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Preamble

“Information is physical.”

— R. Landauer, Physics Today, 1991

We are in the era where information is processed with nano-scale electronic chips which
contain billions of transistors. The density of transistors on a chip keeps double roughly
once every two years following Moore’s law. The prediction has been approximately
holding since 1965. Nonetheless, the size of the transistor currently is approaching 10
nm and enters a regime where our technology of photolithography for manufacturing
electronic chips is fundamentally challenging, and where electrons transports start to be
affected by quantum effects. Some say Moore’s law will end soon. While nowadays the
need of high-performance and efficient computing is never stopping. Especially this need
has been pushed forward by the rise of our trending behaviour of collecting big data and
distilling collective patterns of information via machine-learning-based algorithms. This
class of algorithms requires a better optimal way for computation.

One of the great route is to step forward onto quantum computing; processing of infor-
mation with a physical system governed by quantum mechanics, rather than classical
mechanics. Historically, the idea of bundling quantum computer dates back to around
1981 when our famous physicist, Richard Feynman, said that,

“Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better

make it quantum mechanical, and by golly, it’s a wonderful problem because it doesn’t look so

easy.”

Ű R. Feynman, at a conference co-organized by MIT and IBM, 1981

In essence, quantum computer can provide an efficient speed advantage over in-used classi-
cal computers which are built upon the model of computation known as Turing machine.
One of the famous examples of computational problems, that quantum computer can
solve efficiently, is Shor’s algorithm [Shor, 1997], the problem of Ąnding the prime factors
of an integer. This problem has still had no efficient algorithm on a classical computer
and has been widely used nowadays in cryptography. Accordingly, the performance of
Shor’s algorithm indicates a power of quantum computer beyond a classical computer
and attracted a lot of attentions to quantum computer later on. Interestingly, we know
quantitatively very little about how powerful quantum computer is in term of compu-
tational complexity theory and what kind exactly of physical resources give a quantum
computer its efficiency [Nielsen and Chuang, 2010].

To date, Feynman is right, “it’s a wonderful problem because it doesn’t look so easy.”. It has
been almost four decades since we have a model of quantum-based computation [Deutsch,
1985, Nielsen and Chuang, 2010]. Various physical platforms, namely, superconducting,
trapped-ion, nuclear magnetic resonance, linear optics, etc., have been explored for build-
ing a quantum computer. Nowadays we are still under the process of research and devel-



2 Preamble

opment. The best progress reported so far is the use of programmable 53 superconducting
qubits to demonstrate quantum advantage1, in the task of sampling the output of pseudo-
random quantum circuit [Arute et al., 2019]. A long debate on which physical platform
will be technologically preferable is ongoing, not like in the early development of classi-
cal computer when the semiconductor technology for manufacturing transistors distinctly
outperforms other physical platforms including optical computing. Linear optical quan-
tum information processing is still considered as one of the most promising candidates
for quantum computing [Kok et al., 2007, O’Brien et al., 2009, Wang et al., 2019b]. In
this dissertation, we are going to focus on the development of linear optics for quantum
applications.

In addition to information processing on electronic chips, communication, i.e., trans-
mitting information via light through optical Ąbres has been also omnipresent spanning
from a short distance in a computer server room to a long-distance communication across
oceans. This is thanks to high-speed, high-bandwidth, low attenuation, and low-cost com-
munication provided by optical Ąbres [Agrawal, 2016]. Likewise to the requirement for
high-performance information processing, the requirement in the high capacity of optical
communication also rise exponentially at a faster rate than Moore’s law (doubling over
nine months) due to the use of internet [Agrawal, 2016]. One of the solutions in optical
communications that is more and more considered is space-division multiplexing, where
multiple spatial channels are parallelly utilized using multicore or multimode optical Ą-
bre [Richardson et al., 2013]. Unfortunately, the presence of cross-talk between modes and
differences in group velocity between modes in multimode Ąbre (intermodal dispersion)
limit the use of this technology. Nowadays, the use of multimode Ąbre is restricted to a
short-distance optical communication and the number of transverse spatial modes cannot
be easily scaled up [Agrawal, 2016].

Light transport through a multimode Ąbre is considered to be too complex such that opti-
cal waveguide theory simply fails to accurately describe its scattering behaviour. Thanks
to the advances in the technology of optical wavefront control over the last decade [Rotter
and Gigan, 2017], a characterization of optical response (transmission matrix) of multi-
mode Ąbre is now possible using spatial light modulator. This led directly to applications
in imaging [Čižmár and Dholakia, 2012, Choi et al., 2012]. For instance, a multimode
Ąbre can used as a compact lensless endoscope: transmitting a high-resolution image from
deep brain tissue [Ohayon et al., 2018, Vasquez-Lopez et al., 2018, Turtaev et al., 2018].

Instead of considering as usual light mixing in multimode Ąbre as a detrimental process,
whether for imaging or for communication purposes, we here explore how a multimode
Ąbre provides a useful route for a mixture of information. The objective of this dis-
sertation is to exploit the complex mode mixing of multimode Ąbre using the technol-
ogy of optical wavefront control for quantum information processing. In particular, we
demonstrate a potential route for implementing a programmable linear optical network
for quantum applications. We successfully demonstrate the manipulation of two-photon
quantum interferences in various linear optical networks including the implementation of
tunable coherent absorption experiments. Furthermore, understanding transport of non-
classical states of light through a complex environment is fundamentally interesting. We
study statistical properties of scattered lights from various non-classical states including
frequency-entangled biphoton states and experimentally show that we can extract infor-

1A physical implementation that shows that a device governed on the quantum mechanics outperforms
the state-of-the-art classical computer in a specific computation task.
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mation about input states and use those information for a purpose of state classiĄcation.
Our work therefore demonstrate an efficient alternative to integrated circuits for opti-
cal quantum information processing and shows a usefulness of a complex-mixing-based
optical device for modern quantum optical experiments.

This dissertation is organized as follows:

• In Chapter 1, we introduce the basic tools for understanding nonclassical light and
its properties. In particular, we focus on the generation of non-classical state with
optical parametric down-conversion process and its quantum interference. We then
describe the model of building quantum computing with linear optics. Optical
implementations of reconĄgurable arbitrary linear transformation are described, and
a review on quantum integrated optics is provided.

• In Chapter 2, we present an implementation of programmable optical linear net-
works across spatial-polarization degrees of freedom. First, we provide description
of speckle phenomena, mixing property of a multimode Ąbre, and wavefront con-
trol of light propagating through complex optical systems. Second, an experimental
setup and procedure for constructing a programmable optical network is described.
Then, two-photon interferences on various programmable optical circuits are ex-
perimentally reported. Finally, we provide a theoretical model and numerical and
experimental investigations on the scalability and programmability of the proposed
architecture for programmable optical linear networks.

• In Chapter 3, the programmable optical linear network is applied to explore two
intriguing related phenomena stemming from a non-unitary evolution of a two-
photon state on a lossy beamsplitter, which are two-photon absorption and coherent
absorption effect in a quantum regime. For each phenomenon, we Ąrst introduce the
concept and its relevance for applications. We then report theoretical calculations
and experimental results.

• In Chapter 4, we use our experimental platform as random projector for quantum
state classiĄcation. Several ground-truth states were experimentally tested and
they demonstrated substantial statistical signatures on photocurrent and second-
order intensity correlations which can be used to classify a state and measure its
purity and dimensionality, indistinguishability without a priori knowing its density
matrix.





1 |

Background

“All the fifty years of conscious brooding have brought me no closer to the answer to the question: What

are light quanta? Of course today every rascal thinks he knows the answer, but he is deluding himself.”

— A. Einstein, 1951

In the Ąrst part of this chapter, we introduce a general background for this disserta-
tion. First, a short introduction to the properties of non-classical light is presented
in section 1.1. Next, two essential theoretical aspects that are underlying experiments
presented throughout the dissertation are provided: a spontaneous parametric down-
conversion source (section 1.2) and quantum interference (section 1.3). In the second
part of the chapter, we aim to support a short review in order to emphasize the impor-
tance and challenges in modern quantum optic experiments and quantum information
processing tasks. We provide in particular the general concept of linear optical quantum
computing in section 1.4, of reconĄgurable unitary optical networks in section 1.5, of
the state-of-the-art integrated quantum optics in section 1.6, and on the boson sampling
problem in section 1.7. We Ąnally conclude and state our scientiĄc problem and set the
objectives of our study in section 1.8.
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6 Chapter 1. Background

1.1 | Light in a nutshell

Do we understand how light does behave? My honest answer is: more or less. On the
history of our understanding, the description of light became more accurate in prediction
its behaviours only a couple of hundred years ago. A long development of theory and
scientiĄc debates have been interchanging with experimental observations, for example,
interference and diffraction, electromagnetic radiation, a black-body radiation, photoelec-
tric effect, absorption, spontaneous and stimulated emissions, and relativistic effects. The
accepted theory of light we have nowadays is the quantum electrodynamic [Mandel and
Wolf, 1995] and so far there has been no experimental evidence challenging this theory.
The mainstream interpretation of light relies on the concept of wave-particle duality [Man-
del and Wolf, 1995]. The electromagnetic (EM) Ąeld is discretized in quanta, a discrete
unit of energy, known as a photon. In this section, we introduce the quantization of the
EM Ąeld in order to provide notations used in this dissertation and to highlight the key
features of light presented in our experiments.

1.1.1 Quantized electromagnetic field

We start by considering a quantized EM Ąeld. The complex electric Ąeld operator is
deĄned as,

Ê(r, t) = Ê
(+)

(r, t) + Ê
(−)

(r, t)

= i
∑︂

i

ζi

[︂

âiui(r)e−iωit + â†
iu

∗
i (r)eiωit

]︂

,
(1.1)

where ζi =
√︂

~ωi

2ε0
is a constant and ui(r) are the mode functions of a propagating electro-

magnetic wave of angular frequency ωi, that satisĄes, in vacuum:
(︄

∇2 +
ω2

i

c2

)︄

ui(r) = 0, ∇ · ui(r) = 0, (1.2)

where c is the speed of light. One can deĄne the mode functions that form a complete
orthonormal set,

∫︂

u∗
i (r)ui′(r)dr = δii′ . (1.3)

The quantization of the EM Ąeld is established by the non-Hermitian operators â†
i and

âi. They obey the boson commutation relations,
[︂

âi, â
†
j

]︂

= δij, [âi, âj] =
[︂

â†
i , â

†
j

]︂

= 0. (1.4)

And the Hamiltonian operator of the quantized EM Ąeld is

H =
∑︂

i

1
2
~ωi(â

†
i âi + âiâ

†
i ),

=
∑︂

i

~ωi(â
†
i âi +

1
2

).
(1.5)

Light is described by an ensemble of modes which are represented by independent quantum
harmonic oscillators. The noncommutativity of â† and â indicates a quantum feature of
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the EM Ąeld. The Ąrst important feature is presented in the second term of Eq. 1.5 and
known as vacuum Ćuctuation energy. This means that the energy of the EM Ąeld can
be non-zero even if there is no photon occupied in the Ąeld. The second feature stems
from the Ąrst term which is quadratic in â† and â. This means that each mode of the
EM Ąeld can be identiĄed with photon, a discrete unit of energy occupying the particular
mode. Photons obey Bose statistics thus each mode of EM Ąeld can be occupied by an
arbitrary number of photons. We can measure the number of photons via the photon
number operator:

N̂ i ≡ â†
i âi. (1.6)

A pure quantum state in each mode is described by a state vector ♣ψ⟩ in the Hilbert
space. A pure quantum state of the entire EM Ąeld is then deĄned in a tensor product
space of the Hilbert spaces for all of the individual modes. This space includes all possible
separable and entangled states. In general, a classical ensemble of pure quantum states
is described by the density matrix ρ deĄned as

ρ ≡
∑︂

j

pj ♣ψj⟩ ⟨ψj♣ , (1.7)

where pj is the weight of each pure state ♣ψj⟩. The purity P of a state is determined via
P = Tr ρ2, which is 1 if the state is pure and less than 1 if the state is mixed.

1.1.2 Relevant states

There are three classes of single-mode states that we would like to introduce here. The
Ąrst class is composed of photon number Fock states. They are eigenstates of the photon
number operator N̂ , meaning that they have a precise number of photons,

N̂ ♣N⟩ = N ♣N⟩ . (1.8)

For example, ♣0⟩ is a vacuum state with property â ♣0⟩ = 0, ♣1⟩ = â† ♣0⟩ is a single-photon
state, and ♣N⟩ = â†N

√
N !

♣0⟩ is a N -photon state.

The second class corresponds to the coherent states. These states have a well-deĄned
amplitude and phase and are the eigenstates of annihilation operator â: â ♣α⟩ = α ♣α⟩,
where α is a complex number. They were used for a representation of a classical EM Ąeld
generated by a laser that operate well above a lasing threshold [Glauber, 1963a, Mandel
and Wolf, 1995]. They have minimum uncertainty in amplitude and phase allowed by the
uncertainty relations. Such state can be represent as a superposition of Fock states,

♣α⟩ = e− 1
2

♣α♣2
∞∑︂

N=0

αN

√
N !

♣N⟩ . (1.9)

The third class is that of squeezed states, which is a generalized class of minimum-
uncertainty states. The word squeezing refers that noise in one of Ąeld quadratures is
less than a coherent state while other quadrature is larger. Squeezed states are eigen-
states of the squeezed operator S(ξ),

S(ξ) = exp
(︃1

2
ξâ†2 − 1

2
ξ∗â2

)︃

, (1.10)
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where ξ = reiϕ controls the degree and quadrature of squeezing. For the single-mode
squeezed-vacuum state, the state reads

♣ξ⟩ = S(ξ) ♣0⟩

=
1√

cosh r
exp

(︄

eiϕ tanh r
a†2

2

)︄

♣0⟩ =
1√

cosh r

∞∑︂

N=0

eiNϕ(tanh r)N

√︂

(2N)!

N !2N
♣2N⟩ .

(1.11)
The state is a superposition of an even number of photons, and can be experimentally
produced via spontaneous parametric down-conversion process (SPDC) which we describe
in section 1.2.

1.1.3 Photodetection theory

In the optical domain, all measurements are done with photodetectors and they respond
to EM Ąelds via an absorption process. The probability of absorption is predicted via the
interaction of EM Ąelds and matter (a detector) and is related to the normally-ordered
correlation of the EM Ąeld [Glauber, 1963b, Mandel and Wolf, 1995, Agarwal, 2012]. In
general, a set of photodetectors measure a normally-ordered correlation of the EM Ąelds
and accordingly provide information of the state of the EM Ąelds. We introduce two types
of measurements that will be used throughout the dissertation. Firstly, the intensity of a
state at the position ri with an integration time τC is related to

Ii(ri) ∝
∫︂ τC

0
dtTr

[︂

ρE(−)(ri, t)E(+)(ri, t)
]︂

(1.12)

where ρ is the density matrix of a state that is measured. Secondly, the second-order
intensity correlation between two detectors at the position ri and rj with a coincidence
windows τC reads

G
(2)
ij (ri, rj) ∝

∫︂ τC

0
dt
∫︂ τC

0
dt′ Tr

[︂

ρE(−)(ri, t)E(−)(rj, t
′)E(+)(rj, t

′)E(+)(ri, t)
]︂

(1.13)

1.2 | Spontaneous parametric down-conversion

The non-classical states used in the dissertation are generated from spontaneous paramet-
ric down-conversion process (SPDC). The SPDC is a quantum nonlinear process involving
the energy exchanged between three EM Ąelds (three-wave mixing process). The Ąrst wave
refers to the pump beam Ep which is down-conversed into two generated beams, known
as signal Es and idler Ei beams with the conservation of energy and momentum as de-
picted in Fig. 1.1. The SPDC occurs in a non-linear crystal lacking inversion symmetry
(non-centrosymmetry) [Boyd, 2008]. Such crystals are characterized by the nonlinear sus-
ceptibility tensor χ(2)

ijk. We consider here the co-linear type-II SPDC process [Bachor and
Ralph, 2004] where signal and idler beams are generated in a perpendicular polarization
to each other, thereby, the process involve only one scalar element of nonlinear suscepti-
bility, noted as χ(2). The classical Hamiltonian of the three-wave mixing process can be
written as,

H(t) ∝
∫︂

d3rχ(2)E∗
p(r, t)Es(r, t)Ei(r, t). (1.14)



1.2. Spontaneous parametric down-conversion 9

Replacing the EM Ąelds with the quantized EM operators (Eq. 1.1), the Hamiltonian of
the three-wave mixing concerning with the SPDC process is

Ĥ(t) ∝
∫︂

d3rχ(2)Ê
(−)

s Ê
(−)

i Ê
(+)

p + h.c., (1.15)

where Ê
(±)

j is the positive (negative) frequency component of EM operators of a given
j beam. The subscripts j ∈ ¶s, i, p♦ refers to signal (s), idler (i), and pump (p) beams,
respectively. The Ąrst term is related to the SPDC process as represented in Fig. 1.1,
and the second corresponds to time-reversed process. In the full form, the Hamiltonian
of Eq. 1.14, is expressed as

Ĥ(t) ∝
∫︂

dzχ(2)
∫︂

dωs

√︄

ωs

n (ωs)
â†

s (ωs) eiωst−iksz×
∫︂

dωi

√︄

ωi

n (ωi)
â†

i (ωi) eiωit−ikiz
∫︂

dωp

√︄

ωp

n (ωp)
âp (ωp) e−iωpt+ikpz + h.c.

(1.16)

We assume that the refractive indices, n(ωs), n(ωi), n(ωp), and the central frequencies of
three waves ωs, ωi, ωp are constant under the integrals over frequencies of interest. By
rearranging the terms and integrating over the length L of a non-linear crystal, we obtain

Ĥ(t) ∝ χ(2)L
∫︂

dωsdωidωpâ
†
s (ωs) â

†
i (ωi) âp (ωp) Φ (ωs, ωi;ωp) e−i(ωp−ωs−ωi)t + h.c.,

(1.17)

where Φ (ωs, ωi;ωp) is deĄned as,

Φ (ωs, ωi;ωp) =
1

L

∫︂ L

0
dzei(kp−ks−ki)z = exp

(︄

i
∆kL

2

)︄

sinc

(︄

∆kL

2

)︄

, (1.18)

This term corresponds to the phase-matching condition, i.e., the conservation of momen-
tum in the system: ∆k = kp −ks −ki (Fig. 1.2b). The phase-matching condition depends
on the geometry and on the optical properties of the non-linear crystal, for a particular
wavelength and the beam proĄle of the pump Ąeld kp. All kj are implicitly frequency
dependent, kj = n(ωj)ωj/c. The phase-matching condition determines the direction of
signal and idler Ąelds. Generally, the down-converted Ąelds can be distributed genuinely
over multiple traverse spatial modes depending on the phase-matching condition. In our
experiment, we designed the SPDC source in co-linear conĄguration (kp ∥ ks ∥ ki) with
a periodically-polled non-linear crystal. Besides, we collect signal and idler beams into
single-mode Ąbres, such that the transverse spatial correlations are not considered here
(we refer to a tutorial [Schneeloch and Howell, 2015] regarding transverse spatial correla-
tions of SPDC).

Furthermore, we consider the pump Ąeld as an intense coherent state and the down-
conversion efficiency as being low. Then it is safe to assume the pump state remains
constant during the evolution and can be replaced by the coherent EM Ąeld with a spectral
proĄle P(ωp) deĄned as

P =
∫︂

dωpP(ωp). (1.19)

Under the low-efficiency SPDC regime, the evolution of a state under the Hamiltonian
can be conveniently approximated to the Ąrst-order expansion: U(t) = exp

(︂

− i
~
H(t)t

)︂

≈
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Figure 1.1 – Spontaneous parametric down-conversion process: the pump beam propagates
through a non-linear crystal which has χ(2). A photon from the pump beam of a
higher energy is probabilistically spontaneously conversed into a pair of photons of
lower energy, labelled signal photon (H) and idler photon (V). Energy and momentum
are conserved in the process.

✶ − i
~

∫︁

Ĥ(t)dt. The unitary evolution U(t) reads

U(t) ≈ 1 − i

~

∫︂

dtĤ(t)

= 1 +G
∫︂

dt
∫︂

dωsdωidωpâ
†
s (ωs) â

†
i (ωi) P(ωp)Φ (ωs, ωi;ωp) e−i(ωp−ωs−ωi)t + h.c.

= 1 + 2πG
∫︂

dωsdωiâ
†
s (ωs) â

†
i (ωi) P(ωs + ωi)Φ (ωs, ωi;ωp) + h.c.,

(1.20)

where G is a constant. Additionally, we also assume that the Hamiltonian is time-
independent. By considering these assumptions, the Hamiltonian in Eq. 1.17 can be
written in a simpliĄed form [Agarwal, 2012]:

H = i~g(â†
sâ

†
i + h.c.), (1.21)

where g consists coupling constant related to χ(2), the geometrical and optical parameters
of the crystal, and the amplitude of a classical pump beam. The evolution of Hamiltonian
has an identical form to the action of the two-mode squeezing operator S(g) [Agarwal,
2012].

S(g) = exp
(︃

− i

~
Ht
)︃

= exp
(︂

gâ†
sâ

†
i + h.c.

)︂

, (1.22)

The two-mode squeezing operator can be expressed in a similar form as in the single-mode
squeezing operator (Eq. 1.10) [Agarwal, 2012]:

S(g) = exp
(︂

tanh gâ†
sâ

†
i

)︂

exp
[︂

−(ln cosh g)(â†
sâs + â†

i âi + 1)
]︂

exp(tanh gâsâi), (1.23)

We consider the initial state to be the two-mode vacuum state ♣0⟩1 ♣0⟩2. The evolution of
the initial state via the two-mode squeezing operator is

♣φ⟩ = S(ζ) ♣0⟩s ♣0⟩i

=
1

cosh g
exp

(︂

tanh gâ†
sâ

†
i

)︂

♣0⟩s ♣0⟩i

=
1

cosh g

∞∑︂

N=0

(tanh g)N ♣N,N⟩ .

(1.24)
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The SPDC thus generates the two-mode squeezed vacuum. In the photon-number basis,
we Ąnd that the probability PN,M of occupying N photons in the signal mode and M
photons in the idler mode is

PN,M =
δNM

cosh2 g
(tanh g)2N . (1.25)

Therefore we can conclude that the detection of N photons in the signal mode infers the
presence of N photons in the idler mode and vice versa. Furthermore, the total number of
photons in both modes is always even. Under low-efficiency SPDC regime (sinh2 g ≪ 1),
only low-order term, i.e., a vacuum state and a two-photon state, dominates. We can
post-select on the two-photon state, which originates from the Ąrst-order expansion of the
evolution of Hamiltonian. The two-photon state reads

\︄
\︄
\︄ψ(1)

˜︂

∝
∫︂

dωsdωiP (ωs + ωi) Φ (ωs, ωi;ωs + ωi) â
†
s (ωs) â

†
i (ωi) ♣0⟩s♣0⟩i. (1.26)

The state, also called the biphoton state and the photon pairs, describes a superposition
of signal and idler frequency modes with the amplitudes weighted by the product of the
pump amplitude P(ωs +ωi) and the phase-matching condition Φ(ωs, ωi;ωp). The product
is known as the joint spectral amplitude (JSA) and also called the biphoton wavefunction,

Ψ (ωs, ωi) = P (ωs + ωi) Φ (ωs, ωi;ωs + ωi) . (1.27)

Figure 1.2 – Joint spectrum amplitude of SPDC: The spectral correlations of the photons pro-
duced in downconversion (c) are a product of the pump profile owing to the conver-
sation of energy (a) and the phase-matching function owing to the conservation of
momentum (b). The phase-matching function depends on the optical properties of a
non-linear crystal. In our experiment, a non-linear crystal provides the phase-matching
condition like sketched in (b). (c) The joint spectral amplitude function ψ(ωi, ωs)
shows the anti-correlation in frequency.

It characterizes the spectral correlation of the two-photon state generated in the SPDC
process. In general, the JSA is not separable, Ψ (ωs, ωi) ̸= Ψs(ωs)Ψi(ωi), As a conse-
quence, the photon pairs are entangled in their frequency degree of freedom. An example
of JSA is depicted in Fig. 1.2. The Ąrst term P (ωs + ωi) related to a pump proĄle pro-
vides the energy conservation to the photon pairs (Fig. 1.2a), while the phase-matching
condition contributes to the momentum conservation (Fig. 1.2b). Normally, the down-
conversed photon pairs show anti-correlation in their frequencies [Grice and Walmsley,



12 Chapter 1. Background

1997] which is also the case of our designed SPDC source. We note that it is possible
to engineer the phase-matching condition such that the photon pairs are in separable or
correlated state [Grice et al., 2001, Mosley et al., 2008]. A separable biphoton state is
required for using a SPDC source as a heralded single-photon source with high purity.
One of the simple way to improve the purity is by using spectral Ąltering, however it also
reduce heralding efficiency [Meyer-Scott et al., 2017]. In our experiment, the broadband
spectral Ąlter is added only to remove background light from the pump beam, and not to
Ąlter the spectrum of photon pairs. The details of our experimental setup are reported
in Appendix A.

1.3 | Quantum interference

Interference is one of the most basic behaviours of a wave. The phenomenon of interfer-
ences can be correctly interpreted for intensities either as the interference of the classical
electromagnetic wave or as the interference of probability amplitudes in the quantum
theory. The failure of the classical theory happens only in experiments of higher-order
interference, involving the correlation of intensities (photoncounts) [Glauber, 1963b, Man-
del and Wolf, 1995, Ou, 2007]. For interference phenomena that cannot be explained by
the classical theory, we refer to quantum interferences [Pan et al., 2012].

One of the well-known experiment is the Hanbury-Brown and Twiss experiment [Loudon,
1980] where photoncount statistic of an input state of light can be characterised by send-
ing the state to one input port of a beamsplitter and measuring a temporal correlation
in photoncounts at both outputs of the beamsplitter. Thermal state, coherent state
and single-photon state result in different temporal correlation patterns regarding their
photoncount statistics which are sub-Poissonian, Poissonian, and super-Poissonian, re-
spectively [Mandel and Wolf, 1995]. For the single-photon state, the temporal correlation
in photoncounts goes to zero, indicating that a photon is detected only at one of the de-
tectors. This is a signature of the single-photon nature of the source. In the following, we
focus on quantum interference for a biphoton state, which is a key phenomenon observed
in this dissertation.

1.3.1 Two-photon interference on a beamsplitter

Let us consider the two separable single-photon states injected on two ports of the beam-
splitter as depicted in Fig. 1.3a. In the Ąrst input port, the single-photon state with a
spectral amplitude function Ψ1(ω) is

♣1Ψ1⟩ =
∫︂

dω1Ψ1(ω1)â
†
1(ω1) ♣0⟩1 , (1.28)

where â†
1(ω) is a creation operator acting on a single frequency mode ω in the Ąrst input

of the beamsplitter. The state is normalized such that
∫︁ ♣Ψ1(ω)♣2dω = 1. Similarly, in

the second input port, the single-photon state with a spectral amplitude function Ψ2(ω)
arrives at the beamsplitter with a time delay δ. The state reads

♣1Ψ2⟩ =
∫︂

dω2Ψ2(ω2)â
†
2(ω2)e

−iω2δ ♣0⟩2 . (1.29)

The state is normalized such that
∫︁ ♣Ψ2(ω)♣2dω = 1. Overall, the input state is,

\︄
\︄
\︄ψin

˜︂

=
∫︂

dω1Ψ1(ω1)â
†
1(ω1)

∫︂

dω2Ψ2(ω2)â
†
2(ω2)e

−iω2δ ♣0⟩1 ♣0⟩2 = ♣1Ψ1⟩ ♣1Ψ2⟩ , (1.30)
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The beamsplitter (BS) can mathematically be modelled as the linear transformation map-
ping input modes to output modes as follows,

(︄

â1

â2

)︄

= BS

(︄

â1

â2

)︄

, (1.31)

where,

BS ≡ 1√
2

(︄

1 1
1 −1

)︄

. (1.32)

This physically corresponds to the evolution of the state of the form:
\︄
\︄
\︄ψout

˜︂

= BS
(︂\︄
\︄
\︄ψin

˜︂)︂

=
1

2

∫︂

dω1Ψ1(ω1)(â
†
1(ω1) + â†

2(ω1))
∫︂

dω2Ψ2(ω2)(â
†
1(ω2) − â†

2(ω2))e
−iω2δ ♣0⟩1 ♣0⟩2

=
1

2

∫︂

dω1Ψ1(ω1)
∫︂

dω2Ψ2(ω2)e
−iω2δ×

(︂

â†
1(ω1)â

†
1(ω2) + â†

2(ω1)â
†
1(ω2) − â†

1(ω1)a2̂
†(ω2) − â†

2(ω1)â
†
2(ω2)

)︂

♣0⟩1 ♣0⟩2

(1.33)

Figure 1.3 – Two-photon interference: (a) Experimental scheme: Biphoton states are sent to the
beamsplitter with time delay δ on one of the input arms. A and B detectors measure
two-fold coincidence counts with coincidence electronics. (b) Diagrams of four different
cases of two photons interference on a beam splitter. The signs correspond to signs
in front of terms in Eq. 1.33. The diagrams in a red area cancel each other owing to
indistinguishability.

The output state is in a superposition of all four terms in Eq. 1.33. As the time delay δ is
shifted to zero, the two single-photon states arrive at both detectors simultaneously. And
in case that the spectral amplitude functions Ψ1(ω) and Ψ2(ω) are identical, thus the two
input single-photon states are completely indistinguishable. The second and third terms
of the Eq. 1.33 completely cancels one another. It results in the output state being in the
superposition of two possibilites: both photons occupy in one output mode or both in the
other. The outcome state is also known as N00N state1 with N=2,

\︄
\︄
\︄ψout

˜︂

=
1√
2

(♣21, 02⟩ − ♣01, 22⟩). (1.34)

One can study the outcome of the interference by measuring the photoncounts (intensity)
at each output and the two-fold coincidence counts between two outputs. Interestingly,

1The N00N state is also called as a path-entangled state or mode-entangled state.
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the photon counts give a constant intensity proĄle as a function of the time delay [Kim
and Grice, 2003]. From the classical interpretation, the effect is similar to the interference
of completely incoherent light. In contrast, the effect of interference is presented on the
second-order correlation function. Considering the outcome N=2 N00N state in the case of
indistinguishability, one Ąnds that the probability of detecting one photon in each output
port of the beamsplitter is null. The effect is known as photon bunching effect [Fearn and
Loudon, 1989] which refers to that two input single-photon states getting bunched into
one of the output ports and also known as quantum destructive interference [Tichy et al.,
2010] which means the destructive interference between two probability amplitudes. By
tuning the time delay δ, the second and third terms of the Eq. 1.33 no longer cancel each
other, thus the two-fold coincidence counts consequently increase to a classical limit where
one has the half of a chance of detecting one photon in each output port simultaneously.
This two-photon interference was Ąrst observed by Chung Ki Hong, Zhe Yu Ou and
Leonard Mandel [Hong et al., 1987] and is now known as the Hong-Ou-Mandel (HOM)
interference. The results of original observation is shown in Fig. 1.4.

Figure 1.4 – Hong-Ou-Mandel interference: By scanning the delay position (the position of beam

splitter in the figure), two-fold coincidence counts are recorded between two outputs
of the beamsplitter. The results is known as the HOM interference where the position
of dip is a position where biphoton state are indistinguishable. The width of HOM
interference determine the coherence length of the incident biphoton state. Adapted
from [Hong et al., 1987]

The concept of indistinguishability in quantum optics is strongly related to the HOM
interference. The indistinguishability can be directly characterised by measuring the
visibility of the two-photon interference, deĄned as,

V =
P (δ → ∞) − P (δ = 0)

P (δ → ∞)
, (1.35)

where P (δ) is the probability of detecting two-fold coincidences at a given time delay δ.
The probability, P (δ → ∞) is detected at a certain delay that is longer that the coherence
length lc of the input state (δ > lc). The complete indistinguishability of a two-photon
input state corresponds to the visibility of one. In general, the HOM interference also
occurs with a frequency-entangled biphoton state (Eq. 1.26). The indistinguishability of
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a biphoton state refers to the spectral overlap integral I(δ), that is

V (δ) = I(δ) =
∫︂ ∞

0
dω1

∫︂ ∞

0
dω2Ψ (ω1, ω2) Ψ∗ (ω2, ω1) exp [−i (ω1 − ω2) δ] . (1.36)

Distinguishability of a biphoton state therefore can originate from the asymmetric ex-
change in the JSA function: Ψ (ω1, ω2) ̸= Ψ (ω2, ω1). Furthermore, additional degrees of
freedom such as, polarization, transverse spatial mode, that label differently a state dur-
ing the evolution, also degrade the indistinguishability of the state; thereby the visibility
of the HOM interference. Likewise, a mixed input state also results in the degradation
of visibility. The HOM effect can be mimicked using interference of classical EM wave,
however, the maximal value that the visibility can attain has been shown to be at most
0.5 [Mandel, 1983, Ou, 1988, Rarity et al., 2005]. A visibility greater than 0.5 is thus
considered to be a sign of non-classical phenomenon.

The HOM interference has been observed in different photonic degrees of freedom, for
example, transverse spatial mode [Zhang et al., 2016], radial degree of freedom [Karimi
et al., 2014b] and structured mode (a transverse spatial mode where polarization varies
across beam proĄle) [D’Ambrosio et al., 2019]. Moreover, the HOM effect has been
observed with light in a microwave frequency [Lang et al., 2013], with plasmons [Heeres
et al., 2013], and with a matter wave [Lopes et al., 2015, Kaufman et al., 2018]. In term of
applications, in addition to the fundamental test of indistinguishability, the HOM effect
plays an important role in the optical quantum information processing, basically, it is the
underlying phenomenon for linear entangling gates [Nielsen, 2004]. Moreover, the HOM
effect has been also applied to optical coherence tomography [Abouraddy et al., 2002] and
metrology [Lyons et al., 2018].
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1.3.2 Two-photon interference in a Mach-Zehnder interferometer

Let us consider the indistinguishable biphoton state incident on two input ports of the
Mach-Zehnder (MZ) interferometer as depicted in Fig. 1.5. After the evolution of the
input state through the Ąrst beamsplitter and the acquisition of a phase shift φ, one
obtains the general N00N state with N=2 that reads,

1√
2

(♣21, 02⟩ + ei2φ ♣01, 22⟩). (1.37)

Figure 1.5 – Scheme of two-photon Mach-Zehnder interferometer: a biphoton state evolves
through the MZ interferometer and experiences phase shift φ in one arm. The detec-
tions A and B measure the two-fold coincidence counts at the outputs.

Then N00N state evolves through the second beam splitter and is then measured at
detectors A and B. The probability of detecting two-fold coincidence counts between
both detectors is

P (1A, 1B) =
1 − cos 2φ

2
. (1.38)

The two-photon interference of a N00N state with N=2 shows a phase super-resolution
that reveals the effect of De Broglie wavelength of the multi-photon state [Campos et al.,
1990]. In fact, the photonic De Broglie wavelength is 1/N shorter than the wavelength
of the single-photon state [Campos et al., 1990, Pan et al., 2012]. The interference of
a N00N state have been observed [Rarity et al., 1990, Shih et al., 1994, Nagata et al.,
2007] and applied in quantum metrology. The phenomenon is related to the experimental
results presented in chapter 3.

As explained in the general introduction, in this dissertation, our objective is to demon-
strate the use of a multimode Ąbre, (and in general complex scattering medium), for
quantum information processing. Before motivating why a multimode Ąbre is useful in
quantum applications, we provide Ąrst a concise review to describe the technological
challenges in modern quantum optics experiments. We introduce the general concept of
linear optical quantum computing in section 1.4, of reconĄgurable unitary optical net-
works in section 1.5, of the state-of-the-art integrated quantum optics in section 1.6, and
on the boson sampling problem in section 1.7 before concluding.
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1.4 | Linear optical quantum computing

Information can be stored in a state of a quantum system; it is encoded in the prob-
ability amplitudes of a state. A well-known case is a qubit, a state that belongs to a
two-dimensional Hibert space. Quantum mechanics allows information to be processed
via unitary evolutions (referred as operations) which lead to interference effects which
cannot be mimicked by classical means [Nielsen and Chuang, 2010]. By exploiting such
operations, a physical quantum system (referred as a qauntum machine) can process
certain solvable computational tasks via a procedure called quantum algorithms, using
fewer resource than a classical machine [Nielsen and Chuang, 2010]. The general-purpose
quantum machines can encode information, reprogramme an evolution to implement any
quantum algorithm and measure outcome information. The machines can practically
work below a certain error threshold [Knill et al., 2002, Nielsen and Chuang, 2010].

Linear optics is considered as one of the most promising candidates for quantum com-
puting. However, the optical system is similar to other physical quantum systems in the
sense that they always present some drawback compared with each other. In the following,
we discuss features, schemes, and main physical components of linear optical quantum
computing (LOQC). The LOQC pass all Ąve DiVincenzo criteria for building a quantum
computer [DiVincenzo, 2000]:

X� A scalable physical system with well characterized qubits Single qubit can
encode coherently quantum superposition of information. In linear optics, an in-
formation is encoded in probability amplitudes of a photon in a discrete-variable
fashion. Experimental resources should scale at most polynomially with the total
number of qubits.

X� The ability to initialize the state of the qubits to a simple fiducial state
The initial state need to be pure.

X� Long decoherence times compared to the gate operation time Optics satisfy
well this criteria.

X� A universal set of quantum gates Small and discrete sets of elementary oper-
ations on qubits can be combined to implement any quantum algorithm [Nielsen
and Chuang, 2010]. One famous example of a universal gate set consists of two-
qubit controlled-not (CNOT) gate and arbitrary single-qubit gates [DiVincenzo,
1995]. All universal gate sets contain at least one entangling operation [Nielsen and
Chuang, 2010]. In linear optics, arbitrary single-qubit gates can be easily performed
with high Ądelity [Nielsen and Chuang, 2010]. This is not the case for two-qubit
entangling gates (see below).

X� A qubit-specific measurement capability Single-qubit measurement can be
preformed to evaluate any possible observable on the system of qubit.

One of the critical problems in linear optics is that there is not easy to implement two-
qubit entangling gates since the efficient implementation of two-qubit gates requires the
interaction between photons. This means that an optical quantum information process-
ing would rather need a non-linear effect to couple different input EM Ąelds [Milburn,
1989, Myers and LaĆamme, 2006]. Furthermore, a non-linear interaction at the single-
photon level normally is extremely weak. Over the last 20 years, many LOQC schemes
have been proposed and developed as an alternative route for implementing quantum
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computing [Myers and LaĆamme, 2006, Kok et al., 2007, Rudolph, 2017, Takeda and
Furusawa, 2019].

One of the famous solutions is to implement two-qubit entangling gates with linear optics;
therefore, one has a universal set of quantum gates. However, this comes at a cost. Two-
qubit operations require the ability to control a π-phase shift rotation on the logical qubit
via a controlling qubit. The same kind of requirement is requested for general entangling
operations in a higher dimension. These operations can be mimicked via linear optics
and measurement and this is the origin of a probabilistic gate [Knill et al., 2001] used
in the LOQC. The probabilistic gates will work correctly if and only if a post-selection
has been appropriately applied. The LOQC schemes are generally based on probabilistic
quantum operations or measurement-based approach. Two well-known schemes are the
Knill-LaĆamme-Milburn (KLM) model [Gottesman and Chuang, 1999, Knill et al., 2001]
and one-way quantum computing [Raussendorf and Briegel, 2001, Raussendorf et al.,
2003, Nielsen, 2004].

In the KLM scheme, the LOQC is based on three basic components: single-photon sources,
reconĄgurable linear optical network, and photon-number resolving detectors. It requires
adaptive measurement known as classical feed-forward [Knill et al., 2001]. In essence, non-
linear interaction is represented by quantum interference (Sec. 1.3), which is considered as
the "interaction"2 of single photons. The quantum interference can be used to implement
a two-qubit entangling operation probabilistically (Fig. 1.6b). All other operations are
built upon the probabilistic gates [Myers and LaĆamme, 2006]. The success probability of
such operations is a fundamental problem in the implementation because the success rate
falls exponentially with size of operations. The KLM model proposes the key solution to
such a problem by using auxiliary photons together with measurement and feed-forward
technique [Knill et al., 2001]. The key is to use quantum teleportation to implement
gates. In details, the operations run in a feed-forward mode. This means that they
will repeat an operation until they have succeeded. Successful implementation of gate
operations is thus conditional upon a certain post-selection at detectors. The detection
events registered at the output provide the information on the success or failure of the
gate. The successful operation of the gate is then teleported onto the logical qubits, the
protocol of teleportation is explained in Fig. 1.6a. The KLM scheme provides a way
to build a universal quantum computer, although it requires a huge number of ancilla
photons and of probabilistic two-qubit gates. The scalability of KLM implementation
requires with at most a polynomial resource overhead [Myers and LaĆamme, 2006, Kok
et al., 2007, Nielsen and Chuang, 2010].

2Strictly speaking, this is not the interaction.
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Figure 1.6 – CNOT gate: (a) Using the probabilistic CNOT gate (blue box descried in (b)) the
probabilistic CNOT gate repeatedly performs on the two parties of two maximally
entangled states ♣Φ⟩, and only when the CNOT gate works (using ancillary photons
together with measurement and feed-forward technique) would one proceeds with the
protocol for teleportation. It starts with a qubit in an unknown state ♣C⟩ and one
of two photons prepared in maximally entangled state ♣Φ⟩. Both are projected via
Bell measurement (B box). The measurement leaves the outcome qubit in three
possibilities: the state ♣C⟩, or the bit (X), and/or phase (Z) flipped version of ♣C⟩,
depending on which of the four maximally Bell states is measured. An unwanted X
and/or Z flip can be later corrected by implementing X and/or Z gate as required. The
unknown input state of the control ♣C⟩ and target ♣T ⟩ qubits can be teleported and
the CNOT gate performed on the output. (b) A diagram of a probabilistic CNOT gate
implemented via quantum interference using two ancillary photons and measurement.
Adapted from [O’Brien, 2007]
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In the second scheme, known as one-way quantum computing and cluster-state quantum
computing, R.Raussendorf and H.Breigel propose the measurement-based protocol for
quantum computing [Raussendorf and Briegel, 2001, Raussendorf et al., 2003, Nielsen,
2004]. From the experimental point of view, the key idea is to move all difficulty (en-
tanglement) to the generation of an initial state. As shown in Fig. 1.7, the protocol
starts with an initially entangled state of a speciĄc form (called a cluster state). Then
via only a sequence of single-qubit measurements followed by consequent single-qubit uni-
tary transformations, one can determine the subset of the qubits in a speciĄc required
state. The required state will be equivalent to the output of the gate-based quantum
computing [Nielsen and Chuang, 2010].

Figure 1.7 – Cluster-state quantum computing: Cluster state is represented by a network, where
the blue nodes represent qbits in a cluster state, and the links (black lines) represent
the entanglement between qubits. The protocol start to measure the qubits (Measure
box), while the cluster is still being grown (Entangle box) by adding additional qubits
(green circles) to the cluster state. The measurement disentangle the blue qubits to
grey qubits and the outcome from measurement determines a projective measurement
for the next qubit. Adapted from [O’Brien, 2007]

1.5 | Universal reconfigurable unitary transformation

A reconĄgurable linear operator is one of the important components required in quantum
information processing for implementing several protocols on the same platform [O’Brien,
2007, O’Brien et al., 2009]. Besides, a reconĄgurable linear transformation is a use-
ful tool also in many Ąelds, for instance, classical signal processing, mode multiplex-
ing/demultiplexing [Miller, 2015b, Annoni et al., 2017, Tang et al., 2017, Shen et al.,
2017, Zhou et al., 2018], radio-frequency photonics [Zhuang et al., 2015, Capmany et al.,
2016]. To implement a k-dimensional unitary transformation U(k), one typically needs to
decompose a k-dimensional unitary transformation into a large number of two-dimensional
unitary transformations [Reck et al., 1994]. The reconĄgurability of two-dimensional uni-
tary transformation is provided by Mach-Zehnder (MZ) interferometer. Each MZ interfer-
ometer consists of two beamsplitters and two tunable phase shifters, as shown in Fig. 1.8d.
The corresponding transformation of the MZ interferometer is expressed as

T (φ, θ) =

(︄

eiθ sin φ
2

cos φ
2

eiθ cos φ
2

− sin φ
2

)︄

, (1.39)
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where the reĆectivity of the MZ interferometer is parametrized by φ ∈ [0, π/2] and a phase
shift θ ∈ [0, 2π]. In general, a k-dimensional unitary transformation U(k) requires k(k −
1)/2 ≈ O(k2) MZ interferometers [Reck et al., 1994]. A few decomposition techniques
have been proposed. Each technique leads to different arrangement of a cascade of MZ
interferometers. The most well-known decomposition is proposed by M. Reck et al. in
1994 [Reck et al., 1994], and is known as the triangular architecture (Reck-Zeilinger design)
as depicted in Fig 1.8b. Another decomposition is proposed by [Clements et al., 2016], as
depicted in Fig. 1.8c, and we called it the rectangular decomposition (Clements design).

Figure 1.8 – Universal reconfigurable unitary transformation: (a) Unitary transformation U can
be decomposed into (b) triangular architecture (Reck-Zeilinger design) or (c) rectan-
gular architecture (Clements design). (d) 2 × 2 reconfigurable unitary transformation
is implemented with the MZ interferometer.

In general, the decomposition techniques can be described in the following manner. First,
we deĄne a 2-dimensional unitary transformation Ti,j(φ, θ) of the MZ interferometer be-
tween i and j port, where j = i+ 1, on the k-dimensional space,

Ti,j(φ, θ) =
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(1.40)

All decomposition techniques rely on the analytical method of decomposing the U(k) into
a product of T [Reck et al., 1994, Clements et al., 2016] as follows,

U = D

∏︁

∐︂
∏︂

(i,j)∈O

Ti,j

⎞

ˆ︁ , (1.41)

where O deĄnes a speciĄc sequence of Ti,j and D is a diagonal matrix. Each diagonal
element of D is a complex amplitude with a modulus of one and corresponds to a global
phase shift for each output mode. All decomposition techniques (Eq. 1.41) rely the same
facts:
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1. Any target matrix element in row i or j of U can be set to zero by controlling
speciĄc values of φ and θ of Ti,j so that it modulates the target element of matrix
Ti,jU to zero. Similarly, any target element in column i or j of U can be set to zero
by setting speciĄc values of φ and θ, that leads UT−1

i,j to be zero.

2. The multiplicative sequence of Ti,j and T−1
i,j matrices do not affect the resultant zero

elements.

Depending on a speciĄc ordering O of Ti,j and T−1
i,j , the physical architecture will be

different.

In the following we will demonstrate the construction of the rectangular architecture. El-
ements of U are sequentially set to zeros following the alternating multiplication sequence
of Ti,j and T−1

i,j on U in the following order,

As presented above, a number, located at a position of each element of matrix U , rep-
resents the ordering sequence of multiplication of Ti,j and T−1

i,j on U . The Ąrst element
of U to be set to zero is at the bottom left of the matrix, labelled by ordered number
1, following by the consecutive diagonal, which contains ordered number (2) and (3). A
corresponding element of U at an ordered number without a parenthesis in column i is
set to zero via T−1

i,i+1 and a corresponding element of U at an ordered number with a
parenthesis in row i is set to zero via Ti−1,i. For example, we give an example in the case
of U(5) as illustrated in Fig. 1.9.
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Figure 1.9 – Decomposition technique for rectangular architecture: (left panel) decomposition
procedure. (right panel) the corresponding interferometer. Step (1): a desired unitary
matrix of dimension 5 is given. Step (2): The bottom-left element of U is suppressed
with T−1

1,2 resulting in the mixing of first two columns. This corresponds to adding
the top-left MZ interferometer into the circuit. Step (3): The next two elements on
the consecutive diagonal of U are sequentially set to zeros with T3,4 and T4,5. This
corresponds to adding the two MZ interferometers at bottom-right in the circuit. The
(1,5) and (1,4) elements of the resultant matrix do not change values from zeros when
T4,5 is implemented in order to set the (2,5) element to zero. Step (4) and (5): are
repeated the suppression process on the consecutive diagonal of the resultant matrix by
alternating between T−1

i,j in the step (4) and Ti,j in the step (5). Each corresponds to
adding a diagonal line of MZ interferometers on each side of the circuit. The resultant
matrix of U is a lower triangular matrix after the step (5). Step (6) By rearranging the
form of the resultant matrix, an implemented U can be decomposed to the rectangular
architecture. The output phase shift corresponding to D is implemented at the output
ports. Adapted from [Clements et al., 2016]
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After the decomposition explained in Fig. 1.9, we have

T4,5T3,4T2,3T1,2T4,5T3,4UT
−1
1,2 T

−1
3,4 T

−1
2,3 T

−1
1,2 = D′, (1.42)

where D′ is a diagonal matrix whose diagonal elements are complex elements with a
modulus of one corresponding to a global phase shift for each mode in the middle of the
interferometer. The equation 1.42 can be reformulated as

U = T−1
3,4 T

−1
4,5 T

−1
1,2 T

−1
2,3 T

−1
3,4 T

−1
4,5D

′T1,2T2,3T3,4T1,2. (1.43)

By using the fact that T−1
i,j D

′ = DTi,j, we end up with

U = DT3,4T4,5T1,2T2,3T3,4T4,5T1,2T2,3T3,4T1,2, (1.44)

which is consistent with Eq. 1.41. The parametrized reĆectivity φ and phase shift θ of each
MZ interferometer Ti,j is determined. In general for k-dimensional unitary transformation,
Eq. 1.42 and 1.43 can be generalised to

∏︁

∐︂
∏︂

(i,j)∈OL

Ti,j

⎞

ˆ︁U

∏︁

∐︂
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T−1
i,j

⎞

ˆ︁ = D′, (1.45a)
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R
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⎞

ˆ︃
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where OL and OR are the speciĄc sequence of multiplication of Ti,j and T−1
i,j , on left and

right hand of U respectively. Again, by using the same fact that T−1
i,j D

′ = DTi,j, we arrive
at the Ąnal decomposition of U (Eq. 1.44) with the overall sequence of multiplication:
O = [OT

L,O
T
R] of Ti,j. This result corresponds directly to the physical implementation of

MZ interferometers in the rectangular architecture [Clements et al., 2016] where speciĄc
values of φ and θ for each MZ interferometer were determined during the decomposition
procedure. We note that this is an implementation of U(k) up to global input or output
phases diag(D) which can be additionally implemented at the Ąnal stage by using phase
shifter at each input port or each output port as preferred.

In addition to the implementation of k × k unitary transformation U(k), the implemen-
tation of arbitrary k×m linear transformation L can be completed by using the singular
value decomposition. L is decomposed into

L = UΣV †, (1.46)

where U is an k × k unitary matrix, Σ is an k × m diagonal rectangular matrix whose
diagonal elements are nonnegative real numbers, and V is an m×m unitary matrix. The
physical implementation is illustrated in Fig. 1.10, U and V † are implemented by applying
the unitary decomposition techniques explained above. Two unitary networks, U and V †,
are then connected via Σ which is implemented by coupling each link of the interconnected
network (U and V †) with one arm of an additional MZ interferometer, while another arm
of the added MZ is used to couple light into an unmonitored mode. The added MZ
thus acts as an attenuator inducing loss corresponding to one diagonal value of Σ at a
given mode. This technique is proposed in [Miller, 2013b]. Implementations of arbitrary
linear networks in the quantum domain have been pointed out, for example, in [He et al.,
2007, Tischler et al., 2018].
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Figure 1.10 – Universal reconfigurable linear transformation: A linear transformation L is com-
posed of two universal unitary transformations, V † and U , and additional column of
MZ interferometers coupling into unmonitored modes Σ.

1.6 | Review on integrated quantum optics

The implementation of a reconĄgurable unitary transformation on an optical platform
is crucial for a large-scale quantum information processing. A linear optical network
such as one relying on Reck’s decomposition needs a large number of connected MZ
interferometers [Matthews et al., 2009, Smith et al., 2009, Metcalf et al., 2013, Carolan
et al., 2015]. Optical instability, misalignment, losses thus quickly grow as the dimension
of circuits increases [Flamini et al., 2019, Harris et al., 2018, Slussarenko and Pryde,
2019]. The problems can be alleviated by the use of integrated photonics technology,
since it provides a possibility for implementing linear optics on a chip platform, as for
example depicted in Fig. 1.11. The implementation provides interferometric stability,
miniaturisation, and additionally, it allows reconĄgurability via tunable phase shifters in
each unit of the MZ interferometers. Many researchers have been developing materials,
fabrication techniques, design of different optical elements in order to archive requirements
for the quantum applications. In this section, we introduce those requirements and discuss
technological challenges and point out successful quantum applications implemented on
such an integrated photonics platform. Our objective for this part of introduction is
to present the challenges that can be tackled via our approach for programmable linear
optical networks presented in the following chapters.

1.6.1 Integrated photonics and technological challenges

Over the last two decades, requirements for many optical communication devices such
as switch, modulator, wavelength division multiplexer have advanced our integrated pho-
tonics technology towards a mature stage where many reliable applications are utilized in
real life thanks to high bandwidth, compactness, high stability and ability to reconĄgure
a functionality. Still, there are plenty of room for improvements and advancing the tech-
nology for widespread applications [Minzioni et al., 2019]. Nowadays, there are mainly
two classes of materials that have been employed as a platform for on-chip optical net-
works [Bogdanov et al., 2017]: The Ąrst is based on a silica glass (SiO2) and the second is
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Figure 1.11 – Physical implementations of reconfigurable linear optical network on inte-
grated photonic on-chip: (a) Germanium-doped silica platform with thermal phase
shifters. Adapted from [Carolan et al., 2015] (b) Silicon-on-insulator platform.
Adapted from [Harris et al., 2017]

silicon-on-insulator (SOI) platform, including silicon nitride (Si3N4), silicon carbide (SiC),
indium phosphide (InP), gallium arsenide (GaAs), lithium niobate (LiNbO3).

Manufacturing process and loss: In the Ąrst class of silica-based optical platform,
fabrication techniques utilize either laser-writing technique on a silica [Osellame et al.,
2012] or photolithography and etching technique on a doped silica-on-silicon wafer [Politi
et al., 2009a]. The optical loss is low, at about < 0.1 to 0.8 dB/cm, depending on
a manufacturing technique [Politi et al., 2009a, Sansoni et al., 2010, Dyakonov et al.,
2018]. However, the silica platform has a low contrasts of refractive index, typically
about ∆n ≈ 0.5%. The silica-based platform thus cannot have a high optical component
density since a waveguide is sensitive to bending which induces radiation losses. The
standard limit of bends radius of waveguides is of 15-40 mm [Osellame et al., 2012] and
the typical size of an optical network is thus about a few centimetres to 10 cm. On the
other hand, the silicon-on-insulator platform provides a high refractive index contrast
(∆n ≈ 40%), thus very high compact chip can be achieved since small waveguides, and
small bending can be implemented without inducing additional loss. The size of a chip
is typically a few mm [Silverstone et al., 2016]. Manufacturing optical network on the
silicon-on-insulator platform requires a mature fabrication technique. Nowadays, it can
provide low cost, high production yields and complementary metal-oxide-semiconductor
(CMOS) compatibility [Silverstone et al., 2016, Harris et al., 2017]. However, surface
scattering, crystallinity, high refractive index contrast results seriously in optical losses at
a level of several dB/cm [Harris et al., 2017]. In addition to these two optical platforms,
an intermediate solution for loss and compact design has been proposed based on silicon
nitride Si3N4 [Bauters et al., 2011]. It provides the low propagation loss of about 0.2dB/cm
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while having a refractive index contrast of ∆n ≈ 18%. Recently, two-photon quantum
interference has been demonstrated on such platform [Taballione et al., 2019].

Technology of phase modulation and issue of scalability: ReconĄgurability of the
optical networks is provided by a phase shifter, typically implemented by a thermo-optic
effect3. On the silicon-on-insulator platform, the thermal phase-shifter can be applied
without inducing an additional loss. However, the modulation speed is low and can reach
a few hundred kHz [Harris et al., 2014], and it requires typically a large power consump-
tion of a few mW to 10 mW per phase shifter. This, therefore, generates heat on the
platform. It induces thermal crosstalk between MZ interferometers, one of the limitations
in scaling-up this optical platform [Milanizadeh et al., 2019, Jacques et al., 2019, Chung
et al., 2019]. Several alternative techniques of phase modulation have been proposed
and developed. They are based on mechanical effect (∼MHz bandwidth) [Humphreys
et al., 2014, Poot and Tang, 2014, Han et al., 2015], or direct-current Kerr effect (∼GHz
bandwidth) [Timurdogan et al., 2017]. Recently, the phase modulation using InGaAsP/Si
hybrid metal-oxide-semiconductor provides a route to low-loss, high speed and lower power
consumption [Takenaka et al., 2018]. It provides π-phase shift using a gate voltage of 0.8
V which is 5-folds lower than that of state-of-the-art Si optical modulator while having
a loss at 0.25 dB which is also 10 times lower than that of Si modulator but still higher
than thermo-optic phase modulator [Takenaka et al., 2018]. On the silica platform, the
thermal-optic effect is also used for phase modulation. Typically it requires a high power
consumption of about 0.8 W for modulating 2π phase shift [Matthews et al., 2009, Smith
et al., 2009, Flamini et al., 2015, Carolan et al., 2015]. Recently the low power consump-
tion of 0.2 W has been demonstrated by using a new design of micro-heater [Ceccarelli
et al., 2019].

Coherent control of optical networks has been hitherto demonstrated up to tens of optical
modes on silicon-on-insulator [Harris et al., 2017, Harris et al., 2018, Wang et al., 2018b],
up to six modes on silica platform [Carolan et al., 2015], and eight modes on silicon
nitride platform [Taballione et al., 2019]. Interestingly, there have been a few studies
showing that a nearly perfect linear transformation is still achievable in sufficiently large
reconĄgurable network [Miller, 2015a, Mower et al., 2015, Burgwal et al., 2017, Pai et al.,
2018].

Manipulation of light across photonic degrees of freedom: Manipulation of light
across different photonic degrees of freedom provides a different route towards encoding
and processing information in high dimensions [Lanyon et al., 2009, Su et al., 2019, Takeda
and Furusawa, 2019]. In bulk optics, polarization is the most obvious photonic degree
of freedom for encoding and manipulating information using waveplates. Transforming
polarization-encoding information to a path-encoding one can naturally be archived by
using a polarizing beamsplitter. In integrated optics, the standard design is, on the other
hand, based practically on a coupling between many single-mode waveguides (a cascade of
MZ interferometers). Coupling the spatial modes with other degrees of freedom, such as
time [Humphreys et al., 2013], frequency [Kues et al., 2016, Kues et al., 2017, Imany et al.,
2019] and polarization [Xu et al., 2014], remains an engineering challenge in integrated
optics. Here we list examples of development on encoding and manipulating light in each
photonic degree of freedom:

• Polarization: Full control of polarization on the silicon-on-insulator platform has
been demonstrated, for example, by using polarization rotators (waveplates) based

3Change in refractive index is induced by temperature.
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on electrically-controlled thermal-optic effect [Sarmiento-Merenguel et al., 2015], or
by using an out-of-plane waveguide to induce Berry’s phase [Xu et al., 2014].

• Temporal degree: Time-bin encoding has been demonstrated on silicon nitride
platform by using Franson interferometer where a 14-cm long path is embedded
in a spiral form [Xiong et al., 2015]. Moreover, the programmable two-photon
interference with a tunable time delay on-chip has been recently introduced by
harnessing birefringent electro-optic effect on lithium niobate platform [Luo et al.,
2019].

• Transverse spatial degree: A few optical elements for manipulating transverse
spatial degree on chip have been demonstrated and there are still passive. Regard-
ing transport, single laser-written doughnut waveguide shows an ability to trans-
mit single-photon state with a few transverse spatial modes with minimal crosstalk
(the demonstrated reachable length is of 19 mm) [Chen et al., 2018]. In term of
beam splitter, two-photon quantum interference has been observed across different
two transverse spatial modes via a nanoscale grating and tapper as mode conver-
sion [Mohanty et al., 2017].

To sum up, programmable on-chip optical elements which are beamsplitter, waveplate,
temporal delay line, strongly rely on the phase-shifter technologies. Demonstrated ma-
nipulation of light on-chip across photonic degrees of freedom is nowadays mainly passive.
Hitherto, passive mode conversion of a photonic quantum state between path, polariza-
tion, and transverse waveguide-mode degrees on a single integrated photonic chip has
been demonstrated [Feng et al., 2016, Mohanty et al., 2017]. To date, the quest for a pro-
grammable high-dimensional optical network offering arbitrary connectivity is ongoing.

Integration of light source and detection on chip: In addition to the challenge for
a programmable optical network that relates to our research question in the dissertation,
we would like to note that there have been numerous endeavours to integrate non-classical
light sources and single-photon detectors on a chip platform. Non-classical light sources
can be embedded on-chip platform principally due to wide spectral transparency of the
waveguide and the presence of non-linearity of materials [Silverstone et al., 2016, Ta-
ballione et al., 2019]. Different types of sources have been demonstrated, for instance,
parametric down-conversion [Sansoni et al., 2017, Lenzini et al., 2018], four-wave mix-
ing [Spring et al., 2013b, Paesani et al., 2019, Feng et al., 2019, Adcock et al., 2019, Lu
et al., 2019, Wang et al., 2018b] and quantum dots [Lodahl et al., 2015, Davanco et al.,
2017, Kiršanskė et al., 2017, Ellis et al., 2018]. Similarly, integration of single-photon
detectors have been reported [Sprengers et al., 2011, Pernice et al., 2012, NajaĄ et al.,
2015, Schuck et al., 2016a, Korneev et al., 2018].

1.6.2 Alternative designs

In order to give a complete overview, we present several alternatives designs that have been
demonstrated for implementing optical elements to overcome these technical challenges
in an optical experiment. We categorise them into four groups:

• Inverse photonic design: This technique is applied for designing an optical ele-
ment on a chip. It is based on a computational approach to discover a non-trivial
optical structure for a given desired functional characteristics by means of an op-
timization problem [Molesky et al., 2018]. The space of optimized parameters is
normally a large area of refractive index on a silicon wafer. For example, as shown
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in Fig. 1.12a, the wavelength demultiplexer is inversely designed to split 1,300 nm
and 1,500 nm input lights into two output waveguides [Piggott et al., 2015]. An-
other example, a broadband on-chip polarization beamsplitter is designed by using
genetic algorithm [Shen et al., 2015]. The devices are passive and have not been
used for quantum applications.

• Dielectric metasurfaces: The optical element is designed by manipulating Mie
resonances in dielectric and semiconductor nanoparticles with high refractive in-
dices on a Ćat surface (typically silicon-on-insulator) [Kuznetsov et al., 2016]. Re-
cently, mode conversion between polarization and orbital angular momentum [Stav
et al., 2018] and two-photon state reconstruction across path-polarization degrees of
freedom, as depicted in Fig. 1.12b, have been demonstrated on all-dielectric meta-
surfaces [Paniagua-Diaz et al., 2019a]. Quantum weak measurements have also
been reported [Chen et al., 2017]. The metasurfaces are often passive, but, can be
reconĄgurable by using the technologies of phase-shifting presented in the silicon-
on-insulator platform or liquid crystal modulation [Wu et al., 2019].

• Spatial Light Modulator (SLM): SLM is a device for phase or amplitude ma-
nipulation on a two-dimensional plane. The present technologies of SLMs offer
control of up to million pixels based either mostly on a liquid crystal or microelec-
tromechanical systems. Liquid-crystal-based SLM is omnipresent in quantum optic
experiments used as a regular optical device for a high-dimensional encode and pro-
jection of a transverse spatial degree of freedom, i.e., azimuthal degree [Krenn et al.,
2017] and radial degree [Karimi et al., 2014a, Plick and Krenn, 2015]. The relevant
review on using SLM for mode generation and detection can be seen, for example,
in [Forbes et al., 2016].

• Multi-Plane Light Conversion (MPLC): MPLC device was Ąrst proposed to
provide an arbitrary unitary programmable spatial mode converter [Morizur et al.,
2010, Labroille et al., 2014]. It is composed of a succession of designed phase plates.
As depicted in Fig. 1.12c, a spatial basis on the Cartesian grid of 210 identical
Gaussian spots is transformed into spatially-overlapped Hermite-Gaussian mode
basis by using seven phase plates [Fontaine et al., 2019]. The algorithm for design-
ing phase plates relies on an optimization approach, such as, wavefront matching
(WFM) [Fontaine et al., 2017] which is also used in the inverse design for a waveg-
uide in integrated optics [Sakamaki et al., 2007]. The theory shows that a number
of phase plates can be reduced to two per mode for some certain transform [Morizur
et al., 2010]. MPLC implementation with fewer phase planes has been studied [Wang
et al., 2017b, Zhao et al., 2019]. Recently, two-plane MPLC has been used in jointly
azimuthal-radial mode sorting for a high-dimensional quantum cryptography [Fick-
ler et al., 2020]. Key quantum gates have also been demonstrated in both azimuthal
and radial degrees of freedom [Brandt et al., 2019]. Moreover, the idea of MPLC
can be implemented on a waveguide-based platform [Tang et al., 2017, Zhou et al.,
2018] which links back to a general idea of inverse photonic design that one explores
a large degree of parameters for building an optical element.
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Figure 1.12 – Alternative implementations of desired optical elements: (a) Inverse photonic
design for demultiplexing of two wavelengths. The figure displays a overlaid struc-
ture of the chip and corresponding field profiles at two wavelengths (red and blue).
Adapted from [Molesky et al., 2018] (b) Metasurface designed for projecting polar-
izations of input light into M output spots. The platform is used for quantum state
tomography. Adapted from [Paniagua-Diaz et al., 2019a], (c) Multi-plane light con-
version (MPLC) is used as mode conversion that maps a Cartesian grid of identical
Gaussian spots into Hermite-Gaussian modes. Adapted from [Fontaine et al., 2019]
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1.6.3 Quantum applications

Linear optical networks enable many implementations of quantum experiments spanning
from fundamental experiments, information processing, simulation, metrology, commu-
nication [Aspuru-Guzik and Walther, 2012, Orieux and Diamanti, 2016, Harris et al.,
2018, Flamini et al., 2019, Wang et al., 2019b]. We review here a few landmarks of
quantum optic experiments on integrated platforms. We focus on works related to linear
optical networks and their quantum applications. Our intention here is to reveal potential
applications of the linear optical networks in the quantum domain while showing tech-
nological development and challenges. The review is presented in the timeline format in
order to clearly perceive the development of the Ąeld.

• In 2008, two-photon interference was Ąrst realised on a passive silica-on-silicon plat-
form [Politi et al., 2008]. One year later, thermally phase-controlled MZ inter-
ferometer was successfully used to manipulate two-photon and four-photon N00N
interference on the silica platform [Matthews et al., 2009, Smith et al., 2009, Mar-
shall et al., 2009]. The Ąrst integrated quantum metrology experiments is reported.
In the same year, Shor’s algorithm for factoring 15 was implemented on a photonic
chip [Politi et al., 2009b].

• In 2010, the quantum interference of polarization-entangled Bell states was per-
formed on a laser-written platform [Sansoni et al., 2010]. This shows the ability to
encode any polarization state on an integrated waveguide on silica platform. Evo-
lution of two-photon interference across arrays of coupled waveguides, known as
quantum walks (see review [Gräfe et al., 2016]), has been demonstrated [Peruzzo
et al., 2010]. It indicates a generalization of the HOM effect on a large linear net-
work.

• In 2011, linear CNOT gate was demonstrated on laser-written platforms [Crespi
et al., 2011, Li et al., 2011] and interestingly in the same year in bulk optics [Okamoto
et al., 2011]. In the context of metrology, four-photon N00N state has been demon-
strated on silica platform [Matthews et al., 2011].

• In 2012, generation of four Bell states, state tomography and test of Bell inequal-
ity were performed on a silicon platform [Shadbolt et al., 2012b, Shadbolt et al.,
2012a]. This was possible due to the reconĄguration of eight phase shifters on the
same chip. Quantum delayed-choice experiment, which tests the concept of comple-
mentary (wave-particle duality), has been demonstrated [Peruzzo et al., 2012]. In
term of design of optical networks, a laser-writing technique has shown a capability
to implement a network of waveguides in the three-dimensional geometry that al-
lows the implementation of beam tritter (three-port splitter) and quarter (four-port
splitter) [Spagnolo et al., 2012].

• In 2013, it was a year of boson sampling, a generalization of the HOM effect on
many single-photons on multimode interferometer [Spring et al., 2013a, Crespi et al.,
2013a, Broome et al., 2013, Tillmann et al., 2013, Metcalf et al., 2013]. We will
discuss this paradigm in the following section. In parallel, the quantum walk of
Bell entangled states have been demonstrated showing an interesting behaviour of
quantum transport [Crespi et al., 2013b].

• In 2014, a protocol for quantum teleportation was demonstrated on chip [Metcalf
et al., 2014]. In term of boson sampling, the veriĄcation of up to Ąve-photon inter-
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ferences on both an array of coupled waveguides and random unitary interferometer
was reported [Carolan et al., 2014, Spagnolo et al., 2014]. Moreover, an eigen-
value of ground-state molecular energy was estimated with the help of two-photon
interference on a photonic chip [Peruzzo et al., 2014].

• In 2015, a fully reprogrammable silica-on-silicon platform implemented several quan-
tum protocols such as conditional gate, entangling gate, state tomography, boson
sampling on a single chip [Carolan et al., 2015]. Moreover, basic operations for
continuous-variable quantum optics which are the generation, characterization, and
veriĄcation of entanglement of Einstien-Podolsky-Rosen (EPR) state were demon-
strated on a chip [Masada et al., 2015] and a nine-dimensional entangled quantum
system (entangled two-qutrit) was characterized on a chip [Schaeff et al., 2015].

• In 2016, one-way quantum computing with a four-qubit linear cluster state was
used for Grover’s algorithm [Ciampini et al., 2016]. In the context of communication,
transfer of quantum information between photonic chips demonstrated the feasibility
of entanglement distribution [Ang et al., 2016]. Furthermore, state preparations of
polarization-encoded and time-bin-encoded BB84 protocols were implemented on a
silicon chip providing the high-speed low-error quantum key distribution. This is
thanks to fast phase modulation (10 GHz bandwidth) [Sibson et al., 2017b, Sibson
et al., 2017a, Bunandar et al., 2018].

• From 2017 to presents, a full programmable two-qubit operation has been demon-
strated on a silicon platform [Santagati et al., 2017, Qiang et al., 2018]. The sili-
con platform has been expanded to a larger dimension and applied to implement
many protocols, state tomography, testing multi-dimensional Bell correlation [Qiang
et al., 2018, Wang et al., 2018b]. In the context of quantum simulation, different
approaches for estimating of eigenvalues of ground and excited states of Hydrogen
molecules [Paesani et al., 2017, Santagati et al., 2018] and dynamic simulation of vi-
brational states of a few molecules [Sparrow et al., 2018] have been reported. In the
context of quantum transport, the simulation of static versus dynamic disordered
wave transports was simulated the presence of environment-assisted transport on a
silicon chip [Harris et al., 2017].

1.7 | Boson sampling

As pointed out in the previous section, several quantum applications of linear optical
networks have been developed towards a large-scale implementation. However, the prac-
tical large-scale universal quantum computer seems to be far from our current technology
and development. Towards this long-term effort, harnessing the computational poten-
tial of quantum systems for a speciĄc computing task is an intermediate achievement.
One of an important milestone towards this direction is revealing quantum computation
advantage: an experimental demonstration of a device governed on the quantum mechan-
ics capable of performing a speciĄc computing task more efficient than current classical
computers [Arute et al., 2019]. One famous model of computation for testing such quan-
tum advantage is boson sampling problem [Brod et al., 2019], which was formulated by
Aaronson and Arkhipov [Aaronson and Arkhipov, 2011, Aaronson, 2011]. In particular,
a number of indistinguishable photons are propagated through a linear optical network,
then are measured at the outputs. The resultant distribution of number of photons at
the outputs forms a pattern that is difficult to predict as the number of photons and
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the dimensionality of optical network grow. The boson sampling problem is physically
equivalent to a quantum many-particle interference, which is a generalization of the HOM
effect discussed in section 1.3.

Mathematically the many-particle interference is equivalent to a calculation of the per-
manent of matrix governed an evolution of a linear optical network [Tichy, 2014]. The
statement of the boson sampling problem starts by deĄning an input Fock state of N
photons in n modes,

♣S⟩ = ♣s1s2 . . . sn⟩ =
n∏︂

p=1

(â†
p)sp

√︂

sp!
♣0⟩ , (1.47)

where sp is the number of photons occupying in the p-th input mode and the total number
of photons is

∑︁

p sp = N . The input state ♣S⟩ is then evolved through a linear transforma-
tion L in which the element lqp relates input p and output q. The transition probability
of detecting the targeted output state ♣T ⟩ = ♣t1t2 . . . tn⟩ is expressed as

P (S → T ) =
♣Per(LS,T )♣2

s1! . . . sn!t1! . . . tn!
, (1.48)

where Per is the permanent of the sub-matrix LS,T which is constructed by taking sp

copies of the p-th column of L and tq copies of the q-th row of L. The permanent is
deĄned as

Per(LS,T ) =
∑︂

σ∈Sn

n∏︂

q=1

lq,σ(q), (1.49)

where Sn is the set of all permutations of n elements. For example, the permanent of 2×2
matrix BS =

[︂
a b
c d

]︂

is Per(BS) = ad+ bc. Let us consider the HOM interference, in which
case one sends ♣S⟩ = ♣1112⟩ input state evolving through the beamsplitter (Eq. 1.31). The
transition probability of detecting the targeted output state ♣T ⟩ = ♣1112⟩ reads

P (S → T ) =

\︄
\︄
\︄
\︄
\︄
Per

(︄

1√
2

[︄

1 1
1 −1

]︄)︄\︄
\︄
\︄
\︄
\︄

2

= 0, (1.50)

This corresponds to the zero probability of detecting two-fold coincidence count (Sec. 1.3.1).

The evaluation of the permanent is believed to be hard on a classical computer if the
matrix LS,T presents sufficient complexity. In order to guarantee the complexity, three
conditions need to be satisĄed [Aaronson and Arkhipov, 2011]:

1. Initialisation of the input state with sp ∈ ¶0, 1♦, in order to avoid repeated columns
in the calculation.

2. A linear transformation is drawn from n-dimensional Haar-random unitary trans-
formation with n = O(N2) [Aaronson and Arkhipov, 2011, ŕyczkowski and Kuś,
1994, Russell et al., 2017, Pai et al., 2018]. First, this is to avoid a special symme-
try that a classical algorithm could exploit. Second, a Harr-random unitary does
not provide dominantly bunching events, also known as collision events, which are
events when two or more photons are in the same output mode. This results from
the photon bunching effect in which there is highly probable to have an outcome
probability of more-than-one photons occupying in a mode if n = O(N2). This is
known as the bosonic birthday paradox [Aaronson and Arkhipov, 2011, Arkhipov
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and Kuperberg, 2012]. Otherwise, if n ≫ N2, the probability of two or more
photons occupying in the same mode is not too large [Aaronson and Arkhipov,
2011, Arkhipov and Kuperberg, 2012, Urbina et al., 2016]. The event is known as
a collision-free event.

3. Due to the bosonic birthday paradox [Arkhipov and Kuperberg, 2012], outcome
probabilities are dominated by collision-free events that is ti ∈ ¶0, 1♦; therefore, it
is sufficient to use photon detectors in Geiger mode which recognize only vacuum
and non-vacuum states.

The computational complexity of the boson sampling problem belongs to the #P -hard
class [Valiant, 1979]. The best known classical algorithm for calculating the permanent is
Ryser’s algorithm, which takes O(2n+1n) arithmetic operations for an n × n matrix [van
Lint et al., 2001].

A few alternative schemes of the boson sampling have been proposed and experimentally
demonstrated. They use different input states and detectors. The Ąrst alternative model
is scattershot boson sampling. In this case, the input states are randomly excited by
many probabilistic heralded single-photon sources [Lund et al., 2014, Bentivegna et al.,
2015], which is experimentally handy using heralded single-photon sources from proba-
bilistic SPDC. This scheme improves exponentially a generation rate of the photons and
provides uniformly sampling input at random. The second choice is gaussian boson sam-
pling [Hamilton et al., 2017, Kruse et al., 2019], where the input states are replaced by a
number of single-mode squeezed states and the detectors are single-photon detectors. In
this case, the output distributions are governed by hafnian calculation of a matrix, which
is also in #P -hard complexity class [Hamilton et al., 2017].

The scalability of boson sampling has been experimentally challenging in all three compo-
nents: the number of single-photon sources, the dimensionality of linear optical network,
and the number of detectors. Last year, up to Ąve-photon interferences were experi-
mentally demonstrated [Wang et al., 2017a, Wang et al., 2018a, Zhong et al., 2018]. Very
recently, boson sampling with twenty input single-photon sources has been reported [Wang
et al., 2019a].
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1.8 | Summary

In this chapter, necessary notations and tools needed for understanding the underlying
physics presented in the dissertation were introduced: spontaneous parametric down-
conversion source and two-photon interference. Both are used widespread not only in
fundamental quantum optics experiments but also in many quantum applications span-
ning from quantum simulation, metrology, communication, including both famous proto-
cols for linear optical quantum computing, and testing quantum computation advantage
via boson sampling problem [Harris et al., 2018, Flamini et al., 2019, Wang et al., 2019b].

Programmable linear optical network is the heart of these implementations. It allows
implementing different experiments, simulations and information processing tasks on the
same optical platform. The famous architecture of the programmable linear optical net-
work is a cascade of the MZ interferometers that consists of many beamsplitters and
tunable phase shifters. Nowadays, the state of the art for physical implementation of op-
tical networks usually relies on integrated optics. They provide many advantages thanks
to high stability, compactness, and ability to reprogramme a functionality of many linear
transformations, beyond a bulk optics experiments.

Nevertheless, integrated optics meets many technological challenges in term of fabrica-
tions, cross-talk, optical loss, power consumption in phase shifters and a capability to en-
coding and manipulating information in many photonic degrees of freedom [Wang et al.,
2019b]. These issues result in one major problem, which is the scalability of the integrated
photonic platform for practical use. To date, many researchers and developers have been
pursuing and tackling the problems with either direct or alternative ways. Alternative im-
plementations of optical networks that one can think of are, for example, inverse photonic
design [Molesky et al., 2018] and MPLC [Morizur et al., 2010].

In this dissertation, we aim at proposing another potential architecture for implementing
a programmable linear optical network and experimentally implementing it for quantum
applications. It relies on a complex mixing of modes, a.k.a. multiple scattering process.
In the following chapters, we are going to introduce a concept of the architecture and
present a use of the platform for quantum experiments.
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Programming linear quantum networks

“Good design is as little design as possible.”

— Dieter Rams

This chapter introduces our technique to harness a complex mixing property of a dielectric
medium, here a multi-mode Ąbre, for constructing a programmable optical network. We
start with providing a literature review in Section 2.1 concerning the framework for scat-
tering theory, the complex mixing property of Ąbre, and the control of light propagation
through scattering medium. Those are the tools used for implementing a programmable
complex mixing-based optical network. We detail the general concept and give the key
ingredients for programming such an optical network in subsection 2.1.4. We then give
details on our experiment in Section 2.2; the setup, the acquisition of transmission ma-
trix, and the construction of the optical network. In Section 2.3, the reliability and
versatility of our experimental implementation are presented through a series of control-
ling two-photon interferences of various networks. Finally, the reliability and scalability
of our optical-network architecture are explored both theoretically and numerically, and
are validated through a characterization of experimentally implemented optical networks
in Section 2.4.
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2.1 | Complex mixing-based optical networks

In this section, the relevant physics and concepts used for programming optical network
by harnessing the complex mixing property of a medium are introduced.

2.1.1 Speckle phenomena and mesoscopic effects

Scattering theory

Light propagating through a complex scattering medium forms a complex interference
pattern, known as a speckle pattern (Fig. 2.1a) [Goodman, 2005b, Beenakker, 2018]. The
speckle carries information both on the coherence properties of the light and on mesoscopic
and microscopic details of the scattering medium. To introduce the properties of speckled
light, we use an inhomogeneous dielectric medium in a waveguide illustrated in Fig. 2.1b
as the model of interest.

Figure 2.1 – Scattering system: (a) Speckle pattern (b) Model of light scattering from an inho-
mogeneous medium in a waveguide geometry

In the asymptotic scattering region, at the given wavelength λ the total number of prop-
agating modes of the waveguide is given by n proportional to the width of the waveguide.
Light transport through the linear diffusive waveguide can be described by the scattering
matrix S that relates incoming Ψin and outgoing Ψout optical Ąelds as explained in Eq. 2.1,

(︄

Ψ−
out

Ψ+
out

)︄

= S

(︄

Ψ+
in

Ψ−
in

)︄

, (2.1)

where +(-) are right(left)-moving waves, respectively. The 2n × 2n scattering matrix is
subdivided into four block matrices,

S =

(︄

R T′

T R′

)︄

, (2.2)

where the blocks on the diagonal contain the reĆection matrices for incoming modes
from left R and from the right R′, respectively. The off-diagonal blocks contain the
transmission matrices (TM) for scattering from left-to-right T and from right-to-left T′,
respectively. Considering a scattering process without loss and gain, the main properties
of scattering process can be deduced. Firstly, the Ćux of optical Ąeld is conserved, the
scattering matrix thus is unitary S†S = 1. The second important property is reciprocity:
S = ST meaning that the scattering amplitude from a mode i to another mode j is the
same as that from j to i. The reciprocity can be inferred to the presence of time-reversal
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symmetry in the static system without loss and gain [Rotter and Gigan, 2017]. We note
that T - the transmission matrix (TM) - is the matrix of our main interest for further
discussion, and it can be measured experientially (see subsection 2.2.2 for the method).

To further understand the statistical properties of scattering matrix S and transmission
matrix T, random matrix theory (RMT) is used as a convenient tool since the statistical
properties of a sufficiently chaotic or disordered system can be obtained from a suitably
chosen ensemble of random matrices. The interned goal of the RMT is to calculate the
statistical properties of the eigenvalues and eigenvectors of a random matrix. The RMT
was Ąrst introduced by Wishart in 1928 [Wishart, 1928] and then used by Wigner to
explain the statistics of energy levels in complex nuclei [Wigner, 1951]. RMT has been
successfully used in many applications and are nowadays omnipresent in physics [Brouwer,
1971, Beenakker, 1997, Tao, 2012, Akemann et al., 2018]. Relevant classes of a random
matrix for explaining the model of disordered waveguide are presented in order to give an
overview of underlying physics related to our problem of interest.

Speckle: Indicator of complex mixing

Like many statistical frameworks, we start by sampling the transmission matrix T from
the space containing random matrices with a same statistical feature. In the Ąrst case,
the elements tij of T are represented by a randomly generated complex numbers from
Gaussian ensemble where real R = Re(tij) and imaginary I = Im(tij) parts are sam-
pled independently. The join probability distribution on the complex plane is P (R, I) =
(2πσ2)−1 exp[−(R2 + I2)/(2σ2)]. Transforming the distribution via the Jacobian [Good-
man, 2005b], three key statistical features of the speckled light can be extracted, which
are the distribution of amplitude A =

√
R2 + I2, phase θ = arctan (I/R), and intensity

I = ♣A♣2,

P (A) =
A

σ2
exp

(︄

− A2

2σ2

)︄

,A ≥ 0 (2.3a)

P (θ) =
1

2π
,− π < θ ≤ π (2.3b)

P (I) =
1

I
exp

(︃

−I

I

)︃

,I ≥ 0. (2.3c)

The distribution of amplitude follows the Rayleigh density function, the phase has a
uniform distribution and the intensity has the exponential decay [Goodman, 2005b]. The
mean intensity (I) is equal to the standard deviation of intensity (σI). Speckle pattern
(Fig. 2.1a) with these features is normally referred to as fully developed speckle. This is the
Ąrst key feature of complex-mixing property required for programming optical networks
since it shows coherence superposition and complete randomization of partial contributed
waves with randomly varying phases and amplitudes. We note that in practical situations,
correlations can be presented in speckle patterns, we provide the related information about
the correlations in Appendix C.2.

Properties of time-reversal operator

In this section, we aim at introducing properties of TT† from the RMT frameworks. The
TT† operator, which is known as time-reversal operator [Prada and Fink, 1994, Popoff
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et al., 2010b], plays an important role in the implementation of our programmable optical
network. It is used to map designed linear optical networks onto an experimentally
implemented one (see Sec. 2.4.1 for the mapping relation). In an ideal case, we would
want, TT† = ✶, meaning that our experimental implementation of a linear optical network
is perfectly identical to what we intend to design. The properties of TT† depend on the
model used to describe the transmission matrix T. Here we introduce the properties of
TT† from a few models developed from the RMT frameworks.

The properties of interest are related to TT† or T†T. Both operators share the same
non-zero transmission eigenvalues τi, i ∈ [1, n] which provides the information of Ćux
transmission on each channel (each eigenvector). We note that τ is equal to the square
of singular values of T and the total transmission through a scattering medium is deĄned
as T =

∑︁

i τi.

In the Ąrst simplest model, the elements of T are again sampled from independent and
identically distributed (i.i.d.) complex Gaussian random variables. For the sake of gener-
ality T is here considered to be a rectangular matrix linking d input modes to n output
modes, thus the size of T is n× d. A square matrix W = TT† is also known as Wishart
matrix [Wishart, 1928] that has been applied in many areas including multivariate statis-
tical analysis, data compression techniques, the communication theory [Tulino and Verdú,
2004, Couillet and Debbah, 2011]. The Wishart matrix is related to a covariance matrix,
thus TT† is nearly close to the identity, which is good for our implementation of a linear
optical network. But interestingly, the eigenvalue distribution of transmission eigenvalues
is not located in the peak at 1 as one may be tempted to expect. The distribution of
transmission eigenvalues, on the other hand, converges to the Marc̆henko-Pastur (MP)
law in the limit n, d → ∞ with r = n/d ∈ (0,∞) [Marčenko and Pastur, 1967, Janik and
Nowak, 2003]. The MP distribution, shown in Fig. 2.2, is deĄned as follows,

PMP(τ) =
(︃

1 − 1

r

)︃+

δ(τ) +
1

2πrτ

√︂

(τ+ − τ)+(τ − τ−)+, (2.4)

where τ± = (1 ± √
r)2 and (·)+ is considered only positive values [Couillet and Debbah,

2011].1 In 2010, the Marc̆henko-Pastur law was experimentally observed in optics by
measuring a small portion of the transmission matrix of a slab of disordered medium where
related correlations are not signiĄcantly presented in the experimental condition [Popoff
et al., 2010b, Popoff et al., 2011]. Noticeably, when r = 1, Eq. 2.4 can be simpliĄed to

the form, PMP(
√
τ) = π−1

√︂

(4 − √
τ

2
)+, which is known as quarter circle law since the

distribution of eigenvalues
√
τ of T has a quarter circle proĄle [Marčenko and Pastur,

1967, Tulino and Verdú, 2004].

To better take into account a realistic system, one needs to take into account the uni-
tarity of the scattering system, this means that real system are not described by a i.i.d
Gaussian random transmission matrix. Several models have been introduced to describe
the statistical properties of such a scattering medium.

In the second interesting class of RMT, the scattering matrix is sampled from Dyson’s
circular ensemble [Dyson, 1962a, Dyson, 1962b].2 It is so-called circular unitary ensemble
(CUE), the scattering matrix has to respect the unitarity. Imposing such symmetric

1The MP distribution get broader as n > m because of the repulsion of eigenvalues
2These ensembles are called circular because their eigenvalues are relied on the unit circle in the

complex plane.
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Figure 2.2 – Marc̆henko-Pastur (MP) law: Probability density function of transmission eigenval-
ues τ (Eq. 2.4) at different r = n/d.

constraints results in correlation in a scattering phase shifts [Akbulut et al., 2016a], and
thus, leads to the interesting statistical distribution of transmission eigenvalues τ . Under
the limit of a large n, the distribution for the case of CUE presents bimodal and symmetric
proĄle at τ = 1/2 [Baranger and Mello, 1994, Jalabert et al., 1994] (Fig. 2.3a),

PBimodal(τ) =
n

π

1
√︂

τ(1 − τ)
. (2.5)

In the context of electronic transport, the bimodal distribution Eq. 2.5 can explain well the
transmission through a chaotic quantum dot (chaotic cavity)3 without any requirement
or information about a speciĄc geometry of scattering object (Fig. 2.3a). On the other
hand, it cannot describe well the electron transports through a diffusive wire and also
light transports through a diffusive waveguide since the RMT does not take the geometry
of the scattering object into consideration. The geometry controls how the input Ąeld
experiences the scattering process. For instance, as the length of the diffusive waveguide
L is longer than the transport mean free path ℓ⋆, which is the characteristic length over
which the direction of propagating Ąeld is randomized [Rotter and Gigan, 2017], the overall
transmission usually decreases linearly with length L following the Ohm’s law [Dragoman
and Dragoman, 2004, Wiersma et al., 1997].

In general, a more realistic model considering the length of a diffusive waveguide is clearly
needed to understand transmission and reĆection properties of the scattering object.
Dorokhov, Mello, Pereira, and Kumar have proposed such model, known as the DMPK
model which is the third model presented in this introduction. In DMPK model, they
subdivide the scattering system into a series of weakly scattering segments with isotropi-
cally connection between each segment [Dorokhov, 1982, Mello et al., 1988a]. This results

3A quantum dot (electron billiard) is a small metal/semiconductor heterostructure island with high
mobility, the current flows from source to drain reservoirs by point contacts which are small compared
to the overall size of the scattering domain.
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Figure 2.3 – Distribution of transmission eigenvalues τ for two independent situations: (a)
Bimodal distribution predicted by the RMT with circular unitary ensemble describes
the electron transport in a chaotic cavity (insert). Adapted from [Oberholzer et al.,
2002] (b) Dorokhov-Mello-Pereira-Kumar model for a diffusive wire (insert). The nor-
malization is such that

∫︁ 1
τ0
P (τ)dτ = 1. Adapted from [Rotter and Gigan, 2017].

in the DMPK equation describing an evolution of the distribution of transmission eigen-
values τi as a function of the length of disordered waveguide covering different transport
regimes: ballistic, diffusive, localized. In diffusive regime, there are g ≃ nℓ⋆/L transmis-
sion channels having a Ąnite transmission with τ > τ0, where τ0 = 4 exp(−2L/ℓ⋆). The
g is known as the dimensionless conductance which is equal to the total transmission,
g = Tr T†T [Imry, 1986]. The remaining n(1 − ℓ⋆/L) channels are closed, τ ≈ 0. Ac-
cordingly, wave cannot transport through a medium. The DMPK equation gives back
bimodal but asymmetric distribution of transmission eigenvalues [Dorokhov, 1984],

PDMPK(τ) =
nℓ⋆

2L

1

τ
√

1 − τ
. (2.6)

As shown in Fig. 2.3, both CUE and DMPK distributions of transmission eigenvalues
present a nontrivial bimodal proĄle indicating high probabilities of having transmission
channels that are almost closed τ ≈ 0 or open τ ≈ 1, which are known as close chan-
nels and open channels, respectively. The phenomenon is known as maximum fluctua-
tion [Pendry et al., 1990] and was theoretically discovered by [Dorokhov, 1984] in context
of electron transports. Experimentally, the bimodal distribution was observed using dis-
ordered waveguides in acoustics [Gérardin et al., 2014]. In optics, the direct observation
of the bimodal distribution of transmission eigenvalues have not been reported so far.
Nevertheless, the presence of close and open channels in optics inĆuences the control of
light transports through or reĆected from a diffusive scattering medium. We provides rel-
evant information in Appendix C.1. The most advanced experimental results regarding
the bimodal distribution were demonstrated in context of electron transports [Beenakker,
2018]. Even though, the direct observation of the bimodal distribution has not been re-
ported since the coherent control of electrons transport through a proper transmission
channel is still impossible for a scattering system larger that electronic wavelength. The
open transmission eigenchannels, however, create indirect effect on electric shot noise4

4The electric shot noise is referred to a temporal current fluctuations, originates only from the trans-
port, not from an emission process of the source.
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which has been experimentally observed [Beenakker, 2018]. In a condition where elec-
trons behave as matter waves, the transports through different geometries, i.e, chaotic
cavity and diffusive wire, generate distinct reductions of the electric shot noise by a value
of 2/3 for DMPK distribution and of 3/4 for CUE distribution. These reductions are
independent of the thickness L and the means free path ℓ⋆ (see reviews [Beenakker, 1997,
sec.III.E.] and [Rotter and Gigan, 2017, sec.II.B.]). These evidence strongly support the
validity of RMT and the DMPK models. Therefore, they show the distinct inĆuences of
the geometry of the scattering object on the physics of transport.

Conclusion

A realistic model of the transmission matrix T for a particular scattering medium is
necessary not only for understanding a transport properties but also for exploiting their
properties in applications as we are going to present. Statistical properties of the scat-
tered light deduced from the model of the diffusive waveguide were introduced. Two key
information from this section are:

• The presence of fully developed speckle indicates the isotropic (equally-weight) mix-
ing of information from all inputs to all outputs. We would like to refer to such a
scattering object as an ideal optical mixer.

• The properties of TT† play an important role in our programmable optical network.

In the next section, we are going to introduce our optical mixer which is a multimode
Ąbre and its mixing properties in practice. The model of the diffusive waveguide pre-
sented above does not describe all of the physical aspects of light transports through the
multimode Ąbre. Since the reĆection of the multimode Ąbre is negligible, this imposes
new constraints on the scattering process.

2.1.2 Multimode waveguide and its mixing property

Introduction

Multimode Ąbres (MMF) are cylindrical waveguides transporting a high number of prop-
agating modes, composed of a core and a cladding. The core of the Ąbre has a diameter,
noted D, and is made of a dielectric medium with a high value of refractive index proĄle
n1(r), where r is radial coordinate deĄned from the optical axis to the cladding boundary
D/2. The cladding covers the core and is made of a medium with a lower refractive index:
n0 < n1(r). Here we focus on graded-index multimode Ąbres, which we use. They have a
parabolic refractive index proĄle: n2

1(r) = n2
1[1 − 8∆(r/D)2], where ∆ = (n2

1 − n2
0)/(2n

2
1)

is the refractive index contrast. The number of propagating modes n scales with the
diameter D of the core and the refractive index contrast ∆, which typically vary from a
few modes to a few thousands. In principle, a well-deĄned mode basis, typically linear
polarized (LP), can describe eigenmodes of an ideal MMF under weak guidance approx-
imation5 [Snitzer, 1961, Gloge, 1971, Snyder and Love, 1984]. The basis of propagating
modes of MMF is described in Appendix B.1.

Nowadays, MMFs are more and more considered to be used for high bit-rate optical com-
munication, i.e., space-division multiplexing, where many spatial modes are utilized to

5The weak guidance approximates a small refractive index difference between core and cladding.
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increase the capacity of data transmission [Richardson et al., 2013]. While time, wave-
length, and polarization multiplexing have been commercially used in a single-mode com-
munication Ąbre, spatial degree of freedom remains a technical challenge of increasing
the capacity in MMFs due to the presence of cross-talk and differences in group velocity
between modes [Berdagué and Facq, 1982, Richardson et al., 2013, Agrawal, 2016]. As a
result, the transmitted light at the output of MMF also presents speckle pattern. To date,
space-division multiplexing has relied on a multi-core Ąbre (7-19 cores) [Agrawal, 2016],
a few-mode Ąbre (∼3-6 spatial modes) [Richardson et al., 2013] or on a few mode groups
(9 mode groups with 45 spatial modes) of a multimode Ąbre [Sillard et al., 2016, Fontaine
et al., 2018]. The complex nature of mode coupling in MMFs depends on inhomogeneities
of a refractive index proĄle of a waveguide along propagation [Ho and Kahn, 2013] and
can arise from several reasons. Notably, the inhomogeneities can be categorized into
Rayleigh scattering and Mie scattering from impurities, refractive index variations over
the length in graded-index Ąbres, impurities at the core-cladding interface, strains or bub-
bles in the Ąbre, diameter Ćuctuations, bending, twisting, elliptical core deformation, and
eccentricity [Ho and Kahn, 2013].

Mode mixing in multimode fibres

In essence, mode mixing can be described by Ąeld coupling models [Marcuse, 1991, Rowe,
1999], or by the cascade of RMT [Ho and Kahn, 2011b, Goetschy and Stone, 2013, Chiara-
wongse et al., 2018, Li et al., 2019b]. It has been shown that most of the inhomogeneities
can be considered a low-pass perturbation that couple strongly modes having a small
difference in propagation constant ∆β, while weakly couple modes having large ∆β [Ho
and Kahn, 2013]. Therefore, modes in a same mode group with the same mode index l
of orbital angular momentum are strongly coupled. Typically, an intentional and strong
perturbation is required to couple different mode groups. Mode mixing can be classi-
Ąed into different regimes from no coupling, weakly coupling to strong coupling with
different characteristic lengths depending on the properties of interest, e.g., polarization-
mode dispersion [Shemirani et al., 2009], modal dispersion [Shemirani and Kahn, 2009],
group velocity dispersion [Ho and Kahn, 2011b], and mode-dependent loss [Mickelson and
Eriksrud, 1983, Olshansky, 1975, Ho and Kahn, 2011a, Carpenter et al., 2014]. In com-
munications, most of the works are more interested in the dispersion effect since it results
in a low bit-rate transmission [Shemirani et al., 2009, Shemirani, 2010]. The statistical
distribution of group delays in the strong coupling regime has been shown to approach
the semicircle law of the RMT with Gaussian unitary ensemble [Ho and Kahn, 2011b].

Characterisation of mode mixing and phase delay depends in practice on the type of
Ąbres and on the experimental setting [Di Leonardo and Bianchi, 2011, Čižmár and Dho-
lakia, 2011, Carpenter et al., 2014, Plöschner et al., 2015b, Boonzajer Flaes et al., 2018].
Recently, multimode Ąbres have been studied in detail via the measurement of their trans-
mission matrices in different settings (see 2.2.2). In 2015, Martin Plöschner, Tomás̆ Tyc
and Tomás̆ C̆iz̆már showed that light propagation within straight or even signiĄcantly
deformed segments of step-index Ąbres may be predicted with a sufficiently accurate
theoretical model up to distances of hundreds of millimetres [Plöschner et al., 2015b].
Nonetheless, a step-index Ąbre still presents weakly a polarization mixing at a few-cm
length [Plöschner et al., 2015b]. In 2018, Dirk E. Boonzajer Flaes, et al., showed that the
multimode waveguide with perfectly parabolic refractive index proĄle is signiĄcantly more
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robust to bending, and conserving the propagation-invariant modes (PIMs)6 much better
than step-index Ąbre under the same conditions [Boonzajer Flaes et al., 2018]. Interest-
ingly, the properties of a graded-index MMF used in this dissertation (Thorlabs, GIF50C)
were also studied and present a mode coupling for length longer than 20 mm [Boonzajer
Flaes et al., 2018]. With their calibration procedure, the optical power preserved in PIMs
increases from 5.4% to 53%, signiĄcantly less than the analogous modal analysis in the
step-index Ąbre showed over 95% conservation in PIMs [Plöschner et al., 2015b]. Dirk E.
Boonzajer Flaes, et al. suspected that the modal coupling is caused by imperfections in
the refractive index proĄle of the graded-index MMF. The inhomogeneities allows trans-
mitted lights propagating through MMF to be scattered a sufficient number of times.
With a sufficient long Ąbre, power in each input mode is distributed to different spatial
and polarization modes isotropically. As a consequence, the speckle has a complex polar-
ization state at any outputs [Shemirani et al., 2009, McMichael et al., 1987, Kiesewetter,
2010, Fridman et al., 2012, Xiong et al., 2018]. Intuitively, a completely mixed spatial and
polarization modes of a Ąbre are guaranteed when intensity distribution at the output of
the Ąbre is statistically independent of the launch condition of incoming light. For exam-
ple, the input light injected to Ąbre will result in an unpolarized speckle, which is the sum
of two orthogonally polarized speckles that are uncorrelated to each other, irrespectively
of the input polarized states. The mixing property of the graded-index multimode Ąbres
(Thorlabs, GIF50C) used in this dissertation is presented in Appendix B, which indicates
the appearance of highly isotropic mixing across spatial and polarization modes.

Multimode waveguides for quantum information processing

Instead of considering mode mixing in MMFs as the problem in communication, we con-
sider it as an advantage for quantum applications in this dissertation. Mixing of modes is
an underlying process for the interference. The observation of two-photon interference in
an optical Ąbre coupler dates back to 1996 [Weihs et al., 1996]. The mode mixing in the
Ąbre coupler is based on a directional coupler (DC) in which two waveguides are brought
close together such that the guided modes are coupled by the evanescent Ąeld [Lifante,
2003]. The directional coupler is a common method for inducing a mode mixing on an in-
tegrated quantum photonic chip, where 2×2 reconĄgurable Mach-Zehnder interferometer
is built upon for implementing large unitary transformation, on various platforms using
different materials and fabrication techniques [Carolan et al., 2015, Harris et al., 2018] as
discussed in section 1.6.

Alternatively, the mode mixing can also rely on multimode interference (MMI) cou-
plers [Peruzzo et al., 2011, Bonneau et al., 2012, Poulios et al., 2013], where the self-
imaging principle7 replicates input Ąelds at different outputs [Soldano and Pennings,
1995]. The MMI coupler can provide a higher-dimensional transform with better per-
formances since it allows low tolerance to wavelength and polarization variations, and
alleviates fabrication requirement due to a larger size of waveguide compared to DC [Sol-
dano and Pennings, 1995]. The two-photon interferences have hitherto been observed in
2 × 2 [Bonneau et al., 2012, Poulios et al., 2013], 4 × 4 integrated MMI waveguides [Pe-
ruzzo et al., 2011, Barrett et al., 2019] and up to 5 × 5 multimode waveguide made of
two parallel metallic mirrors [Poem et al., 2012]. MMI devices are, however, still mainly

6Eigenmodes of the system
7The self-imaging principle is a property of multimode waveguides by which an input field profile

is reproduced by interference into single or multiple images at periodic intervals along the propagation
direction.
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passive, a reconĄgurability has been recently realized by local modulation of the spatial
refractive index proĄle of MMI devices [Bruck et al., 2016, van Niekerk et al., 2019]. No-
ticeably, one may envisage that a graded-index Ąbre might also present such self-imaging
principle. Due to the inhomogeneities along propagation as discussed above, we do not,
however, observe the effect in the graded-index Ąbre. This fact can be understood from
the destruction of the stable periodicity of self-imaging due to wave chaos [Doya et al.,
2002, Joseph et al., 2015, Cao and Wiersig, 2015].

2.1.3 Control of light propagation through complex media

Introduction

The speckle phenomena do also occur in a multimode Ąbre. The presence of speckle
has been considered, from a traditional viewpoint, as the main challenge for imaging
applications and signal transmission through a Ąbre since input information is getting
mixed as discussed in subsection 2.1.2.

In 2007, the seminal experiment by Ivo Vellekoop and Allard Mosk from University of
Twente proposed a paradigm shift. They reported focusing of coherent light through
opaque scattering material by control of incident wavefront using a spatial light modulator
(SLM) [Vellekoop and Mosk, 2007]. An iterative optimization technique was proposed
to obtain the optimal incident wavefront that would enhance the intensity at a targeted
diffraction-limited spot on another side of the medium. To understand how it works in the
context of linear optics, the speckle on an observation plane corresponds to the coherent
sum of all speckle contributions from all input channels as illustrated in Fig. 2.4a. By
considering at one targeted output speckle gain, the corresponding electric Ąeld results
mathematically from a sum of phasors (complex electric Ąelds) with uncorrelated and
evenly distributed phases. When optimizing the phase of n input channels, n input
contributions with initially uncorrelated phases are updated to n contributions all adding
up in phase, resulting in an enhancement of electric Ąeld at the targeted output of the order
of

√
n, and accordingly to an enhancement of the intensity of the order of n (Fig. 2.4b).

In the Ąrst experimental realization, a 2000-fold enhancement in focus light intensity than
the average intensity of the unoptimized speckle was observed. The result showed a high
degree of wavefront control through disordered media well beyond aberration correction
in adaptive optics [Tyson, 1991, Vellekoop, 2015].

Alternatively, by ruminating the time-reversal symmetry of the optical system in Fig. 2.4,
one understands that a phase solution displayed on the SLM is a phase conjugation
of a speckle monochromatic Ąeld generated from a single-mode light source placed at
the targeted output (white circle) in the time-reversed version. This is the concept of
optical phase conjugation [Goodman, 2005a] (Fig. 2.5). Light propagates from the phase-
conjugated SLM solution, undos the multiple scattering process, and focuses onto the
target. For this purpose, one needs to know the optical transfer response of a medium that
links many inputs to the targeted output. In 2010, Sébastien M. Popoff, et al. reported
the Ąrst experimental measurement of the transmission matrix (TM) of a disordered
medium [Popoff et al., 2010b]. Focusing light on any desired outgoing mode can be
straightforwardly done using the acquired TM. Since 2007, the corresponding technique,
so-called wavefront shaping through complex media or in short wavefront shaping, has been
widely applied in many contexts ranging from extending many imaging techniques deep in
a sample [Horstmeyer et al., 2015] to various observation of important mesoscopic effects
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Figure 2.4 – Concept of wavefront shaping through complex media: (a) Incident light is cou-
pled into a disordered optical system resulting in a speckle pattern in the first place.
Considering one targeted output (white ring), the corresponding optical field Eout is a
superposition of many input fields represented on the phase space. By modulating the
incident phase of light at one SLM pixel from 0 to 2π (blue arrow), one can control the
corresponding input contribution to the overall interference at the targeted output. For
example, with a goal to enhance intensity at the targeted output, one can set a certain
phase at that input in order to form a constructive interference. (b) By doing the
same for all n input contributions, one thus obtains an enhancement of the intensity
at the targeted output of the order of n. Intensity scales of (a) and (b) outputs are on
different scales for visualization.

in optical systems [Vellekoop and Mosk, 2008, Mosk et al., 2012, Rotter and Gigan, 2017].

In addition to a wide range of wavefront-shaping-based applications, others that are based
on strong, deterministic and optimal mixing can be applied in, for instance, cryptography
and security [Pappu et al., 2002, Horstmeyer et al., 2013, Goorden et al., 2014, Bromberg
et al., 2019], communication [Skipetrov, 2003], and compressive sensing [Donoho, 2006,
Candes and Tao, 2006, Liutkus et al., 2014]. For more information, please refer to the
review [Rotter and Gigan, 2017].

Applications: Concept of opaque lens

The spatial light modulator in conjugation with a complex medium becomes an optical
system that acts as so-called opaque lens [Jon Cartwright, 2007, Vellekoop et al., 2010].
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Figure 2.5 – Optical phase conjugation: (a) Time-reversed version of a simplified experiement
in Fig. 2.4 without scattering medium. Light emits from point source then reflect by
a flat phase on the SLM (b) By displaying the phase-conjugated of the propagating
wavefront from the emitter on the SLM, Light is controlled to transport back in the
same way. This is the concept of optical phase conjugation. (c) The same concept
also apply to a case with the presence of a scattering medium.

The system can also enhance lights to focus on many output spots [Vellekoop and Mosk,
2007, Popoff et al., 2010b], therefore, behaving as a beam splitter [Huisman et al., 2015].
By exploiting the presence of fully mixed polarization in a transmitted speckle of a complex
medium, an arbitrary polarization state at the focus can be controlled [Small et al., 2012a,
Tripathi et al., 2012, Tripathi and Toussaint, 2014]. Similarly, the presence of complex
mixing between the spatial degree of freedom and other photonic degrees of freedom in
a medium allows the wavefront shaping technique to manipulate light onto a targeted
output allocated on different photonic degrees of freedom, i.e., (1) polarization [Small
et al., 2012a, Xiong et al., 2018], (2) spectral [Small et al., 2012b, Paudel et al., 2013,
Andreoli et al., 2015] and (3) temporal [McCabe et al., 2011, Choi et al., 2013, Kang
et al., 2015, Mounaix et al., 2016a, Mounaix et al., 2016b].

Consequently, the concept of opaque lens, i.e., the combination of SLM and complex
medium, has been nowadays applied to various tunable optical devices as illustrated in
Fig. 2.6, for instance, a beam splitter, a waveplate [Small et al., 2012a], a diffraction
grating [Andreoli et al., 2015], a spectral Ąlter and spectrometer [Small et al., 2012b,
Redding and Cao, 2012, Bruce et al., 2019], a pulse shaper [Mounaix et al., 2016b], a
point-spread-function engineering system [Čižmár and Dholakia, 2012, Boniface et al.,
2017], or a mode sorter [Fickler et al., 2017].

Over the last decade, the concept of opaque lens has also been actively applied to a mul-
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Figure 2.6 – Applications of wavefront shaping through complex medium: (a) Opaque lens:
a combination of SLM and disordered medium (top) is applied to focusing light into
multiple foci (below). Adapted from [Vellekoop and Mosk, 2007]. (b) Control of
polarization states at the output focus. Adapted from [Small et al., 2012a]. (c)
Control of focusing light on both spatial-temporal domains before (left) and after
(right) wavefront shaping. Adapted from [McCabe et al., 2011]. (d) Opaque lens as
a grating splitting different wavelengths to focusing onto different outputs. Adapted
from [Andreoli et al., 2015]. (e) Opaque lens as a point-spread-function engineering
system for generating Bessel-like beam (top) and double helix beam (below). Adapted
from [Boniface et al., 2017]. (f) Opaque lens as a mode sorter for radial mode and
Hermite-Gaussian (HG) modes. Adapted from [Fickler et al., 2017].
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timode Ąbre with a wide range of applications [Di Leonardo and Bianchi, 2011, Čižmár
and Dholakia, 2011]. The main research area aims at exploiting a multimode Ąbre in
conjugation with the SLM as a compact endoscope for imaging applications and opti-
cal manipulations [Čižmár and Dholakia, 2011]. This is because a long multimode Ąbre
(> few millimetres) can bypass a scattering biological tissue and provides a good and
high-resolution image while keeping minimal invasiveness. This has been a very active
Ąeld and applied to many image techniques. Pioneering works demonstrated optical ma-
nipulation [Di Leonardo and Bianchi, 2011, Čižmár and Dholakia, 2011, Čižmár and
Dholakia, 2012, Bianchi and Di Leonardo, 2012], bright- and dark-Ąeld imaging [Čižmár
and Dholakia, 2012], TM-based imaging [Choi et al., 2012], Ćuorescence imaging through
a Ąbre [Čižmár and Dholakia, 2012, Papadopoulos et al., 2013, Loterie et al., 2015],
and point-spread-function engineering at the distal end of a Ąbre for light-sheet mi-
croscopy [Plöschner et al., 2015a]. Many works have studied and improved imaging
techniques, for example, the study of focusing quality and image resolution [Mahalati
et al., 2012, Papadopoulos et al., 2012, Mahalati et al., 2013, Descloux et al., 2016],
and the development of fast and efficient wavefront shaping techniques [Plöschner et al.,
2014, Plöschner and Čižmár, 2015, Caravaca-Aguirre and Piestun, 2017, Gordon et al.,
2019]. Furthermore, important issues concerning dynamical bending of a Ąbre, which
will occur in a real imaging situation, have been addressed [Caravaca-Aguirre et al.,
2013, Farahi et al., 2013, Gu et al., 2015, Caravaca-Aguirre and Piestun, 2017, Plöschner
et al., 2015b, Boonzajer Flaes et al., 2018]. These researches have put forward imaging
techniques in realistic applications e.g., deep-brain Ćuorescence imaging [Ohayon et al.,
2018, Vasquez-Lopez et al., 2018, Turtaev et al., 2018]. Non-linear Ćuorescence and Raman
imaging have been demonstrated through a Ąbre [Morales-Delgado et al., 2015b, Rosen
et al., 2015, Sivankutty et al., 2016, Gusachenko et al., 2017].

Moreover, machine-learning-based approaches have also been applied to tackle the imaging
problem through Ąbres with high reliability [Aisawa et al., 1991, Marusarz and Sayeh,
2001, Takagi et al., 2017, Caramazza et al., 2019]. Most techniques use artiĄcial neural
networks e.g., convolutional neural network, to predict input images from the intensity-
only output speckle pattern, for example, reconstructing handwritten digits from the
MNIST database [Borhani et al., 2018, Rahmani et al., 2018, Turpin et al., 2018, Li et al.,
2018, Fan et al., 2019].

In the context of wavefront control of light propagating through a Ąbre, complete control
on a polarization state of an output Ąeld by modulating only the spatial proĄle in a graded-
index Ąbre has been recently achieved [Xiong et al., 2018]. Likewise, many demonstrations
for a control of pulse delivery through a MMF have been reported [Morales-Delgado et al.,
2015a, Mounaix and Carpenter, 2019].

Applications in quantum domain

In the context of quantum optics, wavefront shaping techniques were Ąrst applied in
2014 to control the propagation of a he ralded single-photon Fock state through opaque
scattering medium (ZnO) [Huisman et al., 2014b]. The concept of the demonstration is
analogous to the pioneering work by [Vellekoop and Mosk, 2007]. After the wavefront
optimisation, the input light source was replaced by the single-photon source that was
prepared exactly in the same optical mode. As shown in Fig. 2.7a, phase pattern displayed
on the SLM is optimised to focus a single-photon state onto a single output speckle
grain. The heralded single-photon rate shows the 30-fold enhancement compared to the
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average heralded rate where random phase patterns are displayed on the SLM. In the
same year, wavefront shaping was applied to engineer a heralded single-photon state
that is allocated between two output foci reĆected from the opaque scattering media
(TiO2) [DeĄenne et al., 2014] (Fig. 2.7b). The optimal wavefront was obtained via the
scattering-matrix approach [Popoff et al., 2010b]. The engineered single-photon states
are in the superposition of two output modes and the coherence property of the state
was investigated via the single-photon interference. The reported visibility of interference
is 0.78 ± 0.04 and the reduced density matrix was deduced [DeĄenne et al., 2014] and
depicted in Fig. 2.7b. The results indicate a high degree of coherent wavefront control of
the single-photon state.

Figure 2.7 – Manipulation of single-photon states through disordered media: Wavefront shap-
ing of single-photon states through disordered media: (a) Focussing of a single-photon
state Adapted from [Huisman et al., 2014b] and (b) Single-photon state engineering
Adapted from [Defienne et al., 2014]

In 2016, the wavefront shaping technique was extended to control a two-photon state us-
ing a diffusive medium (500-µm-thick polytetraĆuoroethylene, PTFE, TeĆon) [Wolterink
et al., 2015] as well as a multimode Ąbre [DeĄenne et al., 2016]. The SLM and a complex
medium together acts as a programmable beamsplitter used for manipulating two-photon
interferences. As depicted in Fig. 2.8, the proĄle of the two-photon interference can be
manipulated from the conventional dip feature (a well-known HOM two-photon interfer-
ence [Hong et al., 1987]) to an inverted dip, i.e, a peak feature. In the case of a transport
through the diffusive medium [Wolterink et al., 2015], the maximum visibility of two-
photon interference is reduced from 0.86 of the SPDC source to 0.59 after propagating
through the PTFE medium. We expect that result from temporal distinguishability of
photon pairs. Moreover, the coincidence count is of the order of a few tens per hour. On
the other hand, the control of two-photon interference with the multimode Ąbre [DeĄenne
et al., 2016] provides the maximum visibility of 0.81 after propagating through the MMF,
which is close to the visibiltiy of the light source of 0.86, while the coincidence count is
much higher than that of the PTFE medium [DeĄenne, 2015, DeĄenne et al., 2016].

In fact, the idea of using the opaque lens as the beamsplitter can be generalized to a
multimode interferometer, a.k.a, a linear optical network. For this purpose, the control
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Figure 2.8 – Control of two-photon interferences with complex media: Two-photon interfer-
ence with (a) a diffusive medium Adapted from [Wolterink et al., 2015] and (b) wtih
a MMF. Adapted from [Defienne et al., 2016]

of not only amplitude but also phase of each element of a desired linear transformation is
required. The initial idea has been proposed in 2014 by Simon R. Huisman et al. [Huisman
et al., 2014a, Huisman et al., 2015] where programmable 2-input to 2- or 3-output balanced
beamsplitters were classically implemented in opaque scattering medium using iterative
optimization. Hitherto, there has been only one experimental work reported by Maxime
W. Matthès, et al. showing scalability of this idea on a spatial degree of freedom with
a step-index Ąbre via an optimization-based approach [Matthès et al., 2019]. As shown
in Fig. 2.9, the procedure of optimizations consists of two steps: In step 1 (calibration),
the transmission matrix of a medium is obtained via phase retrieval algorithm. Then, in
step 2 (projection calculation), the set of SLM phase patterns for a given target optical
network is estimated via the convex optimization. The results present an implementation
of up to a 16-dimensional reconĄgurable linear transformation. One could mention that
this approach to wavefront control is very lossy since the SLM is implemented by means
of amplitude modulation with a digital micro-mirror devices (DMD). We note that, more
generally, the ability to design a linear transformation based on the complex mixing of
wave Ąelds Ąnds use also in the context of radio-frequency in a controllable indoor environ-
ment [del Hougne and Lerosey, 2018]. Furthermore, the wavefront shaping technique has
recently been applied to control a second-order spatial coherence of spatially-entangled
photon pairs through a thin diffusive medium (paraĄlm) [DeĄenne et al., 2018a].

2.1.4 Conclusive remarks and objectives

To conclude, two key ingredients for programming optical networks were introduced,
which are (1) the spatio-polarization complex mixing property of the multimode Ąbre
(Sec. 2.1.2) and (2) the technique of wavefront shaping (Sec. 2.1.3). As for practical
linear circuits, there are still many open questions to answer and requirements to satisfy
for quantum applications, in particular, loss, scalability, and programmability. In this
chapter, our objective is to answer those questions and also to demonstrate experimentally
the accuracy and reliability of our arbitrary programmable linear optical networks for
controlling two-photon interference in a high-dimensional linear transform across different
degrees of freedom. In the next section (Sec. 2.2), the method for constructing a linear
network is presented, and the quantum experimental results (Sec. 2.3) and the theoretical
model of the implementing optical networks (Sec. 2.4.1) are discussed accordingly.
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Figure 2.9 – Complex media as reconfigurable linear optical network: (1) Calibration step,
(2) Calculation of projection, and (3) Implementation. Adapted from [Matthès et al.,
2019]

2.2 | Experimental methods

The complex spatial and polarization mixing occurring in the multimode Ąbre is the key
ingredient that enables the design of a reconĄgurable linear transformation Li. In the
next section, we present the main components of the experimental setup which are used
in every experiments described in this dissertation. The details of minor change for each
speciĄc experiment are pointed out in the method section of each experiment.

2.2.1 Experimental setup

The experimental setup is conceptually illustrated in Fig. 2.10. The setup is composed of
three main parts: a light source, a programmable linear optical network, and a detection
part.

• Source: Two-photon state is generated by a spontaneous parametric down-conversion
(SPDC) process (see details in Appendix A). In this chapter, the prepared photon
pairs are frequency-degenerate polarization-separable biphoton state.

• Programmable linear optical network: It consists of a liquid-crystal-on-silicon-
based SLM (LCOS-SLM) and MMF. The LCOS-SLM is a reĆective type of a pure
phase modulation technique (Hamamatsu, X10468-02). The MMF used in this
chapter is a graded-index Ąbre supporting ∼ 400 propagating modes at λ = 810
nm. (Thorlabs, GIF50C of length 55.3±0.1 cm, core diameter 50±2.5 µm, and
numerical aperture 0.200±0.015)

• Detection: There are two detection pathways. In the Ąrst pathway, four targeted
output ports which correspond to two spatial modes and two polarizations labelled
as (H1, V1, H2, V2) are detected by four avalanche photodiode detectors (APDs).
The photocurrents are sent to the coincidence electronics where the photocount and
two-fold coincidences are registered. In this chapter, we set the coincidence time
window to 2.5 ns. The accidental coincidences are subtracted from the two-fold
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coincidence counts. In the second pathway, outputs among spatial and polariza-
tion are imaged simultaneously by an electron multiplying charge-coupled device
(EMCCD) camera.

Figure 2.10 – Multimode fibre-based programmable optical network: Conceptual schematics
of the apparatus. Photon pairs produced by spontaneous parametric down-conversion
(SPDC) are injected into a multimode fibre (MMF) along orthogonal polarizations
using spatial light modulators (SLM). We use commercial MMF (Thorlabs, GIF50C)
as a tool to achieve mode mixing. The transmission matrix (TM) is measured across
spatial and polarization modes of the MMF. The wavefront corresponding to a desired
linear transformation Li is calculated and displayed on the SLMs. Output ports of
interest are selected by two single-mode fibre-based polarization beamsplitters (fPBS)
mounted on translation stages. These correspond to two spatial modes and two po-
larizations labeled as (H1, V1, H2, V2). Light is detected by four Si-based avalanche
photodiode single photon detectors (APDs) connected to the field-programmable gate
array (FPGA) for counting photons and coincidences. The output plane of the MMF
is imaged onto an electron multiplying charge-coupled device (EMCCD) camera along
both polarizations (H and V). (L: lens, F: filter, HWP: half-wave plate, PBS: polar-
izing beamsplitter, D: iris diaphragm, FM: flip mirror, WP: Wollaston prism, BS:
beamsplitter.)
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There are two main techniques to construct a linear optical network: the Ąrst is based on
an optimization approach and the second technique uses the knowledge of the transmission
matrix (TM). In essence, both techniques should yield ideally almost the same results (see
discussion in Sec. 2.4.3). In practice, the optimization-based techniques [Huisman et al.,
2015, Spagnolo et al., 2017, Matthès et al., 2019] need typically to perform an optimization
procedure for each implementation of an optical network; consequently they are extremely
time consuming. On the other hand, the techniques based on the acquisition of TM can
implement essentially any optical networks on arbitrary outputs since the complete TM is
measured. In the following, we are going to present our methods for constructing a linear
optical network. The technique is based fundamentally on the acquisition of TM and
only apply an optimization approach on the last step in order to Ąnely tune an accurate
implementation.

2.2.2 Acquisition of transmission matrix

To obtain the TM, which relates optical input and output Ąelds, direct and indirect
measurements can be considered. The indirect TM measurement relies generally on phase
retrieval techniques on measured intensity-only dataset [Drémeau et al., 2015, N’Gom
et al., 2018, Matthès et al., 2019, Caramazza et al., 2019]. It has the advantage of using less
number of measurements but can be computationally expensive. Noises might be present
in the reconstructed TM. A large number of measurements are typically required before
obtaining a sufficiently accurate TM. On the other hand, the direct measurement [Popoff
et al., 2010b, Čižmár and Dholakia, 2011] relies on interferometry with the coherent light
source. Consequently, the main issue is stability, which can be alleviated by the use of
a co-propagating reference. The direct measurement has been a widespread method for
characterizing an optical system, e.g, integrated photonic chips, scattering media and
multimode Ąbres [Popoff et al., 2010b, Čižmár and Dholakia, 2011, Rahimi-Keshari et al.,
2013, Dhand et al., 2016, Florentin et al., 2018]. In our experiment, we use the direct
TM measurement with a few improvements that we have developed in order to acquire a
complete and low-noise TM. In the following, the techniques we used are presented with
their underlying justiĄcations while introducing the acquisition of TM in detail.

In our experiment, the input basis is deĄned as a set of focus spots on an isometric grid
on the input facet of the MMF, as shown in Fig. 2.12. This input basis corresponds to a
set of grating patterns on the Fourier plane where the SLM is placed on (Fig. 2.10). The
centre of the optical axis of the MMF is set apart from the zero-th diffraction order by 50
µm both horizontally and vertically. By doing this, we can avoid any unmodulated light
from the zero-th order entering the MMF and we can, therefore, modulate an optical Ąeld
at the input facet of the MMF more accurately and efficiently. The output basis is also
chosen to be an array of diffraction-limited spots on the distal facet of the MMF, which
is convenient for coupling the light into a single photon counting module. In the setup,
one can measure all output modes simultaneously with an EMCCD camera or measure
the targeted outputs of interest on desired positions using APDs. In our experiment,
we separate the full completed TM for two desired input ports on different polarizations
p ∈ ¶Hin,Vin♦. Each input port corresponds to approximately 200 spatial modes.

The TM of the graded-index MMF is acquired using a co-propagating reference [Popoff
et al., 2010b, Čižmár and Dholakia, 2011]. As illustrated in Fig. 2.12, for each p-th input
port (each polarization), an over-complete spatial basis set of input wavefronts is sequen-
tially sent through the MMF. By shifting the phase θ of each i-th input mode relative



56 Chapter 2. Programming linear quantum networks

to the co-propagating reference8, the amplitude and phase of all targeted outputs are
retrieved simultaneously from photon counts using APDs or EMCCD. The technique for
reconstructing the optical Ąeld from an intensity is the so-called phase-shifting interferom-
etry [Yamaguchi and Zhang, 1997]. In detail, for each p-th input port, the photocurrent
at a given input mode i-th and the j-th output mode is related via:

I
(p,θ)
ji = ♣R̃(p)

j + Ẽjie
iθ♣2

= ♣R̃(p)

j ♣2 + ♣Ẽji♣2 + 2♣R̃(p)

j ♣♣Ẽji♣ cos
(︂

φR(p)

j − φji − θ
)︂

,
(2.7)

where R̃
(p)

j = ♣R̃(p)

j ♣eiφR(p)

j denotes the complex reference Ąeld for p input port, Ẽji =

♣Ẽji♣eiφji is the complex Ąeld at the jth output mode for a given ith input mode, i.e., the
element of the TM. By shifting the phase θ for Nθ steps, one can retrieve a transmission
matrix element Mji:

M
(p)
ji =

1

Nθ

[I
(p,θ)
ji · cos(θ) − iI

(p,θ)
ji · sin(θ)]

= ẼjiR̃
(p)∗
j

= ♣Ẽji♣♣R̃(p)

j ♣ei(φji−φR(p)

j
),

(2.8)

where θ is the vector containedNθ number of shifted phases, and I(p,θ)
ji is the corresponding

vector of measured photocurrents. The transmission matrix element M (p)
ji contains both

optical output Ąeld and the reference Ąeld. After measuring the whole set of i-th inputs,
all elements of M(p) are obtained. Then, the amplitude of reference can be eliminated from
M(p) by sending only the reference light through the Ąbre, and measuring the intensity
pattern of the output reference IR(p)

j = ♣R̃(p)

j ♣2. The transmission matrix T(p) linking the
relevant input modes for each p-th input port to the targeted output modes is acquired:

T
(p)
ji =

M
(p)
ji

√︂

IR
(p)
j

= ♣Ẽji♣ei(φji−φR(p)

j
).

(2.9)

Via this method, the TM for each p-th input port (Hin,Vin) is independently acquired.
Thus the relative amplitudes and phases of the co-propagating references between both
input ports remain unknown and need to be calibrated.

To do so, we program a given designed linear transformation L by using the pre-calibrated
TM in Eq. 2.9 (see network programming in subsection 2.2.3 for a method). For example,
we choose L ∝

[︂
1 1 1 1
1 1 1 1

]︂⊺
for 2-input × 4-output optical network in this experiment.

Then we use the corresponding measured photon counts and two-photon interferences
(section 1.3) to obtain a complex amplitude of the relative co-propagating reference Ąelds
(see the calculation in [Laing and O’Brien, 2012]).

In practice, the presence of experimental noises and instability results in a low-intensity
enhancement and therefore poor Ądelity of a desired linear network. By combining the

8The use of co-propagating reference improves the stability of the interferometric measurement [Popoff
et al., 2010b].



2.2. Experimental methods 57

Figure 2.11 – Acquisition of transmission matrix: The TM of a graded-index MMF is acquired
using a phase-shifting holographic technique with a co-propagating reference. The
TM for two input ports (H and V) are measured independently. For each input port,
an over-complete spatial basis set of input wavefronts is sequentially sent through
the MMF (blue). By shifting the phase θ of each i-th input mode Ẽie

iθ relative to
the co-propagating reference R̄ (red), the complex amplitude of the targeted outputs,
labelled H1, V1, H2, V2, are retrieved simultaneously from photon counts using APDs.
When the process is done for all input modes and two input ports (H and V), the
relative amplitudes and phases of the co-propagating references are then calibrated
to obtain the TM.
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information from two-photon interferences, the relative phases of reference are therefore
obtained with high stability, compared to the measurement of classical interference be-
tween two input ports as reported in [DeĄenne, 2015]. The calibration via the two-photon
interference is moreover independent of loss at input and output ports, which can be
present in the amplitude calibration (Eq. 2.9). To further get rid of noises in the TM
acquisition, one acquires multiple phase-shifting steps θ, while the acquisition time is
increased to get rid of noises from the light source. Due to the speckle statistics (see
Eq. 2.3), a low-intensity co-propagating speckle reference is more likely to result in a low-
intensity enhancement [Čižmár and Dholakia, 2011, Hofer and Brasselet, 2019]. In order
to tackle this problem, we perfect the measurement by coupling the co-propagating refer-
ence Ąeld to different inputs of the MMF, or by using a focusing co-propagating reference
Ąeld generated from the previous TM acquisition.

In particular for the quantum experiment reported in this chapter, we use the SPDC
light source in the TM measurement, set the APD acquisition time of 0.2 s, and set the
number of phase-shifting Nθ to 16 steps over 4π phase shift. We solve the low-intensity
co-propagating reference by using the focusing co-propagating reference Ąeld calculated
from the previous acquired TM.

2.2.3 Construction of linear optical network

Once the TM has been measured, the information can be used to control light propagation
through a system of interest. Typically, the TM is used for focusing light in a given output
mode; therefore, only an intensity enhancement is needed. For this purpose, the pre-
calibration TM is sufficient (Eq. 2.8). To construct a linear optical network, on the other
hand, both amplitude and phase of each element of a programmed linear transformation
L needs to be accurately controlled; hence one need the calibrated TM. The concept of
programming network relies on an inverse scattering problem (phase conjugation) [Rotter
and Gigan, 2017], similar to focusing applications. For each p-th input port of the desired

network L(p), the input optical Ąelds Ẽ
(p)

in is calculated by,

Ẽ
(p)

in = T(p)†L(p), (2.10)

where T(p) is the sub-part of the measured TM linking the relevant input modes for each p-
th input port of the optical network to the targeted output modes. In our experiment, the
inverse operator is achieved by the conjugate transpose (Hermitian transpose, †). Fidelity
of the desired optical networks is introduced by the imperfection in the inverse process (see
related discussion presented in section 2.4). The corresponding phase pattern on the SLM
is then calculated by means of Fourier transform. In detail, the calculated optical Ąeld on
the SLM is a weighted summation of blazed gratings obtained by combining amplitudes
and phases from Eq. 2.10. The phase solution of the calculated optical Ąeld is displayed
on the SLM for each input port so that the linear network is programmed as illustrated
in Fig. 2.12.

Imperfections in generating the optical input Ąelds Ẽin with the SLM lead to errors in the
TM estimation, and accordingly result in errors in the coefficients of the linear transfor-
mation L. In addition, we can further adjust the relative amplitude of the co-propagating
reference Ąeld of each p-th input port independently by minimizing

∑︁

q

(︂

♣Lexp
qp ♣ − ♣Lth

qp♣
)︂2

,

where Lexp(th)
qp is the element of implemented (desired) linear transformation at qth out-

put port and pth input port. Then, we can accurately calibrate the relative phases of
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Figure 2.12 – Construction of programmable linear optical network An arbitrary 4 × 2 linear
network L is implemented by shaping the spatial phases of each input port Hin and
Vin. For each input, the predicted numerical output fields after propagation through
the MMF are shown. We observe that light is focused on the four targeted output
ports with the desired amplitudes and phases. The TM used in the calculation is
obtained from the experiment.

the reference Ąeld by minimizing the distance ∆V, where ∆V =
∑︁

(i,j) ♣V exp
(i,j) − V th

(i,j)♣ and

V
exp(th)

(i,j) is the experimental (theoretical) visibility of two-photon interference at the (i, j)
pair of detectors. We refer to the optimizations in this paragraph as the procedure of Ąne
calibrations. It is an optional step for perfect implementation of a linear optical network.

For the experimental results presented in this chapter, after the TM has been measured
and calibrated via the information from the two-photon interference, we performed Ąrst
the procedure of Ąne calibrations for amplitude and phase of the co-propagating reference
Ąelds using the designed linear transformation L ∝

[︂
1 1 1 1
1 1 1 1

]︂⊺
. Then, for each new linear

transformation L implemented later on, we additionally readjust only the amplitudes by
minimizing

∑︁

q

(︂

♣Lexp
qp ♣ − ♣Lth

qp♣
)︂2

before using the implemented optical network L in the
quantum experiments9.

2.3 | Experimental results

The complex mixing together with the near-unitary of the MMF are exploited to pro-
gram linear optical transformations L. The experimental setup, as shown Fig. 2.10, was
designed such that one can program linear optical network between two input ports on
orthogonal polarizations Hin,Vin into arbitrary targeted output ports across spatial and
polarization degrees of freedom on the EMCCD camera. In term of technical challenge,
we aim at demonstrating programmable arbitrary 2 − input × k − output optical circuits
across photonic degrees of freedom. To demonstrate so, we sent SPDC light through the
optical setup where the four output ports of interest are allocated across spatial and po-
larization degrees of freedom, labelled H1, V1, H2, V2 (Fig. 2.10). First, the transmission
matrix linking to these 4 outputs is measured (Sec. 2.2.2), then a designed linear optical
network L is programmed using the SLM (Sec. 2.2.3).

2.3.1 Two-photon interference on multi-mode interferometer

By letting the indistinguishable two-photon state evolve through an optical interferom-
eter, the two-photon interference occurs. We use this phenomenon to demonstrate the
deterministic manipulation of quantum interference through a designed optical network

9The amplitude correction is for a perfect implementation of network programming.
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Li, thereby showing the potential of the technique for quantum information processing.
To demonstrate this, we implement programmable optical 2-input × 4-output networks
simulating the action of three interesting interferometers in a four-dimensional Hilbert
space deĄned across spatial and polarization degrees of freedom. They consist of four-
dimensional Fourier [Schuck et al., 2016b], Sylvester [Viggianiello et al., 2018], and a
non-unitary interferometer. We generalise the non-unitary interferometer from the tensor
product of the 2-dimensional non-unitary interferometer proposed in [Barnett et al., 1998].
The Fourier and Sylvester interferometers have been used for certifying indistinguishabil-
ity between input photons via verifying a suppression criteria [Tichy, 2014, Dittel et al.,
2018a, Dittel et al., 2018b]. We verify these criteria for a speciĄc two-photon input state
by measuring the full set of output two-fold coincidence counts. Each type of interferom-
eter consists of six optical networks of which each corresponds to one input combination
pairs. Practically, the experiments demonstrate 18 balanced optical networks with fully
controllable phase relations. In the following, the deĄnitions of these interferometers and
the experimental two-photon interferences are provided.

Fourier interferometer

The k-dimensional Fourier transformation is deĄned element-wise as ei2π(j−1)(p−1)/k/
√
k.

In the four-dimensional case it reads

LF =
1

2

⋃︁

⋁︁
⋁︁
⋁︁
⨄︁

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⋂︁

⎥
⎥
⎥
⋀︁
, (2.11)

The Fourier interferometer (F), also known as Discrete Fourier transform (DFT) or quan-
tum Fourier transform (QFT), have been applied for phase estimation, prime factoriza-
tion, and many quantum algorithms [Shor, 1997, Motes et al., 2015, Su et al., 2017]. The
Fourier transform presents a symmetry which allows one to implement it with the least
number of optical elements required in an implementation of a general unitary transform
(section 1.5). Typically one needs (log2 k)k/2 optical elements instead of k(k− 1)/2 used
in the standard Fourier transform of dimension k [Barak and Ben-Aryeh, 2007]. We note
that this fact directly links to the digital implementation known as fast-Fourier trans-
form [Cooley and Tukey, 1965]. Quantum interference on the Fourier interferometer has
been implemented on an integrated photonic chip with fully reconĄgurable silica-based
planar waveguide circuit [Carolan et al., 2015] and with static laser-written silica-based
circuit [Schuck et al., 2016b]. Our experimental two-photon interference on the Fourier
interferometer is presented in Fig. 2.13.
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Figure 2.13 – Visibility of two-photon interference on Fourier transformation LF: fitting (solid
lines) and experiment (dots). In each panel the two-photon state is coupled to the

different (i,j) input pairs L(i,j)
F .
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Sylvester interferometer

The k-dimensional Sylvester transformation is a particular class of Hadamard matrices10,
where k = 2w. The 2w-dimensional Sylvester transformation can be recursively con-
structed by

H(2w) =

[︄

H(2w−1) H(2w−1)
H(2w−1) −H(2w−1)

]︄

, (2.12)

where H(1) = [1]. The deĄnition equivalently corresponds to an element-wise expression
where [H(2w)i,j] = (−1)iB⊙jB represents a value of element in each i and j. i and j
starts counting from zero. iB and jB represents in binary form and ⊙ is the bitwise
dot product deĄned as the sum modulo 2 of the product of bits. A simple case of the
Sylvester interferometer in dimension of 2 is the balance beam splitter (w = 1) where the
well-known Hong-Ou-Mandel effect is observed [Hong et al., 1987]. In our experiment, we
implement the action of a 4-dimensional Sylvester transformation, which is expressed as,

LSy =
1

2

⋃︁

⋁︁
⋁︁
⋁︁
⨄︁

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⋂︁

⎥
⎥
⎥
⋀︁
, (2.13)

As shown on Fig. 2.13, the experimental two-photon interferences on the Sylvester in-
terferometer present photon bunching occurring in some input-output combinations (the
two-photon visibility goes to 1) and photon anti-bunching occurred in other combina-
tions (the two-photon visibility goes to −1). The theoretical prediction for the Sylvester
interferometer [Crespi, 2015] shows that the number of output combinations, where pho-
ton bunching is presented, is the same for arbitrary two-photon coupling into different
input ports. This number, which is known as the number of suppressed conĄgurations
(HOM dip), is equal to four in the 4-dimensional Sylvester transformation, as shown on
Fig. 2.13. The results of suppression on the Sylvester interferometer have been reported
on the integrated photonic platform with three-photon interference [Viggianiello et al.,
2018].

10Hadamard matrices are orthogonal matrices with unnormalized elements equal to ±1.
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Figure 2.14 – Visibility of two-photon interference on Sylvester transformation LSy: fitting
(solid lines) and experiment (dots). In each panel the two-photon state is coupled to

the different (i,j) input pairs L(i,j)
Sy .

Non-unitary interferometer

Our platform can also implement an arbitrary linear network, which means an inde-
pendent manipulation of phase and amplitude of each element in an optical network.
To demonstrate this ability, we implement a non-unitary transformation LN, deĄned as
[︂

1 −1
−1 1

]︂⊗2
, which reads

LN ∝

⋃︁

⋁︁
⋁︁
⋁︁
⨄︁

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1

1 −1 −1 1

⋂︁

⎥
⎥
⎥
⋀︁
, (2.14)

As shown in Fig. 2.15, all two-photon interferences across input-output combinations are
mapped into photon anti-coalescence. This is the most interesting feature of the non-
unitary transformation. We believe that this result has not been reported in literatures
since the bulk of research has been focusing on unitary evolutions. We discuss and explore
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this property in chapter 3. We note that the result purely stems from non-Hermitian
physics of two-photon interference, and is not related to anti-bunching typically observed
from two-photon interference of a singlet Bell entangled state on a unitary non-polarizing
beamsplitter.
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Figure 2.15 – Visibility of two-photon interference on non-unitary transformation LN: fitting
(solid lines) and experiment (dots). In each panel the two-photon state is coupled to

the different (i,j) input pairs L(i,j)
N .
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2.3.2 Discussion

The results of two-photon interferences presented in Figs. 2.13, 2.14, and 2.15 can be
summarized into a pattern of two-photon visibility depicted in Fig. 2.16 which presents
the patterns of two-photon visibility as predicted by the theory (section 1.7). Importantly,
maximum two-photon visibility values measured after propagation through the combina-
tion of SLM and MMF, which is 0.96 ± 0.01 averaged over the HOM dip conĄgurations,
are the same as those directly measured at the SPDC source (0.95 ± 0.03). This indi-
cates that the optical platform does not introduce signiĄcant temporal distinguishability
between photon pairs.

Fidelity of linear optical networks

To quantitatively estimate the reliability of our platform, we provide a statistical anal-
ysis of the experiment on the control of two-photon interference. First, we compare the
difference of predicted and measured visibility V of the two-photon interference, (see def-
inition in Eq. 1.35), as shown in Fig. 2.16. The error of two-photon interference between
the experimentally synthesized transformation and the theoretically desired one is then
determined by ∆V =

∑︁

(i,j) ♣V exp
(i,j) − V th

(i,j)♣/6, where V exp(th)
(i,j) is the experimental (theoret-

ical) visibility at the (i, j) output ports. The values of ∆V for the implemented optical
networks are presented in the Table 2.1.

Table 2.1 – The error of two-photon interference between the experimentally implemented and the
theoretically desired transformations.

Input pair Fourier (F) Sylvester (Sy) Non-unitary (N)

(1,2) 0.05 0.04 0.06
(1,3) 0.03 0.02 0.06
(1,4) 0.13 0.02 0.06
(2,3) 0.16 0.02 0.04
(2,4) 0.02 0.02 0.05
(3,4) 0.11 0.01 0.06

We measure ∆V = 0.05 ± 0.04 on average over all transformations. The error presented
in two-photon interference originates from the permanent of the corresponding linear
transformation. The main contribution to the error originates from a case where the
visibility of two-photon interference is zero (Ćat coincidence pattern), which exists only
in the Fourier transformation. This is due to the fact that the phase sensitivity of two-
photon interference is the highest at V = 0, the result implies the presence of a incorrect
phase setting of implemented linear transformations.

To measure the Ądelity of implemented linear transformations, an experimental linear
transformation L̃ is reconstructed with the measured two-photon visibility V exp by min-
imizing

∑︁

(i,j) ♣V th
(i,j) − V exp

(i,j)♣, over the (i, j) pair of detectors. The Monte Carlo technique
is used to obtain statistics with 200 different initial conditions of an estimated linear
transformation. Both experimental and desired linear operators are set to have the same
setting of global input and output phases in order to avoid minima. This is because the
equivalent class of a linear transformation up to a global input and output phases results
in an identical two-photon interference patterns. We quantify the difference between the
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Figure 2.16 – Control of two-photon interference among spatial-polarization degrees of free-
dom: Visibility pattern of four-dimensional Fourier (F), Sylvester (Sy) and non-unitary
(N) transformations for all input-output combinations. Theoretical perdition (the first
row), experimental results (the second row), and difference between the experimental
and theoretical visibility of two-photon interference (the third row). We obtained
∆VF = 0.08 ± 0.06, ∆VSy = 0.02 ± 0.01, and ∆VN = 0.06 ± 0.01 for Fourier,
Sylvester, and non-unitary transformation, respectively.
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implemented optical network L̃ and the desired one L using the quantity F , deĄned as

F(L̃,L) = 1 − ∥L − L̃∥1, (2.15)

where ∥ · ∥1 is deĄned as ∥A∥1 ≡ ∑︁k
i=1

∑︁m
j=1 ♣aij♣/mk. The last term in Eq. 2.15 measures

an average element-wise distance between L and L̃. In the following, we refer to F as the
Ągure of merit (Ądelity) to characterise the performance of our implementation.

The obtained Ądelities are presented in Table 2.2. For each type of transformation, we
have the quantity F (Eq. 2.15) of 0.95 ± 0.03 (Fourier), 0.98 ± 0.01 (Sylvester), and
0.97 ± 0.02 (Non-unitary), respectively. Consequently, the experimental results clearly
demonstrate the accurate control of two-photon interference over a 4 × 2 linear trans-
formations across spatial-polarization degrees of freedom. In section 2.4, a theoretical
explanation on how programming linear network works and related issues about Ądelity,
scalability, and programmability are discussed.

Table 2.2 – Fidelity of linear optical networks

Input pair Fourier (F) Sylvester (Sy) Non-unitary (N)

(1,2) 0.987±0.007 0.985±0.001 0.957±0.004
(1,3) 0.976±0.005 0.973±0.005 0.983±0.006
(1,4) 0.9498±0.0003 0.98±0.01 0.987±0.006
(2,3) 0.9136±0.0005 0.983±0.008 0.979±0.002
(2,4) 0.938±0.001 0.9730±0.0008 0.987±0.007
(3,4) 0.9608±0.0003 0.985±0.003 0.938±0.003

Suppression phenomenon

A suppression phenomenon originates from symmetry in a many-particle interference re-
sulting in a zero probability of occupation particles in speciĄc input-output combinations
of a given interferometer. The speciĄc input-output combinations are known as the sup-
pressed or forbidden conĄgurations. The phenomenon is also known as zero-transmission
law [Tichy et al., 2010].

To test the validity of the zero-transmission law, we measured the number of coinci-
dences at all forbidden output combinations Nforbidden while sending two indistinguish-
able photons into cyclic pair of inputs [Tichy et al., 2010]. The quantity is related to
the degree of violation D which measures the probability of detecting two-photon states
in all suppressed conĄgurations (Nforbidden/Nevents), where Nevents is the total number of
events [Schuck et al., 2016b, Viggianiello et al., 2018]. The degree of violation D is deĄned
as,

D =
Nforbidden

Nevents

=
∑︂

(i,j)forbidden

P I
(i,j) =

∑︂

(i,j)forbidden

PD
(i,j)(1 − V(i,j)), (2.16)

where P
I(D)
(i,j) are the probabilties of having photons in the output (i, j) in the case of

indistinguishability (distinguishability). Note that PD
(i,j) is determined from single-particle

probability.

In the perfectly indistinguishable case, the value of D goes zero, that is, no possibility
of detecting particles in all suppressed conĄgurations. In our experiment, the values of
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D are presented in Table 2.3, on average they are as small as 0.022 ± 0.009 for Fourier
interferometer averaged over (1, 3) and (2, 4) input pairs and 0.014 ± 0.008 for Sylvester
interferometer averaged over all input pairs. The results show clear quantum distinctive
feature where the probability amplitudes of the biphoton Ąeld related to all suppressed
conĄgurations interfere destructively.

Table 2.3 – Degree of violation D for Fourier and Sylvester interferometers

Input pair Fourier (F) Sylvester (Sy)

(1,2) - 0.0138
(1,3) 0.0158 0.0198
(1,4) - 0.0206
(2,3) - 0.0168
(2,4) 0.0284 0.0219
(3,4) - 0.0233

2.4 | Reliability of complex mixing-based optical net-
works

The experimental results presented in the previous section indicate the realization of
reconĄgurable and accurate complex mixing-based optical networks. To provide a com-
prehensive insight into how our platform works and how reliable it is, the theoretical
model is provided below. Through the end of the section, scalability of implemented
optical networks is experimentally tested using the EMCCD camera.

2.4.1 Theoretical model

Recalling from Fig. 2.10, our programmable optical network is the linear system which is
composed of two main elements, a programmable SLM followed by an optical mixer, the
multimode Ąbre supporting the n number of propagation modes. We here want to study
the usability of our method to faithfully generate a given target linear transformation
L, modelled as a k × m matrix. Here m is the number of input ports and k of output
modes of the associated optical network. We assume that the SLM provides complete
control over all n propagating modes of the MMF. Thus, the number of tunable elements
in the setup is also n and for each of the m input ports of the target optical network,
we can control and inject d = n/m input physical modes of the MMF. For instance, we
have m = 2 input ports of an optical network in the experiment, each input port can
thus inject to (n ≈ 400)/(m = 2) ≈ 200 spatial modes in orthogonal polarizations. It
is important to note that here with p-th input port we mean a set of d physical modes
controlled by a given SLM, which are used collectively to reproduce the action of the
target linear transformation L on the p-th input port. The corresponding column of L is
thus denoted as L(p).

First, we quantify the ability to theoretically program a linear transformation L. Let us
Ąrst denote with T(p) the part of transmission matrix linking the p-th input port to the
k output ports of interest, which is thus a k × d matrix. The input optical Ąeld Ẽ

(p)

in

that reproduces the target evolution L(p) is determined by solving the relation Ẽ
(p)

in =
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T(p)†L(p). With this notation, Ẽ
(p)

in is thus a vector of length d, which represents the set of
amplitudes of the input wavefront that, when displayed on the SLM, results in an effective
implemented set of output amplitudes, here denoted as L̃(p)

. Then, the corresponding
phase patterns for all input ports are displayed on the SLM and light propagates through
the Ąbre. MMF and SLMs thus work together to implement an effective linear optical
network, which we describe with the matrix L̃, that corresponds to desired L up to a
global amplitude and phase factor. For each p-th input port, L̃(p)

and L(p) are related via

L̃(p)
= T(p)T(p)†L(p). (2.17)

The overall Ądelity of the optical network can, therefore, be related to the so-called time-
reversal operator T(p)T(p)†, which in general is an operator close to the identity opera-
tor [Popoff et al., 2010b]. To get an insight into the programming of a complex-mixing-
based optical network, one needs to know or be able to model a transmission matrix T of
the optical mixer.

For a straightforward model, the transmission matrix of the MMF is simply represented
with a random matrix (RM), i.e., a matrix composed of i.i.d. complex Gaussian coeffi-
cients. TT† is explicitly estimated [Derode et al., 2001, Aubry and Derode, 2010] and
was shown that it converges to TT† = ✶+ H/

√
n, where H is a complex Hermitian noise

matrix. TT† clearly converges to the identity operator ✶ with 1/
√
n. Similarly, when

only n/m input modes are controlled for each input port, the corresponding time reversal
operator T(p)T(p)† which is constructed from the rectangular matrix T(p) converges to the
identity operator with

√︂

m/n:

T(p)T(p)† = ✶ +

√︃
m

n
H. (2.18)

Considering the distance between the desired linear transformation L and implemented
linear transformation L̃ as calculated in Appendix D, one obtains the Ądelity scales as

F(L̃,L) = 1 − O
∏︁

∐︂

√︄

mk

n

⎞

ˆ︁ . (2.19)

This RM model, albeit a simple one, provides strong evidence in support of the statement
that arbitrary desired transformations can be implemented with high performance, even
when the dimension of optical networks is scaled up.

2.4.2 Numerical investigation

To compare our theoretical model with more practical cases close to real MMF, we numer-
ically evaluate the Ądelity F achieved for implementation of arbitrary optical networks
using 3 different models of transmission matrices, which are a random matrix (RM), a
random unitary matrix (RUM) obtained by the orthogonal triangular decomposition of
a RM (see [Mezzadri, 2006] for the calculation routine), and an experimentally measured
TM of the Ąbre (MMF). To take into account the ability to implement an arbitrary lin-
ear transformation L, a set of k × m desired linear transformation L are sampled from
random k×m matrices in our numerical model. Furthermore, in order to account for the
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noise on the other unmonitored output modes, we deĄne L on a complete output space
of dimension n where the (n − k) rows of L corresponding to unassigned output modes
are set to zeros.

Figure 2.17 – (a) Fidelity F of an optical network as a function of the number n of propagating
modes supported by a medium. We set m=2, k=4. (b) Fidelity F as a function
of the number k of the targeted outputs. We set m=2, n=398. The mean (circle)
and standard deviation (shaded area) of the fidelity are calculated from simulating
1000 desired linear networks arbitrarily defined on different targeted outputs of a high-
dimensional n×n random matrices (RM, RUM or MMF). The desired linear networks
are generated randomly, i.e., elements are i.i.d. complex Gaussian coefficients. The
high-dimensional n × n random matrix are generated from a random matrix (RM,
blue circle), a random unitary matrix (RUM, purple circle), and the experimentally
measured transmission matrix (MMF, red circle). In the case of MMF, we reduce the
number of the propagating modes n by randomly selecting n columns and rows of

the measured full TM. All curves show the predicted 1 − O
(︂√︁

mk/n
)︂

behaviour.

As shown in Fig. 2.17a, for optical networks of dimension 4 × 2 which simulates our
experimental implementation, the Ądelity F scales as expected as 1 − O(1/

√
n) when we

increase the number of propagation modes of the complex highly-mixing medium. For
a Ąxed n, the Ądelity decreases when increasing the number of targeted output ports k,
following 1−O(

√
k) (Fig. 2.17b). For both graphs, the RUM provides the highest Ądelity

since it ensures energy conservation11, while the Ądelity with the MMF model is slightly
below the RM one. This could be attributed to mesoscopic correlations [Rotter and
Gigan, 2017], the variation of the enhancement at different targeted outputs due to the
co-propagating speckle reference [Čižmár and Dholakia, 2011], and to mode-dependent
losses [Carpenter et al., 2014, Chiarawongse et al., 2018].

We note that a similar simulation was reported in Simon R. Huisman’s dissertation [Huis-
man, 2013, in Appendix C] where he designed 2×2 balanced beamsplitter using an opti-
mization approach, L ∝ [ 1 −1

1 1 ]. The reported error in the relative phase π of the beam-
splitter in [Huisman, 2013, Fig.C.2] shows a decreasing trend as the degree of wavefront
control n/m increases. We expect that this result present similarly a square-root trend of
improvement, which appears to be consistent with the proposed theoretical model.

11RUM provides the highest fidelity when the number of input ports m is low. As m increases, the
fidelity converges to the value provided by the RM because the unitary condition of T(p) relaxes.
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2.4.3 Discussion

Our architecture for programming optical network relies on the high dimensional complex
mixing of a multimode Ąbre; the high Ądelity of implemented network is achieved when
m, k ≪ n as presented Eq. 2.19. Three points of the reliability of our programmable
optical network need to be discussed.

Programmability

The programmability of our optical network architecture originates from how well the
SLMs controls lights interference through a high-dimensional Ąxed intermodal coupling
provided by the Ąbre. Two key properties are required for this propose:

• Complex mixing across modes and degrees of freedom: This property of the
multimode Ąbre allows one to assign k targeted output ports on arbitrary position
and polarization with a corresponding desired complex coefficient of L. We experi-
mentally veriĄed this property by checking feasibility to focus on any position and
polarization state across the output plane with high efficiency, while keeping a low
unstructured background on the other modes.

• Degree of wavefront control: It is proportional to n/(mk) as suggested by
Eq. 2.19. For each input (each column of L), one has high d = n/m number of
programmable SLM elements and the same d number of a corresponding complex
intermodal coupling coefficients provided by the MMF for programming each de-
sired coefficient of L allocated on the target outputs. Increasing number of targeted
outputs k, on the other hand, reduces the degree of SLM control. This effect phys-
ically corresponds to a cross-talk between targeted outputs due to an overlap of
speckle background Ąelds with other targeted outputs.

In the following we compare our programmable platform to the conventional architecture,
in which a large number of phase shifters in cascaded Mach-Zehnder interferometers has
to be controlled [Reck et al., 1994]. While the conventional architecture follows a bottom-
up approach, where a large desired transformation is constructed from a series of small
2 × 2 ones, our platform can be considered to follow a top-down approach, in that the
desired transformation is obtained directly, without the need to decompose it in terms
of simpler components. In other word, in our implementation a small programmable
optical network is encoded on a large Ąxed highly-mixing linear transformation. In a
conventional architecture, to have a fully reconĄgurable k × k unitary transformation
O(k2) tunable optical elements are required [Reck et al., 1994, Miller, 2013b, Clements
et al., 2016, Tillmann et al., 2016, Tischler et al., 2018]. In our setup, since we have n
tunable elements at the input of the complex medium, we expect to be able to program
unitaries of dimension up to m = k =

√
n. For a given network, scaling to a larger complex

medium (larger n, which could be realised for instance by increasing the diameter or the
numerical aperture of the multimode Ąbre) allows increasing the Ądelity to values close
to unity.

Imperfect wavefront control

One of the interesting features of our technique is that the overall enhancement of the
photon counts does not depend signiĄcantly on the number of targeted output modes
k. This is well-known from the Ąrst article on wavefront shaping through complex me-
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dia [Vellekoop and Mosk, 2007], where it was noted that focusing on k target points,
instead of on a single one resulted in a k-fold reduction of the intensity per target, but
the overall intensity remained the same. For an optimal input, the maximal fraction of
total energy that can theoretically be transmitted on a target output mode i is equal
to
∑︁d

j=1 ♣tij♣2, where the tij are the elements of the TM and d is the number of modes
that are controlled, this is approximately equal to n/m [Vellekoop, 2015]. Increasing k
is equivalent to a change of basis and does not signiĄcantly modify the total transmitted
intensity.

On the other hand, increasing number m of input ports reduces the degree of wavefront
control, which results in an uncontrolled light scattered from a desired optical network. To
quantify the overall energy transmittance through a desired optical network, γ is deĄned
as the ratio of the photon Ćux carried by the targeted outputs of interest to the total
photon Ćux transmitted through the MMF12. When all input modes of an optical system
are controlled both in amplitude and phase, the overall energy transmittance through a
desired optical network γ is unity. From a mathematical perspective, this is because the
time-reversal operator is the identity matrix: TT† = ✶. As the number of input ports m
increases, γ is reduced follows: γ = 1/m. This effect is called imperfect wavefront control.

We measured γ across all possible target outputs; we found that the enhancement γ has
a speckle-like feature. This well-known imperfection results from using a co-propagating
speckle reference in the measurement of TM [Čižmár and Dholakia, 2011, Tao et al.,
2015, Hofer and Brasselet, 2019], and can be unravelled by using an external reference
Ąeld [Čižmár and Dholakia, 2011], phase retrieval techniques [Drémeau et al., 2015]. To
avoid this inhomogeneity, we acquired the TM with a co-propagating focusing reference
as described in the Section 2.2.2. In our experiment, γ can reach 0.45 for each input port,
which is consistent with the fact that we control only half of the number of propagating
modes on each polarization. The state-of-the-art γ of 0.6 has been experimentally reported
in a step-index MMF using one of circular input polarizations. This is owing to the fact
that the polarization is conserved in the step-index Ąbre [Plöschner et al., 2015b]. And,
the γ of 0.8 has also been reported in a step-index MMF when controlling both linear
polarization channels [Čižmár and Dholakia, 2011, Turtaev et al., 2017].

Inverse scattering process

In our experiment, the inverse operator that is used in Eq. 2.10 is achieved by the conjugate
transpose (Hermitian transpose, †) (T(p))†, instead of the inverse operator (T(p))−1. This
is because the conjugate transpose is very robust to noise present in the measured TM,
unlike the inverse one (T(p))−1 which is unstable in the presence of noise. The noise
results in a low Ądelity in the implementation of the optical networks. The unsuitability
of (T(p))−1 is because high-value components of singular values of (T(p))−1 originate from
small singular values from the noise of the transmission matrix (T(p)) [Popoff et al.,
2010a]. In our experiment, the conjugate transpose works efficiently since the conjugate
transpose maximizes the energy at the target outputs [Tanter et al., 2000, Derode et al.,
2001] and the background noise H in Eq. 2.18 keeps very low. In case that one wants
to scale the dimension of implemented linear optical networks k × m without increasing
of the dimension of multimode Ąbre n, one thus has a low Ądelity in the implementation
of the networks with the conjugate transpose. To have better implementation of a linear

12We note that the total photon flux transmitted through our optical system is nearly lossless, because
of a high transmission of the multi-mode fibre and a high reflectivity of the SLM.
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network in such a case, alternative inverse process could be applied, for instance, pseudo-
inverse method [Campbell and Meyer, 2009], mean square optimized operator [Popoff
et al., 2010a].

2.4.4 Scalability of optical networks

The dimensionality of our programmable optical networks can in principle be scaled up,
as the main limiting factor in our experimental implementation is given by the number of
APD detections (Fig. 2.10). A signiĄcantly larger network can be managed, for instance,
by replacing our detection apparatus with an array of coincidence detectors [Jost et al.,
1998, Basden et al., 2003, Edgar et al., 2012, Peřina et al., 2012, Tasca et al., 2013,
Fickler et al., 2013, Chrapkiewicz et al., 2014, Jachura and Chrapkiewicz, 2015, Bolduc
et al., 2017, Reichert et al., 2018, DeĄenne et al., 2018b, Bruschini et al., 2019]. As a
proof-of-principle, we experimentally verify the scalability of our platform classically by
implementing a larger optical network on the EMCCD camera using the superluminescent
diode (Superlum) as a light source. The transmission matrix is acquired as explained in
Section 2.2.2 and the relation of co-propagating focusing references between two input
ports are calibrated by the phase-shifting interferometry [Popoff et al., 2010a, Plöschner
et al., 2015b]. In order to study the scalability, we implement desired linear optical
networks (Section 2.2.3) at different number of targeted output ports k. The output
ports of desired linear optical networks are arbitrary allocated on 18 positions where the
co-propagating focusing references are deĄned as depicted in Fig. 2.18. The amplitudes
of linear elements ♣Lqp♣ are sampled from the uniform distribution in the interval [0.5, 1]
and the phases of linear elements arg(Lqp) are sampled from the uniform distribution in
the interval (−π, π].

Figure 2.18 – Intensity image of a high-dimensional balanced linear-optical network on the EMCCD.
The SPDC light from both inputs is simultaneously distributed into 18 targeted out-
puts, 9 in each polarization (H: Horizontal; V: Vertical). The implementation of a
small optical network in the experiment on the scalability are randomly allocated on
the 18 targeted outputs.
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In Fig. 2.19, we show one example of optical networks with the number of targeted
outputs (k = 18). The results illustrate the implemented settings of phase and amplitude
on targeted outputs of interest compared the desired elements of L.
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Figure 2.19 – Example of implemented optical network (k=18): The location of targeted out-
puts on the EMCCD camera for both input ports, H: Horizontal; V: Vertical, (Top).
Experimental amplitudes are compared to the designed one (Middle). Experimental
relative phases are compared to the designed one (Below).

By plotting the averaged Ądelity over many implemented optical networks as a function of
the number of targeted outputs, we observe a decrease in Ądelity following the 1 −O(

√
k)

curve as shown in Fig. 2.20. This result is consistent with the theoretical model and it
supports the scalability of our platform. Furthermore, the experimental curve of Ądelity
also matches with the numerical curve that was simulated with the measured TM of the
MMF, in the case where amplitudes of linear elements ♣Lqp♣ are uniformly sampled as in
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the experimental case. Consequently, these results indicate the good consistency between
in the experimental implementation and the numerical study.

In addition, we observe the decrease of Ądelity in this case of uniformly sampling as
compared to the numerical results where optical networks are i.i.d random matrix. This
is due to that fact that the deĄned Ądelity F measures the averaged distance between the
linear elements of optical networks. Change of normalization factor and/or variance of
linear elements Lqp results in a different prefactor in O(mk/n). This purely results from
the statistical properties of optical networks and the property of the Ądelity as explained
in Appendix D.2 and does not originate from the limitation of our technique.

Figure 2.20 – Experimental fidelity F of optical networks as a function of the number k of the
targeted outputs. The mean (dot) and standard deviation (bar) of the fidelity are
measured from 48 experimental k × 2 desired linear networks. The desired linear
networks are generated from a random matrix where the amplitudes of linear elements
♣Lqp♣ are sampled from the uniform distribution in the interval [0.5, 1] and the phases
of linear elements arg(Lqp) are sampled from the uniform distribution in the interval
(−π, π]. The fitting experimental curve (black curve) is consistent with the numerical

prediction curve (blue curve) 1−O
(︂√︁

mk/n
)︂

where optical network are sampled from

the same random ensemble as descried above. The red line is represented the fitting
curve of the numerical result presented in Fig. 2.17 which models optical networks
with the i.i.d Gaussian random matrix using the measured TM of the MMF.

To conclude, the scalability of the optical networks have been veriĄed numerically and
experimentally. The results demonstrate the potential to implement a large optical net-
work following the theoretical model in Eq. 2.19. Scaling to a large dimension of optical
network (k × m), one needs to scale linearly the dimension of optical mixer, MMF and
SLM, (n) in order to keep a constant performance.
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2.5 | Summary and perspectives

In this chapter, we have presented the use of a multimode Ąbre to implement fully pro-
grammable linear optical networks across spatial and polarization degrees of freedom.
This platform harnesses the highly complex coupling between a large number of modes
of the MMF and the ability to spatially control the input light wavefront.

We successfully programmed this platform to implement circuits able to manipulate two-
photon quantum interferences in various interferometers which can be used to tackle cer-
tiĄcation tasks of indistinguishability (suppression phenomenon). We have thus demon-
strated the versatility and full reconĄgurability of our approach, including the manage-
ment of different degrees of freedom of the propagating light. It is also worth highlighting
the outlooks offered by our work. Linear complex mixing occurring in an optical mixer
can go beyond path and polarization. Spectral, temporal and spatial (radial and orbital
angular momentum) degrees of freedom can also be manipulated with an SLM in com-
bination with a scattering medium. We believe that our alternative implementation of
programming a linear transformation can be extended all the way up to those degrees of
freedom. In essence, our method signiĄcantly simpliĄes the design and avoids entirely the
need to further decompose such transformations in terms of simpler optical components
which can be sensitive to a fabrication and alignment processes.

We have also highlight its scaling potential by providing the theoretical model and the
numerical simulations. Furthermore, we have demonstrated the experiential implemen-
tation of the optical networks over up to 18 output ports. Our architecture provides an
efficient and scalable alternative to integrated circuits for linear quantum networks.
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Coherent absorption effect

“The most important questions in life are, for the

most part, really only problem of probability.”

— Pierre-Simon Laplace

In this chapter, the scheme of programmable optical network presented in the previous
chapter is used to explore the interesting phenomenon of non-unitary evolution of a two-
photon state. In particular, the theory of a two-photon state evolving through a lossy
beamsplitter is presented in section 3.1. Then, an intriguing phenomenon related to non-
unitary systems, known as coherent absorption is introduced in section 3.2. The two
experimental results related to the two-photon interference with a lossy beamsplitter and
the emulation of the coherent absorption with a N00N state are presented and discussed
in each section accordingly.
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3.1 | Two-photon interference on a lossy beamsplitter

3.1.1 Why a lossy beamsplitter is interesting?

Losses are usually considered to be deleterious for quantum systems and are difficult
to eliminate in an optical experiment. In quantum optics, losses tend to suppress non-
classical properties of light [Kok et al., 2007]. A well-known effect of loss is the degradation
of the squeezing property of light [Bandilla, 1989, Patra and Beenakker, 2000]. Besides,
losses also tend to be a limitation in the scalability of boson sampling [Rohde and Ralph,
2012, Rudolph, 2017, Oszmaniec and Brod, 2018, Wang et al., 2018a, García-Patrón et al.,
2019]. An emerging research topic is related to the effect of mode-dependent loss1 on a
reduction of the computational complexity of boson sampling problem [Oszmaniec and
Brod, 2018].

In contrast to their typical undesirable effects, losses can bring about an intriguing quan-
tum interference phenomenon thanks to the relaxation of unitarity condition. It leads
to the appearance of non-linear absorption at a low photon-counting regime, using solely
a linear beamsplitter [Barnett et al., 1998]. The relevant theory, explanation and com-
plete experimental results of the effect implemented with our setup are presented in the
following sections.

3.1.2 Theory

The lossy beamsplitter has been studied theoretically since the 1990s [Gruner and Welsch,
1996, Barnett et al., 1998], but only few experimental studies have been reported so far.
This is understandable since lossless beamsplitters are omnipresent in optics, whereas,
lossy beamsplitters are not. Most experiement thus consider the beamsplitter to be loss-
less and reciprocal; therefore, the input and output operators are related by a unitary
transform which imposes phase constraint on the scattering matrix of the beamsplitter.
In the case of well-known symmetric2 and balanced3 beamsplitter, the scattering matrix
is 1√

2

[︂
1 i
i 1

]︂

.

Model of lossy beamsplitter

The presence of losses can relax the relative phase constraint of a beamsplitter [Barnett
et al., 1998, Huisman et al., 2014a, Uppu et al., 2016]. For the sake of simplicity, the lossy
balanced beamsplitter can be modelled by,

LTBS = t

(︄

1 1
1 eiα

)︄

, (3.1)

where α is a tunable phase and the amplitude of all linear elements are assumed to be
equal and denoted as the transmission coefficient t. The tunable range of α depends on
the transmission coefficient [Huisman et al., 2014a] and can be expressed as,

\︄
\︄
\︄
\︄cos

α

2

\︄
\︄
\︄
\︄ ≤ 1

2t2
− 1. (3.2)

1Mode-dependent loss means that different propagation paths in an optical network encounter different
amounts of losses depending on the length of propagation paths.

2The symmetric means the equality of reflected and transmitted amplitudes for both inputs.
3The balance means the equality of reflected and transmitted amplitudes in each input.
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The tunable range, determined by Eq. 3.2, is depicted in Fig. 3.1. The black region indi-
cates the possible setting of α, while the white region is forbidden due to the conservation
of energy. At t = 1/

√
2 which corresponds to a lossless case, only α = π is valid. More-

over, α is fully tunable range for t ≤ 1/2. The tunability can be exploited as a parameter
revealing interesting effects on quantum interference.

Figure 3.1 – The tunable range of α as a function of transmittance ♣t♣2. The black area is allowed
for control of α.

In the most general case, a beamsplitter is used to superpose, or mix, two incoming
Ąelds to two outgoing Ąelds. The scattering matrix of beamsplitter must satisfy the
commutation relations between the outgoing creation and annihilation operators (â1 and
â2) as they represent a property of the free-space quantized electromagnetic Ąelds [Blow
et al., 1990, Huttner and Barnett, 1992, Matloob et al., 1995, Matloob and Loudon, 1996]:

[âi(ω), âj (ω′)] = 0 ,i, j ∈ ¶1, 2♦ (3.3a)
[︂

âi(ω), â†
j (ω′)

]︂

= δijδ (ω − ω′) ,i, j ∈ ¶1, 2♦, (3.3b)

where ω represents an angular frequency of the quantized electromagnetic Ąelds. These
commutation relations guarantee the conservation of energy and the orthogonality of the
two outgoing modes. In the presence of loss, these properties of the outgoing modes
can be modulated. In order to maintain the commutation relations, a Langevin noise
operators F̂ i, i ∈ ¶1, 2♦ has to be added [Barnett et al., 1996, Barnett et al., 1998] into
the relationships between the input and output operators via the lossy beamsplitter as
follows,

(︄

â1

â2

)︄

= LTBS

(︄

â1

â2

)︄

+

(︄

F̂ 1

F̂ 2

)︄

. (3.4)

The losses represented by the Langevin noise operators in the model can be theoretically
associated with Ćuctuating currents within the medium forming the beamsplitter [Barnett
et al., 1998]. In reality, losses can originate from different physical sources regarding the
construction of beamsplitter. For example, a mechanism of losses in a dielectric medium
can arise not only from absorption [Matloob et al., 1995, Matloob and Loudon, 1996]
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but also from scattering into a large number of unmonitored modes. The Langevin noise
operators include a general effect of loss which takes place in the lossy beamsplitter. In
other words, the losses can be considered as an inĆuence of the environment into the
system of interest (the beamsplitter) in context of the open quantum system. Owing to
the mechanism of loss, we can assume that the noise operators do not contribute to output
photon counts [Barnett et al., 1998]. Moreover, the two incoming and outgoing Ąelds are
independent of the noise sources. Under these hypothesis, the input operators commute
with the Langevin noise operators,

[︃

âi(ω), F̂
†
j (ω′)

]︃

=
[︂

âi(ω), F̂ j (ω′)
]︂

= 0 , i, j ∈ ¶1, 2♦. (3.5)

Two-photon interference

As introduced in chapter 1, the two-photon state ♣Ψ⟩ incident in two different input ports
of the lossy beamsplitter is expressed as

♣Ψ⟩ =
∫︂ ∞

0

∫︂ ∞

0
Ψ (ω1, ω2) â

†
1 (ω1) â

†
2 (ω2) dω1dω2♣0⟩, (3.6)

where the biphoton wavefunction ψ (ω1, ω2) is normalized as
∫︁∞

0

∫︁∞
0 ♣ψ (ω1, ω2)♣2 dω1dω2 =

1 so that the state vector ♣Ψ⟩ is normalized too [Fearn and Loudon, 1989].

One can determine the probabilities of obtaining a given number of photons in the outputs
of the lossy beamsplitter via the Kelley-Kleiner counting formula [Kelley and Kleiner,
1964]. In the following consideration, the quantum efficiency of the detectors is assumed
to be unity and the detecting time is set to inĄnite4. We deĄne N̂ i the photon number
operator at the i output port [Barnett and Radmore, 2002] deĄned as,

N̂ i(ω) =
∫︂ ∞

0
dωâ†

i (ω)âi(ω), i ∈ ¶1, 2♦. (3.7)

The outcome probabilities of the lossy beamsplitter consist of six distinct cases which can
be categorized into three groups [Barnett et al., 1998]. The Ąrst group is the probabilities
of having two-photon at the output ports. They are composed of the two cases that have
two-photon detected in either output port and one case that has single-photon detected
in each of the two output ports,

P (21, 02) =
1

2

˜︁

N̂1

(︂

N̂1 − 1
)︂˜︂

, (3.8a)

P (01, 22) =
1

2

˜︁

N̂2

(︂

N̂2 − 1
)︂˜︂

, (3.8b)

P (11, 12) =
˜︁

N̂1N̂2

˜︂

. (3.8c)

The second group corresponds to the two cases having a single-photon loss,

P (11, 02) =
˜︁

N̂1

˜︂

−
˜︁

N̂1

(︂

N̂1 − 1
)︂˜︂

−
˜︁

N̂1N̂2

˜︂

, (3.9a)

P (01, 12) =
˜︁

N̂2

˜︂

−
˜︁

N̂2

(︂

N̂2 − 1
)︂˜︂

−
˜︁

N̂1N̂2

˜︂

. (3.9b)

4The detection time is considered to be very long compared to the coherence time of the biphoton
state which is consistent with the experiment.
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The third group has the one case where all photons are lost,

P (01, 02) = 1 −
˜︁

N̂1

˜︂

−
˜︁

N̂2

˜︂

+
˜︁

N̂1N̂2

˜︂

+
1

2

˜︁

N̂1

(︂

N̂1 − 1
)︂˜︂

+
1

2

˜︁

N̂2

(︂

N̂2 − 1
)︂˜︂

(3.10)

In the case of a frequency-independent lossy beamsplitter, these probabilities can be
straightforwardly calculated by substituting the input photon number operators from the
linear relation of the lossy beamsplitter (Eq. 3.4) into the output photon number operators
(Eq. 3.7) and then applying the commutation relations (Eq. 3.3 and 3.5). One obtains,

P (11, 12) = 2t4(1 + I(δ) cosα), (3.11a)

P (21, 02) = P (01, 22) = t4(1 + I(δ)), (3.11b)

P (11, 02) = P (01, 12) = 2t2 − 2t4 (2 + I(δ)[1 + cosα]) , (3.11c)

P (01, 02) = 1 − 4t2 + 2t4 (2 + I(δ)[1 + cosα]) , (3.11d)

where I(δ) is the spectral overlap integral of the biphoton state as a function of a temporal
delay δ, as expressed in Eq. 1.36.

The probabilities in Eq. 3.11 depend on the indistinguishability of the biphoton state,
related to Eq. 1.36. For distinguishable photons (I = 0), the probabilities reduce to the
case of two independent particles with the single-particle probability 2 ♣t♣2 for scattering
(both transmission and reĆection) and 1 − 2 ♣t♣2 for absorption. The interesting effect
appears at the complete indistinguishable case (I = 1) where quantum interference plays
a role. The probability of interest is P (11, 12) for detecting one photon in each of the two
output ports. The probability oscillates sinusoidally with the phase α. At α = π, the
lossy beamsplitter behaves similarly as a lossless beamsplitter. The well-known Hong-
Ou-Mandel (HOM) interference effect [Hong et al., 1987] survives with the two-photon
visibility V = 1 (HOM dip). As α is tuned to zero, the two-photon interference is
modulated to the peak proĄle behaviour, with two-photon visibility of V = −1; this
means that one detects a two-fold enhancement of coincidence counts at pair of outputs
of the lossy beamsplitter as compared to the case of distinguishable input photons, i.e., a
peak. The effect is known as the photon anti-coalescence.

Considering t = 1/2 and α = 0, the probabilities from Eq. 3.11 reduce the form to,

P (21, 02) = P (01, 22) =
1

8
, (3.12a)

P (11, 12) =
1

4
, (3.12b)

P (11, 02) = P (01, 12) = 0, (3.12c)

P (01, 02) =
1

2
, (3.12d)

which is the maximal condition of transmitting two photons through the lossy beam-
splitter. The quantum interference at the lossy beamsplitter generally affects absorbing
probabilities. We consider the probabilities for no, single, or two photons survival at the
output of the lossy beamsplitter, which are expressed as follows:

Pno-photons survival = P (01, 02), (3.13a)

Pone-photons survival = P (11, 02) + P (01, 12), (3.13b)

Ptwo-photons survival = P (11, 12) + P (21, 02) + P (01, 22). (3.13c)
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The probability that single photons survive is zero under the maximal condition. Only
the cases where either both photons are absorbed or transmitted occur with the same
probability of 1/2. The result thus presents a non-linear two-photon absorption on the
linear lossy beamsplitter [Barnett et al., 1998]. In the next section, the experimental
demonstration of the effect of the lossy beamsplitter, using the programmable optical
network is presented.

3.1.3 Experiment

Method

We implement the 2×2 lossy phase-tunable beamsplitters on the programmable optical
network by means of the procedure presented in section 2.2. The lossy phase-tunable
beamsplitter (LTBS1) is now deĄned as follows,

LTBS1 = t

(︄

1 i
eiα 1

)︄

, (3.14)

In short, in the Ąrst part of experiment, we characterise the TM of the MMF on the
two targeted output modes of interest (subsection 2.2.2). The selected outputs are in
this experiment allocated on the same spatial spot at the output of the Ąbre but are the
orthogonal polarizations, labelled H1 and V1, as shown in Fig. 3.2. In the second part of
the experiment, the SLM is programmed to design the lossy beamsplitters as deĄned in
Eq. 3.14 for different α phase setting. The photon pairs from the SPDC source are then
sent to the implemented lossy beamsplitter. The two-photon interference is acquired for
different delay times δ. The acquisition time was set to 5 s in each measurement. In order
to analyse the output probabilities of the lossy beamsplitter, we insert the Ąbre-based
beamsplitter (fBS) at each of the targeted output ports. The corresponding two-photon
interferences of the lossy beamsplitter are acquired at the four outputs of the fBSs, labelled
A, B, C, D, as depicted in Fig. 3.2. The probability of detecting two photons in the
V1 output of the beamsplitter P (2V 1, 0H1) is twice the two-fold coincidence count 2CAB

between the A and B output ports, and similarly the probability of detecting two photons
in the H1 output P (0V 1, 2H1) is related to 2CCD. The multiplication factor of 2 comes
from the probability of photon bunching that occurs at the analysed fBS. The probability
of one photons detected on each output port of the lossy beamsplitter P (1V 1, 1H1) is then
related to CAC + CAD + CBC + CBD.
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Figure 3.2 – Experimental setup for two-photon interference on a lossy beamsplitter: Pho-
ton pairs produced by spontaneous parametric down-conversion (SPDC) using ppKTP
crystal are injected into a multimode fibre (MMF) along orthogonal polarizations using
spatial light modulators (SLM). In the first part of the experiment (construction of
the optical networks), the transmission matrix (TM) is measured across spatial and
polarization input modes of the MMF. Two output ports of interest are selected by two
single-mode fibres mounted on translation stages labelled as (H1, V1). In the second
part, a designed lossy beamsplitter is programmed by calculating and displaying the
corresponding wavefront on the SLMs. In order to analyse the outcome probabilities
of the implemented lossy beamsplitters, the fibre-based beamsplitter (fBS) is placed
at each of the targeted output ports. Light is detected by four Si-based avalanche
photodiode detectors (APDs) connected to the field-programmable gate array (FPGA)
for counting photons and coincidences. (L: lens, F: filter, HWP: half-wave plate, PBS:
polarizing beamsplitter, D: iris diaphragm, FM: flip mirror, WP: Wollaston prism, BS:
beamsplitter.)

Results and discussion

The experimental probabilities of two-photon survival at the outputs of our implemented
lossy phase-tunable beamsplitters are shown in Fig. 3.3. We observe the full control of
two-photon interference over the tunable phase α of the lossy beamsplitter. The exper-
imental results are consistent with the theory [Barnett et al., 1998] as presented in sub-
section 3.1.2. The two interesting features are displayed in Fig. 3.3. The Ąrst is the
oscillation of the probability of detecting single photons in each of the two output ports
P (1V 1, 1H1): The well-known HOM dip of two-photon interference is observed at α = π/2,
whereas the characteristic peak of the two-photon interference is presented at α = 3π/2
for the lossy beamsplitter owing to the photon anti-coalescence. Two-fold coincidences
at the output ports of the lossy beamsplitter have been recently measured in optic and
plasmonic platforms on the spatial output ports [DeĄenne et al., 2016, Wolterink et al.,
2015, Vest et al., 2017, Taballione et al., 2019]. We here demonstrate that the oscillation
can be also observed on polarization degree of freedom and shows full programmability of
our platform5. The second feature of interest is the probability of detecting two photons
in each of the outputs (P (2V 1, 0H1) and P (0V 1, 2H1)). The results presented in Fig. 3.3(a
and c) indicate the independence of the probability on phase α as predicated by Eq. 3.11.
To the best of our knowledge, this is the Ąrst demonstration of two-photon interference
measured for all events of two-photon survival at the lossy beamsplitter. The probabil-
ity of two-photon survival is measured: P (1V 1, 1H1) + P (2V 1, 0H1) + P (2V 1, 0H1) and is
shown in Fig. 3.3d. At α = π/2, the probability is constant at 0.25 across the delay;

5The same results have been observed for arbitrary spatial positions (by moving the transition stage)
and polarization states (by adding wave plates with arbitrary rotation at input and output of the MMF).
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Figure 3.3 – Probability of detecting two photons at the output ports of the lossy beam-
splitter as a function of relative phase α of the lossy beamsplitter and delay δ. (a)
Detection of two photons in the V1 output of the lossy beamsplitter P (2V 1, 0H1), (b)
Detection of single photons in each of the two output ports P (1V 1, 1H1), (c) Detection
of two photons in the H1 output of the lossy beamsplitter P (0V 1, 2H1), (d) Probability
of two-photon survival.

the result indicates the independence of the probability of two-photon survival from the
distinguishability of biphotons. Interestingly, at α = 3π/2, the probability of two-photon
survival increases to 0.5 in the case of indistinguishability (δ = 0). This reveals the
two-fold enhancement of the probability of two-photon survival as compared to the case
of distinguishability. The result thus shows the manifestation of the effect of quantum
interference on the loss process; the probability of non-linear two-photon absorption can
be controlled by the relative phase of a linear lossy beamsplitter [Barnett et al., 1998]. In
the next section, a more in depth study of the phenomenon known as coherent absorption
is presented and experimentally demonstrated.

3.2 | Coherent absorption

3.2.1 Introduction

Coherent absorption is an interference-assisted absorption process. It is a phenomenon by
which one can manipulate the outcome of a mechanism of absorption (loss) via the control
of phases of incident light. In particular, a famous classical case of coherent absorption
is coherent perfect absorption (CPA) in which the complete absorption is achieved by
controlling the interference of incoming light. As depicted in Fig. 3.4, the simple example
of CPA is a linear system represented by an absorbing planar slab. In general, many
materials have been reported to the appearance of CPA, for instance, composites of metal
dielectric, metasurfaces, graphene, plasmonic waveguides [Wan et al., 2011, Baranov et al.,
2017]. Light incidents on each input port can be partially reĆected, transmitted, or
absorbed into the medium, as illustrated in Fig. 3.4a. In the simplest case, the CPA takes
place when two coherent beams are propagating to the opposite sides of the absorbing
slab with a suitable relative phase. As a result, the reĆected part of one of incoming beam
interferes destructively with the transmitted part of the other beam and vice versa [Dutta
Gupta, 2007, Chong et al., 2010, Gmachl, 2010, Baranov et al., 2017]. The interference
generates a perfect channel where all energy is transferred to the process of absorption.
The rigorous classical explanation of the phenomenon can be provided by the scattering
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theory [Chong et al., 2010]: The optical input Ąelds ΨCPA that generate the coherent
perfect absorption must satisfy,

SΨCPA = 0, (3.15)

where S is the scattering matrix of the absorbing planar slab. This refers to the fact
that ΨCPA is a non-zero eigenvector of S whose corresponding eigenvalue is zero. The
presence of zero eigenvalues is physically realizable and requires a certain amount of loss
in a medium at a given frequency ω. The condition allows the zero eigenvalues to have a
propagating wave solution. The CPA phenomenon can be understood as the time-reversal
version of the lasing process at the lasing threshold [Chong et al., 2010] in which the linear
approximation of scattering process is valid.

Figure 3.4 – Concept of coherent perfect absorption: (a) Light incident on one of part of an
absorbing planar slab is partially reflected, transmitted, and absorbed by the medium.
(b) Two incoming coherent beams travel onto the opposite sides of absorbing slab with
a suitable relative phase. The coherent perfect absorption takes place, resulting in the
perfect absorption. Adapted from [Baranov et al., 2017]

For more complex structures where many scattering modes are involved, the CPA pro-
cess is achievable if the corresponding scattering matrix still presents a CPA mode and
complete control of incident wavefront is realizable. Recently, the CPA process in a disor-
dered waveguide has been demonstrated in microwave domain [Pichler et al., 2019]. The
random matrix theory can predict the presence of coherent absorption in a disordered
medium, and it has been theoretically shown that very strong enhancement of the coher-
ent absorption is possible in a weakly absorbing but strongly scattering medium by the
control of incident optical Ąelds at any frequency in a strongly scattering regime [Chong
and Stone, 2011, Li et al., 2017].

Coherent absorption has recently aroused widespread applications in optics, ranging from
improved photovoltaic devices to all-optical data processing. In the context of the pho-
tocurrent generation, a two-fold enhancement of the generated photocurrent has been ob-
served in a dye-sensitized solar cell when the incident wavefront is optimally shaped [Liew
et al., 2016]. The interference allows lights to be concentrated close to the interface of
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electrodes where electrons are most efficiently generated and collected [Liew et al., 2016].
In the context of data processing, the coherent absorption provides control of optical sig-
nal by another optical signal without the need for material non-linearity. Therefore, it
can be exploited for processing tasks and provide a novel route towards the implementa-
tion of switches, modulators, Ąlters, and logic gates at any intensity level [Zhang et al.,
2012, Fang et al., 2015, Papaioannou et al., 2016b, Papaioannou et al., 2016a, Xomalis
et al., 2018]. Different boolean operations (AND, OR, XOR, NOT) have been realized by
using the coherent absorption process exploiting various relative phases between the two
input beams as depicted in Fig. 3.5.

Figure 3.5 – CPA applications for logic operators:(a) beam A only presents, (b) beam B only
presents, (c) A AND B, (d) A XOR B, and (e) A OR B. Adapted form [Papaioannou
et al., 2016a]

In quantum optics, the coherent absorption has been theoretically investigated using
the model of a lossy beamsplitter long before the well-known establishment of classical
CPA [Barnett et al., 1998, Jeffers, 2000, Chong et al., 2010].

The CPA of a single-photon state in a superposition form 1/
√

2(♣11, 02⟩ + eiφ ♣01, 12⟩)
has been experimentally demonstrated recently on a plasmonic metasurface and on a
multilayer graphene Ąlm [Roger et al., 2015]. The effect occurs in the same manner as the
CPA with the coherent state and implies the perfect coupling of a single photon to the
plasmonic mode of the absorber [Roger et al., 2015]. The presence of the effect is clearly
due to the self-interference of single photons [Huang and Agarwal, 2014]. The interference
is the key feature that redistributes the energy Ćow between inputs, outputs and the
absorption channel. Moreover, the CPA effect has been demonstrated in the context of
quantum eraser experiment with the polarization-entangled biphoton state where only one
party of the state interacts with the plasmonic absorbing metasurface [Altuzarra et al.,
2017]. Owing to the entanglement of the state, the presence of CPA effect can be controlled
by the projective measurement on the non-local party of the state that never interacts with
the absorbing metasurface [Altuzarra et al., 2017]. The theoretical prediction of the CPA
effect with squeezed coherent states has been recently reported [Hardal and Wubs, 2019].
Very recently, non-local coherent absorption has been predicted [Jeffers, 2019]. An effect
of Bell states on a non-polarizing lossy beamsplitter and the corresponding calculation is
presented in Appendix E.

In general, the coherent absorption is an emergent phenomenon arising from an inter-
play of interference of input light and dissipation process. One of an interesting situation
of the coherent absorption occurs when an input state is a N00N state with N=2 since
the interference appears on the second-order intensity correlation, but not on the inten-
sity level [Hong et al., 1987, Jeffers, 2000]. In the following section, the theory of the
coherent absorption of a N00N state with N=2 is presented and then our experimental
demonstration is reported.
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3.2.2 Theory of coherent absorption

We refer to the theory of coherent absorption developed in [Jeffers, 2000, Barnett et al.,
1998] for the original calculation. An input state of interest is a N00N state with N=2,
which is generated from the Hong-On-Mandel interference on a balanced lossless beam-
splitter. The N00N state with N=2 (♣2ei2φ⟩) is deĄned as,

♣2ei2φ⟩ ≡ 1√
2

(♣21, 02⟩ + ei2φ ♣01, 22⟩), (3.16)

where φ is the relative phase between two output ports of the lossless beamsplitter. The
state then impinges on the lossy beamsplitter (LTBS2) which here is redeĄned to be
symmetric as follows,

LTBS2 = t

(︄

1 eiα

eiα 1

)︄

, (3.17)

where t is the transmission coefficient, and α is the tunable phase. Considering the linear
relation of the lossy beamsplitter from Eq. 3.4, we calculate how speciĄc two-photon input
states Eq. 3.16 result in the coherent absorption effect. The evolution of light from two
input modes (â1 and â2) of the LTBS to the outputs is modelled as,

â†
1 → t(â†

1 + eiαâ†
2) + F̂

†
1, (3.18a)

â†
2 → t(eiαâ†

1 + â†
2) + F̂

†
2. (3.18b)

In order to highlight one of the maximum conditions of coherent absorption, we set α = 0
and t = 1/2 throughout the presented calculations. Owing to the commutation relation
in Eq. 3.5, the noise operators are not independent and obey the commutation relations,

[︃

F̂ 1, F̂
†
1

]︃

=
[︃

F̂ 2, F̂
†
2

]︃

= 1 − 2♣t♣2 =
1

2
, (3.19a)

[︃

F̂ 1, F̂
†
2

]︃

=
[︃

F̂ 2, F̂
†
1

]︃

= −2♣t♣2 = −1

2
. (3.19b)

We consider the evolution in Eq. 3.18 to be unitary and the model of noise is represented
by a simpliĄed model of loss:

F̂ 1 = −F̂ 2 =
1√
2
â3, (3.20)

where â3 is used to represent a lossy channel into which the light is dissipated. The
provided noise operators satisfy the commutation relations (Eq. 3.19) and the energy
conservation of the whole system. Introducing the operator â+ ≡ (â1 + â2)/

√
2, we can

rearrange Eq. 3.18 as

â†
1 → 1√

2
(â†

+ + â†
3), â†

2 → 1√
2

(â†
+ − â†

3). (3.21)

We now consider the transformation of the N00N state with the lossy beamsplitter. A
straightforward calculation then leads to

a†2
1 + (eiφa†

2)
2 → 1

2
(1 + ei2φ)(a†2

+ + â†2
3 ) + (1 − ei2φ)a†

+â
†
3. (3.22)
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In the case φ = qπ + π/2, q ∈ Z we have

a†2
1 − a†2

2 → 2a†
+a

†
3. (3.23)

By introducing the states ♣nj⟩, which are Fock states of n excitations in mode j = 1, 2, 3,
we have

♣2−⟩ ≡ (♣21, 02⟩ − ♣01, 22⟩)√
2

♣03⟩ → (♣11, 02⟩ + ♣01, 12⟩)√
2

♣13⟩ , (3.24)

This means that single photons are deterministically absorbed while the other evolves
into a balanced superposition of the two output modes.

In contrast, for φ = qπ, q ∈ Z, the state becomes

a†2
1 + a†2

2 → a†2
+ + a†2

3 , (3.25)

which corresponds to the state,

♣2+⟩ ≡ ♣21, 02⟩ + ♣01, 22⟩√
2

♣03⟩ → 1√
2

(︄

(♣21, 02⟩ + ♣01, 22⟩)√
2

+ ♣11, 12⟩
)︄

♣03⟩

+
1√
2

♣01, 02, 23⟩ .
(3.26)

The state clearly shows that no single-photon absorption occurs in this case. On the other
hand, two-photon absorption takes place with the probability of 0.5, and the other half of
the probability is associated with the two-photon survival probability, which distributes
the superposition of two-photon state on three output combinations. These terms in
Eq. 3.26 correspond to the probabilities of two photons being in mode 1, being in mode 2,
or of single photons being in either mode, respectively. As the relative phase φ of the input
state is modulated, the combination of one-photon absorption and two-photon absorption
are controlled following Eq. 3.22. The calculation denotes the coherent absorption effect of
a N00N state with N=2. The experimental demonstrations of coherent absorption with
the N00N state have been recently reported with a bulk-optics setup in which a lossy
beamsplitter was implemented by multilayer absorbing graphene Ąlm, plasmonic chip, or
plasmonic metasurface [Roger et al., 2016, Vest et al., 2018, Lyons et al., 2019]. In the
next section, we experimentally demonstrate the coherent absorption effect with a full
control range of relative phase α of the lossy beamsplitter by using our programmable
optical network presented in chapter 2.

3.2.3 Experiment

Method

We illustrate the use of our experimental programmable optical network to simulate co-
herent absorption. We model to the interaction of a N00N state with N=2, (♣2, 0⟩ +
ei2φ ♣0, 2⟩)/

√
2, on the LTBS. The interaction between the N00N state and the LTBS

produces an intriguing φ-phase dependence of outcome probabilities of one- and two-
photon survival at the targeted outputs as discussed in subsection 3.2.2. We use our pro-
grammable optical network to simulate the coherent absorption experiment (Fig. 3.6a).
In detail, the experimental setup used in this experiment is the same as the one illus-
trated in subsection 2.2.1. The four targeted output ports of interest are allocated on two
arbitrary output positions and two polarization modes of the MMF as labelled H1, V1,



3.2. Coherent absorption 89

H2, and V2. We Ąrst measure the transmission matrix of the multimode Ąbre, then cali-
brate the relative phases and amplitudes of co-propagating reference Ąelds as thoroughly
explained in section 2.2. The programmable linear network L(φ, α) of the whole coherent
absorption experiment (Fig. 3.6a) for different φ, α phase settings are then programmed
on the SLM6.

The linear transformation L(φ, α) used as the representative of the coherent absorption
experiment can be seen as a succession of three linear operations: (i) indistinguishable
photons from the SPDC source are split by a beamsplitter to generate a NOON state
with N=2 with a controllable output phase φ; (ii) the NOON state interacts with a lossy
beamsplitter (LTBS). The LTBS is here deĄned to be the symmetric form as in Eq. 3.17;
(iii) photons are distributed into four output ports by two lossless beamsplitters in order
to measure the probability of two-photon survival, deĄned as a sum of probabilities of
detecting two photons in all possible output combinations of the LTBS, i.e., both photons
on either output ports (P (21, 02) and P (01, 22)) or single photons at each port (P (11, 12)).

The probabilities correspond to the two-fold coincidence counts at the four outputs of
the linear network. For each phase setting of L(φ, α), the two-fold coincidence counts
were integrated over 10 s. The probability of detecting two photons in the Ąrst output
of the lossy beamsplitter P (21, 02) corresponds to the double probability of detecting
two-fold coincidence 2PH1V 1 between the H1 and V1 output ports, and similarly the
probability of detecting two photons in the second output P (01, 22) is related to 2PH2V 2.
The double of the probability takes the probability of photon bunching that occurs at the
analysed beamsplitter (BS) into account. The probability of single photons detected on
each output port of the lossy beamsplitter P (11, 12) are then related to the summation
of probabilities of detecting two-fold coincidence, PH1H2 + PH1V 2 + PV 1H2 + PV 1V 2. All
measured probabilities are normalized with the probability of two-photon survival in a
case of mimicking the lossless MachŰZehnder interferometer with α = π/2.

Results and discussion

As shown in Fig. 3.6b, the effect of coherent absorption is maximized for α = pπ, p ∈ Z

(red line). In the case where the relative phase φ = qπ, q ∈ Z, which corresponds to a
state (♣2, 0⟩ + ♣0, 2⟩)/

√
2 as an input, the output state is a superposition of vacuum- and

two-photon state and the probability of one-photon being transmitted into the targeted
outputs is null as in Eq. 3.26. This result hence exhibits the non-linear behaviour of the
two-photon absorption in the quantum regime. On the other hand, when φ = qπ + π/2,
which corresponds to a state (♣2, 0⟩−♣0, 2⟩)/

√
2, only single-photon loss occurs as explained

in Eq. 3.24. Owing to our ability of fully control the relative phase α (Fig. 3.6c), which
was not possible in previous works [Roger et al., 2016, Vest et al., 2018, Lyons et al.,
2019], we observe a transition of the coherent absorption phenomenon from unitary for
α = π/2 (blue dots) to the maximal coherent absorption situation for α = π (red dots).

As presented in Fig. 3.7, the two-photon survival probability is composed of three con-
tributions which are the probability of occupying two photons on the Ąrst output of the
lossy beamsplitter P(21, 02), and the probability of occupying two photons on the second
output of the lossy beamsplitter P(01, 21) and the probability of occupying one photon of
photon pairs on each of output modes P(11, 12). At α = pπ, p ∈ Z which corresponds the
maximally lossy case, we observe in-phase oscillations of these contributions. It shows

6We note that here we do not implement the procedure of the fine amplitude calibration, as described
in subsection 2.2.3, when we program a different optical network, varying the phase parameter α.
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Figure 3.6 – Experimental emulation of controlled coherent absorption: (a) The linear net-
work L(φ, α) programmed in the MMF emulates the following circuit: (i) Photon pair
enters a Mach–Zehnder interferometer composed of a balanced beamsplitter and (ii)
a lossy symmetric phase-tunable beamsplitter (LTBS). Both the phase φ between the
two arms and the phase α of the LTBS can be tuned independently. (iii) Light in
each output port of the MZ interferometer is analysed via two balanced beamsplitters
preceding an array of four photon counters to measure the probability of two-photon
survival at the targeted output ports. (b) Probability of two-photon survival at the
targeted outputs: theory (solid lines) and experiment (dots). The blue dots are for
α = π/2, corresponding to an emulated lossless MZ interferometer. The corresponding
probability of two-photon survival is independent of φ. The red dots are for α = π,
corresponding to a lossy beamsplitter in which the probability of two-photon survival
depends on the relative phase φ. (c) Probability of two-photon survival as a function
of φ and α, showing a transition from emulated lossless to lossy LTBS.
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the maximum two-photon survival probability of 0.5 when the two-photon N00N state is
1/

√
2(♣21, 02⟩ + ♣01, 22⟩). In contrast, zero probability of two-photon survival is observed

when φ = qπ+ π/2, q ∈ Z. At α = π/2 which mimics the relative phase of lossless beam-
splitter, the probabilities of having two photons in either path of the MZ interferometer
are out-of-phase to the probability of having exactly one photon on each path. The pres-
ence of out-of-phase component results in a constant two-photon survival probability for
α = π/2 as depicted in Fig. 3.6 which is a signature of a lossless beamsplitter.
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Figure 3.7 – Contributions to the probability of two-photon survival: (Theory) top panel and
(Experiment) bottom panel. Decomposition of the two-photon survival probability
into its three contributions, P(21, 02), P(01, 22), and P(11, 12), corresponding to two
photons detected on the first output, on the second output of the lossy beamsplitter and
one of photon pairs detected on each of outputs of the lossy beamsplitter, respectively.
All probabilities are normalized with the probability of two-photon survival in a case of
mimicking the lossless MZ interferometer with α = π/2.

We want to note that the losses addressed in this chapter do not originate from the
optical system. Indeed, our optical system is nearly lossless. The multimode Ąbre is
a practically lossless waveguide7, which transports light from the input to output with
nearly perfect efficiency. The experimental transmission of the MMF was ∼ 0.95. The
SLM efficiency of light utilization8 is 0.97 at 785 nm (Hamamatsu LCOS-SLM X10468-
02). The loss utilized in our experiment for implementing non-unitary transforms, on

7The propagation loss of the MMF is <2.3 dB/km at 850 nm.
8Light utilization efficiency is defined as a ratio of the zero-th order diffraction light level to input

light level.
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the other hand, stems from the fact that we control only half of the propagating modes
of the MMF in each input port of an optical network, which is known as the imperfect
wavefront control (section 2.4.3). The part of the light from an input port is dissipated to
the unmonitored output modes owing to the partial wavefront control. The unmonitored
modes thus embody an environmental bath where information about the desired optical
network leaks, resulting in effective open system dynamics of the latter.

The total energy transmittance 2♣t♣2 to all targeted outputs of the implemented optical
networks L reaches 0.45(0.5) experimentally9 (theoretically). This transmittance allows
us to use this platform to emulate the coherent absorption effect close to the critical trans-
mission of 0.5, while still allowing full control on the relative α of the lossy beamsplitter.
In fact, the partial wavefront control allows us to generate arbitrary linear optical net-
works on the platform without being constrained by unitarity. The experimental scheme
is thus handy for implementing non-unitary evolution. For example, one can implement
a k ×m non-unitary transformation embedded on the large dimension of the multimode
Ąbre instead of doing this on a large-dimensional unitary transformation implemented via
the well-known decomposition techniques [Reck et al., 1994, Clements et al., 2016, Miller,
2013b, Miller, 2013a].

3.3 | Summary and perspectives

In this chapter, two related phenomena resulting from a non-unitary evolution of two-
photon states have been explored by the use of the programmable optical networks. In
particular, the two-photon interference on the lossy beamsplitter and the coherent absorp-
tion of a path-entangled N00N state with N=2 have been demonstrated experimentally.

In the Ąrst experiment, two indistinguishable input photons interfere on the lossy beam-
splitter. The results show the non-linear behaviour of the dissipation process in which
only a two-photon state has a probability of being absorbed or transmitted with 50%
chance, while no probability of single-photon being absorbed and transmitted. The phe-
nomenon is known as two-photon absorption on a linear lossy beamsplitter, which clearly
occurs in a low photon count level [Barnett et al., 1998]. In the second experiment, a
N00N state with N=2 is sent through the lossy beamsplitter, the relative phase φ of the
path-entangled N00N state with N=2 allows for the control of the probabilities of single-
and two-photon absorption. The phenomenon is known as coherent absorption [Jeffers,
2000]. The results indicate the two intriguing effects, which are non-linear and coherent
absorptions, of a non-unitary evolution of the two-photon interference.

Losses of control are usually deleterious for a quantum system. In our experiment, par-
tial wavefront control provides the ability to coherently and arbitrary implement linear
transforms beyond the unitary constraint, inducing a useful non-linearity and coherent ab-
sorption. The classical analogue of the coherent absorption phenomenon has been widely
exploited for several processing tasks [Zhang et al., 2012, Fang et al., 2015, Papaioan-
nou et al., 2016b, Papaioannou et al., 2016a, Xomalis et al., 2018, Baranov et al., 2017].
We anticipate that both related effects, non-linear and coherent absorption, pave an al-
ternative route for quantum information processing without the need of a conventional
non-linear optics. For instance, one might perspectively employ the coherent absorption
of two photons as a route to induce the interaction between two qubits [Kok et al., 2007]

9The experimental transmittance is defined as the ratio of the photon flux carried by all targeted
outputs of interest to the total photon flux transmitted through the MMF.
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which could apply as a protocol for a quantum logic gate. Furthermore, the reconĄgurable
nature and viability of our experiment also point a prospective towards the implemen-
tation of high-dimensional non-unitary linear circuits. The optical platform can be used
not only to study a fundamental non-Hermitian physics but also to apply to a quantum
information task such as dissipative quantum state engineering which is enabled by the
explicit presence of noise.
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State classifier

“The Milky Way is nothing else but a mass of

innumerable stars planted together in clusters.”

— Galileo Galilei

In this chapter, we exploit the complex mixing characteristics of the multimode Ąbre to
randomly projecting unknown states of light onto the high-dimensional output space. By
measuring statistical properties of intensity, second-order correlation, and a normalized
second-order correlation between two outputs over many realizations of random projec-
tion, we can distil information on the unknown states such as the purity, dimensionality,
indistinguishability. This information allows us to classify a certain set of unknown light
states without performing state tomography.
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4.1 | Introduction

Classical speckles can be used to reveal characteristics of light forming it. Statistical
properties of intensity speckles provide information about the Ąrst-order degree of coher-
ence. In case of classical fully-mixing of coherent states, i.e., equally-weighted incoherent
summation of coherent light source, the probability density function (PDF) of intensity
speckle is

P1(
I

I
) =

dd

Γ(d)

(︃
I

I

)︃d−1

exp
(︃

−dI
Ī

)︃

, (4.1)

where d represents a number of coherent sources, Γ is the gamma function, and Ī is
an average intensity. This PDF is known as a gamma density function of order d or
χ2-distribution [Réfrégier, 2004, Goodman, 2005b]. In case of fully developed speckle
(d = 1), the PDF reduces to the exponential decay shown in Eq. 2.3.

d=10 d=1

Figure 4.1 – Probability density distributions of intensity: (black line) d = 1 and (red line)
d = 10. Insets show intensity speckle patterns in which one easily distinguishes the
coherent light d = 1 and the partially-coherent light d = 10.

As shown in the insets of Fig. 4.1, speckle patterns of coherent light and partially-coherent
light are clearly distinct. By Ątting the statistical distribution or estimating statistical
moments, a number of modes of an unknown light source can be predicted, typically via
the calculation of visibility of intensity speckle1,

VI =
Var (I)

I
2 =

1

d
, (4.2)

In general, one could ask a question about what kind of possible information of an input
non-classical light can be predicted from statistical properties of its corresponding scat-
tered light also at higher-order correlations. This is the initial motivation of research that
we are going to explore in this chapter. As depicted in Fig. 4.2, our general statement of
research problem is summarized in the following question:

ŞHow much information about an input state ρ one can distil by measuring statistical
properties of the Ąrst-order intensity as well as a certain number of high-order correlations,
when the input state is randomly projected into a high-dimensional space?Ť.

In the following section, a literature review regarding the problem is provided.
1The visibility is a square of the contrast of the speckles.



4.1. Introduction 97

Figure 4.2 – Research problem: An unknown light source is randomly projected to a high-
dimensional output space via the SLM and multimode fibre (MMF). We probe the
state on two-output mode subspaces, labelled Hi and Vj . Photocurrents (Ii), two-fold
coincidence counts (Cij), and normalized second-order correlation g(2) are measured
and used to extract information about an input state.

4.1.1 Quantum optics in multiple scattering process

Overview

Quantum optics in multiple scattering process have been explored as a small sub-Ąeld
since the last 1990s [Patra, 2000, Beenakker, 2018]. One of early work is a study of
the process of thermal radiation and ampliĄed spontaneous emission from a scattering
medium [Beenakker, 1998, Beenakker and Patra, 1999]. Over the last two decades, sub-
stantial theoretical endeavours have been devoted to understanding how non-classical
lights behave during multiple scattering. A wide range of topics has been investigated,
for instance, the degradation of entanglement [Aiello and Woerdman, 2004, Van Velsen
and Beenakker, 2004, Puentes et al., 2007, Candé et al., 2014], the transport of quantum
noise [Patra and Beenakker, 2000, Lodahl and Lagendijk, 2005, Lodahl, 2006b, Lodahl,
2006a, Skipetrov, 2007], and dynamics of photon statistics in disordered or structured
lattices [Bromberg et al., 2009, Lahini et al., 2010, Esat Kondakci et al., 2016, Kondakci
et al., 2017].

One of the relevant phenomena is the presence of spatial correlation averaged over an
ensemble of realizations of the scattering medium [Lodahl et al., 2005, Smolka et al.,
2009, Smolka et al., 2011, Ott et al., 2010]. The phenomenon results from both classical
and quantum origins [Candé and Skipetrov, 2013, Starshynov et al., 2016]. The disorder-
averaged spatial correlation varies depending on scattering properties of a medium and
the input state of light, e.g., squeezed state [Smolka et al., 2009, Smolka et al., 2012], a
photon-number state [Ott et al., 2010, Ott, 2012, Li et al., 2019a], thermal state [Lodahl
et al., 2005, Starshynov et al., 2016] or frequency-entangled biphoton states [Cherroret and
Buchleitner, 2011]. In consequence, the averaged spatial correlation can be potentially
applied to extract information about an incident state of light [Ott et al., 2010, Cherroret
and Buchleitner, 2011].

Statistical property of two-photon speckles

The speckle pattern of two-fold coincidences generated from a biphoton state is known as
two-photon speckle [Beenakker et al., 2009]. In 2009, C.W.J Beenakker, J.W.F. Vederbos,
and M.P. Exter calculated a statistical property of two-photon speckles produced by a
pure state of spatially-entangled photon pairs of dimension d. They found a one-to-one
mapping between the probability density functions of intensity speckle P1(I) and of two-
photon speckle P2(C). In case of a pure spatially and maximally-entangled biphoton state,
the PDF of the intensity speckle P1(I) has the same form as in the case of a classical fully-
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mixture of coherent states (Eq. 4.1) [Beenakker et al., 2009]. Consequently, the PDF of
two-photon speckle P2(C) reads,

P2(
C

C
) =

2d

Γ(d)

(︃

d
C

C

)︃ d−1
2

Kd−1

∏︁

∐︂2

√︄

d
C

C

⎞

ˆ︁ , (4.3)

where Kd−1 is a modiĄed Bessel function of the second kind. This distribution is known as
K-distribution [Réfrégier, 2004, Andrews and Phillips, 2005] and has a classical analogy
with an intensity speckle, and appears, for example, in linear optical rogue waves [Arecchi
et al., 2011].

For a pure biphoton state, the PDF of two-photon speckle is Ąxed via the PDF of intensity
speckle owing to this one-to-one mapping [Beenakker et al., 2009]. Therefore, it does not
provide additional information about a given pure biphoton state [Beenakker et al., 2009].
Nevertheless, the PDF of two-photon speckles can be used to distinguish a pure biphoton
state from other states. For example, in case of a single-photon state, no genuine two-fold
quantum coincidences exist. Furthermore, in case of a mixed biphoton state, no such
one-to-one mapping between P1(I) and P2(C) exists [Beenakker et al., 2009].

Furthermore, C.W.J Beenakker, J.W.F. Vederbos, and M.P. Exter have also shown that
the purity P of a biphoton density matrix ρ can be directly obtained from the Ąrst two
statistical moments of intensity speckle and two-fold coincidence speckle [Beenakker et al.,
2009, van Enk and Beenakker, 2012] as follows:

P = Tr ρ2 = VC − 2VI . (4.4)

where VI is the visibility of intensity speckles (Eq. 4.2) and VC is the visibility of two-fold
coincidence speckles deĄned as,

VC =
Var(C)

C
2 . (4.5)

The dimensionality2 d of a pure spatially maximally-entangled biphoton state can be
obtained from both visibilities,

Vpure
I =

1

d
, (4.6a)

Vpure
C = 1 +

2

d
. (4.6b)

On the other hand, one can consider the case of a fully-mixed biphoton state, deĄned as

ρmixed =
1

D

D∑︂

i=1

♣Ψi⟩ ⟨Ψi♣ , (4.7)

where ♣Ψi⟩ ≡ ♣1⟩a ⊗ ♣1⟩b is a pure separable biphoton state. Its purity is determined by a
number of classical mixtures D in the fully-mixed state. According to Eq. 4.4, the purity
and visibility of two-fold coincidences are

Pmixed =
1

D
=

2

d
(4.8a)

Vmixed
C =

2

D
=

4

d
(4.8b)

2We define here the dimensionality d as twice the Schmidt rank D, that quantifies the dimensionality
of entanglement: d = 2D. Our underlying reason is that it provides an analogy with a classical source.
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As d → ∞, the corresponding statistical distribution of two-fold coincidences P2(C) tends
to a narrow Gaussian proĄle and is completely different from the case of a pure maximally-
entangled biphoton state, as shown in Fig. 4.3. The PDF of a pure maximally-entangled
biphoton state is K-distribution and it converges to the exponential decay behaviour as
d → ∞. The K-distribution shows a non-exponential long decay at low d [Abraham and
Lyons, 2010].

Figure 4.3 – Probability density distributions of two-fold coincidences: (lines) for a pure
maximally-entangled biphoton state of various dimension d and (yellow area) for fully-
mixed biphoton state (d = 50).

Experimental observations

A considerable number of experiments have been carried out in the context of non-classical
light propagating through a complex scattering medium [Lodahl et al., 2005, Puentes
et al., 2007, Smolka et al., 2009, Peeters et al., 2010, Van Exter et al., 2012, Di Lorenzo
Pires et al., 2012]. Two related experiments are mentioned here. In 2010, W. H. Peeters, J.
J. D. Moerman, and M.P. van Exter observed a two-photon speckle. As shown in Fig. 4.4,
the intensity speckle appears to be like a speckle of incoherent source, while a high-contrast
two-photon speckle is observed. This is clearly the feature of a high-dimensional spatially-
entangled biphoton state. In 2012, the statistical distributions of speckles generated from
pure entangled biphoton states of different dimensions d have been demonstrated by using
the scattering system made of two rotated diffusers [Di Lorenzo Pires et al., 2012]. As
shown in Fig. 4.5, the PDFs of two pure spatially-entangled biphoton states for d = 1.4
and d = 80 is consistent with the theory, explained in the previous section [Beenakker
et al., 2009, Di Lorenzo Pires et al., 2012].
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Figure 4.4 – Intensity and two-photon speckles: (a) Measured single count rate scanning across
the image plane and (b) Corresponding measured two-fold coincidence counts scanning
across the image place with the first detection while keep the position of second detector
fixed. Adapted from [Peeters et al., 2010]

Figure 4.5 – Probability density distributions for pure biphoton states: (a and b) PDF of
intensity speckles for two pure entangled biphoton states of dimension d = 1.4 (a) and
d = 80 (b). (c and d) PDF of two-photon speckles for two pure entangled biphoton
states of dimension d = 1.4 (c) and d = 80 (d). Adapted from [Di Lorenzo Pires et al.,
2012]
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Statistical verification for boson sampling

In the context of boson sampling, many protocols have been proposed to certify the
presence of genuine many-particle quantum interference on an optical device [Brod et al.,
2019], for example, likelihood ratio tests [Spagnolo et al., 2014], zero transmission laws [Tichy
et al., 2010], and pattern recognition techniques [Agresti et al., 2019]. One of the promis-
ing techniques is based on statistical signatures of low-order spatial correlation of many-
particle quantum interference. M. Walschaers et al. have proposed to certify the degree
of indistinguishability of an input state by using the Ąrst three statistical moments of
two-mode truncated correlation [Walschaers et al., 2016b, Walschaers et al., 2016a]. The
two-mode truncated correlation or two-point photon-number correlation is deĄned as

Cij =
˜︁

N̂ iN̂ j

˜︂

−
˜︁

N̂ i

˜︂ ˜︁

N̂ j

˜︂

, (4.9)

where N̂ is the photon number operator. It measures all possible two-particle interfer-
ences that contribute to mode i and j. The statistical technique has been extended to
certify temporal indistinguishability [Walschaers et al., 2016b] and Gaussian boson sam-
pling [Phillips et al., 2019]. D.S.Phillips et al. has theoretically shown that squeezing of
Gaussian input states provide statistical signatures in the Ąrst three statistical moments
of two-point correlation that is not observable in a photon number Fock state [Phillips
et al., 2019]. Experimentally, this statistical technique has been recently applied to classify
the indistinguishability of three-photon interference on seven-mode integrated photonic
chip [Giordani et al., 2018].

4.1.2 Conclusive remarks and objectives

Many theoretical works have been exploring statistical properties of second-order corre-
lation to measure purity, dimensionality and indistinguishability of a state. A few experi-
ments have been reported the use of those techniques. In this chapter, our objective is to
study the statistical properties of two-photon speckles for different input states in order
to extend the techniques for a more general class including frequency-entangled biphoton
states. In particular, we are going to experimentally show the feasibility of the technique
for state classiĄcation. In the following, we provide the experimental details and describe
various input states used in our study.

4.2 | Experimental details

For our experiment, the optical setup is the same as described previously in Fig. 3.2. As
conceptually shown in Fig. 4.2, the combination of SLM and MMF (Thorlabs, GIF50C)
is used as an optical mixer for random projection [Mahoney, 2010]. An unknown state of
light is randomly projected via the optical mixer onto many output modes (n ≈ 400). We
measure statistical properties using two Ąxed output modes which are randomly selected
on two different spatial modes and are in orthogonal polarizations. We assume that the
optical mixer is unitary and sufficiently random. This means that the correlation pre-
sented in a sub-part transmission matrix of the multimode Ąbre linking to two measured
outputs is negligible and can be efficiently represented by an i.i.d. complex Gaussian
random matrix [Aaronson and Arkhipov, 2011]. Many realizations are set via a different
phase pattern displayed on the SLM, which controls light coupling through the MMF
with random phases and amplitudes. Photocurrents and two-fold coincidence counts are
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acquired by single-photon counting module and coincidence electronics for many realiza-
tions of the optical mixer. We tested several input ground-truth states as listed in the
following.

4.2.1 Ground-truth input states

Our ground-truth input states can be divided into two main categories regarding emis-
sion process. The Ąrst category is quantum, generated from the frequency-degenerate
polarization-separable type-II SPDC process (the details of the source are explained in Ap-
pendix A). The second is classical, generated by the ampliĄed spontaneous emission
(ASE) process from the superluminescent diode light source (SLD, Superlum).

Furthermore, we study the effect of temporal mixing on the statistical properties of scat-
tered lights by changing the length of the Ąbre. We prepared the spectral bandwidth of the
SLD source to be approximately the same as the SPDC source. The spectral full width at
half maximum is ∆λSPDC = 1.56±0.05 nm for the SPDC source and ∆λSLD = 2.33±0.05
nm for the SLD source. We split ground-truth light states into two categories: monochro-
matic case and polychromatic case. In the monochromatic case, we use a short Ąbre with
a length of 55 cm in order to control the spectral correlation bandwidth of the medium
to be broader than the spectral bandwidth of all ground-truth light sources, i.e., non-
dispersive. In contrast, we use the Ąbre with a length of 25 m for the polychromatic
case as a highly dispersive medium. The indistinguishability of the SPDC source and
the coherence property of the SLD source are controlled by the delay line δ between two
inputs. We provide details of state preparation for each ground-truth state:

• Monochromatic case: 55-cm long MMF (GIF50C, Thorlab).

1. Indistinguishable monochromatic biphoton state: The delay between
two input modes is set to zero (δ = 0). The state can be appropriately written
as ♣1Hin1Vin⟩.

2. Distinguishable monochromatic biphoton state: The same as before but
the delay between two input modes is set to be longer than the coherence length
lc of the biphoton state (δ > lc). The state can be appropriately written as
♣1Hin⟩δ=0 ♣1Vin⟩δ>lc

.

3. Indistinguishable N00N state with N=2: The N00N state is prepared
via HOM interference with a balanced Ąbre-based beamsplitter just after the
SPDC source. The measured two-photon visibility is 0.98. Initially, we test
the indistinguishability of the NOON state after propagating through the MMF
by programming an optical network to act as the balanced beamsplitter (see
subsection 2.2.3 for details). We observe the N00N-state interference (subsec-
tion 1.3.2) and ensured that the visibility of interference is observed at the
same visibility as the HOM interference before propagating through the Ąbre.
The state can be written as in Eq. 1.37.

4. Heralded single-photon state: We use the SPDC source as heralded single-
photon source by sending only a vertical-polarization photon of the biphoton
state through the Ąbre. We post-select the single-photon state via heralding
process.

5. Two-photon Fock state: We post-select one output of the N00N state gen-
erated by the Ąbre-based beamsplitter as explained in (3).
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6. Incoherent source: The spectral-Ąltered and polarized SLD source is dis-
tributed by the beamsplitter into the two input modes and the delay between
two inputs is set to be longer than the coherence length of the source (δ > lc).

• Polychromatic case: We use the 25-m long MMF (GIF50C, Thorlab) with the
spectral correlation bandwidth of the Ąbre ∆λfibre = 0.222 ± 0.004 nm.

1. Indistinguishable frequency-entangled biphoton state: The same source
as in the case of indistinguishable monochromatic biphoton state (δ = 0). The
anti-correlation in frequency need to be taken into account. The state can be
written as in Eq. 1.26.

2. Distinguishable frequency-entangled biphoton state: The same as above
with the delay (δ > lc). The state can be appropriately written as in Eq. 1.30.

3. Incoherent source: It is the same as the incoherent source, but propagating
through the 25-m long MMF. The number of spectral channels of the state is
∆λSLD/∆λfibre ≈ 10.6.

4.2.2 Detection and data analysis

For a given input state at each realization, on each random projection, we record photocur-
rents (I1, I2) and two-fold coincidence counts (C) between two outputs using two APD
detectors and coincidence electronic circuit. The coincidence window (τC) is set to 2.5
ns. We deĄne the normalized second-order correlation (g(2)) as the ratio between two-fold
coincidence counts C and the expected accidental coincidences R as follows, g(2) = C/R,
where the accidental coincidences are deĄned as R = τCI1I2. The accidental coincidences
are not subtracted from the raw two-fold coincidences C in all cases; therefore, measured
two-fold coincidence counts contain the contributions both from classical and non-classical
origins.

In order to take into account the contribution of accidental coincidences, we provide a
more detailed data analysis of R. According to the fact that photocurrents I1 and I2 are
two independent random variables3 with a gamma density function of order d (Eq. 4.1),
we calculate the probability density function of accidental coincidences R, and it reads,

P2(
R

R
) =

2

Γ(d)2
d2d

(︃
R

R

)︃d−1

K0

∏︁

∐︂2d

√︄

R

R

⎞

ˆ︁ , (4.10)

The integration time of each realization of the optical mixer is set such that the averaged
integrated intensity of all ground-truth light states are in the same range of a value, and
two-fold coincidences are detected in the range of a few tens per second. The number of
realizations that we acquired is about 10000 realizations. The information about experi-
mental details is provided in Appendix F. The overall measurement time was a few days
per ground-truth state.

To verify the stability of the sources and of the optical setup, we keep tracking every hour
the mean intensities at the two outputs and the mean and variance of the normalized
second-order correlation. Furthermore, in cases of SPDC source, the visibility of HOM
interference is measured before starting and after Ąnishing the experiment in order to
ensure the stability of the source. In the following, the results are presented and discussed.

3We assume no correlations in the subpart of TM of MMF.



104 Chapter 4. State classifier

4.3 | Results and discussion

We Ąrst present raw measured data on the scatter plot of intensity I1/I1 and normalized
second-order correlation g(2)/g(2) for all ground-truth states in Fig. 4.6a. The statistical
distributions of all ground-truth states plotted in intensity and second-order correlation
indicate highly uncorrelated feature. We can thus extract information about the states
from the marginal probability distributions on the intensity and normalized second-order
correlation independently.

Figure 4.6 – Statistical distributions of intensity I1/I1 and normalized second-order corre-

lation g(2)/g(2): (a) Scatter plot of intensity I1/I1 and normalized second-order cor-

relation g(2)/g(2). Each point represents measurement obtained from one realization
of the optical mixer. (b) Marginal probability density function of intensity P1(I1/I1)
provides information of a number of modes d. (c) Marginal probability density function

of normalized second-order correlation P2(g(2)/g(2)) can be applied to further classify
states. Ground-truth states are labelled as indicated in the figure.

At the intensity level, the statistical properties of intensity speckle P1 (Fig. 4.6b) can-
not be used to distinguish a classical state apart from a non-classical state; it provides
only information about the number of modes (d) that a state occupies as described by
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Eq. 4.1. The additional information of an unknown state can be extracted by measuring
statistical properties of a second-order correlation such as the purity [Beenakker et al.,
2009] and degree of indistinguishability [Walschaers et al., 2016b]. We propose here that
the statistical property of normalized second-order correlation g(2) (Fig. 4.6c) is a most
useful indicator, that can be applied for state classiĄcation. In the following, we report
our experimental observations and supporting evidence for this proposal.

4.3.1 Purity and dimensionality of biphoton states

The statistical distribution of two-fold coincidences for each ground-truth state is shown
in Fig. 4.7. We observe that the contribution of accidental coincidences in the experi-
ment potentially degrades the statistical distribution from the expected genuine two-fold
coincidences. In the case of monochromatic biphoton states, the distributions are better
described by the statistical distribution of accidental coincidences (Eq. 4.10), rather than
by the PDF of two-fold coincidences (Eq. 4.3). This effect of accidental coincidences also
occurs in the case in which the expected accidental coincidences are subtracted from the
measured two-fold coincidences as presented in Fig. F.3. Due to this effect, for example
for d = 2, one cannot easily distinguish the incoherent light source (dark blue) from the
indistinguishable biphoton state (blue), distinguishable biphoton state (red), and N00N
state with N=2 (orange).

This inĆuence of the effect is fewer at a high value of d in the long MMF. We observe
a sizeable deviation of statistical distributions of dispersive indistinguishable (green) and
distinguishable (light magenta) biphoton states from the predicted distribution of acciden-
tal coincidences (dashed magenta line with d ≈ 14, estimated by measuring the statistics
of intensity). The experimental distributions of both dispersed biphoton states tend to
shift towards zero and have a higher skewness compared to the distribution of accidental
coincidences, which may be a feature originating from a quantum effect4. Unfortunately,
both distributions have a feature similar to the distribution of accidental coincidences
around d ≈ 10. Consequently, classifying the state with two-fold coincidences in the
presence of accidental coincidences is a challenging task.

We estimate the purity of ground-truth monochromatic biphoton states from the visibili-
ties of intensity, and two-fold coincidences using the theoretical prediction (Eq. 4.4). The
results are presented in Table 4.1. We can estimate the number of modes that a ground-
truth state occupied. The purity is lower than the expectation, the error results mainly
from a underestimation of VC . We attribute the error to two contributions: the inĆuence
of accidental coincidences and the lack of rare events originating from a long tail of the
statistical distributions. We describe these inĆuence in Appendix F.1. Here we infer that
the estimation of the purity is inconclusive under the presence of those inĆuences.

4The estimated deviation of d with the model of accidental coincidences is lower than the expectation
with the statistics of intensity by 16-fold standard deviation.
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a

b

c

Figure 4.7 – Probability density functions of two-fold coincidences P2(C/C): (a) Indistinguish-
able biphoton state (blue), distinguishable biphoton state (red), and N=2 N00N state
(orange) have the same distribution with d = 2. (b) Heralded single-photon state (light
green) and two-photon state (magenta) have the same distribution. Ever though the
two-fold coincidences of single-photon state result solely from the accidental coinci-
dence d = 1, the distribution is identical to the distribution of genuine coincidence at
d = 1 for two-photon state. Incoherent source (dark blue) in a 55-cm MMF and inco-
herent source (light yellow) in a 25-m MMF have different distributions with d = 2 and
d = 20, respectively. (c) Indistinguishable (green) and distinguishable (light magenta)
biphoton states in dispersive 25-m MMF have the same distribution that diverges from
the PDF of expected accidental coincidences for d ≈ 14 (dIndis = 14.7, dDis = 13.8)
predicted from the visibility of intensity speckle. The lines indicate distributions of
two-fold coincidences for a pure maximally-entangled biphoton state (Eq. 4.3). The
dashed lines indicate distributions of accidental coincidences (Eq. 4.10).

Table 4.1 – Purity and dimensionality of monochromatic biphoton states.

State VI VC P d

biphoton state (δ = 0) 0.46 ± 0.02 1.38 0.45 ± 0.03 2.16 ± 0.09
biphoton state (δ > lc) 0.50 ± 0.02 1.34 0.35 ± 0.03 2.02 ± 0.07
Indistinguishable N=2 N00N state 0.45 ± 0.01 1.27 0.38 ± 0.02 2.24 ± 0.01
♣2V ⟩ 0.85 ± 0.06 2.39 0.69 ± 0.12 1.18 ± 0.09
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4.3.2 Statistics of normalized second-order correlation

The statistical properties of normalized second-order correlation are analysed in this sec-
tion. As shown in Fig. 4.8, the statistical distributions of different ground-truth states can
be better identiĄable, compared to that of two-fold coincidences presented in the previous
section. The key reason is that the normalized second-order correlation g(2) Ąlters out the
effect of the Ćuctuation of intensities presented in two-fold coincidences.
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Figure 4.8 – Probability density functions of normalized second-order correlation P2(g(2)):
(a) Distributions of indistinguishable biphoton state (blue), distinguishable biphoton
state (red), and N=2 N00N state (orange) are different owing to the presence of
quantum interference. (b) Distributions of heralded single-photon state (light green),
incoherent source (dark blue) in a 55-cm long MMF, and incoherent source in a 25-m
long MMF (light yellow) have the means at the accidental coincidence (the red dashed
line, g(2) = 1), while the two-photon Fock state ♣2⟩ (magenta) has the highest mean
of g(2). (c) Indistinguishable (green) and distinguishable (light magenta) biphoton
states in dispersive 25-m MMF have different distributions, where the width of the
indistinguishable case is wider than that of the distinguishable case. We expect that
the contribution originates from quantum interference.
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On the effect of quantum interference

As presented in Fig. 4.8a, in the cases of indistinguishable biphoton state (light blue)
and N=2 N00N state (orange), we observe a broader and Ćatter statistical distribution
compared to the distinguishable case. This can be attributed to the effect of two-photon
quantum interference that increases the variance of the distributions. Moreover, the
variance of the normalized second-order correlation for the N=2 N00N state is lower
than that for the indistinguishable biphoton state. We believe that this effect arises
from the fact that the N00N state experiences dephasing effects since the N00N state
is very sensitive to phase Ćuctuation that modulates faster than an integration time.
Consequently, the second-ordered correlation detects only the root mean square response.
To support this, we measure the visibility of normalized second-order correlation: Vg(2) =

Var
(︂

g(2)
)︂

/g(2)
2
. Then, we compare the ratio of the measured visibility of g(2) between

the indistinguishable biphoton state and the N=2 N00N state as follows:

V Indis
g(2)

VN00N
g(2)

=
0.178

0.127
= 1.402 ≈

√
2, (4.11)

where V Indis
g(2) is the visibility of g(2) for the indistinguishable biphoton state and VN00N

g(2) is

that of the N00N state with N=2. The ratio of
√

2 thus corresponds to the root mean
square response of the measurement detecting a fast sinusoidal oscillation, which is linked
to the oscillation of N00N-state interference (subsection 1.3.2). Accordingly, the statistical
property of normalized second-order correlation can distinguish three types of biphoton
states and can be used as a probe for the indistinguishability.

We further consider the heralded single-photon state (light green) and two incoherent
states, one propagating through 55-cm long MMF (dark blue) and another propagating
through 25-m long MMF (light yellow) as presented in Fig. 4.8b. The means of their
two-fold coincidences are at the level of accidental coincidences because only classical
correlation is present in the classical sources and the single-photon state. Moreover, the
two-photon Fock state (magenta) can be distinguished from those classical states and the
heralded single-photon state since it has the higher value of g(2). The measured visibilities
of normalized second-order correlation of all states are reported in Table F.2.

On the frequency-entangled biphoton states

As estimated by the visibility of intensity speckles, the number of modes that the frequency-
entangled states occupied is approximately d ≈ 14 (Fig. 4.6b and Table. F.2). This
number corresponds to two modes inputs of different polarizations with approximately
seven spectral modes for each input. The results infer that the biphoton states expe-
rience a dispersion of the Ąbre. In this situation, two-photon quantum interference of
frequency-entangled states presents the dispersion cancellation effect owing to frequency
entanglement [Steinberg et al., 1992b, Steinberg et al., 1992a]. The cancellation effect
guarantees the robustness of quantum interference and increases the indistinguishability
of the biphoton state.

As a result, we observe as shown in Fig. 4.8c that the statistical distribution of g(2) in
the case of the indistinguishable biphoton state (green) is broadened, compared to the
case of the distinguishable biphoton state (light magenta). The broadening of distribution
follows a similar trend as for monochromatic indistinguishable biphoton state observed in
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Fig. 4.8a. Accordingly, the g(2) seems to be a good indicator for probing the presence of
quantum interference.

Lastly, we compare the measurement of g(2)/g(2) with the two-fold coincidences C/C. We
Ąnd that the measurements of normalized second-order correlation g(2) is correlated to
the measurement of two-fold coincidences only in case of the frequency-entangled states
as depicted in Fig. 4.9. The positive correlation between the two indicators hence sup-
ports the observation of the deviation presented in the statistical distribution of two-fold
coincidences as shown in Fig. 4.7c.

Figure 4.9 – Correlation of measurements of two-fold coincidences C/C and normalized

second-order correlation g(2)/g(2): Each circle on the scatter plot displays one mea-
surement of each realization of the optical mixer for indistinguishable biphoton state
(green) and distinguishable biphoton state (light magenta).
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4.3.3 State classification

Thanks to all of the information about a state that we can extract from the statistical
properties of intensity speckle P1(I) and of normalized second-order correlation P2(g

(2)),
we can further classify an unknown state using both pieces of knowledge about the number
of modes d and the indistinguishability of a state. We propose that the visibility of the
normalized second-order correlation, Vg(2) = Var

(︂

g(2)
)︂

/g(2)
2
, is a good indicator of the

latter. It can be used to obtain information about the degree of indistinguishability of a
state, and it is thereby useful for state classiĄcation.

In order to classify a state using these statistical features, we further analyse all nine
ground-truth states via the two indicators which are the visibility of speckle intensity (VI)
and the visibility of normalized second-order correlation (Vg(2)). As shown in Fig. 4.10,
each point represents the visibility that is estimated from 200 realizations of the optical
mixer randomly sampled from the experimental datasets. The results show that both
statistical features are highly independent and can classify a state having a different
number of modes and degree of indistinguishably. The technique can also distinguish the
indistinguishable (green) from the distinguishable (light magenta) frequency-entangled
biphoton states.

Figure 4.10 – Feature plane for state classification: The feature plane are plotted on the plane of
the visibility of intensity (VI) and the visibility of normalised second-order correlation
(Vg(2)).
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4.4 | Summary and perspectives

In this chapter, we experimentally demonstrated the use of spatial light modulation in
combination with the multimode Ąbre as a random projector for state classiĄcation. The
state classiĄer is based on the statistical properties of generated speckles, both in intensity
and in second-order correlations. The purity and dimensionality of arbitrary two-photon
density matrix can be estimated using the visibilities of intensity speckle and two-fold
coincidences speckle without performing state tomography a priori. Furthermore, we
analysed the statistical properties of normalized second-order intensity correlation g(2)

and experimentally showed that the degree of indistinguishability could be extracted from
the visibility of g(2) and thereby provides useful information for further classifying states.

We plan to work on the theoretical prediction of a statistical distribution of normalized
second-order intensity correlation. Statistical property of different classes of states such
as a large number of single-photon states (boson sampling), high photon-number Fock
state, squeezed states, multi-party entangled states are also appealing for further study.
Furthermore, it is also interesting to study the statistical properties of higher-order cor-
relations.

Apart from statistical properties considered here thanks to the complex mixing of the
MMF, our optical platform does also provide the feature of reprogrammable linear optical
network L. Combination of both techniques can be applied to characterize a state further
in more adaptive manners. Our perspective is to use a certiĄcation protocol to estimate
a property of the state, e.g., purity and dimensionality, before doing tomography on the
state based on those measured postulations.





General conclusions and outlook

Complex mixing of modes, at Ąrst sight, is useless. Worse, it is usually regarded as a
problem in optical communication with multimode Ąbre. In this dissertation, we have
demonstrated, in contrast, the usefulness of mode mixing: an optical mixer, here a mul-
timode Ąbre, is a useful device that allows us to harness isotropic mixing of information.

We have explored the property of a MMF for designing an alternative architecture of
reprogrammable linear optical networks thanks to the use of wavefront control via a spatial
light modulator. This optical design is a top-down approach where a reprogrammable
small-dimensional photonic circuit is embedded in a high-dimensional transmission matrix
of the multimode Ąbre. The concept of such reprogrammable linear optical networks is
related to a general idea of inverse-photonic design, where one explores a large space of
parameters to design an optical device.

We have experimentally demonstrated the programmability of the optical platform through
control two-photon interferences in various interferometers across path-polarization de-
grees of freedom. The results of two-photon interference are used in the certiĄcation task
of indistinguishability based on the zero-transmission law [Tichy et al., 2010]. High values
of measured two-photon visibility, low loss close to the theoretical limit, and high Ądelity
of implemented optical networks demonstrate the reliability of the platform, which paves
a route towards several quantum applications. The scalability of programmable optical
networks is key. Fidelity of implemented large optical networks can be kept constant as
the dimension of an optical mixer and the degree of wavefront control are linearly scaled
together with the dimension of optical networks. Our platform, therefore, provides an
efficient alternative to integrated circuits for quantum information processing.

Owing to the capability to implement arbitrary linear transformation, we have explored
our programmable optical networks to study a non-unitary evolution of a biphoton state.
In chapter 2, we observed two-photon interference with photon anti-coalescence in all
input-output combinations. We further studied related phenomena in chapter 3, where
non-linearity of two-photon absorption on a lossy beamsplitter and the simulation of co-
herent absorption effect have been demonstrated. We showed the control of lossy beam-
splitters and therefore, the manipulation of the probability of two-photon survival. We
anticipate these results pave an alternative route to implement quantum information pro-
cessing protocols.

In addition to the requirement of random unitary linear networks to benchmark the com-
putational complexity of the boson sampling problem, a complex mixing itself is also
useful in many computational tasks [Mahoney, 2010, Collins and Nechita, 2016]. Speckles
of high-order correlations, e.g., an outcome probability of the boson sampling problem,
speckle of a high-dimensional entangled state, are of great interest for our understanding
of quantum interference phenomenon. We explored how our optical mixer, a combination
of SLM and MMF, can be exploited for studying statistical properties of nonclassical
speckles that can be generated from various states of light. Part of the information about
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an unknown input state can be extracted from statistical properties of speckles, e.g.,
state purity, dimensionality, and indistinguishability. We experimentally demonstrated
the measurement of those parameters. Furthermore, we showed that the Ąrst two statis-
tical moments of normalized second-order correlation, i.e., the visibility, can be used to
extract the degree of indistinguishability. Together, all indicators of indistinguishability,
dimensionality, and purity can be applied to further classify unknown input states. This
includes the ability to measure the degree of indistinguishability of frequency-entangled
states. Their statistical feature survives disordered-ensemble average and the effect of
dispersion in a long Ąbre.

In conclusion, we have experimentally demonstrated the use of complex mixing of optical
modes for quantum information processing in two particular ways: (1) reprogrammable
linear optical networks and (2) speckle-based measurement (random projection) for state
classiĄcation. We anticipate that the experimental results presented in the dissertation
will ease the concerns about optical losses and complexity in wavefront control of high
dimension which are typically considered to be the main drawback in quantum optics
experiments. Therefore, it paves the way for further studies in many aspects, especially
as a new optical platform for modern quantum optical experiments and photonic quantum
information processing.

Our outlook for further investigations and technological developments are as follows:

• Towards a large array of coincidence detection: As shown in subsection 2.4.4,
we have classically demonstrated the scalability of optical networks. A detector ar-
ray of coincidence counts, e.g., single-photon avalanche diode (SPAD) array [Brus-
chini et al., 2019], intensiĄed charge-coupled device (ICCD) [Peřina et al., 2012, Fick-
ler et al., 2013], or electron multiplying charge-coupled device (EMCCD) [Reichert
et al., 2018, DeĄenne et al., 2018b] will effectively allow us using the optical platform
for implementing an optical network of higher dimension. Alternatively, photonic
lanterns [Leon-Saval et al., 2010, Velázquez-Benítez et al., 2018] can also be used for
coupling outputs to many single-photon detectors with high detection efficiency. We
note that we tested the detection of HOM interference on the EMCCD camera. Cur-
rently, we are in the process of installing a SPAD array on the setup. Technological
developments towards this direction are ongoing.

• Towards control of more photonic degrees of freedom: Wavefront control of
light transports through a multimode Ąbre has classically demonstrated for beam
engineering [Čižmár and Dholakia, 2012, Plöschner et al., 2015a] and pulse trans-
portation [Morales-Delgado et al., 2015a, Xiong et al., 2019, Mounaix and Carpen-
ter, 2019]. It is fundamentally interesting to understand quantum transports in
traverse spatial degree of freedom and temporal-spectral degree of freedom. This
know-how can be applied not only to implement optical networks on those photonic
degrees of freedom but also to unscramble light for applications in optical quantum
communications.

• Boson sampling problem with multimode fibre: Multimode Ąbres provide
not only a large-dimension (a few hundreds to thousand) of mode mixing but also
a lossless platform for boson sampling problem. The experimental challenge is the
integration of many single-photon sources and detectors on the platform.

• Entanglement as a resource: High-dimensional and many-body entangled states
are of great interests in fundamental physics and for applications in quantum in-
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formation, communication, and computing. Generation and manipulation of those
states on our platform are naturally easy and very promising.

• Generalized programmable inverse photonic designs: Inverse photonic de-
sign [Molesky et al., 2018] nowadays exploits large optical parameters to implement
a speciĄc intended optical element. Generalized optimal design of programmable
optical networks is an interesting research question to be considered.

• Adaptive quantum algorithm: Implementation of many quantum algorithms
will become possible as the scalability of a platform grows (including sources, optical
network, and detectors). The goal is to demonstrate hybrid quantum-classical al-
gorithms, e.g., quantum simulations, optimization and classiĄcation problems. One
of the interesting aspects is to theoretically study and experimentally perform a
randomized-based algorithm [Mahoney, 2010] in the quantum domain. An interest-
ing perspective could be the demonstration of a noisy intermediate-scale quantum
computer (NISQ) in the near future.
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Experimental details of SPDC source

The frequency-degenerate photon pairs are generated from a type-II spontaneous para-
metric down-conversion (SPDC) source (Fig. A.1), using the periodically polled potas-
sium titanyl phosphate crystal (ppKTP, Raicol Crystal) with the thermoelectric control
(TEC) [Emanueli and Arie, 2003]. The dimension of crystal is 1 × 2 × 9.1 mm3 and its
periodicity is of 10 µm. There are two pump lasers which can be selected to pump the
ppKTP crystal on the optical setup. The Ąrst is the 40-mW single-longitudinal mode
laser (DLproHP, Toptica). The second is the external-cavity didode laser with home-
made grating-stabilization in the Littrow’s conĄguration. The second laser has multiple-
longitudinal modes. One of the blue lasers is used to pump the crystal in a conĄguration
that generates a single spatial-mode photon pairs [Ljunggren and Tengner, 2005, Van Ex-
ter et al., 2006, Fedrizzi et al., 2007, Bennink, 2010, Grice et al., 2011, Da Cunha Pereira
et al., 2013, Dixon et al., 2014]. The remaining laser light is blocked by a longpass Ąlter
(BLP01-664R, Semrock) and 10-nm bandpass spectral Ąlter (FBH810-10, Thorlab). The
photon pairs are separated by a polarizing beamsplitter (PBS). The indistinguishability
of photon pairs is controlled by a temporal delay δ. The photon pairs are then prepared
in the same horizontal polarization, and collected with polarization-maintaining single-
mode Ąbres (P1-780PMAR-2, Thorlab), which are then connected to the experimental
platform. The indistinguishability of the photon-pair is characterized using a Ąbre-based
beamsplitter (OZ Optics). The single photon counting module (SPCM-AQ4C, Excelitas)
and the coincidence logic circuit (Spartan R⃝-6 FPGA, Xilinx) are used for the detection
of photoncounts and coincidences. A coincidence window is set at 2.5 ns.

In the case of pumping with the DLproHP laser, the collection of two-fold coincidence
counts C of our SPDC source is C ∼ 5 × 105 pair/s and the best biphoton coupling
efficiency that we have achieved is η = C/

√
IHIV ∼ 0.2, where Ii is a photoncount. The

visibility of the two-photon interference of the source is 0.95 ± 0.03 with a correction for
an unbalanced beam splitter and the expected accidental coincidences (Fig. A.2). All
experimental results reported in this dissertation uses the DLproHP laser for pumping.

In the case of pumping with the multiple-longitudinal mode laser, we observed the degra-
dation of two-photon visibility. A similar result was reported in [Lee et al., 2015].
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Figure A.1 – Spontaneous parametric down-conversion source (SPDC): Two lasers, which are
multiple-longitudinal mode laser (MM) and single-longitudinal mode (SM), can be
selected to pump the ppKTP non-linear crystal. The MM laser is locked with the
Littrow’s configuration. The temperature of the crystal is controlled with the thermo-
electric control (TEC) to generate frequency-degenerate photon pairs (approximately
30◦C to 33◦C depending on a central wavelength of the pump laser). L: lenses, F1:
longpass spectral filter (BLP01-664R, Semrock), F2: bandpass spectral filter (FBH810-
10, Thorlab), HWP: half-wave plate, PBS: polarizing beamsplitter, FM: flip mirror.
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Figure A.2 – Hong-Ou-Mandel interference: The SPDC source is pumped with the single-
longitudinal mode laser. (red circles) HOM interference of the SPDC source is mea-
sured with the fibre-based beamsplitter. (blue circles) HOM interference of the SPDC
source is measured after propagating through the programmed linear optical networks
with the 55-cm multimode fibre. The results in the case of propagating through the
multimode fibre is obtained from all HOM dip cases in Figure 2.16.
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Mode mixing of multimode fibre

B.1 | Modes of graded-index multimode fibres

Graded-index multimode Ąbre (MMF) is a cylindrical waveguide which has the refractive
index proĄle described by

n2
1(r) = n2

1

(︄

1 − r2

b2

)︄

, (B.1)

where r is radial coordinate deĄned from the optical axis (r = 0) of the Ąbre to the cladding
(r = D/2), n1 is the maximum refractive index on the optical axis, and b = D/

√︂

(8∆)

is a scaling parameter; ∆ = (n2
1 − n2

0)/(2n
2
1) is known as the refractive index contrast

where n0 is the refractive index of cladding. The refractive index proĄle are displayed in
Fig. B.1. The discontinuity of the refractive index at the cladding affects very high-order
propagating modes. Considering scalar Helmholtz equation on the cylindrical coordinates
(r, ϕ, z) for a straight graded-index waveguide on the z axis, we obtain a scalar mode
basis [Snitzer, 1961, Snyder and Love, 1984],

ψl,m(r, ϕ, z) =

√︄

α

2π

2m!

(m+ ♣l♣)! exp

(︄

−αr2

2

)︄

×
(︂

αr2
)︂♣l♣/2

L♣l♣
m

(︂

αr2
)︂

eilϕeiβlmz, (B.2)

where L♣l♣
m is the associated Laguerre polynomials with m index of radial modes (m ∈ N0)

and l index of orbital angular momentum (l ∈ Z), α = kn1/b, and k = 2π/λ is the
wavenumber with wavelength λ. The propagation constants for each mode (l,m) reads,

βl,m =
√︂

k2n2
1 − 2α(♣l♣ + 2m+ 1). (B.3)

Considering the Helmholtz equation under the weak guidance approximation: ∆ ≈ (n1 −
n0)/n1 and ∆ → 0, the propagation constants can be written as

βl,m ≈ kn1 − ♣l♣ + 2m+ 1

b
. (B.4)

The mode basis is deĄned on the spatial transverse modes known as linear polarized
(LP) modes. The polarizations of propagation modes are degenerated. The number of
propagating modes n can be approximately determined by the V parameter as follow,

n =
V 2

4
, (B.5)

where V = kD
2

√︂

n2
1 − n2

0 = kD
2

NA with the numerical aperture NA. The basis set of
propagating modes of MMF is depicted in Fig. B.1.
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Figure B.1 – Multimode fibre and its linear polarized (LP) mode basis: The LP mode basis is
adapted from https://www.rp-photonics.com/multimode_fibers.html

https://www.rp-photonics.com/multimode_fibers.html


Appendix B. Mode mixing of MMF 123

B.2 | On transmission matrix of multimode fibres

D. E. B Flaes and co-workers have recently shown that the multimode Ąbre used here
(Thorlabs, GIF50C) has a refractive index proĄle that deviates from a perfect parabola,
thus presenting mode coupling between propagation-invariant modes [Boonzajer Flaes
et al., 2018]. As a consequence, the speckle appearing after propagation along the MMF
results both from the phase delays between modes of the Ąbre and from the mode coupling
due to imperfections of the refractive index proĄle along the propagation axis. The TM
of the MMF, which describes a linear relation between input and output Ąelds of the
MMF, is thus expected to comprise signiĄcant mixing across modes, irrespective of the
basis being used. This implies that any targeted output mode can be excited by injecting
combinations of many spatial and polarization input modes. An outcome optical Ąeld is
also expected to produce a fully developed speckle. We provide the statistical distribution
of phase obtained from elements of the measured TM as shown in Fig. B.2. The result is
consistent with the distribution in Eq. 2.3.

-4 -3 -2 -1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

Figure B.2 – Probability density function of the phase θ: The result is obtained from the measured
TM of the 55-cm MMF and is consistent with Eq. 2.3.

To further show the mixing property of the MMF, we experimentally study the proba-
bility distribution of transmission eigenvalues τ of measured transmission matrix T. The
transmission eigenvalues τ are extracted by means of a singular value decomposition of
T†T [Popoff et al., 2011]. First, to show the polarization mixing, we study the probabil-
ity distribution of transmission eigenvalues τ for the part of the full measured transmis-
sion matrix T corresponding to each input-output polarization channel (HoutHin, HoutVin,
VoutHin, VoutVin). We observe a similar distribution for all polarization pairs (Fig. B.3a).
Second, the overall experimental probability distribution of transmission eigenvalues τ
has been investigated (Fig. B.3b). To the best of our knowledge, there are only a few
theoretical models proposed to explain a multimode Ąbre under a mode coupling [Ho and
Kahn, 2011b, Chiarawongse et al., 2018, Li et al., 2019b]. We have found our experimen-
tal distribution of transmission eigenvalues can potentially be described by a model based
on a random-matrix theory recently proposed in [Chiarawongse et al., 2018]. The model
takes the mode-dependent loss into account and is based on the free probability theory
and the Filtered Random Matrix ensemble [Goetschy and Stone, 2013].
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Figure B.3 – (a) Probability distribution of transmission eigenvalues p(τ/τ) for each polarization
channel (HoutHin, HoutVin, VoutHin, VoutVin) (b) Probability distribution of overall
transmission eigenvalues p(τ/τ).

The complex mixing property of our Ąbre is also veriĄed by checking that it is possible
to focus light on any spatial and polarization state of the output plane (within the Ąbre
core) with high efficiency, while keeping a low unstructured background (data not shown).
We note that we will experience a negligible loss in transmission through the multimode
Ąbre only when we couple light to high-order propagation modes where the corresponding
optical Ąeld is close to the cladding of the Ąbre.
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Correlations of speckle patterns

C.1 | Bimodal distribution

In this section, we introduce the experimental observations related to the bimodal distri-
bution of transmission eigenvalues introduced in Sec. 2.1.1.

In optics, one year after the Ąrst achievement on a control light transport through a diffu-
sive medium [Vellekoop and Mosk, 2007] (see Sec. 2.1.3 for the introduction of controlling
light transport through complex medium), Ivo Vellekoop and Allard Mosk experimen-
tally demonstrated the redistribution of the input Ćux to open channels of a diffusive
slab, as shown in Fig. C.1a, resulting in an increase of the total transmission by means
of maximizing the intensity on one targeted speckle grain, noted as j0 [Vellekoop and
Mosk, 2008]. The result infers that the achievement of perfect control of the input state
Ψ+

in♣i = t∗j0i,∀i = 1, . . . , n will provide the universal enhancement of total transmission of
2/3 averaged over the target speckle. The value of 2/3 is directly related to the decrease
in electronic shot noise as predicted by the DMPK model [Beenakker, 2018, Rotter and
Gigan, 2017] with the same underlying contribution from the bimodal distribution. The
enhanced total transmission in optics comes from a higher probability of transporting
light through open channels.

The probability of transporting light is proportional to τ 2. While the Ćuctuation in the
total transmitted current of electrons (fermionic Ąelds) follows the binomial statistics:
∫︁ 1

0 P (τ)τ(1 − τ)dτ . The second term of the latter, which corresponds to the reduction
from the shot noise, is also proportional to τ 2. Thus both effects identically result from
the contribution of open channels. In other words, the maximally-transmitted intensity
pattern as shown in Fig. C.1a (orange line) is promoted predominantly from open channels.

The experimental result in Fig. C.1a also implies the requirement of a complete and
perfect wavefront control of all n input modes of a disordered slab. The number of
controlled modes can grow up from ∼ 104 in [Vellekoop and Mosk, 2008] to 106 and
more easily for a thick medium. Several experiments have been later demonstrated on
mastering the control and study of the effect of open channels on transmission properties
in different aspects [Choi et al., 2011, Kim et al., 2013, Sarma et al., 2016]. For instance,
by optimizing the total transmission through a diffusive medium directly (Fig. C.1b),
both enhancement and suppression of the total transmission were achieved [Popoff et al.,
2014] indicating the ability to modulate the total transmission. While optimizing, the
modulation of total reĆection was also monitored. The result demonstrates the anti-
correlation between total transmission and total reĆection because of the conservation
of total Ćux. In a case of measuring partial square TM, the maximum transmission
eigenvalue of the MP distribution (the value of 4 in Fig. 2.2) was measured by sending the
corresponding eigenstate to the system [Kim et al., 2012]. Towards acquiring a complete
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Figure C.1 – Modulation of total transmissions: (a) Right panel: Speckle behind a diffusive slab
generated from a random incident wavefront (top) and generated from the optimized
wavefront (bottom). The intensity at the targeted speckle is a factor 746±28 enhanced
from the background. Left panel: Intensity profile, integrated over y-direction: The
optimized wavefront (red) has a peak and the random wavefront (black) lacks the peak.
Adapted from [Beenakker, 2018] (b) Optimization of total transmissions: Measured
transmission (top panel) and reflection (bottom panel) as function of the step number
of optimization (Iterations). The maximization (blue) and minimization (red) of total
transmission. Adapted from [Popoff et al., 2014].

TM, the violation from MP distribution have been reported and modelled [Yu et al.,
2013, Akbulut et al., 2016b]. The observation of the bimodal distribution in optics has
not been reported so far.

C.2 | Correlations of speckle patterns

In addition to the bimodal distribution of transmission eigenvalues and its inĆuence on
the transmission properties, correlations can also be presented in speckle patterns. In
particular, we want to focus on correlations between a transmission coefficient Tij = ♣tij♣2
from j input to i output and that of another i′-to-j′ trajectory. Our goal is to introduce
an overview of these correlations since they may have an inĆuence on our programmable
optical network. Let us consider a diffusive slab of the length L as a model of scattering
object, before discussing the model of diffusive waveguide and a multimode Ąbre later on.
The input and output spaces of wave Ąelds are deĄned on continuous angular variables
described by a direction of i and j beams (plane waves) scattering from the slab1. The
angular correlation function is expressed as

Ciji′j′ =
δTijδTi′j′

Tij Ti′j′

, (C.1)

1Note that the concept of correlation function can also be applied to describe correlations in time-
frequency or other photonic degrees of freedom.
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where δTij = Tij − Tij, and · is the average over disorder realizations2. An efficient way
to determine the correlations is by means of so-called diagrammatic technique [Lee and
Stone, 1985, Feng et al., 1988, Berkovits and Feng, 1994, van Rossum and Nieuwenhuizen,
1998, Dragoman and Dragoman, 2004, Montambaux, 2007, Akkermans and Montambaux,
2007]. It considers all possible paths C with a corresponding complex amplitude EC
linking a Ąeld from i to j. Then, the correlation term δTijδTi′j′ involves a coherent sum
over possibilities of products of four complex amplitudes of the propagating paths along
C1, C2, C3, C4 as shown in Fig. C.2a. It can be expressed as

∑︂

C1,C2,C3,C4

Eij
C1
E∗ij

C2
Ei′j′

C3
E∗i′j′

C4
, (C.2)

By keeping for all non-vanishing contributions to the correlation function, three main
contributions in the diagrammatic expansion can be extracted [Feng et al., 1988],

Ciji′j′ = C
(1)
iji′j′ + C

(2)
iji′j′ + C

(3)
iji′j′ + . . . . (C.3)

As presented in Fig. C.2b, the Ąrst term C(1) involves two contributions, known as Diffu-
sions3, which are C1 = C4 and C3 = C2. They do not cross while propagating through the
medium. The probability of crossing of two Diffusions, known as Hikami box [Akkermans
and Montambaux, 2007]4, is typically proportional to 1/g, where g is the dimension-
less conductance. Normally, g is high, therefore, the contributions of C(2) ∝ 1/g and
C(3) ∝ 1/g2, which have one and two crossing, respectively, are very small. We now
discuss the correlations term by term.

C.2.1 C(1) correlation

C(1) is known as the short-range correlation and results mainly in two effects. Firstly, for
i = i′ and j = j′, this results in the size of speckle grain as depicted in Fig. 2.1a; it is
known as the Rayleigh law: δT 2

ij = Tij
2

which corresponds to the probability distribution

of the intensity in Eq. 2.3c. Secondly, C
(1)
iji′j′ predicts that a small change of property,

traditionally a transverse momentum q, of an incoming mode from j to j′ leads to the
same change of the outgoing Ąeld: ∆q = qi − q′

i = qj − q′
j. This is known as a memory

effect [Feng et al., 1988, Freund et al., 1988]: by changing the direction of the incoming
beam, the whole speckle pattern in all output modes is moved by the same amount. This
effect is obvious in a situation with a single-scattering object where a large angular change
of the incoming beam is possible. In the diffusive regime, the critical angle is of the order
of ∆θ . λ/(4L), where λ is a wavelength [Feng et al., 1988]. This effect has been applied in
many imaging techniques [Freund, 1990, Vellekoop and Aegerter, 2010, Bertolotti et al.,
2012, Katz et al., 2014]. Especially for biological tissues which have a strong forward
scattering, the angular memory effect range may be extended by more than an order
of magnitude compared to the case of isotropic scattering [Schott et al., 2015]. The

2The ergodicity of a random process infers that the average over different realizations can be inter-
changeable with the average over an entire system at one specific setting.

3Diffusion is referred to the interference contribution from a pair having an identical path [Akkermans
and Montambaux, 2007].

4The crossing (Hikami box) is referred to a possibility to permutes complex amplitudes of paths
resulting in a new pairing of paths [Akkermans and Montambaux, 2007].
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Figure C.2 – Correlations of speckle patterns: (a) Schematic representation of the product of
four complex amplitudes of the propagating paths C, represented by line and dashed
line for amplitudes E and complex conjugate of amplitudes E∗, respectively. (b) The
contributions of each correlation term: C(1) results in short-range speckle fluctuations
(left panel), C(2) results in long-range correlation (middle panel), and C(3) results in
universal conductance fluctuations (right panel).

complementary shift-to-shift memory effect [Judkewitz et al., 2015] and the generalized
version on both angular and transitional memory effect [Osnabrugge et al., 2017] may also
be present due to a high directionality of the scattered light. Light transmitted through
open channels of a wide diffusive slab also shows a preservation of directionality [Yılmaz
et al., 2019b]. Consequently, this increases the angular memory-effect range [Yılmaz et al.,
2019a].

C.2.2 C(2) correlation

C(2) involves one crossing leading to long-range correlations which is unique to the diffusive
regime. The correlation is written as

C
(2)
iji′j′ =

1

g
[F2(∆qiL) + F2(∆qjL)] , F2(x) =

1

sinh2 x

(︄

sinh 2x

2x
− 1

)︄

, (C.4)

where ∆qi = qi − q′
i and ∆qj = qj − q′

j and q is the transverse momentum of the light
beams [Akkermans and Montambaux, 2007]. The contributions of C(2) have a smaller
effect ∝ 1/g and decreases algebraically with F2 function and only vanishes if both ∆q of
input and output are large. In general, the long-range contribution C(2) is related to the
violation from the Marc̆henko-Pastur distribution, such as the presence of the bimodal
distribution. It can be used to control of energy Ćux Ćowing through a diffusive slab onto
a large targeted area [Popoff et al., 2014, Ojambati et al., 2016, Hsu et al., 2017, Yılmaz
et al., 2019b]. For example, as shown in Fig. C.1a, the maximally-transmitted intensity
pattern presents the enhancement largely surrounding the targeted focus which is the
signature of the long-range correlation [Vellekoop and Mosk, 2008]. Furthermore, the
long-range anti-correlation has been also presented between reĆected and transmitted
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speckle patterns [Fayard et al., 2015, Fayard et al., 2017, Starshynov et al., 2018] and has
been applied recently to obtain an image of an object hidden behind a diffusive slab by
using only the reĆected light [Paniagua-Diaz et al., 2019b].

C.2.3 C(3) correlation

C(3) is known as an inĄnite-range correlation and presents a universal contribution to the
total correlation: C(3) = 2/(15g2), which is independent of the mean free path, and the
geometry of scattering object in the diffusive regime [Akkermans and Montambaux, 2007].
The contribution physically leads to the universal conductance Ćuctuations5 in the elec-
tron transport [Lee and Stone, 1985]. The C(3) has also been observed in optics [Scheffold
and Maret, 1998].

For the model of disordered waveguide, the transverse momentum q are quantized into
transverse modes. The correlation function: C = C(1) + C(2) + C(3) becomes [Mello et al.,
1988b, Mello and Stone, 1991],

Ciji′j′ = δii′δjj′ +
2

3g
(δii′ + δjj′) +

2

15g2
, (C.5)

which presents the same structure as found by [Feng et al., 1988]. The Ąrst term expresses
again the Rayleigh law governing the Gaussian statistics approximation which indicates
uncorrelated modes. Whereas, the second term describes correlations between modes
and is used to explain the universal value of 2/3 for enhancing of the averaged total
transmission due to the presence of open channels [Beenakker, 2018]. The last term
shows uniform correlation and is responsible for universal conductance Ćuctuations. Note
that C(2) and C(3) presented above are only valid in the diffusive regime, the evolution
of C(2) and C(3) from the ballistic to the diffusive regime was predicted by the DMPK
model [García-Martín et al., 2002].

C.2.4 Weak correlations

We now consider the correlations existing owing to the presence of reciprocity (time-
reversal symmetry) using the circular orthogonal ensemble (β = 1)6. The DMPK model
is subject to the correction term presented in Eq. C.6 leading to the reduction of the
transmission averaged over different realizations of disordered conĄguration [Akkermans
and Montambaux, 2007] as follows:

T = T†T =
nℓ⋆

L
+
β − 2

3β
+O(1/n) ≈ g,

Var(T ) =
2

15β
+O(1/n).

(C.6)

Moreover, one can notice that the conductance Ćuctuation Var(T ) equals to g2C(3). This
is decreased two-fold when the time-reversal symmetry is broken. The correction term is
known as weak localisation because it corresponds to the reduction of the total transmis-
sion from the prediction of Ohm’s law. Weak localisation is named as a relative effect

5The variance of the conductance G =
∑︁

ij Tij has a universal value Var(G) = g2C(3) = 2/15 [Lee and
Stone, 1985]

6The circular unitary ensemble considered in Equation 2.5 has β = 2.
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by reference to Anderson strong localisation. Owing to the conservation of energy, the
weak localisation also contributes to the enhancement of energy in the reĆection, i.e, co-
herent enhanced backscattering effect [Akkermans and Maynard, 1985, Akkermans et al.,
1986] which can be observed both in electronics and optics [Akkermans and Montambaux,
2007]. In the diagrammatic approach, the correlation can be interpreted as the presence
of time-reversed path pairs that always interfere constructively [Hastings et al., 1994].

C.3 | Correlations in multimode fibres

In a multimode Ąbre, memory effects were also demonstrated in radial and azimuthal
degrees of freedom in analogy to the angular memory effect discussed previously in sub-
section C.2.1. For the azimuthal degree, it has been shown that rotating an input state
around the propagation axis of the optical Ąbre also leads to a rotation of an output
pattern with the same amount of rotation [Amitonova et al., 2015, Rosen et al., 2015].
Owing to the cylindrical symmetry of the Ąbre, the rotational range of the memory effects
is theoretically a full circle and the experimental results reported a maximum value of
100◦ for the 12-cm long step-index Ąbre (Thorlabs, FG050UGA) [Amitonova et al., 2015]
and ∼ 10◦ for the 15-cm long bent graded-index Ąbre (Thorlabs, GIF50C) [Rosen et al.,
2015]. The limitation is attributed to small imperfections in the Ąbre core geometry, small
amounts of Ąbre bending or scattering from inhomogeneities and the imperfect control of
an input [Amitonova et al., 2015].

For the radical modes, the memory effect was demonstrated indirectly [Čižmár and Dho-
lakia, 2012]. As discussed in subsection 2.1.2, a multimode Ąbre presents strong mixing
only in the mode group within the same radial mode index m. This means that when one
sends a partial plane wave with a given k wavevector through the MMF, it gets mixed
mainly on the angular degrees but not on the radial thus generating a narrow cone of
speckles with the same transverse angle of incidence at the far-Ąeld output. This kind of
preservation indicates the existence of a memory effect in the radial degrees of freedom.
The radial correlation range corresponds to the width of the output cone of the speckles.
By using this fact, information of any radial curvature of the initial wavefront can be
transferred to the output, for instance, using a defocus phase pattern to axially shift an
output pattern [Čižmár and Dholakia, 2012]. Recently, the presence of long-range corre-
lations of the multimode Ąbre in the spatio-temporal domain was discovered and applied
for pulse delivery [Xiong et al., 2019].
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Statistical prediction of scalability for linear

optical networks

In this appendix, we provide the theoretical analysis to support the performance and
scalability of our experiment for programming a linear optical network.

D.1 | Statistical properties of time-reversal operator

Let us consider a rectangular random matrix T of dimension k × d. The matrix T
physically represents the sub-part of transmission matrix linking the d input modes to
the k target output modes of interest, where d = n/m in the experiment. We note that
m is the number of input ports and k is that of output ports of the associated optical
network and n is the number of propagation modes of the MMF.

In this model, the elements of T are sampled from i.i.d complex Gaussian random variables
with E

[︂

tipt
∗
iq

]︂

= 1
d
δpq. We are interested in the statistical properties of the time-reversal

operator, a.k.a. Wishart matrix, W = TT†. This matrix plays an important role in our
optical network implementation since it maps the desired linear transformation to the
implemented one as in Eq. 2.17. The elements of W are given by

wij =
d∑︂

q=1

tiqt
∗
jq, (D.1)

where tij is the element of T at position (i, j). The expectation of coefficients wij is
determined by

E [wij] =
d∑︂

q=1

E
[︂

tiqt
∗
jq

]︂

=

⎧

⨄︂

⋃︂

0 ,if i ̸= j
∑︁d

q=1 E
[︂

♣tiq♣2
]︂

= 1 ,if i = j

(D.2)

So that, E [wij] = δij, which means that for one physical realization of T, we can estimate
TT† ≈ ✶ to the Ąrst statistical moment.

Next we consider the variance of coefficients wij, deĄned as

Var [wij] = E
[︂

♣wij♣2
]︂

− ♣E [wij]♣2. (D.3)



132 Appendix D. Statistical prediction for scalability

And using the moment theorem, E
[︂

♣wij♣2
]︂

is expressed as,

E
[︂

♣wij♣2
]︂

=
d∑︂

p=1

d∑︂

q=1

E
[︂

tipt
∗
jpt

∗
iqtjq

]︂

=
d∑︂

p=1

d∑︂

q=1

E
[︂

tipt
∗
jp

]︂

E
[︂

t∗iqtjq

]︂

⏞ ⏟⏟ ⏞

♣E[wij ]♣2

+
d∑︂

p=1

d∑︂

q=1

E
[︂

tipt
∗
iq

]︂

E
[︂

t∗jptjq

]︂

⏞ ⏟⏟ ⏞

Var[wij ]

.
(D.4)

We use that fact that E
[︂

tipt
∗
iq

]︂

= 1
d
δpq to determine Var [wij],

Var [wij] =
1

d2

d∑︂

p=1

d∑︂

q=1

δpq =
1

d
. (D.5)

This indicates that the elements of W Ćuctuate around the expectation δij with the
standard deviation 1/

√
d. For one physical realization of T, one can estimate wij ≈

δij +O(1/
√
d) to the second statistical moment. The corresponding matrix representation

is,

TT† ≈ ✶ +
1√
d

H, (D.6)

where H is a complex Hermitian noise matrix in which the Ćuctuation of coefficients is
normalized. Substituting d = n/m in Eq. D.6, we obtain,

T(p)T(p)† = ✶ +

√︃
m

n
H, (D.7)

In the subsection 2.4.1, T denotes T(p) where (p) is a label for a given p-th input port
of an optical network. The Eq. D.7 is the origin of Eq. 2.18. We note that we omit the
terms originating from higher-order statistical moments.

D.2 | Distance between a desired linear transforma-
tion and implemented one

In this section, we prove that the distance between the desired linear transformation
L and implemented linear transformation L̃ scales as O

(︂√︂
mk
n

)︂

(see subsection 2.4.1).

Let deĄne the distance between L and L̃, ∥L − L̃∥s, where ∥ · ∥s is deĄned as ∥A∥ ≡
∑︁k

i=1

∑︁m
j=1 ♣aij♣s/(mk), where s denotes the ℓs-norm. We are interested in considering the

statistical average of the element-wise distance,
\︄
\︄
\︄lij − l̃ij

\︄
\︄
\︄
s
, over a number of input and

output ports of an optical network. We consider an element of the implemented linear
transformation l̃ij, which is related to an element of the desired linear transformation lij
by,

l̃ij =
k∑︂

p=1

wiplpj. (D.8)
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Using the estimation form of wip from the section D.1, we obtain

l̃ij =
k∑︂

p=1

(︃

δip +

√︃
m

n
Hip

)︃

lpj. (D.9)

Considering the ℓ2-norm distance between a desired linear transformation and the effective
implemented one, we have

\︄
\︄
\︄lij − l̃ij

\︄
\︄
\︄

2
=
m

n

\︄
\︄
\︄
\︄
\︄
\︄

k∑︂

p=1

Hiplpj

\︄
\︄
\︄
\︄
\︄
\︄

2

. (D.10)

Now we determine the statistical properties of
\︄
\︄
\︄lij − l̃ij

\︄
\︄
\︄

2
. The expectation is determined

by

E
[︃\︄
\︄
\︄lij − l̃ij

\︄
\︄
\︄

2
]︃

=
m

n
E

⋃︁

⋁︁
⨄︁

\︄
\︄
\︄
\︄
\︄
\︄

k∑︂

p=1

Hiplpj

\︄
\︄
\︄
\︄
\︄
\︄

2
⋂︁

⎥
⋀︁ . (D.11)

Then,

E

⋃︁

⋁︁
⨄︁

\︄
\︄
\︄
\︄
\︄
\︄

k∑︂

p=1

Hiplpj

\︄
\︄
\︄
\︄
\︄
\︄

2
⋂︁

⎥
⋀︁ = Var

⋃︁

⨄︁

k∑︂

p=1

Hiplpj

⋂︁

⋀︁+

\︄
\︄
\︄
\︄
\︄
\︄

E

⋃︁

⨄︁

k∑︂

p=1

Hiplpj

⋂︁

⋀︁

\︄
\︄
\︄
\︄
\︄
\︄

2

=
k∑︂

p=1

Var [Hiplpj] + 2
∑︂

1≤p<q≤k

Cov [Hiplpj, Hiqlqj] +

\︄
\︄
\︄
\︄
\︄
\︄

k∑︂

p=1

E [Hiplpj]

\︄
\︄
\︄
\︄
\︄
\︄

2

(D.12)

First, we consider that Hip and lpj are two independent random variables. Thus, Hiplpj

are independent variables, so that the middle term is neglected and the equation can be
rewritten as

E

⋃︁

⋁︁
⨄︁

\︄
\︄
\︄
\︄
\︄
\︄

k∑︂

p=1

Hiplpj

\︄
\︄
\︄
\︄
\︄
\︄

2
⋂︁

⎥
⋀︁ = kVar [Hiplpj] + k2 (E [Hiplpj])

2

= k
(︂

E [Hip]2 Var [lpj] + E [lpj]
2 Var [Hip] + Var [Hip] Var [lpj]

)︂

+ k2 (E [Hip] E [lpj])
2

(D.13)

Using the fact from the previous section that E [Hip]=0 and Var [Hip]=1, the equation is
reduced to

E

⋃︁

⋁︁
⨄︁

\︄
\︄
\︄
\︄
\︄
\︄

k∑︂

p=1

Hiplpj

\︄
\︄
\︄
\︄
\︄
\︄

2
⋂︁

⎥
⋀︁ = k

(︂

E [lpj]
2 + Var [lpj]

)︂

≈ O(k)

(D.14)

Thus, we can estimate the normalised ℓ2-norm,

∥L − L̃∥2 =

√︄

E
[︃\︄
\︄
\︄lij − l̃ij

\︄
\︄
\︄

2
]︃

≈ O
∏︁

∐︂

√︄

mk

n

⎞

ˆ︁ . (D.15)

This indicates the scalability of our implementation of an optical network as discussed
in subsection 2.4.3.
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Alternatively, we can calculate the distance with ℓ1-norm,

\︄
\︄
\︄lij − l̃ij

\︄
\︄
\︄ =

√︃
m

n

\︄
\︄
\︄
\︄
\︄
\︄

k∑︂

p=1

Hiplpj

\︄
\︄
\︄
\︄
\︄
\︄

. (D.16)

Then we determine the statistical properties of
\︄
\︄
\︄lij − l̃ij

\︄
\︄
\︄. The expectation is

E
[︂\︄
\︄
\︄lij − l̃ij

\︄
\︄
\︄

]︂

=

√︃
m

n
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⋃︁

⨄︁
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\︄
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\︄
\︄
\︄
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⋀︁ . (D.17)

We assume here that Hiplpj are the i.i.d. complex Gaussian random variable. The expec-
tation is

E

⋃︁

⨄︁

\︄
\︄
\︄
\︄
\︄
\︄

k∑︂

p=1
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\︄
\︄
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⋀︁ =

⌜
⃓
⃓
⃓
⎷Var
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Hiplpj

⋂︁

⋀︁

√︄

2

π

=
√︂

kVar [Hiplpj]
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2

π
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Using the fact that Var [Hiplpj] =
(︂

E [lpj]
2 + Var [lpj]

)︂

, we obtain

E
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\︄
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\︄
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(︂√
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So that,

∥L − L̃∥1 = E
[︂\︄
\︄
\︄lij − l̃ij

\︄
\︄
\︄

]︂

≈ O
∏︁

∐︂

√︄

mk

n

⎞

ˆ︁ . (D.20)

By substituting the distance in either ℓ1-norm or ℓ2-norm into the deĄnition of F , we
Ąnally obtain,

F(L̃,L) = 1 − O
∏︁

∐︂

√︄

mk

n

⎞

ˆ︁ , (D.21)

as described in subsection 2.4.1.
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Bell states on a lossy beamsplitter

In this appendix, we consider theoretically the evolution of Bell states through a non-
polarizing lossy beamsplitter. First, we deĄne a set of Bell states,

\︄
\︄
\︄Φ±

˜︂

=
1√
2

(♣1H1⟩ ♣1H2⟩ ± ♣1V 1⟩ ♣1V 2⟩) (E.1a)

\︄
\︄
\︄Ψ±

˜︂

=
1√
2

(♣1H1⟩ ♣1V 2⟩ ± ♣1V 1⟩ ♣1H2⟩). (E.1b)

And, we deĄne a non-polarizing lossy beamsplitter (LBS) as

LBS ≡ 1

2

H1 H2 V 1 V 2
⋃︁

⋁︁
⋁︁
⨄︁

⋂︁

⎥
⎥
⋀︁

1 −1 0 0 H1
−1 1 0 0 H2

0 0 1 −1 V 1
0 0 −1 1 V 2

(E.2)

In the following, we are going to simplify the presentation of the calculation by omitting
the noise operators F̂ i from the evolution. In fact, the noise operators are added to the
evolution of a state through the LBS in order to satisfy the commutation relations and
the unitarity.

Firstly, we consider the evolution of ♣Φ±⟩ through the LBS,

LBS
(︂\︄
\︄
\︄Φ±

˜︂)︂
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1

4
√
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[︂
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V 2)
]︂
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V 2

]︂

♣0⟩

=
1

2

⋃︁
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⋁︁
⨄︁
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analogy to unitary evolution

⋂︁

⎥
⎥
⎥
⋀︁

+
1

2

\︄
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(E.3)

This shows that ♣Φ±⟩ evolves to the superposition of the two contributions. The Ąrst
term is in analogy to the unitary evolution of the state ♣Φ±⟩ through a non-polarizing
beamsplitter which occurs with a probability of 1/4. The second term is that the state
♣Φ±⟩ evolves to itself with a probability of 1/4. If none of the above cases occurs, the half
of the chance, the Bell states get lost from the LBS.
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Next, we consider the evolution of ♣Ψ±⟩ through the LBS,

LBS
(︂\︄
\︄
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In the case of ♣Ψ+⟩, it reads,
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Hence, ♣Ψ+⟩ evolves to the superposition of the terms. The Ąrst is in analogy with the
unitary evolution of ♣Ψ+⟩ through a non-polarizing beamsplitter which with a probability
of 1/4. The second term is similar to the case of ♣Φ±⟩, the ♣Ψ+⟩ state evolves to itself
with a probability of 1/4. Otherwise, the Bell state gets lost.

And, in the case of ♣Ψ−⟩, it reads,

LBS
(︂\︄
\︄
\︄Ψ−

˜︂)︂

= 0. (E.6)

Therefore, we show that the evolution of singlet Bell state ♣Ψ−⟩ through the lossy non-
polarizing beamsplitter gets completely lost. This is the manifestation of the coherent
perfect absorption in the quantum regime.
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Statistical data for state classifier

In this appendix, we provide additional experimental details and data for chapter 4. The
experimental setting and status of each ground-truth states are presented in Table F.1.

Table F.1 – Experimental parameters and status of ground-truth light sources. N is the number
of realizations of the experiment. Vbefore(after) is a visibility of two-photon interference
before and after performing an experiment. T is an integration time of detector for one
realization.

State T (s) N Vbefore Vafter ∆λ (nm)

Monochromatic case
Biphoton state (δ = 0) 15 10000 0.95 0.94 1.54
Biphoton state (δ > lc) 15 10000 0.94 0.74 1.53
N=2 N00N state 15 10000 0.98 0.98 1.65
♣2V ⟩ 15 10000 0.98 0.82 1.53
Single-photon state ♣1V ⟩ 15 10000 0.98 0.98 1.54
Polychromatic case
Biphoton state (δ = 0) 15 10000 0.94 0.73 1.60
Biphoton state (δ > lc) 15 10000 0.82 0.92 1.52
Incoherent dispersion source 15 4004 - - 2.35
Classical case
Incoherent source (d = 2) 5 10000 - - 2.35
Coherent source (d = 1) 5 10000 - - 2.35

Furthermore, we tested the inĆuence of noise due to a short integration time T on the
statistical distributions in the case of monochromatic biphoton state. We found that all
statistical distributions for 15, 120, and 240 s have the same proĄles.



138 Appendix F. Statistical data for state classifier
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Figure F.1 – Probability density functions of normalized second-order correlation: for indis-
tinguishable monochromatic biphoton state at different integration times T . The dis-
tributions present a broaden and flatten features compared to the distinguishable case
presented in Fig. 4.6c. For T=15 s, the PDF is also plotted in Fig. 4.6c

F.1 | Estimation of the purity

The measured visibilities of intensity VI , two-fold coincidences VC , and normalized second-
order correlation Vg(2) and the estimated purity P and dimensionality d of ground-truth
states are presented in Table F.2.

Table F.2 – Visibilities and estimated properties of ground-truth states.

State VI VC P d Vg(2)

Monochromatic case
Biphoton state (δ = 0) 0.46 ± 0.02 1.38 0.45 ± 0.03 2.16 ± 0.09 0.178
Biphoton state (δ > lc) 0.50 ± 0.02 1.34 0.35 ± 0.03 2.02 ± 0.07 0.096
N=2 N00N state 0.45 ± 0.01 1.27 0.38 ± 0.02 2.24 ± 0.01 0.127
♣2V ⟩ 0.85 ± 0.06 2.39 0.69 ± 0.12 1.18 ± 0.09 0.105
Single-photon state ♣1V ⟩ 0.90 ± 0.08 1.65 - 1.1 ± 0.1 0.402
Polychromatic case
Biphoton state (δ = 0) 0.068 ± 0.002 0.26 0.120 ± 0.003 14.7 ± 0.3 0.074
Biphoton state (δ > lc) 0.073 ± 0.002 0.22 0.078 ± 0.004 13.8 ± 0.4 0.049
Incoherent dispersion source 0.048 ± 0.003 0.03 - 20 ± 1 0.001
Classical case
Incoherent source (d = 2) 0.044 ± 0.02 1.14 - 2.3 ± 0.1 0.02
Coherent source (d = 1) 0.83 ± 0.03 2.39 - 1.21 ± 0.05 0.05

The estimations of purity of ground-truth states are lower than the expected values of
one. This mainly is because of the underestimation of VC . We attribute the error to two
contributions:

1. The Ąrst is the inĆuence of accidental coincidences since it modiĄes the distribution
of two-fold coincidences resulting in an incorrect expectation of VC . In the case of
d=1, the estimation of VC from the distribution of accidental coincidences (Eq. 4.10)
is 1.25, which for example is close to the experimental value reported for N00N state.
In the case of d=2 for the two-photon Fock state ♣2⟩, the distributions of two-fold
coincidences and accidental coincidences are identical. Both distributions estimate
VC = 3, while experimentally we obtained 2.39 which is the same as the coherent
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state d = 1. Therefore, the inĆuence of accidental coincidences does not completely
explain the error in the estimation of purity.

2. The second contribution is due to the lack of rare events originating from a long tail
of the statistical distributions. We estimate the visibility of two-fold coincidences
using the statistical distribution with the cut-off at C/C = 6. We Ąnd VC = 1.39
for d = 2 which is close to the experimental estimation for monochromatic biphoton
states. The value from the cut-off distribution is still far from the expected value
of 2 for the pure state. For d=1, we Ąnd the same contribution. The visibility of
two-fold coincidences is estimated to be VC = 2.38 using the calculation from the
statistical distribution with the cut-off at C/C = 12. The value is close to the
experimental values reported for the two-photon Fock state ♣2⟩ and the coherent
state.

In conclusion, those contributions potentially explain the origin of the error. We, there-
fore, demonstrated the limitation of using the statistical distributions of two-fold coinci-
dences at a low value of d in the presence of accidental coincidences.
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F.2 | Statistical distributions

We provide the statistical distributions of intensity speckles for all ground-truth states
in Fig. F.2. The same distributions are also observed for the intensity on the second
detection I2 (data are not shown).

a

b

c

Figure F.2 – Probability density functions of intensity: (a) Indistinguishable biphoton state
(blue), distinguishable biphoton state (red), N=2 N00N state (orange) have the same
distribution with d = 2. (b) Heralded single-photon state (light green), two-photon
state (magenta) have the same exponential decay d = 1. Incoherent source (dark blue)
in a 55-cm MMF and incoherent source (light yellow) in a 25-m MMF have different
distributions with d = 2 and d = 20. (c) Indistinguishable (green) and distinguishable
(light magenta) biphoton states in dispersive 25-m MMF have the same distribution
d ≈ 14 (d = 14.7, d = 13.8). Information from the statistical distribution of intensity
provides only a number of modes d that light occupied.
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We provide the statistical distributions of two-fold coincidences speckles corrected for the
expected accidental coincidences in Fig. F.3. The expected accidental coincidences are
subtracted from measured two-fold coincidences. We note that classical states and the
single-photon state do not result in true two-fold coincidences, thus the results are not
shown in Fig. F.3. The measured distributions are still described well by the distribution
of accidental coincidences in the cases of d = 1 and d = 2.

a

b

c

Figure F.3 – Probability density functions of two-fold coincidences corrected for accidental
coincidences: (a) Indistinguishable biphoton state (blue), distinguishable biphoton
state (red), N=2 N00N state (orange) have the same distribution with d = 2. (b)
Two-photon state (magenta) have a decay profile d = 1. (c) Indistinguishable (green)
and distinguishable (light magenta) biphoton states in dispersive 25-m MMF have
the same distribution that diverge from the PDF of expected accidental coincidences
d ≈ 14 (dIndis = 14.7, dDis = 13.8). The lines indicate distributions of two-fold
coincidences for a pure maximally-entangled biphoton state (Eq. 4.3). The dashed
lines indicate distributions of accidental coincidences (Eq. 4.10).





Abstract

High-speed data transfer through optical Ąbres using spatial multiplexing is practically
limited by modal crosstalk. Instead of considering this modal crosstalk as a limitation,
we here harness its mode mixing to process quantum optical information. We imple-
ment a programmable linear optical network based on the concept of inverse photonic
design exploiting the technology of wavefront shaping. We demonstrate manipulation of
two-photon quantum interference on various linear networks across both spatial and po-
larization degrees of freedom. In particular, we experimentally show the zero-transmission
law in Fourier and Sylvester interferometers, which are used to certiĄcate the degree of
indistinguishability of an input state. Moreover, thanks to the ability to implement a
non-unitary network, we observe the photon anti-coalescence effect in all output conĄgu-
rations, as well as the realization of a tunable coherent absorption experiment. Therefore,
we demonstrate the reconĄgurability, accuracy, and scalability of the implemented linear
optical networks for quantum information processing. Furthermore, we study the statisti-
cal properties of one- and two-photon speckles generated from various ground-truth states
after propagating through a multimode Ąbre. These statistical properties of speckles can
be used to extract information about the dimensionality, purity, and indistinguishability
of an unknown input state of light, therefore allowing for state classiĄcation. Our results
highlight the potential of complex media combined with wavefront shaping for quantum
information processing.

Keywords: quantum optics, statistical optics, multimode Ąbre, multiple light scattering,
wavefront shaping, spatial light modulator, linear optical network, zero-transmission law,
coherent absorption, two-photon speckle.





Résumé

Le transport à haut débit de données à travers des Ąbres optiques grâce au multiplexage
spatial est en pratique limité par la diaphonie modale. Au lieu de considérer ce cou-
plage modal comme une limitation, nous exploitons ici ce mélange de modes comme une
ressource. Nous mettons en œuvre un réseau optique linéaire programmable basé sur le
concept de design photonique inverse, exploitant les techniques de mise en forme du front
d’onde. Nous démontrons la manipulation d’interférences quantiques à deux photons sur
divers réseaux linéaires, comprenant des degrés de liberté spatiaux et de polarisations. En
particulier, nous vériĄons expérimentalement la ń zero transmission law ż dans des inter-
féromètres de Fourier et de Sylvester, permettant de quantiĄer le degré d’indiscernabilité
d’un état d’entrée. De plus, grâce à la possibilité de mettre en œuvre un réseau non
unitaire, nous mettons en évidence l’anti-coalescence de photons dans toutes les conĄg-
urations de sortie, et réalisons une expérience d’absorption cohérente. Nous démontrons
ainsi l’aspect reconĄgurable de l’implémentation de tels réseaux optiques linéaires dans
des Ąbres multimodes. De plus, nous étudions les propriétés statistiques du speckle à
un et à deux photons générés à partir de divers états d’entrée, après propagation dans
une Ąbre multimode. Ces propriétés statistiques du speckle peuvent être utilisées pour
extraire des informations sur la dimensionnalité, la pureté et l’indiscernabilité d’un état
quantique inconnu, permettant ainsi leur classiĄcation. Ce travail met en évidence le
potentiel du contrôle de front d’onde en milieux complexes pour le traitement quantique
de l’information.

Mots-clés: optique quantique, optique statistique, Ąbres multimodes, diffusion multiple
de la lumière, contrôle de front d’onde, réseau optique linéaire, absorption cohérente,
speckle à deux photons
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