lôpez and Schmittbuhl, 1998; Morel et al., 1998; Boffa and Allain, 1998],

studies have been focused on extracting quantitative information on the material proper-

ties or the loading failure conditions from the fracture surface through the investigation

of its scaling properties [Ponson et al., 2006b; Ponson, 2007; Vernède et al., 2015]. In-

deed, fracture surfaces, as persistent traces of crack propagation, can be viewed as crime

scenes, which contain information on both the victim, i.e. the fractured material and its

mechanical properties, the criminal, i.e. the loading which lead to structural failure, and

the modus operandi, i.e. the history of crack propagation and dynamics. A true forensic

science for fracture mechanics called quantitative fractography has been developed to ex-

tract information on the propagation direction [Ponson et al., 2006b; Ponson, 2007], the

failure processes [Hansen and Schmittbuhl, 2003; Bonamy et al., 2006; Morel et al., 2008]

and even the fracture properties of the material inferred from the measurement of the pro-

cess zone size [Vernède et al., 2015; Osovski et al., 2015; Barak et al., 2019]. Yet the surface

roughness of brittle materials remains puzzling since a self-affine behavior with ζ = 0.4 has

been observed on porous brittle materials such as sandstone [Boffa and Allain, 1998; Ponson

et al., 2007] or sintered glass/polysterene beads material [Ponson et al., 2006a; Cambonie

et al., 2015] while phase-separated [Dalmas et al., 2008] or oxide brittle glass [Pallares et al.,

2018] display a logarithmic scaling behavior (∆h ∝ ln(∆r)). If LEFM-based models can

predict both behaviors theoretically [Ramanathan et al., 1997; Bonamy et al., 2006], direct

simulations of crack growth in disordered brittle solids only capture logarithmically rough

surfaces [Ramanathan et al., 1997; Barès et al., 2014]. Without a deep understanding of

the underlying physical mechanisms, quantitative fractographic tools for brittle materials

are currently out of reach.
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Figure 1.12: Topograhic images of rough surfaces of brittle silica glass (a), quasi-brittle mortar (b) and

ductile aluminium alloy (c) (after [Ponson, 2007]) and 1D height profile along the front direction (Oz) for

the computation of the height-height correlation function (d).
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1.5 Outline of the PhD thesis

The challenges exposed above motivates the development of reliable models that capture

three-dimensional crack propagation from the microscopic scale up to the macroscopic one,

and quantify the impact of material heterogeneities on the effective fracture properties

and the scaling properties of brittle fracture surfaces. The present work addresses this

challenge, building on the specificities of brittle fracture. Brittle fracture is (i) an evolution

problem, which (ii) involves dissipative processes localized at the crack tip and (iii) is related

to a structural problem. Crack evolution is described here by a powerful semi-analytical

method, modeling crack propagation in heterogeneous materials based on the perturbative

approach of Linear Elastic Fracture Mechanics [Gao and Rice, 1986; Movchan et al., 1998].

Our main objective is to go beyond the previous works of Gao and Rice [1989], Patinet et al.

[2013b] and Démery et al. [2014b], which were restricted to coplanar crack propagation, by

enriching the dissipative processes occurring at the crack tip through the modeling of a

by-pass mechanism, which triggers excursions of the crack out of the mean fracture plane.

The ultimate contribution of each mechanism to material toughening is inferred from the

evolution of the Energy Release Rate G. Numerical results are compared to theoretical

predictions, derived from a three-step homogenization scheme inspired by micromechanics

and statistical physics. The PhD manuscript is structured as follow :

Chapter 2 - Crack propagation in heterogeneous materials

This chapter is dedicated to the construction of a powerful perturbative LEFM-based

theoretical framework to model crack propagation in large-scale composite materials

made of toughness heterogeneities embedded in a homogeneous matrix. Two interac-

tion mechanisms are modeled : inclusion crossing, wherein the crack penetrates the

tough inclusion, and inclusion by-pass, where the crack goes around the inclusion and

propagates along the matrix/inclusion interface. We also detail the key points of the

numerical implementation and the unprecedented computational performance offered

by the method.

Chapter 3 - Mechanisms of interaction between a crack and tough inclusions

Interaction mechanisms control both the crack dynamics and the material reinforce-

ment induced by toughness heterogeneities. In this chapter, we focus on periodic

geometries to deeply investigate some fundamental aspects of the crack interaction

problem in model situations. Our work reveals the subtle three-dimensional coupling

between the in-plane and out-of-plane deformation modes of a crack front during its

interaction with a microstructural heterogeneity. The conditions under which one

mechanism prevails over the other and its ultimate contributions to toughening are

thoroughly investigated for a broad range of inclusion shapes and fracture properties.
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Chapter 4 - Homogenization of brittle fracture properties for large-scale

composites

This chapter is dedicated to the question of the effective fracture properties of large-

scale disordered materials. After questioning the definition of the effective tough-

ness, we develop a theoretical framework for the homogenization of brittle fracture

properties, which takes into account the various contribution of crack-tip interaction

mechanisms. The predictions of the effective toughness resulting from the homoge-

nization procedure are compared to numerical simulations modeling the competing

influence of the crossing and by-pass mechanisms for a wide range of microstructural

parameters.

Chapter 5 - Deciphering fracture surfaces of brittle materials

The chapter investigates the impact of material disorder on the scaling properties

of brittle fracture surfaces. A theoretical study allows for the determination of a

structure function for the two-points correlation function of the height of the fracture

surface. Analytic predictions are then compared to the roughness of numerically gen-

erated large-scale fracture surfaces in order to quantify the impact of microstructural

parameters on the surface statistical properties. Finally, we describe which quantities

can be extracted from the surface roughness using statistical fractographic tools.

Chapter 6 - Experimental study of crack propagation in 3D printed heteroge-

neous polymers

This chapter closes the loop and proposes an experimental study of dynamic crack

propagation in 3D-printed polymers. Tensile fracture tests of 3D-printed striped poly-

mers are performed. The test results are analyzed through the means of advanced

digital image correlation methods and provide quantitative measurements of the ef-

fective toughness of composite materials in the most simple case of one-dimensional

heterogeneities.

Chapter 7 - Conclusion and perspectives

Finally, some conclusions are drawn by summarizing the main results of the combined

theoretical, numerical and experimental approaches. Future prospects are also evoked,

by furnishing indications towards more advanced development of heterogeneous brittle

fracture.

Results of Chapters 2 & 3, Chapter 4 and Chapter 6 are submitted for publication

([Lebihain et al., 2020a], [Lebihain et al., 2020b] and [Albertini et al., 2020]). Additional

publications related to Chapter 4 and Chapter 5 are currently in preparation ([Lebihain

et al., 2020d] and [Lebihain et al., 2020c]).
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2.1 Introduction

The development of a microstructure-sensitive theory of fracture has been a query for

decades in solids mechanics. Today, the boom of additive manufacturing techniques and the

emergence of bio-source and recycled composite materials driven by environmental concerns

has increased further the need to rationalize the failure behavior of micro-structured solids

[Reis, 2006; Jo et al., 2008; Dimas et al., 2013; Wang and Xia, 2017]. Yet, a theoretical

framework that allows to predict the toughness of materials from their microstructural

features is still missing.

Since Griffith [1921]’s energy-balance concept put crack advance at the core of the no-

tion of material toughness Gc, the construction of a theoretical framework for toughness

homogenization properties should undoubtedly be based on an accurate description of crack

propagation in presence of material heterogeneities. If recent approaches such as the ener-

getic variational minimization approach to fracture [Francfort and Marigo, 1998] has dis-

played substantial advantages in taking into account material disorder, traditional LEFM
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approach, based on the stress intensity factors (SIF) (Ki,Kii,Kiii) or the elastic energy

release rate G (ERR), still finds a prominent place in the fracture community due to the

maturity acquired by its long history. This approach allows to describe crack propagation

through appropriate propagation criteria. Those criteria link local stress intensity factors

(Kp) or energy release rate G to material toughness KIc or its fracture energy Gc to de-

scribe under which loading conditions [Griffith, 1921; Irwin, 1962] and in which direction

[Erdogan and Sih, 1963; Hussain et al., 1974; Gol’dstein and Salganik, 1974] the crack will

extend. The construction of a LEFM based theoretical framework requires thus three main

ingredients : (i) the access to local SIF (Kp) or ERR G in the presence of material dis-

order, (ii) an accurate description of the local toughness field,Gc, (iii) the development of

adequate propagation criteria taking into account the mechanical anisotropy induced by

material heterogeneities.

Theoretical developments, among which the J-integral method [Rice, 1968], have allowed

the analytical determination of local stress intensity factors for various crack geometries

in two-dimensional and three-dimensional settings. Yet, the presence of heterogeneities

distorts the crack front and surface, which cannot be modeled by standard configurations

any further. It has driven the development of a perturbative LEFM approach pioneered

by Rice [1985] to circumvent those limitations. Based on Bueckner-Rice weight functions

theory [Bueckner, 1970, 1987], this method allows to compute local stress intensity factors

variations (δKp) from any small crack front geometrical perturbations from a reference crack

without resolving the whole elasticity problem. Initially developed for coplanar perturba-

tions of an half-plane crack under tensile loading [Rice, 1985], it has been then extended to

coplanar cracks in mixed mode [Gao and Rice, 1986], various crack geometries (internal and

external circular crack [Gao and Rice, 1987b,a], single and double tunnel crack [Leblond

et al., 1996; Lazarus and Leblond, 2002b; Pindra et al., 2010; Legrand and Leblond, 2010]),

dynamic propagation [Rice et al., 1994; Willis and Movchan, 1995] and even to second-

order in the perturbation [Leblond et al., 2012; Vasoya et al., 2013]. This theory has been

implemented numerically to model coplanar crack propagation in heterogeneous materials

displaying weak toughness discontinuities. It allowed to predict, at first-order, the influence

of crack trapping [Gao and Rice, 1989] microstructural disorder [Roux et al., 2003; Roux

and Hild, 2008; Patinet et al., 2013b; Démery et al., 2014b,a] or inclusion shape [Xia et al.,

2012; Hsueh and Bhattacharya, 2018] on the effective fracture properties of such materials.

For larger perturbations arising from higher heterogeneity toughness contrast, numerical

methods have been developed [Bower and Ortiz, 1990; Lazarus, 2003] to highlight various

toughening mechanisms such as crack bridging [Bower and Ortiz, 1991] or crack fingering

[Vasoya et al., 2016a] and their respective impact of the effective toughness. This perturba-

tive framework has also been successfully compared to experiments of interfacial fracture

set-up [Delaplace et al., 1999; Dalmas et al., 2009; Chopin et al., 2011], especially when

finite-size effects [Legrand et al., 2011; Patinet et al., 2013a] or second-order terms [Vasoya

et al., 2016b] are taken into account.
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Movchan et al. [1998] extended Rice’s coplanar perturbative approach to the fully three-

dimensional problem by estimating the first-order perturbated stress intensity factors, (δKp)

induced by an out-of-plane perturbation of the crack front and crack surface. Explicit for-

mulæ have been derived in the case of the half-plane crack under mixed mode I+II+III. The-

oretical and numerical studies are thus no more constrained to coplanar propagation, paving

the way for the study of the in-plane and out-of-plane coupling of both deformation modes

on crack trajectory. Yet, up to this day, studies dealing with the full three-dimensional

perturbative framework remain scarce. It has mainly been used to study the nucleation of

facets in mode I+III from an instability [Leblond et al., 2011; Leblond and Ponson, 2016;

Leblond et al., 2019]. Among those studies, only Leblond and Ponson [2016] consider a

heterogeneous material, being a single inclusion invariant in the direction of crack propa-

gation. Other studies relying on Gao and Rice [1986] and Movchan et al. [1998]’s formulæ

chose as main hypothesis a complete decoupling of the in-plane and out-of-plane problem

[Ramanathan et al., 1997; Bonamy et al., 2006; Barès et al., 2014], the in-plane perturbation

controlling crack dynamics whereas the out-of-plane perturbation dictates crack trajectory.

Thus, they fail into predicting the effect of the coupling between the in-plane and out-

of-plane perturbations during the interaction of a crack and given inclusions, that will be

shown to play an important role. Moreover, these works do not introduce an accurate de-

scription of the material microstructure and its mechanical properties since microstructural

effects are heuristically embedded in the set of perturbative equations as stochastic noises.

We will show that in a three-dimensional non-coplanar setting crack-inclusion interaction

and their occurrence conditions cannot be captured by such an approach as it was the case

for coplanar mechanisms.

As in any micro-mechanical approach, introducing realistic microstructures requires lo-

cal mechanical properties and especially a local toughness field Gc. Combined with the

estimation of the local stress intensity factors (Kp + δKp) along the crack front, computed

from the perturbative approach [Gao and Rice, 1986; Movchan et al., 1998], such theoretical

framework would still miss a propagation criterion to be complete. In the coplanar case,

the propagation criterion reduces to a kinetic law, linking G and Gc (or equivalently KI and

KIc) to the local speed of the crack front. It can be derived from a viscous regularization

of Griffith’s criterion [Gao and Rice, 1989] in brittle fracture or a Paris’ law [Paris and

Erdogan, 1963; Bower and Ortiz, 1990; Lazarus, 2003] in fatigue. In the three-dimensional

case, the kinetic law has to be combined with a direction criterion, since the propagation

is no more constrained in a plane. In homogeneous media, criteria such as the principle

of local symmetry (PLS) [Gol’dstein and Salganik, 1974], the maximum tangential stress

criterion (MTS) [Erdogan and Sih, 1963] or the maximum energy release rate criterion

(MERR) [Hussain et al., 1974], have been shown to describe accurately the direction taken

by the crack in mixed mode I+II observed in experiments. In the case of heterogeneous

materials, many of these criteria break down due to the introduction of local toughness

anisotropy. A new direction criterion has to be proposed to address the heterogeneous

case and the generalized energy release rate criterion (GMERR) appears to be the most

promising candidate. Initially introduced by He and Hutchinson [1989] for the problem of
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crack deflection at the interface between two materials with dissimilar elastic properties,

it states that the crack propagates in the first direction where G = Gc is achieved, as

a direct extension of Griffith’s and MERR criteria to the anisotropic case. Theorized by

Gurtin and Podio-Guidugli [1998], it has then been validated numerically through phase

field simulations [Hakim and Karma, 2005, 2009] and in the variational approach of fracture

[Chambolle et al., 2009; Bleyer and Alessi, 2018; Li and Maurini, 2019]. Recent experiments

on the tearing of weakly [Ibarra et al., 2016] and strongly [Takei et al., 2013] heterogeneous

sheets tend to confirm the validity of such criterion in the heterogeneous case.

Following this line, the present chapter aims at proposing a perturbative framework

allowing to model crack propagation in three-dimensional heterogeneous brittle materials

exhibiting toughness discontinuities. The proposed approach combines a detailed descrip-

tion of a microstructure constituted by tougher inclusions, a perturbative approach for SIF

evaluation and finally an energetic propagation criterion, to link them together. It allows

us to model two interaction mechanisms : inclusion crossing, when the crack goes through

the defect [Gao and Rice, 1989; Bower and Ortiz, 1990], and inclusion by-pass, where the

crack goes out-of-plane and propagates along the inclusion interface [Clayton and Knap,

2014; Gao et al., 2018a], both observed experimentally for example in fracture tests on clay

(Fig. 2.1). In Section 2.2, fundamental elements and hypotheses of the theoretical frame-

work will be presented : our microstructure and its geometrical and mechanical properties,

the perturbative approach based on the combination of the works of Gao and Rice [1986]

and Movchan et al. [1998] to compute local stress intensity factors for any crack configu-

ration and finally the propagation criterion, which consists in the combination of a viscous

regularization of Griffith criterion with the GMERR [Gurtin and Podio-Guidugli, 1998],

applied via Amestoy-Leblond’s formulæ in three dimensions [Leblond, 1999]. Section 2.3 is

devoted to the numerical implementation of the model in language C. Its numerical perfor-

mances, relying on the execution of fast Fourier transforms, are presented. An acceleration

procedure is then proposed to speed up computations and model the interaction of a crack

with millions of inclusions, making its performances impossible to match with equivalent

finite element simulations. Finally, the potential of the perturbative approach developed in

is illustrated in Section 2.4.

(a) Sane clay (b) Fractured clay

Figure 2.1: Fracture experiments on clay with by-passed inclusion (in beige) and crossed one (in blue)

(courtesy of M. Bornert)
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2.2 Theoretical modeling

In contrast to variational approaches [Francfort and Marigo, 1998; Nguyen et al., 2017b;

Bleyer and Alessi, 2018; Li and Maurini, 2019] and phase field models [Hakim and Karma,

2005, 2009], where both questions of crack initiation and propagation are addressed within

a “global” approach at the scale of the entire structure, the traditional approach of LEFM,

as used in this chapter, relies on local propagation criteria using the Stress Intensity Factors

(Ki,Kii,Kiii) (SIFs) and/or the elastic Energy-Release-Rate G (ERR) in combination with

the material toughness Gc, to predict the crack path and the loading conditions actually

leading to fracture. Any predictive method of crack propagation based on this classical

framework thus requires three main ingredients, be it in the homogeneous or heterogeneous

case, for a mode I loading or mixed-mode conditions :

1. the definition of a given microstructure, which provides, in our specific case, the field

Gc (x) of fracture energy experienced by the crack when propagating. Note that with

some abuse of terminology, we shall refer to the fracture energy Gc ≡ 1− ν2

E
K2

Ic as

the “toughness” of the material;

2. some way of calculating the SIFs (Kp)p∈{I,II,III} and the ERR G along the crack front

F , for any crack configuration differing slightly from a planar crack with a straight

front;

3. some propagation criteria, combining a prediction of the future direction of propaga-

tion and a kinetic law for the crack front advance, based on the previous elements.

The following sections describe how each of these ingredients is accounted for, and how

they are connected to each other. In Section 2.2.1, we describe the microstructures con-

sidered and explain how they are generated, including a discussion of the simplifying hy-

potheses made. Section 2.2.2 expounds the perturbative three-dimensional LEFM approach

used, focusing on the sole case of a semi-infinite crack subjected to some tensile loading.

The combination of these two ingredients within a Generalized Maximum Energy Release

Rate (GMERR) criterion and a kinetic law is explained in Section 2.2.3.

2.2.1 Heterogeneous microstructure and toughness field

2.2.1.a Microstructural properties of the cracked composite

We consider a semi-infinite crack embedded in an infinite periodic body. We adopt the

usual convention of LEFM and thus denote x the direction of crack propagation, y the

direction orthogonal to the crack plane, and z the direction parallel to the crack front F .

Also, the period in the z-direction is denoted Lz. The associated unit vectors are denoted(
ep
)
. At a given time t, the position of the crack front within the crack plane is noted x (t),

the origin O being chosen arbitrarily within this plane (Fig. 2.2.a).

The fracture specimen is made of a heterogeneous material constituted by two phases :

a homogeneous matrix and spherical inclusions. The inclusion distribution D is defined by

the inclusion position (xs, ys, zs)s∈[[1;N ]] and their geometry (Gs)s∈[[1;N ]], which can be either
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c
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(b) Inclusion properties definition

Figure 2.2: (a) Semi-infinite crack facing a polydisperse inclusion distribution with varying toughness; (b)

Fracture properties of the inclusion, the matrix and their interface.

spherical, cubical or ellipsoidal as depicted in Fig. 2.3. These inclusions are characterized

by their typical size d, which is for example the inclusion diameter in the case of spherical

inclusions (mean diameter for polydisperse distribution) or its edge length in the case of

cubical ones (mean edge length for polydisperse distribution). In the following, the spherical

geometry is taken as a reference case.

x

y
z

(a)

x

y
z

(b)

x

y
z

(c)

x

y
z

(d)

Figure 2.3: Various geometries considered in the following manuscript :

spherical (a), cubical (b), ellipsoidal prolate (c) or oblate (d) inclusions

Two main assumptions are made regarding the mechanical behavior of each phase. First,

the matrix and the inclusions are assumed to be isotropically and linearly elastic and share

the same Young modulus E and Poisson ratio ν. Second, the phases are assumed to be

brittle but differ in their fracture properties: the inclusions may be tougher and/or weakly

bonded to the matrix. These properties are characterized by an inclusion toughness Ginc
c

and an interfacial toughness Gint
c as depicted in Fig. 2.2.b.These fracture properties may

vary from one inclusion to another. They are defined as :

{
Ginc

c = Gmat
c (1 + cinc) , cinc > 0

Gint
c = Gmat

c (1 + cint) , cint < 0
(2.1)

where Gmat
c =

1− ν2

E
Kmat

Ic
2
is the matrix toughness.

Limiting our study to toughness heterogeneities, without considering the impact of spatial

variations of elastic properties on crack propagation, is a severe restricting hypothesis of

this work. The impact of elastic heterogeneities on crack propagation have been underlined

in many studies, both on crack trajectory [He and Hutchinson, 1989; Leguillon and Martin,
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2013] and effective fracture properties [Li and Zhou, 2013a,b; Hossain et al., 2014; Wang

and Xia, 2017; Brach et al., 2019b]. Possible extensions of our study incorporating elastic

heterogeneities based on the work of Gao [1991] and Muju [2000] are discussed at the end

of this chapter in Section 2.5.

2.2.1.b Toughness discontinuities : a matter of lengthscale

As explained in the introduction chapter, the question of lengthscales is at the core of

the LEFM framework. Because of the description of a crack as displacement discontinu-

ity, the crack tip stresses become singular [Williams, 1952]. Yet, this stress singularity is

physically unacceptable so that dissipative processes are present in the vicinity of the crack

tip, thus releasing stresses. All these processes are confined in a zone called process zone,

or alternatively fracture process zone (Fig. 2.4.b). An estimation based on a cohesive zone

approach with constant material strength σc has been proposed by Barenblatt [1962] :

ℓfpz =
π

8

(
KIc

σc

)2

(2.2)

Considering the case of brittle failure, we assume that the process zone size ℓfpz is far

smaller than the typical size d of the heterogeneities. Otherwise the interaction from a

crack with inclusion can result in inclusion debonding and microcracking, as numerically

predicted and experimentally observed in quasi-brittle materials such as concrete [Nguyen

et al., 2017b]. Those phenomena are not modeled in our study.

Aside from the brittle failure hypothesis, we seek to model the impact of toughness

discontinuities. It supposes that the crack is not able to detect the continuous variation of

Gc between its value in the matrix, Gmat
c , on the interface Gint

c and in the inclusion Ginc
c .

If we note ℓ∆ the typical lengthscale on which those properties vary (Fig. 2.4.c), ℓ∆ has to

be far smaller than the process zone size ℓfpz. Otherwise, the crack will see a continuous

variation of Gc, which can have tremendous impact on crack-inclusion interaction since the

crack no longer by-passes the inclusion (Chapter 6).

Finally, our assumptions require than we can model fairly well crack propagation in our

material by considering a semi-infinite crack. We thus suppose that the heterogeneity size

d is far small that the size of the structure Lstruct. Otherwise, finite-size effect as reported

in Legrand et al. [2011] could be observed. In the end, we assume that :

ℓ∆ ≪ ℓfpz ≪ d ≪ Lstruct (2.3)

These assumptions are mandatory if one wants to use Gao and Rice [1986]’s and Movchan

et al. [1998]’s perturbative formulæ. They are compatible with a large range of brittle

materials including ceramics, glasses or brittle rocks like limestone.

The proposed description of a typical microstructure of a heterogeneous brittle solid leads

to a three-dimensional toughness field Gc (z, x, y). This field markedly differs from those

considered in previous three-dimensional perturbative studies [Ramanathan et al., 1997;
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Figure 2.4: Illustration of the different lengthscales involved during the interaction of a crack with an

inclusion : the inclusion size d (a), the size ℓfpz of the process zone, within which all inelastic processes are

confined, (b) and the interface width ℓ∆, characterizing the size of the transition region between the

fracture toughness of the matrix and the one of the inclusion (c).

Barès et al., 2014] which used a stochastic field of fracture energy deriving from a statistical

distribution, since we consider here actual microstructures resulting from inclusions with

given shape and fracture properties. Also, the perturbations introduced in the set of LEFM

equations will not be imposed heuristically but deduced from the actual interaction between

the crack and the inclusions. It is worth noticing that the methodology proposed may be

applied to any defect geometry provided that the defect boundary and in particular the

normal vector to this boundary are unambiguously defined, which may be achieved for

instance using level set methods.

2.2.2 Perturbative approach for three-dimensional cracks

2.2.2.a Macroscopic loading

We consider a semi-infinite plane crack in a fracture specimen loaded under tension

(Mode I) with a loading parameter λ. To comply with the experimental set-up used in

Chapter 6, this parameter can be taken as a prescribed displacement. The effect of the

loading conditions and the sample geometry are included in our model via the evolution of

the macroscopic elastic energy release rate G∞ with the crack position x (Fig. 2.2.a) :

G∞ (λ, x) = λ2g (x) (2.4)

where the geometrical contribution g of the ERR derives either from analytical solutions

or from FE simulations. We assume g′ (x) < 0, ∀x that ensures stable crack propagation,

i.e. crack arrest under constant loading λ̇ = 0.

Yet, we want to study the effect of loading conditions and sample geometry through as



2 Crack propagation in heterogeneous materials 35

few parameters as possible. So, following Ponson and Bonamy [2010], we limit our analysis

to short propagation distance x (t) ≪ L, where L is a structural length that emerges from

the variations of g with crack length. Considering a constant loading rate λ̇, we can write

at the first order :

G∞ (λ, x) = G∞ (λ0, 0) +
∂G∞

∂λ

∣∣∣∣
λ0,0

λ̇t+
∂G∞

∂x

∣∣∣∣
λ0,0

x (2.5)

which can be put in the form :

G∞ (t) = G0

(
1 +

vmt− x (t)

L

)
(2.6)

where G0 = G∞ (λ0, x0 = 0) is the initial loading. The structural length L and the average

crack front velocity vm imposed by the loading rate are defined by:

L = −G0/
∂G∞

∂x

∣∣∣∣
λ0,0

, vm = −λ̇
∂G∞

∂λ

∣∣∣∣
λ0,0

/
∂G∞

∂x

∣∣∣∣
λ0,0

. (2.7)

These parameters are of particular interest and have the following physical meanings:

• vm is the crack velocity for a semi-infinite plane crack propagating in a homogeneous

medium. Indeed, in the stationary regime G (x, t) = Gmat
c according to Griffith’s

criterion. If we differentiate this relation in time, it gives us ẋ (t) = vm, which shows

that vm characterizes both a loading and a structural effect : it corresponds to the

mean crack advance for a given sample geometry and a given loading rate ;

• L is a characteristic distance of G∞ variations for a straight front. This character-

istic length allows to model the impact of sample geometry and has implications on

the growth of the in-plane perturbations. If L is low, any planar perturbation δx

around the mean position vmt of the crack is shutdown immediately whereas if L is

large enough, such perturbation can persist during the propagation allowing non-local

interactions along the front [Ponson and Pindra, 2017].

Note that we assume that the macroscopic ERR G∞ is constant along z for the refer-

ence straight plane crack. As noted by Gao and Rice [1989], this means that the crack

perturbation wavelengths are small in comparison to any structural length.

2.2.2.b Perturbative approach for local SIF evaluation

In a homogeneous material, the semi-infinite crack would undergo stable coplanar prop-

agation at the speed vm, and the crack front F would remain straight at the instantaneous

position x(t) = vmt. But material heterogeneities distort the crack front both within the

mean fracture plane (crack trapping) and out of it (crack deflection) (Fig. 2.2). In this

case, the ERR G (z, t) along the crack front differs locally from G∞ (t) and needs to be

computed in order to predict crack propagation through a propagation criterion. As stated

in the chapter introduction, the perturbative LEFM approach can be a powerful theoretical

framework to address this question.
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Bueckner-Rice weight functions theory

Based on Bueckner [1970]’s and Bueckner [1987]’s work on weight functions theory, Rice

[1985] developed a perturbative method, which allows to compute at first-order local stress

intensity factors variations (δKp) from any coplanar crack front perturbations. We present

here shortly the core elements of Rice’s approach revisited in a broader context by Leblond

et al. [1999]. Readers are invited to see Lazarus [2011] for an extensive review.

Following Favier et al. [2006a], we consider a planar crack of arbitrary shape embedded

in an isotropic elastic medium Ω subjected to arbitrary loading : given forces T 0 on ∂ΩT

and given displacements u0 on ∂Ωu. We define kpj (F ,M, τ, τ ′) the p-th SIF for a given

linear position τ ′ along the crack front F resulting from application at point M , located at

a distance r from τ , of a pair of opposite unit point forces equal to ±ej (τ) on the upper

(+) and lower (-) crack surfaces. The applied loading is zero elsewhere (T 0 = 0 on ∂ΩT

and u0 = 0 on ∂Ωu). Those functions are called crack face weight functions (CFWFs) and

depend only on the crack geometry and the definition of the partition ∂ΩT ∪ ∂Ωu of Ω

frontier ∂Ω. The situation is illustrated in Fig. 2.5.

•
M

T = ±ey •τ e1 (τ)

e2 (τ)

e3 (τ)

•
τ 0, δa (τ 0)

z

x

y

Figure 2.5: Arbitrary coplanar crack perturbed in its plane by δa

Let us now consider a small in-plane extension δa (τ) ex (τ) of the crack front F in the

direction perpendicular to its front, under fixed loading condition. An ingenious reasoning

based on an energy balance gives the variation of the crack opening displacement at point

M (z, x, y = ±0). It reads at first order :

δ[|uy|] (M, τ) = 2
1− ν2

E

∫

F
kIy
(
F ,M, τ, τ ′

)
KI

(
τ ′
)
δa
(
τ ′
)
dτ ′ (2.8)

We can link this perturbed opening to local variations of Mode I SIF :

δKI (τ) =
E

8 (1− ν2)
lim
r→0

√
2π

r
δ[|uy|] (M, τ) (2.9)

Leblond [1999] proved in a broader case that this limit is well-defined in the case where



2 Crack propagation in heterogeneous materials 37

δa (τ) = 0, and gives :

δKI (τ) =
1

2π

∫

F

WIy (τ, τ
′)

D2 (τ, τ ′)
KI

(
τ ′
)
δa
(
τ ′
)
dτ ′ (2.10)

where D (τ, τ ′) is the cartesian distance between the two points τ and τ ′ of the crack front

F , and WIy is called the fundamental kernel for Mode I in the y-direction.

The restriction δa (τ) = 0 is then removed using a trick of Rice [1989] decomposed in

two steps :

• for a given point determined by the linear abscissa τ0, we subject the whole front F to a

translatory motion δa (τ0) ex (τ0). This motion brings the point τ0 to its final position

and the crack advance at some arbitrary point τ is δa∗ (τ) = δa (τ0) ex (τ0) · ex (τ).
The corresponding variation of KI is denoted δK∗

I (τ).

• a motion with normal advance δa (τ) − δa∗ (τ) so that the advance is null at τ0 and

the corresponding variation of KI is given by Eq. (2.10).

Finally :

δKI (τ) = δK∗
I (τ) +

1

2π

∫

F

WIy (τ, τ
′)

D2 (τ, τ ′)
KI

(
τ ′
) [

δa
(
τ ′
)
− δa∗

(
τ ′
)]

dτ ′ (2.11)

In the case of an half-plane crack parametrized by τ = z and loaded in macroscopic

tensile mode, we have :

KI (z) = K∞
I and δK∗

I (z) =
∂K∞

I

∂x
δa (z) = − 1

2Lδa (z) (2.12)

WIy (τ, τ
′)

D2 (z, z′)
=

1

(z − z′)2

which finally leads to :

δKI

K∞
I

(z) = − 1

2Lδa (z)− 1

2π

∫

z′

δa (z)− δa (z′)

(z − z′)2
dz′ (2.13)

Initially derived by Rice [1985] for the half-plane crack under tensile loading, this result

has latter been extended to mixed mode loading [Gao and Rice, 1986] and various geometries

such as circular cracks [Gao and Rice, 1987b,a], and tunnel cracks [Leblond et al., 1996;

Lazarus and Leblond, 2002b; Pindra et al., 2010; Legrand and Leblond, 2010]. Favier

et al. [2006a] described the approach in the general case thanks to the introduction of the

fundamental kernels W . The perturbative framework has been extensively used to study

the questions of crack stability [Rice, 1985; Gao and Rice, 1986, 1987b, 1989; Lazarus and

Leblond, 2002b,a; Favier et al., 2006a] , where is investigated whether a given perturbation

vanishes (stability) or instead increases (instability) in time, and bifurcation [Rice, 1985;

Gao and Rice, 1986, 1987b; Leblond et al., 1996; Nguyen, 2000; Lazarus and Leblond,

2002a], where solutions satisfying G = Gc for non-straight configurations are explored.
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In light of our problem, the perturbative framework paved the way for numerical sim-

ulations of coplanar crack propagation in materials displaying toughness discontinuities.

Gao and Rice [1989] shed light on the mechanism of crack trapping, where weakly tough

inclusions block the crack front, making it bow between them. Bower and Ortiz [1990]

extended this numerical method by updating the fundamental kernels during propagation

and make the crack propagate with an implicit scheme. Lazarus [2003] later simplified the

procedure with an explicit scheme. It allowed to illustrate the case of crack interaction

with tougher inclusions, where the crack bows so much around the particle that it leaves

it behind unbroken. The crack surfaces are thus pinned by those intact particles, leading

to crack bridging which was quantitatively described by Bower and Ortiz [1991]. Vasoya

et al. [2016a] described similar mechanism of crack fingering, where large bowing happens

in-between very tough obstacles. These papers highlight rich crack-inclusion interaction

mechanisms and their implications on fracture properties but in the sole coplanar case. We

aim now at investigating the impact of out-of-plane excursions on crack propagation and

the effective toughness of three-dimensional composites.

Three-dimensional perturbative approach

Movchan et al. [1998] extended Rice’s coplanar first-order approach to the fully three-

dimensional problem by estimating the perturbed SIF induced by an out-of-plane pertur-

bation of the crack front and crack surface.

In the following, we note fx (z, t) the in-plane perturbation of the crack front, and fy (z, t)

its out-of-plane perturbation. The in-plane perturbation is defined from the reference crack

position x (t) (see Fig. 2.6) chosen to satisfy the condition 〈fx (z, t)〉z = 0. With these

notations, the coordinates of a point M along the crack front are given by (zM , xM , yM ) =

(z, x (t) + fx (z, t) , fy (z, t)).

Combining the respective work of Gao and Rice [1986] for the in-plane situation and

Movchan et al. [1998] for the out-of-plane problem , we can link those perturbations fx and

fy and the local SIF variations (δKp)p∈{I,II,III}. Complete formulæ are given in Section 8.B

for mixed loading (Mode I+II+III) considering (Kp) but also the T-stresses (Tij) (constant

terms in the asymptotic development of the crack tip stresses) and A-stresses (Ap),(
√
r

terms in the asymptotic development of the crack tip stresses).

Here, we make the following assumptions :

• the propagation is quasi-static, so as any time t we can define the local crack front

position (zM , xM , yM ) and the associated reference crack located at x (t). This as-

sumption is mandatory to use the quasi-static perturbative approach of Gao and Rice

[1986] and Movchan et al. [1998];

• the crack is loaded in pure Mode I macroscopically : K∞
I =

√
E

1−ν2
G∞, K∞

II = 0,

K∞
III = 0. Under this hypothesis, we can put aside all the terms related to macroscopic

KII and KIII in the expressions of (δKp);

• Lz, period in the z-direction but also the size of the biggest wavelength of the geo-
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metrical crack front perturbations, is far smaller than the structural lengths
(
K∞

I

Tij

)2

and
(
K∞

I

Ap

)
. Under these hypotheses, we can neglect the terms related to T-stresses

and A-stresses in (δKp) [Leblond and Ponson, 2016].

The last two assumptions are noncompulsory and are only made to address the difficult

question of the homogenization of fracture properties in a “simpler” setting.

fx(z, t)

fy(z, t)•M

z

x

y

O

-

−Lz

2

-
Lz

2

x(t)

Figure 2.6: Perturbed crack with fx (z, t), in-plane perturbations along the crack front (in thick black),

and fy (z, t), out-of-plane one, around a semi-infinite reference plane crack in x (t)

Under these assumptions, the SIF perturbations read at first-order :





δKI (z, t)

K∞
I (t)

= − 1

2Lfx (z, t)−
1

2π
PV

∫ +∞
−∞

fx (z, t)− fx (z
′, t)

(z − z′)2
dz′

.
δKII (z, t)

K∞
I (t)

=
1

2

∂fy
∂x

(z, t) +
2− 3ν

2− ν

1

2π
PV

∫ +∞
−∞

fy (z, t)− fy (z
′, t)

(z − z′)2
dz′

δKIII (z, t)

K∞
I (t)

= −2 (1− ν)2

2− ν

∂fy
∂z

(z, t)

(2.14)

where ν is the Poisson ratio of the material and (PV) denotes the Cauchy principal value

of the integral.

Simple comments can be made :

• even though the crack is loaded macroscopically in Mode I, local Mode II and Mode

III components can arise from out-of-plane distortions of the crack;

• long-range elastic interactions exist along the crack front through the integral terms.

This may lead to a collective response of the crack during its propagation in a three-

dimensional medium as the behavior of a given point along the front is affected by

the evolution of all the other ones;

• there are no terms proportional to fy in the expression of δKI, and no terms pro-

portional to fx in the expressions of δKII and δKIII, a consequence of the various

symmetries of the problem.
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Formulæ (2.14) permit to compute the SIFs
(
KM

I ,KM
II ,K

M
III

)
, and thus the ERR G at

any location M along the crack front. Since the toughness values along the front and in its

vicinity are determined from the position (z, x (t) + fx (z, t) , fy (z, t)), there remains only

one missing piece in the puzzle, the propagation criterion, which is detailed hereafter.

2.2.3 Propagation criterion in heterogeneous LEFM

In homogeneous LEFM, standard propagation criteria are composed of a direction crite-

rion, which states in which direction the crack extends, and a kinetic law, which tells along

which distance it propagates. In the following subsection, we develop how to connect local

stress intensity factors (Kp) =
(
K∞

p + δKp

)
with the toughness field data Gc (z, x, y) to

determine in the heterogeneous case, the path the crack follows.

2.2.3.a Propagation states

During the propagation, the points along the crack front can be in four different states

depicted in Fig. 2.7 through views in the (x0z) and (x0y) planes :

• State i : the point is propagating inside the matrix and may encounter an inclusion

(Fig. 2.7.a and Fig. 2.7.b);

• State ii : the point has just “landed” on a tough inclusion and is now trapped at its

interface with the matrix (Fig. 2.7.c and Fig. 2.7.d);

• State iii : after depinning from the matrix-inclusion interface, the crack crosses the

inclusion (Fig. 2.7.e and Fig. 2.7.f);

• State iv : after depinning from the matrix-inclusion interface, the crack by-passes

the inclusion, thus leaving the original fracture plane (Fig. 2.7.g and Fig. 2.7.h);.

One may distinguish between two types of propagation states. In State i and State iii

the point M is in a homogeneous phase; whereas in State ii and State iv, it lies on an

interface between two materials having different toughnesses. The local angular distribution

of toughness is here anisotropic.

In homogeneous materials, standard direction criteria have been derived in mixed Mode

I+II to determine in which direction the crack extends. The maximum tangential stress

criterion (MTS) [Erdogan and Sih, 1963] states that the crack propagates in the direction

where σθθ, the local opening stress, is maximal. The maximum energy release rate (MERR)

[Hussain et al., 1974] predicts that the crack goes in the direction where the ERR G is

maximal. The principle of local symmetry (PLS) [Gol’dstein and Salganik, 1974; Cotterell

and Rice, 1980], based on symmetry considerations, tells us that the crack kinks to make

the Mode II vanish. The discrepancy between those criteria has been theoretically discussed

by Amestoy and Leblond [1992]. Differences are so small that experiments may not allow

to choose one over the other, especially between the MERR (energetic criterion) and the

PLS (geometric criterion) whose expansions are identical up the third order in the kink

angle.

The PLS being based on isotropy considerations, it is bound to fail in the heterogeneous
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State I - Matrix cracking
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State II - Pinning
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State III - Inclusion crossing
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(e) (xOz) plane

•M x

y

(f) (xOy) plane

State IV - Inclusion by-pass
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(h) (xOy) plane

Figure 2.7: Four different possible states of a point M along the crack front during the propagation of a

crack in our heterogeneous medium (front configurations extracted from simulations).

case. The three criteria being practically indistinguishable, they are thus all invalid in

the heterogeneous case. Another direction criterion has to be applied to handle toughness

anisotropy.

2.2.3.b A Generalized Maximum Energy Release Rate (GMERR) criterion for

crack direction selection in anisotropic media

Generally, a point along the front is assumed to propagate within the plane orthogonal to

the local tangent to the crack front, as depicted in Fig. 2.8. Here, we consider instead that

each point M on the crack front propagates within the (xMy) plane. This approximation,

that greatly simplifies the numerical computation by avoiding remeshing strategies like the

one used in Bower and Ortiz [1990], Lazarus [2003] and Favier et al. [2006a], amounts

to simplify second-order terms that thus can be neglected in our first-order perturbation

model.

•
M

vvnorm

z

x

Figure 2.8: Propagation imposed for the point M in the plane (xMy) following v instead of the standard

normal direction vnorm

For pedagogical reasons, we shall now comment on the application of the criterion first
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to State II and State IV, then to State I and State III.

Pinning on an interface (State II)

Let us consider the general case where a crack which just has just landed in M on an

inclusion with an attack angle θini at a landing height ylanding = (yp − ys). It faces a

discontinuity with a tangent angle θtan as depicted in Fig. 2.9.

Our direction criterion should tell us at which subsequent propagation direction, noted θ,

the propagation occurs. Even if the MERR does not take into account this heterogeneous

distribution of toughness, it can naturally be extended into the following condition [He and

Hutchinson, 1989; Gurtin and Podio-Guidugli, 1998; Hakim and Karma, 2005; Chambolle

et al., 2009] :

Propagation occurs in the direction θ such that (G−Gc) (θ) be globally maximal.

(2.15)

θtan

θ
•Mθini

ylanding

d
x

y

Figure 2.9: Crack landing on an inclusion with an attack angle θini at a landing height ylanding
corresponding to a local tangent angle θtan

This criterion complies with the theoretical framework developed Francfort and Marigo

[1998] for the variational formulation of brittle fracture. Indeed maximizing (G−Gc) is

equivalent to minimizing the sum of the elastic energy and fracture surface energy :

W (ℓ+ δℓ)−W (ℓ) +Gcδℓ ∼ − (G−Gc) δℓ (2.16)

where W is the elastic energy and δℓ a small elongation of a crack of length ℓ.

This criterion is often found in the literature in a fractional way (G/Gc)max since the

seminal work of He and Hutchinson [1989]. The substractive form (G/Gc)max and fractional

form (G/Gc)max are nonetheless strictly equivalent since the positions of the extrema verify

in both cases G′ (θ)−G′
c (θ) = 0 and that Griffith’s formalism of brittle fracture states that

propagation occurs at G = Gc. We here prefer the substractive form (G/Gc)max, which has

a physical meaning as presented above.

This energetic criterion has been verified experimentally very recently in the tearing test

of brittle polymeric thin sheets [Takei et al., 2013; Ibarra et al., 2016]. It has also been

confirmed numerically through anisotropic phase field simulations [Hakim and Karma, 2005,

2009; Bleyer and Alessi, 2018; Li and Maurini, 2019].

In our case, the anisotropic distribution Gc (θ) is given by the microstructure geometrical
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and fracture properties :





Gc (θ) =Gmat
c , if θ ∈ [−π,−π + θtan[ ∪ ]θtan, π]

Gc (θ) =Ginc
c , if θ ∈ ]−π + θtan, θtan[

Gc (θ) =Gint
c , if θ = −π + θtan or θ = θtan

(2.17)

The variations of Gc (θ) are depicted in Fig. 2.11.a for θtan = 45◦, Ginc
c = 1.4Gmat

c and

Gint
c = 0.8Gmat

c .

Since the point M lies on the interface between two materials with identical elastic

properties, one may apply the so-called Amestoy-Leblond formulæ (see for instance Leblond

[1999]). These formulæ link the local SIFs, K∗, just after an arbitrary kink to those, K,

just before it (see Fig. 2.10). They read :

K∗ = F (α) .K (2.18)

where F = (Fi,j) is a universal operator depending only on the (arbitrary) kink angle α.

These formulæ show that whatever the geometry and the loading, the SIFs right after a

kink depend only on those before the kink and the angle defining this kink. It is also worth

noting that FI,III = FIII,I = 0, which evidences the decoupling of the plane and anti-plane

loading modes.

x

y
α

•
M

Figure 2.10: Schematics of a crack kinking situation where an initial crack suddenly propagates with an

arbitrary large kink α

We use these formulæ to obtain the angular distribution of the SIFs at the tip of an

infinitesimal extension in the direction defined by the angle θ from the values of the SIFs

KM
I , KM

II and KM
III before the kink :




KI (θ) = FI,I (θ − θini)K
M
I + FI,II (θ − θini)K

M
II

KII (θ) = FII,I (θ − θini)K
M
I + FII,II (θ − θini)K

M
II

KIII (θ) = FIII,III (θ − θini)K
M
III

(2.19)

The values of the SIFs KM
I , KM

II and KM
III are provided by the perturbative framework

presented above.

By combining Eq. (2.19) with Irwin’s formula, we obtain (Fig. 2.11.b) :

G (θ) =
1− ν2

E

(
K2

I (θ) +K2
II (θ)

)
+

1 + ν

E
K2

III (θ) (2.20)
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where we have eliminated the Mode III contribution, which is of second order in the per-

turbation since KIII (θ) is itself of first order.

θtan
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Figure 2.11: Application of the GMERR direction criterion: (a) variations of the toughness Gc, (b) the

ERR G and (c) their difference G−Gc with the potential propagation direction θ, for the parameter values

θtan = 45◦, θini = −20◦, Ginc
c = 1.4Gmat

c and Gint
c = 0.8Gmat

c , KM
I = 1.25Kmat

Ic and KM
II = −0.05Kmat

Ic .

We then obtain the difference G−Gc as a function of the angle θ defining the propagation

direction that is shown in Fig. 2.11.c. We clearly see that some preferential directions

emerge from the interaction between the crack and an inclusion. The energetic competition

behind the direction choice is illustrated in Section 3.3.

An interesting point is that we do not need to check every single direction θ, which would

be costly numerically, but only in two directions : the tangent one θtan and the one where

G is maximal, θmax. Indeed, under the following assumptions :

1. the inclusions are tougher than the matrix Ginc
c ≥ Gmat

c and their interface weaker

Gint
c ≤ Gmat

c ;

2. for small enough KII/KI, as in our case, G increases until θmax = θini − 2
KM

II

KM
I

and

decreases after ;

3. we consider angles θ ∈
[
−π

2 ,
π
2

]
;

G − Gc can only be maximal either inside the interval where G is maximum and Gc is

constant (i.e. matrix or inclusion) or on the edges of this interval (i.e. along the interface).

Thus we only have to check the maximum value between (G−Gc) () and (G−Gc) (θmax).

The GMERR criterion finally boils down to :

Propagation occurs in the direction θ ∈ {θtan, θmax} , where (G−Gc) is maximal (2.21)

where θtan is the local tangent angle at the landing point on the inclusion and θmax is the

angle where G is maximal.

Propagation along the interface (State IV)

When the point M is propagating along an interface between the matrix and the inclusion,

we apply the same criterion as before with the sole difference that θini = θtan since kinking

has already occurred. Note that the crack can remain on the interface, stop by-passing the

inclusion and cross it, or leave the interface and go back to the matrix.
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Propagation in a homogeneous phase (State I & III)

When a point M is either in the matrix or crossing an inclusion, the angular distribution

of toughness Gc (θ) is isotropic so that the PLS is applicable. However, since the MERR

and the PLS are in practice almost equivalent for the small kink angles encountered in the

homogeneous phases [Amestoy and Leblond, 1992], we retain the GMERR criterion.

2.2.3.c Viscous regularization of Griffith’s propagation law for brittle fracture

The last missing ingredient of our model is a kinetic law, which links G , the ERR, and

Gc, the local toughness, to v, the local front velocity. Kinetic laws may be derived from

Griffith’s criterion [Gao and Rice, 1989; Patinet et al., 2013b; Démery et al., 2014b; Ponson

and Pindra, 2017] or Paris’s law in fatigue [Bower and Ortiz, 1990, 1991; Lazarus, 2003;

Favier et al., 2006a; Vasoya et al., 2016a]. The brittle case can be found back in the limit of

large Paris exponents [Lazarus, 2003]. The kinetic law used here falls into the first category

and derives from two key relationships : the Griffith criterion and the variation of toughness

with crack speed.

First, all the points along the crack front are assumed to follow Griffith’s condition

[Griffith, 1921]:

G = Gc (v) (2.22)

where G does not depend on v under the quasi-static propagation hypothesis. We thus

assume that the crack velocity v ≪ cR, where cR is the Rayleigh wave speed.

We then postulate that the toughness is a given function of the crack speed, Gc = Gc (v).

Depending on the material, the function Gc (v) may take different forms. Its linearization

around the mean crack velocity vm provides a linear kinetic law:

G = Gc (v) = Gc (vm)

(
1 +

v − vm
v0

)
⇔ v =

[
vm + v0

G−Gc (vm)

Gc (vm)

]+
(2.23)

where v0 = Gc (vm) /
∂Gc

∂v

∣∣
vm

is a characteristic velocity of the material emerging from the

rate-dependency of its toughness and [·]+ the positive part function.

This equation of motion has been largely used in the literature (see for example Gao

and Rice [1989]; Ramanathan et al. [1997]; Ponson and Bonamy [2010]) and was recently

shown to capture quantitatively the relaxation dynamics of a crack depinning from a single

obstacle [Chopin et al., 2018]. More complex kinetic laws extracted from experiments can

be used in order to grasp finer effects [Ponson, 2009; Scheibert et al., 2010; Vasudevan et al.,

2019], for instance :

G = Gc (v) = G0
c

(
1 +

v

vc

)γ

⇔ v = vc

[(
G

G0
c

) 1
γ

− 1

]+
(2.24)

where vc is a material characteristic velocity. It can be linked to v0 since for such kinetic

law v0 = Gc (vm) /
∂Gc

∂v

∣∣∣∣
vm

=
vc + vm

γ
and G0

c = lim
v→0

Gc (v).

Subcritical or fatigue propagation has not been considered in this study. It is a natural

extension of our work and may have implications on crack propagation since “memory”
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effects have been highlighted for fatigue cracks in heterogeneous materials for the case of

coplanar propagation [Pindra et al., 2008].

2.2.4 Validity range of the perturbative approach

The perturbative procedure used requires
∣∣∣∂fx∂z

∣∣∣≪ 1,
∣∣∣∂fy∂z

∣∣∣≪ 1,
∣∣∣∂fy∂x

∣∣∣≪ 1, which raises

the issue of the validity range of our approach. Gao and Rice [1989] studied the validity

range of the first-order perturbation for coplanar crack propagation. They showed that

for inclusions with Ginc
c ≃ 4Gmat

c , the perturbative approach gives accurate results when

compared to boundary elements simulations. Above this toughness level, the results of the

perturbative framework are no more quantitatively correct and can even be qualitatively

wrong. We thus limit our study to such toughness levels, ensuring the condition
∣∣∣∂fx∂z

∣∣∣≪ 1.

Regarding the out-of-plane perturbations of the crack, Eq. (2.14) provides a good esti-

mate of the SIFs even for large values of the slope θ = arctan
(
∂fy
∂x

)
, provided it is corrected

through the use of Amestoy-Leblond’s formulæ [Amestoy and Leblond, 1992; Leblond, 1999]

that provide the SIFs just after an abrupt, arbitrary change of direction of the crack. The

necessary procedure of correction is described in Section 8.A. This procedure permits to

handle the large slope which may arise during the by-pass of inclusions. It is also explained

in the same appendix that even with the procedure of correction, the mode III contribution

is of second-order in the expression of the ERR G, due to the decoupling of the anti-plane

shear mode with respect to the tensile and plane shear modes in Amestoy-Leblond’s for-

mulæ. Neglect of this contribution implies that the derivative
∂fy
∂z plays no role in the

model.

2.3 Numerical implementation

Our LEFM-based theoretical model has to be numerically implemented. As in 2.2, this

numerical implementation shall allow us to get efficiently the data of Gc and G at all sim-

ulation time-steps. Large-scale microstructure generation is presented in Section 2.3.1 for

considered inclusion geometries (Fig. 2.3). In Section 2.3.2, we describe how to make the

crack propagate through an efficient explicit scheme based on the fast Fourier transform

computation of the local SIF (Kp). Section 2.3.3 is devoted to the development of an accel-

eration procedure based on the physics of depinning transition to increase both robustness

and efficiency of the proposed numerical method.
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2.3.1 Microstructure generation

We have to keep in mind that we want to model crack propagation in large-scale hetero-

geneous materials where the numerical performances offered by the perturbative approach

are unreachable with other numerical methods such as cohesive zone models or phase-field

simulations. Thus microstructure generation procedure has to be efficient and must gener-

ate, in reasonable computing time, microstructures containing millions of inclusions for a

broad range of inclusion density, size disorder and various geometries.

2.3.1.a Spherical inclusions

First let us tackle the case of spherical inclusions, which are the reference geometry in

our study. In the following, we are considering only non-overlapping inclusions, the only

case our model can currently handle.

Random isotropic non-overlapping microstructures have been built using a simple RSA

algorithm, which consists in placing randomly and sequentially non-overlapping spheres

into a fixed volume [Widom, 1966]. For each new spherical inclusion added in the volume,

random coordinates are drawn from a uniform distribution. The intersection between the

inclusion and those surrounding it is then tested. If the inclusion does not overlap with

any previously generated one, it is added to the distribution and a new inclusion addition

is considered. This algorithm allows to produce large-scale distributions (Lz × Lx × Ly =

1024d × 1024d × 20d) at low densities (up to 25%) (Fig. 2.12.a), or highly polydisperse

microstructures (Fig. 2.12.c). At higher densities of monodisperse microstructures, the

algorithm does not converge and other generation procedures have to be implemented.

For higher densities (up to 50%) at low size dispersion levels (Fig. 2.12.b), we used the

procedure developed by Delarue and Jeulin [2011], which starts from a dense ordered mi-

crostructure as CFC (cubic face centered) and introduce disorder by deleting some spheres

at random or by randomly moving some of the remaining spheres. These efficient methods

allow us to generate isotropic disordered microstructures on large scales in relatively short

computation times.

(a) (b) (c)

Figure 2.12: Spherical microstructures generated for our simulations : monodisperse spherical distribution

at 5% density (a), monodisperse spherical distribution at 50% density (b) and polydisperse spherical

distribution at 25% density (c)
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Polydisperse microstructures, as displayed in Fig. 2.12.c, are generated following a log-

normal distribution for inclusion diameters. We ensure that the mean diameter is the same

as in the case of mono-disperse microstructure but we vary the diameter dispersion, thus

fixing the log-normal distribution characteristics.

2.3.1.b Cubical and ellipsoidal distributions

Aside from spherical distributions, we are considering random arrangements of cubical

and ellipsoidal inclusions. In the case of cubical inclusion, we are considering cubes of mean

edge length d which are rotated by an angle β around the z-axis. It considerably simplifies

the inclusion-inclusion overlapping test required by generation procedure. Consecutively,

as in the spherical case, RSA algorithm is used at low densities (up to 20%) or high size

dispersion and the procedure presented by Delarue and Jeulin [2011] is used for higher

densities (up to 35%).

For ellipsoidal inclusions, the inclusion-inclusion overlapping test is significantly more

complicated than in the spherical and cubical cases since it involves a minimization proce-

dure [Anoukou et al., 2018]. Thus generation of large-scale random isotropic arrangements

of ellipsoidal inclusions proves to be numerically costly. If the implementation of such a

procedure can be accelerated through GPU parallelization, it is out of the scope of our

study and a compromise must be found to investigate textural effects on crack trajectory

and effective fracture properties of heterogeneous materials. Starting from an isotropic

distribution of spherical inclusions, we perform on each inclusion a composition of three

dilations in the main directions ez, ex, ey, to give to the inclusion the shape we want, and

a rotation, whose center is the position of the inclusion, to give to the distribution the

texture we aim at. The isotropy of the distribution is lost but large-scale textured distri-

bution of ellipsoidal inclusions are generated in a small computed time. Examples of such

distributions is given in Fig. 2.13.b and Fig. 2.13.c.

(a) Monodisperse cubical

distribution at 25%

density

(b) Monodisperse

ellipsoidal distribution

textured at 25% density

(c) Monodisperse

ellipsoidal distribution

textured in the x-direction

at 25% density

Figure 2.13: Isotropic microstructures with cubical inclusions (a) and textured microstructures of

ellipsoidal prolate inclusions oriented in the x-direction (b) or in the y-direction (c)
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2.3.2 Explicit scheme for crack propagation

2.3.2.a Crack front meshing

One of the main advantages of the perturbative approach in tensile Mode I loading

with toughness heterogeneities is that we only have to mesh the crack front. Note that

in the presence of macroscopic Mode II or Mode III [Leblond and Ponson, 2016] or in the

case where the influence of T-stresses are considered, non-local terms over the whole crack

surface appear in the perturbed SIF formulæ. The crack surface has then to be meshed,

increasing the numerical cost of the procedure. In the case of elastic heterogeneities [Gao,

1991; Muju, 2000], the inclusions have a volume effect on the SIF and therefore on crack

propagation and the whole domain has to be meshed, leading to a large increase in the

computational cost of the perturbative approach. In the case considered here of toughness

heterogeneities with uniform elastic properties, the crack only “sees” an inclusion when it

interacts with it, decreasing by a large amount the complexity of our algorithm.

The crack front is discretized in N equidistant points (Mi)i∈[1,N ], separated by a distance

∆z = Lz

N (Fig. 2.14). Their position
(
f i
x, f

i
y, zi

)
is tracked at each time step, the subsequent

position being inferred from the instantaneous speed vector vi that points along the direction

θi = arctan
(
∂f i

y

∂x

)
in the plane (xMiy) thanks to the criterion presented in Eq. (2.21) and

Eq. (2.23).

•
• • •

Mi
•

Mi+1

• • • •

∆z
z

x

Figure 2.14: Crack front discretization with a spatial step ∆z

2.3.2.b Perturbed stress intensity factors computation

The core of our computational model is the fast computation of the local SIF along the

front through explicit formulæ. These equations relate the geometrical perturbations of the

front to the distribution of SIF, and involve integrals along the whole crack front (2.14).

Such integrals are computationally costly as their computational time grows as O
(
N2
)
,

where N is the number of discretization points along the front. However, by considering a

periodic medium along the crack front direction, these non-local terms take the following

local form in the Fourier space.

Indeed, if we define φ̂ the z-Fourier transform of real function φ by the equivalent for-

mulæ :

φ̂ (k, t) =

∫ +∞

−∞
φ (z, t) e−ikzdz ⇔ φ (z, t) =

1

2π

∫ +∞

−∞
φ̂ (k, t) e+ikzdk (2.25)
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then the long-range operator reads in the Fourier space :

Lf (z, t) = PV

∫ +∞

−∞

f (z, t)− f (z′, t)

(z − z′)2
dz′ ⇔ L̂f (k, t) = |k|πf̂ (k, t) (2.26)

This property allows us to compute efficiently the long-range parts of the SIF perturba-

tions through direct and inverse fast Fourier transforms (FFTs), reducing the computational

cost from O
(
N2
)
to O (N log(N)). To take optimum advantage of the FFT algorithm, we

try to keep the number of crack front points as a power of 2, N = 2p.

2.3.2.c Detailed procedure for the execution of a single propagation step

The computation of the crack evolution employs an explicit scheme that predicts the

configuration of the front at time t+∆t from its configuration at time t. Each point along

the crack is characterized by the parameters x (t), fx (z, t), fy (z, t) and θ (z, t), from which

the subsequent position is inferred.

GEOMETRICAL	

CONFIGURATION	OF	

THE	CRACK	FRONT

PERTURBATED	

SIF	ALONG	

THE	FRONT

TIME	STEP	FOR	
CONVERGENCE

∆t

PROPAGATION	

DIRECTION		

&	CRACK	VELOCITY	

v

fx, fy, θ, Gc

GEOMETRY	UPDATE

PROPAGATION		

CRITERION	

KI ,KII ,KIII

CONVERGENCE	

CRITERION	

Figure 2.15: Schematics of the explicit numerical scheme implemented in our simulations.

In the following, the term local means that we are looking at a given point M of the

crack front. At each time step t :

1. we get the geometrical configuration x (t), fx (z, t), fy (z, t), θ (z, t) at each point of

the crack front ;

2. from it, we compute the local SIF perturbations (Kp) using Eq. (2.14) ;

3. those local SIF and the data of the macroscopic current loading G∞ (t) are used to

get the local angular distribution of G from Eq. (8.6). The local angular distribution

toughness Gc is given by the position of each point related to the microstructure. The

local propagation direction θ (z, t) + δθ (z, t) is computed from the GMERR criterion

of 2.21 and the local crack velocity v (z, t) is given by the kinetic law (Eq. (2.23)).

The procedure gives us the local velocity vector v (z, t) ;

4. convergence criteria and an acceleration procedure set a propagation time-step ∆t,

which ensure robustness and is described in Section 2.3.3 ;
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5. the geometrical configuration of the front is updated by making each point of the

crack front propagate by the distance v (z, t)∆t according to an explicit numerical

scheme.

The procedure goes on until the whole domain is cracked.

2.3.3 Accelerating procedure for large-scale simulations

Explicit numerical schemes are often preferred to implicit schemes since they are easier

to implement. One of their major drawbacks is that they require a small time step ∆t to

ensure numerical stability and control numerical errors. Acceleration procedures are usually

developed to circumvent those limitations and speed up simulations. In this regard, we

here detail the possible source of numerical instabilities and derive a convergence criterion

adapted from a Courant-Friedrichs-Lewy condition. This criterion proves too restrictive

since it does not take into account the physics of crack propagation and its intermittent

dynamics, thus spoiling badly numerical performances. An acceleration procedure based

on the physics of depinning is then developed, allowing unprecedented performances for

large-scale simulations.

2.3.3.a Absolute convergence criterion

In the following, all results have been derived for coplanar propagation and have been

shown to work numerically in the non-coplanar case.

As explained before, the use of an explicit scheme to make the crack propagate is expected

to trigger numerical instabilities, namely spatial oscillations on the long-range interactions

in the SIF perturbations. These oscillations appear as soon as the crack encounters a

toughness discontinuity at some point (Fig. 2.16.a) : when a point lands on an inclusion,

the toughness it sees suddenly increases. Thus the point stops moving whereas its neighbors

keep propagating (Fig. 2.16.b), inducing oscillations in the non-local part of the perturbed

SIFs and subsequently on G (Fig. 2.16.c). For a given time step ∆t, we want to ensure that

those oscillations decay in time (stability).
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Figure 2.16: Numerical oscillations induced on the long-range interactions during the pinning on an

inclusion (a) : when the crack meets the inclusion, the local velocity becomes zero (b), triggering

oscillations on the long-range interactions when the crack propagates further (c).

Standard numerical schemes for crack propagation in a perturbative approach try to

avoid such numerical errors by introducing a maximum advance criterion, which bounds the
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amplitude of the oscillations [Bower and Ortiz, 1990; Lazarus, 2003; Patinet et al., 2013b;

Ponson and Pindra, 2017]. In our evolution problem, we chose to introduce a maximum

time-step criterion designed to prevent the occurrence of such errors. This time-step is

based on the analysis of the coplanar model which follows :

1

v0

∂fx
∂t

(z, t) = − 1

π
PV

∫ +∞

−∞

f (z, t)− f (z′, t)

(z − z′)2
dz′ + ηc (z, x+ fx (z, t)) (2.27)

where ηc describes the variations of toughness in the propagation plane.

After discretization along the z-axis with a step ∆z, the integral follows :

− 1

π
PV

∫ +∞

−∞

f (z, t)− f (z′, t)

(z − z′)2
dz′ ∼− 1

π

(∫ z−∆z

−∞
+

∫ +∞

z+∆z

)
f (z, t)− f (z′, t)

(z − z′)2
dz′

+
∆z

π

∂2f

∂z2
(z, t)

(2.28)
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Figure 2.17: (a) & (b) Non-oscillatory behavior for ∆tstep = ∆tconv; (c) & (d) oscillatory behavior for

∆tstep > ∆tconv.

As the curvature term is responsible for the numerical instabilities, a Courant-Friedrichs-

Lewy convergence condition. :

∆tconv = α v0∆z (2.29)

largely used in diffusion problems turns out to ensure convergence where the constant α is

set here to 0.2.

Examples of propagation with ∆tstep = ∆tconv and ∆tstep > ∆tconv are given in Fig. 2.17.

From our experience, one of the advantages of a time-step based convergence criterion over
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a maximum advance one [Bower and Ortiz, 1990; Lazarus, 2003; Patinet et al., 2013b;

Ponson and Pindra, 2017] is that convergence does not depend on inclusion properties.

2.3.3.b Other restraining conditions

Other conditions are imposed to the numerical scheme to ensure realistic and accurate

modeling of the crack evolution:

• Interaction with microstructure – We make sure that no point on the crack front

crosses a toughness discontinuity during a time-interval, as its behavior at such inter-

faces largely controls the interaction mechanism between the crack and the inclusion.

As a result, the time step may be adjusted to a value ∆tinter to ensure that the crack

lands exactly on the interface;

• Maximum advance – We introduce a maximum value ∆xmax = ∆z/5 of the in-

cremental crack advance to avoid sudden variations of the non-local contributions to

the SIFs perturbations (see Section 2.3.3.a). This introduces a maximum time step

∆tadvance =
∆xmax

max
F

v which is generally much larger than ∆tconv;

• Maximum load variations – A maximum value ∆Gmax of the load variation be-

tween subsequent time steps is introduced to avoid sudden drops of G∞ during the

depinning phases. According to Eq. (2.6), this leads to an additional time scale

∆tloading = ∆Gmax/G
mat
c L/vm.

During each time interval, the time-step ∆t is chosen as the smallest of those defined

previously:

∆tstep = min (∆tconv,∆tinter,∆tadvance,∆tloading) (2.30)

2.3.3.c Accelerating procedure

We saw that a time-step based convergence criterion ensures convergence no matter the

inclusion fracture properties. What constitutes an asset in regards to numerical stability is

actually detrimental to numerical performances.

Indeed inclusion properties naturally influence the macroscopic loading to be applied to

induce material failure. In the limit of weak inclusions, the loading required to break a

matrix of toughness Gmat
c reinforced by a periodic array of tougher inclusions of density

ρ and toughness Ginc
c . The required loading to fracture this media reads [Gao and Rice,

1989] :

G∞
frac = Gmat

c

(
1 + ρ

Ginc
c −Gmat

c

Gmat
c

)
= Gmat

c (1 + ρcinc) (2.31)

Starting withG∞ = Gmat
c , the loading has to be increase up toG∞

frac. This loading variations

happens with a characteristic time :

∆tincr =
L
vm

ρ cinc (2.32)

Since we often work in the limit where vm → 0 (typically vm ∼ 10−8v0) and large L ≫ d to

suppress the impact of the structural problem (typically L ∼ 103 − 106d), several order of
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magnitude separates ∆tconv from ∆tincr.

Moreover, crack propagation in heterogeneous brittle materials is highly intermittent

[Bonamy et al., 2008; Barès et al., 2014] and can be viewed as a depinning transition. At

a given stable crack position, the loading increases until the crack jumps from its stable

position to the next stable one. Crack propagation is thus a succession of long pinned

configurations separated by short depinning events called avalanches. If we consider a

constant time-step ∆tconv, all the time-steps calculated during pinned configurations are

useless. Fig. 2.18 illustrates the intermittent dynamics in coplanar propagation, which are

also found in the non-coplanar case.
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Figure 2.18: Coplanar propagation (a) in heterogeneous brittle materials displaying crack jumps (b),

signature of the intermittent dynamics (c)

Finally, it all comes down to the question : how does one compute efficiently the pinned

configurations where the crack does not propagate but the loading has to increase ? With a

constant time-step, determined to ensure convergence, the numerical cost is prohibitive since

nothing happens during most of the time steps as illustrated in Fig. 2.19.b. An acceleration

procedure is mandatory to overcome the limitations imposed by the intermittent dynamics

of crack propagation in disordered systems.
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Figure 2.19: Crack front propagation during a pinned configuration (a) with the associated number of

numerical steps computed to model such small crack advance (b)

A naive solution would be to increase the time-step during those phases. Yet, as pictured

in Fig. 2.19.a, pinned configurations often correspond to configurations where part of the

front is blocked on a toughness discontinuity, where G < Gc. As explained before, increasing

the time-step above ∆tconv would induce numerical oscillations in the SIF computation
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(Fig. 2.17.c). The key component is to either make the crack propagate or increase brutally

the loading, but never do it simultaneously. The conditions under which such brutal loading

increase should occur has to be described.

Our acceleration procedure is constructed on the following scheme, summarized in Fig. 2.20.

Let us consider two fronts F1 and F2, separated by Nacce simulation steps (typically

Nacce = 20). F1 at time t1 was at x1. F2 at time t2 is now at x2. At t = t2 :

1. if no points along the crack front has been blocked (null velocity) during the whole

last Nacce steps, nothing happens ;

2. else, at least a point has been blocked the whole last Nacce steps. We then look at

the mean crack velocity during those steps i.e. 〈v〉 = (x2 − x1) / (t2 − t1) :

(a) if 〈v〉 ≥ vcrit, we can consider that the crack front progresses efficiently enough

to allow good numerical performances ;

(b) else we make a sudden loading increase by a value ∆Gacce by jumping in time

by an amount ∆tacce =
L
vm

∆Gacce

G0
. We then re-estimate all local SIFs and make

the crack propagate following the standard procedure.

HAVE	ONE	POINT	BEEN	BLOCKED	ON	AN	INCLUSION	

DURING	THE	LAST	NACCE	STEPS	?

fx, fy, θ, Gc

DOES	THE	CRACK	FRONT	PROGRESS	AT	

A	REASONABLE	VELOCITY	?

THE	LOADING	IS	SUDDENLY	
INCREASED	BY											.∆Gacce

THE	STEP	IS	COMPUTED	
	AS	USUAL

YESNO

YES NO

Figure 2.20: Schematics of the accelerating procedure implemented in our simulations

We take, vcrit =
∆Gmax

2G0
v0 and ∆Gacce =

∆Gmax

2 . In that case, the global error we make

on the value of the macroscopic loading at the depinning transition is at most ∆Gmax.

It also means that, during pinning events, in the part which is propagating at G = Gc,

the acceleration procedure ensures that |G−Gc| ≤ ∆Gmax. Our procedure makes thus

Griffith’s criterion locally satisfied at a precision ∆Gmax/G
mat
c , allowing us then to bound

our numerical errors.

Finally, we also allow the crack to ignore the convergence condition in Eq. (2.29) when

the crack front is almost flat i.e. when the crack velocity is almost constant along the crack

front. This situation might happen at low inclusion density and in this case, the crack

might propagate at a speed vm ≪ v0, which would be costly. Under the flat velocity profile

condition, we can ascribe the mean speed to all crack points, and thus do not propagate any

numerical errors, while substantially increasing the numerical performances. This condition
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reads :

if ∀z, |v (z)− 〈v〉z| ≤ pv 〈v〉z , then ∀z, v (z) = 〈v〉z (2.33)

where pv is a numerical convergence parameter which is typically taken as pv = 10−2, which

constitutes a very strong condition.

Fig. 2.21 illustrate the performance of our global acceleration procedure on the coplanar

propagation presented in Fig. 2.19 for a precision ε = ∆Gmax/G
mat
c = 10−3. The number

of steps performed to make the crack propagate is tremendously reduced (from 107 to

104 steps for vm = 10−4v0 and L = 102d, which are much looser loading conditions as

in our real simulations) and the computation time is diminished accordingly. Moreover,

our acceleration procedure allows to decouple the computation time from those loading

conditions vm and L. A study of the algorithm complexity of the proposed computational

method is conducted in 8.C.
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Figure 2.21: Macroscopic loading (a) and simulation steps count (b) for reference simulation and

accelerated one with ∆Gmax/G
mat
c = 10−3

2.4 Crack propagation in large-scale disordered systems : a

unique feature backed up by unprecedented numerical

performances

The newly developed numerical method builds on analytical expressions of the SIFs, thus

allowing an efficient computation of quantities of interest like the ERR from the discretiza-

tion of the front only. As a result, crack propagation in heterogeneous media including as

many as one million inclusions can be computed in only a few hours using a single core

computer, a feature that FEM-based methods cannot currently emulate. It allows to de-

scribe the interaction of a crack through two possible interaction mechanisms : inclusion

crossing where the crack penetrates the inclusion and inclusion by-pass where the crack

goes out-of-plane and propagates along the interface matrix/inclusion. Such interaction on

medium-scale microstructure is illustrated in Fig. 2.22 at various stages of the propagation

of the crack.

Large-scale simulations, where the crack interacts with millions of inclusions, allow us to

produce fracture surfaces with a size similar to the one that can be observed experimentally.

An example of a numerically produced fracture surface is given in Fig. 2.23.
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Figure 2.22: 3D fracture simulations of medium-sized specimens illustrating the interaction mechanisms

modeled in the newly developed numerical method : crack surface after propagation through a matrix with

randomly distributed tough inclusions, that have either been by-passed (dark grey) or crossed (light grey).

Figure 2.23: 3D fracture simulations of large-scale specimens with disordered microstructures illustrating

the computational performance of the newly developed numerical method. This fracture surface

topography characterized by its height map h(x, y), normalized by the inclusion diameter d, results from

the interaction of the crack with about 106 tough inclusions. The computation takes less than one hour on

a single core computer.
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2.5 Concluding remarks

A semi-analytical method for crack propagation displaying unprecedented per-

formances

In this chapter, we described a new LEFM-based theoretical framework allowing to model

crack propagation in three-dimensional heterogeneous brittle materials. The considered mi-

crostructures are constituted of a homogeneous matrix populated by spheroidal, ellipsoidal

or cubical inclusions. Both constituents share the same elastic properties but the inclusions

may be tougher than the matrix and the interface separating the inclusion from the matrix

can be weaker. The proposed approach predicts the propagation of a semi-infinite crack

loaded in tensile Mode I and in particular the front distortion both within and out of the

initial crack plane as it interacts with the inclusions. The tougher inclusions hinder the

propagation of the crack, making it bow in-plane (crack trapping) and wander out-of-plane

due to inclusion by-pass (crack deflection). The geometrical perturbations of the crack front

can ultimately be linked with local SIF variations within the perturbative LEFM approach

developed by Gao and Rice [1986] for the in-plane deformation mode and Movchan et al.

[1998] for the out-of-plane mode. A propagation criterion, resulting in the combination

of a viscous regularization of Griffith’s criterion and the generalized maximum energy re-

lease rate (GMERR) criterion, allows us to describe the interaction between a crack and

an inclusion through two mechanisms : inclusion crossing, where the crack penetrates the

inclusion, and inclusion by-pass, where the crack goes out-of-plane and propagates along

the weaker interface.

This model is implemented numerically with an explicit scheme in language C. Consider-

ing the case of a crack loaded in tensile mode interacting with toughness heterogeneities, the

first-order perturbative approach allows us to mesh only the crack front, which results in a

major decrease in computational time as compared to other simulation techniques (FEM,

X-FEM, cohesive zone or phase field models). Those remarkable performances are increased

even further thanks to the convenient form of the interaction kernels in the Fourier space,

allowing a computation of the local SIF with a FFT algorithm. An acceleration procedure

has been developed to make the simulations even faster. Based on the physics of crack

depinning, it allows us the reduce significantly the computational time of our simulations

while controlling at the same time the order of magnitude of the computational errors. The

current implementation allows us to describe the interaction of a crack with millions of

tougher inclusions in only a few hours on a laptop computer for a monocore simulation.

Such performances are unprecedented and pave the way for addressing the difficult questions

of fracture properties homogenization, crack dynamics and fracture surface roughness.

Current limitations of the method and potential extensions

Our model displays remarkable advantages, yet it relies on strong hypotheses that impose

many limits on our approach. Those limitations can be sorted into three main categories :

1. Nature of the microstructural heterogeneities : one of the strongest hypothe-

ses consists in assuming that both the matrix and the inclusions share the same

elastic properties and only differ in their fracture properties. It presents the advan-
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tage that the crack only sees a defect when it lands on the inclusion since toughness

heterogeneities do not have any long-range effect, in contrast with elastic hetero-

geneities. Yet elastic heterogeneities have been shown to impact crack trajectory [He

and Hutchinson, 1989; Leguillon and Martin, 2013] and effective fracture properties

[Li and Zhou, 2013a,b; Hossain et al., 2014; Wang and Xia, 2017; Brach et al., 2019a].

For example, stiffer heterogeneities have been shown to repel the crack while more

compliant ones attract it. Elastic discontinuities can trigger not only crack deflection

but also crack arrest through denucleation-renucleation processes. The perturbative

approach developed in our model, which allows the estimation of SIF perturbations

from geometrical crack perturbations, could be coupled at first-order to the formulæ

of Gao [1991] extended by Muju [2000], which provide SIF perturbations induced by

elastic heterogeneities. In that case, only continuous variations of elastic and frac-

ture properties could be considered since neither the current perturbative framework

nor Amestoy-Leblond’s formulæ can deal with elastic discontinuities. Such formal-

ism would also be extended to weakly anisotropic materials and homogeneous media

displaying residual stresses. The computational cost would be thus increased but re-

markable performances could still be reached through hardware-based optimization

such as GPU parallelism ;

2. Crack-inclusion interaction mechanisms : crack trapping by tougher inclusions

and crack deflection by inclusion by-pass are the only two mechanisms considered in

this study. Bridging mechanism [Bower and Ortiz, 1991], where two separate regions

of the crack coalesce around the particle and leave it unbroken in its wake, is out

of reach of our first-order approach. Crack nucleation and inclusion debonding in

the vicinity of the crack tip are also out of the study’s range. Nucleation processes

could be addressed within LEFM through the Leguillon and Martin [2013]’s double

criterion. However, dealing with the interaction between two cracks is not possible

yet within the current perturbative approach. Crack branching, which can happen

at the interface with an inclusion [Xu et al., 1998], cannot be modeled either in our

perturbative approach. For those mechanisms exhibiting more complex topological

crack configurations, the pertubative approach may not be the appropriated tool and

phase field modeling seems to be a more suitable framework [Nguyen et al., 2015,

2016, 2017b] ;

3. Loading type : this study only considers macroscopic tensile loading. It can be

however extended to plane (Mode II) and anti-plane shear (Mode III) loading since

Gao and Rice [1986] and Movchan et al. [1998] already provide the suitable formulæ

for the half-plane crack. In that case, the crack surface has also to be meshed and

SIF perturbations involve integral over the whole crack surfaces. It may be Future

developments may provide rich insights on crack fragmentation in Mode I+III in

presence of disorder as suggested by the preliminary results of Leblond and Ponson

[2016]. The same remarks can be made for the T-stresses and A-stresses on the

behavior of cracks.
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3.1 Introduction

Predicting at which loading levels does crack propagation start and the path the crack

will follow during the subsequent propagation is of utmost importance in materials science

since the design and reliability of macroscopic structures often depend on it. Understand-

ing how material heterogeneities impact crack trajectory and effective fracture properties

is a first but mandatory step to construct a theoretical framework rationalizing the failure

behavior of heterogeneous solids. It also paves the way for the development of tailored

micro-structured materials where the main features of crack propagation, its trajectory

(propagation along a chosen path) or its dynamics (sudden propagation or progressive

crack advance) can be controlled. Engineers would thus have at their disposal a vast range

of meta-materials with either increased fracture resistance, where cracks would only prop-

agate at high loading levels, or a better crack tolerance, where cracks would not propagate

suddenly through the whole sample but rather step by step with a controlled dynamic.

The impact of heterogeneities on crack trajectory has been extensively studied since the

seminal works of He and Hutchinson [1989] and Hutchinson and Suo [1991], who stud-

ied two-dimensional crack kinking at the interface between materials with different elastic

and fracture properties. A wide range of materials displays toughness anisotropy from ex-

perimental measurements : geological materials as granites [Nasseri and Mohanty, 2008;

Kataoka et al., 2015], shales [Chandler et al., 2016; Li et al., 2019], single crystals [Ebrahimi

and Kalwani, 1999; Li et al., 2005], piezoelectric ceramics [Pisarenko et al., 1985], foams

[Gomez-Monterde et al., 2016] or extruded polymers [Takei et al., 2013; Ibarra et al., 2016].

This anisotropy happens to substantially modify the crack path. Recent phase-field studies

investigate the question of crack propagation in the presence of such anisotropic toughness

via the introduction of an angular toughness distribution Gc (θ) [Hakim and Karma, 2005,

2009; Nguyen et al., 2017a; Li and Maurini, 2019], without mentioning how such a distribu-

tion emerges from the microstructure. In contrast, other numerical studies investigate the

way a crack interacts with a single material heterogeneity, thus focusing on the interaction

mechanisms. Gao et al. [2018a] explored via X-FEM simulations the two-dimensional sce-

nario where a crack interacts with a tougher circular inclusion for various toughness ratios,

either through a by-pass or a crossing mechanism. Clayton and Knap [2014] looked at

the same mechanisms with three-dimensional phase-field simulations. They identified the

conditions of toughness properties and elastic properties under which one mechanism, by-

pass or crossing, prevails over the other. Nguyen et al. [2017b] considered crack interaction

with microstructures directly extracted from computed micro-tomography. They modeled

various phenomena including inclusion by-pass, interface debonding, micro-fracturing and

successfully compared numerical simulations with experimental observations of the crack

trajectory.

The interaction mechanisms, which take place during the interplay between a crack and

heterogeneities, set the local toughness values the crack visits during propagation which

subsequently control the effective fracture properties of the material. For a one-dimensional

layered material, where the defects are invariant along the direction (Oz) of the crack
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front and along the direction (Oy) orthogonal to the crack plane, Hossain et al. [2014]

showed through numerical phase field simulations that the crack is trapped by tougher

layers. The effective toughness, defined as the maximum ERR imposed by the loading, is

then determined by the maximum toughness among all layers. In the two-dimensional case,

where the heterogeneities are only invariant in the z-direction, they showed that tougher

defects could be by-passed by the crack and that toughness increases do not emerge from

the sole crack tortuosity. Li and Zhou [2013a] modeled crossing and by-pass mechanisms

in a two-dimensional setting through cohesive zone model simulations, supported by an

analytical model [Li and Zhou, 2013b]. They investigated the impact of inclusion shape

and properties on the reinforcement induced by the two mechanisms. Xia et al. [2018]

and Da et al. [2018] combined heterogeneous phase-field models to topological optimization

to increase peak loading at the onset of fracture by promoting inclusion debonding over

inclusion by-pass (see Fig. 3.1).

(a) Iteration

0

(b) Iteration

13

(c) Iteration

24

(d) Iteration

39

(e) Crack

propagation

Figure 3.1: Defect geometry at various iterations of the iteration process (a)-(d) for a 20% inclusion

density and crack propagation under tensile loading (e) (after [Xia et al., 2018])

However, quantitative three-dimensional studies on the interaction between a crack and

tougher inclusions within the perturbative approach have been up to now restricted to the

sole coplanar crossing mechanism. In particular, the interaction of a crack with a single

defect has been studied in details, comparing theoretical results derived from the LEFM-

based perturbative framework to experimental observations for the stationary shape of the

crack front during the crossing of the tough inclusion [Dalmas et al., 2009; Chopin et al.,

2011; Patinet et al., 2013a; Vasoya et al., 2016b] and the subsequent relaxation of this front

out of the defect [Chopin et al., 2018]. It brought to light the decisive link between the

local toughness, crack front deformations and propagation dynamics. Gao and Rice [1989]

investigated theoretically and numerically the impact of this coplanar crack trapping on

the effective fracture properties, where the crack bows between periodic arrays of pinning

obstacles. They showed that the effective toughness increases linearly with the inclusion

toughness when “regular” crossing occurs during the interaction of the crack with the in-

clusion, while “irregular” processes resulting from an instability are detrimental to the

material reinforcement. They highlighted how the regularity of the crossing mechanism is

related to both the inclusion geometry and its mechanical properties. Xia et al. [2013] and

Xia et al. [2015] exploited those features to design materials displaying anisotropic tough-



64 Mechanisms of interaction between a crack and tough inclusions 3

ness. Recently, Hsueh and Bhattacharya [2018] combined this approach with topological

optimization to find the optimal inclusion shape for the trapping mechanism and maxi-

mize either the effective toughness or the toughness anisotropy. Bower and Ortiz [1991]

considered the competing influence of crack trapping and crack bridging, where inclusions

are left unbroken in the wake of the crack and pin the crack surface. This mechanism has

been proved to toughen brittle composites in a very efficient way [Krstic et al., 1981; Malik

and Barthelat, 2016]. Recently, Vasoya et al. [2016a] evidenced a fingering mechanism in

strongly heterogeneous materials. In that case, the crack only propagates in the weaker

parts of the materials so that the effective toughness may reach the smallest value of the

local toughness field.

(a) Anisotropic toughness (b) Optimized defect

Figure 3.2: Toughness anisotropy induced by inclusion shape (after [Xia et al., 2015]) (a) and optimized

defect for toughness anisotropy (after [Hsueh and Bhattacharya, 2018]) (b)

When it comes to non-coplanar propagation, studies lying within the perturbative frame-

work are scarce and only concern the disordered case, where the fundamental interactions

between a crack and tougher inclusions have not been modeled per se [Ramanathan et al.,

1997; Barès et al., 2014]. Consequently, they cannot study the interaction mechanisms hap-

pening at the crack tip and their ultimate impact on the reinforcement of brittle composite

materials. The study presented in this chapter aims at filling this gap by investigating

how the coupling of the in-plane and out-of-plane modes of deformation of the crack front

may impact crack trajectory, its dynamics, and the final effective fracture properties. Our

theoretical framework allows to account for two competing interaction mechanisms happen-

ing at the crack tip : inclusion crossing and by-pass, which respectively activate material

toughening by crack trapping or crack deflection. Section 3.2 is devoted to an illustrated

review of the coplanar interaction of a crack and tough inclusions by inclusion crossing

and the subsequent toughening by crack trapping. In Section 3.3, we introduce a second

interaction mechanism, inclusion by-pass. The conditions under which one mechanism pre-

vails over the other are thoroughly investigated in the case of spherical inclusions, as well

as their respective impact on effective fracture properties. Section 3.4 highlights how in-

clusion shape can modify the conditions under which the crossing to by-pass transition

occurs through three-dimensional collective effects along the crack front. We show how it

facilitates inclusion by-pass in the case of ellipsoidal inclusion elongated along the front

direction. This early transition from inclusion crossing to inclusion by-pass is shown to

limit further material toughening. Section 3.5 details how a cubical inclusion shape can
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on the contrary delay inclusion by-pass by the activation of a third mechanism, inclusion

repenetration, where the crack goes back in the inclusion after an initial phase of by-pass.

Not only does it extend material reinforcement by crack trapping but it also improves the

toughening potential of crack deflection. Section 3.6 is dedicated to the coupling of crack

trapping, crack deflection and crack bridging. Based on the results of Bower and Ortiz

[1991], our study shows that the by-pass mechanism can not only limit crack trapping but

also prevent crack bridging from happening if the inclusion is not elongated enough in the

direction perpendicular to the crack surface. Finally, Section 3.7 is devoted to the influence

of the interface toughness on the effective fracture properties. In general, a weaker inter-

face promotes inclusion by-pass and thus has a negative impact upon the effective fracture

properties. Yet, under some specific conditions, it can toughen the material, highlighting

the complexity of material design for increased fracture properties.

3.2 Inclusion crossing : an efficient material toughening by

coplanar crack trapping

When a crack interacts with a tough inclusion in a three-dimensional setting, the crack

front distorts both within the crack plane (crack trapping) and out of it (crack deflec-

tion). The resulting crack trajectory and dynamics strongly depends on the mechanical

and geometrical properties of the inclusion. It ultimately determines the effective fracture

properties of the heterogeneous medium.

We start here by investigating the crossing interaction where a coplanar crack is pinned

by periodic arrangements of tough inclusions through a crack trapping mechanism. Copla-

nar crack trapping has been thoroughly investigated in previous works [Gao and Rice, 1989;

Bower and Ortiz, 1991; Chopin et al., 2011; Vasoya et al., 2016b; Chopin et al., 2018]. In

this section, we propose to revisit the main results of those coplanar studies and illustrate

them on the various inclusion geometries (spherical, cubical, ellipsoidal) considered in this

manuscript. In Section 3.2.1, we investigate how a coplanar crack behaves when facing a

tough inclusion. Section 3.2.2 is dedicated to the impact of the coplanar interaction mech-

anisms on the effective fracture properties of periodic arrangements of tough inclusions.

3.2.1 In-plane perturbations and their dynamics : a reflection of the local

material toughness

In this section, we describe the crack front configuration and its evolution when a coplanar

crack interacts with a tougher inclusion. In particular, we show that crack front in-plane

distortions and their dynamics are in fact mirror images of the local toughness field : the

intensity of the in-plane perturbations are directly linked to the inclusion toughness, as well

as its spatial distribution, while their dynamics is closely connected to the local variations

of the toughness field Gc (z, x).

3.2.1.a Equation of motion for a coplanar crack

When the crack cannot wander out-of-plane i.e. fy (z, t) = 0 and θ (z, t) = 0, Mode II

contributions are null δKII = 0 i.e. it propagates in pure Mode I. Crack propagation is
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therefore planar and can be described by the sole kinetic law of Eq. (2.23) linking the local

ERR G to the material toughness Gc. The ERR G along the crack front can be expressed

at first-order in the perturbation fx as :

G (z, t) =
1− ν2

E
K2

I (z, t) = G∞ (t)

(
1 +

δKI

K∞
I

(z, t)

)2

= G∞ (t)

(
1 + 2

δKI

K∞
I

(z, t)

)

= G∞ (t)

(
1− 1

Lfx (z, t)−
1

π
PV

∫ +∞

−∞

fx (z, t)− fx (z
′, t)

(z − z′)2
dz′
)

(3.1)

The equation of motion thus reads :

1

v0

∂fx
∂t

(z, t) =
vm
v0

+
G (z, t)−Gc (z, x = fx (z, t))

Gmat
c

=
vm
v0

+
G∞ (t)

Gmat
c

(
1− fx (z, t)

L − 1

π
PV

∫ +∞

−∞

fx (z, t)− fx (z
′, t)

(z − z′)2
dz′
)

− Gc (z, x = fx (z, t))

Gmat
c

This equation is highly non-linear due to the dependence in fx of the toughness field but

analytical results can be derived in simple cases.

3.2.1.b Interaction of a crack with a single obstacle : stationary shape of the

crack front and relaxation dynamics out of the defect

In this section, we study the interaction of a crack with a single obstacle invariant in the

propagation direction (Ox). We thus revisit the analytical results of Chopin et al. [2011] for

the stationary shape of a crack interaction with a single defect and Chopin et al. [2018] for

the relaxation of the in-plane perturbations of the crack front out of the defect. Analytical

solutions are finally compared to numerical results derived from the computational method

described in Section 2.3, assessing its validity on model situations.

Problem statement

We consider a half-plane crack propagating in a matrix of toughness Gmat
c . The crack is

interacting with a defect of toughness Ginc
c . The defect has a finite width d in the z-direction

while it is invariant in the x-direction so that the local toughness field reads :

Gc (z, x) = Gc (z) =





Ginc
c = Gmat

c (1 + cinc) , if x ∈
[
−d

2
,
d

2

]

Gmat
c , otherwise

(3.2)

We can thus write :

Gc (z, x) = Gc (z) = Gmat
c + cincH (z) (3.3)

where H is the indicator function of the interval
[
−d

2 ,
d
2

]
.
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Stationary shape of the crack front interacting with the single obstacle

We first investigate how the crack front distorts when it is interacting with the single obsta-

cle. This problem has been studied by Chopin et al. [2011], whose results are summarized

below.

Let us consider the case where the crack front reaches its stationary configuration so that
∂fx
∂t (z, t) = 0. The in-plane perturbation of the crack front in the limit where L → ∞ and

vm → 0. Eq. (3.2) satisfies :

G∞
(
1− 1

π
PV

∫ +∞

−∞

fx (z, t)− fx (z
′, t)

(z − z′)2
dz′
)

= Gc (z, ) = Gmat
c + cincH (z) (3.4)

At zero-order in the perturbation, we get :

G∞ = Gmat
c (3.5)

Using Eq. (2.26), Eq. (3.4) reads at first-order in the perturbation :

− 1

π
PV

∫ +∞

−∞

fx (z)− fx (z
′)

(z − z′)2
dz′ = cincH (z) (3.6)

⇒ f̂x (k) = − 1

|k| Ĥ (k) = −cincd

|k| sinc

(
kd

2

)
(3.7)

where sinc (x) = sinc(x)
x is the cardinal sine function.

As noted by Chopin et al. [2011], the absolute position of the crack front cannot be

derived from this equation when L → ∞ and vm → 0. This difficulty can be circumvented

by estimating the crack front deviation from the position fx (0), that gives, using Eq. (2.25) :

fx (z) = fx (0) +
2cinc
π

∫ +∞

0

1

k2
sin

(
kd

2

)
[1− cos(kz)] dk (3.8)

which finally leads to (see for instance [Gradshteyn and Ryzhik, 2014]) :

fx (z) = fx (0) +
cincd

2π

[(
1 +

2z

d

)
ln

∣∣∣∣1 +
2z

d

∣∣∣∣+
(
1− 2z

d

)
ln

∣∣∣∣1−
2z

d

∣∣∣∣
]

(3.9)

The crack front is thus pinned by the tougher defect while it crosses it. This mechanism

is called crack trapping. Crack front deformations are plotted in Fig. 3.3.a for various

inclusion toughnesses. Analytical predictions from Eq. (3.9) are compared to numerical

results in Fig. 3.3.a. The infinite medium cannot be modeled in our numerical framework

and the small discrepancy between the analytical and numerical front shape emerges from

the finite inclusion spacing Lz = 1024 d considered in the numerical simulations.

These results illustrate that the in-plane front deformation mirrors the local toughness

field. Indeed, the characteristic size of the defect d as well as the inclusion contrast cinc =(
Ginc

c −Gmat
c

)
/Gmat

c , are embedded in the perturbation. This quantitative information on

the toughness field can thus be entirely extracted from the crack front in-plane perturbation.
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Figure 3.3: Impact of a tough inclusions on crack front in-plane distortions : in-plane configuration for a

crack-front interacting with a single inclusion of size d invariant in the z-direction for multiple values of

inclusion toughness ratio Ginc
c /Gmat

c (a) and comparison between theoretical predictions and numerical

simulations on a medium of finite size Lz/d = 1024 for an inclusion contrast Ginc
c /Gmat

c = 1 (b)

Relaxation dynamics of the perturbations of the front leaving the defect

We explore the question of the relaxation of the in-plane perturbation out of the defect. As

studied by Chopin et al. [2018], let us then consider that at a time t = 0, the crack front

leaves the defect as illustrated in Fig. 3.4.a. It now propagates in a homogeneous medium

of toughness Gmat
c . The following evolution equation can be derived in the limit where

L → ∞ and vm → 0:

1

v0

∂fx
∂t

(z, t) = − 1

π
PV

∫ +∞

−∞

fx (z, t)− fx (z
′, t)

(z − z′)2
dz′ (3.10)

Taking Eq. (3.10) in the Fourier space :

1

v0

∂f̂x
∂t

(k, t) = − |k| f̂x (k, t)

⇒ f̂x (k, t) = e−|k|v0tf̂x (k, 0) = cincd sinc

(
kd

2

)
e−|k|v0t

|k| (3.11)

⇒ ∂f̂x
∂t

(k, t) = e−|k|v0tf̂x (k, t) = cincdv0 sinc

(
kd

2

)
e−|k|v0t

Going back to the real space, the crack velocity reads :

∂fx
∂t

(z, t) =
2cincv0

π

∫ +∞

0
sin

(
kd

2

)
cos(kz)

e−|k|v0t

|k| dk (3.12)

This integral can be calculated thanks to Gradshteyn and Ryzhik [2014] formula (3.947.3) :

∂fx
∂t

(z, t) =
2cincv0

π

[
arctan

(
d/2 + z

v0t

)
− arctan

(−d/2 + z

v0t

)]
(3.13)



3 Mechanisms of interaction between a crack and tough inclusions 69

We finally integrate Eq. (3.13) to find the crack dynamics during relaxation :

fx (z, t) =fx (0, 0) +
cincd

2π

[(
1 +

2z

d

)
ln

∣∣∣∣1 +
2z

d
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1− 2z
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d
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]

(3.14)

+
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π
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arctan
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d/2 + z
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− arctan

(−d/2 + z

v0t
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Such a dynamic is plotted in Fig. 3.4. We see that when the toughness suddenly de-

creases, the crack relaxes until it finds back its straight configuration. By comparing the-

oretical predictions and our simulation results, we see that the numerical method grasps

fairly well the depinning dynamics on a single inclusion. The geometry of the defect is

nonetheless slightly different (see Fig. 3.4.a-b) so that the crack is pinned for a longer dura-

tion in the numerical simulations. This explains the slight discrepancy between theoretical

predictions and numerical simulations for small wavelength components at small depinning

time (cincv0t/d = 0.5) in Fig. 3.4.b).
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Figure 3.4: In-plane relaxation of a crack front previously pinned by an inclusion : theoretical predictions

(a) and numerical results on a medium of size Lz/d = 1024 with a slightly different defect geometry (b) for

an inclusion contrast Ginc
c /Gmat

c = 1

If Eq. (3.9) told us that information on the toughness field can be deduced from in-

plane front perturbation, Eq. (3.14) shows that information on the local variations of the

toughness field is embedded as well in the crack dynamics, since the relaxation of a crack

from a single defect happens at a characteristic velocity cincv0.

3.2.1.c From the single obstacle to periodic arrangements of tougher inclu-

sions : impact of particles inter-spacing on the crack front perturba-

tion

We now consider a case in which the crack is pinned by an array of inclusions invariant in

the z-direction of width d. The inclusions are spaced by a length Lz. Such microstructure
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is depicted in Fig. 3.5.a. The toughness field reads :

Gc (z, x) = Gc (z) =





Ginc
c = Gmat

c (1 + cinc) , if x ∈
[
nπ − d

2
, nπ +

d

2

]

Gmat
c , otherwise

(3.15)

If we assume that the crack front reaches its stationary shape, the in-plane perturbation

fx satisfies Eq. (3.4). We get at zero-order in fx :

G∞ = Gmat
c

(
1 +

d

Lz
cinc

)
= 〈Gc〉z (3.16)

At first-order on the perturbation :
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−∞
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(z − z′)2
dz′ = Gc (z) (3.17)

Following the reasoning developed in Section 3.2.1.b, it is possible to show that :
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 dz′ (3.18)

We plot the in-plane perturbation for such microstructure for various inclusion spacing Lz

in Fig. 3.5.b for an inclusion twice as tough as the matrix.
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Figure 3.5: Impact of the inclusion spacing Lz on crack front in-plane distortions : crack interacting with

periodic arrangement of tougher defects of size d invariant the x-direction, whose centers are separated by

a length Lz (a). Crack front configuration for Ginc
c = 2Gmat

c for various inclusion spacing Lz, based on

Eq. (3.18) (b)
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We notice that the larger the inclusion spacing, the more the crack bows in the unpinned

regions where Gc (z) = Gmat
c . It explains quantitatively the discrepancy between theoretical

predictions on the front shape resulting from the interaction of a coplanar crack and a single

defect and the associated numerical simulations for Lz = 1024 d, which was discussed in

Section 3.2.1.b. We finally conclude that the crack front in-plane distortion ultimately

contains information on the toughness spatial distribution, as does their dynamics.

3.2.2 Coplanar crack trapping : an efficient toughening mechanism re-

lated to inclusion crossing

We have seen how tougher inclusions affect crack trajectory and dynamics. The tough

inclusion makes the crack front distort within the crack plane through a crack trapping

mechanism. It is now time to investigate how this mechanism impacts the effective fracture

properties of the composite material.

3.2.2.a Effective toughness : a preliminary definition

We need first to define how effective fracture properties can be measured. In agreement

with previous works [Gao and Rice, 1989; Bower and Ortiz, 1991; Hossain et al., 2014;

Vasoya et al., 2016a; Brach et al., 2019a], we define the effective toughness as the maximal

macroscopic elastic release rateG∞ (resulting from the external loading) encountered during

cracking of the whole sample: :

Geff
c = max

x∈[0,Lx]
G∞ (x) (3.19)
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Figure 3.6: Effective toughness Geff
c defined as the maximum ERR imposed by the macroscopic loading

G∞ during crack propagation : evolution of G∞ during crack propagation (a) for a medium-sized

disordered system (b). The macroscopic ERR G∞ increases while the front is pinned and decreases when

the crack propagates according to Eq. (2.6).

This definition embraces Griffith’s theoretical idea since total fracture of the composite

happens for G∞ = Geff
c . Yet, up to this date, no consensus has emerged for the definition of

the effective toughness. This question will be thoroughly discussed for disordered systems

in Section 4.3.1. An example of G∞ evolution and associated Geff
c estimation is given

in Fig. 3.6 for the three-dimensional propagation of a crack interacting with a disordered

arrangement of inclusions whose toughnesses are Ginc
c = 1.75Gmat

c and Gint
c = Gmat

c .
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3.2.2.b Toughening induced by crack trapping : a theoretical analysis

Gao and Rice [1989] investigated in depth the impact of coplanar inclusion crossing on

the effective toughness. They highlighted that effective fracture properties are controlled by

what they call the “regularity” of the crossing processes. The following section is dedicated

to the description and the illustration of this concept with numerical results extracted from

our perturbative approach.

Effective toughness for periodic arrays of inclusions invariant in the propaga-

tion direction

The analysis of the stationary shape of a crack interacting with a periodic array of inclusions

invariant in the propagation direction, for a width d and inclusion spacing Lz gave quan-

titative results on the effective properties of such composite. Indeed, we saw in Eq. (3.16)

that the macroscopic ERR imposed by the loading follows a mixture rule [Gao and Rice,

1989] :

G∞ = Gmat
c

(
1 +

d

Lz
cinc

)
(3.20)
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Figure 3.7: Periodic arrangement of tougher inclusions of width d and inter-spacing Lz (a) and the

associated effective toughness for various inclusion toughness ratio Ginc
c /Gmat

c and inclusion spacing Lz,

which follows a mixture rule in Eq. (3.20) (b)

The effective toughness happens to increase linearly with the inclusion width ratio d/Lz

as well as the inclusion contrast cinc =
(
Ginc

c −Gmat
c

)
/Gmat

c . The impact of the inclusion

width ratio and the inclusion contrast is plotted in Fig. 3.7. We propose a qualitative

explanation for those results : when the inclusion spacing is low, the crack does not bow

sufficiently between the inclusions (see Fig. 3.5) to ensure G = Gc inside the inclusion

through an increase of Mode I SIF perturbation δKI (see Eq. (3.2)). One has then to

increase the macroscopic ERR imposed loading G∞ to ensure further crack propagation.
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Regularity of the crossing mechanism influences material toughening

For finite-sized inclusions in the propagation direction, Gao and Rice [1989] distinguished

two cases : a first one where inclusion crossing is regular and the effective toughness follows

a mixture rule in Eq. (3.20) and a second one where inclusion crossing is irregular and the

mixture rule constitutes an upper bound for the effective toughness.

Let us consider a periodic arrangement of inclusions, characterized by their toughness

Ginc
c , their size d in the front direction (Oz) spaced by a length Lz (see Fig. 3.9.a for the

circular case or Fig. 3.9.b for the square one). Predicting the effective toughness of such

heterogeneous materials consists in evaluating the maximum macroscopic ERR G∞ imposed

by the loading. If we average Eq. (3.2) along the z-direction in the limit where L → ∞ and

vm → 0, we get :

G∞ (t) = 〈Gc (z, x = fx (z, t))〉z (3.21)

where 〈·〉z is the spatial average in the z-direction.

Given that the inclusion size in the z-direction is d, Eq. (3.21) proves that the mixture

rule constitutes an upper bound of G∞ (t). It also implies that if the crossing process is

regular i.e. the effective toughness Geff
c follows Eq. (3.20), it is possible to find a stable

configuration during crack propagation verifying the condition G (z) = Ginc
c inside the

inclusion and G (z) = Gmat
c outside of it. A configuration verifying this condition has been

found earlier in Eq. (3.18). The bifurcation analysis conducted by Rice [1985] for the half-

plane crack states that this solution is unique given that ∂G∞

∂x ≤ 0, as it is assumed in our

study.
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Figure 3.8: Visual method to assess the regularity of the crossing process : a regular process for a circular

inclusion (a) and an irregular one for an elliptic inclusion elongated in the front direction (b) for

Ginc
c = 2.5Gmat

c

It provides a visual method to assess whether the inclusion crossing is a regular process

or an irregular one. Indeed if crack propagation verifies Eq. (3.20), the part of the front

shape between
[
−d

2 ,
d
2

]
described by Eq. (3.18) has to be contained within the obstacle.

For a circular inclusion of toughness Ginc
c = 2.5Gmat

c , the penetration process is regular as

depicted in Fig. 3.8.a. On the contrary, if the crack front described by Eq. (3.18) cannot

be fully contained in the inclusion, the crossing process is irregular. An example of such an
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irregular process is given in Fig. 3.8.b with the example of an elliptic inclusion elongated

in the z-direction of the crack front.

The regularity of the crossing mechanism is thus dictated by the shape of the inclusion,

the ratio between its size d and the inclusion spacing Lz as well as its toughness Ginc
c

with respect to the one of the matrix Gmat
c (see Eq. (3.18)). Therefore, even if an array

of inclusions is crossed in a regular manner for a given set of material properties (shape,

toughness, spacing), the process might become irregular if the inclusion toughness or the

inclusion spacing increases.

3.2.2.c Impact of the inclusion shape on the effective fracture properties : a

numerical study

To illustrate the impact of the regularity of the crossing mechanism on the effective

fracture properties, we estimate the effective toughness of heterogeneous composites for

various inclusion shapes through numerical simulations computed with the method exposed

in Section 2.3.

Periodic arrangements of circular inclusions

We first consider the case of the interaction between a coplanar half-plane crack with arrays

of tougher circular inclusions (Fig. 3.9a). The effective toughness is calculated following

Eq. (3.19) by tracking the macroscopic ERR G∞ during crack propagation. Simulation

parameters are summarized in Table 8.2. The results are plotted in Fig. 3.9 for various

inclusion toughness Ginc
c and inclusion spacing Lz.
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Figure 3.9: Periodic arrangement of tougher circular inclusions of diameter d and spacing Lz (a) and the

associated effective toughness Geff
c for various inclusion toughness ratio Ginc

c /Gmat
c and inclusion spacing

Lz (b). The effective toughness Geff
c computed numerically fromEq. (3.19) follows the mixture rule in

Eq. (3.19)

The visual method presented above confirms that the penetration process is regular for

the circular inclusion in the range of inclusion toughness (Ginc
c /Gmat

c ∈ [1, 4]) and inclusion

spacing (Lz ∈ [2 d, 32 d]) considered in our study . Thus, the effective toughness of such

heterogeneous materials is expected to follow the mixture rule of Eq. (3.20), as confirmed

in Fig. 3.9b.
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Periodic arrangements of square inclusions

We then consider the case of periodic arrangements of square inclusions as depicted in

Fig. 3.10.a. Simulation parameters are the same as in Table 8.2. Numerical results plotted

in Fig. 3.10.b show once again that the effective toughness of such composite follows a

mixture rule in the range of considered inclusion toughness and inclusion spacing. It is

noticeable that, in the case of coplanar propagation, circular and square inclusions have the

same toughening effect on the composite since they trigger the same interaction mechanism

i.e. regular inclusion crossing.
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Figure 3.10: Periodic arrangement of tougher square inclusions of diameter d and spacing Lz (a) and the

associated effective toughness Geff
c for various inclusion toughness ratio Ginc

c /Gmat
c and inclusion spacing

Lz (b). The effective toughness Geff
c computed numerically fromEq. (3.19) follows the mixture rule in

Eq. (3.19)

Periodic arrangements of ellipsoidal inclusions

But this observation cannot be repeated for every inclusion shape. If both circular and

square inclusions proved to display regular penetration processes, it is not the case for

elliptic inclusions as shown in Fig. 3.8.b.

To investigate the effect of process irregularity, we simulate the interaction between a

coplanar half-plane crack and periodic arrangements of elliptic inclusions, elongated in the

front direction (Oz). We consider elongation from dz/dx = 1 to dz/dx = 8 and inclusion

toughness varying from Ginc
c /Gmat

c ∈ [1 : 0.1 : 4]. Simulation parameters are the same as in

Table 8.2.

Crack front profiles are plotted during propagation in Fig. 3.11 for Ginc
c = 2.5Gmat

c . It

illustrates why the crossing process for elongated elliptic inclusions is irregular. Indeed,

we see in Fig. 3.11.a-b, that, for moderately elongated inclusions, it exists a configuration

where a part of the crack front is contained in the whole width d of the obstacle, allowing

the mixture rule to apply. On the contrary, we see in Fig. 3.11.c-d that, for highly elongated

inclusions, lateral regions of the crack front z = ±dz
2 have already crossed the inclusion,

when the central region penetrates in the obstacle. From Eq. (3.21), we understand that

there is no crack front configuration satisfying the mixture rule and the effective toughness

thus decreases Geff
c ≤ Gmat

c

(
1 + dz

Lz
cinc

)
.
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Figure 3.11: In-plane crack front at various loading time for the four different elliptic shapes used in the

study for Ginc
c = 2.5Gmat

c

We observe that the effective toughness of periodic arrangements of elongated elliptic

inclusions in the z-direction decreases with the inclusion elongation dz/dx. Numerical re-

sults are plotted in Fig. 3.11. The more elongated the inclusion, the earlier the penetration

process becomes irregular and the smaller the effective toughness. To the best of our knowl-

edge, no analytical results have been derived up to this date to quantitatively describe the

impact of process irregularity. Bower and Ortiz [1991] proposes that one should rely on

numerical simulations to estimate the effective toughness in this case.
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Figure 3.12: Impact of process irregularity on the effective toughness for various inclusion toughness and

inclusion shape

Nonetheless, these planar situations illustrate that the effective toughness is controlled

by the dynamics of the interaction between the crack and tougher inclusions, here regular or

irregular crossing processes. Inclusion design is thus a key question for material toughening

by tougher heterogeneities since it markedly affects the interaction dynamics.
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3.3 Inclusion by-pass : a substantial loss of toughening in-

duced by crack deflection

In our simulations, crack propagation is not bound to propagate within the crack plane

and out-of-plane excursions of the crack front are triggered by by-pass events. Our the-

oretical framework provides a way to enrich the interaction between a crack and tough

inclusions by modeling both in-plane crack trapping and out-of-plane crack deflection. In

Section 3.3.1, we study the geometrical and mechanical conditions under which the by-pass

mechanism or the crossing one prevails over one another. While inclusion crossing acti-

vates the crack trapping as we saw in Section 3.2, inclusion by-pass toughens composite

materials with crack deflection. The respective impact of both mechanisms is discussed in

Section 3.3.2.

3.3.1 Crack trajectory : a competition between by-pass and crossing

mechanisms

As evidenced on Fig. 2.22 and Fig. 2.23, the competition between the crossing of an

inclusion and its by-pass by an out-of-plane excursion of the front controls the crack tra-

jectory, and ultimately the effective fracture properties of the heterogeneous medium. We

start here by investigating which mechanism is selected by the crack front when it interacts

with a periodic array of tough spherical inclusions. We consider periodic arrangements of

spherical inclusions for an inclusion spacing Lz = 4 d and a spatial numerical discretization

of ∆z = d/32. We build our analysis on the GMERR criterion of Eq. (2.21) that compares

the rate G of elastic energy released with the rate of energy Gc dissipated during fracture

along the different possible propagation directions.

As the crack lands on a spherical inclusion, two possible propagation mechanisms are

at play : either the crack by-passes the inclusion by propagating along the interface

(Fig. 3.13.a) or it crosses the inclusion by remaining within the mean fracture plane (Fig. 3.14.a).

To by-pass the obstacle, the crack must kink from its initial direction of propagation. This

kink is detrimental as far as the ERR G is concerned since G is maximal along the mean

fracture plane, and decreases when the kink angle increases (see Fig. 3.13.c). Yet, as far

as the fracture energy Gc is concerned, kinking allows the crack to select a more favorable

path since Gint
c ≤ Gmat

c ≤ Ginc
c (see Fig. 3.13.c).

We choose three simple examples to illustrate qualitatively the competition under the

hypothesis Gint
c = Gmat

c , which will be relaxed in Section 3.7 :

1. in the first example, the crack lands halfway between the equatorial plane and the top

of an inclusion twice tougher than the matrix, Ginc
c = 2Gmat

c (Fig. 3.13.a). We note

θtan the angle between the current propagation direction and the matrix-inclusion

interface for the central region of the front. By-passing the inclusion to pursue prop-

agation within the matrix requires then a maximum kink angle θtan ≃ 60◦. As

represented in Fig. 3.13.c where the normalized net driving force (G − Gc)/G
mat
c is

represented as a function of the kink angle θ at the onset of propagation, the drop
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of G in that direction is sufficiently small so that it does not overcome the gain

Gmat
c − Ginc

c = Gmat
c in fracture energy. As a result, the by-pass mechanism is here

selected.
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Figure 3.13: (a) By-pass mechanism during the trapping of a crack front by a tough spherical inclusion

with Ginc
c = 2Gmat

c ; (b) trajectory of the point of the crack front located in z = Lz/2; (c) application of

the GMERR criterion of Eq. (2.21) in z = Lz/2; the normalized net driving force is represented as a

function of the kink angle at the onset of depinning.

2. Consider now that the crack lands on the equatorial plane (xOz) of the same inclusion,

as shown in Fig. 3.14.b. The kink angle required to by-pass the inclusion is then

θtan = 90◦, so that the associated drop of G is significantly larger than in the previous

case (Fig. 3.14.b); this explains here why the crack crosses the tough inclusion rather

than by-passes it.
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Figure 3.14: (a) Crossing mechanism during the trapping of a crack front by a tough spherical inclusion

with Ginc
c = 2Gmat

c ; (b) trajectory of the point of the crack front located at z = Lz/2; (c) application of

the GMERR criterion of Eq. (2.21) in z = Lz/2; the normalized net driving force is represented as a

function of the kink angle at the onset of depinning.

3. In the limit case of an infinitely tough inclusion, it is clear that the crack cannot remain

trapped as the external loading is increased further and further, so the inclusion must

be by-passed, whatever the landing position of the crack front. Thus we expect the

existence of a critical toughness above which all inclusions are by-passed. In Fig. 3.15,

we can see that this condition is already reached for a toughness Ginc
c = 4Gmat

c , an

inclusion only four times tougher than the matrix.
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Figure 3.15: (a) By-pass mechanism during the trapping of a crack by a very tough spherical inclusion

with Ginc
c = 4Gmat

c ; (b) trajectory of the point of the crack front located at z = Lz/2; (c) application of

the GMERR criterion of Eq. (2.21) in z = Lz/2; the normalized net driving force is represented as a

function of the kink angle at the onset of depinning.

3.3.1.a A two-dimensional analysis of the GMERR criterion for a cylindrical

inclusion

In general, the competition between crossing and by-pass of a given inclusion is governed

by the GMERR criterion that can be expressed explicitly thanks to Amestoy-Leblond’s

formulæ of Eq. (2.19) which provide the value of G after the kink as a function of the

SIFs prior to kinking and the kink angle. In our simulations, the SIFs before the kink

are computed from the pertubative LEFM formulæ of Eq. (2.14), which take into account

three-dimensional effects due to interactions between different regions of the crack front.

Overall, the ability of a tough inclusion to trap efficiently a crack results from the complex

coupling between the in-plane bowing mode of deformation and the subsequent (potential)

out-of-plane deviation of the front during by-pass.

To rationalize this mechanism, we start by neglecting these three-dimensional effects due

to the variations of fx and fy along the crack front, and compare our numerical simulations

with a two-dimensional theoretical analysis in which the SIFs are constant along the front.

It amounts to consider a semi-infinite crack landing on an infinite cylindrical inclusion, as

illustrated in Fig. 3.16.

Let us assume that the inclusion toughness is noted Ginc
c and the interface toughness Gint

c .

The initially straight crack lands on the inclusion with an angle θini, at a height ylanding,

at some point on the interface where the tangent angle to the inclusion boundary is θtan.

This tangent angle is linked to the other parameters through the relation:

θtan = arctan




√(
d
2

)2 − y2landing

ylanding


 (3.22)

In order to capture the effect of a mode II component that may result from out-of-plane

perturbations of the crack line, we assume that the crack is loaded under mixed mode I+II

and we note ρII = KII/KI. As shown in Section 2.2.3.b, two directions of crack propagation

only need to be considered : the direction θmax lying within the inclusion and maximizing
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Figure 3.16: Two-dimensional analysis of the by-pass to crossing transition: (a) the 2D aproximation

consists in replacing the spherical inclusion by a cylindrical obstacles invariant along the crack front

direction; (b) the crack lands with an angle θini at a height ylanding and may by-pass the inclusion either

upward or downward.

G, and the by-pass direction θtan. According to Amestoy-Leblond’s formulæ, the ERR in

the direction θmax is given by :

Gcross =
1− ν2

E
K2

I

[
(Fi,i (αmax) + Fi,ii (αmax) ρii)

2 + (Fii,i (αmax) + Fii,ii (αmax) ρii)
2
]

(3.23)

where αmax = θmax − θini is the kink angle in the direction that maximizes G. Similarly,

the ERR for the by-pass scenario is provided by :

Gtan =
1− ν2

E
K2

I

[
(Fi,i (αtan) + Fi,ii (αtan) ρii)

2 + (Fii,i (αtan) + Fii,ii (αtan) ρii)
2
]

(3.24)

Now gradually lower the inclusion toughness from infinity to the matrix toughness. At

the crossing/by-pass transition, the following equalities must hold:

Ginc
c = Gcross = Gtan = Gint

c (3.25)

Leading to :

Ginc
c

Gint
c

=
(Fi,i (αmax) + Fi,ii (αmax) ρii)

2 + (Fii,i (αmax) + Fii,ii (αmax) ρii)
2

(Fi,i (αtan) + Fi,ii (αtan) ρii)
2 + (Fii,i (αtan) + Fii,ii (αtan) ρii)

2 (3.26)

Specializing this equation to the simpler situation where Gint
c = Gmat

c , θini = 0 and

ρII = 0, we obtain the critical toughness ratio at the crossing/by-pass transition :

[
Ginc

c

Gint
c

]

crit

=
1

Fi,i (θtan)
2 + Fii,i (θtan)

2 (3.27)

Together with Eq. (3.22), the former equation allows us to represent phase diagrams

like the one of Fig. 3.17 where the depinning mechanism (crossing versus by-pass) is easily

identified from the value of the toughness ratio Ginc
c /Gmat

c and the relative landing height

ylanding/d. Several comments are in order here :
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• an energetic competition takes place between crossing and by-pass, governed by the

inclusion toughness and the magnitude of the kink angle required for by-pass. The the-

ory of LEFM can quantitatively predict this competition thanks to Amestoy-Leblond’s

formulæ;

• in the absence of mode II (KII = 0) and for an attack angle θini = 0, the theoretically

predicted upward and downward by-pass regions are symmetric with respect to the

horizontal axis ylanding = 0. This is because the depinning mechanisms are identical

upwards and downwards for a given value of |ylanding| /d. Note also if the crack lands

on the upper (resp. lower) half of the inclusion, only an upward (resp. downward)

by-pass is possible ;

• the critical toughness ratio beyond which the inclusion is systematically by-passed can

be deduced from consideration of the particular case ylanding = 0 that corresponds to

a kink angle θtan = 90◦. One thus gets
[
Ginc

c /Gmat
c

]
crit

∼ 3.854. This value is

in close agreement with the simulation results of Fig. 3.15 where inclusion by-pass

was systematically observed for Ginc
c /Gmat

c = 4, in spite of the different inclusion

geometries considered (spherical in Fig. 3.15, cylindrical here)

Figure 3.17: Theoretical phase diagram providing the depinning mechanism (crossing vs by-pass) of a

crack pinned by a cylindrical inclusion (see Fig. 3.16) as a function of the toughness ratio Ginc
c /Gint

c and

the relative landing height ylanding/d. Note that the critical toughness ratio
[

Ginc
c /Ginc

c

]

crit
∼ 3.854 beyond

which the obstacle is systematically by-pass corresponds to the landing height ylanding = 0, and so a

normal kink angle θtan = 90◦.

3.3.1.b Comparison of the two-dimensional theoretical model with three-dimensional

numerical simulations on spherical inclusions

The transition diagram of Fig. 3.17 being derived from a simplified two-dimensional

theory considering cylindrical inclusions, it is interesting to compare it to the results of

fully three-dimensional simulations considering spherical inclusions, as the 3D case is more

complex: when depinning (crossing or by-pass) occurs, the local SIFs are already perturbed

by the deformations of the crack. The determination of the region of the front that triggers

depinning is then not an easy task, and we shall resort to numerical simulations.
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The numerical efficiency of our method allows to run several thousands of simulations

with GNU Parallel [Tange, 2011], to investigate the impacts of both the toughness ratio

between the inclusion and the matrix and the landing height. Since we consider the values

θini = 0 and ρII = 0, the region ylanding/d ∈ ]−0.5, 0[ of the phase diagram is deduced

by symmetry from the region ylanding/d ∈ [0, 0.5[. Simulation parameters are listed in

Table 8.3.

In practice, the depinning mechanism is determined from the evolution of the point of

the front located in z = Lz/2 where θtan is maximal. In other words, we consider that

the crack should get around the entire inclusion to consider that by-passing took place.

Interestingly, the two-dimensional and three-dimensional theoretical diagrams are almost

identical, as seen in Fig. 3.18, a behavior that is reminiscent of the absence of collective

effects in the by-pass of inclusions. Moreover, these results seem to be in accordance with

the ones presented in Clayton and Knap [2014] for similar elastic properties between the

matrix and the inclusion, which is hit by the crack on its equatorial plane. Yet, we shall

see in Section 3.4 that this coincidence breaks down for other shapes of inclusion.

(a) (b) (c)

Figure 3.18: Comparison of the prediction of the two-dimensional theoretical model of Fig. 3.17 (a) with

the results of the three-dimensional numerical simulations in case of spherical inclusions: (b) Phase

diagram obtained from 1600 simulations with various toughness ratios Ginc
c /Gmat

c and landing heights

ylanding/d ; (c) Difference between the theoretical phase diagram of panel (a) and the numerically

computed one of panel (b), where black regions indicate different behaviors.

3.3.2 Impact of the by-pass mechanism on the effective fracture proper-

ties

We investigated in Section 3.2.2 how crack trapping triggered by inclusion crossing tough-

ens composite materials. The by-pass mechanism, introduced in this section, induces a

toughening by crack deflection. Crack deflection has often been viewed as a toughening

mechanism [Faber and Evans, 1983a; Suresh, 1985; Steinbrech, 1992], although quite weak

in comparison to crack wake processes such as crack bridging [Bower and Ortiz, 1991]. We

want here to highlight the idea that in the presence of toughness discontinuities, crack de-

flection must be considered more as a severely limiting factor of material toughening, than

as a toughening process per se.
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3.3.2.a Inclusion by-pass limits material toughness by crack trapping

In order to prove it, we estimate numerically the effective toughness of periodic arrange-

ments Lz = 4d of spherical inclusions, whose diameter is d. As we saw in Section 3.3, the

landing height ylanding is an important parameter for the spherical inclusion since it con-

trols, with the inclusion toughness Ginc
c and the interface toughness Gint

c , the way the crack

interacts with the inclusion (see Eq. (3.27)). We thus consider multiple cases with varying

landing height ylanding ∈ [0., 0.5[ (]−0.5, 0[ is covered by symmetry) and inclusion tough-

ness Ginc
c ∈

[
Gmat

c , 4Gmat
c

]
. We assume that the interface and the matrix share the same

fracture properties Gint
c = Gmat

c , a hypothesis which is relaxed in Section 3.7. Simulation

parameters are shared with those reported in Table 8.3.
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Figure 3.19: Impact of the inclusion toughness ratio Ginc
c /Gmat

c on the effective toughness Geff
c : the

effective toughness increases linearly with the inclusion toughness while the inclusion is crossed (b). After

the crossing to by-pass transition described by Eq. (3.27) (c), the effective toughness reaches a plateau and

an increase of the inclusion toughness does not toughen the composite further (d).

We plot in Fig. 3.19 the effective toughness of the heterogeneous composite for various

inclusion toughnesses for a given landing height ylanding/d = 0.1. Three regimes may be

distinguished here:

1. for low values of the inclusion toughness, up to Ginc
c = 2Gmat

c , the effective toughness

increases linearly with the inclusion toughness;

2. for medium values of the inclusion toughness, up to Ginc
c = 2.5Gmat

c , the “toughening

rate” ∂Geff
c

∂Ginc
c

gradually decreases and the effective toughness reaches a peak;

3. for high values of the inclusion toughness, above Ginc
c = 2.75Gmat

c , the effective tough-

ness reaches a plateau Geff
c ≃ 1.395Gmat

c .

The first regime is characterized by the crossing of the inclusion as depicted in Fig. 3.19.b.

The situation is thus equivalent to the coplanar propagation of a crack encountering a

periodic array of circular inclusions. (see Section 3.2.2.c). The dynamic of such a mechanism

is illustrated in Fig. 3.20, where is plotted the propagation of the central point of the crack

front in the (xOy) plane along with macroscopic loading G∞ in Fig. 3.20.a. The in-plane

perturbations dynamics in the (zOx) plane are given in Fig. 3.20.b. The crack is initially
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pinned by the inclusion. The macroscopic loading has to increase in order to make the crack

propagates. The more the crack penetrates the inclusion, the larger the apparent inclusion

width becomes and the loading needs to increase accordingly to allow stable propagation.

Parts of the crack front finally go back in the matrix and the in-plane perturbations relax.

Since, at such toughness levels and inclusion spacing the penetration process is regular for

a circular inclusion, the effective toughness follows a mixture rule of Eq. (3.20) and the

effective toughness Geff
c increases linearly with the toughness ratio Ginc

c /Gmat
c .
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Figure 3.20: Crossing of spherical inclusions with Ginc
c = 1.5Gmat

c , by a crack landing at ylanding = 0.1 d.

Trajectory in the plane (xOy) and macroscopic loading evolution for the center point in z = 0 (a).

In-plane profiles in the (zOx) plane at various loading states (b)

Close but below the critical toughness at the crossing to by-pass transition
[
Ginc

c

]
crit

≃
2.75Gmat

c for ylanding = 0.1 d (Eq. (3.27)), we observe a transient regime in which the region

of the crack front close to the center of the inclusion crosses it whereas those closer to the

edges by-pass it (Fig. 3.19.c). This phenomenon results from the variations along the front

of the tangent angle θtan that is larger near the inclusion center. Indeed, the local tangent

angle reads in the case of spherical inclusions :

θtan = arctan




√(
d
2

)2 − (ylanding)
2 − (z − zs)

2

ylanding


 (3.28)

where zs is the abscissa of the center of the inclusion and z the one along the crack front.

Since the depinning mechanism (crossing versus by-pass) is ruled by a local criterion that

consists in maximizing G − Gc at every location along the front and at every time step,

lateral points may prefer to by-pass the inclusion. These numerical observations match

the experimental findings of Takei et al. [2013] , who indeed observed that the choice of

crack trajectory corresponded better to a local maximization of G − Gc than some global

maximization. This means that the crack propagates following the locally weakest path,

and can thus globally dissipate more energy than it would by trying to achieve some global

minimization. This interesting feature definitely needs to be exploited to design tougher

materials.
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Above the critical toughness
[
Ginc

c

]
crit

∼ 2.75Gmat
c , the crack interacts with the inclusion

through a by-pass mechanism (Fig. 3.19.d).. Its dynamic is illustrated in Fig. 3.21. We see

from the macroscopic loading in Fig. 3.21.a that the effective toughness is attained when the

crack kinks and unpins. During the by-pass, in-plane perturbations relax, which confirms

that the initial kink requires the largest loading to make the crack propagate. When

the crack by-passes the inclusion, it propagates along the interface so that the inclusion

toughness ceases to play any role. This is why a further increase of the inclusion toughness

leaves the effective toughness unchanged.
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Figure 3.21: By-pass of spherical inclusions with Ginc
c = 3.5Gmat

c , by a crack landing at ylanding = 0.1 d.

Trajectory in the plane (xOy) and macroscopic loading evolution for the center point in z = 0 (a).

In-plane profiles in the (zOx) plane at various loading states (b)

To conclude, as the inclusion toughness is increased, we observe a rather sharp (though

not instantaneous) transition from a regime where the inclusion is crossed and the effective

toughness of the composite is increased by crack trapping, to a second one characterized by

the by-pass of the inclusion, which activates a less efficient toughening mechanism, crack

deflection.

3.3.2.b Effect of the landing height and the inclusion spacing on the effective

toughness

As the landing height ylanding increases, the tangent angle θtan decreases (see Eq. (3.28)),

facilitating by-pass that happens for smaller values of the inclusion toughness. As a result,

the plateau regime is reached earlier, and corresponds to a smaller effective toughness, as

shown in Fig. 3.22.a. PredictingGeff
c analytically when crack deflection occurs is nonetheless

difficult since the toughness the front experiences varies in the z-direction (varying deflection

angle) as well as in the x-direction (realignement with the loading). Such local variations of

the local toughness trigger what Gao and Rice [1989] called “irregular processes”, so that

only numerical simulations may allow for an estimation of the effective toughness [Bower and

Ortiz, 1991]. However, it is clear that below some critical toughness ratio
[
Ginc

c /Gmat
c

]
crit

,

the inclusion is crossed and the effective toughness follows Eq. (3.20), while it reaches a

plateau above
[
Ginc

c /Gmat
c

]
crit

. Using then Eq. (3.27) even though it strictly applies to 2D

situations (cylindrical inclusions), and combining it with Eq. (3.20), one gets the following
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estimate of the effective toughness :

Geff
c

Gmat
c

= 1 +
d

Lz

√
1− 4

(ylanding
d

)2 [
min

(
Ginc

c

Gmat
c

,

[
Ginc

c

Gmat
c

]

crit

)
− 1

]
(3.29)

The comparison between the results of numerical simulations and the theoretical pre-

dictions of Eq. (3.29) is plotted in Fig. 3.22.a. One observes that Eq. (3.29) quantitatively

describes the effective toughness in the crossing phase while it only provides an upper-bound

prediction in the by-pass one.
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Figure 3.22: Impact of the landing height ylanding on the effective toughness Geff
c : the crossing/by-pass

transition occurs at smaller inclusion toughness levels as the landing height increases, making the plateau

value decrease accordingly; comparison of numerical simulations (in black) and theoretical predictions of

3.29 (in red) for the effective toughness (a); renormalization from 3.29 (b).

In the same manner, as the spacing Lz between neighboring inclusions increases, the

“toughening rate” ∂Geff
c

∂Ginc
c

decreases in the linear regime corresponding to crossing of the in-

clusion (see Fig. 3.23.a). Yet, the critical toughness ratio
[
Ginc

c /Gmat
c

]
crit

does not depend

on the inclusion spacing but only on the inclusion mechanical and geometrical properties

(see Eq. (3.27)). Thus the effective toughness reaches a plateau for a well-defined, constant

critical toughness ratio
[
Ginc

c /Gmat
c

]
crit

, but its height decreases when the inclusion spacing

increases as predicted Eq. (3.29) (Fig. 3.23.a). The constant value of the critical toughness

ratio
[
Ginc

c /Gmat
c

]
crit

, irrespective of the value of Lz, is reminiscent of the absence of collec-

tive effects in the by-pass of inclusions. In other words, the interaction mechanism between

the crack and a single inclusion is not affected by the presence of neighboring inclusions.

Note however the smaller value of Geff
c in the by-pass regime for the denser arrangement

of inclusions (Lz = 2 d). This is signature of collective by-pass of neighboring inclusions,

explained by the fact that a lesser portion of the crack drags the front back in the mean

fracture plane by long-range elastic effects (see Eq. (2.14)). Its impact on Geff
c remains

nonetheless small when compared to the overall impact of the by-pass mechanism.

In conclusion, the by-pass mechanism offers a more energetically favorable trajectory for

crack propagation. It hinders toughening by limiting crack trapping. In order to toughen

brittle materials, one should design inclusion geometries preventing inclusion by-pass; a
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Figure 3.23: Impact of the inclusion spacing Lz upon the effective toughness Geff
c : both the slope in the

linear regime and the plateau value decrease when the density of tough inclusions decreases; comparison of

numerical simulations (in black) and theoretical predictions of 3.29 (in red) for the effective toughness (a) ;

renormalization from 3.29 (b).

good example consists of inclusions with a concave interface, for which by-passing becomes

more and more difficult as the crack progresses along it. This remark is compatible with the

results of topological optimization studies of two-dimensional crack propagation [Da et al.,

2018]. The results of topological optimization processes starting from an initial square

inclusion are pictured in Fig. 3.24 Concave interfaces emerge from the optimization process,

with the consequence of preventing inclusion by-pass and promoting crack nucleation on the

other side of the inclusion. This phenomenon ultimately leads to crack bridging, which has

been identified as a particularly efficient toughening mechanism as we will see in Section 3.6

y

x

(a)

y

x

(b)

Figure 3.24: Topological optimization processes to increase fracture properties : initial square inclusion (a)

and optimized shape (b) (after Da et al. [2018])

The toughening reduction results from the three-dimensional coupling of the in-plane and

out-of-plane deformation modes of the crack front, which modifies the interactions of the

crack and the inclusions, and consequently the effective toughness of the composite. This

coupling was disregarded in previous three-dimensional perturbative studies [Ramanathan

et al., 1997; Barès et al., 2014], where only the question of crack trajectory was addressed;

yet what precedes unambiguously shows that it must be accounted for in studies of effective

fracture properties of three-dimensional heterogeneous materials. The following sections

aim at exploring further the impact of this coupling on periodical arrangements of tougher

inclusions with different geometries and interface properties.
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3.4 Three-dimensional collective effects in the by-pass of tough

inclusion : a further limitation on toughening processes

All previous results have been obtained for spherical inclusions. For such an inclusion

shape, the interaction mechanisms are fairly well predicted by a simple two-dimensional

theoretical analysis considering cylindrical inclusions, the explanation being that the dif-

ference between the macroscopic and local SIFs is small. We will see here that the three-

dimensional coupling of the in-plane and out-of-plane deformation modes of the crack front

can be enhanced by the inclusion shape and modify the conditions under which inclusion

crossing and by-pass occurs. This phenomenon, which relies on collective effects triggered

by the ellipsoidal shape of the inclusions, is described in Section 3.4.1. It ultimately im-

pacts the effective toughness of three-dimensional heterogeneous materials, as discussed in

Section 3.4.2.

3.4.1 The collective by-pass of ellipsoidal prolate inclusion : a three-

dimensional effect induced by the coupling of the in-plane and out-

of-plane modes of deformation

3.4.1.a Crossing to by-pass transition diagrams for ellipsoidal inclusion elon-

gated in the front direction

We begin to understand that effective fracture properties are closely linked by the in-

teraction mechanisms triggered during crack propagation. An interesting point would be

to see how inclusion shape influences the crossing to by-pass transition highlighted on the

cylindrical and spherical cases. We thus consider prolate ellipsoidal inclusions elongated in

the z-direction of the crack front. (di) denotes the length of the principal axis (ei). We

take dz = d, dx = dy = d/2 for the first geometry and dz = d, dx = dy = d/4 for the second

one, as depicted in Fig. 3.25.
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Figure 3.25: Interaction of a crack with ellipsoidal inclusions elongated in the front direction : the

inclusion is either spherical (a) or ellipsoidal prolate with various elongation dz = dx = 2 dy (b) and

dz = 4 dx = 4 dy (c)

For both geometries, we construct their crossing to by-pass transition diagram with the

procedure used for the spherical case in Section 3.3.1.b. Results are plotted in Fig. 3.26 and

Fig. 3.27. One immediately notices that the new diagrams fundamentally differ from that

obtained for spherical inclusions in Fig. 3.18. In the case of ellipsoidal prolate inclusions

elongated in the z-direction, the by-pass mechanism happens at smaller inclusion toughness

levels than for the cylindrical (2D) and spherical geometries. This phenomenon results from

a strong coupling of the in-plane and out-of-plane deformation modes which is enhanced by
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inclusion geometry. The following sections aim at describing the fundamental mechanisms

behind the early by-pass inclusion of tough ellipsoidal inclusions.

(a) (b) (c)

Figure 3.26: Comparison of two- and three-dimensional transition diagrams for prolate ellipsoidal

inclusions with dz = 2 dx: (a) Two-dimensional diagram for cylindrical inclusions; (b) three-dimensional

transition diagram for spheroidal inclusions obtained from 1200 simulations with various toughness ratios

Ginc
c /Gmat

c and landing heights ylanding/d; (c) difference between the two diagrams - the black regions

indicate different behaviors.

(a) (b) (c)

Figure 3.27: Comparison of two- and three-dimensional transition diagrams for prolate ellipsoidal

inclusions with dz = 4 dx: (a) Two-dimensional diagram for cylindrical inclusions; (b) three-dimensional

transition diagram for spheroidal inclusions obtained from 1200 simulations with various toughness ratios

Ginc
c /Gmat

c and landing heights ylanding/d; (c) difference between the two diagrams - the black regions

indicate different behaviors.

3.4.1.b In-plane defect geometry controls the depinning dynamics

As we saw in Section 3.2.1, the in-plane perturbation controls the dynamics of crack

propagation. In particular, in-plane dynamics are influenced by inclusion shape as it was

evidenced in Fig. 3.11 on the case of the coplanar propagation of a crack interacting with

elliptic inclusions. Regions of the crack front located on the edges of the inclusion happen

to propagate earlier than regions located near the center of the inclusion. It is due to the

fact that the long-range elastic interaction term of the perturbed SIFs is sensitive to the

local crack front curvature as underlined in Eq. (2.28).

In Fig. 3.28, we plot the perturbation of the Mode I SIF along the crack front, when



90 Mechanisms of interaction between a crack and tough inclusions 3

pinned by the three geometrically different inclusions considered. In the spherical case, the

perturbation of the SIF is maximal at the center of the crack front (see Fig. 3.28.a & d);

therefore unpinning occurs there first. For ellipsoidal inclusions, the SIF perturbations are

lowered on the center part of the crack front due to a large in-plane curvature (Fig. 3.28.b & e);

therefore unpinning occurs near the edges of the inclusion first.
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Figure 3.28: Impact of the in-plane perturbation of the crack front on crack depinning dynamics: the

in-plane perturbation fx is plotted just before depinning of the central point of the front, for a spherical

inclusion (a), and two different prolate ellipsoidal inclusions (b) and (c). The associated perturbations of

the Mode I SIF δKI are plotted in (d-f); unpinning occurs first at the central point of the front for a

spherical inclusion, but near the edges of the obstacle for prolate ellipsoidal inclusions.

3.4.1.c Out-of-plane defect geometry triggers a collective by-pass of the inclu-

sion

This shift in depinning dynamics has a decisive impact on out-of-plane deviations of the

crack. When crack front points unpin, they have to choose whether they kink and by-pass

the inclusion or they go straight and cross it. Since all the points pinned on an inclusion

see the same inclusion toughness Ginc
c , this choice is only dependent of the local tangent

angle θtan. For a spheroidal inclusion of major axis ez, the tangent angle reads :

θtan = arctan




√
d2y − (ylanding − ys)

2 −
(
dy
dx

)2
(z − zs)

2

(ylanding − ys)


 (3.30)
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Figure 3.29: Impact of out-of-plane perturbations on crack path : the out-of-plane perturbation fy is

plotted just before the depinning of the central point of the inclusion for a spherical shape (a) and

ellipsoidal one with different aspect ratio (b) and (c). The associated Mode II SIF perturbation δKII are

plotted in (d-f). Lateral points exerts a pulling force on the central one in the case of ellipsoidal shapes,

where as the central point is loaded in pure Mode I in the spherical case.

Due to in-plane considerations, the lateral points unpin first for the ellipsoidal case.

Since those points see a smaller tangent angle θtan, they are more likely to by-pass the

inclusion. When the central points unpin, the out-of-plane configuration of the crack front

is expected to be different for ellipsoidal inclusion than for the spherical case. Such out-

of-plane configuration is plotted in Fig. 3.29.a-c for the three geometries considered in this

study. We see that for the ellipsoidal inclusions, lateral points have begun to by-pass the

inclusion when the central points are ready to unpin. The out-of-plane deformations induce

then a negative δKII on those points (Fig. 3.29.d-f). As we will see below, this facilitates

the by-pass of the inclusion.

The impact of a local mode mixity on the crossing to by-pass transition can be analyzed

within the two-dimensional framework where a planar crack lands on a cylindrical inclusion

invariant in the z-direction, as exposed in Section 3.3.1.a. The inclusion toughness Ginc
c is

higher than the one of the matrix and while its interface shares the matrix properties Gint
c =

Gmat
c . The crack is loaded in mixed Mode I+II with ρii = KII/KI. As in Section 3.3.1.a,

one can compute the two-dimensional transition diagram in mixed mode loading conditions

from Eq. (3.26). Such two-dimensional diagram is plotted in Fig. 3.30 for ρii = 0.1.

This diagram shows that a local positive Mode II contribution favors the crossing of

the inclusion for a crack landing on its upper part and its by-pass on its lower portion.

Considering the case where the inclusion toughness equals Ginc
c = 1.8Gmat

c and the cracks

lands at a height ylanding/d = 0.3, we see in Fig. 3.31 that the local mode mixity shifts
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Figure 3.30: Two-dimensional analysis of the by-pass to crossing transition in mixed Mode I+II: the crack

loaded in mixed mode with ρii = 0.1 lands a height ylanding on a cylindrical inclusion characterized by the

toughness ratio Ginc
c /Gint

c . The reference transition limit in pure Mode I from Fig. 3.16 is plotted in black

dashed line

the direction where the ERR G is maximal (θmax = −2ρii at first-order). In the case of a

negative Mode II contribution ρii < 0., it brings the natural kinking direction θmax closer

to the by-pass direction θtan (Fig. 3.31.a). The crack is thus able to develop a greater ERR

G in the tangent direction to break the interface and by-pass the inclusion (Fig. 3.31.c).
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Figure 3.31: Generalized Maximum Energy Release Rate criterion in local mode mixity : angle

distribution of G (a), Gc (b) and (G−Gc) (c) for a crack locally loading in Mode I+II ρii = −0.1, landing

at a height ylanding/d = 0.15 on a inclusion of toughness Ginc
c = 2Gmat

c (d) at the onset of depinning

Coming back on the case of ellipsoidal inclusions, the out-of-plane deformations triggered

by the inclusion shape at the onset of inclusion crossing/by-pass induce a negative δKII on

the points located at the center of the inclusion. It makes their by-pass easier as explained
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by the two-dimensional model. In the spherical case of Fig. 3.29.a & d, the front is almost

flat when the central region begins to by-pass the inclusion. It is thus loaded in pure

Mode I and follows the theoretical two-dimensional predictions derived in Eq. (3.27). This

phenomenon accounts for the discrepancy on the crossing to by-pass transition observed in

Fig. 3.26 and Fig. 3.27.

3.4.2 Impact of collective three-dimensional behavior on the effective

toughness

Three-dimensional effects triggered by inclusion geometry can thus drastically lower the

inclusion toughness levels at which the by-pass mechanism prevails over inclusion cross-

ing. Those effects are inherently collective since they are triggered by long-range elastic

interactions along the crack front, both in-plane for the propagation dynamics (which point

unpins first) and out-of-plane for the crack trajectory (which path is chosen under local

mixed mode loading). They are expected to have a subsequent impact on the effective

toughness of periodic arrangements of tougher inclusions.

To address this issue, we consider a crack interacting with inclusion, whose geometry is

among the three considered above, for an inclusion spacing Lz = 4 d, where inclusion size

is d = dz. Thus we keep constant the ratio Lz/dz = 4 in order to get the same effective

toughness for inclusion crossing if it followed a mixture rule (see Eq. (3.20)). Inclusion

toughness ranges between Ginc
c = Gmat

c and Ginc
c = 4Gmat

c while interface toughness equals

Gint
c = Gmat

c . The crack is landing at ylanding = 0.1 dy so that the central point of the crack

front, where the kink angle is the largest, sees the same tangent angle θtan (see Eq. (3.30)).

Simulation properties are summarized in Table 8.4. Results are plotted in Fig. 3.32.
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Figure 3.32: Impact of the aspect ratio of the inclusions upon the effective toughness Geff
c : prolate

spheroidal inclusions elongated in the direction of the crack front are by-passed by the crack at smaller

toughness levels because of three-dimensional collective effects, resulting in a lowering of the plateau value

of the effective toughness.

As expected from the trajectory analysis, a smaller toughness threshold for crossing to by-

pass transition induces a dramatic loss of toughening in the case of ellipsoidal inclusions.

The critical toughness at which the inclusion is always by-passed for ylanding/d = 0.1 is
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[
Ginc

c /Gmat
c

]
crit

∼ 2.25 for dz = 2 dx and
[
Ginc

c /Gmat
c

]
crit

∼ 2.05 for dz = 4 dx instead

of the two-dimensional theoretical value
[
Ginc

c /Gmat
c

]
crit

∼ 2.75Gmat
c , which is valid for

the spherical inclusion dz = dx. This smaller critical value of the inclusion toughness

for the crossing to by-pass transition logically impacts the plateau value of the effective

toughness for such inclusion geometry. If the effective toughness reach a plateau value of

Geff
c = 1.328Gmat

c in the spherical case, it falls to Geff
c = 1.267, Gmat

c for dz = 2 dx and even

to Geff
c = 1.160, Gmat

c for dz = 4 dx.

The effective toughness for ellipsoidal geometries interacting with a crack landing at var-

ious heights ylanding are given in Fig. 3.33. As for the spherical case, the effective toughness

plateau is lowered for an increasing landing height because of the earlier crossing to by-pass

transition. Naturally, due to three-dimensional collective effects, the more elongated the

inclusion, the lower the plateau value for a similar landing height.
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Figure 3.33: Impact of the landing height ylanding on the effective toughness Geff
c : numerical results for

ellipsoidal inclusions with dz = 2 dx = 2 dy (a) and dz = 4 dx = 4 dy (b)

Again, such an effect on toughness emerges from the coupling between in-plane and

out-of-plane deformation modes of the crack front. It affects crack trajectory in three-

dimensions and subsequently the effective toughness of those materials. It stresses the

importance of inclusion design in the development of composite materials with increased

fracture properties.

3.5 Towards an improved toughening for crack deflection :

the example of cubical inclusions

As we saw in the last section, playing on the inclusion shape might change the condi-

tions under which one interaction mechanism (inclusion by-pass) prevails over one another

(inclusion crossing) and so might decrease the potential reinforcement induced by tough in-

clusions. We show in this section that playing on inclusion geometry can, on the contrary,

make inclusion by-pass less detrimental either by delaying its occurrence through inclusion

repenetration or by increasing the toughening potential of the deflection mechanism. It

is illustrated here with the interaction of a crack with cubical inclusions. As before, we

first have to investigate the mechanisms involved during the interaction between a crack
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and periodic arrangements of tougher cubical inclusions in Section 3.5.1. Their toughening

contribution is then explored in Section 3.5.2 and compared to the results derived for the

spherical shape.

3.5.1 Interaction between a crack and cubical inclusions : repenetration

processes triggered by the inclusion shape

3.5.1.a Description of the cubical geometry

As described in Section 2.3.1, we consider the restricted case of cubical inclusions of edge

length d, which are rotated by an angle βinc in a clockwise direction around the z-axis. Such

inclusion geometry is depicted in Fig. 3.34.with a cut in the (xPy) plane. The resulting

intersection is a square of vertices {A,B,C,D}. The local tangent angle at the inclusion

reads :



θtan (z, y) = − βinc, if y ∈ [yD, yA)

θtan (z, y) =
π

2
− βinc, if y ∈ (yA, yB]

(3.31)
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Figure 3.34: Cubical inclusion of edge length d and inclination βinc : three-dimensional view (a) and cut in

the (xPy) plane (b)

The cubical geometry presents four main interesting properties with respect to the spher-

ical inclusion :

1. the tangent angle to by-pass the inclusion is constant along the crack front. All the

points interacting with the inclusion see the same tangent angle θtan (Eq. (3.31)). In

the spherical case, the tangent angle depended on the position of the point in the z

direction (Eq. (3.28)) ;

2. the local slope is constant during the by-pass. In the spherical case, the slope rapidly

vanishes, which allowed the crack to realign with the (Ox)-direction imposed by the

macroscopic loading. In the cubical case, the crack is making an angle θtan with the

x-direction during the by-pass. It allows us to explore in details the impact of a stable

out-of-plane deviation slope on the effective toughness ;

3. the questions of the tangent angle and the landing height are decoupled. The in-

teraction mechanism (crossing or by-pass) selected by the crack does not depend on
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the position where it lands on the inclusion. Moreover, the landing height controls

the maximal height reached during inclusion by-pass. Thus the cubical geometry al-

lows us to investigate the impact of the height of the out-of-plane deviation on crack

trajectory and material toughening ;

4. the interaction mechanisms resulting from the phenomena evoked above are much

richer. In the case of cubical inclusions, the out-of-plane propagation of the crack

triggers a new interaction mechanism : inclusion repenetration, where the crack be-

gins to by-pass the inclusion before going in the inclusion and crossing it. Crack

propagation thus combines episodes of inclusion by-pass and inclusion crossing, which

were decoupled in the spherical case.

3.5.1.b From crossing to by-pass mechanism : a soft transition for cubical

inclusions characterized by inclusion repenetration

Inclusion by-pass : crack propagation in mixed Mode I+II

One major difference of crack propagation in anisotropic materials with the homogeneous

situation is that the crack can propagate in local mixed mode. Indeed, in the heterogeneous

case, the crack follows the path where (G−Gc) is maximum, which may not correspond

K∗
II = 0. This fact is illustrated with the by-pass of a tougher cubical inclusion in Fig. 3.35).
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Figure 3.35: (a) Propagation in mixed Mode I+II during the by-pass of a tough cubical inclusion inclined

at βinc = 45◦ with Ginc
c = 1.6Gmat

c : (b) Trajectory of the point of the crack front located in z = Lz/2. The

inclusion is sufficiently tough to allow inclusion by-pass, which triggers a propagation in mixed mode until

the crack repenetrates the inclusion (c)

We notice in Fig. 3.35.a-b that, after an initial phase where the crack by-passes the

inclusion and propagates along the interface, it kinks and goes inside the inclusion. When

the crack is propagating upwards along the interface, the points in contact are loaded in

mixed mode with KII > 0 (see Fig. 3.35.c), meaning that the kink angle prescribed by

the MERR αmax ≃ −2KII/KI < 0. G is thus maximal in a direction pointing inside the

inclusion. It is then possible that the crack, whose path is dictated by the GMERR, chooses

to repenetrate the inclusion during the by-pass.

Inclusion repenetration : a two-dimensional theoretical analysis

The occurrence of such a phenomenon can be analyzed within the LEFM framework thanks
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to Amestoy-Leblond’s formulæ. Let us consider once again the two-dimensional situation of

a crack interacting with an inclusion invariant in the z-direction. During the propagation,

the crack follows the interface so that θini = θtan, leading to a zero kink angle in the by-pass

direction αtan = 0. The ERR in this direction reads :

Gtan =
1− ν2

E
K2

I

(
1 + ρ2II

)
(3.32)

Gcross is keeping the same expression as in Eq. (3.23). It gives the following repenetration

condition :

Ginc
c

Gint
c

=
(Fi,i (αmax) + Fi,ii (αmax) ρii)

2 + (Fii,i (αmax) + Fii,ii (αmax) ρii)
2

1 + ρ2ii
(3.33)

We plot such a condition in Fig. 3.36. We notice that LEFM dictates that repenetration

does not occur for Ginc
c > 1.812Gint

c , even in the limit of very large KII. It appears

that repenetration happens for large SIF ratio KII/KI or small toughness contrast. In

the spherical case, large SIF ratio are caused by large out-of plane deviations, which are

generated by very tough inclusions. It is then not surprising that such repenetration does

not happen for the spherical geometry. In the case of cubical inclusions, large SIF ratio can

be triggered at smaller inclusion toughness levels since the maximal height of the out-of-

plane deviation depends on the landing height whereas the interaction choice (crossing/by-

pass) depends on the inclusion inclination βinc.
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Figure 3.36: Repenetration diagram as a function of the SIF ratio KII/KI and inclusion properties

Comparison of the two-dimensional theoretical model with three-dimensional

numerical simulations on cubical inclusions

To study the actual occurrence of the repenetration mechanism, we consider periodic ar-

rangements of cubical inclusions of edge length d inclined at varying inclination angles

βinc ∈
[
0, π2

]
and inclusion toughness levels Ginc

c ∈
[
Gmat

c , 4Gmat
c

]
. It interacts with a crack

landing at varying landing heights ylanding ∈ [0, hup]. 22,200 simulations, whose properties

are summarized in Table 8.5, have been run to create a numerical transition diagram, tak-

ing this time into account the potential inclusion repenetration. This diagram is plotted

in Fig. 3.37. Repenetration probability is defined from the behavior (crossing/by-pass with

repenetration/pure by-pass) of the whole region |z| ≤ d
2 of the crack front interacting with

the inclusion. Note that in case of repenetration, some points may still pursue propagation
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along the interface, leading to intermediary shades between blue and beige on the transition

diagram.

(a) (b)

Figure 3.37: Comparison of the prediction of the two-dimensional theoretical model of Eq. (3.27) (a) with

the results of the three-dimensional numerical simulations in case of cubical inclusions: (b) Phase diagram

obtained from 22’000 simulations with various toughness ratios Ginc
c /Gmat

c and inclusion inclinations βinc

and landing heights ylanding/d. Pure crossing is plotted in blue, pure bypass in beige and intermediate

cases with crack repenetration in shade from blue to beige

We see that inclusion repenetration occurs at toughness levels higher than the upper

bound Ginc
c ≃ 1.812Gmat

c . These errors emerge from the fact that analytical predictions of

Eq. (3.33) are computed at all orders while our numerical method is only accurate at first-

order. In the case of cubical shape, the local curvature
∂2fy
∂z2

is very high at the inclusion

edges so that δKII is non-negligeable. The out-of-plane perturbations and associated Mode

II contributions are plotted in Fig. 3.38 for a cubical inclusion inclined at βinc = 45◦ and

Ginc
c = 1.8Gmat

c with a crack landing at ylanding = 0.2hup. Large values of Mode II con-

tributions are incompatible with the regularized G in Eq. (8.6) used in our simulations. If

qualitative results can be derived for crack propagation on cubical inclusions, those results

are probably no more quantitative above Ginc
c = 1.8Gmat

c .

−2 −1 0 1 2

z/d

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

f y
/

d

BY-PASSING POINTS

(a) Out-of-plane

perturbations

−2 −1 0 1 2

z/d

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

K
II

/
K

∞ I

BY-PASSING POINTS

(b) Mode II contributions

xy

z

(c) 3D view

Figure 3.38: Crack front out-of-plane configuration (a) and associated SIF ratio KII/KI (b) during the

by-pass of a cubical inclusion inclined at βinc = 45◦ and Ginc
c = 1.8Gmat

c with a crack landing at

ylanding = 0.2h
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When the inclusion toughness is increased, the transition between the crossing mechanism

and the by-pass one is no more as sharp as in the spherical case. It is marked by a soft

transition where inclusion repenetration may occur. The crossing and by-pass mechanisms

then may both happen at the same time. Such a mechanism is likely to impact the effective

fracture properties of composite materials with cubical tougher inclusions.

3.5.2 An improved toughening marked by repenetration processes

3.5.2.a Effective toughness of periodic arrays of tougher cubical inclusions

In the case of coplanar propagation (Section 3.2.2.c), circular and square inclusions had

the same impact on the effective fracture properties. Such observation is unlikely to persist

in the three-dimensional case since spherical and cubical inclusions do not interact in the

same way with an incoming crack. To address this question, we consider a cubical inclusion

of edge length d inclined at various inclination angles βinc ∈
[
0, π2

]
. This inclusion interacts

with a crack landing at different landing heights ylanding =∈ [0, hup]. Its toughness varies

in Ginc
c ∈

[
Gmat

c , 4Gmat
c

]
. Simulation properties are summarized in Table 8.5.

We first plot the results for an inclusion inclined at βinc = 45◦ interacting with a crack

landing at ylanding = 0.2hup (Fig. 3.39.b). The effective toughness of the periodic hetero-

geneous medium is plotted in Fig. 3.39.a. We notice four main regimes :

1. at low inclusion toughness, up to Ginc
c = 1.37Gmat

c , the effective toughness follows a

mixture rule characteristic of regular coplanar propagation ;

2. from Ginc
c = 1.37Gmat

c to Ginc
c = 2.1Gmat

c , the effective toughness exceeds by a small

amount the coplanar predictions but the toughening rate is smaller than for the

coplanar case ;

3. from Ginc
c = 2.1Gmat

c to Ginc
c = 3.4Gmat

c , the effective toughness decreases progres-

sively and the toughening loss in comparison to the coplanar case is increasing ac-

cordingly ;

4. above Ginc
c = 3.4Gmat

c , the effective toughness reaches a plateau above which the

inclusion toughness has no impact on the overall properties of our composite as in the

spherical case.

Let us now discuss those four regimes. At low inclusion contrast, the inclusion is crossed

(Fig. 3.39.b). The cut of the cube by the (zOx) plane is a rectangle. For the inclination

βinc and the landing height ylanding considered here, the penetration process happens to be

regular and the effective toughness follows a mixture rule.
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Figure 3.39: Effective toughness Geff
c for various inner toughness for a cubical inclusion inclined at

βinc = 45◦ with a crack landing at ylanding = 0.2hup with
[

Ginc
c

]

crit
∼ 1.37Gmat

c (a) and crack trajectory

for three points of the crack front interacting with the inclusion at various propagation states (b)-(g)
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At Ginc
c =

[
Ginc

c

]
crit

∼ 1.37Gmat
c , the inclusion begins to be by-passed as predicted by the

two-dimensional predictions (Eq. (3.27)). Above this toughness level, points of the crack

front interacting with the defect begin to by-pass it. As the points keep on climbing on the

inclusion, the Mode II contribution δKII increases (Fig. 3.35) and tries to drag the front

back in the inclusion. Consequently, it is more and more difficult for the by-passing points

to progress on the tangent direction θtan and the macroscopic loading has to be increased

to make the crack advance.

At some point during the propagation, the local Mode II is so intense that the crack

goes back in the inclusion and crosses it. Crack trapping is thus retrieved and the effective

toughness of the composite is close to the one found for coplanar propagation. We notice

that the points of the crack front near the edges of the inclusion go back in the inclusion

earlier than the points located in the center of the inclusion due to a larger mode mixity

(see Fig. 3.38). As the inclusion toughness increases, less and less points along the crack

front repenetrate the inclusion (Fig. 3.39.d-f). The by-pass mechanism prevails here over

inclusion repenetration, which induces a subsequent decrease in material toughening. The

effective toughness thus reaches a peak and then decreases as repenetration processes are

less and less frequent. The bumps displayed in Fig. 3.39.a are associated with the front

discretization.

Above Ginc
c = 3.4Gmat

c , all points of the crack front interacting with an inclusion by-pass

it (Fig. 3.39.g). No part of the inclusion is crossed anymore and the overall toughness of

the material reaches a plateau. The effective toughness is no more related to the inclusion

toughness properties but only to the one of the interface. The plateau value is nonetheless

far larger in the case of a cubical inclusion than for a spherical inclusion. It is explained by

the fact that during inclusion by-pass the tangent angle made by the interface is constant

for the cubical shape whereas it vanishes in the spherical case. The crack cannot realign

with its natural propagation direction (Ox), imposed by the loading, and additional loading

is thus required to make it by-pass the inclusion.

3.5.2.b Impact of the landing height and inclusion inclination on the effective

fracture properties

We now plot the effective toughness for the same inclusion properties for a crack landing

at various heights in Fig. 3.40. As the crack lands closer to the center of the inclusion,

the maximal out-of-plane deviations attained during inclusion by-pass are larger. It thus

extends the range of inclusion toughness where the inclusion can be repenetrated during a

by-pass and subsequently increase the effective toughness. We also notice that when the

inclusion lands near the top of the inclusion, the effective toughness is close to the one

obtained for by-passing a spherical inclusion. In that case, there is almost no out-of-plane

propagation and crack depinning and by-passing take place almost simultaneously.
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Figure 3.40: Impact of the landing height ylanding on the effective toughness Geff
c (a) for the interaction of

a crack with periodic arrangements of cubical inclusions inclined at βinc = 45◦ (b)

We finally consider a crack landing at ylanding = 0.5hup on periodic arrangements of cubi-

cal inclusions with varying inclination angle βinc ∈
[

0, π2
]

. Results are plotted in Fig. 3.41.

Naturally, a bigger tangent angle θtan, i.e. a smaller inclination angle βinc, delays the tough-

ness ratio
[

Ginc
c /Gmat

c

]

crit
at which the crossing to by-pass occurs. Moreover, the smaller

the inclination angle, the larger the out-of-plane slope deviation during by-pass. The path

the crack follows during by-pass is strongly diverted from its natural propagation direc-

tion (Ox) and the plateau value is thus increased. We notice that for βinc = 67.5◦, the
combination of inclusion by-pass and crossing by repenetration can require a larger loading

than the coplanar propagation. It underlines the fact, already highlighted in Section 3.5.1,

that crack propagation results from a local maximization of the dissipated energy and not

from a global one. The crack can be prompted by inclusion geometry to follow a path that

requires in the end a larger loading to make the crack propagate.
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Figure 3.41: Impact of the inclusion inclination βinc on the effective toughness Geff
c (a) for the interaction

of a crack with periodic arrangements of cubical inclusions hit at a landing height ylanding = 0.5h (b)

As opposed to the coplanar case, spherical and cubical inclusions do not have the same

impact on inclusion toughness. Far from it, the cubical inclusions lead to effective toughness

levels far superior to the one induced by spherical inclusion due to geometrical effects. The

cubical geometry does not allow the crack to realign with the propagation direction imposed
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by the loading (Ox), which increases the toughening potential of crack deflection. It can also

trigger inclusion repenetration, where the crack goes back in the inclusion and crosses it,

which delays the toughness levels at which inclusion by-pass occurs. Tailoring the inclusion

shape can thus seriously limit the toughening loss by inclusion by-pass.

As underlined in Section 3.5.1.b, crack repenetration might not be modeled accurately

by our first-order perturbative approach. The conclusion drawn in this section might be

only qualitative and would need to be investigated further through more accurate numerical

approaches such as phase-field simulations, the periodic cases considered in this study being

still within reach of such approaches [Clayton and Knap, 2014; Nguyen et al., 2017a].

3.6 The by-pass mechanism, a limiting factor for both crack

trapping and crack bridging ?

The last three sections were dedicated to highlighting how the by-pass mechanism may

induce substantial toughening loss by limiting material toughening by crack trapping. But

crack trapping can only increase the effective toughness by a factor two or three. Crack

bridging is mentioned in the literature as a much more severe toughening mechanism, since

it may increase the material toughness by a factor ten, as experimentally observed by

Krstic et al. [1981] and Malik and Barthelat [2016] and confirmed by numerical simulations

in Bower and Ortiz [1991]. When particles, such as fibers, remain unbroken in the wake of

the crack, they pin the crack lips/surfaces together and a greater load is required to make

the crack propagates. Moreover, crack bridging triggers a so-called R-curve effect, where

the effective toughness of the material increases as the crack propagates. Such features have

been observed in nature on biological materials displaying remarkable toughness properties

such as bone and nacre [Barthelat et al., 2007; Wegst et al., 2015]. It has driven the

development of bio-inspired materials where toughness properties were tuned to make crack

bridging happen [Mirkhalaf et al., 2014; Wegst et al., 2015; Malik and Barthelat, 2016]. Yet

if crack deflection allows crack bridging to happen in the case of fibers [Evans et al., 1991;

Naslain, 1998], this section underlines that it may not be the case for any inclusion shape

and that inclusion by-pass might also limit material toughening by preventing crack bridging

to occur.

3.6.1 Crack bridging, a particularly efficient toughening mechanism threat-

ened by inclusion by-pass ?

As explained above, crack bridging induces a major increase in effective fracture proper-

ties and is logically the primary mechanism to aim at if one wants to make brittle materials

tougher. Crack bridging can occur for various reasons. For example, Mirkhalaf et al. [2014]

designed weak interfaces in glass using a laser engraving technique. The crack followed those

weak interfaces resulting in a geometrical interlocking situation leading to crack bridging.

Another possibility has been highlighted by Bower and Ortiz [1991] in numerical simula-

tions of coplanar propagation of a crack interacting with tougher circular inclusions, which

might depict the case of infinitely elongated fibers aligned in the direction perpendicular to
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the crack front. If the inclusions are tough enough, the crack does not break the inclusion

as illustrated in Fig. 3.42. The crack front bows around the inclusion and finally merges

ahead as represented in Fig. 3.43. The bowing and merging mechanism could induce a loss

of toughening since it prevails over inclusion crossing and thus limits crack trapping. But

it leaves unbroken particles in the wake of the crack front, which pin the crack surfaces and

toughen drastically the material.

UNBROKEN	INCLUSION BROKEN	INCLUSION

(a)

UNBROKEN	INCLUSION BROKEN	INCLUSION

(b)

UNBROKEN	INCLUSION BROKEN	INCLUSION

(c)

Figure 3.42: Crossing mechanism at three different propagation steps : pinning on the inclusion (a),

inclusion crossing (b), matrix (c) leaving the inclusion broken in the wake of the crack

UNBROKEN	INCLUSION BROKEN	INCLUSION

(a)

UNBROKEN	INCLUSION BROKEN	INCLUSION

(b)

UNBROKEN	INCLUSION BROKEN	INCLUSION

(c)

Figure 3.43: Bridging mechanism at three different propagation steps : pinning on the inclusion (a),

coalescence around the inclusion (b), matrix relaxation (c) leaving the inclusion unbroken thus pinning the

crack surfaces in the wake of the crack

When crack bridging occurs, Bower and Ortiz [1991] showed that the effective toughness

reads :
Geff

c

Gmat
c

= 2.39
d2

L2
z

Ginc
c

Gmat
c

(3.34)

3.6.2 Influence of inclusion elongation on the trapping to bridging tran-

sition

Bower and Ortiz [1991] emphasized that crack bridging already occurs for inclusions 4.4

times tougher than the matrix, i.e. for Ginc
c /Gmat

c ≥ 4.4 (see Fig. 3.44). However, we showed

in Section 3.3.1 that by-pass systematically happens for spherical inclusions with toughness

ratios Ginc
c /Gmat

c ≥ 3.82, implying that bridging cannot occur for spherical inclusions since

by-pass prevails over crack front trapping. Thus, as crack bridging does happen for infinitely

elongated fibers along the y-direction, one may wonder how elongated should an inclusion

be for crack bridging to prevail over inclusion by-pass.
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(a)

Figure 3.44: Regimes of behaviour for a semi-infinite crack propagating through a regular array of circular

tough particles (after [Bower and Ortiz, 1991])

To address this issue, we consider the interaction of a semi-infinite crack with periodic

arrangements of prolate spheroidal inclusions elongated in the y-direction, having dz = dx =

d and 0.1 ≤ dy/d ≤ 4 (see Fig. 3.45). We consider a toughness ratio Ginc
c = 4Gmat

c , that

corresponds to the upper limit of the validity range of our model. We do not model crack

bridging, but rather focus on the estimation of the conditions under which this mechanism

may occur or not. We compare our results, based on the modeling of the coupling of crack

trapping and inclusion by-pass, to those obtained for the coupling of crack trapping and

bridging by Bower and Ortiz [1991].

x

y
z

(a) dy = dz = dx

x

y
z

(b) dy = 2 dz = 2 dx

x

y
z

(c) dy = 4 dz = 4 dx

Figure 3.45: Examples inclusion geometry considered in the following study : spherical (a), ellipsoidal

prolate with dy = 2 dz = 2 dx (b) and dy = 4 dz = 4 dx (c)

For the toughness contrast and aspect ratios of inclusion considered here, the by-pass

mechanism prevails over inclusion crossing. We then compute the loading required to by-

pass the inclusion - that is the effective toughness of the composite - and compare it to

that for which crack bridging is expected to occur. The latter, determined by Bower and

Ortiz [1991], corresponds to the loading required to ensure crack coalescence around a

cylindrical inclusion of axis perpendicular to the crack plane. It depends only on the ratio

of the inclusion effective radius (that varies with the landing height) over the particle inter-

distance Lz. The procedure, repeated for various landing height ylanding/dy, leads to the

results of Fig. 3.46.
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For a given landing height ylanding, the effective toughness increases with the aspect

ratio dy/dz. This is due to the fact that the crack front is dragged downwards because

of the growing Mode II contribution δKII while it is by-passing the inclusion upwards.

The more elongated the inclusion, the harder the by-passing - and therefore the larger the

load required to induce crack propagation - because of the larger difference between the

propagation direction θtan and that, θmax, corresponding to the maximum of G. We see

that even for highly elongated inclusions, typically dy/d = 4, crack bridging is not activated

before by-pass can be fully completed.
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Figure 3.46: By-pass to bridging transition as a function of the normalized landing height ylanding/dy for

different inclusion elongation ratio dy/dz : the effective toughness of the by-pass mechanism (in

dashed/dotted line) is compared to the prediction of the effective toughness at the crack trapping to

bridging transition (in solid line).

We conclude that in the limit of very long fibers (dy/dz → +∞), Bower and Ortiz

[1991]’s numerical predictions of toughening through crack bridging apply. Yet, as soon

as inclusions of finite elongation are considered, inclusion by-pass prevents crack bridging,

thus considerably reducing the material toughening due to inclusions. However, these

conclusions remain qualitative insofar as, strictly speaking, our first-order model remains

rigorously valid for small out-of-plane deviations, a condition which is violated as soon as the

inclusion gets too much elongated. Moreover, Xu et al. [1998] showed that crack branching

may occur at the matrix/inclusion interface. This type of branching is not included in

our model which considers only a single macroscopic crack. It may induce an increase of

the energy dissipated by crack propagation and thus delay inclusion by-pass, allowing the

trapping/bridging transition to occur.

3.7 Presence of weak interface : the decisive role of the in-

clusion shape

Playing on the interface properties is often presented as a way to achieve greater tough-

ness properties. Li and Zhou [2013b] showed that weakening interfaces toughens brittle

materials, basing their conclusions on two-dimensional cohesive zone model simulations and

analytical methods. From the results of their experimental campaign on fiber-reinforced
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ceramics, both Evans et al. [1991] and Naslain [1998] recommend weak interfaces to favor

crack deflection at the interface. As stressed out by Xu et al. [1998] and Ma et al. [2004],

a weak interface can favor material toughening in the case of cylindrical fibers since it al-

lows crack bridging to occur. But they also underline how a weak interface may reduce

toughening by crack trapping, which is often a far less efficient toughening mechanism than

crack bridging. We explore here the question of weak interfaces and their ultimate impact

on crack-inclusion interactions and the effective toughness.

3.7.1 A weak interface limiting further crack trapping and bridging

To investigate the impact of weak interface on the effective toughness, we consider pe-

riodical arrangements of spherical inclusions with a system Lz = 4d interacting with a

crack landing at ylanding = 0.1 d. The inclusion toughness varies from inclusion toughness

Ginc
c = Gmat

c to Ginc
c = 4Gmat

c . The interface toughness is no more equal to the matrix

toughness and goes from Gint
c = 0.6Gmat

c to Gint
c = Gmat

c . Simulation parameters corre-

spond to the ones reported in Table 8.6. Results are plotted in Fig. 3.47.
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Figure 3.47: Effective toughness Geff
c for various inclusion toughness and interface toughness for a spherical

inclusion hit at ylanding/d = 0.1 and comparison with upper bounds predictions from Eq. (3.29)

As may have been expected, the weaker the interface, the bigger the toughening loss in

comparison to the coplanar case where only crack trapping occurs. Indeed, Eq. (3.26) tells

us that reducing the interface toughness makes the by-pass easier, which is then triggered at

smaller inclusion toughness levels. As explained in Section 3.3.2, the macroscopic loading

reaches its maximum value when the crack kinks to by-pass the inclusion in the case of

spherical inclusions. Since the kink is made easier by the weak interface, the effective

toughness logically drops and its plateau value decreases as the interface gets weaker.

Deriving analytical predictions for the effective toughness is a complicated matter. We

see in Fig. 3.47.a that the crossing to by-pass transition is well predicted by Eq. (3.26) for

a spherical inclusion as it was in the case for Gint
c = Gmat

c . But the determination of the

plateau value is complicated, as explained in Section 3.3.2 since the interaction process is

irregular. Eq. (3.29), which predicted an upper bound for the case Gint
c = Gmat

c , remains

nonetheless valid for weak interface as depicted in Fig. 3.47.b.

A weak interface can induce a substantial loss of toughening since it favors inclusion
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by-pass. We illustrated this fact on spherical inclusions. The same conclusions could have

been drawn for the composite with ellipsoidal prolate inclusions presented in Section 3.4.

Its effective toughness, already reduced by collective behavior in the by-pass of tougher

inclusions, is even lesser in the case of weak interface. In the same way, a weak interface may

facilitate the by-pass of moderately elongated inclusions and thus prevent crack bridging

to occur.

3.7.2 Weak interface : a potential toughening relying on material design

In all the cases discussed above, inclusion by-pass was always detrimental with respect

to inclusion crossing as far as the effective fracture properties are concerned since crack

deflection has a smaller toughening potential than crack trapping. Yet, the example of

the cubical inclusion showed that one can work on the inclusion shape to increase the

reinforcement induced by crack deflection. If this mechanism happens to be more efficient

than crack trapping, one could achieve higher reinforcement levels by favoring inclusion

by-pass through the introduction of a weak interface.

We thus consider periodical arrangements of cubical inclusions of edge width d and

inclination βinc ∈
{
π
8 ,

π
4

}
separated by Lz = 4d. They interact with a crack landing at

ylanding = 0.2hup. The inclusion toughness varies from inclusion toughness Ginc
c = Gmat

c

to Ginc
c = 4Gmat

c . The interface toughness goes from Gint
c = 0.6Gmat

c to Gint
c = Gmat

c .

Simulation parameters are summarized in Table 8.6 and results are plotted in Fig. 3.48.
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Figure 3.48: Effective toughness Geff
c for various inclusion toughness and interface toughness for a cubical

inclusion of inclination βinc = π
4
(a) and βinc = π

8
(b) hit at ylanding = 0.2hup.

We see in Fig. 3.48.a that for small tangent angle βinc =
π
4 (i.e. θtan = π

4 ), the presence

of a weak interface weakens the material. Yet in the case of large tangent angle βinc =
π
8

(i.e.θtan = 3π
8 ), there exists a regime where the effective toughness can be increased for

smaller interface toughness levels (Fig. 3.48.b). From Ginc
c = 1.2Gmat

c to Ginc
c = 2Gmat

c , the

inclusion with Gint
c = 0.6Gmat

c is initially by-passed then crossed after a repenetration, while

the inclusion Gint
c = Gmat

c is crossed. Around those inclusion toughness levels, the weaker

configuration is tougher than the other by an amount ∆G ≃ 0.1Gmat
c , so 10% of toughness

increase. As soon as inclusion by-pass remains the only mechanism involved, the weaker

configuration displays a smaller effective toughness than the case where Gint
c = Gmat

c .
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To conclude, a weak interface might be a parameter to consider if the mechanism it

triggers is more energetically costly than crack trapping. In our study, such cases remains

scarce and a weak interface generally leads to a decrease in the effective fracture properties.

3.8 Concluding remarks

This chapter was dedicated to the study of the mechanisms which take place during the

interaction between a crack and tough inclusions and their ultimate impact on the effective

toughness, estimated from the maximum loading attained during crack propagation.

In Section 3.2, we revisited the works of Gao and Rice [1989], Chopin et al. [2011] and

Chopin et al. [2018] derived for coplanar crack propagation. The crack was bound to

propagate within a plane by crossing the tougher defects. We showed that, when the crack

interacts with periodic arrangements of tougher inclusions, its front distorts proportionally

to the toughness of the inclusions. The non-local elastic interactions along the crack front

triggered by the distortion of the crack front allow for the crossing of the inclusion together

with an increase in the macroscopic loading due to crack trapping. The effective toughness

has been proved to increase proportionally to the toughness contrast Ginc
c −Gmat

c . Inclusion

crossing allows for an efficient toughening of composite materials by crack trapping.

The coplanar hypothesis is relieved in Section 3.3. The crack can interact with a tough

inclusion either by crossing it or by-passing it. The conditions under which one mechanism

prevails over the other have been derived analytically in a two-dimensional case where the

inclusion is invariant in the front direction in Eq. (3.26). It has been shown to describe

accurately the mechanisms observed numerically for spherical inclusions. At low inclusion

toughness, the inclusion is crossed while it is by-passed at higher toughness levels. If the

effective toughness increases linearly with the inclusion toughness in the case of inclusion

crossing, it reaches a plateau when the inclusion is by-passed. Crack deflection is activated

and proves to be less efficient than crack trapping to reinforce composite materials. The

by-pass mechanism is then detrimental to the effective toughness since it limits material

toughening by crack trapping.

One can play on the inclusion geometry to influence both the conditions under which

one interaction mechanism is selected by the crack and the toughening it induces. First,

considering in Section 3.4 ellipsoidal inclusions elongated along the front direction (Oz), we

proved that the crossing to by-pass transition could occur at smaller inclusion toughness

levels because of three-dimensional collective effects. This early by-pass consecutively limits

further material reinforcement by crack trapping and reduces the effective toughness of the

heterogeneous material. Second, cubical inclusions can on the contrary delay the tough-

ness levels at which the by-pass mechanism prevails over inclusion crossing by triggering a

new mechanism : inclusion repenetration. The latter mechanism toughens the composite

efficiently by crack trapping for a larger range of inclusion toughness than in the spherical

case. Moreover, the cubical geometry prevent the crack to realign with the propagation

direction (Ox) imposed by the macroscopic tensile loading and consequently increases the

potential of reinforcement of crack deflection. It paves the way for the design of more com-
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plex geometries that prevent inclusion by-pass and allow for the activation of more efficient

toughening mechanisms.

In Section 3.6, we show that the by-pass mechanism can not only limit material tough-

ening by crack trapping but can also prevent crack bridging mechanisms to occur. Crack

bridging has been proved to reinforce substantially the effective toughness up to a factor

10 − 50 [Krstic et al., 1981; Bower and Ortiz, 1991]. Yet, inclusion by-pass might prevent

crack bridging to occur. Considering ellipsoidal inclusions elongated along the direction

perpendicular to the crack surface (Oy), we show that the by-pass mechanism prevents

crack bridging to occur for elongation ratios up to dy/dz = 4.

Finally, we showed in Section 3.7 that weak interfaces are in general detrimental to the

material reinforcement since it favors by-pass mechanisms to occur. Nonetheless, if one

design inclusions where the toughening by crack deflection triggered by by-pass events

exceeds the one induced by crack trapping and inclusion crossing, weak interfaces could

produce tougher materials.

This chapter underlines the close relationship which links the interaction mechanisms that

occur at the crack-tip and the effective fracture properties. The conditions under which

one mechanism prevails over one another as well as the reinforcement potential of the ac-

tivated toughening mechanism have been thoroughly investigated and have been shown to

be dictated by both material properties and inclusion geometry. The next chapter aims

at describing how such interaction mechanisms can be taken into account in a homoge-

nization framework which allows for the prediction of the effective toughness of large-scale

heterogeneous materials.
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4.1 Introduction

Be they natural or artificial, heterogeneous materials are commonly found in everyday

life. The recent boom of additive manufacturing techniques [Dimas et al., 2013; Wang

and Xia, 2017] and the emergence of bio-source and recycled composite materials driven

by pressing environmental concerns [Reis, 2006; Jo et al., 2008] have increased further

the need to rationalize the failure behavior of microstructured solids. A comprehensive

theoretical framework that allows for the prediction of the effective fracture properties of

composite materials from their microstructural features has been a query for decades in

solids mechanics and is still lacking today.

Nevertheless, homogenizing brittle fracture properties proves nevertheless especially chal-

lenging since brittle fracture is both an evolutive and a dissipative process, which addition-

ally localizes at the crack tip or on the crack surfaces. It consequently does not allow for the

use of well-established averaging methods dedicated to the homogenization of linear [Hashin

and Shtrikman, 1963; Hill, 1965; Herve and Zaoui, 1993; Ponte-Castañeda and Willis, 1995]

and non-linear [Ponte-Castañeda, 1991; Ponte-Castañeda and Suquet, 1997; Lahellec and

Suquet, 2007; Agoras et al., 2016; Lucchetta et al., 2019] behaviors, that assume that the

dissipation can be estimated from its volume average on all representative volume elements

(RVE). For the homogenization of brittle fracture properties, Roux et al. [2003], Roux and

Hild [2008] and Patinet et al. [2013b] proposed a numerical self-consistent approach which

allows for the prediction of the homogenized fracture properties when a coplanar crack

interacts with tougher defects. Démery et al. [2014b] and Démery et al. [2014a] addressed

the same problem with tools borrowed from statistical physics [Larkin and Ovchinnikov,

1979] to develop a theoretical framework, which allows for analytical predictions of the

effective fracture properties. If these works constitute major advances in the field of ho-

mogenization of brittle fracture properties, they are nonetheless restricted to coplanar crack

propagation and thus can only account for the crossing mechanism of interaction between

a crack and tough inclusions. Yet, as we saw in Chapter 3, effective fracture properties

appear to strongly depend on the processes which take place at the crack tip (e.g. crack

trapping [Gao and Rice, 1989; Bower and Ortiz, 1990; Vasoya et al., 2016a], crack deflection

[Faber and Evans, 1983a; Suresh, 1985; Brach et al., 2019a; Lebihain et al., 2020a], crack

de-nucleation/re-nucleation [Hossain et al., 2014; Brach et al., 2019a]) or in the wake of

the crack (e.g. crack bridging [Evans et al., 1991; Bower and Ortiz, 1991; Naslain, 1998;

Mirkhalaf et al., 2014] or surface wedging [Ritchie, 1988]).

After investigating thoroughly the mechanisms of interaction between a crack and a

single inclusion in Chapter 3, we consider, in this chapter, crack propagation in composite

materials containing millions of inclusions. We propose a theoretical framework extending

the work of Démery et al. [2014b] to non-coplanar three-dimensional fracture and that

includes all crack tip processes. We illustrate it on the various mechanisms (crossing, by-

pass, repenetration) considered in the manuscript. But at first, we revisit in Section 4.2

the results obtained by Démery et al. [2014b] within the theoretical formalism developed

by Favier et al. [2006b]. Theoretical predictions of the effective fracture properties are then
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compared to the results of our numerical model in the case of coplanar propagation, to

investigate the predictive capabilities as well as the weaknesses of the theory. The coplanar

hypothesis is relaxed in Section 4.3 where we consider non-coplanar propagation of a crack

interacting with large-scale distributions of tougher spherical inclusions. We first question

the definition of the effective fracture properties and then describe the conditions under

which all possible definitions yield a unified value, which can be considered as intrinsic

and called the effective toughness of the material. This is applied to the analysis of the

influence of the inclusion toughness on the effective toughness, which appears to be highly

non-trivial. It calls for the definition in Section 4.4 of a broader homogenization framework,

which takes into account the different impacts of inclusion crossing and inclusion by-pass

on the effective toughness. Finally, the theoretical predictions of this model are compared

to some numerical results, for various microstructural properties (e.g. inclusion toughness,

toughness disorder, interface toughness) in Section 4.5, and geometrical properties (e.g.

inclusion shape, material texture) in Section 4.6.

4.2 Effective toughness for coplanar propagation in hetero-

geneous brittle materials

The question of the effective toughness of heterogeneous brittle materials has been pre-

viously studied in the coplanar case [Roux et al., 2003; Roux and Hild, 2008; Patinet et al.,

2013b; Démery et al., 2014b,a]. Démery et al. [2014b] developed in particular a theoretical

homogenization framework for the crossing mechanism inspired by theoretical concepts bor-

rowed from statistical physics [Larkin and Ovchinnikov, 1979]. In Section 4.2.1, we revisit

those results, derived in a discrete case by Démery et al. [2014b], within the continuous

framework developed by Favier et al. [2006b]. It is then used in Section 4.2.2 to predict the

impact of microstructural parameters (e.g. inclusion toughness, density or shape) on the

effective toughness of disordered systems, with a comparison to some numerical results of

large-scale coplanar simulations.

4.2.1 The decisive link between crack front deformation and the effective

toughness

As we have seen in Section 3.2, information on the local toughness field is embedded in

both the instantaneous crack front in-plane deformation and its evolution in time. We see

in this section that the statistics of the in-plane distortions of the crack front also contain

information on the macroscopic Mode I loading inducing fracture, and thus on the effective

toughness of disordered heterogeneous materials.

4.2.1.a Coplanar propagation in disordered materials

We revisit here the problem of coplanar crack propagation in heterogeneous materials

displaying toughness discontinuities. Let us consider a heterogeneous material described by

a toughness field Gc of the type :

Gc (z, x) = 〈Gc〉+ σgc (z, x) (4.1)
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where 〈Gc〉 is the spatial average of the toughness field, σ its standard deviation and

gc (z, x), the disorder function, a dimensionless spatial field of unit variance and zero mean

value [Démery et al., 2014b].

When the crack interacts with the toughness field, the front is deformed within its plane.

At first-order the equation of motion reads (see Section 3.2.1.a) :

1

v0

∂fx
∂t

(z, t) =
vm
v0

+
G∞

G0
c

(
1− 1

Lfx (z, t)−
1

π
PV

∫ +∞

−∞

fx (z, t)− fx (z
′, t)

(z − z′)2
dz′
)

(4.2)

− 〈Gc〉
G0

c

+
σ

G0
c

gc (z, x = fx (z, t))

In the quasi-static limit where vm/v0 → 0 and L → +∞, we have :

1

v0

∂fx
∂t

(z, t) =
Geff

c

G0
c

− Geff
c

πG0
c

PV

∫ +∞

−∞

fx (z, t)− fx (z
′, t)

(z − z′)2
dz′ (4.3)

− 〈Gc〉
G0

c

+
σ

G0
c

gc (z, x = fx (z, t))

where G∞ (t) is replaced by Geff
c . Indeed, when L → +∞ ⇔ ∂G∞

∂x
= 0, the macroscopic

loading does not decrease once reaching its maximum value Geff
c (see Eq. (2.6)).

This equation slightly differs from the one given by Démery et al. [2014b] since the

constant in front of the integral is Geff
c

πG0
c
and not 1

π , but agrees with Gao and Rice [1989].

Additional hypotheses are required to assume this factor to be 1
π , as explained in the next

part.

4.2.1.b Crack front statistics in the weak-pinning regime : the first Larkin

hypothesis

Propagation equation in the weak-pinning regime

The main difficulty in dealing with Eq. (4.3) comes from the non-linearity induced by the

disorder term gc (z, x = fx (z, t)). This difficulty can be circumvented if we consider that

the crack front perturbations fx are much smaller than the disorder correlation length ξx
along the propagation direction x. Larkin and Ovchinnikov [1979] distinguished two cases :

1. If fx ≫ ξx, the crack is in a so-called strong-pinning regime. The crack displays

an intermittent dynamics characterized by the fact that parts of the crack front are

pinned by tougher inclusions (G < Gc) while other parts are propagating (G = Gc).

This propagation generates, in the crack front, geometric structures called clusters

whose spatial expansion verifies specific scaling laws [Bonamy, 2009];

2. If fx ≪ ξx, the crack is in the weak-pinning regime. During some period of time,

the crack can propagate in a stationary manner so that ∂fx
∂t (z, t) = 0. Moreover, the

x-dependence in the disorder term can be removed Gc (z, x = fx (z, t)) = Gc (z). This

constitutes the first Larkin hypothesis.
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In the weak-pinning regime Eq. (4.3) reduces to :

Geff
c

G0
c

− Geff
c

πG0
c

PV

∫ +∞

−∞

fx (z)− fx (z
′)

(z − z′)2
dz′ − 〈Gc〉

G0
c

+
σ

G0
c

gc (z) = 0 (4.4)

By identifying zero-order terms in the perturbation fx, we get :

Geff
c = 〈Gc〉 (4.5)

The effective toughness verifies a simple mixture rule in the Larkin regime.

At first-order, it gives :

1

π
PV

∫ +∞

−∞

fx (z)− fx (z
′)

(z − z′)2
dz′ +

σ

〈Gc〉
gc (z) = 0 (4.6)

We want now to extract information from the front roughness under the first Larkin

hypothesis. We define the roughness in the z-direction as :

∆f2
x (∆z) =

〈
(fx (z +∆z)− fx (z))

2
〉
z
= 2

〈
f2
x (z)

〉
z
− 2 〈fx (z +∆z) fx (z)〉z (4.7)

Mathematical framework for crack front statistics calculation

As seen in Eq. (4.7), we aim at estimating averages over the crack front. These averages

are difficult to handle theoretically. Following Favier et al. [2006b], we consider ensemble

averages, where one looks at one point z at multiple front configurations resulting from

the interaction of a coplanar crack with multiple heterogeneous materials. We then adopt

the ergodic hypothesis which consists in assuming that ensemble averages are equivalent to

averages over the crack front.

In the following, we consider a statistical ensemble Ω of possible realizations of a het-

erogeneous medium, associated to a specific real number ω. We note p : ω 7→ p (ω) its

probability density function. Thus, the probability that the variable ω′ lies in some neigh-

borhood of ω of measure dω is p(ω) dω. The mathematical expectation E [u (z)] of any

spatial observable u : z 7→ u (z) is defined as :

E [u (z)] =

∫

Ω
u (z;ω) p(ω) dω (4.8)

The 2-point correlation function E [u (z2)u (z1)] is defined as :

E [u (z2)u (z1)] =

∫

Ω
u (z2;ω)u (z1;ω) p(ω) dω (4.9)

The calculation of the 2-point correlation function E [fx (z2) fx (z1)] of fx constitutes a

decisive step to estimate the crack front roughness ∆f2x (∆z), since the two are related via

the ergodic hypothesis. We know that Eq. (4.6) has a much more simple expression in

the Fourier space. Thus we will work in both the real space and the Fourier space. Let
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Ẽ [u1u2] (k1, k2) denote the double (z1, z2)-Fourier transform of the function E [u (z2)u (z1)].

A simple calculation shows that [Favier et al., 2006b] :

Ẽ [u1u2] (k1, k2) = E [û (k1) û (k2)] (4.10)

Moreover, in the case of statistical invariance of the observable u in the crack front

direction, the two-point autocorrelation function takes the form :

E [u (z2)u (z1)] = U (z2 − z1) (4.11)

One gets from there in the Fourier space [Favier et al., 2006b] :

Ẽ [u1u2] (k1, k2) = 2πδ (k2 + k1) Û (k2) (4.12)

In-plane roughness in the Larkin regime

We can apply this formalism to the calculation of E [fx (z1) fx (z2)] through that of E
[
f̂x (k1) f̂x (k2)

]
.

First, we assume that the spatial disorder gc is uniformly distributed so that :

E [gc (z1) gc (z2)] = G (z2 − z1) (4.13)

The Fourier transform of Eq. (4.6) yields :

f̂x (k) = − σ

〈Gc〉
ĝc (k)

|k| (4.14)

Following Eq. (4.10), the double Fourier transform Ẽ [f1xf
2
x ] reads :

Ẽ [f1xf
2
x ] (k1, k2) = E

[
f̂x (k1) f̂x (k2)

]
=

(
σ

〈Gc〉

)2 E [ĝc (k1) ĝc (k2)]

|k1| |k2|
(4.15)

Now Eq. (4.10) and Eq. (4.12) yield, for the observable gc :

E [ĝc (k1) ĝc (k2)] = ˜E [gc,1gc,2] (k1, k2) = 2πδ (k2 + k1) Ĝ (k2) (4.16)

Therefore :

Ẽ [f1xf
2
x ] (k1, k2) =

(
σ

〈Gc〉

)2 Ĝ (k2)

k22
· 2πδ (k2 + k1) (4.17)

The statistical invariance of Gc implies that of fx. One gets therefore :

E [fx (z2) fx (z1)] = F (z2 − z1) (4.18)

Using Eq. (4.12) for fx, we identify the auto-correlation function F in the Fourier space

in Eq. (4.17) :

F̂ (k) =

(
σ

〈Gc〉

)2 Ĝ (k)

k2
(4.19)
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If we go back in the real space and use the ergodic hypothesis combined with Eq. (4.19),

we get :

∆f2x (∆z) = F (0)−F (k) =
1

π

(
σ

〈Gc〉

)2 ∫ +∞

0
Ĝ (k)

1− cos(k∆z)

k2
dk (4.20)

This integral can be calculated for specific expressions of Ĝ. For example, if we assume

that the toughness disorder correlations decay exponentially :

G (z2 − z1) = e
− |z2−z1|

ξz ⇔ Ĝ (k) =

2
ξz

k2 +
(

1
ξz

)2 (4.21)

From Eq. (4.20) and Gradshteyn and Ryzhik [2014] formula (3.725.1), one can deduce

that the in-plane roughness ∆fx reads :

∆f2x (∆z) =

(
σ

〈Gc〉

)2

ξz

[
∆z + ξz

(
−e−∆z/ξz − 1

)]
(4.22)

For ∆z ≫ ξz, Eq. (4.22) reduces to :

∆f2x (∆z) =

(
σ

〈Gc〉

)2

ξz∆z (4.23)

In the same way, if the toughness spatial correlations follow a Lorentz decay, which

happens to be much slower than the exponential one :

G (z2 − z1) =
1

1 +
(
∆z
ξz

)2 ⇔ Ĝ (k) = πξze
−ξz |k| (4.24)

Using Eq. (4.20) and Gradshteyn and Ryzhik [2014] formula (3.948.1), the expression of

the in-plane roughness ∆fx reads :

∆f2x (∆z) =

(
σ

〈Gc〉

)2

ξz

[
arctan

(
∆z

ξz

)
∆z − ξz

2
ln

(
1 +

(
∆z

ξz

)2
)]

(4.25)

For ∆z ≫ ξz, Eq. (4.25) reduces to :

∆f2x (∆z) =
π

2

(

σ

〈Gc〉

)2

ξz∆z (4.26)

The disorder geometry changes the pre-factor of the crack front in-plane roughness ∆fx.

We have just calculated those pre-factors for an exponential and a Lorentz disorder cor-

relation function. Moreover, we confirm the property that the weak-pinning regime is

characterized by a Hurst exponent ζ = 0.5, given that the crack front roughness evolves as

∆fx ∝ ∆zζ .



118 Homogenization of brittle fracture properties for large-scale composites 4

It ultimately allows us to define the Larkin length Lc, which separates the weak-pinning

regime from the strong-pinning one. The weak-pinning regime is based on the assumption

that the crack does not see that the disorder varies in the x-direction. This assumption

breaks down when :

∆f2x (Lc) = ξ2x (4.27)

This equation allows us to estimate the Larkin length :

Lc = γ

(〈Gc〉
σ

)2 ξ2x
ξz

(4.28)

where γ is a pre-factor determined by the disorder geometry.

4.2.1.c From crack front roughness to effective toughness : the second Larkin

hypothesis

The crack front in-plane perturbations fx and their statistics, characterized by the rough-

ness ∆fx, are consequences of the toughness field, characterized by its mean value 〈Gc〉 and
its standard deviation σ. Notably, they define a characteristic length Lc, which separates

the weak-pinning regime from the strong one. This lengthscale plays a decisive role in the

determination of the effective toughness of the heterogeneous material.

Indeed the second Larkin hypothesis consists in assuming that the loading required to

break the material is given by the toughness visited by a Larkin domain of length Lc [Larkin

and Ovchinnikov, 1979]. Démery et al. [2014b] distinguished two regimes :

1. Lc ≥ ξz : the Larkin length Lc is greater than the inclusion size in the z-direction,

characterized by the correlation length ξz. This regime is called collective-pinning ;

2. Lc ≤ ξz : the Larkin length Lc is smaller than the inclusion size. A Larkin domain

sees only one defect. This regime is called individual-pinning.

In the collective-pinning regime, a Larkin domain contains N = Lc/ξz uncorrelated

inclusions (see Fig. 4.1). The toughness experienced by this domain can be estimated from

the Central Limit Theorem, which states that :

• the toughness distribution inside the Larkin domain is Gaussian;

• its average toughness is 〈Gc〉;

• its toughness standard deviation is equal to σLarkin = σ√
N

= σ
√
ξz/Lc.

Its maximum can then be approximated roughly by :

maxGc ∼ 〈Gc〉+ βσ

√
ξz
Lc

(4.29)

where β is a constant. β = 4 is usually found as a good approximation for a Gaussian

distribution.
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Figure 4.1: Schematic of the second Larkin hypothesis : (a) the effective toughness is inferred from the

material toughness visited by a Larkin domain of length Lc (in beige) ; this domain, which contains

N = Lc/ξz inclusions, is characterized by an average toughness 〈Gc〉 and a toughness disorder σ
√

ξz/Lc.

In the end, the effective toughness reads :

Geff
c = 〈Gc〉+ α

σ2

〈Gc〉
ξz
ξx

(4.30)

where α is a constant depending on the toughness distribution. It is set to α = 1 in Démery

et al. [2014b]. We notice that we find back the weak-pinning predictions Geff
c = 〈Gc〉 when

ξx/ξz → +∞.

Démery et al. [2014b] considered a large system size Lz so that the Larkin length is

always smaller than the system size Lz ≥ Lc. Yet it might not be the case in our numerical

study as well as in the experiments. Similar reasoning, that takes into account the finite

size of the system, leads to :

Geff
c = 〈Gc〉+max

(
σ

√
ξz
Lz

,
σ2

〈Gc〉
ξz
ξx

)

(4.31)

In the individual-pinning regime, the effective toughness is given by the maximal tough-

ness of a defect so that Démery et al. [2014b] could only derive a lower bound for the

effective toughness :

Geff
c ≥ 〈Gc〉+ σ (4.32)

Démery et al. [2014b] finally compared those theoretical formulæ to numerical results

using different disorder distributions p (Gc). The comparison is shown in Fig. 4.2, where

KIc is considered instead of Gc. They distinguish the collective regime from the individual

one via the introduction of a disorder parameter :

Σ =
σ

〈Gc〉
ξz
ξx

(4.33)

If Σ < 1 the interaction between the crack and the inclusion distribution is collective.

Otherwise, it is described by the individual-pinning regime.

To conclude, the theoretical reasoning of Démery et al. [2014b], inspired by the seminal

work of Larkin and Ovchinnikov [1979], has been revisited within the formalism developed
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Figure 4.2: Dimensionless disorder-induced toughening k̃eff for different disorder distributions as a function

of the disorder parameter Σ (after Démery et al. [2014b])

by Favier et al. [2006b]. It relates the effective toughness Geff
c to the estimation of the Larkin

length Lc, which describes the roughness of the crack front perturbations. This reasoning

highlights in the disordered case the subtle relation between the macroscopic fracture prop-

erties and the crack front in-plane perturbations, a link which has been already exposed

for periodical arrangements in Chapter 3. In a coplanar setting, the effective toughness

Geff
c can be inferred from only 4 statistical features of the local toughness distribution : its

spatial average 〈Gc〉, its standard deviation σ, and its correlation lengths ξz and ξx. This

approach is now used to predict the effective fracture properties of disordered systems in

the coplanar case.

4.2.2 Impact of microstructural features on the coplanar effective tough-

ness

Previous studies predicting the effective properties of disordered systems for coplanar

propagation [Roux et al., 2003; Roux and Hild, 2008; Patinet et al., 2013b; Démery et al.,

2014b,a] introduced microstructural disorder as a spatial toughness field Gc drawn from a

statistical distribution characterized by its average 〈Gc〉, its standard deviation σ and its

correlation lengths ξz and ξx respectively in the z- and x-direction. We present here a study

on the effective toughness for a coplanar crack interacting with disordered arrangements of

realistic inclusions. It allows to study the impact of microstructural parameters (inclusion

toughness, inclusion density, inclusion shape, etc.) on the effective toughness of disordered

systems. Moreover, we conduct a systematic comparison between the numerical results and

the analytical predictions from Eq. (4.31) to investigate the strengths and limitations of

the coplanar homogenization framework.

4.2.2.a Inclusion toughness

Problem statement

Let us first consider a composite constituted of a homogeneous matrix and tougher circu-

lar fibers of diameter d infinitely elongated and perfectly aligned in the y-direction. An

half-plane crack is propagating in the (zOx) plane perpendicular to the y-direction. The

inclusions have a circular shape in this plane. They are characterized by their diameter

d, their density ρinc and their toughness Ginc
c . During the interaction with the tougher



4 Homogenization of brittle fracture properties for large-scale composites 121

inclusions, the crack is trapped and the macroscopic loading G∞ has to increase to make

the crack advance. The maximum loading attained during propagation defines the effective

toughness of the material Geff
c (see Section 3.2.2.a).

We consider large-scale systems of size Lz × Lx = 256d × 256d, containing hundreds of

thousands inclusions. The inclusion density is fixed at ρinc = 25%. All inclusion share the

same toughness Ginc
c , which varies from Ginc

c = Gmat
c to Ginc

c = 4.5Gmat
c between simula-

tions (see Section 2.2.4). We average the results on five different realizations of inclusion

distribution, as it will be the case in the remainder of the manuscript. An example of in-

clusion distribution at varying inclusion toughness levels is plotted in Fig. 4.3. Simulations

parameters are summarized in Table 8.7.

(a) Ginc
c = 1.25Gmat

c (b) Ginc
c = 2Gmat

c (c) Ginc
c = 4Gmat

c

Figure 4.3: Coplanar half-plane crack propagating in a disordered material constituted of spherical

inclusions of varying toughness Ginc
c (Lz × Lx = 32d× 32d for visualization purpose)

Numerical results and comparison to model predictions

130 simulations have been run to investigate the impact of inclusion toughness on the

effective toughness. Numerical results are plotted in Fig. 4.4, where individual simulation

points are displayed as cross markers.
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Figure 4.4: Impact of the inclusion toughness Ginc
c on the effective toughness Geff

c : the effective toughness

is predicted from Eq. (3.19) as the maximal macroscopic loading required to make propagate a coplanar

crack interacting with a distribution of circular inclusions of varying toughness. Numerical results in cross

markers are compared to mixture rule predictions from Eq. (3.20) in dotted line, collective pinning

predictions from Eq. (4.31) in dashed line and regularized predictions from Fig. 4.2 in dash-dotted line.

First, we notice that the disorder induces an additional toughening in comparison to the

periodic case so that Geff
c ≥ 〈Gc〉. In contrast with elastic properties, the results on the
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effective fracture properties derived from the homogenization of periodic media do not allow

for a quantitative prediction of the effective toughness. Second, the effective toughness does

not increase linearly with the inclusion toughness. Indeed in the case of circular inclusions

of diameter d and toughness Ginc
c leading to a toughness contrast cinc = Ginc

c −Gmat
c

Gmat
c

, and

density ρinc, one gets : 



〈Gc〉 = Gmat
c (1 + ρinccinc)

σ = Gmat
c

√
ρinc (1− ρinc) cinc

ξz = ξx = d

(4.34)

In the case of isotropic distribution of circular inclusions, one obtains ξz/ξx = 11. It

finally gives :





Geff
c = Gmat

c

(
1 +

[
ρinc +

√
ρinc (1− ρinc)

√
ξz
Lz

]
cinc

)
, if Lc > Lz

Geff
c = Gmat

c

(
1 + ρinccinc +

ρinc (1− ρinc) c
2
inc

1 + ρinccinc

)
, if ξz ≤ Lc ≤ Lz

Geff
c ≥ Gmat

c

(
1 +

[
ρinc +

√
ρinc (1− ρinc)

]
cinc

)
, if Lc < ξz

(4.35)

Fig. 4.5.a shows the evolution of the Larkin length Lc measured in our simulations from

Eq. (4.27) and compared to theoretical predictions of Eq. (4.28) for γ = 1. We see that up

to a pre-factor γ the evolution of the Larkin length follows the theoretical predictions of

Eq. (4.28).

If we come back to the effective toughness variations, at a very low inclusion toughness

Ginc
c /Gmat

c ≤ 1.2 the system size is smaller than the Larkin length, Lz < Lc, and the

effective toughness increases linearly with the inclusion toughness contrast. The linearity

loss is typical of the collective regime, which characterizes most of our simulations. Yet as

shown in Fig. 4.4, Eq. (4.31) does not fully capture the effective toughness resulting from

our coplanar simulations. This is explained by the fact that the material disorder parameter

Σ introduced by Démery et al. [2014b] is in the range between 0.1 − 1 in our simulations

as shown in Fig. 4.5.b. In this range, the effective toughness is not accurately predicted

by Eq. (4.31). As a result, the effect of the soft cross-over between the collective and the

individual regime displayed in Fig. 4.2 has to be taken into account.

If we model this cross-over by interpolating the data of Démery et al. [2014b], the compar-

ison between numerical results and theoretical predictions becomes much more satisfactory

(dash-dotted lines in Fig. 4.4). It constitutes a numerical validation of the theoretical model

presented in Section 4.2.1. Improvements would consist in modeling in detail the cross-over

between the collective-pinning regime and the individual-pinning one since propagation of-

ten happens in this cross-over regime. But for the remaining part of the manuscript, the

1ξz and ξx are not per se the correlation lengths of our microstructure. In the case of non-overlapping

disks, Torquato [2002] notes that exclusion (hard-core) effects induce oscillations on the correlation function,

which make the precise definition of the correlation length difficult.
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Figure 4.5: Impact of the inclusion toughness Ginc
c on the Larkin length Lc (a) and disorder parameter Σ

(b) for the crack trapping mechanism : the Larkin length is estimated from the in-plane roughness with

Eq. (4.27) and compared to theoretical predictions from Eq. (4.28) in dash-dotted lines. The disorder

parameter Σ is computed analytically from Eq. (4.33).

cross-over is modeled by a numerical interpolation of the results presented in Démery et al.

[2014b].

Convergence study

We now investigate how sensitive are our results on the effective toughness with the mesh

size ∆z of the crack front. We saw in Section 8.C that ∆z had a large impact on the

numerical performances of our model. It is thus mandatory to explore the impact of ∆z on

the effective toughness to reach a reasonable compromise between numerical accuracy and

computational performances. We consider various mesh sizes ranging from ∆z/d = 4 (four

points by inclusions in average) to ∆z/d = 32 (thirty-two points by inclusions in average).

Simulation parameters are summarized in Table 8.7. Results of the 200 simulations are

plotted in Fig. 4.6.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ginc
c /Gmat

c

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

G
ef

f
c

/
G

m
at

c

∆z = d/4

∆z = d/8

∆z = d/16

∆z = d/32

Numerical estimations

Theoretical predictions

Figure 4.6: Impact of the front discretization step ∆z on the effective toughness Geff
c : the effective

toughness is predicted from Eq. (3.19) s the maximal macroscopic loading required to make propagate a

coplanar crack interacting with a distribution of circular inclusions of varying toughness. Numerical results

in solid line are compared to regularized predictions from Fig. 4.2 in black dashed line.

We see that the effective toughness is overestimated for large mesh size. As illustrated

in Fig. 4.7, a coarse mesh leads to an overestimation of both the inclusion size and its area,

subsequently leading to an overestimation on 〈Gc〉 and an error on the effective toughness as
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predicted by Eq. (4.30). In the following, we take a mesh size ∆z = d/16 which constitutes

a satisfying compromise between a fine modeling of the microstructure and reasonable

numerical performances.

y

x

(a) Real

geometry

y

x

(b) ∆z = d/32

y

x

(c) ∆z = d/16

y

x

(d) ∆z = d/4

Figure 4.7: Impact of the discretization step on the geometrical modeling of a circular inclusion : real

geometry (a), fine mesh (b-c), coarse mesh (d)

4.2.2.b System size

Problem statement

The inclusion toughness plays a decisive role on the determination of the effective toughness

since it dictates the propagation regime (collective or individual). Yet, if the crack is

propagating in the collective regime, the system size may play a role on the estimation of

the effective toughness as predicted by Eq. (4.31). We consider an inclusion distribution

with Ginc
c = 1.5Gmat

c and a density ρinc = 25% to set the Larkin length to Lc ≃ 74 d (see

Fig. 4.5). It allows us to explore the impact of the system size Lz several order of magnitude

below and above the Larkin length Lc. We thus consider systems whose size is ranging from

Lz = 8 d up to Lz = 4096 d. The size in the x-direction is fixed at Lx = 384 d to allow

small-scale systems to visit enough blocking configurations and have a better estimate of the

effective toughness [Kolton et al., 2013]. An example of inclusion distribution for various

system sizes is showed in Fig. 4.8. Simulations parameters are summarized in Table 8.8.

(a) Lz = 16 d (b) Lz = 64 d (c) Lz = 256 d

Figure 4.8: Coplanar half-plane crack propagating in a disordered material with varying size Lz, period of

our system

Numerical results and comparison to model predictions

Results of the 100 simulations run for the study are plotted in Fig. 4.9. The Larkin length

Lc ≃ 74 d is calculated from the in-plane roughness of large-scale systems Lz = 4096 d with

Eq. (4.27) As predicted from Eq. (4.31), the effective toughness Geff
c does not depend on

the system size when the system size is far larger than the Larkin length Lz ≫ Lc. Yet as
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soon as the system size is of the order of the Larkin length, the effective fracture properties

increase when the system size decreases.
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Figure 4.9: (a) Impact of the system size Lz on the effective toughness Geff
c for the crack trapping

mechanism : the effective toughness is predicted from Eq. (3.19) as the maximal macroscopic loading

required to make propagate a coplanar crack interacting by a crossing mechanism with a distribution of

circular inclusions of toughness. (b) The effective toughness is normalized following Eq. (4.36) to highlight

the influence of the system size.

Quantitative comparison can be inferred from Eq. (4.31). Indeed, the effective toughness

can be renormalized in such way :

Geff
c − 〈Gc〉
σ
√

ξz
Lc

= max

(

√

Lc

Lz
, 1

)

(4.36)

We see in Fig. 4.36.b that Eq. (4.36) is verified up to a pre-factor 2, which presence has

been explained by the disorder geometry in Section 4.2.1.c. In particular, the normalized

effective toughness actually displays a dependence in
√

Lc

Lz
when Lz ≤ Lc. The presence of

both a pre-factor and a soft transition between the two regimes Lz ≪ Lc and Lz ≫ Lc is

nonetheless likely to induce errors in theoretical predictions of the effective toughness for

Lz ∼ Lc, i.e. when the inclusion toughness or the inclusion density is low. Overall, we note

that Larkin’s approximations, on which the effective toughness predictions are based, do

not take into account the size of the system, and the statistical size effects associated with

it.
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4.2.2.c Inclusion density

Problem statement

The system size is now set at Lz × Lx = 256d × 256d for the remaining coplanar studies.

We now explore the impact of the inclusion density on the effective toughness. We consider

circular inclusion distributions whose densities are ranging from ρinc = 0.1 to ρinc = 0.4

for various inclusion toughnesses. An example of inclusion distribution at varying density

levels are shown in Fig. 4.10. Simulations parameters are summarized in Table 8.9.

(a) ρinc = 0.1 (b) ρinc = 0.25 (c) ρinc = 0.4

Figure 4.10: Coplanar half-plane crack propagating in a disordered material with varying inclusion density

ρinc (Lz × Lx = 32d× 32d for visualization purpose)

Numerical results and comparison to model predictions

Results of the 260 simulations run for the study are plotted in Fig. 4.11. Averaged numerical

results are plotted in solid line and individual simulation points are represented as cross

markers. Theoretical results are plotted in dash-dotted line. Finally, the inclusion density

level is pictured in orange to dark red levels.
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Figure 4.11: Impact of the inclusion density ρinc on the effective toughness Geff
c : the effective toughness is

predicted from Eq. (3.19) as the maximal macroscopic loading required to make propagate a coplanar

crack interacting with a distribution of circular inclusions of varying toughness at various density levels.

Numerical results (in solid lines) are compared to regularized predictions from Fig. 4.2 (in dashed lines).

We see that the denser the distribution, the higher the effective toughness. Moreover,

the theoretical predictions match fairly well the numerical results both qualitatively and

quantitatively. Discrepancies are found at small inclusion density ρinc = 0.1, since the
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Larkin length Lc is bigger than the system size Lz (see Section 4.2.2.b). The comparison

remains otherwise satisfactory.

4.2.2.d Toughness disorder

Problem statement

Up to now, all the inclusions within the composite shared the same inclusion toughness.

We now consider cases where the inclusion toughness varies from an inclusion to the other.

Inclusions are characterized by their toughness Ginc
c or alternatively their toughness con-

trast with respect to the matrix cinc = Ginc
c −Gmat

c

Gmat
c

. We take here a polydisperse contrast

distribution cinc characterized by its mean value 〈c〉 and its standard deviation σ (cinc). We

define σ̃, our contrast disorder parameter, as :

σ̃ =
σ (cinc)

〈cinc〉
(4.37)

We assume that the toughness contrast of the inclusion follows a log-normal distribution

characterized by the parameters (µc, σc). Its probability density function can be expressed

as :

f (cinc) =
1

cincσc
√
2
exp

[
−(ln(cinc)− µc)

2

2σ2c

]
(4.38)

(µc, σc) are linked to 〈c〉 and σ̃ through the following relationships :



〈c〉 = eµc+

σ2
c
2

σ̃ = eσ
2
c − 1

⇔




µc = ln〈c〉 − 1

2
ln
(
1 + σ̃2

)

σ2c = ln
(
1 + σ̃2

) (4.39)

Examples of cinc distribution for various σ̃ are given in Fig. 4.12.
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Figure 4.12: Probability density function f (a) and cumulative distribution F (b) of the inclusion

toughness for various contrast disorder σ̃

In order to study the impact of the contrast disorder parameter σ̃ in our simulations,

we consider circular inclusion distributions with σ̃ ranging from σ̃ = 0 (monodisperse) to

σ̃ = 5 (highly polydisperse) for various inclusion toughnesses. The inclusion density is fixed

at ρinc = 25%. Examples of inclusion distribution at varying toughness disorder levels are

shown in Fig. 4.13. Simulations parameters are summarized in Table 8.10.
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(a) σ̃ = 0 (b) σ̃ = 1 (c) σ̃ = 5

Figure 4.13: Coplanar half-plane crack propagating in a disordered material with the same average

toughness contrast 〈cinc〉 but varying inclusion from inclusion leading with a disorder parameter σ̃

(Lz × Lx = 32d× 32d for visualization purpose)

Numerical results and comparison to model predictions

Results of the 540 simulations run for the study are summarized in Fig. 4.11 where the

evolution of the effective toughness is shown as a function of the mean inclusion toughness.

The disorder level is pictured in orange to dark red levels.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ginc
c /Gmat

c

1

2

3

4

5

6

7

G
ef

f
c

/
G

m
at

c

σ̃ = 0.00

σ̃ = 0.25

σ̃ = 0.50

σ̃ = 1.00

σ̃ = 1.50

σ̃ = 2.00

σ̃ = 5.00

Numerical estimations

Theoretical predictions

Figure 4.14: Impact of the toughness disorder σ̃ on the effective toughness Geff
c : the effective toughness is

predicted from Eq. (3.19) as the maximal macroscopic loading required to make propagate a coplanar

crack interacting with a distribution of circular inclusions with a varying average toughness at various

toughness disorder levels. Numerical results (in solid lines) are compared to regularized predictions from

Fig. 4.2 (in dashed lines).

We see that the toughness disorder has an important effect on the effective toughness of

heterogeneous materials. Even if the inclusion distribution has the same average toughness〈
Ginc

c

〉
, an increase in the toughness disorder σ̃ leads to an increase of toughening by a

factor 3-4. In the presence of toughness disorder, Eq. (4.35) becomes :





Geff
c = Gmat

c

(
1 +

[
ρinc +

√
ρinc (1 + σ̃2 − ρinc)

√
ξz
Lz

]
cinc

)
, if Lc > Lz

Geff
c = Gmat

c

(
1 + ρinccinc +

ρinc
(
1 + σ̃2 − ρinc

)
c2inc

1 + ρinccinc

)

, if ξz ≤ Lc ≤ Lz

Geff
c ≥ Gmat

c

(

1 +
[

ρinc +
√

ρinc (1−+σ̃2ρinc)
]

cinc

)

, if Lc < ξz

(4.40)



4 Homogenization of brittle fracture properties for large-scale composites 129

We notice that the theoretical predictions match quantitatively the numerical results at

a low disorder level. Yet for σ̃ = 5, the results are only qualitative and no more quantita-

tive. It is explained by the fact that such a large level of disorder σ =
√
ρinc (1 + σ̃2 − ρinc)

makes the Larkin length Lc decrease below the inclusion size d in Eq. (4.28). The propa-

gation shifts in the individual-pinning regime, where the effective toughness can no more

be quantitatively predicted by our collective pinning based approach.

4.2.2.e Inclusion shape

Problem statement

In the case of the interaction between a coplanar crack and periodic arrangements of tougher

inclusions, the inclusion shape has been shown to strongly influence the effective toughness.

Yet, circular and square inclusions have been shown to induce the same toughening. We

here investigate if those observations survive in presence of disorder.

We then consider square inclusions whose densities are ranging from ρinc = 0.1 to ρinc =

0.3 for a varying inclusion toughness Ginc
c /Gmat

c ∈ [1, 4]. An example of square inclusion

distribution is given in Fig. 4.15. Simulations parameters are summarized in Table 8.9.

(a) Circular inclusion (b) Square inclusion

Figure 4.15: Coplanar half-plane crack propagating in a disordered material with various inclusion shape

(Lz × Lx = 32d× 32d for visualization purpose)

Numerical results and comparison to model predictions

Results of the 180 simulations are plotted in Fig. 4.16. In Fig. 4.16.a, we compare the

numerical results for square inclusions to the one found for circular inclusions. We see that,

as in the periodic case, the square and circular inclusions toughen the material identically.

It is explained by the fact that the effective toughness is only influenced by the inclusion

shape through the correlation length ratio ξz/ξx, which is identical for square and circular

inclusions. It is thus no wonder that theoretical predictions, which were quantitatively

correct for circular inclusions, describe well the case of square inclusions as it is shown in

Fig. 4.16.b.
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Figure 4.16: Impact of the inclusion shape on the effective toughness Geff
c : the effective toughness is

predicted from Eq. (3.19) as the maximal macroscopic loading required to make propagate a coplanar

crack interacting with a distribution of square inclusions. Numerical results are compared to the ones of

circular inclusions (a) and to regularized predictions for square inclusions from Fig. 4.2 (b).

4.2.2.f Inclusion elongation

Problem statement

In the periodic case, irregular processes in inclusion crossing lowered the effective toughness

of periodical arrangements of tougher elliptic inclusions (Fig. 3.12). To close this study on

the effective toughness for coplanar crack propagation, we propose to revisit the case of the

elliptic inclusions elongated in the z-direction, in a disordered setting.

(a) dz = dx (b) dz = 2dx (c) dz = 4 dx

Figure 4.17: Coplanar half-plane crack propagating in a disordered material with various inclusion

elongation in the z-direction (Lz × Lx = 32d× 32d for visualization purpose)

We thus consider distributions of elliptic inclusions elongated in the z-direction, with

an elongation ranging from dz = dx to dz = 4 dx at varying inclusion toughness levels

Ginc
c /Gmat

c ∈ [1, 4]. The inclusion density is fixed at ρinc = 25%. Examples of inclusion

distribution for various elongation ratios are plotted in Fig. 4.17. Simulations parameters

are summarized in Table 8.11.

Numerical results and comparison to model predictions

The results on the effective toughness of the 240 simulations required for the study are

plotted in Fig. 4.18 along with the associated disorder parameter Σ. Theoretical predictions

on the effective toughness are superposed in dash-dotted line.
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If no discrepancy was observed in the case of square inclusions, the results are here

striking. The introduction of elongated inclusions does not decrease the effective toughness

but rather increases it. What was a weakness in the periodic case constitutes a strength

as soon as disorder is introduced. The more elongated the inclusion in the z-direction, the

greater the effective toughness. This trend is predicted by the theoretical model since the

effective toughness increase linearly with the correlation length ratio ξz/ξx in the collective

regime (see Eq. (4.30)). Theoretical predictions are in accordance with the numerical results

for dz = dx and dz = 2 dx but not for dz = 4 dx. It is explained in Fig. 4.18.b by the fact

that the crack is propagating in the individual-pinning regime (Lc < d), where theoretical

predictions are no more quantitative.
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Figure 4.18: Impact of the inclusion elongation dz/dx on the effective toughness Geff
c (a) and and disorder

parameter Σ (b) : the effective toughness is predicted from Eq. (3.19) as the maximal macroscopic loading

required to make propagate a coplanar crack interacting with a distribution of elliptical inclusions.

Numerical results are compared to regularized predictions from Fig. 4.2 in dashed lines.

To conclude, the theoretical model of Démery et al. [2014b] revisited in Section 4.2.1 has

been successfully confronted to the results of numerical simulations of coplanar crack prop-

agation in disordered systems displaying toughness discontinuities of varying properties and

shapes. It stresses out that, in brittle fracture, the periodic case is not representative at all

of the disordered one when it comes to homogenizing fracture properties. Moreover, the-

oretical approaches adapted from statistical physics allows to tackle the difficult question

of the homogenization of brittle fracture properties. A correct description of the cross-over

between the collective (ξz < Lc < Lz) and the individual-pinning regime (Lc < ξz) is

nonetheless required to produce quantitative predictions on the effective toughness within

the range of parameters considered in our studies. In the same manner, an accurate de-

scription of the cross-over between the collective and the finite system size regime (Lc > Lz)

would produce better predictions at a low toughness contrast between the matrix and the

inclusion or a low inclusion density. Moreover, when the crack enters the individual-pinning

regime, the predictions are no more quantitative as it can be the case for large toughness

disorder σ̃ or large elongation ratio ξz/ξx. These current limitations constitute future chal-

lenges in statistical physics of fracture.

The coplanar situation being explored, it is now time to investigate the impact of out-

of-plane excursions of the crack front on the effective toughness of disordered materials.
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4.3 Effective toughness for three-dimensional propagation in

heterogeneous brittle materials

4.3.1 Questioning the definition of effective toughness

Up to now, the effective toughness has been defined in Chapter 3 as the maximal ERR

imposed by the macroscopic loading. This definition takes advantage of the fact that a ho-

mogenized material property, the effective toughness, can be estimated from the evolution

of a structural problem, as it is stated by Griffith’s criterion. If such an approach provides

a unique perspective to tackle the difficult problem of homogenizing brittle fracture prop-

erties, one can wonder if the resulting effective fracture properties can be decoupled from

the structural problem and in fine can be intrinsic to the considered composite. In this

section, we question the possible definitions of the effective fracture properties and stress

out the conditions under which an intrinsic effective toughness can be defined.

4.3.1.a The effective toughness : three possible definitions for a single material

property

Hossain et al. [2014] considered three possible definitions for the effective toughness Geff
c :

1. the maximum energy release rate imposed by the loading during crack propagation

G∞
max, selected by Hossain et al. [2014] and Brach et al. [2019a] in two-dimensional

phase-field simulations of the interaction of a crack with elastic and toughness hetero-

geneities. The loading has to be increased up to G∞
max to break the whole specimen;

2. the average energy release rate imposed by the loading during crack propagation

G∞
mean, adopted by Patinet et al. [2013b] in numerical simulations of three-dimensional

coplanar crack propagation of disordered systems and Li and Zhou [2013a] in cohesive

zone model simulations of two-dimensional crack propagation in composite ceramics.

It quantifies loading levels G∞
mean at which crack propagation occurs, without neces-

sarily leading to total failure of the structure;

3. the effective fracture energy
〈
Gfrac

c

〉
defined as the average energy dissipated on a

unitary surface during crack propagation.

Crack propagation in disordered materials has been proved to be highly intermittent

[Bonamy et al., 2008; Bonamy, 2009; Barès et al., 2014]. This intermittency can be noticed

in Fig. 4.19.a that provides the evolution of the macroscopic ERR G∞ imposed by the

loading during crack propagation. This evolution is characterized by two phases : pinning

ones, where the crack does not progress and the macroscopic loading increases, separated

by phases of sudden propagation where the loading decreases at a rate ∂G∞

∂x = −G0

L (see

Eq. (2.6)). During the phases of sudden propagation, the crack visits multiple pinning

configurations, which might not be strong enough to pin the crack front for a given macro-

scopic loading G∞ (x). As shown by Roux and Hild [2008], these peculiar dynamics lead to

a Gaussian probability density function for G∞ (x) centered in G∞
mean, as we also observe

in our numerical simulations (see Fig. 4.21.a). Note that this Gaussian behavior allows for

a proper definition of the maximum energy release rate G∞
max.
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Figure 4.19: Definitions of the effective toughness : G∞
mean (in dashed line) and G∞

max (in dash-dotted line)

defined respectively as the average and the maximum of the macroscopic ERR G∞ imposed by the tensile

loading during crack propagation (a).
〈

Gfrac
c

〉

defined as the spatial average of the fracture energy

Gfrac
c (z, x) dissipated during crack propagation (b)

Our numerical method allows us to track the energy dissipated locally by the fracture

process. Local maps of dissipated fracture energy Gfrac
c (z, x) can be computed from the

following procedure. As pictured in Fig. 4.20, we can discretize the heterogeneous medium

on a grid in the (zOx) plane of cell size ∆ℓ. For a grid cell located in (xi, zj), we denote

tin and tout the time at which the crack front enters and exits the cell (Fig. 4.20.a). The

energy dissipated by fracture during propagation reads :

Efrac
i,j =

∫ tout

tin

∫ zj+∆ℓ/2

zj−∆ℓ/2
G (z, t) v (z, t) dz dt (4.41)
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Figure 4.20: Effective fracture energy, defined as the dissipated energy per unit surface required to crack

an elementary surface in the (zOx) plane (a) taking into account the out-of-plane excursions (b)

We have to normalize this dissipated energy by the cracked surface area. Due to out-

of-plane excursions of the crack front, a crack does not propagate along a distance ∆ℓ but

along a distance ∆s in the propagation direction (see Fig. 4.43.b), which reads :

∆s (z) =

∫ tout

tin

v (z, t) dt (4.42)
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We normalize the local dissipated energy Efrac
i,j by ∆ℓ2 rather than ∆ℓ ·∆s to take into

account the crack tortuosity. The local fracture energy finally reads :

[
Gfrac

c

]
i,j

=
Efrac

i,j

∆ℓ2
=

1

∆ℓ2

∫ tout

tin

∫ zj+∆ℓ/2

zj−∆ℓ/2
G (z, t) v (z, t) dz dt (4.43)

It allows us to construct local maps of dissipated fracture energy Gfrac
c (z, x) as pictured

in Fig. 4.19.b. Circular domains are characteristic of inclusion crossing, while moon shaped

patterns can be attributed to by-pass events. Larger fracture energy patterns are associated

with kinetic effects evidenced during the relaxation of the crack front perturbation out of

a defect by [Chopin et al., 2018] (see Section 3.2.1.b). The probability density function of

Gfrac
c , which is plotted in Fig. 4.21.b, shows a behavior markedly different from the one of

the macroscopic loading G∞ plotted in Fig. 4.21.a. We can notice two peaks, one located

around the matrix toughness Gmat
c and another one around the inclusion toughness Ginc

c .

Those two peaks are surrounded by two regimes corresponding to the relaxation of the crack

front perturbation out-of the defects. Yet, we observe that the effective fracture energy〈
Gfrac

c

〉
, defined as the spatial average of Gfrac

c (z, x), is nonetheless equal to the average

energy release rate G∞
mean. It comes from the fact that a composite made of multiple

Griffith’s materials is a Griffith’s material [Dal Maso and Toader, 2002; Giacomini and

Ponsiglione, 2006; Cagnetti et al., 2019], a property that ultimately enforces the equality〈
Gfrac

c

〉
= G∞

mean.
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Figure 4.21: Probability density function of the macroscopic loading (a) and of the effective fracture

energy (b) for a crack interacting with a large-scale disordered distribution of tougher inclusions of density

ρinc = 25% and toughness Ginc
c = 2Gmat

c .

If
〈
Gfrac

c

〉
and G∞

mean are equal, they do not always coincide with the maximum en-

ergy release rate G∞
max. In particular, the discrepancy between the average energy release

rate G∞
mean and the maximum energy release rate G∞

max seems to strongly depend on the

structural length L that controls the evolution of G∞ (see Fig. 4.19) and consequently the

respective values of G∞
mean and G∞

max.
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4.3.1.b Towards a unified value of the effective toughness : the decisive impact

of the loading conditions

Problem statement

In this section, we investigate the impact of the structural length L on the maximum energy

release rate G∞
max, the average energy release rate G∞

mean and the effective fracture energy〈
Gfrac

c

〉
to determine the conditions under which a single intrinsic value for the effective

toughness Geff
c can be measured by decoupling the material problem related to Geff

c from

the structural one related to G∞.

We run numerical simulations on large-scale disordered systems of size Lz × Lx × Ly =

256d× 288d× 16d containing hundreds of thousands inclusions. We consider a distribution

of monodisperse spherical inclusions of diameter d at an inclusion density ρinc = 25% for

three different inclusion toughness levels : Ginc
c = 1.5Gmat

c , Ginc
c = 2Gmat

c to Ginc
c = 3Gmat

c .

The interface toughness is taken equal to the one of the matrix Gint
c = Gmat

c . Finally, the

structural length L, characteristic of the loading variations, is varying from 10−1 d to 106 d.

Simulation parameters are summarized in Table 8.12.

Impact of the structural length L on G∞
max, G

∞
mean and

〈
Gfrac

c

〉

Figure 4.22: Impact of the structural length L on the evolution of the macroscopic ERR G∞ during crack

propagation : the crack is interacting through crossing and by-pass mechanisms with a distribution of

tougher inclusions of density ρinc = 25% and toughness Ginc
c = 2Gmat

c .

We plot the evolution of the macroscopic ERR G∞ imposed by the loading for various

structural length values L in Fig. 4.22. The larger the structural length L, the lower the G∞

decrease when the crack is propagating (see Fig. 4.19.a). Thus, a large structural length

L ≃ 106 d induces a screening of almost all the subsequent stable pinning configurations.

The macroscopic ERR probability density function is almost reduced to a Dirac function

(Fig. 4.23.a) and G∞
mean coincides with G∞

max. For an intermediate structural length L ≃
102 d, the crack visits more numerous pinning configurations due to the rapid decrease

of G∞ during crack propagation. Consequently the probability density function of G∞ is

wider (Fig. 4.23.a). The average value of the macroscopic loading G∞
mean is lowered while its
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maximum value G∞
max does not change since it is determined from the toughest configuration

which is visited by the crack in both cases L ≃ 102 d and L ≃ 106 d. When L approaches

the size of the inclusion d, we observe a shift of behavior and both the average value G∞
mean

and the maximum G∞
max of the macroscopic ERR are reduced. It is explained by the fact

that the interaction between a crack and the inclusions is no more governed by long-range

elastic interactions but rather by the local term fx
L in Eq. (2.14), which corresponds to

spring forces. The macroscopic loading required to make the crack propagates is lowered

due to the dominant contributions of the spring forces. The author wants to stress out

that this effect is purely three-dimensional since it relies on in-plane perturbations along

the crack front. Thus G∞
max is not expected to decay as L decreases in a two-dimensional

setting.
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Figure 4.23: Impact of the structural length L on the macroscopic ERR imposed by the loading G∞ and

dissipated fracture energy Gfrac
c distributions : probability density function of G∞ (a) and Gfrac

c (b) for a

crack interacting with a distribution of tougher spherical inclusions of density ρinc = 25% and inclusion

toughness Ginc
c = 2Gmat

c for various structural length L.

The impact of the structural length L, characteristic of loading variations, on Geff
c is

finally plotted in Fig. 4.24. We see that for L = 106d the three possible definitions for

the effective toughness converge towards a unique value, which can then be unambiguously

refered to as the effective toughness Geff
c of the composite. Moreover, as it was intuited by

Hossain et al. [2014], the maximum energy release rate G∞
max appears to be the most suited

choice if one wants to measure the intrinsic effective fracture properties of heterogeneous

materials, as it appears to be less sensitive to the specimen geometry. Indeed variations on

G∞
max start to appear only below L ≃ 102 − 103 d while they appear at L ≃ 104 − 105 d on

G∞
mean and

〈

Gfrac
c

〉

. Measuring the effective toughness Geff
c with G∞

mean at L ≃ 103 d induces

an error around 20% on the reinforcement. At L ≃ 102 d, the error ranges between 30%

and 40%.

Given that the effective toughness, defined as the maximum energy release rate, is at-

tained when the crack meets the strongest pinning configuration, one can wonder if such

configuration is necessarily visited by the crack front during crack propagation. Kolton
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et al. [2013] proved that the maximum value is attained for a propagation length :

Lmin
x

d
=

(

Lz

d

)ζ

(4.44)

where ζ is the roughness exponent of the crack front, which ranges from ζ = 0.388 [Rosso

and Krauth, 2002] to ζ = 0.5 (see Démery et al. [2014b] or Section 4.2.1) depending on the

regime (weak or strong) in which the crack is propagating.

Kolton et al. [2013] report that if Lx > Lmin
x , the effective toughness could be over-

estimated due to extreme statistics. If it might be theoretically the case when the sole

crossing mechanism is modeled, such extreme events, where the crack front is pinned by

an inclusion presenting a considerably high toughness, cannot actually happen since crack

deflection (see Section 3.3) or crack bridging [Bower and Ortiz, 1991] mechanisms would

prevail over crack trapping at such toughness levels. Thus one has to ensure that the crack

propagates at least on a distance Lx ∝ √
Lz.

Under the following scale separation conditions relating the inclusion size d to the struc-

tural lengthscale L :






L ≥ 103 d

Lx ≥
√
Lzd

(4.45)

the maximum energy release rate G∞
max, measured from the evolution of the macroscopic

loading G∞, can be considered as the intrinsic effective toughness of the heterogeneous

brittle material.

4.3.1.c Implications on experimental set-ups and computational modeling

Implications on experimental set-ups

From an experimental point of view, the average energy release rate G∞
mean is the easiest

variable to measure since it can be estimated from the total energy released during crack

propagation and thus extracted from the force-displacement curve. Estimating the maxi-
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mum energy release rate G∞
max assumes to be able to track the evolution of the macroscopic

elastic release rate during crack propagation. The procedure is naturally more complex but

can be achieved through the compliance method [Wang and Xia, 2017; Vasudevan et al.,

2019] or integrated DIC computations [Roux and Hild, 2006; Grabois et al., 2018]. The

estimation of the local map of dissipated fracture energy Gfrac
c happens to constitute a

particular conundrum since it requires to be able to track in real time the local ERR along

the crack front G (z, t) as well as the crack trajectory and dynamics, which allows for the

estimation of the local velocity v (z, t). In the case of three-dimensional crack propaga-

tion, this proves possible but nonetheless costly since observing three-dimensional crack

front configurations requires powerful imaging techniques such as in-situ micro-tomography

[Nguyen et al., 2016]. Moreover, complex digital volume correlation (DVC) procedures have

to be developed in order to estimate the local ERR distribution from the data brought by

the imaging techniques [Lachambre et al., 2015]. Finally, Eq. (4.41) supposes to be able

to get all this information at very fine temporal and spatial scales. If the recent progress

in imaging techniques allows to get such “4D” data sets, it is highly unlikely that such

methods become systematic.

It ultimately enforces conditions on the specimen geometry since it sets the structural

length L. We here give examples of such conditions for the Tampered Double Cantilever

Beam (TDCB) (Fig. 4.25) and Double Cleavage Drilled Compression (DCDC) (Fig. 4.26).

First let us consider a TDCB specimen, whose geometry is represented in Fig. 4.25.a.

We note L the specimen length, ℓ the crack length, h and H the minor and major height

of the specimen. The sample is loaded with prescribed displacement δ and deforms under

plane stress conditions. Vasudevan et al. [2019] showed through numerical FEM simulations

confirmed by experiments on PMMA that for a crack length ℓ ∈ [L/3, 2L/3] :

G (ℓ, δ) ≃ E
δ2

2λ0ℓ0
e−ℓ/ℓ0 (4.46)

where ℓ0 = 0.39, L− 22.9 for L expressed in millimeters and λ0 =
ℓ20
hL .
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Figure 4.25: TDCB geometry (a) and variations of the structural length L with respect to the sample

length L
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In that case, the structural length L determined from Eq. (2.7) reads :

L = ℓ0 (4.47)

The numerical estimate of L is provided as a function of the specimen length L in

Fig. 4.25.b. We see that for a sample length L = 10cm, L = 16.3mm. The inclusion size

has then to be at most 160µm if one wants to measure accurately the effective toughness

Geff
c using the maximum energy release rate G∞

max obtained e.g. from compliance or DIC

methods and 1.6µm using the average energy release rate G∞
mean obtained e.g. from the

force-displacement curve. Finally, if the sample is 2cm thick, the crack has to propagate

over ≃ 1cm so that the crack front may visit a configuration corresponding to the maximal

value of the ERR.

We now consider a DCDC specimen of width w = 1cm with prescribed forces σ at both

ends as pictured in Fig. 4.26.a. We note ℓ the crack length and R the radius of the central

hole. Following Pallares et al. [2009], the expression of G for ℓ ∈ [5R, 20R] reads :

G (ℓ, σ) =
1− ν2

E
πRσ2

1
(
a1 + a2

ℓ
R

)2 (4.48)

where a1 = 0.316 + 0.735
(
w
R

)
+ 0.0346

(
w
R

)2
and a2 = −0.409 + 0379

(
w
R

)
− 0.0257

(
w
R

)2
.

The structural length L variations with the crack length are given by :

L =
a1 + a2

ℓ
R

2a2
R (4.49)

Examples of L values are given in Fig. 4.26.b for w = 10mm and various hole radius

R. We see that L is of the same order of magnitude than for the TDCB specimen. It

consequently imposes the same constraints on the inclusion size d. In contrast with the

TDCB geometry, the relevant parameter to play on L is no more the specimen length L

but the ratio w
R .
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Figure 4.26: DCDC geometry (a) and variations of the structural length L with respect to crack length ℓ

for w = 10mm and various hole radius R (b).
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In conclusion, the choice of the specimen geometry sets the structural length L, which
subsequently constrains the choice of the experimental technique to measure Geff

c . One can

either ensure that the structural length is large enough on front of the heterogeneity size,

L ≃ 104 d, and measure G∞
mean from the force-displacement curve or deploy more advanced

experimental techniques and extract the effective toughness from G∞
max for L ≃ 102 d. In

fracture experiments on brittle rocks, the latter condition is easily satisfied while the former

is often violated given the size of the heterogeneities [Nasseri and Mohanty, 2008; Chandler

et al., 2016]. This remark drives the need for the democratization of advanced experimental

methods for fracture properties measurements. Otherwise, experimental measures might

lead to an underestimation of the effective fracture properties.

Implications on numerical simulations

Our findings also raise the question of the choice of the boundary conditions and specimen

size in numerical simulations. In our numerical method, the structural length L is a pa-

rameter of the model and can be set manually. In FEM-based computational methods, L is

often set by loading conditions. Recent forefront numerical studies measured the effective

toughness of two-dimensional heterogeneous materials from phase-field simulations using

a surfing boundary condition [Hossain et al., 2014; Brach et al., 2019a]. This condition

appears to set L ∼ Ly, where Ly is the height of the simulation domain in the direction

perpendicular to crack propagation. Ly is typically one order of magnitude larger than

the defect size, due to computational costs. It enforces to measure the effective toughness

from the maximum energy release rate G∞
max, an option that was indeed selected by Hos-

sain et al. [2014]. It allows actually to predict accurately the effective toughness in the

two-dimensional case since the decrease of G∞
max for L < 103 d is due to three-dimensional

effects. However, it is worth noticing that such boundary conditions might lead to an

underestimation of the effective toughness of disordered materials when transposed into a

three-dimensional setting.

4.3.2 Effective toughness of heterogeneous materials : the impact of in-

clusion contrast

In the remainder of this manuscript, we set the structural length L = 106 d to fully decou-

ple the effective toughness measurements from the structural problem. Crack propagation

is made along a distance Lx = Lz to ensure that the toughest pinning configuration is vis-

ited. Variables of interest (front position, local maps of effective fracture energy, etc.) are

recorded after a propagation length Lsave =
√
Lzd to attain a stationary regime indepen-

dent of the initial condition [Patinet et al., 2013b]. Under those assumptions, the effective

toughness Geff
c can be measured through the evaluation maximum value of the macroscopic

ERR imposed by the loading G∞
max :

Geff
c = max

x∈[0,Lx]
G∞ (x) (4.50)
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4.3.2.a Problem statement

We now investigate the impact of microstructural features on effective fracture properties

and start by studying the influence of the inclusion toughness on the effective toughness.

We consider the case of a single crack propagating in large-scale disordered systems of size

Lz × Lx × Ly = 256d × 288d × 16d. Ly can be taken smaller than Lz and Lx because

the crack does not explore regions far away from the mean fracture plane (see for example

Fig. 2.23).

We consider monodisperse distributions of spherical inclusions of diameter d for an in-

clusion density ρinc = 25%. The inclusion toughness varies from Ginc
c = Gmat

c to Ginc
c =

4.5Gmat
c , which remains within the range of validity of the perturbative approach (Section 2.2.4).

The interface shares the mechanical properties of the matrix Gint
c = Gmat

c . The results are

averaged on five inclusion distribution realizations. Simulation parameters are summarized

in Table 8.13. Examples of considered distributions are given in Fig. 4.27.

(a) Ginc
c = 1.5Gmat

c (b) Ginc
c = 2Gmat

c (c) Ginc
c = 4Gmat

c

Figure 4.27: Monodisperse spherical inclusion distribution with varying inclusion toughness Ginc
c

(Lz × Lx × Lx = 25d× 25d× 25d for visualization purpose)

4.3.2.b Numerical results

The evolution of the effective toughness with the inclusion toughness is predicted from

135 simulations in which the crack front propagates in a medium containing hundreds of

thousand inclusions. Each computation lasts 1 to 2 hours while the front mesh size is

relatively fine since there are 16 points per inclusion diameter (∆z = d/16). It is impor-

tant to stress out that such numerical performance is achieved thanks to the perturbative

framework adopted in our approach.

The evolution of the effective toughness with the inclusion toughness is plotted in Fig. 4.28.

Averaged results are plotted in solid lines while individual simulation points are plotted with

cross markers. We can distinguish three main regimes :

1. at low inclusion toughness levels Ginc
c ≤ 1.5Gmat

c , the effective toughness increases

almost linearly with the inclusion toughness. The toughening clearly impacts the

overall toughness of the composite ;

2. at intermediate toughness levels ranging from Ginc
c = 1.5Gmat

c to Ginc
c = 3.2Gmat

c ,

the toughening rate ∂Geff
c

∂Ginc
c

progressively decreases; additional inclusion toughening

contributes less and less to the increase of the material toughness. The effective
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toughness reaches a maximum at Ginc
c = 2.7Gmat

c . The toughening rate becomes

negative after the peak and the effective toughness decreases ;

3. at high inclusion toughness levels Ginc
c ≥ 3.2Gmat

c , the effective toughness reaches

a plateau. Increasing the inclusion toughness does not contribute any more to an

overall reinforcement of the composite.
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Figure 4.28: Impact of the inclusion toughness Ginc
c on the effective toughness Geff

c for the coupling of

crack trapping and crack deflection : the effective toughness is predicted from Eq. (4.50) as the maximal

macroscopic loading obtained during the crack evolution. Numerical estimates (in solid line) are compared

to numerical results of coplanar simulations where the crack can interact through the sole crossing

mechanism (in dash-dotted line) and periodic simulations from Chapter 3 taking into account both

inclusion crossing and by-pass (in dashed line).

We observe that this behavior cannot be grasped both qualitatively and quantitatively by

the periodic case 2, stressing out the decisive influence of the material disorder. Moreover,

Fig. 4.28 also shows that the mechanisms of interaction plays a decisive role in material

reinforcement. The question then is : is it possible to predict quantitatively the effective

toughness of composite materials in a disordered setting for the competing crossing and by-

pass mechanisms ? It drives the need for the development of an analytical homogenization

framework for non-coplanar crack propagation in three-dimensional brittle composites. The

next section is dedicated to the construction of such a homogenization procedure.

4.3.2.c Convergence study

Before tackling the crucial question of toughness homogenization, we investigate the

impact of the front mesh size ∆z. We reproduce the study described above for various

mesh size ranging from ∆z = d/4 to ∆z = d/32. Simulations parameters are summarized

in Table 8.13. Numerical results are plotted in Fig. 4.29.

2The periodic results are estimated from effective fracture properties measured in Section 3.3, averaged

with respect to the landing height of the crack on the inclusion.
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Figure 4.29: Impact of the front mesh size ∆z on the effective toughness Geff
c : the effective toughness is

predicted from Eq. (4.3.2) as the maximal macroscopic loading required to make propagate a coplanar

crack interacting with a monodisperse distribution of spherical inclusions with varying toughness.

A coarser discretization induces an overestimation of the effective toughness, especially

at high inclusion toughness levels where by-pass events are predominant. It is due to

the fact that a coarser mesh may lead to overestimate the angle at which out-of-plane

deviations occurs (see Fig. 4.30). This deflection angle has been proven to control the

effective toughness of heterogeneous materials (see Section 3.3). As soon as ∆z ≤ d/8 the

effective toughness values converge towards the same value. We thus adopt a fine mesh

∆z ≤ d/16, which constitutes a reasonable compromise between computational cost and

numerical accuracy.
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Figure 4.30: Impact of the discretization step on the geometrical modeling of a spherical inclusion : real

geometry (a), fine mesh for ∆z = d/32 (b) and ∆z = d/16 (c), coarse mesh for ∆z = d/8 (d) and

∆z = d/4 (e)
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4.4 Semi-analytical homogenization technique for effective

toughness predictions of three-dimensional composites

This section is dedicated to the construction of a semi-analytical technique for the ho-

mogenization of the effective fracture properties, accounting for both crossing and by-pass

mechanisms of interaction between a crack and tough inclusions. It relies on the results of

Démery et al. [2014b], which developed a theoretical framework for the homogenization of

fracture properties in the case of coplanar propagation, where the toughness field the crack

effectively experiences corresponds to the local material toughness properties. The method

developed here proposes a new framework, which takes into account the differential impact

of the interaction mechanisms occurring at the crack tip on the effective fracture properties

for three-dimensional crack loaded in tensile Mode I. It is applied to the competing crossing,

by-pass and repenetration mechanisms to rationalize the impact of the inclusion toughness

on the effective toughness plotted in Fig. 4.28.

4.4.1 Summary of a three-step homogenization technique

COPLANAR	REPRESENTATIVE	
VOLUME	ELEMENTS

EQUIVALENT	COPLANAR	
PROBLEM	

THREE-DIMENSIONAL	
EXACT	PROBLEM	

HOMOGENIZATION	
SCHEME

FRACTURED	REPRESENTATIVE	
VOLUME	ELEMENTS

1

2

3

Figure 4.31: Three-step homogenization technique developed to predict effective toughness properties in a

three-dimensional non-coplanar setting.

Démery et al. [2014b] developed a theoretical framework to predict the effective toughness

from the statistical features of the toughness distribution, namely its average toughness

〈Gc〉, its standard deviation σ and its correlation length ξz, ξx. This framework has been

developed in the case of coplanar crack propagation where the crack can only interact with

the material disorder through the crossing mechanism. We notice in Fig. 2.23 that the

out-of-plane deviation of the crack happens to be relatively small in our simulations so that

crack propagation remains approximately planar. A homogenization scheme may thus be

adapted from Démery et al. [2014b] to tackle the case of non-coplanar propagation through

the means of an equivalent coplanar problem.
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Yet, the statistical features of the equivalent coplanar distribution of toughness cannot

be directly inferred from the three-dimensional distribution of the toughness Gc (z, x, y).

Indeed, we saw in Chapter 3 that the mechanism of interaction selected by the crack governs

the local toughness the crack effectively experiences during the propagation : if the inclusion

is crossed, the crack visits the inclusion toughness whereas if the inclusion is by-passed it

sees the one of the interface. The determination of the equivalent coplanar problem should

then take into account the differential impact of the crack-tip interaction mechanisms on

the ultimate toughness distribution.

Inspired by micromechanical models, we propose a three-step homogenization scheme :

1. first, we break down the full problem of the propagation of a crack in a disordered

distribution of inclusions into multiple simpler problems, referred to as fractured repre-

sentative volume elements (FRVEs), considering all the possible ways a crack interact

with a single inclusion and its respective probability. This decomposition relies on

the absence of interaction during the out-of-plane by-pass of neighboring inclusions.

As a result, we refer to this as the dilute hypothesis ;

2. second, the three-dimensional cell problems provide equivalent coplanar ones, called

coplanar representative volume elements (CRVEs), which derive from the way the

crack interacts with the inclusion (crossing or by-pass).

3. third, the superposition of all the coplanar cell problems allows to get back to an equiv-

alent coplanar toughness distribution, from which the statistical features (〈Gc〉 , σ, ξz, ξx)
can be inferred under the ergodic assumption. It ultimately allows to estimate the ef-

fective toughness of three-dimensional heterogeneous brittle materials from the copla-

nar theory of Démery et al. [2014b] using Eq. (4.31).

The procedure is summarized in Fig. 4.31.

4.4.2 From an original three-dimensional problem to a cell three-dimensional

problem : the fractured representative volume element

In the following, we consider the sole case of spherical inclusions. It is nonetheless possible

to generalize this homogenization method to any inclusion shape as it will be illustrated in

Section 4.6.

4.4.2.a Definition of a microstructural representative volume element

The first step of our method consists in breaking down the original non-coplanar prob-

lem into a superposition of cell problems called fractured representative volume elements

(FRVEs), where a crack interacts with a single inclusion only.

In the most general case, the composite material is constituted of a homogeneous matrix

and an isotropic distribution of spherical inclusions S = (Si). The diameter (dinc,i) of the

inclusions (Si), follows a distribution characterized by its probability density function pd.

In the same manner, the toughness
(
Ginc

c,i

)
of the inclusions and the toughness

(
Gint

c,i

)
of

their interface follow distributions described by the respective probability density functions
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pinc and pint. The density of inclusions is denoted ρinc.

We call representative volume element (RVE) the cell medium ω constituted of a single

inclusion of diameter dinc, inclusion toughness Ginc
c and interface toughness Gint

c embedded

at the center of a cube constituted of the matrix material, whose edge length Lρ is given

by :

Lρ =

(
π

6ρinc

) 1
3

dinc (4.51)

so that the inclusion density inside the spherical RVE equals to ρinc. An example of such

a cell medium is pictured in Fig. 4.32.

LρLρ

Lρ

x

y

z

Figure 4.32: RVE of size Lρ containing an inclusion of size d of inclusion toughness Ginc
c and interface

toughness Gint
c for ρinc = 25%

Ω is the statistical ensemble of possible realizations of such a RVE. With the ensemble

Ω is associated a probability density function prve. Given that the inclusion diameter and

fracture properties are assumed to be independent variables, it reads :

prve
(
dinc, G

inc
c , Gint

c

)
= pd (dinc) · pinc

(
Ginc

c

)
· pint

(
Gint

c

)
(4.52)

4.4.2.b Interaction of a crack with a representative volume element : the

fractured representative volume element

The interaction of the microstructural RVE with an incoming half-plane crack constitutes

a realization of a fractured representative volume element (FRVE) ωF. This interaction is

described by the height y, at which the crack penetrates the RVE. Given that the inclusions

are isotropically distributed, the distribution of y is uniform in
[
−Lρ

2 ,
Lρ

2

]
. Its probability

density function py reads :

py (y) =
1

Lρ
(4.53)

As stated in Chapter 3, there are three possibilities for the interaction between the crack

and the FRVE :

1. the crack does not encounter the inclusion and propagates in the matrix (Fig. 4.33.b);

2. the crack encounters the inclusion and by-passes it (Fig. 4.33.c);

3. the crack encounters the inclusion and crosses it (Fig. 4.33.d).
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As exposed in Section 3.3.1, this interaction can be summarized in an interaction dia-

gram, which is either constructed numerically or inferred analytically from Eq. (3.27) as

possible for spherical inclusions. Such a diagram is shown in Fig. 4.33 along with the three

interaction mechanisms for a given FRVE.
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Figure 4.33: (a) Interaction diagram providing the interaction mechanism as a crack meets a tough

inclusion. The landing height y and the inclusion toughness ratio Ginc
c /Gint

c are the two parameters that

governs the mechanism selection. This interaction mechanism is either matrix cracking (b), inclusion

by-pass (c) or inclusion crossing (d)

The microstructural properties of the inclusion and the landing height being independent

variables, its probability density function reads :

pfrve (ωF) = py (y) · pd (dinc) · pinc
(
Ginc

c

)
· pint

(
Gint

c

)
(4.54)

We note ΩF the statistical ensemble of possible realizations of FRVE. The superposition

of all the FRVE in ΩF is representative of the interaction between a crack and a disordered

distribution of tough inclusions in the dilute limit, when the mechanism selection in one RVE

is independent of the one in a neighboring RVE. One thus expects that our homogenization

model works well at small inclusion toughness and density where the out-of-plane deviations

are small.

4.4.3 From a cell three-dimensional problem to an equivalent coplanar

problem : the interaction mechanisms

4.4.3.a Construction of an equivalent coplanar toughness field

We now have to translate the three-dimensional FRVE problem into a coplanar one.

Gcop
c (z, x) denotes the toughness field that the crack front actually visits during crack

propagation in a given ωF =
(
y, dinc, G

inc
c , Gint

c

)
∈ ΩF. Matrix cracking and inclusion

crossing corresponding to coplanar propagation, computing Gcop
c is rather straight forward

in that case.

For matrix cracking, it is given by :

Gcop
c (z, x;ω) = Gmat

c (4.55)
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For inclusion crossing, Gcop
c reads :




Gcop

c (z, x;ω) = Gmat
c , if z2 + x2 >

(
dinc
2

)2
− y2

Gcop
c (z, x;ω) = Ginc

c otherwise
(4.56)

We now have to translate the impact of inclusion by-pass into an equivalent coplanar

defect. Analytical results cannot be derived given the complexity of the non-linear equa-

tion of motion. Yet it is possible to compute it numerically from simulations of periodic

arrangements of spherical inclusions.

In-plane distortions of the crack front and their dynamics have been explored in Section 3.2.1.

They have been shown to be the local mirror images of the toughness field visited by the

crack during propagation. The equivalent coplanar toughness field Gcop
c (z, x) can thus be

inferred from the in-plane perturbation observed in periodic simulations of inclusion by-

pass. We define Gcop as the ERR the crack would develop if the propagation was coplanar.

Gcop reads at first-order in the perturbation :

Gcop (z, t) = G∞ (t)

(
1− 1

Lfx (z, t)−
1

π
PV

∫ +∞

−∞

fx (z, t)− fx (z
′, t)

(z − z′)2
dz′
)

(4.57)

As Gfrac
c , Gcop can be tracked during crack propagation (see Fig. 4.34) and stored in a

grid, each value Gcop (z, x) corresponding to the average coplanar ERR Gcop in this cell.
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Figure 4.34: In-plane distortions of the crack front during inclusion by-pass : (a) profiles of the crack front

in-plane perturbation at various instant of propagation and (b) associated equivalent coplanar ERR Gcop

for the profile marked in red.

We first test this method on the in-plane crossing of an inclusion twice tougher than the

matrixGinc
c = 2Gmat

c interacting with a crack landing at ylanding = 0. The results are plotted

in Fig. 4.35.a. It appears that such a definition of the equivalent coplanar toughness does

not provide the expected toughness field of Eq. (4.56). Indeed, as Gcop (z, t) = Gc [v (z, t)],

our method is not able to distinguish the dissipation resulting from the raw toughness

Gc (z, x) of the material from the one resulting from the kinetic effects which take place

during the depinning phase out of the defect (see Section 3.2.1). Thus Gcop corresponds to

the kinetic equivalent coplanar toughness field.
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In order to remove the impact of kinetic effects, we estimate the average crack velocity

on the grid following :

v (zj , xi) =
∆ℓ

tout − tin
(4.58)

where ∆ℓ tout, tin are defined in Fig. 4.20.

Inverting the kinetic law of Eq. (2.23), we have access to the static equivalent coplanar

toughness field Gcop
c :

Gcop
c (zj , xi) = Gcop (zj , xi)−Gmat

c

(
v (zj , xi)− vm

v0

)
(4.59)
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Figure 4.35: Kinetic equivalent coplanar toughness field for the inclusion crossing (a) taking into account

kinetic effects (b) and its static value (c)

As pictured in Fig. 4.35.c, Gcop
c corresponds now to the expected equivalent coplanar

toughness field for inclusion crossing. Besides, such a static field Gcop
c (z, x) happens to be

independent on the inclusion spacing Lρ, as we could verify it from simulations on periodical

arrangements of tough inclusions.

4.4.3.b Equivalent coplanar defect for the by-pass mechanism

Validated on inclusion crossing, this method can be now applied to predict the equivalent

in-plane defect emerging from the by-pass mechanism. The results are plotted in Fig. 4.36.

As it was intuited in Fig. 3.3.2.a from the observation of the in-plane perturbations evolution

for inclusion by-pass, the by-pass mechanism is equivalent to a coplanar defect vanishing

quickly in the x-direction, due to the re-alignment of the front with the (Ox)-direction

imposed by the loading. When the crack propagation direction realigns with the loading

direction, its velocity increases until the front fully relaxes. For the spherical inclusion,

the crack is thus pinned by the inclusion only at the begin of the by-pass as observed in

Section 3.3.2.

We finally plot the static equivalent coplanar toughness field for an inclusion toughness

at the crossing to by-pass transition for ylanding = 0, Ginc
c ≃

[
Ginc

c

]
crit

= 3.852Gmat
c , in

Fig. 4.36. We see that a slight change in the inclusion toughness modifies drastically the

equivalent coplanar defect shape and its intensity, as the propagation mechanism shifts from

in-plane to out-of-plane. In turn, it will also affect the effective toughness, as we describe

in the next part.
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Figure 4.36: Equivalent coplanar toughness field for the inclusion by-pass : kinetic equivalent coplanar

toughness field (a) taking into account kinetic effects (b) and its static value (c)
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Figure 4.37: Equivalent coplanar representative volume element (CRVE) associated to the three

mechanisms considered in the study : (a) inclusion crossing, (b) inclusion by-pass at the transition

Ginc
c = 3.854Gmat

c from crossing to by-pass for a crack landing on the equatorial plane y = 0 and (c)

matrix cracking.

4.4.4 From a coplanar cell problem to a full coplanar problem : the

reconstructed toughness distribution

Thanks to the procedure described before combined with the interaction diagram of

Fig. 4.33.a, we can determine an equivalent coplanar representative volume element (CRVE)

for each FRVE realization ωf ∈ ΩF. Under the ergodic assumption, the spatial average of

an observable f on Lz × Lx, is equal to the ensemble average on both the surface of the

CRVEs Lρ × Lρ and the realizations ΩF. This assumption writes as :

〈f (z, x)〉z∈[0,Lz ],x∈[0,Lx]
= 〈f (z, x;ωf)〉z∈[0,Lρ],x∈[0,Lρ],ωf∈ΩF

(4.60)

Thus 〈Gc〉, σ, ξz, ξx, the four parameters required to predict Geff
c , can be inferred from

the superposition of all the CRVE associated to a FRVE realization ωF ∈ ΩF from the
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following expressions :





〈Gc〉 =
1

L2
ρ

∫

ωf

∫

x

∫

z
Gcop

c (z, x;ωf) pfrve (ωf) dz dx dωf

〈
G2

c

〉
=

1

L2
ρ

∫

ωf

∫

x

∫

z
Gcop

c (z, x;ωf)
2 pfrve (ωf) dz dx dωf

ξz/x =
1

L2
ρ

∫

ωf

∫

x

∫

z
ξz/x (ωf) pfrve (ωf) dz dx dωf

σ (Gc)
2 =

〈
G2

c

〉
− 〈Gc〉2

(4.61)

where
∫
ω

∫
x

∫
z denotes the integrals over ωf ∈ ΩF, z ∈ [0, Lρ] and x ∈ [0, Lρ].
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Figure 4.38: Equivalent coplanar toughness distribution accounting for the competing crossing and by-pass

mechanisms : the toughness distribution is extracted from the homogenization procedure for an inclusion

density ρinc = 25% and inclusion toughness Ginc
c = 2Gmat

c (a) and Ginc
c = 4Gmat

c (b). Red square markers

corresponds to bi-valued coplanar distribution where the sole crossing mechanism is accounted for, while

black triangle markers combined the competing effect of both crossing and by-pass mechanisms.

Examples of the distribution of toughness Gcoplanar
c (z, x) effectively visited during crack

propagation and computed from the superposition of all CRVE realizations are plotted in

Fig. 4.38 for an inclusion toughness Ginc
c = 2Gmat

c and Ginc
c = 4Gmat

c . The toughness distri-

bution obtained from the superposition of the CRVEs is plotted in black triangle markers,

while the bi-valued distribution for the sole inclusion crossing mechanism is plotted in red

square markers. We notice that the by-pass mechanism drastically changes the equivalent

coplanar toughness distribution. In particular, the average value of the distribution is de-

creased by the out-of-plane excursions. Moreover, as pictured in Fig. 4.38.b, after a given

contrast level Ginc
c ≥

[
Ginc

c

]
crit

, all inclusions are by-passed and the equivalent coplanar

toughness distribution does not depend on the inclusion toughness anymore. In this case,

the average toughness 〈Gc〉 is significantly smaller, close to Gmat
c .

Now that the parameters 〈Gc〉, σ, ξz, ξx governing Geff
c are known, one can finally inject

them in Eq. (4.31) to predict the effective toughness.
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4.4.5 Model predictions for increasing inclusion toughness

We apply now the newly developed homogenization scheme to study the influence of

the inclusion toughness on the effective toughness and rationalize the simulation results of

Fig. 4.28.

In that case, the probability density function pfrve of a FRVE realization ωf ∈ ΩF reads :

pfrve (ωf) =
1

Lρ
· δ (dinc − d) · δ

(
Ginclusion

c −Ginc
c

)
· δ
(
Ginterface

c −Gint
c

)
(4.62)

where δ is the Dirac function, since we consider a composite with one type of inclusions

with size d and toughnesses Ginc
c and Gint

c .

The homogenization scheme allows for the prediction of the effective fracture properties

but also for a better understanding of its relationship with the microstructural parameters.

Model predictions are compared with numerical simulations in Fig. 4.39.
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Figure 4.39: Impact of the inclusion toughness Ginc
c on the effective toughness Geff

c for the coupling of

crack trapping and crack deflection : the effective toughness predicted numerical simulations following

Eq. (4.50) (in solid black line) is compared semi-analytical predictions of homogenized dilute model (in

dashed black line) (a). The non-coplanar results (in solid black line) are also compared to coplanar

simulations (in dashed black line) where the sole crack trapping mechanism is taken into account,

highlighting the large toughening loss (in light red) induced by inclusion by-pass (b).

As the inclusion toughness increases, by-pass interactions progressively prevail over inclu-

sion crossing. The contribution of the by-passed inclusions to material toughening is frozen

and does not increase with the inclusion toughness, while the one of the crossed inclusion

keeps increasing. It accounts for the progressive loss of toughening rate. Moreover, the

by-passed inclusions have a smaller contribution to material toughening than the crossed

one, decreasing both the average value 〈Gc〉 and the standard deviation σ of the equivalent

coplanar distribution. The effective toughness then goes by a maximum at Ginc
c ≃ 2.7Gmat

c

and decreases for larger inclusion toughness levels.

We see that the homogenized dilute model is in excellent agreement with numerical

results up to Ginc
c ≃ 3.4Gmat

c , which shows that the semi-analytical method developed here

contains the fundamental ingredients for the homogenization of fracture properties under

tensile loading. The homogenized dilute model reproduces with great accuracy the loss of



4 Homogenization of brittle fracture properties for large-scale composites 153

toughening rate as well as the position and the value of the maximum effective toughness.

Above this inclusion toughness level, the homogenized model predicts a subsequent decrease

of the effective toughness but over-estimates it substantially.

Such a discrepancy can have multiple origins, which can be related to each step of the

homogenization procedure : the dilute approximation for the FRVE definition, the deter-

mination of the equivalent coplanar defect or the homogenization framework for coplanar

propagation. In particular, the dilute hypothesis might be put at stake by large inclusion

toughness ratio Ginc
c /Gmat

c since more intense by-pass events occur. It may challenge the

assumption that the crack is perfectly plane when it lands on an inclusion and thus modify

the way crack and inclusions interact with each other. In Fig. 4.40, we plot the respective

probability of occurrence of the crossing and by-pass mechanisms during the computed

interaction of a crack with a large-scale distribution of inclusions. We see that theoret-

ical predictions from Eq. (3.27) are only valid at a low toughness ratio Ginc
c /Gmat

c = 2

(Fig. 4.40.a) while they differ from numerically observed interactions at high toughness ra-

tio Ginc
c /Gmat

c = 4 (Fig. 4.40.b). In particular, a larger portion of inclusion is crossed, which

accounts for the mismatch in the plateau value of the effective toughness curve in Fig. 4.39.

0.0 0.1 0.2 0.3 0.4 0.5

ylanding/d

0.0

0.2

0.4

0.6

0.8

1.0

In
te

ra
ct

io
n

p
ro

b
ab

il
it

y

By-pass probability

Crossing probability

Numerical evaluation

Theoretical estimation

(a) Ginc
c = 2Gmat

c

0.0 0.1 0.2 0.3 0.4 0.5

ylanding/d

0.0

0.2

0.4

0.6

0.8

1.0

In
te

ra
ct

io
n

p
ro

b
ab

il
it

y

By-pass probability

Crossing probability

Numerical evaluation

Theoretical estimation

(b) Ginc
c = 3Gmat

c

Figure 4.40: Probability of the crossing and by-pass mechanisms as a function of the crack landing

position ylanding : the probability is calculated via numerical simulation of a crack interacting with an

inclusion distribution of density ρinc = 25% and toughness Ginc
c = 2Gmat

c (a) and Ginc
c = 4Gmat

c (b).

Numerical results in solid line are compared with theoretical predictions from Eq. (3.27) in dashed lines.

This discrepancy comes from the fact that the crack may land on an inclusion with a

non-zero angle, resulting from its interaction with another inclusion met previously by the

crack front, and is loaded in local mixed Mode I+II due to long-range elastic interactions

along the crack front. This effect motivates the extension of the previous homogenized

model to a non-dilute situation, which is described in Section 8.D.

Results of the non-dilute scheme are plotted in Fig. 4.41. We notice that the intro-

duction of the landing angle improves the estimation of the effective toughness for large

toughness ratios Ginc
c /Gmat

c without any fitting parameters. Nonetheless, the discrepancy

remains substantial, suggesting that the non-dilute model should probably take into con-

sideration the impact of the long-range elastic interactions. It constitutes a future challenge

for homogenizing effective fracture properties whose basis has been established here.
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Figure 4.41: Effective toughness for a non-coplanar crack interacting with a three-dimensional

monodisperse distribution of spherical inclusions of density ρinc = 25% with varying inclusion toughness

Ginc
c (solid line) and comparison with homogenized predictions for dilute model (dashed line) and

non-dilute one (dash-dotted line)

4.5 Microstructural effects on the effective toughness of het-

erogeneous materials

The objective of this section is twofold : (i) to investigate the impact of microstructural

properties on the effective toughness of large-scale disordered systems through numerical

simulations based on our perturbative approach; (ii) to validate our homogenization model

by comparing numerical results to analytical homogenized predictions. On top of it, we will

see that the homogenization results provide some physical insights on the effect of structural

parameters on Geff
c .

In the following, we study consecutively the impact on the effective fracture properties

of : the system size (Section 4.5.1), the inclusion density (Section 4.5.2), the toughness

disorder (Section 4.5.3) and the interface toughness (Section 4.5.4).

4.5.1 Impact of the system size

4.5.1.a Problem statement

We start by investing the impact of the system size Lz on the effective toughness. We

consider a semi-infinite crack propagating in a heterogeneous medium consisting in a homo-

geneous matrix and a monodisperse distribution of spherical inclusions of diameter d and

density ρinc = 25%. The width of the system in the (Oz) direction varies from Lz = 16 d to

Lz = 512 d. The crack propagates along a distance Lx = 588 d to allow small-scale systems

to visit enough pinning configurations. Moreover, we consider three inclusion toughness

levels Ginc
c /Gmat

c ∈ {1.5, 2, 3} while the interface toughness remains equal to the one of the

matrix Gint
c = Gmat

c
3. Simulation parameters are summarized in Table 8.15. Examples of

considered distributions are given in Fig. 4.42.

3This hypothesis is only relaxed in Section 4.5.4.
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(a) Lz = 8 d (b) Lz = 32 d (c) Lz = 128 d

Figure 4.42: Monodisperse spherical inclusion distribution for varying system size Lz

4.5.1.b Numerical results and comparison to model predictions

The results of the 360 simulations are plotted in Fig. 4.43. The effective toughness Geff
c is

plotted as a function of the system size Lz at various inclusion toughness levels (in yellow to

dark red). Averaged results are plotted in solid lines while individual simulation points are

depicted in cross markers. The Larkin length, extracted from the roughness of the in-plane

perturbations (Eq. (4.27)) is plotted in vertical dashed lines.
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Figure 4.43: Impact of the system size Lz on the effective toughness Geff
c : the effective toughness is

predicted from Eq. (4.50) as the maximal macroscopic loading required to make propagate a crack

interacting with a monodisperse distribution of spherical inclusions with varying size in the crack front

direction (0z) at various inclusion toughness levels (in yellow to dark red). The Larkin length Lc where the

shift of behavior occurs is plotted in dashed line.

We notice that the effective toughness is constant for large system size but increases for

small Lz. This behavior is reminiscent of the in-plane problem studied in Section 4.2.2.b

and the Larkin length Lc sets the position of the crossover between both regimes. As in

the coplanar case, such a behavior ultimately leads to an overestimation of the effective

toughness compared to the infinitely large system limit Lz → +∞. In order to define

an effective toughness independent of the system size, we choose Lz = 256 d for all the

following simulations.
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4.5.2 Impact of the inclusion density

4.5.2.a Problem statement

We now explore the impact of the inclusion density on the effective toughness of hetero-

geneous materials. In the coplanar case (see Section 4.2.2.c), it has been proven to toughen

efficiently the material. We consider crack propagation in large-scale monodisperse distri-

butions of spherical inclusions of diameter d at varying density levels ρinc ∈ [10%, 50%]. The

inclusion toughness varies from Ginc
c = Gmat

c to Ginc
c = 4.5Gmat

c . Simulation parameters are

summarized in Table 8.16. Examples of considered distributions are given in Fig. 4.44.

(a) ρinc = 10% (b) ρinc = 30% (c) ρinc = 50%

Figure 4.44: Monodisperse spherical inclusion distribution for varying inclusion density ρinc
(Lz × Lx × Lx = 25d× 25d× 25d for visualization purpose)

4.5.2.b Numerical results and comparison to model predictions

The results of 480 simulations are plotted in Fig. 4.45. The effective toughness Geff
c is

plotted as a function of the inclusion toughness Ginc
c at various density levels ρinc (in yellow

to dark red). Averaged results are plotted in solid lines while individual simulation points

are depicted in cross markers. The numerical results are compared to dilute (Fig. 4.45.a)

and non-dilute (Fig. 4.45.b) predictions of the homogenized model exposed in Section 4.4.
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Figure 4.45: Impact of the inclusion density ρinc on the effective toughness Geff
c : numerical results of

Eq. (4.50) in solid lines are compared to theoretical predictions of the dilute homogenized model (in

dashed lines) (a) and the non-dilute one (in dash-dotted lines) (b)

Similarly to coplanar fracture, the effective toughness increases with inclusion density.

From our homogenization method perspective, toughness results from the increase of the
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local toughness values. Interestingly, the position of the maximum of Geff
c at Ginc

c ≃ 2.7Gmat
c

does not vary with the inclusion density. It relies on the fact that it is determined by the

relative contributions of the mechanisms selected by the crack (crossing or by-pass), which

are independent of the inclusion density (see Section 3.3.2.b). We see that both dilute and

non-dilute homogenized models give quantitative predictions up to Ginc
c ≃ 3Gmat

c , which

account for a precise determination of the maximum position. We can nonetheless notice

some significant differences for both high inclusion densities, where collective out-of-plane

events occur, and for low inclusion densities due to finite-size effects4. Above 2.7Gmat
c , the

dilute model is no more quantitative at it was noticed in Section 4.4.5. Non-dilute model

allows to reduce the discrepancy but the comparison remains only qualitative.

We now seek to determine an analytical expression between the inclusion density on the

effective toughness. For each FRVE ωF ∈ ΩF, we first define an equivalent coplanar defect

of area Sdefect and toughness contrast cdefect so that the toughness field of the CRVE Gcop
c

reads : {
Gcop

c (z, x) = Gmat
c [1 + cdefect (z, x)] inside the defect

Gcop
c (z, x) = Gmat

c outside of it
(4.63)

The reader can refer to Fig. 4.37 for examples of such a coplanar toughness field.
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Figure 4.46: Impact of the inclusion density on the effective toughness : (a) scaling between
(

Geff
c −Gmat

c

)

/Gmat
c and the inclusion density ρinc and comparison with the theoretical prediction of

Eq. (4.65); (b) rescaling of the curves of Fig. 4.46.a using the relation (4.65)

We then use the homogenization procedure of Eq. (4.61) that provides :




〈Gc〉 /Gmat
c = 1 +

1

L2
ρ

〈cdefectSdefect〉

σ2 =
1

L2
ρ

(〈
c2defectSdefect

〉
− 2 〈cdefectSdefect〉

)
+

1

L4
ρ

〈cdefectSdefect〉2
(4.64)

Here 〈·〉 denotes the average on both the surface Lρ × Lρ of the CRVEs and realizations

ΩF.

4The crack is only pinned by rare defects and propagates in the weak pinning regime. The associated

Larkin length is then larger than the system size, Lc ≤ Lz
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Using these expressions, Eq. (4.31) provides at the lowest order in ρinc :

Geff
c −Gmat

c

Gmat
c

∝ ρ
2/3
inc (4.65)

This scaling is confronted to numerical simulations in Fig. 4.46.a. The rescaling of the

effective toughness using the relation (4.65) is shown in Fig. 4.46.b.

4.5.3 Impact of the inclusion toughness disorder

4.5.3.a Problem statement

In the coplanar situation, the effective toughness has been showed to increase when the

inclusions did not share the same toughness Ginc
c . Yet, only inclusion crossing is involved

during planar crack propagation. Here, the crack can also by-pass inclusions. In particular,

the toughest inclusions are likely to be by-passed, hindering the material reinforcement.

(a) σ̃ = 0 (b) σ̃ = 1 (c) σ̃ = 5

Figure 4.47: Monodisperse spherical inclusion distribution for varying contrast disorder σ̃, with inclusion

toughness represented in shade from white to black (Lz × Lx × Lx = 25d× 25d× 25d for visualization

purpose).

We consider here monodisperse distributions of spherical inclusions of density ρinc = 25%.

Contrary to the previous situations, the inclusion toughness contrast distribution cinc is

not constant, but follows a log-normal distribution characterized by its average 〈cinc〉 and

its normalized standard deviation σ̃ = σ (cinc) / 〈cinc〉. The average toughness
〈
Ginc

c

〉
=

Gmat
c (1 + 〈cinc〉) varies from Gmat

c to 4.5Gmat
c , while the toughness disorder varies from

σ̃ = 0 (homogeneous inclusion toughness) to σ̃ = 5 (highly dispersed inclusion toughness).

Those distribution are shown in Fig. 4.12. As usual, the interface toughness is constant

among the inclusions and is taken equal to the one of the matrix Gint
c = Gmat

c . Simulation

parameters are summarized in Table 8.17. Examples of considered distributions are given

in Fig. 4.47.

4.5.3.b Numerical results and comparison to model predictions

The results of 350 simulations are shown in Fig. 4.48 with the same plotting conventions

as before.

We first notice that the inclusion disorder is detrimental to the effective toughness in

the case of non-coplanar propagation while it was beneficial to it in the coplanar case. The
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Figure 4.48: Impact of the inclusion toughness disorder σ̃ on the effective toughness Geff
c : numerical

results of Eq. (4.50) (in solid lines) are compared to theoretical predictions of the dilute homogenized

model (in dashed lines) (a) and the non-dilute one (in dash-dotted lines) (b)

larger the toughness disorder, the smaller the inclusion toughness. This can be explained

by two effects, related to the spreading of the toughness inclusions its average value : (i)

low toughness inclusion are now more likely to be crossed. However, their contribution to

the effective toughness is lowered due to their low toughness. (ii) High toughness inclusions

are more likely to be by-passed. As a result, their contribution to material toughening is

reduced by the activation of a less efficient toughening mechanism.
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Figure 4.49: Impact of inclusion by-pass on the equivalent coplanar toughness distribution : the toughness

distribution is extracted from the homogenization procedure for an inclusion toughness disorder σ̃ = 1 (a)

and σ̃ = 5 (b). Red square markers corresponds to the distribution emerging from the crossing mechanism

only while black triangle markers provides the actual toughness distribution taking into account both

crossing and by-pass mechanisms.

To illustrate the second effect, we plot the equivalent coplanar toughness distribution

computed from the dilute homogenization model for two toughness disorders (Fig. 4.49).

We observe that the by-pass mechanism cuts the tail of the distribution towards lower

toughness levels, thus leading to smaller values of 〈Gc〉 and in turn Geff
c . Interestingly, the

local maximum of the effective toughness disappears when the toughness disorder increases.

Such a feature is captured qualitatively by the homogenized model.
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4.5.4 Impact of the interface toughness

4.5.4.a Problem statement

We finally investigate the impact of weak interfaces on the effective toughness of disor-

dered brittle materials. As a reminder, weak interfaces were shown to be detrimental to

material toughening in the periodic case (see Section 3.7).

We consider here monodisperse distributions of spherical inclusions of density ρinc = 25%.

The inclusion toughness is constant and is varied from Ginc
c = Gmat

c to Ginc
c = 4.5Gmat

c .The

interface toughness ranges from Gint
c = Gmat

c to Gint
c = 0.6Gmat

c . Simulation parameters

are summarized in Table 8.18. Examples of considered distributions are given in Fig. 4.50.

(a) Gint
c /Gmat

c = 1 (b)

Gint
c /Gmat

c = 0.8

(c)

Gint
c /Gmat

c = 0.6

Figure 4.50: Spherical inclusions with varying interface toughness Gint
c /Gmat

c represented by the density of

dashed lines.

4.5.4.b Numerical results and comparison to model predictions

The results of 350 simulations are shown in Fig. 4.51 with the same plotting conventions

as before.
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Figure 4.51: Impact of a weak interface Gint
c on the effective toughness Geff

c for the coupling of crack

trapping and crack deflection. Numerical results of Eq. (4.50) in solid lines are compared to theoretical

predictions of the dilute homogenized model in dashed lines (a) and the non-dilute one in dash-dotted lines

(b)

The effective toughness decreases with the interface toughness. The regime at low in-

clusion toughness displays a smaller toughening rate. In addition, the position of the

maximum is shifted to smaller inclusion toughness levels while the plateau value at large

inclusion toughness, characteristic of the crack deflection mechanism is also reduced. All



4 Homogenization of brittle fracture properties for large-scale composites 161

those features are rather well captured by the homogenization framework. To understand

these observations, let us remind that the competition between crossing and by-pass is

controlled by the toughness ratio Ginc
c /Gint

c (Eq. (3.26)). As a result, the transition hap-

pens at a smaller inclusion toughness Ginc
c if the interface is weak. This explains why the

maximum position is shifted towards smaller inclusion toughness levels. Moreover, for a

given inclusion toughness, more inclusions are by-passed, so they do not contribute any

more to the overall toughening when the inclusion toughness is increased further. This

accounts for the diminution of the toughening rate during the initial linear phase. Finally,

the toughening induced by crack deflection depends on the toughness of the interface, since

the crack propagation along the interface during the by-pass events. In Fig. 4.52 we plot

the equivalent coplanar defect for the by-pass mechanism for varying interface toughness

levels. We see that the equivalent coplanar defect is less tough as the interface gets weaker.

This effect accounts for the lower value of the plateau value for smaller interface toughness

values.
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Figure 4.52: Equivalent coplanar toughness field for the by-pass mechanism of inclusion with weak

interfaces : reference case where Gint
c = Gmat

c (a) and weak interfaces with Gint
c = 0.8Gmat

c (b) and

Gint
c = 0.6Gmat

c (c) for a crack landing on the equatorial plane of the inclusion (ylanding = 0).
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4.6 Effects of the inclusion geometry on the effective tough-

ness of disordered materials

The last part of this chapter focuses on the impact of geometrical parameters on Geff
c .

The inclusion shape is expected to strongly influence the effective fracture properties since :

(i) it controls the interaction mechanism selection as well as its toughening contribution

(see Chapter 3); (ii) the effective toughness is partly governed by the ratio ξz/ξx of the

correlation lengths of the local toughness distribution. After investigating the impact of

the inclusion size disorder (Section 4.6.1), we explore the influence of the first effect on

disordered distributions of square inclusions (Section 4.6.2) . The second effect is put into

light through textured disordered materials constituted by elongated oriented spheroidal

inclusions (Section 4.6.3).

4.6.1 Impact of the inclusion size disorder

4.6.1.a Problem statement

Up to now, the inclusions all shared the same diameter d. Yet, in natural materials,

the size of the heterogeneities is usually widely spread. We thus consider polydisperse

distributions of spherical inclusion where the inclusion diameter dinc varies from an inclusion

to the other. The diameter distribution is characterized by its average value d and its

standard deviation σd. It follows a log-normal distribution characterized by the parameters

(µd, ςd). Its probability density function can be expressed as :

f (dinc) =
1

dincςd
√
2
exp

[
−(ln(dinc)− µd)

2

ς2d

]
(4.66)

(µc, σc) are linked to d and σd through the following relationships :




d = eµd+

ς2
d
2

σd/d = eς
2
d − 1

⇔





µd = ln (d)− 1

2
ln

[
1 +

(σd
d

)2]

ς2d = ln

[
1 +

(σd
d

)2] (4.67)

Examples of diameter distributions are shown in Fig. 4.53.

We consider polydisperse distributions of spherical inclusions of average diameter d, size

disorder σd and density ρinc = 25%. The inclusion toughness Ginc
c is varied Gmat

c to 4.5Gmat
c

while the interface toughness is constant and equal to the one of the matrix Gint
c = Gmat

c .

Simulation parameters are summarized in Table 8.19. Examples of inclusion distributions

are shown in Fig. 4.54.(a-c).
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Figure 4.53: Probability density function f (a) and cumulative distribution F (b) of the inclusion diameter

for various size disorder σd/d

4.6.1.b Numerical results and comparison to model predictions

The results of 220 simulations are plotted in Fig. 4.54 with the same plotting conventions

as before. We observe that the inclusion size disorder has only a minor impact on the effec-

tive toughness of the composite material. No matter the size of the inclusion, its interaction

with a crack only depends on its fracture properties Ginc
c and Gint

c and the height ylanding
at which the crack lands on its. Thus the equivalent coplanar distribution of toughness

does not depend on the inclusion size. Moreover, the effective toughness is only dictated

by the ratio ξz/ξx between the average correlation lengths of the toughness distribution in

the z- and x-directions, which prevent any effect of the inclusion size. This observation

is nonetheless restricted to the case of inclusion sharing the same elastic properties as the

matrix. Elastic heterogeneities have a non-local impact on crack propagation [Gao, 1991]

and may trigger re-nucleation/de-nucleation processes [He and Hutchinson, 1989], which

induce a size-dependent toughening [Leguillon et al., 2007]. The inclusion size distribution

might impact the effective fracture properties in this case.
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Figure 4.54: Impact of the inclusion size disorder σdon the effective toughness Geff
c : the crack interacts

with a polydisperse distribution of sphericall inclusions with various disorder parameter σd = 0 (a),

σd = 0.5 (b) and σd = 1 (c) ; numerical results (in solid lines) are compared to dilute (in dashed lines) and

non-dilute (in dash-dotted lines) homogenized predictions (d).
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4.6.2 Impact of the inclusion shape

4.6.2.a Problem statement

The example of the cubical geometry has been of particular interest when investigating

periodic arrays of tougher inclusions. It has been shown to reinforce composite materials

in a very efficient way by triggering inclusion repenetration and improving toughening by

crack deflection. One can wonder how such a behavior fares in the disordered case.

We investigate the case where the crack with large-scale monodisperse distributions of

cubical inclusions of edge width d and density ρinc = 20%. We make the inclusion toughness

Ginc
c varyGmat

c to 4.5Gmat
c . Simulation parameters are summarized in Table 8.20. Examples

of considered distributions are given in Fig. 4.55.a.

4.6.2.b Numerical results and comparison to model predictions

The results of 90 simulations are plotted in Fig. 4.55 in solid black line. They are com-

pared to numerical results of the interaction of a crack with large-scale distributions of

spherical inclusions in dash-dotted line and coplanar simulations in dashed lines. All sim-

ulations are performed for the same inclusion density ρinc = 20% to allow for quantitative

comparison.
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Figure 4.55: Impact of the inclusion shape on the effective toughness Geff
c : the effective toughness is

measured from the evolution of the macroscopic loading during the interaction of a crack with a

monodisperse distribution cubical (a); numerical results (in solid line) are compared to the one obtained

for spherical inclusions (in dash-dotted lines) and coplanar simulations (in dashed line) (b).

We notice that cubical inclusions allow for a much more efficient reinforcement, whose

origins lay in the enriched interaction mechanisms triggered by the inclusion shape. First,

the cubical geometry allows for inclusion repenetration to occur, where the crack propagates

inside the tough inclusion after an initial by-passing phase. Its toughening potential being

thus similar to inclusion crossing (see Fig. 4.56.b), it extends the range of inclusion tough-

ness, where the inclusion is efficiently reinforced by crack trapping, up to Ginc
c ∼ 3Gmat

c .

Second, the cubical geometry has been shown to improve the toughening potential of crack

deflection by preventing the crack to realign with the direction of propagation (Ox) imposed
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by the macroscopic loading (see Fig. 4.56.c). It accounts for the higher effective toughness

plateau which appears from Ginc
c ∼ 3.7Gmat

c . It also explains why we do not observe a local

maximum of Geff
c .
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Figure 4.56: Equivalent coplanar toughness field for the by-pass of a tough inclusion with Ginc
c = 2.8Gmat

c :

by-pass of a spherical inclusion for a crack landing at a height ylanding/d = 0 making an angle θtan = 60◦

with the interface (a), by-pass with crack repenetration (b) and pure-bypass (c) for a cubical inclusion

inclined from an angle θtan = 60◦ for a crack landing respectively at a height ylanding/h = 0 and

ylanding/h = 0.3

We performed simulations of crack-inclusion interaction for monodisperse distribution

of cubical inclusions at varying density levels ρinc ∈ {10%, 30%}. The results are plotted

Fig. 4.57 with the usual plotting conventions. The numerical results are compared with

theoretical predictions of a dilute homogenized model in dashed lines.
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Figure 4.57: Impact of the inclusion density ρinc on the effective toughness Geff
c for the coupling of crack

trapping and crack deflection; numerical results of Eq. (4.50) in solid lines are compared to theoretical

predictions of the dilute homogenized model in dashed lines.

The dilute homogenization framework for the interaction between a crack and cubical

inclusions has been derived following the same strategy as in Section 4.4 except that (i)

the FRVEs now take into account the inclination angle βinc of the inclusion and (ii) the

transition diagram (see Fig. 3.37) and the CRVEs (see Fig. 4.58) have been constructed

numerically from tens of thousands efficient simulations on periodic arrangements of tough

cubical inclusions. It ultimately allows to predict the impact of the inclusion geometry on

the effective toughness under the hypothesis of dilute out-of-plane interactions.

We notice that the dilute model reproduces fairly well the impact of inclusion toughness
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Figure 4.58: Dilute scheme for the prediction of homogenized fracture properties of a composite material

with cubical inclusions : fracture representative volume element (FRVE) for a plane crack interacting with

a cubical inclusion with Ginc
c = 1.35Gmat

c inclined at βinc = 45◦ through the crossing mechanism (a) and

associated CRVE (b). FRVE for the interaction through repenetration and by-pass mechanisms for a with

a cubical inclusion with Ginc
c = 2Gmat

c inclined at βinc = 45◦ (c) and associated CRVE (d)

Ginc
c and inclusion density ρinc on the effective properties, especially up to Ginc

c = 3Gmat
c .

It confirms that the proper ingredients were introduced in the homogenization framework.

For large inclusion toughness, out-of-plane deviations of the crack front might impact the

interaction mechanisms between neighboring inclusions, increasing the discrepancy between

numerical simulations and theoretical homogenized predictions.

4.6.3 Impact of the microstructural texture

In this last part, we explore the impact of a texture in the composite micro-structure.

We consider three different cases, where the principal axis of spheroidal prolate inclusions

is oriented along : (i) the direction perpendicular to the crack surface (Oy), (ii) the propa-

gation direction (Ox) and (iii) the front direction (Oz). It gives rise to strongly anisotropic

effective fracture properties that are well captured by our homogenization scheme.

4.6.3.a Anisotropy in the perpendicular direction (Oy)

Problem statement

We first investigate the case where the inclusions are oriented in the (Oy) direction, perpen-

dicular to the crack surface. Investigated in the case of periodic arrangements in Section 3.6,

such an inclusion geometry has been shown to increase the reinforcement induced by the

crack deflection mechanism, even above crack trapping for elongated enough inclusions.

We consider monodisperse distributions Lz×Lx×Ly = 256dz×288dz×16dz of elongated

prolate spheroidal inclusions oriented in the y-direction and of density ρinc = 20%. Three

inclusion elongations are considered : a spherical inclusion dy = dz = dx, a moderately

elongated spheroidal inclusion dy = 2 dz = 2 dx and a largely elongated one dy = 4 dz = 4 dx.

Simulation parameters are summarized in Table 8.21. Examples of considered distributions

are given in Fig. 4.59.(a-c).

Numerical results and comparison to model predictions

The results of 80 simulations are shown in Fig. 4.63.d. The effective toughnessGeff
c is plotted

as a function of the inclusion toughness Ginc
c for various elongation ratio dx/dz (in yellow

to dark red) and then compared to theoretical predictions of a dilute scheme developed
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for ellipsoidal inclusions (in dashed lines) and coplanar simulations (in dashed-dotted black

line).

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Ginc
c /Gmat

c

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

G
ef

f
c

/
G

m
at

c

Coplanar simulations

Non-coplanar simulations

Homogenized dilute predictions

dy = 1 dz

dy = 2 dz

dy = 4 dz

(b)(a)

(d)(c)x

y

z

Figure 4.59: Impact of the elongation ratio dy/dz on the effective toughness Geff
c : the crack interacts with

a monodisperse distribution of prolate spheroidal inclusions oriented in the y-direction with various

elongation ratio dy = dz (a), dy = 2 dz (b) and dy = 4 dz (c) ; numerical results (in solid lines) are

compared to homogenized predictions (in dashed lines) and coplanar simulations (in dash-dotted black

line)(d).

We notice that an increase in the elongation ratio of the inclusion can induce a substan-

tial reinforcement of the composite material. In Fig. 4.59.a, we observe that in some cases,

the effective toughness can even overtake the value corresponding to coplanar propagation.

When the crack by-passes such an inclusion, it propagates in the tangent direction θtan,

which is different from its natural propagation direction θ = 0◦ imposed by the macroscopic

tensile loading. This appears to be very detrimental to the driving G and the by-pass thus

requires a substantial load increase. Moreover, as it deviates out-of-plane, it is dragged

inwards in the inclusion due to Mode II contributions induced by long-range elastic interac-

tions, which increase even further the angle mismatch between the maximal ERR direction

θmax and its actual propagation direction θtan along the interface. The more elongated the

inclusion in the y-direction, the harder the by-pass. Thus inclusion geometry increases the

reinforcement induced by crack deflection, itself activated by the by-pass mechanism. Such

a behavior can be noticed from the toughness spatial distribution of the equivalent coplanar

defect for inclusion by-pass in Fig. 4.60. A more efficient deflection mechanism increases

the toughness of the effective coplanar defects related to inclusion by-pass.

As before, the dilute homogenization framework for the interaction between a crack

and ellipsoidal inclusions is derived following the same strategy as in Section 4.4, with the

difference that the FRVE is here anisotropic. Its dimensions Lz
ρ, L

x
ρ , L

y
ρ respectively in the

z-, x- and y-directions read :

Li
ρ =

(
π

6ρinc

) 1
3

di, for i ∈ {z, x, y} (4.68)

An example of such a FRVE is shown in Fig. 4.60.a.

The interaction mechanism can be inferred from Eq. (3.27), which happens to depict
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accurately the crossing to by-pass transition in the case of elongated inclusions in the

y-direction. CRVEs are constructed from hundreds of periodic simulations. Their superpo-

sition for all possible realizations finally allows for the determination of the average 〈Gc〉,
standard deviation σ (Gc), and correlation lengths ξz, ξx of the equivalent coplanar distri-

bution under the ergodic assumption. Eq. (4.31) finally allows for the predictions of the

effective toughness.
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Figure 4.60: Dilute scheme for the prediction of homogenized fracture properties of a composite material

with ellipsoidal inclusions elongated along the direction (Oy) : fracture representative volume element

(FRVE) for a plane crack interacting with a ellipsoidal inclusion of elongation ratio dy/dz = 2 at a height

ylanding = 0.1 dy (a). Associated CRVE for the crossing interaction at Ginc
c = 2Gmat

c (b) and the by-pass

interaction Ginc
c = 3Gmat

c (c)

We see in Fig. 4.59.d that the dilute model captures quantitatively the impact of the

elongation ratio for inclusions up to Ginc
c = 3Gmat

c and that it remains qualitatively correct

above those levels.

4.6.3.b Anisotropy in the propagation direction (Ox)

Problem statement

We investigate now the case where the inclusions are oriented in the (Ox) direction, parallel

to the propagation direction. The results in the periodic case have not been discussed in

Chapter 3 since they gave the same results as the spherical inclusions. It is thus of particular

interest to explore how those observations fare in the disordered case.

We first consider monodisperse distributions Lz × Lx × Ly = 256dz × 288dz × 16dz of

ellipsoidal inclusions elongated in the x-direction for a density ρinc = 20%. We consider the

same elongation ratio dx/dz as before. Simulation parameters are summarized in Table 8.21.

Examples of considered distributions are given in Fig. 4.61.(a-c).

Numerical results and comparison to model predictions

The results of 80 simulations are shown in Fig. 4.61.d. The effective toughness Geff
c is

plotted as a function of the inclusion toughness Ginc
c for various elongation ratio dx/dz

(in yellow to dark red) and then compared to theoretical predictions of the dilute scheme

developed for ellipsoidal inclusions.

Whereas the effective toughness is increased when the inclusions are elongated along the

y-direction, those oriented along the x-direction render the material weaker. This reduction

in the material toughening comes from two mechanisms :
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Figure 4.61: Impact of the elongation ratio dx/dz on the effective toughness Geff
c : the crack interacts with

a monodisperse distribution of prolate spheroidal inclusions oriented in the x-direction with various

elongation ratio dx = dz (a), dx = 2 dz (b) and dx = 4 dz (c) ; numerical results (in solid lines) are

compared to homogenized predictions (in dashed lines).

1. first, the theoretically predicted effective toughness increases with the ratio ξz/ξx (see

Eq. (4.31)), which is proportional to dz/dx, at least for crossed inclusions. Thus, the

disorder-induced toughening is expected to decrease for inclusions elongated along

the x-direction. It accounts for the lesser initial toughening rate at low inclusion

toughness levels, where the inclusions are mainly crossed ;

2. second, the effective coplanar defect for inclusion by-pass (see Fig. 4.62c) vanishes

very quickly in the x-direction. Above the by-pass transition threshold, the average

〈Gc〉 and the standard deviation σ (Gc) of the equivalent coplanar distribution of

toughness decrease, leading to a lesser toughening by crack deflection. It explains

both the shift of the maximum position and the lowered plateau value.

The dilute homogenization framework for the interaction between a crack and ellipsoidal

inclusions can be derived following the same strategy as for the y-direction. To each FRVE

is associated with a CRVE (Fig. 4.62.) resulting from the interaction mechanism inferred

from Eq. (3.27), which depicts accurately the crossing to by-pass transition in this case. The

effective toughness is estimated analytically from the superposition of all CRVEs, which are

computed numerically from efficient periodic simulations.

We see that the homogenized dilute predictions capture well the simulations. Yet some

discrepancy is noticeable such as the position of the maximum for moderately elongated

inclusions. The results are nonetheless satisfying and reproduce fairly well the impact of

the fiber elongation along the propagation direction.
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Figure 4.62: Dilute scheme for the prediction of homogenized fracture properties of a composite material

with ellipsoidal inclusions elongated along the direction (Ox) : fracture representative volume element

(FRVE) for a plane crack interacting with a ellipsoidal inclusion of elongation ratio dx/dz = 2 at a height

ylanding = 0.1 dy (a). Associated CRVE for the crossing interaction at Ginc
c = 2Gmat

c (b) and the by-pass

interaction Ginc
c = 3Gmat

c (c)

4.6.3.c Anisotropy in the front direction (Oz)

Problem statement

To close the loop, we finally investigate the case where the inclusions are oriented in the

direction (Oz), parallel to the crack front direction. In the periodic case, such an inclusion

shape has been proved to facilitate inclusion by-pass through three-dimensional collective

effects along the crack front. This early by-pass is expected to lower the effective toughness

in a disordered setting too.

We thus consider monodisperse distributions Lz × Lx × Ly = 256dz × 288dz × 16dz
of spheroidal prolate inclusions elongated along the z-direction for a density ρinc = 20%.

Three inclusion elongations are considered : the spherical case dx = dz = dy, a moderately

elongated inclusion dz = 0.5 dx = 0.5 dy and a largely elongated one dz = 0.25 dx = 0.25 dy.

We chose here to reduce the elongation in the x- and y-direction to keep the ratio Lz/dz
constant and thus remove the impact of the system size. Simulation parameters are sum-

marized in Table 8.21. Examples of considered distributions are given in Fig. 4.63.(a-c).

Numerical results and comparison to model predictions

The results of 80 simulations are shown in Fig. 4.63.d. The effective toughness Geff
c is

plotted as a function of the inclusion toughness Ginc
c for various elongation ratio dz/dx

(in yellow to dark red) and then compared to theoretical predictions of a dilute scheme

developed for ellipsoidal inclusions.

We saw in Section 3.4, that by-pass mechanisms are facilitated in the case of elongated

inclusions oriented along the z-direction of the crack front, which leads to a decrease of

the effective toughness in a periodic setting. Given that crack deflection is a less efficient

mechanism, we expect the effective toughness to decrease with the fiber elongation. Yet,

it is noticeable in Fig. 4.63, the effective toughness remains almost the constant for the

three elongation ratios. If the deflection mechanisms indeed appear to be less efficient (see
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Figure 4.63: Impact of the elongation ratio dz/dx on the effective toughness Geff
c : the crack interacts with

a monodisperse distribution of prolate spheroidal inclusions oriented in the z-direction with various

elongation ratio dz = dx (a), dz = 2 dx (b) and dz = 4 dx (c) ; numerical results (in solid lines) are

compared to homogenized predictions (in dashed lines).

Fig. 4.64c), the effective toughness depends on the ratio ξz/ξx ∼ dz/dx, which increases

here with the elongation and compensates the toughness decrease due to the early by-pass

of the inclusions. It also accounts for the slightly improved toughening rate at low inclusion

toughness where the inclusions are mainly crossed.
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Figure 4.64: Dilute scheme for the prediction of homogenized fracture properties of a composite material

with ellipsoidal inclusions elongated along the direction (Oz) : fracture representative volume element

(FRVE) for a plane crack interacting with a ellipsoidal inclusion of elongation ratio dz/dx = 2 at a height

ylanding = 0.1 dy (a). Associated CRVE for the crossing interaction at Ginc
c = 2Gmat

c (b) and the by-pass

interaction Ginc
c = 3Gmat

c (c)

The dilute homogenization framework is derived following the same strategy, with the

sole difference that the crossing to by-pass transition is inferred from numerical simulations

(see Fig. 3.26 and Fig. 3.27). The predictions of the homogenized model are in qualita-

tive accordance with the numerical results. The initial increase in the toughening rate is

captured as well as the shift in the position of the maximum towards smaller inclusion

toughness values. The value of the maximum is nonetheless a bit overestimated. Such

an effect might be due to the overestimation of the effective toughness for large elonga-

tion ratio in the direction of the crack front as it was observed in the coplanar case (see

Section 4.2.2.f). Finally, we notice that for a large elongation ratio dz/dx = 4, the ho-

mogenized dilute model presents a second local maximum. Such a feature can be observed
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around the same inclusion toughness levels in our numerical simulations.

To conclude, we notice that introducing texture in the microstructure at a small scale

results in toughness anisotropy at a large scale. The toughening induced by the microstruc-

ture strongly depends on the direction of propagation of the crack. It may pave the way for

functionalizing materials displaying unique toughness properties as it has been proposed by

Xia et al. [2013] for the coplanar adhesive problem.

4.7 Concluding remarks

This chapter was dedicated to the homogenization of fracture properties both from a

numerical and theoretical point of view. We first revisited the concept of effective toughness

Geff
c , and unified the three definitions proposed so far, namely :

1. the effective toughness as the averaged fracture energy dissipated by the fracture

process
〈
Gfrac

c

〉
;

2. the average value G∞
mean of the ERR during crack evolution, taking advantage of the

coupling between the material problem and the structural one;

3. the maximum value G∞
max of the ERR during crack evolution.

In particular, we showed that these three definitions converge to a single value under the

condition that the structural length L, characteristic of the loading variations, is large

enough with respect to the characteristic microstructural size, the inclusion size d. Such a

condition is standard in the homogenization theory but the fact that it involves L, which is

related to the structural problem and the boundary conditions, highlights the specificities

of brittle fracture.

Numerical simulations on large-scale disordered systems, computed from the model de-

scribed in Chapter 2, have been conducted to investigate the impact of microstructural

disorder on the effective toughness. Our results illustrate that material disorder plays a

decisive role in the determination of the effective fracture properties so that estimating

the effective toughness from periodic situations can produce results which are both quan-

titatively and qualitatively wrong. These numerical results have then been compared to

theoretical predictions derived from the homogenization scheme developed in Section 4.4.

Inspired by micromechanics and statistical physics, it extends the approach of Démery et al.

[2014a], limited to planar crack propagation to fully 3D fracture, to incorporate the crucial

effect of inclusion by-pass on the resulting effective fracture properties.

It relies on an accurate description of both the conditions under which each mechanism

is taking place and its subsequent toughening contribution, which have been thoroughly

investigated in Chapter 3. As seen in Section 4.5 and Section 4.6, this homogenization

method has been shown to successfully capture the impact of by-pass mechanism on the

effective toughness of heterogeneous brittle materials, as well as the one of various mi-

crostructural (inclusion density, toughness disorder, weak interfaces) and geometrical (size

disorder, inclusion shape, inclusion orientation) parameters. It has been shown to produce
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quantitative predictions for inclusion up to 3.4 tougher than the matrix Ginc
c ≃ 3.4Gmat

c ,

for densities as large as ρinc = 50%. Above this toughness level, collective effects emerg-

ing from the out-of-plane deviations of the crack front cannot be neglected anymore. To

take into account the interactions between neighboring inclusions during their interaction

with the crack front, a non-dilute scheme has been proposed. It significantly improves our

predictions, even though it does not allow a perfect match between numerical results and

theoretical predictions.

Both numerical and theoretical results highlight the substantial impact on material rein-

forcement of a wide range of microstructural parameters, from which one can infer guidelines

for microstructural design :

• no matter the toughening mechanism involved, the toughness increase has been shown

to scale with the inclusion density as ρ
2/3
inc ;

• the by-pass mechanism is detrimental to material reinforcement since it activates

crack deflection whose contribution to material toughening is often lesser than crack

trapping ;

• the interface between the inclusion and the matrix should have a toughness as close

as possible to the one of the matrix to delay inclusion by-pass ;

• one can play on the inclusion geometry to defer inclusion by-pass by promoting inclu-

sion repenetration. One can use cubical inclusions or alternatively pellets to promote

such a mechanism ;

• one can tune the material texture to control the toughness anisotropy of the material.

It has been shown that the toughness varies substantially depending on the direction

of the incoming crack in the case of spheroidal prolate inclusions.

Even though this method has been here applied to the crossing, by-pass and repenetra-

tion mechanisms, it has been designed to allow for the homogenization of brittle fracture

properties in a much wider scope. In a first step, elementary toughening mechanisms, such

as inclusion debonding or crack de-nucleation/re-nucleation at an elastic interface, could

be modeled accurately through powerful computational methods such as phase-field simu-

lations, which allow nowadays to tackle the single inclusion problem in all its complexity.

And then, their effect on the toughness of disordered solids could be deduced from the

homogenization scheme by looking at the way the crack front deforms in-plane during its

interaction with an inclusion, just as it has been performed here for both the crossing and

the by-pass mechanisms. This study then sets up the foundations for homogenizing brittle

fracture properties of three-dimensional composite materials in all their complexity, thus

paving the way to integrate a wide variety of microscopic fracture mechanisms into a unified

theoretical homogenization framework relying on statistical physics.
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5.1 Introduction

Fracture surfaces, as persistent traces of crack propagation, contain unexpected informa-

tion on the broken material and its mechanical properties, the applied loading conditions

during failure as well as the microscopic fracture processes which took place at the crack

tip during crack propagation. Fractography, the study of fracture surfaces, tackles this

challenge and aims at understanding what caused structural failure and identifying the

underlying fracture processes from their examination. It relies on the observation of the

fracture surfaces from the microscopic scale (through scanning or transmission electron mi-

croscopy) to the macroscopic scale (through optical microscopy) and the subsequent iden-

tification of fracture patterns (e.g. chevrons, beach or ratchet marks, ridges, shear lips).

Fractography allows for a qualitative understanding of the material failure behavior. Yet,

recent developments in the mechanics and physics of fracture have led to a new approach

referred to as statistical fractography that relies on the statistical analysis of the fracture

surface topography.
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The statistical properties of fracture surfaces were first studied in the pioneer work of

Mandelbrot et al. [1984]. Fracture surfaces have been shown to display a peculiar scaling

behavior referred to as self-affinity. It means that they are statistically invariant under the

transformation r → λr and h→ λζh, where r characterizes a location in the mean fracture

plane, h is the surface elevation, and ζ is the so-called self-affine or Hurst exponent. Early

experimental studies performed on a wide range of materials (metallic alloys [Mandelbrot

et al., 1984; Bouchaud et al., 1990; Dauskardt et al., 1990; Morel et al., 2004]), ceramics

[Mecholsky et al., 1989], silica glass [Ponson et al., 2006b; Ponson, 2007], rocks [Schmittbuhl

et al., 1995; Lôpez and Schmittbuhl, 1998], mortar [Mourot et al., 2005] or wood [Engøy

et al., 1994; Morel et al., 1998]) suggested that the roughness exponent might have an

universal value ζ ≃ 0.8. Fracture surfaces have latter been shown to exhibit anisotropic

scaling [Ponson et al., 2006b; Bonamy et al., 2006; Ponson, 2007], with a larger roughness

exponent ζ ≃ 0.8 in the direction of the crack front than in the propagation direction β ≃
0.6. Additionally, fracture experiments on sandstone [Boffa and Allain, 1998; Ponson et al.,

2007] or artificial materials composed of sintered glass/polystyrene beads [Ponson et al.,

2006a; Cambonie et al., 2015] evidenced a new class of fracture roughness characterized

by a lower exponent ζ ≃ 0.4−0.5. The first type of roughness, characterized by a high

roughness exponent ζ ≃ 0.8, has been shown to emerge from damage percolation processes

happening below the process zone size ℓFPZ in ductile or quasi-brittle materials [Hansen and

Schmittbuhl, 2003] while the second class ζ ≃ 0.4 is attributed to brittle processes [Bonamy

et al., 2006]. Morel et al. [2008] studied the surface roughness of mortar and confirmed

experimentally that a high exponent regime ζ ≃ 0.8 is indeed found at length scales below

the process zone size while a second regime with ζ ∼ 0.4 is observed at large length scales,

above ℓFPZ. Those experimental observations were latter supported by Vernède et al. [2015]

on various materials (aluminum alloy, mortar, ceramics).

The quantitative study of fracture surfaces presents two main challenges today : first,

from a more academic perspective, the mechanisms leading to the brittle regime of roughness

remains poorly understood since experiments on brittle porous rocks produce self-affine

surfaces with ζ ≃ 0.4 [Boffa and Allain, 1998; Ponson et al., 2006a; Cambonie et al., 2015]

while fracture tests of phase-separated [Dalmas et al., 2008] or oxide brittle glass [Pallares

et al., 2018] generate logarithmically rough surfaces, as predicted theoretically [Ramanathan

et al., 1997] and observed numerically [Barès et al., 2014] for crack propagation in disordered

brittle materials. Today, there is no clear understanding of the mechanisms that control

the transition from the logarithmic to the self-affine (ζ ≃ 0.4) roughness. Secondly, from

a more engineering perspective, fractographic methods based on the scaling properties of

fracture surfaces have been developed recently to extract quantitative information from the

surface roughness. Ponson [2007] used the scaling anisotropy to find back the propagation

direction of the crack from the fracture surfaces. More recently, Vernède et al. [2016] took

advantage of the existence of two self-affine regimes to extract quantitative information on

the process zone size ℓFPZ and ultimately on the toughness Gc. Such experimental methods

have been further validated with numerical simulations of heterogeneous ductile fracture

[Osovski et al., 2015; Barak et al., 2019]. Yet one can wonder how such methods can be
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adapted to purely brittle failure where only one roughness regime, a self-affine one with

ζ ∼ 0.4 or a logarithmic one, can be observed on the fracture surface.

This chapter addresses both these challenges by investigating the surface roughness of

brittle composites constituted by toughness heterogeneities. Section 5.2 is devoted to the

theoretical analysis of fracture surface statistics. The full 2D statistical structure of the

surface roughness is predicted for the first time. It is shown to be logarithmic with an

anisotropic scaling. In Section 5.3, these theoretical predictions are compared to numerical

simulations of crack propagation in large-scale disordered materials. We study the impact of

microstructural parameters on the surface roughness and finally quantify which information

can be extracted from logarithmically rough fracture surfaces.

5.2 Theoretical predictions for the roughness of brittle ma-

terials

Since the work of Ramanathan et al. [1997], non-coplanar crack propagation in disordered

brittle materials under tensile loading (Mode I) has been considered to result in logarith-

mically rough surfaces. This fact has been supported by both numerical simulations [Barès

et al., 2014] and experimental observations [Dalmas et al., 2008]. Yet, to the author’s

best knowledge, the full two-dimensional structure of the height-height correlations of the

fracture surface has not been established yet. This section aims at filling this gap by re-

visiting the problem of crack trajectory in brittle materials within the rigorous theoretical

framework developed in Favier et al. [2006b].

5.2.1 Trajectory equation

5.2.1.a Crack propagation in heterogeneous materials

First, we establish the equation of motion of a semi-infinite crack propagating in a het-

erogeneous brittle material. As before, fx denotes the in-plane perturbation of the crack

front F , while fy represents its out-of-plane component. A point M of the crack front has

the coordinates (z, fx (z, t) , fy (z, t)). If we note h, the height profile of the fracture surface

resulting from the interaction of the crack with the material disorder, it reads :

h (z, x = fx (z, t)) = fy (z, t) (5.1)

Given that the crack angle θ = arctan
(
∂fy
∂x

)
remains small during crack propagation, the

expression of the Mode II perturbed SIF is given by Eq. (2.14). If the crack propagated in

a homogeneous phase, the (G)MERR criterion would give at first-order in the perturbation

(see Section 8.D.2) :

∂h

∂x

(
z, x = fx

(
z, t+

))
− ∂h

∂x

(
z, x = fx

(
z, t−

))
∼ −2

δKII

K∞
I

(
z, t−

)
(5.2)

where t+ and t− denote respectively the time before and after the kink event which occurs

at time t.
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Yet, in presence of material heterogeneities (e.g. toughness discontinuities), we saw in

Chapter 3 that the crack does not follow necessarily the direction prescribed by the MERR

criterion. Eq. (5.2) becomes then :

∂h

∂x

(
z, x = fx

(
z, t+

))
−∂h
∂x

(
z, x = fx

(
z, t−

))
∼ −2

δKII

K∞
I

(
z, t−

)
+η
(
z, x = fx

(
z, t−

)
, y = h (z, x)

)

(5.3)

where η is a stochastic noise, which represents the discrepancy between the direction the

crack would take in the homogeneous case and the one it actually takes during propagation.

Combining Eq. (2.14) with Eq. (2.14), one gets :

∂h

∂x
(z, x = fx (z, t)) =− A (ν)

π
PV

∫ +∞

−∞

h (z, x = fx (z, t))− h (z′, x = fx (z
′, t))

(z − z′)2
dz′ (5.4)

+ η (z, x = fx (z, t) , y = h (z, x))

where A (ν) = 2−3ν
2−ν is a coefficient depending on the Poisson ratio ν.

This equation is highly non-linear and resembles the coplanar equation of motion derived

in Eq. (4.3). Like in the in-plane problem, the difficulties arising from the non-linearity of

Eq. (5.4) can be circumvented under given hypotheses.

5.2.1.b Equation of motion in the Larkin regime

In this part, we make three main assumptions :

1. first, we follow Bonamy et al. [2006] and Barès et al. [2014] and suppose that the

disorder η is quenched so that it only depends on the position of the crack front

(z, x, y) and not on the time t ;

2. second, we assume that the in-plane perturbation of the crack front fx are far smaller

than the correlation length ξx of the disorder η in the propagation direction (Ox) so

that the crack propagates in the Larkin regime. The height profile of the fracture

surface h (z, x = fx (z, t)) can be defined at the mean position x (t) = 〈fx (z, t)〉z of

the crack front.

3. third, we neglect the dependence of η on h, assuming that the height variations are

much smaller that the correlation length ξy if the disorder along the (Oy) direction.

Under those assumptions, the stochastic term η (z, x, y = h (z, x)) acts effectively as “ther-

mal” noise η (z, x), since x varies with time.

With these hypotheses, Eq. (5.4) becomes :

∂h

∂x
(z, x) = −A (ν)

π
PV

∫ +∞

−∞

h (z, x)− h (z′, x)

(z − z′)2
dz′ + η (z, x) (5.5)

We notice that the trajectory equation of the crack front in the Larkin regime is linear in

h. It calls for a theoretical analysis of the surface roughness within the framework developed

by Favier et al. [2006b] and already used in Section 4.2 for the in-plane situation.
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5.2.2 Statistics of the fracture surface

In this section, we aim at characterizing the statistical properties of the fracture surface

of brittle heterogeneous materials. As a result, we look at : the two-points height-height

correlation function ∆h and the power spectrum density PSD, defined as :





∆h2 (∆z,∆x) =< (h (z +∆z, x+∆x)− h (z, x))2 >z,x

= 2 < h (z, x) >z,x −2 < h (z +∆z, x+∆x)h (z, x) >z,x

PSD (k) =< ĥĥ∗ (k, x) >x

(5.6)

where a∗ denotes the conjugate of the complex variable a and ĥ the Fourier transform with

respect to the z variable of the function h.

5.2.2.a Mathematical framework for statistics calculation

We see in Eq. (5.6) that we have to estimate averages over the crack front. Follow-

ing Favier et al. [2006b], we consider ensemble averages, where one looks, at one point

of coordinates (z, x), for multiple front configurations resulting from the interaction of a

three-dimensional crack with multiple disordered systems. The ergodic assumption consists

in assuming that ensemble averages are equivalent to averages over the crack surface.

In the following, we consider a statistical ensemble Ω of possible realizations of a het-

erogeneous material associated to a specific real number ω. We note p : ω 7→ p (ω) its

probability density function. Thus, the probability that the variable ω′ lies in some neigh-

borhood of ω of measure dω is p(ω) dω. The mathematical expectation E [u (x, z)] of any

spatial observable u : (x, z) 7→ u (x, z) is defined as :

E [u (x, z)] =

∫

Ω
u (x, z;ω) p(ω) dω (5.7)

The 2-point auto-correlation function E [u (z2, x2)u (z1, x1)] thus reads :

E [u (z2, x2)u (z1, x1)] =

∫

Ω
u (z2, x2;ω)u (z1, x1;ω) p(ω) dω (5.8)

Following the method developed by Favier et al. [2006b], we note Ẽ [u1u2] (k1, x1, k2, x2)

the double (z1, z2)-Fourier transform of the function E [u (z2, x2)u (z1, x1)]. One can easily

prove that :

Ẽ [u1u2] (k1, x1, k2, x2) = E [û (k1, x1) û (k2, x2)] (5.9)

Moreover, if the spatial observable u is statistically invariant in both the (Oz) and (Ox)

directions, one gets :

E [u (z2, x2)u (z1, x1)] = U (z2 − z1, x2 − x1)

⇒ Ẽ [u1u2] (k1, x1, k2, x2) = 2πδ (k2 + k1) Û (k2, x2 − x1)
(5.10)
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5.2.2.b Two-dimensional surface roughness in the Larkin regime

Thanks to the mathematical framework developed above, we can study the roughness of

brittle fracture surfaces. Assuming that the crack front is initially flat, i.e. h (z, 0) = 0,

Eq. (5.5) gives :

ĥ (k, x) = e−A(ν)|k|x
∫ x

0
η̃ (k, u) eA(ν)|k|udu (5.11)

Combining Eq. (5.11) with Eq. (5.9), one gets :

Ẽ [h1h2] (k1, x1, k2, x2) =e
−A(ν)(|k1|x1+|k2|x2) (5.12)

·
∫ x1

0

∫ x2

0
Ẽ [η1η2] (k1, u1, k2, u2) e

A(ν)(|k1|u1+|k2|u2)du1du2

We assume here that the material disorder η is statistically invariant in both the crack

front direction (Oz) and the propagation direction (Ox) so that one can write :

E [η (z1, x1) η (z2, x2)] = N (z2 − z1, x2 − x1) (5.13)

The disorder correlations are assumed to be characterized by the correlation lengths ξz and

ξx respectively in the crack front direction and the propagation direction. By exploiting

the statistical invariance of η in Eq. (5.13) with Eq. (5.11), Eq. (5.12) finally gives :

Ẽ [h1h2] (k1, x1, k2, x2) =2πδ (k2 + k1) e
−A(ν)(|k1|x1+|k2|x2) (5.14)

·
∫ x1

0

∫ x2

0
N̂ (k2, u2 − u1) e

A(ν)(|k1|u1+|k2|u2)du1du2

The statistical invariance of η is preserved in h (see Eq. (5.5)), thus :

E [h (z1, x1)h (z2, x2)] = H (z2 − z1, x2 − x1) (5.15)

Identifying terms in Eq. (5.14), one gets :

Ĥ (k, x2 − x1) = e−A(ν)|k|(x1+x2) ·
∫ x1

0

∫ x2

0
N̂ (k, u2 − u1) e

A(ν)|k|(u1+u2)du1du2 (5.16)

Using Eq. (5.16), we shall now derive the asymptotic expression of the power spectrum

density of h. Our reasoning is based on the argument of domination of the diagonal in

integration over the square [0, x1] × [0, x2] [Perrin and Rice, 1994]. Use of the change of

variables defined by :

r =
1

2
(u1, u2) , s = u2 − u1 (5.17)

in Eq. (5.16) yields :

Ĥ (k, x2 − x1) =

∫ x1+x2
2

0

{∫ smax
r

smin
r

N̂ (k, s) e−A(ν)|k|(x1+x2−2r)ds

}
dr (5.18)
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Figure 5.1: Illustration of the argument of the diagonal domination : when integrating over the square

[0, x1]× [0, x2] (a), N̂ (k, s) takes non-negligible values only when s ≪ ξx (b).

where smin
r and smax

r are the minimum and maximum values of s allowed by the inequalities

0 ≤ r − s/2 ≤ x1 and 0 ≤ r + s/2 ≤ x2. An example of such integration bounds is plotted

in Fig. 5.1.

Following Perrin and Rice [1994], N̂ (k, s) takes non-negligible values only when s ≪ ξx.

Thus non-negligible values of the integrand in Eq. (5.18) only occur when r < min (x1, x2).

When this is done, one may safely extend the integral over the interval
[
smin
r , smax

r

]
to

the entire real line; indeed, smin
r and smax

r are large for almost every r in the interval

[0,min (x1, x2)] when x1, x2 → +∞. The interval over which N̂ (k, s) takes non-negligible

values is “concentrated” near the centre of the interval of integration
[
smin
r , smax

r

]
. The

integral of N̂ (k, s) then becomes identical to Ñ (k, 0), where Ñ is the double (z, x)-Fourier

transform of the function N . Eq. (5.18) finally boils down to :

Ĥ (k, x2 − x1) = Ñ (k, 0)
e−A(ν)|k||x2−x1|

2A (ν) |k| (5.19)

which gives the expression of the power spectrum density of h :

PSD (k) = Ĥ (k, 0) =
Ñ (k, 0)

2A (ν) |k| (5.20)

It also allows for the calculation of the surface roughness ∆h in two steps, assuming that

k → Ñ (k, 0) is an odd function. First :

∆h2 (∆z, 0) = 2 (H (∆z, 0)−H (0, 0))

=
1

πA (ν)

∫ ∞

0
Ñ (k, 0)

1− cos(k∆z)

k
dk (5.21)

Second :

∆h2 (∆z,∆x)−∆h2 (∆z, 0) = 2 (H (∆z,∆x)−H (∆z, 0))

=
1

πA (ν)

∫ ∞

0
Ñ (k, 0)

1− e−A(ν)|k|∆x

k
cos(k∆z) dk (5.22)
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Eq. (5.21) and Eq. (5.22) cannot be further simplified without any further information on

Ñ (k, 0). In the following, we assume that the auto-correlation function N of the material

disorder η follows a Lorentz-distribution :

N (∆z,∆x) = Dη
1

1 +
(
∆z
ξz

)2
1

1 +
(
∆x
ξx

)2 ⇐⇒ Ñ (k, p) = Dηπ
2ξzξxe

−|k|ξze−|p|ξx (5.23)

where Dη denotes the variance of the disorder η and ξz and ξx its correlation lengths in the

crack front direction and the propagation direction, respectively.

Using Gradshteyn and Ryzhik [2014] (3.943), Eq. (5.21) gives :

∆h2 (∆z, 0) =
πDηξzξx
2A (ν)

ln

[
1 +

(
∆z

ξz

)2
]

(5.24)

while, using Gradshteyn and Ryzhik [2014] (3.951.3), Eq. (5.22) yields :

∆h2 (∆z,∆x)−∆h2 (∆z, 0) =
πDηξzξx
2A (ν)

ln

[
∆z2 + (ξz +A (ν)∆x)2

∆z2 + ξ2z

]
(5.25)

One finally gets for the height-height correlations :

∆h2 (∆z,∆x) =
πDηξzξx
2A (ν)

ln

[(
∆z

ξz

)2

+

(
1 +

A (ν)∆x

ξx

)2
]

(5.26)

If one looks at the surface roughness at large-scales ∆z ≫ ξz and ∆x≫ ξx, one gets :

∆h2 (∆z,∆x) ∝ Dηξzξx
A (ν)

ln

[(
∆z

ξz

)2

+A (ν)2
(
∆x

ξx

)2
]

(5.27)

where the pre-factor depends on the geometry of the material disorder η. This expression

for the two-point correlation function of the out-of-plane perturbation of the fracture sur-

face is apparently derived here for the first time.

Following Eq. (5.19) and Eq. (5.27), we can make several remarks :

• the surface roughness of brittle heterogeneous materials is indeed logarithmic. The

relaxations of the various modes in the direction (Ox) of propagation appear to be

independent of each other, and small-wavelength perturbations decay at a much faster

rate than large-wavelength ones both in the z- and the x-direction (see Eq. (5.19)).

In particular, the decay length along the propagation direction is proportional to the

perturbation size λ ∼ 1
k along the crack front direction. Such behavior is expected to

produce logarithmic correlations of the fracture surface ;

• contrary to the assumption made in Dalmas et al. [2008], ∆h2 and not ∆h scales as

a logarithm function ;
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• the surface roughness appears to be anisotropic due to the influence of the Poisson

ratio ν through the term A (ν) which varies from 1
3 (ν = 0.5) to 1 (ν = 0). The

fracture surface is isotropic in the sole case where the Poisson ratio equals to zero.

Thus one should be able to extract information on both the Poisson ratio and the

propagation direction from the statistics of brittle fracture surfaces.

• the fracture surface roughness contains information on the variance Dη of the material

disorder as well as on the surface area ξzξx of typical heterogeneities.

Finally, the theoretical predictions of Eq. (5.27) are in perfect agreement with the numerical

results of Barès et al. [2014], which simulated crack trajectory in disordered brittle materials.

Theoretical predictions of the roughness structure function ∆h can now be compared

with numerical observations resulting from large-scale simulations of crack propagation in

brittle materials displaying toughness heterogeneities.

5.3 Numerical roughness of large-scale heterogeneous mate-

rials

This section is devoted to a numerical study of the surface roughness measured on

fracture surfaces generated with the computational method developed in Chapter 2. In

Section 5.3.1, we compare the numerical observations to theoretical predictions from Section 5.2.

The impact of microstructural features on the surface roughness is studied in Section 5.3.2.

Section 5.3.3 finally summarizes the information one can extract from those surfaces.

5.3.1 Comparison between numerical simulations and theoretical predic-

tions

5.3.1.a Fracture surfaces of brittle heterogeneous material : a logarithmic

roughness

In our numerical simulations, no assumption is made on the material disorder η, which

arises from the actual interaction between the crack and the physically realistic microstruc-

ture. However as η represents the discrepancy between the direction the crack follows

during the by-pass events θtan and the direction θmax it would have followed in a homoge-

neous material, one can use our numerical simulations to compute :

η (z, x) ∼ θtan − θmax (5.28)

at each position along the fracture plane.

But we first investigate how the theoretical predictions of Eq. (5.27) compare to numerical

simulations. As a result, we compute crack propagation in composite materials composed

of a large-scale distribution Lz × Lx × Ly = 1024 d × 1224 d × 20 d of cubical inclusions of

edge width d at a density ρinc = 15%. The cubical inclusions all share the same inclusion

toughness Ginc
c = 1.75Gmat

c while the interface toughness is equal to the one of the matrix

Gint
c = Gmat

c . This set of microstructural parameters ensures that the Larkin length Lc is

superior to the system size Lz = 1024 d as it is assumed in Section 5.2. An example of a
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generated fracture surface is plotted in Fig. 5.2.a.
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Figure 5.2: Surface roughness resulting from crack propagation in a composite material containing

approximately one million cubical inclusion (a) and associated roughness function in the both front

direction (Oz) and propagation direction (Ox) (b).

We first characterize the roughness of those fracture surfaces through their height-height

correlations in both the front direction (Oz) and the propagation direction (Ox) :

{
∆h2z (∆z) =< (h (z +∆z, x)− h (z, x))2 >z,x

∆h2x (∆x) =< (h (z, x+∆x)− h (z, x))2 >z,x

(5.29)

that are plotted in Fig. 5.2.b.

We notice that the surface roughness is logarithmic as it has been predicted in Section 5.2.

It reads:

{
∆h2z (∆z) = ∆hzd

2 + 2∆hz0
2ln(∆z/d)

∆h2x (∆x) = ∆hxd
2 + 2∆hx0

2ln(∆x/d)
(5.30)

where ∆hd denotes the amplitude of the surface roughness at the inclusion scale d (a) and

∆h0 the slope of the logarithmic roughness.

We notice that the two correlation functions share the same slope ∆hz0 = ∆hx0 and only

differs from an offset ∆hzd ≤ ∆hxd . Such features where predicted in Eq. (5.27), which yields:

{
∆hx0 = ∆hz0

∆hxd
2 = ∆hzd

2 + 2∆hz0
2ln(A (ν))

(5.31)

Given that for all ν ∈ [0, 0.5], A (ν) ≤ 1, the roughness in the propagation direction (Ox) is

expected to be lower than the one in the front direction (Oz) as it is observed in Fig. 5.2.b.

Such numerical observations have already been made in Barès et al. [2014].

Similar anisotropy in the height-height correlations has already been observed for self-

affine roughness with low exponent in homogeneous glass and glassy ceramics [Bonamy

et al., 2006] and with high exponent in silica glass and aluminium alloys [Ponson et al.,
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2006b]. Their two-dimensional height-height correlations have been shown to collapse into

a single curve following a so-called Family–Vicsek scaling. In our case, Eq. (5.27) yields :

∆h2 (∆z,∆x)−∆h2 (∆z, 0) ∝ ln

[
1 +

(
A (ν)∆x

∆z

)2
]

(5.32)

We plot in Fig. 5.3.a the two-points height-height correlations along ∆z for multiple ∆x

values. After renormalization following Eq. (5.32), such curves finally collapse into a single

one in Fig. 5.3.b.
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Figure 5.3: Two-points height-height correlations ∆h2 (∆z,∆x) for various ∆x (a) and renormalization

from the structure function predicted in Eq. (5.32) (b).

This data collapse validates further the theoretical predictions derived in the previous

Section 5.2.

5.3.1.b Impact of the Poisson ratio on the surface roughness

The Poisson ratio appears to play a significant role in the surface roughness of hetero-

geneous brittle materials. We thus consider crack propagation in a brittle composite with

varying Poisson’s ratio ν ∈ [0, 0.5]. As before, the crack is interacting with a large-scale

distribution Lz ×Lx×Ly = 1024 d× 1224 d× 20 d of cubical inclusions of edge width d at a

density ρinc = 15%. The inclusion toughness varies from Ginc
c = Gmat

c to Ginc
c = 2Gmat

c while

the interface toughness is equal to the one of the matrix Gint
c = Gmat

c . Five distribution

realizations are considered for each set of parameters.

We plot an example of fracture surface and the associated one-dimensional height-height

correlations for a small Poisson ratio ν = 0 in Fig. 5.4 and a larger one ν = 0.5 in Fig. 5.5.

Those examples show that the Poisson ratio actually controls the anisotropy of the fracture

surface through the coefficient A (ν). At a low Poisson’s ratio value ν = 0, A (ν) = 1 so

that the surface roughness is expected to be isotropic (see Eq. (5.27)), which is confirmed in

Fig. 5.4.b. The fracture surface does not display any preferential direction and the patches

of out-of-plane excursions of the crack front appear to be isotropic (see Fig. 5.4.a). One

the contrary, at a large Poisson’s ratio value ν = 0.5, A (ν) = 1
3 , those same patches appear

to be elongated in the propagation direction (Ox) (Fig. 5.5.a) and the surface roughness

displays a strong level of anisotropy (Fig. 5.5.b).
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Figure 5.4: Surface roughness resulting from crack propagation in a composite material with a low Poisson

ratio ν = 0 (a) and associated isotropic one-dimensional correlation functions in both the front direction

(Oz) and the propagation direction (Ox) (b).
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Figure 5.5: Surface roughness resulting from crack propagation in a composite material with a large

Poisson ratio ν = 0.5 (a) and associated anisotropic one-dimensional correlation functions in both the front

direction (Oz) and the propagation direction (Ox) (b).

Such behavior can be explained through the dependency of the long-range elastic inter-

actions with respect to the Poisson ratio ν. As it has been exposed in Section 8.D.2, the

relaxation of an out-of-plane boxcar function perturbation H (z) of amplitude ∆h reads :

h (z, x) = ∆hH (z)− ∆h

π

[
arctan

(
A (ν)x

D/2 + z

)
− arctan

(
A (ν)x

−D/2 + z

)]
(5.33)

so that one can renormalize the distance in the x-direction by A (ν). The patches of out-

of-plane excursions, which come from by-pass events and the subsequent relaxation of the

crack front, are thus expected to be elongated in the propagation direction when A (ν) 6= 1

i.e. ν > 0.

One can take advantage of this surface anisotropy to measure the Poisson ratio ν from the

surface roughness, either from the off-set in the one-dimensional height-height correlation

functions in both directions (Oz) and (Ox) with Eq. (5.31), or from the renormalization of

the two-dimensional height-height correlation function. Indeed, assuming that the Poisson
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ratio is not known, one can find the optimized parameters (afit, bfit) (see Fig. 5.6.b) so that :

∆h2 (∆z,∆x)−∆h2 (∆z, 0) = afitln

[
1 + bfit

(
∆x

∆z

)2
]

(5.34)

and measure ν knowing that bfit = A (ν)2.

Predictions of the Poisson ratio ν from the surface roughness are plotted in Fig. 5.6.a.

One can notice that the method lying on the 1D correlation functions appears to produce

more consistent results since it allows for the measurement of the Poisson ratio directly

from the off-set of the surface correlations rather than from an optimization procedure.
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Figure 5.6: Poisson ratio ν measured from the surface roughness (a) either from the roughness anisotropy

in Fig. 5.5 (in green triangle marker) or from the renormalization of the two-point roughness function (in

red cross marker) (b).

Finally, Eq. (5.27) predicts that the slope of the logarithmic roughness ∆h20 is inversely

proportional to A (ν), as it has been observed in Barès et al. [2014]. In Fig. 5.7, we plot ∆h20
as a function of the coefficient A (ν) for two values of inclusion toughness Ginc

c = 1.25Gmat
c

and Ginc
c = 1.75Gmat

c .
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Figure 5.7: Impact of the Poisson ratio ν the slope of the logarithmic roughness ∆h0 : at low inclusion

toughness level Ginc
c = 1.25Gmat

c (a) and a larger one Ginc
c = 1.75Gmat

c (b).

We see that such property is not reproduced in our numerical simulations. It is explained

by the fact that the material disorder η depends on the Poisson ratio ν. Indeed η corresponds

to the angular mismatch between the direction θtan the crack follows during the by-pass
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events and the direction θmax that would have been selected in a homogeneous material

(see Eq. (5.28)). While θtan depends only on the geometry, θmax is related to δKII and

thus on A (ν) (see Eq. (2.14)). Thus, when the angle θtan is dominant in Eq. (5.28) i.e.

for large inclusion toughness and low A (ν), η does not depend on ν and ∆h20 ∝ A (ν)−1

(Fig. 5.7.b). Otherwise, η and thus Dη, ξz and ξx depend on ν and numerical simulations

give ∆h20 ∝ A (ν)−1.67 (Fig. 5.7.a).

5.3.1.c From logarithmic to self-affine behavior ?

Even though theoretical predictions from Section 5.2 and numerical simulations are in

perfect agreement, they still do not allow to explain the self-affine behavior with a low Hurst

exponent ζ ≃ 0.4 observed on experimental brittle fracture surfaces. Self-affine roughness

has been experimentally observed for glassy ceramics [Bonamy et al., 2006] or sintered

polystyrene beads [Cambonie et al., 2015]. Yet our computational model only produces

logarithmically rough surfaces.

A logarithmic behavior is typical of the propagation of an elastic line (the crack front)

in a thermal disorder. It is characterized by an excess of small wavelengths, created by

by-pass events, with respect to larger ones. This might be due, in our model, to the low

collectivity observed in the by-pass of tough inclusions. Indeed, we saw in Section 8.D.1 with

the bi-inclusion problem that collective behavior, where the by-pass of the first inclusion

triggers a by-pass of the second one, are essentially local and very scarce with the sole

by-pass mechanism. Thus one can expect that the effective disorder η involved in the

path equation does not show long-range correlations and can thus be reduced to a thermal

contribution η (z, x), compatible with a logarithmic roughness.

Increasing the Hurst exponent ζ from ζ ≃ 0 (logarithmic behavior) to ζ ≃ 0.35 would

require a greater collectivity in the interaction mechanisms between the crack and tough

inclusions. We saw in Section 8.D.1 that a local mode mixity can change the way a crack

interacts with an inclusion : when the crack is loaded with a positive mixed mode ratio

ρii = K∞
II /K

∞
I , the inclusions are more likely to be by-passed downward or to cross the

inclusions. Thus, in presence of Mode II loading imperfections ρii 6= 0, situations where two

inclusions located nearby are by-passed upwards for the first one and downwards for the

second one becomes rarer. Consequently, fewer small-wavelength components are developed

in the system and ζ might increase. Ponson [2007] pointed out that the presence of Mode

II imperfections in the Mode I macroscopic loading ρii may prove to be decisive in the

development of self-affine correlations.

We thus investigate the influence of loading imperfections by introducing an additional

constant contribution ρii in the expression of the Mode II perturbations :

δKII (z, t)

K∞
I (t)

= ρii +
1

2

∂fy
∂x

(z, t) +
2− 3ν

2− ν

1

2π
PV

∫ +∞

−∞

fy (z, t)− fy (z
′, t)

(z − z′)2
dz′ (5.35)

Other contributions from Gao and Rice [1986] and Movchan et al. [1998] are of second-

order in the perturbation and can be neglected in our first-order approach, see Leblond and

Ponson [2016].
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Figure 5.8: Roughness in the direction of the crack front for a mixed Mode I+II propagation : the

roughness of the out-of-plane perturbation fy are self-affine with an exponent ζ = 0.22 (a) while the

roughness of the fracture surface remains logarithmic (b) for a mode mixity ρii = 5%.

In Fig. 5.8, we see that such loading imperfections render the surface correlations self-

affine with ζ = 0.22 when we focus on the correlations of fy i.e. along a line (z, x (t)). The

loading imperfections prevent situations, where one inclusion is by-passed upwards while its

neighbor is by-passed downwards and consequently decreases the ratio of small-wavelengths.

Yet, as soon as the out-of-plane perturbation fy are mixed with the in-plane perturbation

fx to create the fracture surface h (z, x (t) + fx (z, t)), correlations are logarithmic again

(see Fig. 5.8.b).

If the considerations proposed in Ponson [2007] are qualitatively correct, they cannot

explain the shift from a logarithmic to a self-affine behavior. Yet it stresses out that greater

collectivity levels in the interaction mechanisms occurring at the crack tip are required to

go beyond the logarithmic behavior. Such collectivity could be induced in porous sandstone

or sintered glass beads materials by debonding mechanisms at the grain scale which would

attract the crack tip and favor collective propagation through a more complex correlated

disorder η. Those processes may not happen in the case of phase-separated glasses where

the process zone size ℓfpz is far smaller than the grain size d, leading to logarithmically rough

surfaces as produced by our model. Another possibility, which constitutes an interesting

extension to this work, is to investigate the impact of elastic heterogeneities on the surface

roughness within the perturbative approach developed by Gao [1991] and extended by Muju

[2000]. The impact of elastic heterogeneities on crack trajectory being non-local, η could

take the form of a quenched noise η (z, x, h) rather than a thermal one η (z, x) as in the

case of toughness heterogeneities.

5.3.2 Impact of microstructural features on the logarithmic roughness

The fracture surfaces of the simulated materials display logarithmic correlations, char-

acterized by the amplitude of the surface roughness at the inclusion scale ∆hd and the

slope ∆h0 of the one-dimensional height-height correlations. One can wonder, as it was

performed for the effective fracture properties, how microstructural features impact the

surface roughness and in particular ∆hd and ∆h0.
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5.3.2.a Amplitude ∆hd and slope ∆h0 of the roughness correlations

For all sets of microstructural parameters considered in this study, the fracture surface

correlations remain logarithmic. The roughness is then characterized by the amplitude of

the surface roughness at the inclusion scale ∆hd and the slope of the logarithmic roughness

∆h0, which are measured from the one-dimensional correlation function (see for example

Fig. 5.8.b).

We first investigate the impact of the inclusion toughness Ginc
c and the inclusion density

ρinc on the surface roughness. The fracture surfaces are extracted from the simulations

performed in Chapter 4. The results are plotted in Fig. 5.9.
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Figure 5.9: Impact of the inclusion toughness Ginc
c and the inclusion density ρinc on the parameters

characterizing the surface roughness : the amplitude of the surface roughness at the inclusion scale ∆hd

(a) and the slope of the logarithmic roughness ∆h0 (b).

We first observe that both ∆hd and ∆h0 increase with the inclusion toughness. It is

explained by the fact that, during inclusion by-pass, the crack has to follow the direc-

tion imposed by the inclusion geometry, which induces a noise η of larger amplitude (see

Eq. (5.28)). As the inclusion gets tougher, the by-pass events are both more frequent (more

by-passed inclusions) and more intense (increase of the out-of-plane deviations induced by

a single by-pass). Thus, the variance Dη of the effective disorder η increases. At higher

inclusion toughness levels, the proportion of by-passed inclusion does not increase anymore

and both ∆hd and ∆h0 reach a plateau.

The effect of both inclusion toughness and inclusion density can be rationalized through

the adaption of the homogenization procedure developed in Chapter 4. The material dis-

order η (z, x) induced by each interaction mechanism is estimated numerically from the

interaction of a crack with periodic arrangements of tough inclusions following Eq. (5.28).

Examples of local maps of the effective disorder η for each interaction mechanism are plot-

ted in Fig. 5.10. It allows for the estimation of Dη, ξz and ξx, which control the surface

roughness. Thus, one shows that the Dη ∝ ρ
2/3
inc so that ∆h0 ∝ ρ

1/3
inc (see Section 4.5.2).

In Fig. 5.9.a, we observe that ∆hxd is lower than ∆hzd due to Poisson effects as predicted in

Eq. (5.31). Yet ∆hx0 and ∆hz0 are no more equal when the inclusion toughness and density

increase. This phenomenon can be attributed to the fact that the crack no more propagates



5 Deciphering fracture surfaces of brittle materials 191

Lρ

Lρ

Lρ

x

y

z

(a)

−0.4 −0.2 0.0 0.2 0.4

z/Lρ

0.0

0.2

0.4

0.6

0.8

x
/

L
ρ

η (z, x)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b)

−0.4 −0.2 0.0 0.2 0.4

z/Lρ

0.0

0.2

0.4

0.6

0.8

x
/

L
ρ

η (z, x)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(c)

Figure 5.10: Fractured representative volume element (FRVE) of size Lρ describing the interaction

between a crack landing at a height y on a spherical inclusion of diameter dinc, inclusion toughness Ginc
c

and interface toughness Gint
c (a) : material disorder η induced by a by-pass event (b) and by the inclusion

crossing/matrix cracking mechanisms (c)

in the Larkin regime at such toughness and density levels so that the Assumption 2 made

in Section 5.2 may not be valid anymore.
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Figure 5.11: Impact of the toughness disorder σ̃ on the parameters characterizing the surface roughness :

the amplitude of the surface roughness at the inclusion scale ∆hd (a) and the slope of the logarithmic

roughness ∆h0 (b).

The impact of the toughness disorder is plotted in Fig. 5.11. We notice that, for the

same average inclusion toughness, the fracture surface appears to be less rough. The trends

are similar to the ones displayed for the effective toughness in Section 4.5.3 and call for

the same explanation. For a given average inclusion toughness level, when the toughness

disorder σ̃ increases, there is a larger proportion of inclusions with low inclusion toughness,

which are crossed and do not contribute to the surface roughness. The toughest inclusions

are by-passed and roughen the fracture surface but by-pass events remain scarce due to

the log-normal distribution of toughness contrast. If it allows for an increase of the surface

roughness at low average toughness, it induces otherwise a decrease of the surface roughness.

Similar considerations allow for a qualitative description of the impact of the interface

toughness on the surface roughness plotted in Fig. 5.12. As the interface gets weaker,

more and more inclusions get by-passed and the surface roughness increases. Yet, one
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Figure 5.12: Impact of the interface toughness Gint
c on the parameters characterizing the surface

roughness : the amplitude of the surface roughness at the inclusion scale ∆hd (a) and the slope of the

logarithmic roughness ∆h0 (b).

could expect that at high inclusion toughness levels, the roughness converges towards the

same value since all inclusions are by-passed. The dynamics of the by-pass event appears

to be quite different in presence of a weak interface Gint
c as depicted in Fig. 5.13. The

weak interface makes the by-pass event so sudden that the crack front feels only partly

the by-pass event (Fig. 5.13.a). Both the effective out-of-plane perturbation induced by

the by-pass mechanism and the surface roughness are then decreased (Fig. 5.13.b). Yet

the spatial distribution of the material disorder η (z, x) for the by-pass event, plotted in

Fig. 5.13.c, does not take this effect into account. The homogenization procedure is thus

expected to overestimate Dη and ξx in the case of weak interface.
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Figure 5.13: Inclusion by-pass for a weak interface Gint
c = 0.4Gmat

c : in-plane perturbation in the

equatorial plane (zOx) (a), trajectory of the crack in the central plane (xOy) (b) and associated material

disorder η (c).
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Finally, we investigate the impact of size disorder on the surface roughness. The size

disorder has been shown in Section 4.6.1 to have no substantial effect on the effective

toughness. We see in Fig. 5.14 that it impacts substantially both the amplitude of the

surface roughness ∆hd and its slope ∆h0. Regarding the effective toughness, the size

disorder had no impact since ξz/ξx remained constant. Yet, what matters for the surface

roughness is the product ξzξx of the material disorder η, which is directly linked to the

inclusion size dinc. The roughness is thus expected to increase with the size disorder.
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Figure 5.14: Impact of the size disorder σd/d on the parameters characterizing the surface roughness : the

amplitude of the surface roughness at the inclusion scale ∆hd (a) and the slope of the logarithmic

roughness ∆h0 (b).

5.3.2.b Renormalization of ∆h0

The homogenization procedure developed in Section 4.4 can be tuned to predict Dη, ξz
and ξx for the whole set of microstructural parameters. We see in Fig. 5.15 that all data

collapse into a single curve. Only the simulations related to the influence of the interface

toughness do not collapse due to the overestimation of Dη and ξz, as mentioned above. It

validates the scaling ∆h20 ∝ Dηξzξx predicted in Eq. (5.27).
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Figure 5.15: Renormalization of the slope of the logarithmic roughness ∆h0 with the material disorder

parameters Dη, ξz and ξx estimated from the homogenization procedure.
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Tackling the inverse problem and try to extract quantitative information on the material

microstructure from the surface correlations appears to be especially challenging. Indeed

we can see in Fig. 5.15 that a given value of ∆h0 corresponds to multiple sets of parameters.

Nonetheless, if one knows that out-plane-deviations are caused by a particular mechanism,

one could possibly extract the amplitude of such a mechanism from the fracture surface

morphology. Collaborations with Tanguy Rouxel’s team at Institut de Physique de Rennes

are planned to apply such a method to estimate the level of residual stresses that form

around inclusions in composite glass during the manufacturing processes.

5.3.3 Statistical fractography

5.3.3.a Find back information on the effective toughness from the surface

roughness : a vain wish ?

We have shown earlier that one could take advantage of the anisotropy of the roughness

to extract information on both the propagation direction and on the Poisson ratio. The

Holy Grail pursued by material science however is to extract information on the effective

fracture properties from the statistics of brittle fracture surfaces, as it is performed for

ductile and quasi-brittle materials [Vernède et al., 2015; Barak et al., 2019].

0.00 0.02 0.04 0.06 0.08 0.10 0.12
∆h0/d

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

G
ef

f
c

/
G

m
at

c

Inclusion toughness

Inclusion density

Toughness disorder

Size disorder

Interface toughness

(a)

0.00 0.05 0.10 0.15 0.20 0.25
∆hd/d

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

G
ef

f
c

/
G

m
at

c

Inclusion toughness

Inclusion density

Toughness disorder

Size disorder

Interface toughness

(b)

Figure 5.16: Relation between the effective toughness Geff
c and the variables characteristic of the surface

roughness ∆h0 and ∆hd for a wide range of microstructural parameters.

We plot in Fig. 5.16 the effective toughness Geff
c as a function of the slope of the logarith-

mic roughness ∆h0 and the amplitude of the surface roughness at the inclusion scale ∆hd.

We see that the effective fracture properties cannot be inferred from the surface roughness.

This is no surprise for two main reasons :

• the crossing mechanism, which strongly impacts the effective toughness, has no impact

on the surface roughness (see Fig. 5.10.c). The crack behaves identically when it

propagates in the matrix or the inclusion has they are both homogeneous phase,

which allows to follow the path selected by the MERR criterion ;
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• there is no common trend between the impact of a given microstructural parameter

on the effective toughness and the surface roughness. Some microstructural parame-

ters increase the surface roughness while decreasing the effective toughness (e.g. the

interface toughness Gint
c ), whereas others have both a positive impact on the surface

roughness and the effective toughness (e.g. the inclusion toughness Ginc
c ). Some pa-

rameters have a positive impact on the surface roughness while having no impact on

the effective fracture properties (e.g. the size disorder).

5.3.3.b Surface roughness : beyond the Larkin regime

If no information on toughness can be extracted from the amplitude of the surface rough-

ness, salvation could come from the cut-off which separates various regimes of roughness.

Vernède et al. [2015] used surface correlations to distinguish a multi-affine regime with

ζ ≃ 0.8 attributed to damage processes to a self-affine regime with ζ ≃ 0.4 reminiscent of

brittle fracture. The lengthscale characteristic of the transition between the two regimes is

naturally linked to the process zone size ℓfpz, in which are embedded precious information

on the fracture properties [Barenblatt, 1962]. In our case, the logarithmic roughness has

been shown to be characteristic of the Larkin regime (Section 5.2). One can wonder how

the roughness correlations behave beyond this regime and explore whether or not one can

measure from them the Larkin length Lc, which proves decisive in the determination of the

effective fracture properties (see Chapter 4).

Examples of surface roughness for various Larkin lengths Lc are plotted in Fig. 5.17. The

Larkin length Lc can be tuned by varying the inclusion toughness Ginc
c . It is then extracted

from the roughness of the in-plane perturbations according to Eq. (4.27). We observe no

clear shift of behavior below and above the Larkin length Lc. The logarithmic roughness

extends above the Larkin length with no saturation or change of slope.
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Figure 5.17: Roughness in the direction of the crack front below and above the Larkin length Lc (in

dash-dotted line) : for monodisperse distribution of cubical inclusion for a density ρinc = 15% and

inclusion toughnesses Ginc
c = 1.25Gmat

c (a) Ginc
c = 1.75Gmat

c (b) and Ginc
c = 3Gmat

c (c).

In conclusion, brittle fracture surfaces do not appear to contain any significant informa-

tion on the effective fracture properties. Only information on the propagation direction

and the Poisson ratio ν can be extracted from those surfaces.
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5.4 Concluding remarks

In this chapter, we conducted a theoretical and numerical analysis of the surface rough-

ness of brittle heterogeneous materials by considering disordered distribution of tough in-

clusions.

First, the impact of toughness heterogeneities has been modeled in Section 5.2 by the

introduction of a thermal disorder term η (z, x) in the crack trajectory equation (5.5). Stud-

ied within the framework developed in Favier et al. [2006b], the crack surface statistics have

been shown to display logarithmic correlations in both the crack front direction and the

propagation direction. The analytical results are in perfect agreement with the numerical

simulations of Barès et al. [2014] and the experiments on phase-separated glass conducted

by Dalmas et al. [2008]. Moreover, a two-dimensional structure function for the surface

correlations has been derived for the first time in Eq. (5.27). It predicts an anisotropy in

the surface scaling, similarly to what has been observed for self-affine surfaces in Ponson

et al. [2006b]. Second, these analytical predictions have been compared in Section 5.3 to

numerically generated fracture surfaces resulting from the interaction between a crack and

large-scale distribution of tough inclusions. The numerical results are in a perfect agree-

ment with the fore-mentioned theoretical predictions : the generated surfaces appear to be

logarithmically correlated and display an anisotropy related to Poisson’s effects. Moreover,

numerical data all collapse to a single curve predicted from the 2D structure function de-

rived in Eq. (5.27). The impact of various microstructural parameters have been studied

numerically and successfully compared to theoretical predictions resulting from the combi-

nation of Eq. (5.27) with the homogenization model developed in Chapter 4. Armed with

a deep understanding of the origin of logarithmic surface roughness, we proved that in-

formation on the propagation direction, as well as the Poisson ratio ν, could be extracted

from the surface statistics. Yet no information on the effective toughness Geff
c or the Larkin

length Lc seem to be contained in the surface roughness, which is only reminiscent of the

by-pass events and thus contains only part of the required information to trace back the

effective fracture properties.

Our study offers a detailed description of logarithmically rough fracture surface, from the

underlying mechanisms at their origin to the information it contains. Yet, the sole crossing

and by-pass mechanisms do not allow to explain the two regimes of logarithmic and self-

regime roughness observed experimentally [Dalmas et al., 2008; Ponson et al., 2006a], even

in presence of loading imperfections as it was suggested by Ponson [2007]. The by-pass

mechanism has been shown in Chapter 4 to be scarcely collective, which accounts for the

logarithmic behavior. A greater collectivity in the mechanisms of interaction is required to

shift from the logarithmic behavior to a self-affine behavior. Increased collectivity levels

could be explained in granular consolidated materials as sandstone by microscopic mech-

anisms taking place at the grain scale such as interface debonding and pore connection.

The fracture surface roughness of brittle materials would be logarithmic when the typical

size d of the heterogeneities is far greater than the process zone size ℓfpz, whereas it would

be self-affine (ζ ≃ 0.4) when ℓfpz is of the order of d. Such a scenario could be tested
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through leading-edge experimental set-ups in fracture mechanics which allow for an in-situ

observation of the fracture processes by X-ray microtomography [Lachambre et al., 2015;

Chateau et al., 2018; Renard et al., 2019]. The impact of elastic heterogeneities on the

surface roughness also need to be better apprehended. The extension of the perturbative

approach developed in this manuscript to elastic inclusions via the works of Gao [1991] and

Muju [2000] would constitute a relevant extension of this study.
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6.1 Introduction

Recent developments in additive manufacturing of polymers allow to design multi-material

structures architectured at the micrometer scale [Wang et al., 2017b]. Such unprecedented

features paved the way to the investigation fracture properties of bio-inspired [Dimas et al.,

2013; Gu et al., 2016b,a, 2017a,b] or micro-architectured [Raney et al., 2018; Mueller et al.,

2018] composites. They can also provide particularly valuable insights on the homogeniza-

tion of fracture properties through model experiments, where both the shape, the disposition

and the mechanical properties of the inclusions are entirely controlled [Wang and Xia, 2017;

Avellar, 2018].
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Investigating the fracture of brittle materials requires nonetheless to track crack prop-

agation at fine spatial and temporal scales. One can rely on the fact that a crack is

markedly characterized by a local displacement discontinuity to make use of one of the

most widespread experimental method of displacement field measurement, the Digital Im-

age Correlation (DIC). This procedure, based on the comparison of images acquired at

different stages of a mechanical test, provides quantitative descriptions of the local dis-

placement. Since the pioneer works of Peters and Ranson [1982], Sutton et al. [1983] and

Chu et al. [1985], DIC techniques have been successfully applied in the research field of

solid mechanics in general [Soppa et al., 2001; Besnard et al., 2006; Bornert et al., 2010;

Dautriat et al., 2011] but also in fracture mechanics [McNeill et al., 1987; Sutton et al.,

2000; Forquin et al., 2004] or damage [Nguyen, 2015; Renard et al., 2017, 2019]. It pro-

vides quantitative insights on the position of the crack tip [Abanto-Bueno and Lambros,

2002; Henninger et al., 2010; Chateau et al., 2018] as well as on the local stress intensity

factors [Réthoré et al., 2005; Roux and Hild, 2006; Lachambre et al., 2015; Roux-Langlois

et al., 2015], quantities that constitute a pre-requisite to address the difficult question of

homogenizing fracture properties.

In this chapter, we investigate the fracture of heterogeneous 3D printed polymers and

their homogenized fracture properties. Section 6.2 is devoted to the study of quasi-static

crack propagation in homogeneous 3D printed specimens, which display a complex behavior

marked by the influence of the viscosity of the material as well as a stick-slip behavior. To

address those issues, the crack is driven at much higher driving rates, leading to the dynamic

fracture of the sample. Standard experimental methods used in a quasi-static setting cannot

be applied anymore. Thus, a DIC-based procedure is developed in Section 6.3 to track

crack propagation at a fine scale, using the in-house correlation software CMV. It allows

for the estimation of both crack tip position and stress intensity factors through the use of

a local DIC approach. It is finally applied in Section 6.4 to the homogenization of fracture

properties of striped composites with a rate-dependent fracture energy. This final section

relies on a joint work performed during the doctoral exchange of Gabriele Albertini, PhD

student at Cornell University under the supervision of David Kammer.

6.2 Fracture of 3D printed polymers

6.2.1 Fracture test

Accurately measuring the toughness of a material constitutes a particular challenge in

fracture mechanics since it requires to quantify the critical elastic energy release rate at

which a crack propagates. Additionally, the measured toughness may depend on the ve-

locity of the propagating crack [Ponson and Bonamy, 2010]. Characterizing toughness

properties thus requires to perform experiments where both the crack tip position and the

total dissipated energy are tracked during crack advance, for a broad range of crack veloc-

ities. Conducting such advanced fracture tests might prove difficult for brittle materials,

where crack propagation often proves sudden and brutal. Such difficulties have been cir-

cumvented by developing specimen geometries which allow for a stable crack propagation
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at a prescribed velocity [Gallagher, 1971; ASTM, 2017; Pallares et al., 2009].

Notably the Tampered double Cantilever Beam (TDCB) geometry, proposed by Marcus

and Sih [1971] and Gallagher [1971], enables for significant stability of the fracture process

in tensile Mode I at a controlled speed [Davalos et al., 1998]. It has been used to measure the

fracture properties of adhesively bonded joints [Blackman et al., 2003] and heterogeneous

materials such as wood [Morel et al., 2003] or striped polymers [Wang and Xia, 2017]. In this

study, we use a slightly different version of the TDCB geometry as shown in Fig. 6.1.a & b.

Indeed, we removed the narrow arms before the taper part of the sample, resulting in a

better control of the crack propagation thanks to the exponential decay of the ERR with

the crack advance [Vasudevan et al., 2019].
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Figure 6.1: Fracture test of a TDCB specimen : (a) experimental set-up with a TDCB sample

instrumented with a clip-gauge to measure the crack opening displacement δ. (b) Schematic of the sample

geometry with the finite element mesh (∼ 2.102 nodes) superposed on the upper half. (c) Variations of the

reduced compliance λ = EbΛ and the reduced ERR g = G
δ2E

with the crack length ℓ (c).

Sample dimensions

A typical specimen has the dimensions Lx = 70mm in the propagation direction, hmin =

30mm, hmax = 72mm in the direction perpendicular to the propagation direction and a

width b = 8mm.

Compliance method for material characterization

The TDCB specimen is loaded on a Schimadzu universal testing machine (Model AG-Xplus)

of 10 kN maximum loading capacity. In this setup, we use a 1kN load cell to measure the

force Fexp and a clip gauge to measure the displacement δexp between the lips of the crack

(see Fig. 6.1.a & b). The tests are controlled by the clip gauge with a constant opening rate

δ̇, which is tuned to make the crack propagate on a wide range of crack velocity [Vasudevan

et al., 2019]. From the data of the force F and the displacement δ of the crack lips, one can

deduce both the crack position ℓ and the ERR G from the compliance method and finite

elements simulations [Morel et al., 2003; Grabois et al., 2018].

In this work we use CASTEM, an open-source finite element software developed by

CEA (France), to model numerically the crack propagation in the TDCB sample under

two-dimensional plane stress conditions. Exploiting the sample symmetry, we carry out



202 Experimental study of crack propagation in 3D printed heterogeneous polymers 6

the simulations on the sole upper half of the sample. The behavior of the material is

assumed to be linear elastic with a unitary Young modulus Efe = 1Pa and a Poisson ratio

νfe = 0.35 corresponding to the polymers used in the experiments (see the Section 6.2.2).

Displacement are fixed to zero on the unbroken crack ligament (in red in Fig. 6.1.b) and a

unit vertical force Ffe = 1N is applied on the upper segment of the hole to describe the

force imposed by the machine to the sample. Under these loading conditions, the crack

propagates in pure Mode I and the crack length is increased incrementally during each step

of the simulation. A typical mesh used in the analysis is shown in Fig. 6.1.b, with finer

mesh of element size 10−9Lx in the vicinity of the crack tip to grasp the stress singularities.

We extract from the FEM analysis the displacement δfe (ℓ) at the position of the clip-gauge,

from which we deduce the compliance at this point λfe (ℓ) = δfe (ℓ) /Ffe. Additionally, we

measure the ERR gfe (ℓ) from the G-theta method. The results of the FEM analysis are

plotted in Fig. 6.1.c. We can notice than gfe (ℓ) decreases indeed exponentially with the

crack advance, which ensures stable crack propagation during the fracture test.

From the experimental data, one can estimate the compliance Λexp at the clip-gauge

position from :

Λexp =
δexp
Fexp

=
λexp
Eb

(6.1)

The crack tip position ℓexp is inferred by comparing the experimental reduced compliance

λexp = Λexp/Eb to the results of the FEM simulations λfe. From the data of ℓexp, one can

estimate the local crack velocity vexp =
∂ℓexp
∂t

. The experimental ERR is finally deduced

from the equation :

Gexp =
F 2
exp

Eb2
gfe (ℓexp) (6.2)

The experimental procedure, which has been validated by Vasudevan et al. [2019], is sum-

marized in Fig. 6.2. An example of the method is given in Section 6.2.3.
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Figure 6.2: Overview of the proposed crack tracking and ERR measurement procedure based on the

analysis of the macroscopic mechanical response of the specimen (adapted from [Grabois et al., 2018]).

6.2.2 Material description

Recent developments in additive manufacturing of polymers allow to design multi-material

structures architectured at the micrometer scale [Wang et al., 2017b], so that one can take

advantage of those unprecedented features to investigate the fracture of heterogeneous ma-

terials through model experiments. However manufactured specimen properties appear to
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strongly depend on structural and process parameters rather than purely on material prop-

erties [Mueller et al., 2015; Wittbrodt and Pearce, 2015; Raney et al., 2018], so that the

selected 3D printing technology proves decisive in the physical mechanisms activated during

experiments.

We use here a Stratasys Objet260 Connex3 printer based a PolyJet technology, which

is classified among the direct 3D printing processes (direct 3DP). Successive layers of fine

droplets of photopolymer resin are jetted through 512 nozzles distributed on 8 inkjet print

heads, which moves in the (xOy) plane (see Fig. 6.3). Each photopolymer droplet is cured

by UV lamps positioned on either side of print heads and the newly deposited layer is flat-

tened by a roller located behind the print heads. The process is reproduced by adding a new

layer on the vertical z-axis until the printing is completed. It allows to print heterogeneous

specimens at a fine resolution ∆x = ∆y ≃ 42µm in the (xOy) plane and ∆z ≃ 32µm in

the z-direction.

Figure 6.3: Additive manufacturing of heterogeneous polymer samples using poly-jet process (courtesy of

Stratasys).

The base resins used in this work are Stratasys’ VeroClear, VeroWhitePlus (Vero) and

DurusWhite (Durus). Vero and Durus materials are made from proprietary acrylic-based

photopolymer resins, which aim at simulating the flexibility, strength, and toughness of

polymethyl methacrylate (PMMA) and polypropylene, respectively. In this study, we print

heterogeneous specimens composed of a transparent matrix of Veroclear containing obsta-

cles of DM4310, which is a rigid mix of VeroWhitePlus and DurusWhite. These materials

have been selected to display significantly different toughness properties while keeping sim-

ilar elastic properties to stick to the assumptions made in the theoretical and numerical

study. Our characterization study yields a Young modulus Emat = 2.9 ± 0.5GPa and

a fracture energy Gmat
c = 80 ± 15J.m−2 for the Veroclear and Eobs = 1.9 ± 0.3GPa and

Gmat
c = 110±20J.m−2 for the DM4310. The high dispersion of the mechanical properties in

between experiments can be explained by their strong dependence on both the temperature

during the manufacturing process and the room temperature during the test [Mueller et al.,

2015; Wang et al., 2017a], which is not a controlled parameter in our case. Finally, we as-

sume, in concordance with other studies [Avellar, 2018], a Poisson ratio νmat = νobs = 0.35,

which is standard for polymer materials.

Following the recommendations of Mueller et al. [2015], we always print the samples at the

same position on the building tray and along the same direction to reduce the variability
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of our results. Moreover, the crack propagation direction is aligned with the x-printing

direction of the building tray (see Fig. 6.3) to prevent the presence of weak layers induced

by the manufacturing process in the direction on propagation. The specimens are cleaned

with water after printing to remove the support material. They are allowed to dry for two

consecutive days to mitigate the effects of absorbed water on the mechanical properties of

the material [Avellar, 2018]. The fracture test is thus performed at a constant time interval

(approximately two days) from the production to prevent any influence of material ageing

[Bass et al., 2016].

6.2.3 Preliminary experiments of quasi-static fracture of homogeneous

3D printed polymers

The experimental set-up presented in Section 6.2.1 is now applied to characterize sepa-

rately the fracture properties of both Veroclear and DM4310 materials. In order to separate

the problem of crack initiation, which involves both the material strength σc and its tough-

ness Gc [Leguillon, 2002], from the one of crack propagation, where only Gc intervenes, a

crack is initiated up to a length ℓini under compressive loading by inserting a wedge (cut-

ter blade) with a hammer inside the 3D printed pre-notched sample (see Fig. 6.4). The

compressive zone confines the propagation up to ℓini ≃ 35mm.

WEDGE

COMPRESSIVE	
ZONE

COMPRESSIVE	
BLOCK

(a)

PRE-CRACK

(b)

Figure 6.4: Preparation of a VeroClear TDCB sample : the specimen is pre-cracked by inserting a wedge

between the lips of TDCB partially compressed sample (a) and the initial crack length is measured before

the fracture test (b).

The fracture test is then conducted under controlled displacement at a loading rate

δ̇ = 0.9 · 10−5m.s−1. The force-displacement curve acquired during the test is plotted in

Fig. 6.5.a and the toughness-velocity curve resulting from the compliance method is plotted

in Fig. 6.5.b for a Veroclear sample.

If stable quasi-static crack propagation (v ≃ 10−4m.s−1) can be obtained on the Vero-

clear, the success rate of such experiments is nonetheless very low (6 successful experiments

over ≃ 50 samples) and almost null for more compliant materials such as DurusWhite

and DM4310. The first difficulty lies in the fact that both Veroclear and DM4310 show

stick-slip behavior under a constant loading rate : crack propagation oscillates between a

stick regime, where the crack propagates quasi-statically, and a slip regime characteristic

of phases of sudden propagation, in which inertial effects cannot be neglected. Stick-slip
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Figure 6.5: Quasi-static crack propagation in a VeroClear TDCB sample : the force Fexp and displacement

of the crack lips δexp are recorded during the experiment (a) and the compliance method is used to

measure the evolution of the material toughness Gc with the crack speed v (b).

events have been observed extensively in similar materials such as PMMA [Ravi-Chandar

and Balzano, 1988], thermosetting polymers [Leevers, 1986] or epoxy resins [Yamini and

Young, 1979]. Such a behavior is attributed to a non-monotonous variation of the fracture

energy with velocity (see Fig. 6.6.a). The Gc−v curve of the material consists in two stable

branches, one at low velocity (Region I) and one at high velocity (Region III), supposedly

separated by a branch where the toughness decreases with the velocity (Region II). If the

crack is driven in Region II or if the crack accelerates as the crack propagates (A from B), it

may leave the stable branch (B from C), decelerate as the crack comes closer to the sample

end (C from D) and finally go back in the stable branch (D from E). If the initial crack is

not sharp, the imposed ERR G at initiation is high so that the crack propagates in Region

III at high velocities (see Fig. 6.6b & c), often up to the complete failure of the specimen.

Stick-slip behavior thus imposes a ceiling value to the driving rate δ̇ one can use during

experiments.

On the contrary, if one drives the crack at a very slow rate δ̇ ≤ 0.6 · 10−5m.s−1, the

viscosity of the material is activated and the fracture behavior is no more brittle. As shown

in Fig. 6.6.d, intense crazes are developed on the crack surface and the fracture toughness

increases dramatically (Gc ≃ 800 J.m2), suggesting a transition from a brittle to a ductile

behavior. The viscosity of the material thus constitutes the second main difficulty raised

by the polymers used in the study. It imposes a lower threshold on the driving rate one

can use to test 3D printed polymers.

In conclusion, stable crack propagation in the stick regime can only be obtained on

Veroclear from a perfectly clean pre-crack and for a very narrow range of driving speed (δ̇ ∈
[

0.6 · 10−5, 10−5
]

). In the case of the more compliant DM4310, brittle fracture experiments

of a crack propagating in the stable stick regime are almost impossible to perform in ambient

conditions. One could overcome those difficulties by conducting experiments at very low

temperatures to prevent viscous effects. Yet one should keep in mind that our goal is

to conduct fracture tests on heterogeneous materials, in which a crack propagates with

characteristic jerky dynamics [Bonamy, 2009]. It appears thus more convenient to work in

the dynamic branch of the Gc− v curve to overcome the issues raised by both the stick-slip

behavior and the material viscosity. Investigating fracture processes at such temporal scales
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Figure 6.6: Stick-slip behavior in Vero and Durus materials : evolution of the fracture energy Gc with the

crack velocity for Veroclear and DM4310, showing stick-slip behavior (a) ; if the crack is driven in Region

II (initiation), it oscillates between phases of stable quasi-static crack propagation in Region I and

dynamic phases at high velocity in Region III. This behavior can be noted on the force-displacement curve

(b) as well as on the fracture surface displaying a mist profile characteristic of Region I and a mirror one

typical from Region III (c). If the crack is driven at a very low rate, the fracture process becomes ductile

and the fracture surface displays a hackle region (d).

requires nonetheless to implement new techniques based on Digital Image Correlation as

detailed in the next section.



6 Experimental study of crack propagation in 3D printed heterogeneous polymers 207

6.3 Digital Image Correlations methods for crack tracking

and SIF estimation in dynamic fracture

In the following, experiments are performed at a driving rate δ̇ = 2.5 · 10−2m.s−1. The

TDCB is pre-notched in the manufacturing process but is not pre-cracked so that the ERR

at initiation is large enough to prevent any slip-to-stick transition during the experiments

(D to E in Fig. 6.6.a). Cracks propagate at speeds ranging from 20m.s−1 to 300m.s−1 so

that the time scales involved in the fracture process are well below the time characteristic

of the viscous relaxation of our 3D printed polymers, which are very similar to PMMA

and polypropylene [Read and Duncan, 1981]. Moreover, post-mortem fracture surfaces are

smooth and micro-crack branching from the main crack are absent. All experiments have

crack velocities lower than the critical velocity for the micro-branching instability to occur

Scheibert et al. [2010]. The fracture is thus perfectly brittle and can be analyzed within a

LEFM framework.

If the load cell and the clip-gauge can track the elastic response of the specimen during

the loading phase (≃ 10−1s), they cannot provide any quantitative information at the time

scales of the fracture process (≃ 10−4s). Digital Image Correlation calculations, which rely

on image acquisition performed at high rate ≃ 100kHz by a high-speed camera, offer a

convenient way to track crack propagation at a fine temporal scale. The crack, considered

as a local jump in displacements, can be identified through DIC methods, which provide

direct access to the local displacement field from the comparison of two images acquired at

different loading instants [Sutton et al., 2000]. We propose a method to track with great

accuracy the fracture process through a local DIC approach, exposed in Section 6.3.1. The

crack tip position and the stress intensity factors are then measured in Section 6.3.2 from a

continuous approximation of the transformation [Chateau et al., 2018] thanks to William’s

expansion of the displacement field at the crack tip [Henninger et al., 2010]. This approach

is finally compared to the results obtained by image subtraction [Chateau et al., 2018] and

by a DIC-based compliance method [Grabois et al., 2018] in Section 6.3.3.

6.3.1 Local DIC method for displacement measurement

6.3.1.a Principle of DIC

Let us consider a pair of two-dimensional digital images associated with the reference

and deformed states of the loaded sample. They are described by their grey-scale fields,

respectively noted f and g. A point at coordinates X in the reference image is related to

its position x in the deformed image by the mechanical transformation :

x = Φ (X) = X+ u (X) (6.3)

where u, the displacement field, can be obtained as the optimal solution of a variational

problem.

The relation between f and g is given by the formulation of a relaxed grey-level conser-

vation principle :

g (Φ (X)) = a f (x) + b+ g′ (x) (6.4)
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where a and b are the coefficients of overall contrast and brightness evolution between

images while g′ is the noise present in both reference and deformed image.

The DIC method consists in finding the homologous position x of a material point X

by optimizing a correlation coefficient C, that measures the similarity of the grey level

distribution between the two images. The estimation of the transformation Φ on the basis

of the above image pair represents a severely ill-posed inverse problem. To address this issue,

one may approximate the transformation Φ at a material point X0, called correlation point,

by a transformation Φ0 by optimizing the correlation coefficient C (Φ0) on a small domain

D located around the correlation point, called the correlation window. The shape of the

approximate transformation is prescribed and can consist for example in a simple translation

(two components in 2D) or a combination of a translation and a linear transformation (six

components in 2D). In the same manner, various choices are possible for the expression

of the correlation coefficient C (Φ0). In this study, we use the zero-centred normalised

cross-correlation coefficient formulation (ZCNCC), which reads :

C (Φ0) = 1−
∑

Xi∈D
(
f (Xi)− f̄d

)
· (g (Φ0 (Xi))− ḡd)√∑

Xi∈D
(
f (Xi)− f̄d

)2 ·
√∑

Xi∈D (g (Φ0 (Xi))− ḡd)
2

(6.5)

where Xi and Φ0 (Xi) are respectively the coordinates (in pixels) of homologous points

in the sub-domain D in the reference image and in the deformed image. f̄d and ḡd are

respectively the averages of the grey levels on the domain D and on the homologous domain

transformed by Φ0. While positions (Xi) in the reference image coincide with pixel centers,

their coordinates Φ0 (Xi) in the deformed image might not be integers, so that one can access

them through a bilinear or bicubic interpolation of the deformed image. The correlation

criterion C varies from 0 (perfect match) to a maximum of 2 (when fluctuations of f and

g are opposite), the value 1 corresponding to no match at all. This measure of similarity

is insensitive to a global contrast or brightness variation on the windows between both

configurations [Dautriat et al., 2011]. This approach is called local DIC in contrast with

the global approach where this problem is tackled on the whole image within a variational

approach [Besnard et al., 2006].

6.3.1.b Experimental set-up for image acquisition

Because there is no natural contrast at the surface of our 3D printed sample, a speckle

pattern is deposited into the surface of the specimen with black painting on a white coating

(see Fig. 6.7.c & d). The typical dimensions of the resulting speckle, obtained through its

auto-correlation function, is around 100− 150mm (2-3 pixels).

A high-speed camera (Phantom v2511) records the crack dynamics in the immediate

vicinity of the crack path at an acquisition rate ranging from 100,000 to 232,000 frames per

second (Fig. 6.7.a) with a resolution ranging from 896x96 to 1024x176 pixels (Fig. 6.7.d).
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Particular attention is paid to position the camera on a perpendicular axis to the spec-

imen plane. Additionally, the specimen is placed in a guide (Fig. 6.7.b) to prevent large

out-of-plane motion of the sample due to its rotation around the loading axis during the

fracture test. However, the sample is not squeezed by the guide not to influence the ex-

periments. As a result, rotations are still possible but are restricted to small angles. It

ultimately allows to reduce errors in the DIC analysis due to out-of-plane motion of the

sample [Dautriat et al., 2011; Grabois et al., 2018].

Finally, the pixel size is measured from a reference image of the full specimen with a

ruler fixed on the side of the guide (Fig. 6.7.c). The pixel size is inferred from the ruler by

measuring the typical wave-length of the grey levels variations along a segment. In average,

the pixel size amounts to dpix ≃ 50µm.

LOAD	CELL

HIGH-SPEED	

CAMERA

TDCB	

SPECIMEN

GUIDE

(a) (b)

REGION	OF	INTEREST

RULER

(c)

(d)

Figure 6.7: Experimental set-up for the fracture test analyzed by DIC : crack propagation under tensile

loading is recorded on the speckled TDCB sample via a high-speed camera (a). The specimen is inserted

in a guide to avoid DIC errors through out-of-plane motion of the sample (b). The pixel size is measured

from a ruler attached to the guide (c) and crack propagation is recorded on a reduced region of interest

(ROI) located in the vicinity of the predicted crack path to allow for higher acquisition rates (d).

6.3.1.c Correlation points selection and DIC procedure

Given the properties of the material used in the study, the deformation of the 3D printed

polymers is fairly limited and does not exceed 0.2-0.3% except at the crack tip. Yet the

left part of the region of interest (ROI) is subjected to large displacements due to the crack

opening so that correlation errors can emerge if a correlation window goes out of the ROI.

Other significant errors in the correlation procedure can arise from cases where a correlation

window is crossed by the crack. In order to prevent such situations from arising, particular

attention is paid in the generation of the grid of correlation points through the following

procedure :
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1. first, a grid of correlation points with a correlation domain of 12 pixels is generated

on the final image acquired during the fracture test, when the crack has gone through

the whole ROI. The correlation points are carefully placed on both sides of the crack

lips up to the edge of the ROI (Fig. 6.8.a) ;

2. second, a preliminary DIC procedure is performed using the in-house software CMV

between this final image and the first one acquired during the test. The procedure

is run at a pixel precision with a correlation coefficient criterion set to 0.3 assuming

that the approximate transformation Φ0 consists in a pure translation ;

(a)

(b)

(c)

(d)

Figure 6.8: Generation of an optimized grid from the correlation procedure : a first set of correlation

points is generated on the final image of the fractured specimen around the crack lips (a). From their

position in the reference image (b), we infer both the crack path and the domain of admissible points (i.e.

reliably correlated and remaining in the ROI during the experiments) (c). The final grid of correlation

points used in the DIC procedure is generated inside this domain (d).
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3. third, the crack path in the reference image (intact sample) is inferred from the

position of the correlation points which were located on the lips of the crack in the

final image (Fig. 6.8.a & b). A domain of admissible points is constructed from the

correlation points which fully remain within the ROI during the fracture test. This

domain is then eroded through morphological operations in the vicinity of the crack

path and around the domains where the correlation criterion has not been validated

(due to poor local image contrast or presence of painting fragments ejected during

the fracture test) (Fig. 6.8.c). The final grid of correlation points is generated inside

the resulting domain. They are placed with a constant spacing in the x-direction of

crack propagation but not in the y-direction due to the presence of the crack. Such a

grid is shown in Fig. 6.8.d.

The procedure allows to keep only the more reliable points for the subsequent DIC

calculation. The DIC analysis is performed on the generated grid following a standard

two-step procedure :

1. first, a correlation calculation is carried out assuming pure translation at a pixel

precision. The correlation coefficient criterion is set to 0.3 ;

2. second, a correlation procedure is performed with a subvoxel optimization, using

domains of the same edge-length but assuming a combination of a translation and a

linear local transformation.

6.3.1.d DIC error assessment

If the procedure detailed above aims at improving as much as possible the precision of our

analysis, DIC measurements always prone to errors, which can be classified in the following

[Bornert et al., 2009; Dautriat et al., 2011; Nguyen, 2015] : image noise (SE1), geometric

errors due to optical distortions (SE2), DIC algorithm with shape function mismatch errors

(SE3a) and systematic error (SE3b), out of plane rigid body motion (SE4).

(SE1) is related to the characteristics of the sensor of the camera and the contrast within

the correlation domains. If we cannot work on the former, the latter has been addressed

by applying speckle painting. (SE2) might emerge from issues with instabilities or dis-

tortions the imaging system. Such errors might be significant in our case since we use a

non-telecentric lens. Additionally, the fracture test is characterized by large displacements

on both sides of the crack lips. We try to address this issue in the grid generation proce-

dure by only selecting correlation domains which remain within the ROI during the whole

experiment. (SE3a) depend on the intensity of the local strain field [Bornert et al., 2009]

and are expected to be very low on the bulk material and potentially significant around the

crack tip. (SE3b) are related to the available contrast, image quality, noise, chosen image

correlation algorithm and interpolation of gray levels in the correlation domain, which is

performed to get the displacement with sub-pixel accuracy [Nguyen, 2015]. Finally, (SE4)

might be of major importance in our work but we tried to keep them as low as possible

thanks to the positioning of the camera and the guide inserted around the sample.

We analyze errors coming from (SE1) and (SE3b) by measuring the displacement between
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100 images acquired before the beginning of the test. Such errors amount to ≃ 0.1 pixels

at most (see Fig. 6.9).
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Figure 6.9: Influence of the size of the correlation window on the DIC results : the errors on the

displacement field reach ≃ 0.1 pixels at most.

6.3.2 Tracking of the fracture problem from DIC measurements

6.3.2.a Local transformation approximation

DIC calculations, performed on the set of images acquired during the fracture test, give

information on the displacement field on the sole correlation points. A correlation point is

considered well-correlated if is correlation coefficient is lower than a value prescribed here

to 0.1. The transformation Φ can be approximated on each pixel following the work of

Chateau et al. [2018].

We note X the position of a pixel center in the reference image and X0 the position

of its nearest neighbor correlation point with measured displacement. At first order, the

transformation Φ at point X can be approximated by Φ1, which reads :

Φ1 (X) = X+ u (X0) +
∂u

∂X
(X0) · (X−X0) (6.6)

In two-dimensions Φ1 is defined by 6 parameters (2 components for the displacement and

4 for the gradient of the displacement). By definition of the deformation gradient F =
∂Φ

∂X
:

∂u

∂X
(X0) = F (X0)− I (6.7)

where I is the identity tensor.

Since u (X0) has already been provided by the DIC computation, one only needs to

determine F (X0) to approximate Φ. As proposed by Chateau et al. [2018], F (X0) can

be inferred from affine best-fit ΦN of the DIC measured displacements of N neighboring

well-correlated correlation points (Xi)i∈[|1,N |] of the considered pixel X. It reads :

ΦN (X) = TN (X) + FN (X) ·X (6.8)

where FN andTN are defined as the solution of the following weighted least square problem :

TN,FN = Argmin

N∑

i=1

ωi ‖xi −TN + FN ·Xi‖2 (6.9)
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The neighboring correlation points are selected according to a criterion of maximum

distance d from the considered pixel X :

‖X−Xi‖ ≤ d (6.10)

where ‖·‖ is the Euclidian norm. As noted by Chateau et al. [2018], a small distance d

reflects more accurately the local strain heterogeneities in the material while a large distance

d allows the result to be less sensitive to the DIC errors. In the following, the distance d is

set to 30 pixels, i.e. three times the size of the correlation window. Only correlations points

located on the same side of the crack lips as the considered pixel are taken into account

into the affine fit. It allows to model properly the displacement discontinuity at the crack

lips. This last criterion is nonetheless relieved for pixels located on the immediate vicinity

of the predicted crack path.

Figure 6.10: Approximation of the dense transformation ΦN at a pixel value (in orange) from the

displacement of neighboring well-correlated points (in red).

Two-dimensional computations are performed at a low computational cost. Thus we

follow the suggestions addressed by Chateau et al. [2018] and consider a weighted least

square problem (see Eq. (6.9)) with weights ωi continuously decreasing to zero when the

distance ‖X−Xi‖ gets close to d. We tried several shape functions for the ωi with no

significant impact on the final results. Thus, we set in the following :

ωi = 1− ‖X−Xi‖2
d2

(6.11)

In that case, the optimal translation TN and deformation gradient FN read :

TN = 〈Φ (X)〉N − FN · 〈X〉N (6.12)

and :

FN =

[
N∑

i=1

ωi (Φ (Xi)− 〈Φ (X)〉N )⊗ (Xi − 〈X〉N )

]
·
[

N∑

i=1

ωi (Xi − 〈X〉N )⊗ (Xi − 〈X〉N )

]−1

(6.13)

where 〈a〉N =

∑N
i=1 ωiai∑N
i=1 ωi

.

Using this affine local best fit, the dense continuation Φ1 of the mechanical transforma-

tion can then be defined by :

Φ1 (X) = X+ u (X0) + (FN (X)− I) · (X−X0) (6.14)
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But, in the following, ΦN is considered as the approximation of the local transformation

and the displacement at point X reads u (X) = ΦN (X) − X. One of the advantage of

such an approach is that one can remove automatically the influence of poorly correlated

points (for example due to an insufficient local contrast) from the estimation of the local

transformation.

6.3.2.b Crack tip detection

As we saw in Chapter 4, two ingredients are essential to characterize the propagation of

a crack and the ultimate fracture properties of the material : the position ℓ of the crack

front, i.e. crack tip in two-dimensions, and the local ERR G. Let us see first how DIC

computations can allow for a precise determination of the crack tip position.

In the adopted experimental conditions, the response of the material is linear elastic

so that the displacement field u (X) = ux + i uy can be expanded in William’s series.

Considering a straight crack located at the origin, it reads Williams [1952] :

u (X) =

pmax∑

p=pmin

ωi
p

2µ
√
2π
r

p
2ψi

p (θ) +
ωii
p

2µ
√
2π
r

p
2ψii

p (θ) (6.15)

where µ is the shear modulus of the material, (r, θ) the polar coordinates of points X and

ψi
p and ψii

p are the p-terms shape functions in Mode I and II respectively. They reads :

{
ψi
p (θ) = κei

p
2
θ − p

2e
i(2− p

2 )θ +
(
(−1)p + p

2

)
e−i p

2
θ

ψii
p (θ) = κei

p
2
θ + p

2e
i(2− p

2 )θ +
(
(−1)p − p

2

)
e−i p

2
θ

(6.16)

p is usually taken larger than 1 to ensure that the elastic energy remains finite. Yet,

zero-order terms describe rigid translations and super-singular terms can provide useful

information as we will see in the following.

In pure Mode I loading, Eq. (6.16) states that the crack opening [[uy]] (x), defined as the

jump in vertical displacement between two points located on the crack lips at a distance

x of the crack tip, scales as x1/2. Consecutively, we place a set of pair correlation points

at various positions x on both sides of the crack path with a correlation window 8 × 14

pixels (see Fig. 6.11) and follow the jump in displacement [[uy]] (x) during the fracture test

by DIC [Abanto-Bueno and Lambros, 2002]. As predicted by LEFM, we see in Fig. 6.12.a

that [[uy]] (x)
2 scales as max (x, 0), which allows for a simple estimation of the crack tip

position from a linear fit.

This method is very simple in its implementation but only provides the crack tip position

at a precision similar to the size of the correlation window i.e. 8 pixels ≃ 0.4mm, which leads

to an incertitude of about ±40−80m.s−1 on the crack velocity, which is not acceptable. As

noted by Henninger et al. [2010], one can estimate the crack tip position as the one which

makes super-singular term ωi
−1 in the William’s expansion vanish.

From a linear least square method, we estimate the set of amplitudes
(
ωi
p

)
which fits the

best the dense estimation of the displacement field u from the local best-fit transformation
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Figure 6.11: Estimation of the crack tip position from the vertical displacement of pairs of correlated

points located on both sides of the crack tip.
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Figure 6.12: Measurement of the crack tip position : the position of the crack tip is first estimated from

the opening displacement method where the vertical displacement of pairs of correlated points located on

both sides of the crack tip is tracked during the experiments (a). This initial guess is then refined by

determining the position ℓ where the super-singular term in the William’s expansion ωi
−1 vanishes (b).

ΦN by William’s expansion of Eq. (6.16) in a defined domain. As proposed by Henninger

et al. [2010], one can use a donut of interior radius Rmin and exterior radius Rmax eroded

around the crack path as a proper fitting domain for the linear least square optimization

(see Fig. 6.13). As performed by Henninger et al. [2010] and Grabois et al. [2018], we

tested various dimensions (Rmin, Rmax) as well as terms numbers in the William’s expansion

(pmin, pmax) (see Eq. (6.15)) with the same conclusions. In the following we set Rmin = 8

pixels, Rmax = 80 pixels, pmin = −3 and pmax = 12.

Several positions for the crack tip are tested along the crack path predicted in Section 6.3.1.c

in the vicinity of the position found by the crack opening method, which is used as an initial

guess to speed up the computations. The crack position is then measured with a subpixel

accuracy as the one where ωi
−1 = 0. An example of such a procedure is given in Fig. 6.12.b.
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(a)

(b)

Figure 6.13: Calculation of the local SIF : the vertical uy (a) and horizontal ux (b) components of the

displacement field u are approximated by William’s expansion series on a circular domain surrounding the

crack tip.

6.3.2.c Stress intensity factors measurements

One can finally estimate the stress intensity factors KI = ωi
1 and KII = ωii

1 from a last

linear least square procedure by fitting the dense approximation of the displacement field

u by a William’s expansion at the crack tip position [Henninger et al., 2010; Grabois et al.,

2018].

6.3.3 Validation of the proposed method on homogeneous materials

We validate the proposed approach with the study of dynamic crack propagation in

homogeneous 3D printed specimens. The results presented in this section comes from a

fracture test of a DM4310 TDCB sample.

6.3.3.a Crack tip position

First, we need to assess the validity of our method in predicting the position of the crack

tip. The fact that the final position for the crack tip is close to the initial guess provided by

direct DIC measurements of crack opening already constitutes a validation of the approach.

A second validation is proposed by confronting the estimated position to the results of

an image subtraction method [Chateau et al., 2018], which coincides here with the so-called

correlation residuals of the global DIC approach [Besnard et al., 2006]. The deformed image

is transformed back to the same frame as the reference image thanks to the estimation ΦN

of the local transformation following :

r (X) = [aΩg (ΦN (X)) + bΩ]− f (X) + k (6.17)

where aΩ and bΩ are local coefficients computed on subset domains Ω of size 60× 60 pixels
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to take into account possible variations in image contrast and brightness. They read :

aΩ =

∑
X∈Ω

(
f (X)− f̄Ω

)
· (g (ΦN (X))− ḡΩ)∑

X∈Ω (g (ΦN (X))− ḡΩ)
2 (6.18)

and :

bΩ = f̄Ω − aΩḡΩ (6.19)

The grey values of the points located at g (ΦN (X)) are evaluated by a bicubic interpolation

of the deformed image.

Results of the subtraction procedure for a given loading state are shown in Fig. 6.14 and

confirm the validity of the crack tip detection procedure.

(a)

(b)

Figure 6.14: Validation of the crack tip position by image subtraction : the deformed image is thus

transformed back to the same frame as the reference image to compute the difference between both

images, taking into account possible brightness and contrast adjustments. The subtracted image reveals

the crack path (a), which is compared to the crack tip position inferred from William’s expansion (shifted

downwards in the y-direction for clarity) (b).

6.3.3.b SIF estimation

Finally, the estimated values of the stress intensity factors are compared with estimates

derived from a DIC-based compliance method. Since the clip-gauge cannot track the crack

lips opening during the dynamic fracture test, we replace it by virtual DIC clip-gauges,

consisting in a set of 10 pairs of correlation points of correlation window 10x10 pixels,

located on both sides of the manufactured notch (see Fig. 6.15).

The opening (δdici ) is computed through a similar DIC procedure as the one described

in Section 6.3.1. Since the initial crack length is known from the position of the node, the

reduced force f = F/E can be estimated by the FEM-based compliance method described

in Section 6.2.1. The Young modulus E = 2GPa of the specimen is then calculated with a

least square procedure to match the force data acquired by the load cell during the loading

phase up to the peak, characteristic of crack initiation (see Fig. 6.16.a).
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(a)

Figure 6.15: Compliance method coupled with DIC : displacement of virtual DIC clip-gauges (pairs of

correlation points located on both sides of the notch) are tracked during the fracture test.

From the data of the crack length ℓ extracted from the DIC procedure and the crack

lips opening (δdici ), one can compute the ERR G after Eq. (6.2). The Mode I SIF KI is

inferred from G from Irwin’s formulae assuming plane stress conditions KI =
√
EG. Yet

these estimates on G and KI correspond to a static case, whereas the crack propagates at

a speed v ≃ 250m.s−1 ≃ 0.3cR, where cR ≃ 770m.s−1 is the Rayleigh wave speed of the

material. The static Mode I SIF Kstat
I and ERR Gstat have to be corrected to take into

account inertial effect. Following Freund [1998], one gets in pure Mode I under plane stress

conditions : 



Kdyn
I = Kstat

I kI (v) ≃ Kstat
I

(

1− v
cR

)

√

1− v
cd

Gdyn =
Kdyn

I

2

E
AI (v) = Gstatg (v) ≃ Gstat

(
1− v

cR

) (6.20)

where cd is the dilatational wave speed of the material.

The compliance method only gives an estimate of the static values Kstat
I and Gstat,

whereas the DIC approach for SIF calculation presented above gives an in-situ measurement

of Kdyn
I from which Gdyn can be inferred through Eq. (6.20).

The comparison between the dynamic SIF Kdyn
I and ERR Gdyn calculated from the DIC

and compliance method are plotted in Fig. 6.16.c & d. We see that KI is estimated with a

precision of ±0.07MPa.
√
m, which is consistent with the study of Grabois et al. [2018] based

on the global DIC approach. We also notice that the crack is loaded in principal Mode I

since Mode II contributions remain small. Such results validate the proposed approach for

SIF computation.

Grabois et al. [2018] attributed the discrepancies between the two measurements (DIC

and compliance methods) to out-of-plane motions of the TDCB specimen. We propose here

a different explanation : material points located at the center of the sample may deform

under plane strain conditions whereas material points located near the free surface of the

sample are subjected to plane stress conditions. Such an assumption is supported by the

fact that the crack front is curved along the width of the sample as we can see in Fig. 6.4.b
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and Fig. 6.6.c. The DIC-estimate is essentially local since it relies on the measurement of

the displacement field on the free observation surface of the sample. As a result, it may

differ from the compliance estimate, which relies on the structural response of the whole

specimen.
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Figure 6.16: Comparison between the compliance and DIC methods : the Young modulus of the material

is inferred from the superposition of the force-time curve predicted by DIC and measured by the load cell

(a). The position of the crack tip on each frame allows for the computation of the instantaneous crack

velocity v during the test (b). Finally, the stress intensity factors (c) and the elastic energy release rate

(d), measured by DIC and compliance methods, are compared.

One may finally note that the value of the Young modulus E plays a central role in

the estimation of the SIF in both the compliance (see Eq. (6.2)) and the DIC methods (see

Eq. (6.15) through the shear modulus µ). Errors in the measurement of E, which fluctuates

significantly due to the additive manufacturing process, may overcome the errors due to

the DIC analysis.
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6.4 Experimental homogenization for striped polymers

In this section, we apply the method developed in Section 6.3 to investigate the homog-

enization of toughness properties through the experimental fracture of striped polymers

(see Fig. 6.16a)1. The direct measurement of the crack length ℓ and the local ERR G at a

very fine temporal scale offers the unique opportunity to address such a complex problem

in the most simple case of one-dimensional heterogeneities. After characterizing the kinetic

law of both Veroclear and DM4310 materials in the dynamic regime in Section 6.4.1, we

investigate the propagation dynamics of a crack in Section 6.4.2 and their ultimate impact

on the homogenization of fracture properties in Section 6.4.3. Some on-going works are

finally presented in Section 6.4.4.

6.4.1 Material characterization

Five experiments are conducted on homogeneous samples for each of the two materials.

The ERR G and the crack velocity v are measured following the DIC procedure described

in Section 6.3 to construct the kinetic law of the rate-dependent fracture energy Gc (v) i.e.

the Gc − v curve in the dynamic regime.

The dependence of the material toughness can be grasped within the dynamic LEFM

theory by taking into account the contraction of the process zone ℓfpz when the crack

propagates at high velocity [Barras, 2018]. It reads :

ℓfpz (v) = a
K2

I (v)

σ2c
(6.21)

where a is a dimensionless constant and σc the material strength.

Scheibert et al. [2010] proposed a way to model the rate-dependent processes occurring

within the fracture process zone below the micro-branching instability. As a result, they

relate the fracture energy Gc to the material surface energy γ and the process zone size ℓfpz
through the following equation :

Gc (v) = γ + 2ǫℓfpz (v) (6.22)

where ǫ is a material dependent parameter.

By combining the evolution of the process zone size with the crack velocity of Eq. (6.21)

and its impact on the fracture toughness described in Eq. (6.22) with the expression of the

dynamic ERR of Eq. (6.20) into Griffith’s criterion, one finally gets :

Gc (v) = Gc,0
1− α

1− α
AI(v)

(6.23)

where α = 2ǫEa
σ2
c

is a material dependent parameter.

This kinetic law allows to describe the Gc − v curves of both the matrix material (Ve-

roclear) and the obstacle material (DM4310) for a wide range of velocities (see Fig. 6.17).

1This study is the result of a joint work performed during the 4 months visit of Gabriele Albertini, PhD

student at Cornell University under the supervision of David Kammer - Contact: ga288@cornell.edu
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From this study, we measure Emat = 2.9GPa, Gmat
c,0 = 80 J.m−2, αmat = 1.15 andEobs =

1.9GPa, Gobs
c,0 = 110 J.m−2, αobs = 1.17. The Poisson ratio of both matrix Emat and ob-

stacle Emat is set to 0.35. Their density is taken equal to ρ = 1130 kg.m−3 (Stratasys

documentation).
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Figure 6.17: Fracture toughness properties of the two materials considered in the study : the evolution of

the rate-dependent fracture energy Gc (v) is estimated from fracture tests of homogeneous TDCB

specimens of Veroclear (matrix) and DM4310 (obstacle) analyzed with the DIC procedure described in

Section 6.3. It is compared to theoretical predictions of Eq. (6.23) in solid lines.

6.4.2 Pinning and depinning dynamics in striped materials

The material being characterized, we consider now heterogeneous samples consisting

in alternative stripes of matrix (Veroclear) and tougher obstacles (DM4310) of constant

width w ∈ {2.5mm, 5mm, 7.5mm, 10mm}. The first stripe is placed 1cm away from the

initial notch. Five to seven experiments are conducted for each considered stripe width.

For each experiment, we measure the Young modulus by comparing the force measure-

ments of the load cell with the DIC-based compliance method performed in Fig. 6.16. This

value of the Young modulus is attributed to the matrix material since deformations are

concentrated in the vicinity of the notch, which is fully embedded in the matrix, far away

from the first stripe (see Fig. 6.18.a). The Young modulus of the obstacle is estimated from

the one of the matrix assuming a constant ratio 0.65, observed in the characterization cam-

paign. The crack position ℓ, its velocity v and the local dynamic ERR G are measured by

the DIC procedure of Section 6.3. As noted by Wang and Xia [2017] through cohesive-zone

simulations of crack propagation in striped composites with dissimilar Young modulus and

fracture toughness, the ERR G varies from its homogeneous estimation at the vicinity the

interface between the two materials. Thus the value of the dynamic ERR G from the DIC

calculation based on William’s expansion is adopted here rather than the one resulting from

the compliance method. The Young modulus used to estimate the Mode I SIF KI from the

DIC method is taken equal as the one of the material the crack is currently propagating

into when the fitting domain of the least square procedure (donuts) is lower than the stripe

size (stripes of 7.5mm and 10mm). Otherwise one uses the value of the homogenized Young

modulus, which is estimated here from the Reuss bound in the case of a striped material
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with stripes oriented in the tensile direction.

In contrast with the experiments conducted by Avellar [2018] on the fracture of striped

specimens manufactured with the same 3D printer but with different materials, one observes

from image subtraction techniques that there is only a single propagating crack in the

material whereas Avellar [2018] notices crack nucleation a stripe ahead, leading to crack

bridging. Consequently, only one interaction mechanism is involved in our experiments,

that is crack pinning.

A typical experiment is illustrated in Fig. 6.18. After crack nucleation, the crack prop-

agates inside the matrix. When it meets the obstacle, it undergoes an abrupt deceleration

(Fig. 6.18.b) while its energy release rate remains almost constant (Fig. 6.18.c). The ERR

does not see the material transition since G is fixed by the loading (if we neglect the inertial

correction). Thus the crack has no other choice than jumping from one Gc − v branch to

the other (Fig. 6.18.d).
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Figure 6.18: Crack propagation in 3D printed striped materials (a) : when the crack goes from one

material to another, its velocity changes abruptly (b) while its energy release rate remains almost constant

(c). The material jumps from one Gc − v branch to the other (d).

Such intermittent dynamics are characteristic of a strong pinning regime, typically ob-

served in the fracture of strongly heterogeneous materials [Roux et al., 2003; Bonamy,
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2009; Ponson, 2009]. The jumps in crack velocity can be rationalized from the continuity

of the static ERR Gstat at the matrix/obstacle interface. At the position ℓ between the two

materials, one gets :
Gmat

c (vmat)

gmat (vmat)
=
Gobs

c (vobs)

gobs (vobs)
(6.24)

This equation can be solved numerically, relating the crack velocity after a pinning (matrix

to obstacle) or a depinning (obstacle to matrix) event. The LEFM predictions of Eq. (6.24)

are successfully compared to the speed jumps observed experimentally in Fig. 6.19.
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Figure 6.19: Velocity jumps during pinning (matrix to obstacle - in blue markers) and depinning (obstacle

to matrix - in red markers) events for various stripe width w : the numerical results in colored markers are

compared to LEFM predictions of Eq. (6.24).

6.4.3 Homogenized toughness measurement

One may now wonder how the successive pinning/depinning events impact the effective

toughness of the heterogeneous materials. In a quasi-static framework, where the rate-

dependency of the fracture toughness Gc is neglected, the effective toughness of striped

materials is equal to the maximal toughness of its constituents [Hossain et al., 2014]. We

prove here that taking into a rate-dependent Gc makes the prediction of the effective tough-

ness drift from their quasi-static estimate.

To address this problem, we measure the effective toughness Gc of the tested striped com-

posites as the energy dissipated during the fracture of the elementary volume constituted

by 2 successive stripes. It reads :

Gc =
1

2w

∫ ℓstripe+2w

ℓstripe

G (ℓ) dℓ (6.25)

This elementary volume is fractured during a time ∆t at a mean velocity v̄ :

v̄ =
2w

∆t
(6.26)

We propose here a theoretical analysis of the homogenization problem in presence of

a rate-dependent fracture toughness under the following assumptions : (i) both materials
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share the same elastic properties but differ in their rate-dependent fracture energy Gc (v)

so that the local static ERR Gstat is equal to the ERR imposed by the macroscopic loading

Gloading; (ii) the structural lengthscale L = −Gloading/
∂Gloading

∂ℓ → +∞ so that the static

ERR imposed by the loading Gloading does not decay with crack advance. Under these

assumptions, the crack oscillates between two speeds vmat in the matrix and vobs in the

obstacle, related by the equation :

Gloading =
Gmat

c (vmat)

gmat (vmat)
=
Gobs

c (vobs)

gobs (vobs)
(6.27)

with a local dynamic ERR :

Gmat = Gloading · gmat (vmat) and Gobs = Gloading · gobs (vobs) (6.28)

Eq. (6.25) and Eq. (6.26) become :

Gc =

(
Gmat

c +Gobs
c

)

2
and v̄ =

2
1

vmat
+ 1

vobs

(6.29)

The homogenization procedure is illustrated in Fig. 6.20. We notice that Gc corresponds

to the arithmetic average of the respective fracture toughness Gmat
c and Gobs

c , while v̄ is the

harmonic average of the velocity vmat and vobs, which is dominated by the lower velocity

vobs.
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Figure 6.20: Summary of the homogenization scheme for a rate-dependent fracture toughness Gc : (a) the

elastic energy release rate imposed by the loading is constant when the crack propagates, (b) making the

crack jumps from one Gc − v branch to another at the interface between two materials. (c) The

homogenized toughness then is equal to the arithmetic average of the local ERR whereas the homogenized

velocity is equal to the harmonic average of the crack velocity, dominated by the lower velocity.
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The results of Eq. (6.29) call for some comments. First, the intermittent dynamics,

triggered by the rate-dependency of the fracture toughness, strongly modifies the effective

toughness from its quasi-static value Gmat
c [Hossain et al., 2014]. Second, we find back the

property that in the absence of an intermittent dynamic, i.e. in the weak pinning regime,

the effective toughness is equal to the spatial average of the local toughness field [Roux

et al., 2003; Démery et al., 2014b].

The theoretical predictions of Eq. (6.29) are then compared to experimental measure-

ments of the effective toughness. The effective toughness of Eq. (6.25) and the effective

velocity of Eq. (6.26) are computed experimentally from the evolution of G (ℓ) and v (ℓ)

measured by DIC (see Fig. 6.18). We consider here only pairs of successive stripes where

no crack arrest occurs due to pinning events. Results are plotted in Fig. 6.21.a.
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Figure 6.21: Homogenized Gc − v curves : the effective toughness Ḡc is measured in the experiments as

the energy dissipated by the crack when crossing a consecutive pair of matrix/obstacle stripes of length

2∆l during a time ∆t at the effective velocity v̄ = 2∆l/∆t (a). Their are compared to theoretical

predictions from the analytical model of dynamic fracture with (dashed colored lines) or without (solid

black line) taking into account the influence of the structure (b).

We see that the experimental data are indeed close to the theoretical LEFM predictions.

Discrepancies are nonetheless found as the stripe width w grows larger. As stated in

Chapter 4, brittle fracture is not only a material problem but a structural one as well.

We saw that the influence of the structure can be modeled through the lengthscale L =

−Gloading/
∂Gloading

∂ℓ , which is characteristic of the variations of the ERR with the crack

advance. Here, we find from the FEM simulations of Section 6.2.1, L = 20mm. The

influence of the structural lengthscale L is computed numerically from Eq. (6.27) assuming

an exponential decay of the ERR imposed by the loading Gloading (ℓ) ∝ e−ℓ/L. The results

are plotted in Fig. 6.21.b. We see that the influence of L accounts for the higher effective

toughness levels found at large stripe width. It is interesting to note that L has here a

toughening influence on the effective fracture properties whereas it has been proved to

weaken the material in a three-dimensional quasi-static setting (see Démery et al. [2014a]

and Chapter 4).
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6.4.4 From 1D samples to 3D experiments

Veroclear and DM4310 present a toughness ratio around Gobs
c /Gmat

c ≃ 1.37 so that

it should be possible to revisit both theoretical predictions and numerical estimates of

Chapter 3, Chapter 4 and Chapter 5. Yet as stated in Section 2.2, fracture mechanics is

all about lengthscales. In our case, two lengthscales are in competition, the process zone

size ℓfpz ≃ 20µm and the size ℓ∆ along which the mechanical properties varies from the one

of the matrix to the one of the obstacle (see Fig. 2.4). Due to the manufacturing process,

where polymer droplets are successively deposited, cured by UV and flattened by a roller, ℓ∆
is approximately equal to the 3D printer resolution ℓ∆ ≃ 40µm. Thus, no clear separation

of length scales can be observed between ℓfpz and ℓ∆, so that the crack sees a continuous

evolution of the material properties rather than a discontinuity. Consequently, out-of-plane

deviations of the crack front at the matrix/obstacle interface cannot be observed in this

material, as it is proved in Fig. 6.22.

CRACK	PATH

OBSTACLE

(a)

CRACK	PATH

OBSTACLE

(b)

Figure 6.22: Bi-material TDCB specimen constituted of a Veroclear matrix and a DM4310 obstacle

inclined at 5◦ (a) and 15◦ (b) : the obstacle are crossed whereas 2D theoretical predictions of Eq. (3.27)

based on the GMERR criterion predict a by-pass of the obstacle for a toughness ratio Gobs
c /Gmat

c ≃ 1.37.

Such a behavior is somewhat disappointing since the experimental procedure developed in

this chapter does not allow for a direct comparison of experimental results with the theoret-

ical and numerical ones of the previous chapters. Nonetheless, the experimental campaign

conducted on striped composites showed than the crack interacted with tougher defects

through the sole crossing mechanism. Moreover, the absence of discontinuity between

the two materials hinders out-of-plane deviations of the crack along the matrix/obstacle

interface due to toughness contrast but also prevent any (de-)nucleation processes from

happening due to a contrast in elasticity.

Thus, the experimental set-up developed during the PhD thesis may allow for a quanti-

tative analysis of material toughening by crack trapping in a coplanar situation, which was

studied theoretically by Roux et al. [2003], Roux and Hild [2008], Patinet et al. [2013b],

Démery et al. [2014a] and Démery et al. [2014b]. Since the choice of the material sets the

toughness ratio in our experiments, on-going experiments of coplanar crack propagation are

performed by playing on the density of inclusions and also on the correlation length ratio

ξz/ξx, which plays a decisive role in the estimation of the homogenized fracture properties

(see Chapter 4). Examples of considered geometries are given in Fig. 6.23.
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(a) (b) (c)

Figure 6.23: On-going experiments investigating the influence of the correlation length ratio ξz/ξx on the

effective toughness of three-dimensional heterogeneous materials : the ratio ξz/ξx varies from the reference

case ξz/ξx = 1 (a) between ξz/ξx = 0.25 (b) and ξz/ξx = 4 (c).

6.5 Concluding remarks

This chapter was dedicated to the experimental study of the fracture of 3D printed

heterogeneous polymers. Specimens are printed with a Tampered Double Cantilever Beam

(TDCB) geometry, which allows for stable crack propagation at a prescribed velocity under

a constant driving rate. Material properties are then inferred from a compliance method

[Vasudevan et al., 2019], giving access to the evolution of their rate-dependent fracture

energy Gc (v). Yet crack propagation in homogeneous samples in a quasi-static regime

proves to be very difficult to obtain because of the material viscosity and the stick-slip

behavior of the photo-polymers selected for the study. To circumvent these issues, one has

to work at high driving rates, where the crack propagates in a dynamic regime described

by LEFM [Freund, 1998].

Yet standard fracture characterization methods cannot be adapted to the dynamic regime

so that one has to call upon more advanced experimental procedures to access relevant

information on crack propagation. A DIC-based technique has been developed to track at

fine temporal and spatial scales the position and the local elastic energy release rate of a

fast propagating crack. Images of the fracture tests are acquired using a high-speed camera

at an acquisition rate up to 232,000 Hz. Displacement fields are measured by a local DIC

procedure performed by the CMV software [Soppa et al., 2001]. A continuous displacement

field is extracted from the local DIC analysis following the work of Chateau et al. [2018].

The crack tip position is then measured using the method proposed by Henninger et al.

[2010], based on William’s expansion of the displacement fields. It also gives access to the

local stress-intensity factors [Roux and Hild, 2006]. This method has been compared to

crack opening Abanto-Bueno and Lambros [2002] and subtraction [Chateau et al., 2018]

procedures for the crack tip position and the compliance method [Vasudevan et al., 2019]

for the SIF estimation. The crack tip position is measured with a precision ±50µm while

the SIF are estimated with a ±0.07MPa.
√
m. These performances are similar to the one of

integrated DIC based on a global approach [Grabois et al., 2018].

The procedure is used to study crack propagation in striped composites. The crack
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displays peculiar intermittent dynamics, characteristic of a strong pinning regime, where

the crack locally adapts to the change of material by a jump in velocity. These intermit-

tent dynamics ultimately controls the effective toughness of the material in presence of a

rate-dependent fracture toughness. As exposed in Chapter 4, the effective fracture energy

may be strongly influenced by the structure in which the crack propagates through the

lengthscale L, which describes the evolution of the ERR G with crack advance. Intrinsic

homogenized fracture properties can only be defined in the limit where the lengthscale L
is far superior to the size of the defects. All these experimental results are successfully

captured by theoretical predictions of dynamic LEFM.

Finally, this study does not allow to revisit the theoretical and numerical results of the

PhD manuscript because of the absence of toughness discontinuity at the matrix/obstacle

interface due to the 3D printing process. Nonetheless, it paves the way for a critical test

of Démery et al. [2014a]’s coplanar homogenization theory, on which relies our proposed

approach for homogenizing the brittle fracture properties of three-dimensional composites.
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Conclusions and perspectives

General conclusions

The prediction of the macroscopic response of a material from the knowledge of its con-

stituent at a microscopic or mesoscopic scale has always been the Holy Grail pursued by

material science. Yet well-established methods dedicated to the homogenization of con-

servative and dissipative processes do not currently provide an appropriate framework to

predict the effective fracture properties of brittle composite. In the present thesis work, we

have proposed to tackle this problem through the combination of an innovative theoretical

approach inspired by statistical physics, a new numerical method based on the perturba-

tive approach of the Linear Elastic Fracture Mechanics and advanced fracture experiments

of 3D printed heterogeneous polymers. Based on the specificities of brittle fracture, our

work provides an original approach to investigate the homogenization of brittle fracture

properties.

First, brittle fracture is a dissipative evolution process, so that one has to investigate

crack propagation to measure effective fracture properties. In Chapter 2, we developed a

new LEFM-based theoretical framework allowing to model quasi-static crack propagation

in three-dimensional heterogeneous brittle materials. The proposed approach predicts the

propagation of a semi-infinite crack loaded in tensile Mode I in a composite material con-

stituted of a homogeneous matrix and tough inclusions. It relies on the computation of

the stress intensity factors variations from the geometrical perturbations of the crack front

within the perturbative LEFM approach developed by Gao and Rice [1986] and Movchan

et al. [1998]. A propagation criterion, resulting from the combination of a viscous regular-

ization of Griffith’s criterion and the generalized maximum energy release rate (GMERR)

criterion [Gurtin and Podio-Guidugli, 1998], describes the interaction between a crack and

an inclusion through two mechanisms : inclusion crossing, where the crack penetrates the

inclusion, and inclusion by-pass, where the crack goes out-of-plane and propagates along the

matrix/inclusion interface. Based on the Fast Fourier Transform algorithm, the numerical

implementation of our approach allows to compute the interaction of a crack with millions

of tougher inclusions in only a few hours on a laptop computer for a monocore simulation.

Such unprecedented performances pave the way for addressing the challenging problem of

fracture properties homogenization.
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Second, fracture processes are localized at the crack tip. The stress singularity at the

crack tip enhances the impact of microstructural heterogeneities, so that rare but tough

heterogeneities can substantially modify the effective fracture properties. Particular impor-

tance is then attached in Chapter 3 to the mechanisms of interaction between the crack

and tough inclusions. These interaction mechanisms are investigated through numerical

simulations of crack growth in periodic arrangements of tough inclusions. We have shown

that the mechanical properties of the inclusion, as well as its shape, control the mechanism

which is selected by the crack and the resulting propagation dynamics. These features

determine in turns the ultimate contribution of this mechanism to material toughening,

paving the way to material design aiming at improving fracture properties.

Third, brittle fracture is not only a material problem but a structural one as well. We

take advantage of this coupling in Chapter 4 to measure the effective fracture properties

from the crack evolution. We first showed than an intrinsic value of the effective toughness

can be defined under a scale separation condition, which states that the inclusion size d,

characteristic of the microstructure, has to be small enough with respect to the structural

length L, characteristic of the loading variations. This structural length is related to the

structural problem and its boundary conditions and its central role illustrates the speci-

ficities of brittle fracture. In a second step, we have conducted numerical simulations on

large-scale disordered systems to investigate the impact of microstructural disorder on the

effective toughness. Our results illustrate the decisive role of the material disorder in the

determination of the effective fracture properties, so that estimating the effective toughness

from two-dimensional or three-dimensional periodic situations can produce results which

are both quantitatively and qualitatively wrong. Finally, we have compared these results

to theoretical predictions derived from a three-step homogenization scheme inspired by mi-

cromechanics and statistical physics. First, the full problem of the propagation of a crack

in a disordered distribution of inclusions is broken down into multiple simpler problems,

considering all the possible ways a crack can interact with a single inclusion and its re-

spective probability. Second, the respective toughening contribution of each cell problem

is inferred from the crack front dynamics during its interaction with the tough inclusion.

Third, the toughness field actually experienced by the crack during its evolution is recon-

structed under the ergodic assumption, allowing to predict the effective toughness from

the theoretical framework developed by Démery et al. [2014b] for a planar crack problem.

This homogenization method has been shown to successfully capture the impact of by-pass

mechanism on the effective toughness of heterogeneous brittle materials, as well as the one

of various microstructural and geometrical parameters. Our results highlight the substan-

tial impact of a wide range of microstructural parameters on material reinforcement, from

which guidelines for microstructural design have been inferred.
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Fourth, brittle fracture is an irreversible process, whose signature can be ultimately

observed on the fracture surfaces. It motivated the study of the statistical properties of

fracture surfaces in Chapter 5. First, the roughness of the fracture surfaces has been studied

both theoretically within the LEFM framework and numerically via our perturbative model.

Our results showed that the surface roughness scaled logarithmically, in coherence with

the experimental observations of Dalmas et al. [2008]. Nonetheless, our approach does

not explain the emergence of the self-affine roughness observed in porous brittle materials

[Ponson et al., 2006a]. Second, the analytical model successfully captures the impact of

various microstructural features on the roughness of surfaces produced by brittle fracture

simulations. We have shown that quantitative information on the propagation direction and

the Poisson ratio could be extracted from the statistical properties of the fracture surfaces.

Yet, other quantities of interest, such as the effective toughness, remain out of reach of the

fractographic methods developed in this work.

Finally, we revisited the homogenization of brittle fracture properties through an experi-

mental study of the fracture behavior of 3D printed polymers in Chapter 6. The specimens

are printed with a Stratasys Objet260 Connex3 printer from photopolymer resins. Quasi-

static crack propagation was especially difficult to achieve at low driving rates due to the

combination of the visco-elastic and the stick-slip behavior of the material. Thus, experi-

ments were performed at a high driving rates to overcome the material viscosity and prevent

stick-slip events, leading to dynamic fracture at velocities reaching 300m.s−1. At such ve-

locity, standard experimental techniques, such as the compliance method, do not allow for

crack propagation to be tracked at the temporal and spatial scales required to investigate

effective fracture properties. Consequently, Digital Image Correlations techniques had to

be developed to measure accurately the position of the crack tip, the velocity, and the

elastic energy release rate. These quantities of interest are inferred from the displacement

field [Henninger et al., 2010; Chateau et al., 2018], which is estimated with the local DIC

software CMV from the comparison of subsequent images recorded by a high-speed camera,

at an acquisition rate up to 230, 000Hz. Our method is applied to investigate the effective

toughness of striped polymers constituted of a homogeneous matrix and tougher obstacles.

Crack propagation in such materials displays an intermittent dynamic, characteristic of

a strong pinning regime, where the crack accommodates to the local property variations

through jumps in its velocity. These jumps ultimately control the homogenized fracture

properties of the heterogeneous specimen. Experimental results are successfully captured

by a dynamic LEFM theoretical model, in which the rate-dependency of the material plays

a decisive role.
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Future perspectives

This study sets up the foundations for homogenizing brittle fracture properties of three-

dimensional composite materials. It leaves naturally several challenging open issues, which

it would be interesting to address in the future. They concern every facet of this work and

are traced in the following.

First, the pertubative approach could be extended to model more complex situations.

Detailed perspectives have been drawn in Section 2.5. The most promising route would

consist in extending our approach to mixed mode loading I+III and I+II+III to investigate

the influence of material heterogeneities on crack fragmentation, as suggested by the prelim-

inary results of Leblond and Ponson [2016] and of Leblond et al. [2019]. Another route is to

model crack propagation in heterogeneous materials with weak elastic heterogeneities, using

the formulæ derived by Gao [1991] and Muju [2000]. Despite its significant computational

cost, this approach would allow to investigate the homogenization of brittle fracture proper-

ties in a much more realistic setting. Additionally, it would provide some valuable insights

into the influence of residual stresses and material anisotropy on the effective toughness.

Second, the homogenization method developed for disordered brittle solids could be ap-

plied to a much wider range of mechanisms of crack-inclusion interaction. De-nucleation/re-

nucleation processes [Leguillon and Martin, 2013], deflection at an elastic interface [He and

Hutchinson, 1989] and inclusion debonding [Le et al., 2019] can be grasped within the

LEFM framework and thus incorporated in the perturbative approach. Yet, more powerful

numerical methods such as phase-field or thick-level-set simulations might prove more ap-

propriate tools to investigate accurately these mechanisms and the conditions (e.g. material

properties, inclusion geometry) under which one prevails over the other. As proposed in

Section 4.7, these interaction mechanisms could be investigated efficiently in a single in-

clusion setting, providing valuable insights on their toughening contributions, which could

then be embedded in the homogenization scheme proposed in Chapter 4 to predict effective

fracture properties in a disordered setting.

Third, the homogenization procedure of Chapter 4, based on the work of Démery et al.

[2014b] and Démery et al. [2014a] also need to be refined. One should first revisit the

theoretical results of Démery et al. [2014a] within the second-order coplanar perturbative

theory of Vasoya et al. [2013], since Démery et al. [2014a]’s formulæ currently predict

the effective fracture properties at the second-order in the perturbation from a first-order

theory. Then, modeling analytically the cross-over between the collective and the individual

regimes as well as the impact of the finite system size would provide in fine a better

estimate of the effective toughness. Moreover, the non-dilute scheme in a non-coplanar

setting should be further improved by taking into account the decisive influence of the

out-of-plane perturbations in the prediction of the effective toughness at high toughness

contrast. Finally, one could extend the current homogenization framework to estimate

apparent fracture properties, where the impact of the structural problem and the finite size

of the system are predicted quantitatively, similarly to what is performed for linear elastic

behaviors [Sab, 1992; Ostoja-Starzewski, 2006; Brisard et al., 2013].
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Fourth, significant progress has been achieved in the last decade by describing material

failure as a depinning transition. Statistical physics will undoubtedly continue to provide

valuable insights on the fracture of heterogeneous materials. Yet, the coexistence of a

logarithmic and a self-affine regime of brittle fracture roughness remains puzzling [Ponson

et al., 2006a; Dalmas et al., 2008] and the identification of the selection mechanisms between

both behaviors is certainly a major lack to be lifted. Accurate information on material

properties and its fracture behavior can be extracted from the fracture surfaces only once a

deep understanding of the physical mechanisms behind its formation is achieved. Cutting-

edge experiments in fracture mechanics coupled with advanced visualization techniques

based on X-ray microtomography [Lachambre et al., 2015; Chateau et al., 2018; Renard

et al., 2019] could provide the missing elements to understand the origin of the self-affine

roughness. Additionally, if we found no relevant information on the effective toughness

of brittle materials into the fracture surface morphology and its spatial correlations, the

intermittent dynamics of a crack propagating in heterogeneous materials could provide

quantitative information on the Larkin length [Laurson et al., 2010] and thus on the effective

fracture properties.

Finally, model experimental set-ups in fracture mechanics [Takei et al., 2013; Ibarra et al.,

2016; Wang and Xia, 2017] should foster further dialog between experiments, theoretical

analysis and simulations before addressing the difficult question of predicting the effective

fracture properties of realistic materials [Kataoka et al., 2015; Chandler et al., 2016; Gomez-

Monterde et al., 2016]. Experimental techniques for fracture mechanics allow nowadays to

investigate crack propagation at unprecedented temporal and spatial scales. One can then

apply them to investigate in depth model systems where a limited number of interaction

mechanisms is involved. In that sense, additive manufacturing techniques shows promising

features by allowing to choose the nature of the crack-inclusion interaction by tuning either

the material or the 3D printing technology they use. Namely, the experimental set-up

developed in this work may allow to revisit experimentally the work of Démery et al.

[2014b], on which is built our proposed approach for homogenizing fracture properties.
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Lé, B., Moës, N., and Legrain, G. (2018). Coupling damage and cohesive zone models with

the thick level set approach to fracture. Engineering Fracture Mechanics, 193:214–247.

Le, V. H. T., Brisard, S., and Pouya, A. (2019). Debonding of a circular inclusion: Asym-

metric propagation of a pair of cracks. International Journal of Solids and Structures,

167:71–78.

Lebihain, M., Leblond, J., and Ponson, L. (2020a). Effective toughness of periodic hetero-

geneous materials: The effect of out-of-plane crack excursions. submitted to Journal of

the Mechanics and Physics of Solids.

Lebihain, M., Ponson, L., Kondo, D., and Leblond, J. (2020b). Effective toughness of large-

scale disordered brittle solids: A homogenization framework. submitted to Journal of the

Mechanics and Physics of Solids.

Lebihain, M., Ponson, L., and Leblond, J. (2020c). Scaling properties of brittle surface

roughness : the impact of microstructal features. in preparation.

Lebihain, M., Ponson, L., and Leblond, J. (2020d). Textured brittle metamaterials with

anisotropic fracture toughness. in preparation.

Leblond, J. (1999). Crack paths in three-dimensional elastic solids. i: two-term expansion

of the stress intensity factors : application to crack path stability in hydraulic fracturing.

International Journal of Solids and Structures, 36(1):79–103.
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Lôpez, J. and Schmittbuhl, J. (1998). Anomalous scaling of fracture surfaces. Physical

Review E, 57(6):6405–6408.

Lucchetta, A., Auslender, F., Bornert, M., and Kondo, D. (2019). A double incremental

variational procedure for elastoplastic composites with combined isotropic and linear

kinematic hardening. International Journal of Solids and Structures, 158:243–267.

Ma, J., Wang, H., Weng, L., and Tan, G. E. B. (2004). Effect of porous interlayers on crack

deflection in ceramic laminates. Journal of the European Ceramic Society, 24(5):825–831.

Madou, K. and Leblond, J. (2012). A gurson-type criterion for porous ductile solids con-

taining arbitrary ellipsoidal voids - i: Limit-analysis of some representative cell. Journal

of the Mechanics and Physics of Solids, 60(5):1020–1036.

Malik, I. and Barthelat, F. (2016). Toughening of thin ceramic plates using bioinspired

surface patterns. International Journal of Solids and Structures, 97-98:389–399.

Mandelbrot, B., Passoja, D., and Paullay, A. (1984). Fractal character of fracture surfaces

of metals. Nature, 308(5961):721–722.

Marcus, H. L. and Sih, G. C. (1971). A crackline-loaded edge-crack stress corrosion speci-



245 Bibliography B

men. Engineering Fracture Mechanics, 3(4):453–461.

Marder, M. and Fineberg, J. (1996). How things break. Physics Today, 49(9):24.

McMeeking, R. M. and Evans, A. (1982). Mechanics of transformation-toughening in brittle

materials. Journal of the American Ceramic Society, 65(5):242–246.

McNeill, S. R., Peters, W. H., and Sutton, M. A. (1987). Estimation of stress intensity

factor by digital image correlation. Engineering Fracture Mechanics, 28(1):101–112.

Mecholsky, J. J., Passoja, D. E., and Feinberg-Ringel, K. S. (1989). Quantitative analysis

of brittle fracture surfaces using fractal geometry. Journal of the American Ceramic

Society, 72(1):60–65.

Mirkhalaf, M., Dastjerdi, A. K., and Barthelat, F. (2014). Overcoming the brittleness of

glass through bio-inspiration and micro-architecture. Nature Communications, 5:3166.
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Vernède, S., Ponson, L., and Bouchaud, J. (2015). Turbulent fracture surfaces: A footprint

of damage percolation? Physical Review Letters, 114(21):215501.
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Appendices

Appendix 8.A Regularization of the perturbative approach

for large angle in the propagation direction

8.A.1 Regularization of the perturbated SIF for large X-angles

In our simulations, the local slope of the crack front in the (xOy) plane, ∂fy/∂x, may

be large during the by-pass of inclusions. To deal with this issue, we propose heuristic,

approximate expressions of the SIFs and related quantities based on a combination of

Eq. (2.14) [Movchan et al., 1998] and Eq. (2.18) [Leblond, 1999].

8.A.2 SIF regularized evaluation

We consider a point P of abscissa z along the crack front F , and note θ = arctan (∂fy/∂x)

the angle (which may be arbitrarily large) between with the x-direction and the local

direction of crack propagation. Movchan et al. [1998]’s formulæ provide the variations of

the SIFs arising from infinitesimal perturbations of the crack front and crack surfaces, to

first order in these perturbations, that is for small values of θ. One observes in Eq. (2.14)

that the Mode II variation can be split into a local term δK loc
II proportional to the slope

∂fy/∂x, and a term δKLR
II depicting long-range elastic interactions:

δKII (z, t) =
K∞

I (t)

2

∂fy
∂x

(z, t)
︸ ︷︷ ︸

δKloc
II

+
2− 3ν

2− ν

K∞
I (t)

2π
PV

∫ +∞

−∞

fy (z, t)− fy (z
′, t)

(z − z′)2
dz′

︸ ︷︷ ︸
δKLR

II

(8.1)

Note that the expressions for the Mode I and III variations do not, however, contain any

similar term proportional to ∂fy/∂x.

On the other hand Leblond [1999]’s formulæ relate the values of the SIFs after an abrupt

change of the direction of propagation to those of the SIFs before this change, for an

extension of vanishingly small length but an arbitrary kink angle.

We therefore propose, for a crack slightly perturbed out of its plane but with a possibly
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large slope ∂fy/∂x, to adopt the following formulæ combining Eq. (2.14) with Eq. (2.18) :





KI (z, t) = FI,I (θ) [K
∞
I (t) + δKI (z, t)] + FI,II (θ) δK

LR
II (z, t)

KII (z, t) = FII,I (θ) [K
∞
I (t) + δKI (z, t)] + FII,II (θ) δK

LR
II (z, t)

KIII (z, t) = FIII,III (θ) δKIII (z, t)

(8.2)

Note that:

• For small angles θ, Eq. (8.2) reduces to Eq. (2.14), as desired, by virtue of the follow-

ing low-order expressions of the functions Fi,j (θ) [Leblond, 1999]:





θ = arctan

(
∂fy
∂x

)
=
∂fy
∂x

+O

[(
∂fy
∂x

)3
]

FI,I (θ) = 1 +O
(
θ2
)

FI,II (θ) = −3
2θ +O

(
θ3
)

FII,I (θ) =
1
2θ +O

(
θ3
)

FII,II (θ) = 1 +O
(
θ2
)

(8.3)

• If the crack lands on an inclusion with a zero angle and subsequently kinks along the

interface, at the very beginning of the by-pass Eq. (8.2) reduces to Eq. (2.18) and is

therefore rigorously correct even for large values of the kink angle.

8.A.3 ERR regularized evaluation

Let us consider, as before, a pointM on the perturbed crack front F . The local direction

of crack propagation makes an arbitrary angle θ with the x-direction. The elastic ERR rate

for a kink angle α is given by:

G (α) =
1− ν2

E

(
K2

I (α) +K2
II (α)

)
+

1 + ν

E
K2

III (α) (8.4)

where KI (α), KII (α) and KIII (α) are given by Leblond [1999]’s formulæ :





KI (α) = FI,I (α)KI (z, t) + FI,II (α)KII (z, t)

KII (α) = FII,I (α)KI (z, t) + FII,II (α)KII (z, t)

KIII (α) = FIII,III (α)KIII (z, t)

(8.5)

where the SIFs (Ki (z, t)) are given by Eq. (8.2).

Discarding second-order terms in the crack perturbation, we get :

G

(
α, θ,

δKI

K∞
I

,
δKLR

II

K∞
I

)
= G∞

[
gI (α, θ)

(
1 + 2

δKI

K∞
I

)
+ gII (α, θ)

δKLR
II

K∞
I

]
(8.6)

where gI and gII are linked to Amestoy-Leblond’s functions (Fi,j) through the following
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relation :





gI (α, θ) =
(
F 2
I,I (α) + F 2

II,I (α)
)
F 2
I,I (θ)

+
(
F 2
I,II (α) + F 2

II,II (α)
)
F 2
II,I (θ)

+2 (FI,I (α)FI,II (α) + FII,I (α)FII,II (α))

·FI,I (θ)FII,I (θ)

gII (α, θ) = 2
(
F 2
I,I (α) + F 2

II,I (α)
)
FI,I (θ)FI,II (θ)

+
(
F 2
I,II (α) + F 2

II,II (α)
)
FII,I (θ)FII,II (θ)

+2 (FI,I (α)FI,II (α) + FII,I (α)FII,II (α))

· (FI,I (θ)FII,II (θ) + FII,I (θ)FI,II (θ))

(8.7)

Appendix 8.B First LEFM perturbative equations for the

out-of-plane perturbations of the half-plane

crack under mixed mode loading with higher-

order terms (T-stresses, A-stresses)

In this appendix, we calculate Movchan et al. [1998]’s (3.36) formulae explicitly, taking

into account mixed Mode I+II+II (K∞
I ,K

∞
II ,K

∞
III) as well as higher-order terms in the

asymptotic development of the crack tip stresses, the T-stresses (T∞
xx , T

∞
zx ) (constant terms)

and A-stresses (A∞
I , A

∞
II , A

∞
III) (

√
r terms).

Mode I perturbations

δKI (x, z) =− 3

2
K1

II

@fy
@x

(x, z)− 2K1

III

@fy
@z

(x, z) +

(
r

π

2
A1

II +K 01

II

)

fy (x, z) +
K1

II

2π
PV

Z +1

−1

fy (x, z)− fy (x, z
0)

(z − z0)
2

dz0

+

p
2

4π

1− 2ν

1− ν
Re

2

6

4

Z x

−1

dx0

Z +1

−1

K1

III − i (1− ν)K1

II

(x− x0 + i (z − z0))
3/2

·
@fy
@z0

(x0, z0)
p
x− x0

dz0

3

7

5

−
p
2

4π

1− 2ν

1− ν
Re

"

Z x

−1
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Mode II perturbations
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Mode III perturbations
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Appendix 8.C Performances of the computational model

8.C.1 Software versus hardware acceleration

The acceleration procedure presented in Section 2.3.3 is a way to speed up the procedure

by working on the software part of the computational method. Efforts have been made

to speed up simulations through hardware-oriented methods. The C language, a low level

one, has been chosen to make the simulations as fast as possible on a single core. Local

(OpenMP) and distributed (MPI) CPU parallelisms have been investigated. In the case

of OpenMP, it often appears to be more interesting to run n simulations on 1 core than

1 simulation on n cores even for n = 2, due to the small computational time required by

a single simulation and the global number of simulations required for parametric studies.

Distributed parallelism on MPI appears to be even more detrimental to computational per-

formances. Indeed the computation time of a single step is small and data needs to be

merged at the end of each step for the computation of the SIF perturbations, which involve

the position of the whole crack front. The time required to exchange data between dis-

tributed stations slows down the computation dramatically. GPU parallelism on Cuda has

also been investigated but the fact that points in different interaction states (Section 2.2.3.a)

behave differently does not allow to take fully advantage of the GPU parallelism, where

all cores need to execute the same algorithm to make the most of GPU specificities. We

thus stick to monocore simulations in all studies presented in this manuscript. Individual

simulations are launched in parallel thanks to GNU Parallel [Tange, 2011].

8.C.2 Algorithm complexity

8.C.2.a Problem statement

We finally conduct a study where we define the algorithmic complexity of our numerical

method (computational time, computational step count) regarding the various convergence

parameters.

Our numerical method contains four convergence parameters :

1. ∆z, the spatial discretization of the crack front. It dictates the total number of crack

front points N for a given system size Lz ;

2. ∆Gmax, the loading increment during pinning configurations. This parameter also

corresponds to the upper bound of the errors made on Griffith’s criterion G = Gc
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during the pinning events. It ultimately controls the error made on the macroscopic

loading required to make the crack propagate ;

3. ∆xmax, the maximum crack advance during a propagation step. Many variables are

saved locally on a spatial grid. A finner ∆xmax allows a better description of crack

propagation. In contrast to previous numerical methods [Bower and Ortiz, 1990;

Lazarus, 2003; Favier et al., 2006a; Vasoya et al., 2016a], it does not have any major

impact on the numerical convergence of our simulations given that we adopted a

time-based convergence criterion;

4. pv corresponds to the threshold on crack velocity variations below which the propa-

gation can be fastened considerably. It only plays a significant role in the case of very

low inclusion density.

Lz/d 64

Lx/d 64

Ly/d 10

ρinc 0.25

σd/d 0

(a) Geometrical properties of the domain

Geometry Spherical

ν 0.3

Ginc
c /Gmat

c 1.75

σ̃ 0

Gint
c /Gmat

c 1

(b) Mechanical properties of the composite

vm/v0 10−4

L/d 103

G0/Gmat
c 1

(c) Loading parameters

∆z/d [1/64, 1/32,1/16, 1/8, 1/4]

∆xmax/d [1/100, 1/50,1/25, 1/10, 1/5, 1/2]

∆Gmax/Gmat
c

[

10−6, 10−5, 10−4,10−3, 10−2, 10−1
]

pv
[

10−6, 10−4,10−2, 10−1
]

(d) Numerical parameters

Table 8.1: Numerical parameters used in the performance study.

We define a reference case where the numerical convergence parameters meet their lowest

value :

∆z =
1

64
d; ∆Gmax = 10−6Gmat

c ; ∆xmax =
1

100
d; pv = 10−6 (8.11)

The following study consists in quantifying the impact of such parameters on three different

indicators :

1. the overall simulation time ∆tsimu;

2. the precision on the macroscopic loading ∆Gerror = 〈|G∞ (x)−G∞
ref (x)|〉x with regard

to the reference configuration ;

3. the precision on crack trajectory ∆herror 〈|h (z, x)− href (z, x)|〉x, where h denotes the

height profile of the resulting fracture surface.

8.C.2.b Overall performances

We thus compute the propagation of a crack interacting with a medium-scaled disordered

distribution Lz = Lx = 64 d of tougher spherical inclusions Ginc
c = 1.75Gmat

c and Gint
c =

Gmat
c for various convergence parameters. The simulation parameters are summarized in
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Table 8.1

For each of the four convergence parameters considered, we make it vary, letting the

other fixed (to the values in bold in Table 8.1). The numerical errors on the macroscopic

loading ∆Gerror and the crack trajectory ∆herror are estimated in comparison to the stricter

case. The results are averaged on five different distributions. Final results are plotted in

Fig. 8.1-Fig. 8.3. From those curves, we can establish that :

• ∆Gmax essentially controls the precision of the algorithm as depicted in Fig. 8.1. It

effectively ensures a precision at the order of ∆Gmax on the macroscopic loading. The

macroscopic loading impact local SIF, which controls the crack trajectory through

the GMERR criterion. Thus it is normal that such parameter also gives us a better

precision on the height profiles of the crack surface. Yet the lower it gets, the longer

the simulations become : the pinned configurations are not accelerated enough and a

lot of time is lost thereby ;

• the spatial discretization ∆z is the second most important parameter on the macro-

scopic indicators ∆Gerror and ∆herror. As depicted in Fig. 8.2, the finer the mesh, the

better the precision since more points of the crack front contribute to the interaction

with the inclusions and the pinned configurations are better modeled ;

• the maximal advance criterion ∆xmax can bring better simulations results at a small

computational cost but have little impact on the convergence of our algorithm (Fig. 8.3)

;

• results for pv are not plotted since it has a very small impact on numerical precision

even if it allows significant computation acceleration in very restricted cases.

Finally, we can extract from those results the impact of various parameters on the dura-

tion of our simulations as :

∆tsimu ∝ ∆z−2∆G−0.8
max∆x

−0.5
max (8.12)

The final procedure is at the end in O
(

N2
)

and not O (N ln(N)) as allowed by the

FFT algorithm. It is explained by the fact that the number of points does increase the

computation time of each step in O (N ln(N)). It also increases in O (N) the total number

of steps computed for a simulation since the time step ∆tconv depends on ∆z (Eq. (2.29)).

It results in a complexity in O
(

N2ln(N)
)

. The ln(N) dependence cannot be highlighted

on such small variations of N .
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Figure 8.1: Impact of the loading increment parameter ∆Gmax on numerical precision on the macroscopic

loading (a) or fracture surface (b) and the simulation time ∆tsimu
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Figure 8.2: Impact of the spatial step ∆z on numerical precision on the macroscopic loading (a) or

fracture surface (b) and the simulation time ∆tsimu
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Figure 8.3: Impact of the maximal advance parameter ∆xmax on numerical precision on the macroscopic

loading (a) or fracture surface (b) and the simulation time ∆tsimu
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Appendix 8.D Homogenization of brittle fracture properties :

towards a non-dilute scheme for the out-of-

plane interactions.

8.D.1 How does the interaction of a crack with an inclusion impact con-

secutive interactions ?

During a by-pass event, the crack front deforms out of the mean crack plane. When

the crack leaves the interface and goes back in the matrix, the out-of-plane perturbation is

relaxed toward a flat configuration due to the long-range elastic interactions of Eq. (2.14).

However, the crack may land on an inclusion before this relaxation phase is over. It then

lands on this inclusion with a non-zero angle θini. Moreover, when pinned by an inclusion,

the crack front cannot adapt to local variations of Mode II contributions δKII resulting

from the out-of-place excursions of other regions of the crack front. It may thus be loaded

under a mixed Mode I+II. Those perturbations can change the nature of the interaction

mechanism selected by the crack.

Impact of the initial angle on crack-inclusion interaction

The impact of landing with an initial angle θini on the inclusion on the crossing to by-pass

transition can be analyzed within the two-dimensional framework developed in Section 3.3.1.a.

Consider again the two-dimensional case where a crack is landing on a cylindrical inclusion

invariant along the front direction (Oz). The crack lands with an initial angle θini on the

inclusion at a height ylanding, imposing an angle θtan for the by-pass direction. Since it

is initially propagating in the homogeneous matrix, its out-of-plane relaxation follows the

principle of local symmetry so that the mode mixity ratio is null, ρii = KII/KI = 0.

We consider the situation where a crack lands with an angle θini =
π
18 (10◦) at a height

ylanding/d = −0.3 on a inclusion of toughness Ginc/G
mat
c = 1.8. We see in Fig. 8.4 that the

initial angle increases the kink the crack has to make to by-pass the inclusion downwards.

The ERR the crack can develop in the tangent direction G (θtan) is thus reduced (Fig. 8.4.a).

It can lead the crack to cross the inclusion where it would have by-passed it otherwise

(Fig. 8.4.c).

If the crack had landed on the upper part of the inclusion, a positive landing angle θini
would have decreased the kink required to by-pass the inclusion and thus favor the by-pass

mechanism over inclusion crossing. The impact of the initial angle can be rationalized from

Eq. (3.26) and translated in a new interaction diagram, plotted in Fig. 8.5. Landing on

an inclusion with an angle can thus modify the crack-inclusion interaction mechanism by

reducing/increasing the kink angle the crack has to make to by-pass the inclusion and thus

favors/penalizes the related interaction mode.
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Figure 8.4: Generalized Maximum Energy Release Rate criterion for a non-zero initial angle : angle

distribution of G (a), Gc (b) and (G−Gc) (c) for a crack landing with an angle θini =
π
18

(10◦) at a height

ylanding/d = −0.3 on a inclusion of toughness Ginc/G
mat
c = 1.8 (d) at the onset of depinning

Figure 8.5: Two-dimensional analysis of the impact of an initial angle θini on the by-pass to crossing

transition: the crack lands a height ylanding with an angle θini =
π
18

on a cylindrical inclusion characterized

by the toughness ratio Ginc
c /Gint

c . The reference transition limit for a zero angle is plotted from Fig. 3.16

in black dashed line.

Impact of the long-range interactions on crack-inclusion interaction

We saw in Section 3.4.1 that a local Mode I+II mixity triggered by long-range elastic

interactions (see Eq. (2.14)) can also change the way the crack interacts with an inclusion.

A positive mode mixity ratio ρii = KII/KI will favor inclusion crossing over inclusion by-

pass if the crack lands on the upper part of the spherical inclusion and promote inclusion

by-pass over inclusion crossing if the crack lands on the lower part of the inclusion. As

before, the impact of the long-rate interactions on the crossing to by-pass transition can be

taken into account through Eq. (3.26).
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The relative impact of those mechanisms in our simulations : the bi-inclusion

case

Both mechanisms (non-zero initial angle and local mode mixity triggered by long-range

elastic interactions) are likely to occur when a crack interacts with a disordered distribution

of inclusions. The question is to know how often such perturbations are likely to affect

the crossing to by-pass transition. To address this problem, we consider the bi-inclusion

problem, where two spherical inclusions of diameter d are located nearby. We explore how

the interaction of the crack with the first inclusion modifies the interaction mechanism

triggered on the second one. If the first inclusion is crossed, it does not modify the landing

angle on the second inclusion or the long-range perturbations in Mode II. We thus consider

the case where the first inclusion is by-passed. To trigger as many interactions as possible,

we assume that the crack lands on the equatorial plane of the first inclusion, giving rise to

large out-of-plane perturbations
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Figure 8.6: Array of position for the second inclusion (light grey) in the vicinity of the first one (dark

grey) : three-dimensional simplified representation (a) and real discretization in the (x0z) plane (b) and

(y0z) plane (c)

We place the second particle in the vicinity of the first one, at most at a distance 2 d

as depicted in Fig. 8.6. We choose a coarse radial disposition of the second inclusion in

the (x0z) plane and a much finer disposition in the y-direction, since the landing height

is a decisive parameter for crack-inclusion interaction (see Section 3.3.1). Finally, for each

second inclusion position, we vary the inclusion toughness from Ginc
c = Gmat

c to Ginc
c =

3Gmat
c . We end up with 75,241 possible configurations, which are computed within a day

thanks to the computational performances offered by the perturbative approach. Simulation

parameters are summarized in Table 8.14.

From those simulations, we extract the geometrical configuration (x, y, z, θ) and the local

loading (KI,KII) at each point of the crack front interacting with the second inclusion.

We predict analytically from Eq. (3.26) the interaction mechanism that would have been

selected instead in the absence of a neighboring inclusion. We compare these theoretical

predictions to the mechanism actually observed in numerical simulations. Fig. 8.7 shows

the positions of the second particle that have been significantly impacted by the by-pass of

the first one. We conclude from Fig. 8.7 that the interaction between inclusions is limited

and very local : if two inclusions are positioned far away, their interaction with the crack
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can be considered independent of each other. However, the landing angle θini seems to

play a dominant role on crack-inclusion interaction and has thus to be considered in the

homogenization framework.
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Figure 8.7: Impact of a non-zero initial angle θini (a) and mode mixity (b) triggered by the by-pass of the

first inclusion on the interaction mechanism happening on second one. The colormap represents the

probability of interaction shift (crossing to by-pass or by-pass to crossing) at a given position. Abnormally

high values located far away from the first inclusion can be attributed to lack of statistics.

8.D.2 Incorporation of the interaction angle in the model

In the proposed non-dilute model, the crack is allowed to land on the inclusion with a

non-zero angle θini. The probability density function for a realization ωF ∈ ΩF thus reads :

pfrve (ωF) = py (y) · pθ (θini) · pd (dinc) · pinc
(

Ginc
c

)

· pint
(

Gint
c

)

(8.13)

where pθ is the probability density function associated with the landing angle θini. The

impact of θini on the interaction mechanism is well understood from Eq. (3.26) so that

the main challenge of the non-dilute model consists in estimating the probability density

function pθ.

A theoretical model for the relaxation of a perturbation in a homogeneous phase

To take up this challenge, we first have to understand the relaxation dynamics of the crack

front after a by-pass event. We consider the theoretical problem where the crack front

is only perturbed out-of-plane, so that fx (z, t = 0) = 0 and fy (z, t = 0) = h0 (z). It is

propagating in a homogeneous phase, namely the matrix.

Under the hypothesis where crack angle θ = arctan
(

∂fy
∂x

)

remains small during crack

propagation, Mode II perturbed SIF writes as in Eq. (2.14). These Mode II contribution

being small in regards to Mode I, the Generalized Maximum Energy Release Rate (GMERR)

criterion reads at first order :

∂fy
∂x

(z, t) ∼ θ (z, t) = −2
KII (z, t)

KI (z, t)
= −2

δKII (z, t)

K∞
I (t) + δKI (z, t)

= −2
δKII

K∞
I

(z, t) (8.14)

Under the small-angle assumption θ ≪ 1, the out-of-plane perturbation contributions in
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G are second-order terms. The in-plane perturbation evolution then reads Eq. (3.2) :

1

v0

∂fx
∂t

(z, t) =
vm
v0

+
G∞

Gmat
c

(

1− fx (z, t)

L − 1

π
PV

∫ +∞

−∞

fx (z, t)− fx (z
′, t)

(z − z′)2
dz′

)

− 1 (8.15)

If we suppose that L → +∞, given that fx (z, 0) = 0, we get :

fx (z, t) =

[

vm + v0

(

G∞

Gmat
c

− 1

)]

t (8.16)

In that case, the time t can be replaced by the position x and the out-of-plane pertur-

bation fy (z, t) becomes the height profile of the fracture surface h (z, x). The out-of-plane

relaxation equation finally reads :

∂h

∂x
(z, x) = −A (ν)

π
PV

∫ +∞

−∞

h (z, x)− h (z′, x)

(z − z′)2
dz′ (8.17)

where A (ν) =
2− 3ν

2− ν
is varying between 1

3 and 1.

In order to model out-of-plane relaxation from a by-pass event, we consider that the crack

is initially perturbed out-of-plane by a box-car function perturbation characterized by its

width d in the z-direction and its height ∆h in the y-direction as illustrated in Fig. 8.8.a.

We thus have :

h (z, 0) = ∆hH (z) (8.18)

where H is the indicator function of the interval
[

−D
2 ,

D
2

]

.

By working in the Fourier space and using Gradshteyn and Ryzhik [2014] formula

(3.893.1) to come back in the real space, one gets :

∂h

∂x
(z, x) = −A (ν)∆h

π

[

D/2 + z

(A (ν)x)2 + (D/2 + z)2
− −D/2 + z

(A (ν)x)2 + (−D/2 + z)2

]

(8.19)

Or alternatively :

h (z, x) = ∆hH (z)− ∆h

π

[

arctan

(

A (ν)x

D/2 + z

)

− arctan

(

A (ν)x

−D/2 + z

)]

(8.20)

Such relaxation is plotted in Fig. 8.8.b.

Theoretical estimations of the landing angle probability density function

This simple model allows us to estimate the probability density function pθ associated with

the landing angle θini from the following procedure :

1. for each FRVE ωF ∈ ΩF, we can predict under the dilute hypothesis if the inclusion of

diameter d is crossed or by-passed for a given landing height y. If the inclusion is by-

passed, the crack front it deformed out-of-plane. The out-of-plane perturbation can be

approximated as a box-car function of widthD
√

1−
(y
d

)2
and height ∆h = d

2−y. The
angle spatial distribution θ (z, x) = arctan

(

∂h
∂x (z, x)

)

during the subsequent relaxation

can be inferred from Eq. (8.19). If the inclusion is crossed, θ (z, x) = 0 ;
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fy(z, t)D

∆h

z

x

y

O

x(t)

(a) (b)

Figure 8.8: Out-of-plane box-car perturbation of height ∆h and size D (a) and its relaxation (b)

2. the bi-inclusion study makes us understand that an inclusion has to be placed in the

vicinity of a by-passed defect to trigger a shift in the interaction mechanism happening

on this inclusion. Thus we can assume that the angle at which the crack impacts the

inclusion is caused by the relaxation from the by-pass of the nearest neighbor inclusion.

We assume that the point 1 from which the crack leaves the first inclusion to relax in

the matrix and the point 2 on which the crack lands on the second inclusion with an

angle both follow a Poisson planar distribution. Then the probability p1→2 (∆z,∆x)

that those two points are separated by a distance ∆z in the z-direction and ∆x in

the x-direction reads [Torquato, 2002] :

p1→2 (∆z,∆x) = 2πρinc
√

∆z2 +∆x2exp
[

−πρinc
(

∆z2 +∆x2
)]

(8.21)
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Figure 8.9: Probability density function of landing angles pθ (θini) for the interaction between a crack and

an inclusion distribution of density ρinc = 25% and toughness Ginc
c = 2Gmat

c (a) and Ginc
c = 4Gmat

c (b).

The angle at which points of the crack front land on a inclusion are recorded during numerical simulation

(in red cross markers) and compared to the probability density function reconstructed analytically (in

black cross markers).

The superposition of the angle spatial distribution θ (z, x) for each FRVE ωF ∈ ΩF, with

the associated weight function p1→2 (z, x) allows to construct numerically the probability

density function of landing angles pθ (θini) required by the non-dilute model. Examples
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of constructed pθ (θini) are given in Fig. 8.9 and compared to probability density function

of landing angles extracted from numerical simulations. We see that the comparison be-

tween the theoretical and the numerical estimation of the probability density function pθ
is satisfactory despite the crudeness of the analytical model.

The homogenization procedure is now conducted considering FRVEs with a crack landing

with an angle θini on the inclusion. The interaction mechanism is inferred from Eq. (3.26).

The CRVE is then constructed as in Section 4.4.3. 〈Gc〉, σ (Gc), ξz, ξx are estimated from

the non-dilute probability density function pfrve of Eq. (8.13) under the ergodic assump-

tion. They are finally injected in Eq. (4.31) to predict the effective toughness of large-scale

disordered systems from Section 4.3.2 under a non-dilute hypothesis.

Appendix 8.E Numerical parameters used in crack propaga-

tion simulations

8.E.1 Chapter 3

Lx/d [2, 4, 8, 16, 32]

Lx/d 4

(a) Geometrical properties of the domain

Ginc
c /Gmat

c [1 : 0.1 : 4]

(b) Mechanical properties of the composite

vm/v0 10−8

L/d 106

G0/Gmat
c 1

(c) Loading parameters

∆z/d 1/32

∆xmax/d 1/25

∆Gmax/Gmat
c 10−4

(d) Numerical parameters

Table 8.2: Parameters used in Section 3.2.2 for the determination of the effective

toughness of periodic arrangements of circular/square/elliptic inclusions with varying

parameters in beige

Lz/d 4

Lx/d 4

Ly/d 4

(a) Geometrical properties of the domain

ν 0.3

Ginc
c /Gmat

c [1 : 0.1 : 4]

Ginc
c /Gmat

c 1

ylanding/d [0 : 0.0125 : 0.5]

(b) Mechanical properties of the composite

vm/v0 10−8

L/d 106

G0/Gmat
c 1

(c) Loading parameters

∆z/d 1/32

∆xmax/d 1/25

∆Gmax/Gmat
c min

(

10−2cinc, 10
−3

)

(d) Numerical parameters

Table 8.3: Parameters used in Section 3.3 for the interaction of a crack with periodic

arrangements of spherical inclusions with varying parameters in beige
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Lz/d 4

Lx/d 4

Ly/d 4

dz/dx }1, 2, 4}

(a) Geometrical properties of the domain

ν 0.3

Ginc
c /Gmat

c [1 : 0.1 : 4]

Ginc
c /Gmat

c 1

ylanding/d [0 : 0.0125 : 0.5]

(b) Mechanical properties of the composite

vm/v0 10−8

L/d 106

G0/Gmat
c 1

(c) Loading parameters

∆z/d 1/64

∆xmax/d 1/25

∆Gmax/Gmat
c min

(

10−2cinc, 10
−3

)

(d) Numerical parameters

Table 8.4: Parameters used in Section 3.4 for the interaction of a crack with periodic

arrangements of ellipsoidal inclusions with varying parameters in beige

Lz/d 4

Lx/d 4

Ly/d 4

(a) Geometrical properties of the domain

ν 0.3

Ginc
c /Gmat

c [1 : 0.025 : 4]

Ginc
c /Gmat

c 1

βinc

[

0 : π
18

: π
2

]

ylanding/hup [0 : 0.1 : 1]

(b) Mechanical properties of the composite

vm/v0 10−8

L/d 106

G0/Gmat
c 1

(c) Loading parameters

∆z/d 1/64

∆xmax/d 1/25

∆Gmax/Gmat
c min

(

10−2cinc, 10
−3

)

(d) Numerical parameters

Table 8.5: Parameters used in Section 3.5 for the interaction of a crack with periodic

arrangements of cubical inclusions with varying parameters in beige

Lz/d 4

Lx/d 4

Ly/d 4

(a) Geometrical properties of the domain

ν 0.3

Ginc
c /Gmat

c [1 : 0.05 : 4]

Ginc
c /Gmat

c [0.6 : 0.1 : 1]

ylanding/d [0 : 0.05 : 0.5]

(b) Mechanical properties of the composite

vm/v0 10−8

L/d 106

G0/Gmat
c 1

(c) Loading parameters

∆z/d 1/64

∆xmax/d 1/25

∆Gmax/Gmat
c min

(

10−2cinc, 10
−3

)

(d) Numerical parameters

Table 8.6: Parameters used in Section 3.7 for the interaction of a crack with periodic

arrangements of spherical inclusions with varying parameters in beige
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8.E.2 Chapter 4

Lz/d 256

Lx/d 256

ρinc 0.25

(a) Geometrical properties of the domain

Geometry Circular

Ginc
c /Gmat

c [1, 4]

σ̃ 0

(b) Properties of the composite

vm/v0 10−8

L/d 106

G0/Gmat
c 1

(c) Loading parameters

∆z/d
[

1
32

, 1
8

]

∆xmax/d 1/50

∆Gmax/Gmat
c min

(

10−2cinc, 10
−3

)

(d) Numerical parameters

Table 8.7: Parameters used in Section 4.2.2.a to study the impact of the inclusion

toughness Ginc
c and mesh size ∆z on the effective toughness for coplanar propagation.

Lz/d [8, 4096]

Lx/d 384

ρinc 0.25

(a) Geometrical properties of the domain

Geometry Circular

Ginc
c /Gmat

c 1.5

σ̃ 0

(b) Properties of the composite

vm/v0 10−8

L/d 106

G0/Gmat
c 1

(c) Loading parameters

∆z/d 1/16

∆xmax/d 1/50

∆Gmax/Gmat
c min

(

10−2cinc, 10
−3

)

(d) Numerical parameters

Table 8.8: Parameters used in Section 4.2.2.a to study the impact of the system size Lz on

the effective toughness for coplanar propagation.

Lz/d 256

Lx/d 256

ρinc [0.1, 0.4]

(a) Geometrical properties of the domain

Geometry Circular or squared

Ginc
c /Gmat

c [1, 4]

σ̃ 0

(b) Properties of the composite

vm/v0 10−8

L/d 106

G0/Gmat
c 1

(c) Loading parameters

∆z/d 1/16

∆xmax/d 1/50

∆Gmax/Gmat
c min

(

10−2cinc, 10
−3

)

(d) Numerical parameters

Table 8.9: Parameters used in Section 4.2.2.a to study the impact of the inclusion density

ρinc on the effective toughness for coplanar propagation.
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Lz/d 256

Lx/d 256

ρinc 0.25

(a) Geometrical properties of the domain

Geometry Circular

Ginc
c /Gmat

c [1, 4]

σ̃ [0, 5]

(b) Properties of the composite

vm/v0 10−8

L/d 106

G0/Gmat
c 1

(c) Loading parameters

∆z/d 1/16

∆xmax/d 1/50

∆Gmax/Gmat
c min

(

10−2cinc, 10
−3

)

(d) Numerical parameters

Table 8.10: Parameters used in Section 4.2.2.a to study the impact of the contrast

disorder σ̃ on the effective toughness for coplanar propagation.

Lz/d 256

Lx/d 256

ρinc 0.25

(a) Geometrical properties of the domain

Geometry Elliptic

Ginc
c /Gmat

c [1, 4]

dz/dx ‖brace1, 2, 4, 8}

(b) Properties of the composite

vm/v0 10−8

L/d 106

G0/Gmat
c 1

(c) Loading parameters

∆z/d 1/16

∆xmax/d 1/50

∆Gmax/Gmat
c min

(

10−2cinc, 10
−3

)

(d) Numerical parameters

Table 8.11: Parameters used in Section 4.2.2.a to study the impact of the inclusion

elongation dz/dx on the effective toughness for coplanar propagation.

Lz/d 256

Lx/d 288

Ly/d 16

ρinc 0.25

σd/d 0

(a) Geometrical properties of the domain

Geometry Spherical

ν 0.3

Ginc
c /Gmat

c {1.5, 2, 3}
σ̃ 0

Gint
c /Gmat

c 1

(b) Mechanical properties of the composite

vm/v0 10−8

L/d
[

10−1 : 106
]

G0/Gmat
c 1

(c) Loading parameters

∆z/d 1/16

∆xmax/d 1/25

∆Gmax/Gmat
c min

(

10−2cinc, 10
−3

)

(d) Numerical parameters

Table 8.12: Parameters used in Section 4.3.1 to study the impact of the structural length

L on the effective toughness.
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Lz/d 256

Lx/d 288

Ly/d 16

ρinc 0.25

σd/d 0

(a) Geometrical properties of the domain

Geometry Spherical

ν 0.3

Ginc
c /Gmat

c [1, 4.5]

σ̃ 0

Gint
c /Gmat

c 1

(b) Mechanical properties of the composite

vm/v0 10−8

L/d 106

G0/Gmat
c 1

(c) Loading parameters

∆z/d
[

1
32

, 1
8

]

∆xmax/d 1/25

∆Gmax/Gmat
c min

(

10−2cinc, 10
−3

)

(d) Numerical parameters

Table 8.13: Parameters used in Section 4.3.2 to study the impact of the inclusion

toughness Ginc
c and mesh size ∆z on the effective toughness

ν 0.3

Ginc
c /Gmat

c 4

Ginc
c /Gmat

c 1

z/d 0

x/d 0.6

y/d 0

(a) Properties of the first inclusion

ν 0.3

Ginc
c /Gmat

c [1 : 0.05 : 3]

Ginc
c /Gmat

c 1

z/d [0.5, 2.5]

x/d [0.5, 2.5]

z/d [−0.5, 0.5]

(b) Properties of the second inclusion

Lz/d 8

Lx/d 4

Ly/d 8

(c) Geometrical properties of

the domain

vm/v0 10−8

L/d 106

G0/Gmat
c 1

(d) Loading parameters

∆z/d 1/32

∆xmax/d 1/25

∆Gmax/Gmat
c 10−3

(e) Numerical parameters

Table 8.14: Parameters used in Section 8.D.1 for the simulations of the bi-inclusion

problem with varying parameters in beige

Lz/d [16, 512]

Lx/d 588

Ly/d 16

ρinc 0.25

σd/d 0

(a) Geometrical properties of the domain

Geometry Spherical

ν 0.3

Ginc
c /Gmat

c {1.5, 2, 3}
σ̃ 0

Gint
c /Gmat

c 1

(b) Mechanical properties of the composite

vm/v0 10−8

L/d 106

G0/Gmat
c 1

(c) Loading parameters

∆z/d 1/16

∆xmax/d 1/25

∆Gmax/Gmat
c min

(

10−2cinc, 10
−3

)

(d) Numerical parameters

Table 8.15: Parameters used in Section 4.5.1 to study the impact of the system size Lz on

the effective toughness
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Lz/d 256

Lx/d 288

Ly/d 16

ρinc [0.1, 0.5]

σd/d 0

(a) Geometrical properties of the domain

Geometry Spherical

ν 0.3

Ginc
c /Gmat

c [1, 4.5]

σ̃ 0

Gint
c /Gmat

c 1

(b) Mechanical properties of the composite

vm/v0 10−8

L/d 106

G0/Gmat
c 1

(c) Loading parameters

∆z/d 1/16

∆xmax/d 1/25

∆Gmax/Gmat
c min

(

10−2cinc, 10
−3

)

(d) Numerical parameters

Table 8.16: Parameters used in Section 4.5.2 to study the impact of the inclusion density

ρinc on the effective toughness

Lz/d 256

Lx/d 288

Ly/d 16

ρinc 0.25

σd/d 0

(a) Geometrical properties of the domain

Geometry Spherical

ν 0.3

Ginc
c /Gmat

c [1, 4.5]

σ̃ [0, 5]

Gint
c /Gmat

c 1

(b) Mechanical properties of the composite

vm/v0 10−8

L/d 106

G0/Gmat
c 1

(c) Loading parameters

∆z/d 1/16

∆xmax/d 1/25

∆Gmax/Gmat
c min

(

10−2cinc, 10
−3

)

(d) Numerical parameters

Table 8.17: Parameters used in Section 4.5.3 to study the impact of the contrast disorder

σ̃ on the effective toughness

Lz/d 256

Lx/d 288

Ly/d 16

ρinc 0.25

σd/d 0

(a) Geometrical properties of the domain

Geometry Spherical

ν 0.3

Ginc
c /Gmat

c [1, 4.5]

σ̃ 0

Gint
c /Gmat

c [0.6, 1]

(b) Mechanical properties of the composite

vm/v0 10−8

L/d 106

G0/Gmat
c 1

(c) Loading parameters

∆z/d 1/16

∆xmax/d 1/25

∆Gmax/Gmat
c min

(

10−2cinc, 10
−3

)

(d) Numerical parameters

Table 8.18: Parameters used in Section 4.5.4 to study the impact of the interface

toughness Gint
c on the effective toughness
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Lz/d 256

Lx/d 288

Ly/d 16

ρinc 0.25

σd/d 0

(a) Geometrical properties of the domain

Geometry Spherical

ν 0.3

Ginc
c /Gmat

c [1, 4.5]

σ̃ 0

Gint
c /Gmat

c 1

(b) Mechanical properties of the composite

vm/v0 10−8

L/d 106

G0/Gmat
c 1

(c) Loading parameters

∆z/d 1/16

∆xmax/d 1/25

∆Gmax/Gmat
c min

(

10−2cinc, 10
−3

)

(d) Numerical parameters

Table 8.19: Parameters used in Section 4.6.1 to study the impact of the size disorder σd
on the effective toughness

Lz/d 256

Lx/d 288

Ly/d 16

ρinc [0.1, 0.3]

σd/d 0

(a) Geometrical properties of the domain

Geometry Cubical

ν 0.3

Ginc
c /Gmat

c [1, 4.5]

σ̃ 0

Gint
c /Gmat

c 1

(b) Mechanical properties of the composite

vm/v0 10−8

L/d 106

G0/Gmat
c 1

(c) Loading parameters

∆z/d 1/16

∆xmax/d 1/25

∆Gmax/Gmat
c min

(

10−2cinc, 10
−3

)

(d) Numerical parameters

Table 8.20: Parameters used in Section 4.6.2 to study the impact of the inclusion shape

on the effective toughness

Lz/d 256

Lx/d 288

Ly/d 16

ρinc 0.25

dmax/dmin {1, 2, 4}

(a) Geometrical properties of the domain

Geometry Ellipsoidal

ν 0.3

Ginc
c /Gmat

c [1, 4.5]

σ̃ 0

Gint
c /Gmat

c 1

(b) Mechanical properties of the composite

vm/v0 10−8

L/d 106

G0/Gmat
c 1

(c) Loading parameters

∆z/d 1/16

∆xmax/d 1/25

∆Gmax/Gmat
c min

(

10−2cinc, 10
−3

)

(d) Numerical parameters

Table 8.21: Parameters used in Section 4.6.3 to study the impact of the material texture

on the effective toughness
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