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Abstract / Résumé

Abstract
Today, high performance computing platforms (HPC) are experiencing rapid and
significant development, they are bigger, faster, more powerful, but also more com-
plex. These platforms are more and more heterogeneous, dynamic and distributed.
These characteristics create new challenges for the scheduling problem which corre-
sponds to the allocation of tasks to the different and remote processors. The first
challenge is how to effectively manage the heterogeneity of resources which can
appear at the computation level or at the communication level. The second challenge
is the dynamic nature of tasks and data, To face this challenge, the development
must be supported by effective software tools to manage the complexity. In this
dissertation, we are interested in both on-line and off-line scheduling problems
in heterogeneous resources on a dynamic environment. The crucial performance
feature is the communication, which is ignored in most related approaches.

Firstly, we analyze the Work Stealing on-line algorithm on parallel and distributed
platforms with different contexts of heterogeneity. We start with a mathematical
analysis of a new model of Work Stealing algorithm in a distributed memory plat-
form where communications between processors are modeled by a large latency.
Then, we extend the previous problem to two separate clusters, where the com-
munication between two processors inside the same cluster is much less than an
external communication. We study this problem using simulations. Thus, we develop
a lightweight PYTHON simulator, the simulator is used to simulate different Work
Stealing algorithms in different contexts (different topologies, different tasks type
and different configurations).

In a second part of this work, we focus on two offline scheduling problems . Firstly,
we consider the scheduling problem of a set of periodic implicit-deadline and syn-
chronous tasks, on a real-time multiprocessor composed of m identical processors
including communication. We propose a new tasks allocation algorithm that aims to
reduce the number of tasks migrations, and limits migration (of migrant tasks) on
two processors. Secondly, we model a recent scheduling problem, which concerns
the micro-services architectures which aim to divide large applications (Monolithic
applications) into several micro connected applications (micro-services), which
makes the scheduling problem of micro-services special. Our model allows us to ac-
cess several research directions able to identify effective solutions with mathematical
approximations.
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Résumé
Aujourd’hui, le développement des plates-formes de calcul haute performance (HPC)
est considérable, elles sont toujours plus grandes, plus rapides, plus puissantes, mais
aussi plus complexes. Ces plates-formes sont plus en plus hétérogènes, dynamiques,
mais surtout, distribuées. Ces caractéristiques créent de nouveaux défis pour le
problème de ordonnancement qui correspond à l’allocation des tâches aux différentes
machines distantes. Le première défi est de savoir comment gérer efficacement
l’hétérogénéité des ressources qui peut apparaitre au niveau du calcul ou au niveau
des communications. Le deuxième défi est le caractère dynamique des tâches
et des données, Pour relever ces défis, il faut accompagner ce développement
par des outils logiciels efficaces pour gérer la complexité. Dans cette thèse, nous
sommes intéressés aux problèmes d’ordonnancement en ligne et hors-ligne dans
des ressources hétérogènes avec un environnement dynamique. La caractéristique
de performance cruciale est la communication, qui est ignorée dans la plupart des
approches existantes.

Dans une première partie, nous analysons l’algorithme d’ordonnancement du vol du
travail en ligne sur des plateformes parallèles et distribuées sous plusieurs contextes
d’hétérogénéité. Nous commençons par une analyse mathématique d’un nouveau
modèle de l’algorithme vol du travail sur plate-forme à mémoire distribuée où les
communications entre les processeurs sont modélisés par une grande latence. En-
suite, nous étendons le problème précédent à deux clusters où la communication
entre deux processeurs à l’intérieur d’un cluster est beaucoup plus petit qu’une
communication externe. Nous étudions ce problème à l’aide de simulations. Ainsi,
nous développons un propre simulateur, qui sera utilisé pour simuler différents algo-
rithmes de vol de travail dans différents contextes (différentes topologies, différents
types de tâches et différentes configurations).

Dans une deuxième partie, nous nous concentrons sur deux problèmes d’ordonnan-
cement hors ligne. Tout d’abord, l’ordonnancement d’un ensemble de tâches péri-
odiques à échéance implicite et synchrones, sur une plate-forme temps réel composée
de m processeurs identiques où la communication entre eux est importante. Pour ce
problème, nous proposons un nouvel algorithme d’allocation de tâches qui vise à ré-
duire le nombre de migrations de tâches, et limiter la migration (des tâche migrante)
à deux processeurs. Ensuite, nous modélisons un problème d’ordonnancement ré-
cent, qui concerne les architectures micro-services qui visent à diviser les grandes
applications (Applications monolithiques) en plusieurs petites applications (micro-
services) connectées. Les micro-services ont des caractéristiques très spécifiques, ce
qui rend spécial le problème d’ordonnancement (des micro-services). Sans apporter
de solution complète, cette modélisation nous permet d’accéder à plusieurs directions
de recherche capables de déterminer des solutions efficaces avec des approximations
mathématiques.
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1Introduction

1.1 Context

The computer has made human life easier, by performing complex jobs in a short time,
storing and managing multiple information (data) easily. The use of a typical desktop
computer has become necessary in several fields, to perform basic computation and
data management, even if they are far from computer science. For instance, the
use of a simple computer in a pharmacy facilitates the drug store and prescription
management.

Afterward, the use of computer science has expanded and the use of simple com-
puters becomes insufficient. The scientific and business fields have started to use
intensively computing resources to deal with a complex problem that needs mas-
sive computational resources. For instance, climate modeling, finding increasingly
bigger prime numbers, analyzing data from genetic information contained in DNA se-
quences, buying Pattern Analysis and so on. Such fields need sophisticated machines
that can work with very high efficiency.

For this purpose, High-performance computing (HPC) community brings an effective
solution by combining the computing power of several machines in a way that offers
higher performance than one could get out of a typical desktop computer. A first
example are supercomputers which are composed of many nodes or CPUs (Central
Processing Units) and GPUs (Graphics Processing Units). Another example are large
parallel systems with multiple parallel machines connected by high-performance
networks. Sometimes such machines are located in different locations (different
countries and continents). In the last ranking of TOP5001 in November 2019, the
most powerful supercomputer reached the speed of 1.65 exaflops2 with more than
2, 000, 000 nodes. This means that it can perform more than one billion of billion
operations per second. Such platforms require specific skills to install and use them
and are way too expensive, they also consume a lot of energy.

With the rise of the internet, the need for computing power and data storage capacity
grows more and more, and it is no longer confined in solving complex problems,

1www.top500.org
2One exaflops corresponds to 1018 floating operations per second
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but it becomes essential to run millions of web applications used by companies for
their employees and customers, and the millions of smartphone applications used
everywhere in the world. These applications provoke an explosion of data produced
that need massive computational resources to store and manage them. Some of these
applications are critical and require a real-time processing, they must be processed
in the time and not exceeding the deadline. The main challenge of these applications
is processing speed and execution [80].

Cloud computing and data centers are an effective solution for these applications to
benefit from High Performance Computing and storage. Cloud computing consists
of using remote computer servers via the internet, to run applications, store and
manage data. The data centers are buildings used to house many computer and
data storage systems in good conditions like security, air conditioner, etc. These
systems are used by cloud computing users on-demand, cloud computing users can
rent and manage servers by them-self or use just the remote applications hosted in
the cloud.

Today, the High Performance Computing community provides many supercomputers
for scientific and business fields to perform complex operations and analyze massive
data, and offer the cloud computing which facilities for millions of companies and
smartphone applications to cover the huge demand for power computing and data
storage.

The mechanism for managing these systems is transparent for the users and it does
not require specific skills except the few command lines to perform the reservation
and launch the execution. But, in the background, these systems are composed
of multiple parallel and heterogeneous system interconnect in a very complicated
network. The complexity of these systems requires a pearl of wisdom, rational
thought, and knowledge to manage different this huge amount of resources, and
take advantage of its power in an efficient way.

The biggest challenge of the computational systems is the scheduling tasks problem
which represents the heart of effective resource management. Scheduling consists
of determining where and when to perform each task in the system, in order to
optimize one or more objectives with various constraints [80, 27]. For example,
the most common objectives are the Makespan (the total execution time) [19, 80]
and the energy consumed during the execution[4]. The scheduling can be off-line
(static) if we know in advance information about different tasks (like the arrival
time, their execution times on each processor, number and type of resources etc.),
in this case, the scheduling is determined before execution. The scheduling can
also be on-line (dynamic) if the characteristics of a task are known only when it
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arrives in the system. In the on-line method, the scheduling is determined during
the execution.

As we mentioned before, the evolution of the digital world opens a huge potential of
using highly dynamic and versatile parallel and distributed systems. A direct conse-
quence of such an increasing complexity creates new challenges for the scheduling
problem that can not be addressed by classical methods.

1.2 Challenges

A first difficulty is how to effectively manage the heterogeneity of resources. The
heterogeneity of such a system can appear either at the level of computation when
the different processors of the platform do not have the same computation speed
or at the level of communication when the communication between two processors
depends on their location or both. In the literature, there are several algorithms that
deal with this problem (heterogeneity), but all the efficient algorithms are off-line
and task information is considered known before execution[77].

A second difficulty is the dynamic character of the tasks and data. Indeed, new tasks
are created during the execution, some stopped unexpectedly, etc. This dynamicity
makes the scheduling problem more complex which increased challenges. Again,
there exist several solutions to deal with, and the field of scheduling is very active.
However, this constraint added to the previous one (dealing with heterogeneity) is
highly competitive since both are somehow contradictory[16, 25]. Heterogeneity
is well treated with off-line algorithms, but the tasks dynamicity deprives and does
not provide any information about tasks before starting execution, which makes the
problem even more complicated.

Determining an effective solution for such problems is not straightforward, and the
classical methods do not work well since the problem is totally dynamic. Mathemati-
cal modeling of the problem is a good way to understand the problem in detail and
provides the opportunity to do some mathematical analysis to assess the different
solutions. The mathematics analysis help to get an idea of the effectiveness of
solutions, for example, bounds (upper or lower) on the Makespan, on the number of
used processors, etc.

Usually, theoretical results assume some constraints that lead to idealized models,
for instance, where communications are neglected, or in the best case, they are
taken into account only partially. This fact creates a distance between theoretical
models and practical tools. This distance is affected by three aspects: the level of
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heterogeneity of resources, the dynamic character of the tasks and the multiple scale
of platforms. This distance could be a barrier between theoretical analysis (giving
worst-case or average-case bounds) and the development of practical tools that can
be used for solving actual problems.

Simulations are another way to analyze such problems, it helps to get an idea about
the distance between theoretical and practical sides. Simulation results can help to
get an idea about the efficiency of theoretical bounds. We can also do parametric
tests to assess the impact of different parameters. The simulation is also helpful
to test different solutions to get an intuition about the behavior of the execution,
specially when the theoretical results can not provide an effective evaluation of the
solution.

We are interested in this thesis in both on-line and off-line scheduling problems in
heterogeneous resources with a dynamic environment. The crucial performance
feature is the communication, which is ignored in most related approaches.

We proposed to focus on work stealing models since it combines naturally on-line
facilities and it allows implicitly to deal with heterogeneity (this means that this
mechanism is transparent for the users). We performed a new mathematical analysis
while taking into account communications between processors and we developed
an extensive experimental campaign (based on simulations) of the variants of the
models.

We studied also several scheduling problems within the off-line context. More pre-
cisely, we proposed an algorithm for real-time scheduling that avoids tasks migration.
Then, we presented a model for a recent problem of container scheduling posed by
micro-services architecture and containers. Through this model, we opened several
research directions that are able to determine efficient solutions with mathematics
approximations.

1.3 Contributions

The nature of the work conducted in this thesis concerns both theoretical and
simulation results. Thus, the contributions are divided into the two following
parts:

Contributions of Part 1 : we analyze the Work Stealing on-line algorithm on
parallel and distributed platforms with different contexts of heterogeneity. The
classical distributed-memory model with only one level of memory hierarchy where
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the communications are modeled by a large latency, and an extension of this model
to heterogeneous architecture composed of two separate computing clusters. Here,
the communications are heterogeneous (communication between two processors
inside a cluster is much less than an external communication). In both cases, the
target objective is the expected makespan.

Our main result is to be able to prove the following bounds :

1. bound on the expected makespan (denoted by Cmax) of W unit independent
tasks scheduled by Work Stealing on p processors including latency λ.

E [Cmax] ≤ W
p

+ 4λγ log2
W
λ

2. bound on the expected makespan of W unit tasks with a DAG of precedence
that has a critical path of D scheduled by Work Stealing on p processors
including latency λ.

E [Cmax] ≤ W
p

+ 6λγD

Where γ is a positive constant < 4.03.

The analysis was done using adequate potential functions.

For the two-clusters case, the worst case analysis was too hard, and we believe that
even if we do an analysis as in the first problem (one cluster), the bounds will be very
far from reality. The worst-case analysis aims to suppose the worst case during all
the execution time, which is strange if we consider that communications are outside
clusters (we pay the worst) all time. For this reason, we analyzed this problem using
simulations. Thus, we developed a lightweight PYTHON simulator, the simulator is
used to simulate different Work Stealing algorithms in different context (different
topologies, different tasks type and different configurations), the simulator is simple
to use and does not need big configuration. In this thesis, the simulator is used
for two main reasons: - to evaluate and discuss the quality of the first theoretical
analysis, - to perform an experimental study for Work stealing on two-clusters. The
simulator is open source and the code is available on github3.

Contributions of Part 2 : The second series of contributions concern off-line schedul-
ing policies on several heterogeneous contexts.

3https://github.com/mkhatiri/ws-simulator
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First, we studied the real-time scheduling in a platform where communications
matter, More precisely, we consider the scheduling problem of a set of periodic
implicit-deadline and synchronous tasks, on a real-time multiprocessor composed of
m identical processors including communication, we propose a new tasks allocation
algorithm that aims to reduce the number of tasks migrations, and each migrant
task migrates between two processors only.

Second, we investigated a recent scheduling model for micro-services architectures.
The micro-services architectures aims to divide large applications (Monolithic ap-
plication) into several connected mini-applications (which is called micro-services).
These micro-services work together independently to form the whole application.
Micro-services can also be executed on different machines. In case of overload, a
micro-service can be duplicated and the load is distributed between the duplicated
instances, these instances can be executed on different machines. Micro-services can
shared the same machine, but each micro-service requires a percentage of CPU and
memory. The sum of CPU required for micro-services in the same machine must be
less than 1, the same for the Memory requirements. The CPU and Memory requested
ratio depends on the micro-services, some micro-services require more CPU than
memory, some others require more memory than CPU. Most of these applications
are build on cloud computing systems.

The allocation of the different micro-services and their duplicated instances on
cloud machines form a new scheduling problem. Due to the cost of a cloud, the
target objective is the number of machines used to build the application (set of
microservices). Our contribution here is to propose a model for microservices
applications, that is used to perform some theoretical analyses in order to give
directions to find approximations solutions.
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1.4 Content

The chapters of this manuscript are organized as follows, Chapters 2 presents a
general related work that summarizes the most relevant references that are linked
with our work. Chapters 3 presents the first model of Work Stealing on distributed
platform including communication delay, presents the two models of tasks used,
and describes in detail the analyze using potential functions to bound the total
completion time. Chapters 4 presents the different variants of Work Stealing algo-
rithm, and presents the architecture of our simulator, and exhibits a first use of the
simulator to study experimentally the first model in order to discuss and assess the
theoretical bound. Chapters 5 presents the second model of Work Stealing on the
hierarchical platform of two-clusters, and present different strategies and variants
to minimize the overhead, the chapter shows many simulations to compare and
discuss these strategies. Chapters 6 focus on a problem of scheduling on real-time
systems, and describes the different steps of a new semi partitioned algorithm that
reduces the number of migrations. Chapters 7 describes the new architecture of
microservice-based applications and proposes two models of the scheduling problem
of microservices on clouds. Finally, Chapters 8 presents a general conclusion of this
thesis.
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2Related work

2.1 General resource management problem

Scheduling is one of the most important problem while managing distributed re-
sources (allocating a set of jobs/tasks to available resources). This problem consists
in determining where to put the tasks and when to start them. There is a huge
literature on this problem with thousands papers published each year. This is an old
problem and the foundations of the field is on the late sixties [42, 43]

The static version of this problem (off-line) is known to be difficult (the basic
version of scheduling a set of independent tasks on two identical machines targeting
the minimization of the maximum completion time (makespan denoted Cmax) is
NP-complete, and strongly NP-hard for an arbitrary number of processors [39].

Today, the evolution of parallel and distributed platforms leads to a large number
of variants of this problem including various objectives, various types of hardware
components, memory constraints, various types of resources, on-line versions, decen-
tralized decision making, etc. Of course, most of these variants are still NP-hard.

There exist several efficient mechanisms for implementing scheduling policies, in-
cluding the classical list scheduling of Graham, priority queues, packing algorithms,
etc. Work stealing is one of these mechanisms, efficient in distributed frameworks.

2.2 Work Stealing algorithms

Work Stealing is a decentralized list scheduling algorithm where each processor
maintains its own local queue of tasks to execute. When a processor has nothing to
execute, it selects another processor uniformly at random to steal one or more tasks
if possible. Several works are available on this algorithm,
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2.2.1 Theoretically-oriented works

WS has been studied originally by Blumofe and Leiserson in [20]. They showed
that the expected Makespan of a series-parallel precedence graph withW unit tasks
on p processors is bounded by E(Cmax) ≤ Wp +O(D) where D is the length of the
critical path of the graph (its depth). This analysis has been improved in Arora et
al. [11] using potential functions. The case of varying processor speeds has been
studied by Bender and Rabin in [16] where the authors introduced a new policy
called high utilization scheduler that extends the homogeneous case. The specific
case of tree-shaped computations with a more accurate model has been studied
in [76]. However, in all these previous analyses, the precedence graph is constrained
to have only one source and an out-degree of at most 2 which does not easily model
the basic case of independent tasks.

Simulating independent tasks with a binary precedences tree gives a bound of
W
p + O(log2(W)) since a complete binary tree of W vertices has a depth D ≤

log2(W). However, with this approach, the structure of the binary tree dictates
which tasks are stolen. In complement, [40] provided a theoretical analysis based
on a Markovian model using mean field theory. They targeted the expectation of
the average response time and showed that the system converges to a deterministic
Ordinary Differential Equation. Note that there exist other results that study the
steady state performance of WS when the work generation is random including
Berenbrink et al. [17], Mitzenmacher [65], Lueling and Monien [60] and Rudolph et
al. [74]. More recently, in [79], Tchiboukjian et al. provided the best bound known
at this time: Wp + c.(log2W) + Θ(1) where c ≈ 3.24.

Acar et al. [1, 2] studied data locality of WS on shared-memory and focus on cache
misses. The underlying model assumes that the execution time takes m time units
if the instruction incurs a cache miss and 1 unit otherwise. A steal attempt takes
at least s and at most ks steps to complete (k ≥ 1 multiple steal attempts before
succeeding). When a steal succeeds, the thief starts working on the stolen task at the
next step. This model is similar to the classical WS model without communication
since the thief does not wait several time steps to receive the stolen task.

2.2.2 Work Stealing and communication issues

In all these previous theoretical results, communications are not directly addressed
(or at least they are taken implicitly into account by the underlying model). WS
largely focused on shared memory systems and its performance on modern platforms
(distributed-memory systems, hierarchical plateform, clusters with explicit commu-
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nication cost) is not really well understood. The difficulty lies in the problems of
communication which become more crucial in modern platforms [10].

Dinan et al. [31] implemented WS on large-scale clusters, and proposed to split each
tasks queues into a part accessed asynchronously by local processes and a shared
portion synchronized by a lock which can be access by any remote processes in
order to reduce contention. Multi-core processor based on NUMA (non-uniform
memory access) architecture is the mainstream today and such new platforms include
accelerators as GPGPU [81]. The authors propose an efficient task management
mechanism which is to divide the application into a large number of fine grained
tasks which generate large amount of small communications between the CPU and
the GPGPUs. However, these data transmissions are very slow. They consider that
the transmission time of small data and big data is the same.

Besides the large literature on theoretical works, there exist more practical studies
implementing WS libraries where some attempts were provided for taking into
account communications.

2.2.3 Work Stealing Applications

SLAW is a task-based library introduced in [44], combining work-first and help-
first scheduling policies focused on locality awareness in PGAS (Partitioned Global
Address Space) languages like UPC (Unified Parallel C). It has been extended in
HotSLAW, which provides a high level API that abstracts concurrent task manage-
ment [64]. [57] proposes an asynchronous WS (AsynchWS) strategy which exploits
opportunities to overlap communication with local tasks allowing to hide high com-
munication overheads in distributed memory systems. The principle is based on
a hierarchical victim selection, also based on PGAS. Perarnau and Sato presented
in [70] an experimental evaluation of WS on the scale of ten thousands compute
nodes where the communication depends on the distance between the nodes. They
investigated in detail the impact of the communication on the performance. In
particular, the physical distance between remote nodes is taken into account. Mullet
et al. studied in [67] Latency-Hiding, a new WS algorithm that hides the overhead
caused by some operations, such as waiting for a request from a client or waiting for
a response from a remote machine. The authors refer to this delay as latency which
is slightly different that the more general concept we consider in our paper. Agrawal
et al. proposed an analysis [3] showing the optimality for task graphs with bounded
degrees and developed a library in Cilk++ called Nabbit for executing tasks with
arbitrary dependencies, with reasonable block sizes.

2.2 Work Stealing algorithms 11



2.3 Real Time Scheduling

The problem treated in this thesis (Chapter 6) consist of real-time scheduling, which
is a particular type of scheduling dealing with tasks with a deadline. Real-time
scheduling has to guarantee that all tasks are executed before their deadlines The
literature on real time scheduling is very wide, we just specify the ref which have a
direct link with our work.

To overcome the problem of the partitioned approach and increase the utilization
rate of the system, recent works [7, 50, 61, 62, 23] have introduced the semi-
partitioning scheduling in which most of tasks are assigned to particular processors
as the partitioned scheduling, but the remaining tasks (unasigned tasks) are allowed
to migrate between processors. In other words, each remaining task is splitted into a
set of sub-tasks and each one of them is affected to a processor. This approach allows
migration but reduces the number of migrant tasks compared to the global approach.

The Semi-partitioning algorithm EKG [8] cuts the set of processors into groups each
one is composed of k processors and limits migration within the same group. In
addition, a task can migrate between two processors only. Note that EKG allows to
schedule optimally a set of periodic implicit tasks on m processors when k=m (EKG
with one group). Since EKG allocates migrant and non-migrant tasks simultaneously,
this can generate a great number of migrant tasks.

Kato et al. [51] have proposed the EDHS algorithm which improves the EKG al-
gorithm. It proceeds into two separate steps to allocate the tasks: during the first
one, the tasks are assigned according to a given partitioning algorithm in order to
minimize the number of migrant tasks generated by the EKG algorithm. The second
one consists in allocating migrant tasks on multiple processors according to a second
algorithm.

2.4 Containers scheduling

The problem treated in this thesis (Chapter 7) consist of containers scheduling on
cloud infrastructures in microservice-based application context [35]. Many studies
investigated the placement of containers on machine for specific applications in order
to meet different objectives. The authors in [71] propose a new decision making
method for database container placement, they use Markov Decision Processes to

12 Chapter 2 Related work



provide probability assurances for high QoS. The authors in [75] propose a dynamic
container resource allocation mechanism (CRAM) which find the optimal allocation
that meets varying QoS demands on heterogeneous cluster based on game theory.

More than that, there are several recent approaches that use different techniques
for multi-objective optimization. As in [12] where they propose a cloud-based
Container Management Service (CMS) which uses the constraint programming to
schedule containers on the cloud. The CMS captures the heterogeneous requirements
resource of containerised applications and examines the cluster state, then it uses
the constraint programming to deploy these containerised applications. The work
aim to increase the deployment density, the scalability, and resource efficiency.
The work in [48] propose ECSched, an efficient container graph-based scheduler.
ECSched schedule container on heterogeneous clusters and make high-quality and
fast placement decisions, the authors map the problem to a graphic data structure and
model it as minimum cost flow problem. The authors in [47] address the container
deployment algorithm to satisfy multiple objectives on heterogeneous clusters. They
formulate the problem as a vector bin backing problem with heterogeneous bins, and
they propose a new container deployment algorithm to improve the tradeoff between
load balancing and dependency awareness with multi-resource guarantees.
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We study in this chapter the impact of communication latency on the classical
Work Stealing load balancing algorithm. Our work extends the reference model
in which we introduce a latency parameter. By using a theoretical analysis and
simulation, we study the overall impact of this latency on the Makespan (maximum
completion time). We derive a new expression of the expected running time of a
bag of independent tasks and task graph with precedences scheduled by Work Stealing.
This expression enables us to predict under which conditions a given run will yield
acceptable performance. For instance, we can easily calibrate the maximal number
of processors to use for a given work/platform combination. All our results are
validated through simulation on a wide range of parameters.

3.1 Introduction

The motivation of this work is to study how to extend the analysis of the Work
Stealing (WS) algorithm in a distributed-memory context, where communications
matter. WS is a classical on-line scheduling algorithm proposed for shared-memory
multi-cores [11] whose principle is recalled in the next section. As it is common, we
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target the minimization of the Makespan, defined as the maximum completion time
of the parallel application. We present a theoretical analysis for an upper bound of
the expected makespan and we run a complementary series of simulations in order
to assess how this new bound behaves in practice depending on the value of the
latency.

3.1.1 Motivation for studying WS with latency

Distributed-memory clusters consist in independent processing elements with pri-
vate local memories linked by an interconnection network. In such architectures,
communication issues are crucial, they highly influence the performances of the
applications [46]. However, there are only few works dealing with optimized allo-
cation strategies and the relationships with the allocation and scheduling process
is most often ignored. In practice, the impact of scheduling may be huge since
the whole execution can be highly affected by a large communication latency of
interconnection networks [45]. Scheduling is the process which aims at determining
where and when to execute the tasks of a target parallel application. The appli-
cations are represented as directed acyclic graphs where the vertices are the basic
operations and the arcs are the dependencies between the tasks [27]. Scheduling
is a crucial problem which has been extensively studied under many variants for
the successive generations of parallel and distributed systems. The most commonly
studied objective is to minimize the makespan (denoted by Cmax) and the underlying
context is usually to consider centralized algorithms. This assumption is not always
realistic, especially if we consider distributed memory allocations and an on-line
setting.

WS is an efficient scheduling mechanism targeting medium range parallelism of
multi-cores for fine-grain tasks. Its principle is briefly recalled as follows: each
processor manages its own (local) list of tasks. When a processor becomes idle it
randomly chooses another processor and steals some work (if possible). Its analysis
is probabilistic since the algorithm itself is randomized. Today, the research on WS
is driven by the question on how to extend the analysis for the characteristics of
new computing platforms (distributed memory, large scale, heterogeneity). Notice
that beside its theoretical interest, WS has been implemented successfully in several
languages and parallel libraries including Cilk [37, 55], TBB (Threading Building
Blocks) [72], the PGAS language [31, 64] and the KAAPI run-time system [41].
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3.1.2 contributions

In the first work, we study how communication latency impacts work stealing. This
chapter has three main contributions. First, we create a new realistic scheduling
model for distributed-memory clusters of p identical processors including latency
denoted by λ. Second, we provide an upper bound of the expected makespan. We
consider the case of a bag of independent tasks and the case of a bag of tasks with
precedence constraints. Our bounds are the sum of two terms. The first is the usual
lower bound on the best possible load-balancing Wp , whereW and p are the total
amount of work and the total number of processors respectively. The additional term
depends on the dependence model. In the case of independent tasks, this additional
term is 16λ log2(Wλ ). In the case of DAG, this term is proportional to the critical path.
The analyses are based on adequate potential functions. There are two reasons that
distinguish this analysis in regard to the existing ones: finding the right function (the
natural extension does not work since we now need to consider in transit work). Its
property is that it should diminish after any steal related operation. We also consider
large timesteps of duration equal to the communication latency.

3.2 Task Models and Work-Stealing Algorithm

We consider a discrete time model of a parallel platform with p identical processors.
In this section, we introduce the two models of task dependence that we will study
and how they affect the work stealing algorithm.

3.2.1 Dependence between tasks

The tasks can be independent or constrained by a directed acyclic graph (DAG) of
precedence. The total amount of processing work to complete all tasks is denoted by
W . When the tasks have some dependencies, we denote by D the critical path of the
DAG (that corresponds to its depth).

3.2.1.1 Independent Tasks

Our first case of interest is to consider unitary independent tasks. For this case, we
denote by wi(t) ∈ N the number of unit of work that processor i has at time t (for
i ∈ {1 . . . p}). At unit of work corresponds to one unit of execution time. The total
amount of work on all processors byW(t) =

∑p
i=1wi(t). At t = 0 all work is on one

processor. The total amount of work at time 0 isW = w1(0). In this model, all tasks
are independent which means that when a processor steals from another processor,
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it could steal as many tasks as there are available. We will assume for this model
that that each successful steal divides the work in two equal parts.

3.2.1.2 DAG of precedence

We consider a model similar to [11, 79] where the workload is composed of W
unitary tasks that have precedence constraints represented by a DAG. This DAG
has a single source that represents the first task and that is originally located on a
given processor. We consider that the scheduling is done as in [11]: each processor
maintains a double-ended queue (called deque) of activated tasks. If a processor has
one or more task in its deque, it executes the tasks at the head of its deque. This
takes one unit of time. After completion, a task might activates 0, 1 or 2 tasks that
are pushed at the end of the deque. The activation tree is a binary tree whose shape
depends on the execution of the algorithm. It is a subset of the original DAG and
has the same critical path. We define the height of node of this tree as follows. The
height of the source as D (i.e., the length of the critical path). The height of another
task is equal to the length of its father minus one. We assume when a processor
steals work from another processor, it steals the activated tasks with the largest
height.

3.2.2 Work Stealing Algorithm

Work Stealing is a decentralized list scheduling algorithm where each processor
maintains its own local queue or deque of tasks to execute. When a processor i has
nothing to execute, it selects another processor j uniformly at random and sends
a work request to it. When processor j receives this request, it answers by either
sending some of its work or by a fail response.

We analyze one of the variants of the WS algorithm that has the following features:

• Latency: All communication takes a time λ ∈ N+ that we call the latency.
Figure 3.1 presents an example of Work Stealing execution with latency λ,
a work request that is sent at time t − λ by a thief will be received at time
t by the victim. The thief will then receive an answer at time t + λ. As we
consider a discrete-time model, we say that a work request arrives at time t if it
arrives between t−1 (not-included) and t. This means that at time t, this work
request is treated. The number of incoming work requests at time t is denoted
by R(t) ∈ {0, 1, . . . , p− 1}. It is equal to the number of processors sending a
work request at time t− λ. When a processor i receives a work request from a
thief j, it sends a part of its work to j. This communication takes again λ units

18 Chapter 3 Analysis of work stealing with latency



Steal answerActive Idle Answer steal Steal Request

Fig. 3.1: Example of a work stealing execution

of time. The processor j receives the work at time t + λ. We denote by si(t)
the amount of work in transit from Pi at time t. At end of the communication
si becomes 0 until a new work request arrives.

• Single work transfer: We assume that a processor can send some work to
at most one processor at a time. While the processor sends work to a thief,
it replies by a fail response to any other work request. Using this variant,
the work request may fail in the following cases: when the victim does not
have enough work or when it is already sending some work to another thief.
Another case might happen when the victim receives more than one work
request at the same time. It deals a random thief and send a negative response
to the remaining thieves.

• Steal Threshold: The main goal of WS is to share work between processors in
order to balance the load and the speed-up execution. In some cases however
it might be beneficial to keep work local and answer negatively to some work
requests. We assume that, in the case of independent asks, if the victim has
less than λ units of work to execute, the work request fails (answering such
a work request could increase the makespan as the time to answer a request
is λ units of time). We do not make such an assumption for the case of DAG
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because we assume that a processor does not know if the computation time of
all the tasks that will be activated by its local tasks will be less than λ.

• Work division: This division of work depends on the model of dependence:

– If all tasks are independent, we suppose that the victim sends to the thief
half of its work:

wi(t) = wi(t− 1)/2

and
si(t) = wi(t− 1)/2

– In the case of the DAG of precedence, a processor can only answer
positively if it has two or more activated tasks in its deque. In this case, it
sends its task that has the largest height.

3.3 Analysis of the Completion Time

This section contains the main result of the work which is a bound on the expected
makespan. Before presenting the detailed analysis, we first describe its main steps
before jumping into the technical analysis of the two models (independent tasks and
DAG of precedence).

3.3.1 General Principle

We denote by Cmax the makespan (i.e., total execution time). In a WS algorithm,
each processor either executes work or tries to steal work. As the round-trip-time of
a communication is 2λ and the total amount of work is equal toW and the number
of processors is p, we have:

pCmax ≤ W + 2λ#Work Requests

where p is the number of processors. This leads to a straightforward bound of the
Makespan:

Cmax ≤
W
p

+ 2λ#WorkRequests

p
(3.1)

Note that the above inequality is not an equality because the execution might end
while some processors are still waiting for work.
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The key element of our analysis is to obtain a bound on the number of work requests.
For that, we use what we call a potential function that represents how the tasks are
(un)balanced. We bound the number of work requests by showing that each event
involving a steal operation contributes to the decrease of the potential. Our approach
is similar to the one of [79] but with one additional key difficulty: communications
take λ time units. At first, it seems that longer communications should translate
linearly into the time taken by work requests but this would neglect the fact that
longer communication also reduce the number of work requests.

In order to analyze the impact of λ, we reconsider the time division as periods of
duration λ. We analyze the system at each time step kλ for k ∈ N. By abuse of
notation, we denote by wi(k) and si(k) the quantities wi(kλ) and si(kλ). We also
define the total number of incoming work requests in the interval (λ(k − 1), λk]
by r(k) =

∑λ
j=1R((k − 1)λ + j) and we denote by q(r(k)) the probability that a

processor receives one or more requests in the interval (λ(k − 1), λk] (this function
will be computed in the next section). Note that since a steal requests takes at least
λ units of time to be answered, we have 0 ≤ r(k) ≤ p.

For both our models, the key steps of the analysis are as follows:

1. First, we will define a potential function φ(k) that is such that we can bound
the expected decrease of the potential as a function of r(k), the number of
work requests in the time interval (λ(k − 1), λk]:

E [φ(k + 1) | r(k)] ≤ h(rk)φ(k)

This is done in Lemma 3.3.1 for the case of independent tasks and 3.3.2 for
the case of DAGs.

2. Second, we will show that this bound implies that the number of work requests
is upper bounded by :

E [R] ≤ pγ log2 φ(0)

where γ = max r/(−p log2 h(r)).
This will be done in Lemma 3.3.3.

3. We will then obtain a bound on the Makespan by using Equation (3.1).
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3.3.2 Expected Decrease of the Potential

Our results are based on the analysis of the decrease of the potential. The potential
at time-step kλ is denoted by φ(k). Its definition depends on the task dependence
model. In the following, we analyze its decrease in two separate cases.

3.3.2.1 Independent Tasks

In the case of independent tasks, we define the potential as

φ(k) = 1 + 1
λ2

p∑
i=1

φi(k), (3.2)

where
φi(k) = wi(k)2 + 2si(k)2 for i ∈ {1 . . . , p}

This potential function always decreases. It is maximal when all the work is contained
in one processor which is the potential function at time 0 and is equal to φ(0) =W2.
The schedule completes when the potential becomes 0.

The rational behind the definition of the potential function is as follows. First,
the term 1 is only here to ensure that the potential is never smaller than one
(which ensures that log φ(k) ≥ 0). Up to the multiplicative factor 1/λ, the rest of
Equation (3.2) is composed in two terms:

∑p
i=1wi(k)2 and 2

∑p
i=1 si(k)2. These

terms serve to measure how unbalanced is the work: it is maximal when all jobs
is located on a processor. As stated in Lemma 3.3.1, each event related to a steal
request decrease the potential:

• When a steal arrives at a processor with wi jobs, approximately wi/2 jobs
remain on this processor while wi/2 jobs go into a term si. In the potential,
this transforms w2

i into (wi/2)2 + 2(wi/2)2 = 3w2
i /4;

• When some work arrive at a processor, a term si is transformed into a term wj .
Because of the factor 2, in the potential, this transforms 2s2

i into s2
i .

We denote by Fk all events up to the interval ((k − 1)λ, kλ].

Lemma 3.3.1. For the case of independent tasks, the expected ratio between φ(k + 1)
and φ(k) knowing Fk is bounded by:

E[φ(k + 1) | Fk] ≤ h(r(k))φ(k),
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where the potential is defined as in Equation (3.2) and

h(r) = 3
4 + 1

4

(
p− 2
p− 1

)r
(3.3)

Proof. To analyze the decrease of the potential function, we distinguish different
cases that corresponds to processors that are executing work, sending or answering
work requests. We show that each case contributes to a diminution of the potential.

Between time kλ and (k + 1)λ, a processor does (at least) one the following four
things. Note that these cases covers all possible behaviors of the processor.

Case 1 (si > 0) The processor started to send work to another (idle) processor
j before time kλ. This means that processor j will receive si(k) tasks at a time
t < (k + 1)λ. Note that by assumption, si(k) ≥ wi(k) because processor i has
executed some if its own work since it decided to send half of its work to j. There
are now two cases:

• Case 1a. If no additional work requests has been received between t and
(k + 1)λ, it holds that

wi(k + 1) ≤ wi(k)

wj(k + 1) ≤ si(k)

si(k + 1) = sj(k + 1) = 0.

This implies that the potential of i and j at time step k + 1 satisfies:

φi(k + 1) + φj(k + 1) = wi(k + 1)2 + wj(k + 1)2

+ 2(si(k + 1)2 + sj(k + 1)2)

≤ wi(k)2 + si(k)2

= wi(k)2 + 2si(k)2 − si(k)2

≤ 2
3φi(k)

= 2
3(φi(k) + φj(k)).

The last inequality holds because wi(k)2 + 2s2
i (k) = φi(k) and s2

i (k) = (s2
i (k) +

2s2
i (k))/3 ≥ (w2

i (k) + 2s2
i (k))/3 = φi(t + 1)/3, and the last equality holds

because φj(k) = 0.

• Case 1b. If one or more work request has been received between t and
(k + 1)λ (by either processor i or j), then this processor will send some of its
work of this processor. It should be clear that this will further decrease the

3.3 Analysis of the Completion Time 23



potential (see Case 2b below). This shows the inequality φi(k+1)+φj(k+1) ≤
2
3(φi(k) + φj(k)) also holds in this case.

Note that if wi < λ, processor i might become idle before (k + 1)λ. In this case, it
will send a work request. This will not modify the potential as the work request will
be received after time (k + 1)λ.

Case 2 (si = 0 and wi ≥ 2λ) The processor has work and it is available to respond
to work requests. We distinguish two cases: (case 2a) if this processor receives one
or more requests or (case 2b) if it does not receive any request.

• Case 2a – If processor i receives one or more work requests between kλ

and (k + 1)λ, it will respond positively to one processor (say processor j) by
sending it half of its work. All other work requests will fail. This implies that
wi(k + 1) ≤ wi(k)/2 and si(k + 1) ≤ wi(k)/2 and wj(k + 1) = sj(k + 1) = 0,
which implies that

E [φi(k + 1)] = w2
i (k + 1) + 2s2

i (k + 1) ≤ 3
4w

2
i (k) = 3

4φi(k) (3.4)

• Case 2b – If processor i does not receive any work requests, it will only execute
work, in which case φi(k + 1) ≤ φi(k)

Finally, the probability that processor i receives no work request between kλ and
(k + 1)λ given that r processors sent a work request is equal to ((p − 2)/(p − 1))r.
This shows that Case 2a occurs with probability 1− ((p− 2)/(p− 1))r while Case 2b
occurs with probability ((p− 2)/(p− 1))r. Hence

E [φi(k + 1)] ≤ φi(k)
[(
p− 2
p− 1

)r
+ 3

4

(
1−

(
p− 2
p− 1

)r)]
= h(r)φi(k).

Case 3 (si = 0 and λ ≤ wi < 2λ) The processor has less than 2λ units of work and
therefore may or may not be able to answer work requests depending if they arrive
before its remaining work is less than λ units of work. If a work request is received
then we fall back to Case 2a. Otherwise, the processor only executes work and :

φi(k + 1) = (max(0, wi(k)− λ))2

≤ 1
2wi(k)2

= 1
2φi(k).
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Case 4 (si = 0 and wi < λ) If processor i is idle or became idle between kλ and
(k+1)λ, there are two sub-cases. The first one is if this processor receives some work
between kλ and (k + 1)λ. In this case this processor is the processor j of the Case 1
above and its contribution to the potential has already been taken into account. The
second one is if this processor does not receive work during kλ and (k+1)λ in which
case its potential is φi(k + 1) = 0.

Note that in addition to all this decrease, at least one processor executed λ units of
work during [kλ, (k + 1)λ) (otherwise there would be nothing to compute and the
schedule would be finished). This contributes to the decrease of (at least) λ2/3 to
one of the φi(k).

Using the variation of each of these scenarios we find that the expected potential
time k + 1 is bounded by:

E[φ(k + 1) | Fk] ≤ 1 + 1
λ2

(
−λ

2

3 +
∑

i∈ Case 1

2
3φi(k) +

∑
i∈ Case 2

h(r(k))φi(k)
)

≤ max
(2

3 , h(r(k)), 1
2 , 0

)
φ(k)

= h(r(k))φ(k)

where the last equality holds because h(r(k)) ≥ 3/4 ≥ 2/3.

3.3.2.2 DAG of precedence

In the case of DAG, the potential will depend on the maximal height of the tasks that
a processor has in its lists. Denoting by hi(k) the maximal height of the tasks that
processor i has in its deque, we define a quantity wi(k), that we call the potential
work of processor i, as:

wi(k) =


(2
√

2)hi(k) if the processor i has two or more tasks in its deque
1
2(2
√

2)hi(k) if the processor i has only one tasks in its deque
0 if the processor i does not have any tasks

For the tasks in transit, we define the potential work in transit si(k) = 1
2(2
√

2)h,
where h is the height of the task in transit.

The potential is then defined similarly as in Equation (3.2):

φ(k) = 1 + 1
λ2

∑
i

φi(k) where φi(k) = w2
i (k) + 2s2

i (k). (3.5)
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We are now ready to prove the following lemma, that is an analogue of Lemma 3.3.1
for the case of dependent tasks.

Lemma 3.3.2. For the case of DAG, the expected ratio between φ(k + 1) and φ(k)
knowing Fk is bounded by:

E[φ(k + 1) | Fk] ≤ h(r(k))φ(k),

where the potential is defined as in Equation (3.5) and h(r) is as in Lemma 3.3.1, i.e.,
h(r) = 3

4 + 1
4

(
p−2
p−1

)r
.

Proof. Similarly to the proof of Lemma 3.3.1, we study the expected decrease of the
potential by distinguishing three cases: the case si > 0 (work arriving at a thief)
and the case where a processor is or becomes idle correspond to cases 1 and 4 of
Lemma 3.3.1 and can be analysis exactly as what was done since Cases 1 and 4 of
the proof of Lemma 3.3.1 do not depend on the task dependence model. Moreover,
the distinction between Case 2 and Case 3 that was done for independent tasks is
not necessary for DAGs as there is no steal threshold for DAG. Last, the analysis of
Case 2b of Lemma 3.3.1 is similar: if a processor does not receive any work request,
the potential does not grow.

Hence, in the reminder of the proof, we focus on the only interesting case which
what happens when a processor receives one or more work request (Case 2b of the
proof of Lemma 3.3.1. We distinguish two cases depending on how many tasks are
in the deque of processor i when it receives a work request.

1. If processor i has only one task (say of height h), then it cannot send work.
In this case, it will complete its tasks that will activate at most 2 tasks of
height h − 1. In such a case, the potential work of processor i will go from
wi(k) = 1

2(2
√

2)h to at most wi(k + 1) = (2
√

2)h−1. This shows that

φi(k + 1) = w2
i (k + 1) ≤ (2

√
2)2h−2

= (2
√

2)2h/8

= wi(k)2/2 ≤ 1
2φ(k).

2. If processor i has two or more tasks, then by construction, it can have at most
two tasks of maximal height (say h). In this case, the processor will send one
task (of height h) to the thief, and will at the mean time execute the other task.
In this case, the maximal height of the task of its deque will be h−1 and the task
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sent will be of height h. This implies that wi(k+1) ≤ (2
√

2)2h−1 ≤ wi(k)/(2
√

2)
and si(k + 1) ≤ 1

2(2
√

2)h ≤ wi(k)/2. This shows that:

φi(k + 1) = w2
i (k + 1) + 2s2

i (k + 1)

≤ w2
i (k)/8 + 2w2

i (k)/4

= 5
8φi(k).

As both 1/2 and 5/8 are strictly smaller than the 3/4 of Equation (3.4), the rest of the
proof of Lemma 3.3.1 can be applied mutatis mutandis to prove Lemma 3.3.2.

3.3.3 Bound on the Number of Work Requests

We are now ready to use Lemma 3.3.1 and 3.3.2 above to obtain a bound on the
number of work requests. Let us define the constant γ as follows:

γ
def= max

1≤r≤p

r

−p log2(h(r))

where h is defined in Equation (3.3).

Lemma 3.3.3. Let φ(0) denote the potential at time 0 and let τ be the first time step
at which the potential reaches 1. Then, for both the independent tasks and the DAG
models, the number of incoming work requests until τ , R =

∑τ−1
k=0 r(k), satisfies:

(i) E [R] ≤ pγ log2 φ(0)

(ii) P [R ≥ pγ(log2 φ(0) + x)] ≤ 2−x.

Proof. By definition of γ, for a number of work requests r ∈ {0, . . . , p− 1}, we have
log2(h(r)) ≤ r

−pγ which implies that h(r) ≤ 2−r/(pγ).

Let Xk = φ(k)
∏k−1
i=0 2r(i)/(pγ). By Lemma 3.3.1 and 3.3.2, this shows that

E [Xk+1 | Fk] = E [φ(k + 1) | Fk]
k∏
i=0

2r(i)/(pγ)

≤ φ(k)2−r(k)/(pγ)
k∏
i=0

2r(i)/(pγ) = Xk

This shows that (Xk)k is a supermartingale for the filtration F . As τ is a stopping time
for the filtration F , Doob’s optional stopping theorem (see e.g., [34, Theorem 4.1])
implies that

E [Xτ ] ≤ E [X0]. (3.6)
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By definition of X, we have X0 = φ(0) and Xτ = φ(τ)2R/(pγ). As φ(τ) = 1, this
implies that

E
[
2R/(pγ)

]
= E

[
φ(τ)2R/(pγ)

]
≤ φ(0), (3.7)

By Jensen’s inequality (see e.g., [34, Equation (3.2)]), we have E[R/(pγ)] ≤
log2

(
E[2R/(pγ)]

)
. This shows that

E [R] ≤ pγ log2 φ(0)

Moreover, by Markov’s inequality, Equation (3.7) implies that for all a > 0:

P
[
2R/(pγ) ≥ a

]
≤ φ(0)

a
.

By using a = φ(0)2x, this implies that P[R ≥ pγ(log2 φ(0) + x)] ≤ 2−x

In the next lemma, we show that the constant γ can be bounded by a constant that
is independent of the number of processor p.

Lemma 3.3.4. The constant γ of Lemma 3.3.3 is such that γ < 4.03.

0 20 40 60 80 100 120
number of idle processor r

2.8

3.0

3.2

3.4

3.6

3.8

4.0

g(
r)

g(r) (64 processors)
g(r) (128 processors)
Bound 4.03

Fig. 3.2: Function g(r) as a function of the number of idle processor r for p = {64, 128}
processors. We observe that g is increasing and upper bounded by 4.03.

Proof. Let define the function g as

g(r) = r

−p log2

(
3
4 + 1

4

(
p−2
p−1

)r) (3.8)
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By definition, the constant γ is the maximum of g:

γ = max
1≤r≤p−1

g(r)

The function g is displayed in Figure 3.2 for the case of 64 processors and 128
processors. As we observe on this curve, g is increasing and is therefore bounded
by g(p − 1) < 4.03. This is what we prove in the remainder of this proof. Let
x = (p− 2)/(p− 1) and y = xr, we have y ∈ (0, 1). We have

1
g(r) = −p log2(3/4 + y/4)

logx(y) = −p log x
log 2 f(y),

where f(y) = log(3/4 + y/4)/ log(y). The first derivative of f is

f ′(y) = y log y − (3 + y) log(3/4 + y/4)
y(3 + y)(log y)2

The first derivative of the numerator of f ′(y) is log y − log(3/4 + y/4) which is
negative for y < 1. Thus it implies that f ′(y) is decreasing. As f ′(1) = 1, this shows
that f ′(y) ≥ 0 and therefore that f is increasing. This implies that g(r) is increasing
(because y is decreasing in r and g(r) = α/f(y) for α = − log 2/(p log x) > 0).

As g is increasing, γ = g(p− 1). Now, for all p ≥ 2:

(
p− 2
p− 1

)p−1
=
(

1− 1
p− 1

)p−1

= exp
(

(p− 1) ln(1− 1
p− 1)

)
≤ exp

(
−(p− 1) 1

p− 1

)
= 1
e

This shows that

γ = g(p− 1)

≤ 1
2− log2

(
3 + 1

e

) < 4.03

3.3.4 Analysis of the Makespan

We are now ready to prove the bound on the total completion time Cmax that is
summarized by the following theorem:
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Theorem 3.3.5. Let Cmax be the Makespan ofW unit independent tasks scheduled by
WS with latency λ. Then,

(i) E [Cmax] ≤ W
p

+ 4λγ log2
W
λ

(ii) P
[
Cmax ≥

W
p

+ 4λγ log2
W
λ

+ x

]
≤ 2−x/(2λγ).

Let Cmax be the Makespan ofW unit tasks with a DAG of precedence that has a critical
path of D scheduled by WS with latency λ. Then

(i) E [Cmax] ≤ W
p

+ 6λγD

(ii) P
[
Cmax ≥

W
p

+ 6λγD + x

]
≤ 2−x/(2λγ),

The constant γ is the same as in Lemma 3.3.3. In particular γ < 4.03.

Proof. Both cases will be proved separately.

Independent tasks – By Lemma 3.3.3, the number of incoming work requests until
τ is bounded by pγ log2 φ(0), with φ(0) = 1 +W2/λ2. Moreover by definition, the
schedule is finished at time τ . Thus by Equation (3.1) we have

E [Cmax] ≤ W
p

+ 2λγ log2(1 + W
2

λ2 )

≤ W
p

+ 4λγ log2

(W
λ

)
+ 4λγ,

where we used that log2(1 + x) ≤ 1 + log2(x) for x ≥ 1.

By the same way, we use Lemma 3.3.3 (ii) and equation 3.1 we obtain:

P
[
Cmax ≥

W
p

+ 4λγ log2

(W
λ

)
+ 4λγ + x

]
≤ P

[
2λR

p
≥ 2λγ log2 φ(0) + x

]
= P

[
R ≥ pγ log2

(W
λ

)
+ pγ

x

2λγ

]
≤ 2−x/(2λγ)

DAG of precedence. The case of DAG is similar, the only difference being the expression
of the potential at time 0. In the case of a DAG, the potential at time 0 is equal
to 1 + 1

4(2
√

2)2D = 1 + 1
48D ≤ 8D where D is the critical path. This shows that

log2 φ(0) ≤ D log2 8 = 3D which implies that

E [Cmax] ≤ W
p

+ 6λγD.
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The bounds that we obtained in Theorem 3.3.5 are composed of a term due to the
computation of tasks (W/p) and an overhead term related to the depth. In case of
independent tasks the depth is log(W ) but we obtain a slightly better bound due
to tasks not being divided below λ. We actually think bounds on the DAG could be
refined when considering non-unit tasks.

3.4 Conclusion

We presented in this paper a new analysis of Work Stealing algorithm where
each communication has a latency of λ. Our main result was to show that the
expected Makespan of a load of W on a cluster of p processors is bounded by
W/p+ 16.12λ log2(W/(λ)) for the case of independent tasks and by W/p+ 24.18λD
in the case of a DAG of depth D.

Our analysis makes use of a potential functions whose expected decrease per unit
time can be bounded as a function of the number of work requests. We then use
this to derive a theoretical upper bound on the expected makespan. We also extend
this analysis one step further, by providing a bound on the probability to exceed the
bound of the makespan.

This work will certainly be the basis of incoming studies on more complex hierarchi-
cal topologies where communications matter. As such, it is important as it allows a
full understanding of the behavior of various Work Stealing implementations in a
base setting.
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4.1 Introduction

4.1.1 Context

The analysis of the classical Work Stealing algorithm is a difficult combinatorial
problem [20]. It becomes even more difficult on more complex environments. For
example, the analysis is much more difficult in the case on distributed memory than
on shared memory since communication matter.

33



Our first analysis in Chapter 3 with potential function was not intuitive. The main
idea (Section 3.3.1) is to see what happens at each step and its impact on the
potential function (how much it decreases). One of the most difficult challenge
was to find the adequate potential function which decreases when a steal operation
occurs. Then, the proof used the worst case scenario at each step to get the worst
decrease of the potential function. In case of one cluster with m processors, the
worst decrease happens when all the processors act as thieves except one (m − 1
steal requests).

We are interested in the analysis of Work Stealing algorithm on more complex
environments including non homogeneous ones. In particular, we are interested
in platforms with multiple clusters where each cluster contains a set of shared
memory processors. The clusters are linked via a not uniform interconnection
network. As processors in the same cluster communicate through a shared memory,
communications cost are almost negligible. The processors in different clusters
communicate through the interconnection network and thus, communications are
explicit (latency or bandwidth) and costly.

4.1.2 Why using simulator?

The heterogeneity of communications and the mechanism of Work Stealing generate
an interesting combinatorial problem, which is more difficult than the initial case
in which we use on one cluster with homogeneous communications. Moreover, a
mathematical analysis using the potential functions is not effective, because it is very
difficult to find an adequate potential function. Moreover, the worst case scenario
is too far from the reality compared to the model of Work Stealing on one cluster.
The worst case scenario in multiple clusters is not just when all the processors act as
thieves except one, but also when all the processors steal outside their own clusters.
This worst case scenario is one of the most difficult barrier to analyze the model of
the Work Stealing algorithm on multiple clusters.

Therefore, we have to rely on simulations to observe what happens when we use the
Work Stealing algorithm on multiple clusters platforms. We performed simulation to
understand how the algorithm behaves when the communication time increases, and
to get an idea about the average completion time according to different parameters
(communication time, number of processors, etc...). And to compare different
strategies that take communication time and cluster’s topology into account. At the
same time, we used the simulator to validate the theoretical analysis in the basic
case of one cluster, and show how much the Makespan is far from the experienced
Makespan.

34 Chapter 4 Work Stealing Simulator



There exist several simulators on parallel and distributed computing. Many of them
are developed for a specific research projects by researchers and are undocumented,
and/or no longer maintained. However, there exist several High quality simulators
like SimGrid [22] that include many features and allow to consider complex sit-
uations like congestion, cache effects for particular architectures. However, such
simulators are usually very computationally expensive, and they require a long
execution time. Our purpose is less ambitious since we target simple processing
units to observe a single aspect of execution process, which is the work steeling
algorithm on platforms with different topologies. For this work, we developed a
specific lightweight PYTHON simulator. Our simulator is quite flexible and easy to
use and update. Moreover, it allows getting more insight on the result. Thus, we are
interested in using our own representations for interpreting the simulation results.

4.1.3 Objective

The objective of our simulator consists in running different models of the Work
Stealing algorithm. It executes an application on a platform, an application consists
of a list of tasks with or without dependencies, and the platform consists of multiple
processors linked by a specific topology. The simulator allows to execute a scenario
with a specific task on a specific platform. It is designed to be sufficiently flexible
to meet the different needs to analyze the Work Stealing algorithm and to compare
different victim selection strategies. It offers various types of applications and various
topologies. Moreover, its architecture facilitates the development of other types of
applications and other topologies for interconnecting the processors. Even more
than that, the simulator is fast. It also shows in details the results of each simulation.
These results could be numerical (execution time, number of steal requests, etc...)
or graphical (Gantt chart, real time execution etc...).

In this chapter, we give in Section 4.2 an overview of the different variants of the
Work Stealing algorithm. Then, we present in Section 4.3 the architecture of our
light Work Stealing simulator. In Section 4.4 we use our simulator to assess the
validity of our analysis presented in Section 3. Then, we show the latency intervals
exhibiting an acceptable Makespan on a single cluster, and we conclude the section
by studying the impact of simultaneous responses.

4.2 Variants of the Work Stealing algorithm

The Work Stealing algorithm schedules an application (set of tasks) in a distributed
platform composed of p processors linked by a specific topology. Many algorithms
and implementation variants of the Work Stealing algorithm exist in the literature. In
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particular, we present the different task models of the scheduled application. Then,
we describe different types of platform topologies possible and how they impact the
victim selection. We conclude by describing different policies for steal answers.

4.2.1 Application Task model

The type of scheduled application is an important issue. As we see on Chapter 3.3.4,
the bound of Makespan depends on the type of the scheduled application. The
application defines the characteristics of the tasks, the dependencies between them
and how the work could be divided during a steal operation.

In the literature, many researchers are interested in analyzing Work Stealing algo-
rithms using different task models. The most used task models can be classified as
follows:

4.2.1.1 Divisible load

The divisible load represents applications with independent unit tasks. It has been
introduced in [18] and experimented by [33]. It considers the work as a divisible
load where the initial amount is represented by a single big task. Then, during
execution, each task can be divided on request into two subtasks containing each a
part of its work. For instance when a steal request occurs in a busy processor it sends
a positive response in a form of a new task containing a part of the local work and
updates accordingly its current content. Many theoretical studies on Work Stealing
use this divisible load model since it simplifies the theoretical analysis [79].

4.2.1.2 DAG of tasks

This type represents an application as a set of tasks constrained by a directed acyclic
graph (DAG) of precedence [27]. This DAG has a single source that represents the
first active task. The processing time of a task can be unitary as in [11] or depend on
the size of the task [79]. The scheduling of such type is done in [11], each processor
maintains a double-ended queue (called deque) of activated tasks. If a processor
has one or more task in its deque, it executes the tasks at the head of its deque.
After completion, a task might activate other tasks that are pushed to the end of the
deque. A task is active in the DAG only when all its precedents have been executed.
The activation tree could be a binary tree or a fork-join whose shape depends on
the execution of the algorithm. It is a subset of the original DAG and has the same
critical path. We define the height of nodes of this tree as follows. The height of the
source as D (i.e., the length of the critical path). The height of another task is equal
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Fig. 4.1: Multi-clusters topologies

to the length of its father minus one. We assume when a processor steals work from
another processor, it steals the activated tasks with the largest height.

4.2.1.3 Adaptive tasks

The adaptive tasks represent a dynamic application that reacts specifically to the
steal requests. At the beginning, all the workload is stored as one big task which is
located on a given processor. Then during a steal operation, the processor shares
a part of its task and creates the merge task that brings together the result of the
two parts at the end. In general, the processing time of an adaptive task depends on
its size and the algorithm used. The processing time of the merge task depends on
the size of the tasks that proceeded it and the algorithm used to merge the results.
The adaptive tasks have been studied in [66, 28] and introduced in [73] to solve the
prefix problem.

4.2.2 Platform topologies

The platform topology defines the location of the processors in the platform and
characterizes the communication times between them (latency or bandwidth). There
exist many topologies in the literature that can be classified as follows:

• One cluster : The same topology used in Chapter 3. The processors are fully
connected in a cluster. The communications between them are homogeneous
and can take place simultaneously with no extra overhead, and the communi-
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cation costs are dominated by the latency. Thus, this communication can be
modeled by a constant delay (denoted by λ in Chapter 3). We can model the
shared memory processors by a single cluster topology if we consider that the
communication time takes 1 time step.

• Two clusters : the processors are divided into two clusters. The processors
in the same cluster communicate via shared memory. We consider that this
communication takes 1 time step. The clusters are connected via an inter-
connect network that performs the communications between processors in
different clusters. Since the communication cost between cluster is much larger
than the communication inside the clusters, the communication between the
processors is heterogeneous and creates victim selection issue (explained in
Section 4.2.3).

• Multiclusters : the processors are divided into several clusters that are linked
via a network in different topologies as shown in Fig 4.1. In these topologies,
the communication between processors depends on their location and also on
the location of their clusters on the topology.

4.2.3 Victim selection

The Work Stealing algorithm on complex topology with the heterogeneity of commu-
nication creates new questions about the victim selection strategy. Sometimes, the
victim selection should take into account the characteristic of the topology (distance
between processors, the communication time, etc...). Thus, the victim selection
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Fig. 4.3: Example of creating artificial idle times

strategies is an important question especially on structured topology. In the next
chapter, we study in detail the victim selection questions.

4.2.4 Steal answer policies

4.2.4.1 Simultaneous responses

There exist in the literature two main variants for handling steal responses, namely,
the single and simultaneous responses. We consider here both techniques as fol-
lows:

• Single work transfer (SWT) is a variant where the processor can send some
work to at most one processor at a time. The processor sends work to a thief
and it replies by a fail response to any other steal requests. Using this variant
the steal request may fail in the two following cases: when the victim does not
have enough work or when it is already sending some work to another thief.

• Multiple work transfers (MWT) Each processor can respond and send work
to several processors simultaneously. The received requests are handled se-
quentially. In the classical model, the processor always answers by sending
half of its work. In case of simultaneous requests it arranges them in a series
and answers in the same way. Fig 4.2 gives an example of such simultaneous
work transfers. In this figure Wi(t) denotes the work on Pi at time t.
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4.2.4.2 Steal Threshold

The main goal of Work Stealing is to share work between processors to balance the
load and speed-up the execution. In some cases however it might be beneficial to
keep work local and answer negatively to some steal requests.

Fig 4.3 shows an example of this case on two processors. At time t1 processor P2

sends a steal request to P1. At t2 P1 receives this request and answers by sending half
of its local work, which is less than the communication duration. At t3 P1 finishes its
remaining work and becomes idle. Then, both processors are idle in the time period
between t3 and t4. This clearly is a waste of resources since the whole platform
is idle while there is yet some work to execute. Moreover, such a behavior can be
chained several times. This effect is not purely theoretical as it has been observed
during our initial experiments.

It is possible to prevent this from happening by adding a threshold on steal operations.
We introduce a steal threshold which prohibits steals if the remaining local work
becomes too small.

4.3 Simulator Architecture

We present in this section the global architecture of our simulator. First, we describe
the basic mechanism of our simulator. Then, we explain how the simulator man-
ages different variants of Work Stealing (described in Section 4.2) using different
independent engines.

Basic Mechanism. During an execution of Work Stealing, the processors switch
between different states over time. For example, a processor is active when it
executes work. Once it finishes its work, it becomes idle. Then, if its tasks queue is
not empty, it pops a task and it becomes active again, otherwise, it becomes a thief by
sending a steal request to the other processors. We define an event as the time when
a processor changes its state. This implies that the simulator has to simulate the
events time instead of all the running times continuously. When an event occurs, the
simulator uses the model instructions to execute it. For example, when a processor
becomes a thief, the simulator chooses the victim using the strategy defined by the
considered model and sends a steal request to the selected victim.

The execution of a simulation returns different statistical results (simulation time,
number of steal requests, etc...). Other type of results are possible, for example, we
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can generate some logs to show the Gantt execution chart. We can also display the
DAG execution which delivers the execution in real time.

In our work, the simulator is used to experimentally analyze different variants of
Work Stealing. Thus, it should handle the different variants described in Section-4.3.
Moreover, the simulator needs to manage the different types of application, the
different topologies and all other variants.

For all these reasons, our simulator is designed to be sufficiently flexible in order to
simulate different Work Stealing models. Its flexibility aims to allow us to experiment
with different Work Stealing algorithms, different topologies, different steal strategies
and different types of application. The simulator should also generate a sufficient
amount of logs for a detailed analysis each tested scenario.

We decompose the simulator into several independent engines. Each engine develops
a part of the simulator and offers an operating interface which presents the main
provided functionalities. The engines interact between them through these operating
interfaces.

Fig. 4.4: The different engines of our simulator

The overall architecture of our simulator is composed of six main engines, as seen
on Fig 4.4. The event engine is the core of our simulator, it manages the processors
events during the time to run the simulation of a scenario. The events are executed
through the processor engine which provides different functionalities to perform the
Work Stealing algorithm. The processor engine uses the task engine to manage the
execution of tasks and uses the topology engine to manage the interactions between
the processors. During the execution of a simulation, the log engine keeps track of
different information and generates different logs. The rest of this section details
the role of each engine and explains the interactions between them.
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Fig. 4.5: Example of a Work Stealing execution

4.3.1 Event engine

The event engine represents the kernel of the simulator. In this section, we first
explain the global idea to run the simulation of a scenario. Then we define the
components used by the event engine to simulate an execution of an application
defined by task engine on a platform defined by topology engine.

In the Work Stealing algorithm, a processor switches between different possible
states. Fig 4.5 presents an example of Work Stealing execution, each processor
interacts when it becomes idle (P3 at t2), when it receives a steal request (P1 at t3)
or when it receives a steal answer (P3 at t4).

The global idea of our simulator consists in simulating a set of discrete events
through time instead of simulating the whole execution time, where an event stands
for changing the state of a processor at a specific time. For that, the event engine
lists the available events on a heap and executes them sequentially according to
their time. The execution of events follows different steps to update the system and
creates new events in the global heap, these events will be executed following the
same mechanism.

We define an event by its time, its related processors and its type. Based on the
different states of a processor. We consider the three types of possible events :
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• Idle event: a processor finishes its running task. When a processor has an
idle event, it means that it is executing a task. Thus, the time of this event is
defined by the execution time of the related task.

• Steal request event: a processor receives a steal request.
• Steal answer event: a processor receives the answer after a steal request.

The event engine offers two functions to manage the event heap, next_event() which
pops the nearest event from the global events heap and add_event() which adds an
event to the global event heap. The event engine controls also the global simulation
time which starts at 0. All tasks type described below start with one big task. Thus,
at the beginning of the simulation, the first processor executes the first task of
the application, then it starts the simulation with the related idle event. All other
processors start with an idle event that occurs at the beginning of the simulation
(time 0). The event engine starts simulation with a global event heap that contains
all the first events.

To run a simulation, the event engine call next_event to get the nearest event, then it
updates the global simulation time according to this event time, and then it executes
this event. The same processes will be used for other events. The event engine
uses the task engine to detect the end of the simulation. (We will detail that in
Section-4.3.2 ). The execution of an event interacts on the related processors and
orders it to update its state and creates other events. The execution time is defined
by the last executed event.

Before explaining the processor engine which performs the execution of the events.
We present the task engine and topology engine that will be used extensively by the
processor engine.

4.3.2 Task engine

The main objective of our simulator is to simulate the performance of different
variants of the Work Stealing algorithm. The first variant consists in managing
different types of applications. Where an application is defined by a set of tasks with
or without precedence constraints. The task engine is used to handle everything
related to the application during a simulation.

As stated, an application could be modeled as a divisible load or application with
adaptive tasks. In these two types, the task could be divided during a steal request,
Moreover, the adaptive task split the task into two subtasks and generates the merge
task which depends on these two subtasks. Therefore, our idea is to define a method
to split work during a steal request. Then, each application type defines this function
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according to its characteristics. For instance, the split function in application with
divisible load divides a task into two subtasks. In case of application with DAG of
task where the steal is handled from the processor queue. Then, the split function
return None since the tasks can not be splitted.

The execution of a task may activate one or more tasks as in case of DAG task or the
application with adaptive tasks, where the execution of task may active the merge
task if it exists. To manage this, the task engine defines a method to update the task
dependencies when a task is completed.

For all these reasons, the task engine provides an operating interface which offers
all the needed functionalities to manage tasks. It also controls the global applica-
tion. Then, the implementation of a new type of application simply requires the
redefinition of the operating interface functions.

We first describe what is needed to manage a task during an execution. Task
management consists of controlling the execution time of each task, updating the
dependencies when finishing the execution of a task, and splitting tasks between
two processors during a steal request. Thus, the operating interface of task engine is
based on the following functions:

• init() : used to create a new task during a simulation.
• split() : used to split the task during a steal and returns Non if the task can

not be divided..
• end_execute_task() : used to update dependencies when a task is completed.
• get_work() : used to compute the execution time of the task.

The task engine offers the mechanism to detect the end of an execution. It uses two
global variables, one to compute the number of created tasks in the system (updated
each init() call)), and to compute the number of completed tasks (updated each
end_execute_task() call). The execution finishes when the created tasks are equal to
the completed tasks.

To simplify the simulation, the task engine offers different functions that automati-
cally generate different application based on DAG tasks. It also offers a function to
use a predefined application as input. For this, the predefined application must be
described in JSON format that defines the tasks logs (Section 4.3.5).
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4.3.3 Topology engine

We target to simulate the Work Stealing algorithm on platforms with different
topologies. A topology defines the distribution of the processors on the platform and
the communication characteristics between them. We explain in Section 4.2.2 the
different type of topology. The topology engine is used to manage different platform
topologies.

To simulate Work Stealing algorithm, the topology is used for knowing the communi-
cation time between two processors during a steal operation. Moreover, since the
victim selection strategy depends on the processor topology, the topology engine is
also used to manage different victim selection strategies. Thus, the engine defines
the function distance() which returns the communication between two processors
in the platform, and the select_victim() function which return the id of another
processor based on specific strategy.

The topology engine is also used to manage different parameters which are used by
the Work Stealing algorithm during an execution, for example, is_simultaneous is
used to determine if a processor can send work to several processors at the same
time. The mechanism used to manage this option is defined by the processor engine.
It also defines steal threshold parameters which can be static or depend on the
communication time.

Steal
answer

start 
stealing active

idle

steal
request

Successf
ul st

ealFailed steal

pop task from
Local queueempty local queue

Fig. 4.6: States cycle of a processor
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4.3.4 Processor engine

The processor engine manages the processors state on the simulator, it offers all
necessary functionalities to update a processor when a related event occurs. These
functions apply the mechanism of Work Stealing algorithm.

The process followed by a processor during the execution of Work Stealing algorithm
is defined as shown in Fig 4.6. An active processor becomes idle when it finishes
its running task. An idle processor becomes active if it finds tasks in its local queue,
otherwise, it becomes a thief and it sends a steal request to another processor (called
victim). Once the victim receives the request (steal request event), it answers by
some of its tasks or failed. Once the thief processor receives the answer (steal answer
event), it becomes active if the steal succeeds, or it becomes a thief again if the steal
failures.

The processor engine provides for each processor different methods to process the
Work Stealing algorithm. These functions are organizing as follows:

• idle() : used when a processor finishes its running task. Its main steps are as
follows : It uses task engine to call end_execute_task() for the finished task.
This operation may active other tasks on the processor local queue.

Then, the function checks the processor local queue, if is not empty, the proces-
sor pops a task from it, and creates the idle event correspond. Otherwise, the
processor performs a steal request (by calling the start_stealing() function).

• start_stealing() : used to perform the steal operation. This operation requires
a victim selection, and produces a steal request event. The victim selection
is issued by topology engine (by calling select_victim()). Once the victim
is selected, then, it computes the communication time between to send the
request to the selected victim, and finally it creates the corresponding steal
request event.

• answer_steal_request() : used when a steal request event occurs. It performs
the answer operation. An answer response moves (if it is possible) the work
from the victim to the thief.

In this function, get_part_of_work_if_exist() is used to compute the stolen
tasks.

46 Chapter 4 Work Stealing Simulator



The steal failed in two cases : if there is no work to share, or if the processor
is already busy with another steal answer and the topology does not allow
simultaneous answer.

Once the stolen task is ready, this function uses topology engine to compute the
communication time to answer this request in order to create the corresponding
steal answer event.

• get_part_of_work_if_exist() : used to compute the stolen task. The processor
checks its tasks queue, if it is not empty, this function returns a task from it,
otherwise, the processor tries to split its running task using the split() function
defined by the task engine, if the current task is split. It updates the idle event
correspond to the running task before splitting.

• steal_answer() : used to trait the answer request which contains the stolen
task. Two cases are possible, if the stolen task contains work, it creates the idle
event corresponding the execution of the stolen task, Otherwise, the processor
will try to steal work again by calling the start_stealing() function.

These functions are used by the event engine to execute the three event types as
follows:

• The execution of an idle event call the idle() function.
• The execution of a Steal Request Event uses the victim to call the answer_steal_request()

function.
• The execution of a Steal Answer Event use the thief to call the steal_answer()

function.

4.3.5 Log engine

The simulator is used to experimentally analyze different models of the Work Stealing
algorithm. It should therefore generate sufficient results that simplify the analysis of
the execution of a scenario. For this reason, the log engine is used to provide different
functionalities to keep trace of different information during the execution.

Several pieces of information are needed to analyze the execution of a scenario.
For instance, we need the global execution information such as execution time and
the number of steal requests. These results are presented in digital format. Other
information are useful like the processes state over the whole execution or the final
shape of the application executed, thus, the engine should log the different changes
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Fig. 4.7: Gantt Chart of the whole execution

Fig. 4.8: Gantt Chart of the first step of the execution

on the application and on the processor states and their interaction during the
simulation.

For these reasons, the log engine uses processor engine and task engine function-
alities to keep track of simulation information. For instance, to account the global
number of steal request, the log engine initialize the number of steal requests to 0 at
the beginning and increments it each time the Answer_steal_request() function is
called. In another example, the log engine captures the dependencies each time the
split() defined in the task engine is called.

After a simulation, the overall results like (execution time, number of successful
and failed steal requests, total work executed, etc...) are displayed in the console in
digital format. Moreover, the simulator offers the possibility to generate other special
logs that can be transformed into graphic format using standard trace analysis tools
(Paje file format [69] and [36]).

For instance, Fig 4.14 depicts the Gantt chart of the processors during the execution
simulation of a scenario generated by our simulator, and displayed using Paje.
Through this presentation, we can analyze and understand what happened in the
whole execution or a part of it. For instance, we can focus on the first phase of the
execution to understand how the work is distributed as in Fig 4.8.

The simulator offers also the possibility to generates the executed application as
output file with a JSON format. The JSON file store for each task of the application all
information as the dependencies, the work , the start and finish execution time and
the processor that executes it. The JSON file can be displayed using a JSONTOSVG
tools developed by Frederic Wagner in [36]. Fig 4.9 depicts the execution graph of
an application scheduled by our simulator. The colors present the processor, there
are useful for understanding the impact of steals on the execution processes.
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Gantt chart of the Work Stealing execution

Fig. 4.9: Execution graph of a DAG task application (Merge sort)
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4.3.6 Simulator engine

A simulation requires several configurations. We need to initialize and configure the
application and the platform with its topology. Then, we need to configure different
variants of Work Stealing algorithm. The Simulator engine is used to gather all
engines to perform the different initialization before starting a simulation.

The principle of the experimental analysis is to obtain several execution results for a
scenario in order to analyze the average or the limits. To analyze the impact of a
variable, we need to simulate different scenarios for this variable to plot the results
according to this variable. For instance, to analyze the impact of the communication
latency on the Makespan, we need to run several scenarios for different value of
the communication latency, then we analyze the average makespan according to
latencies.

For these reasons, the simulator engine proposes for the users a control panel
which allows the possibility to configure the different parameters of a scenario as the
application and the platform. It allows the user to configure the number of executions
for each scenario. It also allows the user to set the interval of configuration values.
The simulator engine is developed to run several scenarios and simulation in the
same time. This option allows users to save the execution time by running several
experiments in common.

4.4 Use of the simulator

4.4.1 Validation and discussion of the theoretical analysis

In Chapter 3, we proved a new upper bound of the Makespan of the Work stealing
algorithm with an explicit latency on a one cluster topology. The objective of this
section is to use the simulator to experiment the Work stealing algorithm in order to
confirm and discuss the theoretical results and to refine the constant γ defined in
Section 4.4.2.

4.4.1.1 Configurations

We configure our this simulator to follow the model of independent tasks described
in Section 3.2 to scheduleW unitary independent tasks on a distributed platform
composed of p identical processors in one cluster topology. Between each two
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processors, the communication cost is modeled by a constant delay represents the
latency. (denoted by λ in Chapter 3)

As said earlier in Section 3.3.1, each simulation is fully described by three parameters:
(W, p, λ). For our tests, we vary the number of unit tasksW between 105 and 108,
the number of processors p between 32 and 256 and the latency λ between 2 and
500. Each experimental setting has been reproduced 1000 times in order to compute
median or interquartile ranges.

4.4.1.2 Validation of the bound and definition of the “overhead ratio”

As seen before, the bound of the expected Makespan consists of two terms: the first
term is the ratioW/p which does not depend of the configuration and the algorithm,
and the second term which represents the overhead related to work requests.

E [Cmax] ≤ W
p

+ 4λγ log2
W
λ

Our analysis bounds the second term to derive our bound on the Makespan. To
analyze the validity of our bound, we define what we call the overhead ratio as the
ratio between the second term of our theoretical bound (4γλ log2(W/λ)) and the
execution time simulated minus the ratioW/p: for a given simulation, we define

Overhead_ratio = 4γλ log2(W/λ)
Simulation_time− Wp

We study this overhead ratio under different parametersW, p and λ.

Fig 4.10 plots the overhead ratio according to each couple (W, p), for different
latency values λ = {2, 262, 482} units of time. The x-axis is (W, p) for all values of
W and p intervals and the y-axis shows the overhead ratio. We use here a BoxPlot
graphical method to present the results. BoxPlots give a good overview and a
numerical summary of a data set. The ”interquartile range” in the middle part of the
plot represents the middle quartiles where 50% of the results are presented. The line
inside the box presents the median. The whiskers on either side of the IQR represent
the lowest and highest quartiles of the data. The ends of the whiskers represent the
maximum and minimum of the data, and the individual points beyond the whiskers
represent outliers.

We observe that our bound is systematically about 4 to 5.5 times greater to the
one computed by simulation (depending on the range of parameters). The ratio
between the two bounds decreases with the number of processors but seems fairly
independent toW.
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Fig. 4.10: Overhead ratio as a function of (W, p) for different values of latency λ
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4.4.2 Discussion : where does the overhead ratio come
from?

The challenge of this work is to analyze WS algorithm with an explicit latency. We
presented a new analysis which derives a bound on the expected Makespan for
a given W, p and λ. It shows that the expected Makespan is bounded by W/p

plus an additional term bounded by 4γλ log2(W/λ) with 4γ ≈ 16. As observed in
Figure 4.10, the constant 4γ is about four to five times larger than the one observed by
simulation. A more precise fitting based on simulation results leads to the expression
W/p+ 4λ log2(W/λ) (the value 4 is a fitting computed on all our experiments). We
explain below where does the discrepancy between the theoretical bound of 16 and
the experimental result of 4 come from by looking at the different steps of the proof.
Our analysis makes essentially three approximations: (1) The function h(r) is an
upper bound on the potential diminution (2) We consider a worst case scenario for
the number of steal requests when we define γ = maxr g(r) = g(p− 1); and (3) We
bound γ by 4.03. We review below the contribution of each approximation to the
overhead ratio.
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Fig. 4.11: Evolution of the state of the systems for different number of processors (λ =
500, W = 107). Each column corresponds to a number of processors (64, 128 or
256). The first line corresponds to Φmax (defined in Equation (4.2)). The second
line displays the number of idle processors r(k). The third line displays g(r(k))
(defined in Equation (3.8)). In all figures, the x-axis corresponds to the number
of time steps k.
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To illustrate our explanations, we run three simulations by using our simulator and
report the results in Figure 4.11. These three executions have the same number
of tasks W = 107 and latency λ = 500 and we consider three value of processors:
p ∈ {64, 128, 256}. This figure illustrates the evolution with time of the potential
φ(k), the number of idle processors and the value of γ defined in chapter 3 sec-
tion 3.3.3 as:

γ
def= max

1≤r≤p

r

−p log2(h(r))

Each column represents a value of p. The lines represent the results for each
metric.

4.4.2.1 Impact of the bound h(r)

The first step of our analysis is to prove a bound on the decrease potential: We show
in Lemma 3.3.1 that

E [Φ(k + 1) | Ft] ≤ h(r(k))Φ(k). (4.1)

This bound is obtained by computing the diminution of the potential in the various
cases of the proof of Lemma 3.3.1. This various cases makes different approximations.
First, our bound h(r) is in fact h(r) the maximum between the ratio 2/3 of Case 1
and the ratio h(r) of Case 2a. Second, we assumed that we do not know when a work
requests arrive in the interval. We therefore always took the worst case (arrivals at
the end of the intervals). Third, we neglect the diminution of the potential due to
working processors (Case 2a).

To see measure the impact of this approximation, we define a theoretical function
φmax(k) that would corresponds to the potential of the system if the inequality of
Equation (4.1) was an equality:

φmax(k) =

φ(0) if k = 0

h(r(k))φmax(k − 1), otherwise
(4.2)

In Figure 4.11-(Line 1), we plot this theoretical function and the real potential
function as a function of time step k. This figure indicates that the distance between
the real potential and the theoretical bound is relatively small at the beginning of
the execution, which makes sense since the diminution of the potential is dominated
by the diminution related to Case 2a. The two function starts diverging slowly in
the middle of the execution and this divergence is accentuated at the end: when the
execution is close to finishing, the actual potential decreases much faster that its
bound. We believe that this divergence is mostly due to neglecting the diminution
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of potential due to working processors: At the beginning of the execution when all
processors have many tasks to execute, neglecting working processor is negligible; At
the end of the execution when the remaining work is small, the potential diminution
is greatly affected by the working processors.

This analysis could probably be improved by taking a more complex potential
function that will diminish the impact of working processors.

4.4.2.2 Evolution of the number of work requests

In our analysis, we study how the potential decreases a function of the number of
steal requests r(k). To obtain a bound, we then use a worst-case analysis and define
γ as the maximal of a function g(r) = r/(−p log2 h(r)): γ = maxr g(r). As shown in
Figure 3.2, g(r) is between 2.8 where r is small to 4 when r is large. On the second
Line 2 of Figure 4.11, we depicts how the number of idle processors evolve with
time. We observe that an execution has essentially three phases: in the beginning,
there is a high number of idle processors since the work has to be divided among
processors; In the middle of the execution, the number of idle processors is small
as everybody is working. In the final execution phase, it increases as finding work
becomes harder.

In Figure 4.11-(Line 3), we plot g(r(k)) and γ as a function of the time step k. The
figure shows that g(r(k)) is often about 2.8 (because the period where the number of
idle processors is low is long). This suggests that our bound γ = maxr g(r) is about
1.4 times too high. Being able to capture more precisely how the number of idle
processors evolves might lead to a bound that would be around 30% times smaller.

4.4.2.3 Bound γ < 4.03 and impact of the number of processors

In our analysis, we show that γ = g(p − 1) and we bound γ by 4.03. In fact, the
value of 4.03 corresponds to what happens when p goes to infinity but smaller values
of p leads to smaller values of γ. This explains why in Figure 4.10, we observe
that overhead ratio decreases with the number of processors, from around 5 for 32
processors to around 4 to 4.5 for 256 processors.

In our simulation, we observe that the overhead ratio is between 4 to 5. Based
on our experimental study of the evolution of the number of work requests with
time, we believe that the worst-case analysis γ = g(p − 1) and the bound of 4.03
contributes to a factor of about 1.5 of the overhead ratio. The remaining factor (of
about 3) is mostly due to the bound h that we obtained in Lemma 3.3.1. Refining
this lemma, for example by being able to estimate the decrease of potential due
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to the work execution or by using a different potential definition, would lead to a
tighter bound.

4.4.3 Acceptable latency

The combination between the theoretical bound and the experiment fitting of the
constant lend to the Makespan analytical expressionW/p+ 3.8λ log2(W/λ). One of
the first uses of this expression is to predict when a given W

p and λ configuration will
yield acceptable performances. Using the Makespan expression we observe that two
parameters dominate: The W

p ratio in the first term and λ which impacts the second
term of the formula representing the overhead due to communication delays.

As stated before W
p is a good lower bound on the best possible Makespan. A

Makespan Cmax is acceptable if the ratio Cmax/C
∗
max is close to 1, where C∗max is the

best possible Makespan. In our analysis, we consider a Makespan Cmax as acceptable
if Cmax

(W/p) ≤ 1.1 (overhead less than 10%). We study here which configurations allow
us to obtain such an acceptable Makespan. Using the time estimation Formula
we derive the equation below linking W , λ and p in order to get an acceptable
Makespan.

W
p + 3.8 log2(W2λ)λ = 1.1Wp
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Using this equation we can easily predict when a given W , p and λ yields acceptable
performance. Moreover for a specific W and a fixed λ we can easily choose the
maximum number of processors applicable.

To verify the validity of this formula we solve numerically this equation for different
W
p to get the theoretical limit latency for an acceptable Makespan. We then verify

experimentally the obtained solutions. So for a fixed W and p we test different
λ and take the maximal one yielding an acceptable Makespan. We call this the
experimental limit latency. With this result we are able to compare the theoretical
and the experimental limit latency. Fig 4.12 plots the theoretical and experimental
limit latency according to W

p . The x-axis is W
p for W between 105 and 108 and p

between 32 and 256 y-axis show the limit latency.

In Fig 4.12 we observe that the two curves overlap and conclude again on the good
accuracy of our prediction. Moreover we can see that the relation between the
latency limit and the W

p ratio is close to linear. Using this figure we can derive
the following equation: W

p = 470λ. Using this equation it is easy to evaluate
performances for a given W , p and λ. In addition it allows us to compute easily for
any configuration the maximal number of processors W

470λ yielding an acceptable
Makespan.
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4.4.4 The impact of simultaneous responses

We use in this section our simulator to study the influence of the multiple work
transfers mechanism (MWT) on One cluster topology. In our experimental runs,
we compare the results obtained using both variants: With multiple work transfers
and with a single work transfer (SWT). Fig 4.13 depicts a comparison between LWR

a) execution with SWT

b) execution with MWT

Fig. 4.14: Gantt chart of the first phase of execution, comparison between MWT and SWT

and SWR showing the overload obtained using each mechanism according to the
processor number. This show that the MWT mechanism does not bring a significant
gain in the overall performances, which spurred us to analyze in detail the execution
traces. In this analysis we remark that any execution using a Work Stealing algorithm
decomposes into three phases. The first phase which is denoted by the startup phase,
when all the processors try to have work. This phase finishes when all processors
become active. The second phase corresponds to the situation in which all processors
have work and just a few steal requests between processors happen. The last phase
starts when there is little work and the majority of processors are inactive.

In practice, we observe that the MWT mechanism only impacts significantly the
startup phase. Fig 4.14 depicts an example of two scenarios which clarify the impact
of MWT and SWT on the Gantt chart of the first phase. As we see at time t = 0, the
processors P1 and P2 send to steal the processor P0, and P3 sends a steal request
to P2, all steal requests arrive at the same time at t = 100. In the case of single
work transfer SWT in Fig 4.14-a, the processor P0 answers with some of its work
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Fig. 4.15: The ratio between the duration of the startup phase of the execution using MWT
and with SWT according to the number of processors (λ = 262 and W = 108)

to P1 and answers P2 with failed responses. At t = 200, P1 receives the stolen work
and becomes active, and P2 and P3 try to steal again. Which is not the case in the
case with multiple work transfer SWT in Fig 4.14-b where the processor P0 answer
P1 and P2 at the same time. This act accelerates the increase in the number of
active processors after each round trip (steal-answer), which is clear in the figure at
t = 300.

Fig 4.15 presents in BoxPlot format the ratio between the duration of the startup
phase using the MWT mechanism and using the SWT mechanism according to the
number of processors. The x-axis is the number of processors and the y-axis is
the ratio between the two durations of the startup phase using the SWT and MWT
mechanisms for λ = 262 and W = 108. In this setting we see that MWT is reducing
the duration of the startup phase for 75% of the runs with a gain larger than 200%
for a small number of processors. The behavior of MWT is positive on the startup
phase but the overall performance gains are small because the duration of the startup
phase is small compared to the total execution time.
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4.5 Conclusion

We present in this chapter our lightweight PYTHON simulator for experimentally
analyze different model of Work Stealing algorithms. Our simulator is developed to
be flexible enough to simulate different topologies and applications with different
variants of Work Stealing algorithms. Using this simulator, we provided and dis-
cussed the theoretical bound on the Makespan execution of Work Stealing on one
cluster topology founded in Chapter 3. We also experimentally study the impact of
simultaneous responses on one cluster. In the next chapter, we will use our simulator
to experimentally study the Work Stealing algorithm on more complex topologies.
We also propose and experiment different victim selection strategies on two clusters
topologies.
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We study in this chapter another model of Work Stealing algorithm on a more complex
environment. In particular, we consider a two-cluster platform with two levels of
communication. Light communication between the processors inside the same
cluster, and more expensive communication between processors in different clusters.
We start by describing the model and the difficulties arising from heterogeneous
communication. Then we present different strategies to deal with communication.
We use our simulator described in Chapter 4 to perform a large experimental analysis.
Through this analysis, we discuss several strategies and we perform a comparison
between them.

5.1 Introduction

Distributed-memory clusters consist in independent interconnected processing multi-
cores owning each a private shared memory. The clusters are linked via an intercon-
nection network and the communications between clusters are crucial since they
highly influence the performances (as the trade-off between a good balance of the
load and low communications is not that easy to determine). There are only limited
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works dealing with optimized allocations and the relationships between allocation
and scheduling are most often ignored. In practice, the impact of scheduling may
be huge since the whole execution can be highly affected by the latency of inter-
connection networks. The most commonly studied objective in scheduling is to
minimize the maximum completion time Cmax (called makespan) assuming central-
ized algorithms. This assumption is not always realistic, especially for distributed
memory allocations and an on-line setting. WS is an efficient decentralized schedul-
ing mechanism targeting medium range parallelism of multi-cores for fine-grain
tasks. Its principle is that each processor manages its own (local) list of tasks. When
a processor becomes idle, it randomly chooses another one and if possible, it steals
some work. The cost of the stealing mechanism is negligible in a shared memory
context but it is not for distributed memory. Its analysis is probabilistic since the
algorithm itself is randomized. Today, the research on WS is driven by the question
on how to extend the existing bounds for new computing platforms like distributed
memory clusters (our target). Notice that beside its theoretical interest, WS has
been implemented successfully in several languages and parallel libraries including
Cilk [37, 55], TBB (Threading Building Blocks) [72], the PGAS language [31, 64]
and the KAAPI run-time [41].

5.2 Model of Work Stealing on two-clusters
platform

We consider an underlying model of parallel platform composed of two clusters
linked by an interconnection network. Each one contains m identical processors.
Inside the clusters, the processors communicate through a shared memory, where
each communication is immediate. Outside a cluster, the processors use an inter-
connection network to communicates between them. This communication takes a
constant delay (the inter-cluster latency, denoted by λ). Thus, a communication
outside clusters takes λ time steps. We consider that communication outside clusters
takes much more than inside (λ� 1).

5.2.1 Bimodal Work Stealing

In WS, each processor either executes work or tries to steal some work. During a
steal, If the thief selects a processor (the victim) on the same cluster, it takes 2 time
steps (1 time step to send it another step to receive the answer). If the victim and
the thief are not in the same cluster. The work request takes λ time steps to reach
the victim and another λ to receive the answer (whatever it is, positive or negative).
At the beginning, all the work is put on one processor. All the other processors
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act as thieves. They try to find work by sending work requests to other processors
randomly.

5.2.2 Victim Selection issue

Since work requests inside the cluster take much more time than outside, we prefer
to steal inside the cluster where the thief is located. However, sometimes the work
inside the clusters is not large enough to be divided. In this case, a steal outside
the cluster is preferred to balance the work. For these reasons. Victim selection
is not obvious and requires a smart method that intents to balance the work and
minimize remote steals in the same time. We present in our work different victim
selection strategies that try to balance the work and minimize the number of external
steals in the same time. then, we experiment each strategy through an experimental
campaign.

5.2.3 Amount of work per remote steal

The main objective of the Work Stealing algorithm is to balance the load between the
processors. During each successful steal between two processors, the idle processor
(thief) steals half of the work from the active processor (victim). In the model with
two clusters, the steals inside a cluster intents to balance the load between the
processes inside the cluster, and the steals outside the clusters try to balance the load
between the clusters. The victim selection strategies aim to minimize the number
of external steals because they take a long time. For these reasons, we propose in
this variant to increase the amount of work stolen during remote steals. This means
that, during each successful external steal, the thief sends more than half its work
to the victim, which means that the victim cluster receives enough work during
an expensive remote steal request. To show the impact of this this variant on the
performance, We use simulation to experiment (in section 5.4) the impact of this
variant on the Bimodal Work stealing with each strategies.

5.3 Victim Selection Strategies

We propose in this section three victim selection strategies, for each one, we con-
figure our simulator (described in Chapter 4.1) to turn simulations with different
parameters. To analyze the results of each simulation, we define what we call the
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overhead as the execution time simulated minus the ratioW/p,
For a given simulation, we define :

Overhead = Simulation_time− W
p

whereW and p are the total amount of work and the number of processors respec-
tively.

During the description of these strategies, We perform an experimental study to
discuss each strategy and their configuration, we configure the simulator to follow
each strategy to schedule W unitary independent tasks on a distributed platform
composed of two clusters of p/2 identical processors each. The communication
cost between two processors in different clusters is modeled by a constant delay
represented the latency λ. In our simulation, we take several values ofW , p and λ to
show the impact of each parameter. Each experimental setting has been reproduced
1000 times in order to compute median or interquartile ranges.

5.3.1 Baseline strategy

The baseline victim selection strategy consists of treating all processors with the same
way. A thief chooses the victim from any available processor in the two clusters. This
method does not take into account communication time between processors, which
increases the time spent on work steal. Fig 5.1 shows an example of Work Stealing
execution on two clusters using the baseline strategy. All works are on processor
P1 in cluster C0. The pale color in the Gantt chart of the execution represents the
steal time (include the answer) and the red color represents the execution time. It is
clear that a lot of time is wasted looking for work at the beginning because of wrong
victim selection. In Fig 5.2, we can observe that idle processors of cluster C0 make
the wrong decision when they choose the processor in the other cluster, the same
problem is observed in the final phase.

Fig. 5.1: Gantt chart of the Work Stealing execution on two clusters with 4 processors each,
the victim selection follows the baseline strategy

It lacks a strategy that takes into account the communication time between proces-
sors, in order to avoid as much as possible the external steal. We should know that
external steals are important to balance the load between the clusters. Therefore,
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Fig. 5.2: A zoom on the beginning of the execution (same example as Fig 5.1)

we need a strategy that satisfies both sides, balance the load between clusters and
minimize external steals. In the rest of this section, we propose three victim selection
strategies that take this problem into account.

5.3.2 Systematic Victim selection (SVS)

The idea of this strategy is to control the external steals systematically, by fixing the
number of local steal attempts before stealing remotely. Which means that each
processor tries to steal locally (inside its cluster) several times, if none of the steals
succeeds, the processor changes to steal from the other cluster. For this, we define
the maximum internal steal attempts (denoted by isa) as the maximum number
of steal attempts inside the cluster before sending an external steal. Thus, when a
processor becomes idle, it attempts to steal randomly some work inside its cluster.
If the number of failed steal attempts inside the cluster exceeds maximum isa, the
processor chooses randomly another processor in the second cluster. If this request
failed, the processor starts again to steal inside with the same strategy.

The challenge of this strategy is to find the reasonable value or (the interval) of the
maximum internal steal attempts isa. For that, we use simulations to get an idea
about the adequate value of isa and its impact on the performance of Work Stealing
algorithm on a platform with two clusters. We study the overhead obtained by Work
stealing algorithm using this strategy, according to different values of isa.

Fig 5.3 depicts the impact of the maximum internal steal attempts isa on the average
overhead (defined in Section 5.3). Each figure plot curves for different W=(107,
5.107, 108, 5.108) Each column corresponds to the number of processors (16, 32 or
64). Each line corresponds to the latency λ = (64, 128, 256, 512).

The simulation results show that the curves follow the same behavior. The average
overhead is high when isa is small (isa < 4). Then, there is an interval of isa
where the overhead is stable and close to the minimum, Then, the average overhead
increases again according to isa.
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Fig 5.4 shows the curve for (p = 32,W = 100000000, λ = 64) with boxplot visu-
alization. The "interquartile range" in the middle part of the plot represents the
middle quartiles where 50% of the results are presented. This curve confirms the
observation obtained by the average overhead.
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Fig. 5.3: Average overhead according to the maximum internal steal attempts isa (different
W for each λ). Each column corresponds to the number of processors (16, 32 or
64). Each line corresponds to the latency λ = (64, 128, 256, 512). In all figures,
the x-axis corresponds to the maximum internal steal attempts isa.
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Fig. 5.4: Overhead according to the maximum internal steal attempts using boxplot visual-
ization curve for p = 32, w = 100000000, λ = 64. The "interquartile range" in the
middle part of the plot represents the middle quartiles where 50% of the results
are presented.

As we observe in Fig 5.3 and Fig 5.4, it is difficult to see the best value of isa to
obtain the minimum overhead, because there is an interval of values where the
overhead is stable. For that, we propose to fix the value the maximum internal steal
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Fig. 5.5: Overhead ratio between the overhead obtained by isa = 10 and the best overhead
minimum according to latency

attempts in isa in the middle of this interval. Moreover, if we choose rsp = 0.5 as
the right value, we can obtain an overhead close to the minimum.

To confirm this proposition, we compute the ratio between the overhead obtained
by isa = 10 and the best overhead obtained. Fig 5.5 depicts this ratio according
the latency λ. the results show that the ratio is stable and almost next to 1, which
confirm that by fixing the remote probability in 0.05 leads to a good performance.

5.3.3 Probabilistic victim selection (PVS)

In this strategy, the idea of this strategy is to use a probability to choose between an
internal or external steal. Thus, when a processor becomes idle, it uses a probability
to decide whether it sends a steal request inside or outside its cluster. Using the value
of this probability, we are able to control the number of internal and external steal.
We define a remote steal probability (denoted by rsp), which defines the probability
to steal remotely (outside the cluster). Thus, an idle processor sends a steal outside
its cluster with a probability of rsp, and inside its cluster with probability of 1− rsp.
Once the cluster is chosen, the thief will select the victim randomly inside the selected
cluster.

The challenge of this strategy is to find the reasonable value or (the interval) of
the remote steal probability rsp. The value of rsp should logically be less than 0.5,
otherwise, external steals are preferred. When rsp = 0.5, the probabilistic Victim
selection become the baseline strategy. A small value of rsp (next to 0) will decrease
the external steal requests, which can lead to an unbalanced between the clusters.
Thus, the value of rsp could be between 0 and 0.5.

We use simulations to get an idea about the adequate value of rsp and its impact
on the performance of Work Stealing algorithm on a platform with two clusters.
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We study the overhead obtained by Work stealing algorithm using this strategy,
according to different values of rsp.

Fig 5.6 depicts the impact of the remote steal probability rsp on the average overhead
(defined in Section 5.3). Each figure plot curves for different W=(107, 5.107, 108,
5.108) Each column corresponds to the number of processors (16, 32 or 64). Each
line corresponds to the latency λ = (64, 128, 256, 512).

The simulation results show that the curves follow the same behavior, when rsp is
close to 0, the average overhead is high , then, there is an interval of rsp value which
give an overhead close to the minimum. Then, the average overhead increases again
according to rsp when the value of rsp is more than 0.1. Fig 5.7 shows the curve
for (p = 32, w = 100000000, λ = 64) with boxplot visualization. The "interquartile
range" in the middle part of the plot represents the middle quartiles where 50% of
the results are presented. This curve confirms that most of the results follow the
same behavior as the averadge means. observations obtained average overhead.
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Fig. 5.6: Average overhead according to remote steal probability (different W for each
λ) Each column corresponds to the number of processors (16, 32 or 64). Each
line corresponds to the latency λ = (64, 128, 256, 512) In all figures, the x-axis
corresponds to the remote steal probability rsp.

As we observe in Fig 5.6 and Fig 5.7, it is difficult to see the best value of rsp to obtain
the minimum overhead, but there is an interval of rsp values when the overhead is
stable. This interval expands when the latency increase, but we can easily observe in
(Fig 5.6) that is almost between 0.01 and 0.1 for all our configurations.
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Fig. 5.7: Overhead according to remote steal probability using boxplot visualization curve
for p = 32, w = 100000000, λ = 64

For that, we propose to fix the value of rsp in the middle of this interval, Moreover,
if we choose rsp = 0.05 as the right value, we can obtain an overhead close to
the minimum. To confirm this proposition, Fig 5.8 depicts the ratio between the
overhead obtained by rsp = 0.05 and the best overhead obtained. the results show
that the ratio is stable and almost next to 1, which confirm that using the dynamic
probability victim selection and fixing the remote probability in 0.05 leads to a good
performance.
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Fig. 5.8: Overhead ratio according to latency between the overhead obtained by rsp = 0.05
and the best overhead minimum

5.3.4 Dynamic probability victim selection (DPVS)

In the previous strategy (PVS), The remote steal probability is constant and indepen-
dent of failed local steals, and we use a small remote steal probability to avoid as
much as possible remote steals. In this strategy, we extend to made this probability
dynamic and related to the local failed steals. Moreover, each processor starts the
execution with a remote steal probability equal to 0, and when a local steal failed, the
processor increments its remote steal probability to increase the chance of stealing
remotely. Then, it tries to make another steal based on the new value of remote steal
probability. Once a steal succeed or a remote steal failed, the processor resets its
remote steal probability to 0. We define the remote steal probability step (defined by
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rspstep) as the additional value add to the remote steal probability after each failed
local steal.

the challenge of this strategy is to find the adequate value of rspstep. The remote
steal probability should not increase quickly to avoid remote steal quickly. For that,
we study the overhead obtained by the Work stealing algorithm using this strategy,
according to different values of rspstep.

Fig 5.9 depicts the impact of the remote steal probability step rspstep on the average
overhead. We observe in this figure that the overhead is better when the rspstep is
less than 0.1. And we also observe that is hard to detect the best value of rspstep.
For that, we propose to fix the value of rspstep in a small value, Moreover, if we
choose rsp = 0.03 as the right value of rspstep, we can obtain an overhead close to
the minimum for all our configuration.

To confirm this proposition, Fig 5.10 depicts the ratio between the overhead obtained
by rspstep = 0.03 and the best overhead obtained. the results show that the ratio is
stable and almost next to 1, which confirm that using the dynamic probability victim
selection strategy and fixing the remote steal probability step in 0.03 leads to a good
performance.
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Fig. 5.9: Average overhead according to the remote steal probability step isa (different W
for each λ). Each column corresponds to the number of processors (16, 32 or 64).
Each line corresponds to the latency λ = (64, 128, 256, 512). In all figures, the
x-axis corresponds to the remote steal probability step rspstep.
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Fig. 5.10: Overhead ratio between the overhead obtained by rspstep = 0.03 and the best
overhead minimum according to latency

5.4 Impact of the amount of work per steal

We study in this section the impact of the amount of work per remote steal on each
strategy. In our configuration, the amount of work per steal is represented by a
percentage value, which means that during an internal steal, the thief receives 50%
of the victim work. We adapt our simulator to control this percentage during the
remote steals. then, we vary this percentage to steal 50%, 70%, 80%, and 90% of
the victim work during a remote steal, then we compare the overhead obtained
for each strategy. The steals inside the same cluster still fixed in 50% of work per
steal.

Fig 5.11 shows a comparison between the average overhead obtained by the three
strategies for different values of percentage of work per remote steal (50%, 70%,
80%, 90%). We observe that if we increase the percentage of work per remote steal,
we improve the performance by decreasing the overhead for the three strategies.
Moreover, the simulations show that steal between 70% and 80% gives the best
performance for each strategy. Steal 90% also gives an overhead smaller than the
classic percentage of steal 50%.

Besides the improvement obtained by the strategies, this variant could also important
to improve performance of each strategy, Fig 5.11 shows in the right column an
overview about the gain ratio of each value of the percentage of work per remote
steal compared to the classical configuration that fixes the percentage in 50%.
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Fig. 5.11: Comparison between the average overhead obtained by the three strategies for
different value of percentage of work per remote steal (steal 50%, 70%, 80%,
90%), we set other values in p = 32 and W = 108. The left column shows
the ratio between the overhead obtained by each percentage and the classic
percentage (50%). with the best configurations. (λ = 108, p = 32, best rspstep)

5.5 Comparison

In this section, we perform a general comparison between the different strategies
using simulations, We compare the overhead obtained by each strategy with the
adequate configuration of each strategy. To show the gain ratio, we compute the
ratio between the overhead obtained by the baseline strategy and the overhead
of each strategy with the adequate configuration. Then, we use the variant of the
percentage of work per remote steal

Fig 5.12 (percentage per remote steal = 50%) and Fig 5.13 (percentage per remote
steal = 70%) show the overhead ratio compared to the baseline strategy for different
parameters, according to the latency λ. Each figure plot the ratio for each strategy
compared to the baseline overhead. Each column corresponds to the number of
processors (16, 32 or 64). Each line corresponds to the latency W=(107, 5.107, 108,
5.108).

The results show that the overhead obtained by the three strategies are not far from
each other. we can observe that the overhead obtained from the dynamic probability
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victim selection is a little bigger than the other strategies for the different latency, but
it remains close to them compared to the baseline. We also observe that the dynamic
victim selection strategy is better than the static victim selection strategy with a small
latency (λ < 256), which is not the case when λ > 256, static victim selection strategy
gives the best average overhead.

The results show also that the overhead gain ratio obtained by the proposed strategies
increases when the latency increase, is between 2 and 4 times better than the baseline
strategy. This ratio can be improved using the variant of percentage per remote steal.
the gain ratio can be 6 time better for the dynamic victim selection strategy and static
victim selection strategy.
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Fig. 5.12: The gain ratio compared to the baseline of the three strategies with the adequate
configurations (percentage per remote steal = 50%)
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Fig. 5.13: The gain ratio compared to the baseline of the three strategies with the adequate
configurations. (percentage per remote steal = 70%)

5.6 Conclusion

We presented in this chapter a new model of Work Stealing on a platform com-
posed of two shared memory clusters linked via an interconnection network. the
communication inside the cluster is much smaller than outside. This heterogeneity
of communications creates new challenges for victim selection for Work Stealing.
We proposed in this chapter different strategies to deal with the victim selection.
The strategies are based on variants to control the steal outside the cluster. Using
the simulation, we try to get an idea about the adequate variants to minimize the
overhead. then, we introduce the variant to adapt the amount of work per remote
steal, which can also reduce the average overhead with a good configuration, the
average overheads could be reduced between 5 and 8 times better than the baseline
overhead.
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In this Chapter, we consider the scheduling problem of a set of k periodic implicit-
deadline and synchronous tasks, on a real-time multiprocessor composed of m
identical processors. It is known that the cost of migrations and preemptions has
significant influence on global system performances. especially on modern machines
where communications matters. The EKG algorithm which is optimal for k = m,
can generate a great number of migrant tasks, but it has the advantage that each
migrant task migrates between two processors only. Later, the EDHS algorithm has
been proposed in order to minimize the number of migrant tasks of EKG. Although
EDHS minimizes the number of migration compared to EKG, its drawback is the
generation of additional preemptions caused by the migrations on several processors.
In this paper we propose a new tasks allocation algorithm that aims to combine the
advantages of EKG (migrations between two processors only) and those of EDHS
(reduction of number of migrations).

This work has led to two publications [29, 30], and has been done in collaboration
with El Mostafa Daoudi, Abdelmajid Dargham and Aicha Kerfali.

6.1 Introduction

In general, the uniprocessor scheduling is a one dimension problem because it deals
with the temporal organization of tasks. That is to determine at what time to start,
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pause (preempt) and resume execution of each task. As against the multiproces-
sor scheduling is a two-dimensional problem because in addition to the temporal
organization of tasks it has to take care of their spatial organization. That is to
determine when and on which processor execute each task. In both cases, the correct
behavior of real-time systems depends not only on the operations they perform
being logically correct, but also on the time at which they are performed. The real-
time scheduling has to guarantee that all tasks are executed before their deadlines.
In the multiprocessor/multi-core platforms filed, there are mainly two scheduling
approaches for scheduling real-time tasks: global and partitioned scheduling.

Partitioned scheduling: In partitioned scheduling, tasks are organized in groups,
and each task group is assigned to a specific processor. After their allocation to
processors, the tasks are not allowed to migrate from one processor to another.
When selected for execution, a task can only be dispatched to its assigned processor.
On each processor the tasks are scheduled using standard known uniprocessor
algorithms e.g. RM (Rate-Monotonic) or EDF (Earliest-Deadline-First) [58]. The
main disadvantage of the partitioning approach is that the tasks allocation problem
is analogous to the bin packing problem which is known to be NP-Hard [26, 39]. So
a task cannot be assigned to any of the processors even if the total available capacity
of the whole system is still large. When the individual task utilization is high, this
waste could be significant, and in the worst-case only half of the system resource
can be used.

global scheduling: unlike partitioned approaches that use a separate run-queue per
processor, the global scheduling uses only a single queue for tasks that are ready
to run. At each time, the m highest priority tasks are dispatched to any available
processor according to a global priority scheme. The tasks can migrate from one
processor to another which makes it possible to achieve a better use of the platform.
Partitioned scheduling has gaps due to the absence of task migration from one
processor to another. It is shown that a non schedulable system under partitioned
policy can be scheduled if given the opportunity to unassigned tasks to run on
multiple processors in global scheduling assuming that the cost of preemptions
and migrations is neglected. This assumption is not realistic since this cost has an
influence on global system performance. Several works have been proposed in the
literature to reduce the number of preemptions and migrations [9, 68, 29].

Our contribution aims to combine the advantages of the EKG (migration between
two processors only) and those of EDHS (reduction of migrant tasks). We proceed
also into two steps to allocate the tasks: the first step is similar to the EDHS one,
so we generate the same number of migrations as EDHS algorithm. In order to
ensure the schedulability as EKG algorithm, our proposed algorithm avoid that a task
migrates between more than two processors during the second step of the algorithm.
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In order to achieve this goal, our key idea consists in reassigning the first allocated
task of processors involved by migrations. In this case our algorithm achieves the
optimality like EKG for k=m.

6.2 Presentation of the EKG algorithm

The system is composed of n periodic, implicit-deadline and synchronous tasks noted
τ1, τ2,..., τn and m identical processors P1,P2,...,Pm. All the tasks cannot be executed
in parallel and are independent. Each processor can’t execute more than one task
at any time. Each task τi has a period Ti (that is also the implicit deadline) and an
execution time Ci. The ratio Ci/Ti = U(τi) defines the utilization rate of the task
τi.

The EKG algorithm [8] cut the set of processors into groups each one is composed
of k processors and limits migration within the same group. In addition, a task can
migrate between two processors only. It allows scheduling optimally a set of periodic
tasks with implicit deadline on m processors, when setting the parameter k equal to
the number of processors (k = m).

Basic principle: Unlike partitioned algorithms, EKG allows tasks to run on two
different processors (at different times, without parallelism). The algorithm is
divided into two stages:

• Tasks allocation (offline): each task is assigned to one or two processors.
The algorithm treats heavy and light tasks differently. A task τi is heavy if
Ci/Ti > SEP , otherwise it is light where SEP is calculated as follows:

SEP =
{

1, if k = m

k/(k + 1), if k < m

First, the algorithm assigns one heavy tasks to one processor where one
processor is dedicated for one heavy (one per task). Then the lighter tasks are
assigned to the remaining processors where several light tasks may be assigned
to the same processor. To obtain a processor load of 1, some tasks can be split
to run on two different processors (migrant task) belonging the same group.
If a task is attempted to be assigned to the last processor in a group and it
fails, then it is not split, but it is simply assigned to the first processor in a new
group. This ensures that tasks in a group do not interact with tasks in another
group.
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• Tasks scheduling on processors (online): For each group, cutting the time into
EKG intervals. An EKG interval is defined by two successive wake-up dates
of tasks in the same group. It is similar to slots in the DP-Fair terminology
[56], but limited to the tasks of the same group. Similar to DP-Fair, the work
of migrant tasks should run for a time proportional to their utilization rate
and duration of an interval [t0,t1] where t0 denotes the time when a task
arrives, and t1 denotes the time when any task in that group arrives next. On
an interval [t0,t1], if a task τi migrate between processors Pj and Pj+1, it will
be splitted into subtasks τ11 and τ12 as shown in figure 6.1. At t0 it runs on
Pj for U(τi1) ∗ (t1 − t0) time units and ends its execution at timea. Towards
the end of the interval at timeb, the execution of the task restarts on Pj+1 for
a time duration of U(τi2) ∗ (t1 − t0) units and ends its execution at t1. The
non migrant tasks are scheduled according to EDF on ]timea, timeb[. After
assignment of tasks, at runtime, our algorithm uses the same technique as the
EKG algorithm to execute them on each processor.

Fig. 6.1: Migration of the task τ11 between processors Pj and Pj+1

Reducing the number of preemption by mirroring: The mirror technique called
(Mirroring) can be easily implemented by inverting simply τi1 and τi2. This halves
the number of preemptions. Figure 6.2 shows an execution with this technique.
Note that it can be reused for other scheduling policies; it is the case for example
DP-WRAP algorithm (similar to EKG)[11].

6.3 Presentation of EDHS Algorithm

EKG assigns migrant and non-migrant tasks simultaneously. This assignment pro-
duces several migrant tasks. To minimize the number of migrant tasks Kato et al.
[51] have proposed the EDHS algorithm which proceeds into two separate steps:
during the first one, the tasks are assigned according to a given partitioning algo-
rithm in order to minimize the number of migrant tasks. The second step consists in
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Fig. 6.2: The execution with mirroring technique

allocating, on multiple processors, migrant tasks (tasks that have not been allocated
during the first step), according to a second algorithm, as shown in figure 6.3.

Fig. 6.3: Allocation of migrant tasks with EDHS algorithm

At runtime, the non-migrant tasks run according to EDF but migrant tasks run with
high priority without overlap in time. When migrant task has exhausted its running
time on a processor, it continues its execution immediately on the next processor
and preempts the current task as shown in figure 6.4. Although EDHS minimizes the
number of migration compared to EKG, its drawback is the generation of additional
preemptions caused by the high priority of migrant tasks on several processors.

6.4 The proposed processor allocation heuristic

The system is composed of a periodic, implicit-deadline and synchronous tasks
τ = {τ1, τ2, . . . τn}. We assume that

∑
U(τi) ≤ m and U(τ1) ≥ U(τ2) ≥ . . . ≥ U(τn).

The following notations are used in the remaining of the paper :

• M : denotes the set of the not allocated tasks. Initially M = τ .
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Fig. 6.4: Execution of migrant tasks with EDHS algorithm

• τ [j]: denotes the set of allocated tasks to the jth processor of the list of
processors denoted by Pj , for 1 ≤ j ≤ m. Initially, τ [j] = ∅, for all j.

• U [j]: denotes the sum of the utilization rates of all tasks allocated to processor
Pj .

• A processor Pj is full if U [j] = 1.

• cap[j] = 1− U [j]: denotes the remaining capacity of processor Pj

In order to reduce the number of migrant tasks generated by the EKG algorithm, we
proceed into two phases for allocating tasks to processors:

6.4.1 First phase

During the first phase, the allocation of tasks is done by applying one of the most
known heuristics based on bin packing problem [49] as EDHS algorithm, namely
First-Fit Decreasing, Best-Fit Decreasing and Worst-Fit Decreasing. These algorithms
allocate the tasks by sorting them according to their utilization rates in the decreasing
order.

• First-Fit This heuristic assigns the current task to the first processor in the
list that has enough space. For all tasks, we begin the search from the first
processor (algorithm 1).

• Best-Fit: This heuristic assigns the current task to most loaded processor with
enough space. This heuristic is equivalent to the First-Fit algorithm but it sorts
the processors according to their remaining capacities in increasing order.
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• Worst-Fit. This heuristic selects the processor with the least loaded processor.
This heuristic is equivalent to the First-Fit algorithm but it sorts the processors
according to their remaining capacities in decreasing order.

Algorithm 1: First-Fit Decreasing heuristic
for each τi in M do

j← 1
affecter← 1
while ( U[j] + U( τi ) > 1) and affecter = 1 do

j← j+1
if j > m then

affecter← 0
end if

end while
if affecter=1 then
τ [j]← τ [j]

⋃
{τi ; }

U[j]← U[j] + U(τi);
M←M\{τi } ;

end if
end for

After this phase, the set of remaining tasks still not allocated (migrant tasks). To
better explain the first phase, we take the following two examples:

• Example 1: In the following example, we consider the tasks system τ =
(τ1, τ2, τ3, τ4, τ5, τ6) with U(τ1)=0.7, U(τ2) =0.6, U(τ3) =0.6, U(τ4) =0.4, U(τ5)
=0.4 and U(τ6) =0.3. Figure 6.5 shows that the allocation of tasks using EKG
algorithm gives rise to two migrant tasks τ2 (τ21 and τ22) and τ4(τ41 and τ42),
but with the First-Fit Decreasing heuristic, there is no migrant task.

Fig. 6.5: Allocation with EKG and First Fit Decreasing heuristic on three processors

• Example 2: In the following example we will show that even if we apply the
heuristics based on the bin packing problem, we cannot avoid the migration of
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the tasks. We consider the system τ = (τ1, τ2, τ3, τ4, τ5, τ6, τ7) with U(τ1)=0.9;
U(τ2)=0.8; U(τ3)=0.5; U(τ4)=0.3; U(τ5)=0.3; U(τ6)=0.15 and U(τ7)=0.04).
In figure 6.6, it is clear that the First-Fit Decreasing heuristic could not affect
the task τ5, so it must migrate on processors P1, P2 and P3.

Fig. 6.6: Allocation with the First Fit Decreasing heuristic on three processors

6.4.1.1 Experimentations

On figure 6.7, we compare the number of migrations obtained with the EKG and
the proposed algorithms by using the heuristics First-Fit, Best-Fit, Worst-Fit. For
simulations, we have considered 10000 task systems and we have calculated the
average of the number of migrations in a given interval, for each heuristic. The
tasks are randomly generated with the respect of the schedulability condition that
is
∑
U(τi) ≤ m. Experimental results show that the heuristics First-Fit, Best-Fit,

Worst-Fit reduce significantly the number of migrations. The reduction can reach
60% with the Best Fit and the First Fit heuristics.

Best-Fit

Worst-Fit

First-Fit

EKG

Fig. 6.7: Number of migration generated by each heuristic
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6.4.2 Second phase

The second phase consists in allocating the set of remaining tasks (set of migrant
tasks). Note that, by construction, the sum of utilization rates of migrant tasks is
lower or equal to the sum of remaining processor capacities. Assume that, processors
are sorted by decreasing order according to their remaining capacities, cap[1] ≥
cap[2] ≥ . . . ≥ cap[m] and task τk can migrate on processors P1, P2, . . . , Ph which
means that cap[1]+cap[2]+. . . +cap[h] ≥ U(τk) and cap[1]+cap[2]+. . . +cap[h−1] <
U(τk). the width of a time interval is denoted L.

Note that according to the first phase of the heuristic, the first task of each processor
Pj , for 2 ≤ j ≤ h, noted ρj , verifies U(ρj) ≥ U(τk). The basic idea is to increase
recursively the remaining processor capacities as follows:

• Subdividing the task ρ2 into two subtasks ρ21 and ρ22, such that U(ρ22) =
cap[1] and U( ρ21) = U(P2[1])-cap[1]

• Assigning ρ22 to P1. In this case P1 becomes full and the capacity of P2 is
increased with U( ρ22) (cap[2]= cap[2]+ U( ρ22).) Thus, task ρ21 becomes a
migrant task on processors P1 and P2. At runtime:

– Processor P2 starts its execution by task P2[1] during U( ρ21)*L.

– Processor P1 ends its execution by task P2[1] during U( ρ22)*L.

• Recursively, the same process is repeated between processors Pj−1 and Pj , for
2 < j < h, where the task ρj is subdivided into two subtasks ρj1 et ρj2, such
that U( ρj2) = cap[j-1]. In this case cap[j]= cap[j]+ U( ρj2). At runtime:

– Processor Pj starts its execution by task ρj during U(ρj1)*L.

– Processor Pj−1 ends its execution by task ρj during U(ρj2)*L.

• After this process, cap[h−1] < U(τk) and cap[h]+cap[h−1] ≥ U(τk), then task
τk migrates only between processors Ph−1 and Ph in the following manner: τk
is subdivided into two subtasks τk1 and τk2, such that U(τk1) = cap[h-1] and
U(τk2) = U(τk) - U(τk1). Ph−1 starts its execution by task τk1 during U(τk1)*L
and Ph ends its execution by task τk2 during U(τk2)*L.
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With this reallocation, the number of migrations is still the same and each migrant
task, migrates between two processors only. In this case our proposed algorithm
generates lower migrant tasks than EKG.

Algorithm 2: allocation of migrant tasks
for each τk in M do

sort in decreasing order the list of processors according to their remaining
capacities
calculate h such as cap[1] + . . .+ cap[h] ≥ U(τk) and
cap[1] + . . .+ cap[h− 1] < U(τk).
j← 1
while j < h− 1 do

Subdivide ρj+1 into tow subtasks ρ(j+1)1 and ρ(j+1)2 such that
U(ρ(j+1)2) = cap[j] and U(ρ(j+1)1) = U(ρj+1)− cap[j]
Assign ρ(j+1)2 to Pj then cap[j + 1] = cap[j + 1] + cap[j] and Pj becomes full.

Processor Pj+1 starts its execution by executing task ρj+1 during
U(ρ(j+1)1) ∗ L
Processor Pj ends its execution by executing task ρj+1 during U(ρ(j+1)2) ∗L.
j← j+1

end while
/* τk migrates only between Ph−1 and Ph. */
Subdivide τk into two subtasks τk1 and τk2, such that U(τk1) = cap[h− 1] and
U(τk2) = U(τk)− U(τk1).
Assign τk1 to Ph−1 and τk2 to Ph
Processor Ph−1 starts its execution by task τk1 during U(τk1) ∗ L
Processor Ph ends its execution by task τk2 during U(τk2) ∗ L.

end for

Fig. 6.8: Allocation of the migrant task τk with our proposed algorithm for h=4
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Figure 6.8 shows the steps of the algorithm in order to allocate a migrant task τk to
two processors only instead to allocate it to four processors.

6.5 Conclusion

In this work we have proposed a new semi-partitioned algorithm that reduces the
number of migrations like EDHS and limits migrations between two processors only
like EKG. The proposed algorithm is designed into two steps. During the first step we
used the well-known bin packing heuristics [49] (the First Fit Decreasing, the Best
Fit Decreasing, and the Worst fit Decreasing). This step is similar to the first step of
the EDHS and it consists of reducing the number of migrant tasks compared to EKG.
During the second step of the algorithm, we proposed a new technique that allocates
the migrant tasks. Our key idea consists in increasing the number of migrant tasks,
each one migrates on two processors, while keeping the same number of migrations:
instead to migrate a task between h processors (h-1 migrations), we migrate (h-1)
tasks each one between two processors. This reallocation has the advantage that
we remain in the same condition of optimality of the EKG for m=k. Experimental
simulations show that the number of migrations, compared to EKG, is significantly
reduced. This reduction can reach 60%.
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The work presented in this chapter is the result of a two months internship at the
University of São Paulo in collaboration with Alfredo Goldman and Denis Trystram.

7.1 Introduction

Microservices have been proposed recently in the field of Software Engineering for
building efficient applications [52, 13]. The idea is to decompose the applications
into independent modules (called the microservices) which are implemented and
operated as light and thus, efficient sub-systems. Each one performs a specific task
that may also be useful for other applications.

An application uses Microservices to offer several services to various users as shown in
Figure 7.1. Each application is performed using one or more Microservices that com-
municate between them to accomplish a required functionality. The Microservices-
based applications can be seen as a set of workflows as shown in Figure 7.2, each one
being composed of sets of Microservices that work separately and communicate to
perform a related service in the application. The application has also a user interface
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Fig. 7.1: Microservices-based application : cliens can be another applications (Web applica-
tion, Mobile applications, IoT)

(for instance, a Web or a mobile application, a command line, etc.) which allows the
users to call the application.

The user interface contains several types of requests, each one is linked to its specific
workflow inside the application.

Fig. 7.2: Set of Microservices that work together inside an application

As pointed out in [32], Microservices-based applications have a lot of advantages.
First, the Microservices may be implemented in different languages and technologies
(Python, Java, XML, etc.) [13]. Since the Microservices are independent, each one
may be updated separately, which facilitates the update of the whole application [13].
For the same reason, the application is more reliable since when a microservice breaks
down, it does not affect the whole application. The second advantage is the scalability
of Microservices-based applications. When several users use the application for the
same service at the same time (it is overload). The application needs to be scaled
up, which requires just scaling the set of Microservices that perform the concerned
service. In case of overload on some Microservices (which means several requests
at same time). The are two methods for scaling the microservice [59], namely
vertical and horizontal scalings. Vertical scaling aims at adding more resources to
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the overloaded Microsservice, while the horizontal scaling creates another instance
of the overloaded Microservice. The load will be split between the instances of the
microservice. While both methods accomplish the same goal, scaled applications
using horizontal scaling is more simple, since the creation of new instances is not
too complicated [21].

To benefit from the various advantages of Microservices, the application and their
Microservices should be managed automatically. Currently, Kubernetes [54] and
Docker [6] become the most popular managers of Microservices and Microservices-
based applications. Docker is an open source software that isolates the Microservices
inside a container. Containers are a mechanism of lightweight virtualization to
isolate and control some processes with less overhead [15]. A container is lightweight
because it does not emulate the physical hardware like a Virtual Machine. Kubernetes
is also an open source software container cluster manager, it manages the different
Microservices on the cluster. It facilitates the deployment of the application for
managing the different components of the application. It offers also an auto-scaling
mechanism that manages the different Microservices and resources. It uses the
horizontal auto-scaling based on the creation of new instances if needed. Kubernetes
also offers a simple scheduler to assigned different instances to available machines.

Auto-Scaling a Microservices-based application consists in two steps. First, control-
ling the load in order to detect the overload and deciding to create instances (or
delete some instances). Second, determining a machine for these new instances.
For the first step, Kubernetes is based on the average CPU utilization and a given
threshold to scale application. When the average CPU utilization of a Microservices
instance exceeds a given threshold, it creates the needed instances to adapt the
average CPU utilization. The same thing occurs when the CPU utilization is very
small, Kubernetes can delete some instances in order to free some resources.

The second step is to find a machine for executing those instances. Kubernetes
offers a sample algorithm to assign new instances to available nodes. The algorithm
selects a node for the instance in a 2-step operation, filter out nodes that doesn’t
have enough CPU or Memory, and choose one of the nodes that were not filtered
out based on simple function (last loaded, less loaded ...) [54]. When the scheduler
does not find an available machine for an instance, two cases are possible, either
it refuses this instance and the Microservice remains overloaded, or the scheduler
requests a new machine in addition in order to place the new instance.

The study conducted in this chapter aims at creating and analyzing new models
for scheduling instances on machines. There are only few related studies since the
domain is recent. We study in particular two variants of model: a static model that
performs the first allocation of containers over machines, and a dynamic model to

7.1 Introduction 89



update the scheduling when a scaling event (create or/and delete instances) occurs,
The purpose is to propose a realistic preliminary model and we leave the scheduling
analysis and practical implementations to future works. However, our models are
based on several dedicated studies and experiences on actual systems done during a
stay in Sao Paulo (Brazil).

7.2 Description

Applications based on Microservices have a specific deployment. Several steps
are required to effectively run and manage the application. First, Microservices
are isolated on a container [5]. The second step is to distribute Microservices on
Pods with kubernetes, and finally manage different pods on machine on two step,
auto-scaling and scheduling of the application. Each of these steps uses a specific
technology. The objective of this section is to present these steps and the underling
technologies.

7.2.1 Containerization of Microservices

Each Microservice of the application must be isolated. The best solution is the
containerization. Containers are a mechanism of lightweight virtualization to isolate
and control some processes with less overhead. A container is lightweight because
it does not emulate the physical hardware like a standard virtual machine [78]
Currently, several applications provide containerization like OpenVZ [24], and
Docker1 [63]. The most popular at the high-level is Docker which is open source
software [6].

7.2.2 Microservices manager

Manage the set of Microservice of an application consists in assigning a machine
to each containerized Microservice, allowing the communications between the
Microservices and auto-scaling them. Effectively managing an application requires a
Container Manager. Kubernetes is an open source container cluster manager that
offers the corresponding needed options.

Kubernetes use Pod which is the smallest deployable unit which can be created and
managed by Kubernetes. Pod mechanism can be considered as another level of con-
tainerisation that contains one or more containerized Microservices. Containerized

1https://www.docker.com
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(a) Containerized Microservices within a
pod

(b) Set of instances of Pods

Fig. 7.3: (a) the distribution of Microservices over Pods, (b) Kubernetes create different
instances of each Pod depend on the load or the initial configuration

applications within a pod can see each others’ processes, access the same IP network,
and share the same Node.

For each Pod, kubernetes creates one or more instance and assigned it to a machine.
It also allows the communication between the different Pod instances, and offers an
auto-scaling to manage the different Pod instances. Kubernetes uses a replication
Controller to create, remove and manage different instance replicas for each Pod.
Replication controller also interacts to perform the auto-scaling, it controls the CPU
utilization to decide how many replica instances need to be created or deleted to
keep the cluster on desired limits. When the Replication Controller creates a new
instance, the scheduler assigns a machine for this new instance if available. We give
the principle of the auto-scaling algorithm and scheduling as follows.

7.2.3 Auto-scaling and Scheduling

The idea of Microservices-based application is to separate the deployment of the
application. Each Containerized Microservices within a pod is deployed separately.
This option offers a more flexible auto-scaling. In case of an overload on such
Microservices in the application, the solution is to create a new instance of the pod
that contains this Microservice, then, find a machine for running this instance and
dispatch the requests between the different instances in the system.

Kubernetes offers an auto-scaling to manage the different instances of Pod. Its
algorithm is based on the average CPU utilization percentage to decide how many
replica pods to create or to delete in order to keep it on desired limits.

The algorithm takes as input the threshold and the set of active instances for
each Pod. At each interval τ , and for each Pod j, the algorithm computes the
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sum of CPU utilization for all active instances of this Pod. Then, it computes the
number of instances needed by dividing this sum by the threshold. Finally, the
replication controller receives the number of instances needed, and compute how
many instances should be created or deleted based on the number of running
instances.

7.2.4 Scheduling

When the auto-scaler decides to create some instances, the role of the scheduler is to
find for each instance a machine. The schedule should respect several configurations
(one for each instance) in order to find sufficient CPU and Memory for running each
instance. Kubernetes uses a sample algorithm that filters out nodes that does not
have enough CPU or Memory, and choose one of the nodes that were not filtered out
based on simple function (for instance, last loaded or less loaded or anything else
that makes sense)

Fig. 7.4: Set of instances that need to be scheduler over machines

7.3 Model

We present below a modelization of the problem of scheduling microservices on a
distributed platform composed of m identical processors.

We consider an application with k Microservices containerized on pods. We use
in our model the sample distribution where each Pod contains one Microservice.
Each Microservice has its own CPU request Qcpu and its memory request Qmem (we
assume that Qcpu and Qmem take fractional value between 0 and 1). During the
execution, kubernetes creates one or more instances for each container (Pod). Each
instance inherits the same CPU and memory request from its container. The CPU
and Memory of each node are considered as fractional. The idle CPU part (Resp.
idle Memory) is denoted by Acpu (Resp. Amem).
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The role of the scheduler is to schedule the first instances of all containers on the
machine, and interact with each replication control decision (scale event) to put the
new instances on the machines or remove it from a machine. The following section
presents the static model to perform the initial placement and the dynamic model
which re-schedules the instances when a scale event occurs.

7.3.1 Static Model

We present in this section the scheduling model to perform the first allocation of
containers over machines. Our model is composed of:

• k Microservices containerized in p pods (p = k, one microservice per pod)

• n Containers instance indexed by i (n ≥ k since we can have several instances
of the same microservice), (n could be the maximum number of all instances),
each instance has :

– Qcpui : the CPU needed by ni

– Qmemi : the Memory needed by ni

• m Machines indexed by j

The allocation of nodes over the machines is defined by the matrix xij as:

xij =
{

1 if ni in on mj

0 otherwise

Then, we define Acpuj and Amemj for each machine j as follows (remember here that
the A are expressed as the proportion of their need):

• Acpuj : the CPU available on mj where:

Acpuj = 1−
∑
i

xij ∗Qcpui

• Amemj : the Memory available on mj where:

Amemj = 1−
∑
i

xij ∗Qmemi
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The objective is to compute xij which satisfy the following constraints:

∀ j ≤ m Acpuj ≥ 0 and Amemj ≥ 0

while minimizing the number of machines.

7.3.2 Related models

There are several existing models that may be adapted for our problem. We briefly
present below the most relevant ones.

• The first one is the famous paper of Graham [38] on bounds for multipro-
cessor scheduling with resource constraints. Here the additional memory
requirements may be viewed as an extra resource constraint:

Given a set of tasks T = {T1, ..., Tr} and a set of resources R = {R1, ..., Rs},
let denote by Rj(Ti) the resource Rj required by task Ti.

The principle is to use a list algorithm (greedy) L = {Ti1 , ..., Tir} that governs
the order in which the tasks are chosen.

The objective is to minimize ω(L), i.e. the maximum completion time for m
processors executing T according to L.

The main result is the approximation bound under the assumption of ar number
of processors:

ω/ω∗ ≤ s+ 1

In our case, we traget a 3-approximation considering both CPU and memory
constraints as resources.

• Another direction is to refer to the classical vector-packing problem. Kellerer
et al. established in [53] an approximation algorithm with absolute worst case
performance ratio 2 for two-dimensional vector packing. Again, we can see
our problem as a 2 dimensional packing (corresponding to CPU and memory).
in this paper, the authors study the two-dimensional vector packing problem,
they propose an O(nlogn) time algorithm for two-dimensional vector packing
with absolute performance guarantee 2. The idea of their algorithm to classify
the different items in order to find the best allocation of items on bins. This
problem has the same features as our model, and we can apply the same
algorithm.
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• In the same vein, we may use an improved approximation for vector bin
packing [14]: Bansal studied the 2-dimensional vector bin packing problem,
leading to an asymptotic approximation guarantee of 1 + ln(1.5) + ε using a
polynomial-time algorithm, they also derived an almost tight (1.5 + ε) absolute
approximation guarantee.

7.3.3 Dynamic Model

All the previous works are limited to the static assumption. During the execution,
xij is already defined, but the auto-scalar may decide (irregularly in time) to update
the available instances, adding or deleting (or both) some instances. Then, the list
of containers changes over time, and we need to update the allocation of the new
containers list .

We model the costs of manage the containers on machines as:

• τc : the cost of placing a container on a machine.

• τs : the cost of deleting a container on a machine (equal to 0)

• τm : the cost of moving a container from a machine to another, since τs is 0,
τm = τc

The objective is to reschedule the instances in order to minimize the number of
machines and at the same time, minimize the total overhead related to instance
management.

The mathematical formulation is as follows:

• Recompute xij for the new instance list (with : ∀ j ≤ m Acpuj ≥ 0 and Amemj ≥
0 ).

• Minimize τc

• Minimize m (the number of machines)
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7.3.4 Conclusion

We investigate in this chapter a preliminary analysis of the problem of microservices
scheduling on cloud computing. We first present a detail description of microservice-
based application, and their challenges, then we propose two models of scheduling
of the microservices on cloud computing. The models simplify the problem and open
different research directions able to provide effective solutions. The next step is
to implement the different solutions in actual microservice-based application, and
study the performances in order to identify the limit of each of them.
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8Conclusion

The High-Performance Computing (HPC) domain is evolving rapidly, many super-
computers and cloud computing systems are available at different levels of power
and use. These systems are many common features, they are composed of multiple
parallel and heterogeneous sub-systems, which are interconnected in through a
complicated network. At the same time, the challenges of the HPC community are
becoming increasingly complex (to cite only the most important ones: taking ad-
vantage of system power, efficient resource management, energy consumption , ...).
One of the central and most complex challenge is the scheduling problem which
aims at determining the allocation of the tasks to the different processors, and then,
the local sequencing of these tasks.

In this thesis, we are interested in the question of scheduling problems taking into
account communication in different contexts. The first context concerns an on-line
scheduling problem on a distributed platform, including communication, with an
extension to more heterogeneous platforms composed of two-clusters with different
levels of communication. The communications between the processors influence
significantly the scheduling and they require a careful study and analysis in order
to understand the impact of these communications (when they should occur and
what amount of data should be concerned). The second context concern the on-line
real-time scheduling in a platform with communications. The communication reacts
to the task migration level, which can impact the scheduling process. The third
context dealt with a new scheduling problem that concerns the microservices-based
applications on cloud platform.

In a first work, we were able to study the overall impact of the communication
time on the Makespan objective using a theoretical analysis. Through this analysis,
we obtained a novel expression of the expected Makespan of a bag of independent
tasks and on a task graph with precedences scheduled by Work Stealing in a platform
of processors including communication delays. We also extended this analysis one
step further, by providing a bound on the probability to exceed the bound of the
makespan. This work provided also a deep understanding of the work stealing in
the basic homogeneous setting.
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Then, We were interested in the Work Stealing algorithm on more complex environ-
ments, including non homogeneous ones. However, the mathematical analysis was
not effective because of the heterogeneity (using a classical worst case analysis), and
we had to rely on simulations to analyze the problem. For this reasons, we developed
a lightweight PYTHON simulator. Our simulator is quite flexible and easy to use
and update. Through this simulator, we were able to assess the tightness of the first
analysis (on the homogeneous case). We showed by comparing the theoretical bound
and the experimental results. We observed moreover that our bound (established
on worst-case analysis) is four to five times greater than the simulation results and
it is stable for all the tested values. By using traces of execution, we quantified the
various approximations that are made in the analysis and swe uggested where the
analysis could be made more accurate.

For the extension of Work Stealing on two-clusters, the challenge of the algorithm is
how to select the victim (to steal work) and avoid the expensive external steals, while
the external steals are mandatory to balance the work between the two clusters. In
this sense, we proposed different strategies for solving this problem, the strategies
are effective but their parameters must be carefully chosen and tuned. Through the
simulation, we studied and compared these strategies.

The second work concern the study of two off-line scheduling problems on different
distributed platforms. Firstly, we studied the off-line real-time scheduling problem
in a multiprocessor including communications. In this work we proposed a new
algorithm that reduces the number of migrations and limits migrations between
two processors. Our key idea consists in increasing the number of migrant tasks,
each one migrates on two processors. Experimental simulations show that the
number of migrations, compared to other algorithms, is significantly reduced. This
reduction can reach 60%. Secondly, we focus on the new scheduling problem of
microservice-based application on cloud. The microservices (components of a large
application) can also be executed (and duplicated) on different machines. each
microservice instance requires a percentage of CPU and memory (depending on
the micro-services). The allocation of these microservices instances is clearly a new
challenge in the scheduling area. In our work, we proposed a model for microservices
applications, which is used to perform some theoretical analyses in order to give
directions to find approximations solutions. The focus of this part was put on the
possible models, each one corresponding to a different optimization problem. We
then discuss the most relevant existing literature and we proposed an adequate
problem which consider the dynamic character of the problem.
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