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Mme. Maria Trocan, Professeur, HDR Directrice de thèse
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Abstract

This thesis presents a set of unsupervised algorithms for satellite image time series

(SITS) analysis. Our methods exploit machine learning algorithms and, in particular,

neural networks to detect different spatio-temporal entities and their eventual changes

in the time. We distinguish three different types of temporal behavior that we aim

to identify in our thesis: no change areas, seasonal changes (vegetation and other

phenomena that have seasonal recurrence) and non-trivial changes (permanent

changes such as constructions or demolishment, crop rotation, vegetation that do

not follow the overall seasonal tendency present in SITS, etc). Therefore, we propose

two frameworks: one for detection and clustering of non-trivial changes and another

for clustering of “stable” areas of the series (seasonal changes and no change areas).

The change detection and analysis framework is composed of two essential steps

which are bi-temporal change detection and the interpretation of detected changes

in a multi-temporal context with graph-based approaches. The bi-temporal change

detection algorithm is performed for each pair of consecutive images of the series

and is based on feature translation with joint autoencoders. At the next step, the

changes from different timestamps that belong to the same geographic area form

evolution change graphs. These graphs are then clustered to identify different types

of change behavior. For graph clustering, we exploit an AE model based on recurrent

neural networks.

For the second framework, we propose an approach for object-based SITS cluster-

ing. First, we encode SITS with a multi-view 3D convolutional AE in a single image.

Second, we perform the segmentation of the whole series that is composed of two

steps (preliminary segmentation and its correction) and exploits both the encoded

image and the original ones. Finally, the obtained segments are clustered using their

encoded descriptors.
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Introduction

0.1 Motivations

Nowadays, different satellite missions provide numerous images of the Earth surface

giving the knowledge about our planet that was not available before or was difficult

to extract. Thanks to the remote sensing techniques, we can study almost any area

of interest and obtain its full description in no time.

The increasing amount of freely available satellite image time series (SITS) has

led to the creation of many projects exploiting data mining techniques. Among them,

there are applications such as land use analysis, vegetation and water monitoring,

analysis of the impact of disasters (e.g. floods and tsunamis), biodiversity analysis

and monitoring, objects detection for military, urban development analysis, and many

others.

Contrary to a single image analysis, multi-temporal SITS analysis gives us an

additional information about an object’s temporal behavior. This information is

often indispensable for some applications, such as the detection and analysis of

the evolution of a certain phenomena. In addition, the information about temporal

behavior helps us distinguish more sub-classes, especially in the vegetation which

can then be more easily divided into several classes based on their seasonal behavior.

With such number of applications and the variety of satellite images, it is impossible

to produce a unique database with labeled classes. It has motivated many researchers

to develop different unsupervised data mining techniques that do not demand any

labeled data. However, with the growing image quality and detail level, the classic

image analysis methods have become outdated as they often cannot capture the

complexity of the information contained in the satellite images.

With the increasing hardware capacity at a lower cost, deep learning techniques

have gained their popularity in almost any research area. Neural network models were

recently introduced in remote sensing field and have already outperformed most of

the traditional approaches in therms of accuracy. Nevertheless, most of these models
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are still supervised and very little algorithms are available for unsupervised analysis.

Moreover, existing satellite image analysis algorithms often aim to detect a

particular event, without exploiting all the available information, though some

applications demand the complete information about the study area. In this thesis,

we focus on unsupervised deep learning approaches for satellite image analysis,

especially on those applied to the multi-temporal data. This kind of data is the most

complex one but, at the same time, is the most informative as it helps to better

describe each detected phenomena. We aim to show the advantages and eventual

disadvantages of unsupervised deep learning techniques applied to approaches such

as satellite image time series (SITS) clustering and bi- and multi-temporal change

detection. All algorithms were developed in Python language and do not demand

any commercial software or training data. They were applied to freely available high

resolution SITS to highlight the accessibility of the proposed approaches and their

relevance for different applications.

0.2 Thesis Organization

This thesis is organized as follows:

In Chapter 1, we explain the basics of remote sensing data acquisition and

interpretation and give an overview of different satellite missions. We equally present

some basics of data mining applied to satellite images.

In Chapter 2, we present machine learning algorithms for different data analysis

applications. We mostly focus on unsupervised algorithms that were used in our

work, such as data clustering and anomaly detection.

Chapter 3 overviews unsupervised feature extraction methods used in satellite

image analysis. A large part of this chapter is dedicated to deep learning feature

extraction methods based on the autoencoder models that were used in our research.

Chapter 4 introduces our algorithm for bi-temporal change detection in SITS

that is based on joint AEs feature translation and reconstruction. This algorithm is

completed by an approach proposing the clustering of the detected change areas.

Chapter 5 describes our algorithm for multi-temporal change modeling and

clustering. This approach presents the adaptation of the bi-temporal change detec-

tion and analysis method to the multi-temporal context by exploiting graph-based

modeling techniques and Recurrent Neural Networks (RNN) for feature extraction

and clustering of the obtained change graphs.

Chapter 6 features our approach for an object-based SITS clustering. In this
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approach, we first exploit a two branches multi-view 3D convolutional AE to encode

the time series. Second, we perform its segmentation and. Finally, we cluster the

obtained spatio-temporal objects. The SITS segmentation is performed in several

steps: we start by the preliminary segmentation of the two most representative images

which usually does not give all the desired segments. Then we segment the encoded

SITS which results in many parasite objects due to the encoding specificity. At the

last step, we merge the results of both segmentation to obtain a unique segmentation

map for the whole series.

Finally, Chapter 7 concludes this thesis giving the overall review of the results

obtained so far. It also presents some directions for the future research.

0.3 Publications
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– Jérémie Sublime, Ekaterina Kalinicheva, “Automatic Post-Disaster Damage

Mapping Using Deep-Learning Techniques for Change Detection: Case Study
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– Ekaterina Kalinicheva, Dino Ienco, Jérémie Sublime, Maria Trocan, “Unsuper-

vised Change Detection Analysis in Satellite Image Time Series Using Deep

Learning Combined With Graph-Based Approaches,” IEEE J. Sel. Top. Appl.

Earth Obs. Remote Sensing 13: 1450-1466 (2020)

– Ekaterina Kalinicheva, Jérémie Sublime, Maria Trocan, “Unsupervised Satel-

lite Image Time Series Clustering Using Object-Based Approaches and 3D

Convolutional Autoencoder,” Remote Sensing 12: 1816 (2020)

– Guillaume Dupont, Ekaterina Kalinicheva, Jérémie Sublime, Florence Rossant,

Michel Pâques, “Analyzing Age-Related Macular Degeneration Progression in

Patients with Geographic Atrophy Using Joint Autoencoders for Unsupervised

Change Detection,” Journal of Imaging 6(7): 57 (2020)

International Conferences

– Ekaterina Kalinicheva, Jérémie Sublime, Maria Trocan, “Object-Based Change

Detection in Satellite Images Combined with Neural Network Autoencoder

Feature Extraction,” IPTA 2019: 1-6
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(3) 2019: 637-648

Unranked and National Conferences

– Ekaterina Kalinicheva, Jérémie Sublime, Maria Trocan, “Neural Network Au-
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Chapter 1

Introduction to Remote Sensing

and Satellite Image Analysis

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Remote Sensing Images . . . . . . . . . . . . . . . . . . . 6

1.3 Satellite Missions . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Introduction to Data Mining Applied to Images . . . . 12

1.4.1 Pixel-Based Approaches . . . . . . . . . . . . . . . . . . . 13

1.4.2 Region-Based approaches . . . . . . . . . . . . . . . . . . 14

1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1 Introduction

Remote sensing is a powerful tool for Earth observation and analysis which allows

to study an area of interest without direct physical interaction with it. With the

development of satellite technologies, we got access to images acquired all over the

World that makes it possible to study almost any phenomena from any place on the

globe.

While only several decades ago, remote sensing image analysis was a difficult,

time-consuming and manual task; nowadays, data mining algorithms suited for image

processing make it possible to analyze the image data using computer in no time.
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6 1. Introduction to Remote Sensing and Satellite Image Analysis

In this thesis, we present unsupervised algorithms for satellite image time series

analysis. This chapter present some basic concepts required to understand our

work and satellite image analysis in general. Section 1.2 presents the keypoints of

remote sensing images. Section 1.3 describes different satellite missions. And, finally,

Section 1.4 gives a general idea of data mining applied to satellite images.

1.2 Remote Sensing Images

Remote sensing is the acquisition of information about an object or a phenomenon

without making a direct physical contact with it. Usually, remote sensing refers to

the use of aircraft- or satellite-based technologies to acquire the properties of the

Earth surface and corresponding objects. Remote sensing technologies for Earth

observation involve an aircraft or an artificial satellite and a sensor. Sensors can be

divided in two types: active and passive. Active instruments use their own source of

energy to interact with an object, while passive instruments use the energy emitted

from a natural source, in particular, from the sun.

Most often, active sensors refer to Synthetic Aperture Radar (SAR) that measures

surface roughness. The main idea of this approach is to measure surface backscatter-

ing - a portion of emitted radar signal that is redirected back by the target. Passive

sensors are mostly represented by optical remote sensors that measure the amount

of sun energy reflected by the target.

Figure 1.1: Electromagnetic spectrum.
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In remote sensing, we exploit the properties of the radiation that is defined by

the electromagnetic waves. These waves are characterized by their frequency (Hz) or

their wavelength (meters). Figure 1.1 illustrates the electromagnetic spectrum with

the corresponding wavelengths.

The spectrum is divided in different spectral ranges. We distinguish the visible

spectrum (the radiation perceived by human eye), infrared, ultraviolet, etc. The Earth

surface reflects different types of radiation, depending on its coverage. Figure 1.2

shows that vegetation absorbs the visible radiation and reflects near-infrared radiation,

and it is the same for bare soil. At the same time, water surfaces absorbs almost all

the visible waves.

Figure 1.2: Spectral signatures of the water, green vegetation and soil within the different
windows of the electromagnetic spectrum.

Every satellite image acquired by an optical sensor is characterized by its:

– number of spectral bands;

– spectral resolution - spectral width of each spectral band or the capacity

of sensor to define fine wavelength intervals for each band (for example a

panchromatic band contains all the visible spectrum, while a red band is able

to capture the wavelength around 625-740 nm, depending on a satellite, etc);

– spatial resolution - pixel size of each band;

– temporal resolution - time gap between two consecutive images taken over

the same geographic area1;

1Note that a spatial mission may have several satellites that acquire the information over the
same geographical area during different period of time. In this work, the term “temporal resolution”
refers to the frequency of image acquisition by the ensemble of satellites of the mission.
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8 1. Introduction to Remote Sensing and Satellite Image Analysis

– radiometric resolution - range of image bits, reflects the capacity of an

instrument to distinguish differences in object reflectance.

We distinguish mono-, multi- and hyperspectral images. Monospectral images

contain a unique spectral band and the image pixels are characterized by a single value.

Multispectral images contain from 3 to 10 spectral bands, while for hyperspectral

images their number is higher that 10. Their pixels are characterized by vectors of

radiometric values from each band. Monospectral images usually contain a single

panchromatic band. In the meantime, multispectral images should have at least

green, red and NIR bands as they are the most informative.

1.3 Satellite Missions

The first satellite image of Earth was obtained the 14th August 1959 by U.S. orbital

satellite Explorer VI [4]. However, the satellites started to acquire Earth data on

regular basis more than 10 years later. The launch of the Landsat mission in 1972

gave people a unique possibility to observe different spots of Earth surface every

18 days. Landsat-1 was the first satellite specifically designed to study and monitor

our planet’s landmasses [5]. This satellite provided images with 60 meters spatial

resolution with green, red, and two infrared bands.

This breakthrough gave the researchers the previously unavailable possibility

to remotely monitor the evolution of Earth surface coverage at global level. Later,

with the development of technology, many other missions with different spatial and

temporal resolution were launched providing numerous products for Earth observation.

The most known satellite missions of the last 20 years are listed in Table 1.1.

While some missions provide satellite image time series for the whole globe

coverage and are freely available for the public use (Landsat, Sentinel, MODIS),

others provide time series for commercial use only. Finally, the images of certain

areas are freely available as a part of a specific program.

In our work, we use time series issued from two different spatial missions - SPOT-5

and Sentinel-2. These missions were chosen because they provide high resolution freely

available images (10 m in visible and infrared spectrum). Currently, some SPOT-5

time series are available as a part of SPOT World Heritage (SWH) program. Despite

the good spatial resolution for that time, the final SPOT-5 time series product has

irregular temporal resolution.

Contrary to SPOT-5 satellite, nowadays, Sentinel-2 mission supplies free images

of any spot of the world with high temporal resolution that makes it a primary source
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1.3. Satellite Missions 9

Table 1.1: Satellite missions.

Mission
Active
years

Temporal
resolution

Spatial
resolution

Spectral
bands

Landsat-7
(USA,

USGS/NASA)

1999 -
late 2020

16 days

30 m
30 m
60 m
15 m

B, G, R,
2 NIR, MIR,

thermal,
PAN

Landsat-8
(USA,

USGS/NASA)
2013 - 16 days

30 m
30 m
30 m
15 m
30 m

coastal aerosol,
B, G, R,

NIR, 2 SWIR,
PAN
cirrus

MODIS
(USA,
NASA)

1999 - 1-2 days
250
500

1000 m
36 bands

SPOT-4
1998 -
2013

26 days
20 m
10 m

G, R, NIR, SWIR,
PAN

SPOT-5
2002 -
2015

26 days
10 m
20 m
5 m

G, R, NIR,
SWIR
PAN

RapidEye 2009 - 1 day 6.5 m B, G, R, R edge, NIR

SPOT 6/7 2012/2014 - days
6 m

1.5 m
G, R, NIR,

PAN

Pleiades 2011 - 1 day
2 m

0.5 m
B, G, R, NIR, SWIR

PAN

Sentinel-2 2015 - 1-2 days

60 m
10 m
20 m
60 m
20 m

coastal aerosol,
B, G, R, NIR,

4 vegetation R edge,
water vapour, cirrus

2 SWIR
B- blue, G- green, R- red, NIR- near-infrared, MIR- mid-infrared,
SWIR- shortwawe-infrared, PAN- panchromatic bands.
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10 1. Introduction to Remote Sensing and Satellite Image Analysis

of images for different applications. For this reason, in our work, we also use datasets

captured by the Sentinel-2 mission, so the experiments are led both on archive data

and on the recent one.

SPOT (French: Satellite Pour l’Observation de la Terre or Système Probatoire

d’Observation de la Terre, lit. Probationary Satellite for Earth Observation or Satellite

for Earth Observation) - is a civil program for Earth observation. It is developed by

the french National Center for Space Studies (CNES - French: le Centre National

d’Etudes Spatiales). SPOT is a family of seven satellites: SPOT-1, SPOT-2, SPOT-3,

SPOT-4, SPOT-5, SPOT-6, and SPOT-7. The chronology of the missions is presented

in Figure 1.3.
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Figure 1.3: SPOT satellites.

Some SPOT 1-5 time series are available as a part of SWH program, however, only

SPOT-5 mission provides 10 meters resolution bands in visible spectrum contrary to

20 m for others missions. The wavelength range for each spectral band of SPOT-5

satellite is the following ([6]):

– Green (0.50-0.59 µm),

– Red (0.61-0.68 µm),

– NIR (0.78-0.89 µm),

– SWIR (1.58-1.75 µm).

Green, Red and NIR bands have 10 m spatial resolution. SWIR band yields 20 m

images, which are then resampled to 10 m in the final product.
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1.3. Satellite Missions 11

Sentinel mission is a part of the EU Copernicus program in collaboration with

the European Spatial Agency (ESA). The goal of this program is to replace the

current older Earth observation missions and to ensure a supply of continuous data.

Each mission focuses on a different aspect of Earth observation: atmospheric, oceanic,

and land monitoring, and the data will be of use in many applications [7]. The

Sentinel missions are currently composed of Sentinel-1 (SAR for land and ocean

monitoring), Sentinel-2 (land monitoring), Sentinel-3 (sea surface topography, sea

and land surface temperature, and ocean and land surface colour) and Sentinel-5P

(air quality monitoring) with Sentinel-4 (monitoring of atmospheric composition) and

Sentinel-5 (air quality monitoring) launched in the nearest future. Each of Sentinel

1, 2, 3 missions is comprised of 2 satellites to ensure the best globe coverage and

image acquisition frequency within the mission. Two more satellites for Sentinel-3

mission are in order to be launched. The chronology of Sentinel missions is presented

in Figure 1.4.
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Figure 1.4: Sentinel satellites.

Optical images are supplied only by Sentinel-2 and 3 missions. In our work we

use time series issued from Sentinel-2. The wavelength for each spectral band of

Sentinel-2A and 2B satellites is indicated in the Table 1.2.
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12 1. Introduction to Remote Sensing and Satellite Image Analysis

Table 1.2: Sentinel-2 spectral bands [3].

Spectral band Wavelength, µm

Spectrum Resolution, m S2A S2B

Coastal aerosol 60 0.432 - 0.453 0.432 - 0.453
Blue 10 0.459 - 0.525 0.459 - 0.525

Green 10 0.541 - 0.578 0.540 - 0.577
Red 10 0.649 - 0.680 0.650 - 0.680

Red Edge 1 20 0.697 - 0.712 0.696 - 0.712
Red Edge 2 20 0.733 - 0.748 0.732 - 0.747
Red Edge 3 20 0.773 - 0.793 0.770 - 0.790

NIR 10 0.780 - 0.886 0.780 - 0.886
Red Edge 4 20 0.854 - 0.875 0.853 - 0.875

Water vapour 60 0.935 - 0.955 0.933 - 0.554
Cirrus 60 1.358 - 1.389 1.362 - 1.382
MIR 1 20 1.568 - 1.659 1.563 - 1.657
MIR 2 20 2.115 - 2.290 2.093 - 2.278

1.4 Introduction to Data Mining Applied to

Images

Data mining applied to images is a trendy field since the early 1980 and is more

commonly known under the name Computer Vision. It has numerous applications:

analysis of medical images, security scans, remote-sensing, etc. The final goal of

computer vision is to mimic the skills of human vision when analyzing an image:

finding the different element of the image and eventually identifying them.

Automatizing computer vision is a complex task the goal of which is to reduce

the need for human intervention when extracting knowledge from an image. This

process can be split into several steps for any kind of image:

1. acquiring the data,

2. preparing the data (denoising, encoding, and so forth),

3. mining the data (choosing a model and a method, and then applying it to the

data),

4. validating and interpreting the results,

5. integrating the mined knowledge into a data base for further use (optional).
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From a computer point of view, an image is a data set made of several elementary

objects called pixels. These pixels have characteristics of their own such as gray

level value for each image channel and their position (x,y coordinates) on the image.

Therefore, one of the main difference between an image set and a regular data

set is that in the cases of images, the data to classify have coordinates -and thus

geographical dependencies- in addition to their regular attributes. Another important

difference is that the pixels are not necessarily the most interesting image elements

to process. As we will discuss bellow, while it is possible to use an image analysis

algorithm directly on the pixels, it is quite often more interesting to process “regions”

that are made of several pixels.

1.4.1 Pixel-Based Approaches

Pixels Used as Data

Pixel-based approaches are among the most common approaches for data mining in

computer vision. This type of approaches have been widely studied in the last 50 years

and still remains widely used [8–10]. These approaches consider the pixels composing

an image as data to be labeled (supervised learning) or clustered (unsupervised

learning). Pixels are described as vectors built from physical attributes (radiometric

and geographic attributes), to which can be added neighborhood dependencies either

in the form of a set of neighboring data, or in the form of coordinates in the computer

image itself. By neighborhood dependencies, we mean the possible links between

clusters that are next to each other and the way they may influence each other

classification or clustering.

For instance, the description of a regular red, green, blue (RGB) computer image

of size H ×W is the following:

X = {x1, ..., xN}, xn = {r, g, b}, (r, g, b) ∈ [0, 255], N = H ×W

After the process of clustering (or classification), each pixel xn will be associated

to a label, independent of the value of the neighboring pixel.

Limitations of Pixel-Based Approaches

While pixel-based approaches are still widely used, they suffer from many defects.

First, most pixel-based approaches only use the radiometric information from the

pixels leaving all other characteristics unused [11]: shape, length, width, texture, etc.
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14 1. Introduction to Remote Sensing and Satellite Image Analysis

However, the most important and recent issue with pixel-based approaches is that

in modern imaging single pixels have no signification because the objects of interest

are generally covering a large number of pixels. This is particularly true with high

resolution (HR) and very high resolution (VHR) satellite images, such as those that

we used in this thesis. When dealing with a high resolution satellite image, even an

average quality one, the objects of interest such as roads, trees, or houses are already

too big for any of them to fit in a single pixel. They are actually composed of several

heterogeneous pixels. Thus a pixel-based analysis not only would make little sense,

but it would also result in loosing key information -such as the real shape of these

objects- that is key to their identification.

One solution to reduce this kind of issue is to label the pixels, not only based on

their own attributes, but also depending on the characteristics and labels of the pixels

in their neighborhood [12–14]. These approaches consider a neighborhood window

around the pixel to analyze and add texture information to the pixel color attributes.

While neighborhood enhanced pixel-based methods are an interesting first step,

recent studies have shown that in the case of very high resolution pictures, for

some applications, it is still not enough to achieve good performances [15]. To cope

with these issues, other approaches based on regions of agglomerated pixels have

been developed. The principles of these methods as well as their pros and cons are

introduced in the next subsection.

1.4.2 Region-Based approaches

Region-based approaches are the basis of Object Based Image Analysis (OBIA) [16].

The main idea behind these methods is that since the pixels themselves have no

semantic meaning, a first step is required to regroup the pixels into regions that will

represent the real objects of interest to be identified or put into clusters. Therefore,

for region-based approaches the data mining process consists in two steps instead of

only one:

1. segmentation of the original image to determine the border of the objects of

interest,

2. clustering or classification of the newly identified regions.

These regions have new and unique characteristics that are based on both the

characteristics of the pixels they are made of, but also shape, size and texture features.

2011 C. GRECO
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Figure 1.5: Example of a crude segmentation to detect a white lamb on a grass background

Image Segmentation

The segmentation of an image is a process that consists in grouping together neighbor

pixels with the goal of finding homogeneous segments the borders of which will be

a good approximation of the objects present within the image [17]. The segments

created using this process are supposed to be relevant and match the real objects

that can be found in the picture (Figure 1.5).

The definition of a proper image segmentation has been formalized by Pavlidis

and Zucker [18, 19] in the form of the 4 following axioms:

1. Each pixel of the image must belong to one and only one segment.

2. Each segment must be continuous, i.e. made of connected neighbor pixels.

3. Each segment must be an homogeneous entity.

4. Two adjacent segments must be two distinct homogeneous entities.

Among these four conditions, axioms 3 and 4 rely on a notion of homogeneity

that is rather difficult to assess due to complexity of some objects textures. Thus,

image segmentation is a difficult process that can lead to results of varying quality

depending on the homogeneity criterion and the algorithm that are used. Therefore,

over-segmentation and under-segmentation are the two most common problems:

– Over-Segmentation: The image contains too many segments after the segmen-

tation process. In this case, many of the objects to be found remain spread

over several small segments that do not contain enough pixels. This problem

can generally be solved by merging together segments that are too similar or

do not represent anything.

– Under-Segmentation: The image does not contain enough segments. The re-

sulting segments are so big that they contain several objects inside of them.

Unlike with over-segmentation, this problem is more difficult to solve.
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16 1. Introduction to Remote Sensing and Satellite Image Analysis

In Figure 1.6, we show an example of over-segmentation: the river and some of

the buildings are clearly over-segmented. The colors in the image are representing

the real object of interest that “should” be found.

Figure 1.6: Example of an over-segmentation

While both cases should be avoided when possible, there is no generic method that

solves these problems. In any case, it is always better to have an over-segmentation

rather than an under-segmentation. In the case, over-segmentation the real objects

may still be found during the clustering or classification process, even if they are

split between several segments. However when several objects are merged in the

single segment because of an under-segmentation, there is no way to fix it during the

clustering/classification process, and some classes or clusters may be lost for good.

Over-segmentation it therefore a much more preferable preprocessing result.

More details on the different segmentation algorithms can be found in the litera-

ture [20].

Limitations of Region-Based Approaches

While region-based approaches are more adapted than pixel-based approaches when

dealing with HR and VHR images, they also have their limits and disadvantages.

The first obvious limitation is the segmentation process needed to create the

regions. As we have shown previously, this process can be cumbersome and requires

that the user choose carefully a potentially large number of parameters to achieve

acceptable results. Because the segmentation process is a mandatory step for region-

based approaches, the quality of the segmentation will have a huge impact on the

subsequent clustering or classification process.

Another important aspect is that when the segments and regions are created they

add a large number of new attributes that may have to be taken into consideration:
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surface of the segments, perimeter and elongation, extrema, variance and average

values of the attributes in a given segment, contrast with the neighboring segments,

etc. The choice of the right attributes can be tricky, as some of them may or may not

be relevant or redundant depending on the type of objects that one wants to identify.

Finally, another obvious limitation of region-based approaches lies in the fact

that - particularly with satellite images - there may be several levels of objects of

interests to be found depending of the desired level of detail during the clustering

process. However, it is not yet possible for that kind of hierarchy between objects

made of other objects to be displayed in a segmentation. Therefore the risk of having

an under-segmentation at an acute level of detail remains high, while on the contrary

the image may end up being over-segmented for a lesser and broader level of detail.

Example: An urban area is made of several different urban sectors that in turn

are made of different buildings and streets.

1.5 Discussion

In this chapter, we have presented the essential concepts of remote sensing such as

image acquisition and interpretation. In this PhD thesis, we use optical image time

series data, so the concept of optical images and their properties were equally reflected

in this chapter. Moreover, we have given an overview of the most known satellite

missions that provide freely-available time series image data. We have especially

focused on the SPOT-5 and Sentinel-2 missions as we exploit their images in our work.

Finally, we have presented the concept of computer vision - data mining techniques

applied to image processing. These image analysis approaches can be divided between

pixel- and object-based. In our work, we use both, although, our pixel-based methods

exploit moving window technique where each image pixel is associated to a patch - a

square of certain fixed size - that contains neighboring pixels.

The two following chapters will describe some of the existing machine learning

algorithms used for different data analysis purposes, including computer vision and

satellite image analysis. We will mainly focus on unsupervised algorithms (the ones

that do not demand any labeled data) - data clustering, anomaly detection and

feature extraction.
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Chapter 2

Machine Learning. Clustering and

Anomaly Detection
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2.1 Introduction

Machine Learning is a subfield of Computer Science defined in 1959 by Arthur Samuel

as “a field of study that gives computer the ability to learn without being explicitly
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programmed”. The methods of machine learning allow analyze different type of data

(text, video, images, etc) to define the correlation between entities in order to extract

some knowledge.

With the omnipresence of numerous data within a large number of science fields,

Machine Learning has become a common tool for Data Mining, model building

and prediction in a large number of areas such as biology and medicine [19, 21–24],

mathematics [25], finance and business [26–28], physics [29], chemistry [30], marketing

and so many others. Thus, Machine learning makes it possible to automatically

analyze huge amount of remote sensing images to perform various tasks: land cover

mapping, object detection, satellite images time series analysis, change detection,

etc.

Machine learning tasks are usually divided into three categories:

– Supervised Learning: The computer program is presented with a set of input

examples provided with their desired label (training set) from which it will

have to build a model or learn some rules that maps the inputs to the right

outputs. Once the model has been learned, the computer can apply it to new

data for which the output labels are unknown. Tasks related to supervised

learning include classification, regression and time series predictions.

– Unsupervised Learning: With no labels given, the computer program has

to find interesting structures, patterns and groups in a set of data. Potential

applications include clustering (that we will formally introduce in the next

section), feature learning, regression and pattern recognition.

– Reinforcement Learning: Given a dynamic environment, a computer pro-

gram must perform a certain task and will improve its behavior based on

positive or negative rewards inputs decided according to its actions. The algo-

rithm is never directly told how to find the right answer, but has to explore

different possibilities based on the rewards it gets for each of its action.

In this thesis, we present a complete time series analysis that includes change

detection and clustering performed using unsupervised machine learning techniques.

The unsupervised approaches were chosen as they make it possible to analyze almost

any data as no training database is required.

In this chapter, we are going to present some of the concepts of machine learning

used in our thesis focusing on the unsupervised methods. In Section 2.2, we explain

the basics of unsupervised learning, the Section 2.3 reviews of different clustering

algorithms. Section 2.4 gives the general information about the anomaly detection.
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Finally, in Section 2.5 we present some indices to assess the quality of the presented

algorithms.

2.2 Unsupervised Learning

Unsupervised learning is a machine learning task the aim of which is to find hid-

den structures and patterns in unlabeled data. There are several tasks linked to

unsupervised learning, the most known of them are:

– data partitioning (or clustering),

– anomaly detection,

– latent variables model learning (data reprojection or dimensionality reduction),

– data visualization (often based on dimensionality reduction).

Unsupervised learning is said to be “unsupervised” because it finds structures and

build a model from completely unlabeled data. It therefore differs from supervised

learning which builds a model given already labeled data.

Figure 2.1: Supervised learning.

Figure 2.2: Unsupervised learning.
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While in supervised learning, we use labeled data to create a model that is then

used to make predictions on a new data (Figure 2.1), in unsupervised learning, the

same dataset is used both for model creation and final analysis (Figure 2.2).

2.3 Clustering

Clustering is a machine learning task of exploratory data mining the aim of which is to

split a data set made of several data (also called objects, data objects, or observations )

into several subsets. Each object is described by several attributes, also called features

that describe its properties. The subsets created by the process of clustering a data

set are called clusters. Objects from a given cluster are supposed to be homogeneous

and to share common characteristics. A very simple example of a data set with two

attributes and three visually distinct clusters is shown in Figure 2.3.
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Figure 2.3: Example of a 2 dimensional data set with 3 visually distinct clusters.

There is a huge number of clustering methods that automatically create clusters,

each with its own strategy and criteria. The main criterion to build clusters relies

on the notion of similarity between two objects. Based on this concept of similarity,

a clustering algorithm will have to make the decision to group several objects in

the same cluster, or to separate them. In this context, the choice of the similarity

measure is critical since it will ultimately determine the final clusters.
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The vast majority of clustering algorithms are based on the notion of distance

between the data as a similarity (or dissimilarity criterion). Within this context,

clustering algorithms often try to optimize an objective function which favors clusters

that are both compact and well separated. For these algorithms, the choice of the

distance function is key. Examples of common distances are shown in Table 2.1.

Euclidian dist. ||a− b||2 =
√∑

i(ai − bi)2
Squared Euclidian dist. ||a− b||22 =

∑
i(ai − bi)2

Manhattan dist. ||a− b||1 =
∑

i |ai − bi|
Maximum dist. ||a− b||∞ = maxi |ai − bi|

Mahalanobis dist.
√

(a− b)>S−1(a− b) where S is the covariance matrix
Hamming dist. Hamming(a, b) =

∑
i(1− δai,bi)

Table 2.1: Examples of common distances.

While this notion of similarity is a first step to define a clustering method, it is

however not enough. Once an agreement as been found on which similarity measure

will be used, the next step is to define a strategy to build the clusters using this

similarity measure. Given the large number of similarity measures available, and

considering that several strategies are usually available for each of them, it is no

surprise that a huge variety of clustering methods is available in the specialized

literature.

Clustering methods have been used in a large array of applications such as pattern

recognition, web mining, business intelligence, biology for taxonomy purposes, or

security applications. Clustering can also be used for outliers detection [31, 32],

where outliers (objects that are “far” from any cluster) may be more interesting than

common cases.

In business intelligence, clustering can be used to sort a large number of customers

into groups where customers share strong similar characteristics. In pattern recogni-

tion, clustering can be used to discover clusters in handwritten character recognition

systems. Clustering also has many applications in web-mining. For example, a key-

word search may often return a very large number of hits (i.e., pages relevant to the

search) due to the extremely large number of web pages. Clustering can be used to

organize the search results into groups and present the results in a more concise and

easily accessible way. Moreover, clustering techniques have been developed to cluster

documents into topics, which are commonly used in information retrieval practices.

Applications of outliers detection include the detection of credit card fraud and the

monitoring of criminal activities in electronic commerce. For example, exceptional

cases in credit card transactions, such as very expensive and infrequent purchases,
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may be of interest as possible fraudulent activities [33].

Far from being an exhaustive state of the art, this section introduces some of the

key concepts in clustering. We advise our readers that may want a more exhaustive

state of the art on clustering methods, or to read more about the differences between

existing methods to read one of the following documents [34–36].

In this section, we will present 3 main families of clustering methods:

– distance-based that can be divided in the following subfamilies:

– hierarchical,

– prototype-based,

– density-based,

– spectral,

– probabilistic.

In the forthcoming subsections, we will present several clustering methods based

on different measures and strategy. In particular, we will focus on distance-based and

prototype-based methods that are the most used in satellite image processing.

2.3.1 Prototype-Based Algorithms

The principle of prototype-based algorithms is based on vector quantization, a data

compression process which consists in representing the data with a few representatives

called prototypes. Each data will then be linked to its closest prototype in the data

space. The main task of these algorithms is therefore to build relevant prototypes

and link the data to them.

A common example of prototype would be a centroid of a high density area.

Depending on the number of prototypes, each of them may represent a cluster, or

several of them may need to be regrouped to find the clusters.

The K-Means Algorithm

The K-Means algorithm is one of the most famous prototype-based clustering algo-

rithm. It is a simple and fast, yet relatively good clustering method. Its principle is

the following [37, 38]: Suppose that we would like to divide our data into K clusters,

the value of K being known in advance. We allocate K cluster prototypes (also called

mean-values) to our input space, and we would like to move these prototypes so that

each of them will become the centroid of a cluster. Given that we have chosen a

distance measure, the procedure to do so consists in alternating the following two
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steps until convergence: 1) Link each data to the closest prototype, 2) Move the

prototype so that is becomes the barycenter of the current data to which it is linked.

This procedure is described in Algorithm 1 and an example with 2 clusters on the

“Old Faithful” data set is shown in Figure 2.4.

It is convenient at this point to give a notation that describes the assignment of

data points to clusters. For each data point xn, let sn,i ∈ {0, 1} be a set of binary

indicator variables with i ∈ [1..K]. The sn,i are used to describe to which one of the

K clusters a data has been assigned. For instance, if xn is assigned to cluster ck, then

sn,k = 1 and ∀i 6= k, sn,i = 0. Ultimately, what the K-Means algorithm does is to

optimize a cost function R̃(µ) as given in Equation (2.1).

R̃(µ) =
N∑
n=1

K∑
i=1

sn,i||xn − µi||2 (2.1)

Because each phase reduces the value of the objective function R̃(µ), convergence

of the algorithm is assured. However, it may converge to a local rather than global

minimum of R̃(µ). The convergence properties of the K-means algorithm have been

studied in [37].

Algorithm 1 K-Means Algorithm
Choose a value for K
Randomly initialize the K centroids µi
while Learning do

forall xn ∈ X do
Assign xn to the cluster ci with the closest centroid:

sn,i =

{
1 if i = argmini||xn − µi||2

0 otherwise

end
Minimize Equation (2.1):
forall µi do

µi =
∑

n xn·sn,i

|ci|
end

end

Several algorithms based on improved or modified versions of the K-Means

algorithm have been proposed in the literature [39–45]. Algorithms based on the

K-Means algorithm suffer from several weaknesses: The main one is the need to

provide a K. It requires to know in advance how many clusters are to be found.

In practice this is rarely the case because we expect the clustering algorithm to

actually discover the clusters. Therefore, the only solution when the number of
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clusters is really unknown is to run the algorithm several times with different values

of K and to pick the best clustering based of a given quality index (for instance

the Silhouette index [46] or the Davies-Bouldin index [47]). This method is costly

and may prove ineffective because of the non-deterministic nature of the K-Means

algorithm. Adaptations of the K-Means algorithm have been proposed [48] to solve

this issue, but they remain only partially satisfying. Second, algorithms based on

the K-Means can only find hyper-spherical clusters and will also fail to detect the

clusters properly if their sizes are significantly different.

Figure 2.4: Illustration of the K-Means algorithm on the Old Faithful data set

2.3.2 Hierarchical Clustering Methods

Most of the clustering algorithms are building results that come in the form of a

flat separated clusters where the clusters are all independent and no structure exists

between them. However, another approach consists in trying to have results in the

form of clusters between which there is a hierarchical structure. The most common

structure is to build clusters as trees, very similar to phylogenetic trees in biology: at

the top of the tree is a single cluster containing all the objects. This cluster will then

be split into several sub-clusters that will also be split into other clusters and so on.

The clusters close from the root of the tree will be crude and will contain a lot of

objects that may still be relatively dissimilar, and the clusters far from the root will

contain less but more similar objects [36, 49–52].
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Figure 2.5: Example of a hierarchical clustering result.

This type of clustering where the solution is given in the form of a tree (or

dendrogram) is called hierarchical clustering algorithm (HCA). In this case, each

data object belongs to a single leaf cluster, but as a consequence it also belongs to all

the father nodes up to the root of the tree. Hierarchical clustering is further divided

into two sub-categories: agglomerative approaches (or “bottom-up” approaches) and

divisive approaches (or “top-down” approaches). In agglomerative methods, the

clustering algorithm starts with all objects belonging to a different leaf and then

regroup them until there is a single cluster containing all the objects. Divisive

approaches on the contrary start with all the data in the same cluster, and this

cluster is then divided into sub-clusters in a recursive manner. In Figure 2.5, we show

an example of a hierarchical result with 4 clusters.

There are many different methods to create a tree of hierarchical clusters. In

Algorithm 2, we show the main framework followed by agglomerative methods.

Algorithm 2 Hierarchical clustering algorithm: general framework (agglomerative)

Create a cluster for each element
Initialize the dendrogram’s leaves
while There is more that one cluster left do

Compute all the pairwise similarities between the clusters
Merge the two clusters that are the most similar
Update the Dendrogram

end
Cut the dendrogram depending on the desired number of clusters
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The main difference between the various algorithms proposed in the literature

lies on the choice of a similarity measure to merge (or split) the clusters. The main

measures for hierarchical clustering are listed bellow:

– Single-linkage: Assesses the minimal distance that exists between data belonging

to two different clusters. This linkage is very popular because it can be used to

detect clusters of any shapes and that may not be hyper-spherical. However, it

is noise-sensitive and cannot detect clusters that are in direct contact.

Ds(c1, c2) = min
x∈c1,y∈c2

d(x, y) (2.2)

– Complete-linkage: Assess the maximal distance that exists between data be-

longing to two different clusters. It is highly noise-sensitive and rarely used in

practice.

Dc(c1, c2) = max
x∈c1,y∈c2

d(x, y) (2.3)

– Average-linkage: It considers the average distance between the data belonging

to two different clusters. It is less noise-sensitive than the two previous links.

But it tends to favor hyper-spherical clusters.

Da(c1, c2) =
1

|c1||c2|
∑
x∈c1

∑
y∈c2

d(x, y) (2.4)

– Centroid-linkage: It assesses the distance between the mean values of two

clusters. This linkage is not noise-sensitive but also tends to favor hyper-

spherical clusters.

Dµ(c1, c2) = ||µ1 − µ2|| (2.5)

– Ward-linkage: One possible variation of Centroid-linkage is the Ward Crite-

rion [49] where the mean-values are weighted depending on the number of

elements in the cluster.

Dw(u, v) =

√
|v|+ |s|

T
d(v, s)2 +

|v|+ |t|
T

d(v, t)2 − |v|
T
d(s, t)2 (2.6)

where u is the newly joined cluster consisting of D and t, v is an unused cluster

in the forest, T = |v|+ |s|+ |t|, and | ∗ | is the cardinality of its argument.

The CURE algorithm [53] uses an alternative linkage that enables detecting

clusters of any shape while remaining resistant to noise. To do so, a few elements are

2011 C. GRECO



2.3. Clustering 29

selected in each cluster. These elements are chosen by first picking the farthest element

from the cluster centroid, and then the farthest element from the previously picked

one, and so on until c elements per cluster have been picked. These representative are

artificially modified and moved closer to the cluster centroid. Finally the single-linkage

criterion is used as a merging criterion.

Hierarchical clustering has two main limitations: First, once the clusters dendro-

gram is built, one still needs to decide where to cut to get the final clusters. This

choice remains a difficult one despite a plethora of available methods in the literature

(see [36]). Second, these methods have a high computational complexity of at least

O(N2) for a data set of size N , which makes them difficult to use with large datasets.

2.3.3 Density-Based Clustering Methods

Density-based clustering methods [54, 55] consider the most basic and perhaps the

most visual definition of a cluster: a cluster is an area of space with a high density

of data and is separated from other clusters by low density regions. This notion of

density relies on the concept of object neighborhood. By object neighborhood, we

mean other objects that are located at a certain distance of the observed object. For

density-based clustering methods, the higher the number of neighbors in an object’s

vicinity, the more chances that this object belongs to a high density region, and thus

is part of a cluster formed with its neighbors. Unlike many other clustering methods,

density-based algorithms do not assume that the clusters should have specific shapes

and can easily detect concave clusters [56] if the parameters are well tuned.

The parameters for this type of clustering algorithms generally include a distance

threshold to determine what should be considered a given object’s neighborhood:

let Vε(x) be the neighborhood of an object x so that Vε(x) = {y ∈ X|d(x, y) ≤ ε},
with ε a threshold and d(x, y) a distance between x and y. Examples of such density-

based method include the DBSCAN algorithm (Density-Based Spatial Clustering of

Applications with Noise) [39, 57, 58], or the OPTICS algorithm (Ordering points to

identify the clustering structure) [59] which adds a second threshold determining the

minimum number of objects that must be in a neighborhood for the said neighborhood

to be considered dense.

Density-based clustering methods can be equally used for anomaly detection.

While the high density areas form separate clusters, the points not included in these

areas are considered as outliers and are not attached to any cluster. Figure 2.6

presents an example of DBSCAN clustering result with 6 well defined clusters and

anomalous points (in violet).
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Figure 2.6: Example of a DBSCAN clustering result with 6 clusters and outliers points in
violet.

2.3.4 Spectral Methods

Spectral methods are recent clustering techniques that have had a lot of success

recently. The main idea of spectral clustering is to see clustering as a graph partitioning

problem. Spectral clustering considers the adjacency matrix of the graph representing

the data, and the eigenvalues of this matrix. This type of clustering is called “spectral”

because it uses the spectrum (eigenvalues) of the data set similarity matrix. Since

these methods use a similarity matrix between the different objects, without using

proper kernel matrices, they are actually quickly limited when the number of objects

becomes relatively big.

Example of spectral techniques include the Normalized Cuts algorithm (also

called Shi-Malik algorithm) [60]. This algorithms split the data into two subsets

(X1, X2) based on the eigenvectors matching the first and second smallest eigenvalue

of the similarity matrix Laplacian. The algorithm then uses a recursive hierarchical

approach to create clusters based on the eigenvectors values and a chosen threshold.

The Meila-Shi algorithm [61] is another example of spectral method. For k given,

it considers the eigenvectors matching the k highest matrix eigenvalues. Then it uses

a regular clustering algorithm (such as the K-Means algorithm) to regroup the data

based on their respective components in the eigenvectors.

2.3.5 Probabilistic Clustering Methods

Probabilistic clustering methods (sometimes called probabilistic model-based methods,

or generative models) are algorithms the main hypothesis of which is that the data

are following a given probability density function. The goal of such algorithms is to

estimate the parameters of these density functions and to define a mixture model
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to represent the different clusters. Many clustering techniques can be depicted in

this model, e.g. fuzzy C-Means, Gaussian mixtures models (GMM), mixtures of

Bernouilli distributions, etc. These methods make the hypothesis that each cluster ci

is linked to probability density function p(X, θi), where θi contains the parameters of

the function. These laws can then be used to assess the probability of a data xn to

belong to a cluster ci, thus generating a fuzzy partition. If we note πi the proportion

of the ith component in the mixture model, then the parameters of the model are:

Θ = {(π1, θ1), ..., (πK , θK)}, and the global density function is the following:

p(X,Θ) =
K∑
i=1

πip(X, θi) (2.7)

This type of model is called a generative model, because once the parameters are

known, it is possible to re-create the data just from the probability density functions

and the mixing coefficients.

The EM algorithm for the Gaussian Mixture Model The Expectation-

Maximization (EM) algorithm [62] is an iterative method used to find the max-

imum likelihood or the maximum a posteriori (MAP) estimate of parameters in

probabilistic and statistical models. As such it can be seen as an alternative to

gradient-descent/ascent methods [63, 64] to find the optimal parameters of a given

function.

Figure 2.7: Illustration of the EM algorithm (GMM) on the Old Faithful data set
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When it comes to applications of the EM algorithm for clustering, most of the

time the model used will be the Gaussian Mixture Model (GMM), where each cluster

ck follows a distribution given by a mean value µk and covariance matrix Σk in

addition to a mixing probability πk. This version of the EM algorithm with the

Gaussian Mixture model can been seen as a generalized version of the K-Means

algorithm where clusters can have different sizes and can take an elliptical shape

instead of being limited to a spherical one. In Figure 2.7 shows an example of such

application on the Old Faithful data set.

2.4 Anomaly Detection

Anomaly detection is a process of identifying unexpected items or events that differ

from the norm. Typically, anomalous data can be connected to a rare event or some

problem, such as, for example, malfunctioning equipment, bank fraud, spam e-mails,

disease detection from medical images, etc.

As any machine learning task, anomaly detection can be supervised or unsuper-

vised. In this work, we are interested only in the unsupervised methods, and we will

further refer to them as just anomaly detection. Unsupervised anomaly detection

presents the problem of finding patterns in data that do not conform to the common

behavior.

Anomaly detection is commonly formulated as two-class recognition problem,

where the first class (usually annotated as 0 or negatives) corresponds to normal

entities and the second one (usually annotated as 1 or positives) presents some

anomalous behavior. Unlike in classic two-class detection problem, anomaly detection

presumes, firstly, that the anomalous objects are less numerous than the normal ones

and, secondly, that they do not necessary share the same properties with each other.

We formulate anomaly detection as follows: given a dataset D with S entities

x = {x1, ..., xi, ..., xS}, we build a model M that describes D the best. Then we

choose some similarity measure that defines how much each entity xi fits to M . This

similarity measure can be a profitability p(xi), if M is a distribution, distance to other

points of the model, points density within a certain radius, distance to the model

mean, etc. Figure 2.8 illustrates a data model with two well defined big clusters c1

and c2, while all other points can be considered as anomalies as they are not located

in the areas of high point density.

To this end, anomalies can be divided into several groups depending on different

criteria. First of all, anomalies can be global and local. Global anomalies, such as x1
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Figure 2.8: A simple two-dimensional anomalies example [1]. It illustrates global anomalies
(x1, x2), a local anomaly x3 and a micro-cluster c3.

and x2 (see Figure 2.8), can easily be distinguished by eye and are very different

from the rest of the dataset. Local anomalies, such as x3, can be seen as a normal

record since it is not too far away from the cluster c2. However, if we focus only on

the cluster c2 while ignoring any other entities, x3 can be interpreted as anomalous.

Therefore, x3 is a local anomaly of c2. As it can be seen, the concept of anomalies is

subjective for each dataset and some similarity threshold should be set. For instance,

a micro-cluster c3 can be interpreted as a group of anomalies or as normal points of

the dataset.

We can equally divide anomalies based on their “uniqueness” [1]:

– point anomaly - a single instance that does not share properties with any other

dataset entity (x1 or x2);

– collective anomaly - anomalous situation is represented as a set of many

instances, the size of this set is still small comparatively to the dataset size

(micro-cluster c3);

– contextual anomaly - describes the effect that a point can be seen as normal,

but when a given context is taken into account, the point turns out to be an

anomaly. For example, +30°C is a normal temperature in summer, but an

outlier in winter.

Anomalies can be detected in time-invariant data (as in the early mentioned

example), as well as in multi-temporal data, where each data point xi of the previously
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mentioned dataset D is presented by a sequence xi = {xi,1, ..., xi,j , ..., xi,S} of a certain

length S. In the case of the multi-temporal change detection, the whole sequence

xi can be an anomaly, its subsequence or even a single point of this sequence xi,j.

Figure 2.9 shows different anomalies in time series data: x1, x2, x3 are the normal

examples (only 3 entities are given to simplify the figure), x4 and x5 contain a one

time anomaly and an anomalous subsequence respectively, and the whole sequence

x6 is an anomaly. In multi-temporal anomaly detection, a sequence or its part is

marked as anomaly when its behavior does not confirm to the previously detected

temporal trend of the sequence itself and/or the dataset.

Figure 2.9: An example of anomalies in multi-temporal data. x1, x2, x3 are the normal ex-
amples, x4 contains a one time anomaly, x5 contains an anomalous subsequence
and the whole sequence x6 is an anomaly.

While we can easily list the most used clustering algorithms, no such thing can

be done for the anomaly detection. Anomalous data is very diverse, therefore, we

have numerous algorithms for its detection that have to be adapted according to the

domain, the type of data, its size and quality, etc. More information about general

anomaly detection can be found in [1, 65–67].

2.5 Quality Indices

Evaluating the quality of clustering and anomaly detection is a difficult task that

has been an active research area for years, with new methods being proposed on a

regular basis.

We usually refer to anomaly detection as to a two-class partition problem, so

in most cases we use validation data to assess the quality of the results. However,

clustering results are more difficult to analyze for several reasons. The main difficulty

with the evaluation of clustering results lies in the inherent unsupervised nature of
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clustering itself and the lack of consensus about what a “good clustering” should be. In

this context, evaluating a clustering result is always more or less subjective, with each

evaluation criterion favoring one concept of a good clustering (shape, compactness

separation, etc.) over the others. Therefore the notions of good clustering and best

clustering will depend on both the evaluation criterion and the clustering algorithm,

with some evaluation criterion favoring some algorithms over others.

Still, despite this assumed relative subjectivity, there are a wide range of evaluation

criterion that are commonly used in machine learning to assess and compare clustering

results. There are several taxonomies available in the literature for these evaluation

criteria [68–70], most of them defining 3 distinct groups:

– Unsupervised indexes, also called internal indexes: they only use internal infor-

mation from the data as well as the clusters’ characteristics.

– Supervised indexes, also called external indexes: they assess the degree of

similarity between a clustering solution and a known partition of the data set

(sometimes called a ground truth).

– Relative indexes: they are a separate class of criteria that make it possible

to compare several clustering results of the same algorithm. Relative indexes

simply use both external and internal criteria to choose the best solution among

several proposed partitions.

In this thesis, we dispose of the ground truth for our algorithms, therefore, we

exploit only supervised indices. We detail different supervised indices used in our

work below. A non-exhaustive list of unsupervised indices is available in Appendix B.

2.5.1 Supervised Indexes

Whenever the real objects classes are known, it is possible to compare the result

of a clustering with the real partition. While these external criteria are not proper

clustering indexes, it is the most convenient way to evaluate a new clustering algorithm

by applying it to a data set for which the classes or clusters are known. Indexes

that makes it possible to rate a clustering based on the comparison between a

clustering partition and the real classes are called supervised indexes or external

criteria, because they rely on information that comes neither from the data nor from

the clustering but from an external ground truth used for comparison purposes.
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Confusion Matrix is a table that presents summary of prediction results on a

classification problem 2.2. More often, for unsupervised learning, the confusion matrix

is built for two class anomaly detection results. The confusion matrix can be equally

used for a multi-class problem, however, for an unsupervised approach, we would

have to associate the obtained clusters to the ones provided by the ground data,

which is not always possible or complicated when we have too many clusters in the

resulting partition.

Here we give an example of a confusion matrix computed for a binary classification

problem. Given a set of n elements in dataset D, ground truth (GT) labels CGT and

the predicted clustering partition CPr, the confusion matrix is presented as follow

(Table 2.2).

Table 2.2: Confusion matrix for a binary classification problem.

Predicted

G
T

P N
P TP FN
N FP TN

Two researched classes are denoted as positives (P) (or 1) and negatives (N) (or 0).

Columns and rows values of the confusion matrix correspond to the number predicted

and actual values respectively. The diagonal values of the matrix correspond to the

correctly predicted elements - True Positives (TP) and True Negative (TN) values.

The higher are these values, the better are the results. The off-diagonal values stock

the incorrectly predicted results - False Positive (FP) and False Negative (FN) values.

Obviously, TP + TN + FP + FN = n.

Knowing the values of the elements of the confusion matrix, we can compute the

following metrics to estimate the quality of the classification.

Accuracy defines how many entities from the whole dataset were correctly

clustered:

Accuracy =
TP + TN

TP + TN + FP + FN
=
TP + TN

n
(2.8)

However, the accuracy value is not an informative metric, especially, for the

unbalances partitions. Usually, for the binary classification problem, the “true” class

is much smaller. To determine the quality of the partition, it is recommended to

compute at least Precision and Recall values.
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Precision defines the purity or how many entities that are labeled as positive

are indeed positive (the smaller is FP - the better are the results).

Precision =
TP

TP + FP
(2.9)

Recall indicates if the class is correctly recognized (the smaller is FN - the better

are the results).

Recall =
TP

TP + FN
(2.10)

Both Precision and Recall vary between 0 and 1, with 1 being the best value

F1 score also known as the F-Mesure, or balanced F Score is the harmonic mean

between the precision and the recall and is computed as follows:

F1 = 2 · Precision ·Recall
Precision+Recall

(2.11)

The F1 score values also range in [0, 1], with 1 being the best value.

In remote sensing, the most used quality coefficient based on the confusion matrix

is Cohen’s Kappa (K) score as it is not biased as F1 score.

Cohen’s Kappa coefficient (K) is a coefficient mostly used to estimate the

quality of supervised learning or anomaly detection. K is more robust than any other

index as it is takes into account the possibility of the agreement occurring by chance.

K is a statistic that is used to measure inter-rater reliability (and also intra-rater

reliability) for qualitative (categorical) items and is defined as follows:

K = 1− 1− p0
1− pe

(2.12)

with p0 = TP+TN
n

and pe = 1
n2 (TP+FN)·(TP+FP )+(FP+TN)·(FN+TN), where

p0 is the empirical probability of agreement on the label assigned to any sample (the

observed agreement ratio), and pe is the expected agreement when both annotators

assign labels randomly.

The Kappa coefficient (K) takes its values between −1 and 1, with 1 corresponding

to the best clustering results.

When dealing with multi-class problem with C classes, confusion matrix will be a

square matrix of size C × C, each i, j-th element is computed as ωi,j = CGTi ∩ CPrj ,
where CGTi is the i-th GT cluster and CPrj is j-th predicted cluster. We usually

do not use Precision, Recall and F1 score for a multi-class problem. On the other

hand, K score is the most popular metric to estimate the multi-class classification
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results, but mostly for the supervised methods. As we have mentioned early, it can

be difficult to associate the predicted clusters to the GT classes, as the results of the

unsupervised methods are often far from the expected for the real-life datasets. For

this reason, the special coefficients that to do not demand one-to-one class association

were introduced. We present the most popular of them below.

Normalized Mutual Information (NMI) [71] calculates the information shared

by two partitions C1 and C2 - a partition obtained from a clustering algorithm and

the ground truth labels. NMI can also be used to estimate the similarity between

two different clustering partitions. This index is defined as:

NMI(C1, C2) =
I(C1, C2)√

H(C1),H(C2)
(2.13)

where

I(C1, C2) =
∑
cj∈C1

∑
c′j∈C2

p(C1,C2)(cj, c
′
j) log

(
p(C1,C2)(cj, c

′
j)

pC1(cj) pC2(c
′
j)

)

H(Ci) = −
∑
cj∈Ci

pCi
(cj) log pCi

(cj)

In these equations I(C1, C2) denotes mutual information between two partitions and

H(Ci) corresponds to partition entropy, where pX(x) is the probability function.

NMI considers every cluster cj of a computed partition C1 and the reference

partition C2. In other words, NMI compute the number of common entities between

C1 and C2.

The values of NMI vary between 0 and 1, with 1 corresponding to two identical

partitions.

Rand Index (Rand) and Adjusted Rand Index (ARI) The Rand Index [72]

takes its values between 0 and 1 and is equal to 1 if the two partitions C1 and C2

are identical. Given a set of n elements in dataset D and two partitions C1 and C2

to compare, Rand index is defined as follow:

Rand =
a+ b

a+ b+ c+ d
=
a+ b(
n
2

) (2.14)

where

a is the number of pairs of elements in D that are in the same subset in C1 and in

the same subset in C2,
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b is the number of pairs of elements in D that are in different subsets in C1 and in

different subsets in C2,

c is the number of pairs of elements in D that are in the same subset in C1 and in

different subsets in C2,

d is the number of pairs of elements in D that are in different subsets in C1 and in

the same subset in C2.

The adjusted Rand index [73] is the corrected-for-chance version of the Rand index.

The adjusted Rand Index can be formulated as follows shown in Equation (2.15)

bellow:

ARI =
Rand− Exp(Rand)

max(Rand)− Exp(Rand)
(2.15)

where

Exp(Rand) =
π(C1) · π(C2)

n(n− 1)/2

max(Rand) =
1

2
(π(C1) + π(C2))

with Exp(Rand) and max(Rand) - expected and maximum Rand index, π(C1) and

π(C2) are numbers of pairs of the entities regrouped in the same cluster in C1 and

C2 respectively.

Unlike the original Rand index, the Adjusted Rand Index can have negative

values. However, the adjusted Rand Index still is equal to 1 if and only if the two

partitions C1 and C2 are identical.

2.6 Discussion

In this section, we have presented the concept of Machine Learning as well as different

types of ML algorithms. We have mostly focused on the unsupervised ML methods

such as clustering and anomaly detection and their quality indices.

In this thesis, we develop different methods for SITS change detection and

clustering. We exploit hierarchical agglomerative clustering algorithm due to its

ability to build a unique model to analyze cluster data at different levels. Contrary

to other clustering algorithms, HCA model does not rely a researched number of

clusters or a complex set of parameters that will further define the clusters number.

During the algorithm execution, data points are presented as individual clusters and

then, at every step, the model iteratively merges the two clusters with the highest

likelihood value. At the end, the user should simply choose the clustering level that

corresponds the best to the desired clustering partition.
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We made this choice, because an output of a clustering algorithm often does

not correspond to the desired classes as some of them might be merged or, on the

contrary, divided into several new ones. For this reason, a user might build several

models in order to find an optimal number of clusters for the desired output partition

which in not necessary when the hierarchical clustering is used.

Considering the change detection, we develop the algorithms both for bi- and

multi-temporal data. Firstly, we propose a bi-temporal change detection algorithm

that is based on the feature translation between each couple of two consecutive

images of the dataset. The described method detects only the non-trivial changes

(changes free of seasonal trend presented between two images), ignoring all the non-

change areas and the seasonal trend prevailing between two images. The detected

non-trivial changes can be seen as contextual anomalies. Secondly, we analyze the

detected bi-temporal changes in the multi-temporal context by introducing some

logical constraints.

In the next chapter, we are going to overview different feature extraction methods

used in satellite image processing and in our work in particular. The feature extraction

is an important part of many remote sensing algorithms. Often, to obtain better

results, we need to firstly process the image data, prior to cluster it. In the following

chapters (5 and 6), we show that feature extraction can improve the results of

clustering algorithms, as we exploit new less noisy entities comparatively to the

original data. Moreover, feature extraction and translation lay at the core of our

change detection algorithms.
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Chapter 3

Feature Extraction using Deep

Learning Techniques
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3.1 Introduction

In the previous chapter, we have given an overview of different clustering and anomaly

detection methods. However, in real-life applications, we often cannot apply these

algorithms directly to unprocessed data.

First, if the data have too many features, we may experience the curse of dimen-

sionality problem. Second, in image processing and particularly in remote sensing,
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a pixel value is often not informative and some textural information about its

neighborhood or its associated segment is needed.

The “curse of dimensionality” is a term introduced in 1961 by Bellman referring

to the problem of the explosive increase in data volume associated with adding

extra dimensions in a mathematical space. While computer algorithms can grasp

information in higher dimensional spaces than humans, past some point, they too

have trouble extracting meaningful information.

Feature extraction is one of the methodologies of dimensionality reduction or

dimension reduction process which aims to find better and more generalized data

representation by projecting it in lower-dimensional space. Let Let X = {X1, ..., XD}
be a set of D features of a dataset. There are two main methodologies for dimension

reduction:

– Feature selection: Choosing a subset of M features from all the features.

X1

X2

...

XD


feature selection−−−−−−−−−→


Xi1

Xi2

XiM



– Feature extraction: Creating a small set of new features Y = {Y1, ..., YM}
by combinations of the original ones.

X1

X2

...

XD


feature extraction−−−−−−−−−−→


Y1

Y2

YM

 = f





X1

X2

...

XD




Feature extraction consists in building new features from the original ones with

one or several of the following goals:

– having a lower number of features while keeping a maximum of information,

– having better features with which the data are easier to process,

– having feature with which the data are easier to visualize.
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We can divide all feature extraction methods in linear and non-linear combination

of features. The most known linear methods are Principal Component Analysis

(PCA) [74], Linear Discriminant Analysis (LDA) [75], Multi-Dimensional Scaling

(MDS) [76]. These methods have low computational cost and work well when the

data are not complex. Non-linear methods are usually used for more complex data

structures and a wide variety of the algorithms, such as isometric feature mapping

(Isomap) [77], Locally Linear Embedding (LLE) [78], spectral clustering [61], au-

toencoders (AEs) [79] and some supervised methods (for example, pretrained neural

networks [80, 81]).

Some of feature extraction methods are specific only for image processing as they

extract spatio-spectral features (textures). The texture extraction methods do not

aim to reduce the data dimentionality, but to mine some hidden information about

the study area. The textures are extracted either for the whole image, either for

windows of specific size -also called patches- associated to each image pixel. In the

first case, we obtain a single value for the whole image. In the second one, we build a

new texture image of the same width and height as the initial one. The most known

set of image textures was proposed by Robert M. Haralick [82] and is still used in

many different domains of image processing.

Finally, different spectral indices, such as Normalized Difference Vegetation Index

(NDVI) [83], can be extracted from remote sensing images. They are computed

pixel-wise for the whole image and combine the values of different spectral bands.

These indices can give us the information whether some phenomena is presented in a

pixel (vegetation, water, moisture, burn area, etc) and in what quantity.

However, the analyzed data is becoming more and more complex and often classical

approaches can not correctly model them. Moreover, no conventional methods are

available for feature extraction from image time series. For these reasons, deep

learning techniques that are able to analyze complex patterns in the data have

become popular.

In this chapter, we are going to overview deep learning feature extraction methods

and detail the ones used in our research. Section 3.2 gives a brief explanation of

the deep learning concept. Section 3.3 reviews unsupervised deep learning feature

extraction methods used in image analysis and Section 3.4 describes different elements

of neural network structures.

Some traditional feature extraction methods used in remote sensing can be

consulted in Appendix C.
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3.2 Deep Learning

In the last years, with growing performance and memory capacity of computers

for a lower price, it has become possible to deploy more powerful and complex

deep learning algorithms for different machine learning tasks. Deep learning models

are composed of several layers that iteratively extract different levels of features

from the raw input data. Deep learning algorithms are able to non-lineary map

the dependencies in hidden data structure, therefore, the accuracy of many ML

applications was drastically increased.

The most popular deep learning models are based on neural networks (NN).

Neural networks are a computing system made up of a number of simple, highly

interconnected processing elements, which process information by their dynamic

state response to external inputs (Dr. Robert Hecht-Nielsen). In other words, neural

networks are modeled like a human brain and contain one or more layers of connected

neurons (nodes) that are able to recognize patterns.

Nowadays, neural networks are widely used in almost any research area. A great

number of applications exploit video and image analysis: medical image analysis for

disease detection and analysis of its evaluation [84], face recognition for security [85],

video analysis for autonomous driving [86], gesture recognition [87], handwriting

recognition [88] etc.

Deep neural networks for image analysis have many advantages comparatively

to traditional methods. First, deep NNs can deal with any type of the input data -

from a single channel image to a time series of multispectral images or a video - and

preserve relations between data in each dimension. Second, the features extracted

with NNs are more robust: while traditional methods exploit a fixed set of rules for

feature extraction, NN model is built using the optimization algorithm which allows

to find the features that describe the best the data. Finally, NNs are less sensitive to

different image deformations such as noise, scaling, rotation, pixel shift etc.

We can roughly divide all NN models in supervised and unsupervised (as in

Chapter 2, see Figures 2.1, 2.2). The supervised models are built by mapping the

input to some labeled target (image→ label, image→ segmentation map, time series

→ label, etc); the trained model is then used to make the prediction on some new

unlabeled data. On the contrary, the unsupervised models are built in order to find

some meaningful patterns in the unlabeled data. These models are usually made in

the form of autoencoders and use the same data as the input and the target.
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3.3 AutoEncoders in Image Processing

Among the different neural network models, autoencoders have found application

in many domains. In image processing, autoencoders are widely used for image

segmentation [2, 89], image compression [90], image reconstruction [91], for feature

extraction [92, 93] and clustering [79, 94].

Despite the variety of presented models, only the ones which have the same input

and output are considered to be “traditional” AEs (Figure 3.1), like the ones used for

feature extraction and clustering.

Figure 3.1: Example of a “traditional” AE structure.

While these “traditional” models are totally unsupervised, some models like ones

for image segmentation require some training data. Figure 3.2 presents a SegNet

model for urban image segmentation. As can be seen, during the model training, the

input image should be mapped to the corresponding ground truth segmentation.

Figure 3.2: SegNet autoencoder model [2].

In this thesis, we will be focusing only on unsupervised feature extraction AE

models. The deployment of an AE model ensures the extraction of robust spatial or
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spatio-temporal features from the images in an unsupervised manner and is composed

of several steps: model training, its eventual validation and the data encoding.

The conventional AE is composed of two parts: the encoder fθe(· ) and the decoder

gθd(· ) (Figure 3.1), where θ = [θe, θd] is the ensemble of model parameters and θe

and θd are the ensemble of the encoder and decoder parameters respectively. During

the training, the model firstly encodes the input data x in some compressed latent

representation xenc and then decodes it back to its initial self x′.

xenc = fθe(x)

x′ = gθd(xenc)

The model is optimized in such manner that the reconstructed output resembles as

much as possible to the original input data.

The model training performed as follows (note that the following information

is not specific to just autoencoders, but can be used to train any type of neural

networks [95] with an input data mapped to some target):

1. θ is initialized with some initial random values.

2. The model reconstructs x′ from x with given θ.

3. We compute the loss function L (also called “cost function”) of x with a chosen

algorithm `:

L = l(x, x′)

4. The model parameters θ are optimized to minimize L.

min
θe,θd

(L)

5. We repeat steps 2-4 until the desired L is achieved (L→ 0).

Once the model is optimized, the encoder part is used to transform the input

data to its encoded version.

Usually, the input data x are chopped in small parts of even size - batches - to

improve the model optimization. The model parameters are being optimized for each

new batch. One iteration through all the batches of the entire dataset is called an

epoch.

To optimize the model, we use a backpropagation algorithm. The goal of back-

propagation is to compute the partial derivatives ∂L
∂θ

of the loss function with respect
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to all θ parameters in the network. These derivatives are called gradient. The model

is optimized in such manner that the local minima of L is achieved. For each batch

iteration, the backpropagation algorithm updates each of model parameters θi in the

following manner:

θi = θi − η
∂L

∂θi
(3.1)

where η is the learning rate (η > 0). The learning rate is a hyper-parameter that

defines how much we are adjusting the parameters of our model with respect to the

loss gradient. Choosing learning rate might be challenging as a value too small may

result in a long training time and/or the training can get stuck, whereas if a value

too large, the loss function will never achieve the local minima and/or the training

process will be too unstable.

In most cases, to estimate model loss of an AE, we use mean square error (MSE):

MSE(o, t) =

∑N
n=1 ln
N

, ln = (on − tn)2 (3.2)

where o is the output patch of the model, t is the target patch and N is the number

of patches per batch.

Each autoencoder model is composed of “layers” - structures that perform feature

extraction at different levels. In image processing, the encoding pass is usually

composed of convolutional and pooling layers for feature maps (FM) extraction

that are followed by some fully-connected (FC) layers for feature compression. The

decoding pass is often symmetrical to the encoding one and uses the inverted layer

structure to reconstruct the encoded data in its initial self.

In the next section, we are going to present different types of layers that we used

in our work to build different types of autoencoders.

3.4 Neural Networks Structure

Les Net be a neural network composed of R layers L = [l1, l2, ..., li, ..., lR], where li

is an i-th layer. Let X = [x1, x2, ..., xi, ..., xR] be the ensemble of the inputs of each

layer and X ′ = [x2, x3, ..., xi, ..., xR+1] be the ensemble of the outputs of each layer.

The model has sets of learnable weights and biases w = [w1, w2, ..., wi, ..., wR] and

b = [b1, b2, ..., bi, ..., bR], where wi and bi belong to li. For a layer li, we will have an

input xi and the output xi+1, then xi+1 will be an input of li+1, etc.

In this thesis, we will focus on networks that are able to deal with image data
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(single image and time series). Some of the common abbreviations we are going to

use in the following subsections include:

B - size of data batches,

C,H,W - image bands (channels), height and width,

D - temporal dimension of the data (depth) (for layers that deal with multi-temporal

inputs),

N - data features (for layers that deal with flattened vector data).

3.4.1 Convolutional Layers

In neural network models, convolution layers are used for feature extraction. Three

types of convolutional layers exist depending on the shape and type of the input

data:

– 1D convolutions - extract textures from vector data, usually used for text

analysis as they do not preserve textural information;

– 2D convolutions - extract textures from 2D data preserving spatial information,

used in image analysis;

– 3D convolutions - extract textures from image time series or from multi-view

images, preserves spatial and depth dimensions.

In this thesis, we are going to use 2D and 3D convolutional layers as well as

3D transposed convolutions which can be considered as a variation of traditional

convolutional layers.

A convolutional layer present a set of learnable weights (kernel) and biases applied

to the input data. The kernel of size k can be seen as a filter that slides over an

input data with a certain step - stride st. The filter is multiplied element-wise to the

corresponding subregion of the input data and then the obtained values are summed

up.

2D Convolutional Layers

The principle of 2D convolution operation is presented in Figure 3.3. In this example

a kernel of size k = [3, 3] slides an image channel with stride st = [1, 1].

As it can be seen from this example, the output data has smaller H and W that

the input. To deal with this problem, a padding can be added to the input data.

Padding is a artificial augmentation of data size by adding rows and columns with
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Figure 3.3: Example of a 2D Convolution layer with kernel size k = [3, 3] and stride
st = [1, 1].

fixed values (usually zero) to the data (Figure 3.4). If we want to preserve data width

and height after convolutions, the padding size pad for each data dimension should

be computed as follow:

pad = int(k/2) (3.3)

Figure 3.4: Example of zero-padding with pad = [1, 1].

For some applications dilated convolutions may be used. Dilation defines a spacing

between kernel elements. Figure 3.5 gives a visual example of dilated convolutions

with dil = 2 in both dimensions. Note, that when we implement standard convolutions

without dilations, dil = 1 in all dimensions.

The 2D convolutions can be mathematically written as:

xi+1(Bm, Coutj) = bi(Coutj) +

Cin∑
c=1

wi(Coutj , c) ? xi(Bm, c) (3.4)
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Figure 3.5: Example of ”standard” and dilated convolution with dil = [2, 2].

where Coutj is the j-th output channel, Bm is the m-th element of the batch, ? is a

cross-correlation operator.

The input and output data have the same dimensions with the following shape:

(B,Cin, Hin,Win) for the input and (B,Cout, Hout,Wout) for the output, where Cout is

defined by the user and

Hout =
⌊
Hin+2×pad[0]−dil[0]×(k[0]−1)−1

st[0]
+ 1
⌋
,

Wout =
⌊
Win+2×pad[1]−dil[1]×(k[1]−1)−1

st[1]
+ 1
⌋
.

The shapes of learnable weights wi and biases bi are (Cout, Cin, k[0], k[1]) and

(Cout).

3D Convolutional Layers

While 2D convolutions can capture only spatial textures, 3D convolutions are able to

preserve temporal information and extract spatio-temporal features. Kernel, stride,

padding and dilation follow the same principle as for 2D convolutions, but have

3-dimensional shape.

The input and output data have the same dimensions with the following shape:

(B,Cin, Din, Hin,Win) for the input and (B,Cout, Dout, Hout,Wout) for the output,

where Cout is defined by the user and

Dout =
⌊
Din+2×pad[0]−dil[0]×(k[0]−1)−1

st[0]
+ 1
⌋
,

Hout =
⌊
Hin+2×pad[1]−dil[1]×(k[1]−1)−1

st[1]
+ 1
⌋
,

Wout =
⌊
Win+2×pad[2]−dil[2]×(k[2]−1)−1

st[2]
+ 1
⌋
.

Mathematically, 3D convolutions can be written exactly as 3D convolutions (see

equation 3.4). The shapes of learnable weights wi and biases bi are

(Cout, Cin, k[0], k[1], k[2]) and (Cout).

2011 C. GRECO



3.4. Neural Networks Structure 51

Transposed Convolutional Layers

Transposed convolution (or deconvolution) layers are used for data upsampling and

can be seen as the gradient of the ordinary convolution with respect to its input. The

simplest way to think about a transposed convolution on a given input is to imagine

such an input as being the result of a direct convolution applied on some initial

feature map. The transposed convolution can be then considered as the operation

that allows to recover the shape of this initial feature map [96].

Both for 2D and 3D transposed convolutions, the shape of input and output data

as well as weights and biases are the same as for the standard convolutions.

More about transposed convolutions as well as about other convolutions can be

found in [96].

3.4.2 Pooling Layers

Pooling operations are made to reduce the data size - downsample it. Pooling

operations are defined by the size of a pooling filter (kernel) of size k and the stride

st (usually its value equal to k). After the filter is applied to the subregion of the

input data, it outputs a single value that corresponds to the maximum value of this

subregion (MaxPooling) or to the average one (average pooling).

When using AEs structures, the data are downsampled during the encoding

pass and then upsampled to the initial size during the decoding pass. To ensure the

upsampling operations, we use maximum unpooling (MaxUnPooling) layers that

”invert” the MaxPooling operations.

Pooling layers may be categorized in three types - 1D, 2D and 3D - exactly like

the convolutional ones and define the number of dimensions of the pooling kernel.

MaxPooling Layers

Maximum pooling (MaxPooling) layer outputs a maximum value withing a kernel

subregion. Figure 3.6 presents 2D MaxPooling operation with two-dimensional kernel

k = [2, 2] and stride st = [2, 2].

Figure 3.6: Example of a 2D MaxPooling layer with kernel size k = 2 and stride st = 2.
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The input and output shapes should de the following:

For 2D MaxPooling the input and output sizes are (B,C,Hin,Win) and

(B,C,Hout,Wout), where

Hout = Hin−k[0]+2×pad[0]
st[0]

+ 1,

Wout = Win−k[1]+2×pad[1]
st[1]

+ 1.

For 3D MaxPooling the input and output sizes are (B,C,Din, Hin,Win) and

(B,C,Dout, Hout,Wout), where

Dout = Din−k[0]+2×pad[0]
st[0]

+ 1,

Hout = Hin−k[1]+2×pad[1]
st[1]

+ 1,

Wout = Win−k[2]+2×pad[2]
st[2]

+ 1.

Average Pooling Layers

Average pooling (AvgPooling) layer outputs an average value withing a kernel

subregion. Figure 3.7 presents 2D AvgPooling operation with two-dimensional kernel

k = [2, 2] and stride st = [2, 2].

The input and output shapes are the same as for the MaxPooling layers.

Figure 3.7: Example of an 2D AvgPooling layer with kernel size k = 2 and stride st = 2.

MaxUnPooling Layers

Maximum UnPooling (MaxUnPooling) layers are usually used in AEs models and are

paired with MaxPooling layers. The shape of the input and output of MaxUnPooling

layer should be equal to the shape of the output and and input of paired MaxPooling

layer. In this case, during the encoding, we extract the position indices of maximum

values of the MaxPooling layer. Then during the decoding pass, these indices are

used to reconstruct the upsampled data, so that the input values take the position of

these indices, other output values are set to zero.

Figure 3.8 presents 2D MaxUpPooling operation with two-dimensional kernel

k = [2, 2] and stride st = [2, 2]. This operation is paired with the one presented in

Figure 3.6.

Note that unpooling operations can be paired only with MaxPooling layers.
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Figure 3.8: Example of a 2D MaxUnPooling layer with kernel size k = 2 and stride st = 2.

3.4.3 Fully-Connected (Linear) Layers

Fully-connected (FC) layers (also called linear or dense) connect every neuron in one

layer to every neuron in another layer. FC layers can also be seen as vector-matrix

multiplication:

xi+1 = x× wTi + bi (3.5)

The shape of the input data should be (B,Ni), where B is number of training

elements in a batch and Ni is the number of input vector features. The output shape

will be (B,Ni+1), where Ni+1 is the number of the output vector features defined by

user. In this case, the sizes of learnable weights and bias wi and bi will be (Ni+1, Ni)

and Ni+1 respectively.

3.4.4 Activation Functions

Activation functions are mathematical equations that determine the output of a

neural network. They are crucial as they introduce non-linear properties to the

models. Activation functions are usually applied after convolutional and linear layers

(sometimes except for the final output layers) to determine whether their neurons

should be activated (“fired”) or not when passed to the next layer. The activation

function can influence the model training and its accuracy.

The input of activation functions can have any shape as the activations are applied

element-wise which gives us the output of the same shape as the input.

ReLU

The Rectified Linear Unit (ReLu) is the most popular activation function in NNs. It

output the input directly if is positive, otherwise, it will output zero.

ReLU(x) = max(0, x) (3.6)
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Leaky ReLU

Leaky ReLU has the same principle as ReLU activation function, thought it gives a

small slope for negative values, instead of altogether zero.

LeakyReLU(x) =

x, if x ≥ 0

negative slope× x, otherwise
(3.7)

where negative slope value should be defined by user and is usually set to 0.01.

Sigmoid

A sigmoid function is a mathematical function having a characteristic “S”-shaped

curve or a sigmoid curve. The output of this function is always between 0 and 1.

However, sometimes when using sigmoid function, a model can get stuck during

training, because if a strongly-negative input is provided, the function output values

very near zero.

Sigmoid(x) =
1

1 + exp(−x)
(3.8)

Hyperbolic Tangent

Hyperbolic tangent activation function (Tanh) has also a sigmoidal shape (“S”-shaped),

but instead outputs values that range between -1 and 1.

Tanh(x) =
ex − e−x

ex + e−x
(3.9)

3.4.5 Recurrent Neural Networks

Recurrent neural networks (RNN) were introduced in 1986 by David Rumelhart [97].

This type of networks was developed to process temporal sequences data. Contrary

to 3D convolutional layers, RNN is able to deal with temporal data of varying length.

In general, RNN is constructed as follows: let X = {x1, x2, ..., xn, ..., xS} be a

sequence composed of S timestamps, where each element xn is a vector of composed

of fixed number of features. For each timestamp Tn, the RNN unit computes a hidden

state hn (Figure 3.9) which represent the accumulative value of the previous hidden

states of the sequence. The final hidden state hS characterizes the whole sequence

and is used afterwards for classification or clustering.
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Figure 3.9: RNN model.

The main problem of RNN is that the value of each hidden state hn depends

only on the value of previous hidden state hn−1. For this reason, RNN networks may

suffer from a long-short memory problem caused by vanishing gradient, hence, they

do non consider long term dependencies. To solve this issue, more complex Long

Short-Term Memory (LSTM) networks were introduced in 1997 [98]. Contrary to

RNN, LSTM contains input, output and forget gates as well as memory cell cn at

each timestamp that makes it possible to retain meaningful information from the

previous steps and, as a consequence, the value of hn depends on all the previous

hidden states of the sequence and not only on hn−1.

Later, to facilitate the computation and implementation of the LSTM model,

GRU networks were developed [99] for Natural Language Processing (NLP) tasks.

GRU contains only update and reset gates that allows model to train faster with less

memory consuming. GRU were successfully adapted for remote sensing applications

and proved to be more efficient than LSTM networks in this research area as they give

better or similar results to LSTM using less training parameters and time [100–102].

Originally RNNs were not able to capture spatial information. However, later

convolutional RNNs were introduced [103]. This networks are based on principle

of combining convolutional operations with any type of presented networks (RNN,

LSTM or GRU). They are able to process video or temporal image data, as each

element of the sequence xn, as well as its corresponding hidden state hn is presented

by a 3D data. The compexity of the network of the number of the operations make

these networks very slow for big datasets. That makes it difficult to find the right

network configuration, especially for an unsupervised implementation. For this reason,

we do not use these models in our research.

As can be seen from Figure 3.9, one RNN layer is composed of S RNN units. The

following subsections will present in details units of each types of RNN.
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Recurrent Networks Unit

Each RNN unit takes 2 inputs - the sequence value xn at the timestamp Tn and the

hidden value obtained for the previous timestamp hn−1. For the first timestamp, the

initial hidden state h0 is initialized to zeros.

Mathematically a RNN unit can be written as:

hn = tanh(wihxn + bih + whhh(n−1) + bhh) (3.10)

where wih and whh are learnable input-hidden weights (to pass from the input to

the hidden state) and hidden-hidden weights respectively and bih and bhh are the

corresponding learnable biases.

For each RNN unit, shape of the input data and the corresponding input/output

hidden state are (B,Nx) and (B,Nh), where Nx is the number of features of the

input sequence and Nh is the number of features of hidden state defined by user.

The shapes of all learnable weights and biases are equal to (Nh, Nh) and (Nh)

respectively.

Long Short-Term Memory Unit

Contrary to recurrent units, a LSTM unit contains several gates: input in, forget fn

and output on gate. Moreover, in addition to the hidden states hn, LSTMs equally

have cell states cn. Each cell state cn stores the information about previous cell states

of the model.

Mathematically a LSTM unit can be written as:

in = σ(wiixn + bii + whihn−1 + bhi)

fn = σ(wifxn + bif + whfhn−1 + bhf )

gn = tanh(wigxn + big + whghn−1 + bhg)

on = σ(wioxn + bio + whohn−1 + bho)

cn = fn � cn−1 + in � gn
hn = on � tanh(cn)

(3.11)

where gn is an intermediate cell gate, σ is the sigmoid function (3.8), tanh is the

hyperbolic tangent function (3.9),� is the Hadamard product,

wii, wif , wig, wio is the ensemble of learnable input-hidden weights,

bii, bif , big, bio are their corresponding learnable biases,
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whi, whf , whg, who is the ensemble of learnable hidden-hidden weights,

bhi, bhf , bhg, bho are their corresponding learnable biases.

For each LSTM unit, shape of the input data and the corresponding input/output

hidden state and input/output cell state are (B,Nx), (B,Nh) and (B,Nh) respectively,

where Nx is the number of features of the input sequence and Nh is the number of

features of hidden state defined by user.

The shapes of the ensemble of each set of learnable weights and biases are

(4×Nh, Nh) and (4×Nh) respectively.

Gated Recurrent Unit

GRU is a computationally more efficient variant of LSTM with only reset rn and

update zn gates that to stock the internal state of the model.

Mathematically a GRU unit can be written as:

rn = σ(wirxn + bir + whrh(n−1) + bhr)

zn = σ(wizxn + biz + whzh(n−1) + bhz)

nn = tanh(winxn + bin + rn ∗ (whnh(n−1) + bhn))

hn = (1− zn) ∗ nn + zn ∗ h(n−1)

(3.12)

where nn is an intermediate new gate parameter, σ is the sigmoid function (3.8),

tanh is the hyperbolic tangent function (3.9), � is the Hadamard product,

wir, wiz, win is the ensemble of learnable input-hidden weights,

bir, biz, bin are their corresponding learnable biases,

whr, whz, whn is the ensemble of learnable hidden-hidden weights,

bhr, bhz, bhn are their corresponding learnable biases.

For each LSTM unit, shape of the input data and the corresponding input/output

hidden state are (B,Nx) and (B,Nh) respectively, where Nx is the number of features

of the input sequence and Nh is the number of features of hidden state defined by

user.

The shapes of the ensemble of each set of learnable weights and biases are

(3×Nh, Nh) and (3×Nh) respectively.

3.5 Discussion

In this section we have presented different deep learning feature extraction methods

used in image processing and remote sensing in particular. Along with the traditional
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methods, we have reviewed deep learning feature extraction techniques used in

our work. All the presented deep learning methods exploit autoencoder structure,

composed of layers able to process different type of data - vector, spatial and spatio-

temporal.

Deep learning models have been proved to be the most efficient tool for the

feature extraction and classification for the complex data. In our thesis, we exploit

2D convolutional autoencoders for feature translation applied to bi-temporal change

detection (Chapter 4). We equally use GRU networks for the clustering of the detected

multi-temporal change graphs (Chapter 5). Finally, we exploit a 3D convolutional

model for SITS feature extraction and clustering (Chapter 6).

In our work, we equally exploit NDVI index (Chapter 6). We successfully prove

that enriching data with NDVI drastically improves the accuracy and helps to

distinguish more vegetation clusters comparatively to the raw data analysis.

In the following chapters, we are going to present our contributions to multi-

temporal data analysis. All developed methods exploit deep learning feature extraction

techniques combined with various data analysis algorithms.

2011 C. GRECO



59

Chapter 4

Bi-temporal Change Detection
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4.1 Introduction

Nowadays, change detection in satellite image time series is required for many different

applications. While in some applications we are interested in seasonal changes such as

evolution in agricultural parcels, others require the detection of permanent changes

such as buildings or roads constructions. Nevertheless, due to image resolution and

preprocessing level (most of the SITS do not have a correction of the atmospheric

factors), properly detecting changes remains a difficult task.

Most of the existing change detection algorithms are still supervised or semi-

supervised, and therefore need some labeled data or a pre-trained model for feature
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extraction. Providing the labeled data for remote sensing images and especially SITS

is a costly and time-consuming task due to the variance of objects present in them

and the time needed to produce the great amount of labeled images required to train

large models.

Usually, to properly detect changes in a SITS, the series should be long enough

and have a more or less regular temporal resolution to detect different seasonal trends

which is not always possible to achieve. In this thesis, we propose to decompose a

SITS change detection problem into two steps: we first perform a bi-temporal change

detection for each couple of consecutive images Imn and Imn+1, then, we interpret

the obtained changes in the multi-temporal context.

In this thesis, we distinguish three different types of temporal behavior in SITS:

no change areas (mostly urban areas), seasonal or trivial changes (mostly presented

by vegetation) and non-trivial changes that contain permanent changes such as new

constructions, demolishment, permanent crop rotations and some vegetation that

does not follow the overall tendency. We consider only non-trivial changes as the

interesting ones, hence, these are the changes we aim to detect with our algorithm. In

this chapter, we propose an unsupervised approach for bi-temporal change detection

that is based on feature translation with neural network autoencoder. In the next

chapter, we interpret the detected bi-temporal changes in the multi-temporal context.

Finally, in Chapter 6 we propose an algorithm for the clustering of the whole SITS

in order to regroup no-change areas and seasonal changes in different clustering

partitions.

In the presented bi-temporal change detection approach, we use joint AEs to

create models able to reconstruct Imn+1 from Imn and vice versa by learning the

image features. Obviously, the non-changed areas and trivial changes such as seasonal

ones will be easily learned by the model, and therefore reconstructed with small

errors. As the non-trivial changes are unique, they will be considered as outliers by

the model, and thus will have a high reconstruction error (RE). Thresholding on the

RE values allows us to create a binary change map (CM).

The proposed method has showed promising results on a dataset with high ratio

of agricultural areas and outperformed the concurrent approaches. Different joint

AE models were tested in order to find the most accurate one for change detection.

Our change detection method has a low complexity and gives high quality results on

open source high resolution images.

The remainder of this chapter is organized as follows: In Section 4.2, we present the

existing algorithms for bi-temporal change detection in satellite images. Section 4.3
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details our proposed approach for change detection. Section 4.5 is dedicated to

experimental results and some conclusions are drawn in Section 4.6.

4.2 Related Works

Different algorithms for bi-temporal change detection are proposed in the literature.

As any other machine learning methods, change detection can be supervised and

unsupervised. While the supervised algorithms usually aim to identify a particular

change type (i.e. changes in urban areas), the unsupervised algorithms tend to detect

“everything that changes” which might complicate the interpretation of the results,

especially when images suffer from illumination problems or even belong to different

vegetation seasons.

The variety and specificity of change detection applications do not allow to create a

unique database with training data. Creating such a database can be time-consuming

and costly as every entity should be validated manually. However, some datasets

accessible for public use exist.

The most known change detection dataset is the ONERA Satellite Change

Detection (OSCD) dataset [104, 105]. The OSCD dataset addresses the issue of

detecting changes between satellite images from different dates. It comprises 24 pairs

of multispectral images taken from the Sentinel-2 satellites between 2015 and 2018

with the locations picked all over the world. For each location, registered pairs of

13-band multispectral images are provided. Images vary in spatial resolution between

10 m, 20 m and 60 m. Pixel-level change ground truth is provided for 14 of the image

pairs. The annotated changes focus on urban areas, such as construction of new

buildings or roads.

The main problem is that usually these datasets contain objects issued from a

specific satellite mission for a specific study area or/and a specific change type. For

this reason, they can be used only for a small number of projects compatible with

the dataset purposes.

To overcome this problem, several change detection methods exploiting transfer

learning were proposed [106, 107]. In these methods, the authors exploit pretrained

neural network models to extract features from a couple of satellite images in order

to compare them. In [108], the satellite images are first segmented at three different

levels, second, the feature extraction is performed at each level and, finally, the

extracted features fused and clustered to detect the change areas. Feature extraction

is realized with the VGG-16 network [80] pretrained on the ImageNet dataset [109].
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The authors claim that among all the existing pretrained models, only this one can

provide weights that can used on satellite images, because they are tasks oriented

and cannot be generalized to another dataset [106].

In [107], the authors pretrain a U-Net [89] model for semantic segmentation of

urban areas with a publicly available Vaihingen dataset (provided by the International

Society for Photogrammetry and Remote Sensing). The pretrained model is then

used for feature extraction and change detection on other datasets.

However, transfer learning for change detection has several disadvantages: First,

the data under the study should have the same dimensions as the data used to

train the model. Second, transfer learning was applied mostly to urban areas and its

behavior for natural areas is not known.

As we have mentioned before, in our work, we interest in more general-purpose

change detection methods that do not presume that the input data should have any

specific properties.

Most traditional unsupervised change detection methods are based on the analysis

of a difference image (DI). The DI can be computed differently depending on the

application, but usually it is defined as the absolute-valued difference of intensity

values of two images:

DI = |Im2 − Im1| (4.1)

The early change detection methods were based on clustering of the obtained DI

in order to isolate the change pixel in a separate cluster. For example, in [110], the

Principle Component Analysis (PCA) transformation is used to extract a feature

vector for each pixel of DI and its corresponding neighborhood pixels, then k-means

with 2 clusters is applied to the resulting transformed DI in order to isolate the

changes. In [111], the authors use another strategy for DI transformation into 2D

space: the compression is accomplished by computing the magnitude of spectral

change vectors (pixels of DI) and its angle (direction) with a reference vector. Then

the EM algorithm is applied to new polar coordinates of DI image. The method

is able to directly cluster different types of changes. In [112], the authors presume

that change and no change pixels of DI follow the Gaussian distributions. Following

this idea, they propose an adaptive threshold method based on EM algorithm for

distribution modeling that separates the change pixel from the no changes ones.

Finally, several Markov Random Field (MRF) models were proposed [113, 114] for

change detection. While [114] applies MRF model to refine the results of the initial

change map obtained with fuzzy C-means applied to the DI; in [113], the authors

firstly estimate the DI pixel distribution with EM algorithm and detect the DI edges,
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then the weights of MRF prior energy are adaptively adjusted by considering the

gray level differences between neighboring pixels in order to obtain change labels.

The main problem of DI analysis is that the DI is often noisy, especially when

two images are not perfectly aligned and/or they have high or very high spatial

resolution. The main difficulty with unsupervised approaches to analyze satellite

images is that they usually produce lower quality results than supervised ones.

To overcome the problem of missing labels, a set of automatic methods for

selection of changed and unchanged pixels was developed [115]. The main idea of

these methods lays in a change vector analysis to find thresholds that separate pixels

that have the highest probability of being change or no change pixels. These pixels

are then chosen as training samples for supervised classification algorithms to identify

change areas [116]. However, the detected training samples are often concentrated

in one single area which gives biased classification results. To solve this problem,

[117] proposes a more adapted method that select training sample with different

probabilities. Moreover, the authors of this article propose a multiple classifier system

that fuses the results of different algorithms to obtain a better score. Following this

paper, the authors of [118] propose the improved backpropagation method of a deep

belief network (DBN) for change detection based on automatically selected change

labels.

In [119], a regularized iteratively reweighted multivariate alteration detection

(MAD) method for change detection was presented. This method is based on linear

transformations between different bands of a couple of hyperspectral satellite images

and canonical correlation analysis.

However, spectral transformation between multi-temporal bands is very complex.

For these reasons, deep learning unsupervised algorithms which are known to be

able to model non-linear transformations have proved their efficiency to solve this

problem [120].

Nevertheless, classic feature comparison approaches do not separate trivial (sea-

sonal) changes from non-trivial ones (permanent changes and changes that do not

follow seasonal tendency). This weakness can drastically complicate the interpretation

of change detection results for regions with high ratio of vegetation areas. In fact,

when analyzing two images belonging to different seasons of the year, almost all

the area will be marked as change and further analysis will be needed to identify

meaningful changes (non-trivial).

Our change detection method is based on the approach proposed in [120] (detailed

in the next section). In that work, the authors use a Restricted-Boltzmann Machines-

C. GRECO 2011



64 4. Bi-temporal Change Detection

based (RBM) model to learn the transformation model for a couple of VHR co-

registered images Im1 and Im2. RBM is a type of stochastic artificial network that

learns the distribution of the binary input data. In the case of image analysis, the

input data is continuous, so Gaussian-Bernoulli RBM (GBRBM) is used [121].

The principle of the proposed method to detect changes is the following: most

of the trivial changes can be easily modeled from Im1 to Im2, at the same time,

non-trivial changes will not be properly reconstructed. Therefore, the reconstruction

accuracy can be used to detect the non-trivial change areas. The proposed approach

consist of the following steps: feature learning, feature comparison and thresholding.

During the feature learning step, the algorithm learns some meaningful features to

perform transformation of patches of Im1 to the patches of Im2. Once the features

are learned by the model, Im1 is transformed in Im′2. Then the difference image (DI)

of Im2 and Im′2 is calculated. The same steps are performed to create a DI of Im1

and Im′1. The thresholding is then applied on an average DI. Obviously, the areas

with high difference values will be the change areas.

For the feature learning, the authors use an AE model composed of stacked RBMs

layers GBRBM1-RBM1-RBM2-GBRBM2. The authors indicate that the algorithm

is sensitive to changing luminosity and has high level of false positive changes in real

change data. To our knowledge, this algorithm was tested only on urban areas.

4.3 Methodology

Our change detection method is similar with [120] introduced in the previous section.

However, contrary to RBM models that are based on a stochastic approach and

distribution learning, we propose to use a deterministic NN model based on feature

extraction. Furthermore, we use patch reconstruction error for every pixel of the image

- instead of image difference - as extracting features from every pixel neighborhood is

an important step for any eventual subsequent pixel-wise classification task.

In our thesis, we test two NN AE architectures and assess their performance for

change detection in order to pick the best adapted one. The tested models are joint

fully-convolutional AEs and joint convolutional AEs.

Fully-convolutional AEs consist of a stack of layers that apply different convolu-

tions (filters) to the input data in order to extract meaningful feature maps (FM).

Convolutions are often used in image processing as they deal with non-flattened data

(2D and 3D). Therefore, unsupervised feature extraction with fully-convolutional

AEs has been proved efficient in different remote sensing applications [122]. Convolu-
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Figure 4.1: Bi-temporal change detection algorithm.

tional AEs equally contain different convolutional layers that are followed by some

fully-connected layers to compress the feature maps.

4.3.1 Change Detection Algorithm

Let Im1, Im2, ...., ImS−1, ImS be a SITS made of S co-registered images taken at

dates T1, T2, ... , TS−1, TS. In this subsection, we present our change detection

algorithm applied to a whole SITS, but, obviously, it can be applied to just a couple

of images. The CD algorithm steps are the following (Figure 4.1):

– The preprocessing step consists in the radiometric normalization of the whole

dataset [123].

– The first step consists in patch-wise model pre-training on the whole dataset.

– During the second step, we fine-tune the joint AE model for every couple of

images (Imn, Imn+1). Once the model is trained, we calculate the reconstruction

error of Im′n+1 from Imn and vise versa for every patch. In other words, the

reconstruction error of every patch is associated to the position of its central

pixel on the image.

– In the last step, we identify areas of high reconstruction error using Otsu’s

thresholding method [124] in order to create a binary change map CMn,n+1

with non-trivial change areas.
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4.3.2 Model Pre-training and Fine-tuning

In our method, we use deep AEs to reconstruct Imn+1 from Imn and vise versa.

During the model pre-training, the feature learning is performed patch-wise for a

sample extracted from the SITS. We sample H×W
S

patches (H and W are image

height and width respectively) from every image to prevent the model from overfitting.

The patches for the image border pixels are generated by mirroring the existing ones

in the neighborhood. During the encoding pass, the model extracts feature maps

(FM) for the fully-convolutional AE (and feature vector for the convolutional AE) of

i, j,m-patch of chosen samples, and then during the decoding pass, it reconstructs

them back to the initial i, j,m-patch (i ∈ [1, H], j ∈ [1,W ], m ∈ [1, S]).

The fine-tuning part is done for each couple of images independently and consists

of learning two joint reconstruction models AE1 and AE2 for every patch of a couple

of co-registered images (Imn and Imn+1). The patches are extracted for every i, j

pixel of the images as the local neighborhood of size p timesp wherein the processed

pixel is the central one (i.e., the image i, j-pixel corresponds to i, j-patch central

pixel).

Our joint fully-convolutional AEs model is presented in Figure 4.1). The joint

model for the convolutional AE has the same structure, though the bottleneck output

is presented by a feature vector. AE1 and AE2 have the same configuration of layers

as the pre-trained model and are initialized with the parameters it learned. In the

joint model, AE1 aims to reconstruct patches of Im′n+1 from patches of Imn and AE2

reconstructs Im′n from Imn+1. The whole model is trained to minimize the difference

between:

– the decoded output of AE1 and Imn+1 (loss1),

– the decoded output of AE2 and Imn (loss2),

– the encoded outputs of AE1 and AE2 (feature maps for fully-convolutional

AEs and bottleneck feature vectors for convolutional AEs) (loss3).

modelLoss = loss1 + loss2 + loss3 (4.2)

The three losses are not weighted and equally participate in the model optimization.

For our AE models we, use the architectures presented in Table 4.1, where C is

the number of spectral bands and `2-norm is `2 normalization [125]. All convolution

layers, except for the last layer of the decoder part, have batch normalization. The

size of different parameters are the same for all convolutional layers: kernel size=3,
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stride=1, padding=1. MSE (3.2) is used for model optimization and calculation of

the patch reconstruction error.

Table 4.1: Models architecture for bi-temporal change detection.

Fully-convolutional AE Convolutional AE

en
co

d
er

Conv(C,32)+ReLU
Conv(C,32)∗+ReLU Conv(32,32)+ReLU
Conv(32,32)+ReLU Conv(32,64)+ReLU
Conv(32,64)+ReLU Conv(64,64)+ReLU

Conv(64,64)+`2-norm Linear(64× p2, 12× p2)∗∗+ReLU
Linear(12×p2,2×p2)+`2-norm

d
ec

o
d
er

Linear(2×p2, 12×p2)+ReLU
Conv(64,64)+ReLU Linear(12×p2, 64×p2)+ReLU
Conv(64,32)+ReLU Conv(64,64)+ReLU
Conv(32,32)+ReLU Conv(64,32)+ReLU

Conv(32,C)+Sigmoid Conv(32,32)+ReLU
Conv(32,C)+Sigmoid

∗In Conv(a,b) a and b stand for the number of the input and
output channels respectively.
∗∗In Linear(a,b) a and b stand for the sizes of the input and
output vectors respectively.

Once the model is trained and stabilized, we perform the image reconstruction

of Im′n and Im′n+1 for every patch, and we create two images representing their

reconstruction errors. We apply Otsu’s thresholding [124] to the average reconstruction

error of these images in order to produce a binary change map.

4.4 Data

Our change detection algorithm was applied to couples of images extracted from the

SPOT-5 SITS of Montpellier area, France (see Appendix A.1). The initial dataset

has four spectral bands, however, for change detection we use only green, red and

NIR bands as they contain the most essential information for change detection.

We assess the algorithms performances on two extracts from the SPOT-5 SITS.

The image couples were taken between 2004-05-14 and 2005-04-27 for the first extract,

and between 2006-02-18 and 2008-08-21 for the second one. Though these couples of

images are not consecutive, they contain much more changes than the consecutive

ones, hence, it is more interesting to use them to evaluate our algorithm.
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We also present the quantitative evaluation of change detection results for the

Sentinel-2 SITS of Rostov-on-Don, Russia (see Appendix A.3, later called the Rostov

dataset) as both these datasets are used in the next chapter for the multi-temporal

change detection. We perform change detection on two couples of the consecutive

images taken on 2015-08-30 and 2015-09-19 for the first couple and on 2017-09-18 and

2018-01-11 for the second one. Sentinel-2 images dispose of multiple spectral bands

with different spatial resolution, nevertheless, only green, red and NIR bands with

10 m resolution were used. Note that only the Montpellier dataset is used for the

analysis of the performance of our methods and their comparison to the concurrent

ones.

To evaluate the performance of the proposed methods on two datasets, we

have used ground truth maps extracted for different parts of each dataset. For the

Montpellier dataset, the overall ground truth area was 600000 pixels, while for the

Rostov dataset this area was 780000 pixels.

For the Montpellier dataset, the ground truth maps were created for an extract

of the image of size 800× 600 pixels (48 km2) for the first couple and for 320× 270

pixels (8,64 km2) for the second one. However, the change detection was performed

on the full images of 1600× 1700 pixels (272 km2).

For the Rostov dataset, the ground truth maps were created for two extracts

of size 900× 700 pixels for the first couple of images and 500× 300 pixels for the

second one. While the first GT focuses in changes in crops, the second one captions

the changes during the construction of a stadium for FIFA 2018 and its surrounding

area. As for the Montpellier dataset, the change detection was performed on the full

images of 2200× 2400 pixels (528 km2).

4.5 Experiments

4.5.1 Experimental Settings

As we mentioned previously, we propose different architectures: joint convolutional

AEs and joint fully-convolutional AEs, and we compare them in order to assess

their strengths and weaknesses. We further compare our approaches with the RBM-

based method presented in [120] that we have discussed in Section 4.3 and with

an improved RBM method. Initially, in [120] the images are clipped in H×W
p×p not

overlapped patches. In the improved method, we propose to extract patches with

neighborhoods of every pixel of the image (H ×W patches). Equally, we use the

2011 C. GRECO



4.5. Experiments 69

Table 4.2: Architecture of RBM models for bi-temporal change detection.

RBM Improved RBM

en
c. GBRBM(p2 × C, 384)+Sigmoid GBRBM(p2 × C, (p+ 1)2 × C)+Sigmoid

RBM(384, 150)+Sigmoid RBM((p+ 1)2 × C, (p− 2)2 × C)+Sigmoid

d
ec

. RBM(150, 384)+Sigmoid RBM((p− 2)2 × C, (p+ 1)2 × C)+Sigmoid
GBRBM(384, p2 × C)+Sigmoid GBRBM((p+ 1)2 × C, p2 × C)+Sigmoid

patch reconstruction error instead of the image difference to detect the changes. In

other words, the improved RBM method uses the same steps as in our proposed

algorithms, but exploits different type of network layers. The layers parameters of

the RBM methods are presented in Table 4.2.

In the experiments, we use the architectures presented in Table 4.1 for our models.

Note, that all the methods are evaluated only on the Montpellier dataset and the

most appropriate model configuration is later applied for the change detection in the

Rostov dataset.

For the Montpellier dataset, we test different patch sizes to estimate their influence

on the final results and computation time (presented later in the text). After the

experiments, the patch size of 5× 5 is chosen for all our methods. Adam algorithm

was used to optimize the models. During the pre-training phase, the learning rate

was set to 0.0005 and then changed to 0.00005 for the fine-tuning phase.

The RBM model presented in [120] is developed for VHR images, but we have

kept the patch size 10×10 pixels and the layer sizes suggested by the authors. In the

improved RBM method we use 5×5 pixels patch size as in our methods.

In our approaches and in the improved RBM method, before applying Otsu

thresholding we equally exclude highv% of the highest reconstruction error values

considering they correspond to some noise and extreme outliers. The variation of

the highv only balances precision/recall values, without influencing kappa value. The

higher highv is - the higher is the recall and the smaller is the precision, and vise

versa. To balance these values, we set highv to 0.5% for both datasets. The analysis

of the influence of highv value on different metrics is detailed later in the text.

The following quality criteria were used to evaluate the performances of the

different approaches: precision (2.9), recall (2.10) and Cohen’s kappa score (2.12).

The patch size of 5 × 5 pixels was chosen after results estimation for different

parameters. The correlation between the patch size and the performance of our

algorithms for the Montpellier dataset is shown in Table 4.3. We can observe that
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Table 4.3: Algorithm performance based on patch size p for Montpellier images taken in
2004 and 2005 years.

Classification performance
Methods p×p Precision Recall Kappa Timea, min

Fully-Conv.
3×3 0.69 0.73 0.70 11+7
5×5 0.67 0.78 0.70 15+8
7×7 0.69 0.78 0.72 19+13

Conv.
3×3 0.67 0.74 0.69 12+9
5×5 0.68 0.79 0.71 17+12
7×7 0.61 0.81 0.69 24+18

aPre-training+fine-tuning.

p = 3 gives us poor results for both models as the patch does not contain enough

information about the neighborhood, p = 7 gives us slightly better results for fully-

convolutional AE than p = 5 though learning time is higher. However, we see that

for p = 5 performance of convolutional AE is much better than for p = 7. It can be

explained by layer flattening when passing from convolutional layers to linear.

As it was mentioned before, we set highv=0.5% for our method to balance the

precision and recall values. The influence of highv value on the precision, recall and

kappa values is presented on Figure 4.2. It was decided that the optimal threshold

highv should provide the results with recall slightly better than precision, as some FP

changes will be deleted during the next steps. We observe that for the Montpellier

dataset highv = 0.5% gives us the best result. At the other hand, we notice different

behavior of metrics values for the Rostov dataset ground truth and we can state less

smooth changes in these values. We equally state that the best results are obtained

for highv ≥ 0.2%. Therefore, it was decided to set constant highv = 0.5% for our

method to ensure the most optimal results for both datasets.

4.5.2 Results

The Montpellier Dataset

Some change detection results are presented on Figures 4.3, 4.4, 4.5, 4.6, 4.7. All the

images are represented in false colors, where red corresponds to vegetation and green

to empty fields.

Figure 4.3 features changes in an urban area: several buildings were constructed

(or started to be constructed). The images extracts have great change in luminosity
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Figure 4.2: The influence of highv on the recall, precision and kappa metrics values for
the Montpellier and Rostov datasets. The vertical line corresponds to the best
highv for our ground truth data.

Figure 4.3: Classification results. Image extract 100×100 pixels. Example of luminosity
sensitivity. (a)- image taken on May 2004, (b) - image taken on April 2005, (c)-
ground truth, (d)- fully-convolutional AE, (e)- convolutional AE, (f)- RBM,
(g)- improved RBM.
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Figure 4.4: Classification results. Image extract 180×190 pixels. (a)- image taken on May
2004, (b)- image taken on April 2005, (c)- ground truth, (d)- fully-convolutional
AE, (e)- convolutional AE, (f)- RBM, (g)- improved RBM.

between the two dates. We observe that both convolutional and fully-convolutional

AEs have low ratio of false positive changes while the RBM sensitivity in urban

area claimed by its authors is confirmed. At the same time, the improved RBM

method has less false positives changes than the initial one. This can also be seen in

Figures 4.4 and 4.6.

Figure 4.4 shows the construction of a new road. The road limits were correctly

identified by all the models, except for the improved RBM model that did not detect

the narrow part of the road.

Figure 4.5 displays changes in an agricultural area between May 2004 and April

2005. The overall seasonal change tendency is the following: the vegetation is more

dense in May, the empty fields and fields with young crops have different minor changes

between the two images. All the models except improved RBM showed relatively

high ratio of false positive changes in vegetation. Nevertheless, the improved RBM

missed more changes than other algorithms. The high ratio of false positives changes

detected by first three architectures can be explained by the fact that vegetation

density might be irregular and it is considered by the algorithm as changes. We

observe that convolutional AE have slightly better results than other models.

Figure 4.6 represents changes in an agricultural area between February 2006
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Figure 4.5: Classification results. Image extract 230×200 pixels. (a)- image taken on May
2004, (b)- image taken on April 2005, (c)- ground truth, (d)- fully-convolutional
AE, (e)- convolutional AE, (f)- RBM, (g)- improved RBM.

and August 2008 as well as some new constructions. The overall seasonal change

tendency is the following: the fields that are empty in February have vegetation in

August, and vise versa. Forest’s vegetation state (bottom right corner) has some

minor changes. We can see again that the convolutional AE has slightly better

results than the fully-convolutional AE. However, the ratio of false positive changes

is elevated. Moreover, in most cases, only a part of a field is incorrectly labeled

as change. As in the previous example, it can be explained by irregular vegetation

density, and further morphological analysis might be needed to obtain better results.

At the same time, the initial RBM model showed better performance for the detection

of a linear object that corresponds to constructions at the roadside at the lower left

part of the image, though the level of false positive changes is high both in urban

and agricultural areas.

Figure 4.7 shows the limitations of the proposed approach for the detection of the

construction of a tramway line. Our method have poor quality of change detection

for linear objects that can be explained by the patch-wise learning. As a patch

reconstruction error determines the change class of its central pixel, changes in 1-2

pixel width linear objects can not be properly detected.

The different approaches performances are presented in Table 4.4. All the al-

gorithms were tested on 6 cores Intel(R) Core(TM) i7-6850K CPU 3.60GHz with

32 Gb of RAM computer with a NVIDIA Titan X GPU with 12 GB of RAM and
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Figure 4.6: Classification results. Image extract 320×270 pixels. a- image taken on February
2006, b - image taken on August 2008, c- ground truth, d- fully-convolutional
AE, e- convolutional AE, f- RBM, g- improved RBM.

Figure 4.7: Classification results. Algorithm limitations. Image extract 300×280 pixels. a-
image taken on May 2004, b- image taken on April 2005, c- ground truth, d-
convolutional AE.
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developed in Python 3 programming language using PyTorch 1.3 library on Ubuntu

16.4. Based on the presented results and on the performance estimators, we can

conclude that joint convolutional AEs slightly outperformed fully-convolutional ones,

though the training time stays higher as the model is more complicated. The per-

formance of joint convolutional AEs can be explained by the higher complexity of

the convolutional model. At the same time, both models of our approach showed

better performances for change detection than the RBM-based models. However,

it can be noted that the initial RBM method still has a high recall and the best

training time despite a high level of false positive changes in urban areas compared

to our approaches. We can equally conclude that methods with pixel-wise extracted

patches have higher performance than initial RBM method where patches are not

overlapped. Nevertheless, the improved RBM method detected less changes than the

initial RBM method, though the number of false positives changes is much lower and

overall classification performance characterized by kappa is higher.

Table 4.4: Performance of the change detection algorithms for the Montpellier dataset.

Classification performance
Methods Precision Recall Kappa Timea, min

20
04

20
05

RBM AE 0.48 0.64 0.52 8+2
Impr. RBM AE 0.52 0.63 0.54 20+10

Conv. AE 0.68 0.79 0.71 17+12
Fully-Conv. AE 0.67 0.78 0.70 15+8

20
06

20
08

RBM AE 0.40 0.61 0.43 8+2
Impr. RBM AE 0.50 0.54 0.48 20+10

Conv. AE 0.76 0.79 0.75 17+12
Fully-Conv. AE 0.80 0.71 0.73 15+8

aPre-training+fine-tuning.

The Rostov Dataset

Due to the shift presented in Rostov dataset, we have increased the patch size to

p = 7 in order to minimize the shift influence on patch translation. We have equally

chosen fully-convolutional AE model for feature translation as it gives better results

than convolutional AE for bigger patch sizes.

The qualitative results of change detection for the Rostov dataset are given in

Table 4.5.

C. GRECO 2011



76 4. Bi-temporal Change Detection

Table 4.5: Performance of change detection algorithm based on the fully-convolutional joint
AEs for the Rostov dataset.

Classification performance
Methods Precision Recall Kappa Timea, min

20150830-20150919 0.60 0.87 0.67
20+10

20170918-20180111 0.59 0.63 0.53
aPre-training+fine-tuning.

4.6 Discussion

In this chapter, we have presented an unsupervised approach for bi-temporal change

detection in SITS. Change detection is performed for each pair of consecutive images

of the series and is based on feature translation between two images realized with

joint AEs. Contrary to excising approaches, our algorithm detects only non-trivial

changes and ignores the seasonal ones.

The main experiments were performed on the Montpellier dataset (comparison

to the state of the art methods, analysis of the values of different parameters, etc),

then the most appropriate model configuration was chosen for change detection in

the Rostov dataset.

Our experiments on the Montpelleir dataset have shown that our NN AE models

perform better on a large area with various land cover occupation than the state-of-

the-art RBM approaches. Among our proposed architectures, the joint convolutional

AEs model showed slightly better performances for the patch size of 5× 5 in spite of

a longer training time.

However, as we notice pixel shift in the Rostov dataset that could not be corrected

automatically. It was decided to choose the patch size of 7× 7 for the Rostov dataset

and fully-convolutional AEs model as it is better suited for bigger patches.

The changes detected for both datasets can be interpreted as contextual anomalies

(in the context of the seasonal trends of two images). In the next chapter, these

anomalies will be analyzed in the multi-temporal context to form multi-temporal

change graphs. Therefore, some of the detected bi-temporal changes (including the

FP ones) will be eliminated.
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Chapter 5

Multi-temporal Change Detection
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5.1 Introduction

Many remote sensing applications aiming to detect land cover changes in satellite

image time series have been developed in the last years. Among them, there are

numerous ecological applications such as the analysis and preservation of the stability
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of ecosystems [126], the detection and the analysis of such phenomena as deforestation

and droughts [127–130], real-time monitoring of natural disasters [131, 132], study of

the evolution of urbanization [133], crop changes follow up [134, 135], etc. While for

some applications we can create a training database with the objects presented in

SITS [136, 137], for others it may be a challenging task as the nature of the researched

spatio-temporal phenomena is often not known, unique or, on the contrary, has a lot

of variations. For this reason, unsupervised and semi-supervised change detection

and time series analysis have been a hot research topic for the past years. However,

not so many successful studies are available for the given subject.

In this chapter, we propose an end-to-end unsupervised approach for the detection

and classification of non-trivial changes in HR open source SITS. In this thesis, we

imply that non-trivial changes are the changes free of seasonal trend prevailing in

SITS (trivial changes).

The proposed framework firstly exploits neural network autoencoder (AE) to

create bi-temporal change maps that contain only non-trivial changes (permanent

changes and vegetation that do not follow the overall tendency). Second, segmenta-

tion of the extracted change areas is performed in order to detect different spatial

entities. Then we use object-based techniques to model temporal behavior of the

detected change phenomena in the form of evolution graphs. Finally, we obtain a

summarized representation of the extracted evolution graphs - synopsis - and apply

Gated Recurrent Units (GRU) [99] AE combined with hierarchical agglomerative

clustering [49] to regroup them in different types of spatio-temporal change phe-

nomena. Our algorithm framework does not demand any training data and gives

us promising results on two real-life datasets of cities of Montpellier, France and

Rostov-on-Don, Russia.

The rest of the chapter is organized as follow: Section 5.2 presents the existing

algorithms for the analysis of different temporal phenomena in SITS. Section 5.3

describes the proposed framework for multi-temporal change modeling and clustering.

Section 5.4 presents the time series we have used. In Section 5.5, we give the settings

of our framework and show the obtained results. Finally, the last section concludes

on the presented approach.

5.2 Related Works

Globally, we can divide the existing methods of SITS analysis in 1/ semi-supervised

change detection which combines 1a/ anomaly detection [128, 129, 138] and 1b/

2011 C. GRECO



5.2. Related Works 79

change detection in land-cover types in dense low/medium resolution time series [139,

140], and 2/ unsupervised clustering of the whole SITS [141, 142].

Most of semi-supervised SITS change detection algorithms aim to detect a par-

ticular type of change (mostly in the forest areas) based on previously available

images. For example, in [138], the authors propose an algorithm for online predic-

tion of forest fires in MODIS time series achieved by comparing real data with

non-anomalous behavior modeled by Long Short-Term Memory (LSTM) network.

In another study [128], the authors use Breaks For Additive Seasonal and Trend

framework (BFAST) combined with a seasonal-trend model techniques to detect

tropical forest cover loss exploiting multiple data sources (MODIS and Landsat-7).

The principle of BFAST is based on iterative decomposition of time series into three

components - trend, seasonal and remainder.

Similar approaches are used for change detection in land-cover types. In [139], the

previously mentioned BFAST framework is deployed to detect land-cover changes

and seasonal changes in MODIS NDVI series. To overcome this approach, in [140],

the authors present a sub-annual change detection algorithm based on pixel behavior

analysis. In this approach, firstly, temporal evolution of each pixel is presented as a

signal with wavelet decomposition and then, each two points corresponding to the

same acquisition day of two consecutive years are compared to determine the time of

land-cover change.

To correctly model “normal” behavior and detect seasonal trends, the SITS data

should be long enough and have regular and frequent temporal resolution for the

study area. At the moment, this type of freely-available time series can be provided

only by long existing missions such as MODIS (250 m-1 km resolution) and Landsat

(30 m resolution) that are mostly used for vegetation analysis and, hence, have a low

spatial resolution in favor of a high frequency of image acquisition. As the proposed

techniques are adapted for low resolution images, they are not suitable to perform

SITS analysis at the local level or to distinguish different land-cover sub-classes.

Moreover, the aforementioned methods are adapted for univariate data (usually,

NDVI index) that sometimes can not properly characterize all the data present in

SITS.

With such high resolution (HR) freely-available time series as SPOT-5 and

Sentinel-2, it has become possible to obtain more detailed information about the

Earth surface. Unfortunately, freely-available HR SITS, especially the old ones, often

contain some unexploitable images (flawed images, images with high ratio of cloud

coverage, etc) or do not have sufficient temporal resolution to detect seasonal trends.
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For these reasons, unsupervised HR SITS analysis demands different approaches,

including ones that do not depend on temporal resolution (for example, general

clustering of the whole SITS). In [143], the authors introduce a graph-based approach

to detect spatio-temporal dynamics in SITS. In this method, each detected spatio-

temporal phenomena is presented in a form of an evolution graph composed of

spatio-temporal entities belonging to the same geographical location in multiple

timestamps. Following this method, [142] proposes an adapted clustering algorithm to

regroup the extracted multi-annual evolution graphs in different land-cover types. This

algorithm exploits spectral and hierarchical clustering algorithms with dynamic time

warping (DTW) distance measure [144] applied to the summarized representation

of graph structure. It shows promising results both in intra- and inter-cite studies.

In [141], the authors propose a bag of words (BoW) approach combined with Latent

Dirichlet Allocation (LDA) [145] to detect different abstract clusters of land-cover.

Though this algorithm is developed for synthetic aperture radar (SAR) SITS, it can

be adapted for optical images after some data preprocessing. This method firstly

exploits K-means clustering to determine the type of temporal evolution of each

pixel with excessively large number of clusters (100− 150). Second, every pixel is

associated to a bag of words [146] representing its neighborhood patch. Each pixel of

a patch contains an obtained discrete cluster value. Finally, all BoWs are regrouped

in abstract classes with LDA method. Despite the fact that the proposed approaches

can be used on HR images with irregular temporal resolution, they are not conceived

to detect anomalies or land-cover changes. For example, the first method is used for

clustering of the prevailing land-cover types without considering eventual land-cover

changes or some anomalies. Contrary to this approach, the second method cluster the

whole SITS into a large number of abstract classes without associating them to any

specific spatio-temporal phenomena, so the land-cover change is not differentiated

from seasonal phenological variation.

Some applications demand another kind of SITS analysis performed at a finer

level such as, for example, detection and classification of different types of changes

applied to the urban development analysis or some local ecological disturbances.

For this reason, we propose an algorithm able to model multi-temporal changes as

evolution graphs and cluster them. The proposed change detection approach can be

applied to short time series and does not depend on the temporal resolution, as it

does not demand the prior knowledge of the seasonal trend that can be computed

only if the series is long enough and regularly distributed. For our knowledge, no

such approaches have been proposed yet. Moreover, there is no other unsupervised
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framework that does both change detection and the clustering of the subsequent

change graphs.

Our proposed method can be used for projects studying the urban evolution of

cities: changes in density of residential areas, major urban structure constructions

(such as transportation systems or stadiums), trends in the evolution of green areas

and parks, etc. Our algorithm is also concerned with the evolution of the landcover

in crop cultures. Other applications may include ecological problematic such as the

study of SITS to assess phenomena such as deforestation or the impact of droughts.

5.3 Methodology

In this section, we present the developed framework for the detection and analysis

of non-trivial changes in SITS. We start by giving the overall description of the

framework and then we detail each step in the corresponding subsections.

5.3.1 Proposed Framework

The proposed framework has been developed as a part of a SITS analysis algorithm.

This algorithm aims to identify spatio-temporal entities presented in SITS and asso-

ciate them to three different types of temporal behaviors. These temporal behaviors

correspond to no change areas, seasonal changes and non-trivial changes. No change

areas are mostly presented by spatio-temporal entities that have the same spectral

signature over the whole SITS, such as city center, residential areas, deep water,

sands, etc. Trivial (seasonal) changes correspond to cyclic changes in vegetation

prevailing in the study area. Finally, non-trivial change areas are mostly represented

by permanent changes such as new constructions, changes caused by some natural

disasters, crop rotations and the vegetation that do not follow the overall seasonal

tendency of the study area. As non-trivial changes are less numerous and sometimes

unique, they are considered by most clustering algorithms as outliers and, hence,

demand a special approach for their identification and analysis that is presented in

this thesis. Moreover, as often we do not dispose of HR SITS with regular temporal

resolution, the presented approach does not depend on temporal resolution of SITS.

The proposed approach is composed of several steps. Let RS be a time series of

S co-registered images Im1, Im2, ..., ImS acquired at timestamps T1, T2, ..., TS. The

algorithm steps are the following (Figure 5.1):

– We start by applying a bi-temporal non-trivial change detection algorithm
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(Chapter 4) to every couple of consecutive images Imn-Imn+1 (n ∈ [1, S − 1])

in order to get S − 1 binary change maps CM1,2, CM2,3, ..., CMS−1,S for the

whole dataset. Then the detected bi-temporal changes are analyzed in the

multi-temporal context.

– We extract spatio-temporal change areas by applying the change masks to

corresponding images of SITS. Then we perform image segmentation within

these change areas to obtain changed objects.

– Afterwards, the change objects located in the same geographic area are grouped

in temporal evolution graphs [142, 143].

– Finally, we cluster the obtained graphs using the features extracted from the

change areas. We use summarized representation of graph structure - synopsis -

as input sequences of clustering approach.

5.3.2 Change Detection

Bi-temporal Change Detection

For the proposed framework, we have developed a bi-temporal non-trivial change

detection algorithm (Chapter 4) that is applied to the whole SITS. The obtained

bi-temporal change detection results are then analyzed together in the context of the

whole SITS.

Contrary to multi-temporal approaches that demand regular temporal resolution

of SITS to get correct results, our two steps method does not assume the temporal

regularity. Moreover, when using the bi-temporal approach, we can easily detect the

beginning and the end of a change process in a SITS of a fixed size without applying

any supplementary methods.

Multi-temporal Change Interpretation

Note that the detected bi-temporal non-trivial changes can also be interpreted as

contextual anomalies [1] as they depend on the overall change tendency presented in

the couple of images. Their interpretation might be changed when passing from bi- to

multi-temporal analysis as the context will be changed. To introduce multi-temporal

context when detecting changes that appear between timestamps Tn and Tn+1, we

propose to check if the detected change polygons have equally appeared at certain

other change maps, see Figure 5.2.
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Figure 5.1: Proposed framework.
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Figure 5.2: Correction of the detected bi-temporal contextual anomalies accordingly to the
multi-temporal context.

Firstly, we apply the aforementioned bi-temporal change detection algorithm

for every couple of Imn−1-Imn+1 images (n ∈ [2, S − 1]) to calculate CMn−1,n+1.

As an isolated change area may contain several change objects, we perform image

segmentation to obtain bi-temporal change polygons (the segmentation algorithm is

explained in the following subsection and applied directly to the concatenated couples

of images Imn-Imn+1 and Imn−1-Imn+1). Then, we choose CMn,n+1 as reference and

check if each change polygon Pch from CMn,n+1 is equally present in CMn−1,n+1. If

Pch has a spatial intersection with any polygon(s) of CMn−1,n+1, we mark Pch as

change in the SITS context (a permanent bi-temporal change or a part of a change

process). If Pch does not have spatial intersection with any polygon(s) of CMn−1,n+1,

it may belong to different types of temporal behavior:

– If Pch does not have any spatial intersection with any polygon(s) from CMn−1,n,

it is marked as false positive (FP) change alarm caused by some image defaults

and accuracy issues of unsupervised methods.

– If Pch has a spatial intersection with any polygon(s) from CMn−1,n and with

polygon(s) in at least one other change map (CM1,2, CM2,3, CM3,4, etc), it is
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Figure 5.3: Transformation of a discontinuous change process into a continuous one. Hori-
zontal and vertical axes represent timestamps and object pixels respectively.
(a)- discontinuous change process, (b)- corrected blue polygons correspond to
detected change objects, red polygons are added to transform a discontinuous
change process into a continuous one.

marked as a part of an irregular change process.

– Finally, if Pch has an intersection only with polygon(s) from CMn−1,n and does

not have any intersection with polygons from other change maps, it is marked

as a one time anomaly that happened at timestamp Tn. In this case, all change

polygons from CMn−1,n that have intersection with Pch are also marked as one

time anomalies.

Note that here we use a threshold tint that defines the minimum percentage of spatial

intersection of Pch with other change polygon(s), otherwise, it is considered that

there is no intersection.

In this thesis, we suppose that every change process belonging to the same

geographical location is continuous. For example, if a pixel i, j has been classified

as change in CM1,2, CM2,3 and CM4,5, it should be also marked as change in CM3,4

(Figure 5.3).

We correct the whole SITS in order to transform change processes into the

continuous ones. Finally, for every image Imn, we apply the union of change maps

CMn−1,n and CMn,n+1 to extract the change areas. Obviously, we apply only one

change map for the first and last images of the SITS.

5.3.3 Image Segmentation

In the previous subsection, we have proposed an approach that introduces the

multi-temporal context to the analysis of bi-temporal changes. As it was mentioned,

an isolated change area may potentially contain several types of changes. The

identification of change segments is needed at two different steps of the proposed

framework. First, we detect change objects for the aforementioned algorithm. The
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segmentation is performed for every couple of concatenated images Imn-Imn+1 within

the associated change mask. For the second step, we perform the segmentation of

change areas of every image Imn, so the detected segments will later be used for the

construction of evolution graphs.

For both segmentation steps of the framework, we leverage a graph-based tree-

merging segmentation algorithm [147] due to its ability to produce relatively large

segments without merging different classes together. Large segments facilitate further

construction and interpretation of evolution graphs as the shapes of some change

segments may have important variations from one image to another when they are

over-segmented.

The principle of the segmentation algorithm is the following: an image is repre-

sented as a graph where the pixels are nodes and resemblance values between two

pixels are edges. Usually, each pixel has 8-connected neighborhood. At the beginning

of the algorithm, each pixel belongs to a separate segment, then, at each step of the

segmentation algorithm, the adjacent segments are merged if the difference between

them is not much less than the internal variability of these segments. To measure

the resemblance value between two pixels, we use Mahalanobis distance:

d (~x, ~y) =

√
(~x− ~y)>Cov−1 (~x− ~y), (5.1)

where ~x, ~y are two pixels values and Cov is the covariance matrix of the image values.

The proposed algorithm requires three parameters which are σ - the standard

deviation for Gaussian kernel that is used for image smoothing during the pre-

segmentation phase, k - the constant for the thresholding function used for segment

merging, and min size that defines the minimum component size for the post-

processing stage.

5.3.4 Evolution Graphs

For our framework, we adapt the evolution graph construction algorithm presented

in [142, 143] by passing from the analysis of the whole SITS to the analysis of change

areas. This approach combines graph-based techniques and data-mining technology

and is used to describe a spatio-temporal evolution of a detected phenomena. The

initial approach is the following: given a SITS and its associated segmentation, we

choose a set of objects that corresponds to the spatial entities we want to monitor. This

set of objects is called Bounding Boxes (BBs). A BB can come from any timestamp

and is connected to the objects covered by its footprint at other timestamps. A BB
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and objects connected to it form an evolution graph. Each evolution graph can have

only one BB and has to be continuous. Every object of a graph represents a node

and overlapping values between two objects at two consecutive timestamps represent

an edge. Objects at timestamp Tn can be connected only to objects from Tn−1 or

Tn+1, a timestamp that contains a BB can have only one object that corresponds to

this BB.

Bounding Box Selection

For BB selection, we use the same strategy as in the initial articles [142, 143], except

that we do not work with the whole dataset, but only with change areas. The

methodology is the following:

1. We create an empty 2D grid G that covers all changed areas. If a segment is

chosen as a BB, the grid is filled with its footprint.

2. We create an empty list of candidate BB LcandBB
.

3. We sort all the segments presented in SITS change areas by their size in the

descending order.

4. We iterate through each segment of the sorted list.

5. We calculate the novelty and weight of each element comparatively to already

iterated segments. These values are calculated as follows:

novelty =
Pix(O)− CA

Pix(O)
(5.2)

where Pix(O) is the segment’s size in pixels and CA is the size of a grid area

that is covered by this segment and already filled by previous candidate BBs.

weight =


Pix(O) if novelty = 1

novelty if α ≤ novelty < 1

0 if novelty < α

(5.3)

If weight ≥ α, we select this segments as a candidate BB and add it to LcandBB
.

6. We iteratively update the weights in LcandBB
and delete previously detected

candidate BBs if needed.
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7. We iterate through the list until no more segments are left or until the grid is

filled.

Construction of Evolution Graphs

In our method, we construct graphs in such a manner that every graph contains

only coherent information. In other words, every BB is connected only to its best

matching segments comparatively to neighbor BBs and each segment can belong

only to one or no evolution graph.

In order to construct graphs that contain only objects belonging to the same

phenomena, in [142, 143], the authors propose to use two parameters for the con-

struction of evolution graphs that are independent of each other: at least τ1 of the

object should be inside of BB footprint, and the intersection with the object should

represent at least τ2 of BB footprint.

τ1 =
Pix(O) ∩ Pix(BB)

Pix(BB)
(5.4)

τ2 =
Pix(O) ∩ Pix(BB)

Pix(O)
(5.5)

The first parameter τ1 is the most important and allows to select only the objects

that are covered the most by BB footprint. The second parameter τ2 is used to keep

the objects filling only certain percentage of the footprint.

In our experiments, we are interested only in change areas of SITS, hence an

isolated evolution processes may not cover the same area at different timestamps

(e.g. a growing construction of a residential area).

However, it may cause that some objects will be covered by two or more BBs. To

deal with this issue, we propose to associate each object only to its best matching

BB, i.e the one with the highest τ1 value. In addition, for α < 0.5, an object Oi may

be a bounding box BBi of a corresponding graph and at the same time attached to

an evolution graph of a neighbor bounding box BBj . In this case, we compare BBi’s

(Oi) weight value with Oi’s τ1 value in the evolution graph of a neighbor bounding

box BBj. If τ1 > weight, Oi is attached to BBj evolution graph and the evolution

graph of BBi is destroyed and its objects are attached to other graphs, otherwise

BBi and its evolution graph are kept and Oi is deleted from BBj’s evolution graph.

Due to pixel shift and to some false positive changes, we may observe many

parasite objects presented in evolution graphs that usually correspond to crop fields.

Parasite objects are the small objects attached to the beginning or to the end of
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the graph, these objects are the only objects presented at given timestamp and are

much smaller than the footprint of the previous/next timestamp. If an evolution

graph contains a parasite object, it can influence its further interpretation. Given the

size of these objects, we can consider that they correspond to false positive changes

and need to be deleted. To minimize the number of parasite objects, we introduce τ3

parameter that represents the minimum ratio between coverage of two consecutive

timestamps.

τ3 =

∑q
1 Pix(On+1

i )∑r
1 Pix(On

j )
, (5.6)

where q and r are the number of objects at timestamps Tn+1 and Tn respectively,

Pix(On+1
i ) is i-th object at timestamp Tn+1 and Pix(On

j ) is j-th object at timestamp

Tn.

5.3.5 Graph Synopsis and Feature Extraction

To cluster the extracted evolution change graphs, we calculate each graph synopsis

as in [142]. A synopsis summarize the information about each graph and allow to

compare them with each other. A synopsis Q is defined as a sequence of the same

length as the corresponding evolution graph. Each timestamp Tn of the sequence Q

contains the aggregated values of graphs objects at this timestamp. The influence of

each object at the aggregated value at the timestamp Tn is proportional to its size

and calculated as follows:

Qn =

∑r
1 Pix(On

j ) · vj∑r
1 Pix(On

j )
(5.7)

where Qn is the synopsis value at timestamp Tn, Pix(On
j ) is the size of a j-th object

at timestamp Tn (j ∈ [1, r], where r is the total number of the objects presented in

the evolution graph E at the timestamp Tn) and vj is the corresponding mean of the

object value.

In our algorithm, each object is characterized by the feature values extracted with

deep convolutional denoising autoencoder. We add a Gaussian noise to the initial

patches of the dataset during the training to extract more robust features. The noise

is added only to the input of the first convolutional layer. To calculate the MSE for

model optimization, we use the initial patches without noise as targets. For every

pixel i, j, n its features are extracted in a patch-wise manner.

The choice of feature extraction and its efficiency is described in the experiment

section, where we compare the clustering performance for our proposed framework

using a feature extraction step and also using raw pixel values for graph descriptors.
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All the images are normalized using dataset mean and standard deviation before

texture extraction.

In our proposed framework, the feature extraction steps are the following:

1. We extract patches of size p for every pixel of every image of SITS to train a

convolutional AE model.

2. We divide the extracted patch dataset in training and validation parts (67% and

33%). Validation part is used for early stopping algorithm [148] that prevents

our model from over-fitting and works in an unsupervised manner. The more

the model is generalized- the more robust features we get.

3. We train the AE model in such manner that every patch from the training

dataset is firstly encoded in a feature vector and then is decoded back to the

initial patch. We use mean square error (3.2) of the patch reconstruction to

optimize the model at each iteration.

4. The early stopping algorithm is applied at every epoch and check the loss

value when fitting validation dataset to the obtained model. If the validation

loss does not improve during chosen number of epoch, the model is considered

stable and the training is stopped.

5. We use the encoding part of the AE to encode every patch of SITS change

areas in a feature vector.

The feature extraction model is presented in Table 5.1, where f is the size of

the encoded feature vector and C is the number of image spectral bands (channels).

Note that for all convolutional layers the kernel size is 3. We equally apply batch

normalization to all convolutional layers.

5.3.6 Clustering

In the presented framework, we propose to use GRU [99] AE combined with hierar-

chical agglomerative clustering [49] to regroup the obtained evolution graphs. GRU

is a recurrent neural networks-based (RNN) type of NN that is able to process time

series in order to extract some meaningful information from it (Figure 3.9). Unlike

many other approaches for time series analysis, RNNs are able to deal with varying

sequence lengths. More about different RNNs and about the choice of GRU can be

found in Chapter 3.4.5.
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Table 5.1: Feature extraction model.

Feature extraction

en
co

d
er

Conv(C,32)∗+ReLU
Conv(32,32)+ReLU
Conv(32,64)+ReLU
Conv(64,64)+ReLU

MaxPooling(kernel=3, stride=3)
Conv(64,128)+ReLU
Conv(128,128)+ReLU
MaxPooling(kernel=3)
Linear(128,64)∗∗+ReLU

Linear(64,32)+ReLU
Linear(32,f)+`2-norm

d
ec

o
d
er

Linear(f,32)+ReLU
Linear(32,64)+ReLU
Linear(64,128)+ReLU
UnPooling(kernel=3)
Conv(128,128)+ReLU
Conv(128,64)+ReLU

UnPooling(kernel=3, stride=3)
Conv(64,64)+ReLU
Conv(64,32)+ReLU
Conv(32,32)+ReLU
Conv(32,C)+ReLU

∗In Conv(a,b) a and b stand for the number of the input and
output channels respectively.
∗∗In Linear(a,b) a and b stand for the sizes of the input and
output vectors respectively.
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The main idea of all RNNs is to compute hidden states h = {h1, h2, ..., hn, ..., hS}
for each timestamp of a sequence X = {x1, x2, ..., xn, ..., xS} of length S. The hidden

state at each timestamp presents an accumulated value of all previous timestamps of

the sequence. The final hidden state hS characterizes the whole sequence and is used

as its descriptor.

The principle of a GRU AE is the same as of the convolutional one mentioned

before. During the encoding pass, GRU AE extracts the accumulated hidden state of

the sequence hS at the last timestamp. The last hidden state is then self-concatenated

S times [149] and passed to the decoding part that aims to reconstruct the inversed

initial sequence Xinv = {xS, ..., xn, ..., x2, x1}. As it is usually recommended to set

hidden state size large (> 100), we add fully-connected layers before the GRU AE

bottleneck to compress the size of hidden state to ameliorate the further clustering

results. The overall GRU AE schema is presented on Figure 5.4. Finally, we apply

hierarchical clustering to the bottleneck of GRU AE to obtain the associated change

clusters.

Figure 5.4: GRU AE clustering model.

As the input sequences have varying length, some data preparation is necessary,

so the GRU is able to correctly process it. Data preparation is performed for every

training batch individually, after the input GRU dataset has been created. For every

batch Bi, we perform the following steps (see Figure 5.5):

1. We define the maximum sequence length d of Bi.

2. We zero-pad the end of all the sequences of Bi, so they have the same length d.

3. The padded sequences are passed to the encoder, for each sequence its final

hidden state hS is obtained.

4. As indicated before, we use the cloned hS as the input of GRU layer in the

decoding part, where hS is repeated S times.
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5. We apply the inverted padding mask to the cloned hS sequence that is fed to

GRU layers of the decoder.

6. The output of the decoder should resemble to the inverted padded input

sequence.

Figure 5.5: Padding of data sequences. In this example, the initial sequence {x1, x2, x3}
has the length of 3 timestamps and the maximum sequence length per batch is
d = 5. For the simplicity of representation, we do not consider the number of
features of each sequence.

While the padding of the encoder input sequence allows us to process batches

with varying length sequences, the padding of the decoder input improves the model

quality, especially, it lowers the influence of sequence lengths on the extracted encoded

features.

We do not divide the sequence data into training and validation datasets as

the nature of some change sequences may be unique. For these reason, we control

the training loss changes between two consecutive epochs to prevent the model

over-fitting. We have used MSE as the loss function.

The model configuration is presented in Table 5.2, where f is number of features

of the input sequences, hidden size is the length of the hidden state vector, d is the

maximum sequence length per batch, f hidden is the size of the encoded hidden

state vector.

5.4 Data

We test the proposed approach on two real-life publicly available time series - the

SPOT-5 series of the Montpellier area, France and the Sentinel-2 series of the city of

Rostov-on-Don, Russia. While the first SITS contains 12 images that are irregularly

sampled over 6 years (see Appendix A.1, later called the Montpellier dataset in

this chapter), the second one contains 17 images taken over 2 years with more

regular temporal resolution (see Appendix A.3, later called the Rostov dataset in

this chapter).
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Table 5.2: GRU model.

Sequence feature extraction

en
c. GRU(f,hidden size, dropout=0.4)∗ (2 layers)

Linear(hidden size,f hidden)∗∗+`2-norm

d
ec

.

Linear(f hidden,hidden size)+ReLU
Repeat hidden state d times

Apply inversed padding mask
GRU(hidden size,f, dropout=0.4) (2 layers)

∗In GRU(a,b dropout=) a and b stand for the number of features
of the input sequence and the size of the hidden state vector.
∗∗In Linear(a,b) a and b stand for the sizes of the input and
output vectors respectively.

For both datasets, we have annotated the most frequented of detected change

processes to evaluate the clustering results. Note that we do not dispose of the

labels for different crops, so the vegetation is annotated accordingly to its variation

in the detected change sequence (for example, vegetation → weak vegetation →
empty field → vegetation) and that we do not know the exact number of change

process classes. For the Montpellier dataset, the annotated change processes that

were regrouped in 10 classes are:

1. 5 different vegetation variations (3644, 4429, 4307, 2542 and 2206 pixels per

annotated class),

2. changes in deep water (8164 pixels),

3. construction in a dense area (4122 pixels),

4. construction of a new area (13648 pixels),

5. beginning of the construction process (bare soil/construction field) (2196 pixels),

6. changes in buildings luminosity (false positive changes) (501 pixels).

For the Rostov dataset we got 11 classes:

1. 5 different vegetation variations (2864, 16930, 14805, 7521 and 6183 pixels),

2. construction of a new building (969 pixels),

3. construction of a new area (dense construction) (13669 pixels),

4. construction of a new residential area (sparse small private buildings) (241

pixels),

5. changes in bare soil (2201 pixels),

6. seasonal changes in trees/bushes growing areas (8970 pixels),

7. shadow from tall buildings (FP changes) (3708 pixels).
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5.5 Experiments

In this section, we present parameters settings for the proposed framework and the

corresponding results. We equally give some quantitative and qualitative analysis

of the obtained results to show the advantages and eventual limits of the proposed

approach. All the algorithms were tested on 6 cores Intel(R) Core(TM) i7-6850K

CPU 3.60GHz with 32 Gb of RAM computer with a NVIDIA Titan X GPU with 12

GB of RAM and developed in Python 3 programming language using PyTorch 1.3

library on Ubuntu 16.4. tslearn library [150] was used to calculate DTW distance

matrices for concurrent approaches.

5.5.1 Experimental settings

The chosen datasets have some differences in temporal resolution and images quality.

For this reason, the proposed framework have some dissimilarities based on the

particularities of each dataset.

Due to the high temporal gap between the images of the Montpellier dataset, we

tend to extract the maximum of the information from it, so all extracted change

sequences are kept. On the other hand, for the Rostov dataset, we keep only the change

sequences that are at least 3 timestamps long. As the average temporal resolution

between two images is less than two months, we consider that 2 timestamps change

sequences most probably correspond to some false change alarms that could not be

corrected when introducing the multi-temporal context.

For the Rostov dataset we manually apply a water mask and a mask for a part

of the city with dense constructions. While the first mask is applied to eliminate FP

changes caused by boats, the second one is indispensable to lower the number of FP

changes caused by the shadows from tall buildings and changing luminosity that can

not be corrected.

The water mask was obtained with Sen2Cor1 classification module. Firstly, the

water surfaces were detected for every image of the dataset individually. Secondly,

the pixels that were marked as water for more than 50% of the images of the dataset

were added to the water mask. Dense urban area mask was created manually and

has almost a rectangular shape that cover a specific city area.

The last difference is related to the fact that the images of the second dataset are

not perfectly aligned and some of them have one pixel size shift from the origin in

1Available on https://step.esa.int/main/third-party-plugins-2/sen2cor/
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different directions. This shift could not be eliminated with automatic techniques and,

for this reason, we have decided to use bigger patches comparatively to Montpellier

dataset for bi-temporal change detection.

Bi-temporal change detection

All the information about bi-temporal change detection is provided in Chapter 4. We

remind that for the Montpellier dataset, we have chosen the patch size p = 5 and

the convolution AE model for feature translation as they were proved to give the

best results for 10 m resolution images. Due to the shift presented in Rostov dataset,

we have increased the patch size to p = 7 in order to minimize the shift influence on

patch translation. We have equally chosen fully-convolutional AE model for feature

translation as it gives better results than convolutional AE for bigger patch sizes.

Image segmentation

To segment the extracted change areas, we have used a tree-merging bottom-up

segmentation algorithm [147] described earlier. The segmentation parameters were

chosen empirically and allow us to produce large segments for both SITS without

mixing different classes in one segment. For each dataset, we have manually chosen

reference adjacent objects that have to be divided in separated segments. These

objects need to have similar spectral properties, but still be easily distinguished

by human eye. We set the same parameters for single image segmentation and for

the segmentation of concatenated images, so the change objects extracted from

concatenated images are relevant to single-image objects.

The segmentation parameters for both datasets are the same and equal σ = 0.1,

k = 7, min size = 10.

Multi-temporal change detection

When the preliminary change maps with bi-temporal contextual anomalies are

obtained, we move on to their analysis in multi-temporal context. tint should have

the same value as τ1, because both parameters define the level of spatial relation

between segments at different timestamps. In other words, tint defines if changes

detected between different timestamps belong to the same change process and τ1

defines if a candidate object belongs to a reference BB. If we set tint smaller than τ1

and a candidate change polygon is kept after multi-temporal context analysis, it may

not be attached to any BB during evolution graph construction. On the contrary,
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if tint is set much higher than τ1, it will produce mostly spatially compact change

processes, so small τ1 value is unnecessary.

For both datasets, we have set tint=0.4, as τ1=0.4 with corresponding α gave the

best results comparatively to other parameters combinations for both datasets (ex-

plained in the next subsection). Logically, the performance of the proposed approach

fully depends on segmentation quality. The approach was qualitatively validated

using manually selected reference objects.

Evolution graph construction

As it was mentioned before, in our thesis, we tend to create evolution graphs that

contain only the objects that belong to the same change process. In the previous

works, α value varies between 0.3 and 0.5. Smaller α values provide more overlapping

graphs and, on the contrary, if α is high, we may obtain low graph coverage ratio,

hence, a lot of change processes will be missed. To obtain the optimal BB coverage

and graph overlapping, we choose α values 0.4 and 0.5 for the Montpellier and Rostov

datasets respectively.

As every object can belong to only one evolution graph that ensures the maximum

possible spatial overlay with corresponding BB, we propose to omit τ2 value and to

set τ1 value excessively small. The smaller τ1 is, the bigger graph footprint we might

obtain. However, most evolution graphs are compact independently of τ1 value. For

both datasets, τ1=0.4 provided the best graph coverage. τ3 value has to be chosen

after visual analysis of detected changes and parasite objects that correspond to false

positive changes. Clearly, its value should not be too high as the footprint of change

processes may have important variations at each timestamp. The parameters for

evolution graph construction that gave us the best results are presented in Table 5.3.

Table 5.3: Parameters for evolution graphs construction.

Dataset α τ1 τ3
Montpellier 0.4 0.4 0.2

Rostov 0.5 0.4 0.3
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Feature extraction autoencoder

To cluster the evolution graphs, it is necessary to extract robust descriptors of

change objects. In our framework, we deploy a deep convolutional AE model for

non-supervised feature extraction. We use the same model for both datasets (see

Table 5.1) with patch size p=9 as it provides sufficient coverage of neighborhood pixels

without high influence of objects border pixels. Contrary to the change detection

algorithm, we keep all 4 spectral bands for the Montpelier dataset (Green, Red, NIR

and SWIR) as SWIR band may ameliorate the clustering of some similar classes. We

keep C=3 for the Rostov dataset as in change detection. We encode the patches of

the Montpellier and Rostov datasets in feature vectors of size 5 and 4 respectively.

Small size of feature vectors was chosen to obtain only the most representative

features. Moreover, feature vectors size is equal to the number of spectral bands

plus 1 (f = C + 1) to avoid potential linear correlation between a spectral band and

a corresponding element of the feature vector.

Evolution graph clustering

After the texture extraction, we create synopses for all evolution graphs that are

then passed to the GRU AE model combined with a chosen clustering method. As

we do not know beforehand the exact number of change classes presented in a SITS,

we choose hierarchical agglomerative clustering algorithm. This choice is justified in

Chapter 2.6.

The model parameters were set as follows for both datasets: hidden size=150,

f hidden=20. Both parameters were achieved empirically, though some general

recommendations were followed to set the second parameter. For example, the size of

AE bottleneck should correspond to the number of researched clusters [94], although,

this number is not known beforehand, we can distinguish around 10-15 the most

frequented types of change processes for both datasets. To improve the clustering

results, the extracted sequences are normalized by their mean and standard deviation.

After the model is stabilized, we apply the hierarchical agglomerative clustering to

the encoded results. As parameters for clustering algorithm, we use Ward’s linkage [49]

and Euclidean distance between the encoded points. We test the results for different

number of clusters in the range from 5 to 50.

Unfortunately, the right choice of the number of clusters is still an open question.

No robust methods for the automatic selection of the number of clusters were find in

literature and for some datasets it seems impossible to guess it. However, we can
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visually estimate the number of prevailing change classes and set an optimal range of

the number of clusters for the hierarchical clustering. Considering the specificity of

the algorithm and that its model does not depend on the selected number of clusters,

we do not need to know their exact number.

5.5.2 Results

In this subsection, we present quantitative and qualitative results obtained with

the proposed framework. We start by presenting the intermediate results of the

framework, then we present the final results obtained by the clustering algorithm

and discuss the influence of the parameters of the intermediate algorithms on the

final results.

We start by bi-temporal change detection that defines the final overall accuracy of

our framework. The more false positive changes there are - the more parasite objects

or even parasite graphs are detected. For this reason, during the next steps, we tend

to reduce their quantity by using different techniques (for example, by introducing

τ3 value).

The performance of the algorithm for non-trivial bi-temporal change detection is

presented in Chapter 4. We observe that both datasets have high recall values that

indicate that most of the changes are correctly detected. At the same time, precision

value is low for the Rostov dataset and depends mostly on the quality of the images

itself (a lot of saturated objects and shadows are detected as changes).

Once the obtained change maps are analyzed in multi-temporal context, we move

on to the construction of the evolution graphs. Table 5.4 presents the evolution

graph statistics for the chosen parameters that ensure the best coverage. It provides

total graph coverage, graph overlapping percentage, minimum graph compactness

represented by the ratio of BB footprint to the total graph coverage footprint, dataset

average graph compactness, percentage of graphs with compactness inferior to 50%

Table 5.4: Statistics about evolution graphs construction.

Statistics, %
Cove- Over- Min. Avg. Comp. Comp.

Dataset rage lapping comp. comp. <50% <75%
Montpellier 96 14 30 94 0.4 7.5

Rostov 92 9 34 93 0.7 9.1
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Table 5.5: Time of evolution graphs construction.

Time, min
Dataset BB selection Graph constr.

Montpellier 2.5 9.5
Rostov 7.0 14.5

and 75% (to justify the choice of small τ1 value). Table 5.5 shows the computation

time for different steps of graph construction.

The Figure 5.6 presents an example of an evolution graph that corresponds to

the construction of a rugby stadium. The constructed graph correctly reflects the

overall change process, although, we can observe that some extracted changes and

corresponding segments are not “pure”. For example, in timestamp 18/02/2006, some

small vegetation objects are attached to larger construction segments. We can also

notice that the presented change process is composed of several subprocesses. One

of these subprocesses starts at 03/06/2006 and at this timestamp is presented by

segment 7− 29 that corresponds to some vegetation fields that are later transformed

into constructions.

With the given evolution graph parameters, we obtain 4388 graphs for the

Montpellier dataset and 1850 graphs for the Rostov dataset (after excluding 2

timestamps length sequences) that are used in totality for the AE models training.

To evaluate the proposed clustering framework, we compare it with hierarchical

agglomerative clustering with DTW [144] distance measure used in [142] that is

equally able to process time series data with varying length. DTW is a time-series

distance measure algorithm that finds optimal match between two time series by

scaling one to another. Ward’s linkage was used as clustering algorithm parameter.

DTW was applied to the extracted graph synopsis calculated for the encoded features

(called “DTW features”) and to the raw image values (called “DTW w/o features”).

We highlight the advantage of our proposed framework by comparing it with the

same framework without feature extraction (i.e. we compute the synopsis for raw

image values, called “Framework w/o features”). The obtained results are presented

in Table 5.6 for different number of clusters in order to choose the optimal one.

For both datasets we equally calculate NMI for primary change classes such as

changes in vegetation, construction processes and changes in water (only for the

Montpellier dataset) to verify if the extracted clusters contain only one primary type

of changes (Table 5.7).
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Figure 5.6: An evolution graph of rugby stadium construction.
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Table 5.8: Computation time.

Time, min
Method Montpellier Rostov

GRU AE + hier. 4 3
Hier. with DTW 16 4

The execution time of GRU AE combined with hierarchical agglomerative cluster-

ing and hierarchical agglomerative clustering with DTW distance matrix measure are

presented in Table 5.8. Note that DTW matrix was calculated with tslearn library.

Computation of DTW distance matrix is a time consuming process, hence, with

growing number of change graphs, the computation time may drastically increase. At

the same time, GRU AE training takes the same time for both datasets, regardless

the number of graphs.

We observe that for small number of classes (10-15) our proposed framework gives

the best results for the reference ground truth (10 and 11 classes for Montpellier and

Rostov datatsets respectively).

However, for the Montpellier dataset, hierarchical agglomerative clustering with

DTW measure outperformed our framework for the number of clusters superior

to 15. At the same time, primary classes of the Montpellier dataset are much better

separated by our framework, even for small number of clusters. In general, for both

datasets, NMI increases with the number of clusters, but at the same time, it may

be complicated to interpret the obtained results when its number is elevated.

In our case, as the NMI is calculated at pixel and not object level, we obtain

high NMI values for 11 reference classes of the Rostov dataset due to the bigger

surface of vegetation changes. As DTW measure does not depend on the classes

balance, it has achieved better separation of primary classes for the unbalanced

dataset. Nevertheless, for large datasets, DTW computation is time-consuming, so

GRU AE is the most adapted for balanced datasets of any size, and DTW approach

performs better for unbalanced datasets of a small size.

After visual analysis of the obtained results and analysis of Tables 5.6 and 5.7,

we can state that for small number of clusters our proposed framework separates

the primary classes much better than the framework without feature extraction. It

confirms that feature extraction ameliorates the class generalization for GRU, so the

primary classes are better distinguished.

We observe that some construction processes that belong to the same classes for
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human eye are regrouped by the algorithm in different clusters. This fact justifies the

necessity to extract large objects during the segmentation as over-segmentation may

produce numerous change graphs that correspond to the same change process, but

are clustered in different groups. However, visual examination of the results with the

chosen segmentation parameters shows that some graphs contain several different

change sub-processes. For this reason, we may find different classes of objects at the

same timestamps in one evolution graph (as in Figure 5.6). This class mixture may

potentially influence the graph synopsis and lower the performance of our clustering

algorithms.

If we lower the threshold k or increase σ values for the image segmentation,

we obtain smaller segments that give us more compact evolution graphs. At the

same time, the computation time for evolution graph construction will increase with

the number of obtained graphs. In this case, we may obtain numerous graphs that

correspond to some sub-processes that will decrease the clustering performances

due to the lack of generalization of the obtained change graphs. For example, if we

change only the segmentation parameters for the Montpellier dataset to σ = 0.3

and k = 6, we obtain 5316 evolution graphs that are clustered with lower precision.

For 15 clusters, we obtain a NMI of 0.49 and 0.5 for 10 classes and primary classes

respectively contrary to 4388 graphs and 0.55 and 0.65 NMI values for the initially

chosen segmentation parameters. On the other hand, if we increase the threshold k

or lower σ values, we might obtain under-segmented change objects that will lead to

the creation of less “pure” evolution graphs.

The influence α, τ1 and τ3 values on the evolution graph construction was explained

in Experimental settings section. Clearly, we can attend similar effect as in previous

paragraph if the number of graphs is elevated and, on the contrary, miss some change

processes if the graph coverage is not sufficient.

5.6 Conclusion

In this chapter, we have presented an end-to-end approach for change detection and

analysis in SITS. The approach consists in the extraction of bi-temporal change maps

for the whole SITS that are then analyzed in multi-temporal context in order to

construct different change processes that are further regrouped in different clusters.

Our framework combines graph based techniques with unsupervised feature learning

with neural networks and does not depend on the temporal resolution of SITS and

on its length. The proposed approach is fully unsupervised and gives us promising
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results on two real-life datasets. However, for unbalanced datasets, we may observe

that smaller classes are not well separated from the majority ones.

As our multi-temporal changes are built from bi-temporal contextual anomalies,

some of these changes can be interpreted as separate seasonal changes classes that

are in minority, comparatively to the overall SITS trend. For this reason, it is

indispensable to perform a complete SITS clustering to isolate these minority classes

from the real changes. As SITS clustering deals with the whole area, it will not be

able to detect the outliers and only no change areas and seasonal changes will be

identified. Then, the results of both methods should be analyzed together for better

understanding. For example, if one change cluster from the method presented in this

chapter matches a cluster from the results of SITS clustering, we can presume that

it corresponds to some non-numerous seasonal changes rather that to non-trivial

changes.

In the following chapter, we present the final step for SITS analysis that performs

the clustering of the whole series to identify no change areas and seasonal changes.
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Chapter 6

Satellite Image Time Series

Clustering
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6.1 Introduction

Contrary to the past decades, nowadays we dispose of a huge amount of time-spread

geospatial data that provide us a full description of almost any area of interest in

the world [151]. Exploiting SITS gives us better comprehension of a study area, its

landscape, land cover, evolution and more comparing to a single image analysis [152].
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While some applications demand SITS analysis in order to detect or monitor a specific

event (constructions, droughts, deforestation, etc) [127, 130, 133], others exploit SITS

to perform a land cover analysis of the whole area and/or its eventual evolution [153].

For the second type of applications, the prior knowledge about temporal behavior

of some classes (usually vegetation) is indispensable to make a correct classification

map [136, 137].

In the previous chapter, we have proposed an end-to-end approach for multi-

temporal non-trivial change detection and clustering. This algorithm aims to analyze

only specific areas of the SITS and ignores no change areas and seasonal changes. In

this chapter, we propose an approach to cluster the whole series in order to identify

no change areas and seasonal changes. At the same time, as non-trivial changes are

considered as the outliers, they will not be identified by the algorithm proposed in

this chapter. For this reason, the results of both algorithms presented in this and

previous chapters should be interpreted together.

The proposed SITS 3D clustering algorithm presented in this chapter is based on

SITS compression with a 3D convolutional AE model. The whole SITS is encoded

into a unique image. SITS objects are then identified with two steps (preliminary and

fine-tuning) segmentation approach that uses both original images and the encoded

series. Finally, the segments are clustered using their encoded descriptors.

The rest of this chapter is organized as follow: in Section 6.2 we overview existing

works for SITS clustering, Section 6.3 presents the proposed approach, Section 6.4

describes datasets we used, Section 6.5 gives the review of the experimental results

with their qualitative and quantitative evaluation. In the last section, we resume the

work done.

6.2 Related Works

Due to the variety of objects presented in the remote sensed images and in SITS in

particular, few labeled data are available. For this reason, unsupervised approaches

are becoming more and more popular for various projects. Most of the currently used

unsupervised approaches for SITS clustering deploy pixel-wise analysis [154, 155].

In these approaches, the pixels corresponding to the same geographical position on

different images form temporal sequences that are further compared to each other and

associated to different classes. Numerous studies have proven Dynamic Time Warping

(DTW) algorithm [144] to be an efficient tool to compute the similarity measure

between temporal sequences. The main idea of this approach is to non-lineary map
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one series to another by minimizing the distance between them. Thus, the DTW

distance matrix is computed for every point of the series and used as a similarity

measure for a chosen clustering algorithm.

In general, DTW distance matrix has a high computational cost. To this end,

the analysis of large datasets at pixel level may be extremely time-consuming and,

hence, unreasonable. To deal with this issue, several object-based DTW clustering

approaches have been proposed [156–158] to analyze the data both at temporal and

spatial dimension. In these methods, spatio-temporal segments (in a form of a 2D

map) are extracted for the whole SITS, then, the temporal sequences constructed

for segment descriptors are clustered. Therefore, the object-based SITS analysis has

drastically reduced computational cost and ensured more homogeneous results of

clustering algorithms compared with the pixel-based approaches.

Nevertheless, not so many SITS segmentation approaches are available in litera-

ture [159] and it can be tricky to create a proper segmentation map for the whole

series as sometimes objects change from one image to another. If a series is short

enough (does not cover more than a year), we can presume that objects shapes stay

invariant and, in this case, we can project a single image segmentation to the whole

SITS. However, this approach can not be used for a series that covers a large period

of time, especially if it contains some permanent changes or important phenological

variations. To capture some of these changes, segmentation may be performed on the

concatenated product of two or three most representative images of the SITS [156]

or even on the concatenated product of the whole time series [157]. In the first case,

we may miss some objects. In the second one, the segmentation may have high

computational cost and be difficult to parameterize if a SITS is long.

To overcome multi-temporal segmentation issues, in [143] the authors propose a

graph-based approach to analyze different spatio-temporal dynamics in SITS. In this

method, each image is segmented independently and all the spatio-temporal entities

that belong to the same geographical location are connected to each other and form

evolution graphs. Every graph is characterized by a bounding box - an object which

footprint has the intersection with all graph objects at different timestamps. Following

this method, the authors of [142] propose an algorithm to cluster the extracted multi-

annual graphs. Each evolution graph is firstly described by a simplified representation

- synopsis. Secondly, spectral and hierarchical clustering algorithms with DTW

distance measure are applied to graphs synopsis. This approach showed promising

results for the clustering of natural habitat areas. However, it may be complicated to

construct evolution graphs for urban areas as their segmentation is more complicated
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due to the non-homogeneity of the features. For this reason, the segmentation results

of urban areas are usually not uniform from one image to another, contrary to the

agricultural lands where a parcel is presented by one or two well-delimited segments

that repeat over time if no changes happened.

To create a single segmentation map for the whole SITS, the authors of [160]

propose a time series segmentation approach based on DTW distance measure. In

this approach, at the beginning, each pixel is characterized by its temporal sequence,

each sequence firstly represents an isolated segment, then the segments with similarity

measure higher that a certain threshold are iteratively merged. However, for the

aforementioned reasons, we estimate that the proposed approach can be slow, even if

the distances are not computed for all pixel couples.

In this chapter, we propose a SITS object-based clustering algorithm based

on SITS compression with 3D convolutional autoencoder (AE). 3D convolutional

networks have been successfully used in remote sensing applications for supervised

classification [161, 162] due to its ability to deal with multi-temporal image data in

addition to lower computational cost comparatively to other temporal models such

as, for example, convolutional LSTM network [163]. Contrary to these methods, our

3D convolutional AE model is unsupervised and does not require any labeled data

and, to our knowledge, no such models have been used in time-series remote sensing

yet.

In our work, we deploy an AE neural networks structure. Traditionally, autoen-

coders are used for unsupervised dimensionality reduction or feature learning [95].

Different AE models have been widely used in remote sensing [93, 122, 164]. In these

articles, the features are extracted from a single image using AEs and then used for

a land scene classification. However, the AE structure can be adapted for any type

of data, therefore, we propose to use AEs for the feature extraction and compression

of the image series.

In our method, we first encode the whole SITS into a new feature image with

a multi-view 3D convolutional AE. Both encoder and decoder parts contain two

branches that are concatenated together before the bottleneck. While the first branch

allows to obtain deep features from the spectral bands of the whole SITS, the

second one only extracts some general information from the corresponding NDVI [83]

images. Second, we perform a preliminary segmentation of the SITS on its two most

representative images. Then, we correct the preliminary segmentation by using the

encoded feature image. Finally, we regroup the obtained objects with hierarchical

clustering algorithm [49] using the encoded features as descriptors. The proposed
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approach showed us good results in the two real-life datasets and outperformed the

concurrent methods, including the ones based on the DTW measure.

6.3 Methodology

Our proposed approach is developed for segmentation and clustering of a SITS.

Let RS be a time series of S co-registered images Im1, Im2, ..., ImS acquired at

timestamps T1, T2, ..., TS. The framework is composed of several steps which are the

following:

1. We start by relative normalization of all the images of the SITS using an

algorithm described in [123] and correction of saturated pixels.

2. We deploy a two-branch multi-view 3D convolutional AE model in order to

extract spatio-temporal features and compress the SITS.

3. Then, we perform a preliminary SITS segmentation using two farthest images

of the dataset taken in different seasons.

4. We correct the preliminary change segmentation using the compressed SITS.

5. Finally, we perform the clustering of extracted segments using their spatio-

temporal features as descriptors.

6.3.1 Time Series Encoding

For the compression and encoding of the SITS, we propose to use the two-branch

multi-view 3D convolutional AE. While the first branch of the AE extracts deep

temporal features from the initial series, the second one extracts some primary

temporal features from the associated NDVI images (Figure 6.1). The NDVI branch

improves the model capacity to distinguish different vegetation types, especially the

ones with weak seasonal variance. Moreover, by allocating a separate branch to NDVI

images instead of just adding a supplementary NDVI channel to the initial images,

we “force” the model to extract more robust and independent vegetation features.

Contrary to traditional 2D convolutional networks where convolution filters are

applied in 2D plane, 3D convolutions preserve the temporal relations between data

by extending the filters to the depth dimension [165]. Therefore, the 3D convolution

network extracts both spatial and temporal features.
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Figure 6.1: 3D convolutional AE model.

The deployment of an AE type of model ensures the extraction of robust spatio-

temporal features in an unsupervised manner without using any reference data. In

classic AEs, the model firstly encodes the input data in some compressed latent

representation and then decodes it back to its initial self. In image processing, the

encoding pass is usually composed of convolutional and pooling layers for feature

maps (FM) extraction that are followed by some fully-connected (FC) layers for

feature compression. The decoding pass is often symmetrical to the encoding one.

Once the model is trained, the extracted compressed representation is used to describe

the data under the study. The encoder-decoder model allows us to compress the whole

dataset in an uniform way. Moreover, it can compress any type of data independently
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of its shape and size.

In case of our multi-view AE, during the encoding step, we independently extract

features from two different stack of images (original and their corresponding NDVI),

the features are then merged together to obtain a combined descriptor. During the

decoding pass, the features are separated and reconstructed independently into the

initial stacks of the original and NDVI images.

The training and encoding processes of the whole series are performed patch-wise

for the stack of SITS images. The patches of size p are extracted for every i, j-pixel

of the SITS (i ∈ [1, H], j ∈ [1,W ], where H and W are images height and width

respectively) and represent stacks of size p× p× S ×B, where B is the number of

image bands. Obviously, for the first branch, B corresponds to the number of spectral

bands, for the second one B = 1 as we deal with single channel NDVI images. To

extract deep features from the original images, we propose to use patches of size

p = 9, however, as we extract only general information from the NDVI images, the

patch size of p = 5 is sufficient. We consider that p = 9 is big enough to get necessary

information of the neighbor pixels as it makes a 90 × 90 m2 surface footprint. In

addition, it ensures smooth maxpooling with 3× 3 window size and does not produce

important border effect for the patches that contain two (or more) different classes

(see more about it in the next subsection). For the NDVI branch, we believe that p = 5

is the minimum sufficient patch size to get the information about the neighborhood

vegetation features (p = 3 covers only 1 pixel radius, so this information can not be

considered relevant). Moreover, we apply no padding to the second 3D convolutional

layer of the NDVI branch to reduce the size of extracted feature maps before applying

the maxpooling operation. Note that we tend to decrease the network complexity

and its training time by choosing a smaller NDVI patch size as all the important

information about land cover textures are extracted in the main branch, while the

NDVI branch is used only to detect vegetation tendencies. As one may observe from

the model schema, the configuration of FC layers depends on the number of images

of the SITS. It guarantees that all the layers within different models have the same

input/output step ratio while compressing the features. Note than if S is elevated,

one might consider to add a supplementary FC layer.

For model evaluation and optimization, we use the mean-squared error (MSE) (3.2).

Once the model is stable, every temporal stack of patches is encoded in a feature

vector of size f that corresponds to the i, j-pixel of a new feature image of size

H ×W × f that will be further used as a compressed version of the whole dataset.
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6.3.2 Segmentation

Satellite image segmentation is a task of image processing that partitions an image

into non-intersecting regions (segments) so that the ensemble of pixels of each

region shares similar properties. Segmentation can therefore be seen as a first step

before doing a classification or a clustering of the newly created segments for any

object-based method.

As it was mentioned in the previous section, SITS segmentation can be a com-

plicated and challenging process, especially when the number of images is elevated.

The main idea of our segmentation approach is the following: to get a more robust

SITS clustering that is easy to visualize, we need to obtain a unique segmentation

map for the whole series. To accomplish this task, we could directly perform the

segmentation on the encoded SITS image. However, as the encoding is performed in

a patch-wise manner for every image pixel, one may observe a border effect. This

effect is produced for pixels located close to a border of two regions. The patches

extracted for these pixels contain information about two (or more) different classes,

their encoded spatio-temporal features will not be “pure”. For this reason, these pixels

may be segmented as new objects (mostly linear) or segment borders may be shifted.

Moreover, the linear objects, such as roads or rivers may not be distinguished or, on

the contrary, over-segmented. Figure 6.2 presents two examples of the border effect

and its eventual correction with our method (explained later in the text). The first

row shows the shifted borders in crop segmentation at the limits of different types of

crops. The second row displays the segmentation of a road. We can observe that the

road is over-segmented and its borders are shifted at the same time.

To tackle this problem, we propose to perform a two steps segmentation that

includes the correction of the preliminary segmentation in respect to all objects

borders of the time series. The preliminary segmentation is performed on two most

representative concatenated images of the SITS. To obtain the maximum of coherent

spatio-temporal objects in the preliminary segmentation Segpr, the chosen images

should be as far apart as possible (e.g. the first and the last image) and correspond

to different seasons.

For all image segmentations, the MeanShift algorithm [166] available in Orfeo

ToolBox software (www.orfeo-toolbox.org) under QGIS interface was chosen. The

most important parameters of the MeanShift segmentation algorithm are spatial

radius Rs and range (spectral) radius Rr. The main idea of the algorithm is to firstly

reproject a n-channels image into n-dimensional space and simplify its representation

by replacing each pixel with the mean of the pixels in Rr neighborhood that have
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Figure 6.2: Influence of the border effect on the segmentation results and its eventual
correction, example issued from SPOT-5 dataset (see dataset description in the
following section). Top row - border effect in crops segmentation, bottom row -
border effect in road segmentation. (a), (d) - encoded images and corresponding
segmentations, (b), (e) - projection of these segmentations on the last image of
the dataset, (c), (f) - images corrected for the border effect. Note that 10-feature
encoded image is presented in the limits of 3 channel combination, original
SPOT-5 image is presented in false colors.

C. GRECO 2011



116 6. Satellite Image Time Series Clustering

values within Rs. The regions smaller than Regmin are merged. Secondly, the algorithm

reprojects the data back into the image plane and separates the areas with the same

mean value into non-overlapping segments. At the end, the segments smaller than

Omin are merged with their neighbors.

Despite the fact that Segpr gives us correct segment borders, it is impossible to

identify all the objects presented in SITS on the base of only two images. Therefore,

in the next step, we perform the segmentation Segenc of the encoded SITS that is

represented as a f -channels image. As it was mentioned before, this segmentation

would contain numerous irrelevant objects and shifted borders. Finally, we choose

Segpr as the reference and we correct it by fitting the segments from Segenc to obtain

the final segmentation map Segf .

The correction process is performed separately for each segment and is the

following (see Figure 6.3):

– Let Pi be a segment from Segpr to correct.

– We firstly fill Pi with the segments from Segenc that have spatial intersection

with it. Pi borders are preserved and used as the reference.

– Second, we check the average width of these segments in horizontal and vertical

axes of the SITS coordinate system. We select objects with width smaller than

minwidth in at least one of the axes. minwidth size should not exceed half of the

encoder patch size and be set after estimating the influence of the border effect.

– At the third place, each of these objects is merged with a neighbor with the

biggest common edge if the edge is at least 3 pixels long or if the object’s size

does not exceed Omin (minimum object size that we want to distinguish in

our experiments). Note that in case we have several segments to merge, we

sort them by ascending size and start by merging the smallest one while other

segments sizes are being iteratively updated.

– Finally, we fill a new segmentation map Segf with new merged segments.

Our method might still produce some shifted borders for some corrected segments,

but at the same time, it allows to reduce the border effect to minimum, to preserve

correct shapes of linear objects and to avoid parasite segments that correspond to

border pixels.
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Figure 6.3: Segmentation correction.
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6.3.3 Clustering

To regroup the obtained segments, we deploy the hierarchical clustering algorithm

(HCA) [49] applied to segments descriptors. The choice of HCA is justified in

Chapter 2.6.

For segment descriptors, we use the median values of the encoded features of

pixels within these segments. We choose the median values over the mean ones so the

border pixels are not taken into account. We use Ward’s linkage[49] and Euclidean

distance between the segments as parameters for clustering algorithm.

6.4 Data

We evaluate the proposed approach on two real-life publicly available time series

issued from SPOT-5 and Sentinel-2 missions. Both SITS are taken over the same

geographical location (Montpellier area, France), but, however, differ in terms of

spectral and temporal resolution.

While the first SITS contains 12 images that are irregularly samples over 6 years,

the second one contains 24 images taken over 2 years with more regular temporal

resolution. The description of the SPOT-5 and Sentinel-2 Montpellier datasets can

be found in Appendices A.1 and A.2 respectively.

All SPOT-5 images provide green, red, NIR and SWIR bands with 10-meters

resolution. Sentinel-2 images provide multiple spectral bands of different spectrum

and spatial resolution, however, it was decided to keep only 10-meters resolution

spectral bands - blue, green, red, NIR.

The ground truth (GT) for both datasets was taken from an open data website

of Montpellier agglomeration1 and correspond to landcover maps which we have

manually modified to keep only distinguishable classes and merged the look-alike

classes. While for the SPOT-5 dataset we have used Corina Land Cover (CLC) map

of the 2008 year, for the Sentinel-2 dataset CLC of the 2017 year was taken. We have

defined 9 well-distinguished GT classes:

1. urban and artificial area,

2. wooded area (include forests, parks, family gardens etc),

3. natural area (not wooded),

4. water surface,

5. annual crops,

1http://data.montpellier3m.fr/
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6. prairies,

7. vineyards,

8. orchards,

9. olive plantation.

For both datasets, the olive plantation class is very small, so we choose 8 reference

classes for our clustering algorithm. The GT olive plantation class will be ignored

during the evaluation.

Note that it is difficult to create a GT for a multi-annual SITS analysis as some

objects may go through changes and it is impossible to detect all these changes

manually. For this reason, for the SPOT-5 dataset, we use the GT that corresponds

to the last year of the SITS. The SPOT-5 dataset was taken over 6 years and contains

many change processes, mostly such as different constructions and permanent crop

rotations. The study for change detection in the SPOT-5 dataset is presented in

Chapter 5. As these changes are less numerous, they will be considered by most

of clustering algorithms as outliers, hence, they will be mixed with “stable” classes.

However, some of these changes are only several timestamps long, so we still perform

the clustering of the whole SITS instead of only free-change areas. Thus, the change

areas will be regrouped with no change areas with the most similar temporal behavior

or even make their proper clusters. At the same time, we consider that the Sentinel-2

dataset does not have any or has very few change areas as it is spread over only two

years.

6.5 Experiments

All the algorithms were tested on 6 cores Intel(R) Core(TM) i7-6850K CPU 3.60GHz

with 32 GB of RAM computer with a NVIDIA Titan X GPU with 12 GB of RAM

and developed in Python programming language using PyTorch 1.3 library on

Ubuntu 16.4. For segmentation, we used Orfeo ToolBox 6.6.1 under QGIS 2.18.

tslearn library [150] was used to calculate DTW distance matrices for the concurrent

approaches.

6.5.1 Experimental Settings

Time Series Encoding

As it was mentioned in Section 6.3, we have the same AE model for both datasets

with the parameters that depend on the time series length. Thereafter, we set different
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sizes of the encoded feature vector f for our datasets that is proportional to the SITS

length. f values were obtained empirically and correspond to f = 10 and f = 20

for the SPOT-5 and Sentinel-2 datasets respectively (for 12 and 24 images in the

datasets).

During the model training, we equally add Gaussian noise with 0.25 factor to the

input patches of the original images to extract more robust and generalized features.

We do not add any noise to the NDVI patches as it reduces model capacities to

differentiate some minor variations in the vegetation.

After several trials to assess the best parameters values, we set learning rate to

0.0001 and batch size to 150 to ensure the most optimal model converging during

the training. We use all SITS patches during the training of the model. We train the

model for both datasets for 2 epochs until it is stable. The number of epochs was

obtained after the analysis of loss trend and the visual analysis of the encoded images.

However, if one does not dispose of a sufficient graphic memory for 2 epochs model

training, it can be trained for only one epoch without significant loss in accuracy.

Preliminary Segmentation

As it was mentioned earlier, we perform the preliminary segmentation of two concate-

nated images of the dataset that should be as far apart as possible and belong to two

different seasons. For the SPOT-5 dataset, these images were the first and the last im-

ages of the dataset (taken on 2002-10-05 and 2008-08-21), for the Sentinel-2 - the fifth

and the last image (taken on 2017-06-12 and 2018-12-29). The chosen segmentation

parameters for the MeanShift algorithm are presented in Table 6.1, other parameters

are used by default in the Orfeo ToolBox software, including Regmin = 100. For the

choice of range and spatial radius, note that pixel values of SPOT-5 images do not

exceed 475, while the Sentinel-2 images have 4096 maximum pixel value (after the

elimination of saturated pixels). To simplify the choice of the parameters and reduce

the computation time, the pixel values of the Sentinel-2 images were divided by 10

only for segmentation to bring these values closer to the ones of the SPOT-5 images.

The segmentation parameters were chosen to obtain the most relevant results for

the reference objects.

Correction of Segmentation Results

As for the preliminary segmentation, we use MeanShift algorithm to segment the

encoded images. Initially, the pixel values of encoded images are contained between

-1 and 1 and then they have been re-scaled between 0 and 255 for the segmentation.
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Table 6.1: Preliminary segmentation parameters.

Parameters
Dataset Rs Rr Omin

SPOT-5 45 40 10
Sentinel-2 40 35 10

The choice of both radiuses fully depend on the number of encoded features f and is

the following: Rs = 3× f , Rr = 2× f . Omin = 10 as for preliminary segmentation.

For the correction of segmentation results we set minwidth < 4 as it corresponds

to the radius of neighborhood for the patches extracted for the original images.

Clustering

As in any unsupervised algorithm, the obtained clusters often do not correspond

to the ones defined by the human. In most cases, one real-life class is often divided

into two or even more clusters, so the manual inspection of the results is needed

to choose the right number of clusters. For this reason, we perform clustering for

different number of classes (from 8 to 15). We evaluate the obtained results with

Normalized Mutual Information (NMI) index [71].

6.5.2 Results

To evaluate the proposed clustering framework, we compare it with different time

series clustering approaches: object-based DTW, graph-based DTW [142], 3D convolu-

tional AE without NDVI branch and a variation of our pipeline without segmentation

correction.The following parameters are set for the concurrent approaches:

– Object-based (OB) DTW - as the segmentation reference we use the pre-

liminary segmentation results for our method, we exploit hierarchical clustering

algorithm with DTW distance matrix to regroup the obtained segments.

– Graph-based (GB) DTW - we use MeanShift algorithm with the following

parameters to segment every image of the SITS Rs = 20, Rr = 20, Omin = 10

for SPOT-5 dataset and Rs = 20, Rr = 15, Omin = 10 for Sentinel-2 dataset.

For both datasets we use the following parameters for graph construction,

see [142] for details: α = 0.3, τ1 = 0.5. We omit τ2 as it lowers the quality of

the results. The hierarchical clustering method with DTW distance matrix is

applied as in the original article.
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– 3D convolutional AE without NDVI branch - we use the same pipeline

and segmentation parameters as in our proposed method, however, the feature

extraction model is different. For feature maps extraction, we have the same 4

convolutional and 2 maxpooling layers as in the original images branch that

are followed by 2 FC layers with the following input and output sizes for the

encoding part: S × 64 → S × 12, S × 12 → f . The decoder FC layers are

symmetrical to the encoder.

– 3D convolutional AE without segmentation correction - we use the

same pipeline and segmentation parameters as in our proposed method, however,

the clustering is performed for the preliminary segmentation made for two

concatenated images.

For all methods with the DTW matrix computation we apply Sakoe-Chiba

constraint [167] with bandwidth=2 to speed up the algorithm and improve its results.

This constraint restricts the alignment of the time series and prevents the shifting

greater that one timestamp. We use hierarchical algorithm with Ward’s linkage [49]

and Euclidean distance between the segments to cluster the SITS as in our methods.

Mean segment descriptors are used as in the initial articles.

Moreover, for our method and for the object-based DTW, we equally perform

clustering for the ground truth segmentation to analyze the robustness of the proposed

object descriptors with an “ideal” segmentation map (referred as “GT seg.” in the

resulting table). All DTW algorithms are computed for the original images and for

the ones enriched with the NDVI band.

We do not compare our method to any pixel-based approaches due to their high

computation cost for the chosen datasets related to the distance matrix size and the

memory allocation.

Quantitative Evaluation

The evaluation of the obtained results with the NMI index is presented in Table 6.2.

For the aforementioned reasons, we present NMI for the reference number of classes (8)

as well as the best NMI score within the selected range of classes “NMI best” in

the table). As the results obtained with the AE methods may vary between several

attempts, each AE method was launched 3 times. For these methods, we present the

mean NMI value with the error margins.

As it was mentioned in Section 6.4, the SPOT-5 dataset was taken over 6 years

and contains several changes. However, the GT corresponds to 2008 year (the end of
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the series). For this reason, we compute NMI for the whole SITS as well as for the

SITS without outliers (which are mostly made of these changes and therefore do not

match the 2008 end of the series GT). We exclude the airport area when computing

NMI as it is mostly represented by a grass field. Its temporal behavior is unknown

to us, so we can not associate it to any of existing clusters.

Table 6.3 presents the computation times for the most essential and time consum-

ing steps of the presented approaches. For the DTW methods, we also present the

number of segments or graphs to give an idea about the size of the distance matrix as

it is the most defining parameter of the computation time. Note that we present the

results for the DTW matrix computation made with tslearn library based on CPU

computations with parallelisation. For a fairer comparison, we also customized parts

of tslearn source code from the original library to run it on GPU with numba library.

Doing so has greatly improved the computation time (maximum computation time

for the longest sequence was less than 2 minutes).
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It is still worth mentionning that GPU transfer is not adapted to all types of

data, for instance even with a GPU, the computation time increases greatly when

the sequence lengths grows. Moreover, regardless of whether it is paralellized on a

GPU or a CPU, DTW computations are limited by the number of sequences: the

size of the distance matrix grows with the number of sequences, and at some point

can not be stored in memory anymore.

Please, note that the computation time of our algorithm can be improved by

around 30% with the parallelisation of branches computations.

Qualitative Evaluation. Segmentation

Firstly, we analyze the results obtained for the “ideal” GT segmentation for our

proposed method and for the object-based DTW. We can observe from the Table 6.2

that both methods gave higher scores comparatively to the user-made segmentation.

At the same time, in average, our method has slightly outperformed its concurrent

approach. Moreover, when using the existing Python libraries, our method has less

computational cost, hence, is more adapted for big datasets.

For the clustering results obtained for user-made segmentation, we observe that

the results of our method are significantly better than the concurrent approaches. It

can be explained by more precise segmentation results that were achieved by our

proposed methodology. We remind that for our method, segmentation is realized in

several steps: preliminary segmentation, segmentation of the encoded SITS image and

the final corrected segmentation that combines the previous ones. At the same time,

the object-based clustering method is performed on the preliminary segmentation

results. The preliminary segmentation results are always under-segmented as they

can not caption all the seasonal vegetation variations that are reflected in the encoded

SITS image.

The obtained results highlight the necessity of the segmentation correction as

one can notice the decreasing of the accuracy when none is performed. Figure 6.4

presents the advantage of our proposed approach with higher detalization level over

the segmentation performed on the two most representative images of the dataset.

Moreover, our proposed approach correctly produces segments free of border

effect that perfectly correspond to true object borders (see Figure 6.2) that facilitate

the interpretation of the obtained objects.

The graph-based DTW approaches gave the results similar to the object-based

DTW methods in addition to the slowest computation time related to the graph

construction. This poor performance can be explained by the difficulty to segment
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Figure 6.4: Example of clustering results highlighting the advantage of our proposed seg-
mentation correction. (a)- GT for 2017 year, (b)- results for our method for the
Sentinel-2 dataset, (c)- results for our pipeline without segmentation correction
for the Sentinel-2 dataset (clustering performed on objects extracted from the
segmentation of two most representative images). The clusters are colored
accordingly to the GT map. The reference map legend can be consulted on
Figure 6.5.

the whole SITS, especially in the urban area. However, this method might give better

results for a smaller dataset with prevailing agricultural areas.

Qualitative Evaluation. Feature Extraction and Clustering

Figure 6.5 presents clustering results for our method for both datasets for the best of

3 runs. After visual analysis and the analysis of the NMI values, it was established

that 14 clusters provided the best data partitioning for both datasets. The obtained

clusters were associated to the ground truth clusters and colored in the same manner.

As it was mentioned in the data section, the olive plantation class was ignored

during the analysis due to its small size in addition to the fact that none of the

proposed algorithms has identified it in a separated cluster.

Clusters corresponding to water surfaces and urban areas were correctly identified

for both datasets. Three vegetation classes corresponding to annual crops, vineyards

and prairies were mostly correctly detected as well due to the specificities of their

temporal behavior. We do not dispose of finer classification level for annual crops,

however, the hierarchical algorithm has divided it in several clusters which we can

easily distinguish by analyzing crops temporal behavior. At the other hand, the

C. GRECO 2011



128 6. Satellite Image Time Series Clustering

Figure 6.5: Clustering results for our proposed pipeline. (a)- GT for 2008 year, (b)- results
for the SPOT-5 dataset, (c)- GT for 2017 year, (d)- results for the Sentinel-2
dataset.
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orchard class is mixed with other vegetation classes for both datasets and the natural

areas with small vegetation are mixed with wooded areas. It can be explained by the

fact that both classes have similar growing cycles and spatial textures.

After comparing the obtained clusters with change maps obtained in Chapter 5, we

associate one of the clusters obtained for SPOT-5 dataset with changes corresponding

to the construction of a new area.

Unfortunately, some linear objects are not correctly clustered despite the fact

that they are correctly segmented. Linear objects presented by rivers and narrow

vegetation areas are mostly misclassified. We find several explanations for it: the main

reason is that the segments are too narrow and contain many encoded feature pixels

affected by the border effect. For the clustering, we use the median feature values of

the segments as their descriptors which are biased with border pixels. On the other

hand, the algorithm does not detect roads as a separate class, but it still classifies

them as different variations of the urban cluster most of the time. We explain it by

the fact that the detected roads are in average a little bit larger than other linear

objects and their feature response is better defined, hence, their median segment

values are less biased.

Figure 6.6: Clustering results for the proposed pipeline without NDVI branch. The clusters
are colored according to the clustering map (b) in Figure 6.5. 6 clusters of water
surface are colored in different shades of blue.

As it can be seen, the variation of our model without NDVI branch gives the

NMI score similar to our method, but after the visual examination of the results

(see Figure 6.6), we can state that our method with the NDVI branch gives better

clustering results of vegetation areas. For example, for the number of clusters higher

than 8, it distinguishes different types of annual crops that do not figure in GT maps,
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but can be easily spotted on the SITSs. Furthermore, when increasing the number of

clusters, our model with the NDVI branch gives the results that are more intuitive

to interpret as the model iteratively divides each cluster into two clusters of more

or less proportional sizes. At the other hand, the model without the NDVI branch

produces many small clusters: for example, for 14 clusters segmentation results, we

obtain 6 clusters of size less that 1000 pixels each that correspond to some minor

variations in water bodies. At the same time, some vegetation types are not detected

at all: classes corresponding to prairies and orchards are missing.

For the concurrent approaches, we can spot that enriching the original images

with NDVI band has only slightly increased the accuracy of the DTW methods,

though no significant improvements were done.

Figure 6.7 presents the classification results for the concurrent approaches for the

best number of clusters with the added NDVI band. We notice that clusters that

correspond to the residential area and the forest are often mixed. It can be explained

by the fact that no spatial features were extracted and the mean segment value can

not always discriminate these classes. Moreover, the prairies and orchards clusters

are mixed with other vegetation clusters, that is probably related to the imperfection

of the segmentation. It made it more difficult to associate the obtained results to the

real-life classes than for our method as the “computer clustering logic” is less obvious.

We equally notice that the graph-based method does not ensure the whole coverage

of the study area due to the specificity of the algorithm (non-covered areas are shown

in white) that leads to some missing information. Moreover, this method gives the

most uneven shapes of clusters, especially, in the city area that might complicate the

interpretation of the results.

We believe that the chosen area is a relatively complex landscape because it

contains many different land cover types, so potentially it should work for any similar

area or areas with less classes (including areas that are predominantly agricultural, as

about half of our study area corresponds to vegetation). However, for a larger number

of clusters, the readers should understand that no ideal unsupervised clustering

algorithm exists. When the number of ground truth classes is much higher, we usually

have to deal with look-alike classes. For example, two classes have the same growing

cycle, but slightly different textures. These classes will be difficult to distinguish

when no supervised constraint is applied.

Furthermore, besides the weakness that we mentioned for the clustering of linear

objects, and the cases of a large number of lookalike land cover classes, we did

not detect any limitations specific to our algorithm. Although, we insists that our
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Figure 6.7: Clustering results for the concurrent approaches. (a)- Object-based DTW for
the SPOT-5 dataset, (b)- Graph-based DTW for the SPOT-5 dataset, (c)-
Object-based DTW for the Sentinel-2 dataset, (d)- Graph-based DTW for the
Sentinel-2 dataset. For the legend, please, refer to Figure 6.5. The clusters are
colored accordingly to the GT maps, if one class is presented by several clusters,
these clusters are colored in different shades of the referent class color. For
graph-based DTW white pixels correspond to the areas that are not covered
by graphs.
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algorithm still possesses all the limitations common to unsupervised neural networks

and clustering. For example, for a dataset with unbalanced classes, it may be difficult

to extract the features for small size classes; the final model varies from one experiment

to another; setting the right parameters for the network may sometimes be complex

and depends on the data. Moreover, our clustering method as well as many others is

not able to detect the outliers that can be seen as non-trivial changes in the context of

this thesis. If one is aware that the study area contains various changes in land cover

types, we recommend to perform a non-trivial change detection analysis presented in

the previous chapter and interpret it together with SITS clustering results. Finally,

as for any unsupervised methods, the obtained clusters do not always correspond to

the expected classes, as the computer’s pattern analysis is different from the human

perception.

6.6 Discussion

In this chapter, we have presented a fully unsupervised approach for SITS clustering

based on a two branch multi-view 3D convolutional AE that does not demand any

labeled data. The proposed approach exploits the AE model to compress a time

series into an encoded image by extracting its spatio-temporal features. Then it

performs the segmentation of the encoded image with the eventual correction of

shifted segment borders related to the specificity of the encoding. The proposed

approach was tested on two real-life datasets and showed its efficiency comparatively

to the concurrent approaches.

The main advantages of the proposed algorithm include the improvement of

traditional segmentation methods that are not initially adapted for the SITS that

leads to higher NMI score. In addition, we have shown that we can improve clustering

results by simply introducing a temporal NDVI branch in the AE model. The

presented approach is a good alternative to traditional DTW-based methods as deep

learning techniques are able to extract more robust and complex features compared

with traditional Machine Learning methods.

However, the user should be aware that if a SITS contains multiple heterogeneous

change processes, he/she should equally perform non trivial change detection analysis

and interpret it together with the results of the presented 3D SITS clustering.
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In this thesis, we have proposed a set of algorithms for unsupervised SITS analysis

using deep learning techniques. Below we summarize the contributions of this work

and propose some directions for future research.

7.1 Thesis Contributions

In this thesis, we proposed an ensemble of approaches for fully unsupervised HR SITS

analysis that included SITS clustering and bi- and multi-temporal change detection

and analysis. We distinguished three types of temporal behavior: no change areas

such as cities, seasonal or trivial changes (mostly presented by the vegetation) and

the non-trivial changes that are presented by some permanent changes, i.e. changes

that do not contain seasonal trends, for example, new constructions, permanent crop

rotations, or vegetation that does not follow overall tendency, etc. The contributions

of this thesis can be divided in three different parts.

In the first part (Chapter 4), we proposed an unsupervised algorithm for non-trivial

bi-temporal change detection in satellite images. We exploited a joint neural network

autoencoder (AE) model for feature translation to detect changes between two

images. Contrarily to traditional change detection algorithms that detect “everything
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that changes”, our proposed algorithm detects only non-trivial changes as the most

interesting.

In the second part (Chapter 5), we developed an algorithm that interprets the

detected bi-temporal changes in the multi-temporal context. We proposed a method

to model spatio-temporal change phenomena in form of evolution graphs. Then,

to cluster these change graphs, we developed a clustering model based on feature

extraction with a GRU autoencoder that is able to proceed varying length graphs.

Moreover, the proposed framework for SITS change detection and clustering does

not depend on the temporal resolution and does not demand any archive images to

detect different seasonal trends.

In the third part (Chapter 6), we introduced an object-based SITS clustering

approach that exploits a 3D convolutional AE for spatio-temporal feature extraction

to regroup no change areas and seasonal changes. We proposed a two-branch multi-

view AE that extracts more robust spatio-temporal features comparatively to a

classic 3D convolutional AE. Moreover, we developed a segmentation approach that

produces a unique segmentation map for the whole SITS. We performed a complete

object-based SITS clustering exploiting the spatio-temporal properties of the detected

segments.

7.2 Short Term Perspectives

The methods presented in this thesis have showed their effectiveness on experimental

datasets. However, due to the absence of reference data, unsupervised methods do

not always give us the results we expect. Some techniques can be integrated in our

SITS analysis algorithms to improve their quality. In this section, we propose to

summarize some of the work perspectives for this research.

Bi-temporal change detection: Our method exploits patch-wise change detec-

tion, hence, no analysis at object level is performed. For this reason, the algorithm

might miss some changes within a closed change area or, on the contrary, detect

some false positive change pixels in an unchanged object. This can be mostly seen

in crops, as the growing vegetation is often non-homogeneous within the limits of

an agricultural parcel. The accuracy of bi-temporal change detection algorithm can

be improved by introducing a morphological analysis or by refining the detected

changes with object-based approaches, e.g. if only 10% of pixels of a detected object

are marked as changes, we can consider these pixels as FP changes.
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Despite the fact that some of the false positive changes are eliminated during

multi-temporal change modeling with graph-based methods, introducing object and

shape analysis at this step, can improve the overall performance of the proposed

framework, both for bi- and multi-temporal change detection algorithms.

Multi-temporal change interpretation and clustering: Our multi-temporal

change detection algorithm is based on the interpretation of non-trivial bi-temporal

changes in the multi-temporal context. The bi-temporal change detection method

aims to detect major seasonal trends presented in each couple of images, hence,

during the multi-temporal change interpretation, only the major seasonal trends are

detected. For this reason, some minor season trends are interpreted as non-trivial

changes in the multi-temporal context and more deep analysis is needed to isolate

these changes. In the future, some methods to detect minor seasonal vegetation

trends can be elaborated.

More robust change graph construction and interpretation methods can be pro-

posed. The graphs constructed with our method make the global description of the

detected change process without considering that it may potentially contain several

sub-processes.

Finally, a study to estimate an optimal number of clusters to regroup the detected

changes could result in facilitating clustering interpretation. However, finding the

optimal number of clusters is not specific to our method and is considered as one of

the most important unsolved problems of unsupervised algorithms.

SITS clustering: In the future works, our clustering algorithm can be adapted

to all spectral bands of Sentinel-2 images. The framework might be improved to

better distinguish linear objects, e.g. we can combine enrich feature descriptors with

some raw image values to overcome the border effect problem. Other spectral indices

can be also integrated in the proposed model, however, a closer study is needed to

estimate the influence of each index on the clustering results. Moreover, contextual

constraints may be introduced to distinguish more classes (e.g., artificial areas such

as beaches can be discriminated from urban areas as they are close to the water).

7.3 Long Term Perspectives and Limitations

The most interesting long term perspectives for this thesis would be to integrate

different constraints or even some labeled data in our algorithms.
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As it was mentioned multiple times before, unsupervised algorithms, especially

clustering, rarely give us the desired output.

The most negative factors that influence the accuracy of change detection algo-

rithms are the changes in image luminosity and the presence of defected pixels. While

some mild changes in luminosity are neglected by our change detection algorithms,

surfaces with high brilliance coefficient (roofs or some types of bare soil) are often

detected as changes. Unfortunately, for a general unsupervised change detection

approach, it seems impossible to model all luminosity changes, even with the best

algorithm.

For clustering algorithms, the biggest challenge still is to define the optimal

number of clusters and associating the obtained partitions to the desired real-life

classes. Most of the time, two or more clusters are associated to one real-life class

or on the contrary, one cluster contains two or more real-life classes. To solve this

problem, one-shot learning algorithms can be exploited [168]. This type of algorithms

presumes that for each researched class we have only one labeled sample which should

give its best and the most generalized description. One-shot learning techniques

may be successfully applied to our 3D SITS clustering, for example, to finetune a

pretrained unsupervised feature extraction model in order to obtain a supervised

classification model.

At the same time, for the clustering of detected multi-temporal changes it might

be a complicated task to guess all the types of changes present in a SITS and

even more complicated to find the best samples for the one-shot learning algorithm.

However, we believe that integration of some constraints may improve the results

of unsupervised change detection and clustering. For example, we can use different

spectral indices to roughly estimate types of some areas or/and even take into account

the acquisition dates of the images to make some assumptions of seasonal trends.

Moreover, the results of unsupervised algorithms are rarely stable. For our al-

gorithms, it was established that change detection results do not have important

variations between several runs, but at the same time, feature extraction and corre-

sponding clustering results may give different results at each run. To obtain more

stable results, we may integrate one shot-learning algorithm in our frameworks or

exploit some novel methods which could be used as a base for further researches not

only for SITS analysis, but for unsupervised learning in general.
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Appendix A

Datasets

In this work, several different image datasets were used to lead the experiments and

evaluate the results. All the datasets correspond to high resolution satellite time

series with 10 meters spatial resolution.

A.1 The SPOT-5 Montpellier dataset

SPOT-5 dataset was taken over the Montpellier area, France between 2002 and 2008

and belongs to the archive Spot World Heritage1. This particular dataset was chosen

due to its high ratio of agricultural lands and progressive construction of new areas.

We have filtered out the cloudy and flawed images from all the images acquired by

SPOT-5 mission over the considered geographic area and obtained 12 exploitable

images with irregular temporal resolution (minimum temporal distance between

two consecutive images is 2 months, maximum - 14 months, average - 6 months).

Distribution of dataset images is presented in Table A.1.

All SPOT-5 images provide green, red, NIR and SWIR bands with 10 meters

resolution. The pre-processing level of the dataset is 1C (orthorectified images,

reflectance at the top of atmosphere). For this reason, the SITS was radiometrically

normalized with the aim to obtain homogeneous and comparable spectral values over

each dataset. For the image normalization, we have used an algorithm introduced

in [123] that is based on histogram analysis of pixel distributions. The original images

are clipped to rectangular shapes of 1600×1700 pixels and transformed to UTM zone

31N: EPSG Projection. The clipped image extent corresponds respectively to the

following latitude and longitude in WGS-84 system:

1Available on https://theia.cnes.fr/
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– bottom left corner: 43°30′6.0444′′N , 3°47′30.066′′E

– top right corner: 43°39′22.4856′′N , 3°59′31.596′′E

Table A.1: Image acquisition dates for the Montpellier dataset.

Acquisition date, yyyy-mm-dd
1 2002-10-05 7 2006-02-18
2 2003-09-18 8 2006-06-03
3 2004-05-14 9 2007-02-01
4 2004-08-22 10 2007-04-06
5 2005-04-27 11 2008-06-21
6 2005-12-01 12 2008-08-21

A.2 The Sentinel-2 Montpellier dataset

Sentinel-2 dataset was taken between January 2017 and December 20182. After

deleting unexploitable images as well as the images that were less than 15 days

apart from previous images, we have obtained 24 images with more regular temporal

resolution (minimum temporal distance between two consecutive images is 15 days,

maximum - 2.5 months, average - 1 month). Distribution of dataset images is presented

in Table A.2.

Table A.2: Image acquisition dates for the Sentinel-2 dataset.

Acquisition date, yyyy-mm-dd
1 2017-01-03 7 2017-08-20 13 2017-12-19 19 2018-07-17
2 2017-03-14 8 2017-09-20 14 2018-01-23 20 2018-08-06
3 2017-04-03 9 2017-10-10 15 2018-02-12 21 2018-08-26
4 2017-04-23 10 2017-10-30 16 2018-02-27 22 2018-09-20
5 2017-06-12 11 2017-11-14 17 2018-04-18 23 2018-10-05
6 2017-07-12 12 2017-11-29 18 2018-06-27 24 2018-12-29

Sentinel-2 images provide multiple spectral bands of different spectrum and spatial

resolution, however, it was decided to keep only 10-meters resolution spectral bands -

blue, green, red, NIR. The pre-processing level of the dataset is 1C (orthorectified

2Available on https://earthexplorer.usgs.gov/
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images, reflectance at the top of atmosphere). For this reason, the SITS was radio-

metrically normalized with the aim to obtain homogeneous and comparable spectral

values over each dataset. For the image normalization, we have used an algorithm

introduced in [123] that is based on histogram analysis of pixel distributions.

The original images are clipped to rectangular shapes of 1600×1700 pixels and

transformed to UTM zone 31N: EPSG Projection. The clipped image extent corre-

sponds respectively to the following latitude and longitude in WGS-84 system:

– bottom left corner: 43°30′6.0444′′N , 3°47′30.066′′E

– top right corner: 43°39′22.4856′′N , 3°59′31.596′′E

A.3 The Sentinel-2 Rostov-on-Don dataset

Sentinel-2 dataset was taken over the city of Rostov-on-Don3 (the dataset called

later Rostov), Russia between 2015 and 2018. This dataset was chosen as the city of

Rostov-on-Don underwent the constructions coincided with FIFA world cup 2018

and equally because it has waste agricultural areas. We have filtered out cloudy,

snow-covered and flawed images from 2015 (beginning of the Sentinel-2 mission) till

the end of 2018 that gave us 26 images. We deleted 6 more images from the dataset as

the temporal distance between two consecutive images did not exceed 15 days which

resulted in 20 imagess. Distribution of dataset images is presented in Table A.3.

However, for the multi-temporal change detection, we have deleted the first three

images of the dataset because of the irregular temporal distance between them

(distance between 1st and 2nd image is around one month, 2nd and 3rd - 4 months,

3rd and 4th - 5 months). Finally, we for the multi-temporal change detection, we

have exploited 17 images taken from July 2016 to November 2018 with relatively

regular temporal resolution (images 4-20 in Table A.3). The average gap between

two consecutive images does not exceed 1.5 months, minimum - 20 days, maximum -

5 months (corresponds to winter with deleted snow-covered images).

Sentinel-2 provides multi-spectral images with different spatial resolution spectral

bands. It was decided to keep only 10 meter resolution green, red and NIR bands.

The blue band was not used as the information that it contains is little relevant for

change detection. The pre-processing level of the dataset is 1C (orthorectified images,

reflectance at the top of atmosphere). For this reason, the SITS was radiometrically

normalized with the aim to obtain homogeneous and comparable spectral values over

3Available on www.earthexplorer.usgs.gov
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Table A.3: Image acquisition dates for the Rostov dataset.

Acquisition date, yyyy-mm-dd
1 2015-08-30 11 2017-09-18
2 2015-09-19 12 2018-01-11
3 2016-02-16 13 2018-04-11
4 2016-07-15 14 2018-05-01
5 2016-08-04 15 2018-05-31
6 2016-09-13 16 2018-07-10
7 2016-11-22 17 2018-08-19
8 2017-05-01 18 2018-09-13
9 2017-06-30 19 2018-10-13
10 2017-08-09 20 2018-11-02

each dataset. For the image normalization, we have used an algorithm introduced

in [123] that is based on histogram analysis of pixel distributions.

The images were provided in WGS84/UTM zone 37N projection and clipped to

2200×2400 pixels areas. The clipped image extent corresponds respectively to the

following latitude and longitude in WGS-84 system:

– bottom left corner: 47°11′3.5664′′N , 39°34′3.2628′′E

– top right corner: 47°24′7.3332′′N , 39°51′41.328′′E
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Unsupervised Indices

Unsupervised evaluation criteria [169] are based on internal information from both

the data and the clusters. For instance, several of them are based on the distance

between the data and the cluster centroids. These indices have been introduced based

on the simplest principles of what defines a cluster:

1. Objects from a given cluster are supposed to be as close as possible from each

other.

2. Objects belonging to different clusters should be as far as possible.

To assess these intuitive criteria, most indices adopt a strategy that consists in

measuring the distance between each data elements and some object representing

the clusters (centroids, representative data elements, etc.). By doing so, it is quite

straightforward to evaluate the compactness and separability of the clusters.

However, with no clear definition of what a “good cluster” is, each unsupervised

index has its own way of computing the compactness and separability of the clusters

and to use these two values to compute a final quality criterion.

Some of these criteria can be used as objective functions. The goal of a clustering

algorithm would then be to find a solution that maximizes the said objective function.

Some criteria however are too costly to be used in an objective function and are

usually only computed when the clustering process is done.

Mean Squared Error (MSE) is one of the easiest way to evaluate the quality

of a result for clustering algorithms that use centroids. Given a clustering solution S
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with K clusters, it can be computed as shown:

MSEcl =
1∑K

i=1 |ci|

K∑
k=1

∑
x∈ck

d(x− µk)2 (B.1)

where d(·) is a distance function, |ci| is the number of elements linked to the cluster

ci and µk the centroid of a cluster ck. For a clustering result to be considered good,

the Mean Squared Error must be as low as possible.

Dunn Index (DI) [170] is another internal criterion defined as in Equation (B.2)

where D(ci, cj) is a distance metric between two clusters ci and cj, and ∆i is a

measure of scatter for a cluster ci. Any quality index using such a kind of ratio is

called a “Dunn-like index”.

A higher Dunn index indicates a better clustering.

DU =
mini 6=j D(ci, cj)

maxi∈[1..K] ∆i

(B.2)

One particularity of the Dunn Index is that the distances D(ci, cj) and ∆i can be

defined in many different ways:

– D(ci, cj) can be the smallest distance between two objects belonging to ci and

cj respectively, see Equation (2.2). In this case ∆i must be the largest distance

between two objects belonging to a cluster ci:

∆i = max
x,y∈ci

d(x, y) (B.3)

– D(ci, cj) can be the largest distance between two objects belonging to ci and

cj respectively, see Equation (2.3). This is quite uncommon and give rather

poor results. In this case ∆i must be the smallest distance between two objects

belonging to a cluster ci:

∆i = min
x,y∈ci

d(x, y) (B.4)

– D(ci, cj) can also be the distance between the centroids of ci and cj, see

Equation (2.5). Then ∆i usually is the largest distance between an object

belonging to ci and its centroid µi:

∆i =
1

|ci|
∑
x∈ci

(x− µi) (B.5)
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– Finally, D(ci, cj) can be the average distance between the data belonging to ci

and cj respectively, see Equation (2.4). Then ∆i usually is the mean distance

between all pairs of a cluster ci:

∆i =
1

|ci| · (|ci| − 1)

∑
x,y∈ci
x 6=y

d(x, y) (B.6)

Davies-Bouldin Index (DB) [47] is a possible alternative to the Dunn Index.

It assesses whether the clusters are compact and well separated. It is based on the

possible measure of separation D(ci, cj) and measure of scatter ∆i (B.5).

Given a clustering solution that contains K clusters, the Davies-Bouldin Index is

defined as shown in Equation (B.7).

DB =
1

K

K∑
i=1

max
j 6=i

∆i + ∆j

D(ci, cj)
(B.7)

The Davies-Bouldin index is not normalized and a lower value indicates a better

quality.

The most commonly used measure of separation and measure of scatter for the

Davies-Bouldin Index -as introduced in the original article [47]- are based on the

cluster mean values using Equations (2.5) and (B.5).

Silhouette Index (SC) [32] is yet another internal criterion that assesses the

compactness of the clusters and whether or not they are well separated. The main

difference between the Silhouette index and the Dunn index or the Davies-Bouldin

index is the following: the Silhouette Index can be computed for a given object x, a

given cluster ci, or for the whole clustering C.

For a data element, the Silhouette index is defined as shown in Equation (B.8)

where ax is the mean distance between the observed object x and all other objects

that belong to the same cluster that x, and bx is the mean distance between x and

all other objects that are not in the same cluster that x.

SC(x) =
bx − ax

max(ax, bx)
(B.8)

The Silhouette index takes values between −1 and 1. A positive value (ax < bx)

means that x is closer from the objects belonging to its clusters than from the objects

belonging to other clusters. Therefore a positive value close to 1 means that x is

C. GRECO 2011



146 B. Unsupervised Indices

probably in the right cluster, while a negative one means that x should be in another

cluster.

The Silhouette index for a given cluster ci is the mean value of the Silhouette

index computed on all the objects of this cluster:

SC(ci) =
1

|ci|
∑
x∈ci

SC(x) (B.9)

A Silhouette index that is positive and close to 1 means that the observed cluster

is both compact and well separated from the other clusters.

Finally, the Silhouette index can be computed on the whole partition as shown in

Equation (B.10). Once again, 1 is the best value meaning that the clusters are very

compact and well separated and −1 is the worst value. Usually, the Silhouette Index

must be positive for a clustering result to be considered acceptable.

SC(C) =
1

K

K∑
i=1

SC(ci) (B.10)

Before considering to use the Silhouette index, one must consider the high

computational cost of this index with large data sets: since it is not based on the

mean vectors, the Silhouette index requires to compute several time the pairwise

distances between all the data.

Wemmert-Gançarski Index (WG) [171] is another elegant way to assess the

quality of a clustering result based on the compactness and separability of the clusters.

For a cluster ci, it is computed as follows with j = argmink 6=i d(x, µk):

WG(ci) =

0 if 1
|ci|
∑

x∈ci
d(x,µi)
d(x,µj)

> 1

1− 1
|ci|
∑

x∈ci
d(x,µi)
d(x,µj)

otherwise
(B.11)

The Wemmert-Gançarski index takes its values between 0 and 1, 1 meaning

that the clusters are very compact and well separated. When applied to a complete

clustering result, it is defined as follows:

WG(C) =
1∑K

k=1 |ck|

K∑
i=1

|ci|WG(ci) (B.12)
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Appendix C

Feature Analysis in Remote

Sensing

In this thesis, we have presented some feature extraction methods based on unsuper-

vised neural networks. Below, we present some traditional feature and spectral index

extraction methods.

C.1 Haralick texture features

Haralick textural features are based on Gray Level Co-occurrence Matrix (GLCM).

GLCM is a square matrix that represents the distribution of co-occurring pixel

values (grayscale values, or colors) at a given offset. Let I be an images of size

H ×W with Ng distinct intensity values, then C is a GLCM square matrix of size

Ng ×Ng that is computed for a chosen distance d and angle θ. The GLCM matrix

is usually symmetrical and it can be computed for 4 different directions of θ which

are 0°, 45°, 90°, 135°. Each element C(i, j) represents the number of co-occurrences of

couples of pixels with values i and j with distance d at angle θ between them:

Cd,θ(i, j) =
W∑
x=1

H∑
y=1

1, if I(x, y) = i and I(x+ ∆x, x+ ∆y) = j.

0, otherwise.
(C.1)

where ∆x and ∆y are the offsets for distance d at angle θ. Figure C.1 presents the

values of ∆x and ∆y (in braces) for 4 different spatial directions and d = 1 which is

the most common value.

GLCM matrices are often built for 4 available directions, then each matrix is
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Figure C.1: 4 types of spatial relations between two pixels x (red) and j (yellow).

normalized by the total number of co-occurences in the image. Finally, the average

GLCM matrix is computed and used for the extraction of different textural features.

We present some of these features below. The exhaustive list is presented in the

original article [82].

Angular second moment - measures the uniformity (or orderliness) of the gray

level distribution of the image:

ASM =
∑
i

∑
j

p(i, j)2 (C.2)

where p(i, j) is a i, j entry in a normalized gray-tone spatial dependence matrix.

Contrast - represents the amount of local gray level variation in an image:

Contrast =

Ng−1∑
n=0

n2

Ng∑
i=1

Ng∑
j=1

p(i, j), |i− j| = n (C.3)

Homogeneity (inverse difference moment) - measures the smoothness of the

gray level distribution of the image, it is usually inversely correlated with contrast:

Homogeneity =
∑
i

∑
j

1

1 + (i− j)2
p(i, j) (C.4)

Entropy - measures the degree of disorder among pixels in the image:

Entropy = −
Ng∑
i=1

Ng∑
j=1

p(i, j) log[p(i, j)] (C.5)

C.2 Spectral indices

Different spectral indices are exploited in remote sensing applications. Spectral indices

are combinations of reflectance values from two or more spectral bands that indicate
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the relative abundance of the features of interest. The most popular indices are the

ones for vegetation, but many other indices are also available.

Here we present a non-excessive list of some of spectral indices:

Normalized Difference Vegetation Index (NDVI) [83]:

NDV I =
NIR−Red
NIR +Red

(C.6)

Normalized Difference Water Index (NDWI) [172]:

NDWI =
Green−NIR
Green+NIR

(C.7)

Visible and Shortwave Infrared Drought Index (VSDI) [173]:

V SDI = 1− [(SWIR−Blue) + (Red−Blue)] (C.8)

Normalized Difference Snow Index (NDSI):

NDWI =
Green− SWIR

Green+ SWIR
(C.9)

Normalized Burned Ratio Index (NBRI) [174]:

NBRI =
NIR− SWIR

NIR + SWIR
(C.10)

Soil Adjusted Vegetation Index (SAVI) [175]:

SAV I =
(NIR−Red)(1 + L)

NIR +Red+ L
(C.11)

where L is a canopy background adjustment factor. An L value of 0.5 in reflectance

space was found to minimize soil brightness variations and eliminate the need for

additional calibration for different soils.

These indices are successfully used for different remote sensing applications. While

for some algorithms the researchers exploit only the analysis of an extracted index

[135, 140, 155, 176], for others, the indices are combined with original image bands

or some other data [130, 142, 177].
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Appendix D

Résumé en Français

D.1 Contexte

Cette thèse portant sur l’analyse non-supervisé des séries temporelles d’images

satellites (STIS) a été dirigée par Maria Trocan (ISEP) et co-encadrée par Jérémie

Sublime (ISEP, Université Paris 13).

L’objectif principal de cette thèse est de développer un ensemble d’algorithmes

non-supervisés pour l’analyse générique de STIS. Ces algorithmes sont adaptés aux

séries d’images open source avec une haute résolution spatiale, comme Sentinel-2 et

SPOT-5. Comme les images satellites sont très hétérogènes, la création d’une base de

référence avec des données labellisées est impossible pour un algorithme générique

comme le nôtre. C’est pour cette raison que les algorithmes proposés ne demandent

aucunes données labellisées, de plus, ils n’exigent pas que la série ait une résolution

temporelle régulière (images acquises avec à peu près le même intervalle temporel)

ou contienne un grande nombre d’images (> 25) ce que rend nos approches encore

plus génériques.

Nos algorithmes exploitent les méthodes de machine learning et, notamment,

les réseaux de neurones afin de détecter les différentes entités spatio-temporelles et

leurs changements éventuels dans le temps. Dans cette thèse, nous distinguons trois

différents types de comportement temporel que nous visons à identifier :

– les zones sans changements - surtout représentées par les zones urbaines;

– les changements saisonniers (autrement dit, les changements triviaux) - la

végétation et les autres phénomènes ayant la récurrence saisonnière;

– les changements non triviaux - les changement permanents comme les construc-
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tions ou les démolitions, la rotation des cultures agricoles et la végétation qui

ne suit pas la tendance saisonnière pressente dans la zone d’études.

Pour identifier ces comportements temporels dans STIS, nous proposons deux

frameworks : un pour la détection et le clustering des changements non-triviaux et

un autre pour le clustering des zones “stables” de la série (changements saisonnières

et les zones sans changements). Ces frameworks exploitent des approches suivantes :

– Nous proposons une approche pour la détection et le clustering des changements

multi-temporels. Comme les STIS peuvent être courtes ou avoir une résolution

temporelle irrégulière, on ne peut pas établir les tendances saisonnières présentes

dans la série afin de trouver les comportements temporels inhabituels. Pour

résoudre ce problème, nous décomposons la tâche de détection des changements

multi-temporels en deux étapes :

1. La détection des changements bi-temporels pour chaque couple d’images

consécutives de la série. Cette méthode est basée sur les autoencodeurs

(AE) joints pour la transformation des features entre deux images. Con-

trairement aux approches existantes, notre algorithme détecte que les

changements non-triviaux et ignore les tendances saisonnières.

2. L’interprétation des changements bi-temporels dans le contexte multi-

temporel à l’aide des approches basées sur les graphes. Nous proposons

une nouvelle méthode qui permet de modéliser les changements qui durent

plusieurs étapes. Les changements sont d’abord présentés sous forme

des graphes d’évolution. Par la suite, nous faisons le clustering de ces

graphes pour identifier les différents types de changements dans le temps.

Nous proposons d’utiliser l’autoencodeur basé sur les réseaux de neurones

récurrents (recurrent neural networks ou RNN) au lieu de la méthode

classique basée sur dynamic time warping (DTW).

– Nous développons un algorithme basé objets pour le clustering de STIS pour

analyser le reste de la série afin de séparer les zones sans changements et

les changements saisonniers dans des clusters différents. Premièrement, nous

compressons la série en une image encodée avec l’AE convolutif 3D. La première

branche de cet AE extrait des features spatio-temporelles profondes des images

originelles, alors que la deuxième branche extrait des features spatio-temporelles

générales des images d’indice de végétation normalisé (NDVI) correspondantes.

Dans un deuxième temps, nous faisons la segmentation de toute la série qui
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se passe en deux étapes (la segmentation préliminaire et sa correction) et qui

est réalisée en utilisant à la fois les images initiales et l’image encodée. Cette

segmentation est unique pour toute la série et contient tous les objets présents

sur différentes images de la série. Finalement, on fait le clustering des segments

obtenus en utilisant leurs descripteurs encodés. Nous montrons que le rajout de

la branche NDVI améliore significativement les résultats de clustering, surtout

pour les zones végétales.

D.2 Résumé de la Thèse

D.2.1 Apprentissage Automatique

L’apprentissage automatique (ou machine learning en anglais) est un domaine de

recherche lié à l’informatique et aux mathématiques appliquées, dont l’objectif est de

permettre à une machine ou à un programme d’apprendre sans être explicitement

programmé pour cela. C’est donc une science qui consiste à construire des algorithmes

et des méthodes capables d’apprendre à partir de données avec divers objectifs tels que

pouvoir classer les données, identifier des structures dans les données, ou encore faire

des prédictions. L’apprentissage automatique est utilisé dans de nombreux domaines

scientifiques tels que la biologie et la médecine, les mathématiques, la finance et le

marketing, la physique, la chimie, et bien d’autres. On distingue généralement trois

types d’applications pour l’apprentissage automatique :

– L’apprentissage supervisé, où la machine apprend à partir d’exemples labellisés

dans le but de construire un modèle permettant de faire des prédictions ou de

classer des données non-labellisées.

– L’apprentissage non-supervisé, où les données sont fournies sans étiquettes.

La machine cherche alors à détecter des structures ou à faire des groupes

d’éléments similaires.

– L’apprentissage par renforcement, où une machine placée dans un environ-

nement dynamique va apprendre à effectuer une tâche donnée grâce à un

système de “récompenses et pénalités” basé sur ses actions.

Cette thèse s’intéresse à l’apprentissage non-supervisé et plus particulièrement au

clustering et à la détection de changements (des anomalies).
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Le clustering est une tâche d’apprentissage consistant à chercher à faire des

groupes d’objets similaires à partir de données sans étiquettes. Un cluster se définit

donc comme un groupe d’objets similaires au sein d’un jeu de données.

La détection des anomalies est un processus de l’identification d’éléments,

d’événements ou d’observations rares qui différent de la norme. La détection d’anomalies

est formulée comme le problème de classification binaire ou la première classe cor-

respond aux entités normales et la deuxième présente celles avec un comportement

anormal. Pour la détection des anomalies, on doit trouver un modèle qui décrit le

jeu de données étudié. Ensuite, on compare les entités de notre jeu de données à ce

modèle pour estimer le niveau de leur déviation de la norme.

Pour mieux comprendre et représenter la structure des données complexes afin

de réaliser le clustering ou la détection d’anomalies, il est indispensable de réaliser

l’extraction des caractéristiques (plus souvent appelé feature extraction).

Extraction de caractéristiques est une branche d’apprentissage non-supervisé

qui a pour le but de créer un nouvel ensemble de variables (features) à partir des

variables initiales. En imagerie, l’extraction de caractéristiques peut être réalisée au

niveau du pixel, de l’objet ou bien du voisinage de pixel (patch). Dans cette thèse,

nous faisons l’analyse au niveau des patchs, donc pour chaque pixel de l’image ou

de la séquence d’images on extrait un patch de la taille p× p qui sera par la suite

compressé en feature vector. Nous faisons l’extraction de features avec les réseaux de

neurones non-supervisés profonds - les autoencodeurs.

Les réseaux de neurones profonds sont composés de plusieurs couches et font

l’extraction de features à plusieurs niveaux. De plus, les réseaux de neurones peuvent

analyser différents types de données : des données vectorielles aux séquences d’images

multi-spectrales ou encore de des données vidéo. Dans l’imagerie classique, les

réseaux de neurones se composent habituellement de deux types de couches : couches

convolutives pour l’extraction de l’ensemble de features spatiales (feature maps) et

couches linéaires pour la compression de ces textures en feature vector. En outre, pour

analyser les séquences temporelles, dans cette thèse, nous utilisons des modèles de

réseaux de neurones récurrents (recurrent neural networks (RNN)). Ces modèles sont

construites dans la manières suivante : pour une séquence X = {x1, x2, ..., xn, ..., xS}
à chaque estampilles temporelle le réseau calcule l’état caché hn qui représente l’état

accumulé du réseau à temps Tn (Figure 3.9). Le dernier état caché hS est par la suite

utilisé pour caractériser le réseau.

Parmi différents réseaux de neurones, les autoencodeurs ont trouvé des applica-

tions dans des nombreux domaines. En traitement d’images, les AEs sont largement
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utilisés pour la segmentation [2, 89], la compression [90], la reconstruction d’images

[91], l’extraction de textures [92, 93] et le clustering [79, 94]

Malgré la variété des modèles présentés, seulement ceux ayant les mêmes données

d’entrée et de sortie sont considérés comme étant des AEs traditionnels, comme ceux

pour l’extraction de features et le clustering dans la Figure D.1.

Figure D.1: Exemple d’un AE classique avec le clustering appliqué aux données encodées.

La partie encodeur vise à trouver une représentation latente des données d’entrée,

alors que la partie de décodeur doit la reconstruire des données qui ressemblent le

plus possible aux données d’entrée. L’optimisation du modèle est réalisé de telle

manière que la différence entre la sortie de l’AE et les données d’entrée soit minimale,

mais en même temps le modèle doit être le plus générique possible pour éviter le

problème d’overfitting. Quand le modèle est stable, les données encodées sont utilisées

pour le clustering (Figure D.1) ou un autre type d’analyse.

D.3 Détection de Changements Bi-temporels

Le détection de changements est un sujet de recherche d’actualité. Comme les

changements peuvent être assez diversifiés il est difficile de créer une basé de données

de référence, surtout si le type de changements recherché n’est pas connu. Pour cela,

des nombreuses approches non-supervisées pour la détection de changements ont été

proposées.

Les premiers algorithmes exploitaient l’analyse d’image de différence qui est

calculée comme la différence absolue de valeurs de pixels de deux images . Cette
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image est par la suite clusterisée en utilisant les différentes méthodes qui permettent

d’isoler les zones de changements[110–112]. Des modèles basés sur les champs de

Markov ont été proposés pour affiner les résultats de détection de changement

avec l’analyse de voisinage [113, 114]. Malheureusement, ces approches donnent les

résultats bruités à cause de problèmes de luminosité et de décalage de pixels. Pour

cela des méthodes automatique pour sélectionner les pixels changés/pas changés ont

été exploitées [115, 116] pour utiliser les pixels sélectionnés pour l’entrâınement des

modèles supervisés.

Cependant, la relation entre les bandes spectrales de deux images est plus complexe

et les méthodes classiques ne peuvent pas la modéliser correctement. Les modèles

d’apprentissage profond ont montré une meilleure performance, parce qu’elles peu-

vent capter les dépendances non-linéaires [120]. De plus, les approches classique ne

différencient pas les changement saisonniers (triviaux) et le changements non-triviaux.

Dans cette thèse, nous proposons une approche pour la détection de changements

bi-temporels non-triviaux basée sur la transformation patch par patch de features

entre deux images avec des AEs joints. Le modèle va facilement apprendre comment

transformer les zones sans changements et les changements saisonniers de la première

image à la deuxième et vice versa. En même temps, comme les changements non-

triviaux sont moins nombreux et uniques les features seront transformées avec une

erreur importante. Le seuillage sur l’erreur de reconstruction nous permettra alors

d’identifier ces zones de changement.

Dans notre thèse, nous avons testé deux modèles d’AEs joints pour estimer leurs

points forts et faibles :

– fully-convolutional AEs (contiennent que des couches convolutives pour l’extraction

de feature maps (FMs));

– convolutional AEs (contiennent que des couches convolutives pour l’extraction

de FMs ainsi que les couches linéaires pour la compression de FMs).

Soient Im1, Im2, ...., ImS est une STIS de S images co-registrées acquises sur

dates T1, T2, ..., TS. Le framework est composé de plusieurs étapes (Figure 4.1).

L’étape de preprocessing consiste en la normalisation radiométrique de toute

la série.

Le première étape consiste en un pre-entrâınement du modèle d’AE sur toute

la série. Pour cela, on extrait des patchs de la taille p × p pour chaque pixel i, j

de chaque image de la série et on échantillonne H×W
S

patchs de chaque image pour

pre-entrâıner le modèle.
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Pendant la deuxième étape, nous faisons le fine-tuning du modèle pour chaque

couple d’images consécutives Imn et Imn+1 séparément. Le modèle est composé de

deux AEs qui sont initialisés avec les poids de l’AE pre-entrâıné. AE1 et AE2 visent

à reconstruire Im′n+1 à partir de Imn et Im′n de Imn+1 respectivement. Les deux AEs

sont joints au milieu. Le modèle est optimisé pour minimiser la différence entre les

images reconstruites Im′n+1 et Im′n et les images originelles Imn+1 et Imn ainsi que

la différence entre les sorties des parties encodeur de deux AEs.

Quand le modèle est stable nous faisons la reconstruction des images. Pour

chaque patch, nous calculons son erreur de reconstruction. Nous utilisons l’erreur

quadratique moyenne pour créer deux images REn+1 et REn ou chaque pixel i, j est

égal à l’erreur de reconstruction du patch i, j.

Nous calculons la moyenne de deux images REn+1 et REn et nous appliquons

le seuillage automatique d’Otsu pour produire la carte de changements

CMn,n+1 où les pixels changés sont présentés par des zones avec une erreur de

reconstruction élevée.

Lors des expériences, il a été défini que nos modèles produisent des résultats plus

robustes que les modèles concurrentes basés sur Restricted Boltzmann Machines

(RBM) [120] qui peuvent également détecter des changements non-triviaux. Notre

méthode est moins sensible aux bruits liés à la luminosité et intuitive à implémenter.

Parmi deux modèles testés, nous avons estimé que le modèle convolutif donne des

résultats plus robuste comparativement au modèle fully-convolutional pour la taille

de patch p = 5. Parmi les points faibles de cet algorithme, nous avons déterminés

qu’il ne détecte pas bien les changements dans les objets linéaires fines, parce que

leur taille est inférieure à la taille du patch.

D.4 Détection de Changements Multi-Temporels

La plupart des algorithmes pour la détection de changements multi-temporels sont

basés sur l’estimation des tendances saisonnières afin de trouver le comportement

atypique [128, 139, 140]. Pour faire cela, la STIS doit être longue (au moins 25 images)

et avoir une distribution temporelle régulière ce que peut être parfois inatteignable,

surtout pour les séries avec une haute ou très haute résolution spatiale. De plus,

dans la plupart de méthodes, on distingues les images archives - pour l’estimation de

tendances saisonnières - et les images dans lesquelles nous cherchons les changements

ce que ne nous permet pas d’exploiter toutes la série pour l’analyse des changements.
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Dans cette thèse, nous proposons un framework pour la détection et modélisation

des changements multi-temporels avec des approches basées graphes et leur clustering

éventuel. Notre méthode ne dépend pas de nombre d’images et est invariante à la

résolution temporelle ce que nous permet de détecter des changements à partir de la

deuxième image de la série.

Dans la section précédente, nous avons présenté une méthode pour la détection

des changements bi-temporels qui peuvent être interprétés comme les anomalies

contextuelles et dépendent que du contexte saisonnier entre deux images. Dans cette

section, nous présentons une approche pour l’interprétation de ces changements dans

le contexte multi-temporel. Le framework contiennent les étapes suivantes pour une

série de la longueur S mentionnée dans la section précédente.

Premièrement, nous faisons la détection de changements bi-temporels pour

chaque couple d’images Imn et Imn+1, ainsi que pour chaque couple d’images Imn−1

et Imn+1.

Ensuite, nous faisons l’interprétation des changements dans le contexte

multi-temporel. La carte de changements CMn,n+1 est gardée comme référence.

Pour chaque objet changé Pi, nous cherchons s’il a une intersection spatiale avec

d’autres objets changés sur les autres cartes de changements pour les images consécu-

tives ou avec les objets dans CMn−1,n+1. Suivant les règles logiques, nous déterminons

si Pi est un changement non-trivial, une anomalie qui a eu lieu une seule fois ou,

enfin, un changement faux positif.

Nous isolons les zones changées sur les images en appliquant les masques des

changements à la STIS. Nous faisons la segmentation des changements non-triviaux

détectés avec une méthode de segmentation basée sur les graphes [147].

Les objets changés qui correspondent à la même position géographique dans

le temps forment ensuite des graphes d’évolution [142, 143] pour visualiser les

changements multi-temporels. L’idée principale des graphes d’évolution est la suivante

: parmi les segments détectés sur toutes les estampilles temporelles, nous cherchons

les bounding boxes (BBs) - les objets qui assurent la meilleure couverture de la série

sur le plan 2D (le BB doit avoir le minimum des chevauchement avec d’autres BBs).

Ensuite, pour chaque BB, les objets couverts par l’empreinte de ce BB aux autres

estampilles temporelles forment une graphe d’évolution en respectant les différents

paramètres de chevauchement entre les objets définis pas l’utilisateur (Figure 5.6).

Un graphe d’évolution peur contenir plusieurs objets à une estampille temporelle,

donc on calcule sa présentation synthétisée - un synopsis - qui présente une séquence

de la même longueur que la durée de changement et avec le même nombre de features
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que le nombre de bandes dans les images. Pour un synopsis Q, son élément à

l’estampille Tn est calculé comme suit :

Qn =

∑r
1 Pix(On

j ) · vj∑r
1 Pix(On

j )
(D.1)

où Pix(On
j ) est la taille de j− re objet à l’estampille Tn (j ∈ [1, r] où r est le nombre

total d’objets présents dans la graphe d’évolution correspondante à Tn) et vj la

moyenne de valeurs de pixels de cet objet. Ici, pour calculer le synopsis, nous utilisons

les valeurs encodées des images au lieu des pixels bruts. L’encodage est fait avec un

AE convolutif au niveau des patchs.

Finalement, nous utilisons l’AE gated recurrent unit (GRU) combiné avec le clus-

tering hiérarchique agglomératif (HCA) pour regrouper les graphes obtenus

selon leur type de changement. GRU [99] est une variante améliorée des mod-

èles récurrents RNN qui permet de mieux conserver les relations des dépendances

long-terme dans la séquence. L’AE GRU nous permet d’obtenir la représentation

encodée de chaque graphe qui est ensuite passée au clustering hiérarchique [49].

Notre approche de clustering a été testée sur deux jeux de données (1/Montpellier,

France - 12 images SPOT-5 acquises entre 2002 à 2008 et 2/Rostov-sur-Don, Russie -

17 images Sentinel-2 acquises entre 2016 et 2018) et a montré la meilleure performance

comparativement aux approches concurrentes. Nous avons défini que l’utilisation

des valeurs encodés pour le synopsis donne des résultats de clustering plus robustes

comparativement à l’exploitation des valeurs bruts. De plus, notre approche à été

comparée au clustering basé sur la matrice de distance dynamic time warping (DTW)

qui calcule la distances entre les séquences en trouvant l’alignement optimal entre

elles. Notre approche a montré de meilleurs résultats et la meilleure généralisation.

D.5 Clustering de Série Temporelle d’Images

Satellitaires

Dans la section précédente, nous avons proposé un algorithme pour la détection des

changement dans le STIS. Pour réaliser une analyse complète d’une zone d’étude,

dans cette section, nous présentons le clustering des zones sans changements et des

changements saisonniers.

Pour mieux identifier les différents types de végétation ayant des variations

saisonnières, il est indispensable de connaitre leur comportement temporel. Les
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premières approches de clustering de STIS ont été basées sur l’analyse basée pixel où

tous les pixels de la série avec la même position géographique formaient les séquences

qui ont été par la suite comparées avec la matrice DTW et clusterisées [154, 155].

Cependant, les approches basées pixel sont souvent lentes et donnent des résultats

de clustering bruités. Pour résoudre ce problème, les algorithmes qui exploitent les

approches basées objets ont été proposés [156–158]. Le problème principal est que

la segmentation de la série est une tache compliquée, puisque les formes d’objets

peuvent avoir des variations importantes d’une image à l’autre. Pour cette raison,

la segmentation est souvent faite sur 2-3 images ou même sur toutes les images de

la série concaténées. Cela résulte en de nombreux objets qui ne sont pas identifiés.

Dans [142], les auteurs proposent de représenter les objets de STIS sous forme des

graphes d’évolution (voir la Section D.4) et les clusteriser avec le HCA combiné avec

la matrice DTW. Cette approche a donné des résultats prometteurs pour les zones

naturelles. Malheureusement, la construction des graphes pour les zones urbaines

peut être compliquée, car la zone de la ville est très hétérogène et il est impossible

d’obtenir des segments qui sont invariants d’une image à l’autre.

Dans cette thèse, nous proposons une approche qui convient pour l’analyse des

zones purement agricoles, ainsi que pour les zones mixtes. Notre approche est basée

sur la compression de STIS avec un AE 3D convolutif. La série est compressée en

une image unique que nous utilisons pour toute analyse. Les étapes de clustering de

la série sont décrits ci-dessous.

Comme dans les approches précédentes, la série est d’abord radiométriquement

normalisée.

Figure D.2: AE multi-vue double branche.

Par la suite, la STIS est encodée en utilisant un AE 3D multi-vue double

branche. La première branche est utilisée pour l’extraction des features spatio-

temporelles profondes de la pile d’images initiales, la deuxième branche fait l’extraction

des textures générales de la pile d’images NDVI. Notre modèle exploite des couches

convolutives 3D pour l’analyse de données spatio-temporelles. Comme dans la Sec-

tion D.3, nous faisons l’analyse au niveau des patchs qui sont extraits pour chaque
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pixel i, j et contiennent toutes les images de la série (p = 9 et p = 5 pour les images

originelles et NDVI respectivement). La taille des patchs est alors S × C × p× p où

C est le nombre des canaux de l’image. La série encodée sera représentée sous la

forme d’une image avec les mêmes largeur et hauteur que les images initiales et le

nombre de canaux choisi par l’utilisateur.

Après nous passons à l’étape de la segmentation. Premièrement, nous faisons la

segmentation préliminaire sur les deux images les plus représentatives de la série.

Les images choisies doivent être les plus différentes possible pour capter le maximum

d’objets. Ces images doivent être les plus éloignées l’une de l’autre dans le temps et

correspondre à des saisons différentes. Nous utilisons l’algorithme de segmentation

MeanShift [166] qui est l’un de les plus utilisé aujourd’hui pour la segmentation

classique d’images satellites. Malheureusement, cette approche de segmentation ne

nous permet pas de représenter tous les objets de la série, surtout s’il y avait des

changements importants. Pour résoudre ce problème, nous faisons la correction de

la segmentation en utilisant l’image de la série encodée. Comme l’encodage a été

fait au niveau des patchs, certains pixels de l’image encodée ont l’effet de bordure.

Cet effet est lié au fait que certains patchs couvrent des objets différents, donc les

pixels encodés correspondants contiennent les features mixtes. Pour cette raison,

la segmentation de l’image encodée aura des objets avec les bordures déplacées ou

même les objets parasites. Nous combinons les résultats de deux segmentations en

rajoutant dans la segmentation préliminaire les objets manquants de la segmentation

de l’image encodée en conservant les bordures correctes. Cela nous permettra de

représenter un maximum d’objets de la série.

Finalement, pour chaque segment, on extrait sa valeur médiane encodée afin

de clusteriser la série. Nous utilisons le clustering hiérarchique comme dans la

méthode d’analyse des changements multi-temporels.

Notre méthode a été testée sur deux séries temporelles de l’agglomération de

Montpellier (1/ 12 images SPOT-5 acquises entre 2002 à 2008 et 2/ 24 images

Sentinel-2 acquises entre 2017 et 2018) et atteint de meilleurs résultats par rapport aux

methodes concurrentes basées objets et basées graphes mentionnées plus haut. Nous

avons également prouvé que la branche NDVI peut améliorer résolument les résultats

du clustering. De plus, nous avons montré que la correction de la segmentation

préliminaire donne une carte de segmentation plus précise. Malheureusement, certain

objets linéaires ne sont pas correctement clusterisés ce que peut être expliqué par le

fait qu’ils sont moins larges que les patchs extraits.
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D.6 Résumé des Contributions Scientifiques et

Perspectives

Dans la cadre de cette thèse, nous avons développé un ensemble d’algorithmes pour

l’analyse de STIS non-supervisé qui exploite des techniques d’apprentissage profonde.

Ci-dessous, nous synthétisons les contributions de notre travail et proposons des

pistes pour la recherche future.

D.6.1 Contributions de la Thèse

Dans cette thèse, nous avons proposé un ensemble de méthodes qui vise à identifier

trois types de comportements temporels présents dans la STIS : les zones sans change-

ment, changements saisonniers et les changements non-triviaux. Les contributions de

cette thèse peuvent être divisées en trois parties différentes.

Dans la première partie (Chapitre 4), nous avons proposé un algorithme non-

supervisé pour la détection des changements bi-temporels non-triviaux dans les

images satellites. Nous avons exploité un modèle des réseaux de neurones basé sur les

AEs joints pour la transformation des features pour détecter des changements entre

deux images consécutives d’une série. Contrairement aux algorithmes traditionnels

pour la détection des changements qui détectent “tout qui change”, notre algorithme

détecte seulement des changements non-triviaux et ignore les tendances saisonnières.

Dans la deuxième partie (Chapitre 5), nous avons développé un algorithme qui

interprète les changements bi-temporels détectés dans le contexte multi-temporel.

Nous avons proposé une méthode pour modéliser le phénomène des changements

spatio-temporels en forme de graphes d’évolution. Ensuite, pour clustériser ces

graphes de changements, nous avons élaboré un modèle basé sur l’extraction des

features avec l’autoencodeur GRU. De plus, l’approche proposée ne dépend pas de la

résolution temporelle de la série et ne demande pas qu’elle soit longue pour détecter

les différentes tendances saisonnières.

Dans la troisième partie (Chapitre 6), nous avons introduit une approche basée

objets pour le clustering de STIS qui exploite l’AE conventionnel 3D pour l’extraction

des features spatio-temporels pour identifier les différents clusters avec les zones

sans changements et les changements saisonniers. Nous avons proposé un AE 3D

multi-vue double branche qui extrait des features plus robustes comparativement

à l’AE convolutionnel 3D classique. En outre, nous avons développé une méthode

pour créer la segmentation unique pour toute la série temporelle. Finalement, nous
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avons réalisé le clustering basé objets complet de STIS en exploitant les propriétés

spatio-temporels de segments détectés.

D.6.2 Perspectives

Perspectives à Court Termes

Les méthodes présentées dans cette thèse ont montré leur efficacité sur les jeux de

données expérimentales. Cependant, en raison de l’absence de données de référence, les

méthodes non-supervisées ne produisent pas toujours les résultats attendus. Certaines

techniques peuvent être intégrées dans notre analyse de STIS afin d’améliorer sa

qualité. Dans cette partie, nous proposons de résumer certain perspectives pour notre

recherche.

Détection de changements bi-temporels : Notre méthode exploite la détection

de changements patch par patch, donc aucune analyse au niveau des objets n’a pas

été réalisée. Pour cette raison, l’algorithme peut rater certains pixels changés dans

les limites d’un objet ou, au contraire, détecter quelques pixels de changements

faux positifs dans un objet qui n’a pas changé. On peut améliorer les résultats de

l’algorithme en introduisant l’analyse morphologique ou en affinant les changements

détectés avec les approches basées objet.

Détection de changements multi-temporels : Notre algorithme pour la détec-

tion de changements multi-temporels est basé sur l’interprétation des changements

bi-temporels dans le contexte multi-temporel. Pour cette raison, il détecte seulement

les tendances saisonnières majeures des STIS et marque les changements saisonniers

mineurs comme des changements non-triviaux. Pour résoudre ce problème, nous pro-

posons d’analyser les changements non-triviaux détectés ensemble avec les résultats

de clustering de STIS (voir la Section D.5). Dans les recherches futures, des méthodes

pour détecter des tendances mineures peuvent être proposées.

De plus, l’interprétation des graphes pourrait être améliorée : notre algorithme

fait la description globale des changements détectés sans identifier les sous-processus

présents ce que pourrait nous donner de l’information supplémentaire.

Clustering de STIS : Notre algorithme pourrait être adapté à toutes les bandes

spectrales des images Sentinel-2. D’autres indices spectrales pourraient être intégrées

après une estimation de leur influence sur les résultats. De plus, le framework

C. GRECO 2011
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proposé pourrait être amélioré pour la détection et le clustering des objets linéaires.

Par exemple, on pourrait combiner les descripteurs de features encodées avec les

valeurs brutes pour surmonter le problème d’effet de bordure. Finalement, l’analyse

contextuelle pourrait être intégrée pour distinguer plus de clusters (par exemple, si

une zone artificielle est à côte de surface en eau, on présume que c’est une plage,

donc le cluster est différent de la zone urbaine).

Perspectives à Long Termes et Limitations

Les perspectives à long termes les plus intéressantes seront d’intégrer les différentes

contraintes ou même quelques données labellisées dans nos algorithmes. Comme nous

avons mentionné ci-dessus, les algorithmes non-supervisés et surtout le clustering

produisent rarement le résultat attendu (les clusters obtenus ne peuvent pas être

directement associés aux classes réelles, par exemple, une classe peut être représentée

par plusieurs clusters). Pour améliorer le résultat, l’algorithme du one-shot learn-

ing [168] pourrait être ajouté dans notre framework. L’idée de cet algorithme est la

suivante : pour chaque classe nous avons une seule entité étiquetée qui doit faire sa

meilleure représentation. Ces entités sont ensuite utilisées pour entrâıner un modèle

de classification (ou faire son fine-tuning). Cela pourrait significativement améliorer

les résultats de clustering de STIS. Toutefois, cet algorithme ne pourrait pas être

utilisé pour le clustering des graphes de changements multi-temporels, car les change-

ments détectés sont souvent très variés et il est impossible de connaitre en avance

tous les types de changements.

Dans cette thèse, nous faisons le clustering pour le différent nombre de clusters

afin de choisir le meilleure résultat. Le nombre optimal de clusters est une question

ouverte et peu étudiée. Une étude pour la validation automatique du nombre optimal

de clusters pourrait être ajouté à la méthode de clustering des changements multi-

temporels pour minimiser l’interaction avec l’utilisateur.

Finalement, nous croyons que les différentes contraintes pourraient améliorer

le clustering de changements. Par exemple, on pourrait prendre en compte les

dates d’acquisition des images ou les différentes indices spectrales pour estimer

approximativement le type d’objet changé.
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[23] Élisa Fromont, René Quiniou, and Marie-Odile Cordier, “Learning Rules from

Multisource Data for Cardiac Monitoring,” pp. 484–493, 2005.

[24] Daoqiang Zhang, Yaping Wang, Luping Zhou, Hong Yuan, and Dinggang

Shen, “Multimodal classification of Alzheimer’s disease and mild cognitive

impairment,” NeuroImage, vol. 55, no. 3, pp. 856–867, 2011. 2.1

[25] Weizhong Zhang, Lijun Zhang, Yao Hu, Rong Jin, Deng Cai, and Xiaofei He,

“Sparse Learning for Stochastic Composite Optimization,” in Proceedings of the

28th AAAI Conference on Artificial Intelligence (AAAI), 2014, pp. 893–899.

2.1

[26] Indranil Bose and Radha K. Mahapatra, “Business data mining - a machine

learning perspective,” Information & Management, vol. 39, no. 3, pp. 211–225,

2001. 2.1

[27] Q. Yu, A. Sorjamaa, Y. Miche, and E. Severin, “A methodology for time

series prediction in Finance,” in ESTSP, European Symposium on Time Series

Prediction, Amaury Lendasse, Ed., Porvoo, Finland, September 17-19 2008, pp.

285–293, Multiprint Oy / Otamedia , Espoo, Finland.

[28] Victor Boyarshinov, Machine Learning in Computational Finance, Ph.D. thesis,

Rensselaer Polytechnic Institute, Troy, NY, USA, 2005, AAI3173253. 2.1

[29] NICHOLAS M. BALL and ROBERT J. BRUNNER, “Data Mining and Machine

Learning in Astronomy,” International Journal of Modern Physics D, vol. 19,

no. 07, pp. 1049–1106, 2010. 2.1
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Temporal Heterogeneity Measures from Dense High Spatial Resolution Satellite

Image Time Series: Application to Grassland Species Diversity Estimation,”

Remote Sensing, vol. 9, no. 10, 2017. 5.1

[127] Xiao-Peng Song, Chengquan Huang, Joseph O. Sexton, Saurabh Channan, and

John R. Townshend, “Annual Detection of Forest Cover Loss Using Time Series

Satellite Measurements of Percent Tree Cover,” Remote Sensing, vol. 6, no. 9,

pp. 8878–8903, 2014. 5.1, 6.1
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