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Abstract

Title:
Resistive memories and three-dimensional monolithic technologies
for reconfigurable spiking neuromorphic processors

The human brain is a complex, energy-efficient computational system
that excels at cognitive tasks thanks to its natural capability to perform

inference. By contrast, conventional computing systems based on the classic Von
Neumann architecture require large power budget to execute such assignments.
Herein comes the idea to build brain-inspired electronic computing systems,
the so-called neuromorphic approach. In this thesis, we explore the use of
novel technologies, namely Resistive Memories (RRAMs) and three-dimensional
(3D) monolithic technologies, to enable the hardware implementation of
compact, low-power reconfigurable Spiking Neural Network (SNN) processors.
We first provide a comprehensive study of the impact of RRAM electrical
properties on SNNs with RRAM synapses and trained with unsupervised
learning (Spike-Timing-Dependent Plasticity (STDP)). In particular, we clarify
the role of synaptic variability originating from RRAM resistance variability.
Second, we investigate the use of RRAM-based Ternary Content-Addressable
Memory (TCAM) arrays as synaptic routing tables in SNN processors to enable
on-the-fly reconfigurability of network topology. For this purpose, we present
in-depth electrical characterisations of two RRAM-based TCAM circuits: (i) the
most common two-transistors/two-RRAMs (2T2R) RRAM-based TCAM, and
(ii) a novel one-transistor/two-RRAMs/one-transistor (1T2R1T) RRAM-based
TCAM, both featuring the smallest silicon area up-to-date. We compare both
structures in terms of performance, reliability, and endurance. Finally, we
explore the potential of 3D monolithic technologies to improve area-efficiency.
In addition to the conventional monolithic integration of RRAMs in the
back-end-of-line of CMOS technology, we examine the vertical stacking of CMOS
over CMOS transistors. To this end, we demonstrate the full 3D monolithic
integration of two tiers of CMOS transistors with one tier of RRAM de-
vices and present electrical characterisations performed on the fabricated devices.

Keywords: Spiking neuromorphic processor, Resistive memory, 3D monolithic
technology, Artificial synapse, Content-addressable memory, Synaptic routing
table.
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Résumé en français

Titre:
Mémoires résistives et technologies 3D monolithiques pour pro-
cesseurs neuromorphiques impulsionnels et reconfigurables

Le cerveau humain est un système computationnel complexe mais
énergétiquement efficace qui excelle aux applications cognitives grâce à sa

capacité naturelle à faire de l’inférence. À l’inverse, les systèmes de calculs
traditionnels reposant sur la classique architecture de Von Neumann exigent
des consommations de puissance importantes pour exécuter de telles tâches.
Ces considérations ont donné naissance à la fameuse approche neuromorphique,
qui consiste à construire des systèmes de calculs inspirés du cerveau. Dans
cette thèse, nous examinons l’utilisation de technologies novatrices, à savoir
les mémoires résistives (RRAMs) et les technologies tridimensionnelles (3D)
monolithiques, pour permettre l’implémentation matérielle compacte de
processeurs neuromorphiques impulssionnels (SNNs) et reconfigurables à faible
puissance. Dans un premier temps, nous fournirons une étude détaillée sur
l’impact des propriétés électriques des RRAMs dans les SNNs utilisant des
synapses à base de RRAMs, et entrâınés avec des méthodes d’apprentissage
non-supervisées (plasticité fonction du temps d’occurrence des impulsions,
STDP). Notamment, nous clarifierons le rôle de la variabilité synaptique
provenant de la variabilité résistive des RRAMs. Dans un second temps, nous
étudierons l’utilisation de matrices de mémoires ternaires adressables par
contenu (TCAMs) à base de RRAMs en tant que tables de routage synaptique
dans les processeurs SNNs, afin de permettre la reconfigurabilité de la topologie
du réseau. Pour ce faire, nous présenterons des caractérisations électriques
approfondies de deux circuits TCAMs à base de RRAMs: (i) la structure
TCAM la plus courante avec deux-transistors/deux-RRAMs (2T2R), et (ii)
une nouvelle structure TCAM avec un-transistor/deux-RRAMs/un-transistor
(1T2R1T), toutes deux dotées de la plus petite surface silicium à l’heure
actuelle. Nous comparerons les deux structures en termes de performances,
fiabilité et endurance. Pour finir, nous explorerons le potentiel des technologies
3D monolithiques en vue d’améliorer l’efficacité en surface. En plus de la
classique intégration monolithique des RRAMs dans le retour en fin de ligne
(back-end-of-line) des technologies CMOS, nous analyserons l’empilement
vertical de transistors CMOS les uns au-dessus des autres. Pour cela, nous
démontrerons la possibilité d’intégrer monolithiquement deux niveaux de transis-
tors CMOS avec un niveau de dispositifs RRAMs. Cette preuve de concept sera
appuyée par des caractérisations électriques effectuées sur les dispositifs fabriqués.

Mots-clés: Processeur neuromorphique impulsionnel, Mémoire résistive,
Technologie 3D monolithique, Synapse artificielle, Mémoire adressable par
contenu, Table de routage synaptique.

ii



Acknowledgements

”Everything has one end, only the sausage has two.”
I have many people that I would like to thank for helping me get through this
PhD. First of all, I must express my gratitude to my supervisors Claire Fenouillet-
Béranger and Elisa Vianello without whom nothing would have even started.
Their patience, support, and expertise over the past four years allowed us to
come up with this exotic and multidisciplinary project and obtained interesting
results. It has been a real pleasure to team up with them. Then, I would like to
thank the rapporters and juries for reading this dissertation and evaluating my
PhD work. Finally, this work would not have obviously been possible without
the knowledge and advices of other people. Thus, I am deeply thankful to
Bastien Giraud and Jean-Philippe Noël who adopted me in the middle of my
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2.1 Objectif de ce chapitre . . . . . . . . . . . . . . . . . . . . . . . 207
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de RRAM . . . . . . . . . . . . . . . . . . . . . . . . . . 224
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dispositifs de mémoires résistives 231
4.1 Objectif de ce chapitre . . . . . . . . . . . . . . . . . . . . . . . 231
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de mémoires résistives . . . . . . . . . . . . . . . . . . . . . . . 233

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

5 Conclusion et perspectives 237
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CHAPTER 1. INTRODUCTION

1.1 From Von Neumann to neuromorphic com-
puting

1.1.1 The Von Neumann bottleneck

Biological brains are natural computing systems. The idea of taking inspi-
ration from biological brains for designing computers can be dated back at

least from the first draft of an Electronic Discrete Variable Automatic Computer
(EDVAC) by John Von Neumann in 1945 [1]. Following the theoretical frame-
work on neural computation by MacCullogh and Pitts [2], the Von Neumann’s
EDVAC was centered around computing elements behaving in a neuron-like
manner (i.e. all-or-none elements) and transmitting stimuli along excitatory and
inhibitory synapses. Yet the implementation was eventually not bio-inspired
due to technological constraints and can be translated into three main parts: a
Central Processing Unit (CPU), the memory, and a connecting element between
the CPU and the memory [3, 4]. This architecture paradigm - often named after
his co-inventor as the Von Neumann model or Von Neumann computer - mainly
relies on the exchange of data between the CPU and the memory through the
connecting element [4–6]. Since then, it has dominated the computing paradigm
mainly owing to its ease of programming [4, 7].
However, Von Neumann computers have two inherent drawbacks. The first
problem is the sequential nature of the system: Von Neumann computers can
only manipulate one operation at a time since the connecting element can only
transmit a single word between the CPU and the memory [4, 8]. The second
problem is the physical separation of computation cores (CPU) and the memory.
Nowadays, computation can be as short as nanoseconds and memory accesses as
long as milliseconds [9, 10]. Although these two problems were not critical back
then, they now lead to a bottleneck - commonly referred to as the Von Neumann
bottleneck [4] or the memory wall - that heavily constraints efficiency of current
computing systems [5, 10–13] as shown in Figure 1.1.1 (a). This is particularly
apparent with the growing importance of data-abundant applications [14–16],
such as big data analytics and machine learning tasks [9], wherein most of
the computational power and time are now spent in transmitting data back
and forth between the CPU and the memory [7, 12, 17] (Figure 1.1.1 (b)).
Therefore, this has motivated to rethink computation. One idea is to shift from
the traditional Von Neumann architecture to non-Von Neumann architectures,
for instance by merging computation cores and memories as depicted in Figure
1.1.1 (c). The biological brains are the best example of such systems featuring
massively parallel networks of co-localised computational units, neurons, and
memories, synapses [5, 8]. Herein comes the neuromorphic approach coined
by Carver Mead in 1989 [18]. The neuromorphic engineering, or neuromorphic
computing, aims to develop novel computing architectures based on Very Large
Scale Integration (VLSI) systems that implement bio-inspired models from the
neural system. It has emerged as an approach to tackle the issues presented
by the Von Neumann architecture and more recently the challenges posed by
the end of Moore’s law [6, 19–21] by mimicking biological neural systems more
accurately than what Von Neumann attempted.
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1.1. FROM VON NEUMANN TO NEUROMORPHIC COMPUTING

(a)

(b)

(c)

Figure 1.1.1: (a) Power density as a function of clock frequency. Current
Von Neumann-based architectures are inefficient for representing massively
interconnected neural networks. Brains differ from today’s computers by
their architecture: they feature a parallel, distributed architecture, whereas
Von Neumann systems exhibit sequential, centralised architectures. (b)
In Von Neumann-based architectures computation and memory units
are physically separated by a bus leading to the so-called Von Neumann
bottleneck. (c) Conceptual blueprint of a brain-like architecture wherein
computation and memory are tightly co-localised. Reproduced from [22].

1.1.2 The end of Moore’s law

Gordon E. Moore predicted in 1965 [23] that the number of components per
integrated circuits would double every year at decreasing costs. This postulate
remarkably held true ten years later when he extended it for the next decades
[24]. Foreseeing a slowdown in its initial hypothesis, Moore anticipated an
increase in the number of components per integrated circuits every two years
rather than every year [25]. This has been known as the so-called Moore’s law
and has served as a goal for the semiconductor industry for more than fifty years
[6, 21, 26]. The reasons for this improvement are several folds. They can be
accounted for by an increase in die size thanks to a decreased density of defects
at acceptable yields, new approaches in circuit and device design to benefit as
much as possible from unused silicon areas, and scaling in device dimensions
[25]. The latter has been the main motor of Moore’s law trends, and the silicon
area of Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) halved
every two years - i.e. the gate length of MOSFETs has been scaled down by
roughly a factor 0.7x at every technology node. This has been possible by pure
downscaling [27] until the 130-nm generation in the early 2000s [28] after which
it was mandatory to innovate with new technics, such as the introduction of
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strained silicon transistors (90-nm) [29], the use of other gate oxide materials (45-
nm) [30], or the conversion from planar transistor to tri-dimensional structures
with tri-gate transistors (FinFETs) (22-nm and below) [31, 32].
Nowadays, MOSFET downscaling continued into the sub-10 nm regime [33] with
only a few companies - Intel [34], Samsung [35], and TSMC [36] - developing
a 7-nm or even 5-nm technology node [37]. However, it becomes more and
more challenging to scale down MOSFET transistors any further as we are now
reaching fundamental physical limits. Transistor gates are currently as long as a
few nanometers, that is the size of a few atoms, and it has been calculated that
the minimum size of a computational switch cannot go below 1.5 nm [38]. Each
new generation takes longer to be released - about 2.5 to 3 years instead of the
normal 2-years rate [28] -, and the cost of lithographic equipment is exploding -
it skyrocketed to several hundreds of millions of dollars for the latest technology
nodes, whereas it costed only a few tens of thousands of dollars in 1968 [25].
This has motivated researchers to investigate new devices for logic and memory,
new integration processes, such as three-dimensional monolithic integration, and
new computing architectures much more energy-efficient than the Von Neumann
architecture in order to perpetuate Moore’s law trends [6, 19, 21].

The scope of this PhD thesis is to investigate the hardware implementation
of reconfigurable spiking neuromorphic processors exploiting new technologies,
namely Resistive Memories (RRAMs) and three-dimensional (3D) monolithic
technologies. The following of this introduction provides the basics to grasp the
challenges of this PhD work. Resistive memory technology and three-dimensional
integration are first introduced. Then, an overview on spiking neural network
systems is presented.

1.2 New technology enablers

This section will present an overview of the new technology enablers to imple-
ment neuromorphic systems based on non-Von Neumann architectures, namely
resistive memory and three-dimensional integration.

1.2.1 Resistive memory technology

1.2.1.1 The memory hierarchy

Different memory technologies are available for data storage. They are usually
classified into two broad categories: (i) volatile memories and (ii) non-volatile
memories. Figure 1.2.1 (a) shows an overview of the most important memory
technologies. While volatile memories lose the stored information shortly after
the power supply is shut off, non-volatile memories permanently retain the
stored data. The memory hierarchy of current Von Neumann computing systems
employs different memory technologies to achieve a trade-off between cost and
performance. The closer to the processor cores, the faster the memory needs
to be as depicted in Figure 1.2.1 (b). The established memory technologies
- namely Static Random Access Memory (SRAM), Dynamic Random Access
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(a)

(b)

Figure 1.2.1: (a) Overview of established charge-based memories (blue)
and new resistance-based non-volatile memories (green). (b) Memory
hierarchy of today’s computers. Speed, number of processors cycles (CPU
cycles), and typical capacity (size) of the different memories are shown
in the lower panel. The closer to processing cores (CPUs), the faster the
memory (cache memory). Reproduced from [9].

Memory (DRAM), and Flash memory - are all based on charge storage, yet they
exhibit very distinct characteristics. SRAM is implemented with six transistors.
Therefore it is the most expensive memory because of its large silicon area
consumption, but it is also the fastest. DRAM is cheaper than SRAM since it is
implemented with one transistor and one capacitor but is also slower. In addition,
it requires periodic refresh of the stored information to prevent data loss which
increases the energy consumption. These two volatile memory technologies are
used close to the processor (CPU) to enable fast operations (cache and main
memory). On the other hand, Non-Volatile Memories (NVMs), such as Flash
memory and hard drives, are used for non-volatile data storage. They are slower
than SRAM and DRAM, however they do not consume stand-by power thanks
to their non-volatility.
New NVM technologies have emerged [39] and have been intensively studied
over the last decade. They fundamentally differ from charge-based memories as
they do not store the information in a capacitor but deploy different physical
mechanisms to change their electrical resistance state and often embody the
concept of memristors [40]. More importantly, they can easily be integrated
in the Back-End-Of-Line (BEOL) of advanced Complementary Metal-Oxide-
Semiconductor (CMOS) process. The rest of this section will provide a quick
overview of the major new non-volatile memories under research, namely Resistive
Random Access Memory (RRAM), Phase-Change Memory (PCM), and Spin-
Transfer-Torque Magnetic Random Access Memory (STT-MRAM), with a
particular emphasis on RRAM. A focus on the challenges posed by RRAMs will
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also be provided.

1.2.1.2 Overview of new non-volatile memory technology

Resistive random access memory
Resistive Random Access Memory (RRAM or ReRAM) is a type of memory
consisting of a Metal-Insulator-Metal (MIM) structure wherein a thin metal
oxide layer is sandwiched between two metal electrodes as depicted in Figure
1.2.2 (Bottom left). The basic principle of RRAMs relies on the formation and
dissolution of a Conductive Filament (CF) in the oxide layer [41–43]. Initially,
fresh RRAM samples are in a pristine state featuring a high resistance value.
Upon the application of an initial forming voltage between the Top and Bottom
Electrodes (TE and BE, respectively) during the so-called forming operation,
the CF is created by soft dielectric breakdown. This process is reversible: the CF
can be partially disrupted by applying a Reset voltage between the TE and BE
during a Reset operation, and it can be formed again by applying a Set voltage
during a Set operation. Forming the CF shunts the TE and BE and results in a
drop of the RRAM electrical resistance - this leads to the Low Resistance State
(LRS) -, whereas disrupting the CF disconnects the two electrodes and prevents
current conduction in the oxide layer - this leads to the High Resistance State
(HRS). Note that RRAMs in the HRS feature a lower resistance value than their
pristine resistance value since the CF is only partially disrupted [41, 43–46]. For
memory applications, the LRS and HRS are used to store one bit of information:
the LRS is associated to a binary ’1’ and the HRS to a binary ’0’. Switching
back and forth between the LRS and HRS is called a switching cycle and can
be repeated as many times as permitted by the RRAM technology [47–49].
The maximum number of switching cycles permitted by a technology defines
its programming endurance - sometimes also termed cycling endurance or just
endurance. Depending on their switching mode, RRAMs can be distinguished
between unipolar devices wherein Set and Reset operations are performed with
the same polarity - i.e. voltage biases are applied on the same electrode for
both operations - or bipolar devices wherein Set and Reset polarities must be
alternated. If the unipolar switching can symmetrically occur on both electrodes,
it is also referred to as a nonpolar switching mode [44]. The switching mode
depends on the choice of oxide layer and electrode materials [42, 50]. In some
cases, both unipolar and bipolar switching modes can be observed in the same
device [51]. Unipolar devices allow for reduced design complexity since both
operations are performed with the same polarities. However, they typically
require higher programming currents with respect to bipolar devices [46].
RRAM devices can be classified into (i) Oxide-based RAM (OxRAM) and (ii)
Conductive-Bridge RAM (CBRAM). In OxRAM technology, the CF is composed
of oxygen vacancies in the oxide layer [52]. In CBRAM technology, the CF
is attributed to the migration of metallic cations, such as copper and silver
[53]. OxRAM generally presents low resistance ratios between its HRS and
LRS (≈10-100) but good programming endurance (>1012 cycling operations),
whereas CBRAM features higher resistance ratios (103-106) but lower endurance
(<104) [44, 46, 54, 55]. In this work, we will only focus on bipolar OxRAM
technology. The most common oxide layer materials used today in RRAM
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are HfOx, AlOx, TiOx, and TaOx [44]. Figure 1.2.2 illustrates the switching
process in an OxRAM device. During the forming operation, oxygen atoms
in the oxide layer drift towards the top electrode due to the application of a
high electric field. This generates defects in the oxide layer and leads to the
creation of a CF made of oxygen vacancies. The interface between the top
electrode and the oxide layer acts like an oxygen reservoir [42, 44]. During Reset
operations, the CF is disrupted by recombination of oxygen vacancies and oxygen
atoms. Set operations reform the CF by pushing oxygen atoms back to the top
electrode. Over the last decade, RRAMs have been seen as a promising candidate
to replace Flash memories. Aside from their non-volatility property, RRAMs
present numerous advantages, such as good programming endurance (>1012

[56, 57]), non-destructive read operations, fast switching (below nanoseconds
[58–60]), and low-current programming operations thanks to the filament nature
of current conduction (tens of nanoamperes [61–65]). As the width of the CF
can be smaller than 10 nm [52], RRAMs can potentially be scaled down below
10-nm dimensions [66]. Despite all its advantages, RRAM still faces two major
roadblocks that have prevented it so far from being integrated in large arrays.
First, the initial forming voltage (2-3V) is significantly higher than the operating
voltage. Second, RRAM is strongly affected by extrinsic and intrinsic resistance
variability arising from the fabrication process as well as the intrinsic stochastic
nature of the CF formation. These challenges are discussed more in details in
the next section.

Figure 1.2.2: Schematic illustration of the switching process in Oxide-
based Resistive Memories (OxRAMs). An initial forming process generates
oxygen vacancies in the oxide layer by soft dielectric breakdown. Subse-
quent Set and Reset operations lead to the formation and dissolution of a
Conductive Filament (CF) made of oxygen vacancies, respectively. The
interface between the oxide layer and the top electrode acts like an oxygen
reservoir. Reproduced from [44].

Phase-Change Random Access Memory
Phase-Change Random Access Memory (PCM or PCRAM) is composed of two
electrodes sandwiching a chalcogenide glass that can change between a crystalline
and an amorphous phase. The most used chalcogenide material in PCM is the
ternary compound Ge2Sb2Te5, also referred to as GST [67–70]. As for RRAM,
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PCM stores one bit of information by modulating its electrical resistance. The
resistance modulation relies on the transition between the crystalline and the
amorphous phase of the chalcogenide material. The crystalline state features a
low electrical resistance - corresponding to the Low Resistance State, LRS - while
the amorphous state features a high electrical resistance - the High Resistance
State, HRS. This transition occurs by passing a current through the material to
heat it up by Joule heating. The advantage of PCM is that the ratio between
the HRS and LRS resistance values is generally larger than that of RRAM
technology, thus making it promising for multi-bits storage and facilitating its
integration into large arrays. However, PCM technology suffers from resistance
drift over time towards higher resistance values, in particular in the amorphous
phase - i.e. mainly in the HRS [71]. This makes it difficult to distinguish the
programmed states over time. Another drawback of PCM technology is its high
current consumption during programming, especially during Reset operations.
Since PCM is programmed by Joule heating, the programming current scales
down with device area. Yet even for PCM devices scaled down to sizes smaller
than 10 nm, programming current of the order of microamperes is still required
[72, 73].
Spin-Transfer-Torque Magnetic Random Access Memory
Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM) is a type
of magnetic memory based on the most advanced currently available technology
to achieve higher scalability. STT-MRAM stores the information (i.e. ’0’ or
’1’) in the magnetisation of ferromagnetic materials. It is composed of two
ferromagnetic layers separated by a thin insulator layer. The basic principle
of STT-MRAM relies on the switching of magnetisation of one ferromagnetic
layer (the free layer), while the magnetisation of the other layer is fixed (the
pinned layer) [9]. If the free layer has the same magnetisation as the pinned
layer - the parallel configuration -, electrons have a higher probability to pass
through the device. This corresponds to the LRS. Conversely, if the free layer
has an opposite magnetisation - the anti-parallel configuration -, the device is in
the HRS since the anti-parallel configuration prevents current conduction. STT-
MRAM provides numerous advantages, such as low-energy programming, high
speed, and almost unlimited programming endurance [12]. In addition, it shows
high uniformity in its resistance states, unlike RRAM technology. However,
one of the main drawbacks of STT-MRAM technology is its low resistance
ratio between the LRS and the HRS. This requires the use of specific memory
cell architecture to mitigate the low resistance ratio that limits STT-MRAM
scalability [9, 12, 74].
Comparison of the main metrics and summary

Several prototypes of RRAM [78, 81], PCM [77], and STT-MRAM [76] have
been demonstrated, up to several gigabits as reported in Figure 1.2.3 (a).
Commercial products are already available by different companies, such as Intel
and Micron with the 3D XPoint technology [82], Panasonic [83], Avalanche [84],
or Everspin [85]. Figure 1.2.3 (b) compares reported programming energy as
a function of cell area. Unlike PCM and STT-MRAM, programming energy
of RRAM technology (encompassing OxRAM and CBRAM) does not scale
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(a) (b)

Figure 1.2.3: (a) Reported storage capacity over time of different non-
volatile memory technologies. Multi-gigabits prototypes with the new
non-volatile memories have been reported [75–78]. Data on Flash NAND
technology are reported for comparison [79, 80]. (b) Programming energy
as a function of cell area. Programming energy of Resistive Memories
(RRAMs, encompassing OxRAM and CBRAM technologies) does not
depend on cell area due to the filament conduction nature of RRAMs.
Reproduced from [54].

with cell area due to the filament conduction nature of RRAMs. A significant
advantage of these new non-volatile memories is that they can be monolithically
integrated in three-dimension with CMOS logic circuits because their fabrication
temperature is compatible with the back-end-of-line, and they aare fabricated
with materials commonly used in the semiconductor industry. This facilitates
the implementation of in-memory computing architectures by physically bringing
memory units close to processing cores and can improve computing efficiency
by many orders of magnitude [12, 19]. In addition, each of these devices can
be independently programmed bit by bit, whereas Flash memories require to
erase whole blocks of kilobits whenever any individual bit in the array needs to
be reprogrammed. Finally, they are two-terminals devices, unlike conventional
three-terminals CMOS-based DRAMs or Flash memories, and can be integrated
into so-called crossbar arrays in between densely packed word lines and bit lines.
This allows for an extremely small bit area of only 4F2/n, where F is the minimal
lithographic feature size and n the number of stacked layers [46].

1.2.1.3 Challenges of resistive memory technology

This part provides more details about the main metrics and challenges with
RRAMs that will be discussed in this work, namely the memory window, the
programming endurance, and the resistance variability.
In RRAM technology - encompassing OxRAM and CBRAM technologies - the
resistance values of LRS and HRS depend on the programming conditions, i.e.
the applied voltage, programming time, and programming current - related to the
compliance current, Icc. The compliance current Icc is necessary to prevent cell
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failures due to the abrupt increase of current during forming and Set operations.
It can be defined by programming equipment or in practice by integrating
in series a selector element, such as a diode or a transistor [43, 78, 86, 87].
It has been demonstrated that programming time exponentially depends on
programming voltage [88–90]. Therefore, programming time is usually fixed
and only the programming voltage varies. LRS resistance values are mostly
defined by Icc during the Set operation [46]. One of the universal characteristics
of RRAM is that LRS resistance values have a power law dependency on Icc as
shown in Figure 1.2.4 (a): increasing Icc results in lower LRS resistance values,
RLRS. On the other hand, HRS resistance values are mainly defined by Reset
programming voltages [91], and using higher voltages during Reset operations
leads to higher HRS resistance values, RHRS (cf Figure 1.2.4 (b)). This provides
important guidelines for programming RRAM devices. As explained previously,
RRAM stores one bit of information in its LRS and HRS, thus it is fundamental
to guarantee a sufficient ratio between both states, RHRS/RLRS, in order to
discriminate them. Ideally, the ratio RHRS/RLRS, often called the Memory
Window (MW), has to be maximised in order to facilitate the integration of
RRAMs into large arrays. However, it has been demonstrated that a trade-off
exists between the MW and programming endurance performance: higher MWs
imply lower programming endurance [49, 54, 55, 90]. Figure 1.2.5 shows two
typical RRAM endurance characterisations performed on a GeS2/Ag (a) and a
HfO2/GeS2/Ag (b) RRAM stack, i.e. the evolution of LRS and HRS resistance
values after different numbers of Set/Reset switching cycles [90]. During the
cycling, HRS resistance values generally tend to decrease, and some cells can
be permanently stuck in the LRS after a certain number of switching cycles
[43, 44, 48, 92]. This results in a decrease of the MW. We define here the
programming endurance as the maximum number of Set/Reset cycles we can
perform with a stable MW. While it is possible to sustain a low constant MW of
about 10 during 108 cycles (Figure 1.2.5 (a)), only 103 cycles can be performed
with a large MW of 106 (Figure 1.2.5 (b)). Figure 1.2.5 (c) reports the
memory window of different RRAM technologies associated to the corresponding
endurance. For the sake of comparison, some data on PCM and STT-MRAM
technologies are also reported. As it can observed, endurance performance higher
than 106 cycles for RRAM - to be comparable to Flash technology [12, 93] -
is usually associated to low memory windows below 10-100. This low MW is
critical for large memory arrays due to sneak paths issues [86]. Therefore, selector
devices have to be integrated in series with each RRAM device to limit leakage
currents - usually a CMOS transistor in the so-called one-transistor/one-RRAM
(1T1R) structure. However, this limits storage density [94].
Another main drawback of RRAM technology is its high resistance variability -
both across cycles and devices - inducing non-repeatable behaviours [43, 95, 96].
As it is illustrated in the endurance characterisations in Figure 1.2.5, LRS and
HRS resistance values vary at every switching cycle - referred to as cycle-to-
cycle variability. Cycle-to-cycle variability can be attributed to the stochastic
nature of the conductive filament formation and dissolution. On the other hand,
resistance variability also occurs across devices in a memory array - device-to-
device variability - arising from external factors like fabrication process [97].
Figure 1.2.6 shows an example of resistance distribution measured on a 4-kbit
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(a) (b)

Figure 1.2.4: Low Resistance State (LRS) resistance value of different
Resistive Memory (RRAM) technologies as a function of compliance
current, Icc, during a Set operation. A power law relationship exists
between LRS resistance values and Icc. Reproduced from [46]. (b) High
Resistance State (HRS) resistance value as a function of the voltage applied
during Reset operations, Vreset. Measurements have been performed on a
TiN/HfO2/Ti/TiN RRAM device. The mean HRS resistance value over
1000 Reset operations is shown (solid line) as well as the spread at two
standard deviations (shaded area). Reproduced from [91].

TiN/HfO2/Ti/TiN RRAM array [43]. While it is possible to reach a ratio of
2500 between the median HRS and LRS resistance values, the device-to-device
resistance variability - mainly in the HRS [43, 44] - degrades this ratio down
to 600 if one considers the ratio between HRS and LRS resistance values at
-3σ and +3σ, respectively. Numerous works have tried to tackle and mitigate
resistance variability, for instance by material and process engineering [98, 99].
Understanding better the physics of RRAM is still an active area.
A last issue that can be mentioned is the need of an initial forming operation
[98]. In order to generate a sufficient amount of defects to initiate the switching
[44], high forming voltages (≈2-3 V) associated with a high electric field (>10
MV/cm) are required [44, 54]. This is higher than the power supply voltage and
any subsequent programming operations, and it is not desirable for practical
applications. In addition, it constraints the transistor used as a selector in order
to prevent any degradation at such a high voltage [13]. Therefore, there have
been significant efforts in the literature to design forming-free RRAM devices
[64, 100–102]. For instance, it has been found that the forming voltage is linearly
dependent on the thickness of the oxide layer, and HfOx-based RRAMs can be
free of the forming operation below 3 nm [100]. However, it may severely decrease
HRS resistance values and the memory window. It has also been reported that
forming voltages can be reduced by engineering around the fabrication process
[44].
To summarise, main challenges of RRAM technology are:

• the low memory window (<10-100) in order to ensure sufficient program-
ming endurance (>106 cycles)

• the high cycle-to-cycle and device-to-device resistance variability that
limits the memory window
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(a) (b)

(c)

Figure 1.2.5: Typical endurance characterisations performed on (a) a
GeS2/Ag and (b) a HfO2/GeS2/Ag Resistive Memory (RRAM) stack.
While it is possible to sustain a low resistance ratio Roff/Ron of 10 during
108 switching cycles, only 103 switching cycles can be performed with
a large resistance ratio of 106. Reproduced from [90]. (c) Reported
Memory Window (MW) as a function of programming endurance for
different RRAM technologies. Data on Phase-Change Memory (PCM)
and Spin-Torque-Transfer Magnetic Memory (STT-MRAM) are reported
for comparison. A general trend of lower MWs with higher endurance
performance is observed. Reproduced from [54].

Figure 1.2.6: High Resistance State (HRS, red) and Low Resis-
tance State (LRS, black) resistance distributions measured on a 4-kbit
TiN/HfO2/Ti/TiN Resistive Memory (RRAM) array, after one Reset/Set
cycle, respectively. While a resistance ratio of 2500 is measured between
the median HRS and LRS resistance values, it is reduced to 600 at three
standard deviations, 3σ, due to device-to-device resistance variability.
Reproduced from [43].

• the high forming voltage
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1.2.2 Three-dimensional technology

Another technological solution to continue Moore’s law trends is to benefit from
the third dimension, i.e. the vertical axis. Three-dimensional (3D) integration
allows to pack more components on a given silicon area. We first provide
an overview of 3D integration with Resistive Memories (RRAMs, presented
in Section 1.2.1), then 3D integration with Complementary Metal-Oxide-
Semiconductor (CMOS) technology.

1.2.2.1 Three-dimensional integration of resistive memories

Figure 1.2.7: Transmission electron microscopy of a TiN/HfO2/Ti/TiN
RRAM fabricated on top of a NMOS transistor. RRAMs have been
integrated in the back-end-of-line. Reproduced from [103].

Two main concepts were proposed with Resistive Memories (RRAMs) in
order to benefit from the third dimension. They take advantage of RRAM
Back-End-Of-Line (BEOL) CMOS process compatibility and the simple Metal-
Insulator-Metal (MIM) structure of RRAM. The first concept consists in stacking
one or several layers of RRAM devices directly on top of CMOS logic circuits
in the BEOL [19, 104]. For instance, RRAMs can be fabricated on top of
NMOS or PMOS transistor contacts in the so-called one-transistor/one-RRAM
(1T1R) structure as shown in Figure 1.2.7. Another case in point are cross-
point architectures with RRAMs [105, 106] wherein memory cells are located
in between densely stacked word lines and bit lines (cf Figure 1.2.8(a)), such
as the 3D XPoint technology of Intel and Micron [82]. This design allows to
use every word- and bit-line for two consecutive layers of memory devices, thus
halving the number of metal layers. The second possible 3D integration concept
is called Vertical RRAM (VRRAM) wherein MIM layers are integrated vertically
in a pillar (cf Figure 1.2.8 (b)) [61, 62, 107–110]. The pillar is a common
vertical electrode (the metal (M), e.g. TiN/Ti) whose sidewall is covered by the
resistive switching layer oxide (the insulator (I), e.g. HfOx). Horizontal metal
layers are stacked on top of each other and form the other electrode (the metal
(M), e.g. TiN). Memory elements are located where the horizontal electrode
surrounds the vertical one.
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(a) (b)

Figure 1.2.8: (a) Schematic drawing of a three-dimensional (3D) cross-
point Resistive Memory (RRAM) structure. RRAM cells are located
in between densely stacked word-lines and bit-lines. Reproduced from
[109]. (b) (Left) Schematic drawing of Vertical RRAM (VRRAM) arrays
(reproduced from [109]), and (Right) transmission electron microscopy of
a four-layers TiN/Ti/HfOx/TiN VRRAM (reproduced from [110]).

1.2.2.2 Three-dimensional integration of CMOS transistors

Although RRAMs can easily be fabricated on top of CMOS transistors thanks
to their low-temperature process, stacking several layers of CMOS transistors
on top of each other poses more challenges. Two 3D integration types can be
distinguished: (i) the parallel integration, and (ii) the sequential integration
as depicted in Figure 1.2.9. In the parallel integration - sometimes called
3D packaging (Figure 1.2.9 (a)) - the different layers (tiers) of transistors
are processed separately, then vertically stacked and connected afterward (for
instance with Through-Silicon Via (TSV) or Through-Oxise Via (TOV)). In the
sequential integration - also termed monolithic integration (Figure 1.2.9 (b)) -
every tier of transistors is fabricated directly on top of the previous one. The
parallel integration has the advantage of much simpler manufacturing process
with respect to the sequential integration, yet it suffers from lower alignment
accuracy since it requires to align two whole tiers together (see Figure 1.2.9
(c)). On the other hand, in the sequential integration, a tier is fabricated directly
on top of the previous one. Therefore, it can reach alignment accuracy at the
transistor scale as it only depends on lithographic alignment on the stepper. This
is a significant advantage of monolithic integration over parallel integration as it
allows to improve interconnection density by a factor 50x (1010 vias/cm2 vs 2.108

vias/cm2, respectively) [113]. Yet the major downside of monolithic integration
is its fabrication process: the fabrication of a tier can degrade performance
of lower tiers if process temperature is not kept low enough [111, 113, 114].
For instance, it has been demonstrated that transistors fabricated in a 28-nm
Silicon On Insulator (SOI) process can sustain thermal budget up to 500°C
for 5 hours without noticeable performance degradation (cf Figure 1.2.10
(a)) [115]. At higher thermal budget (i.e. temperature and process time),
degradation comes from silicide deterioration of CMOS transistors as well as
from a slight dopant deactivation [115]. However, standard thermal budget
to manufacture a transistor is usually higher than 1000°C [112]. As a result,
it is mandatory to either improve transistor thermal stability and/or adapt
manufacturing process to enable low-temperature transistor fabrication, while
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(a) (b)

(c)

Figure 1.2.9: Schematic illustrations of three-dimensional (3D) (a) par-
allel integration, and (b) sequential integration. In the parallel integration
both layers are fabricated separately, then vertically stacked and connected.
In the sequential integration the top layer is fabricated directly on top
of the bottom layer. Reproduced from [111]. (c) Alignment accuracy
as a function of 3D contact width. 3D sequential integration allows for
higher alignment accuracy than parallel integration since it only depends
on lithographic alignment on the stepper. Reproduced from [112].
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sustaining high transistor performance for every tier [116]. Different research
groups [117–121] have proposed solutions to overcome these problems, however
they generally require complex and expensive fabrication process [119, 120], for
instance with the use of III-V materials, or result in lower electrical performance
of top tiers [117, 118, 121]. CoolCube™technology [112] developed by CEA-Leti
is an example of 3D monolithic integration of SOI CMOS transistors. Currently,
it allows for monolithic integration of two tiers of CMOS transistors in a 65-
nm SOI process without noticeable degradation of electrical performance. In
addition, it is fabricated with conventional foundry process. Therefore, it is
compatible with industrial requirements, in particular with hard contamination
constraints. A first layer of CMOS transistors is fabricated in a conventional
SOI 65-nm design rules CMOS over CMOS process (the bottom tier). Then,
the active area of the next layer (the top tier) is obtained by transferring a new
SOI substrate on top of the bottom tier by oxide bonding. Finally, top tier
transistors are fabricated directly on the new top active area with alignment
accuracy at the transistor scale as shown in the transmission electron microscopy
in Figure 1.2.10 (b). Chapter 4 will describe more in details the fabrication
process of CoolCube™technology. Preliminary studies have evaluated potential
benefits of CoolCube™integration, for instance on a 3D Field-Programmable
Gate Array (FPGA) architecture in [122]. In the 3D FPGA architecture, memory
components are placed on the bottom tier and logic circuits on the top tier
in order to keep a good global performance. Compared to a planar FPGA
architecture, the 3D FPGA architecture can reduce area consumption by 55%
and the energy-delay product by 47%. In terms of cost benefits, a cost model
developed in [123] has predicted benefits of the order of 50% with 300-mm2

(12-inch) wafers.

1.2.2.3 Motivations of this work

The first advantage of 3D integration is the possibility to pack more components
on a given silicon area, thus increasing component density. In particular, 3D
monolithic integration could virtually grant access to a new technology node by
stacking two tiers fabricated at a previous CMOS technology node, while being
potentially more economically advantageous than developing a new technology
node [111, 123]. Another advantage of such integration is that interconnections
are in average shorter than those of for a planar integration. This results in less
parasitic capacitance as well as less routing congestion [111, 112, 122, 124]. Also,
3D integration can facilitate heterogenous integration [119–121]. N3XT [19] is
an example of computing systems implementing many novel technologies, such
as RRAM, STT-MRAM, and carbon nanotubes, integrated in a 3D monolithic
technology. Such systems are expected to provide significant gains in performance
- up to 1000x in energy-delay product. Another case in point is the gas sensor
chip fabricated and tested in [104] wherein four layers have been monolithically
fabricated - one layer of silicon FET logic circuits, two layers of carbon nanotubes,
and one layer of RRAM.
In this thesis, we propose the 3D monolithic integration of several layers of
high-performance CMOS transistors with Resistive Memories (RRAMs). To this
end, we will demonstrate the monolithic co-integration of two tiers of CMOS
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(a)

(b)

Figure 1.2.10: (a) (Left) NMOS and (Right) PMOS Ioff/Ion perfor-
mance for different thermal annealings. Transistor performance can be
ensured for annealing up to 500°C for 5 hours. Reproduced from [115]. (b)
Transmission electron microscopy of two tiers of NMOS transistors fabri-
cated in a 3D monolithic 65-nm SOI process with CoolCube™technology.
Reproduced from [112].

transistors using CoolCube™technology of CEA-Leti [112] with an additional
tier of RRAMs fabricated directed on top of the two tiers of CMOS transistors
in the BEOL. Chapter 4 will describe the fabrication process of RRAMs
with CoolCube™CMOS transistors and show the electrical functionality of the
integration.

1.3 The third generation of neural networks:
Spiking neural network

This section presents an overview of Spiking Neural Network (SNN) systems
and the main building blocks of hardware SNNs.
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1.3.1 Overview of spiking neural networks

1.3.1.1 Biological brains

It is now known that brains are much more efficient at computing than con-
ventional computers based on the Von Neumann architecture. The human
brain computes with a meagre power budget of 10-20 W ([125, Section 5.8.2]),
improving on Von Neumann computers by millions of fold in terms of power
efficiency [126–130]. It is an extremely complex computational engine consisting
of 1011 computing elements, the neurons, densely interconnected by more than
1014 connections, the synapses [131]. Although most of neural computation is
still to be understood, it is widely accepted that memory is stored in synapses,
while computation takes place in neurons [132–135]. Neurons are cellular units
specialised for the processing of cellular signals. They are mainly composed of
a soma, several dendrites, and an axon as shown in Figure 1.3.1, and they
communicate between each other via electrical signal events, the Action Poten-
tials (APs), transmitted along synapses [136]. APs are sharp electrical pulses of
about 100 mV and 1 ms. Input APs coming from other neurons are received by
the dendrites and integrated inside the soma. At rest, the membrane potential
of neurons - i.e. the difference in electric potential between the inside and
outside of neurons - is typically in the range of -40 to -90 mV. Upon integrating
APs, the membrane potential fluctuates. If it goes below the resting membrane
potential, nothing really happens. If it goes above the resting potential and
reaches the threshold potential level, the neuron fires an AP from its axon to other
neurons it is connected to. Axon terminals connect to other neuron dendrites
through terminal buttons forming synapses. Pre- and post-synaptic terminals
are physically separated by a synaptic cleft whose length is in the order of 20
nm. Two types of synapses can be distinguished: (i) chemical synapses, and (ii)
electrical synapses. In chemical synapses, the most abundant type of synapses,
synaptic transmissions are carried out by release of neurotransmitters stored
in synaptic vesicles that bind to receptors at the postsynaptic terminal. In
electrical synapses, ions can directly diffuse between pre- and post-synaptic
terminals.
Brain efficiency can be accounted for by several factors. First, brains are mas-
sively parallel computing systems: all synapses and neurons can transmit and
process information in parallel. Second, they use short and low-voltage pulses
at low operating frequencies (10-100 Hz) for communication [68, 130] result-
ing in high resource-efficiency [137, 138]. Finally, another factor of efficiency
may lie in the vast heterogeneity and diversification of brain circuit elements
[131]. Synapses and neurons continuously adapt over time via learning [135]. In
particular, the strength of each synapse, the synaptic weight, can be tuned to
facilitate or prevent the transmission of APs. During learning, synaptic weights
are constantly adjusted to respond to specific cognitive tasks.

1.3.1.2 The different generations of neural networks

Three different generations of neural networks can be distinguished. The first
generation is based on the seminal works of Rosenblatt [139] on the perceptron.
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Figure 1.3.1: Drawing of two connected neurons. A neuron is mainly
composed of a soma, several dendrites, and an axon. Neurons transmit
electrical signal events (action potentials) along their axon connected to
other neuron dendrites. Axon terminals connect to other neuron dendrites
through terminal buttons forming synapses.

Perceptrons are based on McCulloch-Pitts neurons [2] and act as all-or-none
elements. They output a boolean value depending on if their inputs reach a
certain threshold value or not. The second generation is based on so-called
Artificial Neural Networks (ANNs). ANNs are composed of a collection of
computing units, the artificial neurons, interconnected by weighted synapses.
Unlike perceptrons, artificial neurons can provide a continuous set of possible
output values by applying an activation function to the weighted sum of their
inputs. This second generation of neural networks have provided solutions to
many artificial intelligence applications, such as pattern recognition, natural
language processing, forecasting and prediction, or speech recognition [12, 15, 140,
141]. As illustrations of the success of ANNs we can cite the facial recognition
system DeepFace by Facebook [142] and AlphaGo by Google DeepMind [126]
that defeated one of the best human professional players in the full-size game
of Go, something that was thought not to be possible before at least another
decade. More recently, Google DeepMind introduced their program AlphaStar
that reached the rank of Grandmaster at the real-time strategy game StarCraft
II - the highest league above 99.8% of officially ranked human players [128].
This is highly promising for applications requiring real-time decisions, such as
self-driving cars or robotics.
Although ANNs have been introduced to provide more bio-plausible neural
networks with respect to perceptrons, they eventually deviated from biology to
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focus on performance instead of power efficiency [143, 144]. For instance, training
AlphaStar [128] required the use of 384 third-generation Tensor Processing Units
for 44 days. By contrast, Spiking Neural Networks (SNNs) aim to reproduce
biological brains in a closer manner with the promise of achieving high energy-
efficiency systems [16, 145–150]. This gives rise to the third generation of neural
networks [151]. As in biological brains, SNNs mainly rely on the exchange of
spikes between neurons - the action potentials - that are transmitted along
weighted synapses. Information is encoded in the timing and spiking rate of
spikes [152–155]. For neuronal processing, SNNs employ spiking neurons, also
called integrate-and-fire neurons (IF neurons) [148, 156]. IF neurons sum input
spikes - integrate - whose amplitudes are modulated by synaptic weights, and
they emit a spike - fire - when the summation goes above a threshold level.
In the scope of this PhD thesis, we will focus on SNNs. The rest of this section
will present the main building blocks of hardware SNN systems.

1.3.2 Information coding and network routing

1.3.2.1 The address event representation communication protocol

In Spiking Neural Networks (SNNs) neurons communicate using spikes. The
information can be encoded in the time of occurrence of spikes, time difference
between consecutive spikes, or spiking rates [152–155]. From an hardware
implementation point of view, the Address Event Representation (AER) [157,
158] has been proposed as an efficient communication protocol for SNNs based
on time-multiplexing. A ”brute force” approach to transmit spikes between
neurons would be to use one wire for each pair of neurons, i.e. N wires for N
pairs of neurons [159]. In the AER protocol each neuron is assigned an address
that is encoded as a digital word. When a neuron fires a spike, also called an
event, its address is sent across a shared data bus to a receiver circuit using
asynchronous digital circuits [22, 129, 130, 145, 147, 160–162]. The receiver
decodes the address and transmits an event to every neuron paired with the
spiking neuron. The AER allows to reduce the number of wires from N to
≈log2(N) [159]. Note that a handshake protocol is required to ensure that only
one address is transmitted in the shared digital bus at a time. Therefore, it is
crucial that all events can be processed and transmitted quick enough to prevent
routing congestion [163, 164].

1.3.2.2 Impact of network topology

In biological brains part of neural computation lies in the network topology,
i.e. the connectivity scheme between neurons (the connectome) [165–167]. For
instance, neurons have the ability to extend their neurites, i.e. dendrites and
axons, to find appropriate synaptic partners [136]. The growth of neurites is not
random, and neurites seek for particular targets on a basis of trials-and-errors
[168]. Another example is the synaptic pruning process that mainly occurs
in the early childhood and puberty [169]. Synaptic pruning consists in the
elimination of synapses and may be an energy-saving process wherein redundant
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synapses are eliminated. For neuromorphic systems, it has been shown that the
choice of network topology affects network outcomes, performance, and energy
[170–173]. Therefore, it is crucial that neuromorphic processors are not bound
to a fixed topology and can adapt their synaptic connections to a specific task
[163, 164]. The use of synaptic Lookup Tables (LUTs) associated with the AER
protocol is an efficient method to enable network topology reconfigurability
[129, 145, 159, 161, 163]. Synaptic LUTs store the addresses of pre-synaptic
neurons, and they map them with the addresses of paired post-synaptic neurons.
When a neuron spikes, its address is searched inside the synaptic LUTs. This
allows to retrieve the addresses of post-synaptic neuron it is virtually connected
to. As a result, the network topology can be modified by simply reprogramming
synaptic LUTs. However, routing congestion can appear if the time to process
an event, in particular the time to search an address in the LUTs, is longer than
the time between two consecutive events.
Figure 1.3.2 shows the three main neural network architectures: (i) Fully-
Connected Neural Network (FCNN), (ii) Convolutional Neural Network (CNN),
and (iii) Recurrent Neural Network (RNN). FCNN is the simplest topology
wherein every neuron of a layer is connected to every neuron of the next layer.
It is mainly used for tasks such as classification or detection [174, 175]. CNNs
are designed to process data that come in the form of multiple arrays, for
example a colour image composed of three two-dimensional arrays containing
pixel intensities in the three colour channels [15]. Neurons in a convolutional
layer are organised in feature maps wherein each neuron is connected to a small
subset of neurons, receptive field, of the previous layer [176]. Convolutional
layers require fewer synapses than fully-connected layers, and they have the
advantage to be insensitive to the spatial location of specific features in the
inputs. For instance, if a CNN is sensitive to specific motifs from input images, it
can detect them whatever their spatial location in the inputs. CNNs are mainly
used for visual processing like face recognition and have achieved so far the
highest performance in image classification [177]. The third main architecture
is the RNN wherein feedback loops are included inside the network topology.
This allows to store an input information, while processing new inputs. For this
reason, RNNs are often used in tasks that involve sequential inputs, such as
speech and language recognition.
Chapter 3 focuses on the implementation of synaptic LUTs for SNNs, and
more details are provided in this chapter.

1.3.3 Hardware spiking neuron: the leaky integrate-and-
fire neuron model

A canonical neuron model used in SNNs is the Leaky Integrate-and-Fire (LIF)
neuron [156]. As biological neurons, LIF neurons rely on the integration of
synaptic input currents and fire a spike when the integration value reaches a
certain threshold [178, 179]. From a system point of view, LIF neurons receive
input currents from excitatory or inhibitory synapses. If the synapse is excitatory,
the current is positive. Otherwise, it is negative. The stronger a synapse, i.e.
the higher its synaptic weight, the higher the current absolute value. These
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Figure 1.3.2: The three main neural network architectures: Fully-
Connected Neural Network (FCNN), Convolutional Neural Network
(CNN), and Recurrent Neural Network (RNN). Adapted from [12].

input currents are then integrated by LIF neurons. That is, LIF neurons can be
modelled by an internal state variable, X, that evolves according to a first-order
differential equation [16]:

τleak
dX
dt +X = Iinput (1.3.1)

wherein X represents the integrated current value, τleak is an integration time
constant, and Iinput is the input synaptic current. Upon receiving input synaptic
currents, X increases (or decreases if the synapse is inhibitory). Between two
integrations, X exponentially decreases with a time constant τleak. When X
reaches a certain current threshold value, Ith, the neuron emits a spike, and X is
reset to zero. After emitting a spike, LIF neurons are unable to integrate any
input synaptic current for a refractory period. Lateral inhibition can also be
implemented: when a LIF neuron spikes, it also inhibits neighbouring neurons
from integrating input currents for a certain duration tinhib. This allows to
implement winner-take-all systems to prevents different neurons from being
selective to similar features [174, 180].
Figure 1.3.3 (a) shows a simple LIF neuron circuit originally proposed in
[181]. The capacitance Cmem, referred to as the membrane capacitance, models
the membrane of a biological neuron [148]. Figure 1.3.3 (b) illustrates the
evolution of the membrane capacitance potential, Vmem, during the generation
of an action potential. Upon being fed by excitatory input currents, Iin, Cmem
charges up (integration). Respectively, inhibitory currents (not shown) remove
charges from Cmem. In the absence of input currents, Cmem discharges to its
resting potential (ground in this case) through leakage currents controlled by
the gate voltage Vlk and a time constant τleak dependent on Cmem value. Vmem is
compared to a threshold voltage, Vthr, using a basic transconductance amplifier
[148]. When Vmem exceeds Vthr, an action potential is generated in a similar
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way as in biological neurons: an increase in sodium conductance (modelled
by INa) creates the up-swing of the spike, and a delayed increase in potassium
conductance (modelled by IK) creates the down-swing. More precisely, when
Vmem exceeds Vthr, the output of the first inverter goes low and activates the
transistor M3. This charges up Cmem through INa and pulls up Vmem. At
the same time, the second inverter charges up the capacitance CK at a speed
controlled by the current IKup. As soon as the voltage on CK is high enough to
activate the transistor M2, the potassium current, IK, pulls down the voltage
Vmem. The current IKup controls the spike width. Finally, CK is discharged
through the current IKdn. As long as the voltage on CK is high enough, Cmem
cannot integrate any incoming input current. That it, IKdn controls the refractory
period of the neuron.
Many silicon hardware implementation of LIF neurons have been proposed based
on standard VLSI CMOS technology [148, 182–184]. However, they usually
require the use of big capacitors (≈pF) to achieve biological time constants
τleak (≈10 ms) which consumes significant silicon area. Recent works have
sought to propose novel neuron implementations with better area-efficiency, in
particular with the use of new non-volatile memories presented in Section 1.2.1
[146, 185–187] or new materials like Mott insulators [188, 189]. This is out of
the scope of this work. As synapses outnumber neurons in the human brain by
several orders of magnitude (1014 vs 1011, respectively), most of the efforts in
the literature have been focused on efficient designs of synaptic circuits. This is
discussed in the next section.

1.3.4 Hardware synapse implementation

In the following, we will refer to the neuron transmitting spikes along a synapse
as the input neuron or pre-synaptic neuron, and to the neuron receiving spikes
as the output neuron or post-synaptic neuron.

1.3.4.1 Synaptic plasticity and learning rule

It is now known that all chemical synapses, the most abundant types of biological
synapses, are plastic: their strength, or synaptic weights, undergo experience-
dependent changes during brain development and over time as a result of learning
[136]. These changes persist on time scales ranging from milliseconds to minutes
for the short-term plasticity, and up to days or years for the long-term plasticity.
Short-term plasticity is mainly driven by spiking activity of pre-synaptic neurons,
whereas long-term plasticity can be a function of both pre- and post-synaptic
neurons activities [136]. Short-term plasticity can be subdivided into Short-
Term Facilitation (STF) and Short-Term Depression (STD). STF is a transient
increase in synaptic weight that results in more neurotransmitters released at
each successive action potential. On the other hand, STD is a transient decrease
in synaptic weight due to the progressive depletion of the pool of synaptic vesicles
available at each action potential. Long-term plasticity can be distinguished
between (i) Long-Term Potentiation (LTP) wherein synaptic weights undergo a
long-lasting increase, and (ii) Long-Term Depression (LTD) wherein synaptic
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(a)

(b)

Figure 1.3.3: (a) Example of a bio-inspired silicon-based Leaky Integrate-
and-Fire (LIF) neuron circuit from [181]. (b) Evolution of the membrane
capacitance potential, Vmem, during the generation of an action potential.
Reproduced from [148].

weights undergo a long-lasting decrease. LTP and LTD are broad terms that
only define the direction of change in synaptic efficacy, and the different cellular
and molecular mechanisms involved in these changes will not be reviewed here.
Because of its long-lasting nature, long-term plasticity is widely believed to be
responsible of learning and memory.
In neuromorphic systems, the network internal parameters - in particular synaptic
weights - are modified during the learning phase, or training phase, following
a learning rule. Learning rules can be classified into three main paradigms: (i)
supervised learning, (ii) unsupervised learning, and (iii) reinforcement learning
[15, 190]. In supervised learning, the network is trained using labelled input data
(e.g. dog pictures are associated with the label ”dog”, cat pictures with the label
”cat”, ...) and/or using an external teacher. A common supervised learning
rule used to train feed-forward artificial neural networks is the gradient-descent
back-propagation algorithm [191], wherein synaptic weights are adjusted at each
iteration in order to minimise the error rate between the actual and correct
output. By contrast, unsupervised learning does not need training data to be
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labelled; there is no notion of correct or incorrect output. The typical task of
such machine learning algorithms consists in identifying similarities between
the inputs and organising them based on these similarities [174, 192–195]. This
is a considerable advantage over supervised algorithms since today’s big data
applications often come with large volume of unlabelled and unstructured data
[14]. In reinforcement learning, training data are not presented but collected by
an agent in an environment so as to maximise some notion of reward [128, 196].
In this work, we will only focus on unsupervised learning paradigms.
An exemplary bio-inspired unsupervised learning paradigm suitable for training
SNNs is the so-called Spike-Timing-Dependent Plasticity (STDP) [174, 192–
195, 197]. The most known STDP rule is the long-term plasticity induced by
pairs of pre- and post-synaptic spikes [132, 198] which was first experimentally
observed in 1998 by Bi and Poo [133] (reported in Figure 1.3.4). The change
in synaptic weight depends on the difference between the spike timing of a pre-
and a post-synaptic neuron: if the post-synaptic neuron spikes shortly after the
pre-synaptic neuron (within a time window of about 100 ms), the synaptic weight
increases (Long-Term Potentiation (LTP) event, right-hand side of Figure
1.3.4). This facilitates the transmission of future spikes. Otherwise, the synaptic
weight decreases (Long-Term Depression (LTD) event, left-hand side of Figure
1.3.4). The shorter the time difference, the higher the synaptic weight change
in accordance with Hebb’s postulate [132]: ”Neurons that fire together, wire
together”. This form of STDP is often referred to as the Hebbian STDP. Other
forms of STDP have been observed in biology, such as the anti-Hebbian STDP
wherein LTP events are induced by post-synaptic neurons firing before pre-
synaptic neurons, and vice-versa, the symmetric Hebbian STDP, or symmetric
anti-Hebbian STDP [135, 199]. However, these forms of pair-based STDP fail to
replicate recent triplet-based STDP experiments (i.e. two pre-synaptic spikes and
one post-synaptic spike, or two post-synaptic spike and one pre-synaptic spike
to induce synaptic changes) [200]. Spike-Rate-Dependent Plasticity (SRDP)
[201, 202] is another example of unsupervised learning paradigm wherein LTP is
induced when the pre-synaptic neuron fires with a high frequency (20-100 Hz),
while LTD is induced for low-frequency spiking (1-5 Hz). In this work, we will
focus on long-term plasticity based on the simple Hebbian STDP rule.

1.3.4.2 Overview of synaptic implementations

A plethora of artificial synapses has been reported in the literature [12, 68, 203–
207]. Traditional synaptic designs made use of conventional CMOS technology.
A typical CMOS-based synapse is the Differential-Pair Integrator (DPI) synapse
proposed in [203] and depicted in Figure 1.3.5. The DPI synapse features
bio-inspired synaptic properties, such as tunable synaptic weights and realistic
synaptic dynamics, and it can be integrated in VLSI spike-based neural systems as
recently demonstrated on the Dynamic Neuromorphic Asynchronous Processors
(DYNAPs) chip [145]. However, this implementation consumes valuable silicon
area due to the use of several MOSFET transistors for one synapse - four n-FETs,
two p-FETs, and one capacitor [145]. In addition, synaptic parameters are often
stored in centralised volatile memories which increases power consumption [91].
This is detrimental for the implementation of neuromorphic processors with the
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Figure 1.3.4: Experimental Spike-Timing Dependent Plasticity (STDP)
observed by Bi and Poo [133]. If a post-synaptic neuron spikes shortly
after a pre-synaptic neuron within a time window of about 100 ms (right-
hand side), the synaptic weight increases. Otherwise, the synaptic weight
decreases (left-hand side). Adapted from [133].

Figure 1.3.5: Differential-Pair Integrator (DPI) synapse. Reproduced
from [203].

same granularity as biological human brains (more than 1014 synapses). New non-
volatile resistance-based memories presented in Section 1.2.1 - encompassing
the presented Resistive Memory (RRAM), Phase-Change Memory (PCM), and
Spin-Torque-Transfer Magnetic Memory (STT-MRAM), and will be referred
to as memristors in the following - have been foreseen as suitable candidates
over the last decade to emulate artificial synapses thanks to their many common
properties with biological synapses. They are two-terminals devices, scalable to
sizes similar to biological synaptic clefts (≈20 nm), and can store synaptic weights
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Figure 1.3.6: Schematic illustration of a vector-matrix multiplication
performed by a memristor crossbar array in a single read cycle. Multipli-
cation operations are performed on each memory element by Ohm’s law,
while accumulate operations are performed on every column or row by
Kirchhoff’s law. Reproduced from [207].

in their conductance value. In particular, they can adjust their conductance
value over time with low-power programming pulses and retain them thanks
to their non-volatility property. This facilitates the implementation of local,
long-term synaptic plasticity algorithms, just like the STDP rule [16, 192–
195, 197, 208, 209]. Finally, memristors can be integrated into crossbar arrays
which is promising to implement hardware accelerators during both training
and inference [87, 205, 210–214]. In both steps, hardware optimised for matrix
multiplication, such as Graphical or Tensor Processing Units (GPUs and TPUs)
[126, 128], or Application-Specific Integrated Circuits (ASICs) [215–218], are
required due to the large number of Multiply-And-Accumulate (MAC) operations
performed between the weights of the network and the input data. By contrast,
memristor crossbar arrays can efficiently perform parallel MAC operations
wherein multiplication operations are performed directly on memory devices
at every cross-point by Ohm’s law, and the resulting currents are accumulated
along rows or columns with Kirchhoff’s law (Figure 1.3.6) [87].
Many synaptic implementations based on single memristor devices have been
reported. One of the earliest demonstrations of RRAM-based synapses was
implemented with a nanoscale Ag/Si-based active layer (see Figure 1.3.7 (a))
[219]. As biological synapses, the resistance value could be gradually tuned in
an analog fashion by controlling the motion of Ag ions in the active layer upon
the application of voltage pulses (cf Figure 1.3.7 (b)). In addition, STDP-
based learning capability was demonstrated by interconnecting two CMOS-based
LIF neurons with the nanoscale RRAM. A Time-Division Multiplexing (TDM)
approach was used to capture the spike timing difference between the two neurons
and map it to the width of a pulse to be applied on the synaptic device. The
results are reported in Figure 1.3.7 (c) and proved the capability of RRAM
technology to implement electronic synapses capable of STDP learning. However,
the use of the TDM approach increases circuit complexity. Another approach to
implement STDP was demonstrated by Yu et al. [220] in a TiN/HfOx/AlOx/Pt
RRAM stack based on a direct overlap scheme of pre- and post-synaptic spikes.
For this purpose, the authors in [220] showed that the resistance value could be
controlled by the amplitude of programming pulses. Then, pre- and post-synaptic
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(a) (b) (c)

Figure 1.3.7: (a) Schematic illustration of a Resistive Memory (RRAM)
used as a synapse between a pre- and post-synaptic neuron. (b) Conduc-
tance response (represented by the read current at 1 V) of a Ag/Si-based
active layer RRAM after a series of 100 identical potentiation pulses (3.2 V
for 300 µs) followed by 100 identical depression pulses (-2.8 V for 300 µs).
(c) Experimental demonstration of Spike-Timing-Dependent Plasticity
(STDP) measured on the Ag/Si-based RRAM. Timing difference between
the pre- and post-synaptic neuron, ∆ Spike Timing, was captured and
mapped with a time-division multiplexing approach. Reproduced from
[219].

(a) (b)

Figure 1.3.8: (a) Pre- and post-synaptic spike sequences to enable
Spike-Timing-Dependent Plasticity (STDP) with pulse amplitude modu-
lation. Pulse amplitudes are: -1.4 V, 1 V, 0.9 V, 0.8 V, 0.7 V, and 0.6
V (pre-synaptic spikes); -1 V, 1.4 V, 1.3 V, 1.2 V, 1.1 V, and 1 V (post-
synaptic spikes). (b) Experimental demonstration of STDP measured on
a TiN/HfOx/AlOx/Pt RRAM stack using the previous STDP scheme.
Reproduced from [220].

spikes were carefully designed via sequences of single pulses with decreasing
amplitude (cf Figure 1.3.8 (a)) such that only the direct overlap of pre- and
post-spikes induces a conductance change in the RRAM device as demonstrated
in Figure 1.3.8 (b). Similar approaches with PCM technology have also been
reported [67].
The use of single memristor devices to implement artificial synapses provides good
opportunities to build extremely dense neuromorphic circuits. However, it also
results in serious issues, such as sneak-path currents in crossbar arrays and the risk
to degrade memristor devices due to the lack of current limiters [43, 78, 86, 221].
Therefore, hybrid CMOS/memristor structures have been proposed in the so-
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(a) (b)

Figure 1.3.9: (a) Example of a one-transistor/one-RRAM (1T1R)
synapse connecting a pre- and post-synaptic neuron. The 1T1R synapse is
activated via the transistor gate only at pre-synaptic pulses. (b) Pre- (top)
and post-synaptic (bottom) pulses to enable Spike-Timing-Dependent
Plasticity (STDP) learning in the 1T1R synapse. Only the overlap be-
tween pre- and post-synaptic pulses induces an increase (∆t>0) or decrease
(∆t<0) in conductance of the RRAM. Reproduced from [222].

called one-transistor/one-resistor (1T1R) structure [87, 192, 193, 208, 209, 222–
227]. Figure 1.3.9 (a) shows an example of 1T1R synapse based on a MOSFET
in series with a TiN/HFOx/TiN RRAM cell connecting a pre- and post-synaptic
neuron [222]. The pre-synaptic neuron biases the gate of the 1T1R synapse,
while the post-synaptic neuron biases the Top Electrode (TE) voltage of the
RRAM, VTE. VTE is set at a low constant voltage that induces a current
proportional to the synaptic weight - i.e. RRAM conductance - across the 1T1R
synapse whenever a pre-synaptic spike occurs. This current is integrated by the
post-synaptic neuron. When the post-synaptic neuron fires a spike, it emits
a short (1 ms) positive pulse followed after 10 ms by a short (1 ms) negative
pulse applied on the RRAM TE as illustrated in Figure 1.3.9 (b). Pre- and
post-synaptic spikes are designed so that only their overlap within ±10 ms
produces a conductance change: if the time difference is positive, the positive
post-synaptic pulse is applied on the RRAM TE which sets the device to its
Low Resistance State (LRS, potentiation event). Otherwise, the post-synaptic
negative pulse is applied which resets the device to its High Resistance State
(HRS, depression event). Numerous RRAM-based 1T1R synapse designs capable
of STDP learning have been studied [87, 192, 193, 208, 209, 222–227]. Note
that most of RRAM technologies are binary, i.e. they only switch between
their two distinct states, LRS and HRS, after a potentiation or depression
event, respectively. This can be detrimental for network performance as analog
modulation is often necessary. This will be discussed more in details in Chapter
2. Many other hybrid synaptic structures have been reported [105, 228–230], for
instance 2T1R synapses [231, 232] that provide more flexibility in the emulation
of biological process thanks to the use of an additional transistor, and will not
be reviewed.
The downside of the overlapping scheme to emulate STDP learning is that it
increases circuit complexity and degrades data throughput since it relies on the
overlapping of long pre- and post-synaptic pulses [201, 233, 234]. To overcome
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this issue, other synaptic implementations that are not based on overlapping
pulses have been proposed, such as the differential synapse proposed in [234]
composed of twenty transistors and two memristors. Although the differential
synapse is way less dense than classic 1T1R synapses, it can potentially scale
better with large arrays of neurons and synapses since it allows to use all synapses
in parallel and eliminates sneak-path issues. Another possibility is the use of
second-order memristors [235–237] - another class of memristors. Unlike first-
order memristors, their conductance change is also governed by second-order
state variables like the internal temperature in Ta2O5-x-based cells presented in
[236]. Applications of pre- or post-synaptic spikes on Ta2O5-x-based synapses
result in a transient increase in the internal temperature that decays in time.
This naturally provides an internal timing mechanism. Thus, post-synaptic
spikes induce LTP events only if synaptic devices have first been heated by
pre-synaptic pulses. Respectively, LTD events are induced at pre-synaptic spikes
only if synaptic devices have first been heated by a post-synaptic pulse.
Many other three-terminals synaptic devices have also been reported [238–244]
and will not be reviewed here. Other learning rules have been demonstrated with
memristors, such as the widely studied supervised back-propagation algorithms
[141, 175, 245, 246], triplet-based STDP [247], short-term plasticity rules [224,
248–251], and spike-rate-dependent plasticity [252], and will not be analysed in
this section neither. In the scope of this work we will focus on RRAM-based
1T1R synapses with unsupervised STDP learning. As explained in Section
1.2.1.3, RRAMs pose major challenges for memory applications, namely their
low memory window associated with rather low programming endurance, and
their high resistance variability. However, the impact of these problems for
neuromorphic applications is still obscure and will be analysed in Chapter
2. In particular, we will clarify the role of synaptic variability arising from
RRAM resistance variability. Another issue is the intrinsic binary nature of
RRAM technology that can degrade performance of neuromorphic systems
[16, 175, 194, 195, 241, 245, 246, 253–256]. This will also be studied in Chapter
2.

1.3.5 Overview of fabricated neuromorphic processors

Many fabricated spiking neural network processors have been reported in the
literature [22, 129, 130, 145, 161, 162]. Table 1.1 summarises the main features
of each neuromorphic processor. While these works are excellent proofs-of-
concept of neuromorphic system capabilities, there is still plenty of room for
improvement from a technological, design, and circuit point of view. First,
synapses are implemented fully in CMOS technology, such as the DPI synapse
[145, 203], or with digital circuits associated with SRAM [22, 129, 161, 162].
Such implementations consume valuable silicon real-estate. Second, network
parameters are often stored in centralised memories - generally in SRAM or
DRAM [22, 129, 130, 161]. This does not truly eliminate the Von Neumann
bottleneck as network parameters need to be read and transferred from a
digital bus during computation. Third, this leads to static power consumption
since SRAM and DRAM are volatile. Fourth, network topology needs to be
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reconfigurable. The reported processors store the network topology inside
Synaptic Routing Tables (SRTs) based either on SRAM or DRAM [22, 130, 161,
162], or Content-Addressable Memories (CAMs) [129, 145] to enable network
reconfigurability. It has been demonstrated that the latter solution based on
CAMs is more efficient to prevent routing congestion of spiking events and
to relax constraints on the maximum number of neurons and synapses inside
each neuromorphic core [163] thanks to the fast, parallel search capability of
CAMs [257–260]. However, CAM-based SRTs are typically implemented with
conventional SRAM-based CAM structures like in DYNAPs [145], and chip
area can be saved with the use of RRAM-based CAM structures [261–266]. For
instance, CAM circuits in DYNAPs consume more silicon area (31.7%) than
both neuron and synapse circuits (22.8%). Finally, the processors do not always
permit on-line training, and appropriate learning schemes and circuits are still
to be developed.

Table 1.1: Summary of reported silicon-proven multi-core spiking neuro-
morphic processors [22, 129, 130, 145, 161, 162].

1.4 Goal of this PhD thesis

The main objective of this PhD thesis is the use of resistive memories and
three-dimensional monolithic technologies to enable the hardware implementation
of bio-inspired reconfigurable Spiking Neural Networks (SNNs). Recently, multi-
core SNN processors have been demonstrated [22, 129, 130, 145, 147, 161, 162],
yet there is still plenty of room for improvement as presented in the previous
section, especially in terms of performance, energy-efficiency, and silicon area
consumption. To this aim, optimisations can be achieved on the major building
blocks of SNN cores, namely:

• Synaptic arrays with adjustable synaptic weights

• Synaptic routing tables for on-the-fly network topology reconfigurability

• Neuron circuits with adjustable parameters
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• On-line learning circuitry

Resistive Memories (RRAMs) have been seen as suitable candidates for the
implementation of area- and energy-efficient SNN processors. However, there
are still significant roadblocks that prevent their integration into large memory
arrays for standard memory applications, namely their low resistance ratio
and high resistance variability. Yet RRAM requirements for SNN processors
are still unclear, and comprehensive studies of the impact of RRAM electrical
properties and variability on SNN performance and reliability are still to be
provided. In the framework of this study, we will focus on (i) arrays of RRAMs
to implement adjustable synaptic weights, and (ii) arrays of RRAM-based Ternary
Content-Addressable Memories (TCAMs) to implement synaptic routing tables
for on-the-fly network topology reconfigurability. The very goal of this PhD thesis
work is to thoroughly evaluate the impact of RRAM electrical characteristics on
these two building blocks and provide guidelines to optimise RRAM programming
by means of extensive electrical characterisations and simulations. In addition,
we will open up perspectives to further improve SNN area-efficiency from a
technological point of view by demonstrating the 3D monolithic co-integration
of high-performance CMOS transistors with RRAM technology. It is also worth
noting that all the results presented in this dissertation are not specifically
bounded to RRAM technology, and the proposed guidelines to optimise SNN
performance can be applied to any technology that can replace RRAM technology
- such as phase-change memory, magnetic memory, ...

This dissertation is organised as follows:
Chapter 2: Role of synaptic variability in resistive memory-based
spiking neural networks with unsupervised learning
In this chapter, we study the implementation of artificial synapses with
RRAMs in SNNs trained with the unsupervised spike-timing-dependent
plasticity learning paradigm. For this purpose, two canonical applications are
simulated: (i) a detection application, and (ii) a character classification. We
first present electrical characterisations measured on multi-kilobits RRAM
arrays. Then, we evaluate the impact of RRAM electrical properties on SNN
learning performance by means of system-level simulations calibrated on RRAM
electrical characterisations. In particular, we clarify the role of synaptic variabil-
ity - arising from RRAM cycle-to-cycle and device-to-device resistance variability.

Chapter 3: Synaptic routing reconfigurability of spiking neural
network with resistive memory-based ternary content-addressable
memory systems
In this chapter, we study the implementation of synaptic routing tables with
RRAM-based Ternary Content-Addressable Memories (TCAMs). We first
present extensive electrical characterisations performed on a RRAM-based
TCAM circuit implementing the most common two-transistors/two-RRAMs
(2T2R) bitcell structure. Then, we present a new RRAM-based TCAM bitcell in
a one-transistor/two-RRAMs/one-transistor (1T2R1T) configuration featuring
a similar silicon area to that of the previous 2T2R structure. The proposed
1T2R1T TCAM structure aims to overcome the main limitations of the most
common 2T2R TCAM. Extensive electrical characterisations are performed
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on a 1T2R1T TCAM circuit, and electrical results obtained on both TCAM
circuits are compared. We finally propose design optimisation to improve
TCAM performance and reliability.

Chapter 4: Three-dimensional monolithic integration of two layers
of high-performance CMOS transistors with one layer of resistive
memory devices
In this chapter, we demonstrate the full co-integration of two layers of CMOS
transistors fabricated in a three-dimensional sequential (3D monolithic)
technology with one layer of RRAM devices monolithically fabricated on top
of the two layers of CMOS transistors. Devices have been fabricated in a
conventional 65-nm Silicon On Insulator (SOI) CMOS over CMOS process. We
first introduce the process flow of the integration. We then present electrical
characterisations performed on the fabricated devices to demonstrate the
functionality of the integration.

Chapter 5: Conclusion and perspectives
This chapter concludes the dissertation by summarising the main results
presented in this PhD thesis work and by giving short perspectives for potential
future works.
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CHAPTER 2. ROLE OF SYNAPTIC VARIABILITY

2.1 Introduction

2.1.1 Variability in biological brains

Variability is ubiquitous in any computational system, and brains are no
exception. Neurons and synapses - the fundamental computational units

in brains - are noisy devices [1, 2] due to effects such as the stochastic nature
of ion channels [2], time to replenish synaptic vesicle pools [3–5], background
synaptic activity [1, 6, 7], jitter in spike timings of action potentials [1], or
stochasticity in neurite (i.e. axons and dendrites) growth [8]. It has been shown
that randomness in the brain leads to trial-to-trial variability in neurons: if a
neuron is repeatedly driven with identical stimuli, its response varies from trial to
trial. This can have an impact on the behaviour or decision-making [1, 7, 9, 10].
While it is clear that variability is present in the brain, its implications are
still not entirely understood. Several studies have suggested that the brain
may actually benefit from noise and variability [9–14]. As an example, up to
ninety percent of presynaptic signals in the brain do not elicit postsynaptic
signals (synaptic failures since synaptic vesicle pools are not readily releasable
at any time and take as much as a few seconds to be fully replenished [3, 5, 15]).
Yet the predominance of synaptic failures may have a functional role providing
an energy-saving mechanism with less important spikes being filtered out and
relevant spikes being transmitted [16]. Another interesting statement is that
noise facilitates brains to explore more possible solutions to a specific problem
[8, 13, 17, 18] which prevents them from being stuck in suboptimal solutions.
This assumption is supported by the work of Rokni et al. [18] wherein the
authors showed that different combinations of synaptic weights can produce the
same output and that noise helps probe different synaptic configurations during
learning.

2.1.2 Synaptic variability in artificial spiking neural net-
works

These biological considerations can have important implications in nanoelectron-
ics as today multiple bio-inspired hardware architectures are being developed
incorporating nanodevices. Many of these architectures encode neuron values as
spikes [19, 20] - in so-called Spiking Neural Networks (SNNs) - which can lead to
high energy-efficiencies. These architectures also incorporate the brain-inspired
principle of learning, in the way the synaptic connections among neurons are
created, modified, and preserved. Many works on neuromorphic architectures
have already studied the implementation of electronic synapses [21–24] with tech-
nologies such as Complementary Metal-Oxide Semiconductor (CMOS) [25–28],
carbon nanotubes [29, 30], magnetic memories [31–33], phase-change memories
[34–38], or resistive memories [39–58]. Recently, efforts were rather focused on
new non-volatile resistance-based memories such as Resistive Memories (RRAMs)
to implement electronic synapses in artificial spiking neural networks thanks to
their compatibility with advanced CMOS technology nodes [59–61]. In addition,
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RRAMs resemble biological synapses as they are two-terminals devices, can
encode synaptic weights in their conductance value, and have the ability to
modulate their conductance state over time in the same way biological synapses
modulate their synaptic weight during learning. They also benefit from many ad-
vantages such as non-volatility, fast switching speed, and high scalability [59, 62].
This enables their integration in dense arrays to connect many silicon-based
neurons [26, 63–66]. Various approaches have been proposed to implement learn-
ing with RRAMs, such as the so-called supervised back-propagation algorithm
[34, 47, 48, 56, 67–69] or the bio-inspired unsupervised Spike-Timing-Dependent
Plasticity (STDP) learning rule [33, 37, 70–74].
Despite the numerous advantages listed above, RRAMs pose challenges as
they suffer from many non-idealities that can have an impact on learning
and inference performance. One drawback is the high conductance variabil-
ity - both across cycles and devices - inducing synaptic variability, i.e. non-
repeatable behaviours [60, 75–78]. It has been demonstrated that RRAM-
based neural networks are intrinsically robust to synaptic variability - with
supervised [25, 28, 29, 34, 35, 46, 47, 52, 79, 80] or unsupervised learning
[33, 37, 41, 42, 45, 49, 53, 54, 81, 82] - but a clear study explaining the origin of
this robustness is still to be provided. In particular, it is still to be understood if
neural networks are simply robust to synaptic variability or if synaptic variability
could actually be beneficial, in the same manner that noise might be beneficial
to biological brains. For instance, Mahvash et al. [29] showed that synaptic
variability plays a beneficial role in the reliability of spike generation, wherein
synapses with high synaptic variability produce spike trains with reproducible
timing. Another recent work by Pedretti et al. [41] demonstrated that adding
noise in the input data presented to the network during learning is beneficial as
it accelerates learning by a factor 3x.

2.1.3 Goal of this chapter

While several comprehensive studies of the impact of RRAM electrical properties
with supervised algorithms have been reported [28, 34, 35, 48, 80, 83–85], little
has been done with unsupervised learning [33, 81, 82, 86]. In this chapter, we
provide a comprehensive insight of RRAM electrical requirements for artificial
Spiking Neural Network (SNN) systems with unsupervised learning by Spike-
Timing-Dependent Plasticity (STDP). A fully-connected feed-forward SNN
topology with leaky integrate-and-fire neurons and RRAM-based synapses is
adopted. We focus on two different applications: a detection task [87] and a
classification task [69]. Electrical characterisations of RRAMs are provided.
SNN simulations have been calibrated on the electrical characterisation results.
In Section 2.2, we consider synaptic elements implemented with binary devices.
In Section 2.3, we consider synaptic elements implemented with analog devices.
The impact of RRAM characteristics on artificial SNN learning performance is
investigated, namely:

Binary devices : the memory window, cycle-to-cycle and device-to-device
conductance variability, aging.
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Analog devices : the limited number of synaptic levels, the asymmetry be-
tween potentiation and depression, the non-linearity of the conductance
response.

2.2 Binary devices

In this section, we focus on binary devices - in particular binary RRAMs-, i.e.
devices switching between two distinct conductance states: a High Conductance
State (HCS) and a Low Conductance State (LCS).

2.2.1 Experimental characterisation

2.2.1.1 Resistive memory device characteristics

Figure 2.2.1: (Left) Scanning electron microscope cross-section of the
TiN/HfO2/Ti/TiN (100 nm/10 nm/10 nm/100 nm) RRAM cell integrated
on top of the fourth Cu metal layer. (Right) Schematic view of the 1T1R
cell configuration. The NMOS transistor is used as a selector device.

We focus on HfO2-based oxide-based RRAM cells integrated in the back-
end-of-line of a 130-nm CMOS process [60]. They consist of a capacitor-like
metal-insulator-metal structure in series with a selector device. The mem-
ory element integration starts on top of the fourth metal layer (Cu). The
scanning electron microscope cross-section of a 300-nm diameter HfO2-based
RRAM is shown in Figure 2.2.1 (Left). The RRAM devices are composed of a
TiN/HfO2/Ti/TiN stack where layers are 100 nm/10 nm/10 nm/100 nm thick.
A NMOS transistor in series with the memory element is used as a selector
device in a 1T1R configuration as depicted in Figure 2.2.1 (Right). This allows
each memory device of the array to be read from and written to individually, and
also regulates the compliance current - which usually defines the programming
current, Iprog - during programming operations. Each 1T1R structure in the
matrix is addressed using a Source Line (SL) and a Bit Line (BL) which connect
to the top electrode of the device and the source of the transistor, respectively.
The RRAMs require an initial forming process wherein a positive voltage of 4
V is applied on RRAM top electrodes (VSL=4.0 V, VBL=GND, Iprog=65 µA,
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tpulse=100 ns) and during which they switch from a pristine state featuring a
very low conductance value (<500 pS) to a higher conductance state. Upon the
application of a positive voltage on RRAM top (SL) or bottom (BL) electrodes,
the RRAM devices exhibit a reversible switching between a High Conductance
State (HCS) (Set operation) and a Low Conductance State (LCS) (Reset opera-
tion), respectively. During a Set operation, the Set voltage, VSet, is applied on
SL while BL is grounded. During a Reset operation, the Reset voltage, VReset, is
applied on BL while SL is grounded. The conductance value of RRAM devices
after a programming operation depends on the programming conditions (applied
voltage, programming current Iprog, and pulse duration). However, it varies
across cycles (cycle-to-cycle variability) and devices (device-to-device variability).

All measurements presented in this section have been performed on a 4-kbit
1T1R HfO2-based RRAM array. In order to study the impact of RRAM elec-
trical properties on spiking neural network performance, RRAMs have been
programmed with four different programming conditions. Figure 2.2.2 shows
the cumulative distributions of HCS and LCS associated with each programming
condition. The cumulative distributions are measured on all cells on the 4-kbit
array after one cycle (one Set and one Reset operations on the 4 kbit devices).
Table 2.1 summarises the different programming conditions. Programming
conditions B1 and B2 consume less programming energy than condition A,
whereas programming conditions C feature the highest programming energy
consumption. In memory applications, RRAMs are used to store one bit of
information: RRAMs in HCS are associated with a binary ’1’ value, and RRAMs
in LCS are associated with a binary ’0’ value. Therefore, it is fundamental
that HCS and LCS distributions do not overlap so that each state can be prop-
erly detected. This is the case for programming conditions A and C (Figure
2.2.2 (Top left and right)), whereas HCS and LCS distributions overlap for
programming conditions B1 and B2 (Figure 2.2.2 (Bottom left and right)).
The appropriate separation of HCS and LCS distributions is characterised by
the memory window at 3σ, MW3σ. The MW3σ is defined as the ratio between
the HCS conductance value at -3σ, HCS-3σ, and the LCS conductance value at
+3σ, LCS+3σ, of the conductance distributions:

MW3σ = HCS-3σ

LCS+3σ
(2.2.1)

Figure 2.2.3 (a) shows the evolution of HCS and LCS during one million
Set/Reset switching cycles with programming conditions A, measured on the 4-
kbit array. Solid lines represent the median values of HCS and LCS distributions
(HCS0σ and LCS0σ) which remain constant for the 106 switching cycles. However,
the conductance values at ±3σ, represented by the dotted lines, evidence an
increase of conductance variability in both HCS and LCS due to RRAM aging.
This causes a reduction of the memory window at 3σ. After 105 switching cycles,
the HCS and LCS distributions start overlapping and it is no longer possible
to use the RRAMs for memory applications. After 106 switching cycles, oxide
breakdowns can be observed in some cells causing these broken cells to be stuck
in the HCS. We define the programming endurance as the maximum number
of programming operations before oxide breakdowns occur. Figure 2.2.3 (b)
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Figure 2.2.2: Cumulative distributions of the LCS and HCS distribu-
tions measured on the 4-kbit array (Top left) after 1000 switching cycles
with condition A, (Top right) with condition C, (Bottom left) with con-
dition B1, and (Bottom right) with condition B2. Table 2.1 summarises
the parameters of each programming condition. These distributions
represent the device-to-device variability.

Programming conditions A C B1 B2
Voltage [V] VSet 2 2 2 2

VReset 2.5 2.5 2.5 2.5
Iprog,set [µA] 250 500 57 20
Vg,reset [µA] 3 3.5 3.5 3.5
Energy [pJ/spike] ESet 50 100 11.4 4

EReset 62.5 125 14.25 5
σG,HCS [log10(S)] 0.05 0.02 0.28 0.53
σG,LCS [log10(S)] 0.49 0.64 0.58 0.54
MW3σ [#] 3 370 1.3 0.014
Endurance [#] 106 ≈ 102 ≈ 106 ≈ 108

Table 2.1: Programming conditions used in this work, with tpulse=100
ns. The programming energy is defined in Equation 2.2.3.

shows the evolution of HCS (red circle) and LCS (blue square) conductance
variability during the endurance cycling of Figure 2.2.3 (a). Here, we define
the conductance variability as the standard deviation of the base-10 logarithm
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of the conductance distributions:

σG,HCS = std[log10(GHCS)]
σG,LCS = std[log10(GLCS)]

(2.2.2)

with GHCS and GLCS the conductance distributions of HCS and LCS, respec-
tively. This definition of conductance variability allows to translate the absolute
standard deviation of the conductance values into the standard deviation in
terms of orders of magnitude of the distributions [49]. Table 2.1 presents the
different metrics for each programming condition. The programming energy in
Set and Reset has been calculated as:

ESet = VSet * Iprog,set * tpulse

EReset = VReset * Iprog,set * tpulse
(2.2.3)

MW3σ, programming endurance, and conductance variability of both HCS and
LCS depend on the programming conditions (programming current, Iprog, and
the amplitude of Set/Reset voltage pulses) [88–90]. Figure 2.2.4 shows the
conductance variability, defined in Equation 2.2.2, as a function of the median
conductance value, measured on the 4-kbit array for several programming condi-
tions. The conductance variability is constant at roughly 0.5 for conductance
values lower than 77.5 µS and then decreases with the median conductance value.
In order to increase the memory window, it is necessary to apply stronger Reset
programming conditions in order to decrease the LCS median conductance value,
and/or apply stronger Set programming conditions to decrease HCS variability
and increase HCS median conductance value. However, this implies an increase
in programming power consumption. In addition, it has been demonstrated that
a trade-off exists between the memory window and the programming endurance:
higher memory windows imply lower programming endurance [88–91]. In this
work, we focus on the four representative programming conditions which are
reported in Figure 2.2.4 with the filled symbols. Table 2.1 summarises the
parameters of each condition:

• A: compromise between programming endurance and MW3σ (suited con-
ditions for standard memory applications)

• B1 and B2: low programming power consumption, high variability in both
HCS and LCS, and low MW3σ (cannot be used for memory applications
due to the low window margin)

• C: highest MW3σ amongst the four conditions, high programming power
consumption, low HCS variability, and low programming endurance.

2.2.1.2 Implementation of synaptic elements and learning rule with
resistive memories

Many implementations of RRAM-based synapses seek an analog conduc-
tance modulation under identical pulses in both programming directions:
when consecutive Set (potentiation) or Reset (depression) pulses are applied,
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(a) (b)

Figure 2.2.3: (a) Programming endurance characterisation with pro-
gramming conditions A in Table 2.1. (b) Evolution of HCS and LCS
conductance variability with programming conditions A during RRAM
aging. Conductance variability is defined in Equation 2.2.2.

Figure 2.2.4: Conductance variability as a function of the median
conductance value for different programming conditions. Conductance
variability is defined in Equation 2.2.2.

the conductance should gradually increase or decrease, respectively [28, 33–
35, 48, 53, 54, 56, 80, 82, 86]. Figure 2.2.5 reports the conductance response
when a series of 20 identical Set and Reset pulses are applied on the 4-kbit
RRAM array. Grey curves are the conductance response of single RRAM cells
with an analog behaviour. Dotted black lines are the conductance response of
single RRAM cells with a binary behaviour, i.e. an abrupt switching between
the LCS and HCS is observed. Only ten single cells are plotted for the sake
of clarity. Red and blue curves are the median conductance values extracted
from 4 kbit cells during potentiation and depression, respectively. Low and
high programming power conditions (B2 and A in Table 2.1) are used. For
low programming power conditions (B2, Figure 2.2.5 (Left)), the evolution
of the median conductance value shows an analog switching during depression.
Unfortunately, this behaviour is difficult to control across a large array due
to the strong device-to-device conductance variability. In addition, some cells
present a binary behaviour and only switch between two distinct states (HCS and
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Figure 2.2.5: Conductance evolution during the application of a series
of 20 identical Set pulses and Reset pulses with (Left) programming
conditions B2 and (Right) programming conditions A of Table 2.1. Grey
lines are representative of ten single cells behaving as analog devices
(gradual increase or decrease of the conductance value). Black lines
are representative of ten single cells behaving as binary devices (abrupt
switching between the HCS and LCS). Red circles and blue squares
correspond to the median conductance value calculated on 4 kbit cells
during potentiation and depression, respectively. The pulse 0 is the
conductance value before the first Set pulse.

LCS). Moreover, even in the cells presenting an analog-like switching behaviour,
the amount of conductance increase (decrease) after a Set (Reset) pulse varies
from device to device and pulse to pulse. In potentiation, the evolution of the
median conductance value shows a binary switching. For high programming
power conditions (Figure 2.2.5 (Right)), most of the RRAM cells (more than
ninety percent) present a binary behaviour in both programming directions
(potentiation and depression).
To overcome these limitations, we use a synaptic compound of multiple (n)
RRAM cells connected in parallel associated with a probabilistic programming
scheme [47, 49]. The circuit implementation is depicted in Figure 2.2.6 (a).
Since parallel conductances add up, the equivalent synaptic weight spreads from
the sum of n conductances in LCS to n conductances in HCS, with n+1 distinct
intermediate conductance levels. In order to define the conductance state of each
RRAM device (HCS or LCS), we associate this implementation with a stochastic
Spike-Timing-Dependent Plasticity (STDP) learning rule [44] - a simplified form
of the bio-inspired STDP rule [71, 72]. The learning rule is depicted in Figure
2.2.6 (b, left). When the presynaptic neuron spikes before the postsynaptic
neuron spikes within a time window tSTDP, a Long-Term Potentiation (LTP)
event occurs, and each RRAM of the synaptic compound has a probability pLTP
to switch to the HCS. Otherwise, a Long-Term Depression (LTD) event occurs,
and each RRAM cell of the synaptic compound has a probability pLTD to switch
to the LCS. The switching probabilities, pLTP and pLTD, can be defined either
with the use of an external Pseudo-Random Number Generator (PRNG) or
the intrinsic RRAM switching probabilities [45, 92]. An external PRNG allows
for a fine tuning of switching probabilities at the expense of circuity overhead.
Using the intrinsic RRAM switching probabilities reduces design complexity and
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programming power consumption as lower Set and Reset voltage amplitudes
and programming currents are used. However, this also leads to variability in
switching probabilities [92]. In this section, switching probabilities are defined
assuming the use of an external PRNG. The number of synaptic levels is defined
by the number of RRAM cells operating in parallel as shown in Figure 2.2.6
(b, right). Figure 2.2.6 (c) shows the impact of the programming conditions on
the conductance evolution of a synapse composed of 20 RRAM cells operating
in parallel when 200 potentiation pulses followed by 200 depression pulses are
applied. Grey lines show the conductance evolution of 100 different synapses,
red circles and blue squares represent the median conductance over the 100
synapses in potentiation and depression, respectively. We observe a gradual
increase (LTP) and decrease (LTD) of the conductance as a function of the
number of pulses with any programming condition. The ratio between the
median maximum conductance value (i.e. all the devices are in the HCS) and
the initial conductance value (i.e. only one device is in the HCS while the others
are in the LCS), Gmax,0σ/Ginit, is similar for every programming condition since
it mostly depends on the number of RRAM cells, n, per synapse (≈16 for A,
≈18 for C, ≈17 for B1 and B2).

2.2.2 Implications for a learning system: impact of bi-
nary RRAM-based synapse characteristics on the
network performance

We now investigate the impact of RRAM conductance variability for two different
applications implemented with Spiking Neural Networks (SNNs): a detection task
[87] and a classification task [69]. The network performance is assessed by means
of system-level simulations with the special-purpose neuromorphic hardware
simulator N2D2 [73, 93]. The detailed RRAM physical characterisation presented
in Section 2.2.1 has been implemented into physical models to understand
how device properties translate in terms of learning. Variability effects due
to peripheral circuits (such as neuron variability [33, 81]) are intentionally not
taken into account. For each programming condition, the real conductance
distributions measured on the 4-kbit array have been used to perform the
simulations.

2.2.2.1 Network topology

Both applications are based on a one-layer fully-connected feed-forward neural
network topology: each neuron of the first layer (input layer) is connected to
each neuron of the second layer (output layer) with a synaptic element. A
detailed description of the simulated SNNs for detection and classification is
provided in Appendix A. Neurons in the output layer are implemented with the
Leaky Integrate-and-Fire (LIF) model [73]. For each simulation, all the output
LIF neurons have the same firing threshold value which has been optimised to
provide the best performance (see Appendix B). The other neuron parameters
are kept constant and identical for all the simulations. For the car detection
application (Figure 2.2.7 (a)), the input layer corresponds to an image sensor
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(a)

(b)

(c)
Figure 2.2.6: (a) RRAM-based synapse implementation. The Pseudo-
Random Number Generator (PRNG) is used to tune the switching proba-
bilities. (b) Stochastic STDP rule and conductance evolution of a RRAM-
based synapse composed of 1, 3, and 20 RRAM cells in parallel. 200 po-
tentiation pulses followed by 200 depression pulses are applied. Condition
A in Table 2.1 is used. (c) Conductance evolution of 100 RRAM-based
synapses composed of 20 RRAM cells when 200 potentiation pulses and
200 depression pulses are applied. Condition A (Top left), C (Top right),
B1 (Bottom left), and B2 (Bottom right) are used. Red and blue sym-
bols represent the median conductance evolution; grey lines represent the
evolution of each synapse.
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composed of 128x128 spiking pixels. It is fully connected to an output layer of
60 neurons. The F1-score is used to assess network performance (see Appendix
A). F1 ranges from 0 to 1 with 1 being the best detection score. For the digit
classification application (Figure 2.2.7 (b)), the input layer corresponds to
input images from the MNIST dataset [69] composed of 28x28 pixels. A spike
frequency encoding is used to convert each input pixel into a spike train whose
spike rate depends on the grey intensity level of the pixel. The input layer is
fully connected to an output layer of 500 neurons. The Classification Rate (CR)
is computed as the ratio between the number of successfully classified digits and
the number of input digits presented. The full MNIST dataset (60 000 training
digits, 10 000 testing digits) is used once. We implemented the synaptic elements
with the RRAM-based synaptic compound presented in Section 2.2.1.2 (cf
Figure 2.2.6 (a)). Networks are trained with the unsupervised stochastic STDP
rule, extrinsic switching probabilities (an external PRNG is assumed), and
lateral inhibition [33, 73].

2.2.2.2 Detection application

The impact of RRAM-based synapse characteristics (number of synaptic levels,
RRAM conductance variability, memory window, and aging) on the learning
performance of the network designed for detection is investigated. All results
have been averaged over twenty simulations. Error bars represent the deviation
at 1σ.
Impact of the RRAM memory window and conductance variability
The first step was to study the impact of the number of synaptic levels and
the RRAM memory window on the network performance. To vary the number
of synaptic levels, the number n of RRAMs per synapse is modified. Figure
2.2.8 (a) shows the F1-score as a function of the memory window at 3σ (MW3σ,
Equation 2.2.1) for different numbers of RRAMs per synapse. Each point has
been averaged over twenty simulations. Error bars represent the deviation at
1σ. We used the LCS and HCS distributions measured under the programming
conditions A (Figure 2.2.2 (a)). MW3σ is modified by a translation of the
LCS distribution to higher (decrease of MW3σ) or lower (increase of MW3σ)
conductance values with respect to the actual value measured under condition
A (blue dashed line in Figure 2.2.8 (a)). This allows to vary the memory
window while keeping the HCS and LCS conductance variability values constant
(Equation 2.2.2), and it decouples the impact of MW3σ from the impact of
conductance variability. Surprisingly, the SNN performance is independent of
the number of devices per synapse: a binary synapse with only two distinct
synaptic levels is sufficient for this type of application. We obtained the same
result with the other LCS and HCS distributions from Table 2.1 (not shown).
By contrast, the essential parameter to improve SNN performance is the MW3σ:
F1 increases with the MW3σ, and it saturates at a F1-score of about 0.96 for a
memory window at 3σ larger than 3.
Second, we studied the impact of the conductance variability. We simulated the
proposed application with the four LCS and HCS distributions measured under
the four programming conditions presented in Table 2.1. An artificial case of a
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(a)

(b)

Figure 2.2.7: Simulated spiking neural networks used for (a) the car
tracking and (b) the digit classification applications. The associated score
definition to assess network performance is shown on the right-hand side
of each network. See Appendix A for more details.

synapse with zero variability (σG,HCS=0 and σG,LCS=0) was also simulated for
the sake of comparison. For each simulation, synaptic elements are implemented
with only one RRAM device since increasing the number of synaptic levels has
no impact on the network performance. Figure 2.2.8 (b) shows the simulated
F1-score as a function of the memory window at 3σ, MW3σ, for the different
studied distributions. The different MW3σ values were obtained by translating
the LCS distributions to lower or higher conductance values. This allows to
decouple the impact of MW3σ from the conductance variability. The MW3σ
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(a) (b)

Figure 2.2.8: (a) F1-score as a function of the memory window at 3σ,
MW3σ defined in Equation 2.2.1, for different numbers of RRAMs per
synapse. The HCS and LCS distributions measured under the program-
ming conditions A on the 4-kbit array are used (cf Figure 2.2.2 (a)). (b)
F1-score as a function of the MW3σ. One RRAM device per synapse is
used. The HCS and LCS distributions measured on the 4-kbit array for
the four conditions of Table 2.1 and an artificial case with zero variability
are used. The MW3σ is varied by a translation of the LCS distributions
to lower or higher conductance values.

corresponding to the actual experimental results for each programming condition
is highlighted by a filled symbol. For each case, F1 increases with the MW3σ, and
it saturates at a maximal F1-score of about 0.96 after a certain minimal MW3σ.
The higher the conductance variability, the lower the minimal MW3σ required
to reach the maximum score F1 of 0.96. For σG,HCS=0.53 and σG,LCS=0.54
(condition B2, black triangle in Figure 2.2.8 (b)), a MW3σ larger than 0.5
is required to reach the maximum score, whereas with no variability (synapse
with no conductance variability, black diamond in Figure 2.2.8 (b)), a MW3σ
of at least 200 is necessary. We extended the simulated results obtained in
Figure 2.2.8 (b) with nine different artificial combinations of HCS and LCS
variability shown in Figure 2.2.9 (a). The HCS and LCS distributions of the
nine artificial conditions follow a log-normal random law with different HCS and
LCS conductance variability values. Synaptic elements are implemented with one
RRAM device. We obtained the same result as in Figure 2.2.8 (b): for each of
the nine combinations, a certain minimal MW3σ is required to reach the maximal
F1-score of 0.96 (not shown). We plot in Figure 2.2.9 (b) the minimal memory
window at 3σ, MW3σ,min (z-axis), required to reach the maximum F1-score of
0.96 as a function of the HCS (x-axis) and LCS (y-axis) conductance variability,
for the four studied programming conditions (filled symbol), the synapse with
no variability (black diamond), and the nine artificial log-normal HCS and LCS
distributions (black circle). It is clear from Figure 2.2.8 (b) that increasing the
RRAM synaptic variability, σG,HCS and σG,LCS, is a way to relax the constraints
on the minimal required MW3σ: higher conductance variability values allow
for a decrease of the minimal required MW3σ. This can be explained by the
increased dynamic range with higher conductance variability values, i.e. the
increased range of synaptic values that are available during the learning phase.
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After the learning phase with the STDP learning rule, potentiated synapses
(RRAMs in HCS) represent relevant inputs, i.e. synapses transmitting spikes
generated by a car passing on the motorway, and depressed synapses (RRAMs
in LCS) represent noisy inputs. This is well illustrated on the two-dimensional
conductance mapping example of one arbitrary output neuron after learning in
Figure 2.2.10 (a). Each dot corresponds to one input synapse. Potentiated
synapses (RRAMs in HCS) are represented by coloured dots (red, blue, and
grey), depressed synapses (RRAMs in LCS) are represented by black dots (see
Appendix A for more details). As a result of the learning phase, we can observe
a pool of potentiated synapses (circled in white) denoting the sensitivity of this
neuron to cars passing at this specific position on the motorway. As the size
of a car is relatively small compared to the size of the video, the majority of
the synaptic weights has to be weak (RRAMs in LCS) with a tail of stronger
connections (RRAMs in HCS) in order to achieve high performance after the
learning phase. In our simulations, high performance after the learning phase
was reached (F1≈0.96) when the sum of the synaptic weights of potentiated
synapses was in average two hundred times as high as the sum of the synaptic
weights of depressed synapses.
To quantify this result, we define the Synaptic Window (SW) as the ratio
between the mean conductance value of synapses in HCS, GHCS, and the mean
conductance value of synapses in LCS, GLCS:

SW = GHCS

GLCS
(2.2.4)

Figure 2.2.10 (b) shows the F1-score as a function of the synaptic window,
SW, for the four experimental distributions in Table 2.1 plus the synapse with
no variability. The actual experimental SW for each condition is highlighted by
a filled symbol. As evidenced by Figure 2.2.10 (b), the network performance is
independent of synaptic variability; F1 is defined by the synaptic window, SW.
F1 saturates at 0.96 for synaptic windows larger than 200. This is illustrated in
Figure 2.2.10 (c) which shows the synaptic weight distribution after the learning
phase for the four programming conditions in Table 2.1. High performance
after learning is reached when the ratio between the peaks of the HCS and LCS
distributions is larger than 200. In that sense, the increase of both conductance
variability and memory window allows for an increase of the ratio between
the conductance values of potentiated synapses (red) and depressed synapses
(blue). Potentiated synapses at the highest conductance tail of the distribution
compensate for synapses at the lowest conductance tail. Similarly, depressed
synapses at the lowest conductance tail of the distribution compensate for
synapses at the highest conductance tail. This helps separate the peaks of
both distributions leading to high network performance. It is worth noting that
even with low programming power conditions (B1, F1=0.96) we have a score
as good as with the high programming power condition (C, F1=0.96). The
experimental condition B1 works well for neuromorphic applications whereas
it cannot be used in a memory application due to its high HCS variability (no
memory window). However, for the experimental condition B2, RRAM works
neither for memory nor neuromorphic applications. A decrease in F1 is observed
with the experimental condition A (optimised for standard memory applications)
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(a)

(b)

Figure 2.2.9: (a) Cumulative distributions of the nine artificial log-
normal distributions used to quantify the impact of synaptic variability.
(b) Minimal memory window at 3σ, MW3σ,min (z-axis), required to reach
the maximal F1-score of 0.96 as a function of the HCS (x-axis) and LCS
(y-axis) conductance variability values. Higher conductance variability
values allow to relax the constraints on MW3σ,min.

but is still acceptable (F1=0.95) if we can tolerate a loss of performance for
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an increase in endurance with respect to programming conditions C. Figure
2.2.10 (d) reports the simulated learning time as a function of the synaptic
window. The learning time has been defined as the time at which F1 reaches
its maximal value within a window of ±1%, for a given RRAM programming
condition. Learning time is degraded only for the condition B2 with a reduced
synaptic window.
Impact of RRAM aging
Finally, we studied the impact of the RRAM aging with endurance on network
performance. Both device-to-device and cycle-to-cycle variability are taken into
account. We extracted the conductance distribution during cycling on the 4-kbit
array up to one million cycles for the condition A (cf Figure 2.2.3 (a)), and
we used these data to evaluate the impact of RRAM aging on the F1-score. The
results are shown in Figure 2.2.11 (a). We can maintain a constant F1-score
of 0.95 until 105 cycles despite the increase in conductance variability. At 106

cycles, F1 plummets (F1=0.92). The degradation of F1 after 106 cycles is not
due to the increase in conductance variability and decrease of MW3σ but to
the broken cells (RRAMs stuck in the HCS). Upon removal of the broken cells
(1%) from the distribution (blue shaded square), it is possible to move back
up to a score F1 of 0.95. Figure 2.2.11 (b) shows the average number of Set
(red circle) and Reset (blue square) operations per RRAM device during the
learning phase for each programming condition. Red and blue shaded areas
represent the number of Set and Reset operations per RRAM device at ±3σ,
respectively. Similar numbers of programming events are required for each
programming condition. Considering the minimal learning time required to
reach high performance simulated in Figure 2.2.10 (d) (165 s for conditions
A, B1, and C), an average of about 0.1 Set operation and 10 Reset operations
per device is required, up to a maximum of 20 Set and 40 Reset operations.
Considering the programming endurance of this RRAM technology (cf Table
2.1), this makes possible the use of these programming conditions for learning.

2.2.2.3 Classification application

Impact of the RRAM memory window and conductance variability
A similar study on the impact of RRAM-based synapse characteristics on the
fully-connected feed-forward spiking neural network designed for digit classifica-
tion (see Appendix A) is performed. Each point has been averaged over twenty
simulations. Error bars represent the deviation at 1σ. First, we investigated
the impact of the number of synaptic levels and the RRAM memory window,
then the conductance variability on the SNN performance. Figure 2.2.12 (a)
reports the Classification Rate (CR) as a function of the memory window at 3σ,
MW3σ. The HCS and LCS distributions measured under the conditions A and
B2 plus the synapse with zero variability (σG,HCS=0 and σG,LCS=0) are used.
The different MW3σ values were obtained by translating the LCS distributions
to lower or higher conductance values. The actual experimental MW3σ for each
condition is highlighted by filled symbols. Each curve corresponds to a different
number of RRAM devices per synapse. In contrast to the detection task, the
CR is independent of the MW3σ for all the studied distributions. The network
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(a) (b)

(c)

(d)
Figure 2.2.10: (a) Example of the two-dimensional conductance mapping
of one arbitrary output neuron after learning. Potentiated synapses
(RRAMs in HCS) are represented by coloured dots (red, blue, and grey);
depressed synapses (RRAMs in LCS) are represented by black dots. (b)
F1-score as a function of the synaptic window, SW, defined in Equation
2.2.4. (c) Synaptic weight distributions after the learning phase for the four
programming conditions of Table 2.1. High performance after learning
(F1=0.96) is reached when the ratio between the peaks of the HCS and
LCS distributions is larger than 200. (d) Learning time as a function of
the SW.

performance depends on:

• Number of synaptic levels: The CR increases with the number of
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(a)

(b)

Figure 2.2.11: (a) Impact of the RRAM aging on the F1-score. Simula-
tions have been calibrated using the data of Figure 2.2.3 (a) (condition
A). Both device-to-device and cycle-to-cycle variability are taken into
account. (b) Average number of Set (red circle) and Reset (blue square)
operations during the learning phase for each programming condition.
Red and blue shaded areas represent the evolution at ±3σ, respectively.

RRAMs per synapse, and it saturates after 10 RRAMs per synapse. This
is in agreement with the studies performed in [33, 56, 82].

• Synaptic variability: The HCS and LCS distributions measured under
the programming conditions A improve the performance with respect
to the synapse with zero variability for a given number of RRAMs per
synapse. However, similar performances are achieved with condition B2
(high conductance variability) and the synapse with zero variability.

To quantify and understand the impact of conductance variability, we simulated
the SNN performance for the four programming conditions of Table 2.1 plus
the synapse with zero variability. Figure 2.2.12 (b) plots the classification rate,
CR, as a function of HCS variability, for a synapse composed by one and twenty
RRAM cells. As the MW3σ has no impact on the CR, we simulated the proposed
network calibrated on the experimental MW3σ for each programming condition
and a MW3σ of 5 for the synapse with no variability. The network performance
is maximal for σG,HCS≈0.05 (CR=81.81% for condition A and CR=81.78% for
condition C, for 20 RRAMs per synapse), and it is degraded when HCS variability
is too high (CR=78.65% for condition B2) or when there is no variability at all
(CR=79.45% for the synapse with zero variability). In the case of one RRAM
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device per synapse, the maximum score is 76.32% (condition A). These results
are far from the best one (99.77%) obtained for the same dataset which used a
supervised off-line learning approach and millions of adjustable parameters [94].
However, our results compare well to previously published scores - using a similar
number of adjustable parameters and synaptic elements - with on-line supervised
neural network with back-propagation (82.9%) [34] and on-line unsupervised
learning (87.0% with the same network, homeostasis on neuron threshold, and
presentation of the full MNIST dataset seven times for training compared to
once in our case). To better understand the impact of synaptic variability,
we plot in Figure 2.2.12 (c) the synaptic weight distribution after learning
for the four experimental distributions plus the synapse with zero variability.
We consider that a synapse is potentiated (red) if at least one of its RRAM
devices is potentiated (RRAM in HCS). Otherwise, the synapse is depressed
(blue, all RRAM devices in LCS). 20 RRAMs per synapse have been simulated
which provides 21 different synaptic levels. In the case of the synapse with
zero variability, we observe 21 distinct synaptic levels with a clear separation in
between each level. As long as the HCS variability value remains low enough
(conditions A and C), it is still possible to discriminate between the 21 synaptic
levels. However, in the case of conditions B1 and B2, the increase in HCS
conductance variability flattens the synaptic weight distributions. This decreases
the number of distinguishable synaptic levels down to 9 and 7 for conditions B1
and B2, respectively. Consequently, the CR degrades. In the case of conditions
A and C, the presence of conductance variability increases the range of synaptic
weight values and enables synapses to access intermediate synaptic weights in
between each synaptic level. This makes the transition more gradual between
each level and permits a finer tuning of the synaptic weights. By contrast, in
the case of the synapse with zero variability, synapses are constrained to the 21
different synaptic levels. This accounts for the improved CR for conditions A
and C with respect to the synapse with zero variability.
Impact of RRAM aging
Figure 2.2.13 shows the impact of RRAM aging on the classification rate,
CR. Both device-to-device and cycle-to-cycle variability are taken into account.
Simulations have been calibrated using the data of Figure 2.2.3 (a) measured
on the 4-kbit array with the programming conditions A. The HCS variability
value during aging remains between 0.05 and 0.2 (cf Figure 2.2.3 (b)). As
shown in Figure 2.2.12 (b), the CR varies little in that range. Therefore, with
20 RRAMs per synapse, we can sustain a constant score CR≈81.5% until 106

cycles. In addition, the network is proved to be robust to broken cells (1%) which
have a minimal impact on the CR (blue shaded square). Figure 2.2.13 (b)
shows the average number of Set (red circle) and Reset (blue square) operations
per RRAM device during the learning phase for each programming condition.
Red and blue shaded areas represent the number of Set and Reset operations
per RRAM device at ±3σ, respectively. Similar numbers of programming events
are required for each programming condition. Considering a learning time of
21 s (60 000 training digits), an average of about 1 Set operation and 10 Reset
operations per device is required, up to a maximum of 60 Set and 100 Reset
operations. Considering the programming endurance of this RRAM technology
(cf Table 2.1), this makes possible the use of programming conditions A, B1,
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(a) (b)

(c)

Figure 2.2.12: (a) Classification rate, CR, as a function of the memory
window at 3σ, MW3σ defined in Equation 2.2.1, for different numbers of
RRAMs per synapse. The HCS and LCS distributions measured on the 4-
kbit array for the conditions A and B2 of Table 2.1, and an artificial case
with zero variability were used. The MW3σ was varied by a translation
of the LCS distribution to lower or higher conductance values. (b) CR
as a function of the conductance variability in HCS, σG,HCS, for 1 and
20 RRAMs per synapse. The four HCS and LCS distributions measured
on the 4-kbit array for the conditions of Table 2.1 and an artificial case
with zero variability were used. (c) Synaptic weight distributions after
the learning phase for the four programming conditions of Table 2.1 and
the synapse with zero variability. Higher performance after learning is
reached with a small amount of HCS conductance variability (conditions
A and C).

and B2 for learning. However, the low programming endurance of condition C
can be detrimental.
Comparison between detection and classification tasks
We now explain the surprising different in how detection and classification tasks
are affected by device characteristics. For the detection task, binary synapses
are sufficient, and the maximal F1-score (0.96) is reached if, after learning, there
are two synaptic populations: (i) potentiated synapses (RRAMs in HCS), and
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(a)

(b)

Figure 2.2.13: Impact of the RRAM aging on the classification rate,
CR. Simulations have been calibrated using the data of Figure 2.2.3
(a) (condition A). Both device-to-device and cycle-to-cycle variability are
taken into account. (b) Average number of Set (red circle) and Reset
(blue square) operations during the learning phase for each programming
condition. Red and blue shaded areas represent the evolution at ±3σ,
respectively.

(ii) depressed synapses (RRAMs in LCS) (see Figure 2.2.10 (c) for conditions
C and B1). The fundamental requirement is that a ratio higher than 200 exists
between the peaks of the potentiated (HCS) and depressed (LCS) synaptic
distributions. Therefore, both memory window and conductance variability are
beneficial as they increase the dynamic range of synaptic weight values available
during learning. This facilitates the separation of the HCS and LCS peaks
after learning. For the classification task, multi-level conductance synapses are
necessary to achieve the best performance. The number of RRAM cells per
synapse defines the number of levels. As parallel conductances sum up, the
equivalent synaptic weight is approximately nHCSHCS0σ, where nHCS is the
number of RRAMs in HCS, and HCS0σ is the median HCS conductance value.
Unlike the detection task wherein the network exploits both HCS and LCS
distributions, only the HCS distribution defines the synaptic weight value for the
classification task. Consequently, the classification task is only sensitive to the
HCS distribution; the LCS distribution and the memory window do not affect
the network performance. To support this statement, we performed the same
simulations as in Figure 2.2.12 (b) but this time with no variability in the LCS
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Figure 2.2.14: Classification rate, CR, as a function of the HCS conduc-
tance variability, σG,HCS, for the four programming conditions of Table
2.1. The CR has been calculated assuming the experimental LCS conduc-
tance variability (black line) and no LCS conductance variability (dotted
grey line).

distribution, i.e. same σG,HCS and σG,LCS=0 for each of the four experimental
conditions (A, B1, B2, and C). The results are shown in Figure 2.2.14. We
obtained similar network performance with (solid black line) and without (dotted
grey line) LCS variability proving that only the HCS distribution affects the
network performance. With the presence of a small amount of HCS variability
(σG,HCS≈0.05, conditions A and C), a finer tuning of the synaptic weights is
possible improving on the case with zero variability (see Figure 2.2.12 (c)). If
the HCS variability is too high (condition B2), the synaptic weight distribution
after the learning phase has only 7 distinguishable synaptic levels instead of the
21 levels achieved with conditions A and C as we showed in Figure 2.2.12 (c).
Table 2.2 summarises learning performance and power required for learning for
each programming condition, for the detection and classification tasks. Learning
power has been calculated as:

Learning power = ESet*total Set pulses+EReset*total Reset pulses
Learning time (2.2.5)

with ESet and EReset calculated in Equation 2.2.3, total Set pulses and total
Reset pulses obtained by simulations in Figure 2.2.11 (b) and 2.2.13 (b) for the
detection and the classification tasks, respectively, and Learning time defined as
the minimal required time for the learning phase (simulated in Figure 2.2.10
(d) for the detection task and fixed at 21 s (60 000 training digits) for the
classification task).

2.2.3 Conclusion

In this section, an extensive study of the conductance variability, power con-
sumption, and aging of multi-kilobits RRAM array over the full operation range
has been presented. The experimental results were used to perform system-level
simulations of SNNs designed for (i) detection in dynamic patterns and (ii)
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Condition A C B1 B2
Detection Task Performance (F1-score) 0.95 0.96 0.96 0.89
(1 RRAM/synapse) Learning power [µW] 6.05 12.92 1.55 0.35
Classification Task Performance (CR) [%] 81.81 81.78 80.67 78.65
(20 RRAMs/synapse) Learning power [µW] 207.66 395.41 45.69 15.99

Table 2.2: Performance and power required for learning with each
programming condition of Table 2.1, for the detection and classification
tasks. The learning power has been calculated with Equation 2.2.5.

classification of static patterns applications. In comparison with previous studies
[25, 28, 29, 33–35, 37, 41, 42, 45–47, 49, 52–54, 79–82], we demonstrate that
SNNs are not only robust to synaptic variability but can also draw benefit from
it. Variability can be beneficial as it increases the range of synaptic weight values
available during learning. For detection applications, RRAM technology is well-
suited to implement synaptic elements as only one RRAM device per synapse
is needed (i.e. binary synapse with an abrupt switching between the HCS and
LCS is sufficient), and their electrical characteristics enable to achieve maximal
performance at low programming power consumption (less than 15 pJ/spike and
2 µW for learning). On the other hand, for classification applications, multi-level
conductance synapses are necessary to achieve the best performance; a synaptic
compound of at least ten RRAMs per synapse is required. The maximal perfor-
mance was reached with a conductance variability in the HCS of roughly 0.05
that can be achieved with programming energy of about 50 pJ/spike. This study
provides guidelines to optimise the programming conditions for RRAM-based
synapses in SNNs capable of unsupervised learning by STDP. More importantly,
it also highlights that memory devices for neuromorphic applications may be
more optimally used in different physical regimes than for conventional memory
applications and that RRAM requirements differ for memory and neuromorphic
applications.

2.3 Analog devices

2.3.1 Goal of the section

As we evidenced in the previous section, the use of binary devices as synaptic
elements can be detrimental for some applications [95], such as the classification
task on the MNIST dataset (cf Figure 2.2.12 (a)). To overcome this issue, a
synaptic compound of multiple binary devices operating in parallel associated
with a stochastic programming [96] can be adopted as shown in the previous
section. However, this increases silicon area consumption. Note that the pro-
posed stochastic programming can be replaced by an incremental programming
as demonstrated in [56]. A more efficient way is to implement the synaptic ele-
ments with single analog devices, i.e. devices intrinsically capable of multi-level
conductance. However, such devices usually feature non-linear and asymmetric
conductance response upon the application of identical pulses [30, 36, 48, 85]
which are generally considered as non-idealities for neuromorphic computing
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[28, 28, 34, 35, 48, 80, 83, 85]. Although many comprehensive studies on the im-
pact of conductance response on learning performance have been reported, most
of them are based on supervised learning algorithms [28, 34, 35, 48, 80, 83–85]
like the gradient-descent back-propagation algorithm [67], and little has been
done with unsupervised algorithms in spiking neural networks [33, 81, 82, 86].
In this section, we focus on analog devices to implement the synaptic elements.
We investigate the impact of conductance response on learning performance of
artificial Spiking Neural Network (SNN) systems with unsupervised learning by
Spike-Timing-Dependent Plasticity (STDP). Learning performance is evaluated
by means of system-level simulations of the handwritten digit classification task
on the MNIST dataset [69]. We also evaluate the learning performance of the
Phase-Change Memory (PCM) technology presented in [36] as a synaptic device,
and we compare its performance with previously reported PCM-based synaptic
implementations. The next section provides a brief overview of reported artificial
synapses capable of analog conductance modulation.

2.3.2 Analog conductance modulation with non-volatile
resistance-based memories

RRAM technologies have demonstrated multi-level conductance capability: when
consecutive Set (potentiation) or Reset (depression) pulses are applied on the de-
vice, the conductance of the device gradually increases or decreases, respectively
[28, 33–35, 48, 53, 54, 56, 80, 82, 86, 98]. A simple method to obtain analog con-
ductance evolution with RRAMs is by increasing the compliance current during
potentiation [23, 97–99] (cf Figure 2.3.1 (a)): when a synapse undergoes a series
of potentiation events, the compliance current is increased from pulse to pulse.
However, this brings circuitry overhead as the system needs to keep track of the
history of each synapse. Optimally, analog modulation has to be obtained under
identical potentiation and depression pulses. Unfortunately, most of RRAM tech-
nologies are intrinsically binary devices [42, 43, 45, 60, 100, 101] or gradual only
in one programming direction [34, 37, 48] - generally in depression - as we demon-
strated in Section 2.2. Phase-Change Memory (PCM) technology has attracted
strong interest to implement electronic synapses [34, 35, 37, 40, 95, 102–104]
due to its technological maturity [81, 105, 106]. One of the prominent features
of PCM technology as artificial synapses is the gradual crystallisation process
of the phase-change material: when a series of identical short Set pulses are
applied on the PCM cell, only a small amount of the material is crystallised.
This increases the device conductance in an analog fashion [34, 36, 37]. By
contrast, the amorphisation is an abrupt process which is a critical limitation
of PCM technology as artificial synapses. To overcome this issue, a stair-case
programming scheme can be adopted wherein the amplitude of Set and Reset
pulses is increased from pulse to pulse [103, 104] - similar to the use of increasing
compliance currents for RRAMs - at the cost of increased circuit complexity.
Another solution proposed by Suri et al. [37] is to implement one synaptic
element with two PCM devices and benefit from the gradual crystallisation
process in both potentiation and depression. This is the so-called 2-PCM synapse
that has been extensively used in neuromorphic systems [34, 37, 38, 107] (cf
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(a) (b)

(c)

Figure 2.3.1: (a) I-V characteristics of a TiN/HfOx/AlOx/Pt RRAM
device with increasing compliance current for each Set operation. The
device conductance value (represented by the read current) increases with
the compliance current. Reproduced from [97]. (b) 2-PCM synapse imple-
mentation. One synapse is implemented with two PCM devices in parallel
(LTP and LTD PCMs) with opposite current contributions. Analog con-
ductance modulation is obtained by exploiting the gradual crystallisation
of both PCMs. Reproduced from [37]. (c) Programming strategy proposed
in [36] to obtain analog conductance modulation with a single PCM device.
In addition to the gradual crystallisation of PCM (potentiation, green
area), initialising the PCM at an intermediate resistance value (R1≈30 kΩ)
enables gradual amorphisation (depression, blue area) with short Reset
pulses (<50 ns). Reproduced from [36].

Figure 2.3.1 (b)). The principle of the 2-PCM synapse is that one PCM device
has a positive current contribution (LTP PCM), while the other one contributes
negatively (LTD PCM) towards the post-synaptic neuron. As a result, a gradual
crystallisation of the LTP PCM cell produces an analog increase of the synaptic
weight, whereas a gradual crystallisation of the LTD cell produces an analog
decrease. However, this halves synaptic density since two cells are required per
synapse. Furthermore, periodical energy-hungry refresh process is mandatory to
prevent conductance saturation [34, 35, 107]: when one of the two PCMs reaches
its full crystallisation state, a Reset operation is required. The PCM device
proposed by La Barbera et al. [36] overcomes this limitation thanks to the use of
a new programming strategy that does not involve circuitry overhead and refresh
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process. In addition to the natural gradual crystallisation process, gradual
amorphisation is possible by initialising the cell at an intermediate resistance
state and by applying short Reset pulses (<50 ns) that only amorphise a small
amount of material at each pulse as shown in Figure 2.3.1 (c). In this section,
we will compare learning performance of the PCM technology presented in [36]
with that of conventional 2-PCM synapses.

2.3.3 Learning rule and synapse behavioural model

We consider synapses capable of continuous increase and decrease of their
synaptic weight with consecutive potentiation and depression events, respec-
tively. Synapses are trained using a simplified Spike-Timing-Dependent Plasticity
(STDP) rule as depicted in Figure 2.3.2 (a). When the post-synaptic neuron
spikes after the pre-synaptic neuron within a time window tSTDP, the corre-
sponding synapse increases its synaptic weight by a quantity δw+. Otherwise, it
decreases its synaptic weight by a quantity δw-. Note that there are no switching
probabilities with the simplified STDP rule. To model the synaptic weight
increment and decrement in our system-level simulations, δw+ and δw-, we use
the model introduced in [108]:

δw+ = α+exp(-β+
w-Wmin

Wmax-Wmin
)

δw- = α-exp(-β-
Wmax-w

Wmax-Wmin
)

(2.3.1)

These equations allow to reproduce the conductance response of real devices
upon the applications of a series of identical potentiation and depression pulses,
such as PCM devices as in [37] and [81]. α+, β+, α-, β-, Wmin, and Wmax
are fitting parameters that control the dynamics of the conductance response
and depend on the device technology. w corresponds to the current synaptic
weight. Wmin and Wmax represent the minimum and maximum conductance
values of the device. β+ and β- inside the exponential factor control the linearity
of the conductance response. In fact, as observed in most RRAM and PCM
technologies, a given programming pulse has a reduced effect on the device
conductance if applied several times [30, 36, 48, 85]. α+ and α- control the
resolution of the device, i.e. the number of Set or Reset pulses required to
go from the minimum boundary Wmin to the maximum boundary Wmax, and
vice-versa, respectively. These six parameters are subject to cycle-to-cycle and
device-to-device variability in real devices [33, 36, 81]. However, we assume no
variability on these parameters in this section.
In order to investigate the impact of conductance response on SNN learning
performance, we define different metrics. We define the number of potentiation
levels, npot, as the number of potentiation pulses required to increase the synaptic
weight from Wmin to Wmax. Similarly, we define the number of depression levels,
ndep, as the number of depression pulses required to decrease the synaptic
weight from Wmax to Wmin. We define the linearity factor in potentiation as
the parameter β+. Similarly, we define the linearity factor in depression as
the parameter β-. In this section, we investigate the impact of the number
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of potentiation and depression levels, npot and ndep, and the impact of the
linearity factors, β+ and β-, on SNN learning performance. Figure 2.3.2
(b) shows the impact of the linearity factors, β+ and β-, on the conductance
response for a fixed number of potentiation and depression levels (npot=ndep=200).
200 potentiation pulses followed by 200 depression pulses are applied. The
conductance response is linear for β+=β-=0. By contrast, it is less and less
linear with higher β+ and β-, i.e. a given potentiation or depression pulse
has a reduced effect on the conductance increment or decrement when applied
several times, respectively. Figure 2.3.2 (c) shows the conductance response
for different numbers of potentiation and depression levels, npot and ndep, for a
non-linear device (β+=β-=3). 500 potentiation pulses followed by 500 depression
pulses are applied.
In real devices, the conductance response in potentiation and depression is not
always symmetric [34–36, 48, 56, 80, 84] just like the RRAM technology presented
in Section 2.2.1.2 (cf Figure 2.2.5 (Left)). Figure 2.3.2 (d) shows the fitting
of the PCM device presented in [36] with Equation 2.3.1 (grey line). The PCM
device in [36] features an analog conductance response in both potentiation (red
circle) and depression (blue square). However, as evidenced by Figure 2.3.2
(d), it is asymmetric in potentiation and depression in both linearity (β+=3
and β-=1) and number of levels (npot=200 and ndep=30). The 2-PCM synapse
implementation does not exhibit this asymmetry as its conductance response
involves the crystallisation process of two identical PCM devices. In that sense,
the 2-PCM synapse implementation can be viewed as symmetric in potentiation
and depression if variability is not considered. In this section, the impact of
asymmetry in terms of number of levels and linearity is also assessed.

2.3.4 Impact of the conductance response on spiking neu-
ral network learning performance

We now investigate the impact of analog device conductance response on a
classification task with Spiking Neural Networks (SNNs) (the same classification
task as in Section 2.2.2.3 based on the handwritten digits MNIST dataset
[69]). The network performance is assessed by means of system-level simulations
with the special-purpose neuromorphic hardware simulator N2D2 [73, 93]. The
behavioural model of the synaptic elements presented in Section 2.3.3 has been
used to evaluate the impact of conductance response on learning performance.
In this section, we consider no variability on the fitting parameters α+, β+,
α-, β-, Wmin, and Wmax, just as we do not consider any variability effects
due to peripheral circuits (such as neuron variability [33, 81]). For all the
simulations, we fixed the minimum and maximum conductance values at Wmin=1
µS and Wmax=30 µS, respectively. These values have been extracted from the
measurements of the PCM technology presented in [36].

2.3.4.1 Network topology

The simulated classification application is based on a one-layer fully-connected
feed-forward neural network topology (cf Figure 2.3.3). A detailed description
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(a)

(b) (c)

(d)

Figure 2.3.2: (a) Simplified STDP rule and synaptic weight increment
and decrement equations. (b) Conductance response with the model
described in Equation 2.3.1 for different linearity factors, β+ and β-.
Potentiation and depression levels are fixed at 200 (npot=ndep=200). β+
and β- control the linearity of the conductance response. (c) Conductance
response with the model described in Equation 2.3.1 for different numbers
of potentiation and depression levels. Linearity factors are fixed at 3
(β+=β-=3). (d) Conductance response of the PCM technology presented
in [36] (filled symbol) and fitting with Equation 2.3.1 (grey line).

of the simulated SNN is provided in Appendix A. Neurons in the output
layer are implemented with the Leaky Integrate-and-Fire (LIF) model [73]. For
each simulation, the output LIF neurons have the same firing threshold value
which has been optimised to provide the best performance (see Appendix
B). The other neuron parameters are kept constant and identical for all the
simulations. The input layer corresponds to the 28x28 pixels input images and
is fully connected to an output layer of nneurons neurons. The Classification Rate
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(CR) as defined in Section 2.2.2.1 is used to assess learning performance (see
Appendix A). The network is trained with the unsupervised simplified STDP
rule and lateral inhibition [33, 73]. All results have been averaged over five
simulations.

Figure 2.3.3: Simulated spiking neural networks used for the digit
classification task with analog devices as synaptic elements. The associated
score definition to assess network performance is shown on the right-hand
side. See Appendix A for more details.

2.3.4.2 Impact of the number of potentiation and depression levels

We first studied the impact of the number of potentiation and depression levels,
npot and ndep, on learning performance. We consider the case of a non-linear,
symmetric conductance response with linearity factors fixed at β+=β-=3 and
Wmin=1 µS and Wmax=30 µS (cf the conductance responses in Figure 2.3.2 (c)).
The first step was to optimise the network in terms of number of output neurons,
nneurons. As demonstrated by several works [33, 74, 81, 86], network performance
improves with the number of output neurons as it allows the network to be
sensitive to different handwritings of the same digits [33]. Figure 2.3.4 (a)
shows the simulated classification rate, CR, as a function of the number of output
neurons, nneurons, for different numbers of potentiation and depression levels. In
agreement with previous studies, the CR improves with an increasing number of
output neurons and saturates after 500 output neurons. In the following, the
proposed network is simulated with 500 output neurons.
From the results of Figure 2.3.4 (a), it can be seen that network performance
also improves with an increasing number of potentiation and depression levels.
This is in agreement with our study in Section 2.2.2.3. The CR increases
with npot and ndep, and it saturates after npot=ndep=200 levels. Note that these
results are obtained for a symmetric conductance response, i.e. npot=ndep. We
then assessed the impact of an asymmetry in the number of potentiation and
depression levels on network performance. We fixed the number of potentiation
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(a)

(b) (c)

Figure 2.3.4: (a) Classification rate, CR, as a function of the number
of output neurons, nneurons. The conductance responses in Figure 2.3.2
(c) have been used for the simulations. (b) Conductance responses with
Equation 2.3.1 for a fixed number of potentiation levels npot=200 and
different numbers of depression levels, ndep. (c) CR as a function of the
number of depression levels, ndep, for a fixed npot=200 (cf (b)).

levels at 200 levels (npot=200), β+=β-=3, and varied the number of depression
levels, ndep. Figure 2.3.4 (b) shows the simulated conductance responses of
the synaptic elements. Figure 2.3.4 (c) shows the obtained performance for
each conductance response, i.e the CR as a function of the number of depression
levels, ndep, for a given npot=200 and 500 output neurons. Network performance
is degraded when there is an asymmetry between potentiation and depression in
terms of number of levels. Yet it can be noted that the network can accommodate
a certain degree of asymmetry between the number of levels (CR=80.69% for
npot=200 and ndep=100 compared to CR=81.53% for npot=ndep=200).

2.3.4.3 Impact of the linearity

We then assessed the impact of the linearity factors, β+ and β-, on network
performance. We fixed the number of output neurons at nneurons=500. In
addition, the number of potentiation and depression levels, npot and ndep, are
fixed at 200 and 30, respectively. These numbers of levels correspond to the
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experimental measurements obtained with the analog PCM presented in [36]
(cf Figure 2.3.2 (d)). Figure 2.3.5 (Top) plots the CR as a function of the
linearity factor in potentiation, β+. Open symbols correspond to symmetric
conductance responses in linearity (β+=β-). The filled symbol corresponds to the
PCM technology in [36] (β+=3 and β-=1). In this SNN based on unsupervised
learning with STDP, the non-linearity of the conductance response remarkably
improves system performance with respect to the linear case (CR=75.33% for
β+=β-=3 compared to CR=68.60% for β+=β-=0). This is in sharp contrast with
other types of neural networks based on supervised learning (e.g. based on back-
propagation algorithm) wherein the non-linearity is strongly detrimental [28, 28,
34, 35, 48, 80, 83, 85]. To illustrate the origin of this result, we plot in Figure
2.3.5 (Bottom) the synaptic weight evolution of one hundred different synapses
during the learning phase. Synapses with linear characteristics (β+=β-=0)
converge to the minimum and maximum conductance values (Figure 2.3.5
(Bottom left)) after learning, whereas synapses with non-linear characteristics
can also converge to intermediate conductance values between the minimum
and maximum values (Figure 2.3.5 (Bottom right)). Therefore, they are able
to fully exploit the analog synaptic behaviour. This result is well known in the
literature [109, 110] and originates from the stabilising effect of weight-dependent
plasticity arising from the non-linearity. With the STDP learning rule, strong
synapses have a larger probability of being potentiated since the probability to
induce a post-synaptic spike increases with the weight of the synapse. This is a
destabilising force that makes strong synapses be more and more potentiated.
However, stronger synapses experience smaller conductance increases at each
potentiation event due to their non-linear conductance responses. Thus, the
effect of potentiation events decreases with increasing weights, whereas the effect
of depression events does not. This leads to a stabilising force that counteracts
the destabilising force of the STDP learning rule and allows synaptic weights to
remain at intermediate values. The same reasoning holds true for weak synapses:
weak synapses have a larger probability of undergoing depression events, but
they experience reduced conductance decreases at each event. In the case of
linear conductance responses, conductance changes at each event are not weight-
dependent. Therefore, the destabilising force of the STDP learning rule pushes
synaptic weights to minimum and maximum boundaries. Finally, it is also worth
noting that network performance is not affected by an asymmetry in linearity
(CR=75.33% for β+=β-=3 compared to CR=76.24% for the experimental case
with β+=3 and β-=1).

2.3.5 Discussion

In this section, the impact of conductance response on Spiking Neural Net-
work (SNN) learning performance trained with the unsupervised Spike-Timing-
Dependent Plasticity (STDP) learning paradigm was studied. While many
studies on the impact of conductance response for neural networks trained with
supervised algorithm have been reported [28, 34, 35, 48, 80, 83–85], only a few is
available for neural networks trained with unsupervised algorithms [33, 81, 82, 86].
For neural networks trained with supervised algorithms, it is now widely accepted
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Figure 2.3.5: (Top) Classification Rate, CR, as a function of the linearity
factor in potentiation, β+, for 200 potentiation levels and 30 depression
levels. Open symbols correspond to symmetric responses in linearity
(β+=β-). The filled symbol corresponds to an asymmetric case (β+=3
and β-=1) fitted with the PCM technology presented in [36] (cf Figure
2.3.2 (d)). (Bottom) Synaptic weight evolution of 100 synapses during
the training phase for (Left) a linear conductance response and (Right) a
non-linear conductance response.

that the ideal synapse has a linear, symmetric conductance response with a high
number of levels in potentiation and depression [28, 28, 34, 35, 48, 80, 83, 85].
For SNNs trained with an unsupervised simplified STDP rule, the ideal synapse
also needs a symmetric conductance response with a high number of levels in
potentiation and depression - at least 200 levels in this study (cf Figure 2.3.4
(a) and (c)), although this number is application-dependent and might be lower
or higher for other applications. However, network performance improves with
a non-linear conductance response (cf Figure 2.3.5 (Top)). This is in sharp
contrast with neural networks trained with supervised algorithms; SNNs trained
with unsupervised algorithms benefit from the natural non-linearity of many
technologies [30, 36, 48, 85], such as the PCM technology presented in [36] and
used in this study. This comes from the fact that non-linear synapses are able
to exploit the full range of synaptic weight values during the learning phase
(cf Figure 2.3.5 (Bottom right)), whereas linear synapses tend to converge
to the lower and upper boundaries (cf Figure 2.3.5 (Bottom left)). This is a
significant advantage of unsupervised over supervised learning upon employing
PCM-based synapses since it avoids the use of complex synaptic design and
algorithm to mitigate PCM non-linearity - for instance in [35] wherein synaptic
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elements are implemented with eight transistors, two PCM devices, and two
capacitors.
As evidenced by the study, an asymmetry in the number of levels in potentia-
tion and depression can be detrimental for network learning performance (cf
Figure 2.3.4 (c)). Since the 2-PCM synaptic implementation in [37] exploits
the crystallisation process of two identical PCM devices for gradual potentia-
tion and depression, it does not suffer from this asymmetry at the cost of a
reduced synaptic density and the need of energy-hungry refresh process [34, 52].
Considering 200 levels of potentiation and depression (npot=ndep=200), a classifi-
cation rate of 81.53% can be reached (Figure 2.3.4 (c)) with synaptic elements
implemented with the 2-PCM scheme. By contrast, the asymmetry of the
analog PCM technology of [36] (npot=200 and ndep=30) deteriorates network
performance, and the classification rate degrades down to 76.24%. To mitigate
this asymmetry, it is necessary to balance the weight increments and decre-
ments to virtually symmetrise the numbers of levels. One demonstration is
the fully-connected neural network implemented by Fumarola et al. in [48]
with analog Al/Mo/PCMO RRAMs as synaptic elements and trained with
the supervised back-propagation algorithm. They showed that the asymmetry
between potentiation and depression can be corrected by defining two different
learning rates for Set and Reset operations. As a result, the output neuron fires
more pulses when performing a Set operation with respect to Reset operations
which allows to lessen the asymmetry. In a similar manner, the network im-
plemented in [56] with a synaptic compound of several RRAMs per synapse
utilises additional potentiation and depression counters in order to modulate
the frequency of weight increase and decrease. This allows to compensate for
asymmetric conductance changes and could be implemented in our network.
Another solution would be to replace the simplified STDP rule used in this
section with the stochastic STDP rule presented in Section 2.2.1.2 (see Figure
2.2.6 (b)). By doing so, the frequency of weight increase and decrease can be
controlled by the switching probabilities. Another example is the work in [84]
wherein they accumulate weight increments or decrements before a potentiation
or depression event actually occurs, respectively. When the accumulation reaches
a certain threshold, the system undergoes a potentiation or a depression event.
By defining two different thresholds for weight increment and decrement, this
allows to cope with asymmetric conductance changes. However, all the solutions
presented come at the expense of peripheral circuitry overhead. Finally, we did
not consider in this study any variability in the fitting parameters of Equation
2.3.1. Nonetheless, this variability would have a limited impact on network
performance. Indeed, it has been demonstrated in [81] that the SNN used in
this study is robust to more than 25% of variability in the fitting parameters.
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CHAPTER 3. SYNAPTIC ROUTING TABLES WITH RRAM-BASED
TCAMS

3.1 Content-addressable memory systems

3.1.1 Basics on content-addressable memories

Content-Addressable Memories (CAMs) are specialised hardware capable of
performing high-speed in-memory search and pattern matching. They allow

to search a data in a memory table of pre-stored entries. In classic Random
Access Memory (RAM) systems a stored data is accessed by its address as shown
in Figure 3.1.1 (a). On the other hand, CAM systems proceed the other way
around: a stored data is accessed by its content rather than by its address.
Figure 3.1.1 (b) shows a simplified schematic of a CAM system storing four
words of 4 bits each. An input searched data is broadcast to the table of stored
data through the search lines. Each stored word compares its content with this
input searched data. The result of the comparison is returned by the Match
Line (ML) of the stored word. If the search and stored data are identical, the
corresponding match line returns a match case. If at least one bit is mismatching,
a mismatch case is returned. Match lines are then fed into an encoder. The
encoder outputs the address location of the match line in the match state. The
main advantage of CAM systems over conventional memory systems is that they
can perform the search in parallel over the whole memory table [1]. While data
are sequentially accessed and compared in RAM systems, the input searched
data in CAM systems is simultaneously broadcast to every stored word. This
allows to perform the search in a single clock cycle which offers a significant
advantage in terms of speed.
CAM systems can be divided into Binary CAMs (BCAMs) and Ternary CAMs
(TCAMs). While BCAM bitcells can only store the values ’0’ and ’1’, TCAM
bitcells allow for storing a third value called don’t care state and denoted as ’X’.
An ’X’ state returns a match whatever the input data. Figure 3.1.2 shows a
block diagram of a TCAM system. In BCAM systems where a single match is

(a) (b)

Figure 3.1.1: Block diagram of (a) a Random Access Memory (RAM)
system and (b) a Content-Addressable Memory (CAM) system. In RAM
systems, stored data are accessed by their physical address location, and
the system outputs the stored content. In CAM systems, stored data are
accessed by their content rather than by their address, and the system
outputs the address of the searched data.
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expected, an encoder is used. In TCAM systems where more than one word
may match, a priority encoder is used instead of a simple encoder. The priority
encoder selects the matching address based on the highest priority matching
location that can be for instance words in lower address locations or words with
the most matching bits that are not in the ’X’ states [2]. The advantage of
TCAMs over BCAMs is that they are capable of storing ranges of data which can
be useful to save entries for applications where an exact match is not necessary.
In the example of Figure 3.1.2, the word stored at the address ’1 0’ can match
with four different input patterns, whereas in a BCAM it would be necessary to
use four distinct words.
In this chapter we only focus on TCAM systems. In particular, we will only
focus on TCAM bitcell implementation and consider neither search line or match
line power reduction scheme [2–5] nor priority encoder implementation [6].

Figure 3.1.2: Block diagram of a Ternary Content-Addressable Memory
(TCAM) system. The use of the dont’t care state, ’X’, allows to perform
local masking and store data ranges. As more than one word may match,
a priority encoder is used instead of an encoder. A single address is output
based on the highest priority matching location (e.g. lowest address
location, most matching bits that are not in the ’X’ states, ...).

3.1.2 Motivations for the implementation of resistive
memory-based ternary content-addressable mem-
ories

One of the first hardware demonstration of a CAM system can be dated back
in 1956 [7]. It made use of cryotron memories, a type of memory based on
superconductivity. When immersed in liquid helium, cryotron memories could
switch between a superconductive and a resistive state depending on the injected
current. However, due to the cost of refrigeration and maintenance needed
for this technology, efforts were rather focused on the use of non-cryogenic
components [8]. It was not before 1970 that the first practical integrated CAM
circuit was demonstrated by Koo [9] using CMOS or bipolar transistors. Since
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(a) (b)

Figure 3.1.3: (a) Conventional sixteen-transistors (16T) SRAM-based
TCAM. (b) Common two-transistors/two-RRAMs (2T2R) RRAM-based
TCAM.

then, many CAM implementations with CMOS transistors have been proposed
[10]. Today, conventional CMOS-based TCAMs are implemented with sixteen
transistors (16T) with the structure proposed in [11] and depicted in Figure
3.1.3 (a). This structure uses two six-transistors Static Random Access Memory
(SRAM) cells to store data and encode the don’t care state, and a comparator
circuit to compare the stored and searched data. In the following, this structure
is referred to as SRAM-based TCAM.
The SRAM-based TCAM implementation presents inherent disadvantages. First,
SRAMs are volatile. This leads to static power consumption due to the need
to restore data every time the system is turned OFF and ON. Second, the
use of two SRAM cells and a comparator circuit per bit strongly limits the
storage density to tens of megabit [5, 12, 13]. As a rule of thumb, the largest
available TCAM array is usually twice or three times as small as the largest
available SRAM array [2]. This has motivated the replacement of SRAM cells
with Resistive Memory (RRAM) technology. Many RRAM-based TCAM bitcells
have been proposed, each implemented with different numbers of transistors
(T) and RRAMs (R): 12T2R [14], 8T4R [15], 6T2R [16], 5T2R [17–19], 4T2R
[20–22], 3T2R [6, 23, 24], 3T1R [25, 26], 2.5T1R [27], and 2T2R [28–32]. The
use of RRAMs allows for a reduction in the number of transistors per bitcell
from sixteen for the conventional SRAM-based TCAM down to two transistors
[28, 30, 32] (Figure 3.1.3 (b)). Figure 3.1.4 (a) shows reported RRAM- (blue
diamond) and SRAM-based (black circle) TCAM bitcell size as a function of the
technology node. RRAM-based TCAM bitcells allow for a gain in silicon area
with respect to SRAM-based TCAM bitcells, while reaching similar performance
in terms of search time and search energy (Figure 3.1.4 (b) and (c)). A few
silicon-proven RRAM-based TCAM circuits have already been presented in the
literature [6, 19, 21, 26, 27, 29]. One of the main drawbacks of RRAMs with
respect to SRAMs is the low ratio between the ON and OFF current of the
memory elements (>105 for SRAMs, 10-100 for RRAMs). This poses serious
challenges for designing RRAM-based TCAMs as performance and reliability
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strongly depend on this ratio. Leakage currents in case of a match can overwhelm
the system and become comparable to a mismatching current if a sufficient
ON/OFF ratio is not ensured. This limits the sensing margin that allows
to discriminate between a match and mismatch case, and it constraints the
maximum number of bits per word. Up to date, the impact of ON/OFF ratio on
RRAM-based TCAMs has only been studied in simulation [18, 21, 29, 31, 32].
SRAM-based TCAMs have been proven to be functional for more than 640 bits
[33], whereas silicon-proven RRAM-based TCAM circuits do not exceed 256 bits
[27]. This can be limiting for applications requiring long pattern matching, such
as Internet Protocol packet routing or active control list management [34].
Another drawback of RRAMs is their limited endurance (between 106 and
109 write cycles [52]) with respect to SRAMs (>1016 cycles [53]). However,
the endurance for SRAMs refers to both programming and search operations,
whereas in RRAM-based TCAMs programming and search (read) operations
are two distinguished operations, and they must be characterised separately.
No characterisation of the impact of search operations on RRAM-based TCAM
reliability has been reported so far.

3.1.3 Examples of ternary content-addressable memory
applications

3.1.3.1 Conventional ternary content-addressable memory applica-
tions

TCAMs find application in domains that require pattern matching [8], such as
branch prediction tables or cache controllers in processors [54], network intrusion
detection system [55], alignment of DNA sequences [56], in-memory computing
applications [57], and lookup tables [58]. The primary commercial application
of TCAM systems is to classify and forward Internet Protocol (IP) packets in
network routers [34]. Network routers use address lookup tables to forward IP
packets from an incoming port to an output port. Figure 3.1.5 shows a TCAM-
based implementation of address lookup tables [2]. Each IP packet contains
its destination address. When a router receives an IP packet, the destination
address is searched in the TCAM table. The address of the matching data is
then fed into a RAM system. The RAM system contains the table of output
ports corresponding to each destination address. Nowadays, with the rapid
growth of the Internet of Things (IoT), it is critical for network equipment to
handle the explosion of data and to meet performance requirements in terms of
bandwidth. It is now common that all packet-processing functions, like parsing,
classification, and forwarding have to be completed within times as short as 2.5
ns [34] in order to ensure no latency. Thus, TCAM systems appear as ideal since
they can process packets with latencies below nanoseconds.
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(a)

(b)

(c)
Figure 3.1.4: Reported SRAM-based (black circle) [3–5, 12, 13, 33, 35–
48] and RRAM-based (blue diamond) [14, 15, 18, 19, 21, 26, 27, 29, 49]
(a) TCAM bitcell size, (b) TCAM search time, and (c) TCAM search
energy as a function of technology node. Search times in (b) have been
normalised by the number of bits per TCAM word to provide a fair
comparison. TCAM bitcell size with Magnetic Memories (MRAMs, grey
triangle) [50, 51] have been plotted for comparison.
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Figure 3.1.5: TCAM-based implementation of a network router address
lookup table. Reproduced from [2].

3.1.3.2 Ternary content-addressable memories to enable spiking neu-
ral network reconfigurability

Recently, TCAMs have also been used to enable dynamic reconfigurability of
the synaptic connections in Spiking Neural Networks (SNNs) [59–62]. SNNs
use spikes for communication, and part of neural computation is achieved by
the connectivity between neurons, i.e. the network topology. Therefore, one of
the challenges in designing SNN hardware circuits is to properly route spiking
events between neurons, i.e. to define the appropriate synaptic network topol-
ogy. This can generally be realised either with dedicated routing, i.e. neurons
are hardwired together, or with synaptic Lookup Table (LUT) routing scheme
[62]. The main advantage of the dedicated routing scheme is that its parallel
event routing protocol supports the real-time operation of SNNs. However,
it suffers from limited reconfigurability unless using additional memory, i.e.
N2 programmable synapses for N neurons [62, 63]. The LUT routing scheme
addresses this issue by enabling any synapse in the synaptic array to be used for
any arbitrary pair of neurons with much fewer built-in synapses than N2. When
a neuron fires an event, the event is sent to a synaptic routing LUT storing
the entire neuronal connections of the circuit, and then it is transmitted to
the appropriate neurons following the LUT. Most of spike-based reconfigurable
neural networks [59–61, 64–67] use the Address Event Representation (AER)
[68, 69] as data representation and communication protocol. AER protocol
allows for asynchronous communication between neurons: each neuron has a
unique address that is encoded as a digital word, and it transmits its address
to every output neuron as soon as it produces an event. The AER protocol
naturally permits to implement synaptic reconfigurability since the addresses of
neurons connected together can be directly stored in the LUTs.
The major downside of the LUT routing scheme is that the use of LUTs in-
volves additional delays in the handling of spiking events which can create
traffic congestion in case of slow LUTs. This limits the maximum number of
neurons and synapses in neuromorphic cores [62]. In [62], the authors provide
a comparative study of four different LUT implementations and their impact
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on neuromorphic cores in terms of maximum number of neurons and synapses,
and maximum fan-in/fan-out for each neuron without traffic congestion. As
the study shows, LUTs can be efficiently implemented with TCAMs as they
allow for the highest number of synapses and synaptic operations per second
(routing speed) compared to the other implementations. As an example, the
number of synapses with TCAM-based LUTs surpasses by more than three
orders of magnitude that of RAM-based LUTs and by two orders of magnitude
the routing speed owing to the fast parallel search capability of TCAMs. The
Dynamic Neuromorphic Asynchronous Processors (DYNAPs) presented in [59]
are a case in point of multi-core neuromorphic processors using CAM-based
LUTs for dynamic reconfigurability. In DYNAPs, neurons are all connected to
each other through different levels of routers. The routing has been optimised
with the use of shared addresses and tags between neurons in order to minimise
memory requirements without any loss of generality. Each core in DYNAPs is
composed of 16x16 computing nodes. Figure 3.1.6 (a) shows a simplified block
diagram of one computing node composed of a CAM table, Pulse Generators
(PGs), a Differential-Pair Integrator (DPI) synapse [70], and a CMOS-based
leaky Integrate-and-Fire (IF) neuron. CAM tables each contain sixty-four words
(CAM size=64 rows) of 10 bits. They implement asynchronous synaptic routing
tables by storing neuron addresses and are directly integrated within computing
nodes for better energy-efficiency - SpiNNaker [61] and HiAER [60] store their
synaptic routing tables in external DRAM chips which results in frequent off-
chip communications. Figure 3.1.6 (b) illustrates an example of the working
principle of DYNAPs. For the sake of simplicity, we only represent six computing
nodes, each composed of a CAM table of size 2 and a leaky IF neuron (grey
circle). The connections between CAM tables and neurons encompass the pulse
generator and DPI synapse circuits. Each computing node stores in its CAM
table the addresses of pre-synaptic neurons it is virtually connected to. Each
neuron has an address which is placed on a shared digital bus as soon as it
spikes. When a neuron spikes (e.g. the neuron with the address 6), its address
(6) is broadcast to every computing node (including itself). Each computing
node compares this address with the addresses stored in its CAM table. If the
address of the spiking neuron is stored within a CAM table (green rows), the
corresponding match line activates the pulse generator which transmits a spike
to the leaky IF neuron along the DPI synapse (neurons 2 and 6 in the example
of Figure 3.1.6 (b)). Therefore, appropriate programming of the CAM tables
defines the network topology (Figure 3.1.6 (b, right)), and network topology
can be reconfigured on-the-fly. Note that, in the case of DYNAPs, CAM tables
are implemented with Binary CAMs (BCAMs). Therefore, each BCAM row can
only store one neuron address. Consequently, the fan-in of each neuron, i.e. the
number of pre-synaptic neurons connected to this neuron, corresponds to the
CAM size (64 for DYNAPs). The use of TCAMs instead of BCAMs allows to
store several pre-synaptic neuron addresses in each TCAM row, thus increasing
the fan-in of each neuron as well as the total number of synapses operating in
parallel. On the other hand, each neuron can be connected to any other neuron
(fan-out).
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(a)

(b)

Figure 3.1.6: (a) Simplified block diagram of one computing node in
DYNAPs [59] composed of a 64x10 bits BCAM table, 64 Pulse Generators
(PGs), a Differential-Pair Integrator (DPI) synapse circuit [70], and a
CMOS-based leaky Integrate-and-Fire (IF) neuron. (b) Working principle
of DYNAPs. When the neuron 6 spikes, its address, 6, is broadcast to
every other neuron (including itself). As its address is stored in the CAM
table of the computing nodes 2 and 6 (green rows), a pulse is locally
generated and transmitted to the corresponding leaky IF neuron circuits.
The use of TCAMs instead of BCAMs allows to increase the fan-in of
each neuron. Adapted from [59].

3.1.4 Goal of this chapter

Main challenges in designing TCAMs are energy, area, speed, and reliability [54].
While reported RRAM-based TCAMs have already demonstrated a decrease in
TCAM bitcell size with respect to the conventional SRAM-based TCAM bitcell
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at similar speed and energy (cf Figure 3.1.4), reliability has not been addressed
yet. In particular, the impact of RRAM electrical properties on TCAM reliability
has only been assessed in simulation. In addition, TCAM reliability in terms of
endurance has never been studied.
In this chapter, we present an extensive electrical characterisation study of two
different TCAM structures: (i) the most common type of two-transistors/two-
RRAMs (2T2R) RRAM-based TCAM, and (ii) a new TCAM bitcell composed of
two transistors and two RRAMs in a one-transistor/two-RRAMs/one-transistor
(1T2R1T) configuration with a sensing margin insensitive to the High Resistance
State (HRS) and the Low Resistance State (LRS) RRAM resistance ratio,
HRS/LRS, and variability.

3.2 Characterisation of resistive memory-
based ternary content-addressable memo-
ries

Two different 3x128-bits RRAM-based TCAM circuits have been fabricated
and tested. In both circuits, TCAM bitcells are implemented with two tran-
sistors and two HfO2-based RRAMs. The first structure is the most common
two-transistors/two-RRAMs (2T2R) TCAM implemented with a pair of access
transistors and RRAMs [28–32]. The second structure is implemented in a
new one-transistor/two-RRAMs/one-transistor (1T2R1T) configuration. Exten-
sive electrical characterisations have been performed, in particular the impact
of RRAM electrical properties on performance, reliability, and endurance is
quantified.

3.2.1 Fabricated resistive memory-based ternary
content-addressable memory circuits

Both TCAM circuits have their own peripheral circuitry which is identical in
both cases. Figure 3.2.1 (a) presents the schematic of the two fabricated
RRAM-based TCAM circuits. Each TCAM circuit is composed of a search word
register, a TCAM array, and a read circuit (Sense Amplifier, SA). The search
word register outputs the 128-bits searched data to every search line (SLT and
SLF) of the TCAM array. The TCAM array comprises three 128-bits TCAM
rows. Only the TCAM array is different between both circuits. For each TCAM
circuit, all the measurements are performed on the middle TCAM whose Match
Line (ML) is connected to the SA. Figure 3.2.1 (b) shows die pictures of the
2T2R and (c) the 1T2R1T TCAM circuits fabricated using the same 130-nm
CMOS process and RRAM technologies. TiN/HfO2/Ti/TiN (100 nm/10 nm/10
nm/100 nm) RRAMs are integrated in the back-end-of-line on top of the fourth
metal layer (Cu) (Figure 3.2.1 (d)).
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(a)

(b) (c)

(d)

Figure 3.2.1: (a) Common block diagram of the fabricated 2T2R and
1T2R1T TCAM circuits. Only the TCAM array is different between
both circuits. (b) Die picture of the fabricated 2T2R and (c) 1T2R1T
circuits. (d) Scanning electron microscope cross-section of the integrated
HfO2-based RRAMs.

3.2.2 Search operation principle

In both circuits, the search operation relies on the discharge of a pre-charged
Match Line (ML). The ML is first pre-charged at a voltage VDD ML (ML
pre-charge phase). The ML is then left floating and starts discharging through
each TCAM cell (ML sensing phase). If the data stored in the TCAM word
matches with the searched data (match case, Figure 3.2.2 (top)), the ML slowly
discharges through leakage currents, Imatch. If at least one bit of the stored data
mismatches with the searched data (mismatch case, Figure 3.2.2 (bottom)),
the ML quickly discharges through the mismatching cells with a high discharge
current, Imismatch.
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Figure 3.2.2: Example of the search operation principle. The Match
Line (ML) is first pre-charged at VDD ML, then it is left floating. (Top)
In a match case, the ML stays high. (Bottom) In the mismatch case, the
ML is pulled down to a low level.

3.2.3 Common 2T2R TCAM circuit characterisation

3.2.3.1 2T2R TCAM bitcell working principle

Figure 3.2.3: Com-
mon 2T2R TCAM bit-
cell schematic. Top
(TE) and Bottom (BE)
Electrodes are indicated
with the black rectangle.

Stored data RX RY
’0’ LRS HRS
’1’ HRS LRS
’X’ HRS HRS

Table 3.1: RRAM state defini-
tion as a function of the stored
data.
Searched data SLT SLF

’0’ 0 VDD
’1’ VDD 0

Table 3.2: SLT and SLF volt-
ages as a function of the searched
data.

Figure 3.2.3 depicts the common 2T2R TCAM bitcell implementation
[28–32]. It is composed of a pair of access transistors and RRAMs. Depending
on the stored data, RRAMs are programmed either in the Low Resistance State
(LRS) or High Resistance State (HRS) as summarised in Table 3.1. Forming,
Set, Reset, and read operations are performed as in single 1T1R RRAM cells.
Required voltages on top and bottom electrodes are applied on the ML and
BL, respectively. The transistor in series with the RRAM to be programmed is
activated via the search line SLT (resp. SLF), while the complementary search
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line SLF (resp. SLT) is kept at 0 V in order to activate each 1T1R structure
independently. The gate voltage is applied on the activated search line.
During a search operation, one of the two transistors is activated via SLT or
SLF, while the complementary search line is set at ’0’. Table 3.2 shows SLT
and SLF voltages as a function of the searched data. In the ML pre-charge
phase (Figure 3.2.4 (a)), the ML is pre-charged high at a voltage VDD ML
with a PMOS transistor. The voltage applied on the 1T1R during the search
operation (applied on the ML during the pre-charge phase) is referred to as
the search voltage, Vsearch. In the ML sensing phase (Figure 3.2.4 (b)), the
ML is left floating and starts discharging through each TCAM bitcell. The
discharge follows that of a RC circuit [2]. The capacitance CML consists of the
ML wiring capacitance and depends on ML length. The equivalent resistance
RML depends on the state of each RRAM, i.e. their resistance value. If the
stored and searched data match (Figure 3.2.5 (a)), the activated transistor
is in series with a RRAM programmed in HRS. The equivalent resistance RML
is high, the ML slowly discharges through leakage currents, Imatch, and stays
high. If at least one bitcell of the stored data mismatches with the searched
data (Figure 3.2.5 (b)), the activated transistors of the mismatching bitcells
are in series with RRAMs in LRS. The equivalent resistance RML is low, the
ML quickly discharges through mismatching currents, Imismatch, and the ML is
pulled down to a low level. RML decreases with more mismatching bits which
accelerates the discharge.

(a) (b)

Figure 3.2.4: (a) In the Match Line (ML) pre-charge phase, the ML is
pre-charged high at a voltage Vsearch. (b) In the ML sensing phase, the
ML is left floating and discharges through each TCAM cell. The discharge
follows that of a RC circuit.

3.2.3.2 Performance and reliability metrics definition

During a search operation, the ML voltage is compared to a reference voltage,
VREF, by a Sense Amplifier (SA) circuit. The SA returns the comparison result
with the signal SA OUT. Figure 3.2.6 (Top) sketches an example of ML voltage
evolution during a search operation in a match (green) and mismatch of 1 bit
(red) case. Figure 3.2.6 (Bottom) shows the corresponding measured SA OUT
waveforms. During the ML pre-charge phase, SA OUT is at ’1’. SA OUT goes
to ’0’ at the beginning of the sensing phase and remains at ’0’ while the ML
voltage is higher than VREF. SA OUT goes back to ’1’ once the ML voltage goes
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(a) (b)

Figure 3.2.5: (a) In a match case, the activated transistor is in series
with a RRAM in the High Resistance State (HRS). (b) In a mismatch case,
the activated transistor is in series with a RRAM in the Low Resistance
State (LRS).

Figure 3.2.6: (Top) Example of the Match Line (ML) voltage evolution
during a search operation in the case of match (green) and 1-bit mismatch
(red). (Bottom) Corresponding measured waveforms output by the sense
amplifier, SA OUT. The duration for which SA OUT stays at ’0’ defines
the ML discharge time, tsearch.

below VREF, i.e. when the ML can be considered as discharged. The duration
for which SA OUT stays at ’0’ corresponds to the ML discharge time, tsearch.
Capacitances can be added on the ML with the signal CAP CALIB (see Figure
3.2.1 (a)) to slow down ML discharge and facilitate measurements.
We define the search time as the minimal time required to discriminate between
a match and a mismatch, i.e. the discharge time in the worst-case scenario when
only one bit is mismatching (hardest mismatch to detect as it is the slowest
mismatch case). Lower the search time, better the TCAM performance. To
assess reliability, we characterised the sensing margin and the maximum number
of cycles during searching (TCAM read) and programming (TCAM write). To
assess the sensing margin, i.e. the ability of the TCAM to discriminate between
a match and a mismatch, three metrics can be adopted: the resistance-based
sensing margin (ML resistance ratio between the match and 1-bit mismatch
cases [29, 32]), the voltage-based sensing margin (ML voltage difference between
the match and 1-bit mismatch cases at a certain tsearch [26]), and the time-based
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sensing margin. Here, we adopt the third one since we can only measure ML
discharge times. We define the Time Ratio (TR) as the tsearch ratio between the
match and 1-bit mismatch cases:

TR = tsearch (in match)
tsearch (in mismatch 1 bit) (3.2.1)

TR has to be maximised in order to guarantee a sufficient sensing margin to
improve the parallel search capability. Second, we fully characterised the search
endurance, i.e. the maximum number of search operations before disturbing
TCAM bitcells (RRAM read disturb). Third, we measured the programming
endurance, i.e. the maximum number of programming operations before the
TCAM bitcells break (RRAM breakdown). Table 3.3 summarises the different
metrics used to assess TCAM performance and reliability.

Table 3.3: Performance and reliability metric definition used in this
work.

3.2.3.3 Circuit basic functionality: match line discharge time char-
acterisation

To assess the impact of RRAM electrical properties on TCAM, RRAMs have
been programmed with different programming conditions. Figure 3.2.7 shows
the Low Resistance State (LRS), High Resistance State (HRS), and pristine
cumulative distributions directly measured on the TCAM bitcells. Table 3.11
shows the associated programming conditions. HRS distributions have been
obtained using the Soft and Strong HRS conditions. Here, the Memory Window
(MW) is defined as the ratio between the HRS and LRS values at -2σ and +2σ
of the distributions, respectively. Using Strong HRS instead of Soft HRS allows
to increase the MW from 27 (Soft HRS) to 230 (Strong HRS) at the cost of a
decrease in programming endurance [31]. The pristine resistance distribution
can be used if the TCAM is programmed only once.
We first verified the basic functionality of the circuit. We applied a search
voltage, Vsearch, of 0.6 V (voltage across ML and BL during the pre-charge phase,
cf Figure 3.2.4 (a)), and we varied the ML capacitance (signal CAP CALIB,
cf Figure 3.2.1 (a)). As Vsearch is applied directly across RRAMs, it has to be
kept relatively low not to disturb the RRAM states. Figure 3.2.8 (a) shows
the discharge time, tsearch, as a function of ML capacitance in the case of match
(green) and mismatch of 1 bit and 128 bits (red). RRAMs are programmed using
the LRS, (Left) Soft HRS, and (Middle) Strong HRS programming conditions
of Figure 3.2.7, or (Right) kept in pristine state. Increasing ML capacitance
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Figure 3.2.7: Low Resistance State (LRS), High Resistance State
(HRS), and pristine resistance cumulative distributions directly measured
on the TCAM cells. HRS resistance distribution can be obtained using
the Soft HRS or Strong HRS programming conditions.

LRS Soft HRS Strong HRS Pristine
Vtop (VDD ML) 2.0 V GND GND -

Vbottom (BL) GND 2.5 V 2.5 V -
Iprog 200 µA - - -

Vgate (SLT or SLF) - 3.0 V 3.5 V -
Rmedian 2.52 kΩ 198 kΩ 1.27 MΩ 2.4 GΩ (limit)
R±2σ 2.79 kΩ 76.1 kΩ 654 kΩ 2.1 GΩ

MW (@2σ) 27 230 8.105

Programming endurance 106 104 1
Table 3.4: Programming conditions used for the characterisation of
the 2T2R structure.

slows down ML discharge as expected from a RC circuit. Due to equipment
limitations, we could not measure tsearch without additional capacitances on the
ML as the discharge was too fast. In the following, measurements are performed
with an additional capacitance of 315 pF.
We then characterised the impact of the search voltage, Vsearch, on tsearch when
the RRAMs are programmed in Soft HRS, Strong HRS, or kept in pristine
state (Figure 3.2.8 (b)). To vary Vsearch, we kept the pre-charge ML voltage,
VDD ML, constant at 2.6 V, and varied BL voltage (cf Figure 3.2.4 (a)).
Increasing Vsearch decreases tsearch. In addition, tsearch decreases with more
mismatching bits or when the TCAM is programmed in Soft HRS instead of
Strong HRS since the equivalent ML resistance, RML, is decreased.
The measurements performed prove the functionality of the circuit. The search
time, i.e. the discharge time when only 1 bit mismatches (slowest mismatch
case) has been measured. In order to improve performance (decrease the search
time), the following strategies can be adopted:

• Decrease the match line capacitance, CML, i.e. avoid long match lines.

• Decrease the match line equivalent resistance, RML, by using lower LRS
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resistance values, i.e. higher programming current to program the RRAM
cells.

• Increase the search voltage, Vsearch.

(a)

(b)

Figure 3.2.8: Discharge time, tsearch, as a function of (a) Match Line
(ML) capacitance (the search voltage, Vsearch, is fixed at 0.6 V), and (b)
Vsearch (ML capacitance is fixed at 315 pF).

3.2.3.4 Sensing margin and search capacity

In this section, we characterise TCAM reliability in terms of sensing margin
using the Time Ratio (TR) defined in Equation 3.2.1. As it is not possible
to perform measurements without additional capacitances, we first studied the
impact of ML capacitance on the TR. Figure 3.2.9 (a) shows the TR as a
function of ML capacitance when the TCAM is programmed in Soft (square) and
Strong (diamond) HRS. TR is almost constant with ML capacitance. Thus, the
results we obtained on TR hold true whether or not an additional capacitance
is added. In the following, an additional capacitance of 315 pF is used.
The ideal TCAM should minimise the search time (discharge time in the 1-bit
mismatch state) while maximising the TR. Figure 3.2.9 (b) shows the impact
of the search voltage, Vsearch, on TR when bitcells are programmed in Soft HRS
(square), Strong HRS (diamond), or kept in pristine state (triangle). First, TR
slightly decreases when Vsearch increases. Second, increasing HRS resistance
values from Soft HRS to Strong HRS (≈7x) improves TR by 4x. Indeed, in
the case of match, the ML discharges through leakage currents flowing through
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(a) (b)

(c) (d)

Figure 3.2.9: Measured Time Ratio (TR) as a function of (a) match
line capacitance, (b) search voltage Vsearch, (c) memory window, and (d)
TCAM word length.

RRAMs in HRS. If HRS resistance values are too low, the sum of leakage
currents can be comparable to a mismatching current. This leads to a loss of
the TR. To evaluate the impact of HRS resistance values on TR, we plot in
Figure 3.2.9 (c) the TR as a function of the Memory Window (MW) for a
given Vsearch of 0.6 V. MW is varied by varying HRS resistance values, LRS
resistance values being the same for each condition. In accordance with reported
simulations [31, 32], the TR increases with MW. The same result is obtained for
any Vsearch from 0.6 V to 1.0 V (not shown). If we consider a minimal TR of 2
to guarantee reliable searches, a minimal MW of 50 is required with 128-bits
TCAM words for a given Vsearch of 0.6 V. Finally, we studied the impact of
TCAM word length on the sensing margin. Indeed, increasing the number of
bitcells per TCAM word increases leakage currents. Figure 3.2.9 (d) shows the
TR as a function of TCAM Word Length (WDL) for Soft and Strong HRS and
for a given Vsearch of 0.6 V. To emulate smaller TCAM words, certain TCAM
cells were completely deactivated by keeping both transistors OFF and RRAMs
in pristine state. Therefore, these bitcells behave as matching bitcells with
negligible impact on ML discharge with respect to bitcells with RRAMs in LRS
or HRS. As expected, the TR decreases with word length as this increases the
sum of leakage currents in the match state. The same result is obtained for any
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Vsearch from 0.6 V to 1.0 V (not shown). This limits the length of TCAM words
to 97 bits when RRAMs are programmed in Soft HRS for a given Vsearch of 0.6
V. Therefore, Soft HRS cannot be used for 128-bits TCAM words, and stronger
programming conditions (Strong HRS) are required.
To sum up, reliability in terms of sensing margin can be improved by:

• Decreasing the search voltage, Vsearch.

• Increasing RRAM memory window.

• Decreasing TCAM word length.

3.2.3.5 Search endurance characterisation

During a search operation, a positive voltage Vsearch is applied on RRAM top
electrodes (RX for search ’1’, RY for search ’0’) in the same polarity as a Set
operation as sketched in Figure 3.2.10 (a). Therefore, in the match state,
undesired switchings from HRS to LRS can occur after a certain number of
search operations. This causes a match failure. In the mismatch state, undesired
switchings from HRS to LRS accelerates ML discharge. The system remains in
its mismatch state, there is no mismatch failure. Therefore, undesired switchings
are detrimental only in the match state. Here, we define the search endurance
as the maximum number of search operations we can perform before at least
one RRAM switches from HRS to LRS when the system is initially in a match
state, i.e. before we lose the match configuration.
We characterised the search endurance of the system by applying a series of
search operations when the TCAM is initially in a match configuration, i.e.
the search voltage, Vsearch, is applied across RRAMs programmed in Soft or
Strong HRS. Figure 3.2.10 (b) shows the measured discharge time, tsearch, after
a series of search operations. Discharge times, tsearch, have been normalised by
the discharge time at the first search operation. We first studied the impact of
programming conditions in Figure 3.2.10 (b, top). Vsearch is fixed at 0.6 V and
ML capacitance, CML, at 315 pF. When programmed in Soft HRS (square), no
RRAM switches before 9.104 searches. After 9.104 searches one RRAM switched
from HRS to LRS (not shown). Programming in Strong HRS (diamond) instead
of Soft HRS allows to improve the search endurance up to 4.105 searches. This
is in accordance with [71] wherein the authors demonstrate that RRAMs with
higher HRS resistance values require longer pulses to switch to the LRS.
Another way to improve the search endurance is by decreasing the search voltage,
i.e. reducing the stress applied on RRAMs. Figure 3.2.10 (b, middle) shows
the impact of the search voltage, Vsearch, on the search endurance. The TCAM
is programmed in Soft HRS, and CML is fixed at 315 pF. Decreasing the search
voltage, Vsearch, from 0.6 V (filled symbol) down to 0.4 V (open symbol) allows
to improve the search endurance from 9.104 to 4.5.105 searches.
We finally studied the impact of ML capacitance. Indeed, these results are
obtained in the worst-case scenario since the 315-pF ML capacitance artificially
increases the search time, i.e. artificially increases the stress applied on RRAMs.
Figure 3.2.10 (c, bottom) shows the impact of ML capacitance, CML, on the
search endurance. The TCAM is programmed in Strong HRS, and Vsearch is
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(a)

(b)

Figure 3.2.10: (a) During a search operation, a positive voltage is applied
on RRAM top electrodes in the same configuration as a Set operation.
(b) Characterisation of the search endurance. Measured discharge times,
tsearch, as a function of the number of search operations are reported.

fixed at 0.6 V. As expected, we observe an improvement in search endurance
when ML capacitance is decreased from 315 pF (filled symbol) down to 90 pF
(open symbol). At CML=90 pF, a search endurance of 1.106 searches is reached.
To sum up, reliability in terms of search endurance can be improved by:

• Increasing HRS resistance values, i.e. programming in Strong HRS instead
of Soft HRS.

• Decreasing the search voltage, Vsearch.

• Decreasing match line capacitance, CML.
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3.2.3.6 Programming endurance

Figure 3.2.11: (Top) Soft HRS programming endurance characterisation.
(Bottom) Probabilities of match (square) and mismatch (circle) failures
as a function of the number of Set/Reset switching cycles.

Figure 3.2.11 (Top) shows a programming endurance characterisation mea-
sured on a 4-kbit RRAM 1T1R array (with the same stack as our RRAM
cells) with Soft HRS programming conditions. After 104 Set/Reset switching
cycles some cells remain stuck in HRS with a probability pHRS stuck. After 106

Set/Reset switching cycles breakdown failures occur with a probability pbreakdown,
and broken cells are stuck in LRS. Probabilities pHRS stuck and pbreakdown have
been extracted after different programming cycles from the endurance measure-
ment, and their impact on TCAM circuits is evaluated. For a TCAM circuit,
HRS stuck failures artificially increase the discharge time. Thus, they have no
impact on matches. However, they can lead to mismatch failures. In a mismatch
case with m bits mismatching, mismatch failures occur if all m bits remain
stuck in HRS. This has a probability pHRS stuck

m to happen. Considering all the
possible combinations leading to a mismatch of m bits, for m ranging from 1 to
WDL (WDL being the TCAM word length), mismatch failures can occur with a
probability pmismatch,failure:

pmismatch,failure = (1 + pHRS stuck)WDL − 1
2WDL − 1 (3.2.2)

with WDL=128 bits in our TCAM circuit. pmismatch,failure depends on the word
length.
On the other hand, breakdown failures decrease the discharge time. Therefore,
they have no impact on mismatches. However they lead to match failures with
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a probability pmatch,failure if at least one matching cell is impacted, i.e.:

pmatch,failure = pbreakdown (3.2.3)

pmatch,failure is independent of the word length. Figure 3.2.11 (Bottom) shows
probabilities of match (blue) and mismatch (red) failures as a function of the
number of Set/Reset switching cycles. As probability of mismatch failures
remains negligible after every programming operation (< 10−38), a program-
ming endurance of 106 cycles can be reached with Soft HRS. If the TCAM is
programmed in Strong HRS, programming endurance is degraded down to 104

cycles [31]. Therefore, for 128-bits TCAM words, a programming endurance of
104 cycles can be reached since Soft HRS cannot be used.

3.2.3.7 Extrapolated figures of merit

Due to equipment limitations, all the measurements were performed with ad-
ditional Match Line (ML) capacitances. We extrapolated performance and
reliability of the system without any additional capacitance, i.e. considering
only the intrinsic ML capacitance. The ML has an intrinsic capacitance of 4
pF, measured on the TCAM circuit and consistent with simulation extraction.
We fitted measured tsearch as a function of ML capacitance from Figure 3.2.8
(a) with a linear function as the discharge behaves as a RC circuit. Figure
3.2.12 (a) shows the extrapolated discharge time, tsearch, as a function of ML
capacitance (dotted line) in the case of match (green) and mismatch of 1 bit (red).
Extrapolations have been confirmed by simulations (open symbol). Considering
the intrinsic ML capacitance of 4 pF, a search time (tsearch in the case of 1-bit
mismatch) of 90 ns and a time ratio, TR, of 3.1 are obtained (for Vsearch=0.6V
and Strong HRS). Finally, we plot in Figure 3.2.12 (b) the search endurance
as a function of the ML capacitance. The search endurance improves when ML
capacitance decreases. Less stress is applied on RRAMs when ML capacitance
decreases since the discharge time decreases.

(a) (b)

Figure 3.2.12: (a) Extrapolated tsearch as a function of the match line
capacitance. (b) Extrapolated search endurance as a function of the match
line capacitance.
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Table 3.5: Summary of the characterisation performed in this section
on the common 2T2R TCAM bitcell.

3.2.3.8 Discussion and conclusion

Table 3.5 summarises the results of characterisation of the 2T2R structure.
Performance and reliability have been characterised as a function of RRAM
electrical properties (i.e. HRS value), the voltage Vsearch applied across RRAMs
during a search operation, and Match Line (ML) capacitance. We demonstrated
that a trade-off exists between performance and reliability: shorter search times
can be obtained by either increasing Vsearch or programming the RRAM cells in
Soft HRS at the expense of a degraded sensing margin (Time Ratio) and search
endurance. In addition, we showed that decreasing ML capacitance has little
impact on the sensing margin (Figure 3.2.9 (a)), while improving the search
time (Figure 3.2.8 (a)). Using scaled CMOS technology nodes lowers the ML
capacitance, therefore an improvement in performance and search endurance
can be expected at similar sensing margin and programming endurance.
A critical limitation of this structure is the strong dependency of the sensing
margin on the Memory Window (MW), i.e. with RRAM programming con-
ditions (Figure 3.2.9 (c), summarised in Table 3.5). This puts constraints
on the maximum permitted length of TCAM words (Figure 3.2.9 (d)). As
characterisation results evidenced, the TCAM is limited to 97 bits per word
when it is programmed in Soft HRS, and it is mandatory to program in Strong
HRS to enable the use of longer words. However, this leads to a decrease in
programming endurance by 100x. This is due to the fact that, in the case of
match, the ML still discharges due to leakage currents flowing through each
RRAM in HRS. Therefore, larger MWs are required for longer TCAM words
in order to limit leakage currents. This can be detrimental for classic appli-
cations, such as internet protocol packet routing [34] which requires pattern
matching with words longer than 128 bits and extremely low search times (be-
low nanoseconds). However, multi-core neuromorphic computing architectures
would be little affected by these problems. Indeed, they usually implement
CAM tables small in word length and can tolerate longer search times (e.g.
10 bits of word length and search times in the order of tens to hundreds of
nanoseconds for the DYNAPs [59]). In terms of programming endurance, CAM
tables are programmed only during network topology configuration. Therefore,
RRAM programming endurance is not a key metric. On the other hand, search
endurance requirement is application-dependent. For instance, a total of 0.5
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million events has to be searched for the card classification application tested
with DYNAPs. A search endurance of 106 search operations is sufficient for the
classification of 52 cards (one deck), but it may be too low if more inputs need to
be classified. For the car detection application studied in Chapter 2 [72], each
neuron receives in average an input event every 364 ms. For a search endurance
of 106 search operations, the network can continuously operate without any
search failure for about four days.
A possible way to improve the sensing margin and enable the use of this TCAM
structure for more conventional applications is to use the two-bits encoding
scheme from Li et al. [29]. Figure 3.2.13 depicts the principle of the two-bits
encoding scheme. In the conventional encoding scheme that has been used here
(Figure 3.2.13 (Left)), one bit is encoded with one TCAM bitcell. During a
search operation, one transistor out of two is activated, i.e. 128 transistors out
of 256 for a 128-bits TCAM word. In the case of match, leakage currents, Imatch,
flow through 128 1T1R structures in HRS. The principle of the two-bit encoding
scheme is that, instead of coding one bit with one TCAM bitcell, two bits are
encoded with an association of two TCAM bitcells (Figure 3.2.13 (Right)).
During a search operation, this allows to activate only one transistor out of
four, i.e. 64 transistors out of 256 for a 128-bits TCAM word. This improves
the sensing margin as leakage currents, Imatch, are halved. Note that we do not
lose any storage capacity, i.e. the TCAM has the same word length with and
without the two-bits encoding scheme. We measured the Time Ratio (TR) as a
function of ML capacitance for our 128-bits TCAM circuit using the two-bits
encoding scheme of [29]. The results are shown in Figure 3.2.14. The TCAM is
programmed in Strong HRS and Vsearch=0.6 V. The TR improves by 3.8x with
the two-bits encoding scheme for a 128-bits TCAM word. As a result, longer
TCAM words can be implemented with a lower MW. In particular, this enables
the use of Soft HRS programming conditions for 128-bits TCAM words. A
drawback of this technic is that it degrades performance by 3%, i.e. it increases
search times since half as many transistors are turned ON. However, this is
acceptable if the slight loss of performance can be tolerated in order to improve
the reliability.

3.2.4 Novel 1T2R1T TCAM circuit characterisation

3.2.4.1 1T2R1T TCAM bitcell working principle

In this section, a novel RRAM-based TCAM bitcell was designed, integrated in
a 3x128 bits TCAM circuit, and fabricated using the same CMOS and RRAM
technologies as the common 2T2R TCAM structure characterised in the previous
section (c.f. Section 3.2.1). Figure 3.2.15 depicts the new TCAM bitcell
composed of two transistors and two RRAMs in a 1T2R1T configuration. Two
RRAMs (2R) compose a voltage divider that biases the transistor gate of N2
(1T). An additional transistor N1 (1T) works as an access transistor to program
the RRAMs. To store a data, RRAMs are programmed either in HRS or LRS
following the same combinations as the common 2T2R TCAM bitcell (cf Table
3.8). Forming, Set, and Reset operations are performed by applying the required
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Figure 3.2.13: Two-bits encoding principle. (Left) When no encoding
is used, two bits are encoded with two distinct TCAM bitcells. During
a search operation, two out of the four transistors are turned ON. In
the case of match, leakage currents, Imatch, flow through two 1T1R
structures in HRS. (Right) When the two-bits encoding scheme is used,
two bits are encoded with an association of two TCAM bitcells. During
a search operation, only one out of four transistors is turned ON. In the
case of match, leakage currents are halved with respect to the case of no
encoding as leakage currents only flow in one 1T1R structure in HRS.
Reproduced from [30].

Stored data RX1 RY1 RX2 RY2
’00’ HRS LRS LRS LRS
’01’ LRS HRS LRS LRS
’10’ LRS LRS HRS LRS
’11’ LRS LRS LRS HRS
’0X’ HRS HRS LRS LRS
’1X’ LRS LRS HRS HRS
’X0’ HRS LRS HRS LRS
’X1’ LRS HRS LRS HRS
’XX’ HRS HRS HRS HRS

Table 3.6: RRAM state definition as a function of the stored data
for the two-bits encoding scheme. Reproduced from [30].

Searched data SLT[1] SLF[1] SLT[2] SLF[2]
’00’ VDD 0 0 0
’01’ 0 VDD 0 0
’10’ 0 0 VDD 0
’11’ 0 0 0 VDD

Table 3.7: SLT and SLF voltages as a function of the searched data
for the two-bits encoding scheme. Reproduced from [30].

programming voltages on SLT, SLF, WL, and BL. To read RRAM resistance
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Figure 3.2.14: Measured Time Ratio (TR) as a function of the match
line capacitance using the two-bits encoding scheme of [29]. The TR
improves by 3.8x with the two-bits encoding scheme.

Figure 3.2.15: Pro-
posed 1T2R1T TCAM
bitcell schematic. Top
(TE) and Bottom (BE)
Electrodes are indicated
with the black rectangle.

Stored data RX RY
’0’ LRS HRS
’1’ HRS LRS
’X’ HRS HRS

Table 3.8: RRAM state defini-
tion as a function of the stored
data.
Searched data SLT SLF

’0’ 0 Vsearch
’1’ Vsearch 0

Table 3.9: SLT and SLF volt-
ages as a function of the searched
data.

values, read voltage is applied on either SLT or SLF, and the current is read
from BL. Table 3.10 summarises the voltages applied during a programming or
read operation.
During a search operation, a voltage Vsearch is applied across the RRAM voltage
divider, i.e. between SLT and SLF. Table 3.9 shows SLT and SLF voltages as a
function of the searched data. In the ML pre-charge phase, the ML is pre-charged
high at VDD ML. In the ML sensing phase, the ML is left floating, and the
voltage Vsearch is applied between SLT and SLF. If the stored and searched data
match (Figure 3.2.16 (a)), the internal node Vint in the RRAM voltage divider
is kept at 0 V if the resistance ratio between RX and RY is sufficiently high.
Transistor N2 is OFF, and the ML stays high. If the stored and searched data
mismatch (Figure 3.2.16 (b)), Vint is almost equal to Vsearch. This turns ON
the transistor N2 if Vsearch is higher than the threshold voltage, Vth,N2, of the
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SLT SLF WL BL
Forming RX Vforming GND Vgate,forming GND

Set RX Vset GND Vgate,set GND
Reset RX GND Vreset Vgate,reset Vreset
Read RX Vread GND VDD GND

Forming RY GND Vforming Vgate,forming GND
Set RY GND Vset Vgate,set GND

Reset RY Vreset GND Vgate,reset Vreset
Read RY GND Vread VDD GND

Table 3.10: Programming scheme for the proposed 1T2R1T TCAM.

transistor N2, and the ML is pulled down to a low level.

(a) (b)

Figure 3.2.16: (a) In a match case, the internal node voltage, Vint, in
the RRAM voltage divider is kept at 0 V, the transistor N2 is OFF. (b) In
a mismatch case, Vint is almost equal to Vsearch, the transistor N2 turns
ON if Vsearch is higher than the threshold voltage of transistor N2, Vth,N2.

3.2.4.2 Comparison between the two TCAM structures

In the common 2T2R RRAM-based TCAM [28–32] characterised in the previous
section, the top electrodes of both RRAMs are connected to the ML. During
the ML sensing phase, current flows in the 1T1R branches with the selector
transistor in the ON state which discharges the ML. In the case of match the
ML slowly discharges through RRAMs in HRS as shown in Figure 3.2.17 (a,
top). In the case of mismatch (Figure 3.2.17 (a, bottom)) the ML discharges
through RRAMs in LRS. Since the leakage currents, Imatch, of the TCAM cells
on the same ML add together, the low resistance ratio between HRS and LRS
(memory window) degrades the sensing margin as we proved in the previous
section (Figure 3.2.9 (c), time ratio as a function of the memory window). We
showed that this limits the maximum length of TCAM words (Figure 3.2.9 (d),
time ratio as a function of the TCAM word length). In the proposed 1T2R1T
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(a)

(b)

(c)
Figure 3.2.17: Match and mismatch cases for (a) the common
2T2R and (b) the proposed 1T2R1T structures. The sensing margin
(≈Imismatch/∑Imatch) of the common 2T2R structure depends on the mem-
ory window, whereas for the proposed 1T2R1T structure, it depends on
the transistor N2 characteristic. (c) Measured Ids-Vgs characteristic of
transistors N2. In the case of match, Vgs=0 V. In the case of mismatch,
Vgs=Vsearch.
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structure the ML is connected to transistors (transistor N2) controlled by the
RRAM voltage divider. In the case of match (Figure 3.2.17 (b, top)) the ML
slowly discharges through NMOS transistors in the OFF state. In the case
of mismatch (Figure 3.2.17 (b, bottom)) the ML discharges through NMOS
transistors in the ON state. Therefore, the sensing margin no longer depends on
the RRAM memory window (≈30 for Soft HRS, ≈100 for Strong HRS) but on
the MOSFET current ratio between ION and IOFF. Figure 3.2.17 (c) shows the
measured Ids-Vgs characteristic of transistors N2. The threshold voltage, Vth,N2,
is 0.5 V. At a search voltage, Vsearch, of 0.6 V, a ratio between ION and IOFF of
106 is obtained in the proposed 1T2R1T structure.
In the previous section, we used the Time Ratio (TR) as a metric to assess the
sensing margin. However, in the proposed 1T2R1T structure, the discharge
time in the match case is longer than the limit of measurement of one second as
shown in the measured SA OUT waveforms in Figure 3.2.18. For the sake of a
fair comparison, we keep the TR to assess the sensing margin by fixing tsearch in
match at 1 s for the proposed 1T2R1T TCAM.

Figure 3.2.18: (Top) Example of the Match Line (ML) voltage evolution
during a search operation in the case of match (green) and 1-bit mismatch
(red). The ML does not discharge in the match case. (Bottom) Corre-
sponding measured waveforms output by the sense amplifier, SA OUT.
The duration for which SA OUT stays at ’0’ defines the ML discharge
time, tsearch. tsearch is longer than the measurement limit (one second) in
the match case.

3.2.4.3 Circuit basic functionality: match line discharge time char-
acterisation

We first verified the basic functionality of the circuit. RRAMs have been
programmed with the same programming conditions as those of the previous
2T2R structure (Table 3.11). Figure 3.2.19 shows the LRS, Soft HRS, Strong
HRS, and pristine cumulative distributions directly measured on the 1T2R1T
TCAM bitcells with their associated programming conditions in Table 3.11.
In the measurements performed in this section, we did not add any additional
capacitance on the ML as the discharge was slow enough to be measured: in the
1-bit mismatch state, at Vsearch=0.6 V, the ML discharges through a transistor
with an equivalent resistance of about 1 MΩ, whereas in the previous structure
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Figure 3.2.19: Low Resistance State (LRS), High Resistance State
(HRS), and pristine resistance cumulative distributions directly measured
on the TCAM cells. HRS resistance distribution can be obtained using
the Soft HRS or Strong HRS programming conditions.

LRS Soft HRS Strong HRS Pristine
Vprog (set or reset) 2.0 V 2.5 V 2.5 V -

Iprog 200 µA - - -
Vgate (WL) - 3.0 V 3.5 V -

Rmedian 1.93 kΩ 143 kΩ 545 kΩ 2.4 GΩ (limit)
R±2σ 3.31 kΩ 51.7 kΩ 180 kΩ 2.1 GΩ

MW (@2σ) 16 54 6.105

Programming endurance 106 104 1
Table 3.11: Programming conditions used for the characterisation of
the 1T2R1R structure.

the equivalent resistance of the mismatching TCAM cell was about 3 kΩ.
Figure 3.2.20 shows the measured discharge times, tsearch, as a function of the
search voltage, Vsearch (voltage applied across the RRAM voltage divider), in
the case of match (green) and mismatch of 1 bit and 128 bits (red). RRAMs
have been programmed either in Soft HRS (square), Strong HRS (diamond), or
kept in pristine state (triangle). In the match case, tsearch is higher than one
second with any programming conditions as the ML does not discharge. In
the 1-bit mismatch state, the ML discharges if Vsearch is higher than Vth,N2=0.5
V as transistor N2 of the mismatching cell turns ON. The higher Vsearch, the
shorter the search time (discharge time in the 1-bit mismatch state) since this
lowers the equivalent resistance of transistor N2. In addition, tsearch is almost
independent of RRAM programming conditions since it mostly depends on the
current flowing through the transistor N2; a minimal resistance ratio between
the RRAMs, RX and RY, has to be ensured in order to activate N2 with the
RRAM voltage divider, and Soft HRS programming conditions are sufficient.
The search time can be improved by:

• Decreasing the match line equivalent resistance, i.e. by increasing the
search voltage, Vsearch, and/or using transistors N2 with lower equivalent
ON resistance values (i.e. using a scaled technology node).
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Figure 3.2.20: Discharge time, tsearch, as a function of the search voltage,
Vsearch, in the case of match (green) and mismatch (red) of 1 bit and 128
bits. tsearch is almost independent of RRAM programming conditions.

• Decreasing the match line capacitance, i.e. avoid long match line.

3.2.4.4 Sensing margin and search capacity

The sensing margin (Time Ratio, TR) has to be maximised in order to improve
the maximum search capacity, i.e. the maximum TCAM word length. Figure
3.2.21 (a) compares the TR as a function of the search voltage, Vsearch, for the
common 2T2R structure characterised in the previous section (open symbol)
and the proposed 1T2R1T structure (filled symbol). The TR improves by
>2000x/>5000x for the Strong/Soft HRS programming conditions, respectively,
thanks to the improved current ratio between the match state, Imatch, and the
1-bit mismatch state, Imismatch (106 for the proposed structure compared to
roughly 100 for the previous one). Therefore, this structure enables the use of
Soft HRS for 128-bits TCAM words at any Vsearch, unlike the previous structure.
This allows to improve the programming endurance by 100x (cf Table 3.11).
The TR of the proposed 1T2R1T TCAM increases with Vsearch since the ML
discharges faster in mismatch while it does not discharge in match.
Figure 3.2.21 (b) compares the TR as a function of RRAM Memory Window
(MW) for the common 2T2R TCAM (open symbol) and the proposed 1T2R1T
(filled symbol) for a given Vsearch of 0.6 V. The sensing margin of the proposed
1T2R1T TCAM is insensitive to the MW, whereas that of the 2T2R TCAM
could not operate for memory windows below 50. This is due to the fact that
the discharge of ML for the 1T2R1T TCAM only depends on the current flowing
through transistors N2. The same result is obtained for any Vsearch from 0.5 V
to 0.7 V (not shown). We finally studied the impact of TCAM Word Length
(WDL) on the sensing margin. In order to emulate smaller TCAM words, certain
TCAM cells were deactivated by applying no voltage between their RRAMs, i.e.
Vsearch=0 V (SLT=SLF=0). Figure 3.2.21 (c) compares the impact of TCAM
Word Length (WDL) on the TR for the common 2T2R (open symbol) and
the proposed 1T2R1T (filled symbol) structures. The plot has been obtained

129



CHAPTER 3. SYNAPTIC ROUTING TABLES WITH RRAM-BASED
TCAMS

(a) (b)

(c)

Figure 3.2.21: Measured time ratio for the proposed 1T2R1T structure
(filled symbol) and the common 2T2R structure measured in the previous
section (open symbol) as a function of (a) the search voltage Vsearch, (b)
the memory window, and (c) the TCAM word length. The measurements
performed on the 2T2R structure using the two-bits encoding scheme of
Li et al. [29] is represented by the shaded red diamond.

with measured results for Soft HRS and Strong HRS (blue and red symbol,
respectively) and extended with simulations for TCAM words longer than 128
bits (blue and red dotted line for Soft HRS and Strong HRS, respectively). The
sensing margin measured in [29] (green circle, 2T2R TCAM with Phase-Change
Memory (PCM) technology) and sensing margin simulated in [32] (black dotted
line, simulations performed assuming a memory window of 8.5.105 with a 2T2R
TCAM) are also reported for comparison. Unlike the common 2T2R structure
whose TR decreases with WDL, WDL has a minimal impact on the TR of
the proposed 1T2R1T structure up to 256 bits. For longer words (>512 bits),
the ML starts discharging in the match state through all the transistors N2.
However, the TR remains higher than the sensing limit (the TR is still higher
than 103). Therefore, the proposed 1T2R1T structure allows for an increase in
the maximum word length (more than 2 kbits) for both Soft and Strong HRS
with respect to the common 2T2R structure.
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3.2.4.5 Search endurance characterisation

(a)

(b) (c)

Figure 3.2.22: (a) During a search operation, a positive voltage is
applied on the top electrode of one RRAM cell (here RX for a search
’1’) in the same configuration as a Set operation. (b) Search endurance
characterisation for the proposed 1T2R1T structure. (c) Comparison
between the search endurance of the common 2T2R TCAM (open symbol)
and the 1T2R1T TCAM (filled symbol) as a function of Vsearch for Soft
and Strong HRS.

During a search operation, a positive voltage is applied on the top electrode
of one RRAM cell (RX for search ’1’, RY for search ’0’) in the same polarity
as a Set operation as sketched in Figure 3.2.22 (a). As in the common 2T2R,
undesired switchings from HRS to LRS can occur leading to a match failure in
the case of a match configuration. We characterised the search endurance of
the proposed 1T2R1T structure for Soft and Strong HRS and different search
voltages, Vsearch, in Figure 3.2.22 (b). As with the previous structure, we
measured the discharge time, tsearch, after a series of search operations when
the TCAM is initially in a match state. However, contrary to the previous
structure whose ML discharges in the match state, we limited here the duration
of each search operation. The duration of each search operation has been
chosen as at least twice the discharge time, tsearch, in the 1-bit mismatch state.
Table 3.12 shows the duration of search operations for each search endurance
characterisation. Note that tsearch in the 1-bit mismatch state only depends
on the applied Vsearch and not the programming conditions. tsearch has been
normalised here by the duration of each search operation. In accordance with
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the previous 2T2R TCAM, the search endurance degrades with higher Vsearch or
when the TCAM is programmed in Soft HRS instead of Strong HRS. Figure
3.2.22 (c) compares the search endurance of the common 2T2R TCAM (open
symbols) and the proposed 1T2R1T TCAM (filled symbols) as a function of
Vsearch. The proposed 1T2R1T TCAM improves the search endurance in both
Soft and Strong HRS. At Vsearch=0.6 V, we observe no degradation for more
than 107 search operations (limit of measurement), improving on the previous
structure by >10x. The improvement in search endurance with the proposed
1T2R1T TCAM can be accounted for by the fact that the search voltage, Vsearch,
is applied on RRAM cells only during the match line sensing phase. By contrast,
in the 2T2R TCAM, the search voltage is already applied on RRAM cell top
electrodes during the match line pre-charge phase before the match line sensing
phase.

Table 3.12: Duration of each search operation as a function of the
search voltage, Vsearch, for the search endurance characterisation. Note
that tsearch in the 1-bit mismatch state only depends on Vsearch, and it
is similar whether RRAMs are programmed in Soft or Strong HRS.

3.2.4.6 Search time and search energy consumption

To reduce the search time (discharge time in the 1-bit mismatch state), the
ML sensing circuit has to be as fast as possible. This is the reason why we
used an analog circuit to sense the ML voltage. The analog circuit senses the
ML voltage and compares it to a reference voltage, VREF. Here, we defined the
search time as the time taken to discharge the ML of a given voltage (∆V) from
the pre-charged value (VDD ML) (Figure 3.2.23 (a, top)). Note that with the
proposed 1T2R1T structure, the sensing circuit can also be simplified by the
use of a digital inverter (Figure 3.2.23 (a, bottom)), thereby reducing design
complexity. This is possible because the ML discharges only in the mismatch
state. In the case where an inverter is used, the search time would be defined as
the time required to fully discharge the ML, i.e. when the output of the inverter
switches. Therefore, using an inverter instead of an analog circuit comes at
the expense of longer search times as well as higher search energy consumption
(since we also need to fully charge the ML again at each search operation).
Here, we consider an analog circuit for the sensing circuit. Figure 3.2.23 (b)
shows measured (symbol) and simulated (line) discharge times as a function of
Vsearch for (Left) a mismatch state of 128 bits and (Right) 1 bit . The TCAM
is programmed in Strong HRS. In the fabricated circuit, ∆V is fixed at 3.0
V (solid line in Figure 3.2.23 (b)). As it can be seen, measurements and
simulations are in good agreement. A first possibility to reduce the search time
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(a)

(b) (c)

Figure 3.2.23: (a) With the proposed 1T2R1T structure, the sensing
circuit can be implemented either with (Top) a comparator circuit (low
swing) or (Bottom) a digital inverter (full swing). (b) Measured (symbol)
and simulated (line) discharge times, tsearch, as a function of the search
voltage, Vsearch, in the (Left) 128-bits and (Right) 1-bit mismatch states.
(c) Simulated search energy consumption as a function of Vsearch in the
1-bit mismatch state when transistors N2 are implemented with thick
oxide MOS (solid line) and thin oxide MOS (dotted line).

is by decreasing ∆V from 3.0 V down to 80 mV (dotted line, voltage which
still ensures an accurate switching of the comparator). Simulations show that it
improves the search time by 96x. Another possibility is to replace the thick oxide
MOS used for transistors N2 by a thin oxide MOS. Indeed, since the transistor
N2 is not involved in RRAM programming operations, a thin oxide transistor
with minimum permitted gate length can be adopted. With the same W/L ratio
as before (with W=1.56 µm and L=130 nm), this speeds up searches by 300x.
At Vsearch=0.6 V, we reach a search time of 0.93 ns.
We finally simulated the energy consumption during a search operation. The
search energy is calculated as the integral of power consumed by the match line
(pre-charge and discharge) and search lines over the search time. Considering
an analog circuit for the sensing circuit with ∆V=80 mV, the implementation
of transistors N2 with thin oxide MOS improves search energy consumption
by 13x thanks to the lower transistor activation energy. At Vsearch=0.6 V and
the same W/L ratio as before (W/L=12 with W=1.56 µm and L=130 nm),
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the TCAM consumes 7.18 fJ/bit/search. Note that using minimum permitted
gate length and width (W=150 nm and L=130 nm), the TCAM consumes 1.24
fJ/bit/search.

3.2.4.7 Discussion

In this section, we proposed a new TCAM bitcell composed of two transistors
and two RRAMs in a 1T2R1T configuration. It is based on a RRAM voltage
divider (2R) biasing a transistor gate (1T). An additional transistor is used
for RRAM programming operations (1T). The proposed TCAM cell addresses
the main limitations of the most common 2T2R RRAM-based TCAM [28–32],
namely the strong dependency on RRAM memory window and the limited
word length. Table 3.13 compares the characterisation results obtained for
both structures. We experimentally demonstrated that the proposed 1T2R1T
structure is insensitive to the memory window (Figure 3.2.21 (b)) and can
operate with standard programming conditions for the RRAM memories (Soft
HRS). Following the same reasoning on the programming endurance explained
in Section 3.2.3.6 (which is still valid for the proposed 1T2R1T TCAM circuit),
this leads to a programming endurance of 106 cycles for the RRAM cells,
improving on the common 2T2R structure by 100x. More importantly, we
experimentally proved a large sensing margin with the proposed structure
which is comparable to that of SRAM-based TCAMs (>104). This allows
a large volume of data to be searched in parallel thanks to the long word
length (>2 kbits, Figure 3.2.21 (c)). This makes this bitcell suitable for
applications requiring long pattern matching, such as internet protocol (IP) v6
packet routing, DNA sequence matching, or active control list management [34].
Neuromorphic multi-core architectures would also benefit from this structure,
thanks to the improved performance, reliability, and especially better search
endurance. Finally, this structure also allows for more relaxed design constraints.
First, only one transistor is required for programming operations (transistor
N1), the other one is only involved in search operations (transistor N2). As
a result, the transistor N2 can be implemented with thin oxide MOS with
minimum permitted gate length. This improves the search time, search energy
efficiency, and TCAM bitcell size. In addition, the lower threshold voltage of
such transistors allows to operate the TCAM in a low-voltage regime during
search operations, hence significantly improving search endurance. This is more
challenging with the common 2T2R structure as both transistors are required
for programming operations. Second, as the match line does not discharge
in the match state, we also have more flexibility in the design of the sensing
circuit. Whereas a comparator circuit is mandatory for the 2T2R structure,
a digital inverter can be used for the 1T2R1T structure. This reduced design
complexity at the expense of longer search times and higher search energy
consumption. Table 3.14 compares the measured performance and reliability
metrics of both structures with reported silicon-proven RRAM-based TCAM
circuits [19, 21, 26, 27, 29]. We also report in Figure 3.2.24 the TCAM bitcell
size, search time, and search energy of our circuits with reported silicon-proven
SRAM- (circle) and RRAM-based (diamond) TCAM circuits.
The main drawbacks of this structure are the more complex programming scheme
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Table 3.13: Comparison of the characterisation results obtained with
the common 2T2R and the proposed 1T2R1T structure.

Table 3.14: Comparison with silicon-proven RRAM-based TCAM cir-
cuits presented in the literature [19, 21, 26, 27, 29]. Search times have
been normalised by the TCAM word length.

and sensing in the don’t care state (’X’ state). Indeed, search lines (SLT and
SLF) are shared among all the cells in the same column. Thus, programming
a cell can disturb other cells in the same column as programming pulses are
applied directly on SLT and SLF. The 4T2R TCAM bitcell proposed in [21]
solves this problem by using two additional transistors per cell, one for each
search line (SLT and SLF). This permits to independently select each TCAM
cell in a column. However, this increases the cell size. In our structure, an
appropriate programming scheme has to be implemented in order to limit the
voltage drop across each RRAM in the same column. The second drawback
is the sensing in the ’X’ state. When a TCAM cell is programmed in the ’X’
state, i.e. both RRAMs are in the HRS, the gate of transistor N2 is biased
at ≈Vsearch/2 during a search operation. This can lead to a discharge of the
ML in the match state if transistors N2 leak too much. It is then required to
use search voltages, Vsearch, as low as possible. Ideally, the intermediate node
capacitance of the RRAM voltage divider should be high enough to keep the
voltage close to 0 V for a sufficiently long time (i.e. longer than the search
time). The 3T2R TCAM proposed in [23] addresses this limitation by using an
additional transistor whose source and drain are connected between the internal
node of the RRAM voltage divider and the gate of transistor N2. This transistor
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transmits the voltage of the RRAM voltage divider to the gate of transistor
N2 only in the mismatch state, i.e. if the voltage exceeds a minimal voltage.
Otherwise no voltage is transmitted.

(a)

(b)

(c)
Figure 3.2.24: Comparison in terms of (a) TCAM bitcell size, (b) search
time, and (c) search energy as a function of technology node with reported
silicon-proven SRAM- (black circle) [3, 5, 12, 13, 33, 36–39, 41, 43–47]
and RRAM-based (blue diamond) [19, 21, 26, 27, 29] TCAM circuits.
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CHAPTER 4. 3D MONOLITHIC INTEGRATION OF CMOS
TRANSISTORS AND RRAMS

4.1 Goal of this chapter

This chapter concludes the study presented in this dissertation by demon-
strating the co-integration of Resistive Memories (RRAMs) with CMOS

transistors in a three-dimensional (3D) sequential integration, also called mono-
lithic integration. Two layers (or tiers) of transistors are fabricated in a 3D
monolithic integration of a 65-nm design rules Silicon On Insulator (SOI) CMOS
over CMOS process, i.e. the top tier is fabricated directly on top of the bottom
tier on a new active area. This allows alignment accuracy at the transistor scale.
RRAMs are then integrated in the Back-End-Of-Line (BEOL) of the process on
top of transistor contact plugs. As a proof-of-concept, we show the functionality
of two one-transistor/one-RRAM (1T1R) structures in parallel, i.e one RRAM
is connected to a NMOS transistor from the bottom tier and one RRAM is
connected to a NMOS transistor from the top tier. This enables to further
benefit from the third dimension (i.e. the vertical axis) by both stacking several
tiers of CMOS transistors on top of each other as well as RRAMs in the BEOL,
and it opens up new perspectives for neuromorphic applications. For instance,
this can potentially provide better synaptic density on a given silicon chip area
- by vertically stacking several layers of RRAM-based 1T1R synapses such as
the ones studied in Chapter 2 - and better synaptic routing density - by using
Ternary Content-Addressable Memory (TCAM) circuits such as the ones studied
in Chapter 3. We first describe the integration process, then we present the
electrical characterisation results that demonstrate the basic functionality of the
integration.

4.2 Three-dimensional monolithic co-
integration of resistive memories and
CMOS transistors

4.2.1 CoolCube™technology

Top and bottom CMOS transistors have been integrated with Cool-
Cube™technology developed by CEA-Leti [1]. Figure 4.2.1 summarises the
process flow. A first layer of CMOS transistors - the bottom tier or bottom
level - is fabricated in a 65-nm Silicon On Insulator (SOI) CMOS process with
high-k dielectric metal gate and raised source and drain junctions with epitaxy
(Figure 4.2.1 (Left)) [1]. Then, a silicon layer is transferred on top of the
bottom tier which corresponds to the top active area (Figure 4.2.1 (Middle)).
In order to guarantee a top active area with electrical properties compatible
with industrial requirements [2], a new SOI substrate layer is transferred by
oxide-oxide (SiO2/SiO2) bonding on top of the bottom tier. The substrate is
then thinned down by grinding and etching. Finally, the top tier is fabricated
directly on the new transferred Si substrate (Figure 4.2.1 (Right)).
The main challenge of monolithic integration is to preserve performance of bot-
tom transistors during the fabrication of the top tier. Indeed, it has been shown
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Figure 4.2.1: Process flow scheme of 3D CoolCube™integration. (Left)
The bottom level is fabricated at high temperature in a conventional
65-nm SOI CMOS process. (Middle) A new SOI wafer is transferred on
top of the bottom level by oxide bonding, and it represents the top active
area. (Right) The top level is fabricated at low thermal budget directly
on top of the bottom level. Reproduced from [1].

that MOSFET performance are ensured up to 500°C for a few hours [3]. The
degradation at higher temperature is mainly attributed to the deterioration of
Ni0.9Pt0.1 silicide used to enhance access conductivity [3–5]. At high temperature,
Transmission Electron Microscopy (TEM) observations show silicide clustering
effects (for NMOS transistors) or silicide spread (for PMOS transistors) that
degrade MOSFET performance [3, 5]. However, as shown in Figure 4.2.1 (Left),
temperature can go up to 1050°C during transistor fabrication. In order to
enable the fabrication of the top tier while maintaining bottom tier performance,
Thermal Budget (TB) - i.e. temperature and process time - of the four critical
steps (dopant activation, gate oxide stabilisation, source and drain epitaxy,
and spacer deposition) during the top tier fabrication has been reduced. This
has been made possible by the use and development of different processes, for
instance Solid Phase Epitaxy Regrowth (SPER) or laser annealing [4–6]. All
the technics employed to enable low-temperature process will not be reviewed
here. It is also worth noting that all this process has been realised within
an ultra-clean environment respecting hard contamination constraints [1, 7].
For future works, solutions to further decrease TB have been demonstrated,
such as the use of low-k spacers deposited at temperatures below 500°C and
low-temperature epitaxy down to 550°C [2]. Another alternative is to improve
silicide stability of the bottom tier. For instance, the use of Ni0.9Co0.1 with
Si-capping instead of Ni0.9Pt0.1 allows for a thermal stability up to 600°C for
2 hours [8]. Another significant advantage of CoolCube™technology is that it
is compatible with industrial requirements thanks to the use of conventional
foundry process.
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4.2.2 Resistive memory integration

(a) (b)

(c) (d)

Figure 4.2.2: (a) Schematic illustration of CoolCube™wafers before
RRAM integration. Gate contact plugs (shaded purple area) are de-
ported. (b) TiN/HfO2/Ti/TiN (10 nm/5 nm/5 nm/30 nm) RRAM de-
vices are fabricated directly on top of contact plugs by a first e-beam
photo-lithography. (c) Oxide and Contact Etch Stop Layer (CESL) are
deposited on top of RRAM devices. Then, contact plugs are recovered by
a second e-beam photo-lithography. (d) Integration is finished by standard
CoolCube™back-end-of-line process.

The goal of this work is to integrate HfO2-based RRAMs - the same tech-
nology as in Chapter 2 and 3 - on top of CMOS transistors fabricated with
CoolCube™integration presented in the previous section. Figure 4.2.2 (a)
depicts an example of two levels of NMOS transistors fabricated with Cool-
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Cube™, just before the integration of RRAM devices. In this work, we retrieved
CoolCube™wafers before the first level of metal lines. RRAM devices have been
integrated on top of CMOS contacts by a first e-beam photo-lithography step
(Figure 4.2.2 (b)). The RRAM devices are composed of a TiN/HfO2/Ti/TiN
stack where layers are 10 nm/5 nm/5 nm/30 nm thick. Then, a second e-beam
photo-lithography step has been added to recover contacts plugs on top of RRAM
devices after oxide and Contact Etch Stop Layer (CESL) deposition (Figure
4.2.2 (c)). Finally, the integration has been finished by adding metal levels with
the standard CoolCube™back-end-of-line process (Figure 4.2.2 (d)). Figure
4.2.3 shows a TEM observation of the integrated RRAM devices on top of two
levels of NMOS transistors in a 65-nm SOI CMOS process on 300-mm (12-inch)
SOI wafers. This represents two one-transistor/one-RRAM (1T1R) structures
in parallel, i.e. one RRAM is controlled by the transistor of the bottom tier
and one RRAM is controlled by the transistor of the top tier. Ideally, a level of
RRAM should be integrated in between the two NMOS levels to benefit as much
as possible from the third dimension. However, for the sake of simplicity and to
prevent any contamination issue, we integrated RRAM devices only on top of
the second NMOS level. In the next section, we will show the functionality of
this first-in-world co-integration.

Figure 4.2.3: Transmission electron microscopy of the co-integration
of HfO2-based RRAMs on top of two NMOS transistors fabricated with
CoolCube™technology.
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(a) (b) (c)

Figure 4.3.1: Ids-Vgs characteristics measured on (a) a bottom NMOS
transistor with W=L=10 µm, (b) a top NMOS transistor with W=L=10
µm, and (c) a top NMOS transistor with W=60 nm and L=50 nm.
Characteristics have been measured at Vds=50 mV (dotted line) and
Vds=1 V (solid line).

4.3 Electrical characterisation of the three-
dimensional monolithic integration of two
tiers of NMOS transistors with a tier of
resistive memory devices

In this section, we present electrical characterisation results showing the basic
functionality of RRAMs co-integrated with 3D monolithic NMOS transistors.
We will refer to transistors of the bottom tier as bottom transistors and to
transistors of the top tier as top transistors.

4.3.1 Basic functionality of bottom and top transistors

We first tested the functionality of bottom and top NMOS transistors. For
this purpose, devices with only the bottom NMOS transistor (without the top
NMOS transistor) and devices with only the top NMOS transistor (without
the bottom NMOS transistor) have been fabricated on the same die. Figure
4.3.1 shows Ids-Vgs characteristic for (a) a bottom and (b) a top transistor
with W=L=10 µm at Vds=50 mV (dotted line) and Vds=Vdd=1.0 V (solid
line). The characteristics show control of the current with Vgs for currents
up to 300 µA (setup limit). This is an essential requirement to limit current
during programming of RRAMs. In addition, transistors must drive enough
current to enable switching of the RRAMs - usually in the order of hundreds of
microamperes. Smaller top transistors have also been proven to be functional
(Figure 4.3.1 (c), with W=60 nm and L=50 nm).
We demonstrated here the basic functionality of top and bottom transistors in
order to program RRAM devices in 1T1R structures. We will now demonstrate
the functionality of the 1T1R structures.
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4.3.2 Characterisation of 1T1R structures

The device under test is equivalent to two one-transistor/one-RRAM (1T1R)
in parallel (NMOS and HfO2-based RRAM). Both bottom and top NMOS
transistors feature a gate width W=1 µm and length L=100 nm. Both RRAMs
are rectangular with an area of 0.25 µm2 (0.25x1 µm). One RRAM is connected
to the bottom NMOS and one RRAM is connected to the top NMOS. In the
following, we will refer to the 1T1R with the RRAM connected to the bottom
NMOS as the bottom 1T1R and to the 1T1R with the RRAM connected to the
top NMOS as the top 1T1R.

4.3.2.1 Quasi-static and pulsed measurements

(a) (b)

(c) (d)

Figure 4.3.2: (a) Butterfly I-V curves measured on the bottom 1T1R
and (b) the top 1T1R. Forming, then five Reset-Set cycles have been
performed with the programming conditions in Table 4.1. (c) Read
resistance values measured after each switching operation on the bottom
1T1R and (d) on the top 1T1R.

We first characterised the bottom and top 1T1R in quasi-static measurements.
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Figure 4.3.2 shows classic butterfly I-V curve measurements performed on (a)
the bottom 1T1R and (b) the top 1T1R. Forming, then five Reset-Set switching
cycles in quasi-static have been performed on the bottom 1T1R (Figure 4.3.2
(a)). Then, the same protocol (Forming, five Reset-Set cycles) has been performed
on the top 1T1R (Figure 4.3.2 (b)). Table 4.1 summarises the programming
conditions used for the measurements. A positive voltage is applied on the
top electrode during Forming and Set operations, while a negative voltage is
applied on the top electrode during Reset operations. Resistance values of
the RRAMs have been read after each programming operation with a read
voltage Vread=0.1 V and Vgs=1.2 V - in order to fully activate the transistor.
Figure 4.3.2 (c) and Figure 4.3.2 (d) show read resistance values after each
programming operation for the bottom and top 1T1R, respectively. As evidenced
here, forming occurs on the bottom 1T1R at Vforming=2.4 V, and the RRAM
switches from its pristine state to a Low Resistance State (LRS) (R≈8.9 kΩ).
Similarly, the top 1T1R is formed at Vforming=2.2 V with a LRS resistance value
after forming of ≈8.5 kΩ. Subsequent Reset and Set operations make RRAM
devices switch between the High Resistance State (HRS) and the LRS. Switching
to HRS is gradual and depend on the applied voltage, while switching to LRS is
abrupt. This is consistent with previous works reported on this technology [9].
In addition, switching voltages, Vswitching, obtained with our RRAM devices are
in agreement with reported data on the same RRAM technology - in particular
same oxide thickness [10–12]. We then demonstrated there was no crosstalk
between the two RRAMs. We performed Set-Reset operations on one of the
two 1T1R, and we verified the resistance value of the other 1T1R after each
programming operation. The results are shown in Figure 4.3.3. During Set and
Reset operations performed on the top 1T1R (Figure 4.3.3 (a)), the bottom
1T1R resistance state is not altered after each switching operation. Similarly,
performing Set and Reset operations on the bottom 1T1R (Figure 4.3.3 (b))
does not alter the top 1T1R resistance state. This confirms that there is no
crosstalk between the two 1T1R since programming one of the two 1T1R does
not affect the resistance state of the other 1T1R.
We then characterised the bottom and top 1T1R in pulsed measurements. Table
4.2 summarises the programming conditions of each operation. After forming
of the bottom and top 1T1R, 105 Set-Reset cycles are applied on the bottom
1T1R (cf Figure 4.3.4 (a)). Then, 105 Set-Reset cycles are applied on the top
1T1R (cf Figure 4.3.4 (b)). We can sustain a ratio between the HRS and LRS
resistance values of about 15 and 12 for the bottom 1T1R and the top 1T1R for
105 cycles, respectively.

4.3.2.2 Impact of programming current

We finally verified the possibility to control LRS resistance values with the
programming current, Iprog, i.e. by biasing transistor gates at different gate
voltages, Vgs. As shown in Figure 4.3.5 (a) and (b), it is possible to program
the RRAM devices at several LRS resistance values by fixing different Iprog ((a)
and (b) for the bottom and top 1T1R, respectively). Figure 4.3.5 (c) reports
LRS resistance values as a function of Iprog for the bottom 1T1R (red diamond)
and the top 1T1R (blue triangle). For the sake of comparison, reported data on
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Sweep Gate Voltage Switching Voltage Read
Voltage Vgs Vswitching Resistance

Bottom 1T1R

Forming 0 → 2.5 V → 0 0.6 V 2.4 V 8.9 kΩ(Icc≈100 µA)

Set 0 → 1.0 V → 0 0.6 V ≈0.60 V ≈6.1 kΩ(Icc≈100 µA)

Reset 0 → -1.0 V → 0 1.2 V ≈-0.34 V ≈172 kΩ
Top 1T1R

Forming 0 → 2.5 V → 0 0.6 V 2.2 V 8.5 kΩ(Icc≈100 µA)

Set 0 → 1.0 V → 0 0.85 V ≈0.71 V ≈7.5 kΩ(Icc≈130 µA)

Reset 0 → -1.0 V → 0 1.35 V ≈-0.82 V ≈54.4 kΩ
Table 4.1: Programming conditions used for the bottom and top 1T1R
measurements in quasi-static mode (butterfly I-V curves). For forming
and Set operations, the switching voltage Vswitching corresponds to the
voltage required to abruptly switch from the High Resistance State (HRS)
to the Low Resistance State (LRS). For Reset operations, it corresponds
to the voltage at which the resistance value of RRAM devices starts to
decrease (onset of the switching from LRS to HRS). Vswitching and read
resistance values have been averaged over five Set or Reset operations.

Programming Voltage Gate Voltage Pulse
VProg Vgs Width

Bottom 1T1R
Forming 2.75 V 1.2 V (Icc≈200 µA) 1 ms

Set 1.6 V 1.2 V (Icc≈200 µA) 1 µs
Reset -2.0 V 1.2 V 1 µs

Top 1T1R
Forming 2.75 V 1.2 V (Icc≈200 µA) 1 ms

Set 1.6 V 1.35 V (Icc≈220 µA) 1 µs
Reset -2.0 V 1.35 V 1 µs

Table 4.2: Programming conditions used for the bottom and top 1T1R
measurements in pulsed mode.
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(a)

(b)

Figure 4.3.3: Demonstration of the absence of crosstalk between the
bottom and top 1T1R. (a) Set and Reset operations have been performed
on the top 1T1R, and the resistance values of the bottom and top 1T1R
have been read after each switching operation. Bottom 1T1R resistance
states remain unaltered after each switching operation on the top 1T1R.
(b) Similarly, Set and Reset operations have been performed on the bottom
1T1R. Top 1T1R resistance states remain unaltered after each switching
operation on the bottom 1T1R. Programming conditions in Table 4.1
have been used.

(a) (b)

Figure 4.3.4: Endurance characterisations performed on (a) the bottom
1T1R and (b) the top 1T1R for 105 switching cycles. Measurements have
been performed with the programming conditions in Table 4.2.

different RRAM technologies are also shown [9]. In agreement with previous
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works, LRS resistance values decrease when Iprog increases. LRS resistance
values exhibit the same power law relationship with Iprog as reported RRAM
technologies. This proves the complete functionality of the integration.

(a) (b)

(c)

Figure 4.3.5: (a) Butterfly I-V curves measured on the bottom 1T1R
and (b) the top 1T1R with different programming currents, Iprog, for each
Set operation. Increasing Icc allows to decrease resistance values after
each Set operation. (c) Low Resistance State (LRS) resistance values
as a function of programming current, Iprog, for the bottom 1T1R (red
diamond) and the top 1T1R (blue triangle). Data on different RRAM
technologies reproduced from [9] are reported for comparison. Measured
data of the bottom and top 1T1R are in good agreement with previous
works.

4.4 Discussion and conclusion

In this chapter we demonstrated the feasibility of three-dimensional sequen-
tial (3D monolithic) integration of CMOS transistors with Resistive Memories
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(RRAMs). Two levels (tiers) of CMOS transistors are vertically stacked on
top of each other with CoolCube™technology [1], and HfO2-based RRAMs
have been integrated in the Back-End-Of-Line (BEOL) of the process. This
results in two one-transistor/one-RRAM (1T1R) structures in parallel. This
works advances the state-of-the-art by demonstrating a full 3D monolithic in-
tegration of two tiers of high-performance CMOS transistors with a tier of
RRAMs. Indeed, 3D monolithic integration of CMOS transistors have already
been demonstrated - for instance in [13–15]. Also, heterogenous 3D integration
of one tier of CMOS with other technologies, such as carbon nanotubes and
RRAMs, have also been presented in [16, 17]. However, previous works often
rely on complex and expensive fabrication process, for instance with the use of
III-V materials [5, 14, 18] or polysilicon channel integration resulting in lower
electrical performance of top tiers [13, 15, 17]. A significant advantage of Cool-
Cube™technology [1] over other 3D monolithic technologies is the fabrication of
a top level compatible with state-of-the-art high-performance Fully-Depleted SOI
process requirements, such as high-k/metal gate or raised source and drain [1].
In addition, CoolCube™technology is compatible with industrial requirements
thanks to the use of conventional foundry process, in particular in terms of hard
contamination constraints. Similarly, RRAM devices are fabricated using mature
and extensively studied RRAM technology - TiN/HfO2/Ti/TiN RRAM stack
- compatible with industrial CMOS BEOL process [10, 11, 19]. Future works
on CoolCube™technology will permit the introduction of intermediate metallic
lines (intermediate BEOL) in between CMOS tiers by decontamination and
encapsulation of the wafer bevel edge as described in [20]. Intermediate metallic
lines are mandatory to avoid routing congestion and allow for the integration of
highly interconnected systems to fully benefit from the third dimension. For this
purpose, intermediate ULK/copper with standard BEOL will be introduced in
future works. In addition, this also provides opportunities to integrate RRAM
devices in between CMOS tiers (inside the intermediate metal layers) and to
bring memory cells as close as possible to processing units for in-memory com-
puting architectures [21, 22].
The major challenge of 3D monolithic integration - in this case of Cool-
Cube™integration - is the fabrication of top tiers at low thermal budget, while
ensuring high-performance for every CMOS tier. In this work, performance of
bottom and top transistors differ since this is still a preliminary work, and the
integration was not fully optimised in the light of recent advances [5, 6, 8, 20].
Indeed, recent works on 3D monolithic integration have allowed to address
the main technological roadblocks, and similar performance are expected to be
obtained for every CMOS tier [5, 6, 8, 20]. Still, we experimentally proved in
this chapter that current electrical performance of bottom and top transistors is
sufficient to program RRAMs. That is, enough current can be driven during
programming operations to trigger the switching between High and Low Resis-
tance States (HRS and LRS) (see Figure 4.3.4) and to control LRS resistance
values (see Figure 4.3.5).
Benefits have been envisioned with 3D monolithic technologies [23–29]. The
major advantage of such technologies is the gain in area for a given chip area.
Depending on the partitioning method, gain is expected to be about 2x for
cell-on-cell partitioning and less (≈ 1.67) for transistor-on-transistor level parti-
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tioning [23]. Indeed, we need more room for the bottom active area in order to
etch contacts with respect to the planar case [27] (see the transmission electron
microscopy in Figure 4.2.3, a certain distance has to be guaranteed between top
and bottom contact plugs, hence increasing the bottom active area). In terms of
cost (that takes area gain into account), cost benefits of the order of 50% or more
for large wafers are expected [23]. 3D monolithic integration can also provide
benefits in terms of circuit performance as it results in smaller cell size and
generally in shorter interconnections [26, 27]. As a result, we can expect gains in
speed and energy consumption as it has been simulated for instance in [21] or [24].
In Chapter 2, we studied the implementation of artificial synapses with 1T1R
synapses using the same technology as the one studied in this chapter. Spiking
neural networks can naturally benefit from 3D monolithic integration [25]. As
an example, the different layers of neuron circuits can be fabricated on each
tier, while RRAM-based synapses are physically located in between each layer
(inside the intermediate metal layers) to interconnect neurons in a truly brain-like
architecture. In addition, alignment accuracy of 3D monolithic integration allows
for higher density of interconnections with respect to 3D parallel integration [1].
This is an important requirement to implement hardware neuromorphic systems
since biological brains contain more than 1014 synapses, and synapses outnumber
neurons by four orders of magnitude. Finally, we demonstrated in Chapter 2
that RRAM resistance variability can be beneficial for spiking neural networks
trained with unsupervised learning rules. As a result, even though electrical
performance of top transistors may be degraded, this would have a minimal
impact on network performance since it only affects RRAM during programming
operations (i.e. RRAMs programmed with top transistors probably exhibit
higher resistance variability). In Chapter 3, we studied the implementation
of Ternary Content-Addressable Memories (TCAMs) with RRAMs as synaptic
routing lookup tables for multi-core neuromorphic processor reconfigurability. As
we experimentally proved, RRAM-based TCAMs considerably benefit from the
gain in area with 3D monolithic integration. Indeed, this allows for a decrease
in TCAM bitcell size, thus shorter match lines [28, 29]. Consequently, search
times, search endurance, and search energy consumption improve. However, the
work presented in this chapter remains a proof-of-concept of the 3D monolithic
integration of CMOS and RRAMs, and previous statements are perspectives
to be explored. Recent advances in 3D monolithic technology will permit to
achieve similar performance for every fabricated tier. Therefore, future works
need to investigate more in depth the pros and cons of 3D monolithic integration
in order to optimise and fully benefit from such integration. In particular, a
thorough evaluation of the advantages of 3D monolithic integration over more
conventional integrations, such as planar or 3D parallel integrations, is essential.
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Conclusion and perspectives

The objective of this work was to study the role of resistive memories and three-
dimensional monolithic technologies to enable the hardware implementation

of compact, energy-efficient reconfigurable multi-core neuromorphic processors.
We investigated the impact of Resitive Memory (RRAM) electrical characteristics
on performance and reliability of Spiking Neural Networks (SNNs). To this end,
we provided comprehensive studies of the impact of RRAM resistance ratio
(memory window), resistance variability, and programming endurance on RRAM-
based synaptic arrays and synaptic routing tables in Chapter 2 and Chapter
3, respectively. Finally, we opened up technological perspectives to further
improve neuromorphic core area-efficiency by demonstrating the feasibility of a
complete three-dimensional sequential integration (3D monolithic integration)
of two levels of CMOS transistors associated with a level of RRAM devices in
Chapter 4.

The main building blocks of SNN neuromorphic cores are: (i) synaptic
arrays with adjustable synaptic weights, (ii) synaptic routing tables for on-
the-fly network topology reconfigurability, (iii) neuron circuits with adjustable
parameters, and (iv) on-line learning circuitry. In this work, we solely focused
on (i) synaptic arrays with adjustable synaptic weights, and (ii) synaptic routing
tables, both implemented with RRAMs. Many challenges related to RRAM
electrical characteristics are yet to be addressed to utilise RRAMs for standard
memory applications: the rather low memory window (≈10-100) and high
cycle-to-cycle and device-to-device resistance variability in order to obtain
programming endurance as long as that of flash memories (≈106 Set/Reset
cycles). While these limitations hinder the integration of large memory arrays
with RRAMs, we argued that RRAM requirements for neuromorphic cores
remarkably differ from those of memory systems. We demonstrated that the
aforementioned issues are not detrimental for the implementation of RRAM-
based synaptic circuits and RRAM-based synaptic routing tables.
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In Chapter 2, we studied the implementation of RRAM-based synapses
and investigated the impact of RRAM electrical properties on SNN perfor-
mance trained with the unsupervised spike-timing-dependent plasticity learning
paradigm. A systematic study has been carried out by means of extensive
system-level simulations calibrated on experimental electrical characterisation
of 4-kbit RRAM arrays. Two applications have been simulated: (i) detection
in dynamic patterns (car tracking [1]), and (ii) classification of static patterns
(handwritten digits of MNIST [2]). For this purpose, SNNs were based on
canonical fully-connected feed-forward neural network topology and trained
with the unsupervised Spike-Timing-Dependent Plasticity (STDP) learning rule.
Synaptic elements were implemented with simple one-transistor/one-RRAM
(1T1R) structures. First, we considered binary RRAM devices, i.e. RRAMs
exhibiting abrupt switching between two distinct states: the Low Resistance
State (LRS) and High Resistance State (HRS). In order to obtain analog synap-
tic weight evolution using binary RRAMs, the synaptic compound associated
with a stochastic STDP learning rule proposed in [3] has been used wherein
each synaptic element is implemented by several RRAM devices operating in
parallel. For detection applications, we demonstrated that both the Memory
Window (MW, ratio between HRS and LRS resistance values) and resistance
variability (cycle-to-cycle and device-to-device) improve SNN performance after
training. Consequently, resistance variability is beneficial as it can compensate
for low memory windows. For classification applications, we demonstrated that
the MW has no impact on SNN performance. However, a certain amount of
resistance variability improves network performance with respect to the case of
zero variability. The results obtained in this work provide valuable insights for
the use of RRAMs as artificial synapses in SNNs with unsupervised learning.
Indeed, this allows to program RRAMs in a low-current regime during training.
This improves power consumption during training by a factor 4x with respect to
the use of programming conditions optimised for standard memory applications.
Furthermore, the use of low-energy programming pulses also improves RRAM
programming endurance. This is a significant advantage since we observed
that broken cells due to RRAM aging are detrimental for SNN performance.
While it has been shown numerous times that SNNs trained with unsupervised
learning are robust to RRAM resistance variability, we clarified here the role of
RRAM resistance variability. We proved that RRAM resistance variability is
actually beneficial to reach high performance as it increases the dynamic range
of synaptic weights available during training. The performance improvement lies
in the unsupervised nature of the learning rule: as in biological brains, RRAM
resistance variability provides more synaptic weights to synapses to be explored
during training, and it prevents the system from being stuck in sub-optimal
solutions. Second, we considered analog devices, i.e. devices capable of grad-
ual modulation of their conductance value upon the application of identical
potentiation or depression pulses. In particular, we evaluated the potential of
the PCM technology presented in [4] wherein analog conductance modulation
is obtained in both crystallisation and amorphisation. The crucial result of
this study was that the natural non-linearity of conductance response of PCM
technology as well as many RRAM technologies improves SNN performance.
This is in sharp contrast with neural networks trained with supervised learning
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rules, such as the back-propagation algorithm, wherein it has been shown many
times that the non-linear conductance response of PCM and RRAM technologies
is a critical drawback for the implementation of electronic synapses based on
these technologies.
The results presented in Chapter 2 highlight that RRAM requirements for
neuromorphic cores heavily differ from those of standard memory arrays. Yet
RRAM requirements for RRAM-based synapses remain application-dependent,
and a systematic study is mandatory for each application. Therefore, a better
understanding of RRAM physics is still needed to further optimise RRAM
programming conditions for neuromorphic applications and to benefit as much
as possible from RRAM physical and electrical properties. Finally, we only
considered in this work RRAM-based synapses implemented with the simple
1T1R structure, and we did not address STDP learning circuitry. Future works
must find efficient designs for synaptic elements associated with appropriate
learning circuitry in order to enable real-time on-line learning for neuromorphic
cores.

In Chapter 3, we studied the implementation of RRAM-based Ternary
Content-Addressable Memories (TCAMs) to realise synaptic routing lookup
tables for network topology reconfigurability. This has been performed by
means of extensive electrical characterisations measured on multi-bits (3x128
bits) RRAM-based TCAM arrays. We investigated two different RRAM-based
TCAM structures. Both were made of two NMOS transistors and two RRAM
cells which currently allows for the smallest TCAM bitcell size. The first TCAM
structure is the most common 2T2R TCAM composed of two one-transistor/one-
RRAM structures in parallel. We experimentally proved that this structure
is heavily constrained by the rather low RRAM Memory Window (MW) and
high RRAM resistance variability. These two issues degrade the sensing margin
of 2T2R TCAM arrays and limit the maximum number of bits per TCAM
word. In order to use 2T2R TCAM for classic applications, such as Internet
Protocol (IP) packet routing, RRAMs need to be programmed with stronger
programming conditions than those of used for standard memory applications.
This allows for a programming endurance of 104 cycles and a search endurance
higher than 106 search operations. While the programming endurance may
be sufficient for classic TCAM applications, the search endurance is probably
too low. For synaptic routing tables in neuromorphic cores, neuron addresses
are usually short in size (below 32 bits). This allows to use standard RRAM
programming conditions featuring a programming endurance of 106 cycles which
is sufficient for neuromorphic applications. The search endurance is enough
for simple neuromorphic applications, but it still needs to be improved. We
then proposed a new RRAM-based TCAM structure composed of two NMOS
transistors and two RRAM cells in a 1T2R1T structure. One NMOS transistor
(N1) is involved in RRAM programming operations, while the second NMOS
transistor (N2) is used during search operations. Search operations rely on a
voltage divider between the two RRAM devices. During search operations, the
transistor N2 is turned ON by the RRAM voltage divider (mismatch case) or kept
OFF (match case). This structure has the significant advantage of decoupling
RRAM electrical characteristics from TCAM performance and reliability. As
expected, we experimentally demonstrated that this structure is insensitive to
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RRAM memory window and resistance variability, and it can be integrated
in long TCAM words (>2kbits) even with standard programming conditions
(programming endurance of 106 cycles). In addition, this TCAM structure also
improves search endurance (>107 search operations) with respect to the common
2T2R structure because the search voltage is applied on RRAMs only during the
search operation. Therefore, we argued that this new 1T2R1T TCAM structure
is suitable for both classic TCAM applications, like IP packet routing - thanks
to the possibility of searching long TCAM words - and neuromorphic cores -
owing to the improved search endurance. Moreover, the new 1T2R1T TCAM
structure relaxes design constraints. Transistors N2 of each TCAM bitcell
can be implemented with thin oxide CMOS transistors since these transistors
are involved only in search operations, unlike the 2T2R TCAM where both
transistors are involved in RRAM programming operations. This drastically
improves TCAM performance.

Finally, in Chapter 4, we concluded the work presented in this dissertation
by presenting a proof-of-concept of three-dimensional sequential (3D monolithic)
integration of two levels of CMOS transistors with a level of RRAM devices.
We showed the possibility to integrate two 1T1R structures in parallel with the
two NMOS transistors and RRAM devices vertically stacked on top of each
other. We experimentally demonstrated the functionality of the integration at
the device-level. The results obtained in this chapter open up technological
perspectives to further improve the works presented in the two previous chapter -
the implementation of RRAM-based synapses and RRAM-based synaptic routing
tables. In the case of RRAM-based synapses, 3D monolithic integration can
roughly double synaptic density. In addition, future works on 3D monolithic
integration will enable the fabrication of RRAMs directly in between levels of
CMOS. This will allow to integrate synaptic elements in between CMOS-based
neuron circuits in a truly brain-like architecture. Yet this needs to be fabricated
and tested. In the case of RRAM-based synaptic routing tables, 3D monolithic
integration makes possible to decrease TCAM bitcell size. This is beneficial as
it decreases silicon area consumption as well as improves TCAM performance
and search endurance - search times decrease with bitcell size which improves
performance and search endurance. In the future, electrical measurements of the
integration at the array-level are necessary to fully validate the functionality of
the concept. Furthermore, there is still a serious need for a thorough and clear
evaluation of the advantages and drawbacks of 3D monolithic integration over
more conventional integrations, such as planar or 3D parallel integrations. In
particular, since each tier fabricated with 3D monolithic integration may differ
in terms of performance, it is essential to optimise the partitioning method.

To summarise, future works should cover the following subjects:

• Better understanding of RRAM physics to benefit as much as possible
from RRAMs electrical properties in both standard memory applications
and neuromorphic cores.

• Identification of efficient designs of synaptic arrays associated with ap-
propriate learning circuitry for scalable hardware implementation and
real-time on-line learning.
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• Development of a suitable RRAM programming scheme and circuitry for
the 1T2R1T TCAM structure in order to facilitate its integration in real
circuits.

• Thorough evaluation of the opportunities offered by 3D monolithic integra-
tion and related costs to fully benefit from the integration at a circuit-level.

• Identification of efficient designs for neuron circuits since current CMOS-
based neurons still consume substantial chip area in neuromorphic cores.
This issue has not been discussed in this work, however preliminary works
from our group have been initiated to address this problem [5].
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Impact of resistive memory-based synapses
on spiking neural network performance:
Network topology

I n Chapter 2, we studied the impact of binary and analog Resistive
Memories (RRAMs) on Spiking Neural Network (SNN) performance with

RRAM-based synaptic elements (Section 2.2 and 2.3, respectively). To this
end, we simulated two applications: (i) a detection application based on a car
tracking task [1], and (ii) a character classification based on the handwritten
digit dataset MNIST [2]. Both applications rely on a one-layer fully-connected
feed-forward neural network topology: each input neuron is connected to each
output neuron with a synaptic element. This appendix describes the SNN
topology simulated for each application.

A.1 Network topology with binary devices

A.1.1 Car tracking

Figure A.1.1 (a) presents the network simulated for the detection task. A video
of cars passing on a six-lanes wide motorway is recorded using the Address Event
Representation (AER) [3, 4] format by a Dynamic Vision Sensor (DVS) with
128x128 pixels [5], and it represents the input data [1]. An input pixel generates
a spike each time there is a change of luminosity at its location in the visual
field. Each input pixel is connected with two synapses to every output neuron
to denote an increase (ON synapse) or decrease (OFF synapse) in illumination,
respectively. The input layer is composed of 128x128=16 384 input neurons,
and the output layer is composed of 60 output neurons. A similar network has
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(a)

(b)

Figure A.1.1: (a) Simulated spiking neural network for the car tracking
application with binary devices, trained with an unsupervised stochastic
Spike-Timing-Dependent Plasticity (STDP) learning rule and lateral inhi-
bition. (b) Example of spiking activity of one output neuron (red) and
the actual traffic (a grey spike corresponds to a car passing on the lane).
True Positive (TP) events, False Positive (FP) events, and False Negative
(FN) events are put in evidence. The F1-score is used to assess network
performance.

been implemented in [6] and [7] exploiting multi-level phase-change memory
and binary conductive-bridge RAM synapses, respectively. In this work, we
adopted the binary RRAM technology presented in Chapter 2 (Section 2.2.1),
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and synaptic elements are implemented with the synaptic compound of [8] - a
synapse is composed of n RRAM devices operating in parallel. The total number
of RRAM devices is 128x128x2x60xn=1 966 080n, where n is the number of
RRAM cells per synapse. Output neurons are implemented with the Leaky
Integrate-and-Fire (LIF) model [9, 10], with a leak time constant τ leak=105.5 ms.
Note that after an output neuron fires a spike, it cannot integrate any incoming
spikes for a refractory period trefrac=218 ms. It also prevents all the other
neurons of the layer from integrating incoming spikes for a period tinhibit=29.9
ms, referred to as lateral inhibition. These parameters have been obtained by a
genetic algorithm.
The network is trained with the unsupervised stochastic Spike-Timing-Dependent
Plasticity (STDP) rule presented in Chapter 2 (Section 2.2.1.2), with
pLTP=0.11, pLTD=0.20, and a STDP time window tSTDP=16.0 ms (see Fig-
ure A.1.2). Table A.1 summarises the main parameters of the network. After
a training phase, every output neuron becomes sensitive to a specific lane. An
example of the 2D conductance mapping of one output neuron after training
is shown in the top left of Figure A.1.1 (a). A potentiated ON synapse (resp.
OFF synapse) of an input pixel is represented by a red (resp. blue) dot. When
both ON and OFF synapses are potentiated, the resulting color is grey. When
both ON and OFF synapses are depressed, the resulting color is black. As
a result of the training phase, we can observe a pool of potentiated synapses
(circled in white) denoting the sensitivity of this neuron to a car at this specific
position on the motorway: when a car passes at that position, the neuron spikes.
In this example, the output neuron is sensitive to the lane 5; the neuron spikes
whenever a car passes on that lane. Figure A.1.1 (b) sketches the spiking activity
of one output neuron (red) and the actual traffic (a grey spike corresponds to a
car passing on the lane). If the neuron detects a car, we have a True Positive
(TP) event. If it spikes with no car passing, we have a False Positive (FP) event.
If it misses a car, we have a False Negative (FN) event. We use the F1-score as
a metric to assess network performance:

F1 = 2TP
2TP + FN + FP (A.1.1)

F1 ranges from 0 to 1 with F1=1 being the best performance. Each output
neuron becomes sensitive to one lane. Since there are 60 output neurons and
only 6 lanes, several neurons become sensitive to the same lane. As more cars
pass on the lanes 4 and 5, more neurons are sensitive to these lanes than to
the lane 6, the least active lane. To assess network performance, only the most
sensitive neuron for each lane is considered.

A.1.2 Digit classification

Figure A.1.3 (a) presents the network simulated for the classification task. The
Mixed National Institute of Standards and Technology (MNIST) dataset is used
for the training and testing, with 60 000 training digits and 10 000 testing digits
[2]. Each digit is composed of 28x28 pixels. The input layer converts the input
digit with a spike frequency encoding: each input neuron generates a spike train
with a spiking rate finput proportional to the grey level of the corresponding
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(a)

Figure A.1.2: Stochastic Spike-Timing-Dependent Plasticity (STDP)
learning rule. If the post-synaptic neuron spikes after the pre-synaptic
neuron within a time window tSTDP (the STDP time window), the synapse
undergoes a potentiation event. Otherwise, it undergoes a depression event.
At each potentiation (resp. depression) event, each RRAM device has a
probability pLTP (resp. pLTD) to switch to the High Conductance State,
HCS (resp. Low Conductance State, LCS).

input pixel. finput ranges from fMIN=83 Hz to fMAX=22.2 kHz, with a total of
256 different grey levels. Each input digit is presented to the network for 350 µs
during the training phase. The input layer is composed of 28x28 input neurons,
the output layer is composed of 500 LIF output neurons with a leak time constant
τ leak=120.0 µs. Synaptic elements are implemented with n RRAMs in parallel.
The total number of RRAM devices is 28x28x500xn=392 000n. The network
is trained with the unsupervised stochastic STDP rule (see Figure A.1.2),
with pLTP=0.010, pLTD=0.020, a STDP time window tSTDP=60.0 µs, trefrac=1
ns, and lateral inhibition with tinhibit=10 µs. Table A.1 summarises the main
parameters of the network.
During the training phase, each output neuron becomes sensitive to a specific
class of digit, for example the output neuron 94 becomes sensitive to the class
of digit ‘8’ as illustrated in the 2D conductance mapping of Figure A.1.3
(a). After training, each output neuron is associated with the digit it is the
most sensitive to - this represents the class of the neuron. To assess network
performance during the testing phase, the Classification Rate (CR) is computed
as shown in Figure A.1.3 (b). Each input digit is presented to the network for
350 µs, and the output neuron that spikes the most within this time window -
the most active neuron - corresponds to the network response. If the class of
this most active neuron coincides with the input digit, the digit is successfully
classified (green spikes in Figure A.1.3 (b)). If its class is different from the
input digit, the digit is not classified (red spikes in Figure A.1.3 (b)). The CR
is calculated as the ratio between the number of successfully classified digits,
nclassified, and the number of input digits, ninput:

CR = nclassified

ninput
(A.1.2)

As there are multiple ways to handwrite the same digit, increasing the num-
ber of output neurons allows for an improvement of network performance as
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Car Tracking Digit Classification
τ leak 105.5 ms 120.0 µs
trefrac 218 ms 1 ns
tinhibit 29.9 ms 10 µs
tSTDP 16.0 ms 60.0 µs
pLTP 0.11 0.010
pLTD 0.20 0.020

Table A.1: Spiking neural network parameters used for the simulations
of the car tracking and digit classification applications with binary devices.
All the parameters have been obtained with a genetic algorithm.

demonstrated in [10]. Indeed, this enables the network to have at its disposal
several neurons specialised to the same digit, and more precisely to have neurons
specialised in different handwritings of the same digit. As shown in [10], the
increase of CR with the number of output neurons saturates after 500 output
neurons.

A.2 Network topology with analog devices

The impact of conductance response of analog devices on SNN performance
has been assessed in Chapter 2 - 2.3. To this end, the MNIST dataset has
been simulated with a similar network as the one presented in the previous
section. Figure A.2.1 (a) shows the network topology simulated for this study.
Each synaptic element is implemented with one analog device, and the number
of output neurons, nneurons, was varied (nneurons=50, 100, 300, and 500). The
network is trained with the simplified STPD learning rule presented in Chapter
2 (Section 2.3.3, see Figure A.2.1 (b)): at each potentiation (resp. depression)
event, the synaptic weight increases (resp. decreases) by a quantity δw+ (resp.
δw-). Note that with this learning rule, there is no probability pLTP and pLTD.
Parameters τ leak, trefrac, tinhibit, and tSTDP are the same as previously (see Table
A.1).
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(a)

(b)

Figure A.1.3: (a) Simulated spiking neural network for the digit classifi-
cation application with binary devices, trained with a stochastic STDP
learning rule and lateral inhibition. (b) Example of spiking activity of
four output neurons when four different input digits are presented. If the
class of the most active neuron corresponds to the input digit, the digit is
successfully classified (green), otherwise the digit is not classified (red).
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(a)

(b)

Figure A.2.1: (a) Simulated spiking neural network for the digit classi-
fication application with analog devices, trained with a simplified Spike-
Timing-Dependent Plasticity (STDP) learning rule and lateral inhibition.
(b) Simplified STDP learning rule. If the post-synaptic neuron spikes
after the pre-synaptic neuron within a time window tSTDP (the STDP
time window), the synapse undergoes a potentiation event. Otherwise,
it undergoes a depression event. At each potentiation (resp. depression)
event, the synaptic weight increases by a quantity δw+ (resp. δw-). α+,
α-, β+, β-, WMIN, and WMAX are fitting parameters of the conductance
response of synaptic elements.
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Impact of leaky integrate-and-fire neuron
threshold value on spiking neural network
performance

I n Chapter 2, we studied the impact of Resistive Memories (RRAMs)
electrical properties on Spiking Neural Network (SNNs) performance with

RRAM-based synaptic elements. To this end, we simulated two applications: (i)
a detection application based on a car tracking task [1], and (ii) a character clas-
sification based on the handwritten digit dataset MNIST [2]. Both applications
rely on a one-layer fully-connected feed-forward neural network topology: each
input neuron is connected to each output neuron with a synaptic element (cf
Appendix A). Output neurons are implemented with the Leaky Integrate-and-
Fire (LIF) model [9, 10]: output LIF neurons integrate input currents coming
from input synapses, and they emit a spike when the integration value reaches a
certain firing threshold value, Ith. In this work, all the output neurons have the
same firing threshold value, Ith, for a given simulation which is kept constant
throughout the simulation. In order to maximise network performance after
learning, we observed that Ith has to be carefully tuned for each simulation. The
optimised Ith value mostly depends on synaptic parameters, in particular synap-
tic dynamic range. In this appendix, we will show the dependency of network
performance on LIF neuron firing threshold value. Note that a possible solution
to be less dependent on Ith would be to implement homeostasis algorithms
[10, 11]. Homeostasis allows for continuous adaptation of the threshold value for
each individual neuron of the network during the learning phase. This prevents
output neurons from over-firing or under-firing by decreasing or increasing their
firing threshold value, respectively. This has been proven to improve network
performance at the cost of increased circuit complexity. In this work, we did not
implement homeostasis, and we kept neuron threshold value constant during the
learning phase.
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B.1 Car tracking

Figure B.1.1: Cumulative distributions of the Low Conductance State
(LCS) and High Conductance State (HCS) distributions measured on
4-kbit RRAM arrays (Top left) after 1000 switching cycles with condition
A, (Top right) with condition C, (Bottom left) with condition B1, and
(Bottom right) with condition B2 (see Chapter 2 - Section 2.2).

In Chapter 2, we studied the impact of binary Resistive Memory (RRAM)
electrical properties on Spiking Neural Network (SNN) performance with RRAM-
based synapses trained with the unsupervised Spike-Timing-Dependent Plasticity
(STDP) rule (cf Chapter 2 - Section 2.2). We first simulated a detection
application based on a car tracking task [1]. The simulated SNN is provided
in Appendix A (Section A.1.1), and the F1-score is used to assess network
performance (F1 ranges from 0 to 1, with 1 being the best detection score).
Synaptic elements are implemented with n binary RRAMs operating in parallel.
Here, we consider the case n=1. RRAM model is calibrated on experimental
results of 4-kbit RRAM arrays measured with four different programming
conditions (cf Figure B.1.1, conditions A, B1, B2, and C). Figure B.1.2
(a) shows the impact of the firing threshold value, Ith, on F1 when the network is
calibrated with one of the four RRAM programming conditions. Each result has
been averaged over twenty simulations, and error bars represent the deviation
at ±1σ. For all the simulations, we used the same network parameters (cf

182



B.2. DIGIT CLASSIFICATION

Table A.1 in Appendix A). Only RRAM programming conditions and firing
threshold value, Ith, differ (with the same Ith for every output neuron that is kept
constant throughout the simulation). Note that, in a real SNN, an input event
corresponds to a voltage spike which is converted to an input current by Ohm’s
law, then integrated by output neurons. Therefore, Ith represents a current
value. However, in our simulations, an input event is represented by a simple
binary ’1’ transmitted along weighted synapses. As a result, Ith represents here
a conductance value (i.e. a current value normalised by the input voltage spike).
As evidenced by Figure B.1.2 (a), F1 is maximal for a certain optimised Ith
value, and this optimised value depends on synaptic parameters (i.e. RRAM
programming conditions). The decrease in F1-score around the optimised firing
threshold value, Ith,opt, can be explained by examining in Figure B.1.2 (b) the
False Negative (FN, red square) and False Positive (FP, blue square) rates as a
function of Ith. A FN event corresponds to a car missed by the network - i.e. not
detected -; a FP event corresponds to a car detected by the network, whereas
no car is passing on the motorway (see Appendix A). For low Ith, output
neurons require fewer input spikes to reach their threshold value. Consequently,
output neurons spike more often and are more sensitive to background noise
(e.g. input noise, cars passing on other lanes, ...). This results in an increase
in the number of FP events (high FP rate hence lower F1). For high Ith, the
network is more robust to background noise, hence a lower FP rate. Yet if Ith
is too high, the network is more likely to miss cars passing on the motorway
(higher FN rate hence lower F1). Indeed, weighted input spikes coming from a
car passing on the road may no longer be sufficient to make output neurons spike.
Therefore, the optimised threshold value, Ith,opt, generally comes from a trade-off
between the FP and FN rates. In Figure B.1.3 we plotted the optimised firing
threshold value, Ith,opt, as a function of the mean High Conductance State (HCS)
conductance value of each programming condition. For this application, Ith,opt
is proportional to the mean HCS conductance value.

B.2 Digit classification

The same study has been carried out on a classification application based on
handwritten digit classification (MNIST dataset [2]). The simulated SNN is
provided in Appendix A (Section A.1.2), and the Classification Rate (CR) is
used to assess network performance. Synaptic elements are implemented with n
binary RRAMs operating in parallel. Here, we consider the case n=20. Figure
B.2.1 (a) shows the impact of the firing threshold value, Ith, on the CR when
the network is calibrated with one of the four RRAM programming conditions
(A, B1, B2, and C). Each result has been averaged over twenty simulations, and
error bars represent the deviation at ±1σ. As previously, the CR is maximal for
a certain optimised firing threshold value, Ith,opt. Figure B.2.1 (b) shows the
optimal firing threshold, Ith,opt, as a function of the mean High Conductance State
(HCS) conductance value of each programming condition. Ith,opt is proportional
to the mean HCS conductance value.
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B.3 Impact of firing threshold variability

In this section we investigate the robustness of SNN performance to firing
threshold variability. For this purpose, we simulated the car tracking application
(cf Section B.1) with different firing threshold variability values. Synaptic
elements are implemented with one binary RRAM device and are calibrated on
the experimental programming conditions A (cf Figure B.1.1 (Top left)). Each
output LIF neuron has a different firing threshold value Ith. The distribution
of Ith values follows a gaussian distribution with a mean value Ith,mean and a
standard deviation σ(Ith) (representing threshold variability). σ(Ith) is expressed
here as a percentage of the mean value, Ith,mean. The particular case σ(Ith)=0%
corresponds to the situation wherein all the output LIF neurons have the same
firing threshold value (i.e. the situation in the previous section). Figure B.3.1
(a) shows the F1-score as a function of firing threshold variability, σ(Ith). Each
result has been averaged over twenty simulations, and error bars denote the
deviation at ±1σ. The mean firing threshold value, Ith,mean, has been optimised
by simulations for each simulated threshold variability value (cf Figure B.3.1
(b)). For σ(Ith)=10%, network performance is degraded by only 0.5%. For 35% of
threshold variability, network performance is only degraded by 2.3%. We plotted
in Figure B.3.1 (b) the F1-score as a function of the mean firing threshold
value, Ith,mean, for different threshold variability values, σ(Ith). Each result has
been averaged over twenty simulations. For the sake of clarity, we do not show
error bars at ±1σ. As highlighted by Figure B.3.1 (b), increasing σ(Ith) allows
to make the network more robust to a variation of the mean threshold value,
Ith,mean: F1 is less and less sensitive to a variation of the mean threshold value
around the optimised threshold value with increasing σ(Ith) (i.e. curves are
flatter with higher σ(Ith)).
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(a)

(b)

Figure B.1.2: (a) F1-score as a function of the firing threshold value,
Ith, for the four studied RRAM programming conditions (A, B1, B2, and
C). (b) False Negative (FN, red square) and False Positive (FP, blue
circle) rates as a function of the firing threshold value, Ith. The optimised
threshold value, Ith,opt, comes from a trade-off between FN and FP rates.

185



APPENDIX B. IMPACT OF LIF NEURON THRESHOLD VALUE ON SNN
PERFORMANCE

Figure B.1.3: Optimised firing threshold value, Ith,opt, as a function of
the mean High Conductance State (HCS) conductance value of each pro-
gramming condition. Ith,opt is proportional to the mean HCS conductance
value.

(a)

(b)
Figure B.2.1: (a) Classification Rate (CR) as a function of the firing
threshold value, Ith, for the four studied RRAM programming conditions
(A, B1, B2, and C). (b) Optimised firing threshold value, Ith,opt, as a
function of the mean High Conductance State (HCS) conductance value
of each programming condition. Ith,opt is proportional to the mean HCS
conductance value.
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(a) (b)

Figure B.3.1: (a) F1-score as a function of threshold variability values,
σ(Ith). (b) F1-score as a function of the mean firing threshold value,
Ith,mean, for different threshold variability values, σ(Ith). Synaptic elements
are implemented with one binary RRAM device calibrated on programming
conditions A.
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Robustness of spiking neural networks
trained with unsupervised learning to input
noise

(a) (b)

Figure C.0.1: Cumulative distributions of High Conductance State
(HCS, red square) and Low Conductance State (LCS, blue circle) with (a)
programming conditions B1, and (b) an artificial case of a synapse with
zero variability.

I n this appendix, we assess the robustness of Spiking Neural Networks
(SNNs) with Resistive Memory (RRAM)-based synapses trained with the

unsupervised spike-timing-dependent plasticity learning paradigm to input noise.
For this purpose, we simulated the detection application based on car tracking
[1] (cf Appendix A - Section A.1.1). Synaptic elements are implemented
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with n binary RRAMs operating in parallel, with n=1. The SNN has first
been simulated with RRAMs calibrated on the experimental programming
conditions B1 (Figure C.0.1 (a), with memory window at 3σ, MW3σ=1.3,
High Conductance State (HCS) variability σG,HCS=0.28, and Low Conductance
State (LCS) variability σG,LCS=0.58), then with an artificial case of a synapse
with zero variability (Figure C.0.1 (b), with MW3σ=1000, σG,HCS=σG,LCS=0).
We simulated the proposed application with a certain amount of input noise
corresponding to a certain amount of random input activity. For instance, 20%
of input noise means that 20% of input activity is entirely random.
Figure C.0.2 shows the F1-score (cf Appendix A - Section A.1.1) as a
function of the amount of input noise for (a) the programming conditions B1,
and (b) the case of synapse with zero variability. Each result has been averaged
over twenty simulations, and the error bars denote the deviation at ±1σ. Output
neuron thresholds have been optimised for each result (cf Appendix B). For
each condition, up to 20% of input noise can be tolerated without noticeable
degradation of performance (degradation of ≈1%), and synaptic variability has
no impact on SNN robustness to input noise. A solution to improve robustness
to noise is to implement synaptic short-term plasticity at the cost of increased
circuit complexity [12].

(a) (b)

Figure C.0.2: F1-score as a function of input noise when synaptic
elements are calibrated on (a) the experimental programming conditions
B1, and (b) an artificial case of a synapse with zero variability.
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Introduction

1.1 De Von Neumann au calcul neuromor-
phique

En 1945, John Von Neumann conçoit l’Electronic Discrete Variable Automatic
Computer (EDVAC), un des tout premiers ordinateurs électroniques, et pose

les bases de l’ordinateur moderne [1]. Initialement inspirée du fonctionnement
des cerveaux biologiques [2], l’architecture de l’EDVAC diverge finalement de
celle des cerveaux en raison de contraintes technologiques, et peut être résumée
en trois composantes principales : une unité centrale de traitement (CPU pour
Central Processing Unit), la mémoire, et un élément de liaison entre le CPU et
la mémoire [3, 4]. Ce paradigme, souvent nommé ordinateur Von Neumann en
référence à son co-inventeur, repose principalement sur des échanges séquentiels
de données entre le CPU et la mémoire à travers l’élément de liaison [4–6]
(cf Figure 1.1.1 (a)). Cependant, cette séparation physique entre les centres
de calcul, le CPU, et la mémoire, ainsi que l’absence de parallélisme [4, 7]
dégradent fortement les performances des ordinateurs Von Neumann: c’est ce
qu’on appelle communément le goulot d’étranglement de Von Neumann ou le
mur de la mémoire [4]. En effet, les temps de calcul du CPU sont de l’ordre de
la nanoseconde, alors que les accès mémoire requièrent plusieurs millisecondes
[8, 9], ce qui crée un écart de performance entre le CPU et la mémoire et limite
l’efficacité énergétique des systèmes de calcul actuels [5, 9–12]. Généralement, le
processeur attend l’information. Cet écart de performance est particulièrement
visible avec l’arrivée de nouvelles applications centrées sur les données [13–15],
telles que l’analytique des données massives ou l’apprentissage automatique par
les machines [8], dans lesquelles la majeure partie de la puissance et du temps
de calcul est perdue pour échanger les données entre le CPU et la mémoire
[11, 16, 17].
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À l’inverse, l’architecture des cerveaux biologiques repose sur une architecture
massivement parallèle avec une co-localisation entre les centres de calcul, les
neurones, et la mémoire, les synapses [5, 7] (cf Figure 1.1.1 (b)). De plus, le
cerveau humain excelle aux applications cognitives grâce à sa capacité naturelle
à faire de l’inférence et de l’apprentissage, pendant laquelle les neurones et
synapses s’adaptent et se spécialisent à diverses tâches [15]. Ces considérations
ont donné naissance à la fameuse approche neuromorphique [18], qui consiste à
construire des systèmes de calcul inspirés du cerveau. L’objectif de l’ingénierie
neuromorphique, ou calcul neuromorphique, est de bâtir de nouvelles architectures
de calcul qui implémentent des modèles bio-inspirés des réseaux de neurones. Ce
nouveau paradigme est apparu comme une solution pour résoudre les problèmes
inhérents à l’architecture de Von Neumann, et plus récemment les enjeux liés à
la fin de la loi de Moore [6, 19–21].
Dans le cadre de cette thèse, nous avons exploré l’implémentation matérielle
de processeurs neuromorphiques impulsionnels et reconfigurables en exploitant
de nouvelles solutions technologiques : les mémoires resistives (RRAM) et les
technologies 3D monolithiques.

1.2 Les nouvelles solutions technologiques

1.2.1 Les mémoires résistives

Les mémoires résistives (RRAM pour Resistive Random Access Memory) sont
des mémoires non volatiles composées d’un empilage simple de deux métaux, les
électrodes, qui entourent une couche d’isolant (cf Figure 1.2.1). Contrairement
aux mémoires plus conventionnelles de type SRAM, DRAM, ou Flash, où
l’information est encodée par la présence ou absence de charges électriques, les
RRAMs stockent la donnée ’0’ ou ’1’ dans leur état de résistivité électrique. Le
principe de fonctionnement des RRAM repose sur la formation et dissolution
d’un filament conducteur qui relie les deux électrodes, et permet la conduction ou
le blocage du courant électrique [23–25]. Selon la nature du filament conducteur,
les RRAM peuvent être classifiées comme (i) RRAM à base d’oxydes (OxRAM
pour Oxide-based RRAM) dans lesquelles le filament conducteur est composé
de lacunes d’oxygène [26], et (ii) RRAM à pont conducteur (CBRAM pour
Conductive-Bridge RRAM) dans lesquelles le filament conducteur est composé de
cations métalliques [27]. La Figure 1.2.1 illustre le principe de fonctionnement
d’une OxRAM. En appliquant des tensions de polarité opposée sur l’électrode du
haut (pour une OxRAM bipolaire), la mémoire commute de façon binaire entre
un état de faible résistance (LRS pour Low Resistance State, qui correspond
à la donnée ’1’), et un état de haute résistance (HRS pour High Resistance
State, qui correspond à la donnée ’0’). Plus précisément, en appliquant une
tension positive lors d’une opération de Set, un filament conducteur composé
de lacunes d’oxygène relie les deux électrodes, ce qui permet le passage du
courant. En appliquant une tension négative lors d’une opération de Reset,
les lacunes d’oxygène se recombinent avec des ions oxygènes, ce qui détruit le
filament conducteur et bloque le passage du courant. Un cycle de commutation
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(a)

(b)

Figure 1.1.1: (a) Dans les architectures Von Neumann, les unités de
calcul de de mémoire sont physiquement séparées par un bus, créant le
fameux goulot d’étranglement de Von Neumann. (b) Schéma conceptuel
d’une architecture inspirée du cerveau, où le calcul et la mémoire sont
fortement co-localisés. Reproduit de [22].

correspond à une commutation entre le HRS et le LRS, et peut être répété
autant de fois que la technologie le permet [28–30]. Le nombre maximal de
cycles de commutation permis par une technologie définit son endurance en
programmation.
Au cours de la dernière décennie, les RRAM ont été considérées comme des
candidats potentiels pour remplacer les mémoires Flash, et plus récemment pour
implémenter des processeurs neuromorphiques [32–39]. En plus de leur non
volatilité, les RRAM offrent une bonne endurance en programmation (>1012

[40, 41]), des opérations de lecture non destructrices, une commutation rapide
(en-dessous de la nanoseconde [42–44]), un faible courant de programmation
grâce à la nature filamentaire de la conduction de courant (de l’ordre de la
dizaine de nanoampères [45–49]), et sont facilement miniaturisables (de l’ordre
du nanomètre [26, 50]). De plus, leur fabrication est compatible avec le retour
en fin de ligne (back-end-of-line) des procédés CMOS, ce qui permet de les
fabriquer directement au-dessus des transistors CMOS. Cependant, les RRAM
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Figure 1.2.1: Illustration schématisée du processus de commutation des
mémoires résistives à base d’oxydes (OxRAM pour Oxide-based Resistive
Random Access Memory). Reproduit de [31].

souffrent de deux problèmes majeurs : (i) un rapport relativement faible entre
les valeurs de résistance du HRS et LRS (≈ 10-100), et (ii) une grande variabilité
sur les états de résistance. Comme décrit précédemment, les données ’0’ et ’1’
sont stockées dans les états HRS et LRS, plus précisément dans les valeurs de
résistance du HRS, RHRS, et du LRS, RLRS. Il est donc fondamental de garantir
un rapport de résistance, RHRS/RLRS, suffisamment élevé pour pouvoir distinguer
les deux états. Idéalement, ce rapport de résistance, RHRS/RLRS, généralement
nommé la fenêtre mémoire (MW pour Memory Window), doit être maximisé
afin de permettre l’intégration des RRAM dans de grandes matrices mémoires.
Cependant, il a été démontré qu’un compromis existe entre la fenêtre mémoire et
l’endurance en programmation : une plus grande fenêtre mémoire implique une
plus faible endurance en programmation [30, 51–53]. La Figure 1.2.2 présente
les fenêtres mémoires, MW, de différentes technologies de mémoires résistives
associées à leur endurance en programmation. Afin d’assurer une endurance en
programmation au moins équivalente à la technologie Flash, i.e 106 cycles de
commutation [11, 54], la fenêtre mémoire doit être relativement faible, de l’ordre
de 10-100.
Le deuxième problème majeur des RRAM est la grande variabilité résistive sur
leur états de résistance à cause de la nature stochastique du filament conducteur.
D’une part, les RRAM présentent de la variabilité résistive cycle-à-cycle, comme
illustrée sur la mesure de cyclage d’une cellule RRAM de la Figure 1.2.3 (a).
Lorsque la cellule RRAM commute successivement entre ses états HRS et LRS,
les valeurs de résistance HRS (bleu) et LRS (rouge) varient de cycle à cycle.
D’autre part, les RRAM présentent également de la variabilité résistive cellule-
à-cellule, comme représentée sur la distribution de valeurs de résistance d’une
matrice RRAM de 4 kbit de la Figure 1.2.3 (b). Après une opération de Reset
(bleu) et une opération de Set (rouge), les 4 kbit cellules RRAM présentent de
la dispersion sur leur valeurs de résistance. Cette variabilité résistive dégrade
la fenêtre mémoire des technologies RRAM si on considère le pire cas avec un
rapport de résistance à 3σ. Dans le cadre de ce travail de thèse, l’impact de ces
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Figure 1.2.2: Fenêtre mémoire, MW, en fonction de l’endurance en
programmation. Reproduit de [53].

deux problèmes, (i) la faible fenêtre mémoire (≈10-100) et (ii) la forte variabilité
résistive, sur les processeurs neuromorphiques impulsionnels sera étudié.

(a) (b)

Figure 1.2.3: (a) Mesures de cyclage effectuées sur une cellule RRAM à
base de HfO2. La valeur de résistance dans les états de basse (LRS, rouge)
et haute (HRS, bleu) résistance varie de cycle à cycle. (b) Distributions
de valeurs de résistances en LRS (rouge) et HRS (bleu) mesurées sur une
matrice 4 kbit de RRAM à base de HfO2. La valeur de résistance en LRS
et HRS varie de cellule à cellule. Reproduit de [25].

1.2.2 Les technologies 3D monolithiques

La deuxième solution technologique étudiée dans le contexte de cette thèse
est la technologie tri-dimensionnelle (3D) monolithique, dans laquelle les com-
posants sont fabriqués séquentiellement les uns au-dessus des autres. Deux
types d’intégration 3D peuvent être distingués : (i) l’intégration parallèle, et
(ii) l’intégration séquentielle, comme schématisés sur la Figure 1.2.4. Dans
l’intégration 3D parallèle, les différents composants sont fabriqués séparément,
puis sont empilés et connectés ultérieurement. Dans l’intégration 3D séquentielle,
ou technologie 3D monolithique, les différentes couches de composants sont
fabriquées directement au-dessus des couches précédentes. L’intégration 3D
monolithique offre de meilleures précisions d’alignement entre les composants des
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(a) (b)

Figure 1.2.4: Illustration schématique de (a) l’intégration tri-
dimensionnelle (3D) (a) parallèle, et (b) séquentielle. Reproduit de [55].

différentes couches, ce qui permet des densités d’interconnexions 50x supérieures
à l’intégration 3D parallèle [56]. Cependant, son procédé de fabrication est
bien plus complexe, car il requière des températures de fabrication suffisamment
basses pour ne pas dégrader les performances des composants déjà fabriqués.
Dans le cas des RRAM, leur température de fabrication est compatible avec
le retour en fin de ligne des procédés CMOS, et peuvent donc être facilement
fabriquées monolithiquement au-dessus des transistors CMOS. La Figure 1.2.5
montre une image par microscopie électronique d’une telle intégration : la RRAM
est fabriquée au-dessus des contacts d’un transistor NMOS, dans la fameuse
configuration un-transistor/une-RRAM (1T1R).
Dans le cas d’une intégration 3D monolithique de transistors CMOS sur CMOS,
la fabrication des transistors des couches du haut peut dégrader les performances
des transistors des couches du bas, car les budgets thermiques impliqués sont
généralement trop élevés [55–58]. La technologie CoolCube ™du CEA-Leti
[59] permet la fabrication en 3D monolithique de deux couches de transistors
CMOS en procédé silicium sur isolant (SOI pour Silicon On Insulator) 65 nm,
sans dégradation des performances des différents transistors. De plus, cette
technologie est compatible avec les requis industriels en termes de contamination.
Dans le cadre de cette thèse, nous allons démontrer la fabrication en technologie
3D monolithique de plusieurs couches de transistors CMOS hautes performances
avec des mémoires résistives.
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Figure 1.2.5: Image par microscopie électronique d’une RRAM intégrée
monolithiquement au-dessus des contacts d’un transistor NMOS. Repro-
duit de [60].

1.3 Les réseaux de neurones impulsionnels

Dans cette thèse, nous nous sommes intéressés à la troisième génération de
réseaux de neurones : les réseaux de neurones impulsionnels (SNN pour Spiking
Neural Network) [61]. L’objectif de cette génération de réseaux de neurones est
d’améliorer l’efficacité énergétique par rapport aux générations précédentes, en
s’inspirant au plus près du fonctionnement des cerveaux biologiques [15, 62–67].
À l’image des réseaux de neurones biologiques, les SNN sont composés d’un ensem-
ble d’unités de calcul, les neurones, interconnectées par des éléments mémoires,
les synapses. Contrairement aux générations précédentes, l’information est
encodée sous forme de courtes impulsions électriques qui sont transmises entre
les neurones à travers les synapses. Cette représentation impulsionnelle de
l’information permet de prendre en compte le temps, qui joue un rôle primordial
dans le traitement cognitif comme l’a montré la neurobiologie, lors du calcul, de
la communication et de l’apprentissage du réseau.
La Figure 1.3.1 schématise le principe de fonctionnement de base d’un SNN.
Une synapse connecte un neurone pré-synaptique à un neurone post-synaptique,
et possède un poids synaptique. Lorsque les neurones pré-synaptiques émettent
des impulsions, celles-ci sont propagées à travers les synapses et intégrées par
le neurone post-synaptique. Plus le poids synaptique d’une synapse est élevé,
plus les impulsions contribuent fortement à l’intégration. Lorsque l’intégration
dépasse un certain seuil, le neurone post-synaptique émet une impulsion vers les
neurones suivants, et sa valeur d’intégration est remise à zéro. Ainsi, l’opération
de base d’un SNN est la multiplication et accumulation entre les données d’entrée
et les poids synaptiques. Lors de la phase d’apprentissage, les poids synaptiques
du réseau sont généralement modifiés et ajustés en fonction de l’application visée
selon une règle d’apprentissage. De fait, l’application du SNN est définie par
deux facteurs : d’une part les poids synaptiques, et d’autre part la topologie
du réseau de neurone, c’est-à-dire l’agencement du réseau qui est défini par les
différentes connexions synaptiques entre les neurones.
De ces considérations, quatre composantes principales sont nécessaires pour
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Figure 1.3.1: Principe de fonctionnement de base d’un réseau de neu-
rones impulsionnel.

l’implémentation de processeurs neuromorphiques impulsionnels:

les circuits de neurones impulsionnels : le modèle de neurone impulsion-
nel le plus communément utilisé est celui d’intégration et émission avec
fuite (LIF pour Leaky Integrate-and-Fire), un modèle canonique pour
effectuer l’opération d’intégration et émission d’impulsions.

les matrices synaptiques : elles connectent les neurones impulsionnels entre
eux et stockent les poids synaptiques du réseau. Un requis fondamental
des matrices synaptiques est qu’elles soient plastiques, i.e. que les poids
synaptiques soient ajustables.

la circuiterie d’apprentissage : elle permet d’effectuer l’apprentissage du
réseau, i.e. de re-programmer les poids synaptiques du réseau pendant les
phases d’apprentissage

les tables de routage synaptique : elles permettent de stocker la topolo-
gie du réseau de neurones, ce qui permet de modifier dynamiquement
la topologie au cours de la vie du processeur en re-programmant les ta-
bles de routage. Elles sont essentielles à l’implémentation de processeurs
neuromorphiques reconfigurables.

Dans le cadre de cette thèse, l’étude sera focalisée sur deux composantes: (i) les
matrices synaptiques, et (ii) les tables de routage synaptique.

1.4 Objectif de ce travail de thèse de doctorat

Différents processeurs neuromorphiques ont déjà été démontrés dans la littérature
[22, 62, 68–71]. La Table 1.1 synthétise les caractéristiques principales de chaque
processeur. Bien que ces processeurs soient d’excellentes preuves de concept, il
reste néanmoins beaucoup de marge d’amélioration possible d’un point de vue
technologique, conception, et circuit. Premièrement, les matrices synaptiques
sont implémentées entièrement en technologie CMOS [62, 72] ou avec des circuits
numériques associés à de la mémoire SRAM [22, 68, 70, 71], ce qui n’est pas opti-
mal en termes de surface silicium. Deuxièmement, les paramètres du réseau sont
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souvent stockés dans des circuits de mémoires centralisées - généralement dans
des mémoires SRAM ou DRAM [22, 68–70]. Ceci n’élimine pas véritablement le
goulot d’étranglement de Von Neumann car les paramètres du réseau doivent être
lus et transférés au travers d’un bus numérique pendant le calcul. Troisièmement,
l’utilisation de mémoires volatiles SRAM et DRAM entrâıne de la consommation
statique de puissance et limite l’efficacité énergétique. Quatrièmement, les tables
de routage synaptique sont implémentées soit avec des mémoires SRAM ou
DRAM [22, 69–71], soit avec des mémoires adressables par contenu (CAM pour
Content-Addressable Memory) [62, 68]. Il a été démontré que l’implémentation
avec des CAM est plus efficace pour empêcher l’encombrement du réseau lors du
routage des impulsions, et pour assouplir les contraintes sur le nombre maximal
de neurones et synapses au sein de chaque cœur neuromorphique [73] grâce à
la capacité des CAM à effectuer de la recherche rapide et parallèle de données.
Cependant, les tables de routage synaptique à base de CAM sont habituellement
implémentées avec des structures à base de SRAM [62], ce qui consomme la
majeure partie de la surface silicium du processeur. Enfin, l’apprentissage en
ligne n’est pas possible sur tous les processeurs.

Table 1.1: Synthèse des processeurs neuromorphiques impulsionnels
multi-cœurs validés sur silicium rapportés dans la littérature [22, 62, 68–
71].

Pour pallier ces problèmes, les nouvelles technologies présentées précédemment
- les mémoires résistives (RRAM) et les technologies 3D monolithiques - sont
des candidats appropriés pour améliorer l’efficacité en surface et énergie des pro-
cesseurs neuromorphiques impulsionnels. Cependant, la faible fenêtre mémoire
et la forte variabilité résistive des RRAM sont un frein à leur intégration dans de
grandes matrices mémoires pour des applications mémoires classiques. Dans le
cadre de cette étude, nous nous focaliserons sur (i) les matrices de RRAM pour
implémenter des poids synaptiques ajustables, et (ii) les matrices de mémoires
ternaires adressables par contenu (TCAM pour Ternary Content-Addressable
Memory) pour implémenter les tables de routage synaptique. L’objectif final
de ce travail de thèse de doctorat est d’évaluer rigoureusement l’impact des
propriétés électriques des RRAM sur les performances et fiabilité de ces deux
composantes majeures, et de fournir des lignes directrices pour optimiser la
programmation des RRAM au moyen de caractérisations électriques poussées
et de simulations. De plus, nous ouvrirons des perspectives d’un point de vue
technologique pour améliorer davantage l’efficacité en surface des processeurs
neuromorphiques impulsionnels en démontrant la co-intégration 3D monolithique
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de transistors CMOS hautes performances avec la technologie RRAM. Il est
également intéressant de souligner que tous les résultats présentés dans ce
manuscrit de thèse ne sont pas seulement limités à la technologie RRAM, et
les lignes directrices pour optimiser les performances des SNN peuvent être ap-
pliquées à n’importe quelle technologie qui peut remplacer la technologie RRAM
(telles que les mémoires à changement de phase, les mémoires magnétiques, ...).

Ce manuscrit de thèse est structuré de la façon suivante :
Chapitre 2: Rôle de la variabilité synaptique dans les réseaux de
neurones impulsionnels à base de mémoires résistives avec apprentis-
sage non supervisé
Dans ce chapitre, nous étudierons l’implémentation de synapses artificielles
avec des RRAM dans les SNN entrâınés avec l’algorithme d’apprentissage non
supervisé de plasticité fonction d’occurrence des impulsions. Pour cela, deux
applications simples ont été simulées: (i) une application de détection, et (ii)
une application de classification. Nous présenterons d’abord des caractérisations
électriques effectuées sur des matrices RRAM multi-kilobits. Nous évaluerons
ensuite l’impact des propriétés électriques des RRAM sur les performances
d’apprentissage des SNN grâce à des simulations niveau système calibrées sur les
caractérisations électriques des RRAM. En particulier, nous clarifierons le rôle
de la variabilité synaptique, qui provient de la variabilité résistive cycle-à-cycle
et cellule-à-cellule des RRAM.

Chapitre 3: Reconfigurabilité du routage synaptique des réseaux de
neurones impulsionnels avec des mémoires ternaires adressables par
contenu à base de mémoires résistives
Dans ce chapitre, nous étudierons l’implémentation de tables de routage synap-
tique avec des mémoires ternaires adressables par contenu (TCAM pour Ternary
Content-Addressable Memory) à base de RRAM. Nous présenterons d’abord des
caractérisations électriques poussées d’un circuit TCAM à base de RRAM qui
implémente la cellule unitaire TCAM la plus commune deux-transistors/deux-
RRAM (2T2R). Nous présenterons ensuite une nouvelle cellule unitaire TCAM à
base de RRAM dans une configuration un-transistor/deux-RRAM/un-transistor
(1T2R1T) avec une surface silicium similaire à celle de la structure précédente
2T2R. La structure TCAM 1T2R1T proposée a pour objectif de résoudre les
problèmes majeurs de la TCAM la plus commune 2T2R. Des caractérisations
électriques poussées ont été effectuées sur un circuit TCAM 1T2R1T, et les
résultats électriques obtenus sur chaque circuit TCAM ont été comparés.

Chapitre 4: Intégration tri-dimensionnelle monolithique de deux
niveaux de transistors CMOS hautes performances avec un niveau
de dispositifs de mémoires résistives
Dans ce chapitre, nous démontrerons la co-intégration complète de deux
niveaux de transistors CMOS fabriqués en technologie tri-dimensionnelle (3D)
monolithique avec un niveau de dispositifs RRAM monolithiquement fabriqué
au-dessus des deux niveaux de transistors CMOS. Les dispositifs ont été
fabriqués dans un procédé classique CMOS sur CMOS en technologie silicium
sur isolant (SOI pour Silicon On Insulator) 65 nm. Nous présenterons d’abord
le flux du processus d’intégration. Nous montrerons ensuite des caractérisations
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électriques effectuées sur les dispositifs fabriqués pour démontrer la fonctionalité
de l’intégration.

Chapitre 5: Conclusion et perspectives
Ce chapitre conclut le manuscrit en synthétisant les résultats majeurs présentés
dans ce travail de thèse de doctorat, et en fournissant quelques perspectives
pour de possibles travaux futurs.
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Rôle de la variabilité synaptique dans les
réseaux de neurones impulsionnels à base
de mémoires résistives avec apprentissage
non supervisé

2.1 Objectif de ce chapitre

L’objectif de ce chapitre est de fournir une étude détaillée de l’impact des
propriétés électriques des mémoires résistives (RRAM pour Resistive Random

Access Memory) sur les réseaux de neurones impulsionnels (SNN pour Spiking
Neural Network) avec synapses à base de RRAM. Au cours de la dernière
décennie, les matrices RRAM ont été pressenties comme candidats potentiels pour
implémenter les matrices synaptiques dans les réseaux de neurones électroniques
[32–39]. Une des principales raisons est que les matrices RRAM implémentent
naturellement des couches de réseaux de neurones. La Figure 2.1.1 illustre
un exemple de réseau de neurones avec une topologie ”connexions totales”
implémenté avec une matrice de RRAM. Chaque point mémoire correspond à
une synapse. Premièrement, les poids synaptiques sont encodés dans la valeur
de conductance - i.e. l’inverse de la résistance - des RRAM. Deuxièmement,
l’opération de base ”multiplication et accumulation” est réalisée physiquement
par la loi d’Ohm à chaque point mémoire, et par la loi de Kirchhoff par sommation
des courants synaptiques à l’entrée des neurones post-synaptiques.
Dans cette partie, nous nous intéresserons aux matrices un-transistor/une-
RRAM (1T1R), où chaque élément mémoire est composé d’une RRAM en
série avec un transistor NMOS de sélection. Cette structure matricielle est
à l’heure actuelle la structure présentant la plus grande densité synaptique.
Cependant, le problème majeur de cette structure matricielle 1T1R est la forte
variabilité conductive des RRAM, qui empêche l’intégration des RRAM dans
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Figure 2.1.1: Illustration schématique d’une multiplication vecteur-
matrice effectuée par une matrice de RRAM de type crossbar en un seul
cycle de lecture. Reproduit de [39].

de grandes matrices mémoires pour des applications mémoires classiques. Pour
des applications neuromorphiques, l’impact de cette variabilité conductive - qui
crée de la variabilité synaptique - doit être clarifié. Il a été démontré dans
de nombreux travaux que les réseaux de neurones à base de RRAM étaient
intrinsèquement robustes à la variabilité synaptique [15, 74–92]. Toutefois,
une étude précise expliquant l’origine de cette robustesse n’a pas encore été
effectuée. En particulier, il reste à comprendre si les réseaux de neurones sont
seulement robustes à la variabilité synaptique, ou s’ils peuvent tirer profit de
cette variabilité. En effet, la neurobiologie a montré que de la variabilité existait
dans les cerveaux biologiques, et que celle-ci pouvait être bénéfique [93–98].
Bien que de nombreuses études détaillées de l’impact des propriétés électriques
des RRAM sur les réseaux de neurones avec apprentissage supervisé existent déjà
[76, 79, 80, 83, 99–102], il n’en existe que très peu sur des réseaux de neurones
entrâınés avec des algorithmes d’apprentissage non supervisé [15, 88, 90, 103].
Dans ce chapitre, nous fournirons une étude détaillée des requis électriques des
RRAM pour implémenter des synapses dans des SNN avec apprentissage non
supervisé par plasticité fonction d’occurrence des impulsions (STDP pour Spike-
Timing-Dependent Plasticity). En particulier, le rôle de la variabilité synaptique
dans les SNN entrâınés de façon non supervisée par STDP sera clarifié.

2.2 Caractérisations électriques des RRAM

Dans ce chapitre, nous nous intéresserons à des dispositifs RRAM à base d’oxyde
HfO2 intégrés dans le retour en fin de ligne (back-end-of-line) d’un procédé
CMOS 130 nm (cf Figure 2.2.1) [25]. Les dispositifs RRAM sont composés
d’un empilage TiN/HfO2/Ti/TiN d’épaisseur 100 nm/10 nm/10 nm/100 nm.
Un transistor NMOS en série avec la RRAM est utilisé en tant que sélecteur dans
une configuration 1T1R. Ce transistor permet de sélectionner individuellement
chaque élément mémoire d’une matrice, et de contrôler le courant de programma-
tion, Iprog, pendant les opérations de programmation. Toutes les mesures ont été
effectuées sur des matrices RRAM 1T1R de 4 kbit. En appliquant une tension
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Figure 2.2.1: (Gauche) Photo par microscopie électronique d’une cellule
RRAM TiN/HfO2/Ti/TiN (100 nm/10 nm/10 nm/100 nm) intégrée au-
dessus du quatrième niveau métallique Cu. (Droite) Vue schématique
d’une configuration 1T1R.

positive sur l’électrode du haut, VSL, les mémoires commutent dans un état de
haute conductance avec une opération de Set (HCS pour High Conductance
State). En appliquant une tension positive sur l’électrode du bas, VBL, les
mémoires commutent dans un état de faible conductance avec une opération de
Reset (LCS pour Low Conductance State).
Pour étudier l’impact des propriétés électriques des RRAM sur les performances
d’apprentissage des réseaux de neurones impulsionnels, les RRAM ont été pro-
grammées avec quatre conditions de programmation (i.e. tension et courant de
programmation) différentes. La Figure 2.2.2 montre les distributions cumulées
de conductance en HCS et LCS associées à chaque condition de programmation.
La Table 2.1 synthétise les paramètres de chaque condition de programma-
tion. Pour étudier l’impact du vieillissement des RRAM sur les performances
d’apprentissage des SNN, l’endurance en programmation a été mesurée en Fig-
ure 2.2.3 sur la matrice RRAM 4 kbit avec les conditions de programmation
A. Comme le montrent les Figure 2.2.2 et 2.2.3, les RRAM présentent de
la variabilité conductive cycle-à-cycle et cellule-à-cellule, ce qui rapproche les
distributions HCS et LCS. Pour quantifier la séparation entre les distributions
HCS et LCS, la fenêtre mémoire, MW3σ, est définie comme le rapport entre la
valeur de conductance HCS à -3σ, HCS-3σ, et la valeur de conductance LCS à
+3σ, LCS+3σ:

MW3σ = HCS-3σ

LCS+3σ
(2.2.1)

La variabilité conductive est définie comme l’écart-type en logarithme base 10
des distributions de conductance:

σG,HCS = std[log10(GHCS)]
σG,LCS = std[log10(GLCS)]

(2.2.2)

L’endurance en programmation est définie dans ce travail comme le nombre
maximal d’opérations de programmation avant que l’oxyde des RRAM ne se
rompe. Les énergies de programmation en Set et Reset ont été calculées comme
suit:

ESet = VSet * Iprog,set * tpulse

EReset = VReset * Iprog,set * tpulse
(2.2.3)
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Figure 2.2.2: Distributions cumulées LCS et HCS mesurées sur la
matrice 4 kbit avec différentes conditions de programmation.
Conditions de programmation A C B1 B2
Tension [V] VSet 2 2 2 2

VReset 2.5 2.5 2.5 2.5
Iprog,set [µA] 250 500 57 20
Vg,reset [µA] 3 3.5 3.5 3.5
Energie [pJ/spike] ESet 50 100 11.4 4

EReset 62.5 125 14.25 5
σG,HCS [log10(S)] 0.05 0.02 0.28 0.53
σG,LCS [log10(S)] 0.49 0.64 0.58 0.54
MW3σ [#] 3 370 1.3 0.014
Endurance [#] 106 ≈ 102 ≈ 106 ≈ 108

Table 2.1: Conditions de programmation utilisées dans ce travail, avec
tpulse=100 ns.

2.3 Implémentation des éléments synaptiques
et règle d’apprentissage avec les mémoires
résistives

La Figure 2.3.1 (a) schématise l’implémentation des éléments synaptiques avec
les mémoires résistives. Chaque synapse est composée de n cellules RRAM 1T1R
connectées en parallèle [74, 89]. Comme les conductances parallèles se somment,
le poids synaptique équivalent varie de la somme de n mémoires en LCS à
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Figure 2.2.3: Caractérisation de l’endurance en programmation mesurée
avec les conditions de programmation A de la Table 2.1.

(a)

(b)

Figure 2.3.1: (a) Schéma de l’implémentation des éléments synaptiques
à base de RRAM. (b) Version stochastique de la règle d’apprentissage
non-supervisée de plasticité fonction d’occurrence des impulsions (STDP).

n mémoires en HCS, avec n+1 niveaux de conductance intermédiaires. Cette
implémentation est associée à une version stochastique de la règle d’apprentissage
bio-inspirée de plasticité fonction d’occurrence des impulsions (STDP pour Spike-
Timing-Dependent Plasticity) [104–106]. La règle d’apprentissage est représentée
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sur la Figure 2.3.1 (b). Quand un neurone pré-synaptique émet une impulsion
juste avant un neurone post-synaptique dans une fenêtre temporelle tSTDP, un
événement de potentialisation à long-terme (LTP pour Long-Term Potentiation)
se produit, et chacune des n RRAM composant l’élément synaptique a une
probabilité pLTP de commuter en HCS. Sinon, un événment de dépression à
long-terme (LTD pour Long-Term Depression) se produit, et chacune des n
RRAM composant l’élément synaptique a une probabilité pLTD de commuter
en LCS. Cette implémentation synaptique permet d’augmenter ou diminuer
graduellement la conductance équivalente de la synapse à chaque événement de
potentialisation ou dépression, respectivement.

2.4 Implications pour un système
d’apprentissage: impact des car-
actéristiques des synapses à base de
RRAM sur les performances d’un réseau

2.4.1 Topologie des réseaux de neurones impulsionnels

Deux applications ont été simulées: (i) une application de détection, et (ii)
une application de classification. L’application de détection consiste en la
détection de voitures roulant sur une autoroute [107], et celle de classification
en la classification de chiffres écrits à la main de la base de données MNIST
[108]. Les deux applications sont basées sur un SNN de type connexions totales
avec une seule couche de synapses reliant une couche de neurones d’entrée à une
couche de neurones de sortie. Chaque élément synaptique est implémenté avec
la structure de la Section 2.3, et calibré sur les distributions expérimentales
obtenues avec les différentes conditions de programmation (cf Figure 2.2.2 :
conditions A, B1, B2, et C). Les neurones de sortie sont implémentés avec le
modèle d’intégration et émission avec fuite (LIF pour Leaky Integrate-and-Fire)
[109]. Les SNN simulés pour chaque application sont représentés en Figure
2.4.1.

2.4.2 Impact de la fenêtre mémoire et variabilité conduc-
tive des RRAM

La Figure 2.4.2 (a) montre la performance de détection, F1, en fonction de
la fenêtre mémoire, MW3σ, pour le SNN simulé pour l’application de détection.
Différents nombres n de RRAM par synapse ont été simulés pour étudier l’impact
de la résolution synaptique, i.e. le nombre de niveaux de conductance, et les
RRAM ont été calibrées sur les conditions de programmation A. Les différentes
fenêtres mémoires, MW3σ, ont été artificiellement obtenues en translatant la
distribution LCS obtenue expérimentalement vers des conductances plus faibles
ou plus hautes pour augmenter ou diminuer MW3σ, respectivement. Comme le
montre la Figure 2.4.2 (a), la performance n’est pas améliorée avec la résolution
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(a)

(b)

Figure 2.4.1: Réseaux de neurones impulsionnels simulés pour les appli-
cations de (a) suivi de voitures et (b) classification de chiffres. Les scores
associés pour évaluer les performances de chaque réseau sont définis sur la
partie droite de chaque réseau.

synaptique, et seule la fenêtre mémoire impacte la performance. On en conclut
qu’une synapse binaire (n=1) est suffisante, et que la performance maximale
de 96% est atteinte pour des fenêtres mémoires d’au moins 10. Pour étudier
l’impact de la variabilité synaptique - qui provient de la variabilité conductive
des RRAM -, la Figure 2.4.2 (b) montre la performance de détection en fonction
de la fenêtre mémoire, MW3σ, lorsque le réseau de neurones est calibré avec
les différentes conditions de programmation A, B1, B2, et C. Comme référence,
une condition artificielle présentant zéro variabilité synaptique a été également
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(a) (b)

Figure 2.4.2: (a) Score F1 en fonction de la fenêtre mémoire à 3σ,
MW3σ, pour différents nombres de RRAM par synapse. Le réseau de
neurones conçu pour le suivi de voitures est calibré sur les conditions de
programmation A (cf Table 2.1). (b) Score F1 en fonction de MW3σ
lorsque le réseau de neurones conçu pour le suivi de voitures est calibré
avec les différentes conditions de programmation de la Table 2.1.

simulée (losanges noirs). Les synapses sont implémentées avec une seule RRAM.
On observe que la variabilité synaptique est bénéfique car elle permet de travailler
avec des fenêtres mémoires plus petites.
Ce protocole de simulations a été reproduit avec le SNN conçu pour l’application
de classification. La Figure 2.4.3 (a) montre la performance de classification,
CR, en fonction de la fenêtre mémoire, MW3σ, pour différents nombres n de
RRAM par synapse. Le réseau a été calibré avec les conditions de program-
mation A, B2, et la condition artificielle présentant zéro variabilité synaptique.
Contrairement à l’application de détection, la performance est indépendante
de la fenêtre mémoire et augmente avec la résolution synaptique. Pour cette
application de classification, une résolution d’au moins 10 niveaux synaptiques
est nécessaire. Pour étudier l’impact de la variabilité synaptique, le réseau a été
ensuite calibré avec les différentes conditions de programmation. La Figure
2.4.3 (b) montre la performance de classification, CR, en fonction de la vari-
abilité synaptique, σG,HCS. Les différentes variabilités synaptiques proviennent
des différentes conditions de programmation. Les synapses sont implémentées
avec 20 RRAM par synapse. On observe que la performance est maximale pour
une variabilité synaptique d’environ 0.05 (CR=81.81% pour la condition A,
et CR=81.78% pour la condition C). Pour comprendre les résultats obtenus
avec les applications de détection et classification, la Figure 2.4.4 montre les
distributions de poids synaptiques obtenues après apprentissage, pour chaque
condition de programmation. Pour l’application de détection (Figure 2.4.4 (a)),
il est nécessaire que la population de synapses potentialisées (rouge) soit suff-
isamment éloignée de la population de synpases déprimées (bleu). Ceci se traduit
par la nécessité d’avoir un rapport moyen, au sens de moyenne arithmétique,
suffisamment élevé pour obtenir la performance maximale de 96%. En pratique,
un rapport moyen d’au moins 200 est nécessaire. Ainsi, la fenêtre mémoire et la
variabilité conductive permettent d’améliorer la performance. En effet, même
si les deux populations se chevauchent car la fenêtre mémoire n’est pas assez
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(a) (b)

Figure 2.4.3: (a) Taux de classification, CR, du réseau de neurones
conçu pour la classification de chiffres en fonction de la fenêtre mémoire à
3σ, MW3σ, pour différents nombres de RRAM par synapse. (b) Taux de
classification, CR, du réseau de neurones conçu pour la classification de
chiffres en fonction de la variabilité synaptique, σG,HCS.

élevée (condition B1), la variabilité synaptique permet néanmoins d’éloigner les
deux distribution par un effet de moyennage dans chaque distribution. Pour
l’application de classification (Figure 2.4.4 (b)), il est nécessaire d’avoir une
résolution synaptique suffisante pour obtenir la meilleure performance. En pra-
tique, au moins 10 niveaux synaptiques sont nécessaires. Comme la résolution
synaptique ne dépend que de la distribution HCS, la fenêtre mémoire n’a pas
d’impact sur la performance. Ainsi, pour les conditions A, C, et la condition artifi-
cielle avec zéro variabilité synaptique, 21 niveaux synaptiques sont distinguables.
Cependant, la présence d’une certaine quantité de variabilité synaptique dans le
cas des conditions A et C permet un ajustement plus précis et une transition
plus graduelle entre chaque niveau synaptique, ce qui améliore la performance
par rapport à la condition avec zéro variabilité. Dans le cas des conditions B1 et
B2 avec une plus forte variabilité synaptique, la variabilité synaptique applanit
les distributions, et seulement 9 et 7 niveaux synaptiques sont distinguables,
respectivement.

2.4.3 Impact du vieillissement des RRAM

La Figure 2.4.5 montre la performance de détection (a) et de classification (b)
en fonction du nombre d’opérations de programmation. Pour cela, le réseau a été
calibré avec les distributions obtenues lors de la caractérisation de l’endurance
en programmation avec la condition A de la Figure 2.2.3. Dans le cas de
l’application de détection, la performance se dégrade avec le vieillissement des
RRAM à cause des cellules détruites. En supprimant ces cellules défectueuses,
il est possible de ré-obtenir la performance maximale. Pour l’application de
classification, la performance n’est pas impactée par le vieillisement des RRAM,
car la variabilité synaptique reste autour de la valeur de 0.05 pendant tout le
cyclage.
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(a)

(b)

Figure 2.4.4: Distributions des poids synaptiques après apprentissage
pour l’application de (a) détection et (b) classification.

2.5 Conclusion

Dans ce chapitre, une étude détaillée de l’impact de la variabilité conductive,
puissance de programmation, et vieillissement des RRAM sur les performances
d’apprentissage des SNN avec synapses à base de RRAM et entrâınés de façon
non supervisée par STDP a été présentée. Les données expérimentales ont été
obtenues par caractérisations électriques de matrices multi-kilobits 1T1R RRAM
[25], et les performances d’apprentissage ont été évaluées par simulations niveau
système de SNN calibrés sur les données expérimentales, et conçus pour (i)
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(a) (b)

Figure 2.4.5: (a) Score F1 en fonction du nombre de cycles de commuta-
tion pour le réseau de neurones conçu pour le suivi de voitures. (b) Taux
de classification en fonction du nombre de cycles de commutation pour le
réseau de neurones conçu pour la classification de chiffres.

une application de détection [107], et (ii) une application de classification [108].
Par rapport à la littérature [15, 74–92], nous avons montré que les SNN ne
sont pas seulement robustes à la variabilité synaptique, mais que celle-ci peut
être bénéfique. Ceci peut s’expliquer par le fait que la variabilité synaptique
permet aux synapses d’accéder à une plus grande plage de valeurs de poids
synaptiques pendant l’apprentissage. De façon plus large, cette étude fournit
des lignes directrices pour optimiser la programmation des RRAM dans les SNN
avec synapses à base de RRAM et apprentissage non supervisé. Également,
elle démontre que les dispositifs mémoires peuvent être programmés de façon
plus optimale dans les applications neuromorphiques que dans les applications
mémoires, et que les requis matériels des RRAM diffèrent pour les applications
mémoires et neuromorphiques.
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Reconfigurabilité du routage synaptique
des réseaux de neurones impulsionnels avec
des mémoires ternaires adressables par con-
tenu à base de mémoires résistives

3.1 Objectif de ce chapitre

L’objectif de ce chapitre est d’évaluer la possibilité d’implémenter des ta-
bles de routage synaptique (SRT pour Synaptic Routing Table) avec des

mémoires résistives (RRAM pour Resistive Random Access Memory). Le rôle des
SRT est de stocker la topologie du réseau de neurones, c’est-à-dire l’agencement
du réseau de neurones qui est défini par les différentes connexions synaptiques
entre les neurones [110–112]. Il est alors possible de modifier dynamiquement
la topologie du réseau en re-programmant les SRT, et ainsi de reconfigurer le
processeur neuromorphique. Dans le cas de réseaux de neurones impulsionnels
(SNN pour Spiking Neural Network), les différents processeurs neuromorphiques
impulsionnels [22, 62, 68–71] utilisent la représentation d’événements par adresse
(AER pour Address Event Representation) [113, 114] : chaque neurone a une
adresse unique, et transmet son adresse à tous les neurones avec lesquels il est
connecté lorsqu’il émet une impulsion. Dans ce contexte, les SRT correspondent
à des tables de conversion (LUT pour Look-Up Table) qui stockent et associent
les adresses des neurones connectés ensemble. Pour cette étude, nous nous fo-
caliserons sur l’implémentation des SRT avec des matrices de mémoires ternaires
adressables par contenu (TCAM pour Ternary Content-Addressable Memory).
En effet, il a été démontré que l’implémentation des SRT avec des TCAM était
une méthode efficace pour empêcher l’encombrement du réseau lors du routage
des impulsions [73].
Dans cette partie, nous évaluerons l’utilisation de TCAM à base de RRAM pour
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l’implémentation de SRT dans les processeurs neuromorphiques impulsionnels.
Nous présenterons tout d’abord deux circuits TCAM à base de RRAM qui ont
été intégrés, fabriqués, et caractérisés électriquement. Le premier circuit TCAM
à base de RRAM correspond à la structure la plus commune où chaque cellule
unitaire TCAM est composée de deux transistors et deux RRAM dans une
configuration deux un-transistor/une-RRAM en parallèle (2T2R) [115–119]. La
structure TCAM 2T2R est à l’heure actuelle la plus petite structure TCAM [116].
Le deuxième circuit TCAM est une nouvelle structure où chaque cellule unitaire
TCAM est composée également de deux transistors et deux RRAM dans une
configuration un-transistor/deux-RRAM/un-transistor (1T2R1T). Cette struc-
ture présente une surface silicium similaire à celle de la TCAM 2T2R. L’objectif
de cette nouvelle TCAM 1T2R1T est de résoudre les problèmes majeurs de
la TCAM 2T2R en s’affranchissant des propriétés électriques des RRAM. Des
caractérisations électriques poussées ont ensuite été effectuées sur chaque circuit
TCAM afin de quantifier l’impact des propriétés électriques des RRAM sur
les performances et fiabilité des circuits TCAM. Enfin, les résultats électriques
obtenus ont été comparés.

3.2 Principes de base des mémoires adress-
ables par contenu

Les mémoires adressables par contenu (CAM pour Content-Addressable Memory)
sont des circuits spécialisés dans la recherche intensive et rapide de données
[120–123]. Ils permettent de rechercher une donnée dans une table mémoire avec
des données pré-enregistrées. Le principe est schématisé en Figure 3.2.1. Dans
un système mémoire à accès aléatoire (RAM pour Random Access Memory)
classique (Figure 3.2.1 (a)), une adresse est envoyée en entrée du système, et
la donnée stockée à cette adresse est retournée en sortie. Les systèmes CAM
procèdent de façon inverse : une donnée recherchée est envoyée en entrée, et
chacune des données stockées est comparée à la donnée recherchée (Figure 3.2.1
(b)). Le résultat de la comparaison est retourné par la ligne de match. Si les

(a) (b)

Figure 3.2.1: Principe de fonctionnement (a) d’un système RAM clas-
sique, et (b) un système de mémoire adressable par contenu (CAM pour
Content-Addressable Memory).
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données recherchées et stockées sont différentes, la ligne de match retourne un
cas de mismatch. Si les données sont identiques, la ligne de match retourne un
cas de match. L’avantage principal d’une CAM est que la recherche de données
peut être effectuée en parallèle sur toute la matrice mémoire, en un seul cycle
d’horloge, ce qui permet d’atteindre des vitesses de recherche de l’ordre de la
nanoseconde [123].
Les systèmes CAM peuvent être catégorisés soit en CAM binaires (BCAM pour
Binary CAM), soit en CAM ternaire (TCAM pour Ternary CAM). Alors que
les BCAM ne peuvent stocker que des données ’0’ ou ’1’, une TCAM offre la
possibilité de stocker un troisième type de donnée dénoté ’X’. La donnée ’X’ sert
de joker lors d’une opération de recherche, et retourne toujours un cas de match
quelle que soit la donnée recherchée. Dans ce chapitre, nous nous intéresserons
aux systèmes TCAM, en particulier ceux implémentés avec des RRAM.

3.3 Circuits de mémoires ternaires adressables
par contenu à base de mémoires résistives

3.3.1 La cellule TCAM la plus commune deux-
transistors/deux-RRAM (2T2R)

Figure 3.3.1: Schéma
de la cellule unitaire
TCAM la plus commune
2T2R.

Donnée stockée RX RY
’0’ LRS HRS
’1’ HRS LRS
’X’ HRS HRS

Table 3.1: Définition des états
des RRAM en fonction de la
donnée stockée.

Donnée recherchée SLT SLF
’0’ 0 VDD
’1’ VDD 0

Table 3.2: Tensions SLT et
SLF en fonction de la donnée
recherchée.

La cellule TCAM la plus commune, qui est également la plus petite à l’heure
actuelle [115–119], est composée de deux structures 1T1R en parallèle (2T2R).
La cellule unitaire TCAM 2T2R est schématisée sur la Figure 3.3.1. Le stockage
de donnée repose sur un encodage différentiel, en programmant les RRAM soit
dans l’état faible résistance (LRS pour Low Resistance State), soit dans l’état
haute résistance (HRS pour High Resistance State) en suivant les combinaisons
de la Table 3.1. La recherche de données repose sur la décharge de la ligne
de match. Lors d’une opération de recherche, la ligne de match est d’abord
préchargée à une tension haute avec une tension Vsearch. Elle est ensuite laissée
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flottante, et se décharge à travers les cellules TCAM. Selon la donnée recherchée,
le transistor SLT ou SLF est activé et l’autre désactivé (cf Table 3.2). Dans un
cas de match (cf Figure 3.3.2 (a)), la structure 1T1R activée est en HRS, la
ligne de match se décharge relativement lentement et reste à l’état haut. Dans
un cas de mismatch (cf Figure 3.3.2 (b)), la structure 1T1R activée est en
LRS, la ligne de match se décharge rapidement vers l’état bas.

(a) (b)

Figure 3.3.2: (a) Dans un cas de match, le transistor activé est en série
avec une RRAM dans l’état haute résistance (HRS pour High Resistance
State). (b) Dans un cas de mismatch, le transistor activé est en série avec
une RRAM dans l’état faible résistance (LRS pour Low Resistance State).

3.3.2 La nouvelle cellule TCAM un-transistor/deux-
RRAM/un-transistor (1T2R1T)

Figure 3.3.3: Schéma
de la nouvelle cel-
lule unitaire TCAM
1T2R1T.

Donnée stockée RX RY
’0’ LRS HRS
’1’ HRS LRS
’X’ HRS HRS

Table 3.3: Définition des états
des RRAM en fonction de la
donnée stockée.

Donnée recherchée SLT SLF
’0’ 0 Vsearch
’1’ Vsearch 0

Table 3.4: Tensions SLT et
SLF en fonction de la donnée
recherchée.

La nouvelle cellule TCAM est composée de deux transistors et deux RRAM
dans une configuration un-trnasistor/deux-RRAM/un-transistor (1T2R1T)
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comme représentée sur la Figure 3.3.3. Le transistor N1 est impliqué dans les
opérations de programmation des RRAM, le transistor N2 est impliqué dans les
opérations de recherche. Comme pour la TCAM 2T2R, le stockage de données
repose sur un encodage différentiel des deux RRAM (cf Table 3.3). Lors d’une
opération de recherche, le transistor N1 est désactivé, et une tension positive
Vsearch est appliquée soit sur SLT, soit sur SLF selon la Table 3.4. Le noeud
interne entre les deux RRAM est polarisé par pont diviseur de tension entre les
deux RRAM. Dans un cas de match (cf Figure 3.3.4 (a)), le noeud interne est
polarisé à une tension quasiment nulle, le transistor N2 reste OFF et la ligne
de match ne se décharge pas. Dans un cas de mismatch (cf Figure 3.3.4 (b)),
le noeud interne est polarisé à environ Vsearch, ce qui active le transistor N2 si
Vsearch est supérieure à sa tension de seuil. La ligne de match se décharge alors
vers l’état bas.

(a) (b)

Figure 3.3.4: (a) Dans un cas de match, la tension du noeud interne,
Vint, dans le pont diviseur de tension entre les deux RRAM reste à 0 V, le
transistor N2 est OFF. (b) Dans un cas de mismatch, Vint est quasiment
égale à Vsearch, le transistor N2 est ON is Vsearch est supérieure à la tension
de seuil du transistor N2.

3.3.3 Comparaison des deux structures TCAM

Dans le cas de la TCAM 2T2R, la ligne de match est connectée aux électrodes
du haut de chaque RRAM. Dans un cas de match (cf Figure 3.3.5 (a, haut)),
la ligne de match se décharge à travers des RRAM en HRS avec des courants de
fuite Imatch. Dans un cas de mismatch (cf Figure 3.3.5 (a, bas)), la ligne de
match se décharge à travers une ou des RRAM en LRS. La marge de fiabilité
du système, c’est-à-dire sa capacité à distinguer un cas de match du pire cas
de mismatch quand une seule cellule TCAM mismatch, dépend directement du
rapport de courant entre le courant de mismatch, Imismatch, et la somme des
courants de fuite Imatch dans un cas de match. La marge de fiabilité de la TCAM
2T2R dépend alors directement des valeurs de résistance en HRS et LRS des
RRAM, et plus précisément de la fenêtre mémoire des RRAM (rapport entre
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les valeurs de résistance en HRS et LRS) qui est de l’ordre de 10-100. Dans le
cas de la TCAM 1T2R1T (cf Figure 3.3.5 (b, haut)), la ligne de match est
connectée aux drains de chaque transistor N2. Dans un cas de match, la ligne
de match se décharge à travers des transistors dans l’état OFF. Dans un cas de
mismatch (cf Figure 3.3.5 (b, bas)), la ligne de match se décharge à travers un
ou des transistors dans l’état ON. La marge de fiabilité du système dépend alors
du rapport de courant ION et IOFF des transistors N2, qui peut atteindre jusqu’à
six ordres de grandeur (cf Figure 3.3.5 (c)).

3.3.4 Intégration et fabrication des deux circuits TCAM
à base de RRAM

La Figure 3.3.6 (a) schématise les deux circuits TCAM fabriqués. Un registre
à décalage envoie le mot recherché de 128 bits en entrée d’une matrice TCAM
3x128 bits. Seule la ligne de match de la TCAM du milieu est connectée à un
circuit de lecture. Le circuit de lecture évalue la décharge de la ligne de match
pendant une opération de recherche en comparant sa tension à une tension de
référence, VREF. Le résultat de la comparaison est fourni en sortie du compara-
teur, et permet d’évaluer le temps tsearch nécessaire pour décharger la ligne de
match de l’état haut vers la tension de référence, VREF. Pour chaque circuit, les
mesures sont effectuées sur la TCAM du milieu. Les Figure 3.3.6 (b) et (c)
montrent des photographies des circuits fabriqués.
Les RRAM ont été intégrées dans le retour en fin de ligne (back-end-of-line) d’un
procédé CMOS 130 nm [25], et sont composées d’un empilage TiN/HfO2/Ti/TiN
d’épaisseur 100 nm/10 nm/10 nm/100 nm (cf Figure 3.3.6 (d)). Pour étudier
l’impact des propriétés électriques des RRAM sur les performances et fiabiltié
de chaque circuit TCAM, les RRAM ont été programmées avec différentes con-
ditions de programmation. La Figure 3.3.7 montre les distributions cumulées
de résistance mesurées directement sur les circuits TCAM. Les différentes dis-
tributions HRS ont été obtenues soit avec la condition de programmation Soft
HRS, soit avec la condition de programmation Strong HRS, soit en gardant les
RRAM dans l’état vierge ”pristine”. La fenêtre mémoire est définie ici comme le
rapport de résistance entre la valeur de résistance du HRS et LRS à -2σ et +2σ
de chaque distribution, respectivement.

3.4 Caractérisations électriques des circuits
TCAM à base de RRAM

3.4.1 Fonctionnalité de base des circuits : car-
actérisation du temps de décharge de la ligne de
match

La Figure 3.4.1 montre les temps de décharge, tsearch, en fonction de la tension
appliquée aux bornes des RRAM pendant une opération de recherche, Vsearch,
mesurés sur le circuit TCAM 2T2R (a) et 1T2R1T (b). La ligne de match se
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(a)

(b)

(c)
Figure 3.3.5: Cas de match et mismatch pour (a) la structure 2T2R
commune et (b) la nouvelle structure proposée 1T2R1T. (c) Caractéristique
Ids-Vgs mesurée sur les transistors N2 de la TCAM 1T2R1T.

décharge dans un cas de mismatch pour les deux TCAM (rouge), et la décharge
s’accélère avec le nombre de cellules TCAM qui mismatchent. Dans un cas de
match, la ligne de match doit idéalement rester à l’état haut. Comme attendu,
c’est le cas pour la TCAM 1T2R1T (vert). En revanche, la ligne de match se
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(a)

(b) (c)

(d)

Figure 3.3.6: (a) Schéma bloc des circuits TCAM 2T2R et 1T2R1T
fabriqués. (b) Photographies des circuits 2T2R et (c) 1T2R1T fabriqués.
(d) Image par microscopie électronique des cellules RRAM à base de HfO2
intégrées.

décharge dans un cas de match pour la TCAM 2T2R à cause de la faible fenêtre
mémoire des RRAM.

3.4.2 Marge de détection et capacité de recherche

Pour quantifier l’impact des propriétés électriques des RRAM sur la fiabilité des
circuits TCAM, nous avons mesuré la marge de détection lorsque les TCAM
sont programmées avec les différentes conditions de programmation (Soft HRS,
Strong HRS, ou état vierge ”pristine”). Dans ce travail, nous avons défini la
marge de détection comme le rapport de temps de décharge, tsearch, (TR pour
Time Ratio) entre un cas de match et le pire cas de mismatch quand une seule
cellule TCAM mismatch. La Figure 3.4.2 (a) montre la marge de détection, TR,
en fonction de la fenêtre mémoire, MW. Comme attendu, la marge de détection
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Figure 3.3.7: Distributions cumulées de LRS, Soft HRS, Strong HRS,
et état vierge ”pristine” utilisées dans ce travail, mesurées directement sur
les circuits TCAM.

(a)

(b)

Figure 3.4.1: Temps de décharge, tsearch, en fonction de la tension
appliquée aux bornes des RRAM, Vsearch, mesurés sur (a) le circuit TCAM
2T2R et (b) le circuit TCAM 1T2R1T. Les RRAM ont été programmées
avec les différentes conditions de programmation de la Figure 3.3.7.

de la TCAM 2T2R augmente avec la fenêtre mémoire car les courants de fuite,
Imatch, sont diminués. Dans le cas de la TCAM 1T2R1T, la marge de détection
est indépendante de la fenêtre mémoire car elle ne dépend que des courants ION
et IOFF des transistors N2. De plus, on observe une augmentation drastique de
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(a)

(b)

Figure 3.4.2: Marges de détection, TR (pour Time Ratio), en fonction
de (a) la fenêtre mémoire, MW, et (b) la longueur de mots TCAM, WDL,
mesurées sur les circuits TCAM 2T2R (symboles ouverts) et 1T2R1T
(symboles pleins).

la marge de détection de la TCAM 1T2R1T par rapport à la TCAM 2T2R. Si
on considère une marge de détection minimale de 2 pour garantir la fiabilité
des circuits TCAM, une fenêtre mémoire d’au moins 50 est nécessaire pour la
TCAM 2T2R, et une TCAM 2T2R de 128 bit ne peut pas être programmée en
Soft HRS. Il est alors nécessaire d’augmenter la fenêtre mémoire pour travailler
avec des mots TCAM plus longs. Ceci amène au deuxième problème majeur
de la TCAM 2T2R : la faible fenêtre mémoire des RRAM limite les longueurs
de mots TCAM. Pour quantifier ce deuxième problème, nous avons tracé en
Figure 3.4.2 (b) la marge de détection, TR, en fcontion de la longueur de
mots TCAM, WDL (pour Word Length). La marge de détection de la TCAM
2T2R diminue avec la longueur de mot TCAM, ce qui limite les mots TCAM à
environ 100 bit et 256 bit lorsque la TCAM 2T2R est programmée en Soft HRS
et Strong HRS, respectivement. Dans le cas de la TCAM 1T2R1T, la marge
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de détection est peu sensible à la longueur de mots TCAM, ce qui permet de
travailler avec des mots TCAM bien plus longs jusqu’à plus de 2 kbit.

3.4.3 Caractérisation de l’endurance en recherche

Figure 3.4.3: Endurances en recherche en fonction de la tension appliquée
aux bornes des RRAM, Vsearch, mesurées sur les circuits TCAM 2T2R
(symboles ouverts) et 1T2R1T (symboles pleins).

Pendant une opération de recherche, la tension positive Vsearch est appliquée
sur l’électrode du haut d’une des deux RRAM (RX pour la recherche de ’1’, RY
pour la recherche de ’0’) dans la même polarité qu’une opération de Set. Dans le
cas d’un match, Vsearch est appliquée aux bornes de RRAM en HRS, il y a alors
risque de commuter les RRAM en LRS pendant les opérations de recherche, et
de perdre l’état de match. Nous avons caractérisé l’endurance en recherche de
chaque circuit TCAM en appliquant une série d’opérations de recherche lorsque
les TCAM sont initialement dans une configuration de match. L’endurance en
recherche a été définie comme le nombre maximal d’opérations de recherche
avant qu’au moins une RRAM commute du HRS vers le LRS. La Figure 3.4.3
compare les endurances en recherche de chaque circuit TCAM en fonction de la
tension Vsearch. On observe une amélioration de l’endurance en recherche avec la
nouvelle cellule TCAM 1T2R1T par rapport à la TCAM 2T2R.

3.5 Conclusion

Dans ce chapitre, nous avons expérimentalement caractérisé deux circuits TCAM
à base de RRAM : (i) la structure TCAM la plus commune 2T2R [115–119],
et (ii) une nouvelle cellule TCAM dans une configuration un-transistor/deux-
RRAM/un-transistor (1T2R1T). Ces travaux avancent l’état de l’art en pro-
posant pour la première fois des caractérisations électriques complètes de circuits
TCAM à base de RRAM. Comme attendu, les résultats obtenus montrent une

229



CHAPITRE 3. TABLES DE ROUTAGE SYNAPTIQUE AVEC DES TCAM
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amélioration drastique de la marge de détection de la TCAM 1T2R1T par
rapport à la TCAM 2T2R, ce qui permet de travailler avec des mots TCAM de
plus de 2 kbit. De plus, l’endurance en recherche est également améliorée avec
la TCAM 1T2R1T. En termes d’endurance en programmation, la technologie
de RRAM intégrée dans ce travail peut aller jusqu’à 106 et 104 opérations de
programmation lorsque les TCAM sont programmées en Soft HRS et Strong
HRS, respectivement [25], ce qui est suffisant pour la plupart des applications
TCAM [118]. Pour des applications TCAM classiques, par exemple le routage
de paquets internet [123], il est généralement nécessaire de travailler avec des
mots TCAM de plus de 128 bit, ce qui rend la structure 2T2R non adaptée à ce
type d’applications. Pour des applications neuromorphiques, plus précisément
pour l’implémentation de tables de routage synaptique, les adresses des neu-
rones ne dépassent généralement pas 32 bit [62]. Les deux structures TCAM
sont alors adaptées en termes de longueur de mot. Cependant, l’endurance en
recherche n’est probablement pas assez élevée pour permettre aux processeurs
neuromorphiques d’opérer continuellement.
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Intégration tri-dimensionnelle monolithique
de deux niveaux de transistors CMOS
hautes performances avec un niveau de dis-
positifs de mémoires résistives

4.1 Objectif de ce chapitre

Ce chapitre conclut les travaux présentés dans ce manuscrit de thèse de doc-
torat en ouvrant des perspectives technologiques pour améliorer l’efficacité

en surface des processeurs neuromorphiques impulsionnels. Pour cela, nous
démontrerons l’intégration hétérogène 3D monolithique de deux niveaux de
transistors CMOS et un niveau de mémoires resistives (RRAM pour Resistive
Random Access Memory) en procédé CMOS SOI 65 nm. Les dispositifs ont
été intégrés, fabriqués, et sont électriquement fonctionnels. En particulier, les
dispositifs présentés dans ce travail implémentent les mêmes structures que celles
étudiées dans les Chapitre 2 et Chapitre 3.

4.2 Intégration tri-dimensionelle monolithique
de mémoires résistives et transistors
CMOS

4.2.1 La technologie CoolCube™

Les deux niveaux de transistors ont été intégrés avec la technologie CoolCube™du
CEA-Leti [59]. Cette technologie permet l’intégration de deux niveaux de
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transistors CMOS hautes performances en CMOS SOI 65 nm. La Figure 4.2.1
synthétise le flux du processus d’intégration.

Figure 4.2.1: Flux du processus d’intégration de la technologie Cool-
Cube™du CEA-Leti [59].

4.2.2 Intégration des mémoires résistives

Les RRAM ont été intégrées dans le retour en fin de ligne (back-end-of-line) des
transistors CMOS fabriqués avec la technologie CoolCube™. La Figure 4.2.2
schématise le flux du processus d’intégration. Nous avons tout d’abord récupéré
des plaques CoolCube™juste avant le premier niveau de lignes métalliques (a).
Par une première photo-lithographie par faisceau électronique, les dispositifs
RRAM ont été intégrés au-dessus des contacts des transistors (b). Les RRAM
sont composées d’un empilage TiN/HfO2/Ti/TiN d’épaisseur 10 nm/5 nm/5
nm/30 nm, similaires aux RRAM étudiées dans les Chapitre 2 et Chapitre 3
[25]. Après remplissage espaceur et oxide, les contacts sont récupérés au-dessus
des RRAM par une deuxième photo-lithographie par faisceau électronique (c).
Enfin, l’intégration est achevée par un niveau de retour en fin de ligne standard
(d). La Figure 4.2.3 montre une image obtenue par microscopie électronique
des dispositifs fabriqués.
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TRI-DIMENSIONNELLE MONOLITHIQUE DE DEUX NIVEAUX DE

TRANSISTORS NMOS ET UN NIVEAU DE MÉMOIRES RÉSISTIVES

(a) (b)

(c) (d)

Figure 4.2.2: (a) Illustration schématique des plaques CoolCube™de
base, avant intégration des RRAM. (b) Intégration des dispositifs RRAM
par une première photo-lithographie par faisceau électronique. (c)
Récupération des prises de contact par une seconde photo-lithographie par
faisceau électronique. (d) Ajout des niveaux métalliques par un processus
de retour en fin de ligne standard.

4.3 Caractérisations électriques de
l’intégration tri-dimensionnelle mono-
lithique de deux niveaux de transistors
NMOS et un niveau de mémoires résistives

Les structures obtenues sont équivalentes à deux structures un-transitor/une-
RRAM (1T1R) en parallèle. Une RRAM est connectée au transistor NMOS du
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Figure 4.2.3: Image par microscopie électronique des dispositifs fabriqués
par intégration 3D monolithique, avec deux niveaux de transistors et un
niveau de RRAM.

(a) (b)

Figure 4.3.1: Caractérisations électriques I-V en quasi-statique de (a)
la 1T1R du bas et (b) la 1T1R du haut.

bas - la 1T1R du bas -, et une RRAM est connectée au transistor NMOS du
haut - la 1T1R du haut. Nous avons caractérisé électriquement chaque structure
1T1R indépendamment. La Figure 4.3.1 montre la caractérisation électrique
I-V en quasi-statique de la 1T1R du bas (a) et de la 1T1R du haut (b). En
appliquant une tension positive sur l’électrode du haut des RRAM, il est possible
de former et commuter vers l’état de basse résistance (LRS pour Low Resistance
State) les mémoires. En appliquant une tension négative sur l’électrode du haut
des RRAM, il est possible de commuter vers l’état de haute résistance (HRS
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(a) (b)

Figure 4.3.2: Caractérisations électriques en mesures pulsées de (a) la
1T1R du bas et (b) la 1T1R du haut.

pour High Resistance State). Nous avons ensuite caractérisé les structures 1T1R
en mesures pulsées, tracées sur la Figure 4.3.2 pour la 1T1R du bas (a) et la
1T1R du haut (b). Il est possible de commuter les mémoires entre le LRS et
HRS pendant plus de 105 cycles en maintenant une fenêtre mémoire d’environ 10
avec chaque structure. Enfin, nous avons vérifié qu’il était possible de contrôler
la valeur de résistance du LRS avec le courant de programmation, Iprog, pendant
les opérations de Set. La Figure 4.3.3 trace la valeur de résistance du LRS en
fonction du courant de programmation, Iprog. Les données ont été obtenues à
partir de différentes technologies de mémoires résistives de la littérature [124]
(symboles gris). Une des caractéristiques universelles des RRAM est qu’il existe
une loi de puissance entre la valeur de résistance du LRS et le courant de
programmation. Nous avons ajouté à cette courbe les données issues des mesures
sur la 1T1R du bas (losanges rouges) et la 1T1R du haut (triangles bleus).
Nos données concordent avec les données de la littérature, ce qui valide la
fonctionnalité électrique basique complète de notre intégration.

Figure 4.3.3: Valeurs de résistance de l’état faible résistance (LRS pour
Low Resistance State) en fonction du courant de programmation, Iprog.
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4.4 Conclusion

Dans ce chapitre, nous avons démontré la première intégration hétérogène 3D
monolithique de deux niveaux de transistors CMOS et un niveau de RRAM,
jusqu’alors inexistante dans la littérature. Des structures classiques 1T1R ont été
intégrées, fabriquées, et sont électriquement fonctionnelles. L’avantage principal
de cette intégration est le gain en surface silicium grâce à l’exploitation de
la dimension verticale. En particulier, les structures 1T1R intégrées sont les
mêmes que celles utilisées pour implémenter (i) des synapses artificielles dans
le Chapitre 2, et (ii) des tables de routage synaptique dans le Chapitre
3. En première approximation, cette intégration 3D monolithique permettrait
d’améliorer d’un facteur 2 la surface silicium de ces deux composantes des
processeurs neuromorphiques impulsionnels.
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Conclusion et perspectives

L’objectif de ce travail de thèse de doctorat était d’évaluer l’utilisation
des mémoires résistives et technologies 3D monolithiques pour permettre

l’implémentation matérielle compacte et efficace énergétiquement de processeurs
neuromorphiques impulsionnels et reconfigurables. Pour cela, l’étude était fo-
calisée sur deux composantes de base des processeurs neuromorphiques im-
pulsionnels: (i) les matrices synaptiques avec poids synaptiques ajustables,
et (ii) les tables de routage synaptique, toutes deux implémentées avec des
mémoires résistives (RRAM pour Resistive Random Access Memory). Dans
le Chapitre 2, nous avons étudié de façon détaillée l’impact des propriétés
électriques des RRAM (fenêtre mémoire, variabilité conductive, et endurance en
programmation) sur les performances d’apprentissage de réseaux de neurones
impulsionnels (SNN pour Spiking Neural Network) avec synapses à base de
RRAM et entrâınés de façon non supervisée par STDP. Nous avons notamment
clarifié le rôle de la variabilité synaptique, qui provient de la variabilité conduc-
tive des RRAM, sur les performances d’apprentissage, et avons démontré que
la variabilité synaptique pouvait être bénéfique. L’une des raisons est qu’elle
permet aux synapses d’accéder à une plus grande plage de valeurs de poids
synaptiques pendant l’apprentissage. Dans le Chapitre 3, nous avons évalué
l’utilisation de mémoires ternaires adressables par contenu (TCAM pour Ternary
Content-Addressable Memory) à base de RRAM pour implémenter des tables
de routage synaptique. Pour cela, deux circuits TCAM à base de RRAM ont été
intégrés, fabriqués, et des caractérisations électriques poussées ont été effectuées
sur chaque circuit. Notamment, nous avons expérimentalement démontré que la
structure TCAM la plus commune, qui est également la plus petite, faite de deux
structures un-transistor/une-RRAM (2T2R), ainsi que la nouvelle structure
proposée dans ce travail un-transistor/deux-RRAM/un-transistor (1T2R1T),
de surface silicium similaire à celle de la 2T2R, sont toutes deux adaptées en
termes de performances et fiabilité pour implémenter les tables de routage synap-
tique. Cependant, l’endurance en recherche doit encore être améliorée pour

237



CHAPITRE 5. CONCLUSION ET PERSPECTIVES

permettre aux processeurs neuromorphiques impulsionnels d’opérer continuelle-
ment sans défaillance. Enfin, dans le Chapitre 4, nous avons démontré la
première intégration hétérogène 3D monolithique de deux niveaux de transistors
CMOS hautes performances avec un niveau de RRAM en technologie CMOS
SOI 65 nm. Notamment, des structures classiques 1T1R ont été intégrées,
fabriquées, et sont électriquement fonctionnelles. Cette démonstration tech-
nologique ouvre des perspectives pour améliorer l’efficacité en surface des deux
composantes des processeurs neuromorphiques impulsionnels étudiées dans les
deux chapitres précédents. En première approximation, la surface silicium pour-
rait être améliorée d’un facteur 2.
En termes de perspectives, les travaux futurs devraient couvrir les sujets suivants:

• Une meilleure compréhension de la physique des RRAM pour bénéficier
autant que possible des propriétés électriques des RRAM à la fois pour
des applications mémoires et des cœurs neuromorphiques.

• Identification de modèles de matrices synaptiques associées à une circuiterie
d’apprentissage appropriée pour permettre une implémentation matérielle
plus efficace et adaptée, ainsi que l’apprentissage en ligne et en temps réel.

• Développement d’un schéma et circuiterie de programmation adaptés des
RRAM pour la TCAM 1T2R1T.

• Évaluation minutieuse des opportunités offertes par l’intégration 3D mono-
lithique, ainsi que des coûts associés pour bénéficier au mieux de cette
intégration au niveau circuit.

• Identification de modèles de circuits de neurones efficaces : les modèles de
neurones actuels à base de CMOS consomment une grande partie de la
surface silicium dans les cœurs neuromorphiques.
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248



LIST OF FIGURES

List of Figures

1.1.1 (a) Power density as a function of clock frequency. Current Von
Neumann-based architectures are inefficient for representing
massively interconnected neural networks. Brains differ from
today’s computers by their architecture: they feature a parallel,
distributed architecture, whereas Von Neumann systems exhibit
sequential, centralised architectures. (b) In Von Neumann-based
architectures computation and memory units are physically sepa-
rated by a bus leading to the so-called Von Neumann bottleneck.
(c) Conceptual blueprint of a brain-like architecture wherein
computation and memory are tightly co-localised. Reproduced
from [22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 (a) Overview of established charge-based memories (blue) and
new resistance-based non-volatile memories (green). (b) Mem-
ory hierarchy of today’s computers. Speed, number of processors
cycles (CPU cycles), and typical capacity (size) of the different
memories are shown in the lower panel. The closer to pro-
cessing cores (CPUs), the faster the memory (cache memory).
Reproduced from [9]. . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Schematic illustration of the switching process in Oxide-based
Resistive Memories (OxRAMs). An initial forming process
generates oxygen vacancies in the oxide layer by soft dielectric
breakdown. Subsequent Set and Reset operations lead to the
formation and dissolution of a Conductive Filament (CF) made
of oxygen vacancies, respectively. The interface between the
oxide layer and the top electrode acts like an oxygen reservoir.
Reproduced from [44]. . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 (a) Reported storage capacity over time of different non-volatile
memory technologies. Multi-gigabits prototypes with the new
non-volatile memories have been reported [75–78]. Data on
Flash NAND technology are reported for comparison [79, 80].
(b) Programming energy as a function of cell area. Programming
energy of Resistive Memories (RRAMs, encompassing OxRAM
and CBRAM technologies) does not depend on cell area due to
the filament conduction nature of RRAMs. Reproduced from [54]. 9

249



LIST OF FIGURES

1.2.4 Low Resistance State (LRS) resistance value of different Resis-
tive Memory (RRAM) technologies as a function of compliance
current, Icc, during a Set operation. A power law relationship
exists between LRS resistance values and Icc. Reproduced from
[46]. (b) High Resistance State (HRS) resistance value as a
function of the voltage applied during Reset operations, Vreset.
Measurements have been performed on a TiN/HfO2/Ti/TiN
RRAM device. The mean HRS resistance value over 1000 Reset
operations is shown (solid line) as well as the spread at two
standard deviations (shaded area). Reproduced from [91]. . . . 11

1.2.5 Typical endurance characterisations performed on (a) a GeS2/Ag
and (b) a HfO2/GeS2/Ag Resistive Memory (RRAM) stack.
While it is possible to sustain a low resistance ratio Roff/Ron of
10 during 108 switching cycles, only 103 switching cycles can be
performed with a large resistance ratio of 106. Reproduced from
[90]. (c) Reported Memory Window (MW) as a function of pro-
gramming endurance for different RRAM technologies. Data on
Phase-Change Memory (PCM) and Spin-Torque-Transfer Mag-
netic Memory (STT-MRAM) are reported for comparison. A
general trend of lower MWs with higher endurance performance
is observed. Reproduced from [54]. . . . . . . . . . . . . . . . 12

1.2.6 High Resistance State (HRS, red) and Low Resistance State
(LRS, black) resistance distributions measured on a 4-kbit
TiN/HfO2/Ti/TiN Resistive Memory (RRAM) array, after one
Reset/Set cycle, respectively. While a resistance ratio of 2500 is
measured between the median HRS and LRS resistance values,
it is reduced to 600 at three standard deviations, 3σ, due to
device-to-device resistance variability. Reproduced from [43]. . 12

1.2.7 Transmission electron microscopy of a TiN/HfO2/Ti/TiN
RRAM fabricated on top of a NMOS transistor. RRAMs have
been integrated in the back-end-of-line. Reproduced from [103]. 13

1.2.8 (a) Schematic drawing of a three-dimensional (3D) cross-point
Resistive Memory (RRAM) structure. RRAM cells are located
in between densely stacked word-lines and bit-lines. Reproduced
from [109]. (b) (Left) Schematic drawing of Vertical RRAM
(VRRAM) arrays (reproduced from [109]), and (Right) trans-
mission electron microscopy of a four-layers TiN/Ti/HfOx/TiN
VRRAM (reproduced from [110]). . . . . . . . . . . . . . . . . 14

250



LIST OF FIGURES

1.2.9 Schematic illustrations of three-dimensional (3D) (a) parallel
integration, and (b) sequential integration. In the parallel in-
tegration both layers are fabricated separately, then vertically
stacked and connected. In the sequential integration the top
layer is fabricated directly on top of the bottom layer. Repro-
duced from [111]. (c) Alignment accuracy as a function of 3D
contact width. 3D sequential integration allows for higher align-
ment accuracy than parallel integration since it only depends
on lithographic alignment on the stepper. Reproduced from [112]. 15

1.2.10 (a) (Left) NMOS and (Right) PMOS Ioff/Ion performance for
different thermal annealings. Transistor performance can be
ensured for annealing up to 500°C for 5 hours. Reproduced
from [115]. (b) Transmission electron microscopy of two tiers
of NMOS transistors fabricated in a 3D monolithic 65-nm SOI
process with CoolCube™technology. Reproduced from [112]. . 17

1.3.1 Drawing of two connected neurons. A neuron is mainly com-
posed of a soma, several dendrites, and an axon. Neurons
transmit electrical signal events (action potentials) along their
axon connected to other neuron dendrites. Axon terminals
connect to other neuron dendrites through terminal buttons
forming synapses. . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.2 The three main neural network architectures: Fully-Connected
Neural Network (FCNN), Convolutional Neural Network (CNN),
and Recurrent Neural Network (RNN). Adapted from [12]. . . 22

1.3.3 (a) Example of a bio-inspired silicon-based Leaky Integrate-
and-Fire (LIF) neuron circuit from [181]. (b) Evolution of the
membrane capacitance potential, Vmem, during the generation
of an action potential. Reproduced from [148]. . . . . . . . . . 24

1.3.4 Experimental Spike-Timing Dependent Plasticity (STDP) ob-
served by Bi and Poo [133]. If a post-synaptic neuron spikes
shortly after a pre-synaptic neuron within a time window
of about 100 ms (right-hand side), the synaptic weight in-
creases. Otherwise, the synaptic weight decreases (left-hand
side). Adapted from [133]. . . . . . . . . . . . . . . . . . . . . 26

1.3.5 Differential-Pair Integrator (DPI) synapse. Reproduced from
[203]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.6 Schematic illustration of a vector-matrix multiplication per-
formed by a memristor crossbar array in a single read cycle.
Multiplication operations are performed on each memory ele-
ment by Ohm’s law, while accumulate operations are performed
on every column or row by Kirchhoff’s law. Reproduced from
[207]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

251



LIST OF FIGURES

1.3.7 (a) Schematic illustration of a Resistive Memory (RRAM) used
as a synapse between a pre- and post-synaptic neuron. (b)
Conductance response (represented by the read current at 1
V) of a Ag/Si-based active layer RRAM after a series of 100
identical potentiation pulses (3.2 V for 300 µs) followed by 100
identical depression pulses (-2.8 V for 300 µs). (c) Experimental
demonstration of Spike-Timing-Dependent Plasticity (STDP)
measured on the Ag/Si-based RRAM. Timing difference between
the pre- and post-synaptic neuron, ∆ Spike Timing, was cap-
tured and mapped with a time-division multiplexing approach.
Reproduced from [219]. . . . . . . . . . . . . . . . . . . . . . . 28

1.3.8 (a) Pre- and post-synaptic spike sequences to enable Spike-
Timing-Dependent Plasticity (STDP) with pulse amplitude
modulation. Pulse amplitudes are: -1.4 V, 1 V, 0.9 V, 0.8 V,
0.7 V, and 0.6 V (pre-synaptic spikes); -1 V, 1.4 V, 1.3 V, 1.2
V, 1.1 V, and 1 V (post-synaptic spikes). (b) Experimental
demonstration of STDP measured on a TiN/HfOx/AlOx/Pt
RRAM stack using the previous STDP scheme. Reproduced
from [220]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3.9 (a) Example of a one-transistor/one-RRAM (1T1R) synapse
connecting a pre- and post-synaptic neuron. The 1T1R synapse
is activated via the transistor gate only at pre-synaptic pulses.
(b) Pre- (top) and post-synaptic (bottom) pulses to enable Spike-
Timing-Dependent Plasticity (STDP) learning in the 1T1R
synapse. Only the overlap between pre- and post-synaptic pulses
induces an increase (∆t>0) or decrease (∆t<0) in conductance
of the RRAM. Reproduced from [222]. . . . . . . . . . . . . . 29

2.2.1 (Left) Scanning electron microscope cross-section of the
TiN/HfO2/Ti/TiN (100 nm/10 nm/10 nm/100 nm) RRAM
cell integrated on top of the fourth Cu metal layer. (Right)
Schematic view of the 1T1R cell configuration. The NMOS
transistor is used as a selector device. . . . . . . . . . . . . . . 58

2.2.2 Cumulative distributions of the LCS and HCS distributions
measured on the 4-kbit array (Top left) after 1000 switching
cycles with condition A, (Top right) with condition C, (Bottom
left) with condition B1, and (Bottom right) with condition B2.
Table 2.1 summarises the parameters of each programming
condition. These distributions represent the device-to-device
variability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2.3 (a) Programming endurance characterisation with programming
conditions A in Table 2.1. (b) Evolution of HCS and LCS
conductance variability with programming conditions A during
RRAM aging. Conductance variability is defined in Equation
2.2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

252



LIST OF FIGURES

2.2.4 Conductance variability as a function of the median conduc-
tance value for different programming conditions. Conductance
variability is defined in Equation 2.2.2. . . . . . . . . . . . . 62

2.2.5 Conductance evolution during the application of a series of 20
identical Set pulses and Reset pulses with (Left) programming
conditions B2 and (Right) programming conditions A of Table
2.1. Grey lines are representative of ten single cells behaving as
analog devices (gradual increase or decrease of the conductance
value). Black lines are representative of ten single cells behav-
ing as binary devices (abrupt switching between the HCS and
LCS). Red circles and blue squares correspond to the median
conductance value calculated on 4 kbit cells during potentiation
and depression, respectively. The pulse 0 is the conductance
value before the first Set pulse. . . . . . . . . . . . . . . . . . . 63

2.2.6 (a) RRAM-based synapse implementation. The Pseudo-Random
Number Generator (PRNG) is used to tune the switching proba-
bilities. (b) Stochastic STDP rule and conductance evolution of
a RRAM-based synapse composed of 1, 3, and 20 RRAM cells
in parallel. 200 potentiation pulses followed by 200 depression
pulses are applied. Condition A in Table 2.1 is used. (c) Con-
ductance evolution of 100 RRAM-based synapses composed of
20 RRAM cells when 200 potentiation pulses and 200 depression
pulses are applied. Condition A (Top left), C (Top right), B1
(Bottom left), and B2 (Bottom right) are used. Red and blue
symbols represent the median conductance evolution; grey lines
represent the evolution of each synapse. . . . . . . . . . . . . . 65

2.2.7 Simulated spiking neural networks used for (a) the car tracking
and (b) the digit classification applications. The associated
score definition to assess network performance is shown on the
right-hand side of each network. See Appendix A for more
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.2.8 (a) F1-score as a function of the memory window at 3σ, MW3σ
defined in Equation 2.2.1, for different numbers of RRAMs
per synapse. The HCS and LCS distributions measured under
the programming conditions A on the 4-kbit array are used (cf
Figure 2.2.2 (a)). (b) F1-score as a function of the MW3σ.
One RRAM device per synapse is used. The HCS and LCS
distributions measured on the 4-kbit array for the four conditions
of Table 2.1 and an artificial case with zero variability are used.
The MW3σ is varied by a translation of the LCS distributions
to lower or higher conductance values. . . . . . . . . . . . . . . 68

253



LIST OF FIGURES

2.2.9 (a) Cumulative distributions of the nine artificial log-normal
distributions used to quantify the impact of synaptic variability.
(b) Minimal memory window at 3σ, MW3σ,min (z-axis), required
to reach the maximal F1-score of 0.96 as a function of the HCS
(x-axis) and LCS (y-axis) conductance variability values. Higher
conductance variability values allow to relax the constraints on
MW3σ,min. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.2.10 (a) Example of the two-dimensional conductance mapping of one
arbitrary output neuron after learning. Potentiated synapses
(RRAMs in HCS) are represented by coloured dots (red, blue,
and grey); depressed synapses (RRAMs in LCS) are represented
by black dots. (b) F1-score as a function of the synaptic win-
dow, SW, defined in Equation 2.2.4. (c) Synaptic weight
distributions after the learning phase for the four program-
ming conditions of Table 2.1. High performance after learning
(F1=0.96) is reached when the ratio between the peaks of the
HCS and LCS distributions is larger than 200. (d) Learning
time as a function of the SW. . . . . . . . . . . . . . . . . . . 72

2.2.11 (a) Impact of the RRAM aging on the F1-score. Simulations
have been calibrated using the data of Figure 2.2.3 (a) (con-
dition A). Both device-to-device and cycle-to-cycle variability
are taken into account. (b) Average number of Set (red circle)
and Reset (blue square) operations during the learning phase
for each programming condition. Red and blue shaded areas
represent the evolution at ±3σ, respectively. . . . . . . . . . . 73

2.2.12 (a) Classification rate, CR, as a function of the memory window
at 3σ, MW3σ defined in Equation 2.2.1, for different numbers of
RRAMs per synapse. The HCS and LCS distributions measured
on the 4-kbit array for the conditions A and B2 of Table 2.1,
and an artificial case with zero variability were used. The
MW3σ was varied by a translation of the LCS distribution to
lower or higher conductance values. (b) CR as a function of the
conductance variability in HCS, σG,HCS, for 1 and 20 RRAMs per
synapse. The four HCS and LCS distributions measured on the
4-kbit array for the conditions of Table 2.1 and an artificial case
with zero variability were used. (c) Synaptic weight distributions
after the learning phase for the four programming conditions
of Table 2.1 and the synapse with zero variability. Higher
performance after learning is reached with a small amount of
HCS conductance variability (conditions A and C). . . . . . . 75

2.2.13 Impact of the RRAM aging on the classification rate, CR. Sim-
ulations have been calibrated using the data of Figure 2.2.3
(a) (condition A). Both device-to-device and cycle-to-cycle vari-
ability are taken into account. (b) Average number of Set (red
circle) and Reset (blue square) operations during the learning
phase for each programming condition. Red and blue shaded
areas represent the evolution at ±3σ, respectively. . . . . . . . 76

254



LIST OF FIGURES

2.2.14 Classification rate, CR, as a function of the HCS conductance
variability, σG,HCS, for the four programming conditions of Ta-
ble 2.1. The CR has been calculated assuming the experimental
LCS conductance variability (black line) and no LCS conduc-
tance variability (dotted grey line). . . . . . . . . . . . . . . . 77

2.3.1 (a) I-V characteristics of a TiN/HfOx/AlOx/Pt RRAM device
with increasing compliance current for each Set operation. The
device conductance value (represented by the read current) in-
creases with the compliance current. Reproduced from [97]. (b)
2-PCM synapse implementation. One synapse is implemented
with two PCM devices in parallel (LTP and LTD PCMs) with
opposite current contributions. Analog conductance modulation
is obtained by exploiting the gradual crystallisation of both
PCMs. Reproduced from [37]. (c) Programming strategy pro-
posed in [36] to obtain analog conductance modulation with a
single PCM device. In addition to the gradual crystallisation
of PCM (potentiation, green area), initialising the PCM at an
intermediate resistance value (R1≈30 kΩ) enables gradual amor-
phisation (depression, blue area) with short Reset pulses (<50
ns). Reproduced from [36]. . . . . . . . . . . . . . . . . . . . . 80

2.3.2 (a) Simplified STDP rule and synaptic weight increment and
decrement equations. (b) Conductance response with the model
described in Equation 2.3.1 for different linearity factors, β+
and β-. Potentiation and depression levels are fixed at 200
(npot=ndep=200). β+ and β- control the linearity of the con-
ductance response. (c) Conductance response with the model
described in Equation 2.3.1 for different numbers of poten-
tiation and depression levels. Linearity factors are fixed at 3
(β+=β-=3). (d) Conductance response of the PCM technology
presented in [36] (filled symbol) and fitting with Equation
2.3.1 (grey line). . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.3.3 Simulated spiking neural networks used for the digit classifi-
cation task with analog devices as synaptic elements. The
associated score definition to assess network performance is
shown on the right-hand side. See Appendix A for more details. 84

2.3.4 (a) Classification rate, CR, as a function of the number of output
neurons, nneurons. The conductance responses in Figure 2.3.2 (c)
have been used for the simulations. (b) Conductance responses
with Equation 2.3.1 for a fixed number of potentiation levels
npot=200 and different numbers of depression levels, ndep. (c)
CR as a function of the number of depression levels, ndep, for a
fixed npot=200 (cf (b)). . . . . . . . . . . . . . . . . . . . . . . 85

255



LIST OF FIGURES

2.3.5 (Top) Classification Rate, CR, as a function of the linearity
factor in potentiation, β+, for 200 potentiation levels and 30
depression levels. Open symbols correspond to symmetric re-
sponses in linearity (β+=β-). The filled symbol corresponds
to an asymmetric case (β+=3 and β-=1) fitted with the PCM
technology presented in [36] (cf Figure 2.3.2 (d)). (Bottom)
Synaptic weight evolution of 100 synapses during the training
phase for (Left) a linear conductance response and (Right) a
non-linear conductance response. . . . . . . . . . . . . . . . . 87

3.1.1 Block diagram of (a) a Random Access Memory (RAM) system
and (b) a Content-Addressable Memory (CAM) system. In
RAM systems, stored data are accessed by their physical address
location, and the system outputs the stored content. In CAM
systems, stored data are accessed by their content rather than
by their address, and the system outputs the address of the
searched data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.1.2 Block diagram of a Ternary Content-Addressable Memory
(TCAM) system. The use of the dont’t care state, ’X’, al-
lows to perform local masking and store data ranges. As more
than one word may match, a priority encoder is used instead
of an encoder. A single address is output based on the highest
priority matching location (e.g. lowest address location, most
matching bits that are not in the ’X’ states, ...). . . . . . . . . 101

3.1.3 (a) Conventional sixteen-transistors (16T) SRAM-based TCAM.
(b) Common two-transistors/two-RRAMs (2T2R) RRAM-based
TCAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.1.4 Reported SRAM-based (black circle) [3–5, 12, 13, 33, 35–48] and
RRAM-based (blue diamond) [14, 15, 18, 19, 21, 26, 27, 29, 49]
(a) TCAM bitcell size, (b) TCAM search time, and (c) TCAM
search energy as a function of technology node. Search times in
(b) have been normalised by the number of bits per TCAM word
to provide a fair comparison. TCAM bitcell size with Magnetic
Memories (MRAMs, grey triangle) [50, 51] have been plotted
for comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.1.5 TCAM-based implementation of a network router address
lookup table. Reproduced from [2]. . . . . . . . . . . . . . . . 105

256



LIST OF FIGURES

3.1.6 (a) Simplified block diagram of one computing node in DYNAPs
[59] composed of a 64x10 bits BCAM table, 64 Pulse Generators
(PGs), a Differential-Pair Integrator (DPI) synapse circuit [70],
and a CMOS-based leaky Integrate-and-Fire (IF) neuron. (b)
Working principle of DYNAPs. When the neuron 6 spikes, its
address, 6, is broadcast to every other neuron (including itself).
As its address is stored in the CAM table of the computing
nodes 2 and 6 (green rows), a pulse is locally generated and
transmitted to the corresponding leaky IF neuron circuits. The
use of TCAMs instead of BCAMs allows to increase the fan-in
of each neuron. Adapted from [59]. . . . . . . . . . . . . . . . 107

3.2.1 (a) Common block diagram of the fabricated 2T2R and 1T2R1T
TCAM circuits. Only the TCAM array is different between both
circuits. (b) Die picture of the fabricated 2T2R and (c) 1T2R1T
circuits. (d) Scanning electron microscope cross-section of the
integrated HfO2-based RRAMs. . . . . . . . . . . . . . . . . . 109

3.2.2 Example of the search operation principle. The Match Line
(ML) is first pre-charged at VDD ML, then it is left floating.
(Top) In a match case, the ML stays high. (Bottom) In the
mismatch case, the ML is pulled down to a low level. . . . . . 110

3.2.3 Common 2T2R TCAM bitcell schematic. Top (TE) and Bottom
(BE) Electrodes are indicated with the black rectangle. . . . . 110

3.2.4 (a) In the Match Line (ML) pre-charge phase, the ML is pre-
charged high at a voltage Vsearch. (b) In the ML sensing phase,
the ML is left floating and discharges through each TCAM cell.
The discharge follows that of a RC circuit. . . . . . . . . . . . 111

3.2.5 (a) In a match case, the activated transistor is in series with a
RRAM in the High Resistance State (HRS). (b) In a mismatch
case, the activated transistor is in series with a RRAM in the
Low Resistance State (LRS). . . . . . . . . . . . . . . . . . . . 112

3.2.6 (Top) Example of the Match Line (ML) voltage evolution dur-
ing a search operation in the case of match (green) and 1-bit
mismatch (red). (Bottom) Corresponding measured waveforms
output by the sense amplifier, SA OUT. The duration for which
SA OUT stays at ’0’ defines the ML discharge time, tsearch. . . 112

3.2.7 Low Resistance State (LRS), High Resistance State (HRS), and
pristine resistance cumulative distributions directly measured on
the TCAM cells. HRS resistance distribution can be obtained
using the Soft HRS or Strong HRS programming conditions. . 114

3.2.8 Discharge time, tsearch, as a function of (a) Match Line (ML)
capacitance (the search voltage, Vsearch, is fixed at 0.6 V), and
(b) Vsearch (ML capacitance is fixed at 315 pF). . . . . . . . . . 115

257



LIST OF FIGURES

3.2.9 Measured Time Ratio (TR) as a function of (a) match line
capacitance, (b) search voltage Vsearch, (c) memory window, and
(d) TCAM word length. . . . . . . . . . . . . . . . . . . . . . . 116

3.2.10 (a) During a search operation, a positive voltage is applied on
RRAM top electrodes in the same configuration as a Set opera-
tion. (b) Characterisation of the search endurance. Measured
discharge times, tsearch, as a function of the number of search
operations are reported. . . . . . . . . . . . . . . . . . . . . . 118

3.2.11 (Top) Soft HRS programming endurance characterisation. (Bot-
tom) Probabilities of match (square) and mismatch (circle)
failures as a function of the number of Set/Reset switching cycles.119

3.2.12 (a) Extrapolated tsearch as a function of the match line capaci-
tance. (b) Extrapolated search endurance as a function of the
match line capacitance. . . . . . . . . . . . . . . . . . . . . . . 120

3.2.13 Two-bits encoding principle. (Left) When no encoding is used,
two bits are encoded with two distinct TCAM bitcells. During a
search operation, two out of the four transistors are turned ON.
In the case of match, leakage currents, Imatch, flow through two
1T1R structures in HRS. (Right) When the two-bits encoding
scheme is used, two bits are encoded with an association of two
TCAM bitcells. During a search operation, only one out of four
transistors is turned ON. In the case of match, leakage currents
are halved with respect to the case of no encoding as leakage
currents only flow in one 1T1R structure in HRS. Reproduced
from [30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.2.14 Measured Time Ratio (TR) as a function of the match line
capacitance using the two-bits encoding scheme of [29]. The TR
improves by 3.8x with the two-bits encoding scheme. . . . . . 124

3.2.15 Proposed 1T2R1T TCAM bitcell schematic. Top (TE) and
Bottom (BE) Electrodes are indicated with the black rectangle. 124

3.2.16 (a) In a match case, the internal node voltage, Vint, in the
RRAM voltage divider is kept at 0 V, the transistor N2 is
OFF. (b) In a mismatch case, Vint is almost equal to Vsearch, the
transistor N2 turns ON if Vsearch is higher than the threshold
voltage of transistor N2, Vth,N2. . . . . . . . . . . . . . . . . . 125

3.2.17 Match and mismatch cases for (a) the common 2T2R and
(b) the proposed 1T2R1T structures. The sensing margin
(≈Imismatch/∑Imatch) of the common 2T2R structure depends
on the memory window, whereas for the proposed 1T2R1T
structure, it depends on the transistor N2 characteristic. (c)
Measured Ids-Vgs characteristic of transistors N2. In the case of
match, Vgs=0 V. In the case of mismatch, Vgs=Vsearch. . . . . 126

258



LIST OF FIGURES

3.2.18 (Top) Example of the Match Line (ML) voltage evolution dur-
ing a search operation in the case of match (green) and 1-bit
mismatch (red). The ML does not discharge in the match case.
(Bottom) Corresponding measured waveforms output by the
sense amplifier, SA OUT. The duration for which SA OUT stays
at ’0’ defines the ML discharge time, tsearch. tsearch is longer than
the measurement limit (one second) in the match case. . . . . 127

3.2.19 Low Resistance State (LRS), High Resistance State (HRS), and
pristine resistance cumulative distributions directly measured on
the TCAM cells. HRS resistance distribution can be obtained
using the Soft HRS or Strong HRS programming conditions. . 128

3.2.20 Discharge time, tsearch, as a function of the search voltage, Vsearch,
in the case of match (green) and mismatch (red) of 1 bit and
128 bits. tsearch is almost independent of RRAM programming
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.2.21 Measured time ratio for the proposed 1T2R1T structure (filled
symbol) and the common 2T2R structure measured in the
previous section (open symbol) as a function of (a) the search
voltage Vsearch, (b) the memory window, and (c) the TCAM word
length. The measurements performed on the 2T2R structure
using the two-bits encoding scheme of Li et al. [29] is represented
by the shaded red diamond. . . . . . . . . . . . . . . . . . . . 130

3.2.22 (a) During a search operation, a positive voltage is applied
on the top electrode of one RRAM cell (here RX for a search
’1’) in the same configuration as a Set operation. (b) Search
endurance characterisation for the proposed 1T2R1T structure.
(c) Comparison between the search endurance of the common
2T2R TCAM (open symbol) and the 1T2R1T TCAM (filled
symbol) as a function of Vsearch for Soft and Strong HRS. . . . 131

3.2.23 (a) With the proposed 1T2R1T structure, the sensing circuit
can be implemented either with (Top) a comparator circuit
(low swing) or (Bottom) a digital inverter (full swing). (b)
Measured (symbol) and simulated (line) discharge times, tsearch,
as a function of the search voltage, Vsearch, in the (Left) 128-bits
and (Right) 1-bit mismatch states. (c) Simulated search energy
consumption as a function of Vsearch in the 1-bit mismatch state
when transistors N2 are implemented with thick oxide MOS
(solid line) and thin oxide MOS (dotted line). . . . . . . . . . . 133

3.2.24 Comparison in terms of (a) TCAM bitcell size, (b) search time,
and (c) search energy as a function of technology node with
reported silicon-proven SRAM- (black circle) [3, 5, 12, 13, 33, 36–
39, 41, 43–47] and RRAM-based (blue diamond) [19, 21, 26, 27,
29] TCAM circuits. . . . . . . . . . . . . . . . . . . . . . . . . 136

259



LIST OF FIGURES

4.2.1 Process flow scheme of 3D CoolCube™integration. (Left) The
bottom level is fabricated at high temperature in a conven-
tional 65-nm SOI CMOS process. (Middle) A new SOI wafer is
transferred on top of the bottom level by oxide bonding, and
it represents the top active area. (Right) The top level is fabri-
cated at low thermal budget directly on top of the bottom level.
Reproduced from [1]. . . . . . . . . . . . . . . . . . . . . . . . 145

4.2.2 (a) Schematic illustration of CoolCube™wafers before RRAM in-
tegration. Gate contact plugs (shaded purple area) are deported.
(b) TiN/HfO2/Ti/TiN (10 nm/5 nm/5 nm/30 nm) RRAM de-
vices are fabricated directly on top of contact plugs by a first
e-beam photo-lithography. (c) Oxide and Contact Etch Stop
Layer (CESL) are deposited on top of RRAM devices. Then, con-
tact plugs are recovered by a second e-beam photo-lithography.
(d) Integration is finished by standard CoolCube™back-end-of-
line process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.2.3 Transmission electron microscopy of the co-integration of HfO2-
based RRAMs on top of two NMOS transistors fabricated with
CoolCube™technology. . . . . . . . . . . . . . . . . . . . . . . 147

4.3.1 Ids-Vgs characteristics measured on (a) a bottom NMOS tran-
sistor with W=L=10 µm, (b) a top NMOS transistor with
W=L=10 µm, and (c) a top NMOS transistor with W=60 nm
and L=50 nm. Characteristics have been measured at Vds=50
mV (dotted line) and Vds=1 V (solid line). . . . . . . . . . . . 148

4.3.2 (a) Butterfly I-V curves measured on the bottom 1T1R and (b)
the top 1T1R. Forming, then five Reset-Set cycles have been
performed with the programming conditions in Table 4.1. (c)
Read resistance values measured after each switching operation
on the bottom 1T1R and (d) on the top 1T1R. . . . . . . . . . 149

4.3.3 Demonstration of the absence of crosstalk between the bot-
tom and top 1T1R. (a) Set and Reset operations have been
performed on the top 1T1R, and the resistance values of the
bottom and top 1T1R have been read after each switching op-
eration. Bottom 1T1R resistance states remain unaltered after
each switching operation on the top 1T1R. (b) Similarly, Set
and Reset operations have been performed on the bottom 1T1R.
Top 1T1R resistance states remain unaltered after each switch-
ing operation on the bottom 1T1R. Programming conditions in
Table 4.1 have been used. . . . . . . . . . . . . . . . . . . . . 152

4.3.4 Endurance characterisations performed on (a) the bottom 1T1R
and (b) the top 1T1R for 105 switching cycles. Measurements
have been performed with the programming conditions in Table
4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

260



LIST OF FIGURES

4.3.5 (a) Butterfly I-V curves measured on the bottom 1T1R and (b)
the top 1T1R with different programming currents, Iprog, for
each Set operation. Increasing Icc allows to decrease resistance
values after each Set operation. (c) Low Resistance State (LRS)
resistance values as a function of programming current, Iprog,
for the bottom 1T1R (red diamond) and the top 1T1R (blue
triangle). Data on different RRAM technologies reproduced
from [9] are reported for comparison. Measured data of the
bottom and top 1T1R are in good agreement with previous works.153

A.1.1 (a) Simulated spiking neural network for the car tracking ap-
plication with binary devices, trained with an unsupervised
stochastic Spike-Timing-Dependent Plasticity (STDP) learning
rule and lateral inhibition. (b) Example of spiking activity of
one output neuron (red) and the actual traffic (a grey spike
corresponds to a car passing on the lane). True Positive (TP)
events, False Positive (FP) events, and False Negative (FN)
events are put in evidence. The F1-score is used to assess
network performance. . . . . . . . . . . . . . . . . . . . . . . . 174

A.1.2 Stochastic Spike-Timing-Dependent Plasticity (STDP) learning
rule. If the post-synaptic neuron spikes after the pre-synaptic
neuron within a time window tSTDP (the STDP time window),
the synapse undergoes a potentiation event. Otherwise, it under-
goes a depression event. At each potentiation (resp. depression)
event, each RRAM device has a probability pLTP (resp. pLTD)
to switch to the High Conductance State, HCS (resp. Low
Conductance State, LCS). . . . . . . . . . . . . . . . . . . . . 176

A.1.3 (a) Simulated spiking neural network for the digit classification
application with binary devices, trained with a stochastic STDP
learning rule and lateral inhibition. (b) Example of spiking
activity of four output neurons when four different input digits
are presented. If the class of the most active neuron corresponds
to the input digit, the digit is successfully classified (green),
otherwise the digit is not classified (red). . . . . . . . . . . . . 178

A.2.1 (a) Simulated spiking neural network for the digit classification
application with analog devices, trained with a simplified Spike-
Timing-Dependent Plasticity (STDP) learning rule and lateral
inhibition. (b) Simplified STDP learning rule. If the post-
synaptic neuron spikes after the pre-synaptic neuron within
a time window tSTDP (the STDP time window), the synapse
undergoes a potentiation event. Otherwise, it undergoes a
depression event. At each potentiation (resp. depression) event,
the synaptic weight increases by a quantity δw+ (resp. δw-).
α+, α-, β+, β-, WMIN, and WMAX are fitting parameters of the
conductance response of synaptic elements. . . . . . . . . . . . 179

261



LIST OF FIGURES

B.1.1 Cumulative distributions of the Low Conductance State (LCS)
and High Conductance State (HCS) distributions measured
on 4-kbit RRAM arrays (Top left) after 1000 switching cycles
with condition A, (Top right) with condition C, (Bottom left)
with condition B1, and (Bottom right) with condition B2 (see
Chapter 2 - Section 2.2). . . . . . . . . . . . . . . . . . . . 182

B.1.2 (a) F1-score as a function of the firing threshold value, Ith, for
the four studied RRAM programming conditions (A, B1, B2,
and C). (b) False Negative (FN, red square) and False Positive
(FP, blue circle) rates as a function of the firing threshold value,
Ith. The optimised threshold value, Ith,opt, comes from a trade-off
between FN and FP rates. . . . . . . . . . . . . . . . . . . . . 185

B.1.3 Optimised firing threshold value, Ith,opt, as a function of the
mean High Conductance State (HCS) conductance value of each
programming condition. Ith,opt is proportional to the mean HCS
conductance value. . . . . . . . . . . . . . . . . . . . . . . . . 186

B.2.1 (a) Classification Rate (CR) as a function of the firing threshold
value, Ith, for the four studied RRAM programming condi-
tions (A, B1, B2, and C). (b) Optimised firing threshold value,
Ith,opt, as a function of the mean High Conductance State (HCS)
conductance value of each programming condition. Ith,opt is
proportional to the mean HCS conductance value. . . . . . . . 186

B.3.1 (a) F1-score as a function of threshold variability values, σ(Ith).
(b) F1-score as a function of the mean firing threshold value,
Ith,mean, for different threshold variability values, σ(Ith). Synap-
tic elements are implemented with one binary RRAM device
calibrated on programming conditions A. . . . . . . . . . . . . 187

C.0.1 Cumulative distributions of High Conductance State (HCS, red
square) and Low Conductance State (LCS, blue circle) with
(a) programming conditions B1, and (b) an artificial case of a
synapse with zero variability. . . . . . . . . . . . . . . . . . . . 189

C.0.2 F1-score as a function of input noise when synaptic elements
are calibrated on (a) the experimental programming conditions
B1, and (b) an artificial case of a synapse with zero variability. 190

1.1.1 (a) Dans les architectures Von Neumann, les unités de calcul de
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de HfO2. La valeur de résistance dans les états de basse (LRS,
rouge) et haute (HRS, bleu) résistance varie de cycle à cycle.
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(3D) (a) parallèle, et (b) séquentielle. Reproduit de [55]. . . . . 200
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le suivi de voitures est calibré avec les différentes conditions de
programmation de la Table 2.1. . . . . . . . . . . . . . . . . 214

263



LIST OF FIGURES

2.4.3 (a) Taux de classification, CR, du réseau de neurones conçu pour
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(b) un système de mémoire adressable par contenu (CAM pour
Content-Addressable Memory). . . . . . . . . . . . . . . . . . 220
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base de HfO2 intégrées. . . . . . . . . . . . . . . . . . . . . . . 226

3.3.7 Distributions cumulées de LRS, Soft HRS, Strong HRS, et état
vierge ”pristine” utilisées dans ce travail, mesurées directement
sur les circuits TCAM. . . . . . . . . . . . . . . . . . . . . . . 227
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électronique. (c) Récupération des prises de contact par une
seconde photo-lithographie par faisceau électronique. (d) Ajout
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