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9-BBN   9-borabicyclo[3.3.1]nonane  

AcOEt   Ethyl acetate 

AuNP   Gold nanoparticle 

BDE   Bond dissociation energy 

BE   Binding energy 

Boc   tert-butoxycarbonyle 

CAAC   Cyclic alkyl amino carbene 

CTAB   Cetyltrimethylammonium bromide 

DCM   Dichloromethane 

DDS   Dodecylsulfide 
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DFT   Density functional theory 

Dipp   2,6-diisopropylphenyl 

DMAP   4-dimethylaminopyridine 

DMF   N,N-Dimethylformamide 

DMSO   Dimethyl sulfoxide 

DTPB   Ditertbutyl peroxide 

EPR   Electron paramagnetic resonance 

eq   Equivalent 

ESI   Electrospray ionization 

Et2O   Diethyl ether 

EtOH   Ethanol 

HRMS   High resolution mass spectrometry 

Imd   Imidazol-2-ylidene 

IR   Infrared  

KHMDS   Potassium bis(trimethylsilyl)amide 

LB   Lewis base 

LSPR   Localized surface plasmon resonance 

MeCN   Acetonitrile 

Mes   Mesityl 

MIC   Mesoionic carbene 

MNP   Metallic nanoparticle 
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MS   Mass spectrometry 

NaHMDS  Sodium bis(trimethylsilyl)amide 

NHC   N-heterocyclic carbene 

NHO   N-heterocyclic olefin 

NMR   Nuclear magnetic resonance 

NP   Nanoparticle 

OTs   p-toluenesulfonate 

PEG   Polyethylene glycol 

SAM   Self-assembled monolayer 

TEG   Triethylene glycol 

TEM   Transmission electron microscopy 

TEMPO   (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl 

OTf   Trifluoromethane sulfonate 

TGA   Thermogravimetric analysis 

THF   Tetrahydrofurane 

THIBO   Tetrahydroimidazobisoxazol 

TS   Transition state 

UV   Ultra-violet 

UV-vis   UV-visible 

XPS   X-ray photoelectron spectroscopy 
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INTRODUCTION 

 

Nanoparticles represent one of the main axes of the development of nanosciences and 

nanotechnologies. The high surface-to-volume ratio and the peculiar properties that matter can exhibit 

when in such a fine division state represent the principal motivations of the academic and industrial 

interests for nanoparticles. Gold nanoparticles, with their localized surface plasmon resonance,1 which 

is responsible for the ruby-red color of their suspension, are no exception and many potential 

applications in optics and imaging, catalysis as well as medicine have been, and are still, explored.2,3 

Since the Turkevich’s method of the mid-20th century,4 a multitude of protocols have been described 

in the literature to synthesize gold nanoparticles. They are quite generally based on three main 

ingredients: a gold precursor, such as HAuCl4 or AuClPPh3, a reducing agent, and a surface ligand, which 

stabilizes the nanoparticles, avoid their aggregation and make them compatible with the dispersion 

medium. By varying the reaction conditions and the capping ligands, precise control over the 

morphology, stability and properties of the nanoparticles can be achieved. Numerous ligands can be 

used to stabilize gold nanoparticles, for example, amines5, phosphines6 and citrates,4 among others. 

The most widely used ligands however remain thiols, which are known to form a strong bond with 

gold7 and confer a good stability to the nanoparticles. That is why they have traditionally been the 

ligand of choice in many studies and applications. Nevertheless, thiol-stabilized nanoparticles tend to 

be unstable in harsh and/or biological conditions, which can be potentially harmful for certain 

applications.8,9 Therefore, there is a need for new families of ligands, that would bound strongly to 

gold surface atoms, and for developing new efficient syntheses to access nanoparticles with such new 

ligands.  

 

N-heterocyclic carbenes (NHCs) are a relatively new class of molecules. Indeed, the first NHCs were 

isolated in the early 1990’s.10 They are neutral compounds, which contain a divalent carbon atom with 

a six-electrons valence shell. While generally very reactive when free, they can form stable complexes 

with various metals. They have been well studied in molecular chemistry. Indeed their complexes with 

metals can present catalytic activity11 or medicinal properties12 depending on the metal and NHC 

structure. In the past decade, NHCs have been increasingly used as versatile surface ligands in materials 

chemistry.13 Indeed, the first synthesis of NHC-stabilized gold nanoparticles dates back to 2009.14 Since 

then several other reports on NHC-stabilized metallic nanoparticles have been published,15–19 some of 

them showing the very good stability of such nanoparticles in harsh and /or biologically relevant 

conditions.20–22 Several studies of NHC self-assembled monolayers on gold have also been carried out, 
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providing useful information on their bonding strength to metal and their superior stability compared 

to thiols.23,24 

As Lewis bases, NHCs are also able to form stable adducts with boranes (Lewis acids). Such NHC-

boranes are generally air and moisture stable compounds, the reducing properties of which have 

already been reported in the literature.25 Despite the absence of any previous report in the literature, 

the possibility to use them as dual reagents, able to reduce the metallic precursor and provide, at the 

same time, the NHC ligands, sounds very appealing for the development of a new synthesis of NHC-

stabilized gold nanoparticles. 

 

In this PhD work, the focus was on the development of new syntheses of NHC-stabilized gold 

nanoparticles, notably using NHC-BH3 as innovative “2-in-1” reagents. Throughout this study, special 

care was taken to thoroughly characterize the obtained nanoparticles and confirm the presence of 

NHCs at their surface as stabilizing agent. 

 

This manuscript is divided in four main chapters. The first one gives a quick general overview on gold 

nanoparticles and NHCs, before focusing on the syntheses of NHC-stabilized gold nanoparticles 

described in the literature. The second chapter describes the synthesis of NHC-stabilized gold 

nanoparticles from imidazolium salts and various gold precursors. The possibility to tune the size of 

the particles through the experimental conditions is also presented. The surface characterization, in 

particular by XPS, of the so-obtained nanoparticles is reported in details. The third chapter, starts with 

a quick overview of NHC-boranes in the literature, and then reports on the synthesis of NHC-stabilized 

gold nanoparticles from NHC-boranes. The surface characterization, mainly by XPS, of the particles 

prepared with this totally new route is reported and a preliminary discussion of its possible mechanism 

is given. The fourth and final chapter focuses on the synthesis of gold nanoparticles stabilized by 

another type of NHCs, known as mesoionic carbenes (MICs). These ligands, which derive from easily 

prepared 1,2,3-triazolium salts, have never been used in surface chemistry. The explored synthetic 

routes are then presented. They use either triazolium salts and an external reducing agent or “2-in-1” 

MIC-boranes. The surface characterization of these various MIC-stabilized gold nanoparticles is finally 

presented. This manuscript ends with some conclusions on the work performed and several 

perspectives based on preliminary results which explore the extension of the present work to other 

metals. 

 

  



13 
 

Bibliography (Introduction) 

(1)  Louis, C.; Pluchery, O. Gold Nanoparticles for Physics, Chemistry and Biology, 2nd ed.; WORLD 

SCIENTIFIC (EUROPE), 2017. 

(2)  Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; El-Sayed, M. A. The Golden Age: Gold 

Nanoparticles for Biomedicine. Chem Soc Rev 2012, 41 (7), 2740–2779. 

(3)  Daniel, M.-C.; Astruc, D. Gold Nanoparticles:  Assembly, Supramolecular Chemistry, 

Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. 

Chem. Rev. 2004, 104 (1), 293–346. 

(4)  Turkevich, J.; Stevenson, P. C.; Hillier, J. A Study of the Nucleation and Growth Processes in 

the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55–75. 

(5)  Sun, Y.; Jose, D.; Sorensen, C.; Klabunde, K. Alkyl and Aromatic Amines as Digestive 

Ripening/Size Focusing Agents for Gold Nanoparticles. Nanomaterials 2013, 3 (3), 370–392. 

(6)  Pettibone, J. M.; Hudgens, J. W. Gold Cluster Formation with Phosphine Ligands: Etching as a 

Size-Selective Synthetic Pathway for Small Clusters? ACS Nano 2011, 5 (4), 2989–3002. 

(7)  Pensa, E.; Cortés, E.; Corthey, G.; Carro, P.; Vericat, C.; Fonticelli, M. H.; Benítez, G.; Rubert, A. 

A.; Salvarezza, R. C. The Chemistry of the Sulfur–Gold Interface: In Search of a Unified Model. Acc. 

Chem. Res. 2012, 45 (8), 1183–1192. 

(8)  Caragheorgheopol, A.; Chechik, V. Mechanistic Aspects of Ligand Exchange in Au 

Nanoparticles. Phys. Chem. Chem. Phys. 2008, 10 (33), 5029–5041. 

(9)  Montalti, M.; Prodi, L.; Zaccheroni, N.; Baxter, R.; Teobaldi, G.; Zerbetto, F. Kinetics of Place-

Exchange Reactions of Thiols on Gold Nanoparticles. Langmuir 2003, 19 (12), 5172–5174. 

(10)  Arduengo, A. J.; Harlow, R. L.; Kline, M. A Stable Crystalline Carbene. J. Am. Chem. Soc. 1991, 

113 (1), 361–363. 

(11)  Marion, N.; Nolan, S. P. N-Heterocyclic Carbenes in Gold Catalysis. Chem. Soc. Rev. 2008, 37 

(9), 1776–1782. 

(12)  Mercs, L.; Albrecht, M. Beyond Catalysis: N-Heterocyclic Carbene Complexes as Components 

for Medicinal, Luminescent, and Functional Materials Applications. Chem. Soc. Rev. 2010, 39 (6), 

1903-1912. 

(13)  Zhukhovitskiy, A. V.; MacLeod, M. J.; Johnson, J. A. Carbene Ligands in Surface Chemistry: 

From Stabilization of Discrete Elemental Allotropes to Modification of Nanoscale and Bulk Substrates. 

Chem. Rev. 2015, 115 (20), 11503–11532. 

(14)  Hurst, E. C.; Wilson, K.; Fairlamb, I. J. S.; Chechik, V. N-Heterocyclic Carbene Coated Metal 

Nanoparticles. New J. Chem. 2009, 33 (9), 1837-1840. 

(15)  Lara Patricia; Suárez Andrés; Collière Vincent; Philippot Karine; Chaudret Bruno. Platinum N‐

Heterocyclic Carbene Nanoparticles as New and Effective Catalysts for the Selective Hydrogenation 

of Nitroaromatics. ChemCatChem 2013, 6 (1), 87–90. 

(16)  Lara, P.; Rivada-Wheelaghan, O.; Conejero, S.; Poteau, R.; Philippot, K.; Chaudret, B. 

Ruthenium Nanoparticles Stabilized by N-Heterocyclic Carbenes: Ligand Location and Influence on 

Reactivity. Angew. Chem. Int. Ed. 2011, 50 (50), 12080–12084. 

(17)  Asensio, J. M.; Tricard, S.; Coppel, Y.; Andrés, R.; Chaudret, B.; de Jesús, E. Synthesis of Water-

Soluble Palladium Nanoparticles Stabilized by Sulfonated N-Heterocyclic Carbenes. Chem. – Eur. J. 

2017, 23 (54), 13435–13444. 

(18)  Vignolle, J.; Tilley, T. D. N-Heterocyclic Carbene-Stabilized Gold Nanoparticles and Their 

Assembly into 3D Superlattices. Chem. Commun. 2009, No. 46, 7230-7232. 

(19)  Serpell, C. J.; Cookson, J.; Thompson, A. L.; Brown, C. M.; Beer, P. D. Haloaurate and 

Halopalladate Imidazolium Salts: Structures, Properties, and Use as Precursors for Catalytic Metal 

Nanoparticles. Dalton Trans 2013, 42 (5), 1385–1393. 



14 
 

(20)  MacLeod, M. J.; Johnson, J. A. PEGylated N-Heterocyclic Carbene Anchors Designed To 

Stabilize Gold Nanoparticles in Biologically Relevant Media. J. Am. Chem. Soc. 2015, 137 (25), 7974–

7977. 

(21)  Salorinne, K.; Man, R. W. Y.; Li, C.-H.; Taki, M.; Nambo, M.; Crudden, C. M. Water-Soluble N-

Heterocyclic Carbene-Protected Gold Nanoparticles: Size-Controlled Synthesis, Stability, and Optical 

Properties. Angew. Chem. 2017, 129 (22), 6294–6298. 

(22)  Man, R. W. Y.; Li, C.-H.; MacLean, M. W. A.; Zenkina, O. V.; Zamora, M. T.; Saunders, L. N.; 

Rousina-Webb, A.; Nambo, M.; Crudden, C. M. Ultrastable Gold Nanoparticles Modified by Bidentate 

N -Heterocyclic Carbene Ligands. J. Am. Chem. Soc. 2018, 140 (5), 1576–1579. 

(23)  Crudden, C. M.; Horton, J. H.; Ebralidze, I. I.; Zenkina, O. V.; McLean, A. B.; Drevniok, B.; She, 

Z.; Kraatz, H.-B.; Mosey, N. J.; Seki, T.; Keske, E. C.; Leake, J. D.; Rousina-Webb, A.; Wu, G. Ultra Stable 

Self-Assembled Monolayers of N-Heterocyclic Carbenes on Gold. Nat. Chem. 2014, 6 (5), 409–414. 

(24)  Crudden, C. M.; Horton, J. H.; Narouz, M. R.; Li, Z.; Smith, C. A.; Munro, K.; Baddeley, C. J.; 

Larrea, C. R.; Drevniok, B.; Thanabalasingam, B.; McLean, A. B.; Zenkina, O. V.; Ebralidze, I. I.; She, Z.; 

Kraatz, H.-B.; Mosey, N. J.; Saunders, L. N.; Yagi, A. Simple Direct Formation of Self-Assembled N-

Heterocyclic Carbene Monolayers on Gold and Their Application in Biosensing. Nat. Commun. 2016, 

7, 12654. 

(25)  Curran, D. P.; Solovyev, A.; Makhlouf Brahmi, M.; Fensterbank, L.; Malacria, M.; Lacôte, E. 

Synthesis and Reactions of N-Heterocyclic Carbene Boranes. Angew. Chem. Int. Ed. 2011, 50 (44), 

10294–10317. 

  



15 
 

CHAPTER I: STATE OF THE ART ON NHC-STABILIZED GOLD 

NANOPARTICLES 

 

I.A. Gold nanoparticles 

 

While the first rational synthesis of gold nanoparticles was described by Faraday in 1857,1 they had 

been used for centuries before. Indeed “soluble gold”, usually a deep red solution, was used through 

the centuries to stain glass, ceramics, fabrics and also as medicine.2 “Potable gold” solutions were used 

to treat diseases ranging from the plague and epilepsy to diarrhea and syphilis.3 Colloidal gold was 

used in the diagnosis of the latter up to the 20th century.4 While the term nanoparticle was coined 

much later, scientists of the times had a rough idea of what was happening. Indeed, in the 17th century, 

German chemist Johann Kunckel published a book on “drinkable gold” where he concluded that “gold 

must be present in such a degree of communition that it is not visible to the human eye”.2 A century 

later, a French dictionary stated under “or potable” that “drinkable gold contained gold in its 

elementary form but under extreme sub-division suspended in a liquid”.2 Nowadays, a nanoparticle is 

defined as a particle “with one or more external dimensions is in the size range 1 nm-100 nm”.5  

The most famous example of the use of colloidal gold in history probably remains the Lycurgus cup 

(Figure I.1). Indeed the cup, which contains a mix of silver and gold nanoparticles, appears green when 

looked at in reflected light (e.g. day light) but red in transmitted light (light shone through the cup).  

This shift in color, as well as the color of nanoparticles in solution, is due to a phenomenon called 

localized surface plasmon resonance (LSPR).  

 

Figure I.1: Lycurgus cup in a) reflected and b) transmitted light.6 
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Localized surface plasmon resonance is often defined as the collective oscillation of valence electrons 

within the confines of a noble metal nanostructure, that is correlated with the electromagnetic field 

of the incoming light.2,7 This oscillation leads to an absorption within the UV-visible spectrum. The 

maximum absorption can be described by Mie’s resolution of Maxwell equation for spherical particles 

with the equation:8 

 

where a is the radius of the nanoparticle, N is the number of particles in the sensing area, εi and εr are the 

imaginary and real dielectric constants of the particle, and εout is the external dielectric, or local refractive 

index, which becomes very important for sensing applications, as any change in the refractive index shifts 

the peak maximum (λmax). Finally, χ is the shape factor of the particle (=2 for a sphere, approximated for other 

shapes).  

According to Mie theory, the plasmon resonance thus depends on the metal of the nanoparticles, their 

size, their shape and their environment. For example, gold and silver nanospheres of similar size will 

have plasmon resonance around 520 nm and 400 nm respectively.9,10 Larger nanoparticles usually 

exhibit a higher plasmon resonance wavelength.2 Anisotropic nanoparticles often present several 

peaks corresponding to the axis along which the electrons can oscillate. For example, the UV-visible 

spectrum of gold nanorods will exhibit 2 absorption maximums: one at around 520 nm corresponding 

to the short axis and one around 600 to 900 nm (depending on the length of the nanorods) 

corresponding to the longitudinal axis.11,12 Finally, the sensitivity to the environment can be seen when 

ligands are exchanged on the surface of the nanoparticles. For example, when exchanging half of the 

dodecanethiol molecules on the surface of 5 nm gold nanoparticles by p-terphenylthiophenol, 

Goldmann et al. observed a shift of the plasmon resonance from 519 nm to 535 nm.13  

These plasmon properties are often sought after in detection applications. Indeed, plasmonic 

nanoparticles have become a staple of Surface Enhanced Raman Spectroscopy (SERS) which takes 

advantage of the electromagnetic “hot spots” created at the edges of anisotropic nanoparticles (Figure 

I.2), when  irradiated at the right wavelength, and can enhance the Raman signal of molecules up to 

1014 times, enabling the detection of single molecules.14,15 Detection assays can also be carried out in 

solution based on the complexation of target moieties to the nanoparticles leading to their aggregation 

creating a shift in the UV-vis spectrum (Figure I.2).12,16  
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Figure I.2: a) Electromagnetic enhancement factor contours for a dimer of triangular prisms with a 2 nm gap14 

and b) aggregation of cyclodextrine functionalized gold nanoparticles upon introduction of tetrakis (4-

carboxyphenyl) porphyrin (TCPP).16 

 

The plasmonic properties of gold nanoparticles are also sought after in medicine, where they could be 

used for detection as well as treatment. For example, it has been shown that gold nanoparticles can 

be functionalized by antibodies that specifically bind to tumoral markers which allows for the detection 

by dark-field microscopy of cancer cells.17,18 Gold nanoparticles are also used in photothermal therapy. 

Indeed, when irradiated at the right wavelength, gold nanoparticles heat up killing the nearby cells.18  

 

Finally, as is the case of many metallic nanoparticles, gold nanoparticles have been used in catalysis. 

Indeed, due to their high surface area, metallic nanoparticles make good potential heterogeneous 

catalysts. The only drawback is that to remain stable in solution, most nanoparticles require ligands on 

their surface which can hinder the access of the targeted substrate to the metal itself. However, 

examples already exist in the literature of uses of gold nanoparticles in solution as catalysts in reactions 

as varied as the reduction of 4-nitrophenol to 4-aminophenol (Figure I.3),19 the aerobic oxidation of 

glucose20 or polymerization of alkylsilanes to siloxane nanowires.21  

 

Figure I.3: Reduction of 4-nitrophenol by NaBH4 catalyzed by gold nanoparticles.19 

 

As briefly mentioned, some of those potential applications require different shapes, sizes or ligands on 

the surface of nanoparticles. As a result, many syntheses of gold nanoparticles have been described in 
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the literature. Syntheses can be achieved in a range of organic solvents,22,23 as well as in water24 or 

biphasic systems.25 A range of shapes can be obtained from small spheres, to rods,11 stars,26 

bipyramids27 or cages.28 Finally, a range of ligands have been used to stabilize the nanoparticles, from 

ubiquitous thiols, to phosphines,29 amines,30 polymers,31 cetyltrimethylammonium bromide (CTAB),11 

citrates,24 among others. These ligands play a crucial role in the stability of the obtained nanoparticles 

as well as their dispersibility in different solvents. For example, CTAB, which stabilizes the NPs mainly 

by electrostatic repulsion, is used for water soluble NPs. On the other hand, other ligands, such as 

dodecanethiol, which stabilizes the NPs by sterical repulsion, is suitable for apolar solvents due to its 

long alkyl chain.  

In applications where a strong bond is necessary to stabilize the NPs, thiols are often the ligand of 

choice. Indeed, there is a lot of different structures commercially available and their affinity for gold is 

well known.32  

However, thiol stabilized NPs are known to be unstable in harsh conditions (extreme pH, high 

temperatures) and even in biological medium due to the presence of thiols (such as glutathione) which 

are able to displace the thiols on the surface of the NPs.33,34 

 

I.B. N-heterocyclic carbenes 

 

The goal of our research project is to synthesize gold nanoparticles stabilized by N-heterocyclic 

carbenes (NHCs). NHCs are often described as “heterocyclic species containing a carbene carbon and 

at least one nitrogen within the ring structure”.35 Carbenes are neutral compounds containing a 

divalent carbon atom with a six-electron valence shell. Due to their incomplete valence shell they used 

to be considered as highly reactive species, too sensitive to be isolated. However the first 

spectroscopically characterized carbene, stabilized by adjacent phosphorus and silicon substituents, 

was described by Bertrand et coll. in 1988.36 The first “bottleable” NHC was synthesized only a few 

years later by Arduengo et al. (Scheme I.1).37 The NHC is stabilized by the bulk of the adamantane 

substituents, which prevents dimerization of the carbene (according to the Wanzlick equilibrium),38 

but also by the electronic effects of the adjacent nitrogen atoms. Indeed, the π-donating properties of 

the nitrogen atoms compensate the electronic deficiency of the carbenic center, while their sigma-

electron withdrawing properties stabilize the lone pair of the carbene.35 The cyclic nature of the NHC 

also favors the singlet state by forcing the carbene carbon into a bent, sp2-like, arrangement.  
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Scheme I.1: Bertrand’s and Arduengo’s carbenes.36,37 

 

The presence of 2 adjacent N atoms are not absolute prerequisite to the stability of NHCs however. 

Indeed, NHCs where one of the nitrogen atoms is replaced by sulfur,39 oxygen40 or carbon41 have also 

been described. As well, as “remote” or “abnormal” NHCs where the imidazole ring is deprotonated in 

the C5 position (Scheme I.2). These changes in the ring structure usually give different electronic 

properties to the carbenes and thus different reactivities. The rest of this section however will focus 

on NHCs of the imidazol-2-ylidene type unless otherwise specified. Such NHCs present a wide range of 

available structures. Indeed, examples in the literature exist of asymmetric NHCs as well as NHCs 

functionalized on the aromatic backbone.  

 

Scheme I.2: Some possible structures of NHCs. 

 

Their nomenclature is often shortened as the N-substituent (methyl, isopropyl, phenyl, etc.) followed 

by the ring type (imidazole or benzimidazole). For example, in this thesis, 1,3-dimethylimidazol-2-

ylidiene will be abbreviated diMe-Imd, while 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene will be 

abbreviated diDipp-Imd and so on. 

NHCs are nucleophilic species that act as sigma-donors and bind to a wide range of metallic and non-

metallic species. Indeed, examples of NHC complexes exists for all transition metals42 as well as for a 

range of main group elements.43  
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Coordination of NHCs to metals actually came earlier than their isolation as both Wanzlick and Ofele 

synthesized a NHC mercury and a NHC chrome complex respectively,44,45 in 1968. But Arduengo’s work 

definitely sparked the interest of a wider scientific community. First thought to be very similar to 

phosphines, NHCs have actually shown a chemistry of their own. Indeed, as NHCs are typically more 

electron donating than phosphines they tend to form shorter and stronger bonds with metals.35  

NHC-metal complexes are often used in catalysis. A well-known example is Grubbs second generation 

catalyst, a NHC-Ru complex, used in olefin metathesis reactions.46 NHC-gold complexes are no 

exception and have already been used in a range of reactions47,48 including the hydroamination of 

unactivated alkynes49 where they showed enhanced catalytic activity when compared to sterically 

hindered biphenylphosphine-gold species.  

NHC-gold complexes have also shown potential applications in the medical field. For example, a study 

by Iacoppeta et al. showed that a gold-NHC complex exhibited better activity against cancer cell 

proliferation than cis-platin, without altering the viability of non-cancer cells.50  

 

I.C. Gold nanoparticles stabilized by N-heterocyclic carbenes 

 

Even if NHCs have been studied in molecular chemistry for almost 3 decades, their use in materials 

chemistry came much later. Indeed, the first mention of NHC coordinated to metallic nanoparticles 

came in 2005 when Finke et al., using a D/H exchange NMR study,51 suggested that a small portion of 

NHCs might be bound to the surface of the nanoparticles. Since then, NHCs have been coordinated to 

a range of metallic nanoparticles including Pt,52 Pd,53 Ru,54 Ag55 and Au,56–58 among others. NHCs have 

also been studied for their organization on bulk metallic surfaces, mostly on gold59–62 but also on 

silver,59 copper59,60 and more recently Mg.63  

 

NHC-stabilized gold nanoparticles are expected to be more stable than their thiol stabilized 

counterparts. Indeed, a study of NHC self-assembled monolayer (SAM) on gold61 measured the 

desorption energy of NHCs to be 158 ± 10 kJ.mol-1 while the desorption energy of thiols was measured 

at 126 kJ.mol-1. Other studies62,64,65 showed that NHC SAMs on gold are stable to a wide range of 

aggressive conditions. Indeed, they remained stable in boiling THF, boiling water, acidic and basic pH 

(from 2 to 12) and when stored in water for over a month. They also remained mostly intact when 

treated with 1% H2O2 or 1% NH2OH for 24h. NHCs SAMs also presented good electrochemical stability 

(from 1V to -0.4V against Ag/AgCl), as well as stability to ultra sounds (up to 10 min) and temperature 

(no desorption at 365K). 
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Overall NHC SAMs presented much better stability than their thiol counterparts which are known to 

be unstable in ambient conditions over time.66 Moreover, when NHCs were introduced on dodecyl 

sulfide (DDS) and dodecanethiol (DDT) SAMs, they were able to displace all of the thioether and about 

50% of the thiol. However, when DDS and DDT were introduced on NHC SAMs no displacement 

occurred and no sulfur could be detected by XPS (Figure I.4).  

 

Figure I.4: Incorporation of NHCs on DDS SAM but no incorporation of DDT on NHC SAM.62 

 

While studies on SAMs offer a good rationalization for the use of NHCs as gold nanoparticles ligands, 

the first synthesis of NHC AuNPs58 actually predates the first study on SAMs67 by 2 years. 

  

Three main synthetic pathways have been described to obtain NHC stabilized gold nanoparticles. The 

first one is based on the exchange by NHCs of sacrificial ligands on the surface of already formed NPs. 

The second is the reduction of NHC-gold(I) complexes. The third strategy is the successive 

deprotonation and reduction of a gold(III) (benz)imidazolium complex.  

 

I.C.1. Ligand exchange 

 

The first ever example of NHC-stabilized gold nanoparticles was described by Hurst et al. in 2009.58 

Their methodology relies on ligand exchange (Scheme I.3). Indeed, they synthesized gold nanoparticles 

stabilized by thioethers, which are weakly bound to the nanoparticles surface, using benzene or 

toluene as a solvent. When 1,3-ditertbutylimidazol-2-ylidene (ditBu-Imd) was introduced the 

nanoparticles precipitated within 12h and could only be redispersed in polar solvents. The obtained 

nanoparticles presented the same diameter as before the exchange (2.6 ± 0.5 nm).  
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Scheme I.3: Synthesis of NHC-stabilized gold nanoparticles by ligand exchange.58 

 

The synthesis had to be carried out in a dry box due to the sensitivity of NHCs to moisture but once 

the exchange was performed the obtained nanoparticles could be handled in air. The exchange was 

confirmed by X-ray photoelectron spectroscopy; a technique routinely used to determine the chemical 

state of an analyzed surface, while able to give a precise elementary composition of the analyzed 

material. They found that the peak corresponding to sulfur (S2p) present for the thioether-

functionalized NPs disappeared after the exchange, while the peak corresponding to nitrogen (N1s) 

appeared. 

The NHC-stabilized NPs were stable for months in solid form, but degraded in a matter of hours (ca. 

12) when in solution. MS and NMR analyses of the solution showed the presence of the imidazolium 

as well as NHC-Au-X (X=Cl or Br) and [Au(NHC)2]+ complexes. Unfortunately, in this seminal work no 

information was given on the oxidation state of gold at the nanoparticle surface and a possible 

quantification of gold(I) in the sample.  

The synthesis can be extended to other metals. Indeed, Pd nanoparticles were synthesized and 

exhibited the same behavior. 

 

In 2014, Rodriguez-Castillo et al.68 studied the influence of the NHC used on a similar ligand exchange 

reaction on gold nanoparticles. Their study focused on benzimidazol-2-ylidene with methyl or n-hexyl 

side chains which they also compared to dimethylimidazol-2-ylidene (diMe-Imd). They found that, 

similarly to Hurst et al.,58 when benzimidazolium and sodium tert-butoxide were added to a solution 

of DDS-protected gold nanoparticles, they precipitated. However, when analyzing the obtained NPs by 

TEM, they found that they were almost half the size they were when coated with DDS (2.8 ± 0.6 nm 

instead of 5.8 ± 1.2 nm). Analysis of the NPs by 13C solid state NMR showed the complete 

disappearance of DDS and the presence of Au-NHC complexes not directly bound to the surface. After 

washing the NPs with acetonitrile, they were able to recover the [Au(NHC)2]Cl complex in 45% yield. 

When reacted with [Au(NHC)2]X, the AuNPs exhibit the same behavior as when reacted with NHCs. 

This would tend to suggest, according to the authors, stabilization by aurophilic interaction of the gold 
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complex with the surface, at least partially, as they do not mention the stability of the NPs after 

washing with acetonitrile.   

The reaction conditions were modified and [Au(NHC)2]+ was systematically formed despite changing 

the NHC from a benzimidazolylidene to diMe-Imd, or the base from sodium tert-butoxide to lithium 

triethylborohydride, or the sacrificial ligand from DDS to n-dodecylamine (also acting as a base) (Figure 

I.5). 

 

Figure I.5: Structures of the different ligands and summary of the different reaction conditions.68 

 

Unfortunately, they do not discuss in this study the size of the nanoparticles obtained from the 

different types of synthesis. Indeed, it has been showed in other studies (discussed below) that the 

steric bulk of the NHC used influences significantly the size of the particles, and, to the best of our 

knowledge, no other study compared different bases or sacrificial ligands. They also do not quantify 

how much ligand is formed in each case and it is thus impossible to compare to the 45% yield they 

obtained in the first synthesis. 

 

They do however discuss it in a further study from 2016.69 In the paper, they use the same protocol to 

synthesize nanoparticles using di-phenylimidazol-2-ylidene (diPh-Imd). When comparing the new 

results with their previous study, they show a clear influence of the side-group on the size of the 

obtained NPs (see Table I.1). Indeed, methyl and phenyl groups led to significant etching of the NPs 

and a decrease in size (from 5.8 ± 1.2 to 2.8 ± 0.6 and 3.4 ± 0.8 nm respectively) whereas n-hexyl group 

led to only a moderate size decrease (from 5.8 ± 1.2 to 5.1 ± 1.0 nm). Supposedly, the long alkyl chains 

interact better with each other leading to increased stabilization and decreased etching.   
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Table I.1: Nanoparticle size before and after exchange depending on N-substituents.69 

N-substituent 
NPs size before exchange 

(nm) 

NPs size after exchange 

(nm) 

Methyl 

5.8 ± 1.2 

2.8 ± 0.6 

Phenyl 3.4 ± 0.8 

n-Hexyl 5.1 ± 1.0 

 

As in their previous study, a significant amount of [Au(NHC)2]+ complex was formed during the 

exchange.  The focus of this study however was DFT calculations on the bonding of NHC to a gold 

surface or a gold cluster using two different methods (VASP or Gaussian).  

When using the surface model, they found that NHCs prefer a perpendicular binding mode and react 

preferably with weakly bound gold atoms at the surface (known as adatoms). This result was confirmed 

by other DFT studies on SAMs.64,70 For the cluster model, they focused on a Au38 cluster. They found 

that the binding strength was stronger for the least coordinated gold atoms similarly to the adatoms 

of a gold surface. The electron donor properties of the NHC are highlighted by a partial negative charge 

on the cluster.  

They finally propose a mechanism for the formation of gold-NHC complexes during the ligand 

exchange. According to their results, the binding of NHC to gold is more favorable than the binding of 

thioethers which leads to the gradual exchange. Even though, the strength of the Au-NHC bond should 

be enough to stabilize the NPs, the absence of secondary interactions between the ligands leads to a 

repositioning of the gold atom, surface reconstruction and thus the formation of surface defects such 

as adatoms. NHC-Au moieties might then diffuse in solution where they would react with remaining 

NHCs in solution leading to the formation of [Au(NHC)2]+ complexes and the erosion of the Au surface. 

 

This seems to be confirmed by a study of Glorius et coll.71 on SAMs of 3 different NHCs : 1,3-

dimethylimidazol-2-ylidene (diMe-Imd), 1,3-dimesitylimidazol-2-ylidene (diMes-Imd) and 1,3-

diisopropylimidazol-2-ylidene (diiPr-Imd).  

While the strength of the bond between gold and NHC seems disfavorable to mobility, STM analysis 

showed that NHCs were bound to adatoms which were able to move along the surface in a ballbot-

type motion. Despite this mobility, the SAM remains stable at high temperature. Measurements at low 

temperature indicate a free rotation around a single bond between the NHC carbon and an Au atom.  

DFT calculations showed the strong effect of diMe-Imd on the surface as it “pulls” the gold atom it is 

linked to away from the surface. Indeed, the formation of an adatom in the absence of NHC has a free 
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energy barrier ten times higher than in the presence of NHCs. Molecular dynamics calculations showed 

that the Au atom is easily extracted from the surface to form an adatom but the transient vacancy is 

simultaneously filled by an Au atom of the second layer (Figure I.6). The adatom formation is 

irreversible but creates no vacancies on the surface. Similar calculation on thiols did not exhibit the 

same phenomenon indicating a different mechanism for the mobility of thiol-based SAMs.  

 

Figure I.6: Geometric structures of diMe-Imd on Au(111) without (a) and with (b) an additional Au adatom as 

determined from DFT optimization. c) Snapshots from a simulation of diMe-Imd on Au(111) illustrate the 

extraction of an Au atom from the top layer and the concerted migration of an Au atom in the second layer 

(dark-shaded ball) to fill the vacancy in the top layer.71 

 

The bonding energy of diiPr-Imd and diMes-Imd are higher than for diMe-Imd due to non-bonding 

interactions of the aromatic side groups with the surface. diiPr-Imd pulls the Au atom 0.2 Å further 

than diMes-Imd which interacts more strongly with the surface. As a result, diiPr-Imd is more likely to 

form the adatom required for surface mobility. The formation of the adatom seems to be governed by 

a balance between electronic and steric effects.  

DiMe-Imd is also capable of forming dimeric and trimeric NHC complexes which are formed following 

an equilibration after the initial formation of the monolayer. The formation appears to be surface-

assisted. These complexes could easily diffuse into solution explaining the presence of [Au(NHC)2]+ in 

most NPs syntheses.  

 

The dependence of side substituents for the organization on the surface was also confirmed by another 

study60 that found that while NHC with isopropyl substituent stand upright on the surface, methyl or 
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ethyl substituted NHCs lie flat on the surface. They also found that NHCs that bind upright desorb 

cleanly while flat-lying NHCs decompose and leave adsorbed organic residue.  

Prolonged exposure to diMe-Imd leads to an increasing amount of upright NHCs but not all flat-lying 

NHCs are eliminated pointing to a coexistence of upright and flat-lying species. 

 

The influence of NHC substituents was also confirmed for NPs. Indeed, in 2014, Glorius, Ravoo et coll.72 

published a study focusing on the synthesis of palladium nanoparticles using NHCs with long chains on 

the backbone and methyl groups on the nitrogen. They assumed that small or flexible substituents on 

the nitrogen atoms would prevent repulsion between the Pd surface and the NHCs while the long 

chains would form a protective monolayer (Figure I.7).  

 

Figure I.7: Comparison of different NHC designs.72 

 

The obtained NPs are stable for months, can be handled in air and are of the same size as the thioether 

protected NPs. They found that when using NHCs without long chains on the backbone, the exchange 

would occur but the obtained nanoparticles would quickly aggregate over time or upon exposure to 

air. When using a bulkier N-substituent (iPr instead of Me), the NPs were also unstable regardless of 

the presence of long chains on the backbone.   

They mention in the article that they also managed to perform the exchange of thioether-protected 

gold nanoparticles and that the obtained NPs are stable. When looking at the supplementary 

information however one can see that the NHC-protected AuNPs are smaller than the thioether-

protected ones (3.9 ± 0.7 and 5.0 ± 1.6 nm respectively). Unfortunately, they do not seem to have 

studied those NPs further and there is no indication of the presence of NHC-Au complexes in the 

sample. However, given the etching and the previous examples, one can assume there probably was. 
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It is also interesting to note that while Hurst et al.58 detected the presence of Pd+ complexes in their 

synthesis, Glorius et coll. do not while both seem to have Au+ complexes. This seems to indicate that 

the formation of M+ complexes does not only depend on the NHC used but also on the metal itself.  

 

In 2015, the same group, inspired by the work of Chaudret et coll.52 which synthesized water-soluble 

platinum nanoparticles using sulfonated NHCs, synthesized NHCs bearing sulfonate or carboxylate 

groups in order to obtain water-soluble Pd and Au NPs.73 They used a biphasic system of hexane and 

DMF to perform the exchange between DDS and the NHCs (Figure I.8). The obtained NPs were stable 

in water for months and could be reversibly aggregated by adjusting the pH of the solution.  

Similarly to their previous study, Pd NPs exhibited no change in size upon exchange but Au NPs did. 

Indeed, the DDS protected AuNPs were of 8.5 ± 1.7 nm in diameter whereas the NHC protected NPs 

ranged from 4.1 ± 1.5 to 4.9 ± 1.7 nm depending on the ligand. The decrease in size is due, as in the 

previous examples, to NHC-Au complexes which can be detected by NMR and ESI-MS. Once purified 

by dialysis, the AuNPs remained stable and showed no size changes.  

 

Figure I.8: Synthesis of water soluble metallic nanoparticles by ligand exchange in biphasic medium.73 
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According to these examples, etching is a recurrent issue in ligand exchange reactions. However, a few 

exceptions can be found. First of all, while Hurst et al. do describe Au-NHC complexes, they observe 

no etching of their nanoparticles. Another example is a study published by Cao et al.74 in which they 

synthesized NHC-functionalized AuNPs to use as a catalyst in carbon dioxide reduction. Not only did 

they find that the NHC-functionalized NPs had a significantly improved faradic efficiency compared to 

similar carbon supported naked NPs (83% instead of 53%), they also found that no etching occurred 

during the ligand exchange between oleylamine and NHCs. Indeed, the nanoparticles retain a size of 

approximately 7 nm. This seems to be in direct contradiction with the other examples presented 

above, especially given the fact that the NHC used has bulky mesityl N-substituents and no long alkyl 

chains to provide stability. Another study by Crudden et coll.,75 comparing ligand exchange and 

complex reduction methods (described in more details below), found no etching either. The thing 

those syntheses have in common is the use of free NHC to perform the exchange instead of introducing 

imidazolium salts and a base. It is unclear why this leads to less gold being leached in solution.  

 

I.C.2. NHC-gold complex reduction 

 

The second method to obtain NHC-stabilized gold nanoparticles was also published in 2009. It is based 

on the reduction of NHC-Au-Cl complexes to yield stable nanoparticles. Interestingly, two papers 

described the same technique weeks from each other. A first paper published by Huang et al.,76 which 

focused on the synthesis of NHC-Au(I) complexes and their possible uses as liquid crystals, and only 

presents the synthesis of nanoparticles in a brief paragraph. Moreover, they assumed that the 

obtained nanoparticles were stabilized by imidazoliums (without characterizing the surface). The other 

paper,57 by Vignolle and Tilley, however, focused on the synthesis of NHC-stabilized gold nanoparticles. 

Therefore, they are usually credited as the pioneers of this technique.  

In their paper, Vignolle and Tilley first synthesize nanoparticles by reducing 1,3-di(isopropyl)imidazol-

2-ylidene gold chloride (diiPr-Imd-AuCl) with KBEt3H at room temperature in THF (Figure I.9). They 

obtain 2.2 ± 0.5 nm NPs which, due to the nature of the ligand, cannot be purified. They thus switched 

to an NHC with C14 alkyl chains as N-substituents. By using the same reaction conditions, they obtain 

6.8 ± 1.8 nm nanoparticles, which goes to show, as with the ligand exchange protocol, the importance 

of the NHC used. The obtained NPs proved stable for several months in apolar solvents. The size and 

morphology of the NPs can also be influenced by the solvent and reducing agent used. Indeed, when 

using Et2O and 9-BBN, the obtained nanoparticles presented narrower polydispersity and were less 

spherical with a rhombic shape. MS analysis of the crude solution showed the presence of [Au(NHC)2]+ 

complex and NMR analysis of the NPs presented broad peaks, suggesting that the NHC is on the NP 

surface.  



29 
 

 

Figure I.9: Synthesis of NHC-stabilized gold nanoparticles by reduction of NHC-AuCl complex by a) KBEt3H in 

THF and b) 9-BBN in Et2O.57 

 

In the following years, this type of synthesis, using an external reducing agent to reduce NHC-AuCl 

complexes to gold NPs dispersed in a more or less polar solvent, has proved the most popular to obtain 

NHC-coated AuNPs. 

 

A lot of the work carried out on this type of synthesis aimed to change the NHC to give it “interesting” 

properties. One of the most sought-after property is water-solubility. Indeed, as seen above, gold 

nanoparticles have potential applications in the medical field. However, most of those applications 

require them to be water-soluble.  

 

In 2015, MacLeod et al.77 described the synthesis of poly ethylene glycol (PEG) functionalized AuNPs 

starting from the corresponding PEG-NHC-AuClx (x=1 or 3) complex and tBuNH2BH3. The complex was 

synthesized by methylation of 5-ethynyl-1-methyl-1H-imidazole and then functionalization with poly 

ethylene glycol via click chemistry.  The functionalized imidazolium was then reacted successively with 

an excess of Ag2O and AuClSMe2 (2.5 eq each) to afford the gold complex PEG-NHC-AuClx (Scheme I.4). 

A mixture of AuI and AuIII complexes was obtained, which proved impossible to purify but could be 

differentiated using NMR by comparing the signals to the spectrum of a purified tri ethylene glycol 

NHC-AuI complex.  

 

Scheme I.4: Synthesis of the PEG-NHC-AuClx (x=1 or 3) complex.77 
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The obtained nanoparticles have an average diameter of 4.2 ± 0.7 nm. Similar spectra were obtained 

by IR analysis of the complex and the NPs, suggesting the integrity of the ligand on the surface. 

Moreover, a key imidazolium vibrational band at 1576 cm-1 was absent of the NPs spectrum. As a 

result, the authors claim functionalization by NHCs.   

The particles were stable in water for at least 3 months. They also investigated the stability of the NPs 

in a range of harsher conditions. The NPs remained stable several hours in extreme temperatures (95°C 

or -78°C) and for weeks at pH=4 and up, but slowly degraded over the course of a few weeks in more 

acidic pH. The NPs remained stable for at least 6 hours in solutions with biologically relevant 

concentrations of NaCl and stayed well dispersed in acetic acid and phosphate buffers with minimal 

aggregation. They also remained stable when exposed to fetal bovine serum (at 26 and 37°C). They 

showed minimal aggregation when exposed to glutathione but aggregated fully and released NHC-Au 

complexes after 26h of exposure to 2-mercaptoethanol. The NPs are also stable up to 24h in 1.8M 

aqueous H2O2.  

 

In 2017, Crudden et coll.78 synthesized water-soluble AuNPs using benzimidazolylidenes functionalized 

by a carboxylate group (Figure I.10). The synthesis of the NHC-Au(I) complex readily yielded NHC-AuCl 

and [Au(NHC)2]+. They thus investigated both as precursors to gold nanoparticles. They found that 

while NHC-AuCl formed NPs immediately upon reaction with NaBH4, reduction occurred more slowly 

for [Au(NHC)2]+. After 5h of reaction, they found that both precursors yielded similar NPs as evidenced 

by gel electrophoresis analysis. However, as [Au(NHC)2]+ was easier to synthesize it was used as a 

precursor in the remainder of the study. They found that the size of the nanoparticles could be tuned, 

from 2.0 ± 0.4 nm to 3.3 ± 0.4 nm, depending on the reaction time. The longer the reaction time, the 

larger the obtained nanoparticles were. Yet growth appeared to be homogeneous as NPs retained 

similar size dispersion even with increased reaction times. If HAuCl4 was added as a source of unligated 

gold, the nanoparticles formed immediately and were similar in size to the ones obtained from NHC-

AuCl (as determined by gel electrophoresis and TEM) and had similar NHC:Au ratios according to TGA 

analysis (10:90 for NPs starting from NHC-AuCl and 15:85 for NPs using additional HAuCl4).  



31 
 

 

Figure I.10: Synthesis of water soluble NHC-stabilized gold nanoparticles.78 

 

NHC coordination was confirmed by XPS, notably by the observation of a N1s peak at 401 eV which 

corresponds to NHC coordination to the surface according to previous work from their group.62 

Nanoparticles were stable for at least a month in pH 8 and 10. In acidic pH (pH=2), they precipitated 

but could be redissolved once the pH was adjusted to 10 and the cycle could be repeated at least 5 

times. In protonated form, NPs are soluble in organic solvent. In alcohols (MeOH, EtOH, iPrOH), they 

aggregated irreversibly within 1-2 days. In MeCN or DMF however they evolve to larger particles which 

can be dissolved in water at a basic pH and isolated. Nanoparticles remained stable in saline solution 

(150 mM) for several days with only a moderate increase in polydispersity after a week (2%). Finally, 

exposure to glutathione led to etching of the nanoparticles but larger particles “resisted” better.  

 

The same year, they described the synthesis of amphiphilic nanoparticles stabilized by an amphiphilic 

NHC,79 1-dodecyl,3-triethylene glycol-benzimidazol-5-ylidene, a benzimidazolylidene substituted with 

a C12 alkyl chain and a triethyl ethylene glycol (TEG) chain. By reducing the NHC-AuBr complex with 

NaBH4 in THF they obtained 4.1 ± 1.1 nm NPs stabilized by NHCs (as confirmed by N1s XPS). They found 

that the NPs could be aggregated in a controllable and reversible manner in H2O:EtOH mixtures, 

because of the insolubility of C12 chains in polar solvents. In hexane, however, there was a mixture of 

aggregates and discrete NPs due to the slight solubility of TEG in the solvent.  

 

Different research groups modified the NHC structure in order to modify the stability/properties of 

obtained NPs.  
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For example, Crudden et coll.75 synthesized bidentate NHC ligands in order to synthesize more stable 

nanoparticles.  They synthesized particles by using both a top down (ligand exchange) and a bottom 

up (NHC-AuI complex) approach to synthesize the NPs (Figure I.11).  

 

Figure I.11: Top down and bottom up synthesis of bidentate NHC stabilized gold nanoparticles.75 

 

They found that in general smaller particles resulted from the bottom-up approach than the top-down 

method but presented lower ligand density. When using the ligand exchange procedure, they found 

no significant change in size or morphology of the NPs (no etching). The correct and complete 

functionalization was confirmed by XPS, where the disappearance of the S2p peak and the appearance 

of a N1s peak at 401 eV was observed.   

NHC alkylated on the aromatic ring led to more stable NPs than their non-alkylated counterparts. 

Indeed, the non-alkylated particles aggregated within a week whereas the others remained stable.  

When exposed to thiols (DDT), the NPs synthesized by top down method using bidentate NHCs 

remained stable and no sulfur was detected by XPS. The bottom up NPs proved more sensitive and 

decomposed in 2 days.  

 

The same year, Serpell et coll.80 developed AuNPs stabilized by chiral NHCs derived from histidine. 

Histidine is a well-known chiral amino acid which can be readily converted into imidazolium. Starting 
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from commercial L and D Boc protected hisitidines, they obtained the corresponding NHC-Au-Cl 

complexes which they reduced with tBuNH2BH3 in THF to obtain AuNPs. By 13C NMR analysis, they 

observed a shift of the carbene peak from 171 to 184 ppm and an absence of signal at 137 ppm 

corresponding to the free ligand. They interpret this as the confirmation of the presence of NHC at the 

surface of the NPs and the absence of complex in solution. 

The size of the obtained NPs depended on the L or D nature of the starting ligand. Indeed, when using 

the D-histidine slightly polydisperse NPs of 4.0 ± 1.4 nm were obtained, whereas when using the L-

histidine a bimodal distribution was obtained with a mixture of 1.9 ± 0.4 and 6.4 ± 1.1 nm NPs (Figure 

I.12). After size selection by centrifugation both samples contained similar monodisperse NPs (5.3 ± 

0.8 and 5.0 ± 0.6 nm respectively). The NPs were stable over 48 hours, after which they showed a bit 

of aggregation. 

Figure I.12: Synthesis of histidine based NHC-AuCl complex and TEM images of corresponding nanoparticles.80 

 

The optical activity of the NPs was analyzed by circular dichroism. L and D NPs present 

opposing/symmetrical spectra while neither the imidazolium nor Au complex exhibited a circular 

dichroism signal. The NPs appeared to fix the histidine ligands in a certain conformation that gave rise 

to optical activity associated with supramolecular ordering rather than singular molecular chirality.   

Attempts to deprotect the amine by adding concentrated HCl in solution lead to irreversibility 

aggregated NPs. This is not surprising given the absence of long alkyl chains and/or charged ligands to 

stabilize the NPs.  

 

However, had they been successful, further functionalization would probably have been possible as 

shown by works on SAMs. NHC-SAMs functionalized by Br,65 methylstyrene,81 CN,65 COOMe65 and OH82 

have been synthesized and some could be further modified by a polymer brush,81 ferrocene,62 a lipid 

bilayer82 or biologically relevant molecules such as dextran66 and streptavidin.83  

 

I.C.3. Imidazolium gold complex reduction 

 

The 3rd and last synthetic method to obtain NHC stabilized AuNP described in the literature is the 

deprotonation and then reduction of an imidazolium gold(III) complex.  
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Serpell et al.56 first described this type of synthesis in 2013 where they successfully synthesized Au and 

Pd-NHC NPs. The starting complexes are easily obtained by biphasic anion exchange between the 

imidazolium salts and either HAuCl4 or K2PdCl4. In this study they compared bis n-propyl, bis n-hexyl 

and bis tert-butyl imidazolium salts of Au and Pd tetrahalogenate.  

As with the ligand exchange procedure, Au and Pd present slightly different behaviors. Indeed, if 

reduced directly with NaBH4, the bishexyl imidazolium palladate complex yielded stable nanoparticles 

while the aurate complex yielded bulk metal. Prior deprotonation of the imidazolium cation by NaH, 

before addition of NaBH4, yielded NPs for both metals (Figure I.13).  

 

Figure I.13: Synthesis of imidazolium and NHC stabilized metallic nanoparticles.56 

 

1H NMR analysis revealed that while a peak characteristic of imidazoliums was observable for the Pd 

NPs synthesized without NaH, it was not when NaH was used. Moreover, a broadening of signals was 

observed which is characteristic of coordinated ligands.  

According to them, the fact that a strong base is needed to obtain stable AuNPs is one more indication 

that they are indeed stabilized by NHCs.  

It also appears that the length/type of the side chains is once again important, as bis n-propyl and bis 

t-butyl imidazolium metallate salts failed to give stable NPs.  

 

The work was picked up by Pileni et coll. in 2015,84 in a paper studying the influence of the position of 

long alkyl chains on benzimidazolylidene ligands. They synthesized a series of ligand with long chains 

on the aromatic ring of the NHC, on the nitrogen atoms or both. Nanoparticles were obtained for all 

ligands synthesized (Figure I.14). Functionalization by NHCs was confirmed by XPS, with a carbon 

spectrum close to the corresponding NHC-AuCl complex but an absence of chlorine signal and the 

position of the N1s peak at 401 eV. By 1H NMR, they observed the absence of a peak characteristic of 

benzimidazolium, but a spectrum close, yet not identical, to the one of NHC-AuCl and a broadening of 

the signals usually interpreted as the ligand being bound to the NP surface. This also suggests the 
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stabilization of the NPs by NHCs. They observed an effect on size depending on the ligand used (Figure 

I.14). Ligands L1 and L2, functionalized by long chains on the aromatic ring, gave the largest particles 

while ligand L3, functionalized by long chains on both the nitrogen and backbone, gave the smallest 

particles and those functionalized only on the nitrogen atoms, L4 and L5, were of intermediate size. 

They explain this difference in size by a difference in bulkiness of the ligands where steric repulsion 

lead to higher curvature radius. The obtained nanoparticles are able to assemble in supracrystals. The 

largest crystalline domains are obtained for the NPs with long chains as N-substituents only (L1 and L2). 

The ligand which also has long chains on the aromatic backbone (L3) forms amorphous colloidal films. 

Interparticular distance suggests an interlocking of the long alkyl chain which would drive self-

assembly.  

 

Figure I.14: TEM images and corresponding size distributions of gold nanoparticles stabilized by different NHC 

ligands.84 

 

In a follow-up paper,85 they studied the stability of those NPs to oxygen plasma treatment compared 

to DDT protected NPs. They found that while DDT-AuNPs start coalescing after 60 to 80 sec exposure 

to oxygen plasma, NHC-AuNPs were unaffected by exposure up to 120 sec. When NHC-AuNPs were 

dried and exposed to dioxygen for a week, their UV-vis spectrum was similar once redissolved. NMR 

and MS analysis revealed the formation of a small quantity (15-20%) of Au(I) complexes. After analysis 

of DDT-AuNPs subjected to the same treatment, they found that only 35% of DDT remained bound 
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while half of what was released had been oxidized to DDS. These results clearly show a higher oxygen 

stability of NHC protected NPs compared to DDT-AuNPs. 

 

I.D. Conclusion 

 

To conclude, N-heterocyclic carbenes are relevant ligands for the stabilization of gold nanoparticles. 

Available in a wide range of structures, they provide remarkable stabilization due to the strong bond 

formed with the metal. NHC-stabilized gold nanoparticles can be synthesized by a few synthetic 

pathways but all have their advantages and drawback. For example, while in theory, the ligand 

exchange strategy enables the use of nanoparticles with a wide range of sizes and shapes, which 

syntheses have been described in the literature, performing the exchange requires the introduction of 

the free carbene if etching of the NPs is to be avoided. And free NHCs, while more stable than other 

carbenes, require stringent conditions to maintain their reactivity. Reduction of a NHC gold complex is 

a quick and easy way to obtain NHC-stabilized NPs but it requires the preliminary synthesis and 

isolation of the NHC-gold complex, and each time different complexes have to be synthesized to 

modify the properties of the NPs. Finally, the synthesis in two steps from imidazolium aurate salts 

enables an easier change of NHCs, as the salt is easier to synthesize than the NHC-Au complex, but 

could probably still be optimized.  
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CHAPTER II: SYNTHESIS OF N-HETEROCYCLIC CARBENE-CAPPED GOLD 

NANOPARTICLES FROM IMIDAZOLIUM SALTS 

 

II.A. Nanoparticles from imidazolium haloaurate salts and NaBH4 

 

For the first part of our work, we based ourselves on the synthesis developed by Serpell et al..1 As 

stated in the previous chapter, they used a gold(III) imidazolium complex which is then deprotonated 

and reduced to obtain stable nanoparticles (Figure II.1).  

 

Figure II.1: Schematic representation of a synthesis starting from an haloaurate imidazolium complex and gold 

nanoparticles obtained by Serpell et al..1 

 

The two main goals of our study were to modify the synthesis in order to, hopefully, control the size 

(and maybe even the shape) of the nanoparticles and to confirm without ambiguity the presence of 

NHCs at the surface. Part of this work has already been the subject of a publication in Dalton 

Transactions.2 

 

II.A.1. Imidazolium haloaurate salts 

 

II.A.1.a. Synthesis 

 

In order to study the influence of the ligand on the NPs synthesis, 3 (benz)imidazolium bromide salts 

were synthesized: 1,3-dihexylimidazolium bromide (1H-Br), 1,3-didodecylimidazolium bromide (2H-

Br) and 1,3-didodecylbenzimidazolium bromide (3H-Br).   

All were synthesized following a reported procedure.3 (Benz)imidazole was deprotonated in situ by 

NaH at 0°C in THF, the desired alkylbromide was then introduced in the reaction medium which was 

refluxed for 24h to obtain the bisalkylated product in good yields (up to 78%) (Scheme II.1). 

1H-Br was obtained as a clear oil whereas 2H-Br and 3H-Br were obtained as white powders allowing 

for easier handling.  
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(Benz)imidazolium AuCl4 complexes were synthesized from the corresponding (benz)imidazolium 

bromide and HAuCl4.3H2O, by a biphasic anion metathesis, in good yields (Scheme II.1). Compounds 

were obtained as either a dark orange oil (1H-AuCl4) or a dark orange powder(2 and 3H-AuCl4). 

 

 

Scheme II.1: Synthetic pathway to imidazolium salts and obtained imidazolium salts with corresponding yields. 

  

II.A.1.b. Crystallographic analysis  

 

X-ray quality crystals of 2H-AuCl4 and 3H-AuCl4 were obtained by slow diffusion of ethanol into a 

concentrated solution of the complexes in chloroform whereas 1H-AuX4 was obtained as an orange 

oil.  

Figure II.2 displays the structures of 2H-AuCl4 and 3H-AuCl4. These structures have been deposited at 

Cambridge Crystallographic Data Centre (CCDC) under the references 1548811 and 1548812.2 

Complexes 2H-AuCl4 and 3H-AuCl4 both crystallize in a monoclinic system (P21/c and P21/n spaces 

respectively) with alternating anion and cation layers. This arrangement, which has already been 

described in the literature,1 is probably due to the stacking of the long alkyl chains. The anionic layer 

presents, for both compounds, mixed species in which about a quarter of the halogen atoms are 

bromine which leads to a AuCl4-xBrx (x~1) composition. The bromine atoms come from the last step of 

the synthesis where 2H-Br or 3H-Br is reacted with HAuCl4.3H2O. That is why in the rest of this 

manuscript, complexes 1H-AuCl4, 2H-AuCl4 and 3H-AuCl4 will be called 1H-AuX4, 2H-AuX4 and 3H-

AuX4. 
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Inside the anionic layer, the AuX4
- ions have a square planar geometry with an average Au-X distance 

of 2.33 Å. The anions are well separated with a shortest Au-Au distance of 5.7710(2)Å for 2H-AuX4 and 

6.1637(1)Å for 3H-AuX4, which eliminates the possibility of aurophilic interactions.4 

The Au···X interionic distance of 3.494(1) and 3.859(1) for 2H-AuX4 and 3H-AuX4 respectively 

corresponds to corner to face contacts as already reported in the literature for some compounds.1,5  

In both structures, ligands 2H and 3H are organized in a head-to-tail manner. Aliphatic chains present 

intermolecular hydrophobic interactions, the shortest C···C distance being 3.925(8)Å for 2H-AuX4 and 

3.63(1)Å for 3H-AuX4. These hydrophobic interactions are likely the main driving force of the 

crystallization. 

 

 

Figure II.2: Molecular structure of 2H-AuX4 and 3H-AuX4, and extended structure of 2H-AuX4 (color code: Au = 

yellow, Cl/Br = green, N = blue, C = grey, H = light grey).2 
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II.A.2. Nanoparticles synthesis 

 

II.A.2.a. Synthesis with NaH 

 

II.A.2.a.i. Effect of the ligand 

 

Nanoparticles of 3.2 ± 0.8 nm in diameter were obtained when following the Serpell synthesis.1 1H-

AuX4 was dissolved in toluene, NaH was added at 0°C leading to a discoloration of the solution (from 

orange to transparent). Finally, an aqueous solution of NaBH4 was injected and the solution turned 

bright red. When using 2H-AuX4 instead of 1H-AuX4, nanoparticles of 4.8 ± 1.1 nm were obtained, 

while 3H-AuX4 yielded 4.4 ± 1.2 nm nanoparticles (Figure II.3).   

 

Figure II.3: Nanoparticles obtained from 1H-AuX4, 2H-AuX4 and 3H-AuX4 after successive addition of NaH and 

NaBH4 (solvent toluene: H2O), and corresponding distributions. 

 

It can be noted that the nanoparticles, we obtained using the same ligand as Serpell et al. are much 

smaller and less polydisperse than the ones they described (16.6 ± 6.5 nm).1   

Also, using longer alkyl chains on the ligand yields larger nanoparticles. It can be suggested that longer 

chains are bulkier ligands and because of their bulkiness, less molecules find space at the surface 

leading to bigger nanoparticles. 
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II.A.2.a.ii. Effect of the ligand to gold ratio 

 

Ligand to gold ratio is also known to have an influence on the size of gold nanoparticles and is a 

common strategy to control the size of nanoparticles.6,7 This is why excess (benz)imidazolium bromide 

was added to each type of synthesis (Figure II.4).  

In the case of 2 and 3, both with C12 chains, the size of the nanoparticles decreased as expected (Table 

II.1). Indeed, increasing the quantity of available ligand led to the formation of smaller nanoparticles. 

This effect is well-known for citrate or thiols stabilized nanoparticles6,7 but it was the first time that it 

was evidenced for NHC-stabilized gold nanoparticles. 

Additional 1H-Br, on the other hand, led to slightly larger particles. It is unclear why.  

 

 

Figure II.4: Nanoparticles obtained from 1H-AuX4, 2H-AuX4 and 3H-AuX4, and 4 equivalents of 1H-Br, 2H-Br and 

3H-Br respectively, after successive addition of NaH and NaBH4 (solvent toluene: H2O), and corresponding 

distributions. 
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Table II.1 : Average particle sizes (nm), as measured by TEM, for nanoparticles obtained with or without 4 

equivalents of (benz)imidazolium bromide. 

 

 

II.A.2.b. Synthesis without NaH 

 

Attempts were made to characterize, by 1H NMR, the formation of the NHC in the first step. However, 

after addition of NaH, no deprotonation could be observed. As a result, we questioned the necessity 

of the first step and tested the synthesis in the absence of NaH. It can be noted that, in their paper, 

Serpell et al.1 tested a synthesis without NaH starting from 1H-AuX4 and did not obtain gold 

nanoparticles. However, when attempting the same synthesis from the corresponding palladium 

precursor, they obtained nanoparticles which, they concluded, were stabilized by imidaozlium. 

 

II.A.2.b.i. Effect of the ligand 

 

When the synthesis was replicated, we did not obtain nanoparticles from 1H-AuX4 without NaH either. 

However, when using only NaBH4 on 2H-AuX4 and 3H-AuX4, both gave stable nanoparticles (Figure 

II.5). The obtained NPs are of a larger diameter than with NaH (5.8 ± 1.0 nm and 4.9 ± 1.1 nm 

respectively). This means that the addition of a base is not necessary in the synthesis of nanoparticles 

starting from haloaurate salts, but it does have an influence on the size of the NPs. The binding mode 

of the ligand on the surface (covalent, electrostatic, etc.) will be further discussed in “Surface analysis” 

below. 
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Figure II.5: Nanoparticles obtained from 1H-AuX4, 2H-AuX4 and 3H-AuX4, after addition of NaBH4 only (solvent 

toluene: H2O), and corresponding distributions. 

 

II.A.2.b.ii. Effect of the ligand to gold ratio 

 

Once again, excess (benz)imidazolium bromide was added to each type of synthesis (Figure II.6). As 

was the case in the synthesis using NaH, adding 2H-Br or 3H-Br to an NaH-free synthesis yielded smaller 

NPs (from 5.8 ± 1.0 to 4.0 ± 0.9 nm and 4.9 ± 1.1 to 3.6 ± 0.8 nm respectively). In the case of 1H-Br, the 

effect is even more dramatic as adding imidazolium bromide yielded stable particles (4.1 ± 1.0 nm) 

when there was no NPs without it.  

It can be noted that for 1 and 2, the synthesis using only NaBH4 systematically yielded larger particles 

than the one using NaH regardless of the presence of imidazolium bromide or not (Table II.2). On the 

other hand, for 3, when adding an excess of 3H-Br, the obtained nanoparticles are slightly smaller for 

the NaH-free synthesis. Once again, the reason for this difference in behavior is unclear.  

 



50 
 

 

Figure II.6: Nanoparticles obtained from 1H-AuX4, 2H-AuX4 and 3H-AuX4, and 4 equivalents of 1H-Br, 2H-Br and 

3H-Br respectively, after addition of NaBH4 only (solvent toluene: H2O), and corresponding distributions. 

 

Table II.2: Average particle sizes (nm), as measured by TEM, for nanoparticles obtained with or without NaH 

and with or without 4 additional equivalents of (benz)imidazolium bromide. 

 

 

II.A.3. Surface analysis 

 

In their analysis, Serpell et al.1 concluded that since NaH was necessary to obtain stable nanoparticles, 

the stabilizing ligands had to be carbenes. And they concluded, in the case of palladium, that 

imidazoliums were the stabilizing ligands if NaH wasn’t used. However, we found that addition of a 

strong base was not necessary to give stable gold nanoparticles. This begs the question: what is at the 

surface of our nanoparticles? Are there only imidazoliums stabilizing by electrostatic interaction? Are 
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there only N-heterocyclic carbenes covalently bound to the surface suggesting that sodium 

borohydride is enough of a base to deprotonate imidazolium molecules? Is it a mix of both interaction? 

Or is it another type of stabilization entirely? (Scheme II.2) 

 

Scheme II.2: Possible stabilization modes of the nanoparticles. 

 

In order to answer these questions, we characterized the purified nanoparticles by mass spectrometry, 

IR spectroscopy, NMR and XPS.  

 

II.A.3.a. MS analysis 

 

The nanoparticles were precipitated with ethanol and centrifuged. Then the supernatant was analyzed 

by mass spectrometry (MS, ESI+) (Figure II.7). The presence of [Au(NHC)2]+ was evidenced.  

 

Figure II.7: Mass spectrum (ESI+) of a NPs synthesis supernatant. 

 

In this complex, the NHC is covalently bound to the gold atom. It is usually synthesized by 

transmetallation from a silver complex and addition of a free carbene generated in situ,8 but examples 

can be found in the literature of deprotonation in situ of 2 equivalents of imidazolium before addition 
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of gold9 (Scheme II.3).  However, in our synthesis no clear base is present; only imidazolium, gold and 

NaBH4. As a result, we think that sodium borohydride is enough of a base to form this complex, which 

could be one of the intermediates in the synthesis of gold nanoparticles. Indeed, as seen in Chapter I, 

Crudden et coll. were able to synthesize AuNPs starting from such a [Au(NHC)2]+ complex. The 

formation of this complex is also a strong indicator that NHCs are generated at some point during the 

synthesis and thus could be at the surface of the NPs. 

 

Scheme II.3: Usual synthesis pathways for [Au(NHC)2]X. 

 

II.A.3.b. NMR analysis 

 

II.A.3.b.i. Liquid state NMR 

 

The centrifuged nanoparticles were concentrated and analyzed by liquid 1H NMR. No signal 

corresponding to the proton of the free imidazolium was observed. However, no signal was detected 

in the 8 to 4 ppm region where we would normally see the signal for the protons on the aromatic 

backbone and in alpha of the nitrogen atoms. This is most likely due to the broadening of the signal 

when molecules are close to the NP surface, due to the lower rotational mobility of the ligands when 

attached to the surface, and their distribution on the NP’s surface. As a result, liquid NMR was 

inconclusive. 

 

II.A.3.b.ii. Solid state NMR 

 

Attempts were also made to characterize the NPs by solid state NMR, as it had already been used in 

the literature to show functionalization by NHCs of metallic NPs.10–13 

In order to have a better signal, a 13C marked imidazolium at the C2 position was synthesize. 100 mg 

of 100% 13C marked paraformaldehyde were mixed with 400 mg of regular paraformaldehyde in order 

to obtain an isotope enrichment of 20%. It was then mixed in a one pot reaction with glyoxal, 

dodecylamine and hydrochloric acid (Scheme II.4). After evaporation of the solvent, the product, 

through several precipitation processes, was obtained pure as a white powder in 33% yield (2.5 g of 

product).  
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Scheme II.4: Synthetic pathway to the marked imidazolium. 

 

The marked imidazolium was then successfully used to synthesize nanoparticles which were 

centrifuged and dried. Unfortunately, technical issues made the solid-state NMR analysis impossible. 

Indeed, due to an absence of rotation of the rotor, no signal could be obtained. Our hypothesis is that 

the long alkyl chain gave a slightly oil like character to the sample that made it unsuitable for analysis. 

 

II.A.3.c. IR analysis 

 

IR analysis was also carried out on the centrifuged nanoparticles and compared to the IR spectra of 

2H-AuX4 and 2H-Br (Figure II.8). 

We observe a few differences when comparing the FTIR spectra of the precursors and the 

nanoparticles. The spectra of 2H-Br and 2H-AuX4 correspond to data available in the literature14 and 

are nearly identical, except for 2 bands which present a slight shift (from 1636 to 1616 cm-1 and from 

773 to 757 cm-1). However, the nanoparticles spectrum is very different as a new band appears at 1410 

cm-1 and bands at 1616 and 1563 cm-1 are no longer visible. Those bands are located in the ν(C=N) and 

ν(C=C) stretching region of the aromatic cycle of the imidazolium. These differences have already been 

observed in the literature15 and have been suggested to confirm the NHCs' formation and their 

coordination to the gold surface. Moreover, we can stress that the ν(C-H) stretching vibration, located 

around 3270 cm-1, which corresponds to the imidazolium proton, is not visible on any of the 3 samples 

probably due to its expected very low intensity. 

 

Figure II.8: IR spectra of 2H-Br (blue trace), 2H-AuX4 (red trace) and gold nanoparticles prepared from 2H-AuX4 

(black trace). 
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II.A.3.d. XPS analysis 

 

While IR and MS gave indications that NHCs could be at the surface, the determining analysis was X-

ray photoelectron spectroscopy.  

X-ray photoelectron spectroscopy (XPS) was used to study the carbon-gold interaction at the 

nanoparticles' surface. XPS spectra are obtained by irradiating a material (placed in a high vacuum 

chamber) with a beam of X-rays while simultaneously measuring the kinetic energy and number of 

electrons that escape from the analyzed surface (up to 10 nm depth). As a result, XPS is a technique 

able to determine the chemical state of an analyzed surface, while giving a precise elementary 

composition. This technique is routinely used as a characterization tool in several fields (sensor, 

corrosion, catalysis). In the case of nanoparticles, XPS can be used to determine not only the integrity 

of the ligand on the metallic surface but also its binding mode. This makes XPS an interesting technique 

for the characterization of nanoparticles and could give a number of information: elementary 

composition of ligand and NPs, integrity of the ligand and nature of the bond. However, complete and 

accurate characterization of NPs sample remains challenging (peak widening, need to deposit NPs on 

a conductive surface).  

XPS has already been used on palladium,16 platinum17 and gold18–20 nanoparticles stabilized by NHCs. 

The presence of the ligand was evidenced by the C1s and N1s photopeaks and the position of the latter 

confirmed the coordination of the carbene.18–20 However, none of these studies were able to give an 

elemental composition of the ligand, attesting to the difficulty that characterizing NPs to the full extent 

represents. Moreover, no clear evidence of a covalent carbon-metal bond was established.  

XPS analysis was carried out on 2 samples: 2H-Br and gold nanoparticles prepared from 2H-AuX4 and 

4 equivalents of 2H-Br without NaH. The latter will be designated by 2-AuNP. Each photopeak was 

carefully deconvoluted to study the possible presence of several components. Results are presented 

in Table II.3. For 2H-Br, the photopeak Br3d can be divided into Br3d5/2 and Br3d3/2 at 67.4 and 68.3 eV 

respectively. In the case of 2-AuNP, no peak is observed in the 185-210 and 65-72 eV regions which 

indicates an absence of bromine and chlorine in the sample and confirms the correct purification of 

the NPs. 

For 2-AuNP, the formation of metallic gold is evidenced by the Au4f signal composed of only 2 peaks 

at 84.0 and 87.6 eV, which correspond to spin orbit coupling Au4f7/2 and Au4f5/2 respectively. The 

binding energy of Au4f7/2 and difference between the two components (3.6 eV) is characteristic of 

metallic gold (Au0).21 
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Table II.3: XPS data (binding energy: BE, assignment and composition) for 2H-Br and 2-AuNP. 

 
a Extracted from the fit 

 

Fitting the C1s photopeak of 2H-Br requires 4 contributions, all with the same FWHM (full-width at half 

maximum) (Figure II.9). Each contribution is characteristic of a chemical environment: at 285.0 and 

286.0 eV are the aliphatic carbons (C-C and C-N respectively), at 286.5 and 287.2 eV are located the 

carbons for the aromatic heterocycle (C-CN and N2-C-H respectively).22,23 It is important to note that 

the stoichiometry derived from this fit corresponds very well to what is expected from the molecular 

formula of 2H-Br and so does the overall carbon, nitrogen, bromine composition (Table II.3).  

For 2-AuNP, the C1s spectrum was fitted with 5 components. Components 1, 2 and 3 correspond to 

those found for 2H-Br and are attributed to C-C aliphatic, C-N aliphatic and C-N aromatic environments. 

A fourth component was found at 284.1 eV accompanied by the extinction of the component at 

287.2eV (N2-C-H in 2H-Br). This contribution, already observed for gold and iron surfaces24,25 can be 

attributed to the N2-C-Au bond. This all confirms the absence of the imidazolium and the formation of 

the carbene. The relative intensities of each component fits the atomic composition of the ligand well 

and so does the overall carbon/nitrogen composition. It is worth noting that no boron (which could 

have come from the reducing agent) was observed. We can thus exclude the possibility of a N2-C-B 

environment.  
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The fifth C1s component, at 288.5 eV, can be attributed to the π->π* transition characteristic of a 

shake-up peak (also known as a satellite peak) coming from the photoelectron excitation of the 

heterocycle ring. In our case, the satellite peak is only observed for 2-AuNP suggesting an 

enhancement by plasmon effect (plasmon loss satellite).26 

 

Figure II.9: C1s XPS spectra and their corresponding fits for a) the imidazolium precursor 2H-Br and b) gold 

nanoparticles 2-AuNP.² 

 

The N1s photopeak of 2H-Br is symmetrical and presents only 1 component at 401.6 eV as expected 

when looking at its molecular environment (Figure II.10). The N1s spectrum of 2-AuNP also presents 1 

component only but with a clear shift towards lower binding energies. Such a shift was already 

observed for nanoparticles stabilized by NHCs.16,17,19 This shift corresponds to a loss of charge on the 

heterocycle coming from the conversion of a positively charged imidazolium into a neutral NHC 

covalently bound to the surface. NHCs are thus the only species present on the nanoparticles’ surface.  

 

Figure II.10: N1s XPS spectra for the imidazolium bromide 2H-Br (bottom trace) and gold nanoparticles 2-AuNP 

(top trace).² 
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To conclude, XPS confirms the formation of NHCs in a NaH-free synthesis. Indeed, NaBH4, added in 

excess, could be basic enough to deprotonate the (benz)imidazolium as suggested in the literature.27 

Finally, this, to the best of our knowledge, is the first example of an XPS C1s signal associated with a 

N2-C-Au environment at the surface of gold nanoparticles. 

 

II.B. Nanoparticles from imidazolium haloaurate salts and tBuNH2BH3 

 

II.B.1. Synthesis of the nanoparticles 

 

Now it was established that gold nanoparticles were stabilized by NHC even in the absence of a 

“proper” base, we decided to change the reducing agent. tBuNH2BH3, which is a milder reducing agent, 

was chosen. It is soluble in organic solvents, as opposed to NaBH4, which allows for homogeneous 

synthesis.  

Unexpectedly, tests carried out in the presence of NaH yielded very different results than for the 

synthesis using NaBH4. Indeed, adding NaH before the reduction step by tBuNH2BH3 led solely to the 

formation of bulk material, this implies that the deprotonation step is not the only decisive one in the 

nucleation/growth mechanism of the nanoparticles. 

As a result, the following tests were carried out in the absence of NaH. The effect of the ligand/Au ratio 

was also studied. Figure II.11 presents the TEM images and size distribution of the obtained 

nanoparticles for ratios of 2H-AuX4:2H-Br ranging from 1:0 (2H-AuX4 only) to 1:6. All syntheses were 

carried out at 55°C with 10 min of stirring. The size of the as obtained nanoparticles is strongly linked 

to the addition of 2H-Br. When using only 2H-AuX4, NPs are large, very polydisperse (24 ± 7 nm) and 

of various shapes. They get smaller, more spherical and monodisperse with an increasing quantity of 

2H-Br. It appears that at least 1 equivalent of 2H-Br is necessary to obtain reasonable polydispersity 

(~25%). When using 6 equivalents of imidazolium, the NPs reach 5.8 ± 1.1 nm in size. As such, it seems 

that when using tBuNH2BH3, the ligand/Au ratio can be used to influence the obtained NPs size in a 6-

12 nm range. 
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Figure II.11: TEM images and corresponding size distributions of gold nanoparticles obtained from to 1H-AuX4 

and various amount of 1H-Br (from 0 to 6 eq.) with tBuNH2BH3 as reducing agent (10 min. stirring at 55°C in 

toluene). 
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II.B.2. XPS analysis 

 

XPS analysis was carried out on the nanoparticles obtained for the 1:6 2H-AuX4: 2H-Br synthesis. As 

was the case for samples using NaBH4, no bromine, chlorine or boron were detected and the gold 

spectrum is characteristic of gold(0). This time however the nitrogen photopeak presents 2 

components (Figure II.12). One at 399.9 eV which accounts for 81% of the peak and corresponds to a 

covalent interaction between NHC and the gold surface. The second, at 402.2eV, accounts for only 19% 

of the signal. Its position in the higher binding energies suggests the presence of a charge on the cycle. 

The presence of this charge indicates that deprotonation did not occur and that interaction is more 

likely to be electrostatic (and thus slightly weaker). However, as the major contribution corresponds 

to a covalent interaction, we can say that the vast majority of the stabilization comes from NHCs, and 

that tBuNH2BH3 is enough of a base to deprotonate imidazoliums. There are however remnants of 

other interactions suggesting that the stabilization mechanism may not be exactly the same when 

using NaBH4 or tBuNH2BH3. For example, the amine of tBuNH2BH3 could interact with the gold surface 

at the beginning of the synthesis preventing a complete stabilization by NHCs. 

 

Figure II.12: Au4f and N1s XPS spectra of gold nanoparticles synthesized from 2H-AuX4, 6 eq of 2H-Br and 

tBuNH2BH3 (in toluene). 
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II.C. Nanoparticles from AuCl and unfunctionalized imidazolium salts  

 

II.C.1. Using NaBH4 as a reducing agent 

 

After seeing that the synthesis of NHC-capped NPs could be achieved without the addition of NaH to 

deprotonate the imidazolium, we decided to explore the synthesis further by using an even simpler 

gold precursor: AuCl. We hoped that the reduction of AuCl by NaBH4 in the presence of imidazolium 

bromide would lead to stable, NHC-capped nanoparticles. 

Upon addition of AuCl to a solution of imidazolium in toluene, the solution goes from colorless to 

orange, thus showing an interaction between the 2 reagents and the likely formation of an imidazolium 

AuClBr- complex. Indeed, this type of complex have been described in the litterature28 and were 

obtained in quantitative yield by mixing an imidazolium bromide salt with AuClSMe2 at room 

temperature. Upon addition of aqueous NaBH4, the solution turns deep red and bubbles are formed, 

probably due to H2 release upon reduction of Au(I) and the deprotonation of the imidazolium. The 

obtained nanoparticles are isotropic and 3.4 ± 0.8 nm in diameter when using 1 equivalent of 

imidazolium per gold. Increasing to 2 and 4 equivalents of imidazolium did not have a significant effect 

on the size (Figure II.13). 

 

Figure II.13: TEM images of nanoparticles obtained from AuCl, 1, 2 or 4 equivalents of 2H-Br and NaBH4 

(solvent toluene), and corresponding distributions. 
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Experiments carried out with 4 equivalents of 1H-Br and 3H-Br gave similar results with nanoparticles 

of 3.7 ± 0.8 nm and 4.4 ± 0.8 nm respectively (Figure II.14). It is worth noting that while 3H-Br yielded 

smaller nanoparticles than 1H-Br and 2H-Br, when used in excess in an NaH-free synthesis starting 

from 3H-AuX4, when starting from AuCl it is not the case. This could hint to a different pathway for 

benzimidazoliums compared to imidazoliums where benzimidazoliums are more impacted by the 

change in oxidation state of the gold precursor. 

 

Figure II.14: TEM images of nanoparticles obtained from AuCl, 4 equivalents of 1H-Br, 2H-Br or 3H-Br and 

NaBH4 (solvent toluene), and corresponding distributions. 

 

The addition of NaH to a 2H-Br AuCl solution in toluene led to the formation of slightly larger NPs (4.3 

± 0.9 nm instead of 3.7 ± 0.9 nm) contrarily to what we observed for 2H-AuX4 (Figure II.15). When 

increasing the amount of imidazolium (and corresponding NaH), the size of the nanoparticles increases 

also (contrarily to what could be observed before). As we don’t know the exact formation mechanism 

of these nanoparticles it is unclear why more carbenes led to larger particles. One could hypothesize 

that those carbene get involved in the formation of [Au(NHC)2]+ complexes leading to less ligand being 

able to stabilize the NPs leading in turn to larger nanoparticles.  
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Figure II.15: TEM images of nanoparticles obtained from AuCl, 1 or 4 equivalents of 2H-Br, NaH and NaBH4 

(solvent toluene), and corresponding distributions. 

 

It is worth noting that examples of NHC-stabilized gold nanoparticles synthesized from a gold(I) 

precursor have already been reported in the literature. However, these protocols use previously 

synthesized NHC-AuX complexes (as seen in chapter I). Our protocol is the first to use AuCl and easily 

accessible (benz)imidazolium halides as our starting material. This synthesis probably follows a 

different pathway than the one starting from (benz)imidaozlium haloaurates as evidenced by the 

different behaviors observed (notably regarding NaH and excess (benz)imidazolium addition). The 

difference probably stems from the different oxidation state which leads to different intermediate 

complexes which could potentially be involved in the reduction and/or formation of NPs.  

 

II.C.2. Using tBuNH2BH3 as a reducing agent 

 

As previously, changing the reducing agent to tBuNH2BH3 led to larger to nanoparticles (6.8 ± 1.3 nm) 

(Figure II.16), which were characterized by XPS. As was the case with 2H-AuX4, there is no halides or 

boron detected and only gold(0). There are 2 components to the nitrogen photopeak (Figure II.16). 

One at 400.3 eV accounting for 80% of the signal and one at 401.9 eV accounting for the remaining 

20%. Once again most of the stabilization of the NPs come from NHCs with a small contribution in the 

higher binding energies. This contribution suggests a charged species and thus an electrostatic 

interaction. This also shows that once again tBuNH2BH3 is enough of a base regardless of gold 

precursor.  
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Figure II.16: TEM image of nanoparticles obtained from AuCl, 6 equivalents of 2H-Br and tBuNH2BH3 (solvent 

toluene), corresponding distribution, and N1s XPS spectra of these gold nanoparticles. 

 

The analyzed nanoparticles were synthesized with an excess of 2H-Br (6eq). Due to lack of time, no 

study on the influence of Au:2H-Br ratio was conducted. 

 

II.D. Nanoparticle synthesis from functionalized imidazoliums 

 

In this project, potential for future applications was never forgotten. Although many potential 

applications are possible, our focus narrowed on water-soluble and (post-)functionalizable 

nanoparticles.  

 

II.D.1. Water-soluble imidazolium 

 

For the water-soluble imidazolium, we drew inspiration from a study by Crudden et coll.18 where they 

use an amphiphilic imidazolium-gold complex to synthesize amphiphilic nanoparticles that can 

aggregate in polar solvents (Scheme II.5).  

 

Scheme II.5: Crudden et coll. synthesis of amphiphilic NHC-stabilized gold nanoparticles. 18 

 

We hoped that by using two triethylene glycol side chains instead of one, the water-affinity of the 

synthesized imidazolium would be greater and would lead to water-soluble nanoparticles. Moreover, 

it would serve as a proof of concept before moving forward with longer polyethylene glycol chains. 

Indeed, AuNPs functionalized with PEGs are known to circulate better in the body as they are less 

detected by the immune system.29  
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The imidazolium was synthesized following a similar procedure to the one of Crudden et coll.(Scheme 

II.6).18 The terminal alcohol group of monomethylated triethylene glycol was functionalized with a tosyl 

group. The product was then reacted with imidazole to afford the imidazolium as a yellow viscous oil 

in 79 % yield. The obtained imidazolium, 4H-OTs, proved soluble in water but also in organic solvents.  

 

Scheme II.6: Synthetic pathway to water soluble imidazolium. 

 

Using a water-soluble gold precursor, such as HAuCl4.3H2O, directly leads to the formation of 

aggregates.  As a result, 4H-OTs was dissolved with AuCl in toluene which led to a slightly turbid orange 

solution. However, unlike with 2H-Br, addition of aqueous NaBH4 led to only aggregates at the solvents 

interface.  We assume it’s because the imidazolium preferably goes into the aqueous phase whereas 

the gold would remain mainly in the organic phase and/or because the deprotonation of imidazolium 

by sodium borohydride cannot occur in aqueous media. 

By switching to tBuNH2BH3 as a reducing agent, the reaction could be carried out in a homogeneous 

system. Upon addition of the reducing agent, the AuCl + imidazolium solution turned transparent then 

deep red in a few seconds indicating the formation of gold nanoparticles. The obtained NPs have a 

mean diameter of 2.8 ± 0.7 nm and a plasmon resonance at 508 nm in toluene (Figure II.17).  They can 

be transferred in water and remain stable long enough to record a UV-vis spectrum but they 

unfortunately do not remain stable over time. Indeed, they are visibly aggregated within a few hours. 
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Figure II.17: TEM images of nanoparticles obtained from AuCl, 4 equivalents of 4H-OTs and tBuNH2BH3, and 

corresponding UV-vis spectra. 

 

Moreover, the behavior of the nanoparticles is not reproducible from sample to sample, as some 

samples transfer fully while others only transfer partially, and some remain stable for a few hours in 

water whereas others start aggregating almost instantaneously. The same behavior is observed when 

changing the gold precursor to AuClSMe2 (3.6 ± 0.9 nm) or 4H-AuX4 (2.9 ± 0.9 nm) (Figure II.18).  

 

Figure II.18: TEM images of nanoparticles obtained from AuClSMe2 and 4 equivalents of 4H-OTs or 4H-AuX4 

and 4 equivalents of 4H-OTs and tBuNH2BH3 in toluene. 

 

The same protocol was applied in dichloromethane and also yielded NPs. However, the obtained 

nanoparticles (5.9 ± 1.1 nm in diameter) remain solely in the organic phase (Figure II.19). No transfer 

is observed.  
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Figure II.19: TEM images of nanoparticles obtained from 4H-AuX4 and 4 equivalents of 4H-OTs and tBuNH2BH3 

in DCM. 

 

Due to the lack of reproducibility of the results and poor nanoparticle stability, the NPs were not 

characterized by XPS. However, it can be assumed that the nanoparticles are stabilized by NHCs.  

Indeed, there is no reason to assume that tBuNH2BH3 would be a strong enough base to deprotonate 

2H-Br but not 4H-OTs. The poor stability in water is surprising, as NHC-SAMs30,31 and NHC stabilized 

AuNPs15,19 have been shown to be stable in water, and is thus unlikely to stem the hydrolysis of the 

NHC-Au bond.  

 

Even though 4H-OTs proved insufficient in order to synthesize water soluble NPs, other imidazoliums 

can be considered. For example, one with longer PEG chains such as the one used by McLeod et al.,15 

or one with an ionic group (for example sulfonate or carboxylate) as proposed by Crudden et coll.19 

and Chaudret et coll..12,32 

 

II.D.2. Azide functionalized imidaozlium  

 

It has been shown in the literature that NHCs are compatible with click-chemistry.30 Click chemistry is 

versatile and, by definition, uses mild conditions. One of the best-known example of click-chemistry is 

the copper catalyzed [3+2] cycloaddition of alkynes and azides (CuAAC). That is why we were interested 

by an azide functionalized imidazolium, as the azide moiety would be available for post-

functionalization of the nanoparticles. 

The first step of the synthesis consisted in synthesizing 1,12-bromododecylazide side chain from 1,12-

dibromododecane and sodium azide. Once reacted with imidazole, the obtained imidazolium would 

have 1 or 2 azide moieties available for (post)functionalization. Several synthetic pathways were 

envisioned and are presented in Scheme II.7.  
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Scheme II.7: Synthetic pathway to click-chemistry ready imidazolium. Blue = pathway 1a, red = pathway 1b, 

pink = pathway 2. 

 

One-pot syntheses proved difficult to purify. Indeed, pathway 1a (Scheme II.7, blue), led to a mixture 

of mono and bis alkylated products which did not readily separate upon precipitation attempts. 

Pathway 1b (red) led to a mixture of imidazolium which, being salts, are difficult to purify by column 

chromatography.  

Attempts to synthesize 5H-Br in 2 steps by pathway 2 (pink) were unsuccessful as I was unable to 

obtain the pure monofunctionalized imidazole during the time of my PhD.  

Nonetheless, experiments were carried out with the 85% pure imidazolium 5H-Br (purity checked by 

NMR, 15% bis-azide imidazolium), synthesized by pathway 1b, to see if nanoparticles could be 

obtained. 1 equivalent of 5H-Br was mixed with either 1 equivalent of AuClSMe2 (in toluene, sample 

A) or 1 equivalent of HAuCl4.3H2O (dissolved in Toluene: CHCl3 9:1) (sample B) before addition of 10 

equivalents of NaBH4 (Figure II.20). Sample A turned bright red immediately whereas sample B started 

discoloring before turning red. Both samples were characterized by TEM and showed particles of 4.4 ± 

1.4 nm for B and a mix of 3.3 ± 1.1 and 18.8 ± 2.6 nm particles in the case of A. However, the 

nanoparticles were not stable as sample B was completely transparent after 24h and sample A was 

severely discolored.  
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Figure II.20: TEM images of nanoparticles obtained from 1 equivalent of 5H-Br, AuClSMe2 or HAuCl4.3H2O, and 

NaBH4, and corresponding distributions. 

 

However, at this stage it is not possible to say if the nanoparticles are indeed stabilized by the carbene 

as the azide moiety on the imidazolium could also be reduced to NH2 by NaBH4. It is well known that 

amines can coordinate to gold and give nanoparticles.33,34 As the ligand was only 85% pure comparison 

between XPS spectra of imidazolium and NPs would not have given relevant information. 

Functionalization of the NPs could have been attempted. Indeed, if there was reaction of an alkyne 

with the azide moiety, it would prove that it is not bound to the surface. However, lack of reaction 

would not be definite proof of the opposite as unsuitable reaction conditions could be the culprit. As 

soon as the pure imidazolium is synthesized, further tests will be carried out. 

 

II.D.3. C2-functionalized imidazoliums 

 

Throughout this PhD, our main focus was on classical NHCs with (benz)imidazole-like structure, which 

could be deprotonated to form a stabilized carbene at the C2 position. However, an article35 describing 

the synthesis of nanoparticles stabilized by an imidazolium functionalized in the C2 position (Figure 

II.21) shifted our focus. 
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Figure II.21: Methylated imidazolium in the C2 position and nanoparticles obtained by Rodrigues et al..35 

 

In their paper, Rodrigues et al.35 argue that since there is a methyl, and as they detect no Au(I) by XPS, 

no carbene were formed. As a result, they concluded that their gold nanoparticles had to be stabilized 

by imidazolium moieties. It is possible they were looking for Au-NHC complexes which are known to 

form during the synthesis of gold nanoparticles stabilized by NHCs (see Chapter I). Absence of these 

complexes, however, is not proof that NHC didn’t form. Moreover, they measured 24 ligands per nm² 

by TGA which seems unlikely as studies on SAMs have measured a value of 4 ligands/nm². This suggests 

a poor purification of their NPs. Nevertheless, we decided to try using a similar methylated imidazolium 

to see if we would also obtain nanoparticles.  

 

III.D.3.a. 2-methylimidazolium 

 

The imidazolium 6H-Br was synthesized by the same protocol as previously starting from 2-

methylimidazole and was obtained as a white powder in 82% yield. The corresponding gold(III) 

precursor was also synthesized and obtained as an orange powder in quantitative yield (Scheme II.8).  
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Scheme II.8: Synthetic pathway to 2-methylimidazolium. 

 

Attempts starting both from 6H-AuCl4 and our AuCl + imidazolium synthesis yielded nanoparticles (3.5 

± 1.3 nm and 3.6 ± 0.8 nm respectively) (Figure II.22). It is worth noting that in the case of the AuCl 

synthesis, the obtained nanoparticles are of similar size to the ones obtained by the same protocol 

from 2H-Br. Increasing the quantity of ligand to 5eq instead of 1 led to similar results as previously and 

the NPs size remained roughly the same at 3.8 ± 1.0 nm.  Adding NaH in the synthesis from 6H-AuX4 

(without 6H-Br) had no significant influence on the size of the NPs which were of 3.7 ± 1.0 nm (as 

opposed to 3.5 ± 1.3 nm without). However, for both the size of the obtained NPs are smaller than the 

ones obtained from 2H-Br. 

 

XPS analysis was carried out in order to determine the bonding mode of the ligand to the surface of 

the NPs.  

Nanoparticles synthesized from both AuCl+6H-Br and 6H-AuX4 (without NaH) were analyzed (Figure 

II.23). Both had a major component (90%) corresponding to a covalent interaction, at 399.9 eV and 

400.0 eV respectively, and a minor component (10%), at 401.9 and 401.7 eV respectively, 

corresponding to a charged species. We have come to equate such components to an electrostatic 

interaction between the ligand and NPs. A covalent interaction is thus the driving force behind the 

stabilization of the nanoparticles. The covalent contribution is symmetrical, this would suggest a 

symmetrical bonding mode of the molecule ant thus an attachment through the methyl. 
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Figure II.22: TEM images and corresponding distributions obtained from 1 or 5 equivalents of 6H-Br, AuCl and 

NaBH4, and 6H-AuX4 and NaBH4 with or without NaH 
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Figure II.23: N1s XPS spectra of nanoparticles obtained from 6H-AuX4 without NaH and from AuCl and 6H-Br. 

 

A stabilization through the methyl is not that surprising however when considering the fact that such 

methylated imidazoliums when deprotonated readily form N-heterocyclic olefins (NHO)36 (Scheme 

II.9). Indeed, deprotonation at the methyl creates a carbanion which has a resonance structure as an 

NHO. Such NHOs have been shown to readily coordinate to gold and rhodium (Scheme II.9).37 It is thus 

likely that our ligand would bind the same way to the nanoparticles’ surface. This would explain the 

stability of the nanoparticles as well as the XPS results. 

 

Scheme II.9: Formation of NHO from imidazoliums and resonance structures of NHO. 36,37 
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II.D.3.b. 2-phenylimidazolium 

 

Before getting the results from the XPS analysis and forming our hypothesis about NHOs, we looked 

for a quicker way to prove a stabilization by the methyl carbon. As a result, we synthesized a similar 

imidazolium but functionalized by a phenyl group on the C2 position: 7H-Br (Scheme II.10). Our first 

hypothesis was that if the ligand coordinates through the methyl, the phenyl would prevent the 

formation of NPs as it is more difficult to deprotonate.  

 

Scheme II.10: Synthetic pathway to 7H-Br. 

 

However, when the AuCl + imidazolium protocol was performed, nanoparticles were still obtained 

(Figure II.24). They were 3.0 ± 0.7 nm (or 3.6± 1.0 nm when repeated) in diameter and remained stable 

over time. In this case, it seems that the imidazolium would be deprotonated on the C4 position 

forming an abnormal NHC (see Chapter IV for more information). The abnormal carbene would thus 

be the stabilizing ligand. 

 

Figure II.24: TEM images of nanoparticles obtained from AuCl, 1 equivalent of 7H-Br and NaBH4 (solvent 

toluene: H2O), corresponding distributions and representation of the bonding through the abnormal carbene. 

 

It is worth noting that the nanoparticles proved harder to precipitate with ethanol when concentrated 

in toluene. This seems to further confirm the availability of the phenyl aromatic ring away from the 

surface of the NPs as they would interact preferably with an aromatic solvent like toluene.  

 

The nanoparticles obtained from 7H-Br were characterized by XPS (Figure II.25). The N1s spectrum 

showed 3 components, one (minor) towards the higher energies (402.6 eV) suggesting an electrostatic 

interaction. Some of this electrostatic component can be explained by insufficient washing of the NPs, 
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due to the difficulty of precipitation, as 2% of chloride is detected. This however does not account for 

the entirety of the electrostatic component. The other 2 components (at 400.2 and 399.7 eV) 

contribute equally to the signal. This indicates that the 2 nitrogen atoms are not chemically equivalent. 

Indeed, even if the ligand is neutral, the fact than one nitrogen atom is closer to the gold surface is 

likely to create a slight difference in charge, resulting in a slightly different binding energy. Our theory 

is that the contribution at 400.2 eV comes from the nitrogen adjacent to the carbene but it is difficult 

to say with certainty. This asymmetry in the signal is in line with the binding of the NHC through the 

C4 position as an abnormal carbene.  

 

Figure II.25: N1s XPS spectra of nanoparticles obtained from AuCl and 7H-Br. 

 

II.D.3.c. C2 functionalized imidazoliums and tBuNH2BH3 as a reducing agent 

 

Nanoparticle syntheses from C2-functionalized imidazoliums (6H-Br and 7H-Br) were also attempted 

with tBuNH2BH3 as a reducing agent. Nanoparticles were obtained in both cases. However this time, 

NPs were significantly larger and less spherical (about 20 nm for 6H-Br and 8.4 ± 1.5 nm for 7H-

Br)(Figure II.26). This is not surprising given the likelihood that tBuNH2BH3 is a weaker base than NaBH4 

and thus has more difficulty deprotonating the functionalized imidazoliums. Accordingly, less ligands 

would be available to coordinate to the surface.  
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Figure II.26: TEM images of nanoparticles obtained from AuCl, 1 equivalent of 6H-Br or 6 equivalents of 7H-Br 

and tBuNH2BH3 (solvent toluene), and corresponding distributions. 

 

The increased size of the nanoparticles is not surprising when looking at the N1s XPS spectra of the 

nanoparticles obtained from 6H-Br or 7H-Br and tBuNH2BH3 (Figure II.27). Indeed, the component 

attributed to electrostatic interactions significantly increases in both cases. In the case of 6H-Br it even 

becomes the major component (with 60%) (although it is worth noting that due to experimental 

difficulties, the analyzed sample was synthesized using only 1 equivalent of 6H-Br instead of 6, which 

could account for the difference with 7H-Br).  

Once again, the covalent contribution of the methylated NHC can only be fitted with one component. 

The mathematical resolution for 7H-Br is a bit more ambivalent as its covalent component can be fitted 

with either 1 or 2 components. However, when fixing the distance between component to 0.5 eV (the 

same value than for NPs prepared with NaBH4 (Figure II.25)), 2 identical contributions are obtained 

suggesting that once again 7 is an abnormal carbene bound through the backbone. This indicates that 

while tBuNH2BH3 is able to assist in the formation of NHC-stabilized gold nanoparticles, it may not the 

be the best reducing agent to use in the case of C2 functionalized imidazoliums.  
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Figure II.27: XPS N1s spectra of nanoparticles synthesized from AuCl, 1 equivalent of 6H-Br or 6 equivalents of 

7H-Br and tBuNH2BH3 in toluene. 

 

II.E. Conclusion 

 

To conclude, in this chapter we have seen that the synthesis of NHC-capped nanoparticles can be 

simplified compared to existing protocols. Indeed, we showed that there is no need for an additional 

base in the medium and that NaBH4 and tBuNH2BH3 can act as both a reducing agent and a base. We 

have been able to tune the size of obtained nanoparticles by changing the ligand, quantity of ligand, 

reducing agent or gold precursor. We have been the first to synthesize NHC-capped gold nanoparticles 

starting from AuCl and (benz)imidazoliums salts.  

Extensive XPS studies have provided a clear proof of carbon-gold bond in the C1s spectrum for the first 

time on nanoparticles, and have also found that the N1s peak position and shape can be used to 

determine the binding mode of NHCs on the surface of nanoparticles.  

Finally, we are the first to show that it is possible to synthesize gold nanoparticles stabilized by 

abnormal NHCs by extending our protocol to C2 functionalized imidazoliums.  

This offers more options for functionalization or post-functionalization of the nanoparticles as further 

work in this area is considered.  
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CHAPTER III: SYNTHESIS OF N-HETEROCYCLIC CARBENE-CAPPED 

GOLD NANOPARTICLES FROM NHC-BORANES 

 

III.A. Bibliographic introduction on N-heterocyclic carbene boranes 

 

NHC-boranes are Lewis adducts between NHCs (Lewis bases) and boranes (Lewis acids). Unlike free 

NHCs and boranes, they are known to be stable to air and moisture. They have already exhibited 

reducing properties (see below). As shown in the previous chapters, NHCs are good stabilizing agents 

for metallic nanoparticles. Our goal was thus to use NHC-boranes as a 2-in-1 reagent acting as both 

NHC sources and reducing agents.  

While NHC-boranes present a wide range of available structures,1 the following section will focus on 

those that present an imidazol-2-ylidene-BH3 (NHC-BH3) structure.  

 

III.A.1. Synthesis of NHC-boranes  

 

There are several routes to obtain NHC-boranes described in the literature and discussed below. They 

are summarized in Scheme III.1. 

 

Scheme III.1: Different types of synthesis to obtain NHC-BH3 (LB=Lewis base). 

 

The first NHC-BH3 was described by Kuhn et al. in 1993.2 By reacting a range of NHCs with either 

BH3.SMe2 or BF3.EtO2 in THF at 0°C, they obtained NHC-BH3 and NHC-BF3 adducts. They found the 

adducts to be air stable and were able to obtain crystal structures.  

In the following years, most syntheses of NHC-boranes followed a similar pathway by forming the 

carbene in situ by deprotonating an imidazolium salt with a base (NaHMDS,3 KHMDS,4 tBuOK,5 n-
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BuLi,4…) at low temperatures (typically 0°C or -78°C) before introducing a borane complex (for example 

BH3.SMe2 or BH3.THF). While this type of synthesis allows for the use of a wide range of imidazoliums 

and the corresponding NHCs structures, it requires strict anhydrous and inert conditions in order to 

preserve the reactivity of the NHC and borane moieties. 

Over the years a few alternatives have been developed. For example, Makhlouf Brahmi et al. 

developed a synthesis based on Lewis base exchange with amine and phosphine boranes and NHCs.5 

While primary and secondary amines were not suited for the exchange, reactions carried out with 

tertiary amines (NMe3, NEt3), DMAP or pyridine, all performed better than the control reaction with 

BH3.THF (70-93% yield compared to 40%). When comparing different NHC sources, they found that 

while most results were similar or better when using the amine borane, a few sterically hindered 

imidazoliums performed poorly compared to the control. This is probably due to the fact that BH3 is 

less tightly bound and less sterically hindered when complexed to THF than to amines. They showed 

that the exchange could also be extended to some phosphines. Indeed, PPh3.BH3 yields similar results 

to NMe3.BH3 but only 30% conversion was obtained with PCy3.BH3 (Cy=cyclohexyl).  

Yamaguchi et al. used LiBEt3H as both a base to obtain the carbene and a Lewis acid source able to 

form NHC-BEt3 complexes.6 When exposed to BH3.THF, an exchange occurs, forming the NHC-BH3 

complex. The same thing is observed for BF3.Et2O. NHC-BEt3 complexes thus act as NHC precursors 

probably due to the weaker Lewis acidity or higher steric bulk of BEt3 compared to BH3 and BF3.  

More recently, Yamaguchi et coll. designed another “protected” NHC source by using NHC-AgCl 

complexes7 in a base-free synthesis. Such complexes are readily formed when imidazolium is reacted 

with silver oxide.8 They are often used in transmetallation reactions to obtain NHC-M complexes with 

other metals.9–12 They found that refluxing the silver complexes in THF with 2 equivalents of a NaBH4 

free solution of BH3.THF (commercial solutions usually contain 0.5% of NaBH4) yielded the best results 

(96% yield). The technique can be applied to a range of NHCs including sterically hindered 1,3-

dimesitylimidazol-2-ylidene borane (diMes-Imd-BH3) or benzimidazol-2-ylidenes or even some 

imidazolidines. It is interesting to note that they do not mention any reduction of silver. Indeed, in the 

literature, silver nanoparticles have been synthesized by the reduction of NHC-AgX complexes.8,13  

Gardner et al. used NaBH4 as both a base and borane source.14 The reaction occurred in neat conditions 

at 105°C but refluxing in toluene yielded better results. Their best yield was obtained for 1,3-

dimethylimidazol-2-ylidene borane (diMe-Imd-BH3) with 53%. They were able to synthesize different 

boranes including 1,3-diisopropylimidazol-2-ylidene borane (diiPr-Imd-BH3) which required an excess 

of NaBH4 to be added during the synthesis to obtain a 46% yield. Even if the reaction is promising due 

to the use of widely available reagents, the possibility to scale it up to 100 mmol and the possibility to 

carry it in ambient conditions (no need to exclude air and moisture), it quickly showed limitations. 
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Indeed, no reaction occurred when using a benzimidazolium or sterically hindered imidazolium and 

only 5% of a 2,4-dimethyl-1,2,4-triazol-3-ylidene (diMe-124Tri-BH3) borane was recovered.  

In the end, in a standard organic chemistry lab, the first type of synthesis remains accessible and 

presents the widest range of available structures for NHC-BH3 complexes. This probably explains its 

popularity but the other types of synthesis could prove useful when looking for more specific type of 

structures, base-free syntheses or for laboratories ill-equipped to carry out sensitive reactions. 

 

III.A.2. Uses of NHC-boranes in molecular chemistry 

 

NHC-boranes are expected to behave as hydrogen donors1,15,16 either by heterolytic rupture giving a 

hydride and a borenium cation (NHC-BH2
+), or homolytic rupture giving H• and a boryl radical (NHC-

BH2
•) (Scheme III.2). Both types have been studied in the literature and applied to a variety of 

substrates.  

 

Scheme III.2: Two hydrogen donation types possible for NHC-BH3. 

 

III.A.2.a. Heterolytic rupture 

 

Horn et al. measured the nucleophilicity of diMe-Imd-BH3 and 1,3-bis(2,6-diisopropylphenyl)imidazol-

2-ylidene borane (diDipp-Imd-BH3).15 They found that while neither borane could compare with BH4
-, 

diDipp-Imd-BH3 was on par with neutral reference hydride donors, such as trialkylamine boranes and 

benzimidazolines, while diMe-Imd-BH3 surpassed all of them and has a nucleophilicity closer to that of 

ionic BH3CN- (Scheme III.3). They also showed that diMe-Imd-BH3 could react with C=N or C=C double 

bonds substituted with strong electron withdrawing groups. For example, they reduced iminium ions 

to the corresponding anilines in good yields even if NHC-BH3 was introduced in default. The NHC-BH3 

could also be used to conduct one-pot reductive aminations starting from anilines or aldehydes, as 

they do not react with C=O bonds. NHC-BH3 even prove to be more practical reagents as they are less 

toxic, more stable and more easily eliminated than conventional reagents for this type of reaction, 

such as sodium cyanoborohydride (NaBH3CN), sodium triacetoxyborohydride (NaBH(OAc)3) or amine 

boranes.  
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Scheme III.3:  Nucleophilicity parameters (N) of some hydride donors (in CH2Cl2 if not otherwise noted).15 

 

This type of reactivity has also been used in a range of reactions.17–20 For example, in the asymmetric 

reduction of ketones. Indeed in 2010, Lindsay et al. were the first to report the synthesis of chiral NHC-

boranes. They were then able to use those chiral NHC-BH3 in the asymmetric reduction of 

acetophenone (Scheme III.4). 4 

 

Scheme III.4: Asymmetric reduction of acetophenone by a chiral NHC-BH3.4 

 

They established proof of concept using 3,7-diisopropyl-THIBO borane (diiPr-THIBO-BH3) at room 

temperature and 0°C yielding the S enantiomer in 14% enantiomeric excess (ee) (44% conversion) and 

36% ee (10% conversion) respectively. They were able to increase the yield and ee (to 95% and 42 %) 

by activating the ketone with a Lewis acid (Sc(OTf)3). However, they obtained the opposite enantiomer 

(R instead of S). By changing the functional groups of the NHC-BH3 from iPr to tBu, the 

enantioselectivity was reversed again and they were able to obtain the S enantiomer in 75% ee (60% 

yield). By using NHC-9BBN instead of BH3 they were able to increase the ee even higher to 84% by 

changing the Lewis acid to less sterically demanding BF3.OEt2. They tested their conditions on a scope 

of ketone substrates and most results compared favorably to the existing literature.  

In theory, hydride abstraction from an NHC-borane will lead to a borenium ion (NHC-BH2
+) but such 

ions are known to be unstable in solution.21 Their reactivity however can be studied using “borenium 

ion equivalents” such as LB-BH2X (LB= lewis base, X= good leaving group). This is what Pan et al. did in 

2013 by using molecular iodine as an activator for the hydroboration of alkenes by NHC-BH3 (Scheme 

III.5).21 NHC-boranes are typically inert to alkene hydroboration because of their stability, but they 
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found that by introducing molecular iodine in the reaction medium they formed NHC-BH2I which acts 

as a catalyst. They tested diMe-Imd-BH3 on a range of alkenes and found that the monohydroboration 

product was obtained in most cases. They showed that the synthesis could be extended to 1,5-cyclo-

octadiene to form NHC-9BBN and even to intra molecular reaction using alkenyl NHC-boranes. They 

were also able to extend the reaction to a range of NHC-BH3 with low steric hindrance. If the NHC-BH3 

was sterically hindered (such as diMes-Imd-BH3 or diDipp-Imd-BH3) no hydroboration product was 

detected as NHC-BH2I was not consumed upon addition of the alkene.  

 

Scheme III.5: Iodine activated hydroboration of alkenes by NHC-BH3.21 

 

III.A.2.b. Homolytic rupture 

 

The radical reactivity of NHC-BH3 has also been extensively studied in the literature. DFT calculations16 

have calculated the B-H bond dissociation energy (BDE) of NHC-BH3 at 80 kcal.mol-1. That is 20 

kcal.mol- 1 lower than amine-boranes such as NH3BH3
3 and 30 kcal.mol-1 lower than BH3 alone.16 This 

lowered BDE makes NHC-BH3 good candidates for radical chemistry. EPR studies showed that tBuO• 

radicals removed H atoms from NHC-BH3 to form NHC-BH2
• in a very rapid process (Scheme III.6)3. 

Radicals formed from imidazol-2-ylidene boranes were clearly observable by EPR while those obtained 

from benzimidazol-2-ylidene showed very weak signals if any. The radicals are roughly planar at the 

boron atom and the unpaired electron is delocalized into the NHC ring. They found that termination 

was extremely rapid and likely diffusion controlled. The decay process was followed by EPR. It most 

likely happens by irreversible dimerization (Scheme III.6), which is strongly influenced by the lateral 

substituents, as more hindered radicals dimerize more slowly than the others. The same study also 

found that while boryl radicals were able to abstract bromine atoms from various sources, chlorine 

atom abstraction was less efficient as only unhindered boryl radicals were able to abstract chlorine 

from allylic and benzylic chlorides.  

 

Scheme III.6: Formation and dimerization of NHC-BH2
•. 
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Such radical reactivity has been exploited in a range of reactions throughout the years including the 

reduction of xanthates16,22 and alkyl halides,23 hydroboration of alkynes24 and imines,25 among 

others.26,27   

NHC-boranes can also act as radical polymerization initiator. Tehfe et al.28 investigated the use of 3 

different NHC-BH3 as co-initiators in the photopolymerization of trimethylolpropane triacrylate 

(TMPTA) with benzophenone as a photoactivator. The results were compared to triethyl amine borane 

and the reference co-initiator in this type of polymerization: ethyl-dimethylaminobenzoate (EDB). They 

found that while no NHC-BH3 could match the commercial co-initiator, they all significantly improved 

the polymerization and were all better than reactions carried out with the amine borane or no co-

initiator. Adding Ph2IPF6 increased the polymerization rate, for all NHC-BH3, which resembled the one 

of EBD. One notable advantage is that NHC-BH3/benzo/Ph2IPF6 mixtures were stable for at least a week 

whereas EBD mixtures degrade rapidly and have to be freshly prepared.   

Investigation into the mechanism showed that benzophenone (in its triplet state) is an even better 

hydrogen abstractor than tBuO• and that the reaction corresponds to a pure hydrogen atom transfer 

with the triplet state of benzophenone reacting like an alkoxy radical. The increase in polymerization 

rate using Ph2I+PF6
- probably stems from the high rate constant for the oxidation of boryl radicals to 

borenium cations. The conversion releases a phenyl radical which initiates radical photpolymerization 

better than boryl radicals (Scheme III.7).  

 

Scheme III.7: Radical polymerization initiation with NHC-BH3(3BP = benzophenone in the triplet state).28 

 

III.A.3. Uses of NHC-boranes beyond molecular chemistry 

 

While the potential applications of NHC-boranes in molecular chemistry have been extensively studied, 

recently applications in other fields have been explored. 

For example, in biology, where Pak et al.29 showed in 2018, that a NHC-BH3 functionalized with pyrene, 

acting as a fluorescence reporter, could be used to selectively detect HOCl in living cells (Figure III.1). 

Indeed, the NHC-BH3 showed little to no change in fluorescence when reacted with a range of reactive 

oxygen species but its fluorescence decreased significantly in favor of the fluorescence of the reaction 

product (imidazolium) when OCl- was introduced. They showed in NMR experiments that NHC-BH3 had 

a kinetic selectivity for hypochlorite over peroxides that can be as high as 108:1. Tests in solution 
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showed that the detection limit is of 3µM which is much lower than typical biological range of 20-400 

µM. Finally experiments on living cells showed that fluorescence microscopy images of NHC-BH3 

directly reflect the presence of HOCl in the cells with minimal influence of cytotoxicity and 

photobleaching.  

 

Figure III.1: a) NHC-BH3 functionalized by fluorescence reporter and its reaction with HOCl, b) fluorescence 

microscopy images of cells incubated with NHC-BH3 and average Fgreen/Fblue intensity ratios of different 

samples.29 

 

NHC-BH3 have also been tested as potential rocket fuel.30 Indeed, the current rocket fuel of choice, 

hydrazine (and its derivatives), is highly toxic, volatile, carcinogenic and difficult to handle. In 2016, 

Huang et al. postulated that since NHC-BH3 have reducing properties they should have a violent 

exothermic reaction with strong oxidizers, such as WFNA (white fuming nitric acid), which should lead 

to spontaneous combustion. They synthesized 6 different NHC-BH3 with the synthesis of Gardner et 

al.14 by refluxing the corresponding imidazolium with NaBH4 in toluene. All NHC-BH3 exhibited 

hypergolic activity upon contact with WFNA. The shortest ignition time was exhibited by diMe-Imd-

BH3 with 2ms (compared to widely used hydrazine derivative at 4.7 ms) but its high melting point 
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(141°C) makes it an impractical candidate for liquid fuel. The second best candidate was 1-methy-3-

allylimidazol-2-ylidene borane (MeAl-Imd-BH3) which is liquid at room temperature, has high thermal 

and water stability, and exhibited an ignition time of 15 ms (Figure III.2) which is not as fast as hydrazine 

derivatives but still good regarding industry standards.  

 

Figure III.2: Structures of NHC-boranes tested and high-speed camera photos of MeAl-Imid-BH3 falling into 

100% HNO3.30 

 

NHC-boranes have also showed potential as reducing agents in the synthesis of gold and silver 

nanoparticles.31 Indeed Le Quemer presented, in his 2016 PhD dissertation, a synthesis of silane 

stabilized gold nanoparticles using diMe-Imd-BH3 as a reducing agent. Using a Brust-like synthesis, they 

dissolved chloroauric acid in water and transferred it into the organic phase (toluene) using TOAB as a 

phase transfer agent. An excess of octylsilane and 2 equivalents of NHC-BH3 were then successively 
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introduced. The reduction of the gold was indicated by a change of color of the solution. However, 

they found that using an excess of 2 equivalents of NHC-BH3 led to mostly aggregated NPs, but lowering 

the amount of NHC-BH3 to 0.6 and 0.4 eq gave a mixture of aggregates and discrete nanoparticles. 

Finally, lowering down the amount of NHC-BH3 to 0.2 eq led to discrete NPs (no size given). It is unclear 

if all the gold in solution is reduced as it is not discussed. However, it seems unlikely that such a small 

quantity of reducing agent would reduce all the gold. Indeed, even if all 3 hydrides of the NHC-BH3 are 

consumed only 0.6 eq of gold would be reduced. 

In this study, their end goal was to encapsulate metallic nanoparticles in a polymer matrix. Their team 

had already shown the ability of 1,3-dimethylimidazol-2-ylidene bisthionaphtylborane (Scheme III.8) 

to trigger the polymerization of trimethylolpropane triacrylate (TMPTA) upon light irradiation. After 

optimization of the conditions, they found the borane was able to form nanoparticles in MeCN starting 

from either gold or silver acetate. Once that was established, they mixed the metal precursor with 

TMPTA monomers in acetonitrile. The NHC-borane was added to form the nanoparticles before 

irradiating the solution to trigger polymerization effectively trapping the nanoparticles in the matrix 

(Scheme III.8).  

It can be noted that even though they suggest a stabilization of the nanoparticles by thionaphtyls, they 

did not characterize the surface of the NPs. As a result, it is unclear what is at the surface. 

 

Scheme III.8: Synthesis of metallic NPs trapped in polymerized TMPTA by reduction of gold or silver acetate by 

an NHC-borane in the presence of TMPTA monomers.31 

 

The last example came out after the beginning of our research project, yet it comforts the idea that 

NHC-boranes are enough to reduce gold into nanoparticles. The rest of this chapter will confirm these 

possibilities and will present the development of a gold nanoparticles synthesis using NHC-BH3 not only 

as reducing agent but also as NHC sources to stabilize the nanoparticles. Characterization of the 

obtained nanoparticles will also be discussed. 

 



88 
 

III.B. NHC-BH3 synthesis 

 

To ensure consistency, we synthesized our NHC-borane from the 1,3-didodecylimidazolium 2H-Br used 

in Chapter II. The chosen protocol (Scheme III.9) is the most common in the literature and involves the 

in situ deprotonation of the (benz)imidazolium by a strong base (often Na or KHMDS) at -78°C before 

the addition of a BH3 complex (in our case BH3.THF). The reaction mixture is stirred overnight at room 

temperature then purified by flash chromatography. The NHC-borane adduct is readily obtained on a 

gram scale with a 44% yield. As other NHC-boranes of the literature, it is a white powder that is bench 

stable for months (even years).  

 

Scheme III.9: Synthesis of 2-BH3. 

 

The synthesis of the NHC-BH3 from 1,3-didodecylbenzimidazolium 3H-Br was also attempted following 

the same procedure. However, a byproduct is formed in almost the same quantity as the NHC-BH3 

itself (Scheme III.10). The byproduct has been identified as the hydride-reduced benzimidazolium (3-

H2). This led to a difficult purification and poor yield (35% at best). In the rest of this chapter “NHC-

BH3” will thus designate compound 2-BH3. 

 

 

Scheme III.10: 3-BH3 and byproduct formed during the synthesis. 

 

III.C. Nanoparticles synthesis from gold precursor: AuClPPh3 

 

III.C.1. First attempts 

 

It was decided to start from a gold(I) precursor. AuClPPh3 was chosen as it is known to be soluble in 

organic solvents and is already used in the literature as a precursor in gold nanoparticles synthesis.32 
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In an attempt to stay as close as possible to the conditions in Chapter 1, the first experiments were 

carried out in toluene. Upon addition of excess 2-BH3 (6 eq) to a solution of AuClPPh3, the solution 

started to slowly color to brown then pink and finally turned to dark purple after 18h of reaction. 

The obtained nanoparticles were characterized by UV-Vis spectroscopy and TEM (Figure III.3). They 

were of 5.4 ± 1.2 nm in diameter with a plasmon resonance at 570 nm. However, they were not stable 

and kept coalescing over a few days as evidenced by a blue shift of the plasmon band. 

Figure III.3: TEM images of nanoparticles obtained after 6h and 18h of reaction (1eq AuClPPh3 + 6eq 2-BH3) in 

toluene and UV-Vis spectra of the suspension. 

 

As the reaction appeared slow, following it by in situ 1H and 11B NMR was attempted. However, after 

several hours, the only peaks that had shifted belonged to a small impurity present in the NHC-BH3 

batch used. 

This impurity was isolated and characterized by NMR (Figure III.4) and mass spectrometry (ESI+, 

Scheme III.11). The 11B NMR presents a broad singlet at -11.6 ppm that suggests the presence of boron 

in the impurity. The 1H NMR spectrum (Figure III.4) presents peaks in the 4 to 0.5 ppm region only. This 

suggests a dearomatization of the heterocycle and a hydrogenation of the double bond. The peaks in 

the 2 to 0.5 ppm region seem to correspond to the aliphatic chains. Despite several 2D NMR 

experiments, a structure for this impurity could not be confirmed. Moreover, attempts to crystallize it 

were unsuccessful. 
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Figure III.4: 1H NMR spectra of the isolated impurity in CDCl3. 

 

When analyzing the impurity by mass spectrometry (ESI+), 3 peaks at m/z = 409.3679, 831.8206 and 

845.8528 are visible. The proposed atomic compositions corresponding to these masses are presented 

in Scheme III.11. It can be noted that the calculated m/z all differ by about 0.1 unit from the 

measurements. As the isotopic patterns correspond perfectly, this difference likely stems from the fact 

the spectra were recorded in low resolution. Tentative structures were drawn (Scheme III.11). They 

appear to correspond to a reduced form of the imidazolium which has been protonated at one nitrogen 

atom and is able to form stable adducts with the borane. Even though the way these adducts are 

formed and if they are stable remains unclear, the presence of BH3 in the adducts suggests a potential 

reducing power. 
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Scheme III.11: Peaks observed by MS (ESI+) analysis of the impurity, corresponding molecular composition and 

proposed structures. 

 

Once isolated, a few mg (<5) of the impurity were added to a solution of AuClPPh3 (1mg.mL-1). As the 

molar mass of the impurity is unknown it is difficult to know the impurity to gold ratio.  

The reaction slowly turned purple in a similar fashion as when using the contaminated NHC-BH3. 

However, when 6 equivalents of the purified NHC-BH3 were introduced in a AuClPPh3 solution no 

reaction occurred. This confirms the role of the impurity in the formation of the gold nanoparticles. 

It is possible to obtain a larger quantity of impurity by increasing the amount of BH3.THF used in the 

NHC-BH3 synthesis. Indeed, when using 1.05 equivalents of BH3.THF, the mass of the isolated impurity 

is about 10% of the mass of the isolated NHC-BH3. However, when using 1.5 equivalents of BH3.THF, 

the mass of the isolated impurity is 5 times larger than the mass of the isolated NHC-BH3. And the yield 

of the latter drops from 44% to 10%.  

It is worth mentioning that no impurity is observed when using KHMDS as a base instead of NaHMDS. 

Thus, it can be assumed that sodium plays a crucial role in the formation of these species but it is 

unclear which role exactly. As our focus was on the synthesis of gold nanoparticles, no test using 

different bases were carried out.  

 

As mentioned above, once purified the NHC-BH3 no longer reacted with AuClPPh3 in toluene. 

Increasing the quantity of NHC-BH3 up to 20 equivalents proved ineffective, so did heating the solution 

as it led only to a slight reduction of the gold, exhibited by a purple coloration on the side of the vial.   
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III.C.2. Solvent screening 

 

A solvent screening was undertaken to see if the formation of stable NPs from AuClPPh3 and purified 

2-BH3 was possible in other solvents. The results are presented in Table III.1. In all cases a slight excess 

of NHC-BH3 (3 to 5 equivalents for 1 of gold) was used. 

 

AuClPPh3 is insoluble in cyclohexane and diethyl ether. Heating was necessary to dissolve 2-BH3 and/or 

AuClPPh3 in ethyl acetate, acetonitrile, alcohols and DMSO (for the latter temperatures above 100°C 

were needed to dissolve NHC-BH3 which would immediately precipitate upon cooling).  

No reduction was observed in dichloromethane, chloroform and ethyl acetate. In THF, dioxane, 

acetonitrile and acetone, reduction occurred (as evidenced by a change in color of the solution from 

colorless to blue or purple) but was only partial (very slight coloration). Aggregated NPs were visible 

by TEM in the case of acetone. In toluene, partial reduction occurred on the side of the vial but only 

when heat was applied (T > 80°C). What seemed to be complete reduction was observed in DMSO and 

alcohols. The particles obtained in DMSO were very large and unstable. In the case of alcohols, clusters 

would be formed but would slowly evolve to form larger nanoparticles (Figure III.5) and finally a gold 

mirror on the side of the vial in a matter of days.  

 

Table III.1: Solvents screened in the reaction of AuClPPh3 and 2-BH3. 

 

       * if heated above 50°C, **if heated above 100°C 
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Figure III.5: TEM images and UV-Vis spectra of NPs (1 eq AuClPPh3 and 6 eq 2-BH3) at day 1 and day 7 in 

ethanol. 

 

The success in ethanol was surprising as it is the solvent used to precipitate the nanoparticles of 

Chapter II and also because it is a protic solvent which seems incompatible with the existence of highly 

reactive carbenes. 

A possibility is that the NHC-BH3 is able to reduce AuClPPh3 in alcoholic solvents but the phosphine 

remains on the surface and provides stabilization to the nanoparticles. After a time, the phosphine 

probably starts to leach off of the NPs leading to their slow aggregation. This theory seems to be 

confirmed by Li et al. (Scheme III.12).33 Indeed, they describe a synthesis starting from AuClPPh3 in 

ethanol and upon addition of a reducing agent (tBuNH2BH3 in their case) they obtain nanoclusters 

which then coalesce and grow into nanoparticles until their growth is halted by addition of thiols that 

bind to the surface.  

 

Scheme III.12: Synthesis of gold nanoparticles from AuClPPh3 and tBuNH2BH3 in EtOH.33 
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Finally, this theory seemed to be confirmed by the addition of NaBH4 to AuClPPh3 in ethanol which 

yielded clusters similar to the ones obtained with NHC-BH3 without any potential stabilizing agent 

present in the reaction medium (Figure III.6). 

 

Figure III.6: TEM images of clusters obtained without a NHC source from AuClPPh3 and NaBH4 in ethanol. 

 

III.D. Nanoparticles synthesis from gold precursor HAuCl4.3H2O 

 

As a result, AuClPPh3 was dropped as gold precursor in favor of HAuCl4.3H2O. HAuCl4.3H2O is highly 

soluble in water and often used as a gold precursor in aqueous synthesis of gold nanoparticles.34–37  

Attempts to use a biphasic system of water and toluene, dichloromethane or chloroform, all led to the 

formation of a metallic gold layer at the interface of the 2 phases. 

HAuCl4.3H2O is also soluble in chloroform up to a point (<100 mM) which allowed for a monophasic 

system. 

A first attempt using 4 equivalents of NHC-BH3 for 1 equivalent of gold yielded monodisperse spherical 

nanoparticles (of 5.8 ± 1.4 nm in diameter). However, reproducibility was quickly found to be an issue. 

Indeed, subsequent attempts led to the formation of nanoparticles ranging from slightly bigger (8.8 ± 

2.2 nm) than the first attempt to a mixture of smaller and larger NPs to completely polydisperse NPs 

of different shapes (Figure III.7). Decreasing the temperature to 0°C or increasing it to 50°C yielded 

similar unreproducible results. 



95 
 

 

Figure III.7: TEM images of several attempts at synthesizing nanoparticles from HAuCl4.3H2O (1 eq) and 2-BH3 (4 

eq) in CHCl3. 

 

Several hypotheses could be put forward for the difference in behavior: the use of a metallic spatula 

could have pre-reduced the gold precursor leading to inconsistent results, the amount of water 

molecules in the precursor is never constant and thus could lead to inconsistency in the gold to ligand 

ratio, the amount of water in the chloroform, which was used straight from the bottle, could also play 

a role. The acidity of chloroform could also be an issue. 

We also found that HAuCl4.3H2O remains soluble and stable when a chloroform solution was diluted 

with a large amount of toluene. When reacted at different Au: NHC-BH3 ratios with NHC-BH3 dissolved 

in toluene, an effect of the ratio on the size was found (Figure III.8). Indeed, when the quantity of NHC-

BH3 was increased, the size of the obtained nanoparticles decreased. However, subsequent attempts 

were unable to reproduce the results.  

Given the major reproducibility issues HAuCl4.3H2O was dropped as a precursor.  
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Figure III.8: TEM images and distribution of gold nanoparticles synthesized with different ratios of 

HAuCl4.3H2O: 2-BH3 in CHCl3: Toluene (1:9). 

 

III.E. Nanoparticles synthesis from gold precursor AuClSMe2 

 

The previous studies led to a third gold precursor: AuClSMe2. AuClSMe2 is routinely used in 

organometallic chemistry to synthesize gold chloride complexes due to its solubility in organic solvents 

(such as dichloromethane) and lability of dimethyl sulfide. It is, among other things, used in the 

synthesis of NHC-AuCl complexes.9 

Once again, the synthesis was carried out in toluene. Due to the low solubility of the precursor in that 

solvent, a concentration of 1mM in gold was usually used and solutions were kept in the dark to 

prevent premature degradation (even though after a few hours the precursor degraded nevertheless 

forming a yellow halo on the side of the vial).  
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III.E.1. Reaction conditions effect 

 

We found that the best conditions for the synthesis of gold nanoparticles in toluene were to mix equal 

volumes of a 1mM solution of AuClSMe2 and a 7mM solution of 2-BH3 (Scheme III.13). Upon addition 

of NHC-BH3 into the gold solution, the reaction medium turned deep red within a few seconds. 

Reaction conditions were then further explored to study their effect on the size and/or morphology of 

the obtained nanoparticles 

 

Scheme III.13: Gold nanoparticles synthesis from 2-BH3 and AuClSMe2. 

 

III.E.1.a. Solvent 

 

A few solvents were screened. When dissolved in dichloromethane or chloroform, the mixing of the 

compounds led to a black bubbling solution meaning reduction to gold(0) but no NPs.  

When introduced in the reaction medium as co-solvents, acetone, ethanol and THF all led to 

aggregated particles. In the case of THF a slow discoloration of the solution could be observed during 

48h at which point it became completely clear. This discoloration suggests a disintegration of the 

aggregates into molecular gold complexes. 

As a result, toluene was kept as the reaction solvent. 

 

III.E.1.b. Water 

 

NHCs are highly reactive species which are known to be moisture sensitive. Therefore, it can be 

assumed that the water-content of the solvent would impact the synthesis. The first attempts were 

carried out in toluene straight from the bottle. Before opening, such toluene already contains about 

200 ppm of water, an amount that can easily double once opened.38 

Tests with bottled toluene, distilled toluene and distilled toluene shaken with water were carried out 

in order to study the influence of water in the reaction medium (Figure III.9). 
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Figure III.9: TEM images and distribution of nanoparticles obtained in distilled, bottled and water-saturated 

toluene. 

 

As exhibited in Figure III.9, all syntheses gave the same results with NPs at around 7 nm.  

It is possible that the NHCs are already so close to gold when they are liberated, that they bind straight 

away with gold, and don’t have time to diffuse and react with the water in solution. For example, this 

would be the case if reduction by the BH3 moiety was the trigger to the release of the NHCs. It is also 

possible that there is such an excess of NHCs compared to gold that even if some liberated NHCs do 

react with water, the fraction needed to stabilize the NPs binds to gold before being able to be 

quenched.  

 

III.E.1.c. Ligand to gold ratio 

 

As seen in Chapter II, ligand to gold ratio is known to influence the size of obtained nanoparticles. As 

shown in Figure III.10, increasing the quantity of NHC-BH3 decreased the size of the NPs, reaching a 

minimum of 5.1 ± 1.0 nm for a 1:28 ratio. Decreasing the ratio below 1:7, resulted in an increase in NP 

mean diameter as well as a loss in stability. Indeed, aggregates were formed along with NPs in 

suspension. The largest NPs of 10.8 ± 1.2 nm were obtained for a 1:3 ratio. Lower ratios (1:1 and 1:0,5) 
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led to an immediate reduction of gold as exhibited by a color change of the solution form colorless to 

dark blue but no disperse nanoparticles were observed. 

 

Figure III.10: TEM images and distributions of gold nanoparticles synthesized with different ratios of AuClSMe2: 

2-BH3 in toluene. 

 

III.E.1.d. Concentration 

 

In order to increase the quantity of NPs synthesized from a single batch, we tried increasing the 

concentration of the gold precursor (Figure III.11). Solutions of 2 and 4 mM were prepared alongside 

the usual 1mM one. However, the low solubility of the complex led to its very slow dissolution. In fact, 

the dissolution was so slow that the solution started to degrade (as exhibited by a yellow halo on the 

side of the vial) before complete dissolution of AuClSMe2.  
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Figure III.11: TEM images and distributions of nanoparticles synthesized from different concentrations of 

AuClSMe2 in toluene (1:7 Au:2-BH3). 

 

This is probably why higher concentrations led to smaller nanoparticles. Indeed, as gold deposited itself 

on the side of the vial, the concentration in solution was most likely lowered leading to a higher 

proportion of NHC-BH3 compared to gold than originally planned. As a result, to avoid any premature 

degradation of the solution and to ensure the right concentration of precursor in solution, 1mM 

concentration remained the standard condition. 

 

III.E.1.e. Stirring 

 

Given the small quantity of solvent typically used (4mL), tests were usually carried out without 

additional stirring. Several stirring speeds were studied (Figure III.12) but no reproducible influence 

was found on the resulting nanoparticles, except for 1000 rpm which showed coalescing nanoparticles. 

Thus, no stirring remained the standard.  
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Figure III.12: TEM images and distributions of nanoparticles synthesized with different stirring speeds (1:10 

Au:2-BH3 in toluene). 

 

 

III.E.1.f. Temperature 

 

Temperature can have a significant effect on the synthesis of nanoparticles. By modifying the 

temperature, we hoped to be able to change the rate of formation of NPs and thus their size. The 

results are presented in Figure III.13. 
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Figure III.13: TEM images and distributions of nanoparticles synthesized from solutions at different 

temperatures (1:7 AuClSMe2: 2-BH3 in toluene). 

 

Increasing the temperature of the gold solution led to quick degradation of the solution and in turn 

yielded larger particles with observable “giant” particles of up to 150 nm. Other than that, no clear 

trend can be discerned when comparing cold and room temp gold precursor solutions reacted with 

cold, room temp or hot NHC-BH3 solutions.   

 

III.E.2. Surface characterization 

 

The question remained the same as in Chapter II: what is on the surface of our nanoparticles? Is it 

NHCs, imidazoliums, a mixture of both or something else? 

As in Chapter II, the NPs were purified by precipitation with EtOH and centrifugation before 

characterization. 

 

 

 



103 
 

III.E.2.a. MS 

The supernatant of the centrifugated NPs was analyzed by Mass spectrometry (ESI+) (Figure III.14). The 

signal corresponding to the AuNHC2 complex was present. As in Chapter II, it appears as a strong 

indication that the carbene is indeed released during the nanoparticle synthesis. The formation of free 

imidazolium can also be noted as none was introduced in the initial synthesis. It likely comes from the 

degradation of NHC-BH3. It is unsure if this degradation happens directly in the reaction medium, 

during the purification process or during the mass analysis. 

Signals corresponding to an adduct between NHC-BH3 and sodium could also be observed.  

 

Figure III.14: Mass spectrum (ESI+) of the supernatant of centrifugated NPs (diluted in methanol). 

 

III.E.2.b. NMR 

 

The centrifugated NPs were dried, redispersed in deuterated toluene and analyzed by 1H NMR. 

However, no signal was obtained probably due to the low concentration of NPs in the tube.  

Following the reaction in situ by liquid NMR was attempted and will be discussed in “Mechanistic 

studies”. 

Given the difficulties in obtaining a signal in the previous chapter, and the sheer amount of scale up it 

would require to obtain an appropriate sample, solid state NMR was not attempted. It can be noted 

however that 13C marked (20%) NHC-BH3 in the C2 was obtained from marked imidazolium (see 

Chapter II) and can be used to synthesize nanoparticles. 
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III.E.2.c. XPS 

 

Both the NHC-BH3 and the NPs were analyzed by XPS. The general spectrum of the NHC-BH3 showed 

the presence of carbon, nitrogen and boron. High-resolution spectra for C1s, N1s and B1s core levels 

enabled the assessment of the NHC-BH3 composition which was in accordance with the expected 

composition of the molecule (Table III.2).  

The same analysis of the gold NPs showed the presence of carbon, nitrogen and gold. The presence of 

metallic gold (84eV) as a single component and the simultaneous disappearance of boron on the B1s 

high resolution spectrum confirms the formation of nanoparticles. Once again, the C1s and N1s spectra 

are in accordance with the ligand composition attesting to the ligand integrity on the nanoparticles' 

surface. 

 

Table III.2: C1s, N1s and B1s XPS data of 2-BH3 and corresponding nanoparticles. 

 

 

The C1s photopeak deconvolution was carried out for the NHC-BH3 and the nanoparticles (Figure 

III.15). A low energy component was found for both: at 284.3 eV corresponding to the C-B bond in 

NHC-BH3, and 283.9 eV corresponding to the C-Au bond on the surface of nanoparticles as it cannot 

correspond to a C-B bond anymore since no boron was detected in the sample. 
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Figure III.15: Deconvoluted C1s XPS spectra of 2-BH3 and corresponding nanoparticles (blue= aliphatic carbon, 

green = aliphatic C-N, orange = aromatic carbon, grey plasmonic shake-up peak). 

 

The N1s spectra obtained for 2-BH3 and the corresponding nanoparticles are presented in Figure III.16 

along with the ones for the imidazolium and the NPs from Chapter II. The N1s energetic position for 

the NHC-BH3 is shifted compared to the imidazolium (400.9 eV and 401.8 eV respectively) whereas the 

one for the nanoparticles is almost identical (400.3 eV compared to 400.2 eV in Chapter II). This 

lowering of the energy corresponds to a strengthening of the interaction between the carbenic carbon 

and its environment and is consistent with an evolution from a C-B to C-Au bond. This confirms the 

stabilization of the nanoparticles by NHCs. 
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Figure III.16: Au4f, B1s, N1s XPS spectra of 2-BH3 and corresponding gold nanoparticles and N1s spectra of 2H-

Br and corresponding nanoparticles. 

 

III.E.3. Mechanistic study 

 

Once the stabilization of the NPs by NHCs, and the role of NHC-BH3 acting as a dual reducing agent and 

NHC-precursor, were established, we tried to understand the mechanism of their formation. Indeed, 

many things remain unclear: why and how does the NHC decoordinates from the borane to bind to 

gold? Does the reduction occur via hydride donation or a radical pathway? Does it occur before, after 

or simultaneously to the coordination of the NHC on gold? What happens to the BH3 moiety?  

 

III.E.3.a. NMR 

 

As stated previously, we attempted to follow the reaction in situ by 1H and 11B solution NMR. Solutions 

of AuClSMe2 (1mM) and NHC-BH3 (7mM) were prepared in toluene, then aliquots of the same volume 
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were collected from each solution, dried in vaccuo and dissolved in deuterated toluene. Upon mixing, 

the solution turned red and was immediately transferred to an NMR tube and analyzed.  

The main observable species, by 1H NMR, was NHC-BH3 with only a small new signal at 6.0 ppm (Figure 

III.17).  It was then clear that only a small fraction of the NHC-BH3 was used in the synthesis of the 

nanoparticles. Yet an excess was needed to obtain stable NPs. 

The same experiment was carried out with a AuClSMe2:2-BH3 ratio of 1:1 instead of 1:7. Immediately 

the solution turned blue (which signals the formation of aggregates) and was analyzed by NMR. This 

time the new species was formed in larger proportions. Upon further addition of gold in the mixture, 

up to a Au:NHC-BH3 ratio of 2:1, NHC-BH3 seemed to completely disappear in favor of the new species 

(Figure III.17). For the latter, a broad singlet could be observed at -18 ppm by 11B NMR and was 

corresponded to the new species. It can be noted that upon introduction of AuClSMe2, a peak 

corresponding to unligated SMe2 (not shown) also appears at around 1 ppm in 1H NMR. The new 

species has been identified as NHC-BH2Cl. It is readily synthesized from NHC-BH3 and HCl in 

dichloromethane.  

 

Figure III.17: a) NHC-BH2Cl synthesis and b) in-situ 1H NMR of different Au:2-BH3 ratios and NHC-BH2Cl in tol-d8. 
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III.E.3.b. MS 

 

NHC-BH2Cl was also indirectly detected when the supernatant of a synthesis using 1 equivalent of NHC-

BH3, for 1 eq of AuClSMe2, was analyzed by mass spectrometry (ESI+). The mass spectrum (Figure III.18) 

shows two signals of interest. One at 441.4347, which corresponds to an adduct of 2-BH3 and sodium, 

and one at 471.4454, which corresponds to an adduct of NHC-BH2OCH3 and sodium (theoretical m/z = 

471.4461). As the mass spectrometry sample was diluted with methanol prior to analysis, it is our 

assumption that NHC-BH2Cl reacted with methanol to form the detected species. 

 

Figure III.18: Mass spectrometry spectrum (ESI+) of a 1:1 AuClSMe2:2-BH3 sample’s supernatant diluted in 

methanol (top) and simulation of the corresponding structures. 

  

After mass analysis by negative electrospray (ESI-) of a 1:1 crude solution, two species were identified 

(Figure III.19): [NHC-BH2Cl2]- and [NHC-BH2SMe2Cl]-. The former seems to correspond to NHC-BH2Cl 

ionized by Cl-. However, while the mass and isotopic patterns of the latter match well with the 

experimental signal it is unclear which moiety would bare the negative charge.  

This confirms the formation of NHC-BH2Cl as an intermediate in the reaction and even if not detected 

by ESI+. 
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Figure III.19: Negative mass spectrometry spectrum (ESI-) of a crude 1:1 Au:NHC-BH3 sample diluted in 

dichloromethane bottom and simulation of the proposed corresponding species. 

 

It can be noted however than when introduced into a gold solution, NHC-BH2Cl did not appear to 

reduce gold as no change in color was observed.  

 

III.E.3.c. Theoretical chemistry 

 

As seen in the beginning of this chapter, NHC-boranes are known reducing agents that act via either 

hydride transfer or a radical pathway.1 2-BH2Cl could be generated by either one. In order to determine 

the most likely scenario, theoretical calculations were undertaken at the Density Functional Theory 

(DFT) level using the Gaussian 09 package of programs. Geometry optimizations were carried out using 

thePBE0 (PBE1PBE) hybrid functional, along with the def2-TZVP basis set for all atomic species. The 

nature of the minima of each optimized structure was verified by harmonic frequency calculations. 

These theoretical calculations were performed by Dr. Yves Gimbert (Sorbonne Université / Université 

Grenoble Alpes).  
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III.E.3.c.i. Hydride transfer 

 

The first mechanism studied was the one involving a hydride transfer. The proposed mechanism is 

shown in Figure III.20. It should be noted that this is a tentative mechanism and many options can be 

envisioned. 

First, a hydrogen from the NHC-BH3 coordinates to gold leading to the decoordination of dimethyl 

sulfide. Dimethyl sulfide then comes back to coordinate to the boron atom inducing the release of a 

gold hydride. The chloride from this gold hydride coordinates to the boron atom, freeing once again 

dimethyl sulfide which binds back to the gold leading to the formation of NHC-BH2Cl (observed by MS) 

and HAuSMe2. The latter can then react with AuClSMe2 to form a binuclear gold complex with a 

bridging hydrogen. This complex can then react further with NHC-BH3 to form more exotic species 

which in the end transform into Au(NHC)2 (observed by MS), NHC-Au-BH4, NHC-Au-SMe2 and Au(BH4)2.  

Due to the nature of calculations, attributing formal charges to complexes with certainty, and thus 

oxidation states to metals, is difficult. That is why none is explicitly written on the mechanism. 

However, with a few assumptions, one can try to attribute them. Assuming a negative charge on the 

gold hydride 5, and a neutral charge on the other gold species, it appears that gold has an oxidation 

state of +I throughout the reaction up to the last step where 14 and 16 would have an oxidation state 

of 0 and 15 an oxidation state of +II. Gold(0) species are able to react with gold(I) species, according to 

the litterature,40 to form bigger clusters which are then able to react with each other to form even 

bigger clusters. These are likely the source of nucleation of nanoparticles. The fate of 15 is unclear but 

as a supposed gold(II) species it is not expected to be very stable.  

The fact that species 7 and 4 were detected by MS (as seen above) lend some credibility to this 

mechanism. However, it is possible that the real mechanism is even more complex and involves several 

simultaneous reaction pathways. Indeed NHC-Au-Au-NHC hydride bridged species, not entirely unlike 

10, have been shown by Sadighi et coll.41 to precipitate into colloidal gold when reacted with nBuLi. So 

while this proposed mechanism explains the formation of NHC-BH2Cl and gold(0) species, it is far from 

the only possible pathway. 
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Figure III.20: Pathways for the formation of Au(0) species starting from NHC-BH3 and AuClSMe2 (energies in 

kcal.mol-1). 

 

III.E.3.c.ii. Radical mechanism 

 

We considered that under the experimental conditions used, it was possible to generate the radical 

species NHC-BH2
•. For example, traces of thiols in the gold precursor could act as radical initiators. 
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Indeed such N-heterocyclic carbene boryl radicals species are known42 and considered relatively short-

lived. In presence of AuClSMe2 gold complex, this NHC-BH2
• radical can react in various way according 

the literature: (i) by directly capturing Cl atom to give the compound NHCBH2Cl (observed in the 

reactive middle) and Me2SAu(0)•, (ii) by being trapped first by the “AuCl” complex43 before further 

reactions. These two possibilities have been investigated (Scheme III.14).  

The first path (red) led to the formation of the compound NHCBH2Cl and the radical •AuSMe2, through 

a transition state (TS2) which was possible to determine, and is energetically slightly below the 

reagents (0.6 kcal.mol-1). This transformation is exothermic by 11.8 kcal.mol-1. The radical dimerizes 

very rapidly to give Me2SAuAuSMe2, a gold(0) complex strongly stabilized in energy (≈53 kcal.mol-1). It 

is possible, on this complex, to replace a Me2S group by an NHC, in a barrier-free process, exothermic 

by 19 kcal.mol-1. The second path is relative to the ability of a chlorine gold complex to trap a radical. 

Corma et al.43 have evidenced this possibility with benzyl radical and various gold complexes as such 

AuCl, AuCl3, HAuCl4.  

We have been able to obtain a minimum of energy for a structure corresponding to a preorganization 

of the radical NHCBH2
• and AuClSMe2 just before the interaction between them. The energy required 

to go, from the pre-organized form, to the form where the radical reacts on gold is almost zero (TS1, 

0.1 kcal/mol), which effectively suggests that the process is barrier-less. Starting from this structure 

stabilized by interaction of the radical on Au, it is possible to transfer the Cl atom on the boron by a 

homolytic rupture of the Au-Cl bond, which implies exactly the same TS2 (activation energy this time 

of 20 kcal.mol-1) as found during the direct transfer calculated in the first path. 
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Scheme III.14: Pathways for the formation of Au(0) species starting from NHC-BH2
• radical and Cl-Au-SMe2. 

Distances in Å, angles in °, energies in kcal.mol-1. 

 

III.E.3.d. EPR 

 

In order to confirm a radical pathway, we decided to study the reaction by electron paramagnetic 

resonance (EPR). Our goal was first to generate the NHC-BH2
• radical in order to have a reference 

spectrum. Then, the radical, if stable enough, could be directly introduced in a gold solution to see 

what happened. Concurrently, having the reference spectrum would make it easier to detect the 

radical in an in situ reaction starting from NHC-BH3 and AuClSMe2.  

Generation of a NHC-Boryl radical has been described in the litterature:3,22 for instance, Ueng et al. 

reported that irradiating a solution of diDipp-Imd-BH3 (8-BH3, Figure III.21) in the presence of DTPB (di-

tert-butyl peroxide) either in benzene or in tert-butyl benzene allowed for the detection of a short-

lived boron centered radical (Scheme III.15 and Figure III.21).22 

 

Scheme III.15: Generation of NHC-BH2
• by hydrogen abstraction. 
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As the gold nanoparticles are generated in toluene, we slightly modified this literature procedure, by 

dissolving 2-BH3 in toluene, added DTPB (di-tert-butyl peroxide) and irradiated the solution with an 

unfiltered mercury lamp.  

 

However, no signal was detected despite the solution turning yellow, attesting that a reaction did 

occur. 

Thus, we went closer to the original system. 8-BH3 was dissolved in toluene and irradiated in the 

presence of DTPB. No signal was detected either. However, when the solvent was switched to benzene, 

in agreement with the literature, an EPR signal centered at 3330 G (g=2.017, Figure III.21) was detected 

which is very similar to the one reported for 8-BH2
•.22  

 

Figure III.21: 8-BH3 structure and corresponding EPR spectrum. 

 

Thus, in our conditions, toluene probably acted as a radical trap and reacted with DTPB before it was 

able to react with the borane.  

We thus tried to generate 2-BH3 in benzene, but again no signal was detected. Several attempts were 

made in order to shorten as much as possible the irradiation time before recording the spectrum but 

they were all unsuccessful.  

It has been showed in the literature that NHC-BH2
• radicals bearing short alkyl groups on the nitrogen 

atoms are very transient.44,45 It is possible that 2-BH2
• is transient as well, as unlike 8-BH2

• it does not 

have neighboring aromatic rings to act as stabilizers. Due to this transient state, low temperatures 

and/or radical trapping experiments would be necessary in order to obtain a signal.  

 

In a last attempt to confirm a radical mechanism, TEMPO was added to the reaction medium at a 9:10 

ratio compared to 2-BH3. It was hoped that if formed, the radical would be scavenged by TEMPO and 

thus prevent the formation of gold nanoparticles. However, that was not the case, and nanoparticles 
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formed as usual. The same thing happened when adding an excess of BHT (butylated hydroxytoluene) 

in the medium. This suggests that either no radical is formed or that it reacts faster with gold that with 

TEMPO or BHT. 

 

III.E.3.e. Discussion 

 

So far in this chapter, we have showed that stable gold nanoparticles could be prepared in toluene 

from AuClSMe2 and NHC-borane with long alkyl chains such as 2-BH3. The nanoparticles size can be 

tuned in the range 11-5 nm through the Au:2-BH3 ratio. At least 7 equivalents NHC-BH3 per Au seems 

necessary to avoid the formation of aggregates even if reduction of gold occurs with less than 1 

equivalent of borane.  

The characterization performed by XPS on the isolated nanoparticles indicates that the stabilizing 

ligands are NHC. Indeed, a characteristic shift was observed on the N1s spectrum and the integrity of 

the ligand on the surface was confirmed by the overall C/N ratio.  

However, the pathway from the reagents to the final nanoparticles, as well as the mechanism that 

provides the NHC from the NHC-BH3, remain unclear despite some attempts to gain insight into the 

process by theoretical calculations. Yet as the ion [Au(NHC)2]+ has been observed by MS-ESI+, some 

NHC have to be generated in the medium. 

The quantity of NHC that needs to be liberated may be minimal however. Indeed gold nanoparticles 

of around 7 nm in diameter have ca. 22% of their atoms on the surface. Studies on SAMs have found 

a ligand density around 4 NHC/nm2. This would correspond to ca. 1 NHC for 3 gold atoms, and thus 

only ca. 7% of NHC relatively to gold would be necessary. Therefore, with a NHC-BH3/Au starting ratio 

of 7, just 1% of the NHC-BH3 would have to transform into NHC to generate enough surface ligands. 

Concerning the reduction of Au(I) to Au(0), it appears that it can be achieved with only half an 

equivalent of NHC-BH3. Moreover, according to 1H and 11B NMR, NHC-BH2Cl was the only new 

derivative quantitatively evidenced. Thus, the reduction process could be globally written as follows: 

2 AuClSMe2 + NHC-BH3 → 2 Au(0) + NHC-BH2Cl + HCl + 2 SMe2 

Indeed, the liberation of SMe2, unligated to gold, was also detected by 1H NMR. The only remaining 

species to detect would be HCl. 
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III.E.4. Reproducibility issues 

 

Despite being reproducible for several months, experiments suddenly stopped working. Instead of 

monodisperse nanoparticles, only aggregates were obtained. Meaning that the NHC-BH3 was still 

performing as a reducing agent but not as a ligand, or not as well. 

 

The main focus in this part was on reaction that worked vs. those that did not. As a result, most 

observations are based on the color of the solution. Indeed, as stated briefly in Chapter I, LSPR is 

responsible for the color of gold nanoparticles in solution and is determined mostly by the nature of 

the metal, the size and shape of the NPs and their environment (ligand and solvent). Since the metal, 

ligand and solvent remain constant throughout my tests, the only things that should affect the LSPR 

(and thus color of the solution) are the size, shape and aggregation of the nanoparticles.  

A blue or black (often slightly turbid) solution means aggregates, deep translucent red is desired as it 

translates into monodisperse nanoparticles free of aggregates, brown means very small nanoparticles 

(often around or less than 3 nm), transparent means no gold reduction. Combinations of the different 

colors either means monodisperse nanoparticles of a slightly different diameter than the purely red 

ones (red-brown = smaller and purple = bigger) or in the case of purple it could also mean a mixture of 

aggregates and smaller dispersed nanoparticles (which can easily be determined by UV-Vis 

spectroscopy). 

 

After testing several batches of NHC-BH3 with different pots of gold precursor, it was concluded that 

the most recent batches were faulty. To this day it is unclear why, but as even a recrystallized batch of 

NHC-BH3 did not work, we assume that something was present inside the working batches and not the 

faulty ones. 

1H and 11B NMR of all the batches still available were carried out. While no differences were observed 

on the boron spectra, when looking in the baseline of 1H NMR small peaks (< 2%) could sometimes be 

observed. However, no clear pattern was discernible and the peaks were too small to guess what 

species they could belong to.  

As the problem was stabilization of our nanoparticles, we assumed that the unknown impurity could 

be an NHC precursor formed during the synthesis of the NHC-BH3. Several hypotheses were formulated 

and are listed below. 
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III.E.4.a. Silica 

 

The last working batch of NHC-BH3 was synthesized in June 2017, the next batch was synthesized in 

February 2018 and was faulty, along with every batch after that. This corresponds to a change in silica 

gel precursor. Indeed, up to that point Davisil® silica produced by Grace was used. After that the lab 

switched to a silica gel with the same granulometry (40-63µm with 60Å porosity) but which is known 

to be slightly more acidic (pH 6-7) than the Davisil® silica (pH= 7.3). A new pot of silica was purchased 

from Carl Roth which is now in charge of reselling Grace’s Davisil® silica in Europe.  

Unfortunately, after purification on the new silica, the NHC-BH3 that came out was also faulty.  

A purification by precipitation instead of column chromatography was also attempted. However, while 

a nearly pure NHC-BH3 readily recrystallizes from acetonitrile, the crude reaction mixture did not.  

 

III.E.4.b. Byproduct from the NHC-BH3 synthesis 

 

When analyzing the crude of NHC-BH3 syntheses by 1H NMR a second species is often observed in 

various proportions (Figure III.22). The peaks are close in position to those of an imidazolium but do 

not present the characteristic peak at around 10 ppm. It is not impossible that some of this species 

would pass through column chromatography undetected and have a role in the NPs synthesis. 

 

Figure III.22: 1H NMR spectra of 2H-Br, 2-BH3 and the crude reaction mixture of a 2-BH3 synthesis (working 

batch) in CDCl3. Red dots = byproduct signals. 
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A crude of an NHC-BH3 synthesis was tested and yielded nanoparticles (as exhibited by a red solution). 

However, after rapid filtration on a silica plug, 2-BH3 appeared very clean (1H NMR) and did not give 

nanoparticles as expected. Moreover, a portion of the crude was stored in the same conditions as 

other batches of 2-BH3 (in air, room temperature) and was tested again after a month. This time 

however no nanoparticles were obtained. 

Finally, this species can be observed in crudes of working and faulty batches with no identifiable trend 

(Table III.3).  

 

Table III.3: Ratio of byproduct per NHC-BH3 determined by crude 1H NMR of different batches. 

 

 

III.E.4.c. Byproduct from the imidazolium synthesis 

 

Mass spectrometry analysis comparing a faulty batch to a working one showed very few differences. 

However, a small peak corresponding to a monoalkylated borane (9-BH3) could be seen a bit more 

clearly in the working batch than in the faulty one. This would mean the problem could originate from 

the synthesis of the imidazolium salt instead of the NHC-BH3. 

The monoalkylated imidazole and corresponding amine borane (9-BH3) were synthesized (Scheme 

III.16). Imidazole was deprotonated by potassium hydroxide in DMSO and then reacted with a slight 

default of bromododecane for 48h at room temperature. After purification by liquid phase extraction, 

the mono alkylated imidazole was reacted at low temperature with BH3.THF to give the final product 

as an oil. 

 

Scheme III.16: Synthesis of the amine borane 9-BH3. 
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Once isolated, neither addition of the imidazole, nor the amine borane helped in the NPs synthesis. 

(Even though the amine borane when used in large excess, does give nanoparticles albeit not stable 

over time, thus showing the poor stabilizing properties of 9). 

 

III.E.5.d. Dimer 

 

Free NHCs are known to dimerize according to the Wanzlick equilibrium (Scheme III.17).46 Such dimers 

are prepared in a glove box due to their reactive nature and the dimerization is usually prevented by 

bulky N-substituents. We thought that maybe a small portion of the NHC formed in situ during the 

synthesis of 2-BH3 did dimerize, thus preventing the coordination of the BH3 moiety. The dimer would 

then have to be stable enough to pass through silica gel chromatography unscathed. 

 

Scheme III.17: Wanzlick equilibrium. 

 

To verify this theory, the imidazolium salt was deprotonated with KHMDS in THF at -78°C, without 

introducing BH3.THF, and then stirred overnight at room temperature. This, in theory, would form 

NHCs which would have nothing to coordinate to but each other, leading to the formation of dimers.  

Given that once the NHC-BH3 is formed it is handled in air, we did not take any specific precaution in 

order to stick as closely as possible to our real reaction conditions.  

The crude was analyzed by 1H NMR in CDCl3. The NMR spectrum of the crude looks like a mixture of 

several species. Column chromatography was carried out and two species were isolated.  

Adding each species separately to a nanoparticle synthesis using a faulty batch of NHC-BH3 did not 

yield nanoparticles. Indeed, reduction occurred and the blue color of the samples indicated the 

formation of only aggregates.  

It can be noted that adding some of the crude reaction mixture to a similar synthesis did yield 

nanoparticles (as evidenced by a red-brown solution). However, when using this crude mixture directly 

on a gold solution, it turned purple. This indicates the formation of (large and/or partially aggregated) 

nanoparticles despite the absence of obvious reducing agent. It is thus possible that other species 

present in the crude (for instance KHMDS) may be responsible for its ability to form nanoparticles. 
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III.F. Conclusion 

 

To conclude, gold nanoparticles synthesis was attempted from three different gold precursors. After 

optimization, AuClSMe2 was found to be the best precursor. Different reaction conditions were tested 

and it was found that the reaction performed best at room temperature with no influence from the 

water content of the solvent or stirring speed. The ligand to gold ratio was found to be crucial to control 

the size of the gold nanoparticles. Indeed, increasing the amount of NHC-BH3 decreases the size of the 

nanoparticles from ~11 nm to an apparent limit of 5 nm.  

The nanoparticles were characterized by a range of techniques. XPS confirmed the stabilization of the 

NPs by NHCs. Studies were conducted to try to understand the mechanism. NHC-BH2Cl was found to 

be a possible intermediate in the reaction. DFT calculations were carried out, but the exact reaction 

pathway remains unclear. 

Finally, despite being reproducible for over a year, the synthesis ceased working. The problem was 

found to come from the batches of NHC-BH3. Indeed, some batches were working while others were 

not. Our theory is that an impurity, acting as a sort of catalyst, is present in the working NHC-BH3 

batches. Several hypotheses were put forward; however, none seems to be the right one. It is possible 

that a combination of factors is responsible and more work is needed to solve the issue. 
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CHAPTER IV: SYNTHESIS OF MESOIONIC CARBENE-CAPPED GOLD 

NANOPARTICLES FROM TRIAZOLIUM SALTS AND MIC-BH3 

 

IV.A Mesoionic carbenes in the literature 

 

As mentioned briefly in chapter I, imidazol-2-ylidene NHCs are not the only structure possible. Indeed, 

if an imidazolium is protected at the C2 position, for example by an alkyl or aryl group, the C4 or C5 

position can be deprotonated to form what is often referred to as an “abnormal” or “mesoionic” 

carbene. The term “abnormal” simply refers to the difference between the imidazol-4-ylidenes and 

imidazole-2-ylidenes which are considered “normal”. The name mesoionic comes from the fact that, 

it is not possible to write a neutral structure for such carbenes. Indeed, a plus and minus charge have 

to be introduced on the structure (Scheme IV.1).  

Normal NHCs are already strong neutral sigma donors but abnormal NHCs are expected to be even 

stronger due to the presence of only one nitrogen atom adjacent to the carbene.1  

While the first example of imidazol-4-ylidene was described in 2001,2 a new class of 

abnormal/mesoionic carbenes was described in 2008 by Albrecht et coll.: 1,2,3-triazol-5-ylidenes.3 

While both technically present a mesoionic character, in the rest of this chapter mesoionic carbene 

(MIC) will designate the triazolylidene type exclusively.  

 

Scheme IV.1: Structures of imidazol-2-ylidene, imidazole-4-ylidene and 1,2,3-triazol-5-ylidene. 

 

In the study by Albrecht et coll.,3 Pd and Ag complexes are obtained by direct metalation of a triazolium 

salt. The silver complex is unstable and decomposes within a few hours (t1/2 ca. 20h at room 

temperature) but was successfully used in transmetallation reactions yielding Ru, Rh and Ir complexes.  

Triazolium salts are synthesized in 2 steps (Scheme IV.2). First the triazole ring is formed by copper(I) 

catalyzed click chemistry [3+2] cycloaddition (CuAAC) between an alkyne and an azide. This chemistry 

is well-developed and a wide range of triazoles have already been synthesized in high yields.4,5 The 

second step is the alkylation of the triazole in the N3 position yielding the 1,3,4 functionalized 

triazolium salt.  
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Scheme IV.2: Synthetic pathway to 1,3,4 functionalized 1,2,3-triazolium salts. 

 

While it is possible to synthesize 1,2,4 functionalized triazolium salts, which would also yield MICs once 

deprotonated, their synthesis requires a different pathway. They have thus been less studied than the 

easily obtainable 1,3,4 functionalized triazolium salts and their corresponding carbenes, which the rest 

of this chapter will focus on.  

The first free 1,2,3-triazol-5-ylidene was described in 2010 by Bertrand et coll..6 By deprotonating a 

triazolium salt with KHMDS, they obtained a MIC that could be characterized by X-ray diffraction and 

was stable for several days at -30°C. However, the MIC was only stable for a few hours at room temp 

and at 50°C it decomposed. 

When investigating the donor properties of MICs, it was found that they were in between imidazol-2-

ylidenes and imidazol-4-ylidenes, with the former being weaker donors and the latter stronger donors.  

As with normal NHCs, a range of MIC-M complexes (Pd,7 Ir,8 Fe,9 Ru,10…) were synthesized in the decade 

following their discovery and a majority of them were studied as catalysts. Gold-MIC complexes were 

no exception and examples exist11,12 of their use, for instance in the catalytic synthesis of oxazolines, 

which are a class of heterocyclic compounds that can be employed as precursors for the synthesis of a 

variety of bioactive compounds and as chiral auxiliaries in asymmetric synthesis.13,14  

 

Despite their similarity to normal NHCs, there is no example, to the best of our knowledge, of the use 

of MICs in materials chemistry. Because of their expected stronger binding properties, we decided to 

study the possibility of synthesizing MIC-stabilized gold nanoparticles by transposing the protocols 

used in Chapter II. 

 

IV.B. Gold nanoparticles stabilized by MICs from triazolium salts 

 

IV.B.1. Synthesis of the triazolium salts precursors 

 

As with the NHCs, the first step was the synthesis of the triazolium salt. We decided on 11H-I (Scheme 

IV.3) as we hoped that C12 alkyl chains would promote nanoparticle stabilization (as was the case for 

imidazolium). 10 was synthesized (in 82% yield) by a copper(I) catalyzed cycloaddition between 
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tetradecyne and dodecyl azide. The latter was synthesized by addition of sodium azide to a solution of 

1-bromododecane in DMSO and obtained in 78% yield.  

The triazole 10 was then refluxed overnight in acetonitrile with iodomethane to afford the 

corresponding triazolium salt in 93% yield.  

 

Scheme IV.3: Synthetic pathway to triazolium iodide salt 11H-I. 

 

However, when the synthesis of the triazolium AuCl4 complex was attempted, by anion metathesis in 

H2O/CHCl3, a bright red solution was obtained. 

Different reaction conditions were tested: solvent (DCM, CHCl3, DCM/H2O or CHCl3/H2O), gold 

precursor (HAuCl4 or KAuCl4) and amount of triazolium iodide (1 or 4 equivalents), but 11-AuX4 could 

not be isolated. Each time the solution turned red, except for the latter (4 equivalents of triazolium) 

where it remained yellow.  

The solutions in CHCl3 starting from HAuCl4 were characterized by TEM and in both cases small NPs 

were observed (2.6 ± 0.1 nm for 1 eq and 2.8 ± 0.7 nm for 4 eq). This type of nanoparticles usually 

results in a brown solution with no plasmon resonance visible by UV-vis spectrum.15 When 

characterized by UV-vis spectroscopy (Figure IV.1), the solution using 1 equivalent exhibited 2 peaks: 

one at 326 nm attributed to the triazolium AuCl4 complex formed and one at 510 nm attributed to I2. 

The latter resulting from the reduction of gold by I-. The solution using 4 equivalents exhibits 1 peak at 

364 nm attributed to I3
-16 whose formation results from the reaction of I2 with excess I-. The presence 

of the oxidized form of I- (I2) in both samples suggests it acts as a reducing agent towards gold. 

 

Figure IV.1: UV-vis spectra of samples 1:1 and 1:4 HAuCl4.3H2O:11H-I (solvent: chloroform). 
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Indeed, it has been shown in the literature17 that iodide anions are able to produce nanoparticles from 

a gold(III) precursor. The iodide reduces the gold(III) into gold(I) (AuCl2
-) which then disproportionates 

into gold(0) and gold(III).  

Moreover, we found that by simply mixing HAuCl4.3H2O with KI in water a brown solution and yellow 

precipitate (most likely AuI) were obtained. Addition of CHCl3 led to a pink organic phase confirming 

the presence of I2.   

 

To test our theory on the role of the iodide counter ion acting as reducing agent, an imidazolium iodide 

(2H-I) and a triazolium bromide (12H-Br) were synthesized (Scheme IV.4). The imidazolium iodide was 

obtained by anion metathesis between the imidazolium bromide and sodium iodide in near 

quantitative yield. The triazolium bromide 12H-Br was synthesized from 10 and bromoethane yielding 

an ethylated triazolium salt (instead of methylated). It is worth noting that in order to obtain the 

product in a good yield (79%), bromoethane had to be introduced in large excess (30 eq) and the 

reaction had to be carried out over 3 days instead of overnight.   

 

Scheme IV.4: Synthetic pathways to imidazolium iodide 2H-I and triazolium bromide 12H-Br. 

 

Imidazolium iodide yielded similar results to triazolium iodide. Indeed, when using 1 or 4 equivalents 

of imidazolium, nanoparticles were obtained (ca. 1 nm and 2.8 ± 0.4 nm respectively). The same species 

were observed by UV-vis spectroscopy (imidazolium AuCl4 complex and I2 for 1 eq and I3
- for 4eq) 

(Figure IV.2). Whereas no reduction occurred with 12H-Br.  

This seems to confirm the role of the iodide counter ion in the reduction of gold into nanoparticles.  
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Figure IV.2: UV-vis spectra of samples 1:1 and 1:4 HAuCl4.3H2O:2H-I (solvent chloroform). 

 

IV.B.2. Gold nanoparticle synthesis from triazolium salts 

 

Addition of 10 equivalents of NaBH4 to a solution of HAuCl4 and 11H-I led to a color change from orange 

to black and bubbling. After a few minutes the solution turned deep red. When excess of 11H-I was 

used (4 eq instead of 1), the solution turned green, blue, purple black and finally red but no bubbling 

was observed. The solutions were washed with water to remove excess NaBH4 and characterized by 

TEM. Both samples contained a mixture of different NPs.  

For the 1:1 sample, the major population of nanoparticles were spherical and 14.1 ± 1.4 nm in diameter 

(Figure IV.3) but some smaller particles (3.5 ± 1.0 nm) and aggregates could also be observed. However, 

for the 1:4 sample, some clusters (1-2 m) were observed but the vast majority of NPs were much larger 

with an average diameter of 26.2 ± 3.4 nm and very faceted shapes (Figure IV.3). In both cases, the 

nanoparticles were unstable and precipitated in a few days. 

 

Figure IV.3: TEM images of AuNPs synthesized from 1 or 4 equivalents 11H-I, HAuCl4.3H2O and 10 equivalents 

of NaBH4 (solvent: toluene/H2O). 
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In the literature,18,19 the presence of iodide ions and their concentration has been showed to strongly 

influence the shape of the obtained nanoparticles. Higher concentrations usually leading to more 

facetted structures as is the case here.  

 

The same tests were carried out with triazolium bromide 12H-Br. In both cases, a mixture of very small 

nanoparticles (1-2 nm) and larger and polydisperse nanoparticles (34 ± 9 nm for 1:1 and 16.0 ± 5.8 nm 

for 1:4) was obtained (Figure IV.4).  

After centrifugation, the 1:1 sample presented 2 population of NPs at 5.4 ± 0.9 and 16.8 ± 2.1 nm. The 

nanoparticles are not very spherical and seem less stable in time than the ones obtained from 2H-Br 

by a similar protocol.  

 

Figure IV.4: TEM images of AuNPs synthesized from 1 or 4 equivalents 12H-Br, HAuCl4.3H2O and 10 equivalents 

of NaBH4 (solvent: toluene/H2O). 

 

A protocol using NaH was also tested for both triazoliums (11H-I and 12H-Br). 4 equivalents of 

triazolium were mixed with 10 equivalents of NaH before addition of HAuCl4. In both cases, the solution 

turned orange before quickly discoloring.  

After addition of NaBH4, the triazolium iodide sample turned different colors over the course of several 

hours (yellow, white, pink, white again) to finally settle on orange. TEM analysis of the sample showed 

small NPs of around 2nm in diameter. 

On the other hand, the 12H-Br sample turned red immediately and nanoparticles of 3.4 ± 0.6 nm were 

obtained. It is interesting to note that the nanoparticles are very similar in size and shape to the ones 

obtained with imidazolium bromide in the similar conditions (Figure IV.5). 
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Figure IV.5: TEM images of AuNPs obtained from HAuCl4.3H2O, 4 equivalents of 12H-Br and 10 equivalents of 

NaH and NaBH4 and from 2H-AuX4, 4 equivalents of 2H-Br and 10 equivalents of NaH and NaBH4 (solvent: 

toluene/H2O). 

 

It thus appears that NaH is necessary to obtain monodisperse NPs from triazoliums. That does not 

seem surprising as MICs have a higher pKa than their NHCs counterparts (~24 for triazoliums and 

between 21 and 23 for imidazoliums),1 they are thus less prone to deprotonation. A difference in the 

kinetics of deprotonation could explain the difference in polydispersity. With a fast deprotonation step 

being key to obtain monodisperse nanoparticles.  

 

IV.B.3. XPS analysis 

 

Both triazolium iodide (11H-I) and bromide (12H-Br) were analyzed by XPS, along with the 

nanoparticles (12-NP) obtained from triazolium bromide (ratio 1 Au:4 12H-Br) and NaBH4. The 

nanoparticles analyzed were synthesized without NaH as we wanted to confirm the deprotonation of 

12H-Br by NaBH4. 

 

Both N1s spectra (Figure IV.6) present three components: two present in the major peak at 402.6 and 

401.7 eV for triazolium iodide and 402.6 and 401.9 eV for triazolium bromide and one minor at 399.8 

eV for triazolium iodide and 399.6 eV for triazolium bromide. If all 3 nitrogen atoms were asymmetrical, 

they would present 3 different binding energies and a 1:1:1 distribution would be expected. The 2 

major components for each triazolium presents a 2:1 ratio but the minor component was present in a 

different proportion depending on the triazolium. This seems to indicate that the major peaks 

correspond to the triazoliums but the minor component could belong to another species. Moreover, 

the 2:1 distribution we observe, suggests that 2 of the nitrogen atoms are symmetrical (or quasi-

symmetrical) and thus present the same binding energy and one nitrogen atom would differ.  
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Figure IV.6: N1s XPS spectra of 11H-I et 12H-Br. 

 

A closer look at the global spectrum of the sample showed the presence of copper. The copper most 

likely comes from the synthesis of the triazole 10 which is the base of both triazolium salts. As the 

presence of copper was not expected, the Cu2p spectrum was not recorded but the contamination in 

copper can be estimated at less than 1% of total atoms for both 11H-I and 12H-Br.  

Copper remaining with the triazole probably formed a MIC-Cu complex during the synthesis of the 

triazolium. Indeed, direct metalation of NHCs has been shown to happen with copper.20 Such a 

compound would explain the position of the contamination peak towards the lower binding energies. 

Indeed, examples of MIC-metal complexes seem to suggest a delocalization of the electrons on the 

ring1,3 and the formation of neutral complexes. The loss of charge of the cycle would be responsible 

for the position of the peak towards the lower binding energies. 

 

The nanoparticles obtained from 12H-Br (12-NP) were also characterized. No halides were detected 

and the gold spectrum exhibited only gold(0). This time the N1s spectrum (Figure IV.7) presented only 

1 peak with 2 components at 401.2 and 400.3 eV accounting for 1 and 2 N respectively. It is worth 

noting that the shift of the N1s peak from 2H-Br to 2-NP was of 1.4 eV towards the lower binding 

energies. Here, the shift of the 1N component is of 0.7 eV while the shift of the 2N component is of 2.3 

eV (towards lower binding energies for both). This results in an inversion of both components. At this 

stage we cannot attribute each component with certainty. However, we think that the 1N component 

corresponds to the central nitrogen and the 2N component to the 2 other nitrogen atoms. Indeed, the 

central nitrogen is less likely to be equivalent to one of the other 2. This remains however just a theory. 

Nonetheless, this global shift towards the lower binding energies suggests, as with NHCs, a loss of 
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charge on the cycle and a coordination of the MICs on the nanoparticles surface. All of this strongly 

suggests a deprotonation of 12H-Br by NaBH4. 

 

 

Figure IV.7: N1s XPS spectrum of 12-NP. 

 

It can be noted that some copper is still present in the NPs global XPS spectrum. This likely comes from 

the copper contamination of the triazoliums. It is possible that the copper got incorporated in the 

matrix. Indeed, AuCu alloy NPs exist and have already been synthesized in the litterature.21 

 

We have thus described the first synthesis of gold nanoparticles from triazolium salts. We have shown 

that syntheses using a brominated triazolium and a base yield the most monodisperse NPs. We have 

confirmed the stabilization of the synthesized nanoparticles by MICs (even in the absence of a base) 

for the first time. While copper was also detected, its role in the synthesis is unclear (if it has a role at 

all). 

  

IV.C. Gold nanoparticles stabilized by MICs from MIC-BH3 

 

IV.C.1. MIC-BH3 in the literature 

 

To this date, and to the best of our knowledge, there is only one report of MIC-BH3 in the literature. In 

2013, Crudden et coll. described the synthesis of MIC-boranes starting from a variety of triazolium 

salts.22 By using reaction conditions similar to those used in the synthesis of NHC-BH3, deprotonation 

at -78°C by KHMDS before introduction of BH3.SMe2 and stirring overnight, they obtained a series of 

MIC-boranes in 64 to 87% yield (Scheme IV.5). They were able to obtain crystal structures for several 
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of the synthesized compounds. Finally, they used one MIC-BH3 in the reduction of 4-

bromoacetophenone and 4-bromobenzaldehyde. Similarly to NHC-BH3,23,24 the reaction required the 

presence of a catalyst such as Sc(OTf)3 or silica in order to activate the C=O double bond. While the 

yields are similar to those obtained with NHC-BH3, part of the MIC-BH3 was recovered intact when 

introduced in the same quantity as the substrate. When using only 0.3 eq of MIC-BH3, they obtained 

the same yield as previously but did not recover any MIC-BH3. This seems to suggest that all 3 hydrides 

of the borane are used in the reaction and that MIC-boranes are better reducing agent than NHC-

boranes. 

The increased hydricity of the MIC-BH3 compared to NHC-BH3 can be expected as MICs are better sigma 

donors than NHCs. The C-B bond is thus likely to be stronger which would weaken the B-H bond.  

 

Scheme IV.5: MIC-boranes synthesized by Crudden et coll..22 

 

Since then only 2 other reports of MIC-boron species have been reported in the literature. MIC-

borenium catalysts25 reported by Crudden et coll. in 2015, which exhibit a reactivity similar to 

frustrated Lewis pairs in the hydrogenation of imines but in less stringent conditions and perform 

better overall than similar NHC-borenium complexes, as well as MIC-aryldihaloboranes and a MIC-

diborane both reported by Arrowsmith et al. in 2017.26  

 

Attracted by the limited literature available for such compounds, we decided to try them in the 

synthesis of gold nanoparticles. Indeed, we thought interesting to study the difference in their 

reactivity and if eventually they would also give nanoparticles. 

 

IV.C.2. Synthesis of MIC-BH3 

 

Synthesis of the MIC-BH3 (11-BH3) was carried out using the same protocol as for NHC-BH3 (Scheme 

IV.6). 11H-I was deprotonated by KHMDS in THF at -78°C, before addition of BH3.THF and overnight 

stirring at room temperature. After purification by column chromatography, the MIC-BH3 was obtained 

in 49% yield. 
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Scheme IV.6: Synthesis of MIC-borane 11-BH3. 

 

IV.C.3. Gold nanoparticle synthesis using AuClSMe2 as a precursor 

 

Tests replicating the conditions used for NHC-BH3 were carried out. Given the importance of the Au: 

NHC-BH3 ratio in the previous chapter, the first series of tests was carried out with Au: MIC-BH3 ratios 

ranging from 1:1 to 1:20 including intermediary ratios of 1:3, 1:5, 1:10 and 1:15. 

Upon addition of MIC-BH3, the solutions immediately turned blue signaling the formation of 

aggregates. However, after two hours all solutions had turned bright red. The shift in color happened 

faster for the samples containing the highest amounts of MIC-BH3.  

Samples for ratios 1:1, 1:5, 1:10 and 1:20 were analyzed by TEM after 24h of reaction. Unlike NHC-BH3, 

there appears to be very little correlation between the ratio and the size of the obtained nanoparticles 

(Figure IV.8). Indeed, while samples 1:1, 1:10 and 1:20 all give NPs of around 3.8 nm in diameter, the 

1:5 sample gives NPs of 4.9 ± 1.8 nm. These results are subject to caution however. Indeed, only one 

series of experiments was carried out and when ratios 1:1 and 1:10 were repeated individually, the 

obtained NPs had diameters of 6.5 ± 1.8 nm and 5.6 ± 1.5 nm respectively after the same reaction time. 

It is thus possible that the size obtained are simply not reproducible enough to conclude on the effect 

of ratios. This lack of reproducibility might stem from a non-reproducible kinetic factor. 
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Figure IV.8: TEM images of gold nanoparticles starting from different AuClSMe2:11-BH3 ratios in toluene after 

24h of reaction. 

 

A sample with a 1:10 Au: MIC-BH3 ratio was prepared and followed by UV-visible spectroscopy (Figure 

IV.9).  Right after the injection (t=0), a broad peak is visible at 560 nm. Over time, the peak shifts 

towards the lower wavelengths (524 nm after 16h) and narrows. This indicates a narrowing of the size 

distribution of the nanoparticles and a decrease in size.   

 

Figure IV.9: UV-visible spectra of a sample with a 1:10 Au: MIC-BH3 ratio (in toluene) over time. 
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As exhibited by the UV-Vis spectra, the kinetics of the 1:10 sample are rather fast, a 1:1 sample (which 

transitions slower) was prepared to follow the reaction by TEM. Samples were prepared right after 

injection and after 3, 8, 24, and 48 hours of reaction (Figure IV.10).  

As expected based on the color of the solution, the sample at t=0 presented only aggregates. After 3h 

of reaction, a mixture of aggregates and NPs of different sizes (from 2 to 15 nm) were observed. After 

8h, discrete nanoparticles of 5.4 ± 1.5 nm were obtained but after 24h some NPs started coalescing, 

which increased the mean size of the NPs to 6.5 ± 1.8 nm. However after 48h, no large NPs were 

observed anymore and the mean size of the NPs dropped to 5.7 ± 1.7 nm. It seems however that the 

nanoparticles were unstable as after 6 weeks, large and polydisperse NPs of 8.1 ± 3.0 nm were 

obtained. 

 

Figure IV.10: TEM images of a sample with a 1:1 Au:11-BH3 ratio (in toluene) over time. 

 

The reaction was also followed by 1H and 11B NMR. As with NHC-BH3 a new species appears, but it is 

not stable over time and seems to degrade into triazolium (Figure IV.11). Similarly to NHC-BH3, only 

part of the MIC-BH3 is consumed.  

As with 2-BH3 in Chapter III, 11-BH3 was reacted with HCl in dichloromethane in order to form MIC-

BH2Cl and confirm the similarity of the reduction pathway. The minor product of the reaction 

corresponds to the unknown species formed during the reaction with gold. However, the major 

product is triazolium salt. It can be noted that when the same reaction was carried out with NHC-BH3 

only NHC-BH2Cl and unreacted NHC-BH3 were formed. It thus appears that MIC-BH2Cl is less stable 

than its NHC counterpart, or MIC-BH3 is more sensitive to acids as MICs are more basic than NHCs.  
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Another difference, is that the minor product, which corresponds to the species observed in situ, 

appears to be a protonated MIC-BH2Cl. Indeed, the 11B NMR spectrum presents a peak at -17 ppm 

which confirms the formation of MIC-BH2Cl. However, 1H NMR shows the presence of peak at 4.5 ppm 

that integrates for 1 with respect to the other protons. A plausible explanation is the protonation of 

MIC-BH2Cl (probably on the N2 nitrogen atom). However, this would require more than the 1 

equivalent of HCl introduced in solution. As of the time of writing, the formation of this species and 

the mechanism that leads to it remain unclear. 

 

Figure IV.11: 1H NMR in tol-d8 of 11-BH3, 1:1 AuClSMe2:11-BH3 sample over time, synthesized MIC-BH2Cl and 

11H-I. Grey dot= DCM signal. 

 

This seems to suggest a similar reduction mechanism to the one of NHC-BH3 but a different stabilizing 

action. 

However, before more tests could be carried out the reaction stopped working. Indeed, regardless of 

the quantity of MIC-BH3 introduced, the aggregates first formed never turned into discrete 

nanoparticles. 
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At the time, this change in reactivity was attributed to a possible degradation of the gold precursor. 

However, in light of the most recent results obtained with the NHC-BH3, it is possible that a batch effect 

may have also been at play. At the time of writing, no systematic study comparing the different batches 

synthesized has been undertaken yet. Hopefully a parallel could be drawn between NHCs and MICs to 

better understand the issue.  

 

IV.C.4. Gold nanoparticle synthesis using HAuCl4.3H2O as a precursor 

 

Nanoparticle synthesis starting from 11-BH3 and HAuCl4.3H2O was also attempted. 

As with NHC-BH3, a biphasic system led to a gold mirror at the interface regardless of the organic phase 

solvent (toluene or chloroform).  

As a result, a solution of HAuCl4.3H2O in chloroform was diluted with toluene to afford the desired 

concentration and to perform the reaction in a monophasic system. 

As first tests yielded strange results, the influence of the amount of chloroform in the solution was 

investigated. Three HAuCl4.3H2O solutions were prepared in order to obtain a final percentage of 

chloroform in the medium of 5%, 25% and 50% (Figure IV.12). The solution with 5% of chloroform 

yielded monodisperse nanoparticles of 5.7 ± 1.2 nm while solutions at 25 and 50% yielded a mixture 

of small and large nanoparticles. In the case of the solution with 50% chloroform, NPs were coalescing 

and aggregates could also be observed.  

This clearly shows the influence of chloroform in the reaction medium and the less chloroform seems 

the best option. It is however unclear if this is due to the acidic nature of chloroform which could 

interfere with the carbenes or to different solvation properties that would alter the shape of the NPs. 

 

 

Figure IV.12: TEM images of 1:10 HAuCl4.3H2O:11-BH3 samples in toluene with varying amounts of chloroform. 

 

The influence of the Au: MIC ratio was studied (Figure IV.13). While 1:5 NPs are always larger than 1:20 

NPs, 1:10 NPs do not have an intermediate size and fall close to the 1:20 sample. However, at 0°C, the 

1:10 ratio is closer in size to the 1:5 ratio. 
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Another effect of the lowered temperature is a better monodispersity of the NPs. Increasing the 

temperature to 50°C, on the other hand, yielded very polydisperse NPs. 

 

 

Figure IV.13: TEM images for different Au:11-BH3 ratios depending on the temperature (in toluene). (solutions 

cooled independently before reaction at 0°C) 

 

It is interesting to note that experiments could be repeated with only minor changes in size between 

samples, unlike with NHC-BH3 which showed huge changes in size, shape and polydispersity of the NPs 

when using this gold precursor. It thus seems that MIC-BH3 is better suited to a gold(III) precursor as 

opposed to NHC-BH3 which is better suited to a gold(I) precursor. 

 

IV.C.5. XPS analysis 

 

The NPs obtained from ratio HAuCl4:11-BH3 1:10 and 5% CHCl3 (11-NP) were characterized by XPS along 

with 11-BH3. 

As with the triazoliums, copper contamination can be detected for 11-BH3 and seems to account for 

less than 1% of the atoms of the sample. Once the contamination accounted for, the N1s component 

corresponding to the MIC-BH3 can be decomposed into 2 components: at 402.5 and 401.5 eV which 

account for 2 and 1 N respectively (Figure IV.14). These values are very close to the ones obtained for 

11H-Br (402.6 and 401.7 eV). This seems to confirm the mesoionic character of MIC-boranes which, 

unlike NHC-boranes, conserve a charge on the cycle. 

As with NHC-BH3, no boron is detected in the nanoparticles sample and the gold spectrum corresponds 

to gold(0) only. The N1s spectrum presents one peak with two components at 401.8 and 400.4 eV 
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accounting for 1 and 2 N respectively (Figure IV.14). It can be noted that these values are very close to 

the ones obtained for 10-NP. As with the NPs obtained from triazolium this suggests a delocalization 

of the electrons on the ring and the coordination of MIC to the metal. As with 10-NP, there is an 

inversion of 2N and 1N component. Indeed, the 1N component shifts by 0.3 eV towards the higher 

energies while the 2N component shifts by 2.1 eV towards the lower energies. It is still unclear, which 

nitrogen atoms contribute to which component. However, we can make the same assumption as for 

10-NP, that the central nitrogen atoms corresponds to the 1N component while the other 2 nitrogen 

atoms correspond to the 2N component. 

Finally, the presence of copper in the nanoparticles cannot be excluded as it is detected in a small 

quantity. Yet, as with 10-NP, its role in the NP formation is unclear. 

 

Figure IV.14: N1s XPS spectra of 11-BH3 and corresponding nanoparticles (from HAuCl4.3H2O). 

 

IV.D. Conclusion 

 

To conclude, we have shown for the first time that gold nanoparticles can be synthesized both from 

triazolium salts and MIC-BH3.  

We have shown the possibility to use different triazolium salts and highlighted the influence of iodide 

in the reaction medium. While using NaBH4 as both a reducing and deprotonating agent yields 

nanoparticles, the most monodisperse NPs are obtained when using NaH. 

We have confirmed the stabilization of the NPs by mesoionic carbenes (even in the absence of NaH). 

We have synthesized the first MIC-BH3 with two long alkyl chains and successfully used it in the 

synthesis of gold nanoparticles starting from a gold(I) or gold(III) precursors. Some reproducibility 

issues were encountered with the gold(I) precursor AuClSMe2. In the synthesis, starting from the 

gold(III) precursor HAuCl4.3H2O, the amount of CHCl3 was found to be crucial to obtain monodisperse 
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nanoparticles. The temperature was also found to have an effect as lowering the temperatures of the 

solutions yielded smaller nanoparticles. However, the relation between NPs size and Au:MIC ratio 

seems to be less straightforward than for NHCs. Finally, the stabilization by MICs of the nanoparticles 

from MIC-BH3 was also confirmed by XPS. 

While a copper-free synthesis could be desired to prevent any copper contamination (whose role is 

still unclear and may be minor), mesoionic carbenes are an attractive class of ligands. They possess a 

wide range of available structures, with tunable electronic properties, which are opening up new 

possibilities in the synthesis of carbene stabilized AuNPs.   
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CONCLUSION AND PERSPECTIVES 

 

Conclusion 

 

During the last decade, N-heterocyclic carbenes (NHCs) have appeared as a promising and versatile 

family of capping ligands for the stabilization of metal nanoparticles and surfaces.1 A wide library of 

available NHC structures offers the possibility of “on demand” functionalization. When it comes to 

gold, the stability they confer to nanoparticles has been shown to surpass the one of the widely used 

thiols, especially in harsh and/or biologically relevant conditions. 

When this work started, three main pathways had been described in the literature to synthesize NHC-

capped gold nanoparticles: ligand exchange on pre-formed nanoparticles2, reduction of Au-NHC 

complexes3 or successive deprotonation (by NaH) and reduction (by NaBH4) of imidazolium haloaurate 

complexes.4 Our main goal was to develop new syntheses of NHC-stabilized gold nanoparticles, with 

an emphasis on controlling their size. 

The first part of this work revisited the route starting from (benz)imidazolium haloaurate. We showed 

that stable nanoparticles still formed even without adding a base before NaBH4. Moreover, we were 

able to tune the size of the nanoparticles from 3 to 6 nm, through the use of additional 

(benz)imidazolium halide and depending on the presence of a base. Extensive XPS analysis of the 

obtained NPs confirmed their stabilization by NHCs covalently bound to the surface, suggesting that 

the reducing agent acts as a base as well. Switching the reducing agent from NaBH4 to tBuNH2BH3, still 

without any NaH, yielded globally larger nanoparticles, whose size could be tuned from 5 to 12 nm by 

changing the amount of ligand used. XPS also confirmed the stabilization of those NPs by NHCs.  

A new protocol was developed starting from commercially available AuCl and easily obtained 

imidazolium halide salts. Nanoparticles of ca. 3.5 nm were readily obtained by introducing NaBH4 in a 

solution of 1,3-didodecylimidaozlium bromide and AuCl. Unlike the previous synthesis, changing the 

amount of ligand did not modify the size of the nanoparticles. However, changing the ligand precursor 

to benzimidazolium halide, adding a base or changing the reducing agent to tBuNH2BH3, always led to 

the formation of larger NPs (from 4 to 7 nm). This work has recently been published (Bridonneau, 

Hippolyte et al., Dalton Transactions, 2018, 6850-6859). 

This new protocol was also applied to imidazolium salts bearing a methyl or a phenyl group on their 

C2 position, i.e. unable to yield a “normal” NHCs. Yet, both imidazoliums yielded stable nanoparticles 

(ca. 3.5 nm). With a careful XPS analysis, we have been able to show that the methyl functionalized 

imidazolium binds to the nanoparticle through the terminal carbon of its methyl, while the phenyl 
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functionalized imidazolium yields an abnormal carbene, which binds to the nanoparticles surface 

through a carbon of the imidazole ring. To the best of our knowledge, it is the first time the binding of 

an abnormal carbene to a metallic surface is evidenced.  

The second part of this work focused on the synthesis of NHC-stabilized gold nanoparticles with a 

brand-new approach based on NHC-borane Lewis adducts. Indeed, NHC-BH3 are stable under ambient 

conditions and have already established reducing properties in organic chemistry. Our goal was thus 

to use them as “2-in-1” innovative reagents, able to serve as reducing agent and provide stabilizing 

ligands. Different experimental conditions were explored. It was found that the best option was to use 

AuClSMe2, as gold precursor, toluene, as solvent, and 7 equivalents of NHC-BH3. Interestingly, this 

synthesis occurred under ambient conditions and with no precautions, such as the exclusion of 

moisture. With this NHC-BH3 based approach, the size of the nanoparticles could be tuned from 5 to 

11 nm, just by changing the gold:NHC-BH3 ratio. The stabilization of the nanoparticles by NHCs was 

confirmed by XPS. We found that while the stabilization of gold nanoparticles required several 

equivalents of NHC-BH3, the reduction of gold only required 0.5 equivalent. The derivative NHC-BH2Cl 

was also clearly evidenced as a reaction product. Attempts to unravel the reaction mechanism with 

theoretical chemistry were unsuccessful and no definitive pathway, either based on a transfer of 

hydride or involving radicals, could be determined. Finally, after several months without any problem 

we had to face reproducibility issues linked to faulty batches of NHC-BH3. Several hypotheses were 

made to identify the problem. Unfortunately, at the time of writing, the problem has not been 

identified despite the investigation of several leads. 

The last part of our work dealt with the synthesis of mesoionic carbene (MIC) stabilized gold 

nanoparticles. These ligands, based on triazolium rings, form a peculiar type of NHCs, also able to yield 

stable bonds with metals. These ligands, whose synthesis start by the very versatile copper catalyzed 

azide-alcyne click chemistry, are known to be stronger sigma donors than classical NHCs. In this part 

we followed two approaches: one with triazolium salts and one with MIC-BH3. These latter reagents 

had only been described once before this work. We have shown that both triazolium salts and MIC-

BH3 can yield stable gold nanoparticles. However, several differences with imidazolium salts and NHC-

BH3 can be noted. For example, the most monodisperse nanoparticles from triazolium salts were 

obtained when NaH was introduced, whereas its presence had little effect on the size dispersion of 

nanoparticles obtained from imidazolium salts. Another difference is the fact that MIC-BH3 reagent 

seems to yield the most reproducible results when HAuCl4.3H2O is used as gold precursor while, we 

encountered major reproducibility issues when using this precursor with NHC-BH3.  

The stabilization of gold nanoparticles by MICs was confirmed by XPS, for both those obtained from a 

triazolium salt and MIC-BH3. To the best of our knowledge, this is the first time that mesoionic carbenes 

are used to stabilized metal nanoparticles.  
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Perspectives 

 

This work has thus opened a lot of doors in the chemistry of carbene-stabilized gold nanoparticles. 

When considering future work, several axes could be explored: the understanding of the nanoparticles 

formation mechanism, the synthesis of new ligands in order to provide different properties to the 

nanoparticles, or the synthesis of nanoparticles based on other metals than gold. 

 

Formation mechanism 

 

At this stage the formation mechanism of nanoparticles obtained from either imidazolium salts and a 

reducing agent or NHC-BH3 remains to be established. In the case of the former, a difference of 

mechanism between gold(III) and gold(I) precursors is likely. However, when the reducing agent is 

added, it is still unclear if an NHC-gold complex is formed before its reduction or if reduction occurs 

before the deprotonation of the imidazolium. If the generation of the NHC and the formation of an 

NHC gold complex are the first events, then the imidazolium-based route might not be so different 

from the synthesis that starts from NHC-AuX complexes. 

For NHC-BH3 the question is not only on how are the NHCs released but also on the reduction 

mechanism and which event occurs first. However, the priority remains the comprehension of the 

problem leading to the reproducibility issues between batches. Indeed, if our theory is correct, and an 

impurity acts as a catalyst in the formation of nanoparticles, identifying this impurity could be the key 

to understanding the mechanism.   

 

Ligand synthesis 

 

Attempts were made to synthesize water-soluble and post-functionalizable imidazoliums in order to 

obtain water-soluble and post-functionalizable nanoparticles. However, during this PhD, those 

attempts were unsuccessful. In the case of water-soluble NHC-stabilized nanoparticles, several 

examples already exist in the literature and our next attempts should steer closer to those strategies 

that use charged NHCs.5–7 

For post-functionalizable nanoparticles, several strategies could be envisioned. For example, the 

pathway described in Chapter II, using bromododecylazide, could be pursued and the reaction 

condition optimized to obtain the pure ligand. We could also decide on other functional groups or to 

place them on the heterocycle instead of on the N-substituents. For example, we could take advantage 
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of the coordination of 7 as an abnormal carbene and synthesize an analogous imidazolium with a 

functional group on the phenyl (Scheme C.1).  

 

Scheme C.1: Example of strategy for the post-functionalization of gold nanoparticles. 

 

Finally, we could also consider the synthesis of chiral NHCs. Indeed, they have been shown to organize 

on the surface of gold nanoparticles8 and could lead to the use of gold nanoparticles as chiral catalysts.  

 

Other metals 

 
There are many examples of NHC-stabilized metal nanoparticles. Indeed, examples have been 

described with Ru, Pt, Pd and Ir, among others. However, examples remain scarce for silver and, to the 

best of our knowledge, no example has been reported for copper. Moreover, as we have been the first 

to describe them, no other examples than gold exist from NHC-BH3 or MICs. 

As a result, preliminary studies were carried out on the synthesis of NHC-stabilized silver and copper 

nanoparticles. The results are described below. 

 

  Silver nanoparticles 

From imidazolium or triazolium salts 

 
A solution of azolium bromide (2 or 4 eq in DCM) was stirred with a solution AgNO3 in water. This led 

to the precipitation of a white powder (AgBr). After 10min of stirring, NaBH4 (in water) was injected 

leading to a brown coloration. After 24h, the solution was pale yellow and was showed to contain 

nanoparticles by TEM. 

Using 2 equivalents of 1,3-dodecylimidazolium bromide (2H-Br) led to the formation of very large (40 

– 60 nm) and polydisperse nanoparticles, whereas using 4 equivalents led to the formation of small 

nanoparticles of around 2 nm (Figure C.1). 
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Similarly using 2 equivalents of 1,4-didocely-3-ethyl-1,2,3-triazolium bromide (12H-Br) led to the 

formation of large and polydisperse NPs (23.2 ± 9.3 nm), whereas using 4 equivalents led to the 

formation of monodisperse nanoparticles of 3.6 ± 0.7 nm (Figure C.1).  

 

Figure C.1: TEM pictures of silver nanoparticles obtained from AgNO3 and 2H-Br or 12H-Br at different ratios 

Ag:Azolium salt (solvent toluene: H2O). 

 
From NHC-BH3 or MIC-BH3 

 
A solution of NHC-BH3 or MIC-BH3 (8mM) in toluene was stirred with a solution of AgNO3 (1mM) in 

water. While, with gold, such biphasic systems led to the formation of a metallic gold film at the solvent 

interface, with silver, no immediate reduction was observed. Instead a slow coloration of the organic 

phase appeared over several hours. After 20h, a yellow organic phase was obtained and contained 

nanoparticles, as evidenced by TEM (Figure C.2). 

The Ag:NHC-BH3 ratio did not appear to change the size of the nanoparticles (Table C.1). However, 

increasing the amount of NHC-BH3 accelerated the coloration of the solution (only 1h when using 1:20 

Ag:NHC-BH3). Increasing the concentration of the AgNO3 solution (from 1mM to 10 mM) also increased 

the reaction rate and seemed to yield more monodisperse nanoparticles (Figure C.2). 

It is important to stress that experiments with silver were carried out with NHC-BH3 batches that 

worked or did not work with gold, without any noticeable difference. 

 
Table C.1: Mean diameter of AgNPs obtained from AgNO3 and NHC-BH3 using different reagents ratios and 

concentrations. 

 

*= concentrated solution 
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Figure C.2: Silver nanoparticles obtained from AgNO3 and NHC-BH3 or MIC-BH3 at different ratios 

(* = concentrated solution) (solvent toluene: H2O). 

 

Characterization of these nanoparticles by XPS remains to be done, but their isolation seems to be a 

real challenge that needs to be addressed first. 

 

Copper nanoparticles 

 
Copper nanoparticles were obtained by mixing a toluene solution of NHC-BH3 (100mM) with a toluene 

solution of copper mesityl (100mM) (Cu:NHC-BH3 1:3) and heating for 2h30 at 110°C under inert 

atmosphere. The obtained NPs (11.6 ± 1.8 nm) (Figure C.3) are very sensitive to air and moisture and 

have to be handled and stored in a glovebox. Nevertheless, their characterization by XPS indicates a 

major component at 400.3 eV in the N1s spectrum, clearly in line with a covalently bound NHC at the 

copper NPs surface. The formation of NHC-BH2Mes, reminding of the NHC-BH2Cl observed with 

AuClSMe2, was also evidenced in this synthesis. This work was carried out in collaboration with Xavier 

Frogneux and Sophie Carenco from the Laboratoire de Chimie de la Matière Condensée de Paris 

(LCMCP) and a manuscript is about to be submitted.  

 

Figure C.3: Copper nanoparticles synthesized from copper mesityl and NHC-BH3 in toluene. 

 

These last results with silver and copper are really promising and clearly show that NHCs, including 

MICs, have a bright future in materials science. Of course, more work remains to be done on the first-

ever reported syntheses using NHC-BH3 or MIC-BH3, especially on their mechanisms, but these “2-in-

1” innovative reagents offer great opportunities in the field of metal nanoparticles. 
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General Remarks 

THF was distilled over sodium/benzophenone. Unless otherwise specified all other chemicals and 

reagents were purchased from commercial sources and used as received. 1H NMR, 13C NMR and 11B 

NMR spectra were recorded at room temperature on a Bruker Avance 300 MHz or Bruker Avance 400 

MHz spectrometer. Shifts (δ) are given in parts per million (ppm) using the resonance of the solvent as 

a secondary reference.1 Multiplicities are reported using the following abbreviations: s (singlet), d 

(doublet), t (triplet), q (quartet), p (quintuplet), m (multiplet), br (broad), Ar (aromatic) or a suitable 

combination. High resolution mass spectra were obtained using a mass spectrometer MicroTOF from 

Bruker with an electron spray ion source (ESI) and a TOF detector. UV spectra were recorded using 

Agilent 8453 UV-visible Spectrophotometer. TEM samples were prepared by dropping colloidal 

suspensions onto a copper grid coated with carbon film, and the solvent was allowed to evaporate in 

air. TEM images were obtained from a Tecnai Spirit G2 microscope operating at 120 kV associated with 

the Gatan software. Data size distribution histograms were obtained by measuring at least 500 

particles per sample using ImageJ program. XPS spectra were recorded with a Thermo ESCALAB 250 X-

Ray photoelectron spectrometer with a monochromatic Al-Ka X-Ray source (hV=1486.6 eV) operating 

at 10-10 Torr. The analyzer pass energy was 50 eV for survey spectra and 20 eV for high-resolution 

spectra. All spectra were calibrated versus binding energy (BE) of hydrocarbons (C1s at 285.0 eV). 

Spectra were recorded and analyzed using Thermo Avantage software. For curve fitting and 

decomposition, a Shirley-type background substraction have been used and the shape of fitting curves 

was obtained by a 70% Gaussian / 30% Lorentzian distribution. 
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Molecular synthesis 

 

Chapter II 

 

General procedure 1  

Based on a slightly modified literature procedure2  

 

In oven dried glassware, (benz)imidazole (1 eq) was dissolved in distilled THF and added dropwise to a 

solution of sodium hydride (1.1 eq) in distilled THF at 0°C under inert atmosphere. The ice bath was 

removed and the mixture was stirred for 1h at room temperature. After dropwise addition of the 

desired alkyl bromide (2 eq), the mixture was stirred at room temperature for at least 1h before being 

refluxed at 70°C (in air) for at least 24h until completion of the reaction (followed by 1H NMR). Upon 

completion, the solvent was evaporated under reduced pressure. The residue was dissolved in 

dichloromethane and filtered. The filtrate was evaporated under reduced pressure, the residue was 

recrystallized from a dichloromethane and diethyl ether mixture at 4°C. After filtration, the precipitate 

was dried in vacuo to give the product as a white powder. 

 

1,3-dihexylimidazolium bromide (1H-Br) 

 

General procedure 1 was applied to imidazole (2g, 29.4 mmol) and 1-bromohexane (16.5 mL, 58.8 

mmol) to afford the title compound as a clear oil (7.3 g, 78% yield). 

1H NMR (400 MHz, CDCl3) δ 10.55 (1H, t, NCHN), 7.29 (2H, d, NCHCHN), 4.35 (4H, t, NCH2C5H11), 1.92 

(4H, p, NCH2CH2C4H9), 1.35-1.28 (12H, m, N(CH2)2C3H6CH3), 0.86 (6H, t, N(CH2)5CH3);  

13C NMR (75 MHz, CDCl3) δ 137.10 (NHCN), 122.13 (NHCCHN), 50.09 (NCH2), 31.09, 30.29, 25.88, 22.38, 

13.90 (CH3). 
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1,3-didodecylimidazolium bromide (2H-Br) 

 

General procedure 1 was applied to imidazole (2.5 g, 36.7 mmol) and 1-bromododecane (17.7 mL, 73.5 

mmol) to afford the title compound as a white powder (13.7g, 77% yield). 

1H NMR (400 MHz, CDCl3) δ 10.88 (1H, t, NCHN), 7.20 (2H, d, NCHCHN), 4.36 (4H, t, NCH2C11H23), 1.92 

(4H, p, NCH2CH2C10H21), 1.35-1.25 (36H, m, N(CH2)2C9H18CH3), 0.88 (6H, t, N(CH2)11CH3);  

13C NMR (101 MHz, CDCl3) δ 137.70 (NHCN), 121.78 (NHCCHN), 50.29 (NCH2), 32.00, 30.44, 29.70, 

29.60, 29.49, 29.43, 29.11, 26.37, 22.78, 14.22 (CH3);  

HRMS (ESI) calculated for C27H53N2
+, m/z: 405.4203, found: 405.4197. 

 

1,3-didodecylbenzimidazolium bromide (3H-Br) 

 

General procedure 1 was applied to benzimidazole (4 g, 33.9 mmol) and 1-bromododecane (16.3 mL, 

67.7 mmol) to afford the title compound as a white powder (10.6 g, 60% yield). 

1H NMR (400 MHz, CDCl3) δ 11.57 (1H, s, NCHN), 7.67 (4H, m, C6H4), 4.62 (4H, t, NCH2C11H23), 2.06 (4H, 

p, NCH2CH2C10H21), 1.44-1.24 (36H, m, N(CH2)2C9H18CH3), 0.87 (6H, t, N(CH2)11CH3);  

13C NMR (75 MHz, CDCl3) δ 142.93 (NHCN), 131.44, 127.18, 113.19, 47.79 (NCH2), 31.98, 29.67, 29.58, 

29.47, 29.40, 29.14, 26.65, 22.76, 14.20 (CH3). 

 

Mono methylated triethylene glycol tosylate 

Based on a literature procedure3 

  

Monomethylated triethylene glycol (4.9 mL, 30.5 mmol), NEt3 (10.6 mL, 76 mmol) and DMAP (870 mg, 

7.1 mmol) were dissolved in DCM (200 mL). p-Toluenesulfonyl chloride (6.6 g, 34.5 mmol) was added 

at 0°C. The reaction mixture was stirred at room temperature for 3h. The reaction mixture was washed 

with water (twice). The organic phase was dried over MgSO4 and the solvent was evaporated under 

reduced pressure. Silica gel chromatography (eluent DCM to DCM/AcOEt 7/3) afforded the product  
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as a clear oil (6.8 g, 70%yield). 

1H NMR (300 MHz, CDCl3) δ 7.79 (d, 2H), 7.33 (d, 2H), 4.15 (m, 2H), 3.68 (m, 2H), 3.52 (m, 8H), 3.36 (s, 

3H), 2.44 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 144.90, 133.15, 129.93, 128.10, 72.03, 70.87, 70.67, 69.35, 68.80, 59.15, 

21.76. 

 

1,3-ditriethyleneglycolimidazolium tosylate (4H-OTs) 

Based on a modified literature procedure4 

 

Imidazole (136 mg, 2 mmol), TEGOTS (1.33 g, 4.2 mmol) and K2CO3 (415 mg, 3 mmol) were charged in 

a sealed pressure tube with MeCN (7mL). The reaction was heated at 90°C for 24h. The solvent was 

evaporated under reduce pressure, the residue was dissolved in DCM and filtered. The filtrate was 

evaporated under reduced pressure, triturated in Et2O and decanted. The supernatant was removed 

to afford the product as an oil (0.9 g, 84 %) 

1H NMR (400 MHz, CDCl3) δ 9.27 (t, 1H), 7.65 (d, 2H), 7.45 (d, 2H), 7.05 (m, 2H), 4.32 (m, 4H), 3.69 (m, 

4H), 3.46 (m, 17H), 3.26 (s, 6H), 2.24 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 143.40, 139.25, 137.02, 128.53, 125.78, 122.75, 71.69, 70.13, 70.09, 70.01, 

68.87, 58.76, 49.37, 21.14. 

 

1,12-bromododecylazide 

Based on a modified literature procedure5  

 

1,12-dibromododecane (5g, 15.2 mmol) was dissolved in DMSO (20 mL). NaN3 (990 mg, 15,2 mmol) 

was added portion wise and the reaction mixture was stirred at room temperature for 24h. H2O (80 

mL) was added and the solution was extracted with Et2O (3 times). The organic phase was dried over 

MgSO4 and the solvent was removed under reduced pressure to afford the title compound as a clear 

oil (3.4 g, 77% yield). 

1H NMR (400 MHz, CDCl3) δ 3.40 (t, 2H), 3.25 (t, 2H), 1.85 (dt, 2H), 1.58 (m, 2H), 1.28 (m, 16H). 

13C NMR (101 MHz, CDCl3) δ 51.61, 34.11, 32.96, 29.58, 29.56, 29.52, 29.25, 28.96, 28.87, 28.29, 26.83. 
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1-dodecylazide-3-dodecylimidazolium bromide (5H-Br) 

 

Imidazole (95 mg, 1.4 mmol) was dissolved in THF (4mL) and added dropwise to a solution of sodium 

hydride (60mg, 1.5 mmol) in THF at 0°C. The ice bath was removed and the mixture was stirred for 1h 

at room temperature. BrC12H25N3 (400 mg, 1.4 mmol) was added dropwise. The solution was stirred 

for 1h before addition of 1-bromododecane (0.3 mL, 1.4 mmol). The solution was then heated for 24h 

until completion of the reaction (followed by 1H NMR). Upon completion, the solvent was evaporated 

under reduced pressure. The residue was dissolved in dichloromethane and filtered. The filtrate was 

evaporated under reduced pressure, the residue was triturated in Et2O and the supernatant was 

removed to afford the product as a clear oil. 

1H NMR* (400 MHz, CDCl3) δ 10.33 (t, 1H), 7.47 (d, 2H), 4.29 (t, 4H), 1.85 (p, 4H), 1.21 (m, 38H), 0.80 

(t, 3H). 

13C NMR* (101 MHz, CDCl3) δ 136.96, 122.11, 50.04, 31.86, 30.32, 29.56, 29.48, 29.38, 29.29, 29.00, 

26.23, 22.64, 14.08. 

*only the signals corresponding to the compound are listed, but the spectrum also presented signals 

of impurities. 

 

1,3-didodecyl-2-methylimidazolium bromide (6H-Br) 

 

General procedure 1 was applied to 2-methylimidazole (1g, 12.2 mmol) and 1-bromododecane (5.9 

mL, 24.4 mmol) to afford the title compound as a white powder (5g, 82% yield). 

1H NMR (300 MHz, CDCl3) δ 7.52 (s, 2H), 4.24 (t, 4H), 2.80 (s, 3H), 1.82 (p, 4H), 1.24 (m, 36H), 0.87 (m, 

6H). 

13C NMR (75 MHz, CDCl3) δ 142.82, 121.67, 49.27, 32.02, 29.96, 29.71, 29.63, 29.52, 29.45, 29.20, 

26.54, 22.80, 14.24, 11.20. 
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1,3-didodecyl-2-phenylimidazolium bromide (7H-Br) 

 

General procedure 1 was applied to 2-phenylimidazole (1.4 g, 10 mmol) and 1-bromododecane (4.8 

mL, 20 mmol) to afford the title compound as an off-white powder (3.75 g, 67% yield). (AcOEt used for 

precipitation instead of Et2O) 

1H NMR (400 MHz, CDCl3) δ 8.00 (s, 2H), 7.59 (m, 5H), 4.05 (t, 4H), 1.70 (p, 4H), 1.15 (m, 36H), 0.81 (t, 

6H). 

13C NMR (101 MHz, CDCl3) δ 143.80, 132.82, 130.38, 130.04, 122.83, 121.25, 49.07, 31.86, 30.13, 29.55, 

29.53, 29.43, 29.28, 29.25, 28.77, 26.14, 22.64, 14.08. 

 

General procedure 2: 

 

(Benz)imidazolium bromide (1 eq) was dissolved in chloroform (20 mL) and mixed with HAuCl4.3H2O 

(1 eq) in water (5 mL). After 3h of stirring at room temperature the organic phase was washed with 

water, dried with MgSO4, the solvent was evaporated under reduced pressure. The product was dried 

in vacuo to afford the product as a yellow powder.  

 

1,3-dihexylimidazolium tetrachloroaurate (1H-AuX4) 

 

General procedure 2 was applied to 1H-Br (40 mg, 0.1 mmol) to afford the title compound as an orange 

oil (62 mg, 86% yield). 

1H NMR (400 MHz, CDCl3) δ 8.98 (1H, t, NCHN), 7.28 (2H, d, NCHCHN), 4.29 (4H, t, NCH2C5H11), 1.94 

(4H, p, NCH2CH2C4H9), 1.35-1.29 (12H, m, N(CH2)2C3H6CH3), 0.90 (6H, t, N(CH2)5CH3);  

13C NMR (75 MHz, CDCl3) δ 134.94 (NHCN), 122.77 (NHCCHN), 50.80 (NCH2), 31.22, 31.13, 30.22, 30.09, 

26.06, 22.49, 14.06 (CH3). 
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1,3-didodecylimidazolium tetrachloroaurate (2H-AuX4) 

 

General procedure 2 was applied to 2H-Br (160 mg, 0.33 mmol) to afford the title compound as an 

orange powder (240 mg, 99% yield). 

1H NMR (400 MHz, CD2Cl2) δ 8.71 (1H, t, NCHN), 7.35 (2H, d, NCHCHN), 4.25 (4H, t, NCH2C11H23), 1.94 

(4H, p, NCH2CH2C10H21), 1.37-1.29 (36H, m, N(CH2)2C9H18CH3), 0.90 (6H, t, N(CH2)11CH3);  

13C NMR (75 MHz, CDCl3) δ 135.19 (NHCN), 122.59 (NHCCHN), 50.94 (NCH2), 32.05, 30.29, 29.75, 29.65, 

29.52, 29.49, 29.10, 26.48, 22.83, 14.27 (CH3). 

 

1,3-didodecylbenzimidazolium tetrachloroaurate (3H-AuX4) 

 

General procedure 2 was applied to 3H-Br (426 mg, 0.8 mmol) to afford the title compound as an 

orange powder (557 mg, 88% yield). 

1H NMR (400 MHz, CDCl3) δ 9.55 (1H, s, NCHN), 7.77 (4H, m, C6H4), 4.57 (4H, t, NCH2C11H23), 2.09 (4H, 

p, NCH2CH2C10H21), 1.47-1.38 (36H, m, N(CH2)2C9H18CH3), 0.90 (6H, t, N(CH2)11CH3);  

13C NMR (75 MHz, CDCl3) δ 140.33 (NHCN), 131.56, 127.85, 113.52, 48.34 (NCH2), 32.04, 29.74, 29.65, 

29.59, 29.54, 29.47, 29.16, 26.81, 22.82, 14.26 (CH3). 

 

1,3-ditriethyleneglycolimidazolium tetrachloroaurate (4H-AuX4) 

 

General procedure 2 was applied to 4H-OTs (107 mg, 0.2 mmol) to afford the title compound as an 

orange oil (120 mg, 86% yield). 

1H NMR (400 MHz, CDCl3) δ 9.77 (t, 1H), 7.54 (s, 2H), 4.51 (t, 4H), 3.91 (t, 6H), 3.63 (m, 16H), 3.37 (s, 

6H). 

13C NMR (101 MHz, CDCl3) δ 137.28, 123.11, 72.01, 70.50, 69.01, 59.12, 50.03. 
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1,3-didodecyl-2-methylimidazolium tetrachloroaurate (6H-AuX4) 

 

General procedure 2 was applied to 6H-Br (127 mg, 0.25 mmol) to afford the title compound as an 

orange oil (190 mg, 99% yield). 

1H NMR (400 MHz, CDCl3) δ 7.26 (s, 2H), 4.15 (t, 4H), 2.72 (s, 3H), 1.87 (p, 4H), 1.27 (m, 36H), 0.87 (t, 

6H). 

13C NMR (101 MHz, CDCl3) δ 143.01, 121.65, 49.54, 32.05, 29.74, 29.63, 29.52, 29.47, 29.15, 26.63, 

22.83, 14.27, 10.81. 

 

20% 13C marked 1,3-dodecylimidazolium chloride 

Based on a modified literature procedure6 

 

100 mg (3.4 mmol) of 13C enriched (100%) were mixed with 400 mg (13.6 mmol) of non-enriched 

paraformaldehyde, dispersed in toluene and cooled to 0°C. A solution of dodecylamine (7.6 mL, 33 

mmol) in toluene (4mL) was added over 20 min. After stirring for 5 min, 4mL of HCl in dioxane (4N) 

were added dropwise. The reaction was then heated to 34°C before dropwise addition of glyoxal (40% 

in water, 4.8 mL, 33 mmol). The solution was heated at 34°C overnight. The solvent was removed by 

distillation. The residue (tar-like substance) was triturated with Et2O, decanted and the supernatant 

was removed. The process was repeated several times (15) before drying the obtained light brown 

paste under vacuum. The solid was dissolved in a heated Et2O: DCM mixture before addition of a large 

excess of Et2O and cooling down to 0°C for 30 minutes. After filtration, the product was obtained as a 

white powder (2.5 g, 33% yield) 

1H NMR (400 MHz, CDCl3) δ 10.98 (t, 1H), 7.20 (d, 2H), 4.35 (t, 4H), 1.90 (p, 4H), 1.29 (m, 36H), 0.87 (t, 

6H). 

13C NMR (101 MHz, CDCl3) δ 138.79, 121.30, 50.34, 32.05, 29.73, 29.63, 29.52, 29.47, 29.15, 26.42, 

22.83, 14.26. 
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Chapter III 

 

General procedure 3 

Based on a modified literature procedure.7 

 

In oven dried glassware and under inert atmosphere, (benz)imidazolium bromide (1 eq) was dissolved 

in distilled THF. NaHMDS or KHMDS (1M in THF, 1 eq) was added dropwise at -78°C. After 1h of stirring 

at -78°C, BH3.THF (1M in THF, 1 eq) was added dropwise. The solution was kept in the cold bath for 30 

minutes before being stirred at room temperature overnight. The solvent was evaporated under 

reduced pressure. The crude product was purified by silica chromatography to afford the title 

compound. 

 

1,3-didodecylimidazol-2-ylidene borane (2-BH3) 

 

General procedure 3 was applied to 2H-Br (2 g, 4.1mmol). Silica gel chromatography (eluent 

pentane/DCM 55/45) afforded the product as a white powder (750 mg, 44%yield). 

1H NMR (400 MHz, CDCl3): δ 6.80 (2H, s), 4.09 (4H, t), 1.77 (4H, p), 1.31-1.25 (36H, m), 0.88 (6H, t) 

13C NMR (101 MHz, CDCl3): δ 170.16, 118.80, 48.84, 32.04, 30.26, 29.75, 29.68, 29.62, 29.47, 29.32, 

26.65, 22.81, 14.24  

11B NMR (96 MHz, CDCl3): δ -37.3 (q) 

HRMS (ESI) calculated for C27H52N2BH3Na+: m/z: 441.4356, found: 441.4347 

 

1,3-didodecylbenzimidazol-2-ylidene borane (3-BH3) 

 

General procedure 3 was applied to 3H-Br (428 mg, 0.8 mmol). Silica gel chromatography (eluent from 

pentane to pentane/Et2O 100/2) afforded the product as a white powder (130 mg, 35% yield). 

1H NMR (300 MHz, CDCl3) δ 7.38 (m, 4H), 4.40 (t, 4H), 1.84 (p, 4H), 1.25 (m, 36H), 0.88 (t, 6H). 
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13C NMR (75 MHz, CDCl3) δ 132.81, 123.60, 110.96, 45.90, 32.06, 29.76, 29.70, 29.64, 29.48, 29.42, 

29.21, 26.99, 22.83, 14.25. 

11B NMR (96 MHz, CDCl3) δ -36.9 (q). 

 

1-dodecylimidazole (9) 

 

Imidazole (1g, 14.7 mmol) was dissolved in DMSO (6mL). KOH (1.65 g, 29.4 mmol) was added and the 

reaction mixture was stirred for 90 min. 1-bromododecane (2.9 mL, 12.2 mmol) was added dropwise 

under vigorous stirring and the reaction was stirred overnight. H2O (60 mL) was added and the mixture 

was extracted 3 times with Et2O. The organic phase was washed with water, then dried over MgSO4 

and the solvent was removed under reduced pressure to afford the title product as a clear oil (2g, 

69%). 

1H NMR (400 MHz, CDCl3) δ 7.42 (s, 1H), 7.02 (s, 1H), 6.87 (s, 1H), 3.88 (t, 2H), 1.73 (p, 2H), 1.25 (m, 

18H), 0.84 (t, 3H). 

13C NMR (101 MHz, CDCl3) δ 137.16, 129.36, 118.84, 47.11, 31.95, 31.13, 29.65, 29.57, 29.48, 29.38, 

29.12, 26.61, 22.73, 14.15. 

 

1-dodecylimidaozle borane (9-BH3) 

 

In oven dried glassware and under inert atmosphere, 9 (500 mg, 2.1 mmol) was dissolved in distilled 

THF (6mL). BH3.THF (1M in THF, 2.1 mL, 2.1 mmol) was added at -78°C and the reaction mixture was 

stirred overnight at room temperature. The solvent was evaporated under reduced pressure. Silica gel 

chromatography (eluent pentane: DCM 1:1 to DCM) afforded the product as a clear oil (140 mg, 27% 

yield). 

1H NMR (400 MHz, CDCl3) δ 7.73 (s, 1H), 7.07 (s, 1H), 6.87 (t, 1H), 3.93 (m, 2H), 1.77 (m, 2H), 1.25 (m, 

37H), 0.87 (t, 6H). 

13C NMR (101 MHz, CDCl3) δ 136.19, 127.97, 119.73, 48.72, 32.01, 31.20, 30.62, 29.71, 29.69, 29.64, 

29.59, 29.55, 29.44, 29.19, 29.06, 26.68, 26.47, 22.80, 14.23. 

11B NMR (128 MHz, CDCl3) δ -18.8 (q) 
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General procedure 4  

Based on a literature procedure8 

A carbene-borane (1 eq) was dissolved in DCM (0.1 mmol/mL) before addition of dry HCl (1N in Et2O, 

1 eq). The solution was stirred for 1h at room temperature. The solvent was evaporated and the 

product characterized by NMR. 

 

1,3-didodecylimidazol-2-ylidene chloroborane (2-BH2Cl) 

 

General procedure 4 was applied to 2-BH3 (200mg, 0.5 mmol). NMR indicated an 85% conversion.  

1H NMR*(400 MHz, Tol-d8) δ 6.02 (s, 2H), 3.90 (t, 4H), 1.59 (p, 4H), 1.34 (m, 36H), 0.95 (t, 6H). 

11B NMR* (128 MHz, Tol-d8) δ -18.4 (bs). 

*without peaks from unreacted 2-BH3 

 

1,3-dimesitylimidazol-2-ylidene borane (8-BH3) 

 

Synthesized as described in the litterature9 
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Chapter IV 

 

1-dodecylazide 

 

1-bromododecane (7.9 mL, 33 mmol) was dissolved in DMSO (50 mL). NaN3 (2.47 g, 38 mmol) was 

added portion-wise and the reaction mixture was stirred overnight. H2O (200mL) was added and the 

solution was extracted with Et2O (3 times). The organic phase was dried over MgSO4 and the solvent 

was removed under reduced pressure to afford the title compound as a clear oil (5.7 g, 78% yield) 

1H NMR (400 MHz, CDCl3) δ 3.25 (m, 2H), 1.59 (p, 2H), 1.27 (m, 18H), 0.87 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 51.66, 32.07, 29.78, 29.70, 29.64, 29.49, 29.31, 29.00, 26.88, 22.84, 14.27. 

 

1,4-didodecyl-1,2,3-triazole (10) 

Based on a modified literature procedure10 

 

1-dodecylazide (2.5g, 11.4 mmol) and tetradecyne (3.1 mL, 12.5 mmol) were dissolved in DCM (20 mL). 

H2O (15mL) and CuSO4.5H2O (424 mg, 1.7 mmol) were added successively. Sodium ascorbate (1.13 g, 

5.7 mmol) was added portion-wise. The reaction mixture was stirred overnight, then extracted with 

DCM (3 times). The organic phase was washed with brine, dried over MgSO4 and the solvent was 

evaporated under reduced pressure. Silica gel chromatography (eluent DCM to DCM:MeOH 100:5) 

afforded the title compound as an off-white powder (3.8g, 82% yield). 

1H NMR (400 MHz, CD2Cl2) δ 7.30 (s, 1H), 4.28 (t, 2H), 2.66 (t, 2H), 1.86 (p, 2H), 1.64 (p, 2H), 1.27 (m, 

36H), 0.88 (t, 6H). 

13C NMR (101 MHz, CD2Cl2) δ 135.82, 128.52, 32.00, 29.76, 29.73, 29.69, 29.68, 29.60, 29.49, 29.44, 

29.42, 29.33, 29.09, 26.59, 22.77, 13.96. 

 

1,4-didocely-3-methyl-1,2,3-triazolium iodide (11H-I) 

Based on a modified literature procedure11 

 

1,4-didodecyl-1,2,3-triazole (1g, 2.5 mmol) was charged in a sealed tube with iodomethane (0.5 mL, 

7.4 mmol) and MeCN (5mL) under argon. The reaction was heated at 80°C overnight. After evaporation 



165 
 

of the solvent under reduced pressure, the mixture was triturated with cold ethyl acetate and filtered. 

The product was obtained as an off-white powder (1.25g, 93% yield). 

1H NMR (400 MHz, CDCl3) δ 9.16 (s, 1H), 4.71 (t, 2H), 4.26 (s, 3H), 2.92 (m, 2H), 2.04 (p, 2H), 1.79 (m, 

2H), 1.26 (m, 36H), 0.87 (t, 6H). 

13C NMR (101 MHz, CDCl3) δ 144.78, 129.61, 54.55, 38.35, 32.04, 29.76, 29.73, 29.70, 29.63, 29.59, 

29.46, 29.29, 29.24, 29.01, 27.42, 26.32, 24.17, 22.82, 14.25. 

HRMS (ESI) calculated for C27H54N3
+: m/z: 420.4312, found: 420.4296 

 

1,4-didocely-3-ethyl-1,2,3-triazolium bromide (12H-Br) 

 

1,4-didodecyl-1,2,3-triazole (300 mg, 0.74 mmol) was charged in a sealed tube with bromoethane 

(1.7mL, 22.2 mmol) and MeCN (5mL) under argon. The reaction was heated at 80°C for 3 days. After 

evaporation of the solvent under reduced pressure, the mixture was triturated with cold ethyl acetate 

and filtered. The product was obtained as an off-white powder (300mg, 79% yield). 

1H NMR (400 MHz, CDCl3) δ 9.46 (s, 1H), 4.72 (t, 2H), 4.55 (q, 2H), 2.84 (t, 2H), 1.94 (p, 2H), 1.71 (p, 

2H), 1.57 (t, 3H), 1.16 (m, 36H), 0.78 (t, 6H). 

13C NMR (101 MHz, CDCl3) δ 143.68, 129.73, 54.14, 46.86, 31.80, 29.53, 29.50, 29.41, 29.38, 29.24, 

29.09, 29.04, 28.81, 27.56, 26.10, 23.55, 22.58, 14.28, 14.01. 

 

1,3-dodecylimidaozlium iodide (2H-I) 

 

2H-Br (485 mg, 1 mmol) and NaI (300 mg, 2 mmol) were dissolved in acetone (10mL). The reaction 

mixture was stirred overnight at room temperature. The solvent was evaporated under reduced 

pressure. The residue was dissolved in DCM, solids were filtered off. The solvent was evaporated under 

reduced pressure to afford the title compound as an off-white powder (500 mg, 94% yield). 

1H NMR (400 MHz, CDCl3) δ 10.04 (t, 1H), 7.50 (d, 2H), 4.27 (d, 4H), 1.86 (p, 4H), 1.16 (m, 36H), 0.78 (t, 

6H). 

13C NMR (101 MHz, CDCl3) δ 136.06, 122.36, 50.08, 31.78, 30.24, 29.49, 29.41, 29.30, 29.21, 28.90, 

26.13, 22.56, 14.00. 
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1,4-didocely-3-methyl-1,2,3-triazol-5-ylidene borane (11-BH3) 

Inspired by the literature.11 

 

In oven dried glassware and under inert atmosphere, 11H-I (1.8g, 3.3 mmol) was dissolved in THF 

(33mL). KHMDS (1M in THF, 3.5mL, 3.5 mmol) was added dropwise at -78°C. After 1h of stirring at -

78°C, BH3.THF (1M in THF, 3.3 mL, 3.3 mmol) was added dropwise. The solution was kept in the cold 

bath for 30 minutes before being stirred at room temperature overnight. The solvent was evaporated 

under reduced pressure. Silica gel chromatography (eluent: pentane/ DCM 1/1) afforded the title 

product as a white powder (700 mg, 49%). 

1H NMR (300 MHz, CDCl3) δ 4.40 (t, 2H), 3.97 (s, 3H), 2.79 (t, 2H), 1.91 (m, 2H), 1.26 (m, 36H), 0.89 (t, 

6H). 

13C NMR (75 MHz, CDCl3) δ 143.39, 51.05, 35.83, 32.06, 29.77, 29.69, 29.67, 29.58, 29.54, 29.49, 29.43, 

29.21, 28.52, 26.61, 24.23, 22.83, 14.26. 

11B NMR (96 MHz, CDCl3) δ -36.8 (q). 

 

1,4-didocely-3-methyl-1,2,3-triazol-5-ylidene chloroborane (11-BH2Cl) 

 

General procedure 4 was applied to 11-BH3 (43mg, 0.1 mmol). NMR indicated a full conversion with 2 

products: triazolium 11H-Cl and the title product. 

1H NMR (400 MHz, Tol-d8) δ 9.41* (s, 1H), 4.78* (t, 2H), 4.55 (s, 0.5H), 4.47 (m, 1H), 3.90* (s, 3H), 2.86* 

(t, 2H), 2.80 (s, 1H), 2.50 (t, 1H), 1.98* (m, 2H), 1.76* (m, 2H), 1.39 (m, 52H), 0.99 (m, 8H). 

11B NMR (128 MHz, Tol-d8) δ -18.4 (bs) 

*peaks attributed to 11H-Cl 
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Gold nanoparticles synthesis 

 

Chapter II 

 

• Synthesis from (benz)imidazolium haloaurate, NaH and NaBH4 

The (benz)imidazolium haloaurate (1eq) and the corresponding (benz)imidazolium bromide salt (0 to 

4 eq) were dissolved in toluene (~10mL, [Au] = 5mM). A solution of NaH (60% oil, 1.5 

eq/(benz)imidazolium) in toluene (5mL) was added dropwise at 0°C, causing discoloration of the 

initially orange solution. The mixture was stirred for 10-15 min before adding NaBH4 (~10 eq.) freshly 

dissolved in water (3 mL). The solution turned red almost immediately indicating the formation of gold 

nanoparticles. After 10 min of stirring, the mixture was rinsed with ~25 mL of water to remove any 

remaining salts. The nanoparticles, dispersed in the organic layer, were precipitated with ~50 mL of 

ethanol and centrifuged (10 000 RPM for 30 min). Two more redispersion/precipitation cycles, with 3 

mL of toluene and 50 mL of ethanol, were achieved before dispersing the nanoparticles in a small 

amount of toluene for storage, in order to ensure optimal redispersibility. 

 

• Synthesis from (benz)imidazolium haloaurate and NaBH4 

The same protocol was applied except no NaH was added.  

 

• Synthesis from (benz)imidazolium haloaurate and tBuNH2BH3 

The (benz)imidazolium haloaurate (1eq) and the corresponding (benz)imidazolium bromide salt (0 to 

6 eq) were dissolved in toluene (~10mL, [Au] = 5mM). tBuNH2BH3 (~10 eq.) was separately dissolved 

in toluene (5 mL) and both solutions thermalized for 5 min. tBuNH2BH3 was added leading to a gradual 

discoloration of the solution before a sharp change of color to dark red. The mixture was stirred for 10 

min, before precipitating the Au nanoparticles in ethanol and resuspension in toluene for TEM 

analyses. 

 

• Synthesis from AuCl, (benz)imidazolium salt and NaBH4  

AuCl (1eq) and (benz)imidazolium bromide were dissolved in toluene (~10mL, [Au] = 5mM), forming 

an orange solution. After approx. 10 min, a fresh aqueous solution of NaBH4 (~10 eq.) was added, 

instantly producing a deep red solution, and allowed to react for another 15 min. Precipitation of the 

gold nanoparticles was carried out as for the previous syntheses. 
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• Synthesis from AuCl, (benz)imidazolium salt, NaH and NaBH4 

AuCl (1eq) and (benz)imidazolium bromide were dissolved in toluene (~10mL, [Au] = 5mM), forming 

an orange solution. After approx. 10 min, a solution of NaH (60% oil, 1.5 eq/(benz)imidazolium) in 

toluene (5mL) was added dropwise, causing a discoloration of the solution. After 10 further min, a 

fresh aqueous solution of NaBH4 (~10 eq.) was added, instantly producing a deep red solution, and 

allowed to react for another 15 min. Precipitation of the gold nanoparticles was carried out as for the 

previous syntheses. 

 

• Synthesis from AuClSMe2, (benz)imidazolium salt and NaBH4 

The protocol as for AuCl was applied 

 

• Synthesis from HAuCl4.3H2O, (benz)imidazolium bromide and NaBH4 

The protocol as for AuCl was applied. 
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Chapter III 

 

• Synthesis from AuClPPh3 and NHC-BH3 

AuClPPh3 (1eq) and NHC-BH3 (5eq) were dissolved separately in the desired solvent (~2.5mL each, 

[Au]=5mM). The NHC-BH3 solution was then injected into the gold precursor solution.  

 

• Synthesis from HAuCl4.3H2O and NHC-BH3 in chloroform 

HAuCl4.3H2O and NHC-BH3 were dissolved separately in chloroform to obtain solutions of 1mM and 

4mM respectively. 2mL of the NHC-BH3 solution were injected into an equal volume the gold precursor 

solution, leading to a darkening of the solution (to black, purple or red) indicating a reduction of the 

gold precursor. 

 

• Synthesis from HAuCl4.3H2O and NHC-BH3 in toluene 

HAuCl4.3H2O was dissolved in CHCl3 to obtain a concentration of ~10 mM. This solution was then 

diluted in toluene to reach a 1mM concentration. NHC-BH3 was dissolved in toluene to obtain the 

desired concentration (from 1 to 20 mM). 2mL of the NHC-BH3 solution were injected into an equal 

volume the gold precursor solution, leading to a darkening of the solution (to black, purple or red) 

indicating a reduction of the gold precursor.  

 

• Synthesis from AuClSMe2 and NHC-BH3 in toluene 

AuClSMe2 was dissolved in toluene to obtain a concentration of 1mM. NHC-BH3 was dissolved in 

toluene to obtain the desired concentration (from 1 to 28 mM). 2mL of the NHC-BH3 solution were 

injected into an equal volume the gold precursor solution, leading to a darkening of the solution (to 

black, purple or red) indicating a reduction of the gold precursor. TEM and UV samples were taken 

from the crude before precipitation of the nanoparticles with a large amount of ethanol (~25mL) and 

centrifugation at 10 000 rpm for 30 min. Two more redispersion/precipitation cycles were carried out 

before dispersing the nanoparticles in a small amount of toluene for storage, in order to ensure optimal 

redispersibility. 

 

• Synthesis from AuClSMe2 and NHC-BH3 in water-saturated toluene 

Prior to reaction, distilled toluene was stirred with water for 2h in air. The stirring was stopped and 

the organic phase was separated and used as solvent following the same protocol as described 

above. 
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Chapter IV 

 

• Synthesis from AuCl, triazolium salt and NaBH4  

The same synthesis as for (benz)imidazolium was applied. 

 

• Synthesis from AuCl, triazolium salt, NaH and NaBH4  

The same synthesis as for (benz)imidazolium was applied. 

 

• Synthesis from HAuCl4.3H2O, triazolium salt and NaBH4 

The protocol as for AuCl was applied. 

 

• Synthesis from AuClSMe2 and MIC-BH3 in toluene 

The protocol as for NHC-BH3 was applied. 

 

• Synthesis from HAuCl4.3H2O and MIC-BH3 in toluene 

The protocol as for NHC-BH3 was applied. 
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Abstract - New syntheses of N-heterocyclic carbene-stabilized gold nanoparticles 

Over the past decade, N-heterocyclic carbenes (NHC) have drawn considerable interest in the field of 

materials chemistry. Indeed, this relatively new class of ligands forms strong bonds with a wide range of 

metals and their structures and electronic properties can be tuned “at-will” through organic synthesis. This 

strong bond is of particular interest for gold nanoparticles. Indeed, gold nanoparticles have many potential 

applications, for example in sensors, catalysis or medicine, but those potential applications are sometimes 

hindered by a lack of stability of the surface ligand. A few syntheses of NHC-stabilized gold nanoparticles 

have already been described in the literature but each presents their own set of drawbacks. This thesis work 

has focused on the development of new syntheses of NHC-stabilized gold nanoparticles. First, by revisiting 

a literature procedure starting from imidazolium salts, we managed to develop a one-pot synthesis starting 

only from commercially available AuCl, NaBH4 and easily synthesized imidazolium salts. A totally new 

synthesis was developed using NHC-boranes, which are stable Lewis adducts. Here, we reported for the 

first time their use as a 2-in-1 reagent, able to reduce the metallic precursor and provide the nanoparticles 

stabilizing ligands. Finally, we are the first to report a synthesis of gold nanoparticles stabilized by mesoionic 

carbenes (MIC). MICs are a sub-class of NHCs synthesized by well-known “click-chemistry”, which present 

unique electronic properties. Throughout this work, special care was taken to characterize the 

nanoparticles, notably by XPS. 

 

Keywords: Gold nanoparticles, synthesis, N-heterocyclic carbene, N-heterocyclic carbene-borane, 

mesoionic carbene, X-ray photoelectron spectroscopy. 

 

Résumé - Nouvelles synthèses de nanoparticules d’or stabilisées par des carbènes N-hétérocycliques 

Durant la dernière décennie, les carbènes N-hétérocycliques ont suscité un intérêt important dans le 

domaine de la chimie des matériaux. En effet, cette catégorie relativement récente de ligands forme des 

liaisons très fortes avec une diversité de métaux et leur structure, ainsi que leurs propriétés électroniques, 

peuvent être adaptées "à volonté" par le biais de la synthèse organique. Cette forte liaison est d’un intérêt 

particulier dans le domaine des nanoparticules d’or. En effet, celles-ci présentent de nombreuses 

applications potentielles, par exemple dans les capteurs, en catalyse ou médecine, mais ces applications 

sont parfois freinées par un manque de stabilité du ligand de surface. Quelques synthèses de nanoparticules 

d’or stabilisées par des NHCs ont déjà été décrites dans la littérature mais chacune présente quelques 

inconvénients. Ce travail de thèse s’est concentré sur le développement de nouvelles synthèses de 

nanoparticules d’or stabilisées par des NHC. D’abord, en revisitant une procédure existante à base de sels 

d’imidazoliums, ce qui a mené à une synthèse n’utilisant que les composés commerciaux : AuCl et NaBH4 

et des halogénures d’imidazolium, qui sont facilement obtenus. Une synthèse totalement nouvelle a 

ensuite été développée en utilisant des NHC-boranes qui sont des adduits de Lewis stables. Nous avons 

montré pour la première fois que les NHC-boranes peuvent être utilisés comme réactifs "2-en-1" dans la 

synthèse de nanoparticules d’or : comme réducteurs du précurseur d’or et comme source de NHC. Enfin, 

nous sommes les premiers à décrire la synthèse de nanoparticules d’or stabilisées par des carbènes 

mésoionique (MIC). Les MICs sont une sous-catégorie des NHCs qui sont préparés par « chimie click » et qui 

présentent des propriétés électroniques uniques. Tout au long de ce travail un intérêt particulier a été porté 

à la caractérisation des nanoparticules, notamment par XPS. 

 
Mots clés : Nanoparticules d’or, synthèse, carbène N-hétérocyclique, carbène N-hétérocyclique borane, 

carbène mésoionique, spectrométrie photoélectronique X. 


