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Résumé 

L'optimisation de la topologie est la conception conceptuelle d'un produit. En 

comparaison avec les approches de conception conventionnelles, il peut créer une nouvelle 

topologie, qui ne pouvait être imaginée à l’avance, en particulier pour la conception d’un 

produit sans expérience préalable ni connaissance. En effet, la technique de la topologie 

consistant à rechercher des topologies efficaces à partir de brouillon devient un sérieux atout 

pour les concepteurs. Bien qu’elle provienne de l'optimisation de la structure, l'optimisation 

de la topologie en champ électromagnétique a prospéré au cours des deux dernières décennies. 

De nos jours, l'optimisation de la topologie est devenue le paradigme des techniques 

d'ingénierie prédominantes pour fournir une méthode de conception quantitative pour la 

conception technique moderne.  

Cependant, en raison de sa nature complexe, le développement de méthodes et de 

stratégies applicables pour l’optimisation de la topologie est toujours en cours. Pour traiter les 

problèmes et défis typiques rencontrés dans le processus d'optimisation de l'ingénierie, en 

considérant les méthodes existantes dans la littérature, cette thèse se concentre sur les 

méthodes d'optimisation de la topologie basées sur des algorithmes déterministes et 

stochastiques. Les travaile principal et la réalisation peuvent être résumés comme suit:  

Premièrement, pour résoudre la convergence prématurée vers un point optimal local de 

la méthode ON/OFF existante, un Tabu-ON/OFF, un Quantum-inspiré Evolutif Algorithme 

(QEA) amélioré et une Génétique Algorithme (GA) amélioré sont proposés successivement. 

Les caractéristiques de chaque algorithme sont élaborées et ses performances sont comparées 

de manière exhaustive.  

Deuxièmement, pour résoudre le problème de densité intermédiaire rencontré dans les 

méthodes basées sur la densité et le problème que la topologie optimisée est peu utilisée 

directement pour la production réelle, deux méthodes d'optimisation de la topologie, à savoir 

Matérial Isotrope solide avec pénalisation (SIMP)-Fonction de Base Radiale (RBF) 

et Méthode du Level Set (LSM)-Fonction de Base Radiale (RBF). Les deux méthodes 

calculent les informations de sensibilité de la fonction objectif et utilisent des optimiseurs 

déterministes pour guider le processus d'optimisation. Pour le problème posé par un grand 

nombre de variables de conception, le coût de calcul des méthodes proposées est 
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considérablement réduit par rapport à celui des méthodes de comptabilisation sur des 

algorithmes stochastiques. Dans le même temps, en raison de l'introduction de la technique de 

lissage par interpolation de données RBF, la topologie optimisée est plus adaptée aux 

productions réelles. 

Troisièmement, afin de réduire les coût informatiques excessifs lorsqu’un algorithme 

de recherche stochastique est utilisé dans l’optimisation de la topologie, une stratégie de 

redistribution des variables de conception est proposée. Dans la stratégie proposée, 

l’ensemble du processus de recherche d’une optimisation de la topologie est divisé en 

structures en couches. La solution de la couche précédente est défini comme topologie initiale 

pour la couche d'optimisation suivante, et seuls les éléments adjacents à la limite sont choisis 

comme variables de conception. Par conséquent, le nombre de variables de conception est 

réduit dans une certaine mesure; le temps de calcul du processus est ainsi raccourci.  

Enfin, une méthodologie d’optimisation de topologie multi-objectif basée sur 

l’algorithme d’optimisation hybride multi-objectif combinant l’Algorithme Génétique de Tri 

Non dominé II (NSGAII) et l’algorithme d’Evolution Différentielle (DE) est proposée. Les 

résultats de la comparaison des fonctions de test indiquent que la performance de l'algorithme 

hybride proposé sont supérieure à celle des algorithmes traditionnels NSGAII et Strength 

Pareto Evolutionary 2 (SPEA2),  qui garantissent la bonne capacité globale optimale de la 

méthodologie proposée et permettent au concepteur de gérer les conditons de contrainte de 

manière directe. 

Pour valider les méthodologies d’optimisation de topologie proposées, deux cas 

d’étude sont optimisés et analysés. L'application du problème d'optimisation de la topologie 

d’un actionneur électromagnétique montre que les performances des méthodes proposées sont 

supérieures à celles des méthodes existantes ; En adoptant la méthode d'optimisation de la 

topologie basée sur l’algortithme hybride proposé, il est possible d’obtenir de nombreuses 

topologies de conception nouvelles, capables de réduire autant que posssible la consommation 

de matériau tout en garantissant que l'armature est soumise à une force électromagnétique 

relativement importante. Cela pourrait fournir une base de référence et une base théorique 

importante pour le travail d'un designer. L’application de la simulation sur le récupérateur 

d’énergie piézoélectriaue montre qu’il est possible d’obtenir davantage de topologies 

optimales réalisables en adoptant la méthode proposée. 
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Abstract 

Topology optimization is the conceptual design of a product. Comparing with 

conventional design approaches, it can create a novel topology, which could not be imagined 

beforehand, especially for the design of a product without prior-experiences or knowledge. 

Indeed, the topology optimization technique with the ability of finding efficient topologies 

starting from scratch has become a serious asset for the designers. Although originated from 

structure optimization, topology optimization in electromagnetic field has flourished in the 

past two decades. Nowadays, topology optimization has become the paradigm of the 

predominant engineering techniques to provide a quantitative design method for modern 

engineering design.  

However, due to its inherent complex nature, the development of applicable methods 

and strategies for topology optimization is still in progress. To address the typical problems 

and challenges encountered in an engineering optimization process, considering the existing 

methods in the literature, this thesis focuses on topology optimization methods based on 

deterministic and stochastic algorithms. The main work and achievement can be summarized 

as: 

Firstly, to solve the premature convergence to a local optimal point of existing 

ON/OFF method, a Tabu-ON/OFF, an improved Quantum-inspired Evolutionary Algorithm 

(QEA) and an improved Genetic Algorithm (GA) are proposed successively. The 

characteristics of each algorithm are elaborated, and its performance is compared 

comprehensively.  

Secondly, to solve the intermediate density problem encountered in density-based 

methods and the engineering infeasibility of the finally optimized topology, two topology 

optimization methods, namely Solid Isotropic Material with Penalization-Radial Basis 

Function (SIMP-RBF) and Level Set Method-Radial Basis Function (LSM-RBF) are 

proposed. Both methods calculate the sensitivity information of the objective function, and 

use deterministic optimizers to guide the optimizing process. For the problem with a large 

number of design variables, the computational cost of the proposed methods is greatly 

reduced compared with those of the methods accounting on stochastic algorithms. At the 
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same time, due to the introduction of RBF data interpolation smoothing technique, the 

optimized topology is more conducive in actual productions.  

Thirdly, to reduce the excessive computing costs when a stochastic searching 

algorithm is used in topology optimization, a design variable redistribution strategy is 

proposed. In the proposed strategy, the whole searching process of a topology optimization is 

divided into layered structures. The solution of the previous layer is set as the initial topology 

for the next optimization layer, and only elements adjacent to the boundary are chosen as 

design variables. Consequently, the number of design variables is reduced to some extent; and 

the computation time is thereby shortened.  

Finally, a multi-objective topology optimization methodology based on the hybrid 

multi-objective optimization algorithm combining Non-dominated Sorting Genetic Algorithm 

II (NSGAII) and Differential Evolution (DE) algorithm is proposed. The comparison results 

on test functions indicate that the performance of the proposed hybrid algorithm is better than 

those of the traditional NSGAII and Strength Pareto Evolutionary Algorithm 2 (SPEA2), 

which guarantee the good global optimal ability of the proposed methodology, and enables a 

designer to handle constraint conditions in a direct way.  

To validate the proposed topology optimization methodologies, two study cases are 

optimized and analyzed. The simulation application on the electromagnetic actuator topology 

optimization problem demonstrates that the performance of the proposed methods is superior 

to those of existing methods; by adopting the topology optimization method based on the 

proposed hybrid algorithm, many new design topologies can be obtained, which are able to 

reduce the material consumption as much as possible while ensuring that the armature is 

subjected to a comparatively large electromagnetic force. This could provide an important 

reference and theory basis for a designer's work. The simulation application on the 

piezoelectric energy harvester shows that optimized topology with better manufacturing 

feasibility can be gained by using the proposed methods. 
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Introduction 

Background 

Today, because of the rapid depletion of energy resources, scarcity of economic and 

material resources, strong technological competition and increasing environmental awareness, 

engineers are under immense pressure to produce optimal designs in order to survive. On the 

other hand, the advent of new technology and materials, as well as the imminent introduction 

of many mandatory international regulations on electrical products, are making it increasingly 

difficult to obtain an optimal design of an electromagnetic device or system using traditional 

analytical and synthetic approaches. In this regard, numerical methodology based on multi-

physics field computations becomes a topical area in design optimizations and inverse 

problems in computational electromagnetics in the last three decades [1]. 

The structure optimization design can be divided into three levels according to the 

type of design variables [2][3]: size optimization, shape optimization, and topology 

optimization. Topology optimization makes it possible that the design object can achieve 

some performance indexes under certain constraints by seeking the optimal topology layout of 

the structure. Compared to the first two category optimization techniques, topology 

optimization can change the topology of a structure to produce novel ones. Consequently, 

topology optimization is the highest level of structure designs and belongs to conceptual 

design. 

Structure Optimization

Shape OptimizationSize Optimization Topology Optimization

Preliminary Design StageDetailed Design Stage Conceptual Design Stage

 

Figure 1 : Structural optimization design and corresponding design stage. 
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In designing an electromagnetic device, one starts from the definition of an initial 

geometry. In order to assess the device performances, a model is then developed based on this 

geometry, from which a parametric optimization is carried out to determine the optimal 

device dimensions. The main disadvantage of this approach lies in the choice of the initial 

geometry. Indeed, the initial geometry either comes from the literature or from the knowledge 

of the designer, who tends to rely on designs that have already proved to be efficient. Even if 

this approach is generally justified, it does not support any creation. A designer may indeed 

be faced with a new design problem about which no previous knowledge exists or with a 

problem where an unexpected design may outperform the conventional one. In this case, 

topology optimization (TO) exhibits its advantages. In fact, TO has now become the paradigm 

of the predominant engineering techniques to provide a quantitative design method for 

modern engineering design. The practical scope of topology optimization has covered many 

areas and disciplines including combinations of structures, heat transfer, acoustics, fluid flow, 

aeroelasticity, materials design, and other multiphysics problems. 

Topology optimization 

Defination 

The goal of topology optimization is finding the optimal topology of a given design 

problem, i.e., determining the material that should be placed in a region in order to optimize 

the objective function while satisfying some specifications. In the case of finite element 

discretization, the design space can be represented as elements and the optimization goal is 

formulated as finding the optimal distribution of materials inside these elements. Figure 2 

conceptually presents a 2D topology optimization problem with material library including 

four materials. 

Design  Space Material library

Void (Air)

Material 1

Material 2

Material 3

 

Figure 2 : 2D topology optimization problem. 
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Mathematical description 

The theoretical description of topology optimization originates from the mechanical 

domain, which can be traced back to the design of the Michell truss in 1904 [4]. As the 

development of numerical analysis methods and optimization techniques, especially with the 

introduction of versatile finite element method, topology optimization has been made great 

progress in the last few decades. Literatures have reported a lot of work in the area of 

topological description, analysis means and optimization methods, among which, the 

description of topological problems is the basis of the analysis and optimization. The current 

main description methods include homogenization method, density based method, boundary 

based method, hard kill method, ON/OFF method and so on.  

Optimization methods for solving topology optimization problems can be roughly 

divided into two categories: methods based on deterministic algorithms and those based on 

stochastic algorithms. Optimality criteria method, mathematical programming method and 

method of moving asymptotes are within the scope of deterministic methods. These methods 

use the gradient information of the objective function, and have a quick convergence speed. 

Such methods are suitable for topology optimization problems with a large number of design 

variables. However, their global searching ability is poor, and they are prone to fall into local 

optimal solutions. Moreover, such methods are difficult in dealing with multi-objective 

optimization problems directly.  

Stochastic methods are optimization methods that use random mechanisms. The 

injected random principle may enable the method to escape from a local optimum; therefore, 

these methods have generally a stronger global searching ability than the deterministic 

algorithms, it is more suitable for the global optimal solution for non-convex mathematical 

programming problems with quite many local extremum. However, the main disadvantage of 

this kind of methods is that the computational cost is high and the convergence speed is slow. 

Currently, the global optimization methods commonly applied in the electromagnetic field are 

genetic algorithm, simulated annealing algorithm, tabu search algorithm, particle swarm 

optimization algorithm, quantum evolution algorithm and so on [5]. The basic idea in these 

algorithms is to eliminate the inferior solution and keep the superior solution through the 

iterative process, and finally find the optimal solution of the problem by introducing 

biological evolutionary ideas (such as Darwin's survival theory of the fittest). 
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Key issues 

Topology optimization was at first applied to structure optimization problems. 

Although much research has already been conducted and different methods are proposed, the 

application of TO in electromagnetic field is comparatively much less studied and nowadays 

still faces many challenges. The main issues to be solved can be classified into the following 

four aspects.  

1.  Local optima 

In the existing methods, quite a few use the gradient-based methods as optimizers, 

which utilize the sensitivity information to drive the optimization procedure as the 

typical deterministic optimization methods. Generally speaking, such methods 

have a good convergence performance. However, the gradient-based methods 

have their disadvantage namely, the stagnation on local optima. When facing with 

complex non-convex problems (most of practical optimization problems belong to 

such problems), the gradient-based methods may converge to one of the optima, 

and then stuck in this local minima, the optimization stops. On the contrary, 

heuristic algorithms are well designed to exploit the global solutions of an 

optimization problem. Unfortunately, their computation burden is comparatively 

heavier than that of the gradient-based methods.  

2.  Intermediate density and manufacturing infeasibility 

(1) The density-based method often encounters the problem of the so-called 

grayscales, regions of intermediate density that are allowed to exist in the optimal 

configurations. Although the penalization scheme will eliminate grayscales in a 

friction of engineering topology design problems, such filtering schemes crucially 

depend on artificial parameters that lack rational guidelines for determining 

appropriate priori parameter values; 

(2) In the level-set method, the obtained boundaries are still represented by a 

discretized, likely unsmooth, mesh in the analysis domain unless alternative 

techniques are applied.  

3.  Heavy computational expense 

Although a wealth of efforts have been devoted to structure TO field, such as 

beam, truss or other supporting structure, which are relatively simple, for more 

complex electromagnetic TO problems, the excessive computation time using 
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finite element analysis (FEA) has been highlighted as a tough issue. The situation 

is much worse when the mesh density in discretization is large. Moreover, the 

sensitivity information needed in gradient-based methods or numerous iteration 

times demanded in heuristic methods require extra computations. All these factors 

accumulate heavy requirement on computation resources to make it an 

overwhelming computational task for topology optimization no matter what 

optimizer (deterministic or heuristic) is used.  

4.  Constraint handling 

In the current existing methods, the way to handle constraint conditions is 

generally to combine them with the original objective to form a new optimization 

objective, which in fact changes the original problem. 

Approaches 

Aimed at the key issues mentioned above, different approaches and strategies are 

proposed in this thesis to address the problems. 

1.  To solve the premature convergence issue in the existing ON/OFF method, 

stochastic algorithms are introduced as the optimizers of topology optimization 

methods. A Tabu-ON/OFF, an improved Quantum-inspired Evolutionary 

Algorithm (QEA) and an improved Genetic Algorithm (GA) are proposed 

successively.  

2.  To solve the intermediate density and manufacture infeasibility problem,  two 

topology optimization methods, namely Solid Isotropic Material with 

Penalization-Radial Basis Function (SIMP-RBF) and Level Set Method-Radial 

Basis Function (LSM-RBF). By introduction of RBF data interpolation technique, 

the optimized topology is more manufacturing friendly. 

3.  To reduce the excessive computation burden when applying a stochastic algorithm 

as the optimizer, a design variable redistribution mechanism is proposed. In this 

mechanism, the whole searching process of a topology optimization is divided 

into layered structures. In the each layer, only elements adjacent to the boundary 

are chosen as design variables. In this way, the number of design variables is 

reduced and the computation time is consequently shortened.  

4.  To consider the constraint conditions in the actual topology optimization problems, 

a multi-objective topology optimization method is proposed, which relies on the 
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proposed hybrid multi-objective optimization algorithm. The proposed TO 

methodology enables designers to handle different constrains in a rational and 

direct way.  

Thesis organization 

Originated from structure optimization, topology optimization has a wide scope of 

topics. However, in this thesis, the application is limited to the electromagnetic relevant 

devices. The thesis is organized as follows.  

A systematic review of the state of the art of topology optimization is presented in 

Chapter 1. Theoretical characteristics and applicative optimizers of homogenization method, 

density based method, ON/OFF method, boundary based method and discrete method are 

summarized and analyzed respectively. The general mathematical representation of a 

topology optimization problem using discrete based method is given. In the end, engineering 

applications in the electromagnetic domain are listed.  

Chapter 2 elaborates the different topology optimization methods proposed in this 

thesis, including the ON/OFF method, the combined tabu-ON/OFF method, an improved 

Quantum-inspired Evolutionary Algorithm (QEA) and an improved Genetic Algorithm (GA) 

based methods of the discrete methods; the combined Solid Isotropic Material with 

Penalization (SIMP)-Radial Basis Function (RBF) method of density based ones, and the 

Level Set Method (LSM)-Radial Basis Function (RBF) topology optimization method of 

boundary based ones.  

In Chapter 3, the classification and development of multi-objective algorithms is 

firstly introduced and summarized. The related concepts of the Pareto optimal, the strong and 

weak dominance relation and the common performance indicators of multi-objective 

optimization algorithms are enumerated. Then a multi-objective topology optimization 

methodology based on the hybrid algorithm (JNSGA-DE) which combines Non-dominated 

Sorting Genetic Algorithm (NSGA) and Differential Evolution (DE) algorithms is proposed. 

The performance of the hybrid algorithm is assessed by using 9 typical test functions with 

different Pareto front features. The test results are compared with the NSGAII and Strength 

Pareto Evolutionary Algorithm 2 (SPEA2).  
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In Chapter 4, numerical examples of topology optimizations are elaborated. The 

numerical results of the proposed topology optimization methods are compared and analyzed. 

The ON/OFF-finite difference method, Tabu-ON/OFF method, improved genetic algorithm 

and improved quantum evolution algorithm are applied to a prototype of electromagnetic 

actuators for a single-objective topology optimization. In the piezoelectric energy harvester 

problem, the topology under static and harmonic conditions is optimized respectively by 

using SIMP-RBF method and LSM-RBF method. Finally, the proposed hybrid optimization 

algorithm is used to optimize the multi-objective topology of the electromagnetic actuator. A 

design variable redistribution strategy is introduced to alleviate the computation burden. And 

a set of typical Pareto non-dominated solutions and their corresponding optimized topologies 

are obtained.  

And in the end, the thesis is concluded. Possible focus and direction of future 

researches is explored.   
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1. State of the art 

The first established topology optimization application can be traced back to the 

beginning of the twentieth century when Michell [4] derived the optimality criteria for the 

least weight layout of trusses to an analytical optimization. Then, Rozvany and Prager [6]~[8] 

extended the principles to derive the topology optimization theory. Although the first paper on 

topology optimization was published over a century ago by the versatile Australian inventor 

Michell, it is only after the landmark paper of Bendsoe and Kikuchi [9] in the late 1980s, in 

which the homogenization method was proposed, which is based on the homogenization 

theory. Since then homogenization method has received lots of attention by the researchers 

who are notably represented by Kikuchi [10] and Allaire [11], and numerical methods for 

topology optimization have been proposed and investigated [8], topology optimization 

techniques been applied to solve a wide scope of problems.  

Almost at the same time, one of the typical density based methods, namely the Solid 

Isotropic Microstructure with Penalization (SIMP) method, was proposed by Bendsøe [12]. 

Later Rozvany and Zhou [13] studied and developed the SIMP method. Compared to the 

homogenization approach, it was easier to be implemented, however the method had its own 

defects, such as mesh dependencies, checkerboard patterns and local minima [14].   

As the development of numerical computation methods, especially after the 

introduction of finite element (FE) method in the field of topology optimization, the topology 

optimization approaches are booming prosperously to have the ability to solve various types 

of structure topologies involving possibly several materials in different engineering 

disciplines, such as in the design of piezoelectric transducers [15]~[20], fluid flow and heat 

[21]~[24], ultrasonic wave transducers [25][26], acoustic devices [27][28], photonic crystals 

[29]~[32] or aerodynamic designs [33]~[35]. 

Topology optimization was firstly applied to electromagnetic (EM) field by Dyck and 

Lowther, who proposed the so called optimized material distribution (OMD) method [36]. 

Besides of the OMD method, they analyzed the problems that would be encountered when 

topology optimization techniques applied in electromagnetic devices and defined some certain 

rules. After a few years tepid development, Yoo et al. [37] applied the homogenization 

method to the H-shaped electromagnet to obtain the optimal topology, in which the change of 
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inner hole size and rotational angle of unit cell determined the material distribution. However, 

after SIMP method gained its popularity in structure optimizations, literature of topology 

optimization in EM domain based on density-based methods have sprouted in 

electromagnetics [38]~[42]. Among which, the ON/OFF method proposed by Takahashi et al. 

[43] and the reluctivity-based method by Choi and Yoo [44] are two typical methods applied 

to electromagnetic devices. Later, when the level-set method grasped the public notice, many 

applications based on this boundary-based methods have emerged [45]~[49]. It should be 

noticed that, although TO methods based on evolutionary algorithms came up not much later 

than the density-based methods [50], the range of applications [51]~[53] were much narrower 

compared with the above mentioned methods.  

Following the similar traces of fundamental research and development as other topics 

and directions in computational electromagnetics, it can be seen that the study of topology 

optimization of electromagnetic devices is also promoted by and stimulated from the 

corresponding studies in other related engineering disciplines, especially in the structure 

optimization of computational mechanics.  

Also, its development and prosperity is synchronized with the evolutionary progress of 

computer software and hardware, as well as the continuously progressing and maturing in 

computational theory and numerical method. In this regard, the state of the art about the 

topology optimization researches and engineering applications for design optimizations of 

electromagnetic devices will be reviewed mainly based on the developments and progresses 

in the fields of topology optimization of the fellow engineering disciplines.  

1.1 Homogenization method 

In homogenization methods, the optimal shape of a structure is transformed into the 

optimal material distribution. The design domain is divided into a finite number of finite 

elements. Each finite element can be decomposed into infinite number of unit cells that have 

rectangular perforation whose size is updated in each iteration. Figure 1.1 shows the design 

domain Ω that is composed of a composite material with perforated microstructure [54]. Each 

microstructure is described by three design variables: 𝜃𝑒, 𝑥𝑒 and 𝑦𝑒, e is the index number of 

the microstructure. The values of homogenized permeability are defined by homogenization 

theory and are assigned at each iteration process in accordance with the design variable 

updates during the design process. By defining a mapping relationship between permeability 
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and design variables, in homogenization method, the macroscopic property of the design 

domain is derived from a large number of microstructure layouts using FE method. 

Dimensions

ey

ex

Design  Space

Rotated microstrucure

e

 

Figure 1.1 : Microstructure and design variables in homogenization method. 

The resulting homogenization problem can be solved by using different algorithms. 

Moving asymptotes (MMA) method originally proposed by Svanberg [55] based on its 

simplicity and good feasibility was widely adopted by Yoo et al. and several scholars 

including Bruyneel et al. [56]. In other topology optimizations, the sequential linear 

programming method was also adopted (in the structure optimization field [57]; in 

electromagnetic domain [58][59]). 

1.2 Density based method 

In structural topology optimization, the most popular methodologies are the density-

based methods. Given a fixed domain of finite elements, density based methods optimize the 

objective function by determining whether each element should consist of solid material or 

void. Thus it poses an extremely large-scale combination optimization problem. By adopting 

interpolation functions where the material properties are explicitly interpreted as the 

continuous design variables (usually the density of materials), the discrete variables are 

transferred to continuous variables and some optimizer is used to iteratively steer the solution 

towards a discrete solid/void topology. Usually, penalty methods are utilized to impel the 

solution to a crisp “0/1” or “solid/void” topologies. Besides, regularization and filter 

techniques are adopted to alleviate the checkerboard problem and mesh-dependency issue. 
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In the following, the SIMP method, a typical density-based method is simply 

introduced. As an example in the mechanical field, SIMP method can be described using a 

stiffness tensor of intermediate materials, 

 𝛦𝑖𝑗𝑘𝑙(𝑥)  = 𝜌(𝑥)
𝑝𝛦𝑖𝑗𝑘𝑙

0
 (1.1) 

where 𝜌(𝑥) is the material proportion in position 𝑥 , 𝑝  is a penalty factor and 𝐸𝑖𝑗𝑘𝑙
0  is the 

stiffness matrix of the solid material. Apparently, when 𝑝 is large than 1, the cell stiffness 

matrix is exponential scale to the material proportion. In this way, intermediate materials are 

penalized, which impels the intermediate density to disappear in the final optimized topology. 

Literatures normally recommend the value of  𝑝 from 2 to 4.  

To utilize a gradient-based optimization method, the proportion of material should be 

limited by a lower bound to avoid the singularity, namely 

 𝜌(𝑥) > 10−3 (1.2) 

And the gradient of the stiffness matrix is then given as 

 
𝜕𝐸𝑖𝑗𝑘𝑙(𝑥)

𝜕𝜌
= 𝑝𝜌𝑝−1𝐸𝑖𝑗𝑘𝑙

0
 (1.3) 

It should be noted that the gradient-based algorithm would be stuck when 𝜌(𝑥) = 0 

and 𝑝 ≠ 1 since the gradient is equal to zero.  

In the TO designs of electromagnetic devices, the method is usually implemented to 

model the following relation between the iron proportion and the permeability [37][39]: 

 𝜇(𝑥) = 𝜇0(1 + (𝜇𝑟 − 1)𝜌(𝑥)
𝑝) (1.4) 

with 𝜇0 is the air permeability and 𝜇𝑟 is the relative iron permeability.  

Various optimization techniques can be implemented as optimizers to solve the 

density problem such as the classical optimality criteria method (OCM) [60]~[64]; sequential 
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linear programming (SLP) ([65]~[67]) or the method of moving asymptotes (MMA) [68]. 

Besides, the steepest-descent method was used as well by Okamoto and Takahashi [69], 

Labbé and Dehez [70].  

Though the density-based method takes the dominated position in the topology 

optimization based on its versatility, effectiveness and easiness to be implemented, it also has 

a few distinct disadvantages. In the mechanical domain, Sigmund and Petersson [14] 

discussed the difficulties of the SIMP method such as local optimal, mesh-dependent 

structures and checkerboard patterns. Byun [40] and Okamoto [69] observed that the 

optimized results depend on the initial conditions. Besides, one typical problem is the 

intermediate density. Despite that many literatures advocate to choose the value of penalty 

factor between 2 and 4 to help to converge to a solid design without intermediate density, it is 

found that the final optimized topology is usually composed of quite a few elements with 

intermediate densities.  

1.3 ON/OFF method 

In the ON/OFF method, the design domain is subdivided into different elements, as 

shown in Figure 1.2. Each element has only one state, void or solid: a gray cell is identified as 

a solid (the state is called “ON”), and a white cell is a void (the state is called “OFF”) from 

which the method obtained its name. The material attribute of an element is updated 

iteratively in order to find a promising topology in terms of the objective function. The 

gradient information of the objective function is usually needed to determine the material 

state of each element whether solid or void [42][43][71]. 

Material

Void

ON

OFF

 

Figure 1.2 : Schematic of ON/OFF method. 

For an air-magnetic material optimization problem, the iterative procedure is described 

as. 
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1) Decision of an initial topology. 

2) Evaluation of the objective function using FE method. 

3) Calculation of sensitivity information using adjoint variable method. 

4) Modification of topology. 

 If the value of sensitivity is negative, the relevant material property in an 

element should be decreased. 

 If the value of sensitivity is positive, the relevant material property should be 

increased. 

5) Topology smoothing. 

a) Cut step: a magnetic material element surrounded by air elements (or just one 

magnetic material element) is changed to air. 

b) Attached step: an air element surrounded by 4 or 5 magnetic material 

elements is transformed to magnetic material. 

6) Evaluation of the objective function corresponding to the updated topology using 

FE method. 

7) Annealing procedure. 

 If the objective function is improved, repeat steps 3 to 7. 

 Otherwise, reduce the number of changeable elements-N by a factor 0 < γ <

1 and repeat steps 3 to 7. 

8) The optimization is terminated when N < 1. 

The advantage of the ON/OFF method is its convenience to be implemented on 

different topology optimization problems; however, the initial topology has a serious 

influence on the final optimized result of the ON/OFF method. Besides, according to the 

mechanism of the optimization process of the ON/OFF method, the sensitivity information is 

used to guide the optimization, which cannot avoid the method to be trapped into the local 

optima. It should be noted that, Choi and Yoo [52] proposed a combined genetic algorithm 

and ON/OFF method to optimize the topology of the magnetic actuators. The genetic 

algorithm is used at the first stage to acquire an initial optimized solution, and ON/OFF 

sensitivity is applied only to the surfaces to further optimize the optimal topology. In this way, 

the initial conditions are avoided to be given and the computational cost is not relatively 

heavy.  
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1.4 Boundary based methods 

Apart from density-based methods introduced, boundary based methods are another 

most widely spread topology optimization methods, especially in the recent decades. The root 

of boundary variation methods lays in shape optimization techniques. Different from the 

density-based methods in which design domain is parameterized in an explicit function, the 

boundary based methods are based on an implicit function that defines the structural boundary 

[72]. Here, boundary based methods are mainly elaborated using level-set method and phase-

field method as two typical ones. Figure 1.3 illustrates the difference between an explicit 

parameterization of variables and an implicit representation, which in Figure 1.3(a), the 

variable of design domain is explicitly parameterized between 0 and 1; while in Figure 1.3(b), 

the structural boundary is implicitly specified as a contour line of the field Φ, which is a 

function of 𝑥.  

(a)

0 1



 0  1d , 

x x



 x



  : = 0 d x x  

(b)  

Figure 1.3 : (a) Explicit representation of design domain (b) implicit representation of boundaries [72]. 

Another difference between density based methods and boundary based methods lies 

in the product of optimization, in density based methods, the optimized topology usually 

contain a lot of intermediate density elements where post-processing procedure for 

interpreting topology is needed; however, the latter methods could generate the optimized 

topology with crisp and smooth edges. However, it is still needed to be noted that, despite that 

some literatures advocate that boundary based methods can improve the accuracy of 

mechanical response in the vicinity of boundaries and avoid the intermediate density in the 

optimized topology, many boundary based methods operate on the discretized finite elements, 

boundaries are still represented in a discretized way, which generally result in a unsmooth, 

toothed optimize topology. 
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1.4.1 Level-set method 

In the level set method, the boundary is represented as the zero level curve using a 

scalar function Φ, and material distribution of the design domain is determined according to 

the values of level set functions in the certain region. The topology optimization is achieved 

through the evolvement of the design boundary including motion, merge and introduction of 

new holes. A 2D example of topology optimization using the level set method is shown in 

Figure 1.4.  

 𝜌 = {
0:  ∀ 𝑥 ∈  Ω: Φ(𝑥) < 0
1:  ∀ 𝑥 ∈  Ω: Φ(𝑥) ≥ 0

 (1.5) 





  0x 

  0x 

  0x 

 

Figure 1.4 : Representations of level-set method: 2D topology example [73]. 

To be more general, a level set model which describes a surface in an implicit form 

using an iso-surface scalar function of a 3D structure can be given [74] 

 𝑆 = {𝑥 ∶ Φ(𝑥) = 𝑘} (1.6) 

 where 𝑘 is an arbitrary iso-value, and 𝑥 is a point in space on the iso-surface. Considering the 

process of structural optimization is dynamically changed in time, we can have (1.7). 

 𝑆(𝑡) = {𝑥(𝑡) ∶ Φ(𝑥(𝑡), 𝑡) = 𝑘} (1.7) 
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Differentiate both sides of (1.7) and apply the chain rule, the following “Hamilton-Jacobi-type” 

equation can be obtained 

 
𝜕Φ(𝑥, 𝑡)

𝜕𝑡
+ ∇Φ(𝑥, 𝑡)

𝑑𝑥

𝑑𝑡
= 0,    Φ(𝑥, 0) = Φ0(𝑥) (1.8) 

which defines an initial value problem for the time dependent function Φ. Let dx dt⁄  be the 

movement of a point on the surface driven by the objective function so that it can be 

expressed in terms of the position x and the geometry of the surface at that point. Then, 

optimal structural boundary can be expressed as the solution of a partial differential equation 

(1.9)  

 
𝜕Φ(𝑥)

𝜕𝑡
= −∇Φ(𝑥)

𝑑𝑥

𝑑𝑡
≡ −∇Φ(𝑥)V(𝑥,Φ),    Φ(𝑥, 0) = Φ0(𝑥) (1.9) 

where V(x,Φ) is the “speed vector” and depends on the objective function, which is usually 

determined by sensitivity analysis respect to the objective function. To maintain a uniform 

spatial gradient value in Hamilton-Jacobi equation, the level set function needs to be re-

initialized after several iterations of update. And to consider the constraint condition, 

augmented Lagrange multiplier formulation is typically used.   

Since the conventional level set method mentioned is unable to create new holes and 

the resulting solutions are heavily dependent on the initial state of the design domain, the 

original Hamilton-Jacobi equation is transformed into the following form 

 
𝜕Φ

𝜕𝑡
+ ∇ΦV−𝒟(Φ)−ℛ(Φ) = 0 (1.10) 

where 𝒟(Φ) is the diffusive operator which smoothies the level set field typically using an 

isotropic or anisotropic, linear or nonlinear diffusion model [75]. These diffusion models are 

similar to the models adopted in the phase field method; and ℛ(Φ) is the reactive term which 

enables the nucleation of new holes, typically as the topological derivatives [76].  

In topology optimization on electromagnetic devices, Zhou et al. presented a level-set 

framework for the design of a typical diploe antenna [45] and design of the negative 
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permeability metamaterials [46]; Choi et al. proposed a method based on reaction-diffusion 

equation and applied it to maximize the force of magnetic actuators [47]; Otomori et al. used 

a level-set based method to find the optimized configuration of the ferrite material in an 

electromagnetic cloak [49]. 

1.4.2 Phase-field method 

The phase-field method proposed in topology optimization is based on the theories 

originally developed from phase-transition field [77][78]. In these theories, a phase field 

function 𝜙 is defined over the design domain Ω, which is classified into two phases, A and B, 

distinguished by values 𝛼 and 𝛽 of 𝜙, and 𝜀 is the interfacial thickness of transition region 

between two boundary phases. 

x






Phase B

Phase A



Difffuse interface

(b)

Phase A

Phase B



Center of diffuse interface region

Edge of diffuse 

interface region

(a)

 

Figure 1.5 : (a) A 2D domain in phase field function (b) 1D phase field function [79]. 

In the phase field method, density variables in the design domain are directly handled, 

and the following function is minimized, 

 

𝐽(𝒖(𝝆), 𝜌) = ∫ 𝑓(𝒖(𝜌))𝑑𝑉
Ω

+∫ (𝜀‖∇𝜌‖2 +
1

𝜀
𝑤(𝜌))

Ω

𝑑𝑉 (1.11) 

where 𝜌  is the density variable, 𝑓(𝒖)  is the original objective function in the topology 

optimization problem, 𝒖  is the specific field which satisfies the linear or nonlinear state 

equation, i.e. displacement field in structural topology optimization, 𝑤(𝜌) is a double well 

potential function that takes value 0 when 𝜌 = 0 𝑜𝑟 1; And the parameter is the interfacial 

thickness of transition phases between solid and void.  

Taking the derivative with respect to 𝜌 on the both sides of (1.11), 
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 𝐽′𝜌 = 𝑓′𝜌 − 𝜀∆𝜌+
1

𝜀
𝑤′𝜌 (1.12) 

where ′ρ represents the differentiation with respect to ρ. By introducing the time-dependent 

evolutional Cahn-Hilliard equation, the above function is minimized, 

 
𝜕𝜌

𝜕𝑡
= −𝑀∇ ⋅ (∇𝐽′𝜌) 

(1.13) 

where M is a diffusion coefficient. For simple implementation, the above equation is often 

solved by splitting into two coupled equations. 

 

𝜕𝜌

𝜕𝑡
= −𝑀∇ ⋅ (∇𝜇)

𝜇 = 𝑓′𝜌 − 𝜀∆𝜌+
1

𝜀
𝑤′𝜌

 (1.14) 

After the phase-field method is firstly proposed by Bourdin and Chambolle [80], a lot 

of researchers applied this method to the structure optimization application adopting different 

double well potential model and regularization techniques to alleviate the ill-posed problem. 

Among which, Wang and Zhou (2004a, b) used van der Waals-Cahn-Hilliard phase transition 

theory and the Γ -convergence theory to solve the bi-material phases and multi-phases 

optimization problems [81][82]. Wallin et al. solved the minimizing problem using volume 

preserving Cahn-Hilliard model in conjunction with an adaptive finite element method to 

lower the computational cost [83]. Although literatures claimed that phase field methods 

could be able to control the perimeter of the optimal topology, avoid the re-initialization 

procedure in level set methods, and be implementation easier, no fully and detailed 

comparison with other methods has been done. Besides, according to Sigmund’s review, a 

number of the phase field methods minimize the functional directly without using the 

auxiliary field 𝜇 in, which makes these methods similar to density approaches [75].  

In electromagnetic devices optimization, the phase-field approaches have not been 

received much attention compared to the level-set methods. 
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1.5 Hard-kill methods 

1.5.1 Evolutionary structure optimization 

Firstly proposed by Xie and Steven [84][85], Evolutionary Structural Optimization 

(ESO) has gained its attention and by now recognized as the most well-known hard-kill 

method of topology optimization. Different from density-based methods, which relax the 

combination optimization problem with discrete variables to the one with continuous 

variables by introducing interpolation functions, and by identifying a means to iteratively 

steer the solution towards a discrete solid/void solution, hard-kill methods directly handle the 

discrete variables optimization problem by gradually removing (or adding) the material in the 

design domain, and the decision of removing or adding material is based on heuristic criteria, 

the sensitivity information is often used as well.  

The most distinct advantage of hard-kill methods like ESO is its simplicity of 

implementation; it can be easily incorporated with commercial finite element softwares; 

another advantage is that topology optimization results are without intermediate or gray 

material since the material property of the finite elements are defined only as solid or void. 

The common minimum compliance optimization problem using ESO method is given as: 

 

𝑚𝑖𝑛 ∶           𝑐 = 𝑼𝑇𝑲𝑼

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶     𝑉 ≤ 𝑉0
                               𝑲𝑼 = 𝑭
                                 𝑥 = [0,1]

 (1.15) 

where 𝑐  is the objective function, 𝑲  is the global stiffness matrix, 𝑼  is the displacement 

vector, 𝑥 is the vector of element design variables and 𝑉 < 𝑉0 is the constraint of material 

usage. It is obvious that different from density-based method where continuous variables are 

utilized, in the basic formulation of a hard-kill method, the design variables are taken as the 

existence (𝑥𝑒 = 1) or absence (𝑥𝑒 = 0) of finite elements. 

Although the original proposed ESO method [86] allows for only the removal of the 

elements with material, soon a bidirectional ESO (BESO) that could both add and remove the 

elements is proposed by Querin et al. [87]. Huang et al. [88], Huang and Xie [89] then 
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proposed a modified BESO that uses nodal sensitivity numbers to solve the mesh dependence 

and checkerboard issue for the compliance minimization problem. 

1.5.2 Heuristic searching algorithms 

With the development of all variations of ESO methods, heuristic searching algorithms 

has gained its popularity based on its characteristics that convenient to be adopted in hard-kill 

methods and strong global searching ability. As one of the typical heuristic algorithms, 

genetic algorithm (GA) [90] is firstly tuned and applied in the topology optimization; particle 

swarm optimization (PSO) method for TO is then proposed [91]; recently, quantum-inspired 

evolutionary algorithm [92] was applied to the TO of modular cabled-trusses. 

Topology optimization using the bit-array representation [93][94] is the most common 

and straightforward method to model the problem, which describes the solid or void status for 

elements in the design domain using binary digits; similar to the previous method Wang et al. 

[90], Guest and Genut [95], Bureerat and Limtragool [96] utilize bit array representations of 

the design domain.  

On the contrary, Liu et al. proposed a different mechanism for representing the genes 

of individuals in the population [97]. This idea is achieved by giving every individual a 𝑛 bits 

length binary string originally made of number ‘1’. After sensitivity numbers of each element 

are calculated, genetic operations such as selection, crossover and mutation will be employed 

to the chromosomes of each element. Only when all gene values in a chromosome are ‘0’, 

will the relevant element be permanently removed. This method is termed genetic 

evolutionary structural optimization (GESO). The search of GESO is based on Darwin’s 

survival-of-the-fittest principle. The fittest elements have higher probability to be kept in the 

population without apprehension of being deleted in early generations in ESO. Comparing 

with the conventional ESO method, the introduction of GA as the optimizer to lead the 

optimization helps to avoid the premature of ESO falling into local optima.  

Zuo et al. developed a genetic BESO method that utilizes the similar bit array 

representation formulation as that in GESO [98]. In each iteration, a finite element analysis is 

firstly used to evaluate the sensitivities of every element, then GA operators of crossover and 

mutation are performed over the chromosomes of all individuals according to the sensitivity 

information.  
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It is worth to note that, in the aforementioned genetic BESO or GESO methods, the 

sensitivity information of elements are calculated to guide the searching direction in the 

evolution of adopted GA. Whereas, in some proposed methods [90][99], the evolution of the 

optimization algorithm is mainly dependent on the fitness value in GA searching process, 

especially in the cases where the derivative of objective function versus design variables is 

hard to be formulated into analytical form, the element sensitivity is then uneasy to be 

obtained.   

The drawbacks to heuristic algorithm based TO methods are quite obvious. Since the 

heuristic algorithms are used, a large number of iterations are needed for the algorithm to find 

the promising optimal topology. This situation even get worse when element sensitivity 

information cannot be easily obtained from an analytical form rather than from computing the 

objective function using finite element analysis (FEA) directly. 

Another issue is handling of constraints. Compared to density-based topology 

optimization approaches where additional constraints can simply be added to the optimization 

problems, in heuristic algorithms based TO methods, constraints can either be combined with 

the original objective function to form a fitness function or be treated as other objective to 

form a multi-objective optimization problem.  

Generally, an optimization problem with constraints can be defined as finding a vector 

𝒙∗ = [𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗]  to minimize the objective function and subjects to the 𝑚  unequal 

constraints and 𝑝 equal ones at the same time.  

 

{
 
 

 
 min        𝑓(𝒙)                                             

𝑠. 𝑡.        𝑔𝑖(𝒙) ≤ 0,     𝑖 = 1,2,… ,𝑚     

         ℎ𝑗(𝒙) = 0,     𝑗 = 1,2,… , 𝑝

 (1.16) 

For the first solving approach to handle constraints mentioned before, penalty function 

which penalizes the unfeasible solution according to its violation of constraints is often used 

to combine the constraints with the original objective function. Various penalty functions 

have been proposed, such as, static penalty function [100][101], dynamic penalty function 

[102], and adaptive penalty function [103]. Su et al. adopted a traditional static penalty 

function for its simplicity and efficiency [104]. 
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𝑓𝑝(𝒙) =∑ 𝑐𝑖𝑔𝑖
∗(𝒙)2

𝑚

𝑖=1

+∑ 𝑟𝑗|ℎ𝑗(𝒙)|
2

𝑝

𝑗=1

𝑔
𝑖
∗(𝒙) = 𝑚𝑎𝑥{𝑔𝑖(𝒙), 0}

 (1.17) 

where 𝑐𝑖 and 𝑟𝑗 are constant penalty factors. The fitness function including the objective and 

the penalty term can be formulated as, 

 𝑓𝑓𝑖𝑡(𝒙) = 𝑄− [𝑓(𝒙)+ 𝑓𝑝(𝒙)] (1.18) 

where Q is a positive number large enough to ensure a positive fitness function. 

The other approach to handle constraints is to form a multi-objective optimization 

problem. Kunnakote and Bureerat [105] proposed to set structural mass constraint as the 

second objective to be optimized. Garcia-Lopez et al. [106] treat the volume of the structure 

as an additional objective to avoid the penalty parameter tuning; to consider robust 

performance, the normal structure compliance to be minimized is replaced by the expected 

value and a variation response subject to different sources of uncertainty 𝜔 , thus the 

optimization problem can be stated as 

 

min          {

𝑓1(𝒙,𝝎) = 𝐸(𝑐(𝒙,𝝎))    

𝑓2(𝒙,𝝎) = 𝑉𝑎𝑟(𝑐(𝒙,𝝎))

𝑓3(𝒙,𝝎) = 𝑉(𝒙)                

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜            𝑲𝑼 = 𝑭              
               𝒙 ≥ 𝟎

     

 (1.19) 

While heuristic algorithms (especially GAs) have been applied to many topology 

optimization problems, their comparatively separate characteristic of optimization algorithms 

allows them easy to be implemented accompany with FEA softwares, and good global ability 

capacitates to find the global optima compared with deterministic methods. However, 

heuristic searching methods are far less popular than density-based or boundary-based 

methods because of their own limitations. One of the most adverse factors is that the 

computational expense of heuristic methods is much heavier than that of deterministic 

methods (for example, gradient methods). Another problem is how to guarantee the 
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connectivity of structure in the stochastic optimization process. Besides, the selection of 

rational and efficient convergence criterion needs to be paid extra attention. 

1.6 Multi-objective topology optimization methods 

Topology optimization (TO) problem as an optimal material distribution problem, 

with various interested parameters considered to be improved; the material consumption is 

certainly expected to be as little as possible. In this sense, its nature is a multi-objective 

optimization (MOO) problem. Moreover, to handle constraint conditions, as mentioned above, 

one way is to add the constraints to the original optimization problem to form a new 

optimization problem; the another way to is to treat them as other objectives to form a multi-

objective optimization problem.  

Despite that multi-objective topology optimization (MOTO) has not been received 

much attention by the scholars, however, there are still lots of literatures that proposed 

different MOTO methodologies, which were used to solve kinds of MOTO problems. 

According to the applied methods to solve MOO problem, these TO methodologies can be 

roughly divided into two categories: one is based on the classical MOO methods, such as 

weighted sum method (Chen et al. [107]), fuzzy logical method (Chen and Shieh [108]), 

compromise programming method (Luo et al. [109]), physical programming method (Lin et al. 

[110]) or so on; the other one is based on evolutionary MOO methods, such as GA (Madeira 

et al. [111]), immune algorithm (Sato et al. [112]), or other evolutionary algorithm. 

Commonly, in those MOTO methodologies that used classical MOO methods, 

homogenization method (Min et al. [113]) or density based method (like SIMP (Marck et al. 

[114])) was used in combination to optimize the structure topology; while in those MOTO 

methodologies that used evolutionary MOO methods, hard-kill methods were often applied 

and the formulated MOTO problem was solved directly by the evolutionary algorithm as an 

optimizer.  

Besides the above mentioned MOTO methods, Tai and Prasad [115] used weighted 

sum approach to handle MOO and chose GA as an optimizer; Olympio and Gandhi [116] 

proposed a multi-objective GA coupled with a local search optimizer using density 

information to optimize the morphing aircraft structures; and Isakari et al. [117] used 

weighted sum method to formulate the original objectives as a new functional, applied level 

set method to solve the MOTO problem.  
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Most of the multi-objective TO methods are concentrated on the structure optimization 

field, and many of them were applied to the TO of a cantilever or beam structure, applications 

on electromagnetic devices are far more less.  

1.7 Applications 

Topology optimization has already been applied to a wide range of disciplines, and the 

followings are parts of the applications in electromagnetic devices designs: 

 jumping rings: produce a sufficient vertical force on a copper ring to levitate it 

while minimizing the power dissipation (Dyck and Lowther, 1996[36]), 

 linear motors: minimize the power required to generate a given force (Dyck and 

Lowther, 1997[118]), 

 induction motors: maximize the magnetic energy under the constraint of volume 

(Wang et al. 2004a[66]); minimize the cogging torque (Im et al. 2003[50]; Choi et 

al. 2011[119]), 

 reluctant motor: optimize the topology of stator to maximize the average torque 

(Labbé and Dehez, 2010[120]), 

 inverse problems: find the material distribution (Byun et al., 2000[121]; Dorn et al. 

[122]; De Lima et al. 2007[59]), 

 magnetic resonance imaging (MRI) systems: achieve a uniform magnetic flux 

density in a given region (Byun et al., 2004[40]; Lee and Yoo, 2010[123]), 

 microspeaker: maximize the Lorentz force by designing the magnetic circuit (Kim 

and Kim, 2008[124]), 

 magnetic recording heads: maximize the recording field (Okamoto et al., 2006[42]; 

Park et al., 2009a,b[125][126]; Takahashi et al., 2008[127]), 

 H-magnets (Yoo and Hong, 2004[128]; Yoo and Kikuchi, 2001[54]), 

 C-core actuators (Choi and Yoo, 2008, 2009[44][129]; Kang et al., 2004[130]; 

Wang et al., 2004b[131]; Yoo, 2004[132]; Yoo and Hong, 2004[128]; Yoo and 

Soh, 2005[38]), 

 piezoelectric actuators: maximize output displacement in a given direction (Kögl 

and Silva, 2005[133]), 

 electromagnetic couplers: maximize the actuating force in a given direction while 

limiting the power consumption (Yoo et al., 2008[64]), 
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 magnetostrictive sensors: increase the sensor output voltage for a given stress 

(Choi and Yoo, 2009[129]), 

 superconducting coils (Elhaut et al., 2011[134]; Kim et al., 2005a, b[68][135]; 

Park et al., 2003[136]), 

 negative permeability metamaterials: (Zhou et al., 2011[46]; Otomori et al. 

2012[48]), 

 magnetic shielding: minimize the maximum flux density in the target region(Sato 

et al., 2014[112]; Okamoto et al., 2014[137]), 

 dipole antenna: (Zhou et al., 2010[45]), 

 electromagnetic waves (Isakari et al., 2016[117]; Deng and Jan G., 2018[138]), 

 synchronous motor (Watanabe et al., 2018[139])  

1.8 Chapter summary 

This chapter provides a systematic review of the main topology optimization methods 

and lists engineering application examples of topology optimization in electromagnetic 

devices. Considering the theoretical principles and characteristics of existing different 

methods such as homogenization method, density based method, ON/OFF method, boundary 

based method and discrete method are given, and it is found that deficiency still exists in the 

aforementioned methods:  

1.  In homogenization method, it uses three design variables to describe the 

microstructure of each cell in the design domain, which resulting in a large 

number of variables, facing large systems. Besides, it adopts a non-smooth 

estimate of the topology boundary; 

2.  In density based method, the appropriate material model is firstly needed to be 

considered. Then regularization and filter techniques need to be chosen carefully; 

in addition, the intermediate density issue encountered most in density based 

method will give rise to the optimized topology hard for the direct manufacturing; 

3.  Boundary based method like level-set method also generates unsmooth and 

toothed optimized topology and sometimes resulting solutions are heavily 

dependent on the initial state; 
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4.  ON/OFF method, despite of the simplicity, the optimized results are dependent on 

the initial condition. And for the methods mentioned above, they are prone to fall 

into local optima when facing complex non-convex optimization problem; 

5.  As for heuristic algorithm based methods, although they are well designed to 

exploit the global solutions, however, the computational cost is frequently high. 

Constraint handling and convergence criterion selection are the other issues to be 

taken care of. 

Considering the above deficiency and issues to be addressed, to equip the TO method 

a stronger global optimization ability, an improved ON/OFF method, a Tabu-ON/OFF 

method, a revised QEA method and a revised GA method are proposed respectively. Among 

which, a redistribute mechanism of design variables is put forward to reduce the computation 

cost of the heuristic algorithm based methods; to solve the intermediate density issue in SIMP 

method and unsmooth toothed optimized topology in level set method, the SIMP-RBF 

method and the LSM-RBF method is proposed to solve large systems for better 

manufacturing feasibility; and to solve multi-objective topology optimization problems and  

handle constraint conditions, a multi-objective topology optimization methodology is 

proposed.  

All the proposed topology optimization methodologies will be elaborated in Chapter 2 

and Chapter 3.  
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2. Methodologies of single-objective topology optimization 

on electromagnetic devices 

The main existing methodologies for topology optimization (TO) have been reviewed 

in Chapter 1, the pros and cons of each method are summarized, among which, SIMP and 

LSM are suitable for TO problems with a large number of variables; ON/OFF method was 

simple in principle and easy to be implement; and hard-kill methods which uses evolutionary 

algorithms like GA have the potential ability to overcome the local optima issue. Therefore, 

based on the characteristics of the above mentioned TO methods, different original improved 

methodologies are proposed and elaborated in sequence in this chapter, which includes 

improved ON/OFF method, Tabu-ON/OFF method, revised QEA method, revised GA 

method, SIMP and RBF combined method and LSM and RBF combined method.  

The first few methods enhance the global optimization ability by introducing 

stochastic algorithms, thereby address the local optima trapping issue; the SIMP-RBF and 

LSM-RBF method utilizes the data interpolation technique to solve the unsmooth optimized 

topology issue. In addition, to alleviate the computation burden, a design variable 

redistribution mechanism is proposed and applied in revised QEA method. The principle of 

each methodology is elaborated, key points of each method are explained and each 

methodology is described in details by giving a flowchart. The verification of numerical 

examples and comparative analysis between different proposed methodologies will be 

presented in Chapter 4.  

2.1 ON/OFF and finite-difference method 

2.1.1 ON/OFF method 

In the conventional density method for topology optimizations, the material density is 

set as design variable, which changes continuously from zero to one. As a result, some gray 

scale elements occur in the final optimal topology obtained by using this type of methods, 

while in ON/OFF method, design variable only has two states, the design domain is 

subdivided into different elements and the material attribute of an element is updated 

iteratively in order to find a promising topology in terms of a performance parameter 𝑄. As 

shown in Figure 2.1, each element has only one condition, void or solid. A gray cell is 
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identified as a solid (the state is called “ON”), and a white cell is a void (the state is called 

“OFF”) [71].  

Solid

Void

ON

OFF

 

Figure 2.1 : Schematic of the ON/OFF method. 

To determine the material attribute (ON/OFF state) of an element, the sensitivity, 

𝑑𝑄 ∕ 𝑑𝑝 (𝑝 is the design variable, and usually the material density, permeability or other 

electromagnetic parameters of element; 𝑄  is the performance parameter) is used. If the 

sensitivity is negative, the cell is a void (air). If the sensitivity is positive, the cell is solid 

(material). The sensitivity of the 𝑖𝑡ℎ element is computed using a finite-difference approach as 

 
𝑑𝑄

𝑑𝜇𝑖
=
|𝑄(𝜇1, 𝜇2, … , 𝜇𝑖

′ , … , 𝜇𝑁 )|− |𝑄(𝜇1, 𝜇2, … , 𝜇𝑖, … , 𝜇𝑁 )|

∆𝜇
 (2.1) 

where 𝜇𝑖 is the permeability of the 𝑖𝑡ℎ element, ∆𝜇 is the perturbation of 𝜇, 𝑁 is the number of 

total elements in the design domain.   

2.1.2 An improved ON/OFF method 

In order to strengthen global search ability and improve the convergence performance 

of the traditional ON/OFF method, an improved ON/OFF method is proposed. To facilitate 

the description of the proposed topology optimization methodology, its flow chart is given in 

Figure 2.2. The methodology starts from an initial phase. In this phase, the initial topology, 

the mesh and algorithm parameters are defined. After the initialization, the algorithm is 

transformed to compute the performance parameter using FEM and calculate sensitivity of 

each element using (2.1). According to theses sensitivities, the attribute of every element is 

updated using the following rules: If the sensitivity of an element 𝑖  is negative, the 

permeability in the element 𝑖 will be decreased, and the material will be set as air; Otherwise, 
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the permeability in the element should be increased, and the element material is set as a 

magnetic material in next iteration. After the updating of element materials, the performance 

parameter corresponding to the new topology is computed. 

 In the proposed methodology, an annealing mechanism is proposed for refinement 

and efficient topology optimizations. For this purpose, one introduces a successful updating as: 

if the performance parameter of the new topology is better than the current one, this updating 

of the new topology is called a successful updating. The algorithm will start an annealing 

process once an updating is not successful. After the annealing process, the algorithm will 

check if the stop criterion is satisfied. 

A promising byproduct of the annealing process is that a simple stop criterion is 

designed as: if the changeable number 𝑁𝑚 of the elements in the design domain is less than 1, 

the optimal procedure will be terminated. 

StartStart

InitializationInitialization

Performance Computation 

Using FEM

Performance Computation 

Using FEM

Sensitivity AnalysisSensitivity Analysis

Performance Computation 

of New Toplogy

Performance Computation 

of New Toplogy

Successful 

Updating 

Successful 

Updating 

StopStop

Nm<1Nm<1

Topology UpdatingTopology Updating

AnnealingAnnealing

No Yes

NoYes

 

Figure 2.2 : Flowchart of the ON/OFF finite-difference methodology. 

1.  Virtual material 

In this study, each cell in the design space possesses two different material attributes, 

air and magnetic materials, related to different permeabilities, for example. With the 
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advancement of the optimization procedures, the permeability of each cell is determined. 

However, to determine the attribute of an element in the next step, the sensitivity information 

is needed and will be computed using a finite difference approach as given in (2.1). Therefore, 

some perturbation technique is required to define the perturbation of μ, ∆μ. For this purpose, 

two virtual materials are introduced.  

In the topology optimization of a magnetic actuator, the relative permeability of the air 

is 1, and that of the magnetic material is μm. Accordingly, two virtual materials with 0.5μm 

and 1.5μm  permeability values of the magnetic material are introduced. In computing the 

sensitivity of an element, the virtual material with a relative permeability of 0.5μm will be 

used if the current material in this element is air; and the virtual material with a relative 

permeability of 1.5μm will be used if the current material in this element is magnetic material. 

By using this approach, the ∆μ in (2.1) can be guaranteed to be positive. As shown in Figure 

2.3, the material library of the proposed methodology includes air, magnetic material and two 

kinds of virtual materials. 

Design  Space Material library

Air

Magnetic material

Virtual material_1

Virtual material_2

 

Figure 2.3 : Illustration of introduced virtual material on a 2D design space. 

2.  Annealing mechanism 

In the proposed methodology, two different annealing mechanisms are proposed and 

used in order to provide different alternatives for engineering applications. The first 

mechanism is based on an annealing parameter and the second one is based on an index to 

counter un-updated number of the materials in an element.  

 Mechanism A 

In this mechanism, the algorithm will start an annealing process if the newest 

updating is not successful. In the annealing process, the number of 

changeable elements - 𝑁𝑚 is decreased using the following equation 
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 𝑁𝑚
𝑘+1 = 𝛾 ⋅ 𝑁𝑚

𝑘
 (2.2) 

where 𝑁𝑚
𝑘  is the changeable number of elements in 𝑘th  iteration; γ  is an 

annealing parameter, which is set as 0.85. 

If the changeable number  𝑁𝑚 of the elements in the design domain is less 

than 1, the iterative procedure will be terminated. 

Based on this mechanism, four strategies are proposed to transfer changeable elements 

into unchangeable ones. These four strategies are illustrated in Figure 2.4.  Since the design 

domain is regularly meshed, the whole search space is divided into a number of rows and 

several columns. Strategy 1 and Strategy 2 are implemented by changing the attributes of row 

elements. Strategy 3 and Strategy 4 are realized by changing the attributes of column 

elements. Comparing Strategy 1 with Strategy 2, the elements that will become unchangeable 

are conducted in a way from down to up in Strategy 1, while the direction for material 

changing in Strategy 2 is just opposite, from up to down. As for Strategy 3 and Strategy 4, the 

elements become unchangeable from left to right in Strategy 3, and from right to left in 

Strategy 4. 

①

③

②
④

 

Figure 2.4 : Four different strategies for annealing mechanism A. 

 Mechanism B 

In this annealing mechanism, instead of the annealing equation (2.2), an index 

to counter the material updating information of all the cells in the design 

space is introduced and used. If the material attribute of the same element in 
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the design domain is not changed for consecutive α  times, the material 

attribute of this element is fixed, namely this element will keep unchangeable 

for the residual iterations. Here, α is a parameter predefined by the user. In 

this study case, α is set to be 7. 

Similar to the termination criterion based on Mechanism A, if the changeable 

number of the elements in the design domain is less than 1, the iterative 

procedure will be stopped. 

2.2 A combined Tabu-ON/OFF methodology 

Due to its easiness in implementation and ability to deal with large number of 

variables, ON/OFF method has been widely applied to the design of topology optimization. 

However, the ON/OFF method has its own limitation and deficiency. To be specific, the finite 

difference method for approximation of the gradient information will inevitably lead to 

inaccuracy; the other disadvantage is that the method is prone to be trapped into a local 

optimal. 

On the contrary, as a stochastic algorithm Tabu search algorithm has a good global 

searching ability, but a slow convergence speed. For the topology optimization problem with 

a good number of design variables, theses stochastic algorithms are hardly to be adopted 

directly since its slow convergence and costly computation burden. 

To fully take advantages of ON/OFF method and Tabu algorithm, a Tabu-ON/OFF 

combined methodology is proposed. 

2.2.1 Tabu searching algorihtm 

Tabu search algorithm is a stochastic heuristic searching algorithm. It is first proposed 

by F. Glover [140] to solve the combinational optimization problems and now been widely 

applied to various kind of combinational optimization problems [141]~[144]. For a 

minimization problem min𝑓(𝒙) (𝓡𝑛 → ℛ), the procedures of a basic Tabu algorithm can be 

simplified as: 

1.  Define the objective function 𝑓(𝒙), and the domain of definition 𝑫; 
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2.  Define the neighborhood of point 𝒙, namely 𝑵(𝒙). Randomly generate a series of 

new points 𝒙1, 𝒙2, … , 𝒙𝑝; 

3.  Calculate the objective function 𝑓(𝒙𝒊) of new points which satisfies the domain of 

definition 𝑫 and choose the “best” point 𝒙∗  (for minimization problem, 𝑓(𝒙) =

𝑚𝑖𝑛[𝑓(𝒙𝟏), 𝑓(𝒙𝟐), … , 𝑓(𝒙𝒑)] ); 

4.  Set 𝒙 = 𝒙∗, repeat 2 to 4 until a stop criterion is satisfied.  

As a heuristic searching algorithm, in Tabu searching algorithm, each “movement” 

operation only chooses the best solution 𝒙∗ in a series of trial solution 𝒙1, 𝒙2, … , 𝒙𝑝 generated 

in the neighborhood of the current solution 𝒙 as the next initial point, and it does not require 

that new point 𝒙∗  must be “better” than 𝒙  (for minimization problem, 𝑓(𝒙∗) < 𝑓(𝒙) ), 

equipping a Tabu searching algorithm with the global searching ability [141]. 

2.2.2 The proposed topology optimization methodololgy 

The flowchart of the proposed methodology is shown in Figure 2.5. The methodology 

starts from an initial topology, and then objective function of initial topology is calculated 

using FEM; Next, a starting searching point is generated randomly, the neighborhood of this 

point is determined. The objective function values corresponding to the change of material 

properties of each element in the neighborhood are calculated respectively. The element in the 

neighborhood which owns the “best” solution is chosen as the next starting searching point; 

when the stop criterion is satisfied, the methodology is terminated.  
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Figure 2.5 : Flowchart of the combined ON/OFF-Tabu methodology. 

1.  Combined with ON/OFF method 

According to the concept of ON/OFF method, the material properties of elements in 

the design domain are set as design variables. Each element in the design domain possesses 

two material properties, which is expressed in binary value 0 and 1. More specifically, 

considering the neighborhood concept and searching mechanism in Tabu algorithm, in the 

proposed methodology, the elements in the design domain constitute the searching space, and 

the neighbor elements in geometry space of each element is the neighborhood solution space 

in the basic Tabu searching algorithm. When calculating the objective function values of the 

neighbor elements, the material property of each neighbor element is changed: that is, if the 

current material is air, it is changed to magnetic material and vice versa. At each iteration, the 

objective function value of each neighbor element is calculated respectively, according to the 

above mentioned material changing mechanism. Choosing the element corresponding to the 

“best” objective function value as the starting point for the next search, and the material 

property of the relevant element is updated at the same time.  

2.  The design of element neighborhood 

To combine the ON/OFF method and discrete Tabu searching algorithm, and consider 

the region limits of the design domain, the element neighborhood is introduced and de-fined. 

As shown in Figure 2.6, the neighborhood of elements depending on the location of the 
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current element (red color) can be classified into three kinds, respectively, 3 neighborhoods, 5 

neighborhoods, and 8 neighborhoods (yellow color). In the searching procedure, the type of 

neighborhood of the current element is firstly determined, and then the objective function 

values corresponding to the neighbor elements are calculated; finally, the relevant element 

having the “best” objective function value is selected as the new starting point for the next 

iteration. 

 

Figure 2.6 : Schematic diagram of neighborhood elements. 

3.  About the Tabu list 

Generally, in Tabu searching algorithm, Tabu list is designed and adopted to prevent 

the algorithm from repeatedly searching the state space which has been searched. That is, the 

state points to which the current point is prohibited to go are recorded in the Tabu list, so as to 

avoid the algorithm being trapped into a local optimal solution. 

Nevertheless, in this proposed combined ON/OFF-Tabu methodology, taking into ac-

count that the application of the Tabu list may limit the number of effective neighbor-hoods, 

and then reduce the number of new states generated from the current state, which worsens the 

global searching ability of the algorithm [142][145], the Tabu list is removed. 

On the other hand, the scale of topology optimization problem is greatly reduced by 

introducing the ON/OFF method and set the elements in the design domain as searching space. 

In this way, the computational efficiency of the algorithm is improved. Meanwhile, a reset 

mechanism is set in the proposed methodology to avoid the searching process being stagnated 

into the dead loop in the movement operation. Specifically, after some consecutive iterations, 

a new staring searching position is randomly generated. 
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2.3 A revised quantum-inspired evolutionary algorithm 

Quantum-inspired evolutionary algorithm (QEA) is a probabilistic evolutionary 

algorithm based on the principle of quantum computing. It is proposed by Han and Kim [146]. 

It introduces quantum bits and describes the different states of quantum bits with probability. 

The quantum chromosomes of the population are mutated by using some mutation method of 

Q-bit, and gradually evolved until the algorithm converges. Although a small size of 

population is adopted in QEA, it is still able to find the global optimal solution. It has a strong 

global searching ability. In order to improve the convergence speed of QEA algorithm and 

achieve a balance between global search (exploration) and local search (exploitation), this 

section proposes an improved QEA, which realizes the adaptive change of the angle in 

quantum rotation gate.  

2.3.1 Quantum-iuspired evolutionary algorihtm 

Quantum bit coding is employed in QEA and a quantum bit can be expressed as [147], 

 |𝜓⟩ =  𝛼|0⟩+  𝛽|1⟩ (2.3) 

where, |0⟩ and |1⟩represent two different quantum states, 𝛼 and 𝛽 are both complex numbers. 

A q-bit may be in the states of |0⟩ or |1⟩ , or any superposition of the two states, with the 

probability of q-bit respectively indicating that q-bit is at |0⟩ or at |1⟩. In a QEA, encoding is 

based on q-bit; specifically, a quantum bit is defined by a pair of complex numbers. A 

quantum chromosome of length 𝑙 can be expressed as 

 𝒒 = [
𝛼1
𝛽1

|
𝛼2
𝛽2

|
⋯
⋯ |

𝛼𝑙
𝛽𝑙
] (2.4) 

where, 𝛼𝑖 and 𝛽𝑖 satisfy the normalization condition, namely, |𝛼𝑖|
2 + |𝛽𝑖|

2 = 1, 𝑖 = 1,2,⋯ 𝑙 . 

Using a quantum bit encoding, a chromosome of length 𝑙 can simultaneously represent the 

superposition of 2𝑙 candidate solutions. On the contrary, a traditional binary coding can only 

indicate a certain candidate solution, and therefore QEA using quantum coding could still 

guarantee the diversity of the population even when the population size is small compared to 

other evolutionary algorithms.  
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By using the random observation of a  quantum chromosome, a binary state 𝒙 is 

obtained, that is, 𝒙 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑙]  (where 𝑥𝑖  is 0 or 1). In the actual process of 

implementation, a random number - 𝑟𝑛𝑑 between 0 and 1 is generated for each q-bit, [𝛼𝑖, 𝛽𝑖]
𝑇. 

If 𝑟𝑛𝑑 < |𝛽𝑖|
2, then 𝑥𝑖 = 1, otherwise, 𝑥𝑖 = 0.  

In a QEA, the quantum chromosomes are evolved and updated by using the rotation 

gate. The 𝑖th bit of 𝒒 is updated by the following equation, 

 [
𝛼𝑖
′

𝛽𝑖
′] = [

cos ∆𝜃𝑖 −sin∆𝜃𝑖
sin∆𝜃𝑖 cos∆𝜃𝑖

] [
𝛼𝑖
𝛽𝑖
] (2.5) 

where, [𝛼𝑖
′, 𝛽𝑖

′]𝑇 is the 𝑖th bit q-bit after updated; ∆𝜃𝑖 is the rotation angle, and its value is 

determined by looking up a table [147]~[149]. 

Table 2.1 : Looking up table of rotation angle - ∆𝜃𝑖 

𝑥𝑖 𝑏𝑖  𝑓(𝒙) ≥ 𝑓(𝒃) 

∆𝜃𝑖  

𝛼𝑖𝛽𝑖 > 0 𝛼𝑖𝛽𝑖 < 0 

0 0 false 0 0 

0 0 true 0 0 

0 1 false 𝜃 −𝜃 

0 1 true 0 0 

1 0 false 𝜃 −𝜃 

1 0 true 0 0 

1 1 false 0 0 

1 1 true 0 0 

In the table, 𝑏𝑖 is the 𝑖th bit of the current optimal solution 𝒃, 𝑓(⋅) is the fitness function, and 

𝜃 is the magnitude of ∆𝜃𝑖, whose value is generally between 0.001π~0.05π. 
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Figure 2.7 : Schematic diagram of rotation gate. 

2.3.2 Improvements 

1.  Adaptive rotation angle strategy 

In a traditional QEA algorithm, the rotation angle is determined by using a looking up 

table. As the quantum chromosome evolves continuously, the algorithm constantly updates 

the searched global optimal solution. However, since the rotation angle is set as a fixed value: 

a smaller rotation angle helps to search the solution space meticulously, but it is adverse to the 

convergence of the algorithm; conversely, although a larger rotation angle is conducive to 

speed up the convergence of the algorithm, it becomes easier to fall into the local extreme. 

Based on this observation, an adaptive rotation angle update strategy is proposed with 

reference to the concept of entropy in information theory [150].  

Let the population size be 𝑛 and the chromosome length be 𝑙, the population of the 𝑡th 

generation can be expressed as 𝐵(𝑡) = (𝐵1
𝑡, … , 𝐵𝑗

𝑡, … , 𝐵𝑛
𝑡) , where 𝐵𝑗

𝑡 = (𝑏1
𝑡𝑏2
𝑡 …𝑏𝑙

𝑡) 

represents the 𝑗th  individual in binary encoding, and the proposed adaptive rotation angle 

update strategy can be described as follows, 

 

∆𝜃𝑡+1 = 𝑒
(1−

𝐻(𝐵𝑡)

𝐻(𝐵1)
)

⋅ ∆𝜃

𝐻(𝐵𝑗
𝑡
) =∑−𝑞𝑖

𝛼2𝑙𝑛𝑞𝑖
𝛼2 − (1 − 𝑞𝑖

𝛼2) 𝑙𝑛 (1 − 𝑞𝑖
𝛼2)

𝑙

𝑖=1

𝐻(𝐵𝑡) = 𝑚𝑎𝑥 (𝐻(𝐵𝑗
𝑡
))

 (2.6) 
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In this equation, Δθt+1 is the rotation angle of the (𝑡 + 1)th iteration, Δθmin is the minimum 

rotation angle predefined, and 𝑞𝑖
𝛼2  represents the probability that the 𝑖th  q-bit of the 

chromosome is 0. 

Considering the quantum population as an information system, according to (2.6), it is 

shown that in the initial stage of evolution, the whole system is unstable, the information 

entropy is large, and hence small rotation angle is adopted. The algorithm can fully exploit the 

searching space; with the continuous evolution of quantum populations, the system gradually 

becomes stable, the information entropy becomes smaller, and at this time the rotation angle 

gradually increases, which helps the algorithm to converge quickly.  

2.  Variable redistribution mechanism 

For the optimization of a design problem, if the number of design variables is too large, 

the computation cost would be too high and the convergence speed be slow. Here, a design 

variable redistribution mechanism is proposed, which reorganizes the design variables and the 

optimization procedure is executed stepwisely to solve this issue. In this way, the 

computational burden is reduced and the whole optimization process is speeded up. The 

schematic diagram of the proposed redistribution mechanism is shown in Figure 2.8. The 

discrete elements are reconstructed after the finite element discretization of design domain. 

For example, in Step 1, the adjacent design elements (variables) in the design domain are 

combined with each other to form different super-cells (indicated by different colors), each 

super cell is regarded as a new design variable, and the proposed algorithm is applied to 

optimize the topology; in Step 2, the boundary of the optimized topology obtained after Step 1 

is detected. The elements adjacent to the boundary are chosen as the design variable to be 

optimized in the next step; according to this rule, the design area is searched in a continuously 

refined way, and finally the optimized topology of the entire design area is obtained. 
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Figure 2.8 : The proposed design variables redistribution mechanism. 

2.3.3 Algorithm flowchart 

The flowchart of the proposed topology optimization methodology based on the 

improved QEA algorithm is shown in Figure 2.9. The specific process of quantum 

observation, objective function calculation, quantum chromosome update and optimal 

solution update is shown in the right of the figure. Each individual in the quantum population 

possesses an optimal solution found in its own individual search history, and the entire 

population has a continuously updated global optimal solution. In the quantum population 

evolution, neighboring individuals promote local evolution through local learning, which 

helps to fully search the variable space. The global optimal solution guides all individuals, 

which helps to speed up the convergence. In the numerical implementation, the global 

learning is set to be performed once every 20 generations, and the local learning is set to be 

performed once every 10 generations. 
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Figure 2.9 : Flowchart of the proposed QEA. 

2.4 A revised genetic algorithm 

2.4.1 Revised GA 

As explained previously, the ON/OFF method is powerful in solving optimization 

problems with a large number of variables. However, it may converge to a local optimal 

solution. On the other hand, the stochastic algorithms, such as genetic algorithms (GA), have 

been recognized as the standards of global optimizers in solving electromagnetic design 

problems. Nevertheless, such algorithms are sometime inefficient in dealing with topology 

optimizations with a large number of design variables, since the computational cost is 

generally extremely high. To fully utilize the advantages of both the ON/OFF method of the 

fast convergence speed and the GA of the strong global searching ability, a modified GA is 

combined with the ON/OFF method to develop an efficient global topology optimizer for 

electromagnetic device designs.  

It should be noted that there are two directions in combing an evolutionary algorithm 

with a local search one in literature. The first direction is to start from a local search method 

to give a relative better (initial) solution and then to transfer to an evolutionary algorithm to 
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improve the solution and find finally the global one. And the goal of such efforts is thus to 

enhance the convergence speed of the hybridized algorithm without worsening the global 

search ability. The second direction is to use an evolutionary algorithm to roughly locate the 

attract regions of the global optimal solution and then refine the searches using a local search 

method. Consequently, the proposed methodology belongs to the first category. Moreover, a 

methodology in the first category is more efficient for problems where the objective is 

globally convex, but the minimum is noised by metastabilities, as the case study of magnetic 

actuator; while an optimal technique in the second category is more dedicated to one rather 

flat global minimum with few well splitted matastibilities. 

Genetic algorithm (GA) is a stochastic searching algorithm, which imitates the 

Darwin’s biological evolution process including genetic selection, natural elimination and 

other procedures. It is a computation method, which simulates the mechanism of life 

evolution on the computer. Proposed by Goldberg and Holland [151][152], GA has been 

applied to nearly all kinds of optimizations of practical problems, and has been recognized as 

the standard of global optimizers in solving electromagnetic design problems. 

A GA starts from the initialization of 𝑁  randomly generated populations; through 

reproduction, crossover, mutation and other operators, the populations evolves to be better, 

until a stop criterion is satisfied. The basic procedures of a GA can be simplified as: 

1)  Initialization: randomly generate the initial population 𝑃(𝑡) , calculates the 

objective function values and fitness values; 

2)  Operators: executes reproduction, crossover and mutation procedures to generate 

new population  𝑃(𝑡 + 1); 

3)  Termination condition: determine whether the stop criterion is satisfied; if 

satisfied, the algorithm is terminated; otherwise, set 𝑃(𝑡) = 𝑃(𝑡 + 1), repeat 2,3. 

In the proposed methodology, a binary encoded GA is employed to enhance the global 

searching ability of the methodology. Since the design variable is a discrete one indicating the 

element material state in ON/OFF method, it is easy to combine the two optimal techniques. 

In the traditional GA [151][153], the genetic operators are normally composed of selection, 

crossover and mutation. However, the new population is generated by using a different 

mechanism in the proposed improved GA. 
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1.  Generation of new population 

Inspired from Particle Swarm Optimization (PSO) algorithms [154]~[157], two best 

solutions, pbest  and gbest  are introduced to utilize the individual cognition and social 

experiences to guide the search process simultaneously. The first best, pbest , is the best 

solution that an individual has ever searched; and the second one, gbest, is the best solution 

that all individuals have so far found. The genes of an individual are updated according to the 

following rules as implemented using the MATLAB language as: 

if (rand>max(c1,c2)/(c1+c2)) 

  newpop(i,j)=gbest(ItNum).bestindividual(j); 

elseif (rand>min(c1,c2)/(c1+c2)) 

  newpop(i,j)=pbest(i).bestindividual(j); 

else 

end 

where, rand is a random number between 0 and 1, 𝑐1 and 𝑐2 are two acceleration factors that 

change nonlinearly as the iteration increases, i represents the 𝑖th individual in the population, j 

indicates the 𝑗th  gene in the chromosome, 𝐼𝑡𝑁𝑢𝑚  is the current number of iterations. 

Moreover, 𝑐1 and 𝑐2 vary nonlinearly based on the following equations [158]: 

 

𝑐1 = 𝑐1_𝑚𝑖𝑛 + (𝑐1_𝑚𝑎𝑥 − 𝑐1_𝑚𝑖𝑛)× (1 − cos
−1 (

−2× (𝐶𝑢𝑟𝑟𝐼𝑡𝑁𝑢𝑚− 1)

𝑀𝑎𝑥𝐼𝑡𝑁𝑢𝑚
+ 1) ∕ 𝜋)

𝑐2 = 𝑐2_𝑚𝑎𝑥 − (𝑐2_𝑚𝑎𝑥 − 𝑐2_𝑚𝑖𝑛)× (1 − cos
−1 (

−2× (𝐶𝑢𝑟𝑟𝐼𝑡𝑁𝑢𝑚− 1)

𝑀𝑎𝑥𝐼𝑡𝑁𝑢𝑚
+ 1) /𝜋)

 (2.7) 

where, 𝑐1_min, 𝑐1_max, 𝑐2_min, 𝑐2_max are the minimum value of 𝑐1, the maximum value of 𝑐1, 

the minimum value of 𝑐2 and the maximum value of 𝑐2, respectively; 𝐶𝑢𝑟𝑟𝐼𝑡𝑁𝑢𝑚 represents 

the current iteration number; 𝑀𝑎𝑥𝐼𝑡𝑁𝑢𝑚 is the maximum iteration number predefined by the 

user. 

In the iterative procedures, 𝑐1 decreases nonlinearly, while 𝑐2  increases nonlinearly. 

By adopting this strategy, it is hoped that the algorithm explores the whole space with enough 

diversity in the initial stage. In this stage, each individual searches mainly based on its own 

cognition (𝑝𝑏𝑒𝑠𝑡), less affected by social experience (𝑔𝑏𝑒𝑠𝑡). As the iteration advances, the 
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social experience plays more and more important role, and the algorithm learns more from the 

group experiences to enhance the convergence speed. Moreover, the purpose for using 

nonlinear changing of 𝑐1 and 𝑐2 is to guarantee that the generation procedure operates more 

smoothly, not sharply, to avoid premature convergence. 

2.  Adaptive mutation probability 

Mutation operator plays a main role in keeping the diversity of population in randomly 

searching stage to avoid premature convergences. While in the stage of local searching, the 

mutation is hoped to accelerate the convergence speed for finding the global optimum 

solution. In this regard, an adaptive mutation probability is used in the improved genetic 

algorithm [159]: 

 𝑝𝑚 = 𝑝𝑚0 (1.0 −
𝐻

𝐿
)

3

+ 𝛼 (2.8) 

where, pm0
 is the initial mutation probability, H is the hamming distance of the chromosomes 

between the best individual (with best fitness value) and the worst individual (with worst 

fitness value) in some iteration, L is the length of the chromosome, α is a constant: In the 

randomly searching stage, α is set to be 0.005; and in the local optimization stage, α is set to 

be 0.002.  

In this study, pm0
 is set as the reciprocal of the length of chromosome. To identify the 

state of the current searching stage, the following criteria are used, and the corresponding 

mutation probabilities are updated, as implemented using a MATLAB language form: 

 if  fitvalue_ave>threshold_1&&fitvalue_ave<threshold_2 

   pm=pm0*(1.0-H/L)^3+0.005; 

 elseif  fitvalue_ave>=threshold_2 

   pm=pm0*(1.0-H/L)^3+0.002; 

 else 

   pm=pm0; 

 end 
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where, threshold1 and threshold2 are two constants set beforehand to judge the searching 

stage, fitvalueavg is the average fitness value. 

2.4.2 The proposed topology optimization methodology 

The whole optimization procedure of the proposed methodology is shown in Figure 

2.10. The methodology starts from ON/OFF method to obtain a relatively promising topology, 

and activates the annealing procedure. After the annealing procedure, the methodology is 

transferred to the initialization of GA. In this initialization phase, the related parameters are 

defined and the initial population is generated. It is worthy to be noted that the optimized 

topology by ON/OFF method is set as one initial individual of GA. Once the initialization 

phase is finished, the methodology will activate GA to find improved topologies with better 

performances until a stop criterion is satisfied. After the stop criterion is satisfied, the 

methodology will run a topology shape check process to modify the optimized geometry 

shape in order to guarantee its geometry feasibility. 
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Topology shape check

Initialization of GA

Computation of fitness values 

using FEM
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Crossover and mutation
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No
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Figure 2.10 : Flowchart of the hybrid method combining ON/OFF method and GA. 
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2.5 A combined SIMP-RBF method 

The solid isotropic material with penalization (SIMP) method has been widely 

employed in topology optimizations for its effectiveness and low computational cost. 

However, the finally optimized topology that contains a quite lot of gray elements is often 

blurry, which is not feasible and cannot be embraced by a designer. In this section a topology 

optimization methodology based on SIMP and radial basis function (RBF) is proposed. The 

SIMP is executed to obtain a preliminary optimized topology, and a post-processor based on 

RBF is then used to smooth the topology of the blurry area of the preliminary optimized 

topology. To validate the proposed method, a 3D finite element model of piezoelectric energy 

harvester is developed and the proposed methodology is applied to the topology optimization 

of the piezoelectric energy harvester. 

2.5.1 SIMP model and RBF post-processor 

1.  SIMP model 

Proposed by Bendsøe, Rozvany, Zhou and other collaborators, SIMP has gained its 

reputation in the field of structural topology optimization and widely applied in the TO of 

structures, heat transfer, aeroelasticity and multiphysics area [75]. In a SIMP method, a 

power-law interpolation function is introduced to relax a large-scale discrete variable problem 

to a continuous one, and then identified the optimization means, iteratively leading the 

continuous design towards a solid/void solution. To apply the SIMP method to a piezoelectric 

material, the following interpolation model [20] is adopted. 

 

𝑪 = 𝛾𝑝1𝑪0
𝒆 = 𝛾𝑝2𝒆0
𝜺 = 𝛾𝑝3𝜺0
𝜌 = 𝛾𝜌0

 (2.9) 

where 𝛾 (0 < 𝛾 ≤ 1 ) is the pseudo-density as a design variable which differs in each finite 

element; 𝑪0  , 𝒆0 , and 𝜺0  are the elasticity, piezoelectric, and permittivity matrices of the 

piezoelectric material with penalization factors 𝑝1,  𝑝2, and 𝑝3, respectively; 𝜌 is the density 

of the piezoelectric material. 
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The appropriate selection of the penalization factor- 𝑝 is a challenge issue: a too small 

penalization parameter may cause the optimization process to stagnate; on the other hand, too 

large penalization factor may results the algorithm to be trapped in a local optimum. In 

structure topology optimization studies, it is often suggested to slowly increase the value of 

penalization factor in the optimization procedure. In this study, a smooth decreasing strategy 

of 𝑝 is proposed as (2.10). In (2.10), 𝑘 is the iteration number;  𝑝𝑘 is the value of 𝑝 in 𝑘𝑡ℎ 

iteration, 𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛 are the maximum constant value and the minimum constant value, 

which are given beforehand. The effect of combinations of penalization factor on optimized 

topology will be analyzed in the next section. 

 𝑝𝑘+1 = {

𝑝𝑚𝑎𝑥                                                   𝑘 ≤ 20

𝑚𝑎𝑥(𝑝𝑚𝑖𝑛, 0.98𝑝𝑘)                              𝑒𝑙𝑠𝑒
     (2.10) 

2.  RBF post-processor 

To smooth the edge of the obtained topology and make it more feasible for 

engineering production, a post-processor based on RBF is proposed. Given a series of 

sampling points and the corresponding function values (𝑥𝑗 , 𝑓𝑗) and the radial basis function 𝐻, 

which is a monotonic function of a n-dimensional Euclidean space ‖⋅‖, the interpolation 

function can be expressed as [160]: 

 𝑓(𝑥) =∑𝑐𝑗

𝑁

𝑗=1

𝐻(‖𝑥 − 𝑥𝑗‖) (2.11) 

where ‖𝑥 − 𝑥𝑗‖  is the Euclidean norm between point 𝑥  and center 𝑥𝑗 . 𝑐𝑗  is the constant 

coefficient. And in the proposed RBF post-processor, the multiquadrics function is used,  

 𝐻(‖𝑥 − 𝑥𝑖‖) = ((‖𝑥 − 𝑥𝑖‖)
2 + ℎ)𝛽 (2.12) 

where ℎ and 𝛽 are two control parameters. After a series of sampling points are input as the 

trained samples, the coefficients 𝑐𝑗(𝑗 = 1,2, …𝑁) can be obtained. For a given point 𝑥, the 

reconstructed 𝑓(𝑥) can be calculated from (2.11). 
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The procedure of RBF post-processing is explained as: After the initial optimized 

topology that contains a lot of intermediate density is acquired by using SIMP methodology, a 

binarization step is executed to obtain a solid-void topology. In this step, a threshold value is 

set to filtrate the intermediate density; the boundary of the topology is thus detected and the 

coordinates of the boundary nodes are calculated to be used as the training samples; The RBF 

model is then constructed by inputting the training samples, and the boundary is reconstructed 

by recalculating the boundary nodes coordinates from the just constructed RBF model. 

2.5.2 The proposed topology optimization methodology 

In the proposed methodology, the SIMP method is firstly employed to obtain an initial 

optimal topology. 3D finite element analysis and sensitivity analysis are developed, and the 

optimality criteria (OC) method is employed in the SIMP. The RBF post-processor is 

executed to smooth the blurry topology. The iterative procedures of the proposed 

methodology are shown in Figure 2.11.  

Start
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Initialization of SIMP

FE analysis

Update design variables

Yes

No

Sensitivity analysis

RBF post-processor 

 

Figure 2.11 : Flowchart of the proposed SIMP-RBF methodology. 

2.6 A combined LSM-RBF method 
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As a boundary based topology optimization method, the level-set method was firstly 

applied in the field of boundary evolution and image segmentation of multiphase flow 

[161][162], and has then been widely used in topology optimization of mechanical structures. 

Compared to the density based methods such as SIMP, one advantage of level set method is 

that the topology optimization results obtained by the density methods usually contain many 

intermediate density elements, which require post-processing procedure to analyze the 

obtained topological structure; while level set method and other boundary based topology 

optimization methods usually can obtain a topology with a clear boundary. In this section, a 

topology optimization methodology based on level set method and radial basis function (RBF) 

is proposed.  

2.6.1 Level set method 

Level set method is a numerical technique for tracking moving interfaces. It optimizes 

the topology by gradually moving and merging the initially defined shape. For a given region 

Ω, a level set function can be described as 

 𝜓(𝒑) {

< 0         𝑖𝑓  𝒑 ∈ Ω

= 0       𝑖𝑓  𝒑 ∈ 𝜕Ω
> 0         𝑖𝑓  𝒑 ∉ Ω

 (2.13) 

where 𝒑 is any point in the design area and ∂Ω is the boundary of the region Ω . The level set 

function is solved and updated using the following equation, 

 
𝜕𝜓

𝜕𝑡
+ 𝜈|∇𝜓| = 0 (2.14) 

where, 𝑡 is the time variable and 𝜈 is the scalar velocity field that determines the geometrical 

motion of the boundary, which is usually determined by the shape sensitivity of the objective 

function. In the numerical implementation, 𝜓 is initialized to a signed distance function, and 

the well-known upwind difference format is often applied to solve the level set function. 

The topology optimization method proposed in this section is based on a classical 

level set method [74][163][164]. The level set function 𝜓 is first discretized in accordance 

with the grid points at the center of the element, satisfying the following, 
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 𝜓(𝑝𝑒) {
< 0      𝑖𝑓  𝑥𝑒 = 1
> 0      𝑖𝑓  𝑥𝑒 = 0

 (2.15) 

where, 𝑝𝑒 is the center of element 𝑒 in the region Ω. In order to consider the volume constraint, 

the augmented Lagrangian multiplier method [164] is used here. 

 𝐿 = 𝜂(𝒙) + 𝜆𝑘(𝑉(𝒙) − 𝑉𝑟𝑒𝑞) +
1

2Λ𝑘
[𝑉(𝒙) − 𝑉𝑟𝑒𝑞]

2
 (2.16) 

where, 𝑘 is the iteration number, 𝜂(𝒙) is the objective function, 𝜆𝑘 and Λ𝑘 are two parameters, 

which are updated using the following equation: 

 
𝜆𝑘+1 = 𝜆𝑘 +

1

Λ𝑘
(𝑉(𝒙)−𝑉𝑟𝑒𝑞)

Λ𝑘+1 = αΛ𝑘

 (2.17) 

where 𝛼 is a fixed constant between 0 and 1. 

The velocity item 𝜈 is determined according to the gradient direction of the shape 

sensitivity of the Lagrangian term 𝐿, 

 𝜈|𝑒 = −
𝛿𝐿

𝛿Ω
|
𝑒

=
𝛿𝜂

𝛿Ω
− 𝜆𝑘 −

1

Λ𝑘
(𝑉(𝒙)−𝑉𝑟𝑒𝑞) (2.18) 

2.6.2 Material interpolation and RBF post-processor 

As described in the previous section of SIMP-based topology optimization 

methodology, the same material interpolation model is adopted to calculate the shape 

sensitivity of the level set function. The general form of the model is given as below, 

 

𝑪 = 𝑥𝑒
𝑝1𝑪

0

𝒆 = 𝑥𝑒
𝑝2𝒆

0

𝜺 = 𝑥𝑒
𝑝3𝜺

0
𝜌 = 𝑥𝑒𝜌0

 (2.19) 
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where 𝑥𝑒 is the pseudo-density of the element; and definitions of other terms are the same as 

in the previous section. It is worth noting that, different from the density variable method 

before, where the design variable is a continuous value between 0 and 1, 𝑥𝑒 here takes 1 or a 

small threshold value (to avoid generating singular matrices during optimization). 

In order to obtain the optimized topology with a smooth boundary and make it more 

suitable for industrial production, the topology optimization method based on the level set 

method proposed in this section also adopts RBF-based post-processing procedure. Compared 

with numerical interpolation techniques such as Lagrangian polynomial interpolation, 

sequential linear interpolation and spline interpolation, RBF interpolation can still possess a 

well fitted curve even with few sampling points; in addition, RBF interpolation is easy to 

numerically implemented, thus helpful to facilitate a relatively automated post-processing. 

The detail of RBF post-processing process is described as follows: 

1.  Since design variables in the proposed level set method are discrete values, 

numerical instability or checkerboard phenomenon may occur in the obtained 

optimized topology results. As shown in Figure 2.12(a), the initial optimized 

topology obtained by the level set method contains many burrs on the edges. 

Therefore, after obtaining the preliminary optimized topology, it is necessary to 

first perform a post-processing to remove the scatter and fill the cavity to obtain a 

smooth discrete topology containing only material or air. Here a direct mechanism 

for generating a smooth discrete topology is adopted: assuming that the material 

property of current element is air (or material), if at least three of its four adjacent 

elements are material (or air), the material property of the current element is 

changed to solid (void); Besides this condition, the material property of the 

element would be not changed. At last, the discrete optimization topology is 

obtained by extracting the largest connected domain, as shown in Figure 2.12(b); 

2.  After obtaining the discrete optimization topology, its boundary is detected, the 

coordinates of the adjacent boundary nodes are calculated, and these coordinates 

are regarded as a set of training samples for the radial basis function. In order to 

increase the number of sample points and improve the interpolation effect of RBF, 

here, the midpoint of the boundary is also counted in the training sample in 

addition to the boundary endpoint, marked by the cross as shown in Figure 2.13(a); 
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3.  The RBF approximation of the boundary is obtained by using the training sample 

as an input data, and finally the smoothing boundary is reconstructed from the 

RBF model just built, as shown in Figure 2.13(b). 

(a) (b)  

Figure 2.12 : Post-processing procedure of obtaining discrete topology. 

(a) (b)  

Figure 2.13 : Post-processing procedure of RBF interpolation. 

2.7 Chapter summary 

This chapter proposes different topology optimization methods. More specially, the 

discrete topology optimization methods include the ON/OFF method, the combined Tabu-

ON/OFF method, the improved QEA based method, and the improved GA based method; a 

topology optimization methodology based on SIMP and RBF, and a methodology based on 

LSM and RBF are also introduced.  

In the ON/OFF method, virtual materials are introduced and different annealing 

mechanisms are proposed to enhance the global searching ability and improve the 

convergence performance. In the combined Tabu-ON/OFF method, ON/OFF method is 

combined with Tabu search algorithm. The concept of element neighborhood is introduced to 

adjust to the topology optimization problem and Tabu list is removed. In the improved QEA 

topology optimization method, the adaptive rotation angle is used to improve the convergence 

performance. In order to reduce the computational burden, a redistribution mechanism of 

design variables is designed. To further improve the global optimization ability and avoid 

falling into the local optima, in the proposed improved GA method, the related concepts of 

PSO algorithm are introduce and the adaptive mutation probability is adopted. 

And in the SIMP-RBF based method, the continuous variation penal factor is used in 

the corresponding SIMP model and the principle of RBF-post processor is explained in detail. 
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As for the LSM-RBF based method, discrete formulation of material interpolation model is 

used, and RBF post-processing procedure is elaborated. 
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3. Methodology of multi-objective topology optimization 

As stated in Chapter 1, the nature of a topology optimization problem can be regarded 

as a multi-objective optimization problem; and to handle constraint conditions, in existing TO 

methods like level-set method and density based method, augmented Lagrangian multiplier is 

often used. By this means, the constraints and the original objective function are added 

together to form a new optimization problem, which inevitably changes the characteristic of 

the original problem. Besides, parameter tuning is another issue to be considered. Given all 

this, a MOTO methodology based on a new hybrid MOO algorithm which integrates Non-

dominated Sorting Genetic Algorithm II (NSGAII) and Differential Evolutionary (DE) is 

proposed in this chapter, the framework of the proposed algorithm is elaborated, and the 

performance of the algorithm is evaluated by typical academic test functions, at last the 

flowchart of the proposed methodology of MOTO is given. To be noted that, the numerical 

application will be exhibited in Chapter 4. 

3.1 Multi-objective optimization method 

Multi-objective optimization, also called multicriteria optimization or Pareto 

optimization is of an area of multiple criteria decision making, which concerns optimizing 

more than one objective simultaneously using certain mathematical optimization techniques. 

In most cases, these multi-objectives are conflicting with each other, no single solution exists 

that can optimize all the objectives simultaneously; the optimized result is in fact a set of 

trade-off and compromised solutions between different objectives. In practical life, multi-

objective optimization methods have been applied in many fields of disciplines such as 

finance, economics, civil engineering, chemical process, industrial manufacturing and so on, 

aiming at making best decision between two or more conflicting goals.  

In order to obtatin trade-off soutions between multiple conflicing objectives, the early 

methods mainly construct a new objective that can reflect the influence of multiple objectives 

simultaneously by certain ways, thus converts the MOO problem into a single-objective one,  

and then adopt single optimization methods to solve the problem; later, as the development of 

the intelligent optimization algorithms, a variety of MOO methods based on evolutionary 

algorithms have emerged, which can optimize multiple objectives at the same time. 
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3.1.1 Classical MOO method 

As a priori method, a classical objective optimization method generally determines the 

importance degree of each objective (linear weighted sum method) or the bound value of each 

objective (constraint method) based on experience, and integrates multiple objective functions 

of an optimization problem into one objective function to convert the original problem into a 

single-objective optimization (SOO) one. 

1.  Linear weighted sum method 

In solving a MOO problem using a linear weighted sum method, all the objective 

functions are firstly assigned a weight by some prior knowledge or analysis of the 

optimization goal, and the weighted sum of all the objectives is then to be optimized. The 

weighted sum optimal method can be expressed as follows [165]: 

 𝑚𝑖𝑛     𝐹(𝒙) =∑𝑤𝑖𝑓𝑖(𝒙) = 𝒘 ⋅ 𝒇(𝒙)

𝑚

𝑖=1

   

                              

 (3.1) 

where, 𝒘 = [𝑤1, 𝑤2, … , 𝑤𝑚] is the vector of weights, which satisfies, 

 ∑𝑤𝑖 = 1

𝑚

𝑖=1

 (3.2) 

After a set of weight vectors is determined, the optimal solution of the original MOO 

problem under as a certain linear weighted meaning is gained by solving the converted SOO 

problem. By changing value of the weight vector, different Pareto solutions of the original 

problem can be obtained.  

2.  The 𝜀-constraint method 

In the 𝜀-constraint method, one “most important” objective function of the 𝑚 ones is 

chosen to form a SOO problem according to the needs of the actual application or the 

characteristics of the problem, and the other (𝑚 − 1) objective functions are transformed into 
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constraint conditions by setting an upper bound (or lower bound), choosing the 𝑟th objective 

function to be optimized [165], 

 
𝑚𝑖𝑛        𝑓𝑟(𝒙)                        

                         𝑠. 𝑡.        𝑓𝑖(𝒙) ≤ 𝜀𝑖,    1 ≤ 𝑖 ≤ 𝑚,    𝑖 ≠ 𝑟 
 (3.3) 

where, 𝜀𝑖  is the upper bound constraint of the 𝑖th  objective function 𝑓𝑖(𝑥) . In order to 

determine the bound value of each objective function, it is usually necessary to optimize each 

single objective function using some mathematical programming method. In addition, to give 

decision makers more information, it is also necessary to select different values of 𝑟 and 

repeat the above optimization process.  

Apart from the above two typical methods, the classical MOO algorithm also include 

methods such as goal programming method, goal attainment method and others. These 

methods are straightforward and easy to understand. But the drawbacks are also obvious: first, 

the weighted class method needs to set different weights to convert the MOO problem into a 

SOO problem. The determination of reasonable weight values is the main issue. Second, 

when setting the bound value of an objective, it is often necessary to optimize that objective 

separately, which increases the computational cost. In summary, for the simple convex 

optimization problems with prior experience, the classical MOO algorithm is simple and 

effective. However, for complex non-convex MOO problems, with no prior experience given, 

the classical MOO algorithm is hard to obtain satisfactory optimization results.  

3.1.2 Evolutionary MOO method 

In order to overcome the shortcomings and deficiencies of the above classical MOO 

methods, a variety of MOO algorithms based on evolutionary algorithms are proposed. 

Compared with the classical ones, evolutionary MOO algorithms optimize objective functions 

by means of evolutionary intelligent algorithms like genetic algorithm simulating natural 

biological evolution process, which greatly reduce the dependence on prior experience; 

besides, evolutionary MOO algorithms are able to optimize multiple objective functions 

simultaneously and obtain the Pareto solution set of the original MOO problem directly, 

which is convenient for decision makers to collect information. Since Schaffer [166] proposed 

the Vector Evaluated Genetic Algorithm (VEGA) in 1985, scholars such as Fonseca, Deb, 

Horn, Zilter and Knowles have proposed fruitful different evolutionary algorithms. According 



Methodology of multi-objective topology optimization 

 57 

to the development process and characteristics of MOO evolutionary algorithms, it can be 

roughly divided into three generations. 

(1) First generation 

The first generation began when Goldberg [167] proposed the used of non-dominated 

sorting methods and niche techniques to solve MOO problems in 1989. The non-dominated 

sorting method compares the advantages and disadvantages of different individuals of the 

evolutionary algorithm and preserves the non-dominated individuals to enter the next 

generation. This kind of survival of the fittest evolutionary thought is conducive to maintain 

superior individuals, thus ensuring the global optimization ability of the algorithm; the niche 

technique is mainly used to guarantee the diversity of the population, to avoid the Pareto 

solution set is clustered round by a certain point. Based on these two ideas, later scholars 

proposed Multi-objective Genetic Algorithm (MOGA) [168], Non-dominated Sorting Genetic 

Algorithm (NSGA) [169] and Niche Pareto Genetic Algorithm (NPGA) [170].   

(2) Second generation 

The second generation of multi-objective evolutionary algorithms is marked by the 

proposition of the Strength Pareto Evolutionary Algorithm (SPEA [171], SPEA2 [172]) using 

the elitism strategy by Zitzler. The algorithm added an external population besides the 

evolutionary population to preserve the non-dominated individuals (the elite solutions) in the 

evolutionary process. This idea led to the evolutionary multi-objective algorithms using 

different elitism strategies. Among which, there were Pareto Envelop based Selection 

Algorithm (PESA [173], PESAII [174]) with an external population like in SPEA; and 

without external populations, instead comparing and choosing the non-dominated individuals 

between the offspring individuals and father ones like in Pareto Archived Evolution Strategy 

(PAES) [175], and NSGAII [176]. 

Another feature of the second generation of multi-objective evolutionary algorithm is 

that it no longer used the niche techniques of fitness sharing to ensure the diversity of the 

algorithm, but utilized the neighbor information (NSGAII, SPEA2), introduced spatial grid 

(PAES), or used region concept (PESAII) to guarantee the diversity of the population.  

(3) Third generation 



Methodology of multi-objective topology optimization 

 58 

Following the prestigious NSGAII and SPEA2, which are still widely used in the field 

of MOO, researchers have proposed a variety of MOO algorithms with diverse characteristics 

and specialties for different problems. The third generation of multi-objective evolutionary 

algorithm can roughly be divided into evolutionary pattern, dominating mechanism, high-

dimensional problem and uncertainty consideration four facets: for evolutionary pattern, 

Coello et al. [177] proposed the Multi-objective Particle Swarm Optimization (MOPSO), 

which used an adaptive grid mechanism to preserve the external population to make the 

Pareto front more uniform, and adaptive mutation method to improve the convergence 

performance. Freschi [178], Tan [179] and Gong et al. [180] applied the principle and model 

of artificial immune system in MOO, respectively proposed Vector Immune System (VIS) 

algorithm, Evolutionary Multi-objective Immune Algorithm (EMOIA) and Non-dominated 

Neighbor Immune Algorithm (NNIA); In improving the dominance mechanism, Laumanns et 

al. [181] proposed the 𝜀-dominance mechanism that is different from the traditional Pareto 

definition. Brockoff et al. [182] proposed a partial dominance concept. Thiele [183], Zilter et 

al. [184] proposed multi-objective algorithms based on preference, in the iterative process, 

decision makers gave preference information to guide the evolution; To solve high 

dimensional MOO problems, Wagner et al. [185] applied the aggregate function method 

proposed by Hughes [186] to handle the multiple objectives in parallel. While Deb and 

Saxena [187][188] used principal component analysis to extract the main objectives, abandon 

redundant ones to reduce the order of the original high-dimensional problem; Aiming at 

problem with uncertainties, Zhang et al. [189] used a multi-objective PSO algorithm to plan 

the robot path under an uncertain environment. Mlakar et al. [190] introduced the Gaussian 

process model and combined DE algorithm to consider the influence of uncertainty factors. 

3.2 Basic concepts of the multi-objective optimization 

Without loss of generality, a minimization MOO problem with 𝑛 decision variables 

and 𝑚 objective functions can be defined as [191]  

 

            

{

𝑚𝑖𝑛    𝑦 = 𝑭(𝒙) = [𝑓
1
(𝒙), 𝑓

2
(𝒙),… , 𝑓

𝑚
(𝒙)]𝑇

𝑠. 𝑡.   𝑔𝑖(𝒙) ≤ 0,   𝑖 = 1,2,… , 𝑝                      

ℎ𝑖(𝒙) = 0,   𝑖 = 1,2,… , 𝑞            

 (3.4) 
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where, 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑿 ⊂ 𝑅
𝑛 is the decision vector of a 𝑛-dimension Euclidean space; 

𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑚) ∈ 𝒀 ⊂ 𝑅𝑚  is the vector of the objective function in a 𝑚dimensional 

Euclidean space; 𝑭(𝒙) is a mapping of the 𝑛 dimensional decision variable space 𝑿 to the 𝑚 

dimensional objective space 𝒀, i.e. 𝑭：𝑅𝑛 → 𝑅𝑚, 𝑔𝑖(𝒙) ≤ 0 and ℎ(𝒙) = 0 is respectively the 

inequality constraint and the equality constraint.  

3.2.1 Feasible solution and feasible solution set 

The decision variable 𝒙 ∈ 𝑿 ⊂ 𝑅𝑛  for minimization problem that satisfies the 

constraint conditions is called a feasible solution, and its mathematical definition is as follows.  

Definition 3-1 feasible solution 𝒙 and feasible solution set 𝑿𝑓: 

1.  𝒙 is a feasible solution to problem (3.4) if and only if 𝒙 satisfies all constraints of 

the problem, i.e., {𝒙 ∈ 𝑅𝑛|(𝑔𝑖(𝒙) ≤ 0, 𝑖 = 1,2, … , 𝑝) ∧ (ℎ𝑖(𝒙) = 0, 𝑖 =

1,2, … , 𝑞)}; 

2.  Let 𝑿𝑓 be a feasible solution set of problem (3.4) if and only if all 𝒙 ∈ 𝑿𝑓 ⊂ 𝑅𝑛 

are feasible solutions, i.e., {∀𝒙 ∈ 𝑿𝑓 ⊂ 𝑅
𝑛|(𝑔𝑖(𝒙) ≤ 0, 𝑖 = 1,2, … , 𝑝) ∧ (ℎ𝑖(𝒙) =

0, 𝑖 = 1,2, … , 𝑞)}. 

3.2.2 Dominance relation and Pareto frontier 

Definition 3-2 strong dominance and Pareto frontier: 

Consider a system with a function 𝑭: 𝑅𝑛 → 𝑅𝑚, let 𝑿 be the compact set of feasible 

solution spaces in the 𝑛 dimensional metric space, 𝒀 is the set of vectors in the 𝑚 dimensional 

space, then 𝒀 = {𝒚 ∈𝑅𝑚: 𝒚 = 𝒇(𝒙) ∈ 𝑅𝑛, 𝒙 ∈ 𝑿} . Let 𝒚1 = 𝒇(𝒙1)  and 𝒚2 = 𝒇(𝒙2) , among 

which, 𝒚1 = (𝑦11, 𝑦12, … , 𝑦1𝑚), 𝒚2 = (𝑦21, 𝑦22, … , 𝑦2𝑚). Let 𝑴 = {1,2, … ,𝑚}, we define that 

𝒚1 strictly dominates 𝒚2 (𝒚1 ≺ 𝒚2) if and only for all 𝑖 = 1,2, … ,𝑚, 𝑦1𝑖 < 𝑦2𝑖 holds, namely, 

 𝒚1 ≺ 𝒚2⇔ {𝑦1𝑖 < 𝑦2𝑖,   ∀𝑖 ∈ 𝑴} (3.5) 

It could also be written as 𝒙1 ≺ 𝒙2 . Then the corresponding non-strict dominance 

concept is defined as 
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 ¬(𝒚1 ≺ 𝒚2) ⇔ {𝑦1𝑖 ≥ 𝑦2𝑖,   ∃𝑖 ∈ 𝑴} (3.6) 

The definition of Pareto frontier is then, 

 𝑃(𝒀) = {𝒚1 ∈ 𝒀: {𝒚2 ∈ 𝒀: 𝒚2 ≻ 𝒚1, 𝒚2 ≠ 𝒚1} = ∅} (3.7) 

Definition 3-3 weak dominance and weak Pareto frontier: 

Given a similar system as above, let 𝒚1 = 𝒇(𝒙1)  and 𝒚2 = 𝒇(𝒙2) , among which, 

𝒚1 = (𝑦11, 𝑦12, … , 𝑦1𝑚) , 𝒚2 = (𝑦21, 𝑦22, … , 𝑦2𝑚) . Let 𝑴 = {1,2, … ,𝑚} , we define that 𝒚1 

weakly dominates 𝒚2 (𝒚1 ⊲ 𝒚2) if and only for all 𝑖 = 1,2, … ,𝑚, 𝑦1𝑖 ≤ 𝑦2𝑖 holds, and at least 

one 𝑖 = 1,2, … ,𝑚 exists satisfying 𝑦1𝑖 < 𝑦2𝑖, namely, 

 𝒚1 ⊲ 𝒚2⇔ {𝑦1𝑖 ≤ 𝑦2𝑖,   ∀𝑖 ∈ 𝑴}∩ {𝑦1𝑗 < 𝑦2𝑗,   ∃𝑗 ∈ 𝑴} (3.8) 

Also known as 𝒙1 ⊲ 𝒙2. Then the non-dominance concept is defined as 

 ¬(𝒚1 ⊲ 𝒚2) ⇔ {𝑦1𝑖 ≥ 𝑦2𝑖 ,   ∃𝑖 ∈ 𝑴} ∪ {𝑦1𝑗 ≥ 𝑦2𝑗 ,   ∀𝑗 ∈ 𝑴} (3.9) 

The definition of (weak) Pareto frontier is then,  

 𝑃∗(𝒀) = {𝒚1 ∈ 𝒀: {𝒚2 ∈ 𝒀:𝒚2 ⊳ 𝒚1, 𝒚2 ≠ 𝒚1} = ∅} (3.10) 
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Figure 3.1 : Schematic diagram of Pareto dominance. 

A diagram of Pareto dominance is as shown above, in which, 𝑓1(𝐷) > 𝑓1(𝐴) =

𝑓1(𝐶) > 𝑓1(𝐵), 𝑓2(𝐷) > 𝑓2(𝐶) = 𝑓2(𝐵) > 𝑓2(𝐴). From Definition 3-2, Definition 3-3, it can 

be seen that point 𝐷 is strictly dominated by points 𝐴, 𝐵 and 𝐶, point 𝐴 weakly dominates 

point 𝐶, point 𝐵 weakly dominates point 𝐶, and 𝐴 and 𝐵 are non-dominated by each other. 

3.2.3 Performance metrics for multi-objective algorithms 

For the MOO, unlike the single-objective optimization, the optimized result is not an 

optimal solution but a set of solutions; meanwhile, only a finite number of Pareto solutions on 

the real frontier can be obtained, and the solution sets obtained by different MOO algorithms 

are generally different. Therefore, it is necessary to determine reasonable metrics to evaluate 

the performance of multi-objective algorithms. The performance of an MOO algorithm is 

commonly considered by both the quality of Pareto solution set and the computational cost. 

The quality of a Pareto solution set is generally evaluated by the degree of closeness between 

obtained Pareto frontier to true frontier and the uniformity of the distribution of the frontier; 

and the computational cost is usually measured by the time required by the algorithm. The 

performance metrics currently used in literature include: 

(1) Number of Pareto solutions (NPS) 

Give the other circumstances the same, the more number of Pareto optimal 

solutions is, the stronger the searching ability of the algorithm is, and the more 

information can be provided for decision makers.  

(2) Ratio of Non-dominated Individuals (RNI) 
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Ratio of non-dominated individuals can be used as a metric to evaluate the 

dominance of solutions between different solution sets [192], and an example of 

comparison between two solution sets is given in the following. Suppose that set 

𝑨 and 𝑩 are two different Pareto solution sets of the problem, and 𝑃(𝑺) represents 

the set composed of all non-dominated solutions in the union set 𝑺 of 𝑨 and 𝑩, 

that is, 

 𝑃(𝑺) = {𝒙′ ∈ 𝑺: {𝒙′′ ∈ 𝑺: 𝒙′′ ≻ 𝒙′, 𝒙′′ ≠ 𝒙′} = ∅} (3.11) 

then the ratio of non-dominated individuals of set 𝑨 and set 𝑩 can be calculated as, 

 

𝑟𝑎𝑡𝑖𝑜(𝑨) =
∑ |𝒙 ∈ 𝑃(𝑺)|𝒙∈𝑨

|𝑃(𝑺)|

𝑟𝑎𝑡𝑖𝑜(𝑩) =
∑ |𝒙 ∈ 𝑃(𝑺)|𝒙∈𝑩

|𝑃(𝑺)|

 (3.12) 

in the above, 𝒙′′ ≻ 𝒙′ indicates that solution 𝒙′′ is governed by 𝒙′, and the higher 

the ratio of the non-dominated individual 𝑟𝑎𝑡𝑖𝑜(⋅) is, the higher the quality of the 

solution is. Since NRI indicator does not have closeness under sum operation, 

generally ratio(𝑨) + ratio(𝑩) ≠ 1 . When comparing the quality of multiple 

solution sets, NRI metric is very intuitive to evaluate and the quality of each 

solution set. 

(3) Convergence metric - Υ 

The convergence metric [176] reflects the proximity of the obtained non-

dominated frontier 𝑄 and the real Pareto frontier 𝑃∗. The smaller the value of Υ is, 

the closer the non-dominated frontier of the algorithm is to the real frontier, 

namely the better the convergence of the algorithm is. 

 Υ =
∑ 𝑑𝑖
𝑁𝑄
𝑖=1

𝑁𝑄
 (3.13) 

where 𝑑𝑖 is the closest distance between the 𝑖th non-dominated solution and the 

real Pareto frontier. 𝑁𝑄  stands for the number of non-dominated solutions in 

Pareto frontier obtained by the algorithm. 

(4) Diversity metric - Δ 

Diversity metric [176] reflects the distance between neighboring points in a non-

dominated solution set 𝑄 , and describes the degree of uniformity of the 
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distribution of the non-dominated solution set. The smaller the value of Δ is, the 

more uniform the distribution of Pareto frontier is. 

 Δ =
𝑑𝑓 + 𝑑𝑙 + ∑ |𝑑𝑗 − 𝑑|

𝑁𝑄−1

𝑗=1

𝑑𝑓 + 𝑑𝑙 + (𝑁𝑄 − 1)𝑑
 (3.14) 

where, 𝑑𝑗  is the Euclidean distance (objective space) between two neighboring 

points in the optimized non-dominated solution set, 𝑑 is the average value of the 

distance between adjacent points; 𝑑𝑓  and 𝑑𝑙  represent the distance between end 

point of obtained Pareto frontier 𝑄 and that of real Pareto frontier 𝑃∗. 

(5) Hypervolume indicator - 𝑉𝐻 

This is an indicator used to measure the volume covered by the Pareto solution set 

in the objective domain [193]. Its value is the area of the rectangle surrounded by 

all the objective function values of non-dominated solutions in the non-dominated 

solution set and a reference point 𝒇(𝒙∗) = (𝑓𝑝, 𝑓𝑞), as shown in the Figure 3.2. 

The closer the obtained Pareto solution set is to the real frontier, the larger the 

corresponding value of hypervolume indicator is. Meanwhile, the more solutions 

the optimal solution set has or the better the diversity is, the larger the value of 

hypervolume is. 

f1

f2

f(x*) = (fp , fq ) 

 

Figure 3.2 : Schematic diagram of hypervolume indicator. 



Methodology of multi-objective topology optimization 

 64 

3.3 A new hybrid multi-objective optimization algorithm 

Although the NSGAII proposed by Deb [176] and the SPEA2 proposed by Zitler [172] 

enjoy a reputation in the field of multi-objective optimization, numerical experiments have 

demonstrated that when binary coded NSGAII and SPEA2 are used to find the Pareto frontier 

of some typical multi-objective test functions, their performance is not ideal. Considering that 

the essence of the topology optimization problem is the problem of determining material 

distribution of the optimization region, and after the discretization using finite element 

method, the design domain can naturally be regarded as a binary encoded chromosome; 

therefore the evolutionary search algorithm is very natural and convenient to be applied. 

Based on this observation, we propose a multi-objective topology optimization methodology 

based on a hybrid algorithm which integrates binary encoded NSGAII and DE. 

First of all, a large number of literatures have shown that the NSGAII is simple in 

structure, easy to be implemented, and has strong global search ability. Therefore, the 

NSGAII is chosen as the main algorithm in the proposed hybrid one and a new mutation 

operator is introduced to update the population. In this way, the main component being the 

NSGAII can guarantee that the proposed hybrid algorithm has good global search ability. 

Secondly, to further enhance the global optimization ability of the binary encoded 

NSGAII so as to avoid the algorithm to fall into local optima, a mutation operator is 

introduced in the hybrid algorithm.  

In addition, theoretical studies and numerical experiments show that despites that 

binary NSGAII has strong global optimization ability, nevertheless, when dealing with 

complex multi-objective optimization problems, the number of non-dominated solutions in 

the Pareto frontier is sometimes insufficient. The distribution of the final solutions may also 

be uneven. In order to find more non-dominated solutions and make the Pareto frontier 

distribution more uniform, the binary DE is integrated. The DE algorithm was proposed and 

improved by R. Storn and K. Price [194]. The algorithm is simple, fast, and robust. The main 

idea of the algorithm is to generate new individuals by performing differential operations on 

different individuals in the population. Based on this, the hybrid algorithm applies the 

differential evolution strategy to the elite archive, which enhances the local refinement ability 

of the algorithm, and thus improves the uniformity of the non-dominated frontier obtained by 

the algorithm.  
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Finally, NSGAII itself does not have the elite archive, the hybrid algorithm sets the 

elite archive solution set with reference to the SPEA2, and updates the so far found non-

dominated solutions by continuously maintaining the elite archive; at the same time, uses 

differential evolution strategy in the elite archive to generate new solutions. 

3.3.1 Improved NSGA 

The iterative steps of the NSGAII are briefly explained as: 

1)  Initialize the population size 𝑝𝑜𝑝𝑠𝑖𝑧𝑒, the maximum number of iterations 𝑀𝑎𝑥𝐼𝑡 

and related parameters; 

2)  Randomly generating an initial population 𝑃0  and calculating the objective 

function value of each individual; 

3)  For the individuals in the initial population 𝑃0, a population is 𝑄0 generated by 

tournament selection, crossover and mutation, objective function values of the 

individuals in population 𝑄0 is calculated, and an iteration counter  𝑡 = 0 is set; 

4)  Let 𝑅𝑡 = 𝑃𝑡 ∪ 𝑄𝑡, all individuals in 𝑅𝑡 are non-dominated sorted according to the 

objective function values of individuals, and the crowding distance of each 

individual is calculated. All the individuals are then divided into different non-

dominated front ends 𝐹 = (𝐹1, 𝐹2, … , 𝐹𝑖, … )  according to the dominance between 

them. Find the value i  of front-end which satisfies the expression |𝐹1| + ⋯+

|𝐹𝑖−1| < 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 ≤ |𝐹1| + ⋯+ |𝐹𝑖|, and sort all the individuals according to the 

crowding distance;  

5)  All the individuals in 𝐹1, 𝐹2, … , 𝐹𝑖−1 are copied into the population 𝑃𝑡+1, and the 

first 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 − ∑ |𝐹𝑚|
𝑖−1
𝑚=1  individuals in Fi are copied to the population 𝑃𝑡+1, as 

shown in Figure 3.3; 

6)  For individuals in population 𝑃𝑡+1 , a new population 𝑄𝑡+1  is generated by 

tournament selection, crossover and mutation; 

7)  If 𝑡 > 𝑀𝑎𝑥𝐼𝑡, the algorithm terminates, and all non-dominated solutions in 𝑃𝑡 are 

output as optimization results; otherwise, let 𝑡 = 𝑡 + 1, go to step 4). 
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Figure 3.3 : Population updating process in NSGAII. 

1.  Non-dominated sorting and crowding distance calculation 

Non-dominated sorting is the core of the NSGAII. It selects the superior individuals in 

the population to enter the next generation of population. The detailed procedures are 

described as follows: 

1)  The number of being dominated 𝑛𝑝  of all the individuals 𝑝  in population 𝑃  is 

initialized to 0, and the dominating set 𝑆𝑝 is initialized to an empty set. Among 

which, the number 𝑛𝑝 is used to record the number of individuals in population 𝑃 

that dominate 𝑝, and the set 𝑆𝑝 is used to store the individuals in population 𝑃 that 

are dominated by 𝑝; 

2)  Compare any two individuals in the population 𝑃 , update the corresponding 

number of being dominated and dominating set of each individual, move the 

individuals with the dominated number 𝑛𝑝 = 0 into the non-dominated front end 

𝐹𝑖, and set the non-dominated front end counter 𝑖 = 1;  

3)  Accessing each solution 𝑞 in dominating set 𝑆𝑝 of the non-dominated front end 𝐹𝑖, 

and for solution 𝑞, set the number of being dominated 𝑛𝑞 = 𝑛𝑞 − 1. Set a new 

population 𝑄, if 𝑛𝑞 = 0, then 𝑄 = 𝑄 ∪ 𝑞 ; 

4)  If population 𝑄  is not empty, then let 𝑖 = 𝑖 + 1 , copy the individuals in the 

population 𝑄 to the non-dominated front end 𝐹𝑖 , and go to step 3). Repeat the 

above process until all the non-dominated fronts are determined. 
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Non-dominated sorting divides the individuals in a population into different front ends. 

For individuals at the same front end, it is necessary to sort by calculating and comparing the 

crowding distance. The crowding distance measures the intensity around the individual in the 

population. After the crowding distance is sorted, NSGAII algorithm preferentially selects the 

individuals with fewer surrounding individuals, namely, individuals with large crowding 

distance is preferred, so that the optimized Pareto front can have a uniform distribution. 

The crowding distance 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝) of individual 𝑝 is defined as follows: 

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝) =∑
|𝑓𝑖(𝑝 + 1) − 𝑓𝑖(𝑝 − 1)|

(𝑓𝑖
𝑚𝑎𝑥 − 𝑓𝑖

𝑚𝑖𝑛)
⁄

𝑚

𝑖=1

 (3.15) 

where, 𝑚 is the number of objective functions for optimization, 𝑓𝑖(𝑝 + 1) and 𝑓𝑖(𝑝 − 1) are 

respectively the values of objective function of two neighboring individuals corresponding to 

the individual . For an individual on the boundary, namely, one of its objective function 

values is the largest or smallest among all the individuals, which as shown in the Figure 3.4, 

the crowding distance of individual 𝐵 at the boundary is set to positive infinity. 

f1

f2

p

p-1
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Inf

B
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Figure 3.4 : Calculation of crowding distance. 

2.  Selection, crossover and mutation procedures 

NSGAII algorithm primarily generates new population from superior individuals 

through selection, crossover, and mutation operations. In the improved NSGAII, a tournament 

selection method is used. First, an individual 𝑠 is randomly selected from the population and a 
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random integer 𝑡𝑜𝑢𝑟 is generated. Repeat 𝑡𝑜𝑢𝑟 times to select another individual 𝑠′ from the 

population 𝑃𝑡. If 𝑠
′ dominates 𝑠, then let 𝑠′ = 𝑠. This process is repeated 𝑚 times to obtain a 

population 𝑅𝑡  containing 𝑚 individuals. For all individuals in the population 𝑅𝑡 , each two 

pairs are cross-operated according to the crossover probability to obtain a new population 𝑈𝑡; 

then all individuals in the population 𝑈𝑡 are mutated according to the mutation probability to 

obtain a new population 𝑄𝑡.  

It should be noted that the crossover operation adopted here is crossed based on the 

dimension of the variable, that is, the binary bit string under the same variable dimension of 

the parent individual is cross-operated; and the mutation operation is to uniformly mutate the 

chromosomes under all variable dimensions according to the mutation probability. 

Parent individual

Child individual

1 0 0 1... 1 0 11 00 0 1 1 1 1 0 00... ... ...

1 0 0 11 0 10 00 0 1 1 1 1 0 01... ... ... ...

Mutation

... ... ... .........

variable 1
p1 pDp2q1 q2 qD

Parent 1

1 1 1 0 001 0 0 11 0 11 00 0 1

... ... ... ......... 0 0
r1 rD

0
r2s1 s2 sD

011 0 1 010 0 01 11 0 1

Parent 2
variable 2 variable D

variable 1 variable 2 variable D

Crossover

... ... ... .........

... ... ... .........

r1 rDr2s1 s2

1 1 1 0 00
sD

p1 pDp2q1 q2 qD

Child 1

Child 2

0 0 01 11 0 1

1 0 11 00 0 1 1 0 0 1

0 0 0 1 011 0 1 0

variable 1 variable 2 variable D

variable 1 variable 2 variable D  

Figure 3.5 : Crossover and mutation operation in improved NSGAII. 

In the field of biology, DNA was initially thought to be stable and unchanged. Until 

the late 1960s, scientists succeeded in extracting jumping genes from bacteria and calling 

them transposons. Later, the role of transposons in the resistance of bacteria to antibodies has 

gradually become known. Almost simultaneously, studies have found that transposons can 

also produce genetic variation (diversity) in natural populations. These extra chromosomal 

transposons are not essential for normal life, but they can confer properties such as resistance 

and toxicity, providing survival advantages under the certain conditions. In fact, nearly 20% 

of an organism's genome may contain transposons [195].  
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The proposed mutation operator mimics the way in which transposon variation occurs 

in natural genetics, adopting an insertion and substitution method. Define the mutation 

probability of the jump gene operation is 𝑃𝑗𝑢𝑚𝑝 , and the individuals in the population are 

sequentially mutated by the jump gene operator according to the probability 𝑃𝑗𝑢𝑚𝑝. As shown 

in Figure 3.6, two positions 𝑝  and 𝑞  on the original binary chromosomal bit strings are 

randomly generated, and the chromosomes in the middle of the two positions are replaced 

with random binary bit strings of the same length.  

Jumping-gene operator

Original chromosome

Transposonr s

Chromosome with 

jumping genes
r s

p q

r s

10 0 0 0 1

p q

1 0 0 01 1... ...

0 0 1 00 1... ...

r s  

Figure 3.6 : Jumping gene mutation operator. 

The improved NSGAII algorithm (hereafter referred to as JNSGA) preserves the non-

dominated sorting of NSGAII, the calculation of crowding distance, and the genetic 

operations of selection, crossover and mutation. However, the elite retention strategy of 

NSGAII reduces the diversity of population to some extent. Inspired by jumping genes (or 

transposons) in biology, this hybrid algorithm introduces jumping gene mutation operator to 

increase the population diversity: thereby improving the overall global search ability of the 

algorithm. 

3.3.2 Binary DE algorithm 

In order to deal with the issue of binary coding in the topology optimization problem, 

it is necessary to handle the continuous variables in the original DE algorithm. The commonly 

used methods for the discretization of continuous variable in binary DE algorithms are 

rounding and mapping transformation. The rounding method limits the variables to 0~l, and 

rounds off to get 0 or 1 discrete variable; the mapping transformation method, with reference 

to binary particle swarm optimization (BPSO) algorithm uses a secondary search space, using 

a surjection to convert the variable to the discrete field {0,1}𝑛 . The first method obtains 
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discrete variables by rounding, which has low coding efficiency and affects the search 

performance of the algorithm; the second mapping method needs to introduce other functions 

to convert continuous variables into discrete ones, and the numerical experiments show that 

this method is undesirable. In this regard, a parameter-free binary mutation operator [196] is 

used to form a binary DE algorithm. The mutation operator can directly generate the mutation 

vector without the variation parameter, and the details are as follows: 

 
𝑣𝑖,𝑗
𝑡 = 𝑥𝑟1,𝑗

𝑡 + (−1)𝑥𝑟1,𝑗
𝑡

⋅ |𝑥𝑟2,𝑗
𝑡 − 𝑥𝑟3,𝑗

𝑡 |

𝑗 = 1,2,… ,𝐷
 (3.16) 

where 𝑖 represents the 𝑖th individual of the mutated population, 𝑗 represents the dimension of 

variables, 𝑡  is the number of the current iteration; 𝑥𝑟1
𝑡 , 𝑥𝑟2

𝑡  and 𝑥𝑟3
𝑡  are three individuals 

different from each other in the population.  

Since the value of the variable in the topology optimization is only 0 or 1, the absolute 

value of the vector difference is also only 0 or 1. It can be seen from the (3.16) that the 

variable obtained after the mutation is still a 0-1 variable, thus the operation satisfies the 

closeness. In the variation procedure, whether a certain dimensional variable is mutated 

depends on the value of the difference vector. When the absolute value of the 𝑗th component 

in the difference vector (𝒙𝒓𝟐
𝒕 − 𝒙𝒓𝟑

𝒕 ) is 1, namely |𝑥𝑟2,𝑗
𝑡 − 𝑥𝑟3,𝑗

𝑡 | = 1, the corresponding base 

vector component is mutated (from 0 to 1, or from 1 to 0), to increase the diversity of the 

population, improve the global search ability of the algorithm, prevent falling into the local 

optima; when the absolute value |𝑥𝑟2,𝑗
𝑡 − 𝑥𝑟3,𝑗

𝑡 | = 1, 𝑥𝑟1,𝑗
𝑡  remains unchanged, which is good 

for retaining the information of superior individuals and speeding up the convergence of the 

algorithm.  

The basic flowchart of the BDE algorithm is as follows: 

1)  Randomly generate popsize  D-dimensional vectors as the initial population, 

𝒙𝒊
𝒕 = {𝑥𝑖,1

𝑡 , 𝑥𝑖,2
𝑡 , … , 𝑥𝑖,𝐷

𝑡 },   𝑖 = 1,2, … , 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 ; 

2)  Binary parameter-free mutation operator. The variation is carried out bitwise by 

randomly selecting three different individuals in the population; 
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 𝒗𝒊
𝒕 = 𝒙𝒓𝟏

𝒕 + (−1)𝒙𝒓𝟏
𝒕
⋅ |𝒙𝒓𝟐

𝒕 − 𝒙𝒓𝟑
𝒕 | (3.17) 

3)  Crossover operation. As a supplement to the mutation operator, DE algorithm 

retains part of the information of the individual 𝒙𝒊
𝒕, and generates the individuals 

of child 𝒖𝒊
𝒕 = 𝑢𝑖,1

𝑡 , 𝑢𝑖,2
𝑡 , … , 𝑢𝑖,𝐷

𝑡 , the specific steps are: 

 

𝑢𝑖,𝑗
𝑡 = {

𝑣𝑖,𝑗
𝑡 ,      𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑥𝑖,𝑗
𝑡 ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               

 (3.18) 

where 𝐶𝑅 is the crossover probability; 𝑗𝑟𝑎𝑛𝑑 is a random integer from 1 to D. 

4)  Selection operation. Use the greedy principle to compare the parent and the 

offspring, the individuals with the best objective function values constitute the 

next generation of the population; 

5)  Terminating condition judgment. If the number of the current iteration 𝑡 exceeds 

the maximum evolution iteration number 𝑡𝑚𝑎𝑥  , the search is stopped and the 

optimization result is output; otherwise, returning to step 2), the loop is continued. 

The proposed binary DE algorithm adopts a parameter-free binary mutation operator, 

which can directly perform binary mutation according to the difference between individuals. 

The structure is simple and easy to be implemented. The advantages of DE algorithm relying 

on the population differences for evolution are well preserved at the same time. By analyzing 

the evolutionary strategies and characteristics of the real-coded DE algorithm, it can be 

concluded that the differential operation in the proposed binary DE evolutionary algorithm 

finds better individuals to evolve by refining the search in the space around the elite solutions. 

The crossover operation partially retains the information of the original individual and the 

mutated individual enhances the diversity of the population. This local refinement capability 

is just needed to be enhanced by the original NSGA. 

3.3.3 Flowchart of the proposed algorithm 

Based on the improved NSGAII and BDE algorithm, a new hybrid multi-objective 

optimization algorithm, JNSGA-DE, is proposed. To introduce the binary DE algorithm, the 

hybrid algorithm sets up the elite solution set 𝐴𝑟𝑐ℎ𝑖𝑣𝑒  and continuously updates the 



Methodology of multi-objective topology optimization 

 72 

individuals in the 𝐴𝑟𝑐ℎ𝑖𝑣𝑒 in the iterations. The search strategy of the hybrid algorithm is: 

JNSGA explores the whole search space to ensure that the algorithm has a good global search 

ability; the DE algorithm acts on the current elite solution set 𝐴𝑟𝑐ℎ𝑖𝑣𝑒 , searches in the 

vicinity of the currently found optimal solutions, to enhance the local refinement search 

ability of the hybrid algorithm. The flowchart of the algorithm is shown in Figure 3.7. 
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Figure 3.7 : Flowchart of the proposed hybrid algorithm JNSGA-DE. 

1.  Greedy strategy 
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The hybrid algorithm uses a greedy strategy to update the population, that is, the 

individuals in the mixed population of JNSGA and DE are ranked by using non-dominated 

sorting and crowding distance. The lower the value of non-dominated front end (in Section 

3.3.1) is and the larger crowding distance is, the better the individual’s rank is. Select the top 

ranked 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 individuals to form the next generation of populations. By using the greedy 

strategy, the genetic information closer to the real frontier is preserved, helping to speed up 

the convergence of the algorithm. 

2.  Maintenance of archive 

Archive is used as an evolutionary population of the DE algorithm on the one hand 

and storage of non-dominated solutions to output the final optimization result on the other 

hand. In the hybrid algorithm, the size of the Archive changes dynamically; as shown in 

Figure 3.7, in each iteration, after the new population is generated, it is compared with the 

original elite solutions, and the non-dominated solutions are selected to become the Archive 

of the next generation. The upper limit of the number of solutions in Archive is set to the size 

of the population. 

3.4 Algorithm performance analysis and validation 

3.4.1 Test functions 

In order to test the performance of the proposed JNSGA-DE hybrid algorithm and 

compare it with the existing renowned multi-objective optimization algorithms, it is used to 

solve the standard test functions as given in [176] and [197]. The characteristics of these test 

functions and their Pareto Frontiers (PF) are tabulated in Table 3.1. 

Table 3.1 : Test functions 

𝑓(⋅) n Domain Objective function Solution PF 

SCH 1 [−103, 103] {
𝑓1(𝑥) = 𝑥

2

𝑓2(𝑥) = (𝑥 − 2)2
 𝑥 ∈ [0, 2] convex 

FON 3 [−4, 4] 

{
 
 

 
 𝑓1(𝑥) = 1 − 𝑒𝑥𝑝 [−∑(𝑥𝑖 −

1

√3
)
23

𝑖=1

]

𝑓2(𝑥) = 1 − 𝑒𝑥𝑝 [−∑(𝑥𝑖 +
1

√3
)
23

𝑖=1

]

 

𝑥1 = 𝑥2 = 𝑥3

[−
1

√3
,
1

√3
]  

non-

convex 

POL 2 [−𝜋, 𝜋] {
𝑓1(𝑥) = 1 + (𝐴1 − 𝐵1)

2 + (𝐴2 − 𝐵2)
2

𝑓2(𝑥) = (𝑥1 + 3)
2 + (𝑥2 + 1)

2  ref 

non-

convex 

discont

inuous 
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KUR 3 [−5, 5] 

{
 
 

 
 𝑓1(𝑥) = ∑ [−10𝑒𝑥𝑝 (−0.2√𝑥𝑖

2 + 𝑥𝑖+1
2 )]

𝑛−1

𝑖=1

𝑓2(𝑥) = ∑(|𝑥|0.8 + 5 sin 𝑥𝑖
3)

𝑛

𝑖=1

 ref 

non-

convex 

discont

inuous 

ZDT1 30 [0, 1] {
 

 
𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥) [1 − √
𝑥1
𝑔(𝑥)

]

𝑔(𝑥) = 1 + 9(∑𝑥𝑖

𝑛

𝑖=2

) (𝑛 − 1)⁄

 

𝑥1 ∈ [0, 1]

𝑥𝑖≠1 = 0
𝑖 = 2,… , 𝑛

 convex 

ZDT2 30 [0, 1] 

{

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥) [1 − (
𝑥1
𝑔(𝑥)

)
2

]

𝑔(𝑥) = 1 + 9(∑𝑥𝑖

𝑛

𝑖=2

) (𝑛 − 1)⁄

 

𝑥1 ∈ [0, 1]

𝑥𝑖≠1 = 0
𝑖 = 2,… , 𝑛

 
non-

convex 

ZDT3 30 [0, 1] {
 

 
𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥) [1 − √
𝑥1
𝑔(𝑥)

−
𝑥1
𝑔(𝑥)

⋅ sin(10𝜋𝑥1)]

𝑔(𝑥) = 1 + 9(∑𝑥𝑖

𝑛

𝑖=2

) (𝑛 − 1)⁄

 

𝑥1 ∈ [0, 1]

𝑥𝑖≠1 = 0
𝑖 = 2,… , 𝑛

 

convex 

discont

inuous 

ZDT4 10 

𝑥1 ∈ [0, 1]

𝑥𝑖≠1 ∈ [−5, 5]

𝑖 = 2,… , 𝑛

 {
 

 
𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥) [1 − √
𝑥1
𝑔(𝑥)

]

𝑔(𝑥) = 1 + 10(𝑛 − 1) +∑[𝑥𝑖
2 − 10 cos(4𝜋𝑥𝑖)]

𝑛

𝑖=2

 

𝑥1 ∈ [0, 1]

𝑥𝑖≠1 = 0
𝑖 = 2,… , 𝑛

 
non-

convex 

ZDT6 10 [0, 1] 

{

𝑓1(𝑥) = 1 − 𝑒𝑥𝑝(−4𝑥1)sin
6(6𝜋𝑥1)

𝑓2(𝑥) = 𝑔(𝑥) [1 − (
𝑓1(𝑥)

𝑔(𝑥)
)

2

]

𝑔(𝑥) = 1 + 9(∑𝑥𝑖

𝑛

𝑖=2

(𝑛 − 1)⁄ )

0.25
 

𝑥1 ∈ [0, 1]

𝑥𝑖≠1 = 0
𝑖 = 2,… , 𝑛

 

non-

convex 

uneven 

distrib

ution  

Note: in the table, n represents the dimension of the optimization problem, and in the objective 

function of POL optimization problem, 

𝐴1 = 0.5 sin1 − 2 cos 1 + sin2 − 1.5 cos2
𝐴2 = 1.5 sin1 − cos 1 + 2sin 2 − 0.5 cos 2
𝐵1 = 0.5 sin 𝑥1 − 2cos 𝑥1 + sin 𝑥2 − 1.5 cos 𝑥2
𝐵2 = 1.5 sin 𝑥1 − cos𝑥1 + 2sin 𝑥2 − 0.5 cos𝑥2

 

3.4.2 Algorithm verification 

1.  Test counterparts 

In order to verify the performance of the hybrid algorithm, the well-known multi-

objective evolutionary algorithms, NSGAII and SPEA2, are used as comparison counterparts. 
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NSGAII and SPEA2 are programmed according to the relevant literatures. MATLAB 

platform is used for programming implementation and relevant parameters are set according 

to the literatures. 

Table 3.2 : Algorithm parameters in JNSGA-DE, NSGAII and SPEA2 

@ 8 G RAM, 3.4GHz 

CPU 

Hybrid  NGSAII  SPEA2 

popsize 100 

 

100 

 

100 

MaxIt 250 250 250 

pc 0.9 0.9 0.8 

pm 1 𝑛⁄  1 𝑛⁄  1 𝑛⁄  

pjump 0.7 
  

CR 0.5 
  

Size of Archive 100 
 

100 

Note: in the table, n is the length of the chromosome. For instance, if the number of 

design variables is 10, and 30 binary bits are used for each variable, then the length of 

chromosome is 300. 

2.  Performance indicators 

To evaluate the performance of an algorithm, each algorithm is performed 30 

independent runs on each test function for a statistical comparison. The performance 

indicators of multi-objective algorithms have been described previously, and two statistical 

analysis indicators are adopted in this section. The first one is the convergence metric Υ, 

which is used to characterize the distance between the PF frontier obtained by the algorithm 

and the true PF frontier of the test function; and the second one is the diversity metric Δ, 

which indicates the uniformity of the distribution of the PF frontier solution obtained by the 

optimization algorithm, namely, the diversity. The calculation method of the above 

performance indicators is detailed in section 3.2.3.  

The smaller the convergence metric Υ is, the closer is the final solution of an algorithm 

to the true PF frontier, that means the better the convergence performance of the algorithm is; 

the diversity metric Δ reflects the space between adjacent solutions. The smaller the metric is, 

the more uniform the distribution is. For the test functions listed in the table, there are infinite 

points on the true frontier. For the convenience of calculation, 500 pairs of uniform sampling 

points on the true frontier are used to represent the true PF.  
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The two indicators obtained by 30 independent runs of each algorithm are statistically 

analyzed to evaluate the statistical average performance of the algorithm. Mean values 𝐸(Υ), 

𝐸(Δ), and standard deviations 𝜎(Υ), 𝜎(Δ) of the indicator Υ, Δ are respectively used. The 

above mean value and standard deviation reflect the value and distribution stability in the 

statistical sense, respectively. Therefore, they can be used to evaluate the overall performance 

of the algorithm. 

3.  Optimization indicator analysis 

The optimization results of the three algorithms JNSGA-DE, NSGAII and SPEA2 for 

different test functions are shown in Table 3.3 and Table 3.4. Table 3.3 compares the 

convergence indicator of the three algorithms, and Table 3.4 shows the comparison of the 

diversity indicator. For each algorithm, the mean value and standard deviation of the 

corresponding indicators when optimizing different test functions are analyzed statistically. 

(1) Convergence indicator analysis 

a) Comparing JNSGA-DE algorithm with the NSGAII, only in the SCH test 

function, the convergence value of the later is slightly smaller than the former, and 

only the difference of 4 digits after the decimal point; on the other test functions, 

the convergence indicator of the JNSGA-DE algorithm are better than that of the 

NSGAII, especially for the ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 test functions, 

the optimization result of JNSGA-DE is much better than the NSGAII. Not only 

the statistical mean value of the convergence indicator is smaller, but also the 

standard deviation is smaller, that means the stability of the former algorithm is 

better. 

b) Compared with the SPEA2, the JNSGA-DE only has a larger mean value of the 

convergence indicator in ZDT2. On the other test functions, the mean and 

standard deviation of the convergence indicator of the JNSGA-DE algorithm are 

better, especially for the ZDT4 function (this function has 219 local optima in the 

whole decision space, and therefore has higher requirement for the global 

optimization ability of the algorithm), the convergence indicator of the former is 

much better than that of the latter.  

c) It can be seen from the optimization results of the convergence indicator that 

the overall convergence of the JNSGA-DE is better than the NSGAII and SPEA2 
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algorithms: that is, the optimized Pareto frontier is closer to the true frontier. At 

the same time, the JNSGA-DE algorithm is more stable and more reliable. 

Table 3.3 : Comparison of statistical results of the convergence indicator 

𝑓(⋅) 
JNSGA-DE NSGAII SPEA2 

𝐸(Υ) 𝜎(Υ) 𝐸(Υ) 𝜎(Υ) 𝐸(Υ) 𝜎(Υ) 

SCH 0.0033 𝟓. 𝟗𝟒 × 𝟏𝟎−𝟓 𝟎. 𝟎𝟎𝟑𝟐 1.72 × 10−4 0.0033 2.65 × 10−4 

FON 𝟎. 𝟎𝟎𝟐𝟏 𝟎. 𝟎𝟎𝟏𝟖 0.0074 0.0058 0.0052 0.0035 

POL 𝟎. 𝟎𝟏𝟔𝟖 𝟎. 𝟎𝟎𝟏𝟐 0.0347 0.0346 0.0255 0.0210 

KUR 𝟎. 𝟎𝟏𝟐𝟓 𝟖. 𝟖𝟖 × 𝟏𝟎−𝟒 0.0749 0.1438 0.0505 0.1361 

ZDT1 𝟎. 𝟎𝟏𝟗𝟎 𝟎. 𝟎𝟎𝟒𝟗 0.1786 0.0711 0.0382 0.0171 

ZDT2 0.0761 𝟎. 𝟎𝟐𝟑𝟏 0.5118 0.1776 𝟎. 𝟎𝟔𝟒𝟒 0.0316 

ZDT3 𝟎. 𝟎𝟎𝟗𝟓 𝟎. 𝟎𝟎𝟏𝟗 0.0710 0.0346 0.0120 0.0046 

ZDT4 𝟎. 𝟑𝟗𝟎𝟐 𝟎. 𝟐𝟐𝟑𝟔 5.6711 2.1459 8.4953 4.8732 

ZDT6 𝟎. 𝟏𝟗𝟎𝟏 𝟎. 𝟏𝟐𝟑𝟗 1.4942 0.7083 0.3088 0.1309 

(2) Diversity indicator analysis 

a) Compared with the NSGAII, the JNSGA-DE algorithm has better statistical 

performance of the diversity indicator on all test functions, especially for the 

ZDT series problems, the advantage is obvious; while on ZDT2, ZDT4 and 

ZDT6 problem, NSGAII has smaller standard deviation of the diversity 

indicator.  

b) Compared with the SPEA2, for the statistical mean value of the diversity 

indicator, JNSGA-DE is better than SPEA2 on all test functions; SPEA2 has 

smaller standard deviation on the ZDT2, ZDT4 and ZDT6 problems. On the 

other test functions, hybrid algorithm has better performance.  

c) According to the optimization results of the diversity indicator, although the 

stability index of the hybrid algorithm is slightly worse (the standard 

deviation is slightly larger) on the ZDT2, ZDT4 and ZDT6, the uniformity of 

the Pareto solution obtained by the JNSGA-DE algorithm is better overall, the 

optimized Pareto frontier is more uniform. 
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Table 3.4 : Comparison of statistical results of the diversity indicator 

𝑓(⋅) 
JNSGA-DE NSGAII SPEA2 

𝐸(Δ) 𝜎(Δ) 𝐸(Δ) 𝜎(Δ) 𝐸(Δ) 𝜎(Δ) 

SCH 𝟎. 𝟑𝟔𝟏𝟐 𝟎. 𝟎𝟎𝟖𝟒 0.4430 0.0350 0.8311 0.0891 

FON 𝟎. 𝟐𝟗𝟎𝟔 𝟎. 𝟎𝟑𝟎𝟎 0.4867 0.0700 0.4336 0.0910 

POL 𝟎. 𝟗𝟒𝟕𝟓 𝟎. 𝟎𝟏𝟕𝟓 0.9654 0.0245 1.0285 0.0415 

KUR 𝟎. 𝟒𝟎𝟏𝟕 𝟎. 𝟎𝟐𝟒𝟖 0.5538 0.0570 0.6154 0.0598 

ZDT1 𝟎. 𝟑𝟒𝟓𝟒 𝟎. 𝟎𝟗𝟏𝟐 0.7495 0.1833 0.6389 0.1068 

ZDT2 𝟎. 𝟔𝟗𝟒𝟖 0.2564 1.0171 𝟎. 𝟏𝟒𝟕𝟐 0.7013 0.1820 

ZDT3 𝟎. 𝟔𝟔𝟑𝟏 𝟎. 𝟎𝟕𝟕𝟔 0.8913 0.1361 0.9039 0.0832 

ZDT4 𝟎. 𝟔𝟒𝟔𝟓 0.1313 0.9219 0.0440 0.9693 𝟎. 𝟎𝟐𝟒𝟕 

ZDT6 𝟎. 𝟔𝟑𝟎𝟏 0.1240 1.0606 𝟎. 𝟎𝟕𝟔𝟎 0.9720 0.0955 
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Figure 3.8 : Optimization results of different test functions by JNSGA-DE. 

4.  Conclusion 

The optimization results of the test functions demonstrate that the proposed JNSGA-

DE hybrid algorithm effectively combines the advantages of NSGAII and DE. By introducing 

the jump gene mutation operator, the global search ability of NSGAII is further enhanced. At 

the same time, the introduction of the DE algorithm effectively improves the distribution 
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uniformity of the obtained non-dominated solutions. For the 9 test functions with different 

Pareto frontier features, the hybrid algorithm has strong global and local search ability, 

especially for the ZDT4 test function with a large number of local optima, the performance of 

the hybrid algorithm is much better than those of the NSGAII and SPEA2. 

3.5 A multi-objective topology optimization methodology 

Based on the proposed hybrid MOO algorithm, a MOTO methodology is constructed. 

The flowchart of the TO method is presented in Figure 3.9. The whole optimization process 

can be explained as below, 

JNSGA-DE evolution

Start

Create initial topologies

Initialization

FEM analysis

Output optimization results

Termination criterion 

satisfied

Generate new topologies

 

Figure 3.9 : Flowchart of the proposed MOTO methodology 

1.  Variables are declared, storage memory is prepared, and relevant parameters are 

set;  

2.  The population is randomly sampled to generate initial topologies;  
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3.  Finite element analysis is carried out to calculate the values of multiple objectives 

corresponding to each topology;  

4.  New topologies are generated by executing the evolution process proposed in 

JNGSA-DE algorithm;  

5.  Check if termination criterion is satisfied; 

6.  The optimization is terminated and meanwhile the MOTO results are output.  

3.6 Chapter summary 

This chapter first briefly reviews multi-objective optimal algorithms; introduces the 

related terminologies, the fitness assignment, and enumerates several common performance 

indicators for evaluating multi-objective algorithms. A hybrid algorithm–JNSGA-DE by 

integrating NSGA and DE algorithms is then proposed. The jumping gene mutation and DE 

evolution strategy in the hybrid algorithm are explained in detail. The performance of the 

hybrid algorithm is tested on 9 test functions with different Pareto frontier distributions. And 

in the end, a multi-objective topology optimization methodology is proposed.  

The numerical results of academic test functions indicate that the proposed hybrid 

algorithm has good global and local searching ability. Especially in the cases of non-convex 

and uneven distributed Pareto frontiers (such as ZDT4 and ZDT6), the performance of the 

proposed algorithm is better than those of NSGAII and SPEA2. Considering that the actual 

electromagnetic topology optimization design problem is mostly non-convex, the introduction 

of the constraint may make the Pareto frontier of the objective function space unevenly 

distributed. Therefore, the proposed multi-objective topology optimization methodology is 

quite suitable for the topology optimization design of electromagnetic devices.  
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4. Numerical applications 

4.1 Case study 1 : single-objective topology optimization 

Electromagnetic actuators convert electrical and mechanical energy one into another. 

The energy conversion takes place in the so-called air gap separating the stationary part 

(stator or fixed contact) and moving part (rotor or moving contact) of the actuator. It is widely 

used in the mechanical manufacturing industry from precise control using small actuators to 

the quite large powerful units using electrical drives. Therefore, it is quite meaningful to 

optimize the topological shape of the electromagnetic actuator to improve its performance by 

using a topology optimization technology. In this chapter, the proposed ON/OFF method, the 

combined Tabu-ON/OFF method, the improved QEA method and the improved GA topology 

optimization method are applied to the topology optimization of a prototype electromagnetic 

actuator. The optimization goal of this study is to maximize the electromagnetic force of the 

armature in a specified direction by optimizing the topology under a fixed input power.  

 

Figure 4.1 : An electromagnetic actuator [198]. 
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4.1.1 Solid model 

The initial geometry of an electromagnetic actuator commonly used in engineering 

applications is shown in Figure 4.2, which utilizes an iron core surrounded by electrified coils 

to attract the armature or hold a mechanical workpiece in a fixed position. The armature and 

the core are ferromagnetic material and the relative magnetic permeability of the armature is 

2000 and that of the core is 1000. The core is wound by a coil of 1A current with 420 turns. 

The air gap between the armature and the right end of the core is fixed at 2 mm. The design 

domain of the electromagnetic actuator is shown in Figure 4.3. 
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Figure 4.2 : Initial geometry of the electromagnetic actuator. 
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Figure 4.3 : Design domain of the electromagnetic actuator. 
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4.1.2 Mathematical formulation 

The actuating force is determined using a virtual magnetic energy method from the 

finite element solution. Therefore, the mathematical model for the magnetic actuator topology 

optimization can be formulated as [64]:  

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒    𝐹 = −
𝜕𝑊𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐

𝜕𝑥

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    ∑ 𝑉𝑒 < 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑁

𝑒=1

 (4.1) 

where 𝑉𝑒 is the volume of each element, 𝑁 is the number of the total elements of magnetic 

material in the design domain. 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the volume of the design domain in the initial model.  

4.1.3 Numerical results 

1.  ON/OFF method 

For the sensitivity analysis, adjoint variable methods can generally be used [42][199]. 

However, the forward finite difference approximation is used in this paper for versatility: 

 
𝑑𝐹

𝑑𝑝
= lim

∆𝑝→0

∆𝐹

∆𝑝
≈
𝐹(𝑝 + ∆𝑝)−𝐹(𝑝)

∆𝑝
 (4.2) 

where 𝑝 is the design variable (here is the permeability of an element) and ∆𝑝 represents the 

perturbation of 𝑝. The performance parameter 𝐹 is computed by using finite element analysis. 

Under the previous conditions, a prototype magnetic actuator is optimized using the 

proposed methodology. To demonstrate the performances of different annealing mechanisms, 

the proposed methodologies using different annealing mechanisms and strategies, Traditional 

ON/OFF method (Traditional), Strategy 1 under the annealing mechanism A (Strategy 1_A), 

Strategy 2 under the annealing mechanism A (Strategy 2_A), Strategy 3 under the annealing 

mechanism A (Strategy 3_A), Strategy 4 under the annealing mechanism A (Strategy 4_A), 

and the annealing mechanism B, other conditions being equal, are experimented on this case 

study. The optimized topology is shown in Figure 4.4 and Figure 4.5 depicts the 
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corresponding magnetic flux lines. The optimized results and performances of the 

methodology in different annealing strategies and mechanisms are given in Table 4.1. The 

trajectory of the absolute value of the objective function is shown in Figure 4.6.  

X

Y

Z  

Figure 4.4 : Optimized topology by ON/OFF-finite difference method. 

Optimized topologyInitial topology  

Figure 4.5 : Magnetic flux lines of initial and optimized topology. 

Table 4.1 : Comparison of objective function using different annealing mechanisms 

Annealing  mechanism Objective function (N/m) CPU time (s) 

Traditional -49.22 9385.783 

Strategy 1_A -52.90 10153.509
 

Strategy 2_A -52.90 10138.097 

Strategy 3_A -52.90
 

10178.531 

Strategy 4_A -52.90 9637.734 

Mechanism B -52.90 5842.414 
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Figure 4.6 : Trajectory of objective function. 

From the numerical results, it can be observed that, 

a) The actuating forces for the initial and optimized topologies are, respectively, 

42.67 and 52.90 (𝑁 𝑚⁄ ). In other words, the magnetic force is increased about 24% 

compared to that of the initial design, while the magnetic material consumption is 

small. 

b) The finally optimized objective function using different strategies are almost the 

same, but are all better than the results using traditional ON/OFF method. And the 

CPU time used under the annealing mechanism B is tremendously reduced, about 

60%, compared to those using other annealing strategies. To intuitively explain 

these results, Figure 4.6 shows the convergence trajectories of the objective 

function using different annealing mechanisms. It is observed that the finally 

optimized objective functions using mechanism A and mechanism B are the same 

and keep unchanged after some number of generations (10 for this case study). 

However, the iterative procedure using mechanism A will continue because the 

number of changeable elements is greater than 1. On the contrary, the iterative 

procedures under the annealing mechanism method B will be immediately 

stopped since the material attribute is not changed for consecutive 7 iterations. 

And to some extent, the setting of parameter  α is reasonable. 

2.  The combined Tabu-ON/OFF method 
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The proposed combined Tabu-ON/OFF topology optimization method is applied to 

this case study, and the related materials and parameter settings are the same as the previous 

section. The optimized topology is shown in Figure 4.7, Figure 4.8 depicts the distribution of 

magnetic lines corresponding to the original design and the optimized topology. The 

trajectory of the objective function value in the optimization process is shown in Figure 4.9. 

 

Figure 4.7 : Optimized topology by Tabu-ON/OFF method. 

Initial topology Optimized topology  

Figure 4.8 : Magnetic flux lines of initial and optimized topology. 
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Figure 4.9 : Trajectory of objective function. 
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From these numerical results, it can be see that, after the topology optimization, the 

electromagnetic force of the armature is significantly increased despite of the reduced use of 

magnetic material in core; Comparing with the initial design, the electromagnetic force is 

increased about 25% from 42.67 to 53.16 𝑁 𝑚⁄ . As shown in Figure 4.8, the optimized 

magnetic field lines are more concentrated in the vicinity of the armature under optimized 

topology design, which is why the electromagnetic force of the armature is increased. Figure 

4.9 reveals the good convergence of the proposed algorithm, that is, as the optimization 

process goes on, better values of the objective function are continuously found. However, it 

can be seen from the convergence curve that the algorithm is also easy to stagnate near local 

optimal points, which proves that the adoption of the reset mechanism in the algorithm, using 

a counter to determine whether the method is stagnant into local optimal, is reasonable and 

reliable.  

3.  The improved QEA 

The prototype of the electromagnetic actuator is also optimized by using the proposed 

topology optimization method based on improved quantum evolution algorithm (QEA). In 

order to evaluate the performance of the improved QEA and verify the proposed design 

variable redistribution mechanism (RM), in this section four different methods, namely, the 

original quantum evolution algorithm (noted as OQ), the improved quantum evolution 

algorithm (IQ), and the original QEA with variable redistribution mechanism (OQ with RM) 

and the improved QEA with the variable redistribution mechanism (IQ with RM) are 

employed to optimize the topology of the electromagnetic actuator, and the obtained 

numerical results are compared. Table 4.2 shows the objective function, the number of 

iterations, and the time consumed by different methods. In the cases of the variable 

redistribution mechanism, the corresponding objective function value of each optimization 

step is listed. The optimized topology obtained by the original QEA and the improved QEA 

methods are shown in Figure 4.10 and Figure 4.11 respectively, and Figure 4.12 describes the 

trajectories of the objective function. For the cases of the design variable redistribution 

mechanism, Figure 4.13 shows the optimized topology result corresponding to each step using 

the original QEA with the variable redistribution mechanism; and Figure 4.14 exhibits the 

optimized topology of each step by using the improved QEA algorithm with the variable 

distribution mechanism. Figure 4.15 depicts stepwise optimization trajectory of the objective 

function of the original QEA method and the improved QEA method using the variable 
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redistribution mechanism. In these results, OQ step1 stands for the first step of the original 

QEA algorithm; similarly, IQ step3 represents the third step of the improved QEA. 

To facilitate the illustration of the selection of variables when adopting the design 

variable redistribution mechanism, Figure 4.16 shows the selection of design variables in the 

design domain for each step using improved QEA method. In Figure 4.16, the yellow color on 

the left side of each optimization step is the design variable, and the right side is the optimized 

topology corresponding to this step. 

Table 4.2 : Optimization results comparison of original QEA and revised QEA 

Method Objective function (N/m) Iteration number CPU time(s) 

OQ -54.74 3000 110078.37 

IQ -54.91 2900 107843.47 

OQ with RM -51.54 -54.72 -54.95 1800 61679.10 

IQ with RM -51.54 -54.89 -54.95 1600 58682.19 

 

Figure 4.10 : Optimized topology of the original QEA. 

 

Figure 4.11 : Optimized topology of the revised QEA. 
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Figure 4.12 : Objective function trajcetories of the original and revised QEA. 

Step 1

Step 2

Step 3

 

Figure 4.13 : Optimized topology of each step in the original QEA with RM. 
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Figure 4.14 : Optimized topology of each step in the revised QEA with RM. 
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Figure 4.15 : Objective function trajectory of each step by adopting the RM. 
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Design variable and 

optimization result in Step 1

Design variable and 

optimization result in Step 2

Design variable and 

optimization result in Step 3  

Figure 4.16 : Selection of design variables in each step and corresponding optimized topology. 

From these numerical results, it can be seen that 

a) The objective function value corresponding to the optimized topology by the 

traditional QEA algorithm is 54.74 (𝑁 𝑚⁄ ), and the objective function value 

corresponding to the improved QEA algorithm is 54.91. Using the design variable 

redistribution mechanism, the objective function values in the first, the second and 

third step of the original QEA, are 51.54, 54.72 and 54.95 respectively; while the 

objective function value in the first, the second and the third step of the revised 

QEA are 51.54, 54.89 and 54.95 respectively. Considering that the objective 

function under the original design is 42.67 (𝑁 𝑚⁄ ), the electromagnetic force is 

eventually increased about 28.8% by using the improved QEA with RM, and at 

the same time, the material cost is reduced.  

b) The objective function value of the improved QEA is larger than that of the 

traditional QEA method. And meanwhile, it can be seen from the optimized 

topology in Figure 4.10 and Figure 4.11 that there are cavities in the optimized 

topology obtained by the original QEA algorithm, and the optimized topology 

obtained by the improved QEA algorithm has no this checkerboard issue. 

Therefore, it can be concluded that the former's global search ability is better than 

the latter. 

c) The number of iterations in Table 4.2 refers to the number of iterations when the 

algorithm finds the optimal topology (the maximum value of the objective 

function). It can be observed from the table that the improved QEA algorithm 

converges slightly faster than the original QEA algorithm; the variable 

redistribution mechanism will reduce greatly the number of design variables for 

each step, so that the number of iterations required per step is greatly reduced. The 
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computation time consumed is approximately half of the time required for the 

case when redistribution mechanism is unemployed. 

d) As can be seen from the objective function trajectory of Figure 4.12 and Figure 

4.15, the objective function value of the improved QEA is slightly smaller than 

the original QEA algorithm at the beginning of the search process, but as search 

continues, the value of the improved QEA is gradually larger than that of the 

original QEA, which also demonstrates that the global search ability of the 

improved QEA algorithm is stronger, and it is less likely to be trapped into the 

local optimal solutions as compared to the original QEA. 

4.  The improved GA 

The proposed improved GA in Chapter 2.4 is finally applied to the topology 

optimization of the electromagnetic actuator. In the numerical implementation, the topology 

of a prototype magnetic actuator is optimized using different methods for performance 

comparison. The methods include the traditional ON/OFF method (T_ON/OFF), the merely 

improved ON/OFF method (I_ON/OFF), the merely improved GA (I_GA), and the proposed 

hybrid method (ON/OFF_GA). Figure 4.17, Figure 4.18, Figure 4.19 and Figure 4.20 depict, 

respectively, the optimized topology of the traditional ON/OFF method, the improved 

ON/OFF method, the improved GA and the hybrid method. The corresponding performances 

are compared in Table 4.3. 

X

Y

Z  

Figure 4.17 : Optimized topology by the traditional ON/OFF method. 
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X

Y

Z  

Figure 4.18 : Optimized topology by the improved ON/OFF method. 

 

Figure 4.19 : Optimized topology by the improved GA method. 

X

Y

Z  

Figure 4.20 : Optimized topology by the ON/OFF-GA hybrid method. 

Table 4.3 : Optimization results comparison of different methods 

Optimization method Objective function(N/m) CPU time (s) 

T_ON/OFF -49.22 9385.783 

I_ON/OFF -52.90 5842.414 

I_GA -54.94 36699.565 
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ON/OFF_GA -54.91 31870.162 

From these numerical results, it is observed that:  

a) The objective functions are 49.22 (𝑁 𝑚⁄ ) under the optimized topology of 

ON/OFF method, 52.90 (𝑁 𝑚⁄ ) under the optimized topology of improved 

ON/OFF method, 54.94 under the optimized topology of I_GA, and 54.91 under 

the optimized topology of ON/OFF_GA method. Considering the actuating force 

of the initial topology of 42.67 (𝑁 𝑚⁄ ), the magnetic force can be increased about 

29% and the magnetic material consumption is nearly 74% under the optimized 

topologies of I_GA method and GA_ON/OFF topology optimization methodology. 

b) The proposed I_ON/OFF method outperforms T_ON/OFF. The absolute value of 

the objective function of the former is larger than that of the latter, which is 

mainly contributed by the introducing of virtual material. The convergence is 

faster since new a new annealing strategy is proposed. 

c) The optimized results of I_GA and ON/OFF_GA are better than those of 

T_ON/OFF and I_ON/OFF, validating that the global searching ability of 

methodologies is increased by adopting improved GA.  

d) The final solution of I_GA and ON/OFF_GA are merely the same while the CPU 

time used by the former is about 1.15 times of the latter. 

4.2 Case study 2 : single-objective topology optimization 

Micro-electromechanical systems (MEMS) have a wide range of applications in 

remote and embedded systems due to their miniaturization and good adaptability. 

Piezoelectric energy recovery (PEH) device, as one of the MEMSs that converts mechanical 

vibrational energy to electrical energy, shows great potential in remote sensors and embedded 

devices due to its compact size [16][18][20]. When a piezoelectric energy harvester device is 

subjected to external vibration, the upper and lower surfaces of the piezoelectric material will 

generate a potential difference. In this section, the topology optimization methodologies based 

on the SIMP method the level set method are applied to optimize the topology of a 

piezoelectric energy harvester (PEH), and then be verified. 
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4.2.1 Solid model 

Figure 4.21 is a schematic diagram of a cantilever piezoelectric energy harvester 

model. The whole system consists of substrate, piezoelectric layer, electrodes and load. The 

left side surface of the base and the piezoelectric layer and are applied fixed constraints. The 

upper and lower surface of the piezoelectric layer is respectively set as equipotential surface 

condition, and electrodes are added on the two surfaces (the influence of the introduction of 

electrodes on the model is ignored here), and the external load is connected between the two 

electrodes. Under external mechanical vibration, voltage will be generated on the 

piezoelectric material layer of the PEH, and two electrodes respectively connected to the 

upper and lower surfaces of the piezoelectric layer will generate a potential difference. 

electrode 1

electrode 2

fixed 

constraint

Load

piezoelectric 

material

substrate

mechanical 

force

 

Figure 4.21 : Schematic of piezoelectric energy harvester model. 

1.  Objective function 

To evaluate the performance of the piezoelectric energy harvesting devices, an energy 

conversion factor is introduced. The energy generated by an external force 𝐹 is stored in the 

strain energy Π𝑆 and the electric energy Π𝐸 , which are defined as: 

 

Π𝑆 =
1

2
𝒖𝑇𝑲𝑢𝑢𝒖

Π𝐸 =
1

2
𝝋𝑇𝑲𝜑𝜑𝝋

 (4.3) 
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The topology optimization of the piezoelectric energy harvester is thus formulated as 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒               𝜂 =
Π𝐸

Π𝐸 +Π𝑆
                

𝑠. 𝑡.                ∑ 𝛾𝑒𝑣𝑒 < 𝑉0

𝑁

𝑒=1

                                         0 < 𝛾𝑒 ≤ 1,   𝑒 ∈ [1,𝑁]

 (4.4) 

where 𝑣𝑖 denotes the volume of the 𝑖𝑡ℎ element, 𝑁 is the number of the finite elements in the 

design domain. 𝑉0 is a given upper bound volume constraint and is set 60% of the design 

domain. 

2.  Finite element formulation 

In this study, a 3D finite element model of piezoelectric energy harvester is developed 

to analyze the performance. Electrodes are deposited on the piezoelectric part and imposed 

equipotential electrical conditions. The influence of the electrodes in mechanic is neglected. 

In the static case, the external is an open circuit and the bottom surface of the piezoelectric 

material layer is equipotential grounding. The coupled mechanical and electric finite element 

formulation under the static case is thus given as 

 

𝑲𝑢𝑢𝑼+𝑲𝑢𝜑𝚽 = 𝑭

𝑲𝜑𝑢𝑼−𝑲φφ𝚽 = 𝑸
 (4.5) 

where 𝑲𝑢𝜑 represents the piezoelectric coupling matrix; 𝑲𝑢𝑢 and 𝑲𝜑𝜑 denote the structural 

stiffness and dielectric conductivity matrices; 𝑼 and 𝚽 denote displacement and electrical 

potential vectors; 𝑭 and 𝑸 are the applied force and electric charge vectors, respectively. 

For the harmonic case, the above equation can be formulated as 

 

𝑴𝑢𝑢𝑼̈ + 𝑲𝑢𝑢𝑼+𝑲𝑢𝜑𝚽 = 𝑭

𝑲𝜑𝑢𝑼−𝑲𝜑𝜑𝚽 = 𝑸
 (4.6) 
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where 𝑴𝑢𝑢  is the structural mass matrix; 𝑼̈ denotes the displacement acceleration vectors. 

Considering the structural damping, Rayleigh damping is added to the above matrix. Electric 

circuits are described by using the equivalent capacitance matrix method [200] and the 

resultant matrices are compromised into the dielectric matrix. Equation (4.6) can thus be 

formulated as 

 

𝑴𝑢𝑢𝑼̈ + 𝑪𝑢𝑢𝑼̇ + 𝑲𝑢𝑢𝑼+𝑲𝑢𝜑𝚽 = 𝑭

𝑲𝜑𝑢𝑼− (𝑲𝜑𝜑 + 𝑲̂𝜑𝜑)𝚽 = 𝐐
 (4.7) 

where 𝑪𝑢𝑢 is the damping matrix; 𝑲̂𝜑𝜑 is the effective capacitance matrix. In both the static 

and harmonic case, as the applied electric charge is zero, 𝑸 is always zero. 

3.  Sensitivity analysis 

Sensitivity information of the objective function with respect to the design variables is 

computed to bias iterative process. From (4.4), the first order derivative of the objective 

function is formulated as 

 𝜕𝜂

𝜕𝛾𝑒
=

𝜕Π𝐸
𝜕𝛾𝑒

(Π𝐸 +Π𝑆)−Π𝐸 (
𝜕Π𝐸
𝜕𝛾𝑒

+
𝜕Π𝑆
𝜕𝛾𝑒

)

(Π𝐸 +Π𝑆)2
 

(4.8) 

According to (4.3), 
𝜕Π𝐸

𝜕𝛾𝑒
 and 

𝜕Π𝑆

𝜕𝛾𝑒
 can be written as 

 

𝜕Π𝐸
𝜕𝛾𝑒

=
1

2

𝜕𝝋𝑇

𝜕𝛾𝑒
𝑲𝜑𝜑𝝋+

1

2
𝝋𝑇
𝜕𝑲𝜑𝜑
𝜕𝛾𝑒

𝝋+
1

2
𝝋𝑇𝑲𝜑𝜑

𝜕𝝋

𝜕𝛾𝑒

𝜕Π𝑆
𝜕𝛾𝑒

=
1

2

𝜕𝒖𝑇

𝜕𝛾𝑒
𝑲𝑢𝑢𝒖+

1

2
𝒖𝑇
𝜕𝑲𝑢𝑢
𝜕𝛾𝑒

𝒖+
1

2
𝒖𝑇𝑲𝑢𝑢

𝜕𝒖

𝜕𝛾𝑒

 (4.9) 

By the convenience of introducing the material interpolation model, 
𝜕𝐊𝑢𝑢

𝜕𝛾𝑒
, and 

𝜕𝐊𝜑𝜑

𝜕𝛾𝑒
 

can be easily obtained. As for partial derivative 
𝜕𝒖

𝜕𝛾𝑒
 and 

𝜕𝛗

𝜕𝛾𝑒
, the adjoint matrix method is 

employed by solving the following equation: 
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 [

𝑲𝑢𝑢 𝑲𝑢𝜑

𝑲𝜑𝑢 −𝑲𝜑𝜑

]

[
 
 
 
 
 
𝜕𝒖

𝜕𝛾𝑒

𝜕𝝋

𝜕𝛾𝑒]
 
 
 
 
 

= −

[
 
 
 
 
 
𝜕𝑲𝑢𝑢
𝜕𝛾𝑒

𝜕𝑲𝑢𝜑
𝜕𝛾𝑒

𝜕𝑲𝜑𝑢
𝜕𝛾𝑒

−
𝜕𝑲𝜑𝜑
𝜕𝛾𝑒 ]

 
 
 
 
 

[

𝒖

𝝋
] (4.10) 

It should be noted that, the above equations are valid only for the sensitivity analysis 

under static case. For the harmonic case, equation (4.3) is adjusted to 

 

Π𝑆
∗ =

1

2
𝒖̅𝑇𝑲𝑢𝑢𝒖

Π𝐸
∗ =

1

2
𝝋̅𝑇𝑲𝜑𝜑𝝋

 (4.11) 

where 𝒖̅ is the conjugate vector of displacement vector 𝒖, and 𝝋̅ is the conjugate vector of 

electrical potential vector of 𝝋. Moreover, according to (4.7), the coupled mechanical and 

electric finite element equation under the harmonic case can be given as 

 [

𝑲𝑒𝑓𝑓 𝑲𝑢𝜑

𝑲𝜑𝑢 −𝑲𝜑𝜑
∗
] [
𝑼

𝚽
] = [

𝑭

𝑸
] (4.12) 

where 𝑲𝑒𝑓𝑓 and 𝑲𝜑𝜑
∗  is respectively the following equation, 

 

𝑲𝑒𝑓𝑓 = −𝜔
2𝑴𝑢𝑢 + 𝑗𝜔𝑪𝑢𝑢 +𝑲𝑢𝑢

𝑪𝑢𝑢 = 𝛼𝑴𝑢𝑢 + 𝛽𝑲𝑢𝑢

 (4.13) 

 𝑲𝜑𝜑
∗ = 𝑲𝜑𝜑 + 𝑲̂𝜑𝜑 (4.14) 

And then, the adjoint equation for sensitivity analysis can formulated be 
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 [

𝑲𝑒𝑓𝑓 𝑲𝑢𝜑

𝑲𝜑𝑢 −𝑲𝜑𝜑
∗
]

[
 
 
 
 
 
𝒖

𝜕𝛾𝑒

𝜕𝝋

𝜕𝛾𝑒]
 
 
 
 
 

= −

[
 
 
 
 
 
𝜕𝑲𝑒𝑓𝑓
𝜕𝛾𝑒

𝜕𝑲𝑢𝜑
𝜕𝛾𝑒

𝜕𝑲𝜑𝑢
𝜕𝛾𝑒

−
𝜕𝑲𝜑𝜑

∗

𝜕𝛾𝑒 ]
 
 
 
 
 

[

𝒖

𝝋
] (4.15) 

As for the derivative of the objective function, the equation can be composed 

accordingly based on (4.8) and (4.9). 

4.2.2 Mathematical formulation 

1.  Static case 

In the static case, the optimal piezoelectric material distribution of a unimorph energy 

harvester under static point load is considered, as shown in Figure 4.22. The whole structure 

is composed of substrate, piezoelectric material and mass proof. An external force is applied 

to the middle point of the mass proof. The arrows on the piezoelectric plate show the 

polarization direction of the piezoelectric materials. Two electrodes placed on the top and 

bottom surfaces of the piezoelectric material. The entire piezoelectric material layers are set 

as the design domain. The design variables of top, middle and bottom layers are treated as the 

same along the z-direction in one hand to prevent the complex or impractical porous topology. 

The top and bottom layers of the piezoelectric material are equipotential boundary condition 

and the bottom layer is grounded. Finite element model and sensitivity analysis are in Chapter 

4.2.1; the objective is to maximize the conversion factor subject to a volume constraint where 

the usage of piezoelectric material is limited to up to 60%. 
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Figure 4.22 : Problem defination of static case. 

2.  Harmonic case 

In this case, an optimization problem under a harmonic body force load is considered. 

An external body force loading is applied to the whole structure as shown in Figure 4.23. The 

FE discretization is the same as that in the static case. The piezoelectric layer is set as the 

design domain. The upper bound of the volume constraint is set to be 60%. The first-order 

eigen frequency of the whole system with an initial design, is calculated from a numerical 

analysis, is 202.89 𝐻𝑧. Consequently, the excitation frequency is set to be 200 𝐻𝑧 and value 

of the resistor of external circuit is 500 𝑘Ω. 
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Figure 4.23 : Problem defination of harmonic case. 

4.2.3 Numerical results 

1.  The SIMP method 
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Based on the finite element formulation, the solid model of piezoelectric energy 

harvester is analyzed. In this study case, the topology of design domain is optimized 

respectively under the static condition and the harmonic one. And the optimized topology 

under different working condition is obtained. The numerical results are validated by using 

FEA software COMSOL. 

(1) Static case 

First, three combinations of the penalization factors- [𝑝1 𝑝2 𝑝3] are compared. For the 

first two combinations, the penalization factors are fixed constants; for the third one, 𝑝1 is set 

to be continuous varied according to (2.10).  For easiness of demonstration of the optimized 

topology, a vertical view of the initial optimized topology by using SIMP is given in Figure 

4.24. The objective function trajectories using different penalization factors are plotted in 

Figure 4.25. The solid line represents the objective function value and the dotted line denotes 

the maximum density change between two neighboring iterations. From Figure 4.24 and 

Figure 4.25, it can be observed that different combinations of the penalization factors will 

produce different topologies even though the objective function values are close. However, 

the density variation in the continuous penalization factor case is the smallest. The updating 

process of the element density is steady to proceed. From this perspective, the convergence 

performance of the optimization is improved by adopting the proposed continuously varied 

penalization factor mechanism. 
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[pk 3 1][1 3 1] [3 3 1]

η = 0.0302 η = 0.0306 η = 0.0305
 

Figure 4.24 : Optimized topology with different combinations of penalization factors. 
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Figure 4.25 : Objective function trajectories of different combinations of penalization factors. 
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(a) (b) (c)  

Figure 4.26 : Optimization results of static case. 

Figure 4.26 also presents the blurry topology (a) obtained by the SIMP method, the 

discrete topology (b) after binarization and the smoothed topology (c) after adopting the RBF 

post-processor. 

(2) Harmonic case 

The optimized topology under the harmonic case is given in Figure 4.27.  

(a) (b) (c)

 

Figure 4.27 : Optimization results of harmonic case. 

To validate the performance of the proposed methodology, both the static and the 

harmonic optimization results are validated using the commercial FEA software COMSOL. 

The elastic energy, electric energy and energy conversion factor in the initial design, the 

obtained discrete topology and the smoothed topology are given in Table 4.4 and Table 4.5. 
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From the numerical results, it can be seen that compared to the initial design, both the discrete 

topology and the smoothed topology can increase the energy conversion factor. Moreover, the 

smoothed topology has better performance.  

Table 4.4 : Verification results of static case using SIMP-RBF method 

Topology 𝐸𝑠  𝐸𝑒  𝜂 

Initial topology 1.422510
-4

 4.278210
-6

 0.0292 

Discrete topology 1.548910
-4

 5.427510
-6

 0.0339 

Smoothed topology 1.549810
-4

 5.607810
-6

 0.0353 

Table 4.5 : Verification results of harmonic case using SIMP-RBF method 

Topology 𝐸𝑠
∗

 𝐸𝑒
∗

 𝜂 

Initial topology 4.344710
-11

 1.192510
-12

 0.0267 

Discrete topology 5.542410
-11

 1.884610
-12

 0.0329 

Smoothed topology 4.676410
-11

 1.656810
-12

 0.0342 

It should be noted that, in Table 4.4, 𝐸𝑠 is the elastic energy, 𝐸𝑒 is the electric energy 

and 𝜂 is the energy conversion factor, namely the objective function; And in Table 4.5, 𝐸𝑠
∗ and 

𝐸𝑒
∗ are the average energy of one period. 

2.  The level-set method 

(1) Static case 

The proposed topology optimization methodology based on the level-set method is 

applied to optimize the topology of the PEH model. In the level-set method, one also 

compares the effect of different combinations of penalty factors [p1 p2 p3]  on the 

optimization results under static case. In order to facilitate the demonstration of the optimized 

topology, a vertical view of the initial optimized topology is shown in Figure 4.28. The 

objective function trajectories corresponding to different penalty factor combinations are 

shown in Figure 4.29. The solid line here indicates the objective function value, and the 

dotted line represents the material volume change during the iterative process. Obviously, 

different optimization topologies are obtained by using different penalty factor combinations. 
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The optimized topology obtained by using the continuously varying penalty factor is the most 

regular; the objective function values obtained by different penalty factor combinations are 

very close. Compared with the initial design, the value of objective function is increased by 

about 9%. In addition, it can be observed from the trajectories of the objective function that 

the updating process by using continuous variation strategy of penal factors is smoother and 

faster to achieve the volume constraint, which shows that the convergence performance of the 

algorithm after adopting the proposed continuous variation penalty factor is improved.  

The initial optimized topology is post-processed by using the RBF post-processor, and 

finally the optimized topology under static conditions is shown in Figure 4.30, in which, (a) is 

the discrete topology obtained after initial post-processing, and (b) shows the optimized 

topology after RBF smoothing. 

[pk 3 1][1 3 1] [3 3 1]

η = 0.0309 η = 0.0310 η = 0.0307  

Figure 4.28 : Optimized topology with different combinations of penalization factors. 
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Figure 4.29 : Objective function trajectories of different combinations of penalization factors. 
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(a) (b)  

Figure 4.30 : Optimization results of static case. (a) Discrete topology; (b) Smooth topology 

(2) Harmonic case 

The optimized topology of the harmonic case is shown in Figure 4.31. 

(a) (b)
 

Figure 4.31 : Optimization results of harmonic case. (a) Discrete topology; (b) Smooth topology 

In order to verify the optimization results of the method and evaluate the effect of the 

RBF post-processing process, the commercial FEA software COMSOL is used to verify the 

optimization results of the static and harmonious cases. The relevant performance indexes 

under the discrete topology and the smoothed topology are calculated, which is shown in 

Table 4.6 and Table 4.7. It can be seen from the numerical calculation results that the discrete 

topology and the smooth topology can improve the energy conversion factor compared with 

the original design. For static case, the smooth topology has better performance; while for 

harmonic case, the discrete topology corresponds to a larger energy conversion factor. So far, 
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the effectiveness of the proposed topology optimization method based on level set method is 

verified. At the same time, the RBF post-processor is introduced to obtain a smoother and 

manufacturing-easier topology structure, but the smooth processing may deteriorate the 

performance. 

Table 4.6 : Verification results of static case using LSM-RBF method 

Topology Π𝑠  Π𝑒  𝜂 

Initial topology 1.422510
-4

 4.278210
-6

 0.0292 

Discrete topology 1.589010
-4

 6.052710
-6

 0.0367 

Smoothed topology 1.594210
-4

 6.120910
-6

 0.0370 

Table 4.7 : Verification results of harmonic case using LSM-RBF method 

Topology Π𝑠
∗

 Π𝑒
∗

 𝜂 

Initial topology 4.344710
-11

 1.192510
-12

 0.0267 

Discrete topology 4.163710
-11

 1.487210
-12

 0.0345 

Smoothed topology 4.616110
-11

 1.583310
-12

 0.0332 

In Table 4.6, Π𝑠  is the elastic energy, Π𝑒  is the electric energy and 𝜂 is the energy 

conversion factor; and in Table 4.7, Π𝑠
∗ and Π𝑒

∗  are the average energy of one period. 

4.3 Case study 3 : multi-objective topology optimization 

The hybrid multi-objective optimization algorithm (JNSGA-DE) proposed in Chapter 

3 is applied to optimize the topology of the electromagnetic actuator prototype proposed in 

section 4.1 by converting the single-objective optimization problem with fixed input power to 

a dual-objective optimization problem with simultaneously maximizing electromagnetic force 

and minimizing the material consumption. 

4.3.1 Mathematical formulation 

The two-objective optimization problem is expressed as, 
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𝑚𝑎𝑥                𝑓1(𝑥, 𝑢)             

𝑚𝑖𝑛                 𝑓2(𝑥)                 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝐾(𝑥)𝑢 = 𝐹(𝑥)
               𝑥 = [0, 1]

 (4.16) 

where 𝑓1(𝑥, 𝑢)  represents the electromagnetic force and 𝑓2(𝑥)  is the magnetic material 

consumption. 𝑥 is the design variable of the optimization problem. In the optimization process, 

the objective function 𝑓1 and 𝑓2 are transformed into a minimization problem by inverting the 

objective function 𝑓1. The two-objective optimization problem is reformulated as, 

 

𝑚𝑖𝑛     {
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑓1(𝑥, 𝑢)

𝑓2(𝑥)

𝑠𝑢𝑗𝑏𝑒𝑐𝑡 𝑡𝑜    𝐾(𝑥)𝑢 = 𝐹(𝑥)

               𝑥 = [0, 1]
    

 (4.17) 

4.3.2 Numerical results 

The proposed hybrid multi-objective algorithm is applied to solve this case study. In 

order to reduce the computational burden and speed up the convergence, the design variable 

redistribution mechanism proposed in Section 2.3.2 is used. In the optimization process, the 

number of design variables gradually changes from small to large ones, and the design 

domain is gradually refined. The whole process is divided into three steps. In the first step, in 

order to compare the performance of different multi-objective optimization methods, the 

electromagnetic actuator is optimized by using the NSGAII, SPEA2 and the proposed hybrid 

algorithms respectively. The non-dominated ratios of Pareto solutions obtained by different 

algorithms are shown in Table 4.8. The obtained Pareto front is shown in Figure 4.32. In the 

figure, the Pareto frontier of different algorithms are denoted by using different symbols; the 

ordinate represents the first objective, and the abscissa is the second objective. From the 

figure, it can be observed that the hybrid algorithm not only finds more non-dominated 

solutions than the other two algorithms, but also finds the better non-dominated solutions that 

are closer to the true frontier. Table 4.9 represents the optimized topology corresponding to 

each solution on the Pareto front obtained by the hybrid algorithm.  Based on the above 

results, it can be seen that when there is no magnetic material in the design area, the material 

consumption is the smallest, namely the function value corresponding to the second 

optimization objective is the smallest, and the corresponding first objective function is the 
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largest, that is, the electromagnetic force is the smallest; as the usage of ferromagnetic 

material in the design domain gradually increases, the function value of the second objective 

gradually increases, and the function value of the first objective gradually decreases, that is, 

the electromagnetic force becomes larger. 

It is more meaningful that, by observing the change of the topology in the change 

process of the above two objective functions, we can understand the distribution of 

ferromagnetic materials in which design area will contribute to the first objective, that is, the 

increase of electromagnetic force. This optimization results provide a reference for designers 

to design an electromagnetic actuator to better achieve the balance between increasing the 

electromagnetic force and reducing material consumption. 

0 50 100 150 200
0

10

20

30

40

50

60

2
nd

 Objective – Material cost

1
st
 O

b
je

ct
iv

e 
–
 T

h
re

sh
o
ld

 -
 a

b
s(

E
M

 f
o
rc

e)

NSGAII

Hybrid

SPEA2

 

Figure 4.32 : Obtained Pareto frontier of different multi-objective optimization methods (Step 1). 

Table 4.8 : Non-dominated ratio of Pareto solutions by different algorithms 

 Hybrid  NGSAII  SPEA2 

NDR 21/23 91.3%  2/23 8.7%  7/23 30.4% 

Note: The calculation of NDR takes the union of non-dominated solution set obtained 

by different optimization algorithms, and then performs non-dominated sorting to 

obtain the true non-dominated solutions. The ratio of the non-dominated solutions of 

different optimization algorithms with the true non-dominated solutions is NDR. 
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Table 4.9 : The corresponding topologies of typical Pareto solutions (Step 1) 

  

○1  ○5  

  

○11  ○17  

 

 

○23   

In the variable redistribution mechanism, the boundary detection is performed on the 

current optimized topology, and the elements adjacent to the boundary are taken as the design 

variables of the next step. The corresponding topology of the 20th Pareto frontier solution 

obtained in the first step is chosen as the initial topology for the second step of the 

optimization. The hybrid algorithm is applied according to the above procedure, and the 

Pareto frontier of the second step is shown in Figure 4.33. Some typical solutions (marked as 

solid circle in the figure) are selected, and the corresponding topologies are presented in Table 

4.10. The numbers in the table represent the number of Pareto solution which corresponds to 

the topology. The topology of the non-dominated solution 46th  is selected as the initial 

structure for the third step optimization. It should be noted that, in the optimization process of 

the third step, the selection rule of the design variables is different from the previous step. 
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Except for the boundary elements detected, the elements whose material property is air in the 

upper right corner are all selected as design variables, as shown in Figure 4.34. 
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Figure 4.33 : Obtained Pareto frontier by hybrid algorithm (Step 2). 

Table 4.10 : The corresponding topologies of typical Pareto solutions (Step 2) 

  

○2  ○15  

 
 

○25  ○35  
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○46   

 

Figure 4.34 : Selection of design variables in Step 3. 

According to the above selection rule of design variables, the searched Pareto front of 

the third step is shown in Figure 4.35. Table 4.11 presents the corresponding topological 

structure of the selected typical solutions (marked as solid circle). The numbers in the table 

represent the number of Pareto solutions corresponding to the topology.  

Based on the topology optimization results of three steps, typical multi-objective 

topology optimization results for the electromagnetic actuator can be obtained as shown in 

Table 4.12. In the table, the material consumption is represented by the number of elements in 

the design domain; the up arrow indicates increase, and the down arrow stands for decrease. 

Compared with the original design, under the optimized topology the electromagnetic force 

can be maximally increased about 29%, and the material consumption is maximally reduced 

by 59%. After multi-objective topology optimization, it can be seen that the electromagnetic 

force of the armature is significantly increased, and the material consumption in the design 

area is also remarkably decreased.  
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Figure 4.35 : Optimized Pareto frontier (Step 3). 

Table 4.11 : The corresponding topologies of typical Pareto solutions (Step 3) 

  

○3  ○13  

  

○28  ○40  

 

 

 



Numerical applications 

 115 

Table 4.12 : The optimized topologies of multi-objective topology optimization 

  

Top1 Top2 

 

 

Top. abs(EM force)  Material cost 

1 53.94 26.4%↑ 103 59.1%↓ 

2 54.29 27.2%↑ 123 51.2%↓ 

3 54.94 28.8%↑ 186 26.2%↓ 

 

Top3  

4.4 Comparatively remarks 

4.4.1 Single-objective topology optimization method 

For the single-objective topology optimization of the electromagnetic actuator, this 

chapter presents numerical results using on the ON/OFF method, the combined Tabu-

ON/OFF method, the improved GA method, and the improved QEA method. The ON/OFF 

method uses the sensitivity of the objective function to guide the update of the topology of the 

design domain in the optimization process; while in the Tabu-ON/OFF method; the improved 

GA method and the improved QEA method; the three Tabu, GA, and QEA random search 

algorithms are used to guide the topology optimization process. 

Table 4.13 compares the optimization results of the aforementioned methodologies. 

Obviously, GA and QEA based methods can find the topology corresponding to the better 

objective function value, nevertheless more optimization time is needed. The Tabu-ON/OFF 

method is superior to the ON/OFF method in both the objective function and the calculation 

time, however, in the actual optimization process, the selection of the initial point of the 

Tabu-ON/OFF method has a great influence on the final result, by contrast the ON/OFF 

method is more robust. The final optimized topologies obtained by QEA based method and 
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GA based method are nearly the same, but the value of objective function of QEA is a little 

larger at the expense of more optimization time. Thus it can be seen that for the topology 

optimization problem with a large number of design variables, ON/OFF method and Tabu-

ON/OFF method are more adjustable since the computation cost is less than that of QEA 

method and GA method. However, if a designer takes more care of the global optimal design, 

QEA method and GA method are suitable methods to be applied. 

Table 4.13 : Comparison of different single-objective topology optimization methods (1) 

Method Objective function (N/𝑚) CPU time (s) 

ON/OFF -52.90 5842.41 

ON/OFF-Tabu -53.16 2616.67 

Improved QEA -54.95 58682.19 

Improved GA -54.94 36699.57 

For the single-objective topology optimization of the PEH, considering the finite 

element discretization of the design domain, design variables are numerous, and the 

computation cost based on the random search algorithm is too high. At the same time, due to 

the introduction of the interpolation model of piezoelectric material, the original discrete 

variable optimization problem can be transformed into a continuous variable optimization one. 

Using the sensitivity information, the gradient-based solving methods such as optimization 

criterion method and moving asymptotes method can be used to solve the optimization 

problem. Therefore, for the topology optimization of piezoelectric layer of a PEH, this thesis 

uses SIMP and the level-set method based methodologies. The optimization results of the two 

methods are shown in Table 4.14. 

Table 4.14 : Comparison of different single-objective topology optimization methods (2) 

Method Π𝑠  Π𝑒  𝜂 Working case 

SIMP-RBF 1.549810
-4

 5.607810
-6

 0.0353 static 

LSM-RBF 1.594210
-4

 6.120910
-6

 0.0370 staic 

SIMP-RBF 4.676410
-11

 1.656810
-12

 0.0342 harmonic  

LSM-RBF 4.616110
-11

 1.583310
-12

 0.0332 harmonic 

It can be seen from this table that the topology optimization method based on the level 

set method has better optimization results in static cases, and the topology optimization 
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method based on SIMP works better under harmonic cases. Since the level set method adopts 

a binaryzation of design variables with 0 or 1 value, which avoids the intermediate density 

element generated during the optimization as in the SIMP method, but the numerical 

instability issue (such as the checkerboard problem) is more serious. By introducing RBF 

post-processing, smoother and manufacturing easier topology is obtained. Finally, the 

verification results of COMSOL also confirmed the effectiveness of the two optimization 

methods. 

4.4.2 Multi-objective topology optimization method 

For the multi-objective topology optimization of the electromagnetic actuator, the 

numerical results demonstrate that the proposed multi-objective hybrid algorithm is superior 

to the traditional NSGAII and SPEA2. Moreover, from the comparison of multi-objective and 

single topology optimization results of Table 4.15, it can be seen that the multi-objective 

topology optimization algorithm can obtain the topologies with less material consumption and 

at the same time a relatively large electromagnetic force can be guaranteed. However, in 

terms of computation times, the multi-objective topology optimization method takes much 

longer times than the single-objective optimization method. 

Table 4.15 : Comparison of different single- and multi-objective topology optimization methods 

Method EM force (N/𝑚) Material cost Computation time (s) 

Single- 
I-QEA -54.95 190 58682.19 

I-GA -54.94 190 36699.57 

Multi- 

○1  -53.94 103 

763021.89 ○2  -54.29 123 

○3  -54.94 186 

4.5 Chapter summary 

This chapter applies the previously proposed topology optimization technique to solve 

different case studies, compares and analyzes the numerical optimization results of various 

topology optimization methods.  

For single-objective topology optimization of the electromagnetic actuator, the 

ON/OFF method, the Tabu-ON/OFF method, the improved GA method, and the improved 
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QEA method are applied respectively. The results reflect and demonstrate the characteristics 

and advantages of various methodologies. Among them, due to its strong global search ability, 

the QEA based method obtains the topology with the largest objective function value 

(electromagnetic force), but the computation cost required for the optimization is the highest.  

For the topology optimization of the piezoelectric energy harvester, this chapter 

applies the method based on SIMP and the discrete level set method, analyzes the static and 

harmonic cases. From the optimization results, the optimized topology obtained by the two 

methods is different. And for the objective function value, the level set method is slightly 

larger than the SIMP method. From the numerical optimization results, it is obvious that after 

the implementation of the RBF post-processing procedure, the blurry topology with 

intermediate density (SIMP method) and the zigzag discrete topology (level set method) are 

smoothed to obtain a smooth topology structure that is easier to actually manufacture.  

Finally, the proposed hybrid algorithm is applied to the multi-objective topology 

optimization of the electromagnetic actuator model. Using the design variable redistribution 

mechanism, the variables of the design domain are stepwise optimized. Finally, a set of 

typical Pareto non-dominated solutions are obtained. From the numerical results, and 

observing the characteristics of the Pareto frontier, it can be found that as the material 

consumption increases, the electromagnetic force increases as well. It is found that the region 

where the material is gradually filled is just a region having positive sensitivity to the increase 

of electromagnetic force. This conclusion can be used to guide the designer to minimize the 

material consumption while ensuring that the main design performance parameters (such as 

the electromagnetic force in this example) are met.   
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Conclusions and perspectives 

Given a design problem, topology optimization techniques find its optimal topology to 

optimize the objective function, and meet the requirements. Compared to traditional design 

methods, topology optimization can obtain a novel topology that is previously unimagined, 

especially for product designs that lack prior experience and knowledge. Therefore, topology 

optimization is of great significance for the optimal design of products. It has been deemed as 

an important tool for designers.  

This thesis aims to develop and implement topology optimization methodologies for 

electromagnetic device design. In this regard, the thesis proposes different topology 

optimization methodologies based on deterministic methods, such as ON/OFF method, SIMP-

RBF method, LSM-RBF method; and topology optimization method based on random search 

algorithms, such as the Tabu-ON/OFF method, the improved GA method and the improved 

QEA method. At the same time, considering the various constraints of practical problems, a 

topology optimization methodology based on a multi-objective hybrid optimization algorithm 

is proposed. To summary, the main innovations and contributions are as follows: 

(1) To address the prone convergence to local optima in the optimization process, the 

topology optimization methods based on ON/OFF, Tabu-ON/OFF, improved 

QEA and improved GA are proposed. The characteristics of each algorithm are 

elaborated, and the performance of each algorithm is compared comprehensively. 

As the global search ability of the algorithm increases, the optimization time 

inevitably increases. 

(2) To solve the intermediate density as encountered in density-based methods and 

infeasibility topology in engineering manufacturing, the topology optimization 

methodologies based on SIMP-RBF and LSM-RBF are proposed. The methods 

use the sensitivity information in a deterministic optimizer to guide the optimizing 

process. For problems with numerous design variables, the computation cost is 

greatly reduced compared with using the methods based on random search 

algorithms. Moreover, the introduction of the RBF interpolation technology, the 

obtained optimized topology is more conducive to engineering applications.  

(3) To reduce excessive computation cost of stochastic search algorithms for topology 

optimization, a design variable redistribution mechanism is proposed, which 
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determine and select the design variables by boundary detection, and takes the 

optimization result of the previous step as the initial topology of the next step 

optimization, divides the whole optimization process in several steps. The number 

of design variables is thus reduced, and the computation time is shortened.  

(4) To provide more freedom for a decision maker, a hybrid multi-objective 

optimization algorithm based on NSGAII and DE algorithm is proposed. The 

comparison results of test functions demonstrate that the performance of the 

proposed hybrid algorithm is better than that of the traditional NSGAII and 

SPEA2. The application of the electromagnetic actuator topology optimization 

problem shows that many novel topologies can be obtained by using this topology 

optimization methodology, which reduces the material consumption as much as 

possible while ensuring that the armature is subjected to a large electromagnetic 

force. This provides an important reference and basis for the designer's work.  

Although the numerical results of the applications of a prototype electromagnetic 

actuator and a PEH demonstrate that the proposed optimization methods can find a topology 

with better performance than the original design, there still exist many issues to be addressed 

in the future, especially in the following aspects: 

(1) First of all, for the topology optimization of complex problems, the excessive 

computation cost issue has always been the problem needed to be addressed. 

Although this thesis proposes a design variable redistribution mechanism to carry 

out the topology optimization process stepwisely, using the optimization result of 

the previous step as the initial solution for the next step, the number of design 

variables is reduced to some extent, thereby shortening the optimization time. 

However, for the multi-physics complex topology optimization problems with a 

large number of variables, it still takes a lot of computation time despite of 

adopting this method. Therefore, reducing computation cost is of great 

significance for topology optimization research. At present, a promising method 

seems to be adopting model reduction techniques in numerical computation field 

to decompose the original large-scale computation problem into a combination of 

multiple small-scale problems, and to reduce the complexity of the problem while 

ensuring the necessary solution accuracy. In addition, the adaptive parameters 

(such as stopping the criterion parameter) in the algorithm optimization process 
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will improve the convergence speed and reduce the number of iterations of the 

optimization.  

(2) Secondly, the topology optimization methodologies proposed in this thesis have 

good optimization performance on two comparatively simple numerical examples. 

However, the performance of the proposed methods on other topological 

optimization problems, especially on complex optimization problems with multi-

physics coupling, needs to be testified. In addition, when applying topology 

optimization methods to deal with three-dimensional practical problems, how to 

ensure the continuity of the spatial structure, how to solve the checkerboard 

problem generated in the optimization process, and so on, are all key research 

directions. 

(3) Finally, the theoretical results obtained by using the proposed topology 

optimization methods can be further compared with the experimental model 

adopting the optimized topology design. In the theoretical analysis phase, the 

models and materials in the practical production should be used, and various 

parameters of the actual model need to be considered. According to the optimized 

topology obtained by theoretical analysis, the actual prototype can be 

manufactured, thereby topology optimization result of the simulation analysis is 

verified by experiments.  
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Résumé : 
L'optimisation de la topologie est la conception conceptuelle d'un produit. En comparaison avec les 

approches de conception conventionnelles, il peut créer une nouvelle topologie, qui ne pouvait être 

imaginée à l’avance, en particulier pour la conception d’un produit sans expérience préalable ni 

connaissance. En effet, la technique de la topologie consistant à rechercher des topologies efficaces à 

partir de brouillon devient un sérieux atout pour les concepteurs. Bien qu’elle provienne de 

l'optimisation de la structure, l'optimisation de la topologie en champ électromagnétique a prospéré au 

cours des deux dernières décennies. De nos jours, l'optimisation de la topologie est devenue le 

paradigme des techniques d'ingénierie prédominantes pour fournir une méthode de conception 

quantitative pour la conception technique moderne.  

Cependant, en raison de sa nature complexe, le développement de méthodes et de stratégies 

applicables pour l’optimisation de la topologie est toujours en cours. Pour traiter les problèmes et défis 

typiques rencontrés dans le processus d'optimisation de l'ingénierie, en considérant les méthodes 

existantes dans la littérature, cette thèse se concentre sur les méthodes d'optimisation de la topologie 

basées sur des algorithmes déterministes et stochastiques. Les travaile principal et la réalisation 

peuvent être résumés comme suit:  

Premièrement, pour résoudre la convergence prématurée vers un point optimal local de la méthode 

ON/OFF existante, un Tabu-ON/OFF, un Quantum-inspiré Evolutif Algorithme (QEA) amélioré et 

une Génétique Algorithme (GA) amélioré sont proposés successivement. Les caractéristiques de 

chaque algorithme sont élaborées et ses performances sont comparées de manière exhaustive.  

Deuxièmement, pour résoudre le problème de densité intermédiaire rencontré dans les méthodes 

basées sur la densité et le problème que la topologie optimisée est peu utilisée directement pour la 

production réelle, deux méthodes d'optimisation de la topologie, à savoir Matérial Isotrope solide avec 

pénalisation (SIMP)-Fonction de Base Radiale (RBF) et Méthode du Level Set (LSM)-Fonction de 

Base Radiale (RBF). Les deux méthodes calculent les informations de sensibilité de la fonction 

objectif et utilisent des optimiseurs déterministes pour guider le processus d'optimisation. Pour le 

problème posé par un grand nombre de variables de conception, le coût de calcul des méthodes 

proposées est considérablement réduit par rapport à celui des méthodes de comptabilisation sur des 

algorithmes stochastiques. Dans le même temps, en raison de l'introduction de la technique de lissage 

par interpolation de données RBF, la topologie optimisée est plus adaptée aux productions réelles. 

Troisièmement, afin de réduire les coût informatiques excessifs lorsqu’un algorithme de recherche 

stochastique est utilisé dans l’optimisation de la topologie, une stratégie de redistribution des variables 

de conception est proposée. Dans la stratégie proposée, l’ensemble du processus de recherche d’une 

optimisation de la topologie est divisé en structures en couches. La solution de la couche précédente 

est défini comme topologie initiale pour la couche d'optimisation suivante, et seuls les éléments 

adjacents à la limite sont choisis comme variables de conception. Par conséquent, le nombre de 

variables de conception est réduit dans une certaine mesure; le temps de calcul du processus est ainsi 

raccourci.  

Enfin, une méthodologie d’optimisation de topologie multi-objectif basée sur l’algorithme 

d’optimisation hybride multi-objectif combinant l’Algorithme Génétique de Tri Non dominé II 

(NSGAII) et l’algorithme d’Evolution Différentielle (DE) est proposée. Les résultats de la 

comparaison des fonctions de test indiquent que la performance de l'algorithme hybride proposé sont 

supérieure à celle des algorithmes traditionnels NSGAII et Strength Pareto Evolutionary 2 

(SPEA2),  qui garantissent la bonne capacité globale optimale de la méthodologie proposée et 

permettent au concepteur de gérer les conditons de contrainte de manière directe. 

Pour valider les méthodologies d’optimisation de topologie proposées, deux cas d’étude sont optimisés 

et analysés. L'application du problème d'optimisation de la topologie d’un actionneur 

électromagnétique montre que les performances des méthodes proposées sont supérieures à celles des 

méthodes existantes ; En adoptant la méthode d'optimisation de la topologie basée sur l’algortithme 

hybride proposé, il est possible d’obtenir de nombreuses topologies de conception nouvelles, capables 

de réduire autant que posssible la consommation de matériau tout en garantissant que l'armature est 

soumise à une force électromagnétique relativement importante. Cela pourrait fournir une base de 

référence et une base théorique importante pour le travail d'un designer. L’application de la simulation 

sur le récupérateur d’énergie piézoélectriaue montre qu’il est possible d’obtenir davantage de 

topologies optimales réalisables en adoptant la méthode proposée. 
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Numerical Methodologies for Topology Optimization of Electromagnetic Devices 

Abstract : 
Topology optimization is the conceptual design of a product. Comparing with conventional design 

approaches, it can create a novel topology, which could not be imagined beforehand, especially for the 

design of a product without prior-experiences or knowledge. Indeed, the topology optimization 

technique with the ability of finding efficient topologies starting from scratch has become a serious 

asset for the designers. Although originated from structure optimization, topology optimization in 

electromagnetic field has flourished in the past two decades. Nowadays, topology optimization has 

become the paradigm of the predominant engineering techniques to provide a quantitative design 

method for modern engineering design.  

However, due to its inherent complex nature, the development of applicable methods and strategies for 

topology optimization is still in progress. To address the typical problems and challenges encountered 

in an engineering optimization process, considering the existing methods in the literature, this thesis 

focuses on topology optimization methods based on deterministic and stochastic algorithms. The main 

work and achievement can be summarized as: 

Firstly, to solve the premature convergence to a local optimal point of existing ON/OFF method, a 

Tabu-ON/OFF, an improved Quantum-inspired Evolutionary Algorithm (QEA) and an improved 

Genetic Algorithm (GA) are proposed successively. The performance is compared comprehensively.  

Secondly, to solve the intermediate density problem encountered in density-based methods and the 

engineering infeasibility of the finally optimized topology, two topology optimization methods, Solid 

Isotropic Material with Penalization-Radial Basis Function (SIMP-RBF) and Level Set Method-Radial 

Basis Function (LSM-RBF) are proposed. Both methods calculate the sensitivity information of the 

objective function, and use deterministic optimizers to guide the optimizing process. For the problem 

with a large number of design variables, the computational cost of the proposed methods is greatly 

reduced compared with those of the methods accounting on stochastic algorithms. At the same time, 

due to the introduction of RBF data interpolation smoothing technique, the optimized topology is more 

conducive in actual productions.  

Thirdly, to reduce the excessive computing costs when a stochastic searching algorithm is used in 

topology optimization, a design variable redistribution strategy is proposed. In the proposed strategy, 

the whole searching process of a topology optimization is divided into layered structures. The solution 

of the previous layer is set as the initial topology for the next optimization layer, and only elements 

adjacent to the boundary are chosen as design variables. Consequently, the number of design variables 

is reduced to some extent; and the computation time is thereby shortened.  

Finally, a multi-objective topology optimization methodology based on the hybrid multi-objective 

optimization algorithm combining Non-dominated Sorting Genetic Algorithm II (NSGAII) and 

Differential Evolution (DE) algorithm is proposed. The comparison results on test functions indicate 

that the performance of the proposed hybrid algorithm is better than those of the traditional NSGAII 

and Strength Pareto Evolutionary Algorithm 2 (SPEA2), which guarantee the good global optimal 

ability of the proposed methodology.  

To validate the proposed topology optimization methodologies, two study cases are optimized and 

analyzed. The simulation application on the electromagnetic actuator topology optimization problem 

demonstrates that the performance of the proposed methods is superior to those of existing methods; 

by adopting the topology optimization method based on the proposed hybrid algorithm, many new 

design topologies can be obtained, which are able to reduce the material consumption as much as 

possible while ensuring that the armature is subjected to a comparatively large electromagnetic force. 

This could provide an important reference and theory basis for a designer's work. The simulation 

application on the piezoelectric energy harvester shows that optimized topology with better 

manufacturing feasibility can be gained by using the proposed methods. 

Keywords : Topology optimization, FEA, GA, SIMP, LSM, RBF, multi-objective optimization 


