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Abstract

Current paradigms for human-computer interaction view the computer as a tool: a device
used to reliably, efficiently, and durably perform desired functions in a manner that conforms
to standards. Reliable and predictable performance preclude adaptation to the user. However,
popular culture has long presented an alternative view of computers as intelligent agents capable
of interacting with humans as people. This view of intelligent computers and especially intelligent
robots seems to evoke an innate desire to interact with an agent that is assumed to be both
intelligent and non-judgemental. The emergence of reliable technologies for machine learning and
machine perception increasingly enable alternative paradigms of human-computer interaction. The
emergence of a scientific community for affective computing is an example of one such alternative,
in which the artificial agent perceives and evokes affection in a human companion. Other paradigms
are also possible.

In this thesis, we are concerned with enabling technologies for collaborative intelligent systems.
Effective collaboration requires that both the human and the computer share an understanding of
their respective roles and abilities. In particular, it requires an ability to monitor the intentions
and awareness of the partner in order to determine appropriate actions and behaviors. Cognitive
science has much to offer in such an effort.

In recent decades, researchers in cognitive science have developed theories and models that
describe human abilities for attention, awareness, understanding, and problem-solving. In this
thesis, we explore how such theories can inform informatics to enable technologies for Collaborative
Artificial Intelligence. In particular, we use observations of humans with different levels of expertise
engaged in solving classic chess problems to explore the effectiveness of models for visual attention,
awareness, understanding, and problem-solving.

We have constructed an instrument for capturing and interpreting multimodal signals of hu-
mans engaged in solving problems using off-the-shelf commercially available components combined
with in-house software. Our instrument makes it possible to record body posture, gestures, facial
expressions, pupil dilation, eye-scan, and fixation, as well as player interactions with the chess
problem. When combined with self-reports, these recordings make it possible to construct com-
puter models for the awareness and understanding of the game situation during problem-solving
using concepts and models from cognitive science literature.

As a first experiment, chess players were recorded while engaged in problems of increasing
difficulty. These recordings were used to estimate a participant’s awareness of the current situation
and to predict the ability to respond effectively to threats and opportunities. Analysis of the
recordings demonstrates how eye-gaze, body posture, and emotional features can be used to capture
and model situation awareness. This experiment validated the use of our equipment as a general
and reproducible tool for the study of participants engaged in screen-based interaction involving
problem-solving and suggested improvements that were possible for future experiments. These
initial experiments revealed an unexpected observation of rapid changes in emotion as players
attempt to solve challenging problems. Attempts to explain this observation have led us to explore
the role of emotion in reasoning during problem-solving.

In the second part of the thesis, we review the literature on emotion and propose a cognitive
model that describes how emotions influence the process by which subjects select chunks (concepts)
for use in interpretation of a game situation. In particular, it is well known that problem-solving
is strongly constrained by limits on the number of phenomena that can be considered at a time.
To overcome this limit, human experts rely on abstraction to form new concepts (chunks) from
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emotionally salient phenomena. Our experiments indicate that emotion plays an important role,
not only in the formation of concepts but also in the selection of concepts to use in reasoning. We
hypothesize that expert players retain associations of concept with emotions in long-term memory
and use these to guide the selection of concepts for reasoning. This view is in accordance with
Damasio’s Somatic Marker hypothesis (from 1991), which posits that emotions guide behavior,
particularly when cognitive processes are overloaded.

We present initial results from a follow-on experiment designed to explore the fidelity of our
model and to search for evidence of the role of emotion in solving problems. Our model suggests
that an association of emotions with recognized situations guides experts in their selection of par-
tial game configurations for use in exploring the game tree.

Keywords: awareness, mental state, situation model, multimodal observation, physiological re-
sponse, emotions, body gesture, eye-gaze

iv



Résumé

Les paradigmes actuels de l’interaction homme-ordinateur considèrent l’ordinateur comme un
outil : un dispositif utilisé pour exécuter de manière fiable, efficace et durable les fonctions
souhaitées dans le respect des normes. Des performances fiables et prévisibles excluent toute
adaptation à l’utilisateur. Cependant, la culture populaire a longtemps présenté une autre vision
de l’ordinateur, celle d’un agent intelligent capable d’interagir avec l’homme en tant que personne.
Cette vision des ordinateurs intelligents, et surtout des robots intelligents, semble évoquer un
désir inné d’interagir avec un agent qui est supposé être à la fois intelligent et sans jugement.
L’émergence de technologies fiables pour l’apprentissage et la perception des machines permet
de nouveaux paradigmes d’interaction entre l’homme et l’ordinateur. L’émergence d’une commu-
nauté scientifique pour l’informatique affective est un exemple d’une telle alternative, dans laquelle
l’agent artificiel perçoit et évoque l’affection chez un compagnon humain. D’autres paradigmes sont
également possibles.

Dans cette thèse, nous explorons comment de telles théories issues des sciences cognitives
peuvent servir de base à l’informatique pour favoriser l’émergence des technologies d’intelligence
artificielle collaborative. En particulier, nous utilisons l’observation d’humains ayant différents
niveaux d’expertise engagés dans la résolution de problèmes d’échecs classiques pour explorer
l’efficacité des modèles pour l’attention visuelle, la prise de conscience, la compréhension et la
résolution de problèmes.

Nous avons construit un instrument pour la capture et l’interprétation de signaux multimodaux
d’humains engagés dans la résolution de problèmes. Notre instrument permet d’enregistrer la
posture du corps, les gestes, les expressions faciales, la dilatation de la pupille et les trajectoires
oculaires, ainsi que les interactions du joueur avec le problème des échecs. Combinés aux rapports
verbaux des joueurs, ces enregistrements permettent de construire des modèles informatiques pour
la prise de conscience et la compréhension de la situation de jeu lors de la résolution de problèmes
en utilisant des concepts et des modèles issus de la littérature des sciences cognitives.

Dans le cadre d’une première expérience, les joueurs d’échecs ont été enregistrés alors qu’ils
étaient engagés dans des problèmes de difficulté croissante. Ces enregistrements ont été utilisés
pour estimer la conscience qu’avait un participant de la situation actuelle et pour prédire la capacité
à répondre efficacement aux menaces et aux opportunités. L’analyse des enregistrements montre
comment le regard, la posture du corps et les caractéristiques émotionnelles peuvent être utilisés
pour capturer et modéliser la conscience de la situation. Cette expérience a validé l’utilisation de
notre équipement comme outil général et reproductible pour l’étude des participants engagés dans
une interaction sur écran impliquant la résolution de problèmes et a suggéré des améliorations
possibles pour de futures expériences. Ces premières expériences ont révélé une observation inat-
tendue de changements rapides dans les émotions des joueurs qui tentent de résoudre des problèmes
difficiles. Les tentatives d’explication de cette observation nous ont amenés à explorer le rôle de
l’émotion dans le raisonnement lors de la résolution de problèmes.

Dans la deuxième partie de la thèse, nous passons en revue la littérature sur les émotions
et proposons un modèle cognitif qui décrit comment les émotions influencent le processus par
lequel les sujets sélectionnent des éléments cognitives (concepts) à utiliser dans l’interprétation
d’une situation de jeu. En particulier, il est bien connu que la résolution de problèmes est forte-
ment contrainte par les limites du nombre de phénomènes qui peuvent être considérés à la fois.
Pour surmonter cette limite, les experts humains s’appuient sur l’abstraction pour former de nou-
veaux concepts à partir de phénomènes émotionnellement marqués. Nos expériences indiquent que
l’émotion joue un rôle important, non seulement dans la formation des concepts mais aussi dans la
sélection de ceux-ci dans le raisonnement. Nous émettons l’hypothèse que les experts conservent
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les associations de concepts et d’émotions dans la mémoire à long terme et les utilisent pour guider
la sélection des concepts pour le raisonnement. Ce point de vue est conforme à l’hypothèse du
marqueur somatique de Damasio (de 1991), qui avance que les émotions guident le comportement,
en particulier lorsque les processus cognitifs sont surchargés.

Nous présentons les premiers résultats d’une expérience conçue pour explorer la fidélité de notre
modèle et pour rechercher des preuves du rôle des émotions dans la résolution des problèmes. Notre
modèle suggère qu’une association des émotions avec des situations reconnues guide les experts
dans leur sélection de configurations de jeu partielles à utiliser pour explorer l’arbre de jeu.

Mots-clés: état mental, modèle de situation, observation multimodale, réponse physiologique,
émotions, gestes du corps, regard
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À côté de l’équipe, Philippe D., Gérard F. et Raffaella B. ont été d’un soutien scientifique et
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sur ta veste de costard. Cependant, je ne saurais combien te remercier d’avoir été là. Tu étais le
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ces instants musicaux.
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Merci Élodie, ma soeur, ma grande et unique soeur. Nous nous sommes beaucoup rapprochés
ces dernières années. Nous venons du même endroit, mais nos chemins sont différents. Nous nous
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Chapter 1

Introduction

Current paradigms for human-computer interaction view the computer as a tool. This computer-
centered approach relies on efficient, reliable, and predictable performance. However, popular
culture has long presented an alternative view of computers as intelligent agents capable of in-
teracting with humans as people: a human-centered paradigm. Such a view implies that the
interaction between humans and computers should be natural and similar to human social in-
teraction. Effective human social interactions rely on the successful interpretation of a variety
of nonverbal communicative cues such as facial expressions, body language, gestures, postures,
among other things. In particular, social interaction requires an ability to monitor the intentions
and awareness of the partner in order to determine appropriate actions and behaviors.

A system that can model the awareness and attention of a user could make human-machine
interaction more convenient by providing only the required information, avoiding distraction, and
making the interaction more intuitive. In this thesis, we explore how theories from Cognitive
Sciences can inform informatics to enable technologies for human-centered, Collaborative Artificial
Intelligence. In particular, we use observations of humans engaged in solving classic chess problems
to explore the effectiveness of models for visual attention, awareness, understanding, and problem-
solving.

1.1 Exploring Cognition with Chess

The emergence of reliable technologies for machine learning and machine perception increasingly
enables the use of alternative paradigms for human-computer interaction. In recent decades,
researchers in cognitive science have developed theories and models that describe human abilities
for attention, awareness, understanding, and problem-solving.

Chess has long been used in Cognitive Science to explore attention and to develop models
for problem-solving. In an extensive work involving participants of all chess backgrounds, from
amateurs to masters, Adriaan De Groot investigated the cognitive requirements and the thought
processes involved in playing chess (De Groot, 1978). His experiments require participants to
solve a chess problem and to verbalize their thought processes. This work has served as a model,
inspiring an essential body of cognitive science research.

In their study, Charness et al. showed that when engaging in competitive games, chess players
display engagement and awareness of the game situation with eye-gaze and fixation (Reingold,
Charness, Pomplun, and Stampe, 2001; Reingold and Charness, 2005). This suggests that the
mental models used by players can be at least partially determined from eye gaze, fixation, and
physiological response. The ability to detect and observe such models during gameplay can provide
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a new understanding of the cognitive processes that underlay human interaction.
Humans display awareness and emotions through a variety of non-verbal channels. It is in-

creasingly possible to record and interpret information from such channels. Thanks to progress
in related research, notably recently using Deep Learning approaches (Baltrusaitis, Zadeh, Lim,
and Morency, 2018; Cao, Hidalgo, Simon, Wei, and Sheikh, 2018), efficient, publicly available,
the software can be used to detect and track face orientation using commonly available web cam-
eras. Concentration can be inferred from changes in pupil size (Kahneman, 2011). Measurement
of physiological signs of emotion can be done by detection of Facial Action Units (Ekman, 1977;
Friesen, Ekman, et al., 1983) from both sustained and instantaneous displays (micro-expressions).
Heart rate can be measured from the Blood Volume Pulse as observed from facial skin color (Poh,
McDuff, and Picard, 2010). Body posture and gesture can be obtained from low-cost RGB sensors
with depth information (RGB+D) (Cao et al., 2018). Awareness and attention can be inferred
from eye-gaze (scan path) and fixation using eye-tracking glasses as well as remote eye-tracking
devices (Sheridan and Reingold, 2017). This can be directly used to reveal cognitive processes
indicative of expertise (Reingold and Charness, 2005), situation awareness in human-computer
interaction (HCI) systems (Losada, 2019) or vigilance system used in cars (D’orazio, Leo, and
Distante, 2004).

Our goal in this thesis is to investigate the extent to which observations of eye-gaze, posture,
emotion and other physiological signals can be used to model the cognitive state of subjects and
to explore the integration of multiple sensor modalities to improve the reliability of detection of
human displays of awareness and emotion. In particular, we use observations of humans with
different levels of expertise engaged in solving classic chess problems to explore the effectiveness
of models for visual attention, awareness, understanding, and problem-solving.

1.2 Multimodal Observation of Subjects Engaged in Solv-

ing Problems

We have constructed an instrument for capturing and interpreting multimodal signals of humans
engaged in solving challenging problems. Such recordings can be used to reveal human awareness of
the current situation and to predict the ability to respond effectively to opportunities and threats.
Our instrument (see Figure 5.3 on page 64) captures eye gaze, fixations, body postures, and facial
expressions signals from subjects engaged in interactive tasks on a touch screen. We use off-the-
shelf cameras, a Touch-Screen computer, a remote Eye-Tracking, and two adjustable USB-LED for
lighting condition control. Recording and data processing are performed using publicly available
and open-source software. A wooden structure, made with a laser cutter, is used to rigidly mount
the measuring equipment in order to assure identical sensor placement and orientation for all
recordings.

A first pilot experiment was designed to validate our instrument and to evaluate the effectiveness
of different systems and sensors for observing eye-gaze, facial expressions, body posture, pupil
dilation, and cardiac rhythm. With the aid of the president of a local chess club and our partners
from the CITEC laboratory, we defined 11 end-game chess problems, similar to the daily chess
puzzles that can be found in magazines or on chess websites. We ordered the problems in increasing
difficulty from easy to challenging tasks. Subjects were asked to solve chess tasks within a fixed, but
unspecified, time period. We recorded eye gaze, facial expressions, body postures, and physiological
reactions of the players as they solved problems of increasing difficulty. In a recording session with
the local chess club, we recorded 21 subjects solving the problems.
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Our initial hypothesis was that rapid changes of emotion correspond to the success or failure
of alternative branches during game tree exploration. We observed that such recordings could
be successfully used to estimate a participant’s awareness of the current situation and to predict
the ability to respond effectively to challenging situations. However, we were surprised to observe
that body features, and rate of change in emotion state evolved from a neutral emotion during
reactive play to a period of frequent touching and rapid changes in emotion as the problems
became more and more challenging. This can be partially explained knowing of memory (in
particular, Working Memory) is used while reasoning. Limits on the size of Working Memory are a
fundamental property of human cognition. Miller demonstrated that humans could simultaneously
retain between 5 and 9 cognitive elements in Short-Term Working Memory (Miller, 1956). Most
authors present Working Memory (WM) as a collection of buffers that represent propositions
representing perceived phenomena or associated concepts from Long-Term Memory (LTM). Cowan
(2016) reviews the history of research on Working Memory, discussing the variety of definitions
and experimental demonstrations that have been used to describe this phenomenon. For chess
players, the selection of the partial game description to hold in Working Memory is critical for
reasoning about chess.

In order to better understand the phenomena observed in our first experiment, we have con-
structed a model of the cognitive processes involved, using theories from cognitive science and
classic (symbolic) artificial intelligence. This model is a very partial description that allows us to
ask questions and make predictions to guide our future experiments. Our model posits that experts
reason with a situation model that is strongly constrained by limits to the number of entities and
relations that may be considered at a time.

Situation models (Johnson-Laird, 1989) provide a formal framework for describing human com-
prehension and problem-solving. In logic terms, a situation model is a state graph, in which each
state (situation) is defined as a logical expression of relations (predicates) defined over entities.
Entities can represent observed phenomena as well as instances of concepts, procedures, or episodes
from Long-term Memory. A change in the relation between entities results in a change in situation.
The use of situation models provides us a framework to model the limited structure of Working
Memory. This limitation forces subjects to construct abstract concepts (chunks) to describe the
gameplay, in order to explore alternative moves (Miller, 1956; Simon and Chase, 1988).

Formal representations of concepts, or chunks, stored in players’ memory can be expressed
as frames (Minsky, 1974). Frames define abstract concepts that can be instantiated as entities.
A frame associates the entity class with a set of properties and a set of procedures that can be
performed to determine the properties.

De Groot proposed that chess reasoning consists of 4 stages: Orientation, Exploration, Inves-
tigation, and Validation (De Groot, 1978). During the orientation phase, players perceive chunks
that can be used to model the situation. Beginners tend to fixate on individual pieces, while expert
players can be observed to fixate on the center of chunks, but make only very rapid saccades in
the direction of component pieces. Small subsets of chunks are then selected and used to explore
possible moves. This raises the question of how the player can select from among the large available
set of chunks. We believe that emotion plays a critical role in such selection. Expert players retain
associations of situations with emotions in Long-Term Memory. The rapid changes in emotion cor-
respond to the recognition of previously encountered situations during the exploration of the game
tree. We hypothesize that recalled emotions guide the selection of situation models for reasoning.
This assumption is in accordance with Damasio’s Somatic Marker hypothesis, which posits that
emotions guide behavior, particularly when cognitive processes are overloaded (Damasio, 1996).
Recognition of situations from experience evokes emotions that are displayed as facial expressions
and body posture. We hypothesize that the subject uses the evoked emotions to select from the
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many possible situations for reasoning about moves during orientation and exploration.
To validate and develop our model, we have conducted a second experiment in which partici-

pants were asked to explain their reasoning. The objectives were to determine if eye-gaze, valence,
arousal, and frustration could be correlated with the four phases of reasoning proposed by De
Groot, and to construct an ontology for chess concepts (chunks and relations) used by players.
Our model suggests that an association of emotions with recognized situations guides experts in
their selection of partial game configurations for use in exploring the game tree.

1.3 Thesis Outline

The ideas in this thesis are developed as follows:

Chapter 2: What goes on when trying to solve a problem?

Chapter 2 explores previous work on human awareness with reviews of the literature on human
memory, problem-solving, and metals models. To get to the heart of the matter, two fictional
chess players of different levels (one novice and one expert) are described while they are engaged in
solving a chess problem. Their physiological reactions, ocular trajectories, and emotional changes
are observed and compared. Significant differences between these two players are noteworthy, and
the following questions naturally arise from these observations: How can one explain the somatic
variations of players? Are they comparable? What can we say about their awareness of the
situation and comprehend the threats and opportunities?

To answer these questions, with start with a review of human memory. Human memory is
composed of three interacting entities: Short-Term Memory, Working Memory, and Long-Term
Memory. Short-Term Memory stores information temporarily (up to 30 seconds without rehearsal)
from the perceived external world for a latter used. Working Memory is a limited buffer, gather-
ing information from Short-Term Memory and retrieving connected information from Long-Term
Memory to compute new concepts. Lastly, Long-Term Memory is an unlimited space that stores
knowledge such as past experiences, procedural knowledge, or formulas.

To understand how memory is used for reasoning in solving problems, we give a review of
relevant Mental Models. Situation models provide a formal framework for describing human com-
prehension and problem-solving (Johnson-Laird, 1989). A situation is a spatial-temporal frame-
work composed of a list of entities, each of these holding specific properties and is associated with
functional relations.

Afterward, a review on the two way of thinking is done with Kahneman’s theory and his “Dual
Process” Theory (Kahneman, 2011). The first one can be seen as associative thinking, whereas the
second one is true reasoning. Involuntary impressions and thoughts brought up by System 1 are
automatic, almost unconscious, and are created upon habits. System 2, on his side, is the central
processing unit of your brain that is used to compute harder tasks that can not be handled by
System 1.

The last Mental Models reviewed gives insight on somatic behavior: the Somatic Marker Theory
proposed by Damasio (1996). He identified an influential link between emotional signals and this
special area of the prefrontal cortex. This link explains that somatic markers, such as variation
in heart rate, facial expressions, pupil dilation, body postures, muscle contractions, etc., can be
observed when a stimulus or a particular situation is encountered and is engaging a cognitive
process for the subject.
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Chapter 2 concludes with a summary of the reviewed mental models and how they can help us
to interpret the chess play

Chapter 3: What is an Emotion?

Chapter 3 examines the question of growing importance to human-computer and human-robot
interaction: What is an emotion? Starting with the work of Charles Darwin, chapter 3 opens the
discussion with a review of the many existing definitions of emotions, leading to the view that
emotions are complex processes that affect a variety of body and brain systems. It is interesting
to see the different definitions given by researchers from different fields of research: psychologists,
neurobiologists, behaviorists, etc.

Several models of emotion representations are then detailed. This non-exhaustive list allows us
to view and understand the evolution of knowledge about emotions. We are particularly interested
in the models proposed by Ekman and Friesen: Discrete Basic Emotions (Ekman, 1957) and the
one by Russel and Mehrabian Continuous emotions in 3D Model (Pleasure, Arousal, Dominance)
(Russell and Mehrabian, 1977). Despite the success of these two models in predicting the physical
signs of emotions from the activation of the micro-expressions of the face, these theories are subject
to a certain number of criticisms (Barrett, 2011). Other models are studied, such as Barrett’s,
which proposes to take into account the context in which the emotion is elicited (Barrett et al.,
2011).

We examine the neurobiological view that emotions are the product of the activity of neuro-
transmitters such as dopamine, noradrenaline, and serotonin resulting from activity in the hip-
pocampus and amygdala (Papez, 1937; MacLean, 1990). Emotions would be the product of the
activity of neurotransmitters such as dopamine, noradrenaline, and serotonin (Lövheim, 2012).
We review the importance that emotions play in the retention of information and the creation of
stored memories, as a result of activity in the amygdala.

This chapter sets the stage for our investigation of the role of emotions in cognition and memory
during problem-solving.

Chapter 4: Physiological Manifestations of Reasoning and their Observation

Chapter 4 reviews the external and observable manifestations of cognitive processes during problem-
solving, and poses the question: to what extent we can observe the reasoning of subjects engaged in
solving problems? The first section summarises the importance of the gaze in observing attention.
An anatomical definition of the eye is given before exploring the functioning of the human visual
system. To study how gaze is used in problem-solving, we use eye-tracking techniques: infra-red
cameras that track the user’s gaze in order to follow the eye’s fixations. We summarise several eye-
tracking techniques and focus on the use of Combined Pupil and Corneal Reflection (Duchowski,
2007). We describe the hardware and software used to track gaze and summarise the measurement
of gaze using fixations, scan path, and saccades (Holmqvist, Nyström, Andersson, Dewhurst, Jar-
odzka, and Van de Weijer, 2011). Several studies have been carried out in the framework of the
chess game by observing the gaze of chess players, several great discoveries on the functioning of
the brain and on the impact of expertise have been made (De Groot, 1978; Charness, Reingold,
Pomplun, and Stampe, 2001; Reingold and Charness, 2005).

Facial micro-expressions can be used to infer emotional state (Ekman, 1977; Friesen et al.,
1983). In particular, we describe how to measure the emotions of subjects using off-the-shelf
cameras and image processing software (Den Uyl and Van Kuilenburg, 2005; Baltrusaitis et al.,
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2018). These emotions are presented in two ways, in Ekman’s model (Discrete Basics Emotions,
Ekman, 1957) and in Russell’s model (3D PAD model, Russell, 1980).

The final section of chapter 4 focuses on body reactions related to cognitive processes. We first
discuss stressors and their bodily manifestations (Damasio, 1996; Harrigan, 1985). We see how to
define stress by three different approaches: biological, phenomenological, and behavioral (Aigrain,
Spodenkiewicz, Dubuisson, Detyniecki, Cohen, and Chetouani, 2016b); and what are the body
features that allow us to observe the state of stress of a subject. We define self-touches in which
the subject places a hand on his own body, followed by scratching, grooming, or rubbing. We see
that these movement

Chapter 5: Observing Human reasoning during problem-solving

Chapter 5 describes the recording setup and the first experiment conducted for this project. The
chapter begins with a discussion of similar experiments conducted by Herbert A. Simon, who
analyzed the information gathering of chess players with results modeled by two programs PER-
CEIVER (1969) and MAPP (1973) (Simon and Barenfeld, 1969; Simon and Gilmartin, 1973). This
overview gave us valuable information on early systems that mimic human reasoning.

Based on the observable metrics detailed in chapter 4, we have constructed a multimodal
recording instrument to observe subjects engaged in problem-solving. We describe the hardware
and software used for this instrument and present a first experiment designed to evaluate the
suitability of the instrument to observe the reasoning of subjects engaged in problem-solving. This
experiment served to verify that the metrics identified in chapter 4 are relevant for the study of
reasoning. The results obtained presented very interesting information, validating our hypotheses,
but also raised new questions about unexpected phenomena: the rapid variations in the emotional
state did not correspond to our experimental hypotheses. Nevertheless, the observed metrics
presented significant information to differentiate an expert chess player from an advanced player
with a 90% performance using a classical machine learning (SVM) algorithm.

Chapter 6: Modeling Awareness from Observation of Eye-Gaze and Emotions

Chapter 6 presents a Cognitive model designed to explain the rapid variations in emotion observed
during our first experiment. The chapter begins with a review of the Frames schema structure
proposed by Minsky (1974) as a model for concepts. Several examples of representations of chess
phenomena are represented using Frames. We then propose our own Working Memory model,
based on the literature (reviewed in part in Chapter 2). Our model represents the limited size of
Working Memory, its interactions with other memory components (episodic memory, procedural
memory, and concept representation), but also its interactions with the external world (through
perception and manipulative actions).

Chapter 7: an Experiment to Observe the Role of Emotion in Reasoning

In order to develop and validate our cognitive model, a second experiment is organized. First, we
explain the choice of a self-reporting protocol to gather as much information as possible on the key
elements used by the players during their problem-solving. To do so, we give a review of different
self-reporting methods (Ericsson, 2006; Chi, 1997).

We then describe the tasks designed specifically for this experiment and the development of an
ontology listing the phenomena present in these problems. This ontology helps us to correlate the
players’ explanations with identified phenomena. Twenty-three volunteers recruited from a local
chess club provided self-reports of awareness after solving each of and increasingly difficult set
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chess problems. Results are given for players of different level: an expert, intermediate and novice
player. Our analyses remain partial, but the first results are promising, and we are certain that we
are on the right track to effectively analyze the reasoning of subjects engaged in problem-solving.

Chapter 8: Conclusion and Perspectives

This last chapter concludes the work carried out in this thesis by summarizing the steps taken,
then proposes the many possible applications that could benefit from the contributions of our
work.
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Chapter 2

What Goes On When Trying to Solve a
Problem?

2.1 Story of Two Chess Players Solving a Chess-Task

Picture the following scene: two chess players face a chess puzzle, displayed in Figure 2.1. The
presented problem is quite common; these can be found on specialized chess websites or in maga-
zines. In this case, it is Black to play; they are in a tough position, outnumbered, and have two
of their pieces are threatened (including the Queen, a significant piece). The two players have
different profiles; one is of average level who started chess three years ago and has participated in
some local competitions with average results (Elo ranking1: 1550); our second player is considered
as an expert among his teammates, practicing from his early age, it is now over 15 years that
he plays at both local and international competitions, he often reaches the top 5 players of the
tournament (Elo ranking: 2300). Let us see how these players react when they are faced with our
chess problem.

Novice’s point of view - Nemo

Nemo starts to analyze the situation. His pupils are dilating. It begins by locating the essential
pieces of each color: the position of Kings, Queens, Rooks, Bishops, and Knights. Then he makes
a material assessment, who has the advantage in both the number and quality of pieces? After a
few seconds, Nemo concludes that White, his opponent, has an advantage. During his observation,
he noticed that both his Queen and his Knight are threatened. Good news, his King is well
protected, as well as his opponent’s. However, the main concern for Nemo is the imminent threat
to his pieces. Nemo’s heart rate accelerates, he stands up straight on his chair, puts his hand on his
chin, frowned, blushed, and sighed slightly. Nemo lists the possible moves to save his two pieces.
He quickly realizes that it is impossible, even if he checks2 the opposing King to save time. Nemo
puts his hand through his hair; his pupils dilate more, his face tightens and loosens as he evaluates
new possibilities. He, again, reinstalls himself in his chair. He decides to save his most important

1 The Elo system is a method to calculate rating for players based on tournament performance. Ratings vary
between 0 and an unbounded upper bound, however the current player with the highest Elo has 2872. https:

//en.wikipedia.org/wiki/Elo_rating_system (last seen 01/2020)
2A check is a special situation in chess that occurs when a player’s King is under threat during his opponent’s

turn. When its King is in check, the player must get out of check. If no available move is possible to move out of a
check state, the game ends in checkmate, and the player loses. See: https://en.wikipedia.org/wiki/Check_

(chess) (last seen 01/2020)
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Figure 2.1: A typical chess puzzle, Black to play.

piece: his Queen. Nemo’s eyes are moving faster; he knows that he has already spent much time
on the problem. Finally, He spent 5 minutes to make his decision: sacrificing his Knight to save
the Queen.

Expert’s point of view - Eliott

Eliott looks at the chessboard, takes an overview of the situation, his pupils dilate slightly. “The
opposing King is trapped,” he thought. Eliott is evaluating possible moves to attack the King. A
slight variation in Eliott’s heart pulse is perceived, quickly followed by a minor contraction (almost
imperceptible) of his facial muscles; a decision is taken. Eliott has found the solution in less than
10 seconds: check and checkmate in 3 moves.

The same problem has been presented for two players of different levels. How can one explain
the somatic variations of players? Are they comparable? Can we tell, from what we see, their
awareness of the situation and comprehend the threats and opportunities? To understand how
players can solve a problem, we will first explore how Human Memory organizes knowledge in
section 2.2. This is followed by Associative Memory and Mental Models in section 2.3 and section
2.4.

2.2 Background on Human Memory

To perform daily tasks, people must maintain access to a large amount of information. For exam-
ple, a teacher might need an effort to capture the names of new students while being comfortable
at giving a lesson he first learned twenty years ago. Individuals also need contextual information;
readers must have access to previously mentioned characters or objects. Similarly, mental calcu-
lators must maintain intermediate results in memory. A first categorization of memory has been
proposed by William James (1890) with a distinction between primary and secondary mem-
ory. The former being the small amount of information held as “the trailing edge of the conscious
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Figure 2.2: Working Memory Model after Baddeley and Hitch (1974)

present” while the latter would refer to “the vast body of knowledge stored over a lifetime”. In this
section, we describe these two kinds of memory storage, today called Short-Term Memory (STM)
and Long-Term Memory (LTM). Then, a third special storage is described later in literature:
Working Memory (WM), which is used to maintain attention and perform computation.

2.2.1 Short-Term Memory

Early researchers (Broadbent, 1958; Miller, 1956; Peterson and Peterson, 1959) needed to define
a special process to account for the recall of information in the short term. This special place,
labeled as short-term memory, is used to temporarily retain a limited amount of information in a
very accessible state. This information is not used for any manipulation, but it could be rehearsed
to improve retention. For example: repeating a phone number to recall before writing it down, a
small list of goods to buy at the grocery shop, etc.

Two fundamental properties that have been the subject of debate are retention duration and
capacity. The duration for which information can be held in short-term memory is a challenging
problem. Current theories state that information can be retained between 15 and 30 seconds if no
effort is made to extend this period duration. Many cognitive processes could be used to extend
retention such as the rehearsal, coding, focus of attention, association with other memory processes
(Working- or Long-Term memory), etc. Covert verbal rehearsal can be used to refresh information
in short-term memory. The capacity of short-term memory varies between 5 to 9 elements according
to individuals’ capacity and the nature of the task (Miller, 1956; Cowan, 2016). This capacity can
be extended using a special cognitive process to organize and to store information into groups,
called chunks (this process is called “chunking” and will be developed in the following sections,
see 2.3.2). For example, if one is familiar with acronyms of Grenoble’s research laboratories, he
can easily remember the following letter series “LIGSTEEPINRIA” by decomposing it in 1- LIG
(Laboratoire d’Informatique de Grenoble), 2- STEEP (Soutenabilité, Territoires, Environnement,
Economie et Politique team) and 3- Inria (Institut National de Recherche en Informatique et en
Automatique). Without meaningful association, this series of 13 letters is challenging to remember
with only 4-5 units of memory (Miller, 1956; Ericsson and Kintsch, 1995).

In addition to chunking, an individual can extend the natural decay of stored information in
STM by using intentional rehearsal. This is what Baddeley described in his model of memory
(Baddeley and Hitch, 1974) (see Figure 2.2). He stated that a special module called the Phonolog-
ical loop acts as an inner voice and starts to repeat any information that enters the module to cope
with decaying. However, distracting tasks, or interference, can also alter retention significantly.
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Figure 2.3: Embedded-Processes Model after Cowan (1999)

2.2.2 Working Memory

Short review on the Working Memory

Recalling a list of names and performing arithmetic are two separate mechanisms. The former
only needs space to store temporary information, and can eventually be extended with rehearsal.
Calculation implies storing and using partial results that can act as a distraction (Miller, Galanter,
and Pribram, 1960). This suggests that a special place has to maintain the objectives to be reached
and to make comparisons between possible actions; this storage was labeled as Working Memory
and referred to the small amount of information that one can store in an accessible state for direct
manipulation. Working memory can store information from stimulus as well as retrieved concepts
from Long-Term Memory to be combined with the new information to obtain partial results. This
concept of working memory was brought to the forefront by Baddeley and Hitch (1974); Baddeley
(1992).

In his book: “Working Memory Capacity”, Cowan (2016) made an in-depth review of research
on working memory. He concentrated on what he called the capacity of the focus of attention,
defined as the amount of subjective or phenomenological idea of information one can retain at a
given moment (see Figure 2.3).

Definition

Cowan gives a broad definition of working memory as “the ability to remember things in an
immediate-memory task (a task with no delay between the end of the presentation of items to
be recalled and the period of the recall itself)” (Cowan, 2016). Given the number of different defi-
nitions of WM, we propose to summarise the relevant concepts about WM with a single definition
that we will use throughout this thesis: WM is a collection of buffers that hold propositions
representing perceived phenomena or associated concepts from LTM.

The stored information in WM can be combined to infer new elements about the perceived
world. Researchers described WM as an integrating mechanism and suggested that the limit in
cognitive performance is a limit in how many dimensions of concepts can be combined (Halford,
Wilson, and Phillips, 1998; Andrews and Halford, 2002) . Cowan gives Transitive Inference as an
example of an integrating mechanism: if one can observe A > B and B > C, and if already know
hierarchy concept, then he can draw the inference that A > C. The complexity of a concept can
be measured by the number of entities that are associated. We refer to this as the arity of the
concept. However, are storing concepts and processing dependant on the same resource? Halford
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and colleagues stated that to avoid processing termination due to overloading of information; one
could use a less complex strategy, like two-arity relations, instead of the optimal one, a three- or
four-arity relation, for example. This suggests that relations between concepts can be held in WM
and that more complex concepts require more energy and room to be processed.

Perceived phenomena are not the only elements stored in WM. Indeed, any new entity that
enters in WM will spread energy into LTM and activate a similar concept that involves this
entity (this concept is discussed later: see Section 2.3.1). Broadbent proposed that LTM always
provide feedback about new information stored in WM to group them into known categories
(i.e. chunking), these abstracts representation are stored in what is called Semantic Memory
(Broadbent, FitzGerald, and Broadbent, 1986). Baddeley (2000) suggested that information from
LTM helps to determine the form of the representation in WM. In other words, if the incoming new
information is familiar, a known chunk can be used from LTM to encode it in WM. Other relevant
information from LTM can also be retrieved to process new information: Procedural Memory
provide known operations to be executed on entities to achieve a goal and Episodic Memory is a
library of the previous recording of significant sensory memories. Communications between WM
and LTM, along with perception modules, are generally modeled as a form of Hebbian active
memory with propagation of activation energy (originally proposed by Hebb, 1961 and detailed in
Anderson, 1983).

Distinction with Short-Term Memory

When reading theories and definitions, the line between short-term memory and working memory
may appear blurry. For example, Miller et al. (1960) named a temporary and practical memory
as “working memory” with no real distinction with short-term memory. Some researchers have
proposed a multi-component view that describes working memory with two sub-modules: a short-
term storage and a central executive processes that are used to handle stored information (Baddeley
and Hitch, 1974; Cowan, 1998). In 1999, Engle et al. found unusual behaviors during tasks
that required to store information before processing them while distracting stimulus are displayed
(Engle, Tuholski, Laughlin, and Conway, 1999). Indeed, to improve their performance, individuals
relied on their ability to inhibit non-relevant cues of the task by continually trying to look the
other way from them to remained focus on their task. This correlation led Engle et al. compared
working memory to “the processes related to controlling attention”. Conway et al. found similar
results and proposed that cognitive aptitudes are directly linked with the control of attention.

In sum, in this document, we stick with the multi-components approach to describe these two
distinct modules: one is a mechanism of retaining mental images of phenomenon recalled from
LTM and perceived from the external world (i.e., Short-Term Memory sub-module). While the
second one is the central executive process that manipulates the hold information from the STM
module, it is the one that drives attention and awareness (i.e., Working Memory sub-module) that
trigger physiological responses and visual fixations.

2.2.3 Long-Term Memory

Long-Term Memory is a vast well of wisdom where all past experiences are stored (Tulving et al.,
1972). All knowledge and experiences acquired through time are assumed to be stored in this
special place. This information is said to be eternal; indeed, some theorists (e.g., Atkinson and
Shiffrin, 1968) claimed that knowledge never disappear from memory, but instead become less and
less accessible over time. The primary purpose of this memory is to retain information for later
use, meaning for a retrieval period that is more than just a few seconds, which differentiate it from
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the short-term memory. According to Atkinson and Shiffrin (1968) again, each time the same
concept entered in short-term memory (either by rehearsal or by the repetition of the activity), it
strengthens its accessibility in LTM.

Long-Term Memory is composed of different parts: the explicit (or declarative) memory and
implicit (or procedural) memory. This subsection gives a definition of Long-Term Memory and its
submodules.

Explicit memory

Explicit Memory, sometimes referred to as Declarative Memory, is one of the two specialized stor-
ages where factual information collected by individuals is stored. Such knowledge is, for example,
past experiences, specific events, or learned concepts (Tulving et al., 1972). Recalling any of these
past events are always made consciously by an individual. Explicit Memory categorizes knowledge
in two ways: knowledge from past experiences and specific events (e.g., last family dinner in a
vegan restaurant) are stored in Episodic Memory ; whereas general knowledge such as rules, words,
formulas, algorithms, relations are organized in Semantic Memory. For example, the definition of
Veganism (e.g., the practice of abstaining from the use of animal products) is stored in Semantic
Memory.

Implicit memory (or procedural memory)

Implicit memory is acquired and used unconsciously and can affect thoughts and behaviors. Its
most common forms is named Procedural Memory, which organizes previous experiences to
help people to perform specific tasks unconsciously. Implicit Memory specificity is the illusion-of-
truth effect, which suggests that individuals are more likely to rate as valid familiar statements no
matter how true they look.

In previous sections, we explored each category of memory: Short-Term Memory is a mecha-
nism of retaining mental images of phenomenon recalled LTM or perceived in the external world;
Working Memory is the special units that manipulate stored information in STM, drives attention
as well as awareness evoking physiological responses and visual fixations; and finally, the Long-
Term Memory is considered as the unlimited storage of knowledge acquired from past experiences,
these knowledge are stored in different categories: explicit memory (episodic and semantic) and
implicit memory. To better understand how Working Memory retrieves relevant knowledge in
LTM from perceived phenomena, the next section focuses on Associative Memory.

2.3 Associative Memory

2.3.1 “Neurons that Fire Together Wire Together”

Donald O. Hebb, an influential psychologist, worked on brain surgery and human behavior at the
University of McGill. He was interested in the process of learning and the potential role that neu-
rons play in such process. After years of practice, he synthesizes his researches in his famous book
“The Organization of Behavior”(Hebb, 1949) where he proposed a theory that described how the
association of neurons are critical to the process of learning. Its breakthrough in neuropsychology
led Hebb to be called the father of this area and neural networks. The theory, known as “Hebb’s
rule” or cell assembly theory, is presented as followed:
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Let us assume that the persistence or repetition of a reverberatory activity (or “trace”)
tends to induce lasting cellular changes that add to its stability. When an axon of cell
A is near enough to excite a cell B and repeatedly or persistently takes part in firing it,
some growth process or metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased.

Hebb also stated that two cells that simultaneously get activated multiple times would tend to
become associated. This association affects the behavior of linked neurons so that when one is
activated, another one gets activated more easily the stronger the association is. This idea is
the root of the artificial neural networks field. Hebb’s work directly inspires many notations and
equations from today’s studies of artificial neural networks. Indeed, he described a theory to model
variation of a weight shared by two neurons. Hebb’s Rule is often generalized as:

∆wi = ρxixj (2.1)

where wi is the weight of a particular link between two neurons j and i, ρ is the learning rate of
the weight, xi and xj are the input values of neuron i and j (decimal or binary value to represent
activation or not as in Hopfield Network). The learning rate controls how strong the weight is
updated using neuron activations. When the update function is linear, we can write the following:

y =
∑

j

wjxj (2.2)

From these equations, a quick interpretation that is often given by researches is “Neurons
that fire together wire together”, this combination of neurons is seen as one processing unit be-
cause they learn to get activated together. In his book, Hebb called this combination of neurons
“cell-assemblies,” and their activation is the brain’s response to stimuli. These equations are a
simple way to model the human mind’s biological processes using computation machines. Even
though back to the mid-1950s, computational resources were not enough to perfectly mimic human
reasoning, these equations are still widely used in the artificial neural networks domain.

2.3.2 Bypassing Limits to Short-Term Memory with Expertise

In the mid-1950s, psychologists like William James agreed on the distinction between two types of
memory: short- and long-term memory. However, the prevalence of behaviorism was that few (if
any) experiments were focused on understanding cognitive processes, and some questions on the
underlying mechanism of memory could not be tackled. George A. Miller rejected this approach in
favor of a focus on speech and language. His approach aligned with Noam Chomsky, who argued
that behaviorism could not explain complex human processes just by observation.

In 1956, Miller published one of the most influential papers cited in cognitive science: “The
Magical Number Seven, Plus or Minus Two” (1956) where he described a curious coincidence
around the number seven. While studying human cognition on different topics (immediate re-
hearsal of a set of digits after the presentation, recall a label while presented a distracting stimulus
or fast estimation of the number of objects in a group), Miller estimated an average limit of human
cognition around seven. When presented a list of items to young adults and asking them to repeat
it immediately after presentation, they can correctly repeat the list if its length is between 5 to
9 items (according to individuals). He also noticed that this memory span is independent of the
nature of the list item; it may be a binary digit, decimal digits or words; the magnitude is not
altered. To explain this phenomenon, Miller came up with the conclusion that available slots in
memory span are not of fixed length but are instead capable of encoding meaningful information.
A capacity entitled “chunking”.
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Chunking

Encoding information in memory using meaningful links between items is the process of “chunk-
ing”. The result of this process is called a “chunk”, a collection of basic units that share a
meaningful association that can be easily stored, retrieved, and manipulates an individual’s mem-
ory. For example, when presented the following list of digits 0112358132, recalling it seems not
straightforward. However, if by considering this list as a french phone number, items can be
grouped two by two as: 01 12 35 81 32.

It turns out that only five groups of information are needed instead of the initial 10, which is
beyond the average limit of memory span for an adult. The size of a chunk is highly personal; it
relies on the nature of the information and on individuals’ ability to create a meaningful association.
Meaning comes from past experiences, which implies that chunking is an ability that can be trained.

How Expertise Influences Memory

Expert telegraphers were able to lag by as much as 15-20 words when receiving Morse code (William
and Harter, 1899). Chess masters can reproduce virtually an entire chess position of 32 pieces after
a brief (5 seconds) presentation of a chessboard, whereas a novice can only remember the location
of 3 or 4 pieces (Chase and Simon, 1973a; De Groot, 1978). How is it possible for experts to bypass
the limits of short-term memory in their domain of expertise?

It appears that people create chunk when they become familiar with a set of items. A famous
study conducted by Chase and Ericsson (1981) demonstrated that an adult with a standard mem-
ory span of 7 digits could be trained to increase his span significantly. After 250 hours of training
(rehearsal) over a year, the trainee learned to used mnemonic systems that helped him to correctly
recall up to 80 digits, which is more than ten times the normal. However, the techniques used are
highly personal; they have been developed after hours of practice, and most of all, they do not
generalize to other domains. This particular trainee could not remember more words than letters.
A similar phenomenon has been observed for chess masters, who can not reproduce a chessboard
composed of randomly placed pieces (Chase and Simon, 1973a). Indeed, without a meaningful
relation between pieces, they must be stored in WM individually.

We learned from Hebb and Miller (sections 2.3.1 and 2.3.2) that associations, or cell-assemblies,
are created through learning process. Connections within cell-assemblies strengthen with the
repetition of activities that activate some (if not all) neurons. With times, they may become
chunks: cognitive units that bond phenomenon from activities with meaningful connections. These
chunks are a powerful tool that can be easily retrieved in long-term memory, manipulated in
working memory, and can be intuitively perceived in real-world through pattern matching. Finally,
they bypass the limited storage of short-term memory by occupying fewer slots than non-chunk
elements. Given these concepts and models, we may now ask how chunks can be manipulated in
memory to address everyday tasks or solve complex problems. For that, we explore in the next
section different theories on Mental Models.

2.4 Mental Models

The previous sections give us an understanding of how concepts are learned and used when prac-
ticing. We discuss now how these particular cognitive processes can be represented with the
framework of a situation model. To that purpose, we present in the next sections cognitive models
that, we think, relevant for that particular study: we first explain Johnson-Laird’s Situation Model
Theory before reviewing the distinction between two kinds of reasoning systems (System 1 and
System 2) proposed by Daniel Kahneman. Finally, we examine the particular role that plays the
body when reasoning through the Somatic Markers Theory, proposed by Antonio Demasio.
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2.4.1 Situation Models

If the organism carries a “small-scale model” of external reality and of its possible
actions within its head, it is able to try out various alternatives, conclude which is the
best of them, react to future situations before they arise, utilize the knowledge of past
events in dealing with the present and the future, and in every way to react in a much
fuller, safer, and more competent manner to the emergencies which face it.
Craik (1952)

This quotation appears in the introduction to the book “Mental Models” by Johnson-Laird (1989).
As suggested by the quotation, Johnson Laird focused on how individuals perceive, interpret and
take actions within an environment. He elaborated a cognitive theory named as Situation Models
that is used to represent human mental models. Over the last 25 years, theories about situation
models have been adopted and developed by a large community of cognitive psychologists. As an
example, Gabriel Radvansky and Jeff Zacks used Situation Models (Radvansky and Zacks, 1997)
to describe readers’ mental representation to understand how information is gathered, stored and
then retrieved while reading. A situation model is thus a mental representation of a described or
experienced situation in a real or imaginary world.

Situation models are appropriate to represent an individual’s working memory during problem-
solving. It can be used to understand, predict and evaluate possible actions from the current
situation. This section defines Situation Models and describes their structure. Then, the process
of information retrieving from Situation models is explained.

Description of Situations Models

Human understanding of a specific situation (real or imaginary) can be described using a situation
model. The description of a Situation Models requires a formal definition of a situation. Radvansky
and Zacks (1997), referring Perry and Barwise (1983); Barwise (1989), stated that a situation is
a spatial-temporal framework composed of a list of entities, each of these holding specific
properties and are associated with functional relations. More precisely, an entity can be com-
pared to a token that is any meaningful observable phenomena such as: individual, object or idea.
Each entity is described with properties that are relevant for the situation. These characteristics
can refer to a physical feature (color, height, weight, etc.), to a permanent state (living, dead,
in motion, etc.) or a social status (doctor, musician, woodworker, etc.). In addition, predicate
functions define relations among entities and are used to structure the situation. These relations
describe knowledge such as kinship, ownership, causality, spatial, temporal, etc.

Situation models are abstract representations, their instantiation depend on a person’s under-
standing of the analyzed situation. For example, when an individual encounters a known situation,
the corresponded mental model is built upon his learned knowledge (chunks) from previous ex-
periences stored in episodic memory. Radvansky and Zacks (1997) emphasized on the analogue
nature of the situation model representation. This representation does not intend to be a complete
and consistent mirror of the real described situation, but rather it describes the – subjective –
meaningful structure implemented by the individual. It is important to note that this creation
of mental model is driven by the goal of understanding of the individual (Graesser, Singer, and
Trabasso, 1994). If no such goal exist, no mental model is created (McKoon and Ratcliff, 1992).
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In his book, Johnson-Laird (1989) devoted an entire chapter on “What is meaning?”. We
can take inspiration to define the word meaning as a reference to experience (which is in
accordance with Miller’s definition, see Section 2.3.2). Experience is subjective, and so is meaning.
A meaningful phenomena refers to previous encountered episodes (chunks). We also specify that
experience is a gateway to prediction (i.e. anticipation to uncertain future event) and is used to
list possible (affordable) actions. A situation model is then created when a goal of understanding
a situation is defined and its structure is influenced by individual’s experiences. According to
Radvansky and Zacks (1997) that situation models is stored in long-term memory, and more
precisely in episodic memory. We can see it as a cell-assemblies, a hyper-chunk, regrouping a set
of associated entities, properties, relations and spatial-temporal framework. Its creation and its
use are both performed in working memory: the components should be reachable in a matter of
milliseconds to be able to interact with the environment.

How are Situation Models created and used?

Upon construction, specific elements are integrated into the model to structure the understanding
of the situation. As no model existed before, the comprehension of the scene is minimal (could
even be non-existent), thus the situation contains few entities, relations and relatively small chunks.
Then the model can be modified: by either adding, removing or updating information. The more
the situation is understood, the more structured it became.

Retrieving information from a Situation Model stored in long-term memory require that it is
brought in the foreground and become active in working memory. When facing a known situation, a
memory search is activated to retrieve relevant situations (Hintzman, 1986; Radvansky and Zacks,
1997). This search is performed in according spreading activation and Hebb’s rule (Hebb, 1949; see
section 2.3.1 for more information), situations that contain elements (entities, properties, relations,
spatio-temporal features) from the visible situation are fired by associative activation. This allows
the individual to recall all similar situation and the most meaningful is brought into working
memory, as chunks. Only when a situation model is active in working memory, its structure and
components became accessible. Some elements are easier to access, this is a consequence of the
individual’s past experiences (interactions) with this particular situation and the way he structured
it.

2.4.2 Dual-Process Theory

Kahneman argues that there are two different kinds of thinking: the first one can be seen as
“associative thinking” whereas the second one is “true reasoning”(Kahneman, 2003). For example,
when seeing 5+5, one thought should directly come up to mind: 10. However, have you reasoned to
get the answer? Probably not, it just popped up on your mind because there is a strong connection,
built on past experiences, between these two concepts. So whenever you see the concept 5+5, the
thought of concept 10 is implicitly put forward in your mind. This is “associative thinking” (see
section 2.3.1 on Hebb’s rule and cell-assemblies). However, when presented the calculus 14×17, the
answer is not as automatic as the first example. After reading this sentence, you most likely still do
not have the answer. To do so, you would need to stop reading and engage yourself in an effortful
state, thereby losing the content of your Working Memory concerning the current text. You would
need to do the math. This is what Kahneman named “true reasoning” (by the way, the answer
is 238). These two kinds of thinking, generalized as the “Dual-Process” theory, have first been
proposed by William James and various researches built upon this simple idea like, among others,
Wason and Evans (1974) or Sloman (1996). Kahneman proposes an interesting explanation.
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Figure 2.4: Process and Content in Two Cognitive Systems, Kahneman (2003)

System 1 and System 2

In 2003, Kahneman published a paper entitled “A Perspective on Judgment and Choice: mapping
bounded rationality” where he reviewed his past studies done with his colleague Amos Tversky
about intuitive judgment and decision making (Kahneman, 2003). He defined a detailed framework
on the two different kinds of thinking that he called System 1 (associative) and System 2 (true
reasoning). He and his colleague Amos Tversky were interested in the cognitive processes involved
in intuitive judgments. Figure 2.4 depicts the characteristics of the two thinking systems. System
1 is our former associative thinking that is able to come up with ideas almost instantly effortless. It
is described here as effortless, fast, associative, even emotional, and it presents similar features as
perceptual processes. Involuntary impressions and thoughts brought up by System 1 are automatic,
almost unconscious, and are created upon habits. Thus they are difficult to control. System 2,
on his side, is considered as a central processing unit for the brain that is used to resolve more
laborious tasks that can not be handled by System 1. It is deliberately controlled and requires the
full consciousness of the individual. System 2 is also slower and effortful. Kahneman even qualified
System 2 as lazy, willing to delegate as much as possible to System 1, with a tendency to accept
intuitive judgments from System 1 without question directly.

A commonly used example by Kahneman to illustrate this laziness is derived from Shane
Frederick’s work (personal communication, 2003), who studied cognitive self-monitoring. In this
example, a simple question is asked: “A bat and a ball cost 1.10 in total. The bat costs 1 more than
the ball. How much does the ball cost?”. Among 300 students from Princeton and the University
of Michigan, less than 50% found the correct answer. Indeed, almost every student intuitively
answers “10 cents” because we try to extract 1 from 1.10 (the correct answer is 0.05 cents). This
easy but tricky puzzle demonstrates the lack of quality control System 2 exerts on System 1’s
output.

Does this example suggest that one should not trust intuitive judgment? As we will observe
several times throughout this thesis, chess masters exhibit incredible intuitive judgments in com-
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petitive games (see Eliott’s performance in Section 2.1). High skill players can deliver a correct
and accurate answer to the current situation in a matter of seconds (Chase and Simon, 1973b). In
Kahneman (2003), the authors associate the term intuition with accessibility of knowledge. Any
knowledge stored in memory that is associated with any perceived phenomena (or thought) will
become more accessible (this is in accordance with Hebb, 1961, see Section 2.3.1).

2.4.3 Body Responses to Reasoning

The Somatic Marker Hypothesis

When discussing decision-making in psychology, one essential hypothesis from the neurobiologist
Antonio Damasio should be mentioned: “the Somatic Marker Hypothesis”. Damasio was interested
in understanding how the neural systems are involved in cognitive processes such as decision-
making, language, memory, emotion, or even consciousness. By examining individuals with pre-
frontal cortex lesions (more precisely the ventromedial pre-frontal cortex), Demasio identified an
influential link between emotional signals and this special area of the pre-frontal cortex. The
purpose of these signals is to regulate decision-making in complex situations (often acting non-
consciously) (Damasio, 1991, 1996).

The Somatic Marker Hypothesis can be formulated following these three main assumptions:

• Both conscious and unconscious neural operations are involved in human reasoning and
decision making;

• These neural operations depend on attention, working memory, and emotion;

• Reasoning and decision making depend on intuitive (i.e. available) knowledge stored in
long-term memory that is related to the current analyzed situations, actors, actions, and
outcomes.

Somatic markers are physiological signs such as variation in heart rate, facial expressions, pupil
dilation, body postures, muscle contractions, etc. These body changes are responses to a stimulus
or a particular encountered situation. According to Damasio, over time, these signals become a
specific signature associated with a particular situation and their outcomes.

Relationship between Emotion, Memory and Decision Making

Where conventional theories on decision making addressed emotion as a consequence of a deci-
sion, Damasio proposed that physiological signals arise directly during the decision-making process
(Bechara, Damasio, and Damasio, 2000). A special place of the prefrontal cortex, called Ventrome-
dial Prefrontal Cortex (vmPFC), is associated with processes of decision making and self-control,
but also with the regulation of the amygdala activity and emotions. Damasio described this brain
area as a storage for learned connections between factual knowledge and bioregulatory states. In-
deed, as his hypothesis suggests it, when facing a situation the vmPFC gathers (i) facts about
the perceived stimuli, (ii) knowledge (factual and emotional) from related past experiences; this
is made possible by the special internal structure of the vmPFC that provides groundwork for
learning and retrieving association between (i) and (ii). This learning process makes sense if we
analyze it following the Hebb’s rule: Neurons that fire together wire together (see section 2.3.1).
Last but not least, these connections can be interpreted as templates, they do not store factual
information but rather “hold the potential to reactivate an emotion by acting on the appropriate
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cortical and subcortical structures” (Damasio, 1989; Bechara, Damasio, Damasio, and Anderson,
1994).

Associations of concepts seem to be recurrent in the explored Mental Models. Johnson-Laird
defines his situations with entities that are bonded with meaningful relations. Kahneman describes
System 1 as associative to explain the intuitive and rapid thought that comes up to mind. Asso-
ciations also involve somatic responses, as proposed by Damasio. Learned concept (chunks) are
associated with the affect that was evoked during the learning process. Would it be possible to
induce what chunk is learned by someone just by observing his somatic responses?

2.5 Research Questions

Returning to our story with Nemo and Eliott solving a chess problem (section 2.1), we observed
two different behaviors. We came up with several questions: How can one explain the somatic
variations of players? Are they comparable? Can we tell, from what we see, their awareness of
the situation, and their comprehension of threats and opportunities? To answer these questions,
we explored how human memory is structured to store and manipulate concepts: Short-Term
Memory, Working memory, and Long-Term memory. After that, we reviewed mental models and
how associative memory is used to retrieve relevant knowledge according to the current situation.

How can we apply this knowledge to interpret the chess players’ behavior? We can easily
claim that our expert Eliott gathered more knowledge in his long-term memory with his long
experience. Was he able to identify a familiar pattern in the puzzle that helped him to find
the solution? Previous sections suggest that to activate the relevant knowledge from Long-Term
Memory, associated concepts must be present in working memory. Eliott has been able to solve
the puzzle in less than 10 seconds. This implies that he was able to select the relevant concepts
from the chessboard, put them in his working memory to activate the appropriate knowledge in
long-term memory that helped him to solve the problem. He was right on the target in his first
try, 10 seconds is a short time to consider many concepts. How was he able to select the right set
of concepts among the 30 present pieces on the board?

Nemo is a beginner, but he has been considering possible concepts for more than 4 minutes.
Unlike Eliott, he has failed in selecting the right concept. What was the clue that led Eliott to
the right combination in 10 seconds? Why did Nemo fail to see this particular clue in 4 minutes?
Observing players’ body reactions while solving the problem was also intriguing. Yet, could we
have predicted the result of their reasoning from their somatic signs? The Somatic Marker Theory
suggests that we can get insights from these body reactions, yet, we need a way to perceive these
external signs.

From these observations and reviews from literature, we established a set of research questions
that guided the thesis:

• What guides reasoning?

• Can we observe and model reasoning (working memory) from external signs?

• Can we build an instrument that observes external signs (and thus, reasoning)?

Damasio suggests that emotion may influence and guide reasoning. The following section will
explores emotion models literature in Chapter 3. This is followed by chapter 4 on visual attention
and physiological signs that can be observed. That way, following the somatic marker theory,
we can capture external signs of subjects engaged in problem-solving and relate these to their
reasoning.
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Chapter 3

What Is an Emotion?

No doubt as long as man and all other
animals are viewed as independent
creations, an effectual stop is put to our
natural desire to investigate as far as
possible the causes of Expression.

“The Expression of the Emotions in Man
and Animals.”

Charles Darwin

This chapter reviews the theories and approaches associated with the study of emotions. It
begins with a discussion on how to define an emotion. Over the years, many researchers have
proposed different approaches to the definition of emotions. This chapter reviews some of the
more important theories in Section 3.1. A historical background of influential theories is depicted
in Section 3.2. Historically influential theories such as James-Lange’s theory (1884) to Schachter’s
theories (1962) are reviewed, and the role of the body and the mind in emotion generation are
described. The chapter then focuses on two representation approaches of emotions: the basic
emotions approach inspired by Charles Darwin’s work (Section 3.3) and a 3-dimensional model
(Pleasure - Arousal - Dominance) (Section 3.4). While these two approaches have dominated the
field for decades, they have also been the target of several criticisms. Major controversial topics,
raised by Russel and Barrett, are discussed in Section 3.6.

Alongside these theoretical and empirical approaches of categorization, emotion can also be
studied from a biological point of view: by tracing the level of hormones and activation of neu-
rotransmitters. Interestingly, a similar classification of emotion seen in the previous Section also
emerges from a neurobiological approach, as described in Section 3.7. The last Section (3.8) is
a direct link between the neurobiological approach and other mechanisms in the body; we dis-
cuss then that emotions can influence the memory system (detailed in the previous Section 2.2).
This Section is finally concluded with a discussion on the presented theories and approaches. We
present our arguments for our choice in selecting one particular approach, among others, knowing
the diversity in theories and approached.

3.1 “What Is an Emotion?”

Defining the concept of “Emotion” has always been a challenge for researchers. This recent and
fashionable concept, generalised two centuries ago, is used to sometimes represents passions, feel-
ings, affects or a combination of any of these terms. While emotion is used in everyday life, few
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people will agree on a definition. James William dared to ask the question “What is Emotion?”
in his famous publication in 1884, but only succeeded in starting an endless debate among the
research community. Enumerating definitions about “Emotion” would be a long process, refor-
mulating our own definitions would only add one to this endless stack of information. Thus, we
would instead give a selection of definitions that we think relevant, and that may help the readers
to understand better the notions used in the following sections of this document:

1. “An amoral way as an autonomous physical or mental state characterised by vivid
feeling and physical agitation” – From Passions to Emotions, Dixon (2003)

2. “A complex mix of internal signaling mechanisms that involve both the body and
mind, helping us function in a reasonable, balanced, and healthy way. Emotion in-
cludes not only highly visible signals such as facial expressions, but also unseen internal
signals that guide thoughts, motivations, planning, decisions, learning, and memory re-
trieval. Emotion works powerful influences behind the curtain of human performance.”
– Affective Computing, Picard (2000)

3. “A strong feeling deriving from one’s circumstances, mood, or relationships with
others” – Oxford Dictionary1

From these definitions, one can notice that several common concepts: the body and the mind are
frequently listed, and mental state, as well as physical feelings, are often cited. It was quickly
understood that “emotion” is a complex phenomenon, and it is not generated by only one system
inside the body (e.g. a part of the brain or an endocrine gland).

3.2 Early Theories on Emotions

3.2.1 James-Lange’s Theory

One of the earliest theories on emotion comes from William James (1842-1910), who was an
American philosopher and psychologist labeled as the ”Father of American psychology” for his
influential works. He is one of the two psychologists who formulated the famous emotion theory
named James-Lange in the 1880s. The second name, Lange, comes from Carl Lange, a Danish
physician who thought about the same emotion theory as James, but rather independently. James’
theory describes emotion in terms of a sequence of events: occurrence of an external stimulus, a
somatic response, and a conscious emotional feeling.

Communities started to become interested in James’ theory in 1884 when he published an
article titled: “What Is an Emotion?” (James, 1884). To answer his question, James started to
ask another one: “do we run from a bear because we are afraid or are we afraid because we run?”.
According to James, the first proposition is the expected answer; however, he argues:

“The hypothesis here to be defended says that this order of sequence is incorrect, that the
one mental state is not immediately induced by the other, that the bodily manifestations
must first be interposed between”.

Following his idea, the second proposition should be a more rational statement: “are we afraid
because we run?”. To illustrate his theory, Figure 3.1 describes this particular sequence of events.
In this image, one can see that the bodily response precedes the emotional experience, which
is the main proposition of William James. Furthermore, the expressed emotion is based on the

1https://en.oxforddictionaries.com/definition/emotion (last seen 01/2020)
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Figure 3.1: James’ Theory illustrated (Source: Moors, 2009).

bodily intensity and quality responses, which means that an intensive bodily response causes a
high emotion expression and vice versa.

Another interesting point raised by James is that each specific emotion has its own ”response
signature”. Fear is not bodily expressed the same way as Sad ; this explains why people can infer
an individual’s emotion from observation of his body responses. However, the important question
in emotion theory is the elicitation problem, and James did not address it in his proposal. His
theory can not answer the following question: What are the mechanisms involved to generate
somatic expressions when a stimulus is displayed?

James-Lange’s theory prevailed in the field for decades but started to be criticized on both on
theoretical and empirical sides from the 1920s. First, Walter Cannon and his experiments (see
next paragraph), then Scherer, who provided an answer to the emotion elicitation problem by
decomposing it in five organismic subsystems that interact with each other. Scherer concluded
that James’s failure is that he could not make the distinction between “What is an emotion?”
when he meant “What is a feeling?” (Scherer, 2000).

3.2.2 Cannon-Bard’s Theory

In the 1920s, the psychologist Walter Bradford Cannon of Harvard University proposed with his
doctoral student Philip Bard a new model for emotion in the response of James-Lange’s theory. In
the early 1900s, the main interest of Cannon was the study of brain’s role in generating physiological
responses. To do so, he and his students performed a series of pioneering studies on animal
physiology and their responses to stress that led to several valuable empirical findings. For example,
he is the one who coined the terms “Fight-or-Flight” and “Homeostasis”.

Cannon, and Bard argued that James-Lange theory would be invalid if subjects with no visceral
reaction2 (from nerves’ activity) display emotional expressions. Such displays would be impossible,
according to James’ proposal, as bodily responses and feedback are essential to emotional expres-
sions. To this end, Cannon and his colleagues elaborated experiments in which the visceral organs
and the central nervous system of cats are cut off (Cannon, 1927). In contrast to what James-
Lange would predict, cats remained emotionally responsive. In addition to this finding, Cannon
added that emotions are not as specific as James proposed. Indeed, with other experiments, they
observed that both subjects exhibiting fear or anger come with an increase in their heart rates,
which is in direct contradiction with the James’s hypothesis that emotions have specific somatic
responses. The last point evoked by Cannon is that artificial induction of physical arousal (e.g.
by injection of adrenalin) is not interpreted as emotion (artificial or real) by the subject. Can-
non and colleagues and his student Bard compiled their experimental results into a manuscript:
“The James-Lange theory of emotions: A critical examination and an alternative theory” where
they proposed a model, named as Cannon-Bard, as an alternative to the incomplete James-Lange
theory (Cannon, 1927).

2Viscera are related to soft internal organs of the body

23



3.2.3 Schachter-Singer’s Theory

The last (early) theory presented in this document is Schachter’s Two-Factor Theory (Schachter
and Singer, 1962). This description is inspired by the paper: The Schachter Theory of Emotion:
Two Decades Later written by Reisenzein (1983).

Schachter was an American social psychologist who wrote several books that are still highly
influential (like Social Pressures in Informal Groups , 1950; or When Prophecy Fails , 1956) and
gained multiple awards for his essential findings (American Association for the Advancement of
Science Socio-Psychological Prize or Prize for Behavioral Science Research among others). He
obtained a position in the Columbia University faculty in New-York as a professor of psychology
in 1961. Along with his student Jerome Singer, Schachter proposed a new theory based on two
factors: a cognitive component and a physiological-arousal component. These two factors are used
to explain in detail the different components of an emotional state and processes of its generation.

Components of an emotional state

As James theorized, Schachter and Singer define an emotional state as the product of an interaction
between the body and the brain; more precisely, between physiological arousal and a cognition
process focusing on the arousing situation. Each component plays an essential role in the emotional
state: the physiological arousal determines its intensity while the cognition tries to determine its
quality (e.g. which emotion is felt). Schachter stated that these two components are “related
multiplicatively”: both of them are essential for the emotional state occurrence.

Processes in emotion generation

The emotion generation process can be broken down into two different situations: Case 1 is the
everyday life situation, where the subject knows what stimulus triggered his emotional state while
Case 2 is an atypical situation with unknown stimuli.
Case 1 – Schachter states that the cues provided by the known stimulus are used by the cognition
component to determine the emotional state quality (see Figure 3.2a). These cognitive processes
are considered unconscious for the subject, that is only aware of the sensation generated by the
emotional state.
Case 2 – In this – atypical – situation, there is no immediate causal explanation for the aroused
emotional state felt by the subject (see Figure 3.2b). This could happen in some particular situa-
tions (e.g. unknown side effects after drug consumption, physiological disorders, etc.), but the most
important is that it can be artificially created during experiments. Schachter and Singer (1962)
designed situations to observe subjects in such situations by injecting subjects with epinephrine,
a drug known to cause an increase in blood pressure, heart, and respiration rate (Schachter and
Singer, 1962). During this experiment, four conditions were used: drug-effects informed, drug-
effects ignorant, drug-effects misinformed, and a control group. For those who did not receive
any explanation about their sudden physiological arousal, Schachter proposed that this situation
would lead to a cognitive process to search for a plausible cause. If found, a corresponding emo-
tional state will arise for the subject. The emotion quality would only depend on the result of this
attributional search process.

Initial Schachter and Singer hypothesized that both opposed situations like encountering a
threatening person or a close relative would entail comparable physical arousal. Once the body
responses have been generated, the sensation of the offensive emotion is attributed by the cognitive
component to a cause (such as fear for the threat and joy for the reunion). Schachter and Singer
supported this hypothesis with their experiment. Subjects were placed with either a happy or
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(a) Case 1 – The process of emotion generation in everyday life.

(b) Case 2 – The process of emotion generation in the case of unexplained arousal.

Figure 3.2: The two cases of the process of emotion generation as described in: “The Schachter
Theory of Emotion: Two Decades Later” (Reisenzein, 1983).

angry bystander after drug injection. It was assumed that the attributional search process of
participants would interpret their arousal with the emotional state of the bystander.

This cognitive attributional process has been well-received by the scientific community. How-
ever, starting from the 1980, the Schachter-Singer’s theory has been challenged, empirically (e.g.
reducing drug injection will not reduce the emotion intensity perceived by subjects, see Erdmann
and Van Lindern, 1980) and theoretically (e.g. repeated exposure to stimuli led to the same emo-
tion quality, even with a placebo injection, see Kunst-Wilson and Zajonc, 1980).

3.2.4 The Appraisal Approach

Even if Schachter-Singer’s theory has been challenged, the idea that cognition is part of the emotion
generation process is appealing. A branch of emotion study has focused on this assumption and
led to the Appraisal theory approach, which considers that emotion elicitation is a consequence
of a cognitive evaluation (or appraisal) of the external stimulus (or a remembered event). In
his book The Emotions (1986), the Dutch psychologist Nico Henri Frijda described the approach
saying that “emotional experience . . . is experience of the situation”. This definition entails two
noteworthy facts: first, knowing the appraisal of a particular situation is enough to predict the
experience emotion; secondly, the opposite is exact as well, appraisal of a situation can be deduced
from the displayed emotion (Scherer, Schorr, and Johnstone, 2001). It also should be noted that
the stimuli appraisal is performed unconsciously before emotion generation (and thus, before any
somatic reaction). The emotion becomes conscious after its elicitation.
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One interesting aspect of the Appraisal approach is the explanation of the variability of emotion
elicitation in person. Indeed, theorists have used variables to explain this variation, two important
ones are goal relevance and goal congruence. The former tests if the external stimulus is
relevant for a subject’s goal or concern; if so, emotion is elicited. The latter variable is responsible
for the nature of the emotion (positive or negative) according to the match (or mismatch) of the
goal relevance and the specific stimulus. These two variables are person-centered and explain the
variation of emotion elicitation across people and cultures.

3.2.5 Discussion

At the moment of writing this thesis, the scientific community does not agree on whether bodily
feedback is sufficient or even necessary in the processes of emotion generation. The same conclusion
applies to the cognitive component. This lack of consensus prevents us from choosing a particular
theory as a basis for our model. However, what we have learned through this theory review is that
emotion can be understood as multidimensional feedback observation (e.g. subjective emotional
experience, somatic reactions, physiological arousal, etc.) from an internal state.

What are emotions and what are the mechanisms involved in their elicitation are, indeed,
intriguing questions, and researchers are still today confronting theories. Another interesting side
of emotions is their identification and classification. We will now see different approaches related
to these subjects.

3.3 The “Basic Emotions” Theory

In his book, “The Expression of the Emotions in Man and Animals”, Darwin (1872) proposed that
emotions and natural expressions are universal across human cultures and shared with many animal
species. Darwin identified six emotional states shared among humans and animals: happiness,
sadness, fear, anger, surprise, and disgust. Some of these emotions are presented in Figure 3.3.
Darwin’s view has been widely supported (e.g. Allport, 1924; Tomkins, 1962; Asch, 1987) but also
criticised (e.g. Klineberg, 1940; Labarre, 1947; Birdwhistell, 1970). The most extensive work –
and the one that interests us here – has been performed by Paul Ekman and Wallace Friesen.

Ekman initially investigated nonverbal communication with his first publication: “A Method-
ological Discussion of Nonverbal Behavior” (Ekman, 1957) where he described difficulties in estab-
lishing empirical measurement for nonverbal behavior. Ekman, encouraged by his teacher Silvan
Tomkins, reoriented his work from body movement to facial expressions. Working with Wallace
V. Friesen and influenced by the work of Darwin, he conducted a series of experiments to support
his universal theory. To do so, Ekman and Friesen asked people from different cultures to select
emotional labels that fit the best displayed facial expressions. Surveyed cultures were from Western
and Eastern literate cultures. The study has even been extended to preliterate tribes like members
of the Fore linguistic-cultural3 group of New Guinea who had little exposure to literate cultures.

3“Members of the Fore linguistic-cultural group of the South East Highlands of New Guinea were studied. Until
1959, this was an isolated, Neolithic, material culture (Gajdusek, 1963; Sorenson & Gajdusek 1966). While many
of these people now have had extensive contact with missionaries, government workers, traders, and United States
scientists, some have had little such contact. Only subjects who had minimal opportunity to learn to imitate or
recognize uniquely Western facial behaviors were requested for this experiment.” – Ekman in “Constants across
Cultures in the Face and Emotion” (Ekman and V. Friesen, 1971)
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(a) Photography of different degrees of moder-
ate laughter and smiling.

(b) A dog in a humble and affectionate frame
of mind.

(c) A Cynopithecus Niger pleased by being ca-
ressed.

(d) A Cat terrified at a dog.

Figure 3.3: Natural Expression of Emotion Across Species (Source: Darwin, 1872).
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This work is depicted in the publication “Constants across Cultures in the Face and Emotion”
(Ekman and V. Friesen, 1971). During their experiment, the procedure used by Ekman and Friesen
is to present a group of three pictures of western faces simultaneously, read a story, and ask the
participant to select the most appropriate picture that best fits the story. Examples of stories told
are: “his (her) friends have come, and he (she) is happy” if the emotion to guess is happiness;
“his (her) child (mother) has died, and he (she) feels very sad” for sadness or “his (her) child
(mother) is angry; or he (she) is angry, about to fight for angriness. They concluded their
experiments supporting the hypothesis that particular facial behaviors are universally associated
with particular emotions. However, New Guinean failed to discriminate fear from surprise but
made only a few errors when discriminating surprise from fear. The authors commented on these
phenomena suggesting that not all cultures make not all the same distinction between emotions.
Interestingly, they also theorized that the Fore linguistic-cultural group does not make a difference
between fearful events and surprise, because fearful events are almost always also surprising (e.g.
appearance of an outsider). Finally, when asked how would their face look like if they were in
the situation of the different stories, members from the Fore tribesmen showed similar faces than
literate cultures (see Figure 3.4).

(a) “How would your face look
like?” after being told the
happiness story.

(b) “How would your face look
like?” after being told the
sadness story.

(c) “How would your face look
like?” after being told the
angriness story.

Figure 3.4: Photographies of Fore Tribesmen’ Members after Hearing Emotional Stories.4

These findings led Ekman and Friesen to a classification of discrete, measurable, and physi-
ologically distinct emotions called “basic emotions”. Why basic? Ekman describes this term in
two ways: first basics emotions are shared across all human cultures, even for preliterate tribes;
secondly, these emotions are fundamental; there are not altered or produced by social learning.
These emotions are listed and describes in Table 3.1.

Alongside this classification, Ekman defined a list of 13 characteristics (initially the list was
composed of 11 elements in 2003, but has been extended to 13 in 2008) that are found in basics
emotions. These characteristics are:

4source: https://www.ekmaninternational.com/a-brief-history-into-paul-ekmans-early-research/,
(last seen 01/2020)
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Anger The response to interference with our pursuit of a goal we care about. Anger
can also be triggered by someone attempting to harm us (physically or psycho-
logically) or someone we care about. In addition to removing the obstacle, or
stopping the harm, anger often involves the wish to hurt the target.

Fear The response to the threat of harm, physical or psychological. Fear activates
impulses to freeze or flee. Often fear triggers anger.

Surprise The response to a sudden unexpected event. It is the briefest emotion.
Sadness The response to the loss of an object or person to which you are very attached.

The prototypical experience is the death of a loved child, parent, or spouse.
In sadness there is resignation, but in can turn into anguish in which there is
agitation and protest over the loss and then return to sadness again.

Disgust Repulsion by the sight, smell, or taste of something; disgust may also, be
provoked by people whose actions are revolting or by ideas that are, offensive.

Contempt Feeling morally superior to another person
Happiness Feelings that are enjoyed, that are sought by the person. There are a, num-

ber of quite different enjoyable emotions, each triggered by a, different event,
involving a different signal and likely behavior. The, evidence is not as strong
for all of these as it is for the emotions listed above.

Table 3.1: Basics emotions described by Ekman (1973)

1. Distinctive universal signals;

2. Distinctive physiology;

3. Automatic appraisal;

4. Distinctive universals in
antecedents events;

5. Presence in other primates;

6. Capable of quick onset;

7. Can be of brief duration;

8. Unbidden occurrence;

9. Distinctive thoughts, memories, and im-
ages;

10. Distinctive subjective experience;

11. Refractory period filters information avail-
able to what supports the emotion;

12. Target of emotion unconstrained;

13. The emotion can be enacted in either a
constructive or destructive fashion.

More details on these characteristics can be found in Ekman (2003) and Ekman and Lama (2008).
The collaboration between Ekman and Friesen led to the development of the Facial Action

Coding System (FACS), a widely used taxonomy of human facial movements. They published
two major publications “Measuring facial movement” and the famous manual “Facial Action Cod-
ing System: A Technique for the Measurement of Facial Movement” in 1976 and 1977 respectively.
FACS breaks down facial expressions into individual components of muscle movement, called Ac-
tion Units (AUs), an example is depicted in Figure 3.5. FACS are widely used in this thesis and
are detailed in a further section (see Section 4.2 page 48).

Ekman and Friesen’s findings brought support to the universal theory of Charles Darwin and
widely contributed to understanding the facial expressions of humans. Their publications, books,
and manuals led Ekman to obtain numerous prices and have been ranked 59th out of the 100 most

5Source: https://www.paulekman.com/product/facs-manual/ (last seen 01/2020)
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Figure 3.5: Example of the Facial Unit Coding System on Paul Ekman.5

cited psychologists of the twentieth century. The “basic emotion” approach inspired the commu-
nity. A good example is the work from Shariff and Tracy (2011) in their interesting publication
called: What Are Emotion Expressions For? (Shariff and Tracy, 2011). The authors proposed that
facial action units had evolved in a precise goal: to communicate, in a nonverbal way, an inner
mental state with other individuals. For example, if one is internally feeling fear because of an
incoming threat, the corresponding facial movements immediately expressed will warn the other
individuals about this threat. In the authors’ definition, humans and other animals are born with
this innate ability to decode these expressions of internal mental state. Finally, they asserted that
the emotional state is used to regulate the body and prepare it for the incoming situation (e.g.,
prepare to flee).

However this proposition of discrete emotions classification has been widely discussed and
criticised among the community (Russell, 1994, 2003; Barrett, 2006, 2011). Discrete emotions
classification is not the only way of representing the emotional state; other models have been
proposed.

3.4 The Circumplex Model

The basic emotions theory of Ekman, presented in the previous section, has been widely used
for affective computing and human-robot interaction; however, it has left numerous unsettled
essential questions in the fields of psychology and psychiatry. For example, the theory does not
explain patients with mood or affective disorders. Given these limitations, many theories have been
developed to approach emotional states with a dimensional model. One of the first studies has been
led by Harold Schlosberg in 1952, who stated that affective states are not independent of each other
but were rather related according to some psychological variables. Charles Osgood supported this
idea. In “Dimensionality of the semantic space for communication via facial expressions” (Osgood,
1966), Osgood asked student judges to label poses of student actors. A simple factor analysis
yielded three principal dimensions that were similar to the dimensions proposed by Schlosberg:
Pleasantness, Activation, and Control. Most theorists agree on at least two out of these three
dimensions; the first one is usually named as “Valence” (or pleasure), which determines the
pleasure intensity of the emotion ranging from extreme pain (or unhappiness) to extreme happiness.
The second dimension is “Arousal”, also labeled as excitation or activation, ranging from sleep
to medium state of drowsiness to high level of alertness. James A. Russell has proposed a similar
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(a) Circumplex Model. Horizontal axis: Dis-
pleasure (Left) to Pleasure (Right); Vertical
axis: degree of Arousal.

(b) Multidimensional scaling solution for 28 af-
fects words.

Figure 3.6: Circumplex Model after Russell, 1980.

Pleasure Arousal Dominance
Affect States

Mean SD Mean SD Mean SD
Happiness 0.81 0.21 0.51 0.26 0.46 0.38
Sadness -0.63 0.23 -0.27 0.34 -0.33 0.22
Surprise 0.40 0.30 0.67 0.27 -0.13 0.38
Fear -0.64 0.20 0.60 0.32 -0.43 0.30
Anger -0.51 0.20 0.59 0.33 0.25 0.39
Disgust -0.60 0.20 0.35 0.41 0.11 0.34

Table 3.2: Description of affect states using PAD model. Mean is the mean rating transformed to
a -1 to +1 scale; SD is the standard deviation on the same scale (Russell and Mehrabian, 1977,
p277-278 ).

model in Circumplex model of affect (Russell, 1980). It is depicted in Figure 3.6a and 28 affects
words along the two axis 3.6b.

The last dimension mentioned by Schlosberg was control, we will call it “Dominance” and it
represents at low-level submissiveness to dominance (or total control of the situation) at a high
level. In another publication (Evidence for a Three-Factor Theory of Emotions , 1977), Russell
and his doctoral advisor, Albert Mehrabian, claimed the necessity of this last axis, arguing that
only dominance makes it possible to distinguish angry from fear, alert from surprised or relaxed
from protected. For example, anger and fear become distinguishable because anger ranks high in
dominance, whereas fear is submissive, placing it at the other end of the dominant-submissive axis.
Finally, Table 3.2 presents the emotional state along with their corresponding coordinates in the
3D Pleasure-Arousal-Dominance (PAD) model.
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Figure 3.7: Would you label the face on the left with the same emotion as the face (placed in a
context) on the right? (Source: Barrett et al., 2011).

3.5 Distinction with Moods

Emotion psychologists have often discussed the difference between mood and emotion (e.g. Frijda,
2000). Generally, moods are considered as diffuse affect states, characterized by a relative enduring
predominance of certain types of subjective feelings that affect the experience and behavior of a
person. Moods may often emerge without apparent cause that could be clearly linked to an event
or specific appraisals. They are generally of low intensity and show little response synchronization,
but may last over hours or even days. Examples are being cheerful, gloomy, listless, or depressed.

3.6 Paradox and Bias in the Study of Emotion

The theories discussed in the previous sections are part of a larger pool of research on emotion
and remain controversial. Russell and Barrett have proposed some interesting observations on the
dominant views of emotion.

First, both Russell and Barrett questioned the validity and the relevance of Darwin’s Universal
theory in two publications: “Is There Universal Recognition of Emotion From Facial Expression?
A Review of the Cross-Cultural Studies” (Russell, 1994) and “Was Darwin wrong about Emotional
Expressions?” (Barrett, 2011). Darwin traveled across the many different cultures, distributed
over many continents, in order to bring evidence for his theory. Barrett interprets this with an-
other point of view; she asked in her publication if Darwin did not just (unconsciously) interpret
these facts in a way that they fit under one unique theory (a phenomenon called presentism)? Is
it relevant to explain all phenomena of evolution using a unique theory? Barrett also wondered
if it exists alternative hypotheses that could give a better interpretation of the evidence gathered
by Darwin. Neither Russell nor Barrett entirely rejects the Universal Theory, but they instead
put a second thought on the premises and conclusions of this view. For example, is happy always
expressed with raising cheeks and pulled lip corners? Barrett questioned the rigid and uncompro-
mising association of facial muscles with emotions. In another publication (Barrett et al., 2011),
she highlights how standard experiments on emotion detection are systematically conducted: the
use of highly exaggerated posed faces, the display of the basic emotional words that restrict (and
influence?) raters’ choice and the isolation of the face. To support his view, she presented an
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interesting image, presented here Figure 3.7. By analyzing the face displayed on the left, one can
say that the woman is expressing severe pain6, but looking the whole context (right), then we
understand that this is not pain, but rather a cry of relief for the victory. Barrett suggests here
that information displayed on the face is not sufficient to capture the meaning of facial expression.
The context plays an essential role.

An additional point concerns data annotation. Today’s research on Machine Learning requires a
lot of systematic and laborious work of data annotation. To cope with this, services like Amazon’s
Mechanical Turk7can be used. However some recent studies highlight problems that may arise
from these annotation systems (Ipeirotis, Provost, and Wang, 2010; Whitehill, Wu, Bergsma,
Movellan, and Ruvolo, 2009). In the later study from Whitehill et al., the authors emphasized
some theoretical and practical challenges on low-cost labeler services: a large range of unknown
expertise from labelers, difficulty variation in a task and closed labels must be combined (manually)
to obtain the real value. In their paper, a relevant example for our study is taken: to distinguish
Duchenne8 smiles from non-Duchenne smiles (see Figure 3.8). This task requires knowledge about

(a) Duchenne Smiles (b) Non Duchenne Smiles

Figure 3.8: Examples of Duchenne (left) and Non-Duchenne (right) smiles. The distinction lies in
the activation of muscles around the eyes, and is difficult to discriminate even for experts. (Source:
Whitehill et al., 2009)

facial muscles that are involved in smiles and this could be challenging even for experts. Labelers
from Amazon’s reached around 70% of accuracy; however, questions can be asked on the chosen
experimental protocol here. As the Non-Duchenne smile is a social smile and labelers are familiar
with the Western culture, they probably learned throughout their life of social interaction how
to detect these faked smiles unconsciously. Does this mean that this ability is shared among
cultures? Again context is not included in these images. A picture of a smiling woman playing
with his newborn would not be labeled the same way as the same women in an uncomfortable
social interaction.

The questions raised in these sections suggest that one should not accept a theory without
some degree of skepticism. Without considering alternatives, experimenters may create artifacts in
protocols that can influence results in many ways. If the displayed expressions by humans appear
to be controversial, other researchers put their efforts analyzing the way the body is reacting
biologically to emotions.

6I presented this image (left) to two of my coworkers. The first one concluded that the woman’s face was
expressing pain or extreme sadness; the second one quickly identified the woman to be Serena Williams (a famous
tennis player) and said that she should have won an important point, “she’s happy” he said. He knew the context,
and identified the correct emotion, without looking at the image on the right.

7Mechanical Turks are humans that are hired to perform tasks that computers cannot do, for low-cost and with
high-speed.

8A Duchenne smile is composed of two AUs. AU12, the zygomatic major muscle (which raises the corners of
the mouth) and AU6, the orbicularis oculi muscle (which raises the cheeks and muscles around the eyes). An
exaggerated smile, relying only on zygomatic muscle, is associated with a “forced” but socially accepted smile.
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3.7 A Neurobiological Approach to Emotion

Based on recent findings from the Cannon-Bard theory (Cannon, 1927), the neurobiologist James
Wenceslas Papez presented in 1937 theoretical and experimental data on the role of the hypotha-
lamus, the girus cinguli and the hippocampus on emotion generation. A few years later, Paul
Donald MacLean pursued the same idea by adding the limbic system as the central mechanism of
this circuit (Papez, 1937). Through his findings on the forebrain, MacLean formulated the famous
triune brain model in 1960 (MacLean, 1990 is the final production) which structured the brain in
three different complexes: the reptilian complex, the limbic system (paleomammalian complex),
and neocortex system (neomammalian complex). Over time, the research community brought ev-
idence that some limbic structures are not directly involved in emotion generation, as Papez or
MacLean suggested, but would instead participate in memory processes. However, other evidence
tends to accept the role of the amygdala (Pessoa and Adolphs, 2010) and other structures in the
prefrontal cortex.

Figure 3.9: A Three-Dimensional Model for Emo-
tions and Monoamine Neurotransmitters. The
axes are: green represents Serotonin (5-HT), blue
is Dopamine (DA) and red for Nor-Adrenaline
(NE). (Source: Lövheim, 2012).

Different studies contributed to the under-
standing of interactions and roles of both hor-
mones and neurotransmitters in physiology reg-
ulation (and thus behavior). In 2012, Lövheim
proposed an emotional state model (Lövheim,
2012) that explains the relation between the
basic emotions from Ekman and neurotrans-
mitters such as dopamine, noradrenaline, and
serotonin. This model, depicted in Figure 3.9,
is a cube describing relations between the se-
cretion of a hormone (or the activation of a
monoamine neurotransmitter) and the elicita-
tion of a particular emotional state. Accord-
ing to the presented model, a basic emotion
can be translated by substance generation. Ta-
ble 3.3 outlined all basic emotions accordingly
to the activation of monoamine neurotransmit-
ter. For example, Pleasure is produced by the
combination of high dopamine, high serotonin,
and low noradrenaline. Finally, Lövheim em-
phasized the potential correlation that exists
between the three neurotransmitters. Indeed,
representing them on separate axis does not en-
tail independence; they are part of a complex system of feedback that potentially interconnects all
monoamine.

Such evidence has been found thanks to neuroimaging advances, using Positron emission tomog-
raphy (PET) scans, Functional Magnetic Resonance Imaging (fMRI), or later real-time functional
magnetic resonance imaging (rt-fMRI). These techniques’ accuracy improved over time and made
possible the scan of deep-brain limbic areas (e.g. amygdalae, etc.). The study of such areas helped
to understand essential features for stress regulation (Gross, 2015), and the role of the amygdala
was recently demonstrated in a prospective study with a priori healthy soldiers (Admon, Lubin,
Stern, Rosenberg, Sela, Ben-Ami, and Hendler, 2009). In the latter study, the authors showed that
stress intensity is correlated to high levels of amygdala reactivity before the stressful event.
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Basic Emotion Serotonin Dopamine Noradrenaline
Happiness High High Low
Sadness ? ? ?
Surprise High Low High
Fear Low High Low
Anger Low High High
Disgust High Low Low

Table 3.3: The basic emotions and assumed monoamine levels (Lövheim, 2012). Sadness is not
represented in Lövheim’s cube.

Finally, the study of hormones and neurotransmitters is essential to understand emotion reg-
ulation in some psychiatric disorders. For example, the lack of serotonin secretion is related to
depression (Kalia, 2005). Using Lövheim’s cube model, low-serotonin restricts emotion generation
to unpleasant emotion (e.g. anger, fear, anguish, etc.), which corresponds to depressive symptoms
that have been studied (inability to reach pleasure and excitement Shapse, 2008).

3.8 Emotional Memory

We have seen in section 2.2 how memory is structured (long-term, short-term, and working memo-
ries). Perceived phenomena are stored in working memory to be processed and that older events are
encoded into long-term memory for a longer period that may vary from days to an entire lifetime.
These memories can be retrieved with more or less accuracy. For example, it is not uncommon to
easily remember our last birthday party while it may be laborious to list again the five items that
our wife told us ten minutes ago to buy at the grocery shop. How can one explain these striking
variations in memory retrieval? William James observed: “some events are so emotional as to
leave a scar upon the cerebral tissues”. It might appear, indeed, that the emotional events are
more anchored than neutral ones. Brown and Kulik (1977) coined the term “Flashbulb Memory”,
which described a special memory mechanism that can record almost flawlessly a particular event
if it elicits emotional feelings.

Many studies have provided extensive evidence showing that this retention capacity is at-
tributed (at least partially) to the amygdala activity. Researches from McGaugh (2000) on an-
imals and humans defines the amygdala as the primary mechanism in emotional memory. His
findings suggest that hormones and neurotransmitters activated by emotional state interact with
the amygdala, which enhances the capture of the emotional event. Amygdala activities in emo-
tional memory have been validated by numerous studies using neuroimaging (see Hamann, 2001,
for a review). In particular, McGaugh mentioned the action of both noradrenergic and cholinergic
in amygdala regulation.

Finally, in his review on “Retrieval Emotional Memories” (Buchanan, 2007) pointed out that
if an emotional event has been stored in long-term memory, then exposure of a similar event (or
reminder) may activate a brain activity that is comparable to the original one. This emotional
state can then be directly used as a cue in for memory search.
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3.9 Discussion

The study of emotion is complex. Various approaches are possible: neurobiological, face-centered,
with or without context, preceding or succeeding a somatic response, and with different discrete
or continuous models (basics emotions or the PAD model). Animals, including humans, express
emotions to communicate non-verbally, Charles Darwin explored the world to collect evidence
about this.

The study of universal facial expressions, led by Ekman and his mentor Silvan, raised awareness
of Darwin’s theory of emotions. Interviews of non-literate people raised the question if emotions
are cultural-dependent or innate to humans. However, as pointed by Russell and Barrett, the
extensive work centered around the Universality theory influenced by the Western culture may
have generated artifacts in standard experimental protocols. Including the context inside our
study may be a solution.

Neurobiological models provide a new perspective on the study of emotion. Emotions can be
explained with hormone levels and neurotransmitter activations. Artificial manipulation of these
biological mechanisms may imply that emotion can also be artificially triggered. Nevertheless, the
neurobiological approach is essential to the understanding of people with psychiatric disorders who
have not accessed to some emotions (like depression).

In this thesis, we focus on the emotional expressions of chess players engaged in problem-
solving. This work is not emotion-centered but will use emotion as one variable, among others.
In our experiment setting, non-invasive sensors are used; thus, we can not rely on then neu-
robiological approach. In this study, two RGB-video based software is used. The first one is
FaceReader (Den Uyl and Van Kuilenburg, 2005), which outputs basics emotions, and the second
one is the state-of-the-art open-source software named as OpenFace (Baltrusaitis et al., 2018) that
gives facial action units. These two softwares are described in a latter section 5.2.3.

Restrictions and controversies around basic emotions made us move from the former software
to the later, less categorizing software. The emotion representation in a dimensional space is
attractive and is more meaningful to explain the sudden reaction of unexpected situations. Where
basic emotions include many muscle activations and intensities under a unique label, the direct
use of these activation and intensity variables of action units is a down-to-earth approach.

We do not claim to offer a new approach for the study of emotion, but instead, we document
and attempt to explain variations in action unit activities on the face when engaged in problem-
solving. Reasoning about complex tasks requires cognitive processes, and these processes may
elicit an emotional reaction that is observable. What kind of information can these observations
tell us?
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Chapter 4

Physiological Manifestations of
Reasoning and their Observation

One of our research questions (see Section 2.5) focuses on whether it is possible to construct an
instrument capable of observing external signs correlating to ongoing cognitive processes. In this
chapter, we determine which external signs we are interested in this thesis. We already have some
elements of answers with The Somatic Marker Theory (see Section 2.4.3) and with Facial Action
Units describing the emotions described by Ekman (see Section 3.3). This chapter presents other
observable signs such as gaze, described in Section 4.1, facial expressions with Section 4.2 and
finally body posture with Section 4.3.

4.1 Eye-Gaze

Eye movements have been studied for centuries. When focusing on a stimulus, the eyes do not
move smoothly across it. This is what the pioneer Louis Émile Javal noticed when he observed
readers in 1879. He stated that readers keep alternating between short rapid movements, named
as saccades and short stops referred as fixations (Émile Javal, 1879). Only direct observation
was used at first, but quickly some devices based on different approaches were invented to analyze
eye movements better. Understanding the cognitive process that drives fixations remains an active
area of research. In this section, we review the physiology of the visual system and discuss how
the visual system combines a non-linear distribution of photoreceptors in the retina with rapid
eye-movements to perceive the environment, and how such motions can be tracked to reveal visual
attention.

4.1.1 The Human Eye

A short introduction to the anatomy of the human eye is given in this section to understand better
how eye-trackers are working.

The Anatomy of the Eye

The human eye, presented Figure 4.1, is a spherical globe that sends visual information to the
brain. The cornea is a transparent dome that lets light enters the eye, making its way up to the
pupil. To control light’s intensity that goes in, a radial muscle called iris can enlarge or contract
the size of the pupil, making the eye adaptable for different environmental illumination. Once the
light has made its way through the pupil, it is first focused by a lens before reaching the retina,
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Figure 4.1: The Anatomy of the Human Eye (Source: Duchowski, 2007).

the photoreceptive layer of tissue of the eye. Besides, the human retina is a tissue composed of
rods, cones, and bipolar cells. Rods and cones are responsible for human daytime and night vision,
respectively.

The “Useful” Visual Field

Human visual acuity is not uniformly distributed, but highly correlated with an uneven distribution
of the density of cones inside the retina. Acuity can be described in terms of projected scene
dimensions (Duchowski, 2007) defined as:

A = 2 ∗ arctan
S

2D

Figure 4.2: Visual Angle (Source: Duchowski, 2007).

The value of A is expressed in units of degrees visual angle, S is the size of the scene object while D
is the distance to this object, see Figure 4.2. The “useful” visual field extends to about 30◦, acuity
drops off sharply beyond that threshold, and perceived information is mostly used for ambient
motion (Duchowski, 2007). When focusing on a scene object, while the hightest acuity region is
inside 2◦, high acuity remains present at up to 4◦ or 5◦. According to (Irwin, 1992), acuity hits
only 50% of accuracy at 5◦. Vision up to 6◦ is usually referred as the foveal vision, above that
threshold is parafoveal vision (up to 30◦). Visual fields are highly correlated with cone distribution
density, as depicted in Figure 4.3. Indeed, studies from De Valois and De Valois (1988) found that
in contrast to rods, cones provide most of the spatial information for the brain. As a result, to
assure a proper resolution of the object of interest, it is necessary to move the eyes to align the
pattern with the highest acuity region. Eye-tracking devices can measure these small movements.
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Figure 4.3: Density Distributions of Rod and Cone Receptors Across the Retinal Surface. (Source:
Duchowski, 2007).

Human Visual System

The rods and cones feed signals to the optical nerve. The optical nerves leave the left and right
retina via holes near the fovea to be joined at the Lateral Geniculate Nucleus (LGN) and the
Superior Colliculus (SC) (see Figure 4.4). The SC acts as both a relay station to communicate
retinal maps to multiple parts of the visual cortex, and as an attention filter, to suppress unattended
information. The LGN provides filtered “retinal maps” to the different visual cortexes as well as
to the SC. The LGN acts as a filter for visual attention, suppressing information that the system
is not “attending” to (looking at). In other words, the Superior Colliculus controls fixation while
the Lateral Geniculate Nucleus suppresses visual stimuli during a saccade so that the movement is
not perceptible. Surprisingly, 80% of the excitation of the LGN comes from the visual cortex and
other areas of the brain. The entire visual system can be seen as a succession of filters.

The output of the Superior Colliculus is a neural map that directly activates the muscles that
rotate the eyes. These neural maps, or retinal maps, are directly relayed through the LGN to
the primary visual cortex, where they propagate through the Dorsal and Lateral Visual pathways,
see Figure 4.5. The dorsal visual pathway the sub-region of the brain colored in green while the
Lateral Visual pathways are purple. The primer is called the “action pathway”” and controls
motor actions with spatial organization of perception, expressed as depth and direction of gaze
as relayed by the Superior Colliculus. The latter (ventral visual pathway) uses color, appearance,
and motion to recognize phenomena (anything that can be perceived) and objects.

These dorsal and ventral pathways are divided into several interacting subsystems (visual ar-
eas). Most human actions require input from both pathways. For example, consider the task of
grasping a cup. The brain must recognize, locate the cup, and direct the hand to grasp the cup.

4.1.2 Eye-Tracking Techniques

There are two main categories of eye movement monitoring techniques: one method is focusing
on measuring the relative position of the eye to the head while the second one measures the
orientation of the eye in space (i.e. also called point of regard). The latter technique is extensively
deployed to identify which elements are being focused in a particular visual scene (e.g. which chess
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Figure 4.4: Brain Anatomy and Visual Pathways (Source: Goldstein, 1999).

Figure 4.5: Retinal Maps Propagating Through the Dorsal Visual Pathway (green) and Ventral
Visual Pathway (purpler) (Source: Mishkin et al., 1983).

piece is the most focused or what elements are the most considered by customers when watching
advertisements). In the past two centuries, four broad categories of eye movement measurement
methodologies have been developed:

• Electro-OculoGraphy,

• Scleral contact lens,

• Photo-OculoGraphy (or Video-OculoGraphy),

• Video-based combined pupil and corneal reflection.

In the time of writing this document, the most widely applied apparatus for measurement of the
point of regard is the video-based corneal reflection eye tracker, and this is the one we describe in
this section.

Video-Based Combined Pupil and Corneal Reflection

By combining RGB videos from cheap and commercially available cameras with image processing
hardware, video-based eye-trackers can compute the point of regard in real-time (i.e. orientation
of the eye in space). Two setups are possible: table-mounted and head-mounted.
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Table- and Head-mounted Systems Table-mounted systems, or commonly called remote
eye-trackers, are popular among the research community as they are easily deployable and set up.
Depicted in Figure 4.6 is an example of an remote eye-tracking. These are (generally) shaped
as long black rectangles and are coded to operate (generally, again) when placed under a screen,
facing the user (Figure 4.6a and 4.6b). The bar is composed of IR cameras and special cameras
used to control illumination on users’ face.. Constraints of the eye detection algorithm limit the
domain of application of such remote systems: they must operate in a range between 50 to 90 cm
and for screens up to 24 inches across.

Head-mounted (or wearable) eye-trackers are suitable for applications requiring the user to
move freely. As with remote eye trackers, they employ IR cameras and light sources. However,
wearable eye trackers are directly worn by the users, preferably as close as possible to the eye.
They are most of the time shaped as glasses (see Figure 4.7a), with an IR camera focusing on the
eye and an RDB camera recording the environment seen by the user. The mobility offered by these
wearable systems extend the possible domain of application to a more naturalistic environment or
outside in the real-world.

Recent growing interests in eye-tracking have made these systems much more affordable than
in past decades. Examples of applications are driving assistance systems, virtual reality, or video
games.

Method The idea behind the Video-Based approach is to measure the relative position of
the corneal reflection of the light source (i.e. infra-red camera) with the pupil center (Duchowski,
2007). Due to the anatomy of the eye, four different reflections of the infra-red light are formed.
These corneal reflections are called the Purkinje reflections (Crane and Steele, 1985).

In their studies, Crane et al. showed that the first Purkinje reflection is relatively stable, in
contrast with the eyeball (thus its pupil) that rotates in its orbit. Thus, locating the first Purkinje
reflection is typically enough to estimate the point of regard. For that purpose, a calibration pro-
cedure is required before the experiment. During the calibration, the user is asked to fixate static
points (generally between five and nine) while the system estimates the relative position between
the first Purkinje reflection and the pupil. Figure 4.8 illustrates the procedure of calibration. Fig-
ure 4.8b shows the calibration process as seen by the user; each point has to be sequentially fixated
for a few seconds.

4.1.3 Eye Movement Analysis

The goal of eye movement measurement and analysis is to gain insight into the viewer’s attentive
behavior. Raw eye movement data, or perhaps data processed to a certain extent such as Gaze
Intersection Point (GIP) data in virtual reality, may appear to be informative; however, without
further analysis, raw data are for the most part meaningless. Although intuitively (and from the
knowledge of the task), it is possible to guess where the subject happened to be paying attention
in the environment (over the internal calibration points, as she or he was instructed), it is not
possible to make any further quantitative inferences about the eye movement data without further
analysis. The goal of eye movement signal analysis is to characterize the signal in terms of salient
eye movements, i.e., saccades and fixations (and possibly smooth pursuits). Typically, the analysis
task is to locate regions where the average signal changes abruptly, indicating the end of a fixation
and the onset of a saccade and then again assumes a stationary characteristic indicating the
beginning of a new fixation. Saccades can be thought of as signal edges in time.
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(a) Table-mounted Eye-tracking, usually de-
ployed near the interactive system, here below
a computer.

(b) Relative position of the user, the interactive
system (computer) and the eye-tracking. The
orange dashed-line traces the eye-tracker’s field
of view.

Figure 4.6: A Table-Mounted Eye-Tracking System from the Company Tobii (Source: https:

//www.tobii.com/).

(a) Glasses eye-tracking device intended to
be head-mounted.

(b) A driver wearing eye-tracking glasses
to capture is point of regard while engaged
in a driving situation.

(c) Real-time visualisation of the recorded data, the red circle dis-
played the point of regard current position.

Figure 4.7: A Head-Mounted Eye-Tracking (Glasses) System from the Company Tobii (Source:
https://www.tobii.com/).
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(a) Relative Positions of Pupil and
First Purkinje Images as seen by
an Eye-Tracker Camera (Source:
Duchowski, 2007).

(b) Nine Calibration Points Dis-
played on the Interactive Screen to
set up the Eye-Tracker. The Red Cir-
cle is Displaying in Real Time the
Computed Point of Regard.

Figure 4.8: Relative Positions of Pupil and First Purkinje Images (Left) as seen by the Eye-Tracker
Camera while the user is performing a Calibration (Right).

We present a list non-exhaustive of metrics, used in general Eye Movement Analysis, that are
interesting for our case study.

Saccades

A saccade describes rapid eye movements from one fixation to another. Saccades typically last
about 30 to 80 milliseconds (Duchowski, 2007). During this span, no information is extracted
from the visual system (Holmqvist et al., 2011). The most common and used metrics related to
saccades are amplitude (a distance of a saccade), duration (milliseconds), and velocity (in degrees
per second).

Fixations

A fixation is an aggregation of microsaccades that focus around a center point. A single fixation’s
span has been determined between 200 and 300 milliseconds (Holmqvist et al., 2011). Fixations
can provide interesting information about the cognitive processes involved in the task at hand.
Several metrics are applicable in this respect:

Number of Fixations The number of fixations in an area of interest can give different
information according to the domain of expertise, the following (non-exhaustive) list give some
example that can be used in this thesis:

• Semantic importance: It is accepted that the general importance of a phenomenon in-
creases the number of fixations on that particular object (Poole and Ball, 2006; Duchowski,
2007).

• Search efficiency and difficulty: The number of fixations on an object or AOI may reflect
the ease of extracting information related to that object if few fixations have been made,
whereas a large number of repeated fixations would imply difficulty in extracting salient
information related to that object (Holmqvist et al., 2011). In other words, a low number of
fixations could either mean that the task is too easy or that the participant is experienced.
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• Experience: The more advanced expertise a participant has in the area being tested, the
less fixation they will need to extract relevant information. This is particularly observed in
the game of chess (but not only), where it has been demonstrated that experts make fewer
bindings than lower level players (Charness et al., 2001).

Fixation duration Fixation duration (in milliseconds) is often associated with cognitive
processing (Holmqvist et al., 2011). The general finding correlates long fixations with deep and
effortful processing. This conclusion can be found in applications such as reading, scene perception,
or usability. However, other findings stated that longer fixations are not always equivalent to deeper
processing:

• Longer fixations imply shallow processing: Participant with low arousal (close to day-
dreaming) may generate prolonged fixation, this is well illustrated in driving context (Chap-
man and Underwood, 1998).

• Higher stress results in shorter fixation durations: High mental workload and stress
can result in more and shorter fixations (Unema and Rotting, 1990).

• Expertise leads to longer fixation durations: In some fields such as chess, art, or
goalkeeping, experts generate longer but fewer fixations than novices (Reingold et al., 2001;
Reingold and Charness, 2005). This is related, among other factors, to the improved visual
system of experts who have a more elaborate parafoveal vision than novices. In these cases,
longer fixations imply the extraction of information in a wider visual field. These extraction
methods, therefore, result in fewer fixations and longer but more effective fixations.

Scan Path

Hölmqvist defines scan path as “the route of oculomotor events through space within a certain
timespan”(Holmqvist et al., 2011). Alternatively, previous definitions describe scan path as a
sequence of alternating saccades and fixations (Duchowski, 2007) This particular path has a start,
an end, and, therefore, has a length. Several researchers agree that scan paths can be correlated
with an ongoing cognitive process. However, no reliable evidence has yet been put forward to
prove this hypothesis (Holmqvist et al., 2011). In order to correlate a scan path with the cognitive
process, Ekhme proposed a manual analysis between scan path and verbal report (Ehmke and
Wilson, 2007).

Area of Interest (AOI)

An Area of Interest (AOI) or Region of Interest (ROI) is an area defined by hand (or via software) to
indicate an area of the stimulus that is particularly important for visual data analysis (Duchowski,
2007). They are usually defined with the help of experts in the field of study. In this way, the
visual data in AOI will be able to receive statistical analyses such as Number of Visit in AOI
(count), number of fixation of AOI (count), time before first visit in AOI (seconds), etc.

44



Figure 4.9: Illustration of Stimuli used in the Check Detection Task by Reingold and Charness
(2005). Pieces can be either displayed with Symbols (first row) or Letters (second row). The Two
First Columns Display Check Situation whereas the two last are Non-Check Situations.

4.1.4 Parafoveal Vision: The Effect of Expertise on Visual Span

We all share the same eye anatomy (except in exceptional circumstances), but does this imply
that we all extract information the same way? In experiments with reading, Engbert, Longtin,
and Kliegl (2002) observed that words within 1◦ (six to eight characters) of the point of fixation
are recognized using foveal vision, while information up to 6◦ of visual angle can be recognized
without explicit fixation. This phenomenon is referred to as the parafoveal vision. Information
perceived with parafoveal vision can still be extracted by readers as long as these are not in the
outer edges of the parafoveal. Common words can be perceived by readers as long as these are
not beyond the outer edges of the parafoveal region. Less common and unknown words can only
be extracted within the foveal region (Traxler, 2011). Thus, parafoveal vision is thought to be
acquired with expertise.

The correlation of parafoveal vision with expertise is easily demonstrated in chess (Chase and
Simon, 1973a,b; Reingold et al., 2001; Reingold and Charness, 2005). For example, Reingold
and Charness (2005) have examined differences in the spatial distribution of fixations between
experts and novices, using simple chess tasks involving two to four pieces sharing relations arranged
on a 3x3 chessboard. The task, called chess detection, required chess players to determine if a
particular relation was existing between these pieces (if the King is under attack, i.e. Jing is
in check). The experimental procedure, described by the authors, is as follows: chess players
were asked to fixate the center square board (that is always empty) before revealing the pieces.
While gathering information on the board, his eye movements are monitored. When the player
is ready, he can stop the task by answering the question: is the Black King in check? Yes or
no?. Example of displayed tasks are presented in Figure 4.9, pieces can be either represented by
their chess symbol or by letters. Scattergrams, where dots represent an individual gaze position,
are presented in Figure 4.10. A simple observation of these scattergrams reveals differences in
the spatial distributions of gaze positions between skill groups. Indeed, experts present a higher
concentration of individual gaze position in the center of the board compared to other levels of
players. Moreover, some experts were even able to solve tasks without moving their gaze outside of
the initial center square. These experts could extract information about pieces without the use of
high visual acuity. These trials are named by the authors as no-saccade trials, as no saccade is used
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Figure 4.10: Scatter-grams of Gaze Positions in the Check-Detection Task by Skill. The first row
presents data collapsed across all trial types and spatial layouts. The second row presents the
same data, excluding initial gaze position. A = position of an attacker piece; K = position of the
King. (Source: Reingold and Charness, 2005).

to exit the center position to fixate pieces or other squares. The proportion of such phenomena is
displayed in the bar plots 4.11 for each skill groups.

However, only experts were able to demonstrate this ability. This ability suggests that experts
benefit from a larger visual span for chess-related visual patterns. Another argument supporting
this conclusion is the number of fixations made by experts (fixations in no-saccades trials are not
considered), these results are depicted in Figure 4.12a and 4.12b. Experts made fewer fixations in
general and, when fixations are recorded, they are proportionally less positioned on the pieces than
for lower-level players. In conclusion, Reingold et al. demonstrated that the increase in the visual
span is a function of skill. Experts can extract more information from fewer fixations that cover
a more significant portion of the chessboard than for intermediates or novices players. In other
words, they can extract more information from their useful visual field, which is not only about
the highest acuity region (the foveal vision) but also about more open angles of their parafoveal
vision. This conclusion is consistent with the hypothesis from Chase and Simon’s (Chase and
Simon, 1973a) stating the potential increase in visual span for experts is related to an encoding
advantage learned through experience.

Finally, based on these findings, Reingold et al. (Reingold et al., 2001; Reingold and Charness,
2005) stated that experts are not advantaged in quick identification of singles chess pieces and
board locations, but rather in the extraction of meaningful relational information that bound
pieces together on the board. This main perceptual advantage is directly linked to the formation
of meaningful chunks in an expert’s memory, which allows them to efficiently and automatically
extract several chess relations in a short time. This strong statement is demonstrated by, on
the one hand, the solid performances of experts in tasks where pieces are bounded by relational
and meaningful information and, on the other hand, their total absence of skill with a random
configuration of pieces.
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Figure 4.11: Proportion of No-Saccades Trials (Source: Reingold and Charness, 2005).

(a) Number of Fixations

(b) Proportion on Fixation on pieces

Figure 4.12: Proportion on Fixation on the board (Top) and only on Pieces (Bottom) (Source:
Reingold and Charness, 2005).
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4.2 Facial Expressions

We have seen in Section 2.4.3 that during human reasoning or decision making, both conscious
and unconscious neural operations are involved (Damasio, 1996). During these neural operations,
somatic signals (or markers) are observable on the individual: variation in heart rate, facial ex-
pressions, pupil dilation, body postures, muscle contractions, etc.

4.2.1 Facial Action Coding System (FACS)

Section 3.3 discussed Ekman’s theory that all humans share six categories of basic emotions. This
has led to the development of a taxonomy of human facial movements, called the Facial Action
Coding System (FACS) (Ekman, 1977).

Ekman and Friesen’s studies led to the development of a taxonomy of human facial movements,
called the Facial Action Coding System (FACS). This taxonomy is based on atomic element
called Action Units (AU), see Figure 4.13.

Figure 4.13: Subsets of AUs with Fully Activated Muscles. AU12L and AU12R are Distinct;
Similar for AU14. (Source: Xiang and Tran, 2017)

AUs are fundamental actions of individual muscles or groups of muscles. FACS gave the sci-
entific community a tool for facial recognition as well as facial modeling; the medical community
welcomed this system in psychology where psychotherapists could use it to understand how their
patients’ face behaved, and animators enjoyed this new tool to animate more realistic facial move-
ments. Last but not least, the most interesting for our work is that each basic emotions can be
decomposed into a group of muscles that can be easily recognized with FACS. Indeed, in 1983,
the same authors described a system Emotional Facial Action Coding System (EMFACS) where
they consider only emotion-related AU (Friesen et al., 1983). Considering that, in FACS, AU are
enumerated from 1 to 46, basic emotions can be recognized by detecting the corresponding AU as
described in the Table 4.1. For example, to recognize Happiness, one has to detect on the subject
face if the Action Unit number six (AU6), which corresponds to “Cheek raiser”, and the AU12
(Lip corner puller) are both activated by muscle contraction.
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Emotions Action Units
Happiness 6 + 12
Sadness 1 + 4 + 15
Surprise 1 + 2 + 5B + 26
Fear 1 + 2 + 4 + 5 + 7 + 20 + 26
Anger 4 + 5 + 7 + 23
Disgust 9 + 15 + 16

Contempt R12A + R14A

Table 4.1: Action Units associated with basic emotions according to the EMFACS.
Note: Numbers are AUs, letters are of two kinds: ‘R’ or ‘L’ means on the “Right” side or “Left”
of the face respectively; ‘A’ to ‘E’ is the intensity score of the muscle contraction, ‘A’ being the
minimal (trace) and ‘E’ the maximum level of contraction.

4.2.2 Action Units (AU) Detection Systems Pipeline

In modern systems for AU detection, the most common pipeline can be summarized as follow:

• From an input image, perform a Face Detection;

• From a small region containing a face, perform a 3D Facial Landmark detection (Facial
landmarks are standard reference points that can be easily identified. Such as left and right
junctions of the upper and lower lips, left and right junctions of the upper and lower eyelids,
eye pupils, the tip of the nose, etc.);

• From 3D landmarks, estimate the head pose and perform a face alignment;

• From an aligned face, detect Action Units (AUs) and their activation intensity between 0
and 1;

• Additionally, extract other information (e.g. eye gaze orientation).

An example of pipeline used by the software Openface (Baltrusaitis et al., 2018) is depicted in
Figure 4.14.

Figure 4.14: OpenFace 2.0 Facial Behavior Analysis Pipeline (Source: Baltrusaitis et al., 2018).

4.2.3 From Actions Units to the Pleasure-Arousal-Dominance Model

Strict categorization of facial action units into basics emotion can result in the loss of information
about variation in the intensity of muscle activations inside a category. In some application do-
mains, it is more interesting to observe relative variations of muscle activation than the emotion
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category itself. One way to ensure that is to map Facial Action Units into the PAD (Pleasure-
Arousal-Dominance) model proposed by Russel (Russell, 1980). We present here the calculations
used to determine values for Valence (Pleasure) and Arousal from AUs activations. These cal-
culations are based on publications describing FACS (Ekman, 1977) and documentations provided
by Noldus FaceReader Software (Technology, 2015).

Pleasure (or Valence)

The emotional state (i.e. being pleased or dissatisfied about a situation or something) is given by
the Pleasure indicator or commonly called Valence. It is computed using the activation intensity
of AUs involved in positive emotion from which we subtract activation intensity of negative emotion
AUs. AUs involved in positive affect are: 6 and 12. Those classified as negative are: 1, 2, 4, 5,
7, 9, 15, 16, 20 and 26. Let AIn ∈ [0, 1] be the activation intensity of the Action Unit n (AUn).
POSaus and NEGaus are the normalized values for both categories of positive AUs and negative
AUs respectively, such as:

{P} = [AI6, AI12],

{N} = [AI1, AI2, AI4, AI5, AI7, AI9, AI15, AI16, AI20, AI26],

POSaus =
1

#{P}

∑

i∈{P}

AIi (4.1)

NEGaus =
1

#{N}

∑

j∈{N}

AIj (4.2)

Thus, the valence value, V , can be obtained by subtracting the positive activations from negative’s:

V = POSaus −NEGaus (4.3)

V ∈ [−1, 1] where −1 is very dissatisfied, 0 represents a neutral emotional state and 1 a very
pleased expression.

Arousal

Excitation, represented with the indicator Arousal, indicates whether or not the individual is
active or not. Arousal value is computed following four steps:

1. Take as input the activation intensity AIn of 20 AUs:

{A} = [1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 18, 20, 23, 24, 25, 26, 27, 1− 43] (4.4)

The opposite value of AU43 (eyes closed) needs to be taken as its activation indicates non-
excitation.

2. For each AIn, compute its mean value, AAIn over the last 60 seconds, starting from t− 1:

AAIn =
1

60

∑

i∈[t−61,t−1]

AAIn,i (4.5)
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3. Apply a correction to avoid bias from continuously activated AU using the current activation
value at time t0:

CAIn = Max(0, AIn,t0 − AAIn) (4.6)

4. Finally, the Arousal value A is calculated using the mean of the five highest values found
in equation 4.6:

A =
1

5

∑

i∈[1,5]

(ith max value of CAIn) (4.7)

A ∈ [0, 1] where 0 is not excited as all (e.g. very quite, or even sleepy) while 1 is very aroused.
Note that A is often mapped between [−1, 1] to be in the same range as Valence.

Dominance

Dominance models the degree to which a subject feels in control of a situation or perceived phenom-
ena. To the best of our knowledge, there is no literature on how to determine Dominance using
(only) Facial Action Units. Dominance tends to be perceived as a continuous state involving body
posture, speech, gesture and cognitive state (see next Section 4.3) (Mehrabian and Friar, 1969;
Argyle, 1988; Grammer, Fink, Oberzaucher, Atzmüller, Blantar, and Mitteroecker, 2004; Johal,
Pellier, Adam, Fiorino, and Pesty, 2015). For example, as described by Argyle (1988), standing
with an expanded chest and hands placed on hips is generally perceived as a dominant posture.
Whereas Mehrabian and Friar (1969) stated that posture communicates dominance through relax-
ation, displaying, for example, asymmetrical arm and leg positions, hands relaxed and backward
lean.

In this thesis, we do not compute a value for Dominance as no consensus has been found
yet among the scientific community. However, we can still interpret the results we obtained using
literature.

4.2.4 Cognitive Interpretations

The role of the prefrontal cortex (PFC) has been widely studies to understand its role in decision
making (Bechara et al., 1994; Fuster, 1997). In his research, Damasio found that individuals pre-
senting damages in their PFC were insensitive to the future consequences of their choices (Bechara
et al., 1994). The authors concluded the significant role of PFC in weighing future consequences
of affectively salient decisions. Fuster stated that PFC “integrates, organizes, and structures the
primitive sensations of pleasure and arousal with knowledge of the temporal contingencies that link
prior experiences of stimuli within varying life contexts with expectations for the future” (Fuster,
1997). For example, the experience of high pleasure and high arousal from winning a lottery is
partly the result of the present context, previous financial difficulties, and expectations of future
advantage, or both. Assimilating this information into the PFC results in an experience of con-
scious joy. Finally, Russel summarized the same view by stating that the cognitive functions of
PFC have an essential role in the creation and recognition of emotions. This is done by associ-
ation and integration of neurophysiological sensations with internal (from memories and current
thoughts) and external cues (Posner, Russell, and Peterson, 2005).
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4.3 Body Posture

Darwin questioned the purpose of different body reactions: Why are we displaying disgust with
wrinkling nose? Does baring teeth when enraged is making sense even if biting has a low probabil-
ity of occurring? Darwin approached these questions from an evolutionary point of view, stating
that these body reactions were vestiges from old behaviors that had specific functions (Darwin,
1872). Even if most of these functions disappeared today (biting is rare), these reactions are still
used as external evidence to communicate the individual’s internal state. We still wrinkle nose to
communicate disgust, even if the stimuli is an odorless picture. This “stimulus-response” inter-
pretation, derived from behaviorism theories, has limits and does not take into account cognitive
processes such as emotion, memory, thinking, or problem-solving (Miller, 1956; Damasio, 1991).
Mehrabian and Friar stated that changes in the individual’s affective state are reflected in body
language (Mehrabian and Friar, 1969). Ekman and Friesen, on their side, refers as unintended
“emotional leakage” when interpreting somebody behaviors (Harrigan, 1985; Ekman and Friesen,
1969). Damasio, in his Somatic markers theory, assumed that neural operations such as human
reasoning and decision making are reflected through external somatic signs (e.g. variation in heart
rate, pupil dilation, etc.) (Damasio, 1991).

Over the last decades, researches have been studying non-verbal behavior through five signif-
icant areas: facial expression, nonverbal vocal behavior, kinesics, visual behavior, and proxemics
(Harper, Wiens, and Matarazzo, 1978). This section focuses on cognitive processes that can be
elicited and observable through body behaviors in a chess-playing environment: reactions to stress,
self-touches, and external signs of dominance.

4.3.1 Physiological Responses to Stress

Definition and approaches

The concept of stress has been studied for decades (Selye, 1950), with proposals for a variety of
definitions and approaches (Koolhaas, Bartolomucci, Buwalda, de Boer, Flügge, Korte, Meerlo,
Murison, Olivier, Palanza, et al., 2011). In their critical evaluation of the stress concept, Koolhaas
et al. supported a “cognitive perception” approach to define stress: “a cognitive perception of un-
controllability and/or unpredictability that is expressed in a physiological and behavioural response”
(Koolhaas et al., 2011). They emphasized the non-reversibility of their definition, and observable
physiological responses do not necessarily imply stress.

This complex state, involving processes interacting with each other, needs to be studied from
a more holistic point of view. With this in mind, Aigrain and colleagues (Aigrain, Spodenkiewicz,
Dubuiss, Detyniecki, Cohen, and Chetouani, 2016a) analyzed stress in 3 perspectives: the biological
perspective, the phenomenological perspective, and the behavioral perspective:

• The biological perspective focuses on how the body reacts to stressful stimuli. Reactions
by the hypothalamo-pituitary-adrenal pathway and the autonomic nervous system trigger
a neuroendocrine chain reaction, resulting in the release of the hormones epinephrine and
cortisol from adrenal glands (Selye, 1976). This, in turn, affects other systems such as
cardiovascular, gastrointestinal, or the nervous systems.

• The phenomenological perspective considers the individual’s perception of stress. This
view has been mainly put forward by Lazarus’ theory of cognitive appraisal (Lazarus, 1966,
1993) stating that stress is a two-way process between the stimuli and the individual ability
to gather resources required to manage both the situation and the produced stress. In this
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view, stress would occur only when the individual perceives that its abilities or resources to
cope with the stressful situation are not enough.

• The behavioral perspective investigates the impact of stress on human and animal behavior
both at individual and group levels. An example is displacement behaviors (e.g. scratching,
face touching, and lip biting) observed in humans and primates (Troisi, 2002). These body
gestures carry more information about the emotional state of individuals involved in a stress-
ful situation than other external cues such as verbal expressions. These behaviors have been
interpreted as short diversions used to cut-off attention temporarily from the stressful stimuli,
discharging the excess energy accumulated to face the situation. However, these diversions
could result in reducing the individual’s abilities (Mohiyeddini and Semple, 2012; Weisman,
Chetouani, Saint-georges, Bourvis, Delaherche, Zagoory-Sharon, and Cohen, 2015).

Stress detection

In their work of multimodal stress detection, Aigrain et al. (Aigrain et al., 2016a) reviewed
numerous automatic stress detection systems that involve different stressing stimuli, signals, and
annotations. For example, Wijsman et al. (Wijsman, Grundlehner, Liu, Hermens, and Penders,
2011) asks individuals to realize mental arithmetic, a logical puzzle, and memory tasks while
being monitored their heart rate, electrocardiography, electromyogram, and respiration. For this
study, stress annotation has been performed from a self-assessment. Aigrain et al. summarized all
observable signals that have been used in these systems:

• Physiological signals: Blood Volume Pressure (BVP), Electrocardiography (ECG), Elec-
tromyogram (EMG), Galvanic Skin Response (GSR), Heart Rate (HR), Heart Rate Variabil-
ity (HRV), etc.

• Behavioral signals: speech, body movement, head position, etc.

To tackle the complexity of stress detection and the high dimensionality problem, Aigrain et al.
proposed to evaluate the predictive power of 101 behavioral and physiological different features.
These features are extracted from:

• Body features (e.g., head position and posture enhance),

• Quantity of Movement (e.g., displacements of the skeleton joints),

• Number of time the body is in periods of high activity,

• Posture changes (e.g., arm crossing),

• Self-touching (e.g. face touching, rubbing fingers),

• Facial features (i.e. 12 AUs)

• Physiological features (e.g. cardiac functions, respiratory system or electromyographic ac-
tivity).

They observed these 101 signals produced by individuals engaged in a mental arithmetic task.
In a second time, classification performances of these features are evaluated individually and in
different subsets. Authors concluded that features related to body movement, blood volume pulse,
and heart-rate provide valuable information for the stress detection classification system.
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Drawback on stress assessment

Caution is required when evaluating stress. Methods for automatic detection of stress no matter
how reliable, depend on the way stress is assessed. In their work, Aigrain et al. (2016a) reviewed
the variety of stress assessment:

• Self-assessment;

• Assessment from biomarkers (cortisol, GSR, etc.);

• Assessment from external observers;

• Inference from experimental conditions;

• Inference from acting instructions.

The authors stated that most of the time, other studies on stress detection rely on only one
of these assessments. Besides, Lutchyn et al. suggested that inconsistent results are partially
explained by the choice of assessment that evaluates stress on only one spectrum (e.g. behavioral
or physiological) (Lutchyn, Johns, Czerwinski, Iqbal, Mark, and Sano, 2015).

Based on these observations, the authors proposed a multi-assessment methodology to analyze
stress relying on three different stress annotations:

• External Observer Assessments using the crowd-sourcing platform (e.g. behavioral perspec-
tive),

• Self-Assessment (e.g. phenomenological perspective),

• Physiology Expert Assessment (e.g. biological perspective).

When applying their 101 features (described in the previous paragraph), they provide more robust
results that avoid frequent inconsistency found in other studies (Aigrain et al., 2016a).

4.3.2 Self-Touching

Nonverbal channels are thought to express emotion, attitude and psychodynamics attributes
(Harper et al., 1978; Harrigan, 1985). In particular, self-touching has been interpreted as an
indicator of affective state (Ekman and Friesen, 1969). Self-touching is defined as placing a hand
on one’s body, followed by scratching, grooming, or rubbing. These gestures are generally exe-
cuted with awareness. However, studies have shown that these behaviors occur with regularity and
highly situation-dependent. Indeed, self-touches are automatic responses to bodily needs. Ekman
and Friesen suggest in (Ekman and Friesen, 1969) that these behaviors are “emotional leakage”
reflecting one’s current affective state and they are unintended realized to assure “survival of the
organism”. More recently, these acts have been categorized as “displacements behaviors” (Troisi,
2002) that are short diversions to the brain used to cut-off attention temporarily from the stressful
situation. This view is in line with Freedman’s psycholinguistic perspective (Freedman, 1972), in
which self-touches occur when an individual enters in “conflict between what remains unverbalized
and is expressed only in motor form, and what is verbalized”.

In his study, named “Self-Touching as an Indicator of Underlying Affect and Language Pro-
cesses”, Harrigan studied the impact of self-touching by doctors and patients during medical inter-
views (Harrigan, 1985). He found significant results that support previous studies, self-touching
can be explained by:
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• The Affect theory: these gestures are indicators of stress, tension, and negative affects;

• The Psycholinguistic theory: “self-touching is coordinated with information production or
processing”.

Harrigan concluded on emphasizing that self-touching should not always attribute to negative
affect, but should rather be seen as a complex reaction from the body.

4.3.3 Manifestations of Dominance

Mehrabian et al. stated that changes in body postures reflect individual’s affective states (Mehra-
bian and Friar, 1969). Following this idea, cues of individual dominance or submission should be
observable in body behaviors. Argyle (1988) described a dominance posture with expanded chest
while being standing and hands placed on hips. Relaxation is also associated with dominance
and power in an established hierarchy. This is proposed by Mehrabian, who defined dominance
through relaxation (Mehrabian and Friar, 1969).

Johal tested different styles of parenting behavior for robots, and found that subjects were able
to detect dominance and authoritativeness from robot posture (Johal, 2015). In this view, they
reviewed works from Mehrabian and Friar (1969) to establish a list of body gestures that reflect
Relaxation which is a concept, tossed by Mehrabian, associated with dominance and power in
an established hierarchy:

• Arm-Position Asymmetry;

• Sideways Lean;

• Leg-Position Asymmetry;

• Hand Relaxation;

• Neck Relaxation;

• Reclining Angle.

Most of these cues are studies in a environment where two (or more) individuals are interacting.
Johal et al. observed that postural openness is significantly perceived as a sign of relaxation and
dominance by individuals. More specifically, individuals tend to occupy less volume with their
bodies when they perceived themselves in a state of submission.

4.4 Conclusion

This chapter provides information on the physiological manifestations of reasoning and how to
observe them.

Gaze analysis has been studied for several decades, and a variety of hardware is now available.
The chess game has been used many times by researchers to conduct studies on the attention,
expertise and visual system of players (De Groot, 1978; Charness, 1981; Reingold et al., 2001;
Reingold and Charness, 2005). With these studies, we have relevant baselines and reliable results
on which to compare our results. The chessboard, by design, can be easily divided to create AOI
and conduct our studies. Moreover, eye-trackers offer relevant metrics for our work: the bindings
reflect the extraction of information, and the scan paths allow us to identify the observation paths
used by the players (Duchowski, 2007; Holmqvist et al., 2011).

Secondly, facial expressions are very easily observable with a simple camera and using the FACS
description defined by Ekman (1977). From these data, we can obtain the emotional reactions
of chess players and represent them in several forms: activation of micro-expressions, discrete
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classification with basic emotions (Ekman, 1977) or continuous classification with the PAD model
(Russell, 1980).

Finally, body behaviors also reveal relevant information about the mental state of humans.
Stress can be observed in several ways (Aigrain et al., 2016b). Self-touches may appear as conscious
and meaningless movements, but studies have shown that they reveal information about a mental
state overloaded by stress or by too much expensive cognitive work (Harrigan, 1985). Finally,
the general posture of the body reflects a state of dominance or submission that can be observed
according to several criteria (Argyle, 1988)

Detecting and correlating these manifestations of reasoning could allow us to understand the
mental state of a player engaged in problem-solving. To detect these external signs, we have
developed a recording instrument, composed of several hardware components, and we have tested
it with a first experiment, described in the following chapter.
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Chapter 5

Observing Human Reasoning during
Problem-Solving

5.1 Previous work

The extensive work done by De Groot and his colleagues in the search for the difference between
chess Masters and Novices raised much interest among the communities. Among other interesting
findings, De Groot (1978) sketched out four different phases used by players when presenting a new
chess task. The first phase is perception-oriented, subject gathers as much meaningful information
as possible and is not concerned (yet) about seeking a solution to the problem. In 1969, Simon
and Barenfeld analyzed this particular phase and proposed a program that could imitate the
information processing of a player. In two attempts, Simon and his colleagues elaborated two
systems: PERCEIVER (1969) and MAPP (1973). The former simulates the eye scan that a
subject would make when facing a new chess problem; while the latter tries to reproduce how
humans scan a chessboard for a reconstruction memory task.

5.1.1 The PERCEIVER System (1969)

Herbert A. Simon and Michael Barenfeld proposed that problem-solving should not be limited as
only selective search through a “tree” of solution possibilities, but as only a part of a more critical
process (Simon and Barenfeld, 1969). They observed that search theories failed to describe the
perceptual behavior of subjects when presented with a new task to solve. Those firsts seconds of
exposure, described as a “perceptual” phase by de Groot, would require different cognitive processes
than those involved in the conventional search algorithm (Tikhomirov and Poznyanskaya, 1966).
In their paper, Simon and Barenfeld first describe a method that relies on eye-tracking records
and then sketched out a single computer program that reproduces human behavior during the first
phase of exploration.

Early Systems on Eye Movements Tracking in Chess

Strategies used by chess players to solve a task during the first seconds of exposure have been
studied by De Groot (1978). While he initially relied on verbal reports, the need to observe the
sequence of visual fixations of chess players soon became essential to progress. Extensive work had
been performed in order to obtain satisfactory accuracy for eye movement recording (Tikhomirov
and Poznyanskaya, 1966; De Groot, 1978). At that time, a fixation position could be evaluated
within a visual span with a size barely larger than a chessboard’s square. However, due to the size
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of a standard chessboard, the distribution of the pieces and the eye’s ability to gather information
using Peripheral Vision (i.e. the vision outside the fixation point, using parafoveal vision), Simon
and Barenfeld pointed to a recurring problem in eye-tracking systems: “Records of eye movements
can only show the succession of fixations; they cannot show precisely what information is being
processed at each moment”.

The PERCEIVER System

Simon and Barenfeld designed the chess-program PERCEIVER (1969) that simulates the eye
movements of humans during the perceptual phase. Based on the findings from De Groot (1978),
who stated that players gather information by perceiving the relations between pieces, Simon and
Barenfeld established two assumptions to describe PERCEIVER:

1. During the perception phase, information gathered is the relation between pieces. Relations
are:

(a) Defending: a piece defending another one;

(b) Attacking: a piece attacking another one;

(c) Defended: a piece being defended by another one;

(d) Attacked: a piece being attacked by another one.

Chess regroups more relations between pieces, but PERCEIVER only used these four.

2. When a piece A is fixated and if A shares a relation with another piece B, than the next
fixation is either on B or on A once B has been quickly checked (by peripheral vision or short
saccade).

Based on these assumptions, Simon and Barenfeld compared eye movements recorded from an
expert player and a simulation of PERCEIVER. For that, they decided to use a game that was
already used by Tichomirov and Poznyanskaya in their 1966 study and is presented in Figure 5.1.
This game was presented for 5 seconds to the expert player and PERCEIVER during his phase of
exploration. A total of 20 fixations has been recorded for the expert player, while the chess-program
PERCEIVER generated 15.

Results, depicted in Figure 5.2, show that both the human player and the chess-program are
concerned with pieces that have an impact on the center, i.e. the two facing Pawns, Black and
White Knights and Queens. A significant remark raised by Simon and Barenfeld is that PER-
CEIVER always fixates squares occupied by pieces due to its conception. On the contrary, the
expert sometimes seems to fixate on empty squares. Simon and Barenfeld explained that this phe-
nomenon could be caused by some errors in the eye-tracking calibration or other unknown reasons.
It has been proved in latter study (Reingold et al., 2001) that experts can gather information from
peripheral vision, which is drastically larger than novices. By looking into details which relation
inter-pieces PERCEIVER noticed, Simon and Barenfeld concluded that the chess-program was
concerned by the undefended Pawn and found four different moves to overcome the situation. The
same solution has been considered by expert players. From this first experiment, Simon and Baren-
feld concluded that a perceptual-based chess-program could be elaborated to simulate human eye
movements in an exploration phase.

To deepen their study, Simon and Gilmartin explore encoding and retention of information.
They turned to an information-processing theory component theory known as EPAM (Elementary
Perceiver And Memorizer) from Gregg & Simon, 1967. This particular component focuses on
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Figure 5.1: Task Presented to both an Expert Player and the PERCEIVER (Black to play).

(a) Recording of an Expert’s Eye Movements
during the First 5 Seconds of Presentation of
the Task.

(b) Simulated Eye Movements from PER-
CEIVER Program. Solid Lines are Eye Move-
ments while Broken Lines describes Relations
between Pieces Noticed.

Figure 5.2: Recorded Eye Movements of an Expert Player (left) and the PERCEIVER Program
(right) on Task Presented in Figure 5.1. Shaded Squares are those where Relevant Pieces are
Standing. (Source: Simon and Barenfeld, 1969).
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simulating recognition and fixation processes in learning. Encoding and decoding information is
also part of EPAM. Learned configurations by EPAM are stored as a discrimination net that can
be used when a stimulus is presented. EPAM is able to retrieve a configuration from several
stimuli composed of chess pieces and store this information in what could represent the short-term
memory. They concluded that this combination of two information-processing theory components
could simulate the recognition and retention processes of subjects engaged in memory tasks. This
is described in the next section.

5.1.2 The MAPP System (1973)

Simon and Gilmartin (1973) developed and simplified the combination of the PERCEIVER and
EPAMmodules to simulate how humans reconstruct the chessboard after only brief exposure. They
proposed a new chess-program called MAPP for Memory Aided Pattern Perceiver. It is composed
of two main components: a Learning and a Performance modules. The learning component is a
derivate of the EPAM module, which simulates the storage of information in long-term memory.
The amount of information stored can vary, so this module can either simulate the knowledge
stored of a weak player or a master player. The second component, the performance module, is
composed of three sub-modules:

1. The Piece Saliency Detector: given a chess situation, detect for each piece its saliency. This
module is similar to the one used in PERCEIVER;

2. The Pattern Recognizor: given a salient piece and its adjacent pieces, form a group of pieces.
Then in a second time, this module tries to match this group of pieces with a known chunk
(“chunking” is explained in Section 2.3.2, page 14) stored in the learning component (the
EPAM net). If this group is present in the EPAM net (i.e. this chunk has been learned),
then this group is labeled as a known chunk and encoded in short-term memory;

3. The Information Decoder: from a chunk stored in short-term memory, retrieve each piece
included in the chunk with their respective position.

MAPP’s Performance

MAPP’s performance in chunk recognition is tied to the quality of its EPAM Net (e.g. the content
of its long-term memory). To evaluate MAPP, Simon and Barenfeld constructed different EPAM
Net and evaluated the recognition ability with each of them. Finally, these results are compared
with an expert chessplayer.

Using the published games of different level, two EPAM Nets were built:

1. Net A contains 447 unique chunks (1526 nodes, 447 terminal nodes);

2. Net B contains A’s 447 chunks plus 125 for a total of 572 chunks (1909 nodes, 572 terminal
chunks).

Both A and B nets contain two to seven size long chunks. As a systematic sampling of every chunk
is labor-intensive, Simon and Gilmartin agree to say that not all chess chunks are covered from
those two nets, but this should remain sufficient as a first investigation.

The first comparison is performed using five chess situations at the twentieth move (taken
from published game). MAPP succeeded in reproducing from 39% to 43%. Looking at the best
performance of MAPP in these situations, the chess-program recognized, on average 4.4 patterns
(chunks) per position, and these patterns contained, on average 2.45 pieces.
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A second experiment was done on nine tactical positions (taken from Reinfeld’s Win At Chess
book) where the player can gain a tactical advantage if played well. In these sessions, MAPP’s
performances ranged from 53 to 55%, which is slightly better than the first experiment. The
average number of recognized patterns is approximately the same (4.5), however, the average size
has increased, rising to 2.79 on average.

The last experiment consists of four chess positions, all taken at the tenth move of grandmas-
ter games. MAPP achieved 73% of correctly placed pieces. The average number of recognized
patterns is 5.75, and their average size is 3.9. These performances are explained by the shape of
grandmaster’s games, which are often “stereotyped” as they tend to use the same pattern during
their openings.

Size of the EPAM Net

These presented results raised intriguing questions for Simon and Gilmartin: “How many pat-
terns, or chunks, should one memorize in Long-Term Memory in order to recognize completely
the immense variety of games position offered by chess games? Moreover, how large should be
each pattern?”. Simon and Gilmartin did the math. By only considering plausible and reasonable
development, they estimated that the number of chessboard positions could be between 1010 and
1015. The number of chunks required to represent these positions is also approximate. Using a
strong assumption that all chunks are of the same size of pieces, they conclude that to represent
1010 requires 280 chunks of 5 pieces each. MAPP was using 447 chunks for net A and 587 for net
B. However, we observe during the running process that, on average, the recognized chunks by
MAPP were between 2.5 and 3.9 sizes long. Hence one problem of MAPP performance would lie
into his EPAM Net, which is poor in large chunks.

To refine their analysis, Simon and Gilmartin took into account that chunks stored into long-
term memory are of different sizes and, most of all, unequal in the frequency of appearance. Using
the property of the harmonic distribution, the authors computed that to achieve 75% of accuracy
for chessboard taken after the 20th first move, 13.500 chunks of different sizes are required. Finally,
they summarized the study by positing that it requires at least 100.000 patterns to reach master
and grandmasters performances.

Comparison with Human Performance

MAPP showed quite impressive performance in task memory, but does it behave as a human would
perform? Simon and Gilmartin (1973) wanted to add convincing evidence that MAPP theory
partially simulates human processes. To do so, they asked two players, a class A of intermediate
level and a chess master, to take the memory task. They compared the accuracy performance but
also the correlation of well-placed pieced and errors between MAPP and the chess master. For
accuracy, the chess master was able to reproduce in average 71% of pieces from 14 positions, where
MAPP scored 48% but only 41% for the class A player. Among the well-placed pieces from the
chess master, MAPP succeeded in placed 55.5% of them, and most of the time, the recognized
patterns from MAPP were familiar chunks for the chess master.

Other results are the “within-” and “between-chunk” relations. By analyzing basic relations
(attacking, defending, same color, same type) that bonds pieces played successively by subjects
when reconstructing a board, they showed that frequencies of recognized “within-” and “between-
chunk” relations by MAPP are highly similar to chessmasters’ ones.

These comparisons between human chess players of different level and the MAPP system shows
surprising similarity in memory organization and chunking of information.
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Discussion

To summarize, the theory developed around the MAPP system tries to model the human cognitive
process engaged in a memory task. Such a task consists of a succession of very distinct steps, and
a MAPP’s component models each of them. Table 5.1 gives lists all the steps required by a human
player to perform a memory task. For each step, the human’s ability to use is named, and the
corresponding MAPP component is given.

Steps in Memory Task Human Components MAPP Components MAPP Algorithmic Structure
Perceptual phase
(de Groot, 1946)

Lateral Geniculate Nucleus
(LGN)

PERCEIVER
List of salient pieces

Known chess relations between pieces

Salient Pieces Detection
Chess expertise

+ Long-Term Memory (LTM)
Salient Piece Detector Function of 3 criteria

Patterns Detection
Chess expertise

+ LTM
Pattern Discriminator

(EPAM Net)
Tree-like structure

Patterns Coding
in Short-Term Memory (STM)

Chunking in STM
+ LTM

Pattern Discriminator
(EPAM Net)

Table of fixed length (7)
containing names of chunks

Patterns Decoding
Reading back chunks

from STM
Reading EPAM Net Tree-like structure

Table 5.1: Summary of the architecture of MAPP compared with human’s abilities to perform a
memory task.

As is it the first investigation, one can notice that MAPP does not fully model some steps.
For example, the chess expertise of a player is only represented as the content of the EPAM Net
in MAPP. Moreover, the Saliency Piece Detector’s function is not entirely situation-dependent.
This module is based on three criteria, and two among them are related to nearby allied pieces.
We know from chess players that a piece can be salient in situations that do not match these two
criteria (e.g., a Bishop trapping a King on a corner). Such situation-based criteria may have been
learned through years of practice by chess players, and they rely on them to create new patterns
in their long-term memory.

In conclusion, by elaborating PERCEIVER and later the MAPP-system, Simon and colleagues
described how one could reproduce human cognitive processes engaged in a memory task. The
equivalence found in their system’s performance and human chess players of different levels suggest
that their propositions are relevant and consistent with the underlying human processes.

5.1.3 What Can we Learn from these Systems?

It is interesting to see how Simon et al. iteratively processed to elaborate two systems to reproduce
human cognitive processes in the 1970s. By analyzing findings from De Groot (1978) and other
studies, they developed sub-modules one by one. First, with PERCEIVER (1969), they focused on
information extraction with visual features. However, something was missing: an efficient method
to encode and recognize the information. To improve this initial system, the authors elaborated
on the EPAM (Elementary Perceiver And Memorizer) component to learn relevant patterns. A
few years later, Simon et al. proposed the MAPP system with more sub-modules: the pattern
learner, the salient piece detector, the pattern discriminator, and the chunk decoder.

Is it possible to observe the cognitive processes of chess players similar to the ones proposed
by Simon et al.? Probably, considering that they were elaborated by observing players’ fixations
and their verbal protocol. With more modalities, would it be possible to observe more complex
cognitive processes?
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5.2 A Multimodal Instrument to Observe Human Reason-

ing

Base on the explored literatures (Chapter 2 and 3), on possible metrics to observe manifestations of
reasoning (Chapter 4) and on previous work from Simon et al, we designed a recording instrument.
It has been made with the following guidelines in mind:

• Reproducible;

• Off-The-Shelf and Affordable sensors;

• Non-Invasive (remote) sensors;

• State-of-the-Art softwares;

• Open-Source softwares.

Modality Hardware Freq (Hz) Software
Body Kinect 2.0 30 Openpose

Emotion Webcam 60
1) Noldus FaceReader

2) OpenFace

Gaze
Remote Eye-Tracking

Bar
60

1) Tobii
2) Fovio

- Touch Screen 60 RGBD Sync SDK

Table 5.2: Summary of Hardware and Software used in our Recording Instrument.

Table 5.2 gives a summary of the components (hardwares and softwares) used in our setup. Hard-
ware components are presented in Section 5.2.2 and a description of software used is given in
Section 5.2.3.

5.2.1 Domain of Application and Limitations

We want to capture the cognitive processes of chess players engaged in problem-solving in their
comfort zone. Ideally, recording two players of the same level, facing each other would be the
best environmental setup. Our modalities are emotion, body, and gaze; each of them can be
reliably recorded with the use of wearable sensors (electrodes, glasses, motion capture sensors
etc.). However, these invasive sensors may affect the players’ stress level and take him out of their
comfort zone.

To reliably capture information, remote (non-wearable) sensors such as 2D and 3D cameras,
and remote eye-tracking must be positioned in front of a player. This is not practical when two
players are positioned face-to-face over a chessboard. The use of an interactive touch-sensitive
computer screen provides a more easily controllable environment. Also, this arrangement allows
us to control the experimental conditions by providing problems with known solutions and levels
of difficulty.
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Figure 5.3: Designed Experimental Equipment for the CEEGE project, adapted from the Figurines
project (Portaz et al., 2017). From top to down, sensors are: a Kinect2, a webcam, a touch-screen
and a remote eye-tracking (below the screen). All these remote sensors are focusing on the subject
engaged in problem-solving presented on the screen.

5.2.2 Hardware

This system drew on lessons learned from an earlier system used to record children during story-
telling sessions (Portaz et al., 2017). Our multimodal recording instrument, displayed in Figure 5.3
is composed of several hardware elements that are focusing on a different point of interest of the
chess player:

• Touch-Screen computer of 23.8 inches;

• Kinect 2.0 records a 640x480 RGB image with depth information at 30 Hz. Mounted 35cm
above the screen and is inclined to capture the upper-body part, from the waist to the head
included arms, of the chess player.

• Webcam records a 1920x1080 RBG image at 60 Hz. Mounted 25cm above the screen, the
camera has a frontal view focusing on players’ face.

• Eye-Tracking bar (remote). Mounted either below the screen, horizontally, or vertically on
the left of the screen. It captures eye-gaze at 60 Hz.

• Two USB-LED, adjustable, are used for lighting condition control.

A wooden superstructure is used to rigidly mount the measuring equipment with respect to the
screen in order to assure identical sensor placement and orientation for all recordings. This struc-
ture has been made using a laser cutter. The Touch-Screen was chosen to provide a gesture-based
interaction resembling play with a physical board.
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5.2.3 Software

We have used state-of-the-art software for detecting and analyzing human engaged in problem-
solving. Except for the eye-tracking solution, we have relied on open-source software so that our
experiments can be easily reproduced. All data are recorded synchronously using an enhanced
version of the MobileRGB-D software (Vaufreydaz and Nègre, 2014) and analysis are performed
offline.

5.2.3.1 Emotion Detection

Currently, only a few free tools are available for detection and recording of facial action unit
activations. Some commercial systems exist, but their lack of transparency on the used algorithm
and intermediates variables prevent full flexibility in their usability (Baltrusaitis et al., 2018). At
the beginning of this work, our team had access to FaceReader software from the company Noldus.
This software has been used during our first experiment (see Section 5.4) before moving on to
another software OpenFace for the second experiment (see Section 7.4).

Noldus FaceReader

The Noldus1 FaceReader software is a facial expression recognition software that the entire process
of emotion detection from an RGB video. Key paper on FaceReader is Den Uyl and Van Kuilenburg
(2005). The used version (7.0), could work both online and offline. Information, presented in real-
time during processing, is displayed on a graphical interface, presented in Figure 5.4. Finally, a
time bar was available to navigate in the video and the data (available only in offline mode).

In practice, FaceReader software analyses video by first applying a face detector (Viola-Jones)
to identify a unique face followed by a detection of 20 Facial Action Units (Ekman and Friesen,
1969). Each action unit is assigned a normalized score between 0 and 1 before being combined
in subsets to determine basic emotions. In addition, Valence and Arousal are computed and
plotted. Finally, besides providing information about emotional responses, FaceReader software
also provided a heart rate estimation (not used in our experiments).

FaceReader was tested on two different datasets: the Radboud Faces Database (Langner,
Dotsch, Bijlstra, Wigboldus, Hawk, and Van Knippenberg, 2010) containing 59 different mod-
els and the Karolinska Directed Emotional Faces (Goeleven, De Raedt, Leyman, and Verschuere,
2008) which regroups 70 individuals. Both datasets display seven different emotional expressions
(plus neutral) from different angles. The FaceReader algorithm correctly classified 90% of the 1197
images from Radboud Face Database and 89% of the Karolinska Dataset (4900 images).

Limits have been observed during our first experiment (discussed in 5.5). Some players’ faces
were not successfully identified because of small occlusions (e.g. hand on chin or cheek). Our
hypothesis is that this is the result of the use by Noldus of the outdated Viola-Jones Face detector
in Version of FaceReader. FaceReader’s pipeline does not provide the flexibility needed to include
an alternate Face detection algorithm in the processing pipeline.

OpenFace

OpenFace2 (version 2.0) is a framework toolkit that implements many features detection for facial
behavior: head pose tracking, eye-gaze, facial landmarks detection and facial Action Units recogni-
tion. It was initially developed by Tadas Baltrušaitis in collaboration with CMU MultiComp Lab

1https://www.noldus.com/
2https://github.com/TadasBaltrusaitis/OpenFace
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Figure 5.4: FaceReader 7.0 Graphical Interface User.

Figure 5.5: Facial Landmarks Detection with Head Pose Tracking (Left) and Action Units Detec-
tion (Right) Performed by OpenFace 2.0 (Source: Baltrusaitis et al., 2018)
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led by Prof. Louis-Philippe Morency, the key publication is Baltrusaitis et al. (2018). OpenFace’s
source code freely available for research purposes (including training models). Figure 4.14 (see
page 49) details OpenFace’s pipeline: landmark detection, head pose and eye gaze estimation,
facial action unit recognition (Figure 5.5).

In their publication, Baltrusaitis et al. (2018) present algorithms used for every sub-system
coded in the software and compare them with recent approaches. The result of each sub-system
outperforms all of the baselines. OpenFace can operate on real-time data video feeds from a
webcam, recorded video files, image sequences, and individual images. It is possible to save the
outputs of the processed data as CSV files in case of facial landmarks, shape parameters, head
pose, action units, and gaze vectors.

5.2.3.2 Gaze Detection

Free eye-tracking software with good performances is rare. Our team had access to products
from the Tobii company3, such as eye-tracking glasses and eye-tracking remote bar (version X2).
We performed our first experiment using Tobii’s remote eye-tracking before moving on another
provider: SeeingMachines, Inc4.

Tobii

Remote Eye-Tracker X2-60 from Tobii company is a 184 mm (7.2”) long bar that can track gaze
at 60Hz. It must be placed below the screen or on a desk-stand between 30 to 50cm from the user.
The software Tobii Pro Studio is used for recording and analysis of eye gaze data. It can adjust
the hardware settings, design a test, calibrate, visualize data (HeatMap, ScanPath, Fixations, Bee
Swarm), create and manage Area Of Interests, generate Statistics about these AOIs and export
data. Figures 5.6 display examples of data Visualization (HeatMap and ScanPath).

The main eye movement measurements used in Tobii Studio are based on two basic events
fixations and mouse clicks. Once AOIs are created, different metrics are available to calculated
statistics for each participants:

• Time to First Fixation (seconds);

• First Fixation Duration (seconds);

• Total Fixation Duration (seconds);

• Fixation Count;

• Visit Duration (seconds);

• Visit Count.

Data can also be exported (csv format) without applying Tobii’s statistics on them. These
data can be exported using different pre-processing:

• AOI Gaze events: export gaze events (fixations, saccades) for each AOI.

• Raw gaze coordinates: Export raw X, Y gaze coordinates.

• Media gaze events and coordinates: Export gaze events (fixations, saccades) for each media.

Within our team, people had habits with Tobii’s products. However, during our first experiment
with chess players, we have noticed a limitation that is disabling for our case studies. The remote
Eye-Tracking bar has to be placed below the screen; this constraint is imposed by the pupil

3https://www.tobii.com
4http://www.eyetracking.com/Software/EyeWorks/FOVIO-Simulation-Solution
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(a) Visualization of HeatMap using Tobii Pro
Studio.

(b) Visualization of Scan Path using Tobii Pro
Studio.

Figure 5.6: Visualization of Tobii Pro Studio (HeatMap and ScanPath)

detection algorithm used by Tobii. Indeed, this algorithm is designed to detect eyes’ pupil from
below the user (see Figure 4.6b in page 42). This is problematic for our case study. Chess players
are interacting with the Touch-Screen computer. Their arms naturally enter in conflict with the
Eye-tracking’s field of view, covering their eyes from being detected. The bar can not be rotated;
neither can it be shifted away too much from the center as it needs to cover the entire screen
size. Having no other solution than to use it in a standard way, we have decided to shift the
bar eight centimeters to the left. More than eight centimeters causes the eye-tracking from both
losing information from the right side of the screen and having trouble to detect the player’s right
eye. Still, moving it on the left allowed a right-handed player to interact with the screen without
disturbing (too much) the proper functioning of the tracker.

Nevertheless, after the completion of the first experiment, we began a search for a more suitable
tracker for our test environment. Characteristics of another hardware, Fovio’s eye-tracker, designed
by Seeing-Machines company, have drawn our attention. Indeed, it can be rotated and does not
require to be mounted below the screen.

Seeing Machines

The Eye-Tracker Fovio, provided by EyeTracking Inc5 and powered by SeeingMachines6, is a
remote bar with a sample rate at 60 Hz. It offers two characteristics that distinguish it from
other trackers: 1) the bar can be rotated and mounted vertically or horizontally, and 2) can track
simultaneously multiple screens.

EyeTracking Inc proposes a software, named as “EyeWorks”, which is a software package de-
veloped by researchers for research purposes and designed to work with most existing eye-trackers.
This package is composed of the following software:

5http://www.eyetracking.com/Software/EyeWorks/FOVIO-Simulation-Solution
6https://www.seeingmachines.com/
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• EyeWorks Design: used to construct a testing script.

• EyeWorks Record for multiple uses:

– Data Collection: Capture eye data, mouse clicks, scrolling, key presses, record audio,
video etc.

– Viewing Options: Real-time viewing of on-screen eye movement data, live streaming for
remote viewing etc.

– Advanced Features: Scene Camera and multi-screen data collection, real-time cognitive
workload rendering etc.

• EyeWorks Analyze: provides tools for basics eye-tracking analysis (gaze position, fixations,
task time), data visualization (GazeSpots, GazeTraces, Bee Swarm Videos etc.).

The main advantage that Fovio brings to our case is its ability to be rotated. We have been
able to mount the eye-tracker vertically on the left side of the computer, inclined towards the
player. It allows the player to move their hands freely. However, the software “EyeWorks” is, in
our opinion, less user-friendly than Tobii Pro Studio.

Calibration

Both of the remote eye-tracking bars used in this document required a pre-phase of calibration for
each participant. Most known eye-tracking software relies on the same calibration procedure: 5
to 9 points are displayed on the screen, the user has to fixate the points one by one so that the
tracker can carry out the calibration. Figure 5.7 depicted a calibration procedure along with the
calibration validation. These images are from Tobii Pro Studio, but EyeWorks rely on the same
calibration process.

(a) Bad Calibration Visualization. (b) Good Calibration Visualization.

Figure 5.7: Tobii Calibration Procedure.

5.2.3.3 Body Detection: OpenPose

The chess player’s body is captured using a Kinect 2.0, which is mounted on the top of our recording
instrument. This captures two streams of information: RGB and Depth. Microsoft provides,
along with the Kinect, a body detection system that detects and annotates multiple bodies on
both streams of information. After a few tries, we noticed detection errors when body parts were
not visible such as: when the player lays his hands on his knees, under the table, the entire
body was poorly recognized, or when the arms of the chair were identified as the player’s arms.
Thus, we naturally moved to another software. The state-of-the-art and open source software,
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Figure 5.8: OpenPose Body Detection Visualization.

Figure 5.9: OpenPose Overall Pipeline (Source: Cao et al., 2018).

OpenPose7, is a real-time multi-person system that is able to: detect human body, hand, facial,
and foot keypoints from images or videos. Key publication is Cao et al. (2018). Figure 5.8
presents OpenPose’s pipeline which creates 2D locations of anatomical keypoints (for each person)
are created from a 2D color image. To do so, 2D confidence maps of body part locations and 2D
vector fields of Part Affinity Fields (which the authors refer to as PAFs) are predicted using a
feedforward network. PAFs are 2D vector fields that encode location and orientation information
across the region of support of the limb. From these confidence maps and PAFs vectors, a greedy
inference is used to generate 2D keypoints of body locations for all body present (detected) in the
image.

Three different benchmarks have been used to test and evaluate OpenPose against other state-
of-the-art methods:

• MPII human multi-person dataset8, which contains annotation of 14 body parts for each
human body present on images;

• COCO keypoints challenge dataset9, which contains annotation of 18 keypoints over 12
body parts alongside 5 facial keypoints, for each human body present on images (Lin, Maire,
Belongie, Bourdev, Girshick, Hays, Perona, Ramanan, Dollár, and Zitnick, 2014);

• Subset of 15k images from the COCO dataset with an additional six keypoints annotations
for the foot.

7https://github.com/CMU-Perceptual-Computing-Lab/openpose
8MPII human multi-person dataset: http://human-pose.mpi-inf.mpg.de/
9COCO dataset: http://cocodataset.org/
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Figure 5.10: Keypoints Detected by OpenPose as Described in COCO Dataset (Source: Lin et al.,
2014).

For each dataset, OpenPose has been compared to other state-of-the-art algorithms and achieved
high accuracy (if not the highest for some) with the best balance between speed and accuracy
(which is one of the main concerns of some algorithm). For our study, the relevant information is
body keypoints (see Figure 5.10) of the chess players which are the same used in the well known
COCO10 challenge:

1. Nose

2. Neck

3. Right Shoulder

4. Right Elbow

5. Right Wrist

6. Left Shoulder

7. Left Elbow

8. Lest Wrist

9. Right Hip

10. Right Knee

11. Right Ankle

12. Left Hip

13. Left Knee

14. Left Ankle

15. Right Eye

16. Lest Eye

17. Right Ear

18. Left Ear

Keypoints information retrieved by OpenPose can be exported in JSON format. These data are
in 2D space (X, Y), so in order to have 3D information, we need to combine information from
OpenPose and the Depth (captured by the Kinect 2.0). This step is explained in the Appendix A
page 145.

5.2.3.4 Data Synchronization and Visualization

During the study, data were recorded from all sensors (Kinect 2, Webcam, Screen capture, user
clicks, Tobii-Bar) using the RGBD Sync SDK11 from the MobileRGBD project (Vaufreydaz and
Nègre, 2014). This framework permits to read recorded and further computed data (gaze fixation,
emotion detection, body skeleton position, etc.) for synchronous analysis by associating a times-
tamp with millisecond precision to each recorded frame. The same framework can read, analyze,
and display the same way all gathered or computed data. An example is presented in Figure 5.11,
where most of the data are depicted.

10https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/output.md
11 https://github.com/Vaufreyd/RGBDSyncSDK (last seen 01/2020)
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Figure 5.11: Multimodal Visualization of Recorded Data. Left to right: RGB (with body joints)
and depth view from Kinect 2 sensors, screen record of chess task (red point is current position of
gaze, green point is position of last mouse click), plot of current level of positive emotion expression
(valence) and frontal view of face from webcam sensor (Guntz et al., 2018a).

5.2.3.5 Chess Web Platform

The Lichess Web Platform12 serves for playing and recording games. Lichess webmaster gave their
approval to use their platform for this scientific experiment. Most images displaying chessboard
in this thesis come from the Lichess Web Platform.

5.3 First Experiment Involving the Local Chess Club

5.3.1 Experimental Hypothesis

Once the recording instrument ready, we elaborated a first experiment to record chess players, like
Nemo and Eliott (see Section 2.1), to validate if the setup can reliably capture metrics that reflect
reasoning (as discussed in Chapter 4). Our initial research question was:

• Can our experimental set up be used to capture reliable recordings for such study?

If successful, this should allow us to a second research question:

• Can we detect when chess players are challenged beyond their abilities from such measure-
ments, and what are the most relevant features?

Once these first steps validated, we would be able to ask further in depth questions.

5.3.2 Participants and Data Acquisition

Data acquisitions have been made in two sessions in 2017. It has been carried out in the MSH-
Alpes13 building on the campus of Saint-Martin-d’Hères in March, and 23 participants volunteered
to participate. The second session happened during a Chess tournament (14E Open) held in
Villard-de-Lans in June 2017, 13 chess players attended the experiment.

Some statistics on the recorded sessions: the average recording time per participant is 13:35
minutes (MIN = 4:54, MAX = 23:54, SD = 5:02) and the average compressed size of gathered
data is 56.12 GiB per session.

12 https://en.lichess.org/ (last seen 01/2020)
13https://www.msh-alpes.fr/
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First Session: March 2017

An announcement for the experiment with an invitation to participate was communicated to chess
clubs, on the local university campus, and within the greater metropolitan area. We received
a positive response from the president, Isabelle Billard, from one of the top metropolitan area
chess clubs, and 23 members volunteered to participate in the experiment. Unfortunately, of these
initial 23 participants, 9 recordings were not usable due to technical issues. This is discussed in
the beginning of Section 5.4. The 14 remaining chess players in our study were 7 experts and 7
intermediates level players (20-45 years, 1 female, age: M = 31.71;SD = 7.57). Expert players
were all active players and with Elo14 ratings ranged from 1759 to 2150 (M = 1950.3;SD = 130.0).
Typically, experts are rated between 2000 and 2200 points; masters are between 2200 and 2399;
grandmasters are above 2500. For the intermediate players, the Elo ratings ranged from 1399 to
1513 (M = 1415.3;SD = 43.5) and 6 among them were casual players who were not currently
playing in club.

Second Session: June 2017

Although the initial session of data acquisition gave enough interesting results to publish a paper
(Guntz, Balzarini, Vaufreydaz, and Crowley, 2017), we knew that gathering more data would
allow us to consolidate our results. Being in close contact with the chess club president, she kindly
invites us to be present at an upcoming chess tournament taking place in a nearby town. We took
this opportunity to communicate about our work and our constant search for volunteers. The
project has attracted the attention of many players, and 12 of them accepted to participate in the
experiment. Again, technical issues have made us impossible to record 3 players. The 9 remaining
players were 2 experts (Elo ratings: M = 2060.3;SD = 50.2) and 7 intermediates (Elo ratings:
M = 1415.3;SD = 43.5). As they were all also participating in the chess tournament, they were
active players (10− 51 years, 2 female, age: M=30.0; SD=12.9).

5.3.3 Designing Chess Tasks

The goal of this first experiment was to engage participants in a cognitive process while observing
their physiological reactions. To do so, chess puzzles, referred to in this document as chess tasks,
were elaborated with an increasing level of difficulty. These tasks have been discussed with the
collaboration of a coworker from the CITEC team of Bielefeld, Thomas Küchelmann, who is also
an active chess player and who contributed to the elaboration of an internal document named as:
“Chess Riddles for CEEGE - Collection of Classified Chess Tasks”. This document has been a
valuable resource for the selection and discussion of chess tasks. Finally, final choices of tasks have
been made with the coordination with the president of the local chess club.

Two kinds of tasks were selected: chess openings tasks, where only 3 to 5 moves were played
from the original state, and N-Check-Mate tasks, where 1 to 6 moves were required to checkmate
the opponent (and finish the game). Figures 5.12 displayed an example of each task category.

Openings. Skilled players are familiar with most of the chess openings and play them intu-
itively. Intuitive play does not generally require cognitive engagement for reasoning. A significant
challenge is to detect when a player passes from an intuitive reaction to a known opening to chal-
lenging situations. Thus, two uncommon openings were selected to this end: a King’s Gambit (3
moves from the initial state) and a Custom Advanced Variation of the Caro-Kann Defense (six
moves from the initial state). The goal here is to pull participants out from their comfort zone

14Elo ratings: see note page 8
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(a) Advanced Variation of the Caro-Kann De-
fense Opening. Black to Play.

(b) N-Check-Mate Task with N=3. White to
Play.

Figure 5.12: Example of Designed Opening Task (left) and N-Check-Mate Task (right)

as much as possible to evoke emotions and physiological reactions. Openings correspond to task
number 1 and 2.

N-Check-Mate. Eleven end game tasks were defined. These are similar to the daily chess
puzzles that can be found in magazines or on chess websites. Each of these tasks was designed to
checkmate the opponent in a number of predefined moves ranging from 1 to 6. Tasks requesting
1 to 3 moves are viewed as easy tasks, whereas 4 to 6 moves tasks require more chess reasoning
abilities, etc. Distribution among the 11 tasks differs according to the number of required moves
and thus to their difficulty: 4 tasks with one move, 4 tasks with two and three moves (2 of each)
and 3 tasks with four, five and six moves (1 of each). End games were presented to participants
in this order of increasing difficulty while alternating the played color (White and Black) between
each task.

5.3.4 Experimental Protocol

Participants were tested individually in sessions lasting approximately 45 minutes. Each partici-
pant was asked to solve the 13 chess tasks, and their behaviors were observed and recorded. To
avoid biased behavior, no information was given about the recording equipment. Nevertheless,
it was necessary to reveal the presence of the eye-tracker bar to participants in order to perform
a calibration step. After providing informed consent, the Lichess web platform was presented,
and participants could play a chess game against a weak opponent (Stockfish15 algorithm level 1:
lowest level) to gain familiarity with the computer interface. No recording was made during this
first game.

Once familiar and comfortable with the platform, the eye-tracking calibration was performed,
in which subjects were instructed to sit between 60 and 80cm from the computer screen and to
follow a 9-point calibration grid (see Figures 5.7). Participants were requested to avoid large

15 Stockfish is an open-source game engine used in many chess software, including Lichess. https://en.

wikipedia.org/wiki/Stockfish_(chess) (last seen 01/2020)
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head movement in order to ensure good eye-tracking quality. Aside from this distance, no other
constraints were instructed to participants.

Each task to solve was individually presented, starting with the openings, followed by the N-
Check-Mate tasks ranging in increasing difficulty. Participants were instructed to either play a few
moves from the opening or to checkmate the opponent (played by Stockfish algorithm level 8: the
highest level) in the required number of moves. The number of moves needed for the N-Check-Mate
tasks was communicated to the subject. A time frame was imposed for each task, however, it was
not announced to the participant; they only knew that they have a couple of minutes to solve the
task. This time constraint ranges from 2 minutes for the openings and the easiest N-Check-Mate
tasks (1-2 moves) to 5 minutes for the hardest ones (3-4-5-6 moves). An announcement was made
when only one minute was remaining to solve the task. If the participant could not solve the task
within the time frame, the task was considered as failed, and the participant proceeded to the next
task. The experiment is considered finished once all tasks were presented to the participant.

5.3.5 Metrics

Our metrics were selected according to the literature described in Chapter 4. They are listed in
Table 5.3 and detailed in the following paragraphs.

Modality Extracted Data Computed Features Computation Software

Body Body keypoints
Body Agitation
Body Volume
Self-Touches

Openpose
Homemade scripts

Emotion AUs activation
Emotional state

Valence
Arousal

Noldus FaceReader
Homemade scripts

Gaze Gaze and Fixation data
Scan Path

Fixations Duration
Fixations Order

Tobii Pro Studio

Table 5.3: List of Metrics for each modality.

Body Metrics

From what we have learned in Chapter 4, we decided to focus on the following body features:

• Body Agitation: how much joints vary along x, y and z axis;

• Body Volume: space occupied by the 3D bounding box built around joints;

• Self-Touching: collisions between wrist-elbow segments and the head.

2D keypoints are extracted using the OpenPose software. The depth information is retrieved by
combining (x,y) position with the depth stream information provided by the Kinect (following the
procedure described in Appendix A page 145). Finally, body features are computed from 3D data
with homemade python script.
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Emotion Metrics

As a first experiment, we wanted to confirm that we were able to efficiently capture the affect of
chess players. We decided to focus on the following features:

• Basic Emotion: happiness, sadness, anger, fear, disgust and surprise (plus one neutral
state).
Each state receives a score between 0 and 1 for his detection. The emotion with the highest
score is considered as the current affective state of the user.

• Valence: a score between 0 (displeasure) and 1 (pleasure);

• Arousal: a score between 0 (calm, quiet) and 1 (excited, aroused).

Eye-Gaze Metrics

Area of Interests (AOIs) have been designed for each designed task. These AOIs were centered on
key points of the task which are:

• Pieces that must be moved by the player to solve the tasks;

• Pieces that must be considered to solve the tasks (but not moved);

• All squares that belong to the solution (i.e. initial position of the pieces and their destina-
tion);

• Empty square(s) that play an important role in the task.

From these AOIs, statistics can be computed. These statistics are our metrics:

• Scan Path: Succession of time ordered saccades and fixations from start to the end of the
task.

• Fixation Duration: Position and duration (in seconds) of each fixation;

• Fixation Order: Obtained from Scan Path.

5.3.6 Pilot Experiment: Is the Experiment Protocol Valid?

The described protocol has been tested on coworkers from the lab. The only requirement for
this pilot experiment was to know how to play chess; no specific rank or competitive level was
asked. The goal of this pilot experiment was to check if all hardware and software were working
as expected. A handmade script has been developed to launch all recording software in one step.
Five coworkers volunteered and passed the experiment.

Unexpected issues

This pilot experiment raised some unanticipated issues at this time:

1. Time to pass all chess tasks.
Some participants used all the available time to solve every task. The total recording for this
case almost reaches 45 minutes, which raises the following problem: the size of the collected
data.
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2. Total size of the data collected.
Videos, images, and raw data gathered at a rate of 30 to 60hz for 45 minutes end up to
occupy a significant amount of space. The total size of data for 45 minutes of recording, for
a single participant, averages between 350 and 375G. Fortunately, data could be efficiently
compressed, but this could only be done once the recording test is completed. Indeed, the
computer had not enough resources to handle recording and compressing at the same time.

3. Position of eye-tracking bar.
During the pilot study, the remote eye-tracking was mounted centered below the screen.
When players interacted with the Touch-Screen, their arms naturally obstructed the eye-
tracker’s field of vision. Also, in a moment of uncertainty, players tend to freeze their arms in
the air to think again. During this time of hesitation, the eye-tracker’s vision was completely
obstructed, and no data are recorded.

Solutions

To address these issues, we found solutions:

1. External SSD.
To cope with the limited size space of the recording computer, we started to use an external
SSD with 2T of free space. We will describe later in this chapter, that external SSD was not
sufficient either, due to another unexpected issue.

2. Eye-tracking shifted to the left.
To avoid obstruction from players’ arms, the eye-tracker was slightly shifted to the left (eight
cm) from the center of the screen. That way, right-handed players does not disturb the
tracker’s field of view while playing. However, we will see that a shifted tracker is much
sensitive to head movements.

Except for these technical issues, which are mostly related to the hardware, all the features have
been successfully extracted and computed. Valuable feedbacks have been gathered from volun-
teered coworkers, such as adjustments to the explanations given to the participants before starting
the experiment.

5.4 Results

Technical issues

Despite our pilot experiment and the detection of several hardware problems, we still lost a sig-
nificant amount of valuable data. Unfortunately, the precautions taken were insufficient, and the
reasons for the loss of data are the same as those we identified: the eye-tracker position and data
storage. First, poor tracking results came from several reasons: some participants had difficulties
in performing good eye-tracking calibration, or eye-tracking process had been disrupted too many
times by participants’ movement (e.g., head movements, hand covering the eye-tracking viewing
field, etc.) during long recording time (over 40 minutes). This happened despite the left-shifted
position of the tracker. Although having been told to avoid making large movements, some players
became so caught up in solving problems that they forgot instructions and the nearby recording
environment. Secondly, we experimented errors when recording directly on the External SSD.
Two hypotheses are possible: either the computer has not enough resources to allocate for both
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recording and transferring data on an external disk, or the used USB 3.0 port was defective. Unfor-
tunately, this data transfer issue was random, and when it occurred, we were informed only when
the recording was stopped. Due to the nature of our experiment, we could not ask participants to
retake the test from the beginning.

5.4.1 Unimodal Analysis

Synchronous data for every feature have been extracted from all sensors. Several tasks, like re-
gression over Elo ratings or over the time needed to perform a task, could be addressed using
these data. Among them, we chose to analyze a classification problem that can be interpreted by
a human: Is it possible, by the use of gaze, body, and facial emotion features, to detect if a chess
player is an expert or not? This problem is used as an example to obtain a first validation of our
data relevancy. It is correlated with whether a chess player is challenging beyond his abilities or
not.

This section presents unimodal and multimodal analysis of extracted features to determine
chess expertise of players. Only the data recorded for the 11 N-Check-Mate tasks are considered
here, outcomes for participants are presented in Table 5.4.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Task 11
Difficulty of the task Easy Easy Easy Easy Easy Easy Medium Medium Hard Hard Hard

Number of moves required
to complete the task

1 1 1 1 2 2 3 3 4 5 6

Number of experts who
pass the task (/9)

9 8 8 9 9 9 9 8 8 4 1

Number of intermediates who
pass the task (/14)

13 9 12 8 12 13 7 6 3 2 0

Table 5.4: Experts and Intermediates results summary for N-Check-Mate tasks. The number of
moves required to complete the task is also given. The higher the number of moves needed, the
higher the difficulty.

Eye-Gaze

Two AOIs were defined for each task: one AOI is centered on the very first piece to move in the
optimal sequence to achieve the checkmate successfully, and the second one on the destination
square where this piece has to be moved. Figure 5.13 shows an example for a N-Check-Task
with N = 1. For this task, the White Bishop in E2 has to be moved on square B5 in order to
checkmate the opponent’s Black King and win the game (solving the puzzle). To take into account
that players may use their parafoveal vision to extract information, AOIs are twice larger than a
regular chess square.

Fixations information of every task is gathered for all participants, and results are presented in
Figure 5.14. As can be seen in this figure, experts have longer and more fixations than intermediates
on relevant pieces, which is the opposite of what the literature stated (Reingold and Charness,
2005, see Section 4.1.4 page 45 for more information). This difference is mainly due to the chosen
AOIs. They are focused on the first piece to be moved, and its destination, whereas Reingold and
Charness considered the entire board to collect players’ fixations. Another argument can be put
forward to explain this difference with the literature.

78



Figure 5.13: AOIs, designed for a N-Check-Task (N=1), are Centered on the First Piece to be
Played (White Bishop in E2) and its Destination (B5). AOIs are larger than a Square to Capture
Fixations that would use Parafoveal Vision.

For this, we need to refer to the four stages of the thought process for chess players proposed by
De Groot (1978):

1. The orientation phase: participants scan the board to grasp information about pieces’ orga-
nization;

2. The exploration phase: participants consider variations (moves) from the current configura-
tion;

3. The investigation phase: participants analyze in-depth the two most probable candidates
from phase 2;

4. The proof phase: participants confirm the validity of their choice.

In our case, intermediates have fewer fixation times in proportion on relevant pieces; one hypothesis
could be that these participants spend more time during the first phase or do not consider the
correct pieces fast enough during the investigation phase. On the other side, experts tend to spend
more time on relevant pieces. This statement conforms with a valuable finding from De Groot,
who stated that experts are more efficient and faster to identify key pieces.

In our results, the difference in fixation duration between experts and intermediates is statis-
tically significant (p < 0.05) and could be used as a discriminant feature. This is explained by
experts’ skill encoding capacity that enables them to quickly focus their attention on relevant pieces
by a better pattern matching ability. More valuable information could have been extracted from
players’ gaze, especially considering the literature on the subject (Charness et al., 2001; Reingold
and Charness, 2005).

Emotions

The increasing difficulty in the non-interrupting tasks has caused our participants to express many
observable emotions across the experiment. Emotions in a long-task experiment are expressed as
peaks in the two-dimensional space (valence, arousal). Thus, standard statistics tend to shrink
toward zero as the record becomes longer. Other approaches should be considered to visualize
emotional expressions. One possibility is to consider the number of changes of emotions having
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Figure 5.14: Eye-gaze Histograms. Left: Percentage of fixation (in seconds) for all tasks. Right:
average over all tasks of the number of fixations.

the highest intensity (i.e. the current detected facial emotion). As emotion intensities are based on
facial unit detection, changes in the main emotion denote underlying changes in facial expression.
The result metric is shown on the graph presented in Figure 5.15a.

It appears that expression of emotions increases with the difficulty of the problem to solve. For
both group levels, experts and intermediates, the number of observable emotions increase when
participants started to be challenged with difficult tasks. As can be observed, all lines remain close
to 0 for tasks requiring less than 3 moves to checkmate the opponent (below task number 6). From
task 7 (3 moves), participants started to be challenged. Among the expert group, one participant
presented surprising results with a high number of emotion variations. This participant could be
interpreted as an outlier as more than twice the average of variations has been detected for him.
To illustrate this, two lines have been plotted, the cyan one represents all experts, whereas the
blue one omits this potential outlier. To support this outlier hypothesis, the resulting blue line
(along with the red line for intermediates participants) is similar to a result we showed during the
same experiment environment with 14 participants (see figure 5.15b).

Another interesting aspect of that plot is the final decrease for both groups after task 9; this
could be interpreted as a sort of resignation when players knew that tasks beyond their skills and
could not be resolved. Indeed, as shown in Table 5.4 (page 78), only 6 participants (2 intermediates
and 4 experts) passed the 10th task, and only one expert solved the last task. These results
suggest that situation understanding and expertise knowledge can be inferred from variations of
facial emotions. More discussion about emotion is given in Section 5.5.

Body Posture

We can observe how participants’ body reacts to the increasing difficulty of tasks with Figure 5.16
that presents statistics about self-touching.

Similarly to the results on emotions, a variation in participants’ behavior is observed from
the first task requiring more than 2 moves (task 7) to be completed. This change is observed as
an increase of self-touches, especially for intermediates, whereas experts’ line shape looks more
like the beginning of an exponential curve. Thus, a first observation is that the number of self-
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Figure 5.15: Average Count of Variation of Main Detected Facial Emotion in Regard to the Task
(1-11). Tasks are Ranging in an Increasing Difficulty Order.
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Figure 5.16: Count of Self-Touching in Regard to the Task (1-11). Tasks are Ranging in an
Increasing Difficulty Order.
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touches increases as tasks get harder, and it reveals that this is a relevant feature to consider.
These results can be interpreted by referring to the literature stating that these bodily behaviors
occur when subjects are subjected to stress (Harrigan, 1985) and cognitive overload (Troisi, 2002).
Furthermore, the difference in the number of self-touches between experts and intermediates is
statistically significant (p < 0.05) and could be used, as well as other related features on body (like
agitation), to perform classification.

5.4.2 Statistical Classification

To demonstrate the potential benefit of a multimodal approach, a supervised machine learning
algorithm has been used to quantify the accuracy of different modalities for classification.

Support Vector Machines (SVM) have been built for each modality and for each possible
combination of modalities. For this purpose, we computed statistical analysis with respect to the
nature of our data: discrete (count, duration) or continuous (mean, variance, standard deviation)
over our metrics. Giving us a total of 3 features for the gaze modality, 30 for the emotion modality,
and 14 for body modality (see Table 5.5). Then, we constructed input samples as the following:
one input sample would be the instantiation of one participant for one particular task, given a
total number of 23× 11 = 253 input samples.

Modality Metrics Data type
Statistical

transformation
Number

of Features

Gaze
Fixation
Visit

Discrete
Discrete

Duration - Count
Count

2
1

Emotion

7 Basics Emotions
Valence
Arousal

Heart Rate

Continuous
Continuous
Continuous
Continuous

Mean - Var - Std
Mean - Var - Std
Mean - Var - Std
Mean - Var - Std

21
3
3
3

Agitation (X, Y, Z) Continuous Mean - Var - Std 9
Body Volume Continuous Mean - Var - Std 3

Self-Touch Discrete Duration - Count 2

Table 5.5: Metrics Overview

A 10-fold stratified cross-validation procedure has been used on every SVM to compute their
accuracy. An exhausting grid search over a different set of hyperparameters is used to explore and
find the best parameters for each SVM to consider. Two grids were explored, one RBF kernel
and one Linear kernel. The C parameter for both kernels took values in [1, 10, 50, 75, 100, 1000]
and the γ for RBF kernel ranged in [0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001]. To compute
accuracy for one SVM, each stratification is randomly shuffled before splitting into batches and
before computing accuracy. This process is repeated 100 times, and the final accuracy for the SVM
is the average of all randomly shuffled stratification. Accuracy results overall features are depicted
in the first line of table 5.6.

A first observation is that emotion and body modalities reached good accuracies, 86% and
90% respectively, confirming that theses features capture relevant information. Gaze modality
performed less than expected, only 62%; this could be explained by the way the metrics have been
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Modalities G B E G + B G + E B + E G + B + E
Number of Features 3 14 30 17 33 44 47

Accuracy Score 0.62 0.90 0.86 0.81 0.86 0.83 0.83
Standard Deviation 0.24 0.09 0.17 0.14 0.16 0.12 0.19

Table 5.6: Best Accuracy Scores from Cross-Validation for SVMs (10-Fold Cross Validation). The
number of sample N is the number of participants (23) times the number of N-Check-Mate tasks
(11). Columns are the modality subset chosen to train the SVM (G: Gaze, B: Body, E: Emotion).

chosen. Indeed, we decided first to analyze fixations for only 2 AOIs without considering scan path
order.

Secondly, modality fusion varied between 81% and 86% for any possible combination, which
is less than a unimodal approach. To perform expertise classification, one might be tempted to
choose only body or emotions features. However, a system relying on a unique modality may
face unreliable or noisy data in real-life conditions. For example, emotion detection can not be
performed if there are occlusions in front of the subject head. Being able to rely on multi modalities
to build a robust system is essential.

5.4.3 Features Selection

We investigated which feature is more robust for our system. As several features characterize each
modality and our system takes into account 47 features, we propose to evaluate the most relevant
for the expertise classification task.

For this purpose, among existing methods in the literature, we selected two different techniques,
the first one is the Minimum Redundancy Maximum Relevance (mRMR) technique (Peng, Long,
and Ding, 2005) for the expressiveness of the selected features we experienced formerly (Vaufreydaz,
Johal, and Combe, 2015) and the second is the Fisher Feature Selection (Duda, Hart, Stork, et al.,
1973; Li, Cheng, Wang, Morstatter, Robert, Tang, and Liu, 2016). These algorithms allow a
dimensionality reduction of the feature space according to the maximal statistical dependency
criterion based on mutual information. Both techniques search to maximize features relevance
and effectiveness; however, they differ in their redundancy policy. Indeed, mRMR tends to reduce
redundancy as much as possible even if it would impact the overall effectiveness; on the other
hand, Fisher may keep redundancy if it can improve effectiveness. We propose here to use both
techniques separately on our data and compare results.

Using these techniques, we expect to reduce the feature space drastically to improve the data
fusion performed by the SVM classifier. Both mRMR and Fisher techniques have been used on
all our features, and the resulting ranking is listed in table 5.7 and 5.8. Key information here is
that among the top-rated selected features, all three modalities are present. It confirmed that all
modalities bring relevant information. Fisher’s selection instead prefer to keep body and emotion
information as its maximize effectiveness; this has been observed with SVM accuracy (see table 5.6),
even if some features are redundant (like agitation in x, y, z) where mRMR preferred to keep only
one of them. It is interesting to observe that both techniques agreed to select top features for each
modality. The variance about agitation and volume combined with the number of self-touches
gives us significant information about body behavior. Variance, standard deviation, and mean
about valence, heart rate and - negatives - basics emotions (disgusted, scared and angry) capture
emotional reactions the participants when being challenged. Finally, as specified in section 5.4.1,
fixation duration is relevant to classify a participant as an expert or intermediate.
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With the aim of benefit from both feature selections, the impact on accuracy is showed in
Figure 5.17. The highest accuracy score for mRMR selection is 84% using its top 9 ranked features.
Using Fisher features selection, accuracy can reach up to 90% with its top 7 ranked features. One
interesting observation from these plots is the two different paces for accuracies to reach their
maximum. Only 4 non-redundant features combined from mRMR ranking are enough to reach
more than 80% of accuracy where the slow but steady curve from Fisher needs to combine 7
features (and go even way higher with 90%). 8 firsts features are enough to reach up to 77%,
which is close to the one achieved earlier (82%) by using all features.

These results show that features from different modalities are not equally relevant. Figure 5.17
illustrates that after certain amount of features, performance stagnates or even decreases slightly.
This phenomenon starts after 15 and 17 features for mRMR and Fisher techniques, respectively.
This can have 2 explanations. The first one is that the number of input data is not high enough
to take advantage of these features. The second explanation is that these last features do not
actually provide new information for classification. This hypothesis is consistent with the ranking
results from both mRMR and Fisher techniques, which classified them last and therefore showed
that they contain a large amount of redundant information already included in top features.
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(a) Fisher ranking features.
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(b) mRMR ranking features

Figure 5.17: Mean with standard Deviation of the Accuracy Scores from 10-Fold Cross-Validation
for SVMs with Decreasing Number of Features. Features order is given by Fisher (see Table 5.8)
and mRMR (see Table 5.7) algorithms.
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mRMR
Ranking Order

Feature Modality Description

1 Y Agitation var Body Variation of agitation on Y axis
2 Disgusted std Emotion Standard Deviation of the detected basic emotion: Disgusted
3 Fixation Duration Gaze Average Fixation Duration on AOI
4 Valence mean Emotion Mean of the computed Valence
5 Volume var Body Variance of the body volume
6 HeartRate std Emotion Standard Deviation of Heart Rate
7 Angry var Emotion Variance of the detected basic emotion: Angry
8 SelfTouches Count Body Average number of self-touches
9 Scared var Emotion Variance of the detected basic emotion: Scared
10 Angry mean Emotion Mean of the detected basic emotion: Angry
11 Fixation Count Gaze Average Number of Fixation on AOI
12 X Agitation std Body Standard Deviation of agitation on X axis
13 Happy mean Emotion Mean of the detected basic emotion: Happy
14 Disgusted var Emotion Variation of the detected basic emotion: Disgusted
15 Volume std Body Standard Deviation of the body volume
16 HeartRate mean Emotion Mean of Heart Rate
17 Sad std Emotion Standard Deviation of the detected basic emotion: Sad
18 Arousal mean Emotion Mean of the computed arousal
19 SelfTouches Duration Body Average duration of self-touches
20 Neutral var Emotion Variation of the detected basic emotion: Neutral

Table 5.7: Ordered List of the 20 Most Relevant Features generated by mRMR algorithm

Fisher
Ranking Order

Feature Modality Description

1 Valence mean Emotion Mean of the computed Valence
2 Y Agitation var Body Variation of agitation on Y axis
3 Z Agitation var Body Variation of agitation on Z axis
4 Y Agitation std Body Standard Deviation of agitation on Y axis
5 X Agitation var Body Variation of agitation on X axis
6 Angry mean Emotion Mean of the detected basic emotion: Angry
7 Z Agitation std Body Standard Deviation of agitation on Z axis
8 X Agitation std Body Standard Deviation of agitation on X axis
9 Volume mean Body Mean of the body volume
10 HeartRate mean Emotion Mean of Heart Rate
11 Disgusted std Emotion Standard Deviation of the detected basic emotion: Disgusted
12 Angry var Emotion Variance of the detected basic emotion: Angry
13 Sad mean Emotion Mean of the detected basic emotion: Sad
14 Fixation Duration Gaze Average Fixation Duration on AOI
15 X Agitation mean Body Mean of agitation on X axis
16 Y Agitation mean Body Mean of agitation on Y axis
17 Z Agitation mean Body Mean of agitation on Z axis
18 Disgusted var Emotion Variance of the detected basic emotion: Disgusted
19 Volume std Body Standard Deviation of the body volume
20 SelfTouches Count Body Average number of self-touches

Table 5.8: Ordered List of the 20 Most Relevant Features Generated by Fisher Algorithm.
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5.5 General Discussions

This research and results show interesting results on unimodal features used to distinguish expert
and intermediate chess players. Due to the size of our dataset, generalizing these results was not
possible at that moment.

Our results showed that negative emotions carry significant information about the participants’
situation understanding. However, the semantic used by the FaceReader software (i.e., the 7 basics
emotions) should be carefully interpreted. This study does not intend to demonstrate that humans
engaged in problem-solving would always express the same basic emotions but would instead show
a variation in facial action unit (AU) activations. Thus, even if the ranking Tables 5.7 and 5.8
reveals that variations in negative emotions are relevant, one should understand that action units’
activation (involved in these emotions) are varying significantly.

Both feature selections from mRMR and Fisher algorithms give interesting results and improve
data fusion alongside with classification accuracy. By only considering relevant features and remov-
ing redundancy, mRMR feature selection uses its 4 top features to reach 81% of accuracy. Fisher
selection authorizes redundancy if it can increase effectiveness, using 7 features, Fisher selection
performs 90%.

One should question the importance of redundancy in a multimodal study. Real-life recordings
may experiment with missing or noisy data on one or several modalities. Having redundancy
between modality may allow the system to still operating even if some modality is facing unreliable
data. Fisher selection shows that redundancy requires more features than non-redundancy selection
but can improve accuracy efficiently. On the other hand, if a light system can not process too much
data, one can choose only relevant and non-redundant features to guarantee maximum accuracy
with the lowest set of features.

The conditions of the chess tasks should also draw attention. In the experimental configuration,
chess players were facing a chess algorithm engine in tasks where they knew the existence of
a winning sequence of moves. Moreover, players were seated in front of a touched screen and
were asked to interact with it for playing. Some clues, like body agitation or body volume, may
provide different information in another experimental environment. Also, participants may not be
as engaged as they would have been in a real chess tournament facing a human opponent using
an actual chessboard. In these particular situations, involving stakes for players, the physiological
reactions and emotional expressions are more interesting to observe.

Nevertheless, these experiments reveal that valuable information can be observed from human
attention and emotions to determine understanding, awareness, and affective response to chess
solving problems. The feature selection gives good insight on where we should put our attention
to grasp the most relevant information from every modality. Another underlying result is the
validation of our setup in monitoring chess players.

5.5.1 Conclusion

This first experiment presents results with the capture and interpretation of multimodal signals of
23 chess players engaged in solving 13 challenging chess tasks. Reliable recording signals have been
made with our experimental equipment composed of a Kinect capturing body posture, a webcam
recording variation of facial action units, and finally, an eye-tracker analyzing gaze trajectories.
These records contain relevant information about situation awareness of humans engaged in solving
13 challenging chess tasks. In addition to validating our initial question that our set up can capture
reliable recordings for such study, this equipment is based on off-the-shelf commercially available
components as well as open-source programs and thus can be easily replicated. As well as providing
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Figure 5.18: Self-Touches (left) and Average Count of Number of Changes in Emotion State (right)
for Intermediate and Experts Over the 11 Tasks.

a tool for studies of participants engaged in problem-solving, this equipment can provide a general
tool that can be used to study the effectiveness of affective agents in engaging users and evoking
emotions.

Afterward, unimodal and multimodal analysis have been performed on these signals to val-
idate our second research question. Fixation durations from eye-gaze reveal the encoding skills
of participants according to their expertise level. Self-touches and body posture agitation can
be interpreted as a stress reaction when participants are challenged. Finally, variation in emo-
tional responses of participants is correlated with task difficulty. Each of these modalities carries
enough information to answer our second research question about detecting when participants are
challenged beyond their abilities. Moreover, Support Vector Machine classifiers trained with 10
cross-fold validation revealed that combining such modalities could also give good performances:
90% with only 7 features. This would allow us to build a multimodal system that is more reliable
and more stable than systems relying on only one sensor.

5.5.2 Drawback

Figure 5.18 shows the number of self-touches and changes of emotion for intermediate and expert
players over our increasingly challenging problem set. Our initial hypothesis was that subjects
would exhibit sustained displays of emotions ranging from pleasure to frustration as the difficulty
of the problems increased. We were surprised to observe that this was not the case. Rather, both
self-touching and rate of change in emotion state evolved from a neutral emotion during reactive
play to a period of frequent touching and rapid changes in emotion as the problems became more
and more challenging.

Figure 5.18 illustrates that the rate of changes in the emotional state increases with difficulty
for both intermediates and experts, with significantly higher numbers for intermediate players.
The correlation with the rise in self-touching confirms that subjects were increasingly challenged.
We conclude that frustration for intermediate players rose rapidly for tasks 7, 8, 9, and 10, and
then dropped, as subjects seemed to abandon efforts to solve task 11. For experts, self-touching
and changes in emotion gradually increased for problems 7 through 11, indicating that experts
experienced only minor discomfort for these problems.
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To interpret these results, we proposed a model (see next Chapter 6). In order to develop our
model, we conducted a second experiment in which players were asked to explain their reasoning.
The objectives were to determine if eye-gaze, valence, arousal, and frustration could be correlated
with the four phases of reasoning proposed by De Groot, and to construct an ontology for chess
concepts (chunks and relations) used by players.
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Chapter 6

Modeling Awareness from Observation
of Eye-Gaze and Emotions

Awareness is the ability to know and perceive memories of events directly. More broadly, it is the
state of being conscious of something (definition inspired by Wikipedia contributors, 2020a). When
a human is aware of something, knowledge, and memories of that thing are directly accessible.
Awareness is often synonymous with consciousness, although the term consciousness can be even
more controversial to define.

This chapter presents in Section 6.1 a model that represents knowledge using the Frames
theory from Minsky (1974). Using this formal representation, we can elaborate a model of Human
Memory that manipulates concepts and knowledge. We finally present a probabilistic approach to
evaluate awareness of chunks using evidence of observations (Section 6.2). This model allows us
to interpret the results obtained during our first experiment and to develop a second to explore
the role of emotion in reasoning.

6.1 A Formal Representation of Chess Concepts and Ex-

pertise

As discussed in chapter 2, human abilities for reasoning, and problem-solving are strongly con-
strained by limits to working memory. A limited number of working memory elements are used
to associate perceptions with different forms of Short-Term and Long-Term memories. Minksy
provides a formal representation for this process in order to provide a formal, computationally
feasible model for reasoning and problem-solving (Minsky, 1974).

6.1.1 Frames: A Formal Representation for Concepts

In 1974, Minsky proposed a theory to unify Artificial Intelligence and Psychology concepts to
better model human reasoning. This theory, referred to as the “Frame theory”, is used to express
formal representations of concepts and is defined as follows:

“When one encounters a new situation (or makes a substantial change in one’s view
of the present problem) one selects from memory a structure called a Frame. This is
a remembered framework to be adapted to fit reality by changing details as necessary.”
Minsky (1974)
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This adaptation, from remembered representation to the perceived world, precisely reflects the
general idea of the Situation Modeling Theory previously explained (in Section 2.4.1). Frames
are data-structures used to describe a specific situation. They can represent an entity, a relation
between frames, or a chunk (i.e. composition of sub-frames). A frame can be divided into two
levels of information:

• Top-level information: properties and procedures that are always true. This information
is internal and immutable about the described situation. Altering one of them necessarily
creates a new frame.

• Low-level information: specific data filled during instantiation. These values may vary and
may be a reference (pointer) to another frame.

In addition, a frame is labeled with a unique name that can be used as a reference. The recognition
of a known concept instantiates a frame representing this particular concept. Top-level information
about this concept is retrieved, and low-level one is filled according to the perceived situation. An
analogy to Minksy’s frame is object instantiation from classes in object-oriented programming (or
OOP). In these programming languages, the structure of an object is defined by a class, which
is a definition or signature; this is shared among a particular type of object. Upon creation of
an object, the properties are set according to the class’s definition. The object is said to be an
instantiation of the class.

Let us consider an example: the abstract representation of a cat and two instantiations using
frames are given in 6.1. In this thesis, top- and low-level information is represented in bold and
italic, respectively.

(Entity Cat (Cat−ID)
(Class (Mammalia ) )
(Order ( Carnivora ) )
(Gender ( one−o f (Male , Female ) ) )
(Breed ( one−o f ( European Shortha i r ,

Ocicat ,
Cyprus , e t c . ) ) ) )

(Entity Cat (Kovu)
(Class (Mammalia ) )
(Order ( Carnivora ) )
(Gender (Male ) )
(Breed ( Cyprus ) ) )

(Entity Cat (Kenya )
(Class (Mammalia ) )
(Order ( Carnivora ) )
(Gender ( Female ) )
(Breed ( European Shor tha i r ) ) )

Listing 6.1: Toy entity example: cats

A cat is identified by an ID, has two immutable properties (class and order), and two variable data
(gender and breed). The keyword one-of specified that upon instantiation, only one value is kept
to describe the concept. Two cats are instantiated named Kovu and Kenya, they both inherited
data from the abstract data-structured. Kovu is a mammalian and is a carnivora, as all cats, and
more precisely, it is a male of the Cyprus breed. About Kenya, she is a female and European
Shorthair cat.

Now let us have a closer look at relations and sub-frames with the second example 6.2. Here,
an abstract representation of a relation, named as “cat sibling”, is presented. Two low-level data
are described, the first and the second sibling, which must be filled with a pointer (represent with
the symbol “*”) to an object from the specific class Cat. One instantiation of this relation is given
and is called “CatCat”. Variable data of such instance is set to the existing frame Cat-Kovu and
Cat-Kenya, created in the previous example.
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(Relation Cat S ib l i n g s ( Cat S ib l i ng s ID )
( S i b l i n g 1 (Entity Cat ∗ ) )
( S i b l i n g 2 (Entity Cat ∗ ) ) )

(Relation Cat S ib l i n g s (CatCat )
( S i b l i n g 1 (Kovu ∗ ) )
( S i b l i n g 2 (Kenya ∗ ) ) )

Listing 6.2: Toy relation example: sibling cats

From the proposed Frame definition and these two examples, we now build more complex
data-structured to both cognitive and chess concepts.

6.1.2 A Representation for Chess Concepts

In 1973, Chase and Simon reproduced and extended researches done by De Groot (Chase and
Simon, 1973a). By interviewing three players of different levels (master, advanced and beginner),
they stated that the ability to perceive information on the board rapidly and to encode it in short-
term memory efficiently is highly related to expertise. It was clear to the authors that players learn
relations between pieces in a meaningful context of a standard game. The positioning of pieces only
makes sense to players when they are in relation to other pieces. It is these interactions between
pieces (or should we call them “chunks?”) that are recognized by the players when presented in a
new situation. Besides, Chase and Simon found that master players could recall chunks of average
size varying between 1.2 and 3.8, whereas the advanced and beginner player could only retain
between 1.0 to 2.5. Five chunks of relations successively placed pieces were listed by the authors:

• Threatening,

• Protecting,

• Proximity,

• Same color,

• Common type (e.g. three Pawns or two
Bishops).

Interestingly, two kinds of chunks have been revealed. The first is based on a direct relation
between two adjacent pieces and is present in chunks of all players. The second one involves
a complex combination of several pieces converging into attacking one or more key pieces of the
opponent. This chunk structure is more abstract and less direct than the first one, and only master
players could see them under time constraint pressure. On their side, Simon and Gilmartin (1973)
estimated that expertise in chess may require between 10,000 and 100,000 chunks in Long-Term
memory (discuss in Section 5.2). This rich vocabulary enables players to determine good moves
with a moderate search of the game tree.

Let us see how we can apply Minksy’s Frames to chunks learned from Chase and Simon. The
basic entities in chess are the individual pieces with properties that can include the type of piece,
color (White or Black), and board position. This can be defined as a frame using the following
schema:

(Entity ChessPiece (ChessPiece−ID)
(Kind ( one−o f ( king , Queen , Bishop , Knight , Rook , Pawn ) ) )
(Color ( one−o f ( Black White ) ) )
( Pos i t i on ( row ( range 1 to 8) ( column ( range a to h ) ) ) )
(Actions ( l i s t −o f (move−procedure ) ) )

)

Listing 6.3: Abstract Frame of the Entity: Chess Piece
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The board configuration can be understood as a collection of relations in which pieces threaten
pieces of the opposing color and defend pieces of the same color. As with entities, relations are
instances of abstract concepts defined as frames. A concept schema for a binary (arity-2) chess
relation would be:

(Relation ChessRelationA2 (ChessRelationA2−ID)
(Name (Relation−name ) )
(Kind ( one−o f ( Of f ens ive , De fens ive ) ) )
( Subject (Entity−ID ∗ ) )
(Object (Entity−ID ∗ ) )

)

Listing 6.4: Abstract Frame of an arity-2 Relation: Chess Relation

Relations can be defensive, in which a piece protects or defends another piece of the same color or
offensive in which a piece threatens a piece of opposing color. The subject and object are pointers
to instances of pieces or chunks that are held as entities in the situation model. A concept schema
for an arity-3 relation would be:

(Relation ChessRelationA3 (ChessRelationA3−ID)
(Name (Relation−name ) )
(Kind ( one−o f ( Of f ens ive , De fens ive ) ) )
( Subject (Entity−ID ) )
(Object 1 (Entity−ID ) )
(Object 2 (Entity−ID ) )

)

Listing 6.5: Abstract Frame of an arity-3 Relation: Chess Relation

a) protects b) threatens c) pins

Figure 6.1: Three Examples of Relations. a) A defensive binary relation: (Pawn protects Pawn) b)
An offensive binary relation: (Bishop threatens Knight) c) an offensive ternary relation: (Bishop
pins Knight to Queen)

Figure 6.1 shows examples of chess relations. Figure 6.1-a is a binary defensive relation “protects”,
while 6.1-b is a binary offensive relation “threatens”. Both of these can be expressed in terms of
the classic binary relation schema: Subject - Relation - Object(s). Figure 6.1-c shows a ternary
(arity-3) relation: “pins” with a subject and two objects.
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Frames 6.6, 6.7 and 6.8 describe the relations presented in Figures 6.1-a, 6.1-b and 6.1-c re-
spectively. Note that for every binary relation, there is an inverse relation where the Object and
Subject roles are switched. For example, in Frames 6.7, the Frame Chess Threatens (describing
White Pawn threatening Black Knight) implies an inverse relation, called here Chess Is Threatened
(describing Black Knight is threatened-by White Pawn). For arity-3 relations, there are 6 inverse
relations, one each for each possible permutation of the Subject, Object 1, and Object 2 (two
examples are given in Frames 6.8: Chess Pins and Chess Is Pinned). Each relation constrains
possible moves by the subject piece.

(Entity ChessPiece (WPawn 1)
(Kind (Pawn) )
(Color (White ) )
( Pos i t i on ( ( column 2) , ( row 1) )
(Actions (Move 1 Forward ) ) )

(Entity ChessPiece (WPawn 2)
(Kind (Pawn) )
(Color (White ) )
( Pos i t i on ( ( column 1) , ( row 2) )
(Actions (Move 1 Forward ) ) )

(Relation ChessRelationA2 ( Ches s Protec t s )
(Name ( Protec t s ) )
(Kind ( De fens ive ) )
( Subject (WPawn 1 ∗ ) )
(Object (WPawn 2 ∗ ) ) )

Listing 6.6: Frames describing the binary defensive relation “Protects” (see Figure 6.1-a).

(Entity ChessPiece (WPawn 3)
(Kind (Pawn) )
(Color (White ) )
( Pos i t i on ( ( column 3) , ( row 1) )
(Actions (Move 1 Forward , Capture Top Left ) ) )

(Entity ChessPiece (WKnight 1 )
(Kind ( Knight ) )
(Color ( Black ) )
( Pos i t i on ( ( column 2) , ( row 2) )
(Actions (Move L Top Left , Move L Top Right ,

Move L Bot Left , Move L Bot Right ) ) )

(Relation ChessRelationA2 ( Chess Threatens )
(Name ( Threatens ) )
(Kind ( O f f en s i v e ) )
( Subject (WPawn 3 ∗ ) )
(Object (WKnight 1 ∗ ) ) )

(Relation ChessRelationA2 ( Chess I s Threatened )
(Name ( Threatened ) )
(Kind ( O f f en s i v e ) )
( Subject (WKnight 1 ∗ ) )
(Object (WPawn 3 ∗ ) ) )

Listing 6.7: Frames describing the binary offensive relation “Threatens” (see Figure 6.1-b).
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(Entity ChessPiece (WBishop 1 )
(Kind ( Bishop ) )
(Color (White ) )
( Pos i t i on ( ( column 3) , ( row 1) )
(Actions ( Capture Top Left ) ) )

(Entity ChessPiece ( BKnight 2 )
(Kind ( Knight ) )
(Color ( Black ) )
( Pos i t i on ( ( column 2) , ( row 2) )
(Actions (Move L Top Left , Move L Top Right ,

Move L Bot Left , Move L Bot Right ) ) )

(Entity ChessPiece (BQueen 1 )
(Kind (Queen ) )
(Color ( Black ) )
( Pos i t i on ( ( column 1) , ( row 3) )
(Actions ( Move Vert ica l ly , Move Hor izonta l ly ) ) )

(Relation ChessRelationA3 ( Chess Pins )
(Name ( Pins ) )
(Kind ( O f f en s i v e ) )
( Subject (WBishop 1 ∗ ) )
(Object 1 ( BKnight 2 ∗ ) ) )
(Object 2 (BQueen 1 ∗ ) ) )

(Relation ChessRelationA3 ( Chess I s P inned )
(Name ( I s P inned ) )
(Kind ( O f f en s i v e ) )
( Subject ( BKnight 2 ∗ ) )
(Object 1 (WBishop 1 ∗ ) ) )
(Object 2 (BQueen 1 ∗ ) ) )

Listing 6.8: Frames describing the ternary offensive relation “Pins” (see Figure 6.1-c).

6.1.3 A Situation Model for Chess

We have seen that chunks’ signatures are stored in Long-Term memory and instantiated in Working
Memory to encode information from the external world or during reasoning (Miller, 1956; Minsky,
1974; Halford et al., 1998). Figure 6.2 shows the elements of our model for human cognition. With
this model, Working Memory acts as a buffer for between five and nine entities. Entities represent
associations of phenomena with episodic memory, procedural memory, and abstract concepts.
Working memory receives information from the Attention Executive Control system that is in
charge of human perception abilities (i.e. vision, auditory, tactile, olfactive, gustative, etc.) and
human actions that can update the environment (i.e. speech, manipulation, mobility, emotion
display, etc.). Phenomena observed through perception abilities are stored as entities in Working
Memory and will spread energy to related information in Long-Term Memory according to Hebb’s
rule (Hebb, 1949) (see Section 2.3.1). Such information can be a category of chunk to encode the
incoming entity, a procedural knowledge used to take action to reach a goal or an episodic memory
from past experience.

Based on previous information, we can now propose a possible schema for chess situations
using Frames 6.9. Entities may be instances of pieces or chunks (hierarchy of frames). The action
slots provide a list of possible moves that are enabled or prevented by the situation. The emotion
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Figure 6.2: A Working Memory Model with Five Slots for Entities Guntz et al., 2018b.

slot provides values for valence, arousal and dominance acquired from experience to take into ac-
count memories encoded into memory using the special mechanism named as “Flashbulb Memory”
(Brown and Kulik, 1977) (see Section 3.8 on Emotional Memory page 35). We think that emotion
can not only be used for retention, but also as a guide for reasoning.

(ChessSituation (Situation−ID)
(Color ( one−o f ( Black , White ) ) )
( Re l a t i on s ( [Relation−ID , . . . ] ) )
( En t i t i e s ( [ Any−o f (Piece−ID , Chunk−ID ) , . . . ] ) )
(Moves ( [Move , . . . ] ) )
(Emotion ( Valence , Arousal , Dominance ) )

)

Listing 6.9: Chess Situation described with Frame.

The syntax [Expr, ...] indicates a facultative element that can be a list of one or more elements.
The number of entities and relations within a situation is limited by the number of elements in
working memory. This number should not exceed Miller’s limit (Miller, 1956, see Section 2.3.2) and
is likely to be much smaller as part of working memory will be consumed by other information about
the game context such as imminent threats or time constraints. For example, when considering the
consequences of a move, the player must retain the current situation, the candidate move, and the
resulting situation in working memory, as well as other information about the game context. This
would seem to limit the game situation model to 3 or at most 4 entities. For example, a typical
situation model may be composed of one defending chunk, one attacking chunk, and a single active
piece.
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6.2 Evidence for Awareness from Observation

6.2.1 Computation of the Evidence from Observations

Fixations and emotions provide evidence for awareness of chess chunks. In this section, we propose
a mathematical model for collecting such evidence. As described in chapter 4, the retina of the
human eye is composed of a dense central region (a fovea) surrounded by a larger peripheral region
(the parafovea). We have designed our chess display such that each chess square corresponds
roughly to the size of the region of space that projects onto the fovea. Thus we can represent our
chessboard as an 8 x 8 grid of discrete fixation positions.

Chess chunks have a spatial extent that can be described in terms of chess squares. Each
individual piece occupies a square, threatens a set of squares, and can potentially move to a set of
squares. This set of squares if the “Spatial Extent” of the piece. Fixating any of these squares is
evidence for awareness of the piece.

In addition, pairs of pieces form compound chunks that cover the individual squares of the two
pieces, plus the squares between them. The resulting chunk has a spatial extent that is the union
of the spatial extent of its components. Chunks can be composed hierarchically, with each chunk
having a spatial extent composed of the union of the spatial extent of its components. For each
chunk, we can construct a list of squares in its spatial extent. We can use the spatial extent of
the chunks to build a form of index for each square. For each square, we construct a list of chunks
that include that square in its spatial extent. Thus we have a 8 x 8 grid of squares with a list of
chunks for each square. When the subject fixates a square, this can be counted as evidence for
any of these chunks.

In the absence of knowledge of the likelihood of awareness of chunks, we can assume that all
chunks are equally likely. Thus if a square points to N chunks, we can assume a probability of
awareness of 1/N for each chunk. We ignore squares that do not point to any chunk.

Assume a set of K chunks {Ck} and J fixations {Fj}. In the absence of information, the
probability of awareness of any chunk is :

P (Ck) =
1

K
(6.1)

A fixation Fj gives evidence for awareness of a chunk Ck if the position of Fj is on a square, S,
which is included in the Spatial Extent SEk of Ck. In that case, we write: Fj ∈ S and S ⊂ SEk.
For better readability, we can omit the information of the square and directly write the following:
Fj ⊂ SEk.

Let Ns be the number of chunks that include a square S in their Spatial Extent SE. The
probability of awareness of a chunk Ck given a fixation is Fj at square S is:

P (Ck|Fj ⊂ SEk) =
1

Ns⊂SEk

(6.2)

If, on the other hand, a fixation Fj is not included in the Spatial Extent of Ck gives, then no
information of the awareness of such chunk is given:

P (Ck|Fj * SEk) = 0 (6.3)

After J fixations, the probability of awareness of each chunk Ck is obtained using the law of total
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probability:

P (Ck) =
J
∑

j=1

P (Ck|Fj) · P (Fj) (6.4)

The terms of the sum in equation 6.4 are null if the fixation Fj * SEk. Thus, we can be simplified
using only the terms that are not null. Let consider the set {Fi} a subset of {Fj} that verifies for
every fixation: Fi ⊂ SEk, then the previous equation can be written again as:

P (Ck) =
I

∑

i=1

P (Ck|Fi ⊂ SEk) · P (Fi ⊂ SEk) (6.5)

The second term of the sum computes the probability that a fixation is made on a square that is
included in the Spatial Extent of chunk k. The probability of a fixation being on a square depends
on many variables: its relative distance to the center if a piece is on the square, its surroundings,
etc. The player expertise also impacts this probability: as we have seen in Section 4.1.4, experts
tend to fixate between pieces, using their parafovea vision to gather information, while novices do
fixations more on pieces. For the early development of this model, we use a näıve approach that
considers that all square have the same probability of being fixated: P (Fi ∈ S) = 1/64. Finally,
this probability is proportional to the number of squares contained in SEk (denoted here #SEk).

P (Fi ⊂ SEk) =
#SEk

64
(6.6)

Equation 6.5 can be simplified as:

P (Ck) =
#SEk

64
·

I
∑

i=1

P (Ck|Fi ⊂ SEk) (6.7)

6.2.2 Evidence for Chunks from Fixations

Evidence can be deduced from players’ visual attention and more precisely from fixations (see
Section 4.1.3). For that, we set a counter of activation for every chess chunks that get activated
when a fixation is detected inside his visual span. As a piece or a square can belong to different
chunks, a single fixation may activate more than one chunk. A fixation does not imply that the
activated chunks are actually present in the player’s WM, however, frequently fixated chunks are
considered to be more likely to be present in WM. Once all fixations have been considered, chunks’
evidence can be computed by summing all activations and using definitions from section 6.2.1.

Let’s consider the following chunks, displayed in Figure 6.3, as examples. On this image, two
different chunks are overlapping (i.e. they share common pieces and squares):

• Chunk 1: White Bishop protecting White Pawn, let’s name it: CH PROT;

• Chunk 2: White Bishop threatening Black Queen, let’s name it: CH THREAT;
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Figure 6.3: Toy Example with 3 Pieces.

(Piece (WBishop)
(Kind ( Bishop ) )
( Pos i t i on ( b2 ) )
(Actions ( . . . ) ) )

(Piece (BQueen)
(Kind (Queen ) )
( Pos i t i on ( d4 ) )
(Actions ( . . . ) ) )

(Piece (WPawn)
(Kind (Pawn) )
( Pos i t i on ( a3 ) )
(Actions ( . . . ) ) )

(Relation (R1)
(Name ( Protec t s ) )
(Kind ( De fens ive ) )
( Subject (WBishop ) )
(Object (WPawn) ) )

(Relation (R2)
(Name ( Threatens ) )
(Kind ( O f f en s i v e ) )
( Subject (WBishop ) )
(Object (BQueen ) ) )

Listing 6.10: Pieces and Relations presented
in Frames.

The visual spans for each chunk are displayed 6.4a and 6.4b. CH PROT covers two squares; each
centered on both the subject (Bishop) and the object (Pawn) of the chunk. About the second
chunk, CH THREAT, three squares are involved. These squares include the diagonal between the
White Bishop and the Black Queen, as well as the Bishop and Queen.

When a fixation is recorded, the activation for all of the chunks whose spans overlap the fixation
are increased. For example, take a scan-path with three fixations F1, F2 and F3 as examples,
displayed in Figure 6.5. Fixations from this example cover three cases:

(a) Visual Span of Chunk 1:
CH PROT

(b) Visual Span of Chunk 2:
CH THREAT

(c) Visual Span of both Chunks
with a common piece: Bishop
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Figure 6.5: Scan-Gaze Example with Three Fixations: F1, F2 and F3.

• F1 is not included in any visual span, we consider that no chunk is activated,

• F2 is in both visual span: in CH PROT and CH THREAT, we say that both chunks are
activated and considered by the player,

• Finally, F3 is only involved in one chunk: CH THREAT, we imply that only this chunk is
activated.

Once the full eye-scan is analyzed, evidence counters for each chunk can be computed. Let’s
consider the set {Ck} composed of two chunks {C1, C2}. C1 being CH PROT and C2 CH THREAT.
With no information, we assume that each chunk has the same probability of being observed:

P (Ck) =
1

K
=

1

2
(6.8)

Three fixations F1, F2, and F3 are recorded. If we consider each fixation now. F1 is not
included in any Spatial Extent of chunks. Thus this fixation provides no evidence:

P (C1| F1 * SE1) = 0

P (C2|F1 * SE2) = 0

The second fixation F2 is recorded on the square of the Bishop. This square is involved in the
Spatial Extent of both chunks: C1 and C2, thus Ns = 2 and:

P (F2 ⊂ SE1) =
#SE1

64
=

1

32

P (F2 ⊂ SE2) =
#SE2

64
=

3

64

P (C1| F2 ⊂ SE1) =
1

Ns

=
1

2

P (C2| F2 ⊂ SE2) =
1

Ns

=
1

2
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Finally F3 is focused on the Black Queen inside the Spatial Extent of C2:

P (C1| F3 * SE1) = 0

P (F3 ⊂ SE2) =
#SE2

64
=

3

64
P (C2| F3 ⊂ SE2) = 1

Applying now the total law of probability defined for the evidence in equation 6.7, we can write
the probability of awareness of C1:

P (C1) =
#SE1

64
·
∑

i={2}

P (C1|Fi ⊂ SE1)

P (C1) =
1

32
· P (C1|F2 ⊂ SE1)

P (C1) =
1

32
·
1

2
=

1

64

And the same can be applied for C2:

P (C2) =
#SE2

64
·
∑

i={2,3}

P (C2|Fi ⊂ SE2)

P (C2) =
3

64
· [P (C2|F2 ⊂ SE2) + P (C2|F3 ⊂ SE2)]

P (C2) =
3

64
· [
1

2
+ 1] =

9

128

To conclude this toy example, we can say that the probability of awareness of chunk C2 is
higher than C1 and the individual who performed the fixations have higher chance to hold C2 in
his Working Memory than C1.

6.2.3 Evidence for Experience from Emotions

Our hypothesis is that while engaged in problem-solving, chess players generate and explore a tree
that combines possible interpretations of the situation and possible reactions. This exploration
is influenced by past experiences with similar situations encoded as affect (Valence, Arousal, and
Dominance) in LTM. This affect is displayed as facial expressions as the player explores the tree
of possible interpretations. From what we have learned with our first experiment (See Chapter 5),
these signals are stable most of the time, except for a few peaks. We suggest that these peaks are
unconscious somatic reactions correlated to their exploration of possibilities. Analyzing player’s
valence, encoding either pleasure or displeasure, and arousal for threats and opportunities could
give us valuable information on their current evaluation of the game.

Let us consider an example with two players of different levels, a novice, and an expert, analyz-
ing a small situation displayed in Figure 6.6. This toy chess situation illustrates a White Bishop
protecting a White Pawn while at the same time threatening the opponent’s Black Queen. In
an effort to focus solely on emotions, we consider in this example that both players realized the
same displayed fixations on the board, with the same timing. That being said, let us imagine
how the novice would mentally react if he were playing Black (Note: in chess, the Queen is the
second most important piece, the first being the King). Figure 6.7 is the tree of possible moves
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Figure 6.6: Fixations Example with Time of Apparition in Seconds.

considered by the novice player (fictional scenario for illustration purposes). On top of the tree is
the situation S0 displayed on the board: the Queen is threatened. From S0, two situations are
accessible. The first one is S1.A, reached by taking Move A, where the Queen is taken, and Black
find themselves in a material disadvantage. The second situation is S1.B accessible from Move B;
the Queen has been secured. According to our hypothesis, each mentally evaluated moves are also
linked to previous and similar encountered situations. For each situation, Valence and Arousal are
plotted in blue and red, respectively. The situation S0 as it stands displays an incoming threat
for the Queen, and it should be apparent on the arousal plot. Small displeasure should also be
visible. We suggest that players would consider first moves that maximize Valence (i.e. pleasure)
and Arousal (i.e. opportunity). Then players would first evaluate moves where the Queen is safe
as it removes threat and displeasure. Novice players should consider move B.

Nonetheless, losing the Queen does not have to mean defeat. Some advanced strategies require
a sacrifice of a strong piece as bait in order to take a significant advantage. Players need experience
to dare to play these moves. Let us consider an expert playing Black, its tree of possibilities is
showed in Figure 6.8 (fictional scenario for illustration purposes). We notice first that he evaluates a
move further (2 moves from S0) than the novice. This does not imply that experts evaluate deeper
tree of possibilities than novices; it has been proven several times through researches (De Groot,
1978; Gobet and Simon, 1996; Simon and Chase, 1988). However, this does mean that the affect
retrieved from Long-Term memory of the expert about the situation where he loses his Queen is
not always negative. During hours of practice, advanced players have occasionally won games using
a Queen sacrifice, retaining positive affect from such situations. This is visible on the situation
S2.B where, indeed, an advantage is taken, maybe by threatening the opponent’s King. It is also
possible that sacrificing the Queen represents a material disadvantage with no positive outcome.
In this case, both the expert and the novice react the same way, as shown in S2.A.

Finally, we may also hypothesize which chunks are being considered by players by combining
the emotional response, eye-scan, and temporal information. If we consider the scan-path displayed
in Figure 6.6, we can correlate the peak of arousal with the fixation and deduce that the chunk
related may have triggered the emotional response recorded.
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Figure 6.7: Tree of Possible Moves with Recalled Affect from Long-Term Memory. Novice’s Point
of View. (Fictional Scenario for Illustration Purposes)

6.3 Conclusion

In this chapter, we propose a model for representing awareness from observation of eye-gaze and
emotions. We employ frames to represent concepts and chunks manipulated by chess players. We
then illustrated the use of Frames by representing several chess chunks, simple as complex, proving
the ease of use of this framework.

Based on the literature (see Section 2.2), we also propose a model to describe the content of
Working Memory and its interactions with other cognitive entities (Long-Term Memory, human
perception abilities, etc.). The elements manipulated in Working Memory and Long-Term Memory
are represented by Frames.

Evidence for awareness of chunks is provided by recordings of eye-gaze, emotion, body move-
ments. While we can not conclude with certainty which chunks are attended, we have shown a
model that makes it possible to accumulate evidence for awareness.

In order to develop our model, we have conducted a second experiment in which we players
were asked to explain their reasoning.
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Figure 6.8: Tree of Possible Moves with Recalled Affect from Long-Term Memory. Expert’s Point
of View. (Fictional Scenario for Illustration Purposes)
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Chapter 7

An Experiment to Observe the Role of
Emotion in Reasoning

To verify the model described in Chapter 6, we devised a new experimental protocol, in which
players are asked to describe their reasoning after attempting to solve each problem. Indeed, to
quote again Simon and Barenfeld: “Records of eye movements can only show the succession of
fixations; they cannot show precisely what information is being processed at each moment” (Simon
and Barenfeld, 1969). By adding a verbal protocol, the principal motivation is to identify the
chess chunks with which the players reason and to correlate these to chunks that are indicated by
fixation. However, a player may display over 100 fixations while seeking a solution to a problem.
To focus on the most important fixations, we refine our search for information based on a lesson
learned from our first experiment: emotions are correlated with the situation understanding. We
thus anchor our analysis to a few seconds before and after strong peaks in emotion.

This section begins with a review of the literature Verbal Analysis (Section 7.1) followed by a
description of a pilot experiment (Section 7.2).

7.1 Study on Self-Reporting

Introspection or the “examination” of an individual’s conscious thoughts and mental images has
long been used in psychology as a tool to uncover information about awareness and reasoning
(Ericsson, 2006). Verbal Analysis is widely used in studies about Learning. Verbal Analysis
seeks to describe how individuals encode and verbalize information (Balzarini, 2013). This is
performed by encoding a verbalized idea with a unique element called a “verbatim”. Verbatims
from several individuals can be correlated, with statistics over several individuals used to describe
the effectiveness of a presentation for learning, or for differentiating knowledge of experts from
novices.

One popular method of Verbal Analysis, attributed to Newell, Simon, et al. (1972), is called
“Protocol Analysis” which consists of asking individuals to “think-aloud” every piece of information
that comes to their mind while engaged in problem-solving. This approach is systematic and does
not let time for the individual to explain or justify its verbalized thoughts. This method aims to
identify which solving procedures (i.e. series of tasks and operators) used by the subject. Gathered
information provides insights on the elaborated strategy in terms of a sequence of operations.
Uncovering strategies is valuable information as studies have shown that the definition of the
problem guides experts’ strategy, whereas novices’ focus is goal-oriented (Simon and Simon, 1978).
Both views are composed of a different sequence of operations.
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Another approach named “Verbal Data Analysis” requires the subject to rationalize and explain
actions as they are solving the task, raising the risk of interfering with performance (Chi, 1997).
In contrast with Protocol Analysis, the Verbal Data Analysis retraces the subject’s resolution path
without knowing in advance the possible relevant concepts or operators. No information on the
chosen strategy is given, but this method identifies the set of knowledge involved by a subject in
solving a problem.

7.1.1 Verbal Analysis in Chess

In his extensive work, De Groot gathered verbal analysis of both experts and novices players
(De Groot, 1978). He presented to players representative games that required immediate action
(i.e. play the next move) while instructed them to verbally report their thoughts (think-aloud
protocol, Ericsson, 2006). From these verbal protocols, De Groot structured the selection of the
next move in different phases (the Orientation Phase, the Exploration Phase, the Investigation
Phase and the Proof Phase). He showed that both experts and novices first familiarized themselves
with the presented position and, in a second time, explored salient aspects of the position such as
potential attacks or defenses. It is only afterward that players analyzed the validity of the possible
moves by exploring consequences and evaluating resulting positions. De Groot stated that the lack
of verbalization of the best movement during the exploration phase by novices is a consequence
of an inferior position representation created during the first phase. In contract, experts were
inclined to verbalize strong moves even during the initial phase. To explain this discrepancy in
representation, De Groot suggested two mechanisms developed by experts to help them find and
select moves:

1. Rapid perception and encoding relevant structures in the chess position;

2. Superior performance in planning help to generate potential new and better moves.

An example of verbal protocol from a good and expert chess players is given Figure 7.1 (Ericsson
and Charness, 1994). These verbal analysis of chess players suggest that the extensive knowledge
of experts are not the only responsible of their performances. The ability to encode and manipulate
internal representations of chess positions is essential. This can be observed with chess masters
that can play blindfold chess (without board and pieces), an activity that is impossible for less-
skilled players. Internal manipulation of chess representation allows experts to anticipate the
consequences of possible next moves and to consider future threats (Ericsson and Charness, 1994).

7.1.2 The Concurrent and Retrospective Approaches

Verbalization of thoughts can be done following two approaches: during decision making (i.e.
concurrent data) or after task completion (i.e. retrospective data). Although both methods are
used to reveal decision-making processes, significant differences exist between the two methods,
and the choice of one or the other should be made accordingly to the objectives to be achieved
and the environmental experiment (Kuusela and Paul, 2000).

Concurrent data are collected during task completion. “Protocol Analysis” (Newell et al.,
1972), or think-aloud protocol, are considered as concurrent verbal methods as they instructed
subject to verbalize their thoughts during problem-solving. These protocols report information
from ongoing cognitive activities and the way they are processed as they go along. A characteristic
of concurrent analysis is the rich collection of collected data. This method is an appropriate and
recommended method to reveal subject’s thought processes about features and procedures used
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Figure 7.1: Example of Presented Chess Position to a Good Club Player (ELO = 1657) and to
an Expert (ELO = 2004). Instructions are to select the best move for White. The respective
think-aloud protocol is shown to illustrate differences in both evaluating and planning a specific
move: White Pawn is moved from C4 to C5 (which is the best move for this position). (Source:
Ericsson and Charness, 1994)

during decision making. However, a disadvantage arising from this phenomenon is the time-
consuming task to encode and process all generated data. Finally, task performance may also be
impacted by verbalizing thought processes. If instructed to explain their thoughts while performing
the task, subject’s ability for learning tend to improve (Chi, 1997), where no effect has been shown
for a simple Think-aloud verbalization (no explanation).

Retrospective data are gathered after task completion. Ideally, these are collected immediately
after the task is completed, while information is still in an accessible state in subject’s short-term
memory. As one may except, the content of subject’s short-term memory after task completion is
concepts related to the final task decision. However, during problem-solving, participants typically
explore many strategies before considering their final decision. During retrospective verbalization,
participant tends to focus on their final choice and will experience great difficulty in retracing
intermediates steps (Ericsson and Charness, 1994). Moreover, verbatim encoding encountered
difficulties in solving the task are fewer in retrospective condition. A possible explanation is that
participants tend to mention their problems while facing them (Kuusela and Paul, 2000). The
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main advantage of using retrospective conditions is not to alter subject’s performance. In contrast
with concurrent analysis, no cognitive resource is consumed to verbalize thoughts. Thus, if the
study focuses on the final decision without altering participants’ natural behavior, retrospective
protocols should be considered over concurrent ones.

7.1.3 Summary

Table 7.1 summarizes the reviewed literature from previous sections about Verbal Analysis proce-
dures (i.e. Think-Aloud and Explanations) and specific conditions (i.e. Retrospective and Concur-
rent) along with their advantages and disadvantages (Simon and Simon, 1978; Chi, 1997; Kuusela
and Paul, 2000; Ericsson, 2006; Balzarini, 2013).

Retrospective Condition
(i.e. After task completion)

Concurrent Condition
(i.e. During task)

Advantages
(Analysis)

Disadvantages
(Analysis)

Protocol Analysis
(Think-Aloud)

Think-aloud after task completion Think-aloud while solving the task Generate many verbatim
Data processing
is time consuming

Verbal Data Analysis
(Explanations)

Explanations after task completion (RTE)
Explanations of considering strategies

(incoming thoughts) while solving the task
(CVA)

Identify relevant knowledge
used to take decision

Require cognitive ressources

Advantages
(Condition)

Keep an ecological test environment
May improve performance (learning)
Intermediates steps are vocalized
Facing problems are vocalized

Disadvantages
(Condition)

Focus is done on final decision
Intermediates steps are barely verbalized
Faced problems are barely verbalized

Alter Reaction Time
Part of Cognitive ressources are allocated
to vocalize (and not for problem-solving)

Table 7.1: Summary of Verbal Protocols and Conditions with their Pros and Cons. The two bolded
protocols are the ones tested in our pilot experiment.

In view of understanding which concepts are used by chess players to solve the task and, most of
all, which considered concepts are arousing affect, a pilot experiment has been conducted involving
a subset of methods (RTE and CVA) to observe to find out which one best meets our expectations.

7.2 A Pilot Experiment

In March 2018, we conducted a pilot experiment to gather information on two Verbal Analysis
protocols:

1. Concurrent Verbal Analysis (CVA): players are instructed to verbalize and to explain
their strategies and thoughts while completing the task.

2. Retrospective Task Explanation (RTE): players are instructed to explain, after task
completion, strategies they consider to take their final decision.

We emphasized that the two proposed Verbal protocols are not considering as Think-Aloud proto-
cols, where participants would vocalize their incoming thoughts without explaining them. Expla-
nations are the most relevant method to gather concepts considered in subjects’ strategies (Chi,
1997; Balzarini, 2013).

7.2.1 Procedure

This pilot experiment is composed of eight N-Check-Tasks of increasing difficulty: 4 tasks are
taken from the first experiment (see Section 5.3.3), and the 4 remaining are new ones specially
designed. The initial modalities are still recorded (Body, Gaze, Facial). Out of those eight chess
puzzles, some of them should be explained by the subjects, such as:
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1. The 2 first tasks are not explained;

2. The 3 following tasks are explained using one method (RTE or CVE);

3. The 3 remaining tasks are explained using the other method (not chosen in 2).

The initial choice of the RTE or CVA method for step 2 was made randomly among the participants
to control the impact of the first applied method on the second. Overall, the selected tasks are
easier than the ones from experiment 1. That way, players of all levels could engage themselves
in problem-solving without being discouraged in advance. The goal of this pilot experiment is to
collect verbal data (verbatim); discouraging participants would thwart our efforts.

Colleague chess players from our laboratory volunteered to participate in this pilot experiment.
Upon arrival, participants are first being instructed that this experiment is performed to analyze
the reasoning of chess players, based on external observation. In order not to bias the behavior
of the participant during the experiment, little information about the interest of the experiment
is given. The participant has been informed, at his or her discretion, of the project’s stakes and
research hypotheses once the experiment has been completed. Secondly, information on the nature
of the tasks to be solved is given: chess problems, similar to puzzles found in magazines or on
the web, are presented one after the other. For each problem, the examiner announces the played
color, however, in contrast with the first experiment, no further information is delivered on the
goal to achieve with the chess task. Participants choose to play either offensively or defensively.
Then, the participant is invited to take as much time as needed to analyze the problem before
playing the move(s) that seem(s) most appropriate to the situation.

For some tasks, participants were asked to explain the steps he or she goes through before
making the decision to make a move, consistent with “Concurrent Verbal Analysis” (CVA).
To do so, he must rationalize the characteristic elements of the problem (pieces, positions, configu-
rations, etc.) that he may or may not consider as relevant during his analysis and decision making.
For tasks requiring a “Retrospective Task Explanation” (RTE), identical instructions as CVA
procedure were given, however, participants were asked to verbalize their explanation once the
task had been completed. Instructions about eye tracking calibration and the posture to adopt
(e.g. avoid large movements) are finally given.

7.2.2 Results and Discussions

In total, 4 of our colleagues took part in the pilot experiment, two of them were casual players
(novices with no ELO ranking) while the other two had intermediate levels (ELO ranking around
1400). None of them were playing in chess clubs at the time of the experiment. Also, we asked two
participants to provide their RTE right after the task completion (i.e. before moving on the next
task), whereas the two other participants were asked to complete all tasks before coming back on
them to provide their RTE.

Verbal protocols were recorded using the Kinect microphone. These protocols were then played
back and transcribed by hand. This experiment provided valuable information on the potential
adequacy of these procedures for our experiments.

Observations on CVA

Regarding the Concurrent Verbal Analysis, we identified several advantages: many concepts are
verbalized by the participants providing a rich amount of data. Among these verbatims, most (if
not all) of the key concepts involved in the final decision of the participant are mentioned. As
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participants explain their thoughts while considering different strategies, intermediate steps are
present in their verbal reports. Other concepts, less relevant for completing the task, are also
verbalized, but quickly discarded. These advantages are in line with we the literature; however,
some drawbacks raised some concerns: the participants’ speeches were very close to a Protocol
Analysis (Think-Aloud), and some verbalized thoughts were not explained. Moreover, participants
do not behave naturally when giving explanations. Their emotional reactions and eye trajectories
are not those we would observe in an ecological context.

Observations on RTE

About the Retrospective Task Explanation, we noticed some advantages: some key concepts used in
the participant’s decision-making are verbalized. The process keeps the test environment ecological
and it is not impacted by the verbalization; thus we do not notice any impact on performance.
Various inconveniences have been observed based on whether RTE is performed right after task
completion or only when all tasks have been completed: The first case is when the RTE is performed
after all tasks have been completed, participants expressed great difficulties in remembering both
the task and their choices. As mentioned earlier, this is mostly due to the content of STM being
replaced over time with fresher information (Kuusela and Paul, 2000). About the second case,
when the RTE is performed right after the task, most participants focus the speech on their final
decision, explaining concepts involved in this decision. Thus, we notice that intermediates steps
and the strategies that were studied before being rejected are barely mentioned. Last but not least,
the focus of verbalized concepts is highly influenced by the opponent’s moves (played automatically,
by a Stockfish algorithm, once a move is made by the participant). This is especially true when
the opponent’s responses are not expected by the participant or when he realized that he played
a bad move. In this situation, some participants were reluctant to explain their final decision, as
they realized it was not a good solution.

Discussion

This pilot experiment brought valuable information on both verbal protocols. While CVA provides
a rich amount of data about intermediates steps and the final decision, it compromises the natural
behavior of chess players. Also, some cognitive resources are allocated to verbalize thoughts and
are thus not used in problem-solving. RTE presents significant problems with the report content.
Concepts that are not directly involved in the final decision are barely mentioned, and the speech
can be highly influenced by the opponent’s counterattacks. Nevertheless, RTE assures that chess
players’ behavior is natural. This would offer us the opportunity to interpret their eye trajectories
and physiological responses synchronously with their verbal reports. The timing plays an important
role. Indeed STM decays over time and gets refreshed with new incoming information. RTE should
be realized as soon as the task is completed to maximize valuable information from the verbal
analysis.

Taking all these observations into account, we decided to rely on the Retrospective Task Ex-
planation (RTE) protocol to report verbal analysis of chess players right after task completion.
We conclude this review on self-report by mentioning two essential points for examinator that
would interview participants: Michelene Chi, in (Chi, 1997), emphasized “How the experimenter
should be as unintrusive or as uniformly intrusive as possible” to avoid any influence and ensure
consistency between participants; she also raised the following problem: “How to control for the
fact that some people are more verbose than others?”. This concern must be carefully thought out
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in advance. Chi stated that if a subject takes the time to explain an idea, so it is clear that this
idea is of significant value to him and should be considered as such.

7.3 A Second Experiment

7.3.1 Objectives and Research Questions

The objective of this experiment is to validate if evidence of awareness can be observed using
our cognitive model described in the previous Chapter. From these pieces of evidence, several
hypotheses were tested:

• Could evidence of eye-gaze, valence, arousal, and frustration be correlated with the four
phases of reasoning proposed by De Groot (1978)?

• Could the content of the Working Memory of chess player be inferred using their Verbal
Protocol?

• Could emotional evidence be better interpreted using the content of Working Memory?

7.3.2 Participants

For our second experiment, the same announcement as the past year has been passed along chess
clubs, local universities, research laboratories, and within the metropolitan area. The experiment
has been held in the IMAG building situated on the campus of Saint-Martin-d’Hères. We recruited
23 subjects (12-55 years, 4 females, age: M = 29.17;SD = 10.56), consisting of 2 experts with ELO
rating 1930 and 2000, 19 intermediates rated between 1197 and 1700 (M = 1417.05;SD = 102.65)
and 2 unranked beginners. Twelve of the intermediates were casual players who were not currently
playing in clubs.

7.3.3 Designing Chess Tasks

This time again, we rely on the work done in collaboration with the CITEC team of Bielefeld
to design the chess tasks. For the first experiment, two kinds of tasks were designed: Openings
and N-Check-Mate. Unfortunately, we noticed that openings situations were not suitable for our
study, due to players being too over-familiar with this particular stage of the game and they played
automatically without initiating any cognitive process. As a replacement, we designed a particular
type of task that aims to elicit emotion: Survival tasks. In addition, new N-Check-Mate tasks have
been designed, and some tasks used in the first experiment have been reused. Figure 7.2 shows
example of designed tasks.

Survival Tasks. Three tasks have been elaborated that place participants in hopeless sit-
uations. These situations are meant to elicit strong affect as the more the participant assesses
the situation, the more the hopelessness of the situation becomes apparent. When presented to
experts to validate the tasks, most told us they would rather give up because there was no point
in trying.

N-Check-Mate. These tasks are the same as designed in Experiment 1 (see Section 5.3).
They are defined, such as one easy task (mate in 1), two tasks with medium difficulty (mate
in 3), and one hard task (mate in 5). Out of these four tasks, two of them present unbalanced
situations in favor of the opponent, forcing conservative players to focus on defensive moves. The
most attentive and experienced players will, however, quickly find the solution to solve the game.
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(a) N-Check-Mate Task with N=5.
White to Play.

(b) Hopeless Situation. Black to play
(i.e. Black to survive).

Figure 7.2: Example of Designed N-Check-Mate (left) and Survival Task (right)

7.3.4 Ontology of Chess Concepts

For each elaborated task, we extracted all relevant concepts that may be considered by chess
players. Every piece, relevant relations (n-arity), and configurations of pieces are listed. Relevant
concepts have been listed in collaboration with the CITEC team, the local chess club President
and also from the “Glossary of Commonly used Terms in Chess” from Wikipedia (Wikipedia
contributors, 2020b)

To illustrate this work, a full example is given for a particular task displayed in Figure 7.3.
This is a N-Check-Mate task, Black to play, with N = 3 (i.e. Black can win in 3 moves from this
state of the game). This task involves a diverse set of concepts: at first sight, the situation appears
unfavorable for Black, as they are outnumbered, their key pieces are poorly developed, the middle
of the board is controlled by White and two key pieces of Black (Knight on E4 and Queen on G6)
are directly threatened. However, players with enough expertise would notice that the White King
can not move for two reasons: the protection of his allied pieces also blocked him, and the Black
Bishop in C5 controls the square G1. Thus White King is vulnerable. A combination of attacks
from Black Knight, Queen, and Bishop can lead to White King being checkmated. This sequence
of moves is:

1. First move:

(a) Black Knight captures White Pawn in G3, checking White King;

(b) White is forced to capture Black Knight with White Pawn in H2.

2. Second move:

(a) Black Queen moves from F6 to H6, checking White King;

(b) White is forced to shield his King by moving his Bishop from G2 to H3.

3. Third move:

(a) Black Queen captures White Bishop in H3, check-mating White King.
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The specific term ”force to” for White means that this is the only legal move possible to play.
Relevant relations that are involved in this sequence of moves are listed in Table 7.2 (page 114)
and some relevant chunks are illustrated in Figures 7.5 (all of them are presented in Appendix B on
page 146). Chunk information is presented using the Frame Theory fromMinsky (see Section 6.1.1).
Each chunk’s image represents his spatial extent (as described in Section 6.2.1).

In total, over the 7 tasks elaborated for the second experiment, 93 chunks have been listed
and detailed. This resulting chess ontology database will help us to understand players’ fixations
better, as well as identify which subset of chunks are considered by players before taking their
final decision. We can also expect that each player has its chunk collection (acquire with practice),
which does not precisely match our chunk definition.

Figure 7.3: N-Check-Mate Task with N=3. Black to Play.

7.3.5 The Experimental Protocol

This second protocol is based on the one designed for our first experiment (see Section 5.3), with
a few changes. Subjects were initially asked to play two easy practice games to become familiar
with the equipment. We then performed an eye-tracking calibration before starting to record their
eye-gaze, emotional state, and body reactions. The tasks are presented in this particular order:

1. Mate in 1. Black to Play.

2. Mate in 3. White to Play.

3. Mate in 3. Black to Play (with unbalanced situation).

4. Hopeless Situation. Black to Play.

5. Mate in 5 – White to Play (with unbalanced situation).

6. Hopeless Situation. Black to Play.

7. Hopeless Situation. White to Play.

112



(a) Chunk 1: White Pawn E5
Threatens Black Queen F6

Chunk 1: White Pawn E5 Threatens Black Queen F6

(Chunk ChessChunk (C1)
( En t i t i e s (WP5∗ ) , (BQ∗ ) )
(Color (White ) )
(Relation ( Threatens ) )
( Spat ia l−Extent (E5 , F6 ) ) )

Entity WP5 is the chess piece White Pawn E5.
Entity BQ is the chess piece Black Queen.

(b) Chunk 2: White Pawn F3
Threatens Black Knight E4

Chunk 2: White Pawn F3 Threatens Black Knight E4

(Chunk ChessChunk (C2)
( En t i t i e s (WP3∗ ) , (BK1∗ ) )
(Color (White ) )
(Relation ( Threatens ) )
( Spat ia l−Extent (F3 , E4 ) ) )

Entity WP3 is chess piece White Pawn in F3.
Entity BK1 is chess piece Black Knight in E4.

(c) Chunk 3: White Bishop B2
covers White Pawn E5

Chunk 3: White Bishop B2 covers White Pawn E5

(Chunk ChessChunk (C3)
( En t i t i e s (WB2∗ ) , (WP5∗ ) )
(Color (White ) )
(Relation ( Protec t s ) )
( Spat ia l−Extent (B2 , C3 , D4 , E5 ) ) )

Entity WB2 is chess piece White Bishop in B2.
Entity WP5 is chess piece White Pawn in E5.

Figure 7.5: Relevant chunks of N-Check-Mate (N = 3) Task presented using Frames.
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Name
Subject
Type

Object
Type

Definition Arity

Controls /
Be Controlled

Piece
Square ;

List of Squares

A piece controls a square or a list of squares,
threatening all possible opponent pieces that

enter this area.
2 or more

Threats /
Be Threatened

Piece
Piece ;

List of Pieces
A piece can capture another
opponent piece in one move.

2 or more

Protects / Be
Protected

Piece Piece

A piece A protects an allied,
piece B, meaning that if B is
captured by an opponent piece
C, A can directly threaten C.

2 or more

Screens /
Be Screened

Piece Piece
A piece screens an allied piece from a direct

threat by being in front of it.
2

Pins /
Be pinned

Piece List of Pieces
When a piece is attacked and can legally move out
of the line of attack, but such a move would expose

a more valuable piece (or an unprotected piece) to capture.
3

Traps /
Trapped

Piece Piece

A piece that is unable to move for several reasons:
its available moves are impossible due to the presence
of others pieces, or available squares are controlled by

opponent pieces.

1 or more

Sacrifice /
Is sacrificed

Piece Piece

A move or capture that voluntarily gives up
material in return for an advantage such as

space, development, an attack or saving a more
valuable piece.

1

Table 7.2: List of Relevant Relations identified for the N-Chess-Task displayed in Figure 7.3

In contrast with the first experiment, no indication of what is at stake in the task is given.
The player may play offensively or defensively depending on his playing style of play and on his
understanding of the task. On completion of each task, subjects were asked to explain their under-
standing of the board situation, and the reason for their moves (RTE). We specifically asked them
to identify opportunities, threats, and possible moves that were considered, even those excluded
because they are seen as weak moves. The exact instructions for RTE given before the start of the
experiment1 are:

“At the end of each problem, I will ask you to explain your reasoning as well as possible.
That is, name the pieces, piece configurations, positions, threats or opportunities you
considered before making your final decision; Try to put yourself in the position where
you want to explain your reasoning to a beginner or a child. Be as complete as possible:
if you have considered moves that you then gave up, it is important to mention them. If
you thought an opponent’s piece was threatening for a moment, before you discarded it,
it is also important to mention it. If you see that an opponent’s piece may be dangerous,
explain how, by which moves it may be threatening. State clearly the name of the piece
and the important positions. For example, the Queen in C6 threatens the Rook in G2.
All the steps you went through before making your first move. Any things you noticed
after your first move should not be mentioned.”

If the participant is not very talkative (less than 30 seconds of speech) and, based on the moves
he has made, the experimenter may intervene by asking one or more questions to encourage the
participant to add information.

1The experiments are carried out in French, the verbal protocols presented here are therefore translated.
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These questions are, in this particular order:

1. Have you seen more pieces, positions, or configurations that you consider important before
playing?

2. In what order have you identified the characteristic elements of the problem?

3. Do you want to add something before moving to the next task?

In any case, the third question is always asked before moving to the next task. If the participant
exceeds 2 minutes of explanations, question 1 (or 2 if 1 is already asked) is not asked.

7.3.6 Metrics

The same metrics from the first experiment (see Section 5.3), along with the new modality of
speech, are used for this new experiment. These are listed in Table 7.3, and what differs from the
first experience is detailed in the following paragraphs.

Modality Extracted Data Computed Features Computation Software

Body Body keypoints
Body Agitation
Body Volume
Self-Touches

Openpose
Homemade scripts

Emotion AUs activation
Valence
Arousal

OpenFace
Homemade scripts

Gaze Gaze and Fixation data
Scan Path

Fixations Duration
Fixations Order

EyeWorks

Speech
Retrospective Task
Explanation (RTE)

Verbatim Homemade scripts

Table 7.3: Recorded Metrics

Retrospective Task Explanation.

Verbal explanations are recorded during the entire experiment using the Kinect’s microphone
before being transcribed in a text by hand. Afterward, the text is encoded in verbatim, and
relevant concepts are extracted. Finally, these concepts are matched with our ontology database.

Emotion Analysis Software.

For this experiment, OpenFace (described in Section 5.2.3.1) has been used to extract emotional
features: Action Units Activation. From these activations, valence and arousal values have been
computed.

Eye-Tracking Device and Software.

The Fovio eye-tracking bar has been mounted vertically on the left side on the Touch-Screen
to avoid being disturbed by hand movements of players. The software EyeWorks (describe in
Section 5.2.3.2) has been used to create AOIs and compute gaze features: scant path and fixation
information.
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7.4 Results

We present in this section our exploratory results on a single task: a N-Check-Mate task with N=3.
This task has already been presented in the previous Section 7.3.4 (page 111). Its main components
are recalled here: Black to play, they look in an unbalanced situation as they are outnumbered
with a weak pieces’ development, two key pieces of Black are under threatened (Knight on E4 and
Queen on G6). However, Black can still win in 3 moves which are:

1. First move:

(a) Black Knight captures White Pawn in G3, checking White King;

(b) White is forced to capture Black Knight with White Pawn in H2.

2. Second move:

(a) Black Queen moves from F6 to H6, checking White King;

(b) White is forced to shield his King by moving his Bishop from G2 to H3.

3. Third move:

(a) Black Queen captures White Bishop in H3, check-mating White King.

The main and relevant concepts are listed in Figure 7.5.
Due to the unbalanced position of Black, conservative players will be inclined on defensive

moves such as protecting their threatened pieces and giving priority to the Queen’s safety. The
pieces that should attract the most attention for defensive players are C1, C2, C3, C4, presented
Figures B.1a, B.1b, B.2a and B.2b respectively (page 146). These chunks involved pieces such as
Black Queen in F6, Black Knight in E4, White Pawn in E5, White Pawn in F3, White Queen in
C2, and White Bishop in B2. For experimented players, they will identify weakness in White’s
defenses such as White King being trapped by its pieces (White Pawn H2 and White Bishop G2)
and because of the Black Bishop in C5 controlling the square G1. Attacking players would focus
on the following chunks: C5, C6, C7, C8, C9, C10, C11 presented Figure B.2c, B.2d, B.2e, B.2f,
B.2g, B.2h and B.2i respectively (page 147); involving the following pieces: Black Queen in F6,
Black Knight in E4, Black Bishop C5, White King H1 and the following key squares H6, G3, H3
and G1.

We present in this section the analysis for three participants of different levels (novice, interme-
diate and expert). These players are interesting to consider because of the significant differences
in their verbal reports and observations. For each player, we present the recording of their arousal
when they observed and reasoned about the task in question. From these Arousal values, we target
our Eye-Gaze analysis around the detected emotional peaks (which is delimited by red dashed-lines
on every emotional plot). For this, we select the scan path, and the fixations performed 5 seconds
before and after each emotional peak. Knowing the stakes and the chunks necessary to solve the
task, we give a subjective analysis of these scan paths by pointing out the possible chunks observed
by the player. Then, we apply the probabilistic formulas (developed Section 6.2.1) on the player’s
fixations, always centered on the emotional peaks. To validate the results (subjective observations
and formulas), we finally give the verbal protocol of the player highlighting the chunks put forward
by the player. We can thereby check whether the emotional peaks are indeed a good indicator to
analyze the reasoning of the players.
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(a) Offensives squares and pieces
grouped in one image.

(b) Defensive squares and pieces
grouped in one image.

Figure 7.6: Offensive (left) and Defensive (right) Chunks.

7.4.1 An Expert Player

The participant identified the stake of the situation correctly and successfully solve it in 5 seconds.
His explanation contains all offensive chunks that needed to be considered; no other chunk is
mentioned.

Expert player’s arousal is presented in Figure 7.7, between the moment the task is presented
and the moment the player makes his decision (t = 5s), the average arousal value around 0.3 with a
peak at 0.7 between the seconds 3 and 4. From the speed with which the player made his decision,
we can easily conclude that the observation and reasoning phase was carried out between the
seconds 0 and 5. These phases are delimited in Figure 7.7 by the two red dashed lines. Figure 7.8
displays the scan paths of player Q12 during his reflection phase (t = 0s to t = 5s).

A first observation of the expert’s scan paths reveals that the player only paid attention in the
upper left part of the chessboard. A particular attention is paid on the Black Knight E4 and on
the adjacent squares (containing both Black and White Pawns). On two occasions, at the end of
the red scan path and the beginning of the blue scan path (thus one after the other), the player
moves his attention from the upper left corner of the chessboard to F5 and G5, before going up
quickly. This kind of behavior suggests that the player recovers the information from the bottom
left corner of the chessboard with his parafoveal vision, this information contains the positions of
Black Pawns and especially of the essential Black Queen in F6. After observing the bottom of the
chessboard, in both cases, the scan path goes up towards the defensive position of the White King,
suggesting that the player may consider offensively moving his Queen. Moreover, the diagonal of
the blue scan path starting at F2 and ending at D5 corresponds to the diagonal covered by the
Black Bishop at C5. The end of the blue scan path and the yellow scan path seems to focus on the
Black Queen and its surroundings (threatening White Pawn and Black Pawns) before moving up to
the upper left corner. Finally, the green scan path goes up to F2, one of the two squares accessible
by the Black Knight to attack the opponent King. This same fixation, in F2, can also retrieve the
information from the G1 square (covered by the diagonal of the Black Bishop C5) but also to the
White Rook in F1 and the White Bishop in G2. The scan path ends with fixations around the
Black Knight in E4 before ending on the G3 square, which is the second square accessible by the
Knight to attack the opponent’s King.

117



0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

Figure 7.7: Arousal of an expert player (Q12). The observation phase extends from seconds 0 to
5. Figure 7.8 presents the scan path within the time frame defined by the two red dashed-lines.

(a) Seconds 0 to 1.25. (b) Seconds 1.25 to 2.50.

(c) Seconds 2.50 to 3.75. (d) Seconds 3.75 to 5.0.

Figure 7.8: Time Windowed Scan Paths (1.25 seconds each) of the Expert Player from Seconds
0 to 5. The green and red points indicate the starting and the ending edges of the scan path,
respectively.
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Figure 7.9: Left: Awareness of Relevant Chunks by Participant Q12 (expert) from his Fixations
between t=0s and t=5s. Right: Chunk C2.

Verbal Report

The subject justified his moves with a complete and concise explanation:

“Ok I see that there is a mate in 3 here. It is kind of a pattern because again the King

is not able to move at all [C9]. So I check if there is any check. There is 3 pieces
here, Queen F6, Knight at E4 and Bishop at C5. So the Bishop already controls

the only available square of the White King [C6], so there is two pieces. So
first check with the Knight [C7] then the Queen [C10, C12].”

All relevant and offensives chunks were mentioned. This implies that he successfully recognized
these chunks from LTM and combined them to generate winning moves in less than 5 seconds.

Interpretation

Player Q12 is the participant who solved this problem the fastest, in 5 seconds. Observing the
arousal response, a slight drop is visible between the seconds 1 and 2. This interval corresponds to
the red and blue scan paths, during which the Black Knight is observed, and the imminent threat
to it may be perceived by the player, causing a drop in his arousal. The peak at 0.7 of the arousal
value is interesting considering the scan paths that preceded it (red, blue, beginning of yellow).
During these scan paths, the relevant pieces for the task resolution are almost all fixed: the Black
Knight E4 [C7], the square where to move the Knight G3 [C7], the Black Queen F6 [C10, C12],
the diagonal of the Black Bishop C5 to G1 [C6] and the defensive position of the White King
located in the upper left corner [C9].

Applying the formula defined in equation 6.7 to compute the probability of awareness of chunks
using evidence from observations, the Figure 7.9 displays the most probable chunks considered by
participant Q12 from its fixations. Chunks C7, which represents the first move to be played in the
winning sequence, has the highest probabilities to be considered by the expert.
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These chunks are all mentioned very clearly in the player’s verbal report. This confirms that the
fixations did indeed extract (among other things) these chunks, which led the player to understand
how to solve the problem. This peak at 0.7 in arousal can, therefore, be interpreted as an indicator
of the identification of a significant opportunity in the problem to be solved.

7.4.2 An Intermediate Player

The participant grasped a good understanding of Black’s situation in 20 seconds. However, he
could not find any good solution to either attack his opponent nor save his pieces. After having to
sacrifice his Black Knight from E4 to F2 (threatening White King to save his Black Queen), the
subject admitted that he was not satisfied by his final choice.

The value of player Q2’s arousal is presented in Figure 7.10. The peaks at t = 1s and the
one t = 20s correspond to excitation generated at the discovery of the game and the beginning
of the game phase, respectively. Besides that, the value is around 0.43 between the second 0 and
12.50, where a decreasing tendency disturbance can be observed. We observe this perturbation in
more detail by presenting the scan paths of the player between the seconds 10 and 20 with the
Figure 7.11. Each scan path represents 2 seconds. The first scan path, in red, is composed of
fixations and saccades operating back and forth between the diagonal D4 and G1. These two-way
scans can extract information about the Black Knight in E4, the threatening White Pawn in F3,
the defensive White Rook in F1, the White Bishop in G2, the square F2 which is an offensive
position for the Black Knight E4 and finally the diagonal covered by the Black Bishop C5 to G1.
The second scan path, blue, again makes the same back and forth movement as the first seconds,
but also observes one end of the upper right corner of the chessboard, containing the White Queen
C2 threatening the Black Knight E4. The scan path comes back to Black Knight E4 after noticing
the White Queen C2. The yellow scan path becomes narrower around the F2 square and the Black
Knight E4, suggesting that the player is thinking of moving the Knight to this position. Then the
scan path goes down to the position of the Black Queen F6 and the White Pawn E5 threatening it.
The green scan path again considers the attacking position F2 of Black Knight E4 before checking
the cover of Black Bishop C5. A novelty is the attention paid to Black Bishop C8 before moving
up to the endangered Black Queen F6, suggesting that the player is looking for new possibilities.
Finally, the purple scan path reveals that the player’s attention is clearly focused on the Black
Queen F6 and the Black Knight E4, and the choice seems difficult because of the many backs and
forth moves between these two pieces.

Verbal Report

Subject’s verbal analysis mainly focused on the two pieces under attack, the Queen and the Knight,
and the possible ways to save efficiently one of them. No other relevant chunks are mentioned.

“So the Black Queen F6 is threatened by the E5-Pawn [C1] and in addition,
the E4-Knight is threatened by the F3-Pawn [C2]. So I have two threatened
pieces at the same time, so it’s not going to go well and in principle I’m going to lose
one of them. So I thought that if I uses the Knight to check [C8] him (Note: the
participant refers to moving Black Knight E4 to F2), he would have to answer and that
would allow me to move the Queen. So I checked with the Knight [C8], he takes back
with the Rook, and now, I have to move my Queen but I have no way to protect my
Knight so that’s it.”
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Figure 7.10: Arousal of an Intermediate Player (Q2). Figure 7.11 presents the scan path within
the time frame defined by the two red dashed-lines.

(a) Seconds 10 to 12. (b) Seconds 12 to 14. (c) Seconds 14 to 16.

(d) Seconds 16 to 18. (e) Seconds 18 to 20.

Figure 7.11: Time Windowed Scan Paths (2 seconds each) of the Intermediate Player from Seconds
t=10s to t=20s. The green and red points indicate the starting and the ending edges of the scan
path, respectively.
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Figure 7.12: Left: Awareness of Relevant Chunks by Participant Q2 (Intermediate) from his
Fixations between t=10s and t=20s. Right: Chunk C8.

Interpretation

The intermediate player pondered for 20 seconds before making the decision to sacrifice his Black
Knight E4 in F2 to gain time and save his Black Queen F3. The emotional arousal value of the
player shows a disturbance from t = 10s, which decreases the average value until t = 20s, the time
when the player makes his decision and plays. By observing the player’s visual attention, we can
see that between t = 10s and t = 15s, most of the attention is focused around the Black Knight E4
and the surrounding squares of F2 2 ([C8]). The second part of the scan paths (between t = 15s
and t = 20s), focuses on the threatened position of the Queen ([C1, C3]) and possible support
(observation of the Black Bishop in C8). However, the last 2 seconds of the scan path shows a
difficult choice to save his Queen or his Knight from the imminent attack ([C1, C2]).

Figure 7.12 displays the probability of awareness of chunks from the participant’s fixations.
Chunks C6, C7, C8 and C9 are the most probable according to the formulas. The player’s verbal
report confirms that all his attention has been focused on his two threatened pieces: the Black
Knight and the Black Queen. The player admits that he realized the ineluctable loss of one of them
and explains his solution to making an attack in F2 ([C8]) with his Knight to gain time and save
his Black Queen. However, the participant did not mention chunks C6, C7, and C9 despite their
high probabilities of awareness. This is explained by the overlapping of Spatial Extent of chunks
C6, C9 and C8 which is the most considered (see Images B.2d, B.2f and B.2g on page 148). This
awareness in the difficult position of the player can explain the disturbance of the player’s arousal,
and his excitement decreases until the final decision is taken.

2Moving the Black Knight E4 to F2 corresponds to the chunk [C8], this attack puts the opponent’s King in
check, forcing the opponent to defend his King by capturing the Knight with his White Rook in F1. However,
placing the White Rook in F2 places it under the threat of the Black Bishop C5. This attack by the Knight, even
if it puts the opponent’s King in check, does not give the Black player any advantage because if he wants to save
his Queen once the Knight’s attack has been launched, he must renounce capturing the White Rook posted in F2
once it has seized the Knight.

122



7.4.3 A Novice Player

The novice player was unable to solve the task after almost 80 seconds of effort. He focused his
time on saving his Queen and was unable to consider any opportunity offered by an offensive move.
He finally moved his Black Queen to safety from F6 to G5. Sacrificing the Knight to save his Queen
was evident, and he did not consider doing something useful with the Knight before losing it.

The player’s arousal, Figure 7.13, during these 80 seconds is close to 0.2 but also has many
peaks. Some peaks, of average height, are in 0.4 and 0.8. Two other peaks (t = 41s and t = 64s)
reach 1.4, the scanpaths corresponding to these peaks are respectively displayed Figures 7.14 and
7.15.

Between t = 36s and t = 41s, the attention is focused on the two White pieces: White Queen
C2 threatening Black Knight E4 and White Bishop B2 protecting the White Pawn at E5 (and
by the same occasion, preventing the Black Queen from capturing the White Pawn E5 to free
herself from his threat). Several backs and forth moves are made between the White Pawn E5,
who threatens the Black Queen F6, and the White Bishop B2, which offers a cover to the White
Pawn. Then visual attention moves to the square F2 and the White Rook in F1. The player’s gaze
also considers the Black Knight E4 before returning to square F2, suggesting that he may consider
the offensive possibility of attacking with the Black Knight in F2. The scan paths concerning the
peak t = 64s are, on the other hand, very focused in precise locations. The player makes many
long fixations on the squares G3 (White Pawn), G2 (White Bishop), F3 (White Pawn), and E4
(Black Knight). These long fixations suggest a possible strategy of the player concerning these
squares. The possibility to attack with the Black Knight E4 in G3 or F2 is difficult to infer from
these scan paths, which do not present successive fixations between these squares.

Verbal Report

The novice players’ explanations focus on ways to secure the Black Queen. For this player, the
Knight was already lost, and moving it was useless. Thus effort was focussed on moving the Queen.
He admitted that a better solution may have existed, but could not find it.

“So here I saw that the Queen was being attacked by the Pawn [C1], it was close
to the middle so it was easy to see. Then I tried to scan a lot of things. I thought of
looking at how to eliminate this one (note: White Pawn E5)[C1] without having to
leave from there (note: F6). I couldn’t think of any other solution than to remove the
Queen [C1]. I don’t know if there was one. I thought that, if I was going to move
it (Note: the Black Queen), I might as well do something that would allow me to get
closer and clean the Pawns that were over there (Note: White Pawns in G3 and F3),
that’s why I did it diagonally (Note: move the Black Queen diagonally from F6 to G5.).
So I saw at first that I had to sacrifice one of them (note: pointing at Black Queen
and Black Knight) [C1, C2], but maybe that’s where I went wrong and maybe I could
have saved them both.”

Interpretation

In 80 seconds of observation and reasoning, the novice player has scanned the chessboard several
times and considered several strategies. The emotional arousal graph suggests several opportunities
discovered by the player. When we look at the scan paths of the two most significant peaks, we
discover the primary concern of the novice player: the imminent attack on his Queen [C1]. This
concern is reflected in the numerous backs and forth between the White Pawn in E5 threatening the
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Figure 7.13: Arousal of a Novice Player (Q19). Figures 7.14 and 7.15 present the scan paths within
the time frames defined by the red dashed-lines.

(a) Seconds 36 to 38. (b) Seconds 38 to 40. (c) Seconds 40 to 42.

(d) Seconds 42 to 44. (e) Seconds 44 to 46.

Figure 7.14: Time Windowed Scan Paths (2 seconds each) of the Novice Player from Seconds
t=36s to t=46s. The green and red points indicate the starting and the ending edges of the scan
path, respectively.

124



(a) Seconds 60 to 62. (b) Seconds 62 to 64. (c) Seconds 64 to 66.

(d) Seconds 66 to 68. (e) Seconds 68 to 70.

Figure 7.15: Time windowed scan paths (2 seconds each) of participant Q19 from seconds 60 to 70.
The green and red points indicate the starting and the ending edges of the scan path, respectively.
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Fixations from t=36s to t=46s Fixations from t=60 to t=70s

Figure 7.16: Awareness of Relevant Chunks by Participant Q19 (Novice) from his Fixations.
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Black Queen [C1] and the White Bishop B2 supporting the White Pawn [C3]. The probabilities
computed to determine which chunks are considered depicted Figure 7.16, also suggest that the
participant was first (blue barplot) focused on the threatening White Bishop and White Pawn
[C3]. Furthermore, this concern is confirmed in the player’s verbal report, who admits to trying
to save his Queen [C1] and let his Knight be captured [C2]. The follow-up of the scan path of
Figure 7.14 seems to be interested in action possibilities in the upper left corner of the chessboard,
where only the Black Knight E4 [C7, C8] and the Bishop C5 can access [C9]. For this sequence,
the probabilities (red barplot of Figure 7.16) show a high interest in these chunks. However, these
strategies seem to have been abandoned because none of them are mentioned in the player’s verbal
report. The strong arousal spike could, therefore, reflect the player’s strong concern about his
inability to protect his Queen effectively, this concern can be inferred from the backs and forth
fixations preceding the spike and the corresponding chunks in the player’s verbal report.

The second peak is more challenging to interpret. Indeed, long fixations reflects difficulty in
extracting information or in making a decision (see Section 4.1.3). One strategy seems to be
considered carefully by the participant. According to the position of the fixations, this strategy
would concern White Pawns G3 and F3, White Bishop G2, Black Knight E4 (chunks [C7, C8,
C9]). However, no clear relationship can be deduced from the scan paths, because no saccade seem
to bind the pieces together (except the threat of White Pawn F3 on Black Knight E4 [C2]). By
reading the verbal report, we understand the strategy considered by the player. He was concerned
with the second move, the one he would play once he got his Queen to safety. However, we did
not list the chunks involved in this situation. As we have been able to note in the verbal report
and the final moves played, the player judged that the strategy considered before the emotional
peak at t = 64s was interesting to play. Indeed, the player states: ”I thought that, if I was going to
move it (Note: the Black Queen), I might as well do something that would allow me to get closer
and clean the Pawns that were over there (Note: White Pawns in G3 and F3), that is why I did it
diagonally (Note: move the Black Queen diagonally from F6 to G5)”.

In summary, for the two most intensive peaks of arousal, we have a decision concerning the
pieces fixed by the player a few seconds before the beginning of the peak. We can infer, by these
results, that these high-intensity peaks are correlated with decision making.

7.5 General Discussion

This second experience provided new insights into understanding the role of emotions in reasoning
and decision making. In our first experience, we noticed that the observed emotions were almost
neutral when solving trivial problems (requiring reactive play). In contrast, when faced with more
and more challenging problems, the emotions varied very quickly, in the form of short peaks. To
study this behavior, we introduced several new elements for our second experience:

• A Cognitive Model for representing the concepts and knowledge of the players (Frames) and
representing the working memory using Situation Models;

• A Verbal Protocol (Retrospective Task Explanation) asking players to explain, after task
completion, strategies they consider to take their final decision;

• New Tasks to elicit emotions: more complex, combining several different strategies (offensive
or defensive) and presenting critical situations for the players;

• An ontology of 93 chess concepts that lists all relevant chunks for each task. This ontology
lets us identify and code very quickly the concepts put forward by the participants during
the verbal protocol.
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As a result of this experience, we present three complete examples of players of different lev-
els: an expert, an intermediate, and a novice. In our first experiment, we were blinded by the
incomprehensible accumulation of player-generated scan paths. It was impossible to deduce a
strategy with a scan path from a player who had been thinking for more than 30 seconds. This
time, the emotional values of the players guided our analysis. For each player, we place side by
side the emotional data of arousal and the scan paths of the players preceding and following by
a few seconds the peaks we could observe in their emotional graph. For each analyzed peak, we
were able to conclude that the pieces and configurations of pieces fixed a few seconds before the
appearance of this peak was 1 - always mentioned in the verbal report of the player and 2 - always
involved, directly or indirectly, in the final decision (moves played). Based on these results, we
can, therefore, deduce the representation of the players’ concepts present in their Working Memory
at the precise moment of an emotional peak by analyzing the fixations produced a few seconds
before the appearance of the peak. We can also conclude that the most intensive peaks reflect a
decision making, either intermediate or final, which impacts the final decision. This last conclusion
is validated by the content of the players’ verbal reports.

However, we can only infer the content of the working memory and the representation of the
players’ knowledge, we can not for the moment deduce it systematically. No systematic procedure
has yet been developed, and our results are based on a subgroup of participants. Our hypothesis
proposing the correlation between emotion and decision making is confirmed by the study of
players’ arousal peaks and their scan path. Thanks to the verbal report, we can confirm our
deductions made from the emotional and visual data, consolidating our conclusions.

Besides, no information on the body behavior of the players has been considered yet in our
results. A possible next step would be to compare body agitation and self-touches around the
emotional peak to observe if there is any apparent increase (or decrease) in body behavior at that
moment.

One of the hypotheses proposed before the beginning of Experiment 2 was: Could the content
of Working Memory of chess player be inferred using their Verbal Protocol? If it is true that
the concepts put forward by the players in their verbal protocol must have been present in their
working memory at a given moment, it is difficult to predict the exact content of working memory
at a given moment t. Working Memory has a limited storage space, and the oldest or no longer
relevant elements are ejected from this space to make room for new concepts considered by the
player. However, the verbal protocol allows us to confirm that a chunk is perceived by the player
and should be present for a moment in his working memory. To determine when this chunk is
actually present in working memory, we must correlate the emotional peaks and the scan path as
we did for the 3 players presented as examples.

Our cognitive model was partially used in this experiment. The Frames allowed us to code
and identified the chunks put forward by the players in their verbal protocol. Formulas to extract
information from evidence gave interesting results that are close to the verbal report of players.
However, these formulas need to be improved as some naive assumptions were made, and more
prior knowledge can be easily integrated. The next step would be to improve the information
extracted from a fixation. The current state only consider the information of the fixated square
without considering a potential use of parafoveal vision. A more reasonable approach would
consider a gaussian centered on the fixation of a size of approximatively 3x3 squares grid. The
gaussian size could also be proportional to the fixation duration. All squares and pieces capture
inside the gaussian would be counted as perceived, with equally distributed energy or attributing
more energy to the center. Nevertheless, we think that these formulas would allow a systematic
approach to the analysis of the pieces and configurations of pieces considered using emotions and
visual data. We have presented a preliminary version of what this cognitive model would yield
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once fully developed, and the results are promising.
Finally, the development of our protocol also benefited greatly from the lessons learned from

our first experience. Because the physical limitations were known, we had better control over our
records, avoiding any loss of data. The use of an eye-tracker on the side of the screen enables us
to achieve stable results with minimal data loss. However, we still can not prevent the player from
moving around in his chair, sometimes moving away from the eye-tracker’s field of action.
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Chapter 8

Conclusion and Perspectives

8.1 Summary

Chapter 2 opens with a description of two players engaged in solving a chess problem. These
players, a novice and an expert, presented two distinct behaviors: Nemo, the novice, looked in
great difficulty to solve the problem, this nervousness was reflected by physiological variations
(accelerating heart rate, agitation on the chair, repeated self-touches, activation of facial micro-
expressions) and by numerous eye fixations (back and forth from one end of the chessboard to the
other, repeated fixations on several pieces). Finally, he did not succeed in solving the problem.
Eliott, the expert, was calmer, he presented few somatic signs and few eye fixations, he found the
solution very quickly. We concluded these observations by asking three questions, the sections and
chapters that followed them gave some clues to answer them:

1. How one can explain the somatic variations of players?

Chapter 2, 3 and 4 have given several answers to this question. First, in Chapter 2, the structure,
and functioning of the human memory have been studied to highlight the mechanisms used by chess
players. We have seen how knowledge and cognitive elements are stored in short-term memory and
in long-term memory (Atkinson and Shiffrin, 1968; Broadbent et al., 1986; Cowan, 2016). Working
Memory has been further detailed due to its importance in problem-solving. Its limited storage
system forces players to perform the cognitive process “chunking,” which allows them to encode
more meaningful information in the same slot in Working Memory (Miller, 1956). Hebb’s law allows
us to understand how players can gather their learned skills needed very quickly in their working
memory to solve a problem (Hebb, 1949). The intuitive moves played can be explained thanks
to the “Dual-Process” theory: System 1 and System 2 (Kahneman, 2011). System 1 is fast and
solves perceived problems by pattern matching with little control over the answers, unlike System
2, which can engage energy-intensive cognitive processes to solve problems. However, System 2 is
lazy and tends to do everything to make System 1 do most of the work. The cognitive processes
used by System 2 do not go unnoticed. This is what Damasio explained with the Somatic Markers
theory by stating that conscious and unconscious cognitive processes are reflected by somatic (e.g.
physiological) external signs (Damasio, 1996)

Secondly, Chapter 3 offers a non-exhaustive but rich review of the different definitions and mod-
els proposed to study human emotions in recent decades. Several definitions, starting with that of
William James, are given (William and Harter, 1899). We learn that emotions are generated from
complex systems and are not resulted from a single process but rather by complex communica-
tions between several parts of the body and the brain. Several models of emotion representation
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are then presented. The most well-known are those based on the activation of micro muscles,
proposed on the one hand by Ekman: Basic and discrete emotions (Ekman, 1957, 1977); and by
Russell and Mehrabian who present emotions as continuous values representable on a 3D model:
Pleasure-Arousal-Dominance (Russell and Mehrabian, 1977; Russell, 1980). However, these mod-
els are not the only ones considered and are even criticized (Barrett, 2011). It is essential, even
crucial, to consider the context in which the emotions are generated as they can be interpreted
differently (Barrett et al., 2011).

Neurobiological studies have also provided valuable information about emotions and the key
roles of brain organs such as the hypothalamus (Papez, 1937). Emotions can be described as the
result of a chemical reaction of several neurotransmitters: serotonin, dopamine, and nor-adrenaline.
Research also shows that some elements of memory are more prominent than others, depending on
the emotions displayed during an event. This time, amygdala activity may be partly responsible
for improved memory when excited by emotional hormones (McGaugh, 2000). Besides, if an event
is experienced again, the same parts of the brain will be reactivated and would again experience
the same emotional feeling (Buchanan, 2007).

Latter, in Chapter 4, we have seen that significant information can be observed in the players’
eye fixations. Various research studies have shown the role of fixations and scan paths in informa-
tion retrieval and retrieval (Duchowski, 2007; Holmqvist et al., 2011). Besides, studies have shown
that unconscious body behavior reveal information about a mental state overloaded by stress or
by too much expensive cognitive work (Harrigan, 1985; Aigrain et al., 2016b).

By presenting the structure of memory, its role in reasoning, and then looking at the models
of reasoning, emotions, and their somatic signs, we have given many elements to understand the
somatic variations of players during problem-solving.

2. Are they comparable?

Chapter 4 was focused on observable manifestations of human reasoning. We first discussed the role
of the gaze and its functioning with an anatomical description of the eye and then of the human
visual system. Several eye-tracking methods are presented, including one in particular: Video-
Based Combined Pupil and Corneal Reflection that we applied with a Remote Eye-Tracking Bar.
Elements of cognitive processes can be extracted from the gaze: the fixations show the elements
that draw the attention of the subjects during their reasoning, and the scan paths suggest the
sequence of reasoning steps. Numerous studies have focused on the expert information that can
be extracted from the players’ fixations (Reingold et al., 2001; Reingold and Charness, 2005).
Significant differences can be observed in players’ fixations, depending on their level of play. A
player’s expertise also influences his parafoveal vision. Indeed, the useful angle with which a player
can extract information is all the more important as his expertise in the game is essential.

In a second step, we have seen how, from off-the-shelf and cheap cameras, we can identify the
activation of facial micro-expressions based on the taxonomy proposed by Ekman (Ekman, 1977;
Friesen et al., 1983) and using image processing software (Technology, 2015; Baltrusaitis et al.,
2018). This information can then be used to recover the emotional state of the observed subject
by combining the perceived activations of subsets of micro muscles and representing them either
in the model proposed by Ekman (basic emotions) (Ekman, 1957), or in Russell’s PAD model
(valence, arousal, dominance) (Russell and Mehrabian, 1977).

Finally, the last section of the chapter 4 describes some studies made on the interpretation
of body movements. First of all, we describe stress by three different approaches: biological,
phenomenological, and behavioral (Aigrain et al., 2016b). Several observable characteristics of
stress are presented: behavioral and physiological features (e.g. Body features, Posture changes,
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self-touching, etc.). Special attention has been given to self-touching, due to the ease of observing
it for chess players and the emotional and cognitive information it can provide. These body
movements are interpreted as an indicator of the subject’s emotional state (Ekman and Friesen,
1969). Other studies define these movements as unconscious and are used to briefly distract the
brain’s attention to help it discharge the excessive cognitive load caused by a stressful external
stimulus (Troisi, 2002). Finally, we insist on the fact that, despite the significant informative
elements provided by self-touches, these body movements are the result of complex systems and
should not be assigned only to negative emotional states (Harrigan, 1985).

Once these manifestations of human reasoning were identified, we developed a recording in-
strument to observe these physiological and eye-related signs in chess players. The chapter 5 first
describes this instrument, composed of cheap and commercially available sensors: RGB camera,
Touch-Screen, Kinect, Eye-Tracking Remote, USB LED. The software used to record and ana-
lyze the data are also detailed. After validating our experimental protocol, we organized a first
experiment to observe the reasoning manifestations identified in chapter 4 and to study them.
23 subjects participated in this experiment; their emotional reactions, eye trajectories, and body
behaviors were recorded while they were engaged in solving 13 specially designed chess problems
of increasing difficulty. The data collected yielded very intriguing results. Expert and intermediate
players showed significantly different features. We were able, through a simple machine learning
algorithm (SVM), to identify with more than 90% accuracy if the observations came from an expert
or intermediate player. However, the emotional results were surprising. The incessant emotional
variations and observable punctual spikes were not in agreement with our initial experimental
hypotheses. We, therefore, decided to delve into the role of emotions in reasoning.

3. Can we tell, from what we see, their awareness of the situation and comprehend
the threats and opportunities?

Awareness of something is related to a particular state where knowledge and memories of that
thing are directly accessible. The Chapter 6 proposes a framework to model the understanding
and awareness of chess players by the observations described in previous chapters. We proposed
to model cognitive concepts using Minsky’s theory of Frames (Minsky, 1974), which aims to unify
Artificial Intelligence and Psychology concepts to better model human reasoning. Frames are data-
structures used to describe specific entities, relations, or chunks (hierarchy of several sub-frames).
We have seen how to represent simple chess concepts and other more complex ones, like chunks or
complete chess situations.

Frames can be used to model the content and manipulation of concepts in Working Memory. For
this we have proposed a Working Memory model, based on the literature (Hebb, 1961; Atkinson
and Shiffrin, 1968; Miller, 1956; Cowan, 2016). This model represents the limited buffer, its
interactions with the other components of the memory (episodic memory, procedural memory,
concept knowledge) and the interactions with the outside world: sensory (vision, auditory, tactile,
olfactory, gustatory, etc.) and manipulable (speech, manipulation, mobility, emotion display).

The observations described in Chapter 4 and from our first experience (Chapter 5) provide
evidence on the subject’s situational awareness. We proposed probabilistic formulas in Chapter 6
to compute pieces of evidence of awareness from the recorded observations. Using these formulas,
eye-fixation and emotion can be directly interpreted by updating the subject’s working memory
at a given time. The state of his working memory and emotional observations would allow us to
link the role of emotion in reasoning. Our hypothesis is that the subject uses the evoked emotions
to select from the many possible situations for reasoning about moves during orientation and
exploration.
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To validate and deepen our model, a second experiment is described in Chapter 7. In the
perspective to improve the information collected on chess players, we added in our experimental
protocol a phase of self-report to define which chunks were used by the players to make their
choice. We first present a study on the different methods of self-report to select the one that
best fits our experimental environment. We choose a Retrospective Task Explanation (RTE)
method, which consists of asking players to explain, thoroughly and concisely, the chunks and
strategies considered to make their final decision. In order to identify the chunks identified by
the players during their verbal protocol, we first had to list all the chunks characteristic of the
tasks we performed. An ontology of 93 chunks has been set up for chess problems designed for
our experiments. 23 participants took part in this experiment. On 3 players of different levels,
novice, intermediate, and expert, we showed the relevance of the role of emotional variations in
their reasoning. We were able to relate emotional peaks to eye trajectories to emphasize the crucial
moments during which important decisions are made. These first results confirm that correlations
can be made between emotions and choice of strategies. However, it remains difficult to establish
a link between emotions and the other modalities (eye-gaze and body) because the timings are
different, and a chunk can remain in Working Memory for few seconds to several minutes according
to its utility. We remain convinced that we are on the right track and that adjustments can be
made to the experiment to improve our correlations and results.

8.2 Contributions

An instrument to observe human engaged in problem-solving

We have set up a multi-modal instrument that effectively and robustly captures the reasoning
manifestations of chess players. This equipment is based on off-the-shelf equipment. With the
exception of the eye track, the components are relatively inexpensive. The eye-tracking bar cost is
rapidly decreasing as the market for such sensors grows. We have, with the aim of reproducibility,
detailed the open-source software used and the calculations set up for precise results. Moreover,
the recording of all the sensors is synchronized by a software developed by our team, RGBD-Sync,
which is open-source and accessible to all. We hope that these initiatives will encourage our peers
to use the same types of hardware and software so that we can easily compare and reproduce our
future experiments.

Physiological Manifestations of reasoning

Our state of the art study, on the one hand, and the analysis of the features recorded during
our experience, on the other hand, have allowed us to highlight the physiological signs and ocular
features that are significant for the study of reasoning and situational awareness. We have, through
three modalities, identified features that give crucial information on reasoning. The interest in
observing these features is supported by many theories that we have put forward throughout this
manuscript. The use of several modalities brings a double advantage:

1. Enhances robust detection: it is common to see a modality occulted by subject movement
or poor sensor recording conditions;

2. Reasoning manifestations are caused by complex systems and can be interpreted in many
ways. Observing several manifestations, from different modalities, can be correlated to
strengthen the hypothesis put forward about the results.
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A Cognitive Model for Observing Awareness

We believe that Artificial Intelligence and Human-Computer Interaction can benefit from results
of Cognitive Science. We have developed a cognitive model to observe the Situation Awareness
and knowledge of chess players engaged in problem-solving. This model aims at unifying elements
of Artificial Intelligence and Cognitive Science. The different contributions of this model are:

1. Knowledge Representation using Frames: the data structures proposed by the Frames
theory is easily implementable as a computer program. Representations of concepts, rela-
tionships, and a hierarchy of frames are also easily realizable. Program languages based on
production rules can benefit from the simplicity of Frames and their detailed description.

2. Working Memory Model: the human memory used for reasoning is limited in storage
space. It is essential to take this characteristic into account to interpret the reasoning steps
of the subject correctly. Chunking depends on the subject’s expertise and ability to perceive
relevant information to solve a problem. The interactions between memory components,
their different reaction times, and interactions with the external world should be taken into
account in the observation of situational awareness.

3. Evidence for Awareness from fixation: Observations of manifestations of reasoning and
situational awareness must be interpreted with the knowledge that these manifestations are
arising from complex systems. The observation of a fixation on a significant element should
not be interpreted as a complete understanding of that element, but should instead be seen
as evidence of probabilistic consideration. The formulas that we propose make it possible to
take this evidence into account.

8.3 Potential Applications

Collaborative Intelligent Systems

Agents and assistants can benefit from a model of reasoning to interpret human activities. For
example, intelligent assistants mounted in transport systems, such as planes, cars, trucks, or buses,
could effectively analyze the external manifestations of drivers and provide them with appropriate
services. There are already assistants who ensure the safety of drivers based on their eye attention.
Multi-modal agents based on our instrument could benefit from more robust and comprehensive
recordings. Finally, situational awareness models could benefit collaborative robots, for example,
in industry, to provide services and better respond to the needs of workers by observing them more
efficiently.

Training and Education

Education technologies offer a natural application domain for technologies for monitoring attention,
awareness, and comprehension. Developing tools capable of observing a student, identifying his
errors, and directing him towards the right solution is a research topic that can benefit from the
contributions made by this thesis. Indeed, from the data collected during our experiments, it is
possible to conceive an intelligent software that can detect the errors of a chess player and ask him
to apply the patterns learned by observing the experts. To generalize these behaviors to the field
of general education would be great. An example of an intelligent tool incorporating the sensors
we used is shown in Figure 8.1. This simple sketch details an intelligent student pulpit that would
be able to observe and adapt the proposed content based on the user’s reactions.
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Figure 8.1: Student Aware intelligent Training Pulpit. Collaboration between the Pervasive team
(LIG) and Philippe Dessus and colleagues at LaRAC

Also, simulators such as driving or pilot’s simulators can be augmented with the sensors we
offer to observe the physiological manifestations of the student in delicate situations.

Socially Aware Service Robots

These technologies can also be used to enhance interaction for social robotics. Humans commu-
nicate through a variety of non-verbal and paralinguistic channels. In order to achieve efficient
human-centered systems, the model must be able to interpret these non-verbal cues. We have
provided in this thesis many theories and features, covering different modalities, to capture and in-
terpret these external signs. Pet robot or counter robot staff should be able to adapt to observable
physiological reactions of the users to provide relevant services.

Ambient Intelligence

Smart homes are more and more equipped with several cameras that observe human activity to
provide them relevant and appropriate services. A model of possible observable activities are, most
of the time, fixed and rather small to ensure good performances. By combining existing sensors
with the ones with are using in our project could increase the possible observable activities and
improve the robustness of the system. Also, the mental model we proposed can add beneficial
information to Smart Homes system to better understand human activities.
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Appendix A

Retrieve depth from 2D keypoints and
Kinect’s recording

Once a 2D estimation (keypoints) has been extracted from the RGB video, the corresponding

depth information can be retrieved from the 3D stream recorded by the Kinect. First, a linear

transformation R2 → R3 is performed on the RBG point. Let p = [ xy ] the output 2D keypoint

from OpenPose, q = [
dx
dy
dz
] its equivalent in 3D and the 2× 3 matrix M :

M =

(

2.931321973214652 −0.009141788470755974 240.8456158271623
−0.00231576534461303 2.905782928430264 −55.02611560517637

)

Then, the linear transformation M can be applied on p:

pT . M = [x, y] . M = [x′, y′, z′] (A.1)

The corresponding depth can retrieve in the look up table from the Kinect recording.

dz ← depth.get[x′ +Kinect.Width× y′] × f (A.2)

f being a rescaling factor (set to 0.001f for our settings). Once the depth component (dz) has

been retrieved, dx and dy are computed using the original point and constant parameters from

Kinect settings:

dx = (x − ox) × dz × inv fx

dy = −(y − oy) × dz × inv fy

with:

inv fx = 1.f / 364.478f ox = 252.954f

inv fy = 1.f / 364.478f oy = 205.879f
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Appendix B

Relevant Chunks of a Task used in
Experiment 2

(a) Chunk 1: White Pawn E5
Threatens Black Queen F6

Chunk 1: White Pawn E5 Threatens Black Queen F6

(Chunk ChessChunk (C1)
( En t i t i e s (WP5∗ ) , (BQ∗ ) )
(Color (White ) )
(Relation ( Threatens ) )
( Spat ia l−Extent (E5 , F6 ) ) )

Entity WP5 is the chess piece White Pawn E5.
Entity BQ is the chess piece Black Queen.

(b) Chunk 2: White Pawn F3
Threatens Black Knight E4

Chunk 2: White Pawn F3 Threatens Black Knight E4

(Chunk ChessChunk (C2)
( En t i t i e s (WP3∗ ) , (BK1∗ ) )
(Color (White ) )
(Relation ( Threatens ) )
( Spat ia l−Extent (F3 , E4 ) ) )

Entity WP3 is chess piece White Pawn in F3.
Entity BK1 is chess piece Black Knight in E4.
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(a) Chunk 3: White Bishop B2
covers White Pawn E5

Chunk 3: White Bishop B2 covers White Pawn E5

(Chunk ChessChunk (C3)
( En t i t i e s (WB2∗ ) , (WP5∗ ) )
(Color (White ) )
(Relation ( Protec t s ) )
( Spat ia l−Extent (B2 , C3 , D4 , E5 ) ) )

Entity WB2 is chess piece White Bishop in B2.
Entity WP5 is chess piece White Pawn in E5.

(b) Chunk 4: White Queen C2
Threatens Black Knight E4

Chunk 4: White Queen C2 Threatens Black Knight E4

(Chunk ChessChunk (C4)
( En t i t i e s (WQ∗ ) , (BK1∗ ) )
(Color (White ) )
(Relation ( Threatens ) )
( Spat ia l−Extent (C2 , D3 , E4 ) ) )

Entity WQ is chess piece White Queen in C2.
Entity BK1 is chess piece Black Knight in E4.

(c) Chunk 5: White Bishop G2
covers H3

Chunk 5: White Bishop G2 covers H3

(Chunk ChessChunk (C5)
( En t i t i e s (WB1∗ ) , (SH3∗ ) )
(Color ( Black ) )
(Relation ( Contro l s ) )
( Spat ia l−Extent (G2, H3 ) ) )

Entity WB1 is chess piece White Bishop in G2. Entity
SH3 is the empty square H3.
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(d) Chunk 6: Black Bishop C5
controls Diagonal C5-G1

Chunk 6: Black Bishop C5 Controls Diagonal C5-G1

(Chunk ChessChunk (C6)
( En t i t i e s (BB1∗ ) , ( BDiag 1 ∗ ) )
(Color ( Black ) )
(Relation ( Contro l s ) )
( Spat ia l−Extent (C5 , D4 , E3 , F2 , G1) ) )

Entity BB1 is chess piece Black Bishop in C5.
Entity BDiag 1 is the diagonal A7-G1.

(e) Chunk 7: Black Knight E4
threatens White Pawn G3

Chunk 7: Black Knight E4 threatens White Pawn G3

(Chunk ChessChunk (C7)
( En t i t i e s (BK1∗ ) , (WP2∗ ) )
(Color ( Black ) )
(Relation ( Threatens ) )
( Spat ia l−Extent (E4 , F4 , F3 , G3) ) )

Entity BK1 is chess piece Black Knight in E4.
Entity WP2 is chess piece White Pawn in G3.

(f) Chunk 8: Moving Black
Knight E4 to F2: Check Attack,
Sacrifice

Chunk 8: Moving Black Knight E4 to F2: Check Attack,
Sacrifice

(Chunk ChessChunk (C8)
( En t i t i e s (BK1∗ ) , (SF2∗ ) , (WK∗ ) )
(Color ( Black ) )
(Relation ( Threatens ) )
( Spat ia l−Extent (E4 , F2 , H1 ) ) )

Entity BK1 is chess piece Black Knight in G2.
Entity WK is chess piece White King in H1.
Entity SF2 is the empty square F2.
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(g) Chunk 9: White King H1
Trapped

Chunk 9: White King H1 Trapped

(Chunk ChessChunk (C9)
( En t i t i e s (WK∗ ) , ( BDiag 1 ∗ ) , (SH2∗ ) , (SG2∗ ) )
(Color (White ) )
(Relation (Trapped ) )
( Spat ia l−Extent (C5 , D4 , E3 , F2 , G1, G2, H2 , H1 ) ) )

Entity BB1 is chess piece Black Bishop in C5.
Entity SH2 is the square H2.
Entity SG2 is the square G2.
Entity BDiag 1 is the diagonal A7-G1.

(h) Chunk 10: Moving Black
Queen F6 to H6: Check Attack

Chunk 10: Moving Black Queen F6 to H6: Check Attack

(Chunk ChessChunk (C10)
( En t i t i e s (BQ∗ ) , (SH6∗ ) , (WK∗ ) )
(Color ( Black ) )
(Relation ( Threatens ) )
( Spat ia l−Extent (F6 , H6 , H1 ) ) )

Entity BQ is chess piece Black Queen in F6.
Entity SH6 is the empty square H6.
Entity WK is chess piece White King in H1.

(i) Chunk 11: Black Queen H6
moving to H3: Mate Attack

Chunk 11: Black Queen H6 moving to H3: Mate Attack,
Sacrifice

(Chunk ChessChunk (C11)
( En t i t i e s (BQ∗ ) , (SH3∗ ) , (WK∗ ) )
(Color ( Black ) )
(Relation ( Threatens ) )
( Spat ia l−Extent (H6 , H3 , H1 ) ) )

Entity BQ is chess piece Black Queen in F6.
Entity WK is chess piece White King in H1.
Entity SH3 is the empty square H3.

Figure B.3: Relevant chunks of N-Check-Mate (N = 3) Task presented using Frames.
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