
HAL Id: tel-03032942
https://theses.hal.science/tel-03032942v1

Submitted on 1 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development and verification of arbitrary-precision
integer arithmetic libraries

Raphaël Rieu

To cite this version:
Raphaël Rieu. Development and verification of arbitrary-precision integer arithmetic libraries. Com-
puter Arithmetic. Université Paris-Saclay, 2020. English. �NNT : 2020UPASG023�. �tel-03032942�

https://theses.hal.science/tel-03032942v1
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N

N
T:

2
0
2
0
U

PA
S
G

0
2
3

Development and verification of
arbitrary-precision integer

arithmetic libraries

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 580 Sciences et technologies de
l’information et de la communication (STIC)

Spécialité de doctorat: Informatique
Unité de recherche: Université Paris-Saclay, Inria, Inria

Saclay-Île-de-France, 91120, Palaiseau, France
Référent: Faculté des sciences d’Orsay

Thèse présentée et soutenue à Orsay,
le 3 novembre 2020, par

Raphaël RIEU

Composition du jury :

Catherine Dubois Présidente
Professeure, ENSIIE
Karthikeyan Bhargavan Rapporteur & examinateur
Directeur de recherche, Inria
Paul Zimmermann Rapporteur & examinateur
Directeur de recherche, Inria
Patricia Bouyer Examinatrice
Directrice de recherche, CNRS
Xavier Leroy Examinateur
Professeur, Collège de France
Micaela Mayero Examinatrice
Maîtresse de conférences, Université Paris-Nord

Guillaume Melquiond Directeur de thèse
Chargé de recherche, Inria
Pascal Cuoq Coencadrant
Directeur scientifique, TrustInSoft

Acknowledgments

My most grateful thanks go to Guillaume and Pascal, who supervised this
work. They provided me with the ideal mix of guidance, challenge and free-
dom throughout these four years of academic and personal growth.

I would also like to thank Karthikeyan Bhargavan and Paul Zimmermann,
who reviewed this document and whose remarks greatly enriched it. I also
thank Patricia Bouyer, Catherine Dubois, Xavier Leroy, and Micaela Mayero
for taking part in the jury.

Finally, I would like to thank the long list of people who supported me during
the realization of this work: my colleagues at TrustInSoft, past and present
members of the VALS team, my friends and family, and of course Diane.

1

Contents

Acknowledgments 1

Contents 3

List of Figures 7

Synthèse (en français) 9

1 Introduction 21

2 Why3 basics 29
2.1 The WhyML programming language 29

2.1.1 Basic syntax . 29
2.1.2 Mutability . 30
2.1.3 Data types . 31

2.2 Logic and specifications . 32
2.3 Computing the verification conditions 39

2.3.1 Weakest precondition calculus 39
2.3.2 Aliasing . 41

2.4 Why3 in practice . 43

3 Verifying C programs with Why3 45
3.1 Modeling C types . 45

3.1.1 Integer types . 47
3.1.2 Characters, strings . 49

3.2 Example: Contiki’s ring buffer library 51
3.2.1 C code overview . 51
3.2.2 Contiki’s ring buffer, in WhyML 52

3.3 Memory model . 59
3.3.1 An explicit memory model 59
3.3.2 A block-based memory model 61
3.3.3 Finer-grained aliases: splitting pointers 65
3.3.4 Finer-grained aliases: aliasing separate pointers 68
3.3.5 Error handling . 71

3.4 Extraction . 73
3.4.1 Why3 extraction basics 73
3.4.2 Design choices, supported WhyML fragment 74
3.4.3 Basic constructs . 75
3.4.4 Extraction drivers . 78

3

4 CONTENTS

3.4.5 Control structures . 81
3.4.6 Tuples . 82
3.4.7 Mutable structures . 82
3.4.8 Arrays . 84
3.4.9 Extracting a multi-file library 85
3.4.10 Making extracted code readable 86
3.4.11 Contiki’s ring buffer, extracted back to C 89

3.5 State of the art, conclusion . 91
3.5.1 Related work . 91
3.5.2 Memory model evaluation 93
3.5.3 Correctness, trusted code base 94

4 WhyMP 97
4.1 Modeling GMP inside Why3 . 98

4.1.1 Integer representation . 98
4.1.2 Example GMP function: mpn_copyd 99

4.2 Schoolbook algorithms . 101
4.2.1 Comparison . 101
4.2.2 Addition, subtraction . 102
4.2.3 Schoolbook multiplication 104
4.2.4 Division . 106

4.3 Modular exponentiation . 114
4.3.1 Computations in Montgomery form 115
4.3.2 Auxiliary function: limb inversion modulo β 118
4.3.3 Auxiliary functions: bit-level computations 119
4.3.4 The main algorithm . 121
4.3.5 Side-channel resistance . 125

4.4 Toom-Cook multiplication . 126
4.4.1 Toom-2 . 126
4.4.2 Toom-2.5 . 133
4.4.3 General case . 140

4.5 Divide-and-conquer square root 142
4.5.1 Square root, n = 1: a fixed-point algorithm 142
4.5.2 Square root, n = 2 . 149
4.5.3 Square root, general case 151
4.5.4 Square root, normalizing wrapper 151

4.6 The mpz layer . 154
4.6.1 Model . 155
4.6.2 A simple function and a GMP bug report 162
4.6.3 Aliasing-related combinatorics 164
4.6.4 Aliasing restrictions solved by extra mpz variables 164

4.7 Input/output, string functions . 169
4.7.1 Notations . 170
4.7.2 From base b to base β . 170
4.7.3 From base β to base b . 174
4.7.4 ASCII conversions . 181
4.7.5 Base conversions in mpz 184

4.8 Comparing WhyMP and GMP 187
4.8.1 Compatibility, code changes 187
4.8.2 Benchmarking . 189

CONTENTS 5

4.9 Evaluation, perspectives . 193
4.9.1 Proof effort and lessons learned 193
4.9.2 Related work . 194
4.9.3 WhyMP . 197

5 Proofs by reflection 199
5.1 Introducing reflection in Why3 200

5.1.1 An example: Strassen’s matrix multiplication 201
5.1.2 Reification . 203
5.1.3 Effectful decision procedures 206
5.1.4 Soundness, trusted code base 208

5.2 Proofs by reflection in WhyMP 208
5.2.1 Motivating example: an easy yet tedious proof 209
5.2.2 Coefficients . 210
5.2.3 Modular decision procedures 211

5.3 Evaluation, perspectives . 211
5.3.1 Related work . 212
5.3.2 WhyMP and proofs by reflection 213
5.3.3 Perspectives . 214

6 Conclusion 215
6.1 Contributions . 215
6.2 Challenges and roadblocks . 216
6.3 Future work . 219

Bibliography 221

List of Figures

2.1 Some Hoare triple inference rules. 39
2.2 Ancient Egyptian multiplication. 40
2.3 Some WP rules. 40
2.4 Simplified WP rule for while. 40
2.5 Simplified WP rule for function calls. 41
2.6 An ill-typed WhyML program. 42
2.7 Why3’s graphical interface. 43

3.1 Bounded integers in Why3. 48
3.2 Unsigned multiplication primitives. 49
3.3 Why3’s char type. 49
3.4 unsigned char in Why3. 50
3.5 Ring buffer definition. 51
3.6 Ring buffer initialization. 52
3.7 Ring buffer utility functions. 52
3.8 Ring buffer write and read. 53
3.9 The uint8 type and its arithmetic operations. 54
3.10 Ill-typed program that splits buffers. 65
3.11 Memory model, with buffer splitting. 66
3.12 Aliasing separated pointers. 70
3.13 Extraction of a WhyML program involving tuples. 83
3.14 Unboxing WhyML references. 83
3.15 Extraction of WhyML records. 84
3.16 Definition of 32-bit arrays . 85
3.17 Source files of a simple library . 86
3.18 Extracted code for our simple library. 87
3.19 Extraction of Contiki’s ring buffer: a side-by-side comparison. . . 90

4.1 GMP’s copy function and its WhyML transcription. 100
4.2 Extracted code for wmpn_copyd. 101
4.3 Square root of a 64-bit integer. 143
4.4 WhyML square root up to the assertion on the first Newton it-

eration. 147
4.5 Global store mpz model. 157
4.6 Setter functions. 158
4.7 The wmpz_realloc function. 160
4.8 A buggy comparison function. 163
4.9 Addition of an mpz integer and a machine integer. 165

7

8 LIST OF FIGURES

4.10 Division of relative numbers, in WhyML. 167
4.11 Converting back and forth between ASCII characters and digits. 182
4.12 Conversion from string to mpz number. 185
4.13 Conversion from mpz number to string. 186
4.14 Timings for multiplication. 190
4.15 Timings for square root. 191
4.16 Timing for Miller-Rabin. 191
4.17 Proof effort in lines of code per WhyMP function. 194

5.1 Interpreting the abstract syntax tree of a polynomial. 202
5.2 Converting a polynomial to a list of monomials. 202
5.3 Decision procedure for linear equation systems. 207
5.4 WhyML proof of the long addition function. 209
5.5 Definition of the coefficients. 210
5.6 Composition of decision procedures. 211

Synthèse

Cette thèse traite de la vérification déductive de programmes d’arithmétique en-
tière en précision arbitraire. Cette arithmétique est utilisée dans des contextes
où les performances et la correction des algorithmes sont critiques, comme la
cryptographie ou les logiciels de calcul formel. Notre cas d’étude est GMP, une
bibliothèque d’arithmétique en précision arbitraire très utilisée. Elle propose des
algorithmes de pointe écrits en C et en assembleur qui sont très complexes, et
optimisés parfois au détriment de la clarté du code. De plus, certaines branches
du code sont visitées avec une probabilité très faible (telle que 1/264 en sup-
posant des entrées uniformément réparties), ce qui rend difficile la validation du
code par des tests. La vérification formelle de GMP est donc un objectif à la
fois désirable et difficile.

Notre outil pour cette vérification est la plateforme de vérification déduc-
tive Why3. Why3 fournit un langage de programmation et spécification appelé
WhyML. C’est un langage fonctionnel apparenté à OCaml. À partir d’un pro-
gramme WhyML et de sa spécification, Why3 génère un ensemble de formules
logiques appelées obligations de preuve, dont la validité implique que le pro-
gramme satisfait sa spécification. Afin de valider les obligations de preuve,
Why3 s’interface avec un grand nombre de prouveurs externes qui peuvent être
des solveurs SMT (comme Alt-Ergo ou Z3) ou encore des assistants de preuve
tels que Coq ou Isabelle.

Les programmes que Why3 permet de vérifier sont écrits en WhyML mais la
bibliothèque GMP est écrite en C. La première contribution de cette thèse est
un ensemble d’additions que j’ai faites à Why3 pour permettre la vérification de
programmes C. J’ai développé enWhyML un modèle du langage C qui inclut une
axiomatisation de sa gestion de la mémoire ainsi que des modèles de divers types
de données. J’ai aussi ajouté à Why3 un mécanisme d’extraction qui permet
de compiler les programmes WhyML vers du C idiomatique. (Auparavant, le
mécanisme d’extraction de Why3 n’offrait qu’OCaml comme langage cible.) À
l’aide de ces deux nouveaux outils, les utilisateurs de Why3 peuvent maintenant
vérifier des programmes C par extraction. La méthodologie est la suivante. Tout
d’abord, on transcrit le programme C à vérifier dans le langage WhyML. À l’aide
de mon modèle du C, il est possible d’écrire des programmes WhyML dans un
style si proche du C que cette traduction est souvent transparente. Ensuite,
à l’aide de Why3 et des méthodes de preuve usuelles, on vérifie le programme
WhyML obtenu. Enfin, on compile ce programme vers C en utilisant le nouveau
mécanisme d’extraction. On obtient ainsi du code C vérifié.

Parallèlement au développement de ces outils, je les ai utilisés pour vérifier un
fragment significatif de la bibliothèque GMP. Le résultat est une bibliothèque

9

10 LIST OF FIGURES

C formellement vérifiée nommée WhyMP qui implémente des algorithmes de
pointe issus de GMP, en préservant presque toutes les optimisations et astuces
d’implémentation du code d’origine. WhyMP est compatible avec GMP, et ses
performances sont comparables. Elle reprend une grande partie de la couche de
GMP qui gère les entiers naturels, appelée mpn, ainsi qu’une plus petite partie
de la couche appelée mpz qui contient des fonctions wrappers pour gérer les
entiers signés. WhyMP est disponible à l’adresse https://gitlab.inria.fr/
why3/whymp/.

La vérification de WhyMP a été plus difficile que prévu. En effet, beau-
coup d’obligations de preuve impliquant de l’arithmétique non-linéaire se sont
avérées peu adaptées aux prouveurs automatiques à ma disposition. J’ai donc
dû ajouter de nombreuses annotations au code WhyML pour mener à bien les
preuves, y compris pour des buts qui ne semblaient pas particulièrement diffi-
ciles de prime abord. Afin d’augmenter le degré d’optimisation de mes preuves,
j’ai ajouté à Why3 un mécanisme de preuves par réflexion. Il est maintenant
possible d’utiliser des programmes WhyML classiques en tant que procédures
de décision. À l’aide d’une telle procédure, j’ai pu supprimer des centaines
de lignes d’annotation du code de WhyMP et les remplacer par des preuves
automatiques.

La section 1 de cette synthèse présente une version simplifiée de mon modèle
mémoire du C. La section 2 explique brièvement le mécanisme de preuves par
réflexion, et la section 3 l’illustre sur une preuve d’une fonction de GMP. Enfin,
la section 4 donne un aperçu de la bibliothèque WhyMP dans son ensemble.

1 Vérification de programmes C avec Why3

Cette section présente la modélisation en WhyML de la gestion de la mémoire du
C. Il inclut une axiomatisation des pointeurs du C, ainsi que quelques fonctions
de gestion de la mémoire telles que malloc et free. Commençons par présenter
les contraintes qui ont guidé mes choix techniques.

Une contrainte importante est que le modèle mémoire (ainsi que le mécan-
isme d’extraction) fait partie de la base de confiance, n’étant pas lui-même
vérifié formellement. Par conséquent, il doit être aussi simple que possible afin
de minimiser les erreurs. Idéalement, le modèle doit être si simple qu’il est pos-
sible d’être convaincu qu’il est correct par simple relecture du code, ou au moins
suffisamment simple pour qu’une preuve papier soit possible.

Par ailleurs, il est souhaitable que le code C extrait soit performant. La
traduction de WhyML vers C ne doit pas introduire de clôtures superflues ou
d’indirections qui ne sont pas explicitement présentes dans le code WhyML.
Idéalement, le développeur du code WhyML doit pouvoir prédire le comporte-
ment du futur code C extrait par simple analyse du source WhyML, sans avoir
besoin de connaître le mécanisme d’extraction en détail. Par conséquent, il est
souhaitable que la traduction de WhyML vers C soit aussi transparente que
possible.

Nous pouvons maintenant présenter le modèle mémoire proprement dit. Un
extrait simplifié est représenté en figure 1. Lors de l’extraction de WhyML vers
C, les fonctions du modèle sont remplacées directement par leurs équivalents C,
indiqués en commentaire sur la figure.

La tas du C est représenté comme un ensemble de blocs mémoire appelés

https://gitlab.inria.fr/why3/whymp/
https://gitlab.inria.fr/why3/whymp/

1. VÉRIFICATION DE PROGRAMMES C AVEC WHY3 11

type ptr ’a = abstract { data : array ’a ; offset : int }

val incr (p:ptr ’a) (ofs:int32) : ptr ’a (* p+i
*)

requires { 0 ≤ p.offset + ofs ≤ p.data.length }
ensures { result.offset = p.offset + ofs }
ensures { result.data = p.data }
alias { p.data with result.data }

val get (p:ptr ’a) : ’a (* *p
*)

requires { 0 ≤ p.offset < p.data.length }
ensures { result = p[p.offset] }

val set (p:ptr ’a) (v:’a) : unit (* *p = v
*)

requires { p.min ≤ p.offset < p.max }
ensures { p.data = (old p.data)[p.offset ← v] }
writes { p.data.elts }

val malloc (sz:uint32) : ptr ’a (* malloc (sz * sizeof(’a))
*)

ensures { result.data.length = 0 ∨ result.data.length = sz }
ensures { result.offset = 0 }

val free (p:ptr ’a) : unit (* free(p)
*)

requires { p.offset = 0 }
ensures { p.data.length = 0 }
writes { p.data }

Figure 1: Un modèle mémoire simplifié du C en Why3.

objets dans le standard C. Le type WhyML polymorphe ptr ’a représente les
pointeurs vers des blocs contenant des données de type ’a. Le champ data
d’un pointeur est un tableau qui stocke le contenu du bloc, tandis que le champ
offset indique quelle celule du bloc est pointée. Cette construction supporte
l’aliasing entre pointeurs. En effet, plusieurs pointeurs peuvent avoir le même
champ data, ce qui signifie qu’ils pointent vers le même bloc mémoire. Grâce au
système de types à régions de WhyML, toute affectation à travers un pointeur
est répercutée dans tous ses alias. Le mot-clé abstract signifie que les champs
du type ptr ’a sont fantômes et privés; le code client ne peut interagir avec
qu’à travers les primitives du modèle mémoire.

La fonction incr renvoie la somme d’un pointeur et d’un entier. Comme
le prévoit le standard C, il est permis de calculer un pointeur qui pointe soit à
l’intérieur d’un bloc valide, soit sur l’élément juste après la fin du bloc. Le mot-
clé alias déclare que la valeur de retour de incr est en alias avec le pointeur pris
en argument. Plus précisément, il unifie les régions de p.data et result.data.

Ceci permet d’écrire une spécification particulièrement courte pour free.
En effet, l’écriture de free dans le champ data de son argument induit un effet
dit de reset. Ceci signifie que la région qui était pointée par p devient inacessible
par les alias de p, ces derniers devenant invalidés. Ainsi, après un appel à free
p, les alias de p deviennent inutilisables.

12 LIST OF FIGURES

Ce modèle mémoire simplifié constitue un point de départ qui a été amené
à évoluer pour pouvoir exprimer une plus grande variété de programmes qui
sont présents dans GMP, mais que le système de types de Why3 ne permet
pas d’écrire a priori. Le modèle complet est bien plus complexe, mais il permet
d’écrire des fonctions qui prennent en argument deux pointeurs qui pointent vers
des sections séparées d’un objet mémoire. Il est également possible de l’utiliser
pour modéliser des fonctions dont les arguments peuvent ou non être en alias.

2 Preuves par réflexion

Afin d’automatiser des preuves simples mais fastidieuses issues des algorithmes
de GMP, j’ai ajouté à Why3 un mécanisme de preuves par réflexion. Le principe
général des preuves par réflexion est le suivant. Supposons qu’on cherche à prou-
ver une proposition logique P . La première étape est d’intégrer P au fragment
logique de WhyML. Notons pPq le terme résultant. Par exemple, pPq pourrait
être l’arbre de syntaxe abstraite de P . Ensuite, on prouve que si pPq satisfait
une certaine propriété ϕ, alors P est valide. Ainsi, pour prouver P , il suffit de
vérifier que ϕ(pPq) est valide. Si ϕ est conçue pour pouvoir être validée par
simple calcul, nous avons une procédure de preuve par réflexion.

Malheureusement, la fonction pq n’est pas représentable dans la logique,
et pPq peut être un terme tellement grand qu’on ne doit pas s’attendre à ce
que l’utilisateur le fournisse manuellement. Il est donc nécessaire de proposer
une façon de calculer pPq à partir de P . Ce processus est appelé réification.
Une approche classique est d’exprimer pq dans un méta-langage du système
formel considéré (comme Ltac dans le cas de Coq). Cependant, cette approche
demande à l’utilisateur d’apprendre le fonctionnement interne du système, con-
trairement à l’approche que nous proposons. Nous nous reposons sur les faits
suivants. Premièrement, la réciproque de pq est exprimable dans la logique de
Why3. Deuxièmement, afin de prouver quoi que ce soit d’utile à l’aide de ϕ,
l’utilisateur doit définir quelque chose s’approchant de la réciproque de pq dans
la spécification de ϕ. Dans l’exemple de la figure 2, il s’agit de la fonction
interp. Il suffit d’inverser à la volée cette réciproque pour générer pPq. Cette
approche est similaire à la tactique Coq quote, avec quelques améliorations: la
fonction d’interprétation peut être plus complexe, les quantificateurs sont sup-
portés, ainsi que la réification du contexte logique. Enfin, l’utilisateur n’a pas
besoin de spécifier quels termes sont des constantes.

Le synopsis d’une preuve par réflection en Why3 est donc le suivant. Étant
donné un but logique P et une procédure de décision ϕ, l’utilisateur peut tenter
de prouver P par réflexion en utilisant la commande reflection_f ϕ dans
l’interface utilisateur. Why3 utilise la spécification de ϕ pour inverser interp
et deviner un terme pPq approprié, puis évalue ϕ(pPq). La spécification de
ϕ est ensuite utilisée comme indication de coupure pour tenter de prouver P .
Dans l’exemple de la figure, si ϕ(pPq) = True, on prouve P facilement si pPq a
été bien choisi. Si pPq a été mal choisi, ou encore si ϕ(pPq) = False, la preuve
échoue. En aucun cas cette approche ne permet de prouver quelque chose de
faux, à condition que la correction de ϕ ait été vérifiée auparavant. Ainsi, si la
réification devine une mauvaise valeur pour pPq, le pire qui puisse arriver est
de ne rien prouver de nouveau.

Habituellement, les procédures de preuve par réflexion sont écrites dans le

3. EXEMPLE DE PREUVE: MULTIPLICATION PAR UN LIMB 13

type t = Var int | And t t | ...
type vars = int → bool

function interp (x:t) (y:vars) : bool =
match x with

| Var n → y n
| And x1 x2 → interp x1 y && interp x2 y
...

end

let ϕ (x:t) : bool
ensures { result → forall y. interp x y }

Figure 2: Example specification for ϕ

langage logique d’un système de preuve. Cependant, cela restreint leur expres-
sivité. Ainsi, les fonctions logiques de Why3 ne peuvent pas avoir d’effets de
bord et leur terminaison doit être prouvée. Au contraire, avec notre approche,
les procdures de décision sont des programmes WhyML comme les autres. Elles
peuvent utiliser toutes les fonctionnalités impératives du langage, comme les
tableaux, références et les exceptions. Leur correction est prouvée avec Why3,
et leur contrat est utilisé comme indication de preuve. Cependant, elles n’ont
pas d’implémentation dans la logique de Why3 et ne peuvent pas être inter-
prétées par les prouveurs automatiques. J’ai donc ajouté à Why3 un interpréteur
de programmes WhyML. Il opère sur un langage intermédiaire du mécanisme
d’extraction qui correspond aux programmes WhyML dont les assertions et le
code fantôme ont été effacés. Cet interpréteur nous permet d’exécuter les procé-
dures de décision. C’est la seule partie du mécanisme de preuve par réflexion
qui fait partie de la base de confiance. Cependant, comme il se repose sur un
langage intermédiaire existant, son implémentation est très simple et l’extension
de la base de confiance est minime.

3 Exemple de preuve: multiplication par un limb

La section suivante présente la preuve complète d’une fonction de GMP. L’assertion
la plus difficile est prouvée par réflexion.

Commençons par expliquer la représentation des grands nombres dans la
bibliothèque GMP. Les entiers naturels y sont représentés par des tableaux
d’entiers machine (typiquement de 64 bits) appelés limbs. Posons une base
β = 264. Tout entier naturel N < βn admet une décomposition

∑n−1
k=0 a[k]βk

en base β. On représente N par le tableau a[0]a[1] . . . a[n− 1], en commençant
par les limbs les moins significatifs.

Cette représentation des grands entiers n’inclut pas de champ pour stocker la
taille du tableau. Les opérandes des fonctions bas niveau de GMP sont spécifiées
par une paire d’arguments: un pointeur vers le limb le moins significatif, et un
nombre de limbs (de type int32 dans ce document). Introduisons une notation
pour la valeur d’un entier représenté par un pointeur et un nombre de limbs. Si
un pointeur a est valide sur une longueur n, on note value(a, n) =

∑n−1
k=0 a[k]βk.

On peut maintenant s’intéresser à la preuve d’un algorithme de GMP qui
multiplie un entier par un limb. La figure 3 montre l’implémentation de GMP,

14 LIST OF FIGURES

avec des changements minimes destinés à rendre le code plus lisible. Ma tran-
scription en WhyML est représentée en figure 4.

mp_limb_t mpn_mul_1 (mp_ptr rp,
mp_srcptr up, mp_size_t n,
mp_limb_t vl)

{
mp_limb_t ul, cl, hpl, lpl;
cl = 0;
do {

ul = *up++;
umul_ppmm (hpl, lpl, ul, vl);
lpl += cl;
cl = (lpl < cl) + hpl;
*rp++ = lpl;

} while (--n != 0);
return cl;

}

Figure 3: Multiplication d’un entier par un limb : implémentation de GMP

La transcription de l’algorithme en WhyML est un procédé relativement sim-
ple. Les variables C sont traduites en références WhyML. Cependant, certaines
constructions du C ne peuvent pas être traduites directement. C’est le cas de la
boucle do-while et des opérateurs de pré- et post-incrémentation. De plus, les
arguments de la fonction doivent être copiés dans des références. Cependant,
le code extrait (montré en figure 5) a des performances similaires à celles de
l’implémentation d’origine.

L’algorithme proprement dit est très simple. L’invariant principal est le
suivant :

value(r, i) + βi × cl = value(x, i)× y.

On multiplie chaque limb de x par y, et on ajoute les résultats à r après
décalage. La primitive de multiplication utilisée, mul64_double, fait partie du
modèle axiomatique des entiers machine. Elle multiplie deux entiers de 64 bits
et renvoie le produit (de 128 bits) sous forme d’une paire de mots. Le mot
le plus significatif de chaque résultat de multiplication est stocké en tant que
retenue dans la variable cl. Pour simplifier les invariants de boucle, on introduit
la variable fantôme i. Elle contient le décalage entre la valeur courante des
pointeurs r et x (incrémentés à chaque tour de boucle) et leurs valeurs de départ.

Les solveurs automatiques n’ont aucun mal à prouver que les invariants de
boucle sont initialisés correctement et qu’ils suffisent à prouver les postconditions
de la fonction. La partie la plus difficile de la vérification de cette fonction est
de prouver que les invariants sont maintenus entre chaque itération de la boucle.
Ainsi, de nombreuses annotations sont nécessaires dans le corps de la boucle.
Par exemple, l’assertion des lignes 28–30 sert à prouver que l’addition de h et 1
qui peut se produire en ligne 33 ne peut pas déborder.

Notons que le code utilise deux primitives d’addition distinctes qui sont
toutes deux remplacées par l’opérateur + du C après extraction. La fonction
add_mod (ligne 31) correspond au cas général de l’addition de deux entiers non
signés en C. Elle prend en argument deux entiers machines et renvoie la somme
modulo radix = 264. L’opérateur (+), utilisé en ligne 33, est plus restrictif. Il

3. EXEMPLE DE PREUVE: MULTIPLICATION PAR UN LIMB 15

1 let wmpn_mul_1 (r x:ptr uint64) (y:uint64) (sz:int32) : uint64
2 requires { valid x sz }
3 requires { valid r sz }
4 ensures { value r sz + (power radix sz) * result = value x sz * y }
5 ensures { forall j. (j < offset r ∨ offset r + sz ≤ j) →
6 r.data.elts[j] = old r.data.elts[j] }
7 writes { r.data.elts }
8 =
9 let ref cl = 0 in

10 let ref ul = 0 in
11 let ref n = sz in
12 let ref up = C.incr x 0 in
13 let ref rp = C.incr r 0 in
14 let ghost ref i : int32 = 0 in
15 while n 6= 0 do
16 invariant { 0 ≤ n ≤ sz }
17 invariant { i = sz - n }
18 invariant { value r i + (power radix i) * cl = value x i * y }
19 invariant { rp.offset = r.offset + i }
20 invariant { forall j. (j < offset r ∨ offset r + sz ≤ j)
21 → (pelts r)[j] = old (pelts r)[j] }
22 ...
23 variant { n }
24 label StartLoop in
25 ul ← C.get up;
26 up ← C.incr up 1;
27 let l, h = mul_double ul y in
28 assert { h < radix - 1
29 by ul * y ≤ (radix - 1) * (radix - 1)
30 so radix * h ≤ ul * y };
31 let lpl = add_mod l cl in
32 begin ensures { lpl + radix * cl = ul * y + (cl at StartLoop) }
33 cl ← (if lpl < cl then 1 else 0) + h;
34 end;
35 value_sub_update_no_change (pelts r) (r.offset + int32’int i)
36 r.offset (r.offset + int32’int i) lpl;
37 C.set rp lpl;
38 assert { value r i = value r i at StartLoop };
39 assert { (pelts r)[offset r + i] = lpl };
40 value_tail r i;
41 value_tail x i;
42 assert { value x (i+1) = value x i + power radix i * ul };
43 assert { value x (i+1) * y = value x i * y + power radix i * (ul * y) };

(* nonlinear *)
44 assert { value r (i+1) + power radix (i+1) * cl = value x (i+1) * y }; (*

by reflection *)
45 rp ← C.incr rp 1;
46 n ← n-1;
47 i ← i+1;
48 done;
49 cl
50

Figure 4: Multiplication d’un entier par un limb : transcription en WhyML

16 LIST OF FIGURES

uint64_t wmpn_mul_1(uint64_t * r, uint64_t * x, int32_t sz, uint64_t y) {
uint64_t cl, ul;
int32_t n;
uint64_t * up;
uint64_t * rp;
uint64_t l, h, lpl;
struct __mul64_double_result struct_res;
cl = UINT64_C(0);
ul = UINT64_C(0);
n = sz;
up = x + 0;
rp = r + 0;
while (!(n == 0)) {
ul = *up;
up = up + 1;
struct_res = mul64_double(ul, y);
l = struct_res.__field_0;
h = struct_res.__field_1;
lpl = l + cl;
cl = (lpl < cl) + h;
*rp = lpl;
rp = rp + 1;
n = n - 1;

}
return cl;

}

Figure 5: Multiplication d’un entier par un limb : code C extrait

prend en argument deux entiers non signés dont la somme est inférieure à radix
(pas de débordement) et renvoie leur somme.

Le corps de la boucle contient aussi des appels à des fonctions-lemmes (lignes
35, 40, 41). Il s’agit de fonctions qui n’ont pas de contenu exécutable, mais dont
la spécification tient lieu de lemme. Ces appels sont effacés par l’extraction.
L’appel au lemme value_sub_update_no_change (lignes 35–36) établit le fait
que l’écriture dans (r + i) (ligne 37) ne changera pas value(r, i). Les appels
au lemme value_tail (lignes 40 et 41) décomposent les valeurs de r et x de la
manière suivante :

value(r, i+ 1) = value(r, i) + βi × r[i],

value(x, i+ 1) = value(x, i) + βi × x[i].

Après la ligne 42, on souhaite prouver l’invariant de boucle principal, et le
contexte logique et le but sont essentiellement comme suit:

axiom H: value r1 i + (power radix i * cl1) = value x i * y
axiom H1: lpl + radix * cl = ul * y + cl1
axiom H2: value r i = value r1 i
axiom H3: value r (i+1) = value r i + power radix i * lpl
axiom H4: value x (i+1) = value x i + power radix i * ul
goal g: value r (i+1) + power radix (i+1) * cl = value x (i+1) * y

La procédure de décision que j’ai développée pour éliminer des assertions de
mes preuves de GMP utilise le pivot de Gauss pour vérifier si le but est une com-
binaison linéaire d’égalités présentes dans le contexte logique. Les coefficients
sont des produits de nombres rationnels et de puissances entières de β dont les

4. WHYMP 17

exposants peuvent être symboliques. Ici, le but est presque une combinaison
linéaire des axiomes, mais pas tout à fait. En effet, on ne peut clairement pas
former le terme value x (i+1) * y à partir de combinaisons linéaires de ter-
mes du contexte. On remédie à cela en ajoutant l’assertion de la ligne 43 qui
ajoute au contexte le fait suivant:

axiom H5: value x (i+1) * y = value x i * y + power radix i * (ul * y)

Cette assertion est facilement prouvée par les solveurs SMT. Elle est iden-
tique à l’égalité H4 dont les deux termes ont été multipliés par y. Une fois
la partie non-linéaire de la preuve ainsi traitée manuellement, la procédure de
décision sur les systèmes d’équations linéaires termine la preuve en trouvant
essentiellement

H3 + H2 + βiH1 + H− H5⇒ g

ce qui prouve l’assertion de la ligne 44 et l’invariant de boucle principal.

4 WhyMP
Après extraction vers C, l’ensemble de mes algorithmes forme une bibliothèque
efficace et formellement vérifiée appelée WhyMP. Elle va bien au-delà des bib-
liothèques d’arithmétique en précision arbitraires vérifiées existantes en termes
de quantité et de qualité des algorithmes. À ma connaissance, il s’agit aussi du
développement Why3 le plus ambitieux à ce jour en terme de taille et d’effort
de preuve.

WhyMP fournit les algorithmes suivants sur les entiers naturels, issus de
la couche mpn de GMP : les quatre opérations arithmétiques élémentaires, des
décalages logiques, une multiplication et une racine carrée de type diviser-pour-
régner, une exponentiation modulaire rapide, et des fonctions de conversion en-
tre la représentation des entiers de GMP et des chaînes de caractères encodant
les nombres dans une base arbitraire. Elle contient aussi des fonctions wrap-
per issues de la couche mpz de GMP qui permettent de calculer les opérations
élémentaires sur les nombres relatifs en appelant les fonctions sur les entiers
naturels et en traitant les signes à part.

La multiplication présentée dans la section précédente est un exemple sim-
ple, mais la plupart des autres fonctions sont bien plus compliquées mathéma-
tiquement et algorithmiquement. Par exemple, la division longue utilise une
primitive qui divise un entier de trois limbs par un entier de deux limbs à l’aide
d’un pseudo-inverse précalculé. L’exponentiation modulaire utilise la réduction
de Montgomery pour calculer modulo une puissance de 2 plutôt qu’un nombre
premier. Enfin, le cas de base de la racine carrée utilise de l’arithmétique à
virgule fixe pour calculer la racine carrée d’un entier machine par la méthode
de Newton.

Les sources de WhyMP totalisent environ 22 000 lignes de code WhyML,
pour environ 5 000 lignes de code C extrait. Le détail de l’effort de preuve est
représenté en figure 6.

Parmi les 22 000 lignes de code dans les sources de WhyMP, environ 8 000
lignes sont des instructions exécutables. Les 14 000 lignes restantes sont com-
posées de spécifications et surtout d’assertions. Ce rapport entre la quantité de
preuves et la quantité de code est plutôt inefficace par rapport aux développe-
ments présents dans le répertoire d’exemples de Why3. En effet, de nombreuses

18 LIST OF FIGURES

comparaison 100
addition 1000
soustraction 1000
mul (naïve) 700
mul (Toom-Cook) 2400
division 4500
lemmes auxiliaires 300
procédure de décision 1700
décalages logiques 1000
racine carrée 1600
exponentielle modulaire 1700
conversions 2000
couche mpz 3600
utilitaires 200

Figure 6: Effort de preuve en lignes de code.

preuves de propriétés arithmétiques complexes sont effectuées à l’aide de très
longues assertions (parfois jusqu’à une centaine de lignes), bien que certaines
aient pu être remplacées par des preuves automatiques par réflexion.

L’existence de WhyMP augmente la confiance qu’on peut avoir dans GMP,
mais n’est pas une preuve formelle de la correction du code d’origine. Cepen-
dant, le développement de WhyMP a permis la découverte d’un bug dans la fonc-
tion de comparaison d’entiers relatifs de GMP. Une preuve de non-débordement
de retenue dans l’algorithme de multiplication Toom-Cook s’est aussi avérée
suffisamment difficile pour convaincre les développeurs de GMP de modifier le
code afin de le rendre plus clairement correct.

Le code de WhyMP est suffisamment semblable à celui de GMP pour que
les deux bibliothèques soient compatibles entre elles et que leurs performances
soient similaires. Il y a deux différences principales. Premièrement, pour chaque
opération arithmétique, GMP implémente de nombreux algorithmes qui la cal-
culent. Par exemple, il y a plus d’une dizaine de fonctions de multiplication
différentes dans GMP. En fonction de la taille des opérandes, GMP choisit
l’algorithme le plus efficace. Ainsi, pour les nombres de moins de 1 000 bits env-
iron (le seuil exact dépend de l’architecture), l’algorithme naïf est utilisé. Pour
les nombres d’entre 1 000 et 100 000 bits, GMP utilise un algorithme de Toom-
Cook qui est également présent dans WhyMP. En revanche, pour les nombres
encore plus grands, GMP utilise des algorithmes avec une meilleure complexité
asymptotique qui ne sont pas implémentés dans WhyMP. GMP est donc bien
plus efficace que WhyMP sur les entrées de très grande taille.

La seconde différence vient des primitives arithmétiques. En effet, les algo-
rithmes de GMP reposent sur un petit nombre de primitives arithmétiques qui
effectuent des opérations élémentaires sur des mots machine (telles que la multi-
plication de deux entiers de 64 bits, ou la division d’un entier de 128 bits par un
entier de 64 bits). Dans la configuration par défaut de GMP, ces primitives sont
écrites directement en assembleur. GMP propose également une configuration
portable où les primitives sont écrites en C, au prix d’un ralentissement d’environ
100%. En forçant les deux bibliothèques à utiliser des primitives écrites en C,
les performances de WhyMP sont très proches de celles de GMP pour les tailles

4. WHYMP 19

de nombres où les deux bibliothèques utilisent le même algorithme (de l’ordre
de 10 à 20% d’écart en faveur de GMP).

Il serait souhaitable de permettre à WhyMP d’utiliser les primitives assem-
bleur afin de rattraper les performances de la configuration par défaut de GMP.
Afin de ne pas trop étendre la base de confiance de notre bibliothèque vérifiée,
une perspective de travail serait d’étendre Why3 afin de permettre la vérifica-
tion de code assembleur pour les architectures les plus courantes. On pourrait
imaginer procéder de la même manière que pour le C, c’est-à-dire écrire du code
WhyML très semblable structurellement à du code assembleur au moyen d’un
modèle mémoire, puis compiler vers de l’assembleur.

Une autre amélioration serait d’ajouter à WhyMP les fonctions qui lui man-
quent par rapport à GMP, comme les fonctions de théorie des nombres (calcul
efficace du PGCD, symbole de Legendre...). GMP fournit aussi des versions des
opérations élémentaires et de l’exponentielle modulaire destinées à la cryptogra-
phie. Ces fonctions sont conçues pour être résistantes aux attaques par canaux
cachés. Il serait intéressant de vérifier leur correction, et idéalement, de trouver
un moyen de spécifier formellement et de prouver cette résistance.

Chapter 1

Introduction

As the saying goes, every non-trivial program contains at least one bug. Soft-
ware defects are as ubiquitous as software itself. In his 2004 handbook Code
Complete [69], Steve McConnell reports “about 15-50 errors per 1000 lines of
delivered code” as an industry average. While high-profile security vulnera-
bilities such as Spectre and Meltdown or the Heartbleed bug make it to the
mainstream news cycle every few years, an astonishing number of bugs exist in
deployed code. The Common Vulnerabilities and Exposures (CVE) database
lists over twelve thousand publicly known security vulnerabilities for the year
2019 alone. A report from the Consortium for IT Software Quality estimates
the cost of poor quality software at over two trillion dollars in the United States
for the year 2018 [59].

Software bugs also kill. A classical example is the bug in the Therac-25
radiation therapy system, which administered lethal overdoses of radiation to
at least five patients between 1985 and 1987 due to concurrent programming
errors [64].

Formal verification. From human casualties to financial losses, the cost of
software bugs is extremely large. As a result, efforts to increase the reliability
of software are warranted. The first resort tends to be testing [76]. Testing is
the process that consists in executing the program in various contexts with the
intent to find defects. Software testing is a field of research by itself and a very
large number of approaches to testing exist. However, most of them are not
exhaustive. Their goal is to find bugs, not to prove that they do not exist.

As a complementary approach to testing, static analysis is part of the effort
to write correct programs. It consists in analyzing programs without executing
them. It encompasses a wide set of specific approaches. A commonly used form
of static analysis is linting, which consists in analyzing a program’s source code
syntactically looking for programming errors, typically in the form of stylistic
errors or suspicious constructs.

A fundamental distinction among static analysis frameworks is soundness.
Sound tools aim to give formal guarantees about the behavior of the programs
they analyze. This takes the form of a specification such as “if the analyzer finds
no issues, then the analyzed program is correct”, for some notion of correctness.
Many widely used static analyzers, such as Facebook’s Infer tool, are not sound,
and simply try to find as many bugs as possible. But in some critical contexts,

21

22 CHAPTER 1. INTRODUCTION

this is not enough, and sound tools are required to ensure the absence of soft-
ware defects. Formal verification is the process of checking the correctness of
programs with respect to a formal specification.

As written above, every sound static analysis tool has some soundness the-
orem stating that programs in which no issues are found are correct. The word
“correct” can have very different meanings depending on the tool. Many tools
aim to prove the absence of runtime errors such as program crashes, arithmetic
overflows or memory corruption. This is the case of most abstract interpretation
frameworks. Abstract interpretation consists in overapproximating the behav-
ior of a computer program in an effort to verify that some unwanted behaviors
do not occur. For example, the values of each numeric variable of the program
might be overapproximated by an interval, with the formal guarantee that the
concrete value of the variable lies in that interval. This is enough to prove some
properties on the analyzed program. For example, it is enough to know that
the interval contains only positive values to prove that it is safe to divide by
the variable. Successful applications of abstract interpretation in the industry
include the verification of the absence of runtime errors in the flight control
systems of various Airbus planes using the Astrée static analyzer [24].

Some tools aim to do more than prove the absence of runtime errors. A
more ambitious goal is to prove that a program not only has no runtime errors,
but computes the right result. The corresponding notion of correctness is called
functional correctness. It states that the input-output behavior of a program
matches its specification. In 1949, Alan Turing published one of the earliest
examples of functional correctness verification in a paper titled Checking a Large
Routine [93]. It starts as follows:

“How can one check a routine in the sense of making sure that it
is right? In order that the man who checks may not have too difficult
a task the programmer should make a number of definite assertions
which can be checked individually, and from which the correctness
of the whole programme easily follows.”

The method Turing pioneers is a precursor to the now widely-used approach
to the verification of functional correctness properties called deductive verifi-
cation. It consists in generating from the program and its specification a set
of logical formulas called proof obligations or verification conditions, and then
proving them using deductive reasoning. The validity of these proof obligations
implies that the behavior of the system meets its specification. The specifica-
tion of a program is usually a set of logical formulas called preconditions and
another set of formulas called postconditions. The semantics of the specification
is that if the preconditions are all met, then the program successfully executes,
terminates without runtime error, and the final state of the program satisfies
the postconditions. The generated proof obligations are typically proved valid
by either automated theorem provers (such as the SMT solvers Alt-Ergo, CVC4
or Z3), or interactive proof assistants (such as Coq, Isabelle or PVS). However,
the automated tools do not always manage to prove that a nontrivial program
is correct by themselves. In order to prove the verification conditions, the user
typically needs to add a number of annotations to the program in the form
of loop invariants, assertions, and lemmas. In the end, for this approach to
succeed, it is almost necessary that the user understands why their program is
correct to the point that they would be able to sketch a proof on paper.

23

Other approaches than deductive verification can be used to verify func-
tional correctness properties. One such approach is model checking. The pro-
gram is represented as a finite state transition system, and the specifications
are properties in temporal logic. They can be safety properties, which declare
that something should never happen, or liveness properties, which declare that
something should eventually happen. The set of all reachable states is traversed,
and for each property, either a counterexample is found (an execution trace that
violates the property), or the property is validated. In order to make the set of
reachable states more tractable, a commonly used technique is bounded model
checking, in which one limits the search to executions traces with length shorter
than some fixed integer. This allows the problem to be reduced to a proposi-
tional satisfiability problem that can be discharged by SAT solvers. CBMC [60]
is a well-known model checker for concurrent C programs that has been applied
to embedded systems by the industry.

Another approach is to produce code that is correct by construction, instead
of verifying it after the fact. Refinement consists in starting from a high-level
abstract specification and successively deriving lower-level ones until a concrete
implementation is reached. The B Method [3] is a method of tool-assisted
software development based on this approach. It has been used to develop
safety-critical parts of the control systems of the automated lines 1 and 14 of
the Paris Métro. The development of the verified microkernel seL4 [56] was
performed using a related method. The authors wrote a high-level abstract
specification of the kernel’s behavior in the Isabelle/HOL theorem prover, as well
as an efficient C implementation. They generated an intermediate executable
specification from a Haskell prototype. Finally, they used Isabelle to prove that
the executable specification was a refinement of the abstract one, and that the
C implementation was a refinement of the executable specification.

Computer arithmetic, arbitrary-precision arithmetic. Computer arith-
metic is the field that deals with the representation of numbers in computers
and in efficient algorithms for manipulating them. Computer arithmetic is ubiq-
uitous in software. I would be hard-pressed to find software that does not per-
form any arithmetic computation. Moreover, arithmetic bugs are often subtle
and hard to detect, yet may have dramatic consequences.

The typical example is the explosion of an unmanned Ariane 5 rocket in
1996, forty seconds after its lift-off, after flipping 90 degrees in the wrong direc-
tion. The cause was determined to be a software error in the rocket’s inertial
reference system [65]. The software attempted to convert a 64-bit floating-point
number (corresponding to the rocket’s vertical velocity) to a 16-bit signed value.
The number was larger than 32 767, the maximal value representable in a 16-bit
signed integer. The conversion failed, the software output a debug value which
was misinterpreted as actual flight data, and the engines overcorrected accord-
ingly. It is worth mentioning that the buggy software had been successfully used
many times on the rocket’s predecessor, the Ariane 4. Indeed, that rocket was
launched in a different trajectory, with lower terminal velocity, so the overflow
never occurred. This illustrates the difficulty inherent in the manual review
of arithmetic code, and the way its correctness heavily depends on the usage
constraints.

Some bugs do not have immediate consequences, but simply lead systems

24 CHAPTER 1. INTRODUCTION

to fail in exotic situations. For example, a software bug was discovered in 2015
in the electrical system of the Boeing 787 plane. A software counter in the
generator control units of the plane would overflow after 248 days of continuous
uptime, or 231 hundredths of a second. This would lead to the loss of all electrical
power as the control units would go into failsafe mode, resulting in potential
loss of control of the aircraft [31].

In both previous examples, the bugs were due to an arithmetic overflow, that
is, an attempt to create a value larger than the space allocated to contain it.
Arbitrary-precision arithmetic software is used to work with numbers larger than
the maximum values allowed by the standard hardware number representation.
It consists in algorithms and data structures that can be used to represent
arbitrarily large numbers, limited only by the memory and time available.

The GMP library. The GNU Multiprecision Arithmetic Library, or GMP
for short, is a widely-used library for arbitrary precision arithmetic that operates
on integers, rational numbers, and floating-point numbers [45]. It is built with
an emphasis on performance. It uses state-of-the-art algorithms written in C,
as well as handwritten assembly routines for most common architectures in the
most common inner loops. Its main target applications are cryptography algo-
rithms and computer algebra software. It is used as a backend by the computer
algebra systems Mathematica and Maple. Compile-time floating-point compu-
tations in the GCC compiler suite are also performed by the MPFR library [41],
which is itself built on top of GMP.

As with any software development of this size, GMP is not bug-free. While
the library is extensively tested, some parts of the code are visited with ex-
tremely low probability (such as 1/264, assuming uniformly distributed inputs).
As a result, some bugs cannot reasonably be found using random testing. More-
over, most of the algorithms are very intricate, which makes both the manual
review of the code and the design of edge-case tests challenging. The following
is an excerpt from the release news of GMP 5.0.4:

“Two bugs in multiplication code causing incorrect computation with
extremely low probability have been fixed. [...] Two bugs in the gcd
code have been fixed. They could lead to incorrect results, but for
uniformly distributed random operands, the likelihood for that is
infinitesimally small.”

Incorrect results being computed in GMP may even yield security vulnerabilities
such as buffer overflows. Consider the following GMP macro.

#define mpn_decr_1(x) \
mp_ptr __x = (x); \
while ((*(__x++))-- == 0) ;

The mpn_decr_1 macro takes an arbitrary-precision natural integer x (rep-
resented as an array of machine integers, from least to most significant) and
decreases it by one. Note that the while loop iterates until it finds a cell in
the array with a non-zero value. As a result, if mpn_decr_1 is called on the
integer 0, the macro reads and writes outside the bounds of the array, possibly
resulting in memory corruption or crashing the program. The takeaway is that
functional correctness and absence of runtime errors are not independent. In

25

order to meaningfully verify that GMP has no runtime errors, one also needs to
verify its functional correctness.

However, this is easier said than done. GMP implements state-of-the-art
algorithms which can be very intricate. Furthermore, the implementation has
been optimized as much as possible, with performance prioritized over clarity.
Even the so-called schoolbook algorithms are somewhat obfuscated by layers
of optimizations and implementation tricks. Some seemingly innocuous state-
ments require complex proofs in order to show that, for instance, an operation
or a carry propagation does not overflow. Textbooks such as Brent and Zim-
mermann’s [17] explain the broad strokes of most of the algorithms, but do not
mention most of these implementation tricks in their pseudocode. As a result,
understanding why the algorithms are in fact correct is the first challenge to
overcome when verifying GMP, and it is not a trivial one.

Motivation. The motivation for this work is twofold. First, the formal verifi-
cation of a meaningful fragment of GMP is a worthy goal by itself. Indeed, GMP
is used in security-sensitive contexts where an incorrect result may be costly.
The second motivation is to develop new verification methods using GMP as a
case study. GMP’s source code presents a particular combination of challenges.
It features very intricate mathematical algorithms, but also low-level memory
manipulation. While it does not quite exercise C’s fine-grained pointer manip-
ulation to its full extent (for example, it uses almost no type punning), it does
perform pointer arithmetic and features complex pointer aliasing configurations.

There has been some previous work on the formal verification of arbitrary-
precision arithmetic libraries. Myreen and Curello verified an implementation
of the four basic arithmetic operations in arbitrary precision using the HOL4
theorem prover and separation logic [77]. Affeldt used the Coq theorem prover to
verify an arbitrary-precision GCD algorithm implemented in a variant of MIPS
assembly, as well as all the functions it depends on [4]. Fischer verified a modular
exponentiation library using Isabelle/HOL [39]. Berghofer used Isabelle/HOL to
develop a verified bignum library providing modular exponentiation written in
the SPARK fragment of the Ada programming language. However, none of these
verified libraries are meant to be used in practical contexts. The algorithms are
not as efficient as GMP’s state-of-the-art ones, and the implementations are not
as optimized.

Shortly after this work began, Zinzindohoué et al. completed the verification
of a formally verified cryptography library implementing the full NaCl API
with state-of-the-art performance [96]. Their work includes a bignum library,
but the algorithms they verified use numbers whose length is known in advance,
so they do not pose quite the same verification challenges as arbitrary-precision
algorithms.

Intricate arbitrary-precision algorithms have also been the subject of formal
verification, including GMP’s own divide-and-conquer square root algorithm,
which was verified by Bertot et al. using the Coq proof assistant [11]. However,
their approach was quite costly in terms of proof effort, and does not seem to
scale up to the verification of an entire library in a practical way.

In the end, no verified arbitrary-precision arithmetic library with both the
breadth and depth of GMP currently exists. Our ambition is to develop such a
library, and push existing verification techniques to their limits in the process.

26 CHAPTER 1. INTRODUCTION

Tool choice. In order to explain our methodology and tool choice for this
verification work, let us first lay out our requirements. We intend to verify a
C library that involves pointer arithmetic and aliasing in complex ways. As
a result, our verification toolset must either have explicit support for the C
language, or enable us to design a sufficiently expressive model of the C memory
ourselves. However, pointer manipulation is not our only concern. We are
attempting to verify the functional correctness of highly intricate arbitrary-
precision arithmetic algorithms. As far as I’m aware, no specialized tool to
perform exactly this task currently exists. As a result, our toolset must have
sufficiently powerful general-purpose theorem proving capabilities. Finally, we
want to verify a large amount of GMP algorithms, in order to obtain a usable
final product. The available proof effort being three to four man-years, our
toolset must provide a meaningful amount of proof automation. In particular,
the frame problem (i.e., the knowledge of which memory areas are modified or
not by a given instruction) should be solved in a somewhat automated way.

Let us now review some available tools and check them against our crite-
ria. A natural choice for the verification of C programs is the Frama-C plat-
form [25]. It is most commonly used to verify the absence of runtime errors
in C programs using the abstract-interpretation Value plugin, as well as its
successor EVA. However, it has also been used to verify functional correctness
properties in data structure implementations using the deductive verification
WP plugin [14]. Using the ACSL specification language [8], comments can be
used to specify the intended behavior of the program, state axioms and theo-
rems, and write ghost code. Frama-C computes verification conditions which are
then discharged using automated solvers or the Coq theorem prover. Frama-C
has a built-in C memory model that is expressive enough to implement GMP’s
algorithms. However, it does not appear to automate the tracking of aliases
or the associated frame problem. Moreover, expressing complex mathematical
properties in ACSL comments seems challenging, and proving them using ACSL
annotations and automated theorem provers seems out of reach of current tools.
As a result, using Frama-C to verify a large fragment of GMP would probably
require proving most non-trivial arithmetic facts in Coq, and it is not clear that
it would be an improvement over doing the entire verification work in Coq in
the first place.

Performing the verification using Coq, or some other interactive proof assis-
tant such as Isabelle/HOL, would also have its merits. These tools can certainly
be used to verify arbitrarily complex arithmetic facts. They have already been
used to verify C programs, as well as the certified C compiler CompCert [63].
As a result, models and semantics of the C language in Coq exist in the wild
and could be used. The main issue with this approach would be the amount
of proof effort required. The existing example of verification of a single GMP
algorithm by Bertot et al. involved 13 000 lines of Coq. It was performed by
experts including a GMP developer. Our objective is to verify a meaningful
amount of GMP algorithms, such as twenty or more. While part of the proof
effort can certainly be reused and mutualized among the various algorithms to
verify, such a proof would still likely take upwards of 100 000 lines of code. There
is little reason to believe that this would be feasible by a single student in a few
years. Proof automation in Coq has improved since the verification of GMP’s
square root algorithm, but the existing tools are unlikely to be usable out of
the box on the goals that arise from the proofs of GMP algorithms (non-linear

27

arithmetic with symbolic exponents). Developing tactics able to meaningfully
automate the proofs of GMP algorithms would take a nontrivial amount of time
and effort.

A good way to deal with complex aliasing configurations and automatically
instantiate the frame rule could be to use a tool based on separation logic such
as Smallfoot [9], Verifast [54], or Viper [75]. However, these tools do not appear
to be well-suited to the verification of many complex arithmetic goals. Indeed,
while they allow users to state complex specifications and lemmas, they lack
ways to enable the user to prove them when the automated solvers fail to do
so automatically. In other words, I am not aware of a separation-logic-based
tool that has sufficiently powerful general-purpose theorem proving capabilities,
outside of the various embeddings of separation logic in interactive theorem
provers.

Giving up on built-in separation logic, we move to general-purpose deduc-
tive verification platforms such as Why3 [37], Leon [13], Dafny [61], and F* [91].
They all offer a degree of proof automation by interfacing with one or more
automated solvers. Several of these tools also seem able to verify pointer-heavy
C programs. Why3 features a region-based type system with automated alias
tracking [44], and enables users to develop their own memory models. F*’s de-
pendent type system is expressive enough to develop a model of the C memory
that deals with aliases in a precise way [81]. The remaining criterion is the
ability to prove highly complex goals. Why3 appears to be the best deductive
verification tool in this area. It interfaces with a wide set of automated solvers
with various strengths and weaknesses [34], whereas most tools only use one.
This enables users to call on the best solver for each situation, including highly
specialized ones such as the Gappa numerical constraint solver [26, 27]. Fur-
thermore, when all else fails, the user can always fall back to a Coq proof. While
we would rather avoid this (and indeed, Coq was only used a handful of times
in this work), it is a good insurance that the tool will not get stumped by a
particularly difficult arithmetic goal.

Methodology. Locking in Why3 as our tool of choice, let us consider our
options in terms of methodology. Why3 enables users to verify programs writ-
ten in a functional programming language called WhyML. It has been used in
the past to verify C programs using various methods. One such method is to
use WhyML as an intermediate language. Using a front-end such as the Jessie
Frama-C plugin, the C program to verify is translated to WhyML and verified
using Why3 [67]. This strategy is quite similar to the Frama-C/WP one de-
scribed earlier. Ultimately, it is ill-suited to our problem for much the same
reasons. Although it uses Why3 as a backend, it cannot leverage its theorem-
proving capabilities to their full extent.

Another strategy consists in first reimplementing the C program in WhyML,
and then verifying the WhyML implementation using Why3 [33]. WhyML is a
functional language, but it is expressive enough that it is possible to axiomatize
a model of the C language and implement GMP’s programs on top of it. This
approach enables us to verify C-like programs while using Why3 to its fullest.
However, the obvious drawback is that we would not verify GMP’s algorithms,
but their abstraction in another language. How to turn this abstraction into a
usable verified library? Similarly to Coq, Why3’s usual answer to this question

28 CHAPTER 1. INTRODUCTION

is program extraction. WhyML programs can be compiled to OCaml code.
Extending Why3’s extraction mechanism to include C as a target language
seemed challenging but doable. This addition to Why3 enables the development
of a verified C arbitrary-precision library that has performances comparable to
GMP.

Contributions and plan. This document starts with an introductory chap-
ter that explains the basics of Why3 (Chap. 2). It gives a brief overview of
WhyML both as a programming language and a specification language, and
provides some explanations on Why3’s verification condition generator and how
it interacts with aliasing. It contains no new contributions and can be skipped
by readers familiar with Why3.

One of the objectives of this work was to enable Why3 users to produce
verified C programs. I have developed a set of axiomatized models of the C
memory and various C datatypes in WhyML. I have also extended Why3’s
extraction mechanism so that WhyML programs can be compiled to readable
and efficient C code, where only OCaml and some of its dialects were previously
supported. Thus, Why3 users can implement their programs in WhyML on top
of the C model, verify them, and obtain verified C code. Chapter 3 presents
these contributions to Why3 and walks through the verification of a small data
structure from the open source operating system Contiki.

Concurrently to developing these tools for the verification of C programs, I
have used them to verify a sizable fragment of the GMP library. One objective of
this formalization work was to evaluate whether the tools I added to Why3 scale
up to the verification of real-world programs, as well as inform the development
of these tools by uncovering issues that toy examples would not have. However,
this verification work is also its own reward.

The end result of this formalization is a verified C library called WhyMP. It
implements GMP’s state-of-the-art algorithms, with almost all of the original
implementation tricks preserved. As a result, it is compatible with GMP and
has comparable performance. The extracted C code is about 5 000 lines long and
the formalization took about 22 000 lines of WhyML code. WhyMP implements
a large subset of the algorithms in GMP’s mpn layer, which deals with natural
integers, as well as a smaller subset of the mpz layer, which is a wrapper around
mpn that deals with relative integers. Chapter 4 presents the formalization of
WhyMP’s algorithms: the four basic operations, fast modular exponentiation,
divide-and-conquer multiplication and square root, base conversions, and the
mpz wrappers. It also compares WhyMP and GMP in terms of compatibility,
exhaustivity, and performance.

The verification of WhyMP was more time-consuming than expected. Many
of the non-linear arithmetic facts that needed to be proved were handled poorly
by the automated solvers. As a result, many proof annotations were needed, re-
sulting in tedious proof effort even for goals that did not seem conceptually hard.
In an effort to increase proof automation, I have added to Why3 a framework for
proofs by reflection. Users may now write decision procedures as regular verified
WhyML programs and use them to compute proofs of their goals. Chapter 5
discusses this contribution and its use in WhyMP’s development.

Finally, Chap. 6 sums up this work’s contributions, reflects on some chal-
lenges encountered in the process, and lays out possible lines of future work.

Chapter 2

Why3 basics

This short chapter aims at providing the reader with enough background about
Why3 to make the rest of the thesis readable. It contains no original contri-
butions and may safely be skipped by readers who are already familiar with
Why3.

Why3 is a platform for deductive program verification. It provides a pro-
gramming and specification language called WhyML. It is a functional language
with many syntax elements borrowed from the OCaml language. WhyML pro-
grams are annotated with contracts based on Hoare logic [51, 40]. From these
contracts, Why3 computes verification conditions that, once proved, guarantee
that the WhyML programs have no runtime errors and satisfy their specification.
Why3 interfaces with external theorem provers to discharge the verification con-
ditions. WhyML programs can be extracted to correct-by-construction OCaml
code.

This chapter provides an overview of the WhyML language and its semantics,
as well as how the verification conditions are computed. We first go over the
basics WhyML as a programming language (Sec. 2.1). Section 2.2 describes
WhyML’s logic and its syntax as a specification language. In Sec. 2.3, we
go over the process by which Why3 computes verification conditions. Finally,
Sec. 2.4 gives a brief overview of how Why3 is used in practice.

2.1 The WhyML programming language

Let us first provide a brief overview of the WhyML language. More details can
be found in the Why3 reference manual 1.

2.1.1 Basic syntax

A WhyML source file is a list of modules, and a module is a list of declarations.
There are three main kinds of declarations: function declarations, type declara-
tions, and logical declarations. Let us first focus on program functions. The gen-
eral syntax is let name [parameters] : return_type = expression. The
return type, as well as the types of the parameters, can sometimes be omitted
and inferred by Why3. The following is an example of function declaration. It

1http://why3.lri.fr/doc/index.html

29

http://why3.lri.fr/doc/index.html

30 CHAPTER 2. WHY3 BASICS

defines the function f as the function that takes an integer x and returns the
integer x + 42.

let f (x:int) : int = x + 42

Much like in OCaml, any function body is an expression, and there is no
notion of statement. (One may choose to view statements as expressions whose
return type is unit.) Local variables are declared using let-bindings, with the
usual syntax let x = e1 in e2. This expression computes the expression e1,
binds the result to the variable x, and computes e2. The semicolon ; is the
sequence operator. The expression e1; e2 computes the expressions e1 and
then e2 in sequence. It can be seen as syntactic sugar for let _ = e1 in e2.
A partial grammar of expressions follows. New constructs will be introduced
throughout this chapter.

〈expr〉 ::= 〈constant〉 (integer, real, or string constant)
| true
| false (Boolean constant)
| 〈ident〉 (identifier)
| 〈expr〉 〈op〉 〈expr〉 (infix binary operator)
| let 〈pattern〉 = 〈expr〉 in 〈expr〉 (let-binding)
| 〈ident〉 〈expr〉+ (function call)
| if 〈expr〉 then 〈expr〉 else 〈expr〉 (conditional)
| (〈expr〉 (, 〈expr〉)+) (tuple)
| match 〈expr〉 with (|〈pattern〉 -> 〈expr〉)+ end (pattern matching)
| while 〈expr〉 do 〈expr〉 done (loop)
| raise 〈ident〉 (exception raising)
| try 〈expr〉 with (|〈pattern〉 -> 〈expr〉)+ end (exception catching)

Function calls use the same syntax as OCaml. However, while the evaluation
order of the arguments is left unspecified in OCaml, it is specified in WhyML.
Function arguments are evaluated from right to left. For example, if a function g
takes two parameters, then the function call g e1 e2 evaluates first e2, then e1.
The chosen order is arbitrary, but there needs to be one to compute precise
verification conditions.

The normalization of WhyML function calls actually goes even further.
Although function calls accept arbitrary expressions in the surface language,
WhyML programs are transformed before any verification conditions are com-
puted. Function calls are put into A-normal form [87], that is, all function
arguments must be trivial. So, if e1 and e2 are not simple variables, the func-
tion call g e1 e2 is transformed into let v2 = e2 in let v1 = e1 in g v1
v2, as function arguments are evaluated from right to left.

2.1.2 Mutability
Some Why3 objects are mutable. The most simple example is references. Other
examples include records with at least one mutable field (Sec. 2.1.3). They
are declared with the let ref construct. The following example computes the
product of two positive integers using addition and references.

let mul (x y:int) : int
=

let ref res = 0 in

2.1. THE WHYML PROGRAMMING LANGUAGE 31

for i = 0 to x-1 do
res ← res + y

done;
res

The calling conventions around mutable objects is similar to OCaml. All
records and references are implicitly boxed. Essentially, when they are passed
to a function, it is actually a pointer to them that is passed by value. The end
result is similar to what would happen if all mutable structures were passed by
reference. For example, in the following snippet, the modification of x in the
function set is visible in the caller’s scope.

let set (ref x: int) : unit = x ← 42

let f () : int
=

let ref x = 0 in
set x;
(* x = 42 *)
x

This syntax for references may seem unusual to OCaml programmers, who
are used to distinguish a reference x and its value !x. WhyML’s syntax, with
no visible distinction between reference and value, is actually syntactic sugar.
Internally, references are built-in as a record with a single mutable field called
contents. They are dereferenced automatically, so that if x has type ’a and is
declared with the ref keyword, internally x has type ref ’a, the expression x
<- a is syntactic sugar for x.contents <- a, f x is sugar for f x.contents,
and so on.

2.1.3 Data types

WhyML features an ML-style type system with polymorphic types, algebraic
data types, and records that can have mutable fields. The primitive built-in
types are integers, reals, booleans, and strings. Tuples are also built-in. The
unit type is identified with the 0-ary tuple.

Record types

Record types with named fields may be defined using the following ML-style
syntax.

type t = { a: int; mutable b: int }

Record fields can be mutable, such as the b field in the example above.
Fields are accessed using the syntax r.a, and mutable fields are mutated with
the syntax r.b <- 42. Records can be constructed with the syntax {a = 36;
b = 55}.

Arrow types

The arrow type a -> b denotes a first-class mapping from values of type a to
values of type b. Values of this type can be declared with the syntax (fun x ->
e). Note that these are distinct from program functions that take an argument
of type a and return a value of type b, which is a departure from OCaml. These

32 CHAPTER 2. WHY3 BASICS

mappings carry no specifications. Most automated solvers only support them
in rather limited ways.

A typical use case for mappings is the numof function from Why3’s stan-
dard library. It counts the number of integers in an interval that satisfy some
predicate.

(** number of ‘n‘ such that ‘a ≤ n < b‘ and ‘p n‘ *)
let rec function numof (p: int → bool) (a b: int) : int

variant { b - a }
= if b ≤ a then 0 else

if p (b - 1) then 1 + numof p a (b - 1)
else numof p a (b - 1)

Algebraic data types

WhyML features algebraic data types declarations in the same style as OCaml.
Such definitions can be recursive. A typical example is the definition of the
polymorphic list type from the standard library.

type list ’a =
| Nil
| Cons ’a (list ’a)

Note that the polymorphic type expression is list ’a, and not ’a list like
in OCaml.

Range and float types

The built-in int type denotes unbounded, mathematic integers. There is no
notion of integer overflow. This is useful for specifications and proofs, but when
writing executable programs meant to be extracted to languages such as OCaml
or C, bounded integers are necessary.

If a and b are two integer literals, the type declaration type r = < range
a b > defines an integer type that ranges over the interval [a, b]. This dec-
laration automatically introduces the function r’int, which projects elements
of type r back to int, as well as the logical constants r’minInt and r’maxInt
which represent constants a and b. An example is the definition of the type
int32 in the standard library, which denotes 32-bit integers.

type int32 = < range -0x80000000 0x7fffffff >

Floating-point numbers are in a similar situation as machine integers. The
built-in real type is an axiomatization of mathematical reals. Floating-point
types can be defined using the declaration type f = <float eb sb>, where eb
and sb are two literals. This declares the type f of floating point numbers with
eb exponent bits and sb significand bits, as defined in the IEEE-754 floating-
point standard [2].

2.2 Logic and specifications
WhyML is not just a programming language. WhyML modules may also con-
tain non-executable logical content such as axioms, lemmas, goals, and so on.
In principle, one could completely ignore the programming language part of
WhyML and use Why3 purely as a proof assistant. However, Why3’s logic is

2.2. LOGIC AND SPECIFICATIONS 33

not entirely separate from programs. For example, they interact through pro-
gram specifications and assertions. Why3’s logic is essentially first order, with
some support for inductive predicates. In the rest of this document, we only
make use of first order logic.

Logical declarations

Let us first give a brief overview of the syntax of logical declarations. WhyML
terms are the logical equivalent of expressions. The main differences between
terms and expressions are that terms accept quantifiers and logical connectives,
and are always pure (no side effects). Terms that have the proposition type
are called formulas. Note that Why3 distinguishes between propositions and
Booleans internally, but this distinction is not enforced in the syntax, and the
conversions are automatically performed behind the scenes.

WhyML declarations include axioms, lemmas, and goals.

〈decl〉 ::= ...
| axiom 〈ident〉 : 〈term〉
| lemma 〈ident〉 : 〈term〉
| goal 〈ident〉 : 〈term〉

Axioms, lemmas, and goals are syntactically the same. As one may expect,
the difference is how they are interpreted in the logic. Terms declared as axioms
are added to the logical context for the rest of the module, and do not generate
a verification condition (that is, the user does not need to prove them). Lemmas
need to be proved first, and then they are added to the logical context. Finally,
goals need to be proved but do not add anything to the logical context.

WhyML also allows users to declare logical functions. They use a similar
syntax as program functions, but they cannot be used in program expressions.
Instead, they can be used in logical terms.

〈decl〉 ::= ...
| function 〈ident〉 〈parameter〉+ : 〈type-expr〉 = 〈term〉
| predicate 〈ident〉 〈parameter〉+ = 〈term〉

Predicates are a special case of functions whose return type is a proposition.
For example, the following predicate states that two mappings are equal on an
interval.

predicate map_eq_sub (a1 a2 : int → ’a) (l u : int) =
forall i:int. l ≤ i < u → a1[i] = a2[i]

Function specifications

Arguably, the main use of Why3 as a verification platform is to specify contracts
for program functions and to verify that the functions do indeed fulfill their
contracts. Function specifications are a list of clauses. The most common
clauses are requires, which adds a precondition, and ensures, which adds a
postcondition. The semantics of these clauses is as follows: if the preconditions
are valid when the function is called, then the function has no runtime error
and the postconditions are valid at the end of the execution. Let us now give a
specification to the mul function from Sec. 2.1.2.

34 CHAPTER 2. WHY3 BASICS

let mul (x y:int) : int
requires { x ≥ 0 }
ensures { result = x * y }

=
let ref res = 0 in
for i = 0 to x-1 do

res ← res + y
done;
res

The mul function computes the product of x and y if x is non-negative,
which is specified in the postcondition. If x is negative, the function returns 0
(incorrectly unless y is 0), so we exclude this case in the precondition. Note that
there is no consideration of overflow. Indeed, the built-in int type corresponds
to unbounded, mathematical integers. If we ask Why3 to verify this function, it
fails. Indeed, the proof that mul indeed computes x * y is not entirely trivial.
Essentially, it is a proof by induction on i. However, the for loop is not unrolled
by Why3 (more details can be found in Sec. 2.3). The user needs to give an
extra hint to help Why3 prove this function. In this case, this hint is a loop
invariant. WhyML for and while loops can be annotated by one or more loop
invariants using a clause such as invariant {f}. This clause means that the
formula f is valid at the start of each iteration of the loop, as well as at the loop
exit (in this case, when i=x). In our case, a valid invariant is as follows:

let mul (x y:int) : int
requires { x ≥ 0 }
ensures { result = x * y }

=
let ref res = 0 in
for i = 0 to x-1 do

invariant { res = i * y }
res ← res + y

done;
res

This decomposes the task of proving the postcondition into four subtasks:

1) At the start of the loop, res = 0 * x (invariant initialization).

2) For all 0 <= n <= x-1, assuming the invariant is valid for i = n, prove
that it stays valid for i = n+1 (invariant preservation).

3) At the end of the loop, knowing that res = ((x-1) + 1) * y, prove the
postcondition.

4) Assuming that the loop was never entered (that is, x=0), prove the post-
condition.

All four tasks are easily discharged by automated solvers, and the program is
proved correct.

Abstract functions

Program functions may be declared without a body using the val keyword.
They are the program-side equivalent of axioms. Their specification is accepted
without proof.

2.2. LOGIC AND SPECIFICATIONS 35

A typical use case for val declarations is the definitions of data structures
in WhyML’s standard library. The following example comes from the module
that define WhyML arrays. It is the equivalent of OCaml’s Array.make, that
is, it creates an array of n cells initialized to v.

val make (n: int) (v: ’a) : array ’a
requires { n ≥ 0 }
ensures { forall i:int. 0 ≤ i < n → result[i] = v }
ensures { length result = n }

This function can be called inside WhyML code exactly like a regular pro-
gram function. Indeed, when computing verification conditions of a program
that involves a function call, Why3 does not consider the body of the called
function, but only its specification. However, make obviously cannot be ex-
tracted to OCaml code. Instead, it should be replaced by a suitable OCaml
function, such as Array.make (Sec. 3.4.4).

Function specifications may also have a writes clause that specifies which
mutable regions are modified by the function, such as writes { x, y.data }.
If there is no writes clause in the specification of a non-abstract function, it
can be inferred automatically by Why3 from the function body.

As the specifications of val declarations are accepted as axioms, they are a
common source of errors. In particular, note that Why3 has no way of inferring
which regions are modified by an abstract function. If the user does not provide
a writes clause, Why3 assumes that the function does not modify anything. For
example, the following abstract function would swap two elements in an array,
if its author did not forget the writes clause. As written, it instead declares
that two elements of the array are equal, which rapidly leads to inconsistencies.

val bad_swap (a: array int) (i j:int)
requires { 0 ≤ i < length a ∧ 0 ≤ j < length a }
ensures { a[i] = old a[j] ∧ a[j] = old a[i] }
(* writes { a } was forgotten *)

Termination

By default, Why3 users are required to prove that their programs terminate (or
annotate explicitly those that do not). Program termination is undecidable in
general, so hints from the user are needed. All recursive functions and while
loops must be annotated with a variant clause. The variant is a program
expression that is decreasing at each recursive call or loop iteration on some
well-founded order.

The following example is the ancient Egyptian multiplication algorithm. It
computes the product of a and b using only additions, multiplications by 2, and
divisions by 2. It is analogous to the square-and-multiply algorithm. The loop
variant is the variable y. It is non-negative and divided by 2 at each iteration
(rounding down), so it strictly decreases until loop exit.

let mul (a b: int) : int
requires { b ≥ 0 ∧ a ≥ 0 }
ensures { result = a * b }

=
let ref x = a in
let ref y = b in
let ref z = 0 in
while y 6= 0 do

36 CHAPTER 2. WHY3 BASICS

invariant { y ≥ 0 }
invariant { z + x * y = a * b }
variant { y }
if mod y 2 = 1 then z ← z + x;
x ← 2 * x;
y ← div y 2

done;
z

Ghost code

WhyML variables and expressions may be declared ghost [35]. Ghost code is
present for verification purposes only. It may not affect non-ghost computations,
or be used in non-ghost expressions, or write in non-ghost mutable fields. This
non-interference is enforced by Why3’s type system. As a result, ghost code can
safely be erased when executing WhyML code or when extracting it to OCaml
or C code.

The following example makes use of ghost code to prove the correctness of
Euclide’s algorithm, which computes the greatest common divisor of two inte-
gers. It is actually an implementation of the extended Euclidean algorithm, that
is, it computes the Bézout coefficients of x0 and y0 in addition to their great-
est common divisor. This is specified in the second postcondition. The last two
loop invariants are necessary to prove the second one. However, the instructions
and variables that pertain to the computation of the Bézout coefficients a and b
are ghost. If they were erased, we would end up with a correct (although more
difficult to prove) implementation of the regular Euclidean algorithm.

let gcd (x0 y0: int) : (result: int, ghost a: int, ghost b: int)
requires { x0 ≥ 0 ∧ y0 ≥ 0 }
ensures { result = gcd x0 y0 }
ensures { a*x0 + b*y0 = result }
=
let ref x = x0 in
let ref y = y0 in
let ghost ref a = 1 in let ghost ref b = 0 in
let ghost ref c = 0 in let ghost ref d = 1 in
while y > 0 do

invariant { x ≥ 0 ∧ y ≥ 0 }
invariant { gcd x y = gcd x0 y0 }
invariant { a * x0 + b * y0 = x }
invariant { c * x0 + d * y0 = y }
variant { y }
let r = mod x y in
let ghost q = div x y in
x ← y; y ← r;
let ghost ta = a in
let ghost tb = b in
a ← c; b ← d;
c ← ta - c * q;
d ← tb - d * q;

done;
x, a, b

Assertions

Another example of ghost code is program assertions. The expression assert
{ f }, where f is a logical formula, requires the user to prove f and then adds

2.2. LOGIC AND SPECIFICATIONS 37

it to the logical context. It has no computational content. The following is an
example of a (trivial) assertion in WhyML code.

let x = 42 in
let y = 12 in
assert { x + y = 54 }

It may be the case that the formula that is being asserted is itself difficult
to prove. In this case, one may give proof cut indications using the by and so
logical connectives [20]. If the formula A by B occurs as a goal, Why3 generates
two verification conditions: one for B, and one for B -> A. When it appears as
a premise, it is reduced to simply A. The keyword so is the dual of by. When A
so B appears as a premise, the conditions A and A -> B are both generated and
kept in the context. When it appears as a goal, only A is kept. As a result, one
may write assertions such as assert { A by B1 so B2 so ... Bn }, with as
many hints as needed to make the proof easier. The associativity of by and so
is such that the formula is equivalent to A by (B1 so B2...). Why3 generates
goals for B1 and each of the implications in the chain B1 -> ... -> Bn -> A.
However, after the assertion, only A is kept in the logical context, so the proof
indications do not pollute the proof context.

Type invariants

Record types can carry invariants, as follows:

type t = { a: int; mutable b: int }
invariant { 0 < a < b }

Let us briefly explain the semantics of type invariants. In the logic, type
invariants always hold. In particular, in order to construct a value of type t,
one must first prove that its fields validate the invariant. Only valid records
can be passed to logical functions or predicates. In programs, type invariants
hold at the boundaries of function calls. They can be temporarily broken in the
middle of functions, although they must be restored before passing the record
to another function (in order to satisfy the calling convention of the callee). For
example, the following function can be verified.

let f (x:t) =
x.b ← 0; (* invariant broken *)
x.b ← x.a + 2 (* invariant restored *)

However, the following functions cannot. In both cases, the program at-
tempts to pass a broken record to a function or a predicate. Why3 checks the
type invariant, which cannot be proved.

let g (x:t) =
x.b ← 0; (* invariant broken *)
f x; (* broken record passed to program function *)
x.b ← x.a + 2

predicate p (x:t) = (x.b ≤ x.a + 1)

let h(x:t) =
x.b ← x.a;
assert { not p x }; (* broken record passed to predicate *)
x.b ← x.b + 1;

38 CHAPTER 2. WHY3 BASICS

Snapshots and labels

If t is a WhyML type, the snapshot type {t} denotes a ghost value of type t
produced by a pure logical function. As their name indicates, snapshots cannot
be mutated. For example, {int} is the same as int, but {array int} denotes
an array that can be read from, but not written into. The expression pure {e}
computes a ghost snapshot of e. The following toy program uses it to express
its loop invariant more concisely.

let ref x = 42 in
let x0 = pure { x } in
for i = 0 to 10 do

invariant { x = x0 + i }
x ← x + 1;

done

Snapshots may also be accessed retroactively in assertions and specifications
using labels. Labels are a way to give a name to a particular program point.
They are set using the syntax label L in, where L is the name of the label.
The term e at L then refers to a snapshot of the expression e at the program
point labeled by L. As an example, the previous snippet is equivalent to the
following one:

let ref x = 42 in
label StartLoop in
for i = 0 to 10 do

invariant { x = x at StartLoop + i }
x ← x + 1;

done

Function declarations typology

There are many different kinds of WhyML function declarations. Let us recap
them briefly.

let

Regular program function with specification and body.

val

Program function without a body (specification only).

function

Logical function symbol. No side effects, cannot be used in non-ghost
program code.

predicate

Logical predicate symbol. Special case of function with Boolean return
type.

let function, val function, let predicate, val predicate

Program function with no side effects, can be used in both programs and
logic.

2.3. COMPUTING THE VERIFICATION CONDITIONS 39

let lemma

Ghost program function (without side effects). The specification is added
to the logical context as a lemma which states “for all values of the pa-
rameters, the precondition of this function implies the postcondition”.

In addition, all program functions may be declared ghost (e.g., let ghost
function ...). Ghost functions may only be called in ghost code and must
have no side effects.

2.3 Computing the verification conditions
Let us provide some more details on how verification conditions are computed.
This section first goes over the weakest-precondition calculus used by Why3,
and then describes how it interacts with aliasing.

2.3.1 Weakest precondition calculus
WhyML functions are annotated with contracts based on Hoare logic [51, 40].
Given an expression e, a precondition P and a postcondition Q, where P and Q
are assertions in first-order logic, one can write the Hoare triple {P}e{Q}. Its
intuitive reading is: Whenever the state before the execution of e is such that P
holds, then the computation terminates, there is no runtime error, and the final
state satisfies Q. Hoare triples can be derived from a set of inference rules based
on program syntax. A soundness theorem implies that any derivable triple is
correct. The inference rule for the let-in construct is shown in Figure 2.1.

{P}e1{Q[v ← result]} {Q}e2{R}
{P}let v = e1 in e2{R}

Figure 2.1: Some Hoare triple inference rules.

The contract of a function forms a Hoare triple with the function body. The
precondition P is the conjunction of the requires clauses, and the postcondi-
tion Q is the conjunction of the ensures clauses. For example, consider again
the ancient Egyptian multiplication algorithm from the previous section. It is
reproduced in Fig. 2.2 below.

Using this contract, Why3 produces a logical goal that implies that the
program satisfies this specification. The aim is to find out whether the Hoare
triple defined by the contract is valid. Using the inference rules naively would
be far too tedious. Indeed, the rule for sequences of instructions (see Figure 2.1)
requires an intermediate assertion between each pair of statements. The code
would need to be very heavily annotated for the naive approach to work.

Instead, Why3 uses Dijkstra’s weakest-precondition calculus [28]. We define
the predicate transformer WP(., .). Where e is an expression and Q a post-
condition, WP(e,Q) computes the weakest precondition P such that {P}e{Q}
holds. This is a way to automate the search for intermediate assertions in the
derivations. A subset of the computation rules for WP(., .) can be found in
Figure 2.3.

The soundness theorem of WP states that for any e and Q, the triple
{WP(e,Q)}e{Q} is valid. Therefore, to show that a contract {P}e{Q} is valid,

40 CHAPTER 2. WHY3 BASICS

let mul (a b: int) : int
requires { b ≥ 0 ∧ a ≥ 0 }
ensures { result = a * b }

=
let ref x = a in
let ref y = b in
let ref z = 0 in
while y 6= 0 do

invariant { y ≥ 0 }
invariant { z + x * y = a * b }
variant { y }
if mod y 2 = 1 then z ← z + x;
x ← 2 * x;
y ← div y 2

done;
z

Figure 2.2: Ancient Egyptian multiplication.

WP(t, Q) = Q[result← t]

WP(x← t, Q) = Q[x← t]

WP(e1; e2, Q) = WP(e1,WP(e2, Q))

WP(let v = e1 in e2, Q) = WP(e1,WP(e2, Q)[v ← result])

WP(assert {R}, Q) = R ∧ (R→ Q)

Figure 2.3: Some WP rules.

it suffices to prove that P →WP(e,Q). Why3 computes WP(e,Q) and outputs
P →WP(e,Q) as a logical goal for the user to prove.

Why3 requires annotating loops with an invariant. The corresponding WP
computation makes sure that this invariant is valid at the start of the loop,
maintained through one iteration of the loop, and that at the end of the loop,
it implies the required postcondition. A simplified version of this rule is shown
in Figure 2.4. It assumes that the only modification of the memory state in the
loop occurs on a variable v, and does not handle termination.

WP(while t do invariant {J} e done, Q) ≡
J ∧ [invariant initialization]
∀v.

(J ∧ t→WP(e, J))∧ [invariant preservation]
(J ∧ ¬t→ Q) [loop exit and postcondition]

Figure 2.4: Simplified WP rule for while.

2.3. COMPUTING THE VERIFICATION CONDITIONS 41

Function calls, modularity

Much like loops, function calls are handled in a modular way in the computation
of verification conditions. When computing WP(f(x), Q), Why3 does not look
inside the body of f, only its specification is used. This is why abstract val
functions can be called in just the same way as regular functions. A simplified
version of the WP rule for function calls can be found in Fig. 2.5. It assumes
that the function f has a single formal parameter x, and that it does not write
into any mutable region that is not a local variable of f . The formulas Pf and
Qf denote the precondition and postcondition of f , respectively.

WP(f t,Q) ≡ Pf [x← t] ∧ [precondition of f]
(∀result. Qf [x← t])→ Q [postcondition of f implies Q]

Figure 2.5: Simplified WP rule for function calls.

Although it forces users to write strong enough specifications for their func-
tions, hiding the details of the functions that are called from the proof context
is a useful feature. Indeed, automated solvers would be much less efficient if
the context was polluted by useless details about the implementation of called
functions. This problem may still occur when verifying very large functions (on
the order of hundreds of lines). By the end of the function body, the proof con-
text contains all sorts of details about the previous instructions. Some of these
details are needed, but some are not. This makes automated solvers quite slow.
One solution is to cut large functions into many smaller ones to take advantage
of proof modularity, but it is not always practical.

In order to mitigate this problem, WhyML expressions may be isolated into
abstract blocks (also called “black boxes”). If e is a valid WhyML expression,
it can be given a specification using the syntax begin ensures { f } e end
(preconditions are allowed but typically not needed). A verification condition
is generated for the postcondition f of e, and in the rest of the program, the
details of e are hidden from the proof context, only its specification remains.
For verification concerns, this is exactly the same as if e was enclosed in a
function call. However, the user does not need to write a precondition, and the
structure of the program does not need to be changed artificially for the sake of
proof convenience.

2.3.2 Aliasing

It is relatively easy to build WhyML programs that involve aliases, that is,
multiple separate ways to access the same memory zone. Consider the example
from Fig. 2.6. The function double_incr increments two integer references
passed as parameters. What if they are the same?

The WP rules from Sec. 2.3 break down in presence of aliasing. For example,
the rule for assignment is WP(x ← t, Q) = Q[x ← t]. If the variables x and y
are aliased, then the correct answer would instead be Q[x← t, y ← t]. In short,
in order to compute WP(x← t, Q), we need to statically know which variables
are aliased to x. In general, all ways to access a given memory location must

42 CHAPTER 2. WHY3 BASICS

1 let double_incr (ref x y: int) =
2 ensures { x = old x + 1 ∧ y = old y + 1 }
3 =
4 x ← x + 1;
5 y ← y + 1
6

7 let error () =
8 let ref x = 0 in
9 double_incr x x;

10 assert { x = 1 } (* true from the postcondition. But x=2... *)

Figure 2.6: An ill-typed WhyML program.

be statically known.
Alias tracking is performed through the type system. Mutable types carry

an identity token called region [44]. For example, an integer reference might
have type ref int ρ. Two variables are aliased if and only if they have the
same region. Some programs do not type check, such as if c then x else y
if x and y have regions that cannot be unified. Indeed, Why3 would be hard-
pressed to infer the region carried by the type of this expression. Conversely,
formal parameters of functions are assumed to be separated. This resolves the
troubling example of double_incr in a simple way. The call to double_incr
at line 9 is ill-typed, so Why3 rejects it.

This static alias tracking does not come for free. For example, we cannot
write functions whose parameters are maybe-aliased. Neither can we declare
recursive mutable types, such as a mutable linked list. Indeed, they might carry
an unbounded number of regions.

Resets

Some expressions change the aliasing status of mutable objects. This commonly
occurs with double references. Consider the following type of resizable arrays.
It consists of a record with a mutable array field.

type array ’a =
private { mutable ghost elts : int → ’a;

length : int }
invariant { 0 ≤ length }

val make (n: int) (v: ’a) : array ’a
requires { n ≥ 0 }
ensures { forall i:int. 0 ≤ i < n → result[i] = v }
ensures { length result = n }

type r = { mutable data: array int }

A variable of type r can be resized by substituting its data field with a new
array. However, this breaks the region-alias correspondence:

1 let x = { data = Array.make 10 0 } in
2 let olddata = x.data in
3 (* x : r ρ (array int ρ1) *)
4 let newdata = Array.make 20 0 in
5 (* newdata: array int ρ2*)
6 x.data ← newdata

2.4. WHY3 IN PRACTICE 43

The assignment at line 6 can be seen as attempting to change the type of x
from r ρ (array int ρ1) to r ρ (array int ρ2). However, we cannot simply up-
date the type. For example, what about the expression “if ... then x.data
<- newdata else ()”? Rejecting these programs outright would be too re-
strictive. However, the only way to observe the type inconsistency is through
olddata and newdata, which are the only remaining ways to access ρ1 or ρ2 out-
side x itself. Therefore, Why3 accepts the program and invalidates the variables
olddata and newdata. More precisely, it resets the regions ρ1 and ρ2 so that
the only way to access them is through x, so it does not matter if x contains ρ1

or ρ2 in terms of aliases with the rest of the program. So, the program above
is accepted, but if we attempt to use olddata or newdata later, Why3 raises
a type error stating that the assignment at line 6 prevents further use of the
variable.

2.4 Why3 in practice

Assume we have written a well-formed WhyML file. How do we verify it prac-
tice? The usual way to do so is through Why3’s graphical interface (Fig. 2.7).
Why3 computes the verification conditions of each function and splits them into
independent subgoals. It is then up to the user to discharge them. Why3 inter-
faces with various SMT solvers by outputting the verification conditions in their
native syntax. For example, in the screenshot from Fig. 2.7, goals 4 and 6 have
been verified using Alt-Ergo, and goal 5 using Z3. Interactive theorem provers
such as Coq may also be used.

Figure 2.7: Why3’s graphical interface.

Another question is the purpose of WhyML programs. Given the ability to
verify their correctness, one may wonder how to leverage it to verify programs
written in more widely-used programming languages.

One way to do so is translating programs from other languages into WhyML.
Through various front-ends (Frama-C/WP, Krakatoa, GNAT), WhyML can be
used as an intermediate language for the verification of C, Java, or Ada pro-
grams [36, 58, 22].

44 CHAPTER 2. WHY3 BASICS

Another possibility is to go the other way around. Why3’s extraction mecha-
nism can compile verifiedWhyML programs into correct-by-construction OCaml
programs. One contribution of this work is the capability to do the same for C
programs. This is the main focus of the next chapter.

Chapter 3

Verifying C programs with
Why3

This chapter presents two contributions. The first is a model of the C language
in WhyML. It includes an axiomatization of C’s memory management, as well
as various data types. The second contribution is an extraction mechanism from
WhyML to C. Using these, Why3 can now be used to verify C programs through
extraction. The workflow we advocate is as follows. First, we reimplement the
C program we want to verify as a WhyML program. The WhyML model of the
C language allows WhyML programs to be written in a style that is very close
to C, so this translation from C to WhyML is often straightforward. Then, we
verify the WhyML program in any of the usual ways. Finally, using Why3’s
extraction mechanism, we produce verified C code. In this chapter, we walk
through this workflow and verify a tiny C library that implements a ring buffer
data structure. The chapter is structured as follows. We start by presenting
our models of C integer and character types (Sec. 3.1). In Sec. 3.2, we present
a ring buffer library from the open-source operating system Contiki. We go
over its C source code, a transcription in WhyML, and a proof of the latter’s
correctness. Section 3.3 presents our model of C’s memory. We outline the
extraction mechanism from WhyML to C in Sec. 3.4. Finally, in Sec. 3.5, we
review related work and evaluate our design choices.

3.1 Modeling C types

Before being able to write C programs in WhyML, we must ensure that the
semantics of the various C types are preserved. For example, WhyML’s built-
in int type corresponds to mathematical integers, with no consideration of
overflow. Therefore, C programs that involve machine integer types such as
uint64_t cannot be written faithfully using WhyML’s int type. Instead, we
need to use some other Why3 types. This section presents axiomatics for the
various C integer and character types. Let us start by outlining the correctness
requirements for our various models.

Broadly speaking, a Why3 model of a C integer type, say uint64_t, consists
in a theory that declares a corresponding type and all the relevant functions.
The functions are typically not given a body. Instead, they are only given a

45

46 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

specification. From a logical standpoint, we are adding extra axioms to our
context. Let us now explain what we expect of them with an example. The fol-
lowing snippet is an incomplete sketch of what could be a model of the uint64_t
type. A more complete model can be found in Sec. 3.1.1.

type uint64 = < range 0 0xffffffffffffffff >

val add (x y:uint64) : uint64
ensures { uint64’int result

= mod (uint64’int x + uint64’int y) (uint64’maxInt + 1) }

The range constructs defines a type that ranges over an interval of integers.
It also adds the symbols uint64’int, uint64’minInt and uint64’maxInt to
the context. The uint64’int function maps uint64 values to int values be-
tween 0 and 264 − 1. It is a logical function, but not a program function, so it
can only be used in specifications and assertions. The uint64’maxInt constant
is the largest element of the uint64 type. More details on range types can be
found in Sec. 2.1.3.

Conversely, the add function is a program function. The val keyword means
that the function does not have a body, and that its specification is an axiom
rather than a theorem.

When adding new axioms to a logical system, the first thing to ensure is
that the system remains logically consistent. In our case, there is more to do.
The goal is not only to prove a WhyML program, but also the corresponding
extracted C code. However, the add function does not have a body to compile
to C. So, calls to add need to be translated to some C code somehow. This is
done using a driver file. For each WhyML type and val declaration, the driver
needs to contain a directive that explains how to translate it to C. The driver
directives are as much a part of the model as the WhyML theory. In our case,
the relevant driver directives might look like the following.

syntax type uint64 "uint64_t"
syntax val add "%1 + %2"

The meaning of the directive for add is that any call to add in the WhyML
source code is replaced by the string template, substituting the first argument to
add for "%1" and the second argument for "%2". The A-normalization performed
by Why3 ensures that the arguments are plain variables, so there is no need to
worry about the side effects of the computations of the arguments.

In addition of the logical consistency of the model of uint64_t, we also
need to ensure the following. First, any valid WhyML program should be either
extracted to a valid C program (syntactically correct and free of undefined
behavior), or rejected by the extraction. Second, the extracted code should
fulfill the specification of the WhyML program. In the case of uint64_t, the
meaning of this is somewhat clear. The abstract functions of the module have
preconditions on the function parameters and postconditions that talk only
about the returned value. The C standard [53] specifies what the result of the
corresponding C operators, or combinations of operators should be. The model
is correct if for all inputs that validate the precondition, the extracted code does
not invoke undefined behavior and the result validates the postcondition.

However, there are more complex cases. The specifications may refer to
things that are not mirrored in the extracted C code, such as ghost fields.
In these cases, the question of the consistency of the model is not yet clearly

3.1. MODELING C TYPES 47

answered. Establishing a formal semantics of WhyML and a proof of correctness
of the extraction is a significant challenge left for future work.

3.1.1 Integer types

Why3’s standard library contains a modular axiomatization of machine integers.
The Bounded_int theory contains axioms and functions symbols for integers
that take values between min and max, which are left undefined. The Unsigned
theory is a specialized version of the Bounded_int theory that specifies that min
is 0. These theories can then be instantiated with appropriates values of the
bounds to model integer types of various lengths. Figure 3.1 presents abridged
versions of these theories. Notice the meta coercion declaration. When it
is present, the to_int function is automatically applied in logical assertions
and specifications. Otherwise, the postcondition of (+) would contain three
occurrences of to_int.

In addition to Int32, the standard library contains instances of Bounded_int
for unsigned 32-bit integers, as well as (signed and unsigned) 64-bit integers, and
63-bit integers for OCaml. Users may easily generate new instances with the
clone directive to model integers of different sizes.

Let us now focus on the arithmetic primitives more closely. The Bounded_int
(*) primitive implements what we could call defensive multiplication; it re-
quires, as a precondition, that the product of the operands does not overflow.
It is the only legal way to compute multiplications on C signed integers. In-
deed, multiplying two signed integers when their product is not in the range of
representable integers invokes undefined behavior. However, computations on
C unsigned integers are allowed to overflow, in which case the results silently
wrap. Therefore, the theory of unsigned integers features extra multiplication
primitives, in addition to the (*) operator inherited from Bounded_int. These
operators are shown in Figure 3.2. The function mul_mod computes the product
of two unsigned integers with wraparound semantics. At extraction, both (*)
and mul_mod can safely be replaced by the C operator (*) (see Sec. 3.4.4). In
WhyML programs, it is up to the user to choose between the two depending
on the proof context. Evidently, the postcondition of (*) is stronger, but its
precondition is stronger as well. Finally, mul_double computes the product
of two integers and returns the full product as a pair of integers. This prim-
itive does not correspond to a standard C operator, but can be implemented
using inline assembly or other compiler-specific features (see Sec. 4.8.2 for an
in-depth discussion). Similarly to multiplication, addition and subtraction also
come in different flavors (defensive against overflow, two’s complement, with
carry in/out).

Note that the translation from mul_mod to the C operator * assumes that
the type t is at least as wide as the C int type, or the operands would be
implicitly converted to int first through integer promotion. (See Sec. 3.2.2 for
an explanation of integer promotion and an example.) As a result, our models
of 32-bit integers implicitly assume that the C int type has bit-width 32 or less.
In the end, we will assume that it is exactly 32 bits wide.

48 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

module Bounded_int

type t

constant min : int
constant max : int

function to_int (n:t) : int
meta coercion function to_int (* Cast t to int in logical declarations *)

val to_int (n:t) : int
ensures { result = n }

predicate in_bounds (n:int) = min ≤ n ≤ max

axiom to_int_in_bounds: forall n:t. in_bounds n

val (+) (a:t) (b:t) : t
requires { [@expl:integer overflow] in_bounds (a + b) }
ensures { result = a + b }

val (*) (a:t) (b:t) : t
requires { [@expl:integer overflow] in_bounds (a * b) }
ensures { result = a * b }

end

module Unsigned

let constant min_unsigned : int = 0

clone export Bounded_int with constant min = min_unsigned, axiom .

constant radix : int = max + 1

end

module Int32

type int32 = < range -0x80000000 0x7fffffff >

clone export Bounded_int with
type t = int32,
constant min = int32’minInt,
constant max = int32’maxInt,
function to_int = int32’int

end

Figure 3.1: Bounded integers in Why3.

3.1. MODELING C TYPES 49

val mul_mod (x y:t) : t
ensures { to_int result = mod (to_int x * to_int y) radix }

val mul_double (x y:t) : (t,t)
returns { (r,q) →

to_int r + radix * to_int q =
to_int x * to_int y }

Figure 3.2: Unsigned multiplication primitives.

3.1.2 Characters, strings

Strings are a built-in type in Why3, with no underlying notion of characters.
The main operations are string concatenation and substring extraction. There
is a notion of length, but it is axiomatized rather than based on a number of
characters. One of the main goals of this choice is to adopt the same modeliza-
tion of strings as the most popular SMT solvers that support them. Another
reason is to allow support for multiple sets of characters (ASCII, Unicode, etc.)
rather than choosing a specific character set to base the modelization upon. The
Why3 standard library also contains a theory of 8-bit characters. The charac-
ters are identified with strings of length 1, and are mapped to integers from 0
to 255. This character type is intended to be mapped to OCaml’s char type.
Figure 3.3 shows a short excerpt of this theory.

type char = abstract {
contents: string;

} invariant {
length contents = 1

}

axiom char_eq: forall c1 c2.
c1.contents = c2.contents → c1 = c2

function code char : int

axiom code: forall c. 0 ≤ code c < 256

Figure 3.3: Why3’s char type.

Let us now discuss how to build a suitable model of C strings and char-
acters upon this. There are three character types in C: char, signed char,
and unsigned char. Let us first review the assumptions we can make about
them. The C standard imposes that characters must have bit length at least 8
(minimum value of CHAR_BIT). We will make the assumption that their length
is exactly 8. From there, we can easily model signed char and unsigned
char using range types (schar and uchar) covering the intervals [−128, 127]
and [0, 255] respectively. As instances of Bounded_int, they inherit the same
arithmetic primitives as the integer types. The situation is a bit more complex
for char. The C standard states that char shall have the same range, repre-
sentation and behavior as one of the other two character types, but leaves it
up to the implementation to decide which one. For the sake of portability, we
would rather not make that choice. Rather, we make the assumption that the

50 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

implementation uses the seven-bit ASCII character set. Whether characters are
signed or unsigned, we assume that the characters we care about the most are
in the range [0, 127], which fits both signed char and unsigned char. Thus,
we can underspecify the C char type. We represent it using the type of Why3
ASCII characters, so it does not get any arithmetic primitives. The code func-
tion that converts from char to int maps characters to the interval [0, 255], but
this does not mean we assume that characters are unsigned. Indeed, the only
place where the value of code matters is if it used to convert to some other type
which allows arithmetic. We define such conversion functions between char and
uchar, as well as between char and schar. However, we only specify the behav-
ior of these functions for characters between 0 and 127. Figure 3.4 contains an
excerpt of the theory of unsigned char. The signed char theory is analogous.

type uchar = < range 0 255 >

let constant max_uchar : int = 255
function to_int (x:uchar) : int = uchar’int x
let constant length : int = 8
let constant radix : int = 256

(* unsigned integer arithmetic *)
clone export mach.int.Unsigned with

type t = uchar,
constant max = uchar’maxInt,
constant radix = radix,
goal radix_def,
function to_int = uchar’int

(* char can be either signed or unsigned *)
val function of_char (x:char) : uchar

ensures { 0 ≤ code x ≤ 127 → result = code x }

val function to_char (x:uchar) : char
ensures { 0 ≤ x ≤ 127 → code result = x }

Figure 3.4: unsigned char in Why3.

Now that we have a model for C characters, we can discuss strings. C strings
are simply null-terminated arrays of characters, so we do not need to write
WhyML programs that use the string type. We can simply use pointers to
the various kinds of characters. The only exception to this is string literals. In
WhyML programs, string literals are interpreted as values of the string type,
and we need some way to allow these in programs destined to be extracted to C.

For now, we only support string literals in a limited way. The string type
is extracted to the C type char*. WhyML programs meant to be extracted to
C can read from values of the string type using the following get function, but
not write into them.

val get (s:string) (i:int32) : char
requires { 0 ≤ i ≤ length s }
ensures { i < length s → result = s[i] }
ensures { i = length s → result = chr 0 }

Let us explain the specification of get. In WhyML’s model of characters,
string literals work the same way as OCaml strings. The ([]) operator is a

3.2. EXAMPLE: CONTIKI’S RING BUFFER LIBRARY 51

logical function that has the same semantics as the OCaml function String.get
as long as the argument is between 0 (included) and the length of the string
(excluded). For example, in the program let s = "abc" in ..., then length
s is 3, s[0] is the character a, and s[2] is the character c. The specification of
([]) does not define the values s[3] and s[-1]. In C, string literals work in
a similar way, with one key difference. In the program char* s = "abc", s[3]
is the null character. This is taken care of in the second postcondition of get
above. The precondition ensures that we can only read inside the string or one
past its end (dereferencing s[-1] or s[4] would invoke undefined behavior).

This function is enough to use read-only string literals in WhyML programs
that otherwise manipulate strings as pointers to characters. An example can be
found in Sec. 4.7.

3.2 Example: Contiki’s ring buffer library
A ring buffer (or cyclic buffer) is a data structure that uses a buffer as if its end
and its beginning were connected, that is, as if it was circular. It is well-suited
to implement a FIFO queue with a maximum length, as both reads and writes
are constant time with no need to shift the elements around when the end of
the buffer is reached.

Contiki is an open-source operating system designed for embedded systems
and IoT devices with small amounts of memory. It is written in C. As part of
its standard library, it contains a ring buffer implementation. Let us review this
C program and attempt to produce a verified version using Why3.

3.2.1 C code overview
The following listings are taken from the ringbuf.h header and the ringbuf.c
file in the sources of Contiki 2.6. Comments have been edited for readability.

/**
* Structure that holds the state of a ring buffer. This
* struct is an opaque structure with no user-visible
* elements.
*/
struct ringbuf {
uint8_t *data;
uint8_t mask;
uint8_t put_ptr, get_ptr;

};

Figure 3.5: Ring buffer definition.

The ringbuf struct is defined in Figure 3.5. It contains a pointer to its data
(an array of bytes), as well as the offsets put_ptr and get_ptr. get_ptr is
the offset of the oldest element in the buffer (that is, the next one to be read).
put_ptr points one past the newest element in the buffer, that is, the offset
where the next element should be written. Finally, mask stores information
about the size of the buffer. More specifically, the size of the buffer is always
a power of 2, and mask is the size of the buffer minus one. This allows for fast
computations modulo the buffer size. Indeed, for all non-negative x, we have

52 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

x % (mask + 1) == x & mask, because the binary representation of mask is a
block of all zeroes followed by a block of all ones. The ring buffer is initialized
by providing an external buffer to store the data (Figure 3.6).

void
ringbuf_init(struct ringbuf *r, uint8_t *dataptr, uint8_t size)
{
r->data = dataptr;
r->mask = size - 1;
r->put_ptr = 0;
r->get_ptr = 0;

}

Figure 3.6: Ring buffer initialization.

Let us now discuss the invariants of the ring buffer structure more precisely.
The ring buffer contains up to size - 1 elements, where size is the length of
the data array and is a power of two. The number of elements currently stored in
the buffer is equal to the difference put_ptr - get_ptr (all offset computations
are modulo size). The elements are stored in the range from offset get_ptr
(for the oldest element) to put_ptr - 1 (for the newest).

A couple of small utility functions, reproduced in Figure 3.7, make the length
of the buffer and the number of stored elements accessible to the outside world
(the actual fields of the structure are private).

int ringbuf_size(struct ringbuf *r)
{
return r->mask + 1;

}

int ringbuf_elements(struct ringbuf *r)
{
return (r->put_ptr - r->get_ptr) & r->mask;

}

Figure 3.7: Ring buffer utility functions.

The elements are stored and read in a first-in-first-out order (FIFO), as
shown in Figure 3.8. The ringbuf_put function checks if the buffer is full
(by comparing the number of elements currently stored against the maximum
amount). If it is not full, it stores the new element at offset put_ptr and
increments that offset. Similarly, the ringbuf_get function checks that the
buffer is not empty, and if it is not, it reads the element at read_ptr and
increments the offset.

3.2.2 Contiki’s ring buffer, in WhyML

Let us now try to implement Contiki’s ring buffer in WhyML. The objective is
to do so in a way that preserves the semantics of Contiki’s ring buffer and that
can be extracted to a similar C program.

3.2. EXAMPLE: CONTIKI’S RING BUFFER LIBRARY 53

int
ringbuf_put(struct ringbuf *r, uint8_t c)
{
/* Check if buffer is full. If it is full, return 0 to indicate that

the element was not inserted into the buffer.
*/
if(((r->put_ptr - r->get_ptr) & r->mask) == r->mask) {
return 0;

}
r->data[r->put_ptr] = c;
r->put_ptr = (r->put_ptr + 1) & r->mask;
return 1;

}

int
ringbuf_get(struct ringbuf *r)
{
uint8_t c;

/* Check if there are bytes in the buffer. If so, we return the
first one and increase the pointer. If there are no bytes left, we
return -1.

*/
if(((r->put_ptr - r->get_ptr) & r->mask) > 0) {
c = r->data[r->get_ptr];
r->get_ptr = (r->get_ptr + 1) & r->mask;
return c;

} else {
return -1;

}
}

Figure 3.8: Ring buffer write and read.

54 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

type uint8 = < range 0 0xff >
let constant max_uint8 : int = 0xff
let constant radix : int = max_uint8 + 1
let constant zero_unsigned : uint8 = 0

clone export mach.int.Unsigned with
type t = uint8,
constant max = uint8’maxInt,
constant radix = radix,
constant zero_unsigned,
function to_int = uint8’int

let add’ (x y:uint8) : int32
ensures { result = x + y } (* no modulo *)

= Int32.(+) (to_int32 x) (to_int32 y)

let sub’ (x y:uint8) : int32
ensures { result = x - y } (* no modulo *)

= Int32.(-) (to_int32 x) (to_int32 y)

val band_pow2 (x:int32) (y:uint8) (ghost exp:int) : int32
requires { y = power 2 exp - 1}
ensures { result = mod x (power 2 exp) }

Figure 3.9: The uint8 type and its arithmetic operations.

Integers, arithmetic primitives. The ringbuf C struct contains four fields,
one of type uint8_t* and three of type uint8_t. Therefore, the first thing to
do is to model the uint8_t type and its arithmetic operations. The model can
be found in Fig. 3.9.

We model unsigned 8-bit integers as an instance of bounded integers using
the clone construct. Unfortunately, the operations introduced by clone are
not faithful translations of their C counterparts. Indeed, if x and y are two C
variables of type uint8_t, the C expression x + y does not compute an uint8_t
that is the sum of x and y modulo 28. Instead, since all values of type uint8_t
can be represented by an int, x and y are converted to the type int. The result
is the sum of x and y, even if it is greater than 28. (It cannot be greater than the
maximum integer, as the standard guarantees that it is at least 216 − 1.) This
implicit conversion is called integer promotion in the C standard [53, 6.3.1.1].

In order to model arithmetic operations on the uint8_t type in a way that
takes integer promotion into account without littering the WhyML code with
explicit type conversions, we define extra arithmetic primitives add’ and sub’.
(In principle, we would need to do the same for other operations such as multi-
plication, but we do not need them for this example.) We make the assumption
that the C type int is exactly 32 bits wide, so int and int32_t are the same
type. Both operations take two operands of type uint8, convert them to int32,
and compute a result of type int32. They model the C operators + and - on
the uint8_t type faithfully, and can be replaced by them at extraction. They
do not require a precondition stating the absence of overflow, as explained in
the previous paragraph.

In addition to the more usual arithmetic operations, Contiki’s ring buffer
makes heavy use of the bitwise & operator. It is not present in the Unsigned
module, so we need to axiomatize it. Our model of machine integers is not

3.2. EXAMPLE: CONTIKI’S RING BUFFER LIBRARY 55

well suited to model the full semantics of a bitwise operator, compared to e.g.,
a model based on bit vectors [42]. However, the only way the & operator is
used in the program is to compute modulo the buffer size. Therefore, we can
axiomatize an underspecified, restricted version.

The band_pow2 function has the same behavior as the & operator provided
that the second operand is a power of 2 minus one, that is, it reduces the first
operand modulo the power of 2. A third, ghost argument states the exponent.
Much like the other arithmetic operations, this function is subject to integer
promotion, and returns an int32. However, it is always used in contexts where
the first argument is already an int32, because it is the result of an addition
or subtraction. Therefore, in order to decrease the number of explicit casts in
the WhyML code, the first argument has type int32. At extraction, the third
argument is erased and band_pow2 can safely be replaced by C’s & operator.

The ringbuf type. Let us now discuss the ring buffer implementation proper.
We will save the discussion on how to model pointers for later (Sec. 3.3), and
assume that the type ptr ’a is a polymorphic pointer type. We can now define
the ringbuf type rather straightforwardly.

type ringbuf = { mutable data : ptr uint8;
mutable mask : uint8;
mutable put_ptr: uint8;
mutable get_ptr: uint8; }

Recall the invariants on the ring buffer data structure. Its length should be a
power of 2, mask should be the length minus 1. Both offsets should lie between 0
and mask. The contents of the buffer are the elements from get_ptr to put_ptr
- 1, in that order. These invariants can be expressed as type invariants of the
ringbuf record. Using ghost fields, we can express abstract concepts such as
the contents of the buffer without changing the semantics of the program.

type ringbuf = {
mutable data: ptr uint8; mutable mask: uint8;
mutable put_ptr: uint8; mutable get_ptr: uint8;
ghost mutable size: int; ghost mutable exp: int;
ghost mutable contents: Seq.seq uint8;

}
(* constraints on buffer size *)
invariant { 1 ≤ size ≤ uint8’maxInt }
invariant { 0 ≤ exp }
invariant { size = power 2 exp }
(* field sanity checks *)
invariant { mask = size - 1 }
invariant { 0 ≤ put_ptr < size }
invariant { 0 ≤ get_ptr < size }
(* data pointer validity *)
invariant { valid data size }
invariant { writable data }
(* semantics of the buffer *)
invariant { Seq.length contents = mod (put_ptr - get_ptr) size }
invariant { forall i. 0 ≤ i < Seq.length contents →

Seq.get contents i = data[mod (get_ptr + i) size] }
(* instance of valid buffer *)
by { data = dummy_nonnull (); mask = 0;

put_ptr = 0; get_ptr = 0;
size = 1; exp = 0; contents = Seq.empty; }

56 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

Let us examine the ghost fields and invariants more closely. The size field
is there mostly for convenience, we could simply write mask + 1 everywhere
instead. The exp field is there to express the invariant that size is a power of
two. It is not the only way to go about it. Instead, we could write the relevant
invariant with an existential quantifier. However, it would make the proofs a
little more complex, as automated provers are not very good at proving exis-
tential formulas. Moreover, it can be useful to have access to the actual power
of two, rather than just knowing that it exists. This will be particularly rele-
vant when specifying the behavior of the bitwise and operator. The invariants
on data state that the data buffer is valid and that we are allowed to write
inside it (more details on the semantics of valid and writable can be found in
Sec. 3.3). The contents field stores the sequence of elements currently stored
in the buffer. The corresponding type invariants specify the number of elements
currently in the buffer, as well as their position in the buffer. Making this ex-
plicit allows us to express the specifications of the functions that read and write
into the buffer in a natural way later on.

Finally, using the by connective, we exhibit an example of a record that
satisfies all the invariants. Indeed, Why3 only accepts the definition of a type
with invariants on the condition that the type is not empty. The simplest way
to prove this is to provide a valid element of that type. The dummy_nonnull
function is a val declaration. It corresponds to an axiom that states that a
non-null pointer of type uint8_t exists.

Ring buffer operations. Let us now implement and prove the rest of the ring
buffer library. The initialization function can be implemented straightforwardly.
Its code is identical to the C version, except that we also have to initialize the
ghost fields. We defer the initialization of the exp field to the caller by taking the
exponent as an extra ghost parameter. The proof mostly consists in checking
that the type invariants of ringbuf are upheld, but this is an easy task, mostly
because r.contents is empty.

let ringbuf_init
(ref r: ringbuf) (dataptr: ptr uint8) (size: uint8) (ghost exp:int)

requires { valid dataptr size }
requires { writable dataptr }
requires { 0 ≤ exp }
requires { size = power 2 exp }
requires { 1 ≤ size }
ensures { r.size = size ∧ r.put_ptr = 0

∧ r.get_ptr = 0 ∧ r.contents = Seq.empty }
=

r.data ← dataptr;
r.mask ← size - 1;
r.put_ptr ← 0;
r.get_ptr ← 0;
r.size ← uint8’int size;
r.exp ← exp;
r.contents ← Seq.empty

The implementation and proof of the utility functions is similarly straightfor-
ward. Note the ref keyword before the ring buffer function arguments. It signi-
fies that a pointer to the ringbuffer is passed to the functions (no copy occurs).
At extraction, this is translated to an argument of type struct ringbuf*,
rather than struct ringbuf.

3.2. EXAMPLE: CONTIKI’S RING BUFFER LIBRARY 57

let ringbuf_size (ref r:ringbuf) : int32
ensures { result = r.size }

= add’ r.mask 1

let ringbuf_elements (ref r:ringbuf) : int32
ensures { result = Seq.length r.contents }

=
band_pow2 (sub’ r.put_ptr r.get_ptr) r.mask r.exp

The proof of ringbuf_put and ringbuf_get is more difficult. Recall the
specification of ringbuf_put (see Fig. 3.8). It attempts to write an element into
the ring buffer. It returns either 0, in which case the buffer was full and nothing
was written, or 1, in which case the write was successful. The difficulty does not
lie in proving this specification, but in ensuring that the invariants of the ring
buffer structure were preserved. The WhyML specification of ringbuf_put is
as follows. Note that as explained earlier, we have assumed that the C types
int and int32_t are the same, so we use int32 as return type.

let ringbuf_put (ref r: ringbuf) (c: uint8) : int32
ensures { 0 ≤ result ≤ 1 }
ensures { r.put_ptr = mod (old r.put_ptr + result) r.size }
ensures { Seq.length (old r.contents) < r.size - 1 ↔ result = 1 }
ensures { result = 0 → r.contents = old r.contents }
ensures { result = 1 → r.contents = Seq.snoc (old r.contents) c }
writes { r.data.elts, r.put_ptr, r.contents }

=
...

Most of the specification is expressed in terms of the contents ghost field,
which represents the sequence of elements currently stored in the buffer. The
snoc function in the last postcondition is the concatenation of a single element
at the end of a sequence. Indeed, if the result is 1, then the elements of the
buffer are the same as before, except that the new element c was added at the
end. Finally, the writes clause indicates the fields of r that may be written to
by the function. Note that it specifies r.data.elts, rather than r.data. This
means that while the function may write inside the zone pointed by r.data, the
pointer itself (and crucially, the length of the pointed zone) is unchanged.

None of these postconditions on contents are difficult to prove, as contents
is explicitly modified in the body of the function. Instead, the hard part is to
prove that the type invariants of r are preserved, that is, that contents contains
the elements that range from r.get_ptr to the new value of r.put_ptr. Two
facts make this proof non-trivial. First, the fact that an element of r.data
has been modified. We need to ensure not only that the element that is being
added to r.contents is correct, which is easy enough, but also that we did not
overwrite an element that was in the scope of r.contents. This would also be
easy, if not for the second issue, which is the fact that all offsets are computed
modulo r.size. This makes the problem much harder for automated solvers.
The body of ringbuf_put is partially reproduced below. The proofs have been
shortened for readability.

1 let ringbuf_put (ref r: ringbuf) (c: uint8) : int32
2 ...
3 =
4 if begin ensures { result = Seq.length r.contents }
5 band_pow2 (sub_mod r.put_ptr r.get_ptr) r.mask r.exp
6 end = (to_int32 r.mask) then return 0;
7 C.set_ofs r.data (to_int32 r.put_ptr) c;

58 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

8 mod_add1 (uint8’int r.put_ptr - uint8’int r.get_ptr) r.size;
9 let ghost opp = pure { r.put_ptr } in

10 r.put_ptr ← of_int32 (band_pow2 (add’ r.put_ptr 1) r.mask r.exp);
11 mod_submod (uint8’int r.put_ptr - uint8’int r.get_ptr)
12 (uint8’int opp + 1 - uint8’int r.get_ptr) r.size;
13 let newcontents = Seq.snoc r.contents c in
14 assert { mod (r.get_ptr + Seq.length newcontents - 1) r.size
15 = mod (r.get_ptr + mod (old r.put_ptr - r.get_ptr) r.size) r.size
16 = mod (old r.put_ptr) r.size
17 = old r.put_ptr };
18 assert { forall i. 0 ≤ i < Seq.length newcontents →
19 Seq.get newcontents i
20 = r.data[offset r.data + mod (r.get_ptr + i) r.size]
21 by if i = Seq.length newcontents - 1
22 ...
23 (* case split, 10+ lines *) };
24 r.contents ← newcontents;
25 return 1

Let us briefly discuss this rather involved proof. First, so as to not pollute
the proof context, the computation of the number of elements in the buffer
(lines 4-6) is done inside an abstract block (see Sec. 2.3.1). It has the same code
and specification as the ringbuf_elements function, but the code is hidden
from the rest of the proof, so the situation is the same as if we had simply
called ringbuf_elements. However, the function call is inlined in the original
C code, so we inline it as well. The set_ofs function, called at line 7, represents
assignment through a pointer (with an offset). That line would be extracted to
C as r->data[(int32_t)r->put_ptr] = c. The section between lines 8 and 12
computes the new value of r.put_ptr and proves that r.put_ptr - r.get_-
ptr has increased by one (modulo r.size). Finally, the largest part of the
proof (lines 14-24) shows that r.contents is an accurate representation of the
ring buffer elements. We split cases depending on whether we are considering
the newest element of r.contents (the easy case), or one of the old ones, in
which case we must prove that it was not modified. Again, most of the proof
effort is spent proving simple facts on computations modulo r.size. This is not
even the whole proof, as we had to prove four lemmas on modular arithmetic.
The first two are instantiated automatically by the theorem provers during the
proof of the last big assertion, and the last two are called manually (at lines 8
and 11). The mod function used in the specifications refers to the remainder of
the Euclidean division.

let lemma mod_add (x y z:int)
requires { z > 0 }
ensures { mod (x + mod y z) z = mod (x + y) z }

= ...
(* proof omitted for brevity *)

let lemma mod_add_compat (x y1 y2 z:int)
requires { z > 0 }
ensures { mod y1 z = mod y2 z ↔ mod (x + y1) z = mod (x + y2) z }

= ()

let lemma mod_add1 (x z: int)
requires { z > 0 }
requires { mod x z < z - 1 }
ensures { 1 + mod x z = mod (x+1) z }

= mod_add x 1 z

3.3. MEMORY MODEL 59

let lemma mod_submod (x y z:int)
requires { mod (x - y) z = 0 }
requires { z > 0 }
ensures { mod x z = mod y z }

= mod_add (mod x z) (- mod y z) z

The proof of ringbuf_get is of the same ilk, although it is somewhat simpler
as the function does not modify the elements of the buffer. Again, we spend a
non-trivial amount of effort proving facts on modular arithmetic and the rest
is very easy. For the sake of completeness, we reproduce the specification of
ringbuf_get below. The function Seq.([_..]) takes a sequence and returns
its tail.

let ringbuf_get (ref r:ringbuf) : int32
ensures { -1 ≤ result ≤ max_uint8 }
ensures { result = -1 → r.contents = old r.contents

∧ r.get_ptr = old r.get_ptr }
ensures { result ≥ 0 → r.contents = Seq.([_..]) (old r.contents) 1

∧ r.get_ptr = mod (1 + old r.get_ptr) r.size }
ensures { Seq.length (old r.contents) > 0 ↔ result ≥ 0 }
ensures { result ≥ 0 → int32’int result = Seq.get (old r.contents) 0 }
writes { r.get_ptr, r.contents }

We now have a complete, verified WhyML implementation of Contiki’s ring
buffer library. However, the astute reader may find that we have left important
questions unanswered. Here is a non-exhaustive list.

• What exactly did we prove in terms of memory safety?

• Under what conditions can the type invariants be considered valid?

• What if the data buffer is also modified in some other part of the program?

Most of these questions stem from the fact that we still have not yet described
our memory model. So, let us address the elephant in the room.

3.3 Memory model
There are various ways to model the C language’s memory management, with
various degrees of accuracy, expressiveness, and impact on our trusted com-
puting base. At the beginning of this section, we take the perspective of the
designer of such a memory model and review a few possibilities and the relevant
tradeoffs. In Sec. 3.3.1, we consider a memory model based on a representation
of the heap that uses explicit addresses. In Sec. 3.3.2, we sketch another memory
model that relies on Why3’s built-in alias tracking.

This second model is the one that we will use in the rest of the document.
Sections 3.3.3 and 3.3.4 present improvements to the memory model that allow
it to handle aliasing in a more fine-grained way. Finally, Sec. 3.3.5 explains how
errors such as stack overflows or malloc failures are handled by the memory
model.

3.3.1 An explicit memory model
A natural way to model the memory of a C program is to give all relevant objects
an explicit representation that closely mirrors real-world implementations. For

60 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

example, one could give explicit adresses to pointers, and model the heap and the
stack as global arrays that map addresses to data. A very naive implementation
of this idea might look like this:

type ptr ’a = abstract { addr: uint64 }

type mem ’a = abstract { mutable data: uint64 → ’a }

val ghost uint64_heap: mem uint64

val get (p: ptr ’a) (ghost heap: mem ’a) : ’a
ensures { result = heap.data[p.addr] }

val set (p: ptr ’a) (ghost heap: mem ’a) (v: ’a) : unit
writes { heap.data }
ensures { heap.data[p.addr] = v }
ensures { forall a. a 6= p.addr → heap.data[a] = old heap.data[a] }

val incr (p:ptr ’a) (ofs:int64) : ptr ’a
ensures { result.addr = p.addr + ofs }

Of course, there are many issues with this naive model. First, the type
mem ’a of heaps specifies the type of values that are stored inside. We would
need to declare many global heaps, one for each value type. We would need
to specify the correct heap whenever we call get or set, and make sure that
the user cannot mistakenly create a value of type mem that is not one of our
global heaps. Pointer type conversions would also be problematic. Another
approach would be to use a single heap that represents a global array of bytes,
and axiomatize the representation of each data type as bytes.

Also missing from this naive model is the notion of memory blocks. In the
C standard, the heap memory is seen as a set of memory blocks called objects.
The notion of object imposes restrictions on pointer arithmetic. For example,
incrementing a pointer by an integer offset is only allowed as long as the result
points to the same object (or one past its end). Therefore, the function incr is
too permissive as it is. In order to be correctly specified, the function incr would
actually need to be aware of the structure of the heap to properly enforce the
restriction. Similarly, in order to properly specify dynamic memory allocation,
malloc and free would need to be aware of which blocks have been allocated
and/or freed.

Let us now assume that these various hurdles have been overcome and that
we have a memory model that relies on an explicit representation of the heap.
Several tools use memory models based on more refined versions of this ap-
proach, such as Frama-C/WP’s Hoare model [7]. Let us discuss the qualities
and shortcomings of this approach.

One important thing to note with this explicit model is that pointers, which
are essentially integers, contain no mutable fields. Therefore, they do not carry
any region, so they cannot be affected by any of the alias tracking features
of Why3 that are explained in Sec. 2.3.2. The notion of two pointers being
aliased or not is meaningless. This is double-edged. On the one hand, bypass-
ing WhyML’s aliasing restrictions allows many C programs to be implemented
in WhyML. For instance, a C function may take two pointer arguments, test
whether they are equal, and do different things depending on the result. This
function is usually problematic because the arguments of a WhyML function
are assumed to not be aliased, but it could be written using the explicit model.

3.3. MEMORY MODEL 61

In the end, the explicit model is quite expressive, because it closely mirrors
an actual C implementation. On the other hand, using Why3’s built-in alias
control would decrease the specification and proof effort. Indeed, the explicit
model does not provide very good framing properties. For example, the second
postcondition of the function set is necessary for it to be usable in practice.
One can imagine that when proving a non-trivial program, a meaningful amount
of proof effort will be spent proving inequalities of addresses in order to prove
that the contents of some objects did not change.

This is not even the only issue related to aliasing. Consider the ring buffer
example again. Once a pointer has been passed to ringbuf_init, we would
like to specify that it should not be used by anything else than the ring buffer.
This cannot be easily done at the level of the specification of the ring buffer and
its functions, because they are too local. We would need to extend the memory
model to keep track of pointer ownership in some global way.

In the end, the approach consisting in modeling memory addresses explicitly
is more difficult to put in practice than it may seem at first. To do so, one
needs to explicitly model not only the memory layout and most of the memory
management rules imposed by the C standard, but also some way to keep track
of pointer ownership. Such a model would also involve a large number of axioms,
which would need to be manually checked and then trusted, although most of
these axioms might be close enough to the C standard to be easily understood
and checked by an expert. The most important merit of this approach is that
it can be used to write programs that could not be expressed under Why3’s
regular aliasing constraints. The largest issue is probably that it requires a way
to solve the framing problem to preserve meaningful proof automation. There
are many ways to solve this problem. A possibility would be try to encode some
elements of separation logic into the model. Another would be to use a more
refined representation such as F*’s hyper-heaps [91]. However, these methods
would all require significant engineering, especially if we hope to generate goals
that are well-handled by the SMT solvers. Considering that Why3’s type system
already has a built-in way to handle aliasing without encoding it into the goals
that are passed to the external solvers, such an approach seems wasteful.

3.3.2 A block-based memory model

Let us now sketch another memory model that does rely on Why3’s built-in
alias tracking. It is a simplified version of the one I ended up adopting. Pointers
should carry some mutable region. Two pointers are aliased if and only if the
regions they carry are the same. The first thing to decide on is the degree of
granularity. A naive adaptation from the explicit memory model might consist
in storing in each pointer the contents of the memory cell it points to. This way,
two pointers are aliased if and only if they point to the same cell.

type ptr ’a = { mutable data: ’a }

However, this is not really the right criterion to decide whether two pointers
should be aliased, because of pointer arithmetic. Indeed, if the contents of
some pointer q can be accessed through some other pointer p using pointer
arithmetic, then they cannot be considered separated. Therefore, the simple
definition above cannot work. Fortunately, there are restrictions on what one
can do with pointer arithmetic in C. Indeed, starting from a pointer p, the

62 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

only pointers that can be computed through pointer arithmetic are the ones
that point inside the same memory block as p. Therefore, the right level of
granularity for pointer aliasing is the memory block. This can be encoded in
the Why3 type in a rather natural way.

type ptr ’a = abstract { data : array ’a ; offset : int }

val get (p:ptr ’a) : ’a
requires { 0 ≤ p.offset < p.data.length }
ensures { result = p[p.offset] }

val set (p:ptr ’a) (v:’a) : unit
requires { 0 ≤ p.offset < p.data.length }
ensures { p.data = (old p.data)[p.offset ← v] }
writes { p.data.elts }

With this definition, each pointer stores the contents of the entire memory
block it points at. The data field of a pointer is an array storing the block
contents, and the offset field indicates which cell of the array it points at.
Two pointers are aliased if their data arrays are the same, that is, if they have
the same type including regions. In this case, performing an assignment through
one pointer also updates the other. As expected, the primary way to obtain two
aliased pointers is through pointer arithmetic.

val incr (p:ptr ’a) (ofs:int32) : ptr ’a
requires { 0 ≤ p.offset + ofs ≤ p.data.length }
ensures { result.offset = p.offset + ofs }
ensures { result.data = p.data }
alias { p.data with result.data }

The incr function returns the sum of a pointer and an integer offset. The
precondition enforces that the result should point inside the memory zone
pointed by p or one past its end. The alias clause specifies that the result
is aliased with p, rather than simply carrying a copy of its data. The alias
keyword is a somewhat recent addition to Why3. This work was the main reason
it was added.

Note that the specification of incr allows the creation of pointers that point
one past the end of the memory zone. This is what the C standard permits [53,
6.5.6 Additive Operators]. Such pointers cannot be dereferenced, but they may
be used in comparisons. This is also why we do not use a type invariant in the
definition of the ptr type to enforce that all pointers are valid. Invalid pointers
(in the sense that they cannot be dereferenced) can still be computed in some
situations, and it is sometimes useful to do so. The NULL pointer would be
another special case. In the end, a type invariant would likely only eliminate
the “0 <= p.offset” of get and set. It is more convenient to not have any.

Using the incr function, we can write functions for dereference and assign-
ment with offset.

let get_ofs (p:ptr ’a) (ofs:int32) : ’a
requires { 0 ≤ p.offset + ofs < p.data.length }
ensures { result = p[p.offset + ofs] }

= get (incr p ofs)

let set_ofs (p:ptr ’a) (ofs:int32) (v:’a) : unit
requires { 0 ≤ p.offset + ofs < p.data.length }
ensures { p.data = (old p.data)[p.offset + ofs ← v] }
writes { p.data.elts }

= set (incr p ofs) v

3.3. MEMORY MODEL 63

Without belaboring the same points as the previous section too much, let
us note again that many C programs cannot be expressed using this model due
to the restrictions imposed by Why3’s type system, but these restrictions make
many specifications and proofs much simpler. In addition to the good fram-
ing properties provided by the aliasing restrictions, there is another somewhat
unexpected upside to relying on Why3’s alias tracking. A fairly large issue of
the explicit model was the need to explicitly track which memory locations had
been dynamically allocated (with malloc-like functions) and freed, as well as
the boundaries of memory blocks. Such a tracking mechanism is needed to
prevent issues such as double-free, use-after-free or out-of-bounds memory ac-
cesses. We did not explicitly sketch out what this tracking may look like, but we
could imagine some global object mapping addresses to some type representing
memory objects. The invariant would be that each memory block is associated
to a distinct value of that type, with a special value representing unallocated
blocks. It would then be relatively easy to check whether a pointer is valid, or
whether two pointers are aliased. However, this represents quite a bit of work,
especially because the specifications of functions using this model would also
need to refer to this global state. One might notice that this description of a
potential way to track aliasing and allocated blocks reads somewhat similar to
Why3’s region-based type system. Conversely, I would argue that Why3’s type
system natively provides most of what is needed to properly specify malloc and
free without reinventing the wheel.

val malloc (sz:uint32) : ptr ’a
ensures { result.data.length = 0 ∨ result.data.length = sz }
ensures { result.offset = 0 }

val free (p:ptr ’a) : unit
requires { p.offset = 0 }
ensures { p.data.length = 0 }
writes { p.data }

val is_not_null (p: ptr ’a) : bool
ensures { result ↔ result.data.length > 0 }

The malloc function takes a positive integer as argument. It returns either
a valid pointer of that length, or an invalid pointer (represented by a 0-length
block). Implicitly, due to Why3’s typing rules, the result is separate from all
existing pointers, which is what we expect of malloc. Let us now explain the
specification of free. As required by the C standard, it takes as argument
a pointer to the beginning of a memory block. The postcondition renders its
argument invalid, so it cannot be used anymore (the preconditions would not be
provable). However, this is not sufficient to prevent any potential aliases from
being used. This is performed by the writes clause, which indicates that the
array at p.data has been replaced by some unspecified region. This induces a
reset effect on it (Sec. 2.3.2). As an example, consider the following function.

let use_after_free (p:ptr int32) : int32
requires { p.offset = 0 }
requires { 2 ≤ p.data.length }

=
let q = incr p 1 in
free p;
get q

64 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

It performs an illegal action. Indeed, it constructs a pointer q aliased to p,
frees p, and attempts to use q. If we attempt to verify it, Why3 outputs the
following error message, located on the expression free p: This expression
prohibits further usage of the variable q or any function that de-
pends on it. Note that this is a typing error, not a failure to prove some
precondition in a WhyML program. This is exactly what we want. The specifi-
cation of free ends up very simple, because the type system does all the heavy
lifting.

As a side note, the same mechanism protects our ring buffer implementation
from data races. Consider the following function. It calls ringbuf_init (pass-
ing it a pointer to a data buffer) and then attempts to write into the buffer. The
same type error is raised. The reason is that ringbuf_init unifies the region
of r’s data buffer with that of p. As the type of p was updated, it is subject to
a reset. The only legal way to access that region afterwards is through r. The
program would be legal if we replaced set p 0 by a call to ringbuf_put (and
accounted for the return type being int32 instead of unit).

let data_race (ref r:ringbuf) : unit
=

let p = malloc 32 in
if is_not_null p then begin

ringbuf_init r p 32 5;
set p 0

end

Finally, the specification of realloc combines those of malloc and free. If
realloc p sz succeeds, p is invalidated, and a new pointer of length sz with
the same contents as p (up to sz) is returned. If it fails, a null pointer is returned
and p is left unchanged.

val realloc (p:ptr ’a) (sz:int32) : ptr ’a
requires { 0 ≤ sz }
requires { p.offset = 0 }
requires { p.data.length > 0 }
writes { p }
writes { p.data }
ensures { result.offset = 0 }
ensures { result.data.length 6= 0 → result.data.length = sz }
ensures { result.data.length 6= 0 →

forall i:int. 0 ≤ i < old p.data.length ∧ i < sz →
(result.data.elts)[i] = (old p.data.elts)[i] }

ensures { result.data.length = 0 → p = old p }

It would be tempting to claim that this model enjoys a small trusted comput-
ing base, as the very short specifications of malloc and free seem to indicate.
Unfortunately, this would be somewhat deceptive. The specifications are short,
but the typing system imposes all sorts of implicit constraints. As a result,
it is difficult to review the code manually and check the axioms. Again, the
specification of free is a good example of this. On the other hand, one could
argue that Why3 and its typing system would be part of the trusted computing
base no matter what we do. However, this memory model tends to lean into
the most intricate aspects of the typing system. Even for an experienced user,
it can sometimes be hard to predict whether a program is well-typed or not.

The memory model I developed for this work was initially extremely similar
to the block-based one that we just described. Over the course of the work of
verifying a subset of GMP, it became apparent that this model was not quite

3.3. MEMORY MODEL 65

expressive enough. While my current model is not so different from this one,
I made a number of additions that allowed me to write a greater variety of C
programs without running into type errors by manipulating pointer aliasing in
a more fine-grained way.

3.3.3 Finer-grained aliases: splitting pointers

One of the main selling points of the memory model is that when working with
two separate pointers, Why3 is aware that writing into one does not change the
other, with no explicit user input required. However, some programs (such as
quicksort implementations) split a single buffer into two separate areas and use
the two halves as if they were separate. In this case, our memory model is not
particularly helpful, and the user needs to perform a lot of extra work.

Worse, some programs that split buffers cannot be written at all using our
memory model, because they attempt to use two halves of a pointer as parame-
ters of the same function call. As all non-read-only regions passed to a function
have to be separate, the program is rejected by Why3. An example of this can
be found in Fig. 3.10. It is a sketch of a GMP algorithm presented in detail in
Sec. 4.4.

1 let rec toom (r x y w: ptr uint64) (n: int32)
2 =
3 let h = n/2 in
4 let x’ = incr x h in
5 let y’ = incr y h in
6 let w’ = incr w n in
7 let r’ = incr r h in
8 let r’’ = incr r n in
9 ...

10 toom w r r’ w’ h; (* type error! *)
11 toom r’’ x’ y’ w’ h;
12 toom r x y w’ h;
13 ...

Figure 3.10: Ill-typed program that splits buffers.

The algorithm multiplies two large numbers x and y (represented as arrays
of n machine integers, where n is assumed to be even in this simplified case).
It takes two additional buffers of length 2n: r is meant to store the final result,
and w is simply extra workspace. It is a divide-and-conquer algorithm, and calls
itself three times on instances of size n/2. However, each half of each buffer
serves various roles in the recursive calls. For example, the workspace w is split
in two. In the recursive call at line 10, the first half stores an intermediary
result, while the second half w’ is used as workspace for subsequent recursive
calls. However, the call at line 10 breaks WhyML’s aliasing rules. Indeed, w
and w’ are aliased, when function arguments should be separated. The program
is ill-typed. However, while w and w’ carry the same region, they are meant to
cover separate slices of the same buffer, so in principle we would like them to
be separate. I have modified my memory model to allow this, with three extra
fields in the ptr type and a few more abstract functions. Figure 3.11 shows the
new type and functions.

66 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

type zone

type ptr ’a = abstract {
mutable data : array ’a ;
offset : int ;
mutable min : int ;
mutable max : int ;
zone : zone ;

}

(* Modified functions: min ≤ offset < max now required *)

val get (p:ptr ’a) : ’a
requires { p.min ≤ p.offset < p.max }
ensures { result = p[p.offset] }

val set (p:ptr ’a) (v:’a) : unit
requires { p.min ≤ p.offset < p.max }
ensures { p.data = (old p.data)[p.offset ← v] }
writes { p.data }

(* New functions *)

val incr_split (p:ptr ’a) (i:int32) : ptr ’a (* same extraction as incr *)
requires { 0 ≤ i }
requires { p.min ≤ p.offset + i ≤ p.max }
writes { p.max, p.data }
ensures { result.offset = p.offset + i }
ensures { p.max = p.offset + i }
ensures { result.min = p.offset + i }
ensures { result.max = old p.max }
ensures { result.zone = p.zone }
ensures { p.data.elts = old p.data.elts }
ensures { p.data.length = old p.data.length }
ensures { result.data.elts = p.data.elts }
ensures { result.data.length = old p.data.length }
(* NOT alias result.data (old p).data *)

val join (p1 p2: ptr ’a) : unit (* extracts to no-op *)
requires { p1.zone = p2.zone }
requires { p1.max = p2.min }
writes { p1.max }
writes { p1.data.elts }
writes { p2 }
writes { p2.data }
ensures { p1.max = old p2.max }
ensures { p1.data.length = old p1.data.length }
ensures { forall i. old p1.min ≤ i < old p1.max

→ (pelts p1)[i] = old (pelts p1)[i] }
ensures { forall i. old p2.min ≤ i < old p2.max

→ (pelts p1)[i] = old (pelts p2)[i] }

Figure 3.11: Memory model, with buffer splitting.

3.3. MEMORY MODEL 67

Let us explain these somewhat intimidating specifications. The pointer
record now carries extra fields min and max. They represent ownership of a
slice of the memory object. More specifically, they represent a promise that
the program will not read or write outside these bounds through this pointer.
The data field is guaranteed to be an accurate representation of the contents of
the memory only within the [min, max) bounds. The specifications of get and
set now require min <= offset < max. By default (such as when a pointer is
allocated), min is 0, and max is equal to the block length, which corresponds to
full ownership of the buffer. In order to call free on a pointer, it must also have
full ownership.

Using these new fields, we can write a specification for a new incrementation
function. The function incr_split has the same signature as incr. However,
the result of incr_split p n is not aliased to p. They own two complementary
slices of the buffer previously owned by p. That is, p is shrunk to only the
sub-buffer left of p+n, while the result owns the slice that starts at p+n. It
is analogous to Rust’s split_at_mut function. The rest of the specification
ensures that the contents of the two pointers are consistent at first. Since
they are not aliased, if we write through one of the pointers afterwards, it will
not update the contents of the other’s data field. But this is fine, because the
program cannot access the modified section of the data through the other pointer
anyway. Therefore, the inconsistencies cannot be observed by the program. The
incr_split function is extracted to C in the exact same way as incr.

Suppose we have called let p’ = incr_split p n in ..., and done some
writes on both p and p’. We have min p <= max p = min p’ <= max p’. The
array p.data accurately represents the memory contents between min p and
max p, while p’ accurately represents the other slice of the buffer. We get back
to one pointer with full ownership of the buffer and accurate representation of
its data using the function call join p p’. This invalidates p’ and gives original
ownership back to p. The last two postconditions of join ensure that p.data is
accurate for the whole buffer. In the C code, there is no need for this operation
(it only marks that the promise of keeping p and p’ separate ends). Therefore,
the join function is erased at extraction.

Obviously, join is meant to be used only on arguments that result from a
call to incr_split, and would give wildly inconsistent results if it was used on
two arbitrary pointers. This is enforced using the zone field of the pointer type.
The zone type is fully abstract. Its semantics is that two pointers have the same
zone if and only if they point to the same memory object. This is something of
a meta-argument (and the first-order logic of Why3 does not allow us to express
this), but the only way to obtain a proof that two pointers have the same zone
is through the postcondition of incr_split.

Furthermore, after a call join p p’, p’ and its aliases are invalidated. In-
deed, the writes clause resets the region of p’, so the aliases of p’ can no
longer be used. As for p’ itself, the type system allows it to be used, but the
writes makes all its fields unknown, so the preconditions of the various pointer
functions cannot be proved as far as p’ is concerned.

These changes allow us to write a modified version of the function of Fig. 3.10
that is well-typed. As an added bonus, the fact that Why3 is aware that the
sub-buffers are separate makes the proof simpler than if we had used a memory
model that does not use Why3’s built-in alias tracking.

68 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

let rec toom (r x y w: ptr uint64) (n: int32)
=

let h = n/2 in
let x’ = incr_split x h in
let y’ = incr_split y h in
let w’ = incr_split w n in
let r’’ = incr_split r n in
let r’ = incr_split r h in (* nested split: r | r’ | r’’ *)
...
toom w r r’ w’ h;
toom r’’ x’ y’ w’ h;
toom r x y w’ h;
...
join r r’;
join r r’’;
join w w’;
join x x’;
join y y’

3.3.4 Finer-grained aliases: aliasing separate pointers
A common representation of the C heap is as a large, contiguous array. Our
memory model, in which each pointer owns a separate section of the heap,
can be seen as an abstraction layer over this representation. In some cases,
this abstraction is not useful. One of these cases is writing functions whose
parameters may or may not point to the same memory object.

Consider the following problem. We have a buffer t of 2n bytes, and we
want to swap the two halves of t, such that the contents of t are t[n], . . . ,
t[2n-1], t[0], . . . , t[n-1]. We have an extra scratch buffer w of length n
to store temporary values. In C, we could do this using the memcpy function.
It takes a destination pointer, a source pointer, and a byte count, and copies
that amount of bytes from the source to the destination. The pointers may
not overlap, but they are allowed to point to independent sections of the same
memory object. So, the following C code would solve the problem:

memcpy(w, t, n);
memcpy(t, t+n, n);
memcpy(t+n, w, n);

Can we write this in WhyML? The memcpy function can be implemented
easily, with a simple loop. The issue is that in the second call to memcpy, the
two pointers point inside the same memory object. This specific instance of the
problem could be solved by splitting t using incr_split, but this is not suffi-
cient in general (it would not help with cases where operands may overlap). We
could also solve the problem in an ad-hoc way, such as by verifying two versions
of memcpy (one for pointers that do not point into the same memory object,
and one for those that do). For example, the version of memcpy that accepts
only pointers to two distinct objects would have the following specification.

let memcpy_sep (dst src: ptr uint8) (sz: int32) : unit
requires { sz > 0 }
ensures { forall i. 0 ≤ i < sz

→ dst[dst.offset + i] = src[src.offset + i] }
ensures { forall j. j < offset dst ∨ offset dst + sz ≤ j

→ dst[j] = old dst[j]}
writes { dst.data }

= ...

3.3. MEMORY MODEL 69

Using the alias keyword, we can write a specification that forces dst and
src to have the same region (what is not allowed is writing a specification where
they may or may not have the same region). Here is what such a specification
could look like.

let memcpy_aliased (dst src: ptr uint8) (sz:int32) : unit
requires { sz > 0 }
requires { offset dst + sz ≤ offset src

∨ offset src + sz ≤ offset dst } (* no overlap *)
alias { dst.data with src.data }
ensures { forall i. 0 ≤ i < sz → dst[offset dst + i] = old src[offset src

+ i] }
ensures { forall j. j < offset dst ∨ offset dst + sz ≤ j

→ dst[j] = old dst[j]}} (* also covers src *)
writes { dst.data } (* also covers src.data, which is the same region *)

= ...

This is enough to solve the problem (the first and third calls to memcpy should
be calls to memcpy_sep, and the second to memcpy_aliased). However, this
approach duplicates a lot of code. While the specifications differ in small ways,
the code and proof of both memcpy versions should look extremely similar (the
proof of memcpy_aliased should be a bit more involved, since the parameters
are not separated by the type system). Moreover, the resulting extracted C
code would contain two memcpy functions with very similar implementations,
which would never happen in handwritten code. This is not a very far-fetched
situation. In my verification of a fragment of the GMP library, this occurred
quite frequently (see Sec. 4.2.2 for an example). So, I looked for a way to avoid
duplicating work, as well as duplicating functions in the extracted code.

In a way, memcpy_aliased is the more general case. The alias keyword is
needed to satisfy the type system, but of course the algorithm does not actually
require dst and src to point inside the same memory object. Indeed, if dst
and src are two separate pointers, nothing prevents us from imagining them
encapsulated in a large buffer, with dst and src pointing to separate sections
of that large buffer. This amounts to forgetting the abstraction performed by
the memory model. This can be modeled using the abstract functions from
Fig. 3.12. The basic idea is as follows. From two separate pointers x and y,
we call open_sep and obtain two new pointers nx and ny, who are identical
to x and y respectively, except that they point to non-overlapping sub-areas of
some large memory object. We also obtain a ghost object m that carries enough
book-keeping information to recover x and y using the close_sep function, as
well as prevent unauthorized uses of close_sep.

Using these new primitives, memcpy_sep can be implemented without dupli-
cating any code as a wrapper over memcpy_aliased, as follows:

let memcpy_sep (dst src: ptr uint8) (sz: int32) : unit
requires { sz > 0 }
ensures { forall i. dst[offset dst + i] = src[offset src + i] }
ensures { forall j. j < offset dst ∨ offset dst + i ≤ j

→ dst[j] = old dst[j]}
writes { dst.data }

=
let nd, ns, m = open_sep dst src sz sz in
memcpy_aliased nd ns sz;
close_sep dst src sz sz nd ns m

At extraction, open_sep is replaced by a double identity function (as in, nd
= dst and ns = src). Calls to close_sep are simply erased. We can ask the

70 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

type mem = abstract { zx: zone: zy: zone;
mix: int32; miy: int32;
max: int32; may: int32;
lx: int32; ly: int32; mutable ok: bool }

val open_sep (x y: ptr ’a) (sx sy: int32)
: (nx: ptr ’a, ny: ptr ’a, ghost m: mem)

requires { valid x sx ∧ valid y sy }
requires { 0 ≤ sx ∧ 0 ≤ sy }
ensures { valid nx sx ∧ valid ny sy }
(* nx and ny have the same data as x and y respectively *)
ensures { forall i. 0 ≤ i < sx →

nx[offset nx + i] = old x[offset x + i] }
ensures { forall i. 0 ≤ i < sy →

ny[offset ny + i] = old y[offset y + i] }
(* nx and ny point to the same block *)
ensures { data nx = data ny }
alias { nx.data with ny.data }
(* nx and ny do not overlap *)
ensures { offset nx + sx ≤ offset ny ∨ offset ny + sy ≤ offset nx }
(* book-keeping information, for later recovery *)
ensures { m.zx = zone x ∧ m.zy = zone y }
ensures { m.mix = min x ∧ m.max = max x ∧ m.miy = min y ∧ m.may = max y }
ensures { m.lx = sx ∧ m.ly = sy }
ensures { x.data.length = old x.data.length

∧ y.data.length = old y.data.length }
ensures { pelts x = old pelts x ∧ pelts y = old pelts y }
ensures { m.ok }
(* invalidate x and y and their aliases *)
writes { x, y }

val close_sep (x y: ptr ’a) (sx sy: int32) (nx ny: ptr ’a) (ghost m:mem) : unit
requires { 0 ≤ sx ∧ 0 ≤ sy }
(* nx and ny must be the output of a previous call to open_sep *)
alias { nx.data with ny.data }
requires { m.ok }
requires { offset nx + sx ≤ offset ny ∨ offset ny + sy ≤ offset nx }
requires { m.zx = zone x ∧ m.zy = zone y }
requires { m.lx = sx ∧ m.ly = sy }
(* recover the structure of x and y, with the new data from nx and ny *)
ensures { m.mix = min x ∧ m.max = max x ∧ m.miy = min y ∧ m.may = max y }
ensures { forall i. 0 ≤ i < sx →

x[offset x + i] = old nx[offset nx + i] }
ensures { forall i. 0 ≤ i < sy →

y[offset y + i] = old ny[offset ny + i] }
ensures { forall j. j < offset x ∨ offset x + sx ≤ j

→ x[j] = (old x)[j] }
ensures { forall j. j < offset y ∨ offset y + sy ≤ j

→ y[j] = (old y)[j] }
ensures { x.data.length = old x.data.length

∧ y.data.length = old y.data.length }
writes { x, y}
(* invalidate m, as well as nx, ny and their aliases *)
writes { nx, ny, m.ok }

Figure 3.12: Aliasing separated pointers.

3.3. MEMORY MODEL 71

extraction mechanism to inline calls to memcpy_sep, so there is only one memcpy
function in the extracted code. So, we have managed to avoid duplicating proof
work, and made the extracted code more idiomatic. But at what cost? The
open_sep and close_sep specifications are somewhat reusable (I still needed
to write separate versions with arity 3), but they are very long and error-prone.
Giving even a handwavy justification of their consistency is daunting. Some
elements, such as invalidating the unsafe aliases of the various pointers involved,
are not explicit in the specification. When reviewing this type of specification,
one needs to remember that seemingly innocuous writes clauses can completely
change the meaning of the function. In the end, while this ad-hoc solution was
somewhat workable, it served to show that this memory model really is best
suited to verifying programs where aliasing is not a big concern. In order to
verify aliasing-heavy programs, it would be better to switch to a model such as
the explicit one from Sec. 3.3.1.

3.3.5 Error handling
C programs can fail in a number of ways. Some of these failures, such as out-
of-bound array accesses, can be attributed to bugs in the program. We should
expect proved WhyML programs to not contain them. However, even well-
behaved, bug-free C programs can fail more or less gracefully. For example,
malloc can run out of memory and return a null pointer, in which case the
program should detect this, and then deal with the failure (usually by reporting
the error and aborting). Other low-level functions may fail in even less recov-
erable ways. For example, the alloca function allocates memory on the stack.
Its man page states: “If the allocation causes stack overflow, program behavior
is undefined.” In practice, it is likely that a segmentation fault occurs and the
program crashes. So, how to deal with this in the memory model?

There are multiple ways to handle errors in traditional WhyML programs.
The most important one is to prevent them from happening using function
preconditions. For example, rather than specifying that division can fail when
the divisor is 0, we can simply require the divisor to not be 0 in preconditions.
Other common errors such as out-of-bounds array accesses tend to be forbidden
by preconditions. Why3 also supports OCaml-style exceptions. For example,
Why3’s standard library contains two functions to get an array element. They
are reproduced below.

val ([]) (a: array ’a) (i: int) : ’a
requires { [@expl:index in array bounds] 0 ≤ i < length a }
ensures { result = a[i] }

let defensive_get (a: array ’a) (i: int)
ensures { 0 ≤ i < length a ∧ result = a[i] }
raises { OutOfBounds → i < 0 ∨ i ≥ length a }

= if i < 0 || i ≥ length a then raise OutOfBounds;
a[i]

The specification for ([]) is straightforward. On the other hand, it may seem
surprising that defensive_get ensures that its argument is within the bounds of
the array. The explanation is that the postcondition only covers the case where
the function returns normally (as opposed to raising an uncaught exception).
In this case, i is indeed in the array bounds (otherwise the exception would
have been raised). The raises clause handles the case of the function exiting

72 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

through an uncaught exception. It may or may not be caught by the caller, just
like in an OCaml program. However, any function that calls defensive_get
must either catch the exception, prove that it is not raised, or have its own
raises clause that specifies the fact that the exception might escape.

None of these approaches is particularly well-suited to modeling a program
dealing with a malloc failure. On the one hand, there is no good precondition
to give to malloc to ensure it does not fail. On the other hand, the concept of
exceptions does not map to C very well. Certainly, one could imagine declaring
a special exception named Abort, and replacing raise Abort with a call to the
abort function in the extracted C code. However, this exception would never
be caught, and there would be no way to prove that it is not raised. So, the
specification of any C program that uses malloc (or that calls functions that
use malloc, and so on) would need to be polluted by an extra clause such as
raises { Abort -> true }. So, the exception-based approach is unsatisfying.

Another possible approach is to use non-termination as a model of a program
abort. WhyML functions can be annotated with the diverges keyword, which
signifies that the function may not terminate. It is necessary to use it for
functions that contain an infinite loop, for example. Functions annotated with
this keyword cannot be used in C code. Their callers must also explicitly be
marked as non-terminating. This can be used to succintly model C’s assert
function:

val c_assert (e:bool) : unit
ensures { e }
diverges

The behavior of C’s assert function is as follows: if the condition is true,
nothing happens, otherwise the program aborts. The c_assert function only
terminates if its argument is true, so replacing it by assert is appropriate in the
sense that the extracted C program can have no behavior that does not occur
in the WhyML program. We can use this to write a WhyML program that calls
malloc and checks its result. The resulting extracted code would be a function
that calls malloc and then assert on the result, which is a valid way to check
the result of malloc, if not the most idiomatic.

let malloc_checked (sz:uint32) : ptr ’a
ensures { result.data.length = sz }
ensures { result.offset = 0 }
diverges

=
let p = malloc sz in
c_assert (is_not_null p);
p

The only issue is that, again, any callers of c_assert would need to be
marked as diverging. This is not ideal, and not only because we do not want
to add an extra keyword to specifications. If a function is marked as diverging,
Why3 no longer requires to prove that, for example, its loops all terminate. We
ended up adding a new keyword to WhyML to resolve this. Functions can now
be marked as partial to specify that they may fail due to external factors, or
more generally, that they have observable effects that are not represented in
their specification. (Arguably, crashing is a side effect.) The partial keyword
represents an intermediary state between regular program functions (total ter-
mination, can be used in ghost code) and diverging functions (cannot be used

3.4. EXTRACTION 73

in ghost code, all callers must also be marked as diverging). Partial functions
cannot be used in ghost code. Their callers are also partial, but do not need
to be explicitly marked as such in their specifications. Finally, loops inside par-
tial functions still require a proof of termination. In fact, the source of partial
termination is necessarily a val function (that is, without a body). The only
way to obtain a partial function with a body is to make it call another partial
function.

The final specification of c_assert is as follows:
val partial c_assert (e:bool) : unit

ensures { e }

Similarly, our model of alloca is partial and its specification assumes that it
always succeeds. This is a valid model if we make the assumption that a stack
overflow immediately crashes the program, rather than causing more subtle
failures.

3.4 Extraction
This section explains the process of compiling WhyML programs to idiomatic
C code. We start by explaining the basics of Why3’s extraction mechanism
(Sec. 3.4.1) and laying out the design choices that led the development of the C
extraction (Sec. 3.4.2). Section 3.4.3 explains the extraction of basic WhyML
constructs such as function calls and the let-in construct. Section 3.4.4 pro-
vides some details on extraction drivers. In Sec. 3.4.5 through 3.4.8, we explain
how various WhyML constructs are extracted: control flow structures, tuples,
mutable records, and arrays. Section 3.4.9 describes how libraries comprised
of multiple files are extracted. In Sec. 3.4.10, we describe a number of features
aimed at increasing the readability of the extracted code. Finally, in Sec. 3.4.11,
we evaluate the extraction on our running example, Contiki’s ring buffer library.

3.4.1 Why3 extraction basics
Let us first briefly describe Why3’s extraction mechanism. It involves an in-
termediate language called ML. ML has a similar syntax to WhyML, but has
a much simpler type system (side effects and regions are not a part of it), no
specifications and assertions, and no ghost code. Why3’s extraction is a two-
step process. First, the WhyML program is compiled to ML. In this step, all
ghost code and logical content (specifications, assertions, lemmas, and so on)
are erased. Ghost fields are eliminated from records, ghost arguments are elim-
inated from functions, and so on. A few minor transformations are performed,
such as optimizing away records with a single non-ghost field. The val dec-
larations (that is, functions without a body) are also erased. The translation
is otherwise straightforward for non-ghost code. This step is the same for all
target languages.

The first step outputs an ML abstract syntax tree. The second step con-
sists in printing source code in the target language. For each available target
language, a corresponding printer is registered. A printer consists in a set of
functions. The main function in a printer takes a ML declaration (which can be
a type declaration or a function definition) and prints it in the target language.
The other functions are auxiliary ones that print file headers, footers and so on.

74 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

This two-step architecture may read overly simplistic, and the name “printer”
sound like an odd choice. Indeed, the second step covers both the translation
from ML into the target language and the source code production. The reason
for this choice is that at the beginning of this work, only OCaml was available
as a target language (CakeML was added later on). ML is very close to being
a sublanguage of both OCaml and CakeML, so in both of these cases, the
translation from ML to the target language is trivial and the name “printer”
is appropriate. One of the contributions of this work is the addition of C as a
target language for Why3’s extraction. As you can imagine, the C “printer” is
much more involved than the other two.

The translation from WhyML to ML is documented in Mário Pereira’s the-
sis [79] and is not specific to C extraction. The rest of this section focuses on
describing the process of compiling an ML abstract syntax tree to C code. This
process was outlined in a previous article [85]. Although many new features
have since been added, the underlying principles have not changed.

3.4.2 Design choices, supported WhyML fragment
The extraction from WhyML to C was designed in the context of verifying
efficient C programs such as the GMP library. This informs the design choices in
a few ways. First, it is important that the extraction process does not introduce
inefficiencies in the extracted code that were not present in the WhyML source
code, for example by adding extra indirections and closures or by using a garbage
collection library. Ideally, the WhyML programmer should be able to predict
what the extracted code will look like. On the other hand, it is acceptable to
not be able to extract every existing WhyML program to C. What matters is
being able to implement most C programs in WhyML and extract them back
to C. Finally, the extraction process itself is not verified. Therefore, it must
be as simple as possible, the goal being to decrease the impact on the trusted
computing base as much as possible. The extraction does not need to perform
many optimizations. Indeed, the extracted C code is meant to be compiled
in turn by an optimizing compiler, which we are very unlikely to outperform.
Any optimizations performed by the extraction should be there to make the
extracted code more readable, not more efficient. These soft constraints all
point towards the same direction, which is to make the translation from ML
to C as straightforward as possible, while rejecting most WhyML constructs
that do not lend themselves well to being straightforwardly translated to C.

Here is a non-exhaustive list of WhyML features that are rejected by the C
extraction:

• higher-order functions and types,

• polymorphism (except in driver functions, see Sec. 3.4.4),

• exceptions, try...with constructs,

• unbounded mathematical integers and real numbers.

Sum types (such as the list type from Sec. 2.1.3) are also currently un-
supported, although the non-recursive ones could be extracted as C unions in
principle. The WhyML source code is expected to handle heap allocations and
deallocations explicitly using a memory model such as the one from Sec. 3.3.

3.4. EXTRACTION 75

Therefore, the extraction itself does not need to care about memory manage-
ment. There is one exception, which is checking that adresses on the stack do
not escape their scope. This is discussed in Sec. 3.4.7.

3.4.3 Basic constructs

With the problematic WhyML constructs out of the way, we expect the trans-
lation from WhyML to C to be relatively straightforward. This section aims to
explain what this means on a few basic constructs. Let us first introduce a few
notations. While they may look like formal notations, the goal is not to provide
a formal proof of the extraction mechanism, but merely to informally explain
how it works in a more concise way.

The main function in the C extraction takes a WhyML expression e and an
environment Γ, and returns a pair (d,s) where d is a list of typed C variable
definitions and s is a C statement. Let us denote this function using the double
bracket notation J.KΓ. The semantics of the pair (d,s) are as follows: if JeKΓ =
(((v1, t1), . . . , (vn, tn)), s), then e is extracted to the following C block:

{
t1 v1;
...
tn vn;
s;

}

Note that s may be a sequence of semi-colon-separated statements. By a similar
abuse of notation, we abridge this block to the following, although dmay include
many variables of different types.

{
d;
s;

}

The environment Γ contains information such as whether the current expres-
sion is in terminal position, the name of the current function, and other similar
information that will be made more explicit later on. It will be omitted from
the notations when not relevant. Let us now outline a few basic constructs.

Let-in construct If the expression e1 extracts to (d1, s1) and e2 extracts
to (d2, s2), how to extract let (x:t) = e1 in e2? In this case, we need to
perform a minor program transformation. By construction, s1 is a statement
that computes some value v that has the same type t as x. We transform this
statement into one that assigns v to the variable x, which is assumed to have
been declared earlier on. The general idea of the transformation is to push the
assignment to the leaves of the syntax tree that are in tail position. Let us call
this transformation A(x, .) and give a few examples:

• A(x, e), where e is an expression, is x=e.

• A(x, if c then e1 else e2) is if c then A(x, e1) else A(x, e2)

• A(x, {s1; s2}) is {s1; A(x, s2)}

• A(x, let v = e1 in e2) is let v = e1 in A(x, e2)

76 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

With A(x, .) defined, we can extract the let-in construct to the following:

{
t x;
{
d1;
A(x, s1);

}
{
d2;
s2;

}
}

The end result is quite a bit longer than the original code, notably because
the code is split between several sub-blocks. However, the only reason to do so
is the potential presence of name conflicts between x and the variables in d1
and d2. Thankfully, Why3 prevents such conflicts. Indeed, WhyML variables all
have unique names internally. When variable shadowing should occur, instead
one of the variable gets a fresh name. For example, the WhyML program let
x = 4 in let x = 5 in x could be represented as let x1 = 4 in let x =
5 in x internally. The end result is that all the variables in the definition are
distinct, so the extracted code can be shortened to the following, much more
readable block. More generally, throughout the extraction process, some simple
program transformations take care of lifting all variable definitions to the top
of the function and flattening the block structure.

{
t x;
d1;
d2;
A(x, s1);
s2;

}

Finally, note that I did not mention how the WhyML type of x is translated
to the C type t. Most WhyML types that are meant to be extracted are simply
listed in the extraction driver explicitly (see Sec. 3.4.4). Indeed, one could
imagine that some basic types could be hard-coded into the extraction function,
but there are very few built-in Why3 types (most are defined in user theories).
Many WhyML built-in types, such as the type int of unbounded mathematical
integers, cannot be extracted to C at all. In the end, the function that converts
WhyML types to C types mostly handles the composite types, such as tuples
and records (Sec. 3.4.7), arrays and references (Sec. 3.4.8). The simple types
are left up to the driver, with the exception of boolean constants.

Toplevel expressions, and the C return statement In WhyML, the body
of a function is an expression that computes a value. The body of a C func-
tion generally cannot be just an expression. The value that is computed should
be returned using the return statement. In terms of extraction, this is some-
what similar to the let-in case, in that we need to transform an expression that
computes a value into a statement that returns it. This could be expressed
using the transformation A from last section, by first transforming the expres-
sion e into something like “let result = e in return result”. However, we
do not need to do anything so complex, a simple boolean in the environment Γ

3.4. EXTRACTION 77

is enough. Essentially, when an expression is in tail position, we should add
a return statement, and if it’s not (such as the inner expression of a let-in
construct, or the guard of a loop), then we should not.

Let us take the simplest expression as an example. If v is a variable name,
then JvKΓ = (∅, return v) if v is in terminal position and (∅, v) if not. When
extracting a more complex expression, such as let v = e1 in e2, then for the
extraction of the subexpression e1, we update Γ to mark that we are not in
tail position. The subexpression e2 is in tail position if and only if the whole
expression is.

Booleans, if statements WhyML features a boolean type with two elements
True and False. The C standard defines a _Bool type, which is the smallest
integer type and contains 0 and 1. However, C if statements and loops take
scalars (which can belong to the _Bool type, but also be other integers, pointers,
or even floating-point numbers) as their test expressions. If the expression
evaluates to 0, then the condition is false, otherwise it is true. We do not have
a good reason to force the bool type to be translated to any particular C scalar
type, so this is left up to the driver.

However, being able to extract WhyML code that contains the literals true
and false is useful too, and their translations cannot be specified in the driver
for technical reasons (they are WhyML keywords rather than library functions).
In the end, we extract true to the literal 1 and false to the literal 0. This
effectively forces the translation of the bool type to be either _Bool or some
other integer type, rather than a floating-point or a pointer type. In the default
driver, we choose int because it seems to be the most widely used in practice
for historical reasons. In principle, it is possible to use another integer type.

Note that giving an explicit translation to bool is only needed if it explicitly
appears in the source code, that is, if the user wants to extract a WhyML
function that returns a boolean or takes one as parameter. The mere presence
of if constructs in the code does not require giving a translation to bool.

Let us now discuss how to extract the expression if e1 then e2 else e3.
If Je1KΓ is simple (e.g., an expression), the whole expression can simply be
extracted transparently to a C if statement. If it is more complex (e.g., another
if statement), then we compute it beforehand. More explicitly, if Je1KΓ′ =
(d1, s1) (the difference between Γ and Γ′ being that e1 is not in terminal
position in Γ′), Je2KΓ = (d2, s2) and Je3KΓ = (d3, s3), then if e1 then e2
else e3 is extracted as follows.

{
d1;
int cond;
A(cond, s1);
if (cond) {
d2;
s2;

}
else {
d3;
s3;

}
}

We declare cond as a fresh WhyML identifier beforehand to avoid any name

78 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

conflict. Note that cond has type int. This imposes additional constraints on
the C translation of the bool type, if the user cares to define one. Indeed, it
needs to have a conversion rank smaller than that of int, so that it can be
converted to int implicitly. In practice, this means that the user may define
the translation of bool as any integer type that is not strictly wider than int.

Function call (default case) Consider the function call f(e1), where e1 is
an arbitrary ML expression. Assume f is a regular function defined elsewhere
in the WhyML program, and that it has already been extracted to a C function
also named f. Simply translating this function call to f(Je1K) is not correct
in general, as Je1K may not be a simple C expression. In the general case, we
compute the function arguments before the call to f. Suppose e1 has type t
and Je1K = (d, s). Then the call may be extracted as follows.

{
d;
t x1;
A(x1, s);
f(x1);

}

If there are several function arguments x1, x2 and so on, they are computed
sequentially before the function call.

Several transformations can be applied to make the extracted code more
readable. For example, if d is empty and s is in fact a simple C expression, then
the extracted code is simply f(s). More complex transformations are discussed
in Sec. 3.4.10.

3.4.4 Extraction drivers
Extraction drivers are text files which are passed to the extraction command
alongside the source WhyML files. They allow users to customize the output
of the extraction to a large degree. Their most common use case is to provide
code for WhyML val declarations. Drivers are not an original contribution of
this thesis. However, the precedence system presented later in this section is.

Function calls

Consider the following WhyML program on 64-bit unsigned integers.
type uint64 = < range 0 0xffffffffffffffff >

val add (x y:uint64) : uint64
ensures { uint64’int result

= mod (uint64’int x + uint64’int y) (uint64’maxInt + 1) }

let double_and_add (x:uint64) = add x (add x 42)

The program is based on our model of 64-bit unsigned integers from Sec. 3.1.
The uint64 type is declared as a range type and the integer addition is modeled
with the uninterpreted function add. In the extracted code, the goal is to
seamlessly translate uint64 into the C type uint64_t, and to replace calls to
add by the C operator (+). This is specified in the driver file as follows.

syntax type uint64 "uint64_t"
syntax val add "%1 + %2"

3.4. EXTRACTION 79

The semantics of the syntax type directive are transparent: it states that
the WhyML type uint64 should map to the C type uint64_t. The second
directive states that calls to add should be replaced by the quoted expression,
where %1 is the first argument and %2 is the second one. Just like in the previous
rule for function calls, if the arguments are not simple expressions, they are
computed apart from the function call.

In the end, the extracted code for the example program is as follows.
uint64_t double_and_add(uint64_t x) {
return x + (x + 42)

}

Precedences

Note the parentheses in the above example. The return statement could just
as well be written “return x + x + 42”. The reason for these parentheses is
simple. The contents of the driver strings is opaque to the extraction mechanism
(the argument substitution is performed at the last moment, when we are print-
ing the extracted code). Therefore, the printer is unaware of the precedences of
the expression being printed, and has to add parentheses everywhere. In this
example, it is not that bad, because the parentheses around variables and con-
stants are automatically removed, but in more complex programs it sometimes
makes the extracted code quite ugly and hard to read.

In order to improve the readability of extracted code, I have added to Why3
a mechanism that allows drivers to specify the precedences of an expression and
its subexpressions. For example, the directive for add may be as follows:

syntax val add "%1 + %2" prec 4 4 3

The first number is the precedence level of the expression. Lower numbers
indicate higher precedence. The remaining numbers indicate the precedence
level that is required for each subexpression to be printed without parentheses.
In this case, the whole expression is at precedence level 4, while the two subex-
pressions %1 and %2 require parentheses if they are at precedence level above 4
and 3 respectively (the (+) operator is left-associative, so the right subexpres-
sion needs higher priority). The precedence levels of many operators (such as
=, == and so on) are hard-coded in the extraction mechanism.

At first glance, it may appear that this system for specifying precedences
is needlessly complicated. For binary operators, it would be enough to sim-
ply specify a precedence level for the whole expression, as well as associativity
information (left, right, or none). This is what Coq does in the Notation com-
mand. For example, a Coq user may introduce a binary operator with the
following syntax: Notation "A /\ B" := (and A B) (at level 80, right
associativity).

The reason why we allow a more complex specification for precedences is that
we want to allow parentheses to be printed even when they are not strictly nec-
essary, in the event that it makes the extracted code more readable. Examples
of this can be found in Sec. 3.4.10.

Preludes

Drivers also feature a prelude directive. It is followed by a string, which is
printed at the top of the extracted code. There are two common use cases.

80 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

The first is system includes. For example, the driver may include a line such as
prelude "#include <stdint.h>", in order to use the types int32_t and so
on. The second use case is defining functions and variables that are referenced
in driver directives. In the example below, lookup is a val declaration in some
WhyML program that represents a precomputed lookup table. The lookup table
is hardcoded in the driver prelude (the driver prelude could also be a #include
directive to a handwritten C file where the table is defined).

prelude "int __lookup_table[255] = { ... }"

syntax val lookup "__lookup_table[%1]"

Polymorphism

Driver directives allow a large amount of expressivity. For example, they enable
polymorphism to a small degree. This is how we can give a polymorphic type
to pointers and the malloc function. Recall the signature of our WhyML model
of malloc:

type ptr ’a = ...

val malloc (sz: uint32) : ptr ’a

We do not want to extract a polymorphic type declaration to C. Moreover,
a call to malloc in C should take into account the size of the elements of the
array to be allocated. For example, suppose we want to allocate an array p of
five elements of type uint8. In WhyML, we could write:

let p : ptr uint8 = malloc 5 in
...

In C, a correct translation would be:

p = malloc(5 * sizeof(uint8_t))

The driver mechanism is flexible enough to allow this without needing to
declare a separate malloc function for each type. The following is an excerpt
from the default driver for C extraction.

syntax type ptr "%1 *"
syntax val malloc "malloc(%1 * sizeof(%v0))" prec 1 3

The syntax type directive is similar to the usual function directives. Each
instance of ptr ’a is extracted to the correct type by substitution of the type
variable. Note that the polymorphic type ptr ’a still cannot be extracted if
the type variable is not instantiated. The syntax val directive for malloc
makes use of another feature of the driver syntax. In addition to referring to
the function arguments using %1 and so on, one may refer to their types using
%v1 and so on. The %v0 identifier refers to the return type.

Drivers are a powerful tool that allows users to customize program extraction
with a lot of expressivity. However, keep in mind that the contents of drivers
are not verified, and that they are implicitly trusted by the extraction. Ideally,
drivers are short enough to be reviewed by hand, much like the axioms in the
WhyML formalizations. In my experience, however, a majority of bugs in my
extracted code came from errors in my driver.

3.4. EXTRACTION 81

3.4.5 Control structures
This section goes over a few classical control structures and explains how to
translate them from ML to C.

While loop

ML features a classical while e1 do e2 done construct, with e1 and e2 being
two expressions. If the loop condition Je1K is a simple expression, the whole
loop can be translated straightforwardly to while (Je1K) { Je2K }. If Je1K is
more complex, this does not work. In that case, suppose Je1K = (d,s). We
give the loop a trivial condition, compute Je1K at the start of each iteration,
and immediately break out of the loop if it is false.

d;
int c;
while (1) {
A(c, s);
if (!c) break;
Je2K

}

Break and return

While C does not have exceptions in the same sense as OCaml, several C con-
structs serve a similar purpose in altering a program’s control flow. The break
statement can be used to exit a loop early, and the return statement can be
used to exit a function call early. When one wants to translate a C program
that uses these features into a WhyML program, the only choice is to emu-
late the behavior of break and return with exceptions. The following sketches
of WhyML programs emulate break and return with the exceptions B and R
respectively.

exception B

try
while ... do

...
if (...) then raise B;
...

done
with B → ()
end

exception R of t

let f (...) : t =
...
try

...
raise (R e)
...

with R v → v
end

The extraction mechanism recognizes both of these patterns and replaces
them by uses of break and return respectively. More precisely,

Jtry while e1 do e2 done with B -> () endKΓ = Jwhile e1 do e2KΓ′

The environment Γ′ carries the information that raise B should be extracted as
break. Note that the name B of the exception is not hard-coded. Any exception
of arity 0 works. The pattern for return is detected in the same way, with
the additional condition that the current expression is in tail position (rather
than the expression inside a let-in, for instance). All other instances of try or
raise are unsupported by the C extraction and rejected. Note that WhyML
has recently added break and return keywords in the surface language, but
they are syntactic sugar for these patterns.

82 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

For loop

WhyML also features for loops such as for v = l to u do e done, where the
variable v is a bounded integer. One can also iterate downwards by using downto
instead of to. Note that v, l, and u must be simple variables, not arbitrary
expressions (the user can write arbitrary expressions for l and u, but they are
normalized by Why3 before extraction). This means that we do not have the
usual issue where l and u may be too complex to inline. So, can we translate
this to for (v = l; v <= u; v++) { JeK }? Sadly, we cannot. This time,
the issue is the boundary conditions. For example, if u is the largest integer of
its type, the condition v <= u is always true, and v++ will overflow. We can
replace it by a test inside the loop that breaks out if v = u, but then we also
have to add a test at the beginning of the loop, to prevent the first iteration
from being performed if l > u. In the most general case, if v has type t, the
translation is as follows.

t v;
if (l <= u) {
for (v = l; ; v++) {

JeK
if (v == u)
break;

}
}

If extra information about the bounds is available (for example, they may
be literals), some optimizations remove the tests when able so as to make the
code more readable.

3.4.6 Tuples

WhyML programs regularly involve functions that return multiple values. In
these cases, the function typically returns a tuple. C does not have the equivalent
of WhyML’s polymorphic tuple. A natural approach is to translate tuples into
C structs. Tuples are essentially a special case of immutable records.

For each function f that returns a tuple, we declare at the toplevel a struct
named __f_result. It has a field for each element in the function result. When
extracting a tuple (x, y), if we are in tail position, the translation goes as
follows. First, we declare a struct that has the type of the result of the current
function (carried in the environment Γ). We populate its fields with the tuple
elements, and then we return the struct. A complete example can be found in
Fig. 3.13. The result is much longer than the WhyML code, but it is efficient,
as an optimizing compiler will typically store the struct fields on registers.

3.4.7 Mutable structures

There are a number of way to use mutable data structures in WhyML programs.
The three main ones are mutable record fields, arrays, and references. Let us
focus on references for now. They are declared with the let ref keyword,
and they are essentially records with a single mutable field. In C, all variables
are mutable, so a natural thing to do could be to extract WhyML references
to regular C variables, just as if they were not references. For example, the

3.4. EXTRACTION 83

let f (x:int32) : (int32, int32)
= x + 1, x + 2

let g (x:int32) =
let (y, z) = f x in
y + z

struct __f_result {
int32_t __field_0;
int32_t __field_1;

};

struct __f_result f(int32_t x) {
struct __f_result result;
result.__field_0 = x + 1;
result.__field_1 = x + 2;
return result;

}

int32_t g(int32_t x) {
int32_t y, z;
struct __f_result struct_res;
struct_res = f(x);
y = struct_res.__field_0;
z = struct_res.__field_1;
return y + z;

}

Figure 3.13: Extraction of a WhyML program involving tuples.

let set (ref x: int32) : unit =
x ← 42;
()

let main ()
ensures { result = 42 }

=
let ref x = 0 in
set x;
let ref y = 0 in
y ← 42;
x + y

void set(int32_t * x) {
*x = 42;

}

int32_t main() {
int32_t x, y;
x = 0;
set(&x);
y = 0;
y = 42;
return x + y;

}

Figure 3.14: Unboxing WhyML references.

expression let ref x : int32 = 0 in x <- 1 could be extracted as the C
block int32_t x = 0; x = 1.

Function calls require special attention. In WhyML, all mutable structures
are implicitly passed by pointer. The extraction needs to box mutable structures
that are passed as function arguments, keep track of them in the environment,
and dereference them as needed. Figure 3.14 shows a complete example of
extraction of a program involving mutable variables. The variable x is passed
to set by reference.

Another possible issue is that stack addresses might escape their scope. For
example, a function might declare a reference and return it. In the extracted C
code, the function would return a memory address pointing to an invalidated
section of the stack. Rejecting this specific pattern is not enough, as stack
addresses could still escape in more roundabout ways (as a struct field, for ex-
ample). Performing a complex escape analysis is a bit daunting for an extraction
mechanism that was supposed to be as simple as possible. Thankfully, Why3’s

84 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

type t = { x : int32; y : int32 }

let f (a:t) =
{ x = a.x + a.y; y = a.x - a.y }

struct t {
int32_t x;
int32_t y;

};

struct t f(struct t * a) {
struct t t;
t.x = a->x + a->y;
t.y = a->x - a->y;
return t;

}

Figure 3.15: Extraction of WhyML records.

type system comes to the rescue. Indeed, the type of an expression e includes all
the regions that are reset by the evaluation of e. When extracting an expression
let x = e1 in e2, the regions of x that escape from e2 either are reset by e2,
or appear in its return type. We check that the set of regions that appear in
x has no intersection with the set of regions that may escape. If there is an
intersection, the extraction fails.

Records

WhyML records can generally be extracted to C structs without issues, so long
as the type of each field can be extracted to C. Nested records are currently
not supported, although it seems possible to do so when the inner one is im-
mutable (when the nested record is mutable, special treatment is needed to
avoid memory leaks). Records with mutable fields are boxed in the exact same
way as references. Figure 3.15 shows an example of a WhyML program that
uses records and its extraction to C.

When a record type has no mutable fields, there is no need to box it when
passing it to a function, as the function is guaranteed to not write into it. There-
fore, we perform a small transformation, and simply pass the struct by value in
the extracted code. This makes the extracted code a bit clearer. However, it is
not clear that it is an optimization in terms of performance, especially for large
structs.

3.4.8 Arrays

WhyML does not have a built-in array type, but the standard library features
several array structures which are used in many WhyML programs. More-
over, many C programs use stack-allocated arrays, and we need some way to
transcribe them into WhyML programs. These two constructs are not exactly
analogous, but seem like a natural fit nonetheless. The main difficulty is that
arrays are not a built-in WhyML type, but a user type. The extraction mech-
anism has no great way to infer that it should be extracted to an array rather
than a struct. I ended up using an ad-hoc approach. Figure 3.16 is an excerpt
of the definition of arrays indexed by 32-bit integers in Why3’s standard library.

Note that the array elements are actually stored in a ghost field (an infinite
map from integers to the type of the elements). This is really a model of ar-

3.4. EXTRACTION 85

type array [@extraction:array] ’a = private {
mutable ghost elts : int → ’a;

length : int32;
} invariant { 0 ≤ length }

val make [@extraction:array_make] (n: int32) (v: ’a) : array ’a
requires { n ≥ 0 }
ensures { forall i:int. 0 ≤ i < n → result[i] = v }
ensures { result.length = n }

val ([]) (a: array ’a) (i: int32) : ’a
requires { 0 ≤ i < a.length }
ensures { result = a[i] }

val ([]←) (a: array ’a) (i: int32) (v: ’a) : unit writes {a}
requires { 0 ≤ i < a.length }
ensures { a.elts = M.set (old a.elts) i v }

Figure 3.16: Definition of 32-bit arrays

rays, analogous to the C memory models from Sec. 3.3. The extraction driver
can specify that ([]) and ([]<-) are replaced by array access and assignment
respectively. The type declaration and the make function are dealt with by
the extraction mechanism in an ad-hoc way. The [@extraction:array] at-
tribute in the type definition specifies that we are declaring an array type. The
[@extraction:array_make] attribute specifies that the make function should
be replaced by an array declaration, followed by an initialization loop. For ex-
ample, the expression let t = make 5 (42:int32) in e would be extracted
as:

{
int32_t t[5];
int i;
for (i = 0; i < 5; ++i) {
t[i] = 42;

}
JeK

}

There are a few caveats. First, the first argument of make (size of the
array) needs to be a constant expression. We detect this during extraction in
a syntactic way. Second, we check that the address of t (which resides on the
stack in the extracted C program) does not escape its scope, using the same
approach as for references and records with mutable fields.

3.4.9 Extracting a multi-file library

The extraction mechanism has a number of useful features to extract libraries
comprised of multiple C files. The extraction command takes a Why3 module
as argument. If the corresponding flags are set, it extracts this module and all
of the other modules it depends on. For each module, a C file and a header
file are generated. The header file contains the declarations of all types and
functions in the module, as well as include directives for all the headers of the
dependencies. Each C file includes its own header file.

86 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

The extraction drivers also feature directives that help with multiple-file
extraction. The interface directive is similar to the prelude directive, but
prints its content in the header file rather than the source file. Finally, the
prelude export directive prints its content in all C files that depend on the
current module. For example, the default driver for C extraction uses this
directive to include stdint.h in all files that use the type int32 and in their
interfaces. Finally, the trouble with this recursive extraction scheme is that it
attempts to extract files from the WhyML standard library. These files typically
do not contain anything relevant for extraction, as all they do is declare type
and functions that are only defined in the driver. They end up cluttering the
extracted code with empty files and useless includes. The remove module driver
directive mitigates this by explicitly excluding them from the extraction. Below
is a representative sample of the section of the default C extraction driver that
deals with the Int32 standard library module.

module mach.int.Int32

prelude export "#include <stdint.h>"
interface export "#include <stdint.h>"

syntax type int32 "int32_t"

syntax val (+) "%1 + %2" prec 4 4 3
...

remove module

end

Let us look at a complete example of extraction of a simple multi-file library.
It involves two WhyML modules, as well as the Int32 module from the standard
library. The WhyML source files are reproduced in Fig. 3.17. The driver is the
default C extraction driver. All relevant directives are in the excerpt above.
After extraction, we obtain two C source files and two header files. They are
reproduced in Fig. 3.18.

module A

use mach.int.Int32

let f (x:int32) = x + x

let h (x:int32) = x + 3

end

(a) a.mlw

module B

use mach.int.Int32
use a.A

let g (x:int32) = f (x + 4)

end

(b) b.mlw

Figure 3.17: Source files of a simple library

3.4.10 Making extracted code readable
A number of program transformations are performed by the extraction. The end
goal is to make the extracted code as readable as possible. This is correlated,

3.4. EXTRACTION 87

#include "a.h"
#include <stdint.h>

int32_t f(int32_t x) {
return x + x;

}

int32_t h(int32_t x) {
return x + 3;

}

(a) a.c

#include "b.h"
#include <stdint.h>

int32_t g(int32_t x) {
return f(x + 4);

}

(b) b.c

#ifndef A_H_INCLUDED

#include <stdint.h>

int32_t f(int32_t x);

int32_t h(int32_t x);

#define A_H_INCLUDED
#endif // A_H_INCLUDED

(c) a.h

#ifndef B_H_INCLUDED

#include "a.h"
#include <stdint.h>

int32_t g(int32_t x);

#define B_H_INCLUDED
#endif // B_H_INCLUDED

(d) b.h

Figure 3.18: Extracted code for our simple library.

but not always equivalent to making it shorter. This section discusses a few of
these transformations.

Proxy variable elimination

As explained in Sec. 2.1, Why3 performs some normalizations on user programs.
This makes verification conditions easier to compute. As a result, ML programs
are in A-normal form, that is, all function arguments are trivial. This means
that programs contain many variables that are used only once. For example,
the expression f (a+b) (c+d) would be normalized to something like let o
= c+d in let o1 = a+b in f o1 o (recall that function arguments are eval-
uated from right to left). As a result, the extracted code is far longer than
the original user code, and harder to read. I have added a transformation pass
right after the compilation from WhyML to ML. The proxy variables that are
added by the A-normalization are marked internally. The transformation re-
verts the A-normalization by inlining the variables (that is, replacing them by
their definition).

Not all proxy variables can safely be inlined this way. The nature of the A-
normal form ensures that each proxy variable is used only once, so inlining their
definition introduces no complexity penalty (we are not duplicating computa-
tions). The issue comes from the order of the side effects in the computations.
Take the example of the function call f e1 e2, and suppose that the evaluations
of the expressions e1 and e2 both have side effects. WhyML enforces that e2
is computed before e1, and makes sure of it by properly ordering the proxy
variables. The C standard does not specify an evaluation order for function
arguments. Therefore, it would not be correct to inline the computations of e1

88 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

and e2, because they might be computed in the wrong order.
In the end, proxy variables are only inlined when their computation has no

side effects. We could be a little cleverer and allow inlining in some situations
even with side effects, such as for the first function argument (which should be
computed last anyway). However, the current heuristic is simple and already
greatly reduces the number of extra variables in the extracted code.

Parentheses elimination

The precedence system discussed in Sec. 3.4.4 is expressive enough to remove
almost all the parentheses that are not needed. However, this is not necessarily
what we want to do. For example, the precedences of the bitwise operators &, ˆ,
|, &&, and || are strictly ordered. This means that the expression x && y | z is
unambiguously equivalent to x && (y | z), not (x && y) | z. Unfortunately,
no one remembers the precedences of these operators. It is also not particularly
intuitive that the bitwise “or” operator has higher priority than the boolean
“and” operator. In fact, GCC emits the -Wparentheses warning for expressions
such as this one. In such cases, adding “extraneous” parentheses makes the code
more readable, not less. Fortunately, this is easy enough to do. In the default
C extraction driver, the precedences of the boolean operators are as follows.

syntax val orb "%1 || %2" prec 12 5 5
syntax val andb "%1 && %2" prec 11 5 5
syntax val xorb "%1 ^ %2" prec 9 5 5

The strictest possible rule for ||, for example, would be prec 12 12 11,
which would allow any boolean or bitwise operator to take priority over ||
without parentheses. We require a precedence level of 5 or less (essentially that
of arithmetic expressions) to avoid parentheses. Essentially all complex boolean
and bitwise expressions are parenthesized.

Explicit type conversions

InWhyML programs, the only way to cast a bounded integer to another bounded
integer type is through a function. We declare a val function such as to_int64
below, give it the appropriate specification, and replace it by a cast in the driver.

val to_int64 (x:int32) : int64
ensures { int64’int result = int32’int x }

syntax val to_int64 "(int64_t)%1"

In C programs, some casts may be omitted. Typically, when using an integer
in a context where a wider integer type is required (i.e., there is no risk of
information loss), the conversion occurs implicitly. We could imagine detecting
some of these cases in the extraction mechanism and deleting the gratuitous
type conversions. This would shorten the extracted code. However, it tends to
hurt code readability more than it helps. Detecting which type conversions can
be omitted is also not trivial. Consider the WhyML expression lsl (to_int64
x) 50, where lsl models the C left logical shift operator « and x is a 32-bit
integer. The expression (int64_t)x « 50 is perfectly valid, but x « 50 invokes
undefined behavior. I ended up not implementing this transformation.

3.4. EXTRACTION 89

Expression simplifications

Extraction sometimes generates code patterns that should never appear in hand-
written C programs. For example, the fact that booleans are represented as
integers in C programs, but not in WhyML programs, sometimes leads WhyML
programmers to write expressions such as if (x <> 0) ... or if x then 0
else 1. A small number of simplifications have been implemented. For ex-
ample, the patterns above are replaced by if (!x) ... and !x respectively.
Other examples include purely syntactic transformations, such as simplifying
(*x).a into x->a, or !(a==b) into a != b.

Many complex optimizations could be implemented. However, this would
introduce yet another source of bugs in the untrusted extraction code. In an
effort to keep the extraction code as simple as possible, I implemented only very
small, local transformations that increase code readability.

3.4.11 Contiki’s ring buffer, extracted back to C

Let us now evaluate the extraction on our running example, Contiki’s ring buffer.
Figure 3.19 shows a side-by-side comparison of Contiki’s original code, and the
code that is extracted from our WhyML implementation. Whitespace has been
minimally edited for readability. There are two main differences between the
two programs.

The first difference is that Contiki functions return values of type int, while
our WhyML implementation uses int32_t. Indeed, as explained in Sec. 3.2.2,
we have made the assumption that int is 32 bits wide. In order to make this
assumption clear in the extracted code, we use the fixed-width int32_t type.

The second visible difference is the presence of type conversions between
uint8_t and int32_t. Indeed, the original code performs many implicit type
conversions. Many are hidden from the extracted code, due to our custom
uint8 operations described at the beginning of Sec. 3.2.2. The type conversions
to uint8_t in ringbuf_put and ringbuf_get are also implicitly performed by
the original code. They could likely be removed from the extracted code using
similar methods, but I am not convinced it would be an improvement. Indeed,
they make the fact that the arithmetic computations are done on values of type
int, and not uint8_t, which is not obvious at first glance.

The type conversions in pointer lookups and affectations are artifacts from
our memory model. Indeed, the get_ofs function takes an argument of type
int32 in our memory model, so we had to add casts in the WhyML imple-
mentation. This could be avoided by adding various versions of get_ofs to
the memory model, one for each integer type. They would all have the same
specification. The main reason why this was not done is out of a concern to
avoid code duplication, especially with a model still under active development.

Overall, the extracted code is clearly similar to the original code. They can
be compared line by line, and there are only a handful of differences. More-
over, most of the differences, such as the remaining type conversions, arguably
make the extracted code clearer than the original. In this example, the extrac-
tion managed to output idiomatic code that could be reviewed by a human.
Despite the fact that we have merely produced a correct program rather than
verifying the original code, the extracted code is similar enough to Contiki’s
implementation to serve as evidence of the latter’s correctness.

90 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

struct ringbuf {
uint8_t *data;
uint8_t mask;
uint8_t put_ptr, get_ptr;

};

void ringbuf_init(struct ringbuf *r, uint8_t
*dataptr, uint8_t size) {

r->data = dataptr;
r->mask = size - 1;
r->put_ptr = 0;
r->get_ptr = 0;

}

int ringbuf_size(struct ringbuf *r) {
return r->mask + 1;

}

int ringbuf_elements(struct ringbuf *r) {
return (r->put_ptr - r->get_ptr) & r->mask;

}

int ringbuf_put(struct ringbuf *r, uint8_t c)
{

if(((r->put_ptr - r->get_ptr) & r->mask) ==
r->mask) {

return 0;
}
r->data[r->put_ptr] = c;
r->put_ptr = (r->put_ptr + 1) & r->mask;
return 1;

}

int ringbuf_get(struct ringbuf *r) {
uint8_t c;
if(((r->put_ptr - r->get_ptr) & r->mask) >

0) {
c = r->data[r->get_ptr];
r->get_ptr = (r->get_ptr + 1) & r->mask;
return c;

} else {
return -1;

}
}

(a) Contiki’s ring buffer.

struct ringbuf {
uint8_t * data;
uint8_t mask;
uint8_t put_ptr;
uint8_t get_ptr;

};

void ringbuf_init(struct ringbuf * r, uint8_t
* dataptr, uint8_t size) {

r->data = dataptr;
r->mask = (uint8_t)(size - 1);
r->put_ptr = 0;
r->get_ptr = 0;

}

int32_t ringbuf_size(struct ringbuf * r) {
return r->mask + 1;

}

int32_t ringbuf_elements(struct ringbuf * r)
{

return (r->put_ptr - r->get_ptr) & r->mask;
}

int32_t ringbuf_put(struct ringbuf * r,
uint8_t c) {

if (((r->put_ptr - r->get_ptr) & r->mask)
== (int32_t)r->mask) {

return 0;
}
r->data[(int32_t)r->put_ptr] = c;
r->put_ptr = (uint8_t)((r->put_ptr + 1) & r

->mask);
return 1;

}

int32_t ringbuf_get(struct ringbuf * r) {
uint8_t c;
if (((r->put_ptr - r->get_ptr) & r->mask) >

0) {
c = r->data[(int32_t)r->get_ptr];
r->get_ptr = (uint8_t)((r->get_ptr + 1) &

r->mask);
return (int32_t)c;

} else {
return -1;

}
}

(b) Extracted code.

Figure 3.19: Extraction of Contiki’s ring buffer: a side-by-side comparison.

3.5. STATE OF THE ART, CONCLUSION 91

3.5 State of the art, conclusion

This chapter introduced two main contributions: a model of the C language in
WhyML, and a mechanism to translate WhyML programs into C programs. To-
gether, they allow Why3 users to verify the functional correctness of C programs
using the following approach. First, re-implement the C program in WhyML
using the memory model. Second, verify the program with Why3 using any of
the usual methods. Third, use the extraction mechanism to generate correct-
by-construction C code. The goal is for the end result to be close enough to
the original code to be usable as a drop-in replacement for it. In this chapter,
I illustrated the approach with a small case study: a data structure from the
Contiki operating system and its API. The extracted code ended up extremely
similar to the original. Let us now review related work, evaluate our design
choices, and consider possible future work.

3.5.1 Related work

Let us go over a few other tools that enable the deductive verification of C
programs. One family of such tools uses the Frama-C and Why3 platforms
in combination. The first of these tools was the Caduceus tool [36], which
translated C programs annotated in the ACSL specification language [8] into
the functional language of the Why platform, which computed verification con-
ditions and interfaced with automated solvers in much the same way as its
successor Why3 does. An example of proof performed with Caduceus is the
verification of the Schorr-Waite algorithm by Hubert and Marché [52]. After
Frama-C was developed, Caduceus was replaced by the Jessie plugin [67] for the
Frama-C environment [25], leveraging the latter’s C syntax and type checker.
Jessie translates the C programs and ACSL annotations to Why3 (originally to
Why), which computes the verification conditions and interfaces with provers
as usual. Finally, the more recent WP plugin for Frama-C [7] computes its own
verification conditions within Frama-C using built-in memory models. Why3 is
used only as a way to interact with the theorem provers. Examples of programs
verified with Frama-C/WP include various Contiki modules [14, 80]. When
comparing these tools with my extraction-based approach, the main tradeoff is
the one we outlined in the introduction. The tools based on the Frama-C plat-
form verify the original source code, without needing to modify it outside of the
addition of specification-oriented comments. On the other hand, my approach
requires re-implementing the algorithms from scratch, and compiling them back
to C, resulting in the verification of a closely related but not quite equivalent
program. However, using WhyML as the source language makes it much easier
to leverage Why3’s theorem-proving strengths. As the next chapter shows, the
GMP algorithms that I verified are intricate enough that I do not believe they
can currently be verified using the WP plugin in a similar time frame.

Appel’s Verified Software Toolchain [6] also analyzes C program at the source
level. More precisely, it targets C minor, an intermediate representation from
the certified C compiler CompCert [63]. It uses a program logic based on concur-
rent separation logic, with a notion of permissions. A series of unverified, static
analyzers implemented in the Coq theorem prover output assertions about the
program, which are then checked by a verified core analyzer. The use of Com-
pcert allows the verification to go all the way down to the machine language.

92 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

As a result, the trusted code base of the compiled programs is very small. As
an example, the approach has been used to verify that a concurrent messaging
system is race-free, memory safe and functionally correct [66].

The approach of “verifying” C programs by extracting them from a verified
implementation in a high-level language is not new to this work. Programs writ-
ten in the functional language of the PVS theorem prover can also be compiled
to C using the PVS2C code generator [32, 90]. In comparison to our approach,
the source programs are much less similar to C programs. For example, users
are not required to manage the memory manually using an embedding of the C
memory in the functional language. Instead, the translation to C uses reference
counting to free unused variables and use in-place updates wherever possible.
As a result, the user does not appear to have as much control over the compiled
code as in our approach, as the translation process is not as straightforward.

Another family of tools for the verification of C programs interact with
the Isabelle/HOL theorem prover [78]. The seL4 verified microkernel [56] was
famously verified in Isabelle through successive manual proofs of refinement be-
tween the C implementation, executable specification (generated from a Haskell
prototype), and a high-level abstract specification. Several tools have since
been developed in order to automate these refinement proofs. Greenaway’s Au-
toCorres tool [46, 47] automatically performs a sequence of abstractions from
a shallow embedding of C in Isabelle to higher-level specifications more suit-
able to human reasoning, and generates proofs of correspondence for each of
these translations. The Cogent compiler [5] translates programs written in a
high-level language (tailored to writing systems code) into C. It is built on top
of AutoCorres and generates a formal specification of the compiled code in Is-
abelle/HOL, as well as a refinement proof that the generated C code correctly
implement this semantics. The authors have used Cogent to verify two file sys-
tems. In comparison to our approach, Cogent seems to produce code that is
not as efficient (the authors report around a 100% slowdown between the origi-
nal C file systems and the generated versions). However, correctness proofs are
automatically generated at each translation step, which is not at all the case of
our approach.

Finally, programs written in the F* verification-oriented programming lan-
guage [91] can be extracted to efficient C code using the KreMLin tool [81].
Much like in our approach, F* programs are only accepted by KreMLin if they
are implemented in a shallow embedding of C in F*, with manual memory
management and some restrictions (no higher-order programs or recursive data
types). The memory model, called HyperStack, uses a tree-like model of the
heap and stack. Regions of the heap or the stack are allocated and managed
manually. As a result, HyperStack is more verbose, but also much more ex-
pressive than our memory model. The compilation from F* to C has been
formalized on paper. It targets Clight, an intermediate representation from the
CompCert verified compiler. Much as with our approach, the extracted C code
is efficient and easily predictable for the user, as it strongly resembles the source
F* code. KreMLin has been used to develop the HACL* library [96], which pro-
vides numerous cryptographic primitives and is as efficient as the non-verified
alternatives.

3.5. STATE OF THE ART, CONCLUSION 93

3.5.2 Memory model evaluation

When verifying programs with potential aliasing, one of the top issues is the
frame problem. When one memory zone is modified, the model should be able
to describe which memory areas did or did not change. My memory model does
so using Why3’s built-in alias tracking. Other solutions exist. For example, one
could embed some fragment of separation logic [83], or use a more structured
memory model, like F*’s hyper-heaps.

The choice of relying on Why3’s alias tracking is an economical one. It
works well enough in a wide range of situations, and does not require a very
engineered model. As a result, the core memory model is only about 200 lines
long. The main downside is that it is not expressive enough to model all C
programs. Many alias-heavy programs effectively cannot be implemented using
my model. I have developed ad-hoc tools to increase my model’s expressivity,
such as the ones shown in Sec. 3.3.3 and Sec. 3.3.4, but they are not sufficient.
Furthermore, the more such hacks we introduce, the more we stretch the trust
that the user has to place in the model. In the cases that are complex enough to
warrant even more hacks, it seems that we would be better off using a different
model.

Some features are still missing from my model. Some of them are absent by
design, such as pointer arithmetic and the address operator &. However, there
are many features that could be added to the model, but have not been yet.
Indeed, the development of my model was parallel to and largely driven by my
case study, the proof of a fragment of the GMP library. Therefore, many things
that my model could in theory support were not added because they were not
needed for my case study, and I did not have enough time to work on them.
For example, pointer subtraction inside a memory block could be implemented.
We could check that two pointers are inside the same memory block using their
zone fields, and perform arithmetic on their offset fields.

The model also does not check that memory reads are performed only on
initialized areas. I experimented with this a little bit. One could imagine adding
to pointers a ghost array of booleans that specifies whether each memory cell is
initialized, for example. However, this would require quite a bit of extra work
in program specifications and in proofs. Moreover, bugs related to uninitialized
reads tend to be caught anyway when writing WhyML programs, as it tends
to be very hard in practice to prove function preconditions on values read from
uninitialized memory areas. However, it is still possible to write a WhyML
program that performs an unitialized read and does something pointless with
it, e.g., x - x. Such a program would invoke undefined behavior when extracted
to C.

There are also some portability issues. Some driver directives use GCC built-
ins such as __builtin_clzll, so they might not work with other C compilers.
My model also requires pointer sizes to have type int32, and assumes that the
int type is 32 bits wide and the char type is 8 bits wide. All these hypotheses are
somewhat arbitrary. In retrospect, I regret not introducing more genericity from
the start. For example, using Why3’s module cloning feature, which is analogous
to functor instantiation in OCaml, we could generate multiple versions of the
memory model and vary the various types involved. It would be even better if
we allowed programs to use various types as pointer sizes and offset inside the
same function, as is permitted in C.

94 CHAPTER 3. VERIFYING C PROGRAMS WITH WHY3

A more complex issue that my model tackles poorly is the stack. My model
features a specification for alloca and minimal support, but it is unsafe. It has
no good way to ensure that stack-allocated variables do not escape from their
scope (this can be caught at extraction, but not during the proof of the WhyML
program itself). Similarly, nothing prevents a WhyML user from allocating a
pointer on the stack and calling free on it. There are a few potential ways to
handle the stack. For example, we could track it more explicitly, with a global
variable representing the state of the stack. The main invariant of the C stack
is that at the end of each function call, the stack pointer is back to the same
position as it was at the beginning of the function. But there is currently no
good way to specify this invariant in Why3 in a global way. Type invariants are
too restrictive for this. We could manually add a clause that says stack = old
stack to the specification of all functions, but this is somewhat unpleasant. I
expect this problem to be hard but solvable, potentially with some modifications
to Why3. The main reason why this did not happen is that again, it was not
needed for my case study.

In the end, I am mostly happy with my choice of relying on Why3’s alias
tracking for the memory model. In the simpler cases (in terms of aliasing),
the model is quite lean and justifies the choice of Why3 as a verification plat-
form, as it requires very little extra work on the part of the user in proofs and
specifications.

However, in the more complex cases, the type system is too constraining.
The user needs to either hack it with increasingly complex abstract functions
(as I do in Sec. 3.3.4), or use a memory model that explicitly does not involve
regions, so as to evade Why3’s alias tracking. However, in this last case, it is
not so easy to have mutability without involving regions. The memory model
often ends up convoluted, and it becomes even harder than usual to justify that
it is correct. An example of this is the mpz memory model in Sec. 4.6.1.

Developing a more expressive memory model would not be an easy task. One
of the reasons is that, while Why3’s type system models side effects in a rich way,
many effects cannot be specified in the surface language. For example, the reset
effect occurs as a result of user writes (either in the code or in a specification),
but one cannot specify explicitly that a region is reset. This is why some of my
specifications use somewhat odd writes clauses that are only there to trigger the
reset effect. As part of this work, I made some contributions to Why3 that help
with this somewhat, such as the partial keyword. More notably, the alias
keyword, with which users can specify in a val declaration that two regions
are always aliased, was added during this work, and is extremely important to
my model. It is not my contribution, although I claim credit for pestering the
developers until they added it.

3.5.3 Correctness, trusted code base

Why3’s trusted code base is quite extensive. In order to have confidence in
programs proved by Why3, the user first needs to trust that Why3 computes
the right verification conditions. Second, they need to trust that they were
correctly translated by Why3 into the input language of the various automated
solvers involved, and that the automated solvers themselves are correct. Any
Why3 user already needs to trust a rather large code base.

This works aims at using Why3 to verify C programs. To do so, we add

3.5. STATE OF THE ART, CONCLUSION 95

two components to the trusted code base. First, we model the C language in
WhyML using what is essentially a large set of axioms. Reviewing these axioms
is not so easy. They total a few hundred lines of WhyML code. However, their
correctness relies not only on the C standard, but also on our extraction drivers,
as well as specific inner workings of Why3’s region system.

Second, we translate WhyML programs back to C, using extraction code
that is not verified. In order to increase confidence in the extraction, we would
like it to be as simple as possible. As a result, the translation from WhyML
to C is mostly syntactic, and many WhyML features are not supported by the
extraction. However, compromises need to be made between the simplicity of
the extraction and the ability to produce a wide variety of C programs. It is easy
to make the decision of not supporting WhyML features that are not idiomatic
C features, such as automatic memory management or higher order functions.
However, if too many C features cannot be expressed in WhyML and translated
back to C, then our approach is unusable in practice. In order to support non-
trivial use cases, I ended up adding a number of non-trivial features to the C
extraction, and it would no longer be entirely fair to claim that it is simple
enough to trust after a simple code review.

The question of the correctness of the memory model and extraction goes
further than fixing a few bugs in the extraction code. This approach to verifying
C programs by extraction has proved reasonably effective for my case study.
However, not much theoretical work has yet been done to justify that it is
sound, that is, that the translation to C preserves the semantics of WhyML
programs.

We could imagine a proof that links the semantics of WhyML programs
to the semantics of the extracted program through some bisimulation relation.
Formalized semantics of the C language or related intermediate languages exist
in the wild. For example, the CompCert compiler [63] compiles C to x86 assem-
bly through ten intermediate languages, which are all given formal semantics.
They are used by other pieces of related work. For example, the formalization
of KreMLin’s compilation from F* to C targets CompCert’s Clight intermedi-
ate language [81]. However, no formalized semantics of the WhyML language
is conveniently available yet. We would need to develop one first. The formal-
ization would also need to take the extraction drivers into account, in order
to be able to state and verify the soundness of the memory model. Given the
amount of work required, I do not particularly regret not having worked in this
direction yet. It would not have been realistic to do this in a timely manner
while also working on a sizable use case as a proof of concept. The most direct
point of comparison is probably the KreMLin formalization, and it is a 90-page
paper with more than ten authors. Nonetheless, formalizing the correctness of
the memory model and extraction to C will need to be adressed in future work.
Until then, the proof is only in the pudding.

Chapter 4

WhyMP

Using the approach enabled by the tools presented in last chapter, I have veri-
fied a fragment of the GMP library. Through Why3’s extraction mechanism, we
obtain an efficient and formally-verified C library called WhyMP [72]. To the
best of my knowledge, this work is both the first formally verified comprehen-
sive state-of-the-art arbitrary-precision integer library, and the largest WhyML
development yet.

This chapter presents WhyMP’s algorithms and outlines their proofs. There
are two kinds of facts to prove when verifying arithmetic algorithms. First,
there are the properties related to safety, such as integer overflow checks or ar-
ray bounds checks. Most of these facts are proved automatically by automated
solvers with very little user input. This leaves the higher-level mathematical
facts about functional correctness as the most difficult part of the proofs by
far. The Why3 proofs of these facts tend to be made up of long assertions that
are not unlike paper proofs. In the end, showing the WhyML code would not
be very legible. So, the proofs we present in this chapter deal with faithful
transcriptions of the algorithms in detailed pseudocode. We give the specifica-
tions and invariants, and provide step-by-step explanations of the algorithms
and proofs that their implementations match the specifications.

GMP has multiple layers, which handle different types of numbers (natural,
relative, rational, floating-point) through various layers of abstraction. This
work focuses mostly on the mpn layer, which handles natural numbers. There is
also some support for the mpz layer, which handles relative numbers, although
I have only verified a relatively small number of mpz algorithms. Note that I
did not verify the entire mpn layer either. Indeed, for each operation, mpn im-
plements many different algorithms, each most suitable for different input sizes.
The fragment of mpn that I have verified includes at least one algorithm for each
of addition, subtraction, multiplication, division, square root, and fast modular
exponentiation. Most of the functional correctness proofs in this chapter are
largely drawn from a previous paper in which I present the mpn algorithms [84],
although the sections on mpz and the most recent mpn proofs (modular expo-
nentiation, base conversions) are original.

The chapter is structured as follows. We first go over GMP’s number repre-
sentation and its modeling in WhyML (Sec. 4.1). Section 4.2 regroups the proofs
of GMP’s so-called “schoolbook” algorithms. These algorithms for the four basic
operations have the same structure as the ones taught in school, although they

97

98 CHAPTER 4. WHYMP

have been optimized in various, more or less complex ways. This is especially
the case for the division function, which uses an intricate 3-by-2 division prim-
itive. GMP’s fast modular exponentiation algorithm is described in Sec. 4.3.
It required formalizing various concepts of modular arithmetic, such as com-
putations in Montgomery form. In Sec. 4.4, we describe one family of GMP’s
divide-and-conquer multiplication algorithms that involve intricate buffer ma-
nipulation and carry propagation. Section 4.5 describes another divide-and-
conquer algorithm, which computes the square root of a large integer. However,
the most interesting part of that algorithm is the base case, which computes the
square root of a machine integer using an intricate implementation of Newton’s
method in fixed-point arithmetic. Most of the work was spent formalizing con-
cepts of fixed-point arithmetic in Why3. Section 4.6 describes my formalization
of the mpz layer. Its algorithms are much more permissive than those of the mpn
layer in terms of parameter aliasing, which required a custom memory model.
GMP’s base conversion algorithms are described in Sec. 4.7. They convert back
and forth between user-readable character strings and GMP’s internal number
representation. The main verification challenge was the modeling of the var-
ious required concepts: character strings, the ASCII character encoding, and
so on. Section 4.8 compares WhyMP and GMP in terms of compatibility and
performance benchmarks. Finally, Sec. 4.9 goes over lessons learned from the
development of WhyMP, some related work, and some possible lines of future
work.

4.1 Modeling GMP inside Why3
This section presents GMP’s representation of large integers as arrays of full
words. We then present an example of our workflow on a simple GMP routine,
GMP’s integer copy function.

4.1.1 Integer representation
In GMP, natural integers are represented as arrays of unsigned integers called
limbs. We set a radix β = 264 (also called radix in the formal development).
Any natural number N has a unique decomposition

∑n−1
k=0 a[k]βk in base β such

that a[n− 1] 6= 0, and is represented as the buffer a[0]a[1] . . . a[n− 1] (with the
least significant limb first). If N = 0, it is represented by a 0-length array.

For the sake of efficiency, there is no memory management in GMP’s low-
level functions. The caller code has to keep track of number sizes. Function
operands are specified by two separate parameters: a pointer to their least
significant limb and a limb count. In our case, since β = 264, each limb lies
between 0 and 264− 1, so the type uint64 of unsigned 64-bit integers is used to
represent limbs.

type limb = uint64

type t = ptr limb

Let us now establish the link between mathematical integers and arrays of
machine integers. If a pointer a is valid over a size n, we denote value(a, n) =

a[0] . . . a[n− 1] =
∑n−1
k=0 a[k]βk. We also use the same notation for the value

of a slice of the pointer that does not start at 0. For example, we denote

4.1. MODELING GMP INSIDE WHY3 99

value(incr(a, k), p) as a[k] . . . a[k + p− 1]. The value function is defined as
follows in WhyML:

let rec ghost function value_sub (x:map int limb) (n:int) (m:int) : int
variant { m - n }

=
if n < m
then to_int x[n] + radix * value_sub x (n+1) m
else 0

function value (x:ptr limb) (sz:int) : int =
value_sub x.data.elts x.offset (x.offset + sz)

Notice that the return type of value is the type int of unbounded mathe-
matical integers. This type cannot be used in programs meant to be extracted
to C, but the value function cannot either (it is a purely logical function).
Therefore, its result will never interact with the program code, so we may as
well choose the type that makes formal verification easiest, which is int.

The following lemmas express what happens to the value of a big integer
when part of it is modified. In particular, loops tend to change only one end of
a big integer (usually by increasing its length), and being able to separate what
changed from what did not is crucial to prove that loop invariants are preserved.

Lemma 1. Let p a pointer valid over the length n, and let 0 ≤ k < n.

p[0] . . . p[n− 1] = p[0] . . . p[k − 1] + βkp[k] . . . p[n− 1] [value_sub_concat]

p[0] . . . p[n− 1] = p[0] . . . p[n− 2] + βn−1p[n− 1] [value_sub_tail]

p[0] . . . p[n− 1] = p[0] + βp[1] . . . p[n− 1] [value_sub_head]

p[0] . . . p[k − 1] v p[k + 1] . . . p[n− 1]

= p[0] . . . p[k] . . . p[n− 1] + βk(v − p[k]) [value_sub_update]

We also need some bounds for the value of an integer of size n. These follow
easily from the fact that the values a[i] lie between 0 and β − 1.

Lemma 2. Let p a pointer valid over the size n.

0 ≤ p[0] . . . p[n− 1] [value_sub_lower_bound]

p[n− 1]βn−1 ≤ p[0] . . . p[n− 1] [value_sub_lower_bound_tight]

p[0] . . . p[n− 1] < βn [value_sub_upper_bound]

p[0] . . . p[n− 1] < (p[n− 1] + 1)βn−1 [value_sub_upper_bound_tight]

4.1.2 Example GMP function: mpn_copyd

Let us now go over a simple GMP routine as an example. The mpn_copyd
function is shown in Fig. 4.1. It takes two pointers rp and up valid over a size n
and copies the limbs pointed by up into rp in decreasing order, that is, starting
with the most significant limbs. (Another copy function, mpn_copyi, does the
same thing in increasing order.) Note that up and rp are allowed to point to
zones longer than n, or even to point to the middle of a number. The only
length requirement is that there are at least n valid limbs to the right of each
pointer.

100 CHAPTER 4. WHYMP

void mpn_copyd (mp_ptr rp, mp_srcptr up, mp_size_t n)
{
mp_size_t i;
for (i = n - 1; i >= 0; i--)
rp[i] = up[i];

}

let wmpn_copyd (rp up:t) (n:int32) : unit
requires { valid up n ∧ valid rp n }
ensures { forall i. 0 ≤ i < n → rp[offset rp + n] = up[offset up + n] }
ensures { forall j. (j < offset rp ∨ offset rp + n ≤ j)

→ rp[j] = old rp[j] }
=

for i = n-1 downto 0 do
invariant { forall j. i + 1 ≤ j < n →

rp[offset rp + j] = up[offset up + j] }
invariant { forall j. (j < offset rp ∨ offset rp + n ≤ j) →

rp[j] = old rp[j] }
let lu = C.get_ofs up i in
C.set_ofs rp i lu

done

Figure 4.1: GMP’s copy function and its WhyML transcription.

There is an additional restriction related to pointer aliasing. If the pointers
rp and up overlap, the function still behaves properly on the condition that
rp ≥ up (otherwise, the copy would overwrite parts of up that have not been
copied yet). This behavior is not documented, but GMP makes heavy use of it
nonetheless. In that case, the contents of up are of course modified. This is one
of the cases where my C memory model is more restrictive than we would like.
The WhyML transcription as written on Fig. 4.1 cannot be used on two pointers
that overlap (or even point to the same memory zone while being separated).
On the plus side, the specification is much simpler than it would otherwise be.
There is no need to specify the changes that may occur in up (or even the fact
that it does not change). However, in order to copy between pointers inside the
same block, we need to do extra work. Details on this extra work can be found
in Sec. 3.3.4. In the rest of the section, let us simply assume that rp and up are
separated, and that an extra copy function handles the remaining cases.

Let us briefly compare the WhyML transcription of mpn_copyd to the orig-
inal C code. The function body is extremely similar, as expected for such a
simple function. The only thing worth mentioning is the choice of the type
used to model mp_size_t. In GMP, this type is usually either int32 or int64
depending on the system architecture. We choose int32 somewhat arbitrarily.
It would be desirable to introduce some kind of genericity in the WhyML imple-
mentation, so as to prove that the programs are valid for both choices. However,
I have not found a great way to do this while preserving a good degree of proof
automation.

The specification and proof of wmpn_copyd are relatively simple. The only
precondition is that both input pointers are valid over the length n. Note
that there is no precondition requiring n to be non-negative. The function
can be called on a negative n argument, in which case it does nothing and the
specification also proves nothing. As explained in Chap. 2, the specification says

4.2. SCHOOLBOOK ALGORITHMS 101

nothing about aliasing, as the constraints discussed above are implicitly enforced
by Why3’s type system rather than encoded in the logic. The first postcondition
states that the first n cells of rp are now a copy of the first n cells of up. Note
that nothing requires rp or up to point to the start of a memory block, or n to
encompass the whole block. Therefore, the second postcondition is necessary.
It states that the rest of rp is left unchanged. The body of the function is
a straightforward loop. Much as one could expect, the loop invariants simply
express the same properties as the postcondition on a section of the array. In
this case, no extra work is required from the user. The automated solvers are
able to easily prove that the loop invariants are valid and that the postconditions
follow from them.

void wmpn_copyd(uint64_t * rp, uint64_t * up, int32_t n) {
int32_t i, o;
uint64_t lu;
o = n - 1;
for (i = o; i >= 0; --i) {
lu = up[i];
rp[i] = lu;

}
}

Figure 4.2: Extracted code for wmpn_copyd.

The extracted code for wmpn_copyd is reproduced in Fig. 4.2. As expected,
it is extremely similar to the original GMP code. It is a little bit less compact,
as the extra variables o (added by Why3 as part of the A-normalization process,
see Sec. 2.1) and lu (added by the user for proof purposes) were not eliminated.
However, we can expect a sane compiler to produce very similar outputs for
both functions.

4.2 Schoolbook algorithms

This section regroups the schoolbook algorithms implemented in WhyMP. Their
structures are typically simple loops. They include integer comparison (Sec. 4.2.1),
addition and subtraction (Sec. 4.2.2), multiplication (Sec. 4.2.3), and division
(Sec. 4.2.4). The “schoolbook” denomination is found in GMP’s source code.
However, the division algorithm is so heavily optimized that it can hardly be
called a schoolbook algorithm anymore.

4.2.1 Comparison

The mpn layer of GMP exposes a single comparison function, which compares
two integers of same length (Alg. 1). The algorithm is straightforward: it simply
iterates both operands until it finds a difference, starting at the most significant
limb.

Since the function involves a loop, we must provide a loop invariant. Here,
the loop invariant is that both source operands are identical from offsets i + 1
(included) to n (excluded).

102 CHAPTER 4. WHYMP

Algorithm 1 Comparison of two integers of identical length.
Require: valid(x, n), valid(y, n)
Ensure: result > 0⇔ value(x, n) > value(y, n)
Ensure: result = 0⇔ value(x, n) = value(y, n)
Ensure: result < 0⇔ value(x, n) < value(y, n)
function cmp(x, y, n)

for i = n− 1 downto 0 do
if x[i] 6= y[i] then

if x[i] > y[i] then return 1
else return −1

return 0

An additional lemma is required to prove the invariant and complete the
proof, it simply says that two big integers with equal limbs at all offsets are
equal:

Lemma 3 (value_sub_frame).
Let a, b valid over lengths greater than v such that for all u ≤ k < v, a[k] = b[k].
Then a[u] . . . a[v − 1] = b[u] . . . b[v − 1].

The lemma is proved by a straightforward induction, which translates well
into a Why3 lemma function as the recursive call takes care of the inductive
case:

let rec lemma value_sub_frame (a b:map int limb) (u v:int)
requires { forall i. u ≤ i < v → a[i] = b[i] }
variant { v - u }
ensures { value_sub a u v = value_sub b u v }

= if u < v then value_sub_frame a b (u+1) v else ()

This lemma shows that the numbers are equal if no difference was found by the
end of the loop.

4.2.2 Addition, subtraction
We use the schoolbook algorithms for the addition and subtraction of big inte-
gers, represented by their decomposition in base β.

We first need to give the specifications of basic operations on limbs. Much
like the three multiplication primitives outlined in Sec. 3.1.1, there are three
limb addition primitives.

The first primitive (+) is the defensive addition: it requires that the sum of
the two inputs does not overflow.

val (+) (a b:limb) : limb
requires { to_int a + to_int b ≤ Limb.max }
ensures { to_int result = to_int a + to_int b }

The second primitive, add_mod, has the semantics of the + operator on un-
signed integers in C: if there is an overflow, the result wraps around. When
compiling WhyML programs to C, both (+) and add_mod are translated to the
C operator +. The former’s postcondition is stronger and more suitable for SMT
solvers, as it does not involve a modulo operator. Therefore, using it simplifies
the proofs when its (also stronger) precondition is met. The latter captures the
full semantics of the addition, so it can be used in the remaining cases.

4.2. SCHOOLBOOK ALGORITHMS 103

val add_mod (x y:limb) : limb
ensures { to_int result = mod (to_int x + to_int y) radix }

Finally, the third primitive accepts a carry to be added to the other two
operands, and outputs both the carry and the (potentially wrapped-around)
result of the addition.

val add_with_carry (x y:limb) (c:limb) : (r:limb,d:limb)
requires { 0 ≤ to_int c ≤ 1 }
ensures { to_int r + radix * to_int d = to_int x + to_int y + to_int c }
ensures { 0 ≤ to_int d ≤ 1 }

Similar primitives are used for limb subtraction.
WhyMP implements many variants of addition and subtraction, depending

on whether the operation is done in place, the operation may overflow, the
operands are known to be of same length, and so on. As a sufficiently generic
example, let us examine the general-case addition (Alg. 2). It assumes that the
first operand is longer than the second, and returns a carry out.

Algorithm 2 Addition of two integers.
Require: 0 ≤ n ≤ m
Require: valid(a,m), valid(b, n), valid(r,m)
Ensure: value(r,m) + βm · result = value(a,m) + value(b, n)
Ensure: 0 ≤ result ≤ 1
function add(r, a,m, b, n)

c← 0
i← 0
while i < n do . Add b to a.

x← a[i]
y ← b[i]
(z, c)← add_with_carry(x, y, c)
r[i]← z
i← i+ 1

if c 6= 0 then . Keep copying a into r while propagating the carry.
while i < m do

x← a[i]
z ← add_mod(x, 1) . c = 1.
r[i]← z
i← i+ 1
if z 6= 0 then . No overflow: there is no more carry.

c← 0
break

while i < m do . No more carry: copy a into r.
r[i]← a[i]
i← i+ 1

return c

The algorithm is schoolbook addition with a few optimizations. There are
three main steps.

The first step is to add together the two operands over the length of the
shorter one. This corresponds to the first while loop. Its loop invariants are as
follows:

104 CHAPTER 4. WHYMP

1) value(r, i) + cβi = value(a, i) + value(b, i),

2) 0 ≤ i ≤ n.

At the end of the first loop, we have value(r, n) + cβn = value(a, n) +
value(b, n) and i = n. What remains to be done is to copy the last m−n limbs
of a into r and propagate the carry.

The second loop copies a into r while propagating the carry. It is skipped if
c = 0. Its loop invariants are:

1) value(r, i) + cβi = value(a, i) + value(b, n),

2) n ≤ i ≤ m,

3) i = m ∨ c = 1.

We break out of the loop whenever the carry c becomes 0 (or if we have finished
copying a into r, in which case i = m). Note that we are only adding the carry
to a limb x of a. There is an overflow if and only if x = β − 1. There is no
need to use add_with_carry. It is more efficient to instead use add_mod and
check if the result is 0, in which case there was an overflow. This is relatively
unlikely (probability 1/β if the operands are randomly drawn from a uniform
distribution), so the loop typically only runs for zero or one iteration.

Finally, in the third loop (which is skipped if we already have i = m), we
only have to copy the last limbs of a into r. The loop invariants are:

1) value(r, i) + cβi = value(a, i) + value(b, n),

2) n ≤ i ≤ m,

3) i = m ∨ c = 0.

At the end of the loop, we can return c and easily see that the postcondition is
verified.

In GMP, all addition and subtraction functions can be used in place, simply
by passing the same pointer both as the result and as one of the operands.
Why3’s aliasing constraints make the situation more difficult for us. In the
WhyMP proof, I have verified separate, in-place versions of the addition and
subtraction functions. I have avoided code and proof duplication using the
techniques from Sec. 3.3.4. As a result, the WhyML code has two variants
of each function, e.g., add_n and add_n_in_place. The non-in-place variant is
simply a wrapper over a generic function that assumes all parameters are aliased.
However, the wrappers are inlined at extraction. Therefore, the extracted code
only has one version of each function, which can be used in the same ways as
its GMP counterpart.

4.2.3 Schoolbook multiplication
I have implemented several algorithms for integer multiplication. For smaller
integers (fewer than 30 limbs), the fastest is the schoolbook one, which has com-
plexity O(n2). For larger operands, Toom-Cook multiplication is used (Sec. 4.4),
as it has better asymptotic complexity.

Let us first consider the auxiliary function addmul_1 (Alg. 3). It multiplies
a big integer a by a limb y and adds the result to r, without modifying the

4.2. SCHOOLBOOK ALGORITHMS 105

Algorithm 3 Multiply-and-add.

Require: valid(r,m), valid(a,m)
Ensure: value(r,m) + βm · result = value(old r,m) + value(a,m) · y
Ensure: ∀j. j < 0 ∨m ≤ j =⇒ r[j] = (old r)[j]
function addmul_1(r, a,m, y)

c, i = 0
while i < m do

x← a[i]
z ← r[i]
(l, h)← mul_double(x, y) . l + β · h = x · y
l′ ← add_mod(l, c)
c′ ← (if l′ < c then 1 else 0) + h . l′ + β · c′ = x · y + c
l′′ ← add_mod(l′, z)
c′′ ← (if l′′ < z then 1 else 0) + c′ . v + β · c′′ = z + x · y + c
r[i]← v
c← c′′

i← i+ 1
return c

contents of r outside the area of the addition. It returns the most significant
limb of the sum.

The loop invariants of addmul_1 are:

1) 0 ≤ i ≤ m,

2) value(r, i) + cβi = value(old r, i) + value(a, i) · y,

3) ∀j. j < 0 ∨m ≤ j =⇒ r[j] = (old r)[j].

Let us explain why the computations of c′ and c′′ do not overflow. As
l+ βh ≤ (β− 1)2, we have h < β− 1, so the computation of c′ cannot overflow.
Furthermore, if c′ = β − 1, then we have l′ + β(β − 1) = x · y+ c ≤ β(β − 1), so
l′ = 0. As a result, the computation of c′′ does not overflow either.

Algorithm 4 Schoolbook multiplication of two integers.
Require: 0 < n ≤ m
Require: valid(a,m), valid(b, n), valid(r,m+ n)
Ensure: value(r,m+ n) = value(a,m) · value(b, n)
function mul_basecase(r, a,m, b, n)

y ← b[0]
r[m]← mul_1(r, a,m, y) . value(r,m+ 1) = value(a,m) · b[0].
p← r + 1
i← 1
while i < n do

y ← b[i]
p[m]← addmul_1(p, a,m, y) . See Alg. 3.
i← i+ 1
p← p+ 1

Let us now consider the main function that implements schoolbook multi-
plication (Alg. 4). It uses the function addmul_1, as well as another function

106 CHAPTER 4. WHYMP

called mul_1. It is similar to addmul_1, but overwrites r rather than adding the
product to it. At each iteration of the main loop of mul_basecase, one limb of
the second operand is multiplied by the entire first operand, and the product is
added to the result (shifted appropriately).

The loop invariants are as follows:

1) 1 ≤ i ≤ n,

2) value(r,m+ i) = value(a,m) · value(b, i),

3) p = r + i.

It is easy to see that the postcondition follows from the invariants. The fact
that the invariants are maintained follows from the specification of the auxiliary
function addmul_1.

Indeed, if we pose r′ the state of r at the beginning of a loop iteration, we
have at the end of the loop iteration:

value(r,m+ i+ 1)

= value(r, i) + βi · value(r + i,m+ 1) decomposition

= value(r′, i) + βi · value(r + i,m+ 1) no writes in r(0, i)

= value(r′, i) + βi · (value(r′ + i,m) + value(a,m) · y) postcondition of addmul_1

= value(r′,m+ i) + βi · value(a,m) · y recomposition

= value(a,m) · value(b, i) + βi · value(a,m) · y loop invariant

= value(a,m) · (value(b, i) + βi · y)

= value(a,m) · value(b, i+ 1). recomposition

4.2.4 Division

Long division consists in computing the quotient and remainder of the division
of big integers of arbitrary sizes. It is a significantly more complex problem than
long addition and multiplication. While the GMP algorithm that we verified is a
variation on the schoolbook algorithm, it is thoroughly optimized to the point of
making it hard to understand and prove. The general-case long division function
is about 50-line long,1 and the code extracted from my implementation is about
80-line long. However, my Why3 proof for it is about 2000-line long.

Let us first review a more naïve algorithm: Knuth’s Algorithm D [57, p. 257]
(see also [94]), shown in Alg. 5. I did not use this algorithm in my development,
but it is simple enough to explain the core ideas more easily.

We assume a primitive div_2by1 that divides a 2-limb integer by a 1-limb
integer and returns the quotient. It has no WhyML code and we assume that
the hardware provides such a function. It is the only division primitive used by
the functions in this section.

val div_2by1 (l h d:limb) : limb
requires { to_int h < to_int d }
ensures { to_int result =

div (to_int l + radix * to_int h) (to_int d) }

1mpn/generic/sbpi1_div_qr.c in GMP 6.1.2

4.2. SCHOOLBOOK ALGORITHMS 107

Algorithm 5 Knuth’s Algorithm D.

Require: m ≥ n > 0, valid(a,m), valid(d, n), valid(q,m− n), valid(r, n)
Require: d[n− 1] ≥ β/2
Require: value(a+m− n, n) < value(d, n) . Otherwise an extra quotient

limb is needed.
Ensure: value(a,m) = value(d, n) · value(q,m− n) + value(r, n)
Ensure: value(r, n) < value(d, n)
1: function AlgorithmD(q, r, a, d,m, n)
2: for j = m− n− 1 downto 0 do
3: q̂ ← div_2by1(a[j + n− 1], a[j + n], d[n− 1]) . Candidate quotient

limb.
4: r̂ ← βa[j + n] + a[j + n− 1]− d[n− 1] · q̂ . Candidate remainder.

adjust:
5: if q̂ · d[n− 2] > β · r̂ + a[j + n− 2] then
6: q̂ ← q̂ − 1 . Quotient is too large; adjust.
7: r̂ ← r̂ + d[n− 1]
8: if r̂ < β then goto adjust . Happens at most once.
9: b← submul_1(a+ j, a+ j, d, q̂, n) . Subtract d · q̂ from a.

10: q[j]← q̂
11: if b > 0 then . There was a borrow, the quotient was too large.
12: q[j]← q[j]− 1
13: c← add_n(a+ j, a+ j, d, n)
14: a[j + n]← a[j + n] + c . Propagate the carry.
15: for i = 0 to n− 1 do . The remainder is written in a, copy it to r.
16: r[i]← a[i]

return

108 CHAPTER 4. WHYMP

The algorithm consists in computing the limbs of the quotient one by one,
starting with the most significant. The numerator is overwritten at each step
to contain the partial remainder.

At each iteration of the loop, we compute a quotient limb and subtract from
the current remainder the product of that quotient limb and the denominator,
left-shifted appropriately to cancel out the most significant limb of the current
remainder. The function submul_1 is similar to the function addmul_1 from the
previous section, but subtracts the product instead of adding it.

To compute a quotient limb, a candidate value is first guessed by dividing the
two most significant limbs from the current remainder by the most significant
limb of the denominator.

This candidate value is then adjusted to match the correct value of the quo-
tient (lines 5-8 and 11-14). This process is called “adjustment step” throughout
this section. The algorithms that are actually implemented in GMP are variants
of Algorithm D that try to minimize the number of adjustments that occur.

This is where the requirement that d[n − 1] ≥ β/2 comes into play. When
this is the case (we call such a denominator normalized) then the initial 2-by-1
division gives a good approximation of the target quotient limb.

Definition 1. An integer p[0] . . . p[n− 1] is said to be normalized when
p[n− 1] ≥ β/2.

predicate normalized (x:ptr limb) (sz:int32) =
valid x sz ∧ x[x.offset + sz - 1] ≥ div radix 2

More precisely, as shown by Knuth [57, p. 257, Theorem B], the candidate
quotient is at most too large by 2, under the condition that the denominator
is normalized. The denominator being normalized is therefore a precondition
of Knuth’s algorithm, and of the other division algorithms in this section for
similar reasons.

In the general case, we remark that an integer is normalized if and only if its
most significant bit is set to 1. The denominator can therefore be normalized
by counting the leading zeros in the denominator, shifting the numerator and
denominator by that amount (the denominator is then normalized), calling a
division procedure, and correcting the output by shifting the remainder to the
right by the same amount.

This normalization is done by a wrapper around the main division primitive.
This wrapper is the function that is exposed to the user. The version of the
wrapper that I verified is very simple and only performs this normalization, so
it is not worth discussing here. GMP’s version also implements an alternative
algorithm that is not needed for correctness, but that is faster than the default
one when the divisor is close in length to the dividend. I have not implemented
and verified this alternate algorithm yet; the more general algorithm is used in
all cases in WhyMP. In the rest of this section, we will continue to assume the
divisor normalized.

General case algorithm

GMP does not use Knuth’s algorithm, but a similar one that uses a 3-by-2 divi-
sion to compute each quotient limb (Alg. 6). Let us now discuss the differences
between this algorithm and Algorithm D.

4.2. SCHOOLBOOK ALGORITHMS 109

Algorithm 6 General case long division.

Require: m ≥ n ≥ 3, valid(a,m), valid(d, n), valid(q,m− n)
Require: d[n− 1] ≥ β/2
Require: value(a+m− n, n) < value(d, n) . Otherwise an extra quotient

limb is needed
Ensure: value(old a,m) = value(q,m− n) · value(d, n) + value(a, n)
Ensure: value(a, n) < value(d, n)
1: function div_sb_qr(q, a, d,m, n)
2: v ← reciprocal_word_3by2(d[n− 1], d[n− 2])
3: x← a[m− 1]
4: i = m− n
5: while i > 0 do
6: i← i− 1
7: if x = d[n− 1] and a[n+ i− 1] = d[n− 2] then . Unlikely.
8: q̂ ← β − 1
9: submul_1(a+ i, d, n, q̂) . We know the result is d[n− 1].

10: x← a[n+ i− 1]
11: else
12: (q̂, l, x)← div3by2_inv(x, a[n+ i−1], a[n+ i−2], d[n−1], d[n−

2], v)
13: b← submul_1(a+ i, d, n− 2, q̂)
14: b1 ← (l < b) . Last two steps of the subtraction are inlined.
15: a[i+ n− 2]← l − b mod β
16: b2 ← (x < b1)
17: x← x− b1 mod β . Finish subtraction.
18: if b2 6= 0 then . Unlikely, and b2 = 1.
19: q̂ ← q̂ − 1 . We only need to adjust by 1.
20: c← add(a+ i, a+ i, d, n− 1) . Add only over n− 1 limbs.
21: x← x+ d[n− 1] + c mod β . The carry out is always 1.
22: q[i]← q̂

23: a[n− 1]← x

110 CHAPTER 4. WHYMP

First, there is an extra local variable x. It is really a proxy for the most sig-
nificant limb in the current remainder, in the sense that whenever we would read
from a[n+ i], we take x instead. Thus, instead of being stored in a[i] . . . a[n+ i],
the low n limbs of the current remainder are stored in a[i] . . . a[n+ i− 1] and
the most significant limb is stored separately in the variable x. This saves a few
memory accesses, and it can be done because the most significant limb of the
current remainder is no longer needed after the current loop iteration.

We are now better equipped to express the main loop invariants.
Let A be equal to the initial value of value(a,m). The following invariants

are maintained in the main loop:

1) A = value(d, n)·βi ·value(q+i,m−n−i)+value(a, n+i−1)+βn+i−1 ·x,

2) value(a+ i, n− 1) + βn−1 · x < value(d, n),

3) d[n− 2] +βd[n− 1] ≥ a[n+ i− 2] +βx (implied by the previous two).

An important difference with Algorithm D is that instead of dividing the
two most significant limbs of the numerator by the most significant limb of the
denominator, we divide the three most significant limbs of the former by the
two most significant limbs of the latter. This means that the adjustment step is
much more efficient than that of Algorithm D. Indeed, the candidate quotient
obtained this way is very likely to be correct (Lemma 4).

Lemma 4. Let q̂ and r[0]r[1] the quotient and remainder of the division of
a[n+ i− 2]a[n+ i− 1]x by d[n− 2]d[n− 1].
If q̂ · d[0] . . . d[n− 1] > a[i] . . . a[n+ i− 1]x, then r[1] = 0.

Proof. We have a[n+ i− 2]a[n+ i− 1]x = d[n− 2]d[n− 1]q̂ + r[0]r[1].
We also have a[i] . . . a[n+ i− 1]x ≥ βn−2a[n+ i− 2]a[n+ i− 1]x.
If q̂ · d[0] . . . d[n− 1] > a[i] . . . a[n+ i− 1]x, this implies:

q̂ · d[0] . . . d[n− 1] > βn−2(d[n− 2]d[n− 1]q̂ + r[0]r[1])

However,

q̂ · d[0] . . . d[n− 1] = q̂ · d[0] . . . d[n− 3] + βn−2d[n− 2]d[n− 1]q̂

< βn−1 + βn−2d[n− 2]d[n− 1]q̂.

Therefore we must have βn−2r[0]r[1] < βn−1, which implies r[1] = 0.

This means that the borrow at line 18 is only non-zero when the high limb
of the remainder returned by the 3-by-2 division at line 12 is zero, which is
intuitively rare (if the outcomes were evenly distributed, the probability would
be 1/β). This lemma does not have an equivalent in the Why3 proof, as it is not
needed to prove functional correctness. However, the fact that the if statement
at line 18 is very likely to take the empty “else” branch is signaled in GMP’s
original source code, which reads: if (UNLIKELY (cy != 0)). The UNLIKELY macro
is unfolded to the compiler built-in __builtin_expect, which instructs the
compiler to favour the likelier branch in the assembly code. The built-in is also
present in the extracted code of WhyMP.

Not only is the initial guess for the quotient very likely correct, but when it is
not, it is only too large by 1 and we can correct it with a single incrementation.

4.2. SCHOOLBOOK ALGORITHMS 111

Compare this to Algorithm D, where two separate blocks were dedicated to
adjusting the quotient, and one of which could be executed twice. The following
lemma justifies that the candidate quotient is at worst too large by 1, which
justifies that the adjustment step at line 18 is needed at most once.

Lemma 5. Let q̂ and r[0]r[1] the quotient and remainder of the division of
a[n+ i− 2]a[n+ i− 1]x by d[n− 2]d[n− 1].
Then (q̂ − 1) · d[0] . . . d[n− 1] ≤ a[i] . . . a[n+ i− 1]x.

Proof. We have q̂ · d[n− 2]d[n− 1] ≤ a[n+ i− 2]a[n+ i− 1]x, so:

(q̂ − 1)d[0] . . . d[n− 1]

≤ (q̂ − 1)d[0] . . . d[n− 3] + βn−2(q̂ − 1)d[n− 2]d[n− 1]

< βn−1 + βn−2a[n+ i− 2]a[n+ i− 1]x− βn−2d[n− 2]d[n− 1]

< βn−2a[n+ i− 2]a[n+ i− 1]x (we have d[n− 1] ≥ β/2, and assume β > 2)

≤ a[i] . . . a[n+ i− 1]x.

The remainder of the 3-by-2 division is also used: instead of a simple long
subtraction over a length n like in Algorithm D, we perform a long subtrac-
tion over a length n − 2 only and inline the last two steps. These last two
steps consist simply in propagating the borrow from the previous subtraction,
as the result of the 3 most significant limbs of subtraction are known to be
lx0 in the absence of borrow (the postcondition of the division is exactly that
a[n+ i− 2]a[n+ i− 1]x = q̂ ·d[n− 2]d[n− 1]+ lx). We then propagate the bor-
row on lx0. Hence, lines 13 to 17 are equivalent to computing the subtraction

a[i] . . . a[n+ i− 1]x− q̂ · d[0] . . . d[n− 1]

returning b2 as borrow and writing the result in a[i] . . . a[n+ i− 2]x (one limb
fewer).

If b2 = 0, the first invariant is maintained. Otherwise, there is an adjustment
to make (line 18): if the subtraction overflows, our candidate quotient q̂ was too
large, we subtract 1 from it and add back value(d, n) to the remainder. This
addition is done at lines 20-21. The last limb is added separately because we
save a few operations by ignoring the carry out (we know it is equal to 1).

It is efficient to do the subtraction first and potentially backtrack on it
later because it happens very rarely (Lemma 4), and evaluating the subtraction
makes it easy to check if the candidate quotient was correct with a simple integer
comparison.

The specification of the 3-by-2 division primitive ensures that lx is less than
d[n− 2]d[n− 1], hence the second and third invariants are maintained if there is
no adjustment. If there is an adjustment, the addition at line 20 may overflow,
but the value of the top two limbs of the remainder will still be lx + 1 ≤
d[n− 2]d[n− 1]. This shows that the third invariant still holds in this case. For
the second invariant, we use the fact that value(a+ i, n− 1) + βn−1x− βnb2 is
negative if b2 6= 0, so adding back value(d, n) maintains the second invariant.

There is an extra contingency in the main loop: when the two most signif-
icant limbs of the denominator and the current numerator are identical, then

112 CHAPTER 4. WHYMP

we can skip the 3-by-2 division and adjustment step. Indeed, the candidate
quotient output by the division would necessarily be β, but the third invariant
ensures that the long subtraction that would follow would have a non-zero bor-
row, and that the adjustment step would knock the candidate quotient down to
β−1. Therefore, we immediately write in β−1 as quotient limb. With this case
out of the way, we may write the 3-by-2 division in such a way that its quotient
output is always a single limb, which would otherwise not be true in general.

3-by-2 division

Let us now take a closer look at the 3-by-2 division subroutine used by the
division algorithm. It was introduced by Möller and Granlund [73].

predicate reciprocal_3by2 (v dh dl:limb) =
v = div (radix*radix*radix -1) (dl + radix * dh) - radix

let div3by2_inv (uh um ul dh dl v: limb) : (limb,limb,limb)
requires { dh ≥ div radix 2 }
requires { reciprocal_3by2 v dh dl }
requires { um + radix * uh < dl + radix * dh }
returns { q, rl, rh → q * (dl + radix * dh) + rl + radix * rh

= ul + radix * (um + radix * uh) }
returns { q, rl, rh → 0 ≤ rl + radix * rh < dl + radix * dh }

The algorithm takes a precomputed pseudo-inverse v of the denominator
dldh as an extra parameter. More precisely,

v =

⌊
β3 − 1

dl + βdh

⌋
− β.

The reason it is precomputed and passed as a parameter rather than computed
on the fly is that the caller function (Alg. 6) always uses the same denominator
over a long division, so it is much more efficient to compute the pseudo-inverse
only once.

The algorithm essentially consists in multiplying dldh by its pseudo-inverse v
and then performing some simple adjustments. Remarkably, this means that
no division primitive is used. As division primitives tend to be much more
expensive than additions or multiplications, this makes the algorithm a very
efficient way to perform a 3-by-2 division.

The “trick” is that the computation of the pseudo-inverse itself does use a
division primitive. In fact, computing the pseudo-inverse is about as complex
as the 3-by-2 division proper because of this division. However, over an m-
by-n long division, m − n short divisions are performed, all with the same
precomputed pseudo-inverse, which amortizes that cost.

While the algorithm itself is short, its proof is non-trivial. The hardest part
was directly taken from Möller and Granlund’s on-paper proof [73, Theorem 3]
and transcribed into a hundred-line Why3 assertion. The algorithm that com-
putes the pseudo-inverse with a single 2-by-1 division primitive was also taken
from their paper.

Smaller cases: n = 1 and n = 2

The general case algorithm only handles the case where the denominator has
length 3 or more. Different algorithms are used for smaller denominators. When
the divisor is exactly one limb long, the schoolbook algorithm is used (Alg. 7).

4.2. SCHOOLBOOK ALGORITHMS 113

Algorithm 7 Schoolbook division by a 1-limb number.

Require: m ≥ 1, valid(q,m), valid(a,m), d ≥ β/2
Ensure: value(a,m) = result + d · value(q,m)
Ensure: result < d
1: function divrem_1(q, a,m, d)
2: v ← invert_limb(d)
3: r ← 0
4: i← m− 1
5: while i ≥ 0 do
6: (q̂, r̂)← div2by1_inv(r, a[i], d, v) . Divide a[i]r by d
7: q[i]← q
8: r ← r̂
9: i← i− 1

10: return r

The variable r is the partial remainder, in the sense of the following loop
invariants:

1) value(a+ i+ 1,m− i− 1) = d · value(q + i+ 1,m− i− 1) + r,

2) r < β.

Let us prove that the first invariant is maintained. Assume value(a+ i+1,m−
i − 1) = d · value(q + i + 1,m − i − 1) + r and r < β. Let q̂, r̂ such that
q̂d+ r̂ = a[i] + βr. Then after q[i]← q,

value(a+ (i− 1) + 1,m− (i− 1)− 1)

= value(a+ i,m− i)
= a[i] + βvalue(a+ i+ 1,m− i− 1) [value_sub_head]

= a[i] + βd · value(q + i+ 1,m− i− 1) + βr

= q̂d+ r̂ + βd · value(q + i+ 1,m− i− 1)

= d · value(q + i,m− i) + r̂

= d · value(q + (i− 1) + 1,m− (i− 1)− 1) + r̂.

Finally, similarly to the general algorithm, we precompute a pseudo-inverse v
of d for the 2-by-1 division, and subsequently use a 2-by-1 division algorithm
that uses no division primitive. This time, we have v =

⌊
(β2 − 1)/d

⌋
− β.

predicate reciprocal (v d:limb) =
v = (div (radix*radix - 1) d) - radix

let div2by1_inv (uh ul d v:limb) : (limb,limb)
requires { d ≥ div radix 2 }
requires { uh < d }
requires { reciprocal v d }
returns { q, r → q * d + r = ul + radix * uh }
returns { q, r → 0 ≤ r < d }

When n = 2, a very similar algorithm is used (Alg. 8). The only difference is
that 3-by-2 division is used at each loop iteration. Similarly to the n = 1 case,
lh is the current remainder, and the loop invariants are as follows:

114 CHAPTER 4. WHYMP

Algorithm 8 Schoolbook division by a 2-limb number.

Require: m ≥ 2, valid(q,m− 2), valid(a,m), valid(d, 2), d[1] ≥ β/2
Require: value(a+m− 2, 2) < value(d, 2) . Otherwise an extra quotient

limb is needed.
Ensure: value(old a,m) = value(d, 2) · value(q,m− 2) + value(a, 2)
Ensure: value(a, 2) < value(d, 2)
1: function divrem_2(q, a,m, d)
2: v ← reciprocal_3by2(d[1], d[0])
3: h← a[m− 1]
4: l← a[m− 2]
5: i← m− 2
6: while i > 0 do
7: (q̂, l, h)← div3by2_inv(h, l, a[i− 1], d[1], d[0], v)
8: i← i− 1
9: q[i]← q̂

10: a[1]← h
11: a[0]← l

1) value(a,m) = value(a, i)+βi(value(q+i,m−i−2)·value(d, 2)+l+βh),

2) l + βh < value(d, 2).

Let us now discuss the differences between these two special cases on the
one hand, and the general case algorithm on the other hand. The adjustment
step that is found in Algorithm D and other general long division algorithms is
not needed in any of these two special cases. Indeed, what makes the adjust-
ment necessary in Algorithm D (and in GMP’s algorithm) is that the candidate
quotient is computed using an incomplete denominator. When the denominator
has length 1 or 2, the division that occurs at each loop iteration uses the full
denominator. Even though the numerator still has arbitrary length, this does
not cause errors on the candidate quotient.

Another difference is that no subtraction is needed to compute the partial
remainders in the two short cases. The corresponding operation in Alg. 7 is
simply the r ← r̂ assignment at line 8. Indeed, we have dq̂+r̂ = a[i]r from the 2-
by-1 division, and the long subtraction that we would perform with Algorithm D
would be exactly a[i]r− dq̂ = r̂, so decrementing i and assigning r to r̂ does the
same thing and saves a subtraction. Again, this is due to the fact that we use
the whole denominator at each loop iteration.

4.3 Modular exponentiation

Consider the following problem. Given three positive large integers b, e and m,
how to compute be modulom? In the non-modular case, without considering the
multiple-precision representation of numbers, the usual basic algorithm for fast
exponentiation is the binary square-and-multiply one. We consider the binary
decomposition of e, starting with the most significant bit. We accumulate the
result in some variable r, initialized at r = e0 = 1. For each bit of e, we
square r, and then multiply r by e if the current bit is 1. GMP’s algorithm is

4.3. MODULAR EXPONENTIATION 115

based on this approach, but is optimized in many ways. It assumes that m is
odd, for reasons that will be made clearer in the next paragraph. A separate
algorithm is provided for the case where m is even. Note that in cryptographic
applications, m is odd in the vast majority of cases (computations are typically
done modulo an odd prime number).

In Sec. 4.3.1, we first present various primitives that perform computations
in Montgomery form, which is used in GMP’s exponentiation algorithm. We
then go over an auxiliary function that computes the inverse of a limb mod-
ulo β (Sec. 4.3.2), and auxiliary functions that perform bit-level computations
(Sec. 4.3.3). Finally, we move on to the main algorithm (Sec. 4.3.4) and discuss
its side-channel resistant variant (Sec. 4.3.5).

4.3.1 Computations in Montgomery form

The basic square-and-multiply algorithm computes a simple exponentiation.
However, what we are trying to compute is not be, but its residue modulo m.
Of course, simply computing be and then reducing it modulo m is not an ac-
ceptable algorithm, as be would not fit in memory for even moderately large
values of e. A simple approach consists in applying the basic algorithm while
reducing r modulo n at regular intervals, such as before each square operation.
This algorithm works, but a reduction modulo m is essentially a division, which
is more costly than a multiplication of two numbers of the same length as m.
Therefore, it would be better to find a way to minimize the numbers of divisions.
GMP’s algorithm achieves this using Montgomery’s method [74]. Fix R coprime
with m. We call the Montgomery form of an integer a the representative of aR
modulo m. Since R is coprime with m, multiplication by R is an isomorphism
on the additive group Z/nZ, that is, addition and subtraction in Montgomery
form are the same addition and subtraction. Multiplication is more complicated.
Indeed, if we simply multiply aR by bR modulo m, the product is congruent to
abR2, rather than abR. However, Montgomery’s REDC algorithm computes a
division by R modulo m using only divisions by R, rather than m. Therefore,
it is very fast assuming a well-chosen R, such as a power of β. This is the main
reason why the algorithm requires m to be odd, which makes it coprime with
βn for all positive n. Assuming a fast REDC algorithm, computing a chain of
multiplications modulo m thus becomes affordable. Let us now go over Mont-
gomery’s REDC algorithm (Alg. 9), taken directly from his article with some
notation changes [74].

Let us succintly justify that this algorithm is correct. First, notice that
am ≡ xmm′ ≡ −x mod R. Therefore, R divides x + am, so the division
at line 3 is exact. Second, tR ≡ x mod m, so t ≡ xR−1 mod m. Finally,
0 ≤ x < Rm and 0 ≤ a < R, so 0 ≤ x+ am < 2Rm. Therefore, 0 ≤ t < 2m, so
the result lies in [0,m− 1].

GMP implements several versions of the REDC algorithm adjusted for mul-
tiprecision integers. Due to time constraints, I only verified the one best suited
to smaller integers. Its pseudocode is in Alg. 10. Rather than taking a radix R
as parameter, it takes an integer n and sets R = βn. The specification is oth-
erwise relatively similar to that of Alg. 9. There are a few differences. First,
v is only an inverse of value(m,n) modulo β, rather than modulo βn. It is
cheaper to compute this way, and we verify that it is precise enough. Second,
the specification is a bit weaker. The precondition u < Rm is not necessary,

116 CHAPTER 4. WHYMP

Algorithm 9 Montgomery’s REDC algorithm (infinite precision case).
Require: mm′ ≡ −1 mod R
Require: m ∧R = 1
Require: 0 ≤ x < Rm
Ensure: 0 ≤ result < m
Ensure: result ≡ xR−1 mod m
1: function REDC(x, R, m, m′)
2: a← (x mod R)m′ mod R
3: t← (x+ am)/R . The division is exact.
4: if t ≥ m then
5: return t−m
6: else
7: return t

although it is needed to prove that the result is small. One call to this func-
tion in the main exponentiation algorithm does in fact violate this condition.
In the first postcondition, both sides of the equality have been multiplied by
βn. This is equivalent, as βn and value(m,n) are coprime. However, this ver-
sion of the postcondition is more elementary, as it does not require the user
to define division modulo an integer in Why3’s logic. Finally, note that the
result is not normalized, as the result value(r, n) is not necessarily smaller than
value(m,n).

Algorithm 10 Montgomery’s REDC algorithm, in GMP.
Require: n > 0
Require: valid(m,n) ∧ valid(u, 2n) ∧ valid(r, n)
Require: value(m,n) odd
Require: v · value(m,n) ≡ −1 mod β
Ensure: value(old u, 2n) ≡ βnvalue(r, n) mod value(m,n)
Ensure: ∀j. j < 0 ∨ n ≤ j =⇒ r[j] = (old r)[j]
Ensure: value(old u, 2n) < βnvalue(m,n) =⇒ value(r, n) < 2value(m,n)
1: function redc_1(r, u,m, n, v)
2: for j = 0 to n− 1 do
3: c← addmul_1(u+ j,m, n, u[j]v mod β) . After this, u[j] = 0.
4: u[j]← c

5: c← add_n(r, u, u+ n, n)
6: if c 6= 0 then . value(r, n) is too large, adjust.
7: sub_n(r, r,m, n)

Fix U = value(u, 2n) at the start of the algorithm, and M = value(m,n).
Recall how Alg. 9 adds a multiple of m to its input to make it divisible by R
without changing its value modulo m. Similarly, the idea of this algorithm is to
add multiples of M to U to make it divisible by β, then β2, and so on until βn.
However, the situation is more complicated, because we want to store the carries
of the successive additions without needing extra space. The algorithm reuses
the low limbs of u that would otherwise be zeroes, and stores the carries there.
In the end, the loop invariants are as follows. The second invariant is needed to
show that the final adjustment step is sufficient.

4.3. MODULAR EXPONENTIATION 117

1) βjvalue(u+ j, 2n− j) + βnvalue(u, j) ≡ U mod M,

2) U ≤ βjvalue(u+ j, 2n− j) + βnvalue(u, j) < U + βj ·M.

Let us first check that the loop invariants are valid. For both invariants, the
initialization j = 0 is trivial.

Invariant preservation Assume the invariants are valid for some j with
0 ≤ j < n. Let us prove that they are valid for j + 1.

For the sake of notation, let us call u′ the state of u at the beginning of the
loop iteration. The invariant hypothesis gives us:

βjvalue(u′ + j, 2n− j) + βnvalue(u′, j) ≡ U mod M.

Let us first show that the addition at line 3 cancels out u[j]. Indeed, the
quantity that is being added to u+ j, modulo β, is value(m,n) · v · u′[j], which
is congruent to −u′[j] modulo β by definition of v.

After the addition at line 3, we have value(u+j, 2n−j)+c·βn ≡ value(u′+
j, 2n − j) mod M , as the quantity that is added to u + j is a multiple of M .
Moreover, u[j] is now 0, so value(u+j, 2n−j) = β ·value(u+j+1, 2n−(j+1)).
In the end, we have

c ·βn+j +βj+1 ·value(u+j+1, 2n−(j+1)) ≡ βjvalue(u′+j, 2n−j) mod M.

More precisely, if a is the product of u[j] · v modulo β (0 ≤ a < β), we have

c ·βn+j +βj+1 ·value(u+ j+ 1, 2n− (j+ 1)) = βj(value(u′+ j, 2n− j) +aM).

After setting u[j] to c at line 4, the value of (u + j + 1, 2n − (j + 1)) is of
course unchanged, and we have βn ·value(u, j+1) = βn ·value(u′, j)+c ·βn+j .

Adding the last two equalities, we obtain:

βj+1 · value(u+ j + 1, 2n− (j + 1)) + βn · value(u, j + 1)

=βj · value(u′ + j, 2n− j) + βn · value(u′, j) + a · βj ·M.

The difference a ·βj ·M is divisible byM , so the first invariant is maintained.
Let us note A the difference βj · value(u′ + j, 2n − j) + βn · value(u′, j) − U .
The second invariant hypothesis gives us 0 ≤ A < βjM , and the new difference
is A+ a · βj ·M . Since 0 ≤ a ≤ β − 1, we get 0 ≤ A+ a · βj ·M < βj+1M , so
the second invariant is maintained.

Postconditions Now that the loop invariant is proved by induction, let us
show that it implies the postconditions. The second postcondition is clearly
correct, as there is never any write in r except in the interval (r, n).

Immediately after the loop, the first invariant yields the following identity:

βn(value(u+ n, n) + value(u, n)) ≡ U mod M.

So, after the addition at line 5, we have βn · (value(r, n) + c ·βn) ≡ U mod M .
Furthermore, the second invariant gives us βn · (value(r, n) + c · βn) <

U +Mβn. Since U < β2n, we get value(r, n) + c · βn < βn +M .

118 CHAPTER 4. WHYMP

If c = 0, the first postcondition is clearly valid. If not, necessarily c = 1, so
value(r, n) < M . Therefore, the subtraction at line 7 offsets c, and the first
postcondition is also valid.

Assume now that U < Mβn. This implies that value(r, n) + c · βn < 2M
after the addition at line 5, so the third postcondition is valid regardless of
whether c is 0 or 1.

Using the REDC algorithm, we can easily compute multiplications modulo M
on numbers in Montgomery form. We simply multiply them (without reducing
modulo M) and apply REDC on the result. One remaining issue is how to put
numbers in Montgomery form in the first place, that is, from a number x, how to
efficiently compute xβn mod M . GMP simply does this the naive way with the
self-explanatory redcify function, represented in Alg. 11. The division function
div_qr is a wrapper around the division functions from Sec. 4.2.4, as well as
other division functions suited to larger integers that were not implemented in
WhyMP due to time constraints.

Algorithm 11 The redcify function.
Require: valid(r, n) ∧ valid(u, s) ∧ valid(m,n)
Require: n > 0 ∧ s > 0
Require: s+ n < 232 . So that the computation in line 2 does not overflow.
Require: m[n− 1] > 0
Ensure: value(r, n) ≡ βn · value(u, s) mod value(m,n)
Ensure: 0 ≤ value(r, n) < value(m,n)
1: function redcify(r, u, s,m, n)
2: t← tmp_alloc(s+ n)
3: q ← tmp_alloc(s+ 1)
4: zero(t, n)
5: copyi(t+ n, u, s) . value(t, n+ s) = βn · value(u, s)
6: div_qr(q, r, t, n+ s,m, n)

4.3.2 Auxiliary function: limb inversion modulo β

In order to divide a number by βn modulo some odd integer M = value(m,n),
GMP’s REDC implementation (Alg. 10) needs an inverse of M modulo β. The
computation of this inverse is not trivial. We start by observing that M ≡ m[0]
mod β, so computing an inverse of m[0] modulo β is enough. A schoolbook
method could implement the extended Euclidean algorithm. However, GMP
implements a faster algorithm based on Newton’s method.

We start with an inverse x0 of m[0] modulo 28, taken from a precomputed
table. We successively upgrade this inverse into an inverse x1 of m[0] modulo
216, then x2 modulo 232, and finally x3 modulo 264. This is justified by the
following lemma. The formula for xi+1 is expressed modulo 264 to take into
account potential overflows during the computation.

Lemma 6. Let p,m, xi three non-negative integers such that p ≤ 32 andmxi ≡ 1
mod 2p. Let xi+1 ≡ 2xi −mx2

i mod 264. Then mxi+1 ≡ 1 mod 22p.

Proof. Let d such that mxi = 2pd + 1. Then mxi+1 ≡ 2mxi − (mxi)
2 ≡

2p+1d + 2 − (22pd2 + 2p+1d + 1) ≡ −22pd2 + 1 mod 264. As 22p divides 264,

4.3. MODULAR EXPONENTIATION 119

the equality is also true modulo 22p. Finally, we find mxi+1 ≡ −22pd2 + 1 ≡ 1
mod 22p.

Note that the formula xi+1 = 2xi − mx2
i is what you would find when

attempting to compute a root of f(x) = m − 1
x using Hensel’s method. It

converges quadratically in general, so this result is not too surprising. Also
note that xi+1 can be computed from xi and m using only multiplications and
subtractions, rather than the more expensive division. So, we can expect that
an algorithm based on this lemma would be faster than simply using Euclid’s
algorithm, which converges linearly.

A transcription of GMP’s modular inverse algorithm can be found in Alg. 12.
It assumes that t is a precomputed table of length 128 such that for all x in
[0, 127], (2x+ 1)t[x] ≡ 1 mod 28. It is included in the original code as a global
variable. The algorithm itself is straightforward. We get x0 from the global
table, and then successively compute x1, x2, and x3 using the formula from the
lemma.

Algorithm 12 Inverse of a limb modulo β.
Require: m odd
Require: β = 264

Ensure: result ·m ≡ 1 mod β
1: function binvert_limb(n)
2: h← n/2 mod 128 . 2h+ 1 ≡ n mod 256
3: x0 ← t[h] . x0m ≡ 1 mod 28

4: x1 ← sub_mod(mul_mod(2, x0),mul_mod(x0,mul_mod(x0, n)))
5: x2 ← sub_mod(mul_mod(2, x1),mul_mod(x1,mul_mod(x1, n)))
6: x3 ← sub_mod(mul_mod(2, x2),mul_mod(x2,mul_mod(x2, n)))
7: return x3

4.3.3 Auxiliary functions: bit-level computations
The modular exponentiation algorithm does not handle the exponent limb by
limb, but at the bit granularity. The usual value formalism is ill-suited to this.
Provided a pointer a is valid over the length d b64e, we represent a as the string
of bits a0 . . . ab−1, with a0 being the least significant bit. We denote ai . . . aj =∑j
k=i 2k−iak and we define bitvalue(a, b) = a0 . . . ab−1 =

∑b−1
k=0 ak2k.

Note that bitvalue can also be computed in terms of value: if b = 64q+ r,
with 0 ≤ r < 64, then bitvalue(a, b) = value(a, q) +βq(a[q] mod 2r). In fact,
that is the definition of bitvalue in the Why3 development.

Let us list a few simple lemmas about bitvalue.

Lemma 7. Let p a pointer valid over a sufficiently large length.

∀k ≥ 0. 0 ≤ a0 . . . ak−1 < 2k

∀i, j, k. 0 ≤ i < k ≤ j =⇒ ai . . . aj = ai . . . ak−1 + 2k−iak . . . aj

∀n, k. 64n ≥ k =⇒ bitvalue(p, k) = value(p, n) mod 2k.

GMP uses a pair of helper functions to extract a range of bits from a mul-
tiprecision integer. The getbit function (Alg. 13) returns the i− 1-th bit of p.

120 CHAPTER 4. WHYMP

Algorithm 13 Extracting a bit from a large integer.
Require: valid(p, (i+ 63)/64)
Require: 1 ≤ i
Ensure: 0 ≤ result < 1
Ensure: bitvalue(a, i) = bitvalue(a, i− 1) + 2i−1 · result
1: function getbit(p, i)
2: k ← (i− 1)/64
3: m← (i− 1) mod 64
4: return (p[k]� m) mod 2

The first precondition is equivalent to valid(p, di/64e), but does not require
introducing the concept of rounded up division. The second postcondition is
equivalent to saying the result is pi−1, but stating it in this form is more con-
venient later on. The � operator at line 4 denotes a bitwise right shift. The
algorithm itself is straightforward. We divide i− 1 by 64 to know in which limb
the desired bit is, and then we extract the bit from the limb. The right shift
puts the desired bit in the least-significant position, and the modulo operator
removes all the other bits.

A slightly more complex function is used to extract a range of bits, rather
than just one. The getbits function (Alg. 14) takes a pointer p, an offset i and
a length n, and returns pi−n . . . pi−1.

Algorithm 14 Extracting a range of bits from a large integer.
Require: 1 ≤ n < 64
Require: 0 ≤ i
Require: valid(p, (i+ 63)/64)
Ensure: 0 ≤ result < 2n

Ensure: n ≤ i =⇒ bitvalue(p, i) = bitvalue(p, i− n) + 2i−n · result
Ensure: i < n =⇒ bitvalue(p, i) = result
1: function getbits(p,i,n)
2: if i < n then
3: return p[0] mod 2i

4: else
5: b← i− n
6: k ← b/64
7: b← b mod 64
8: r ← p[k]� b
9: s← 64− b . s is the number of bits in r.

10: if s < n then . We did not get enough bits.
11: r ← r + p[k + 1]� s . We now have 64 bits.
12: return r mod 2n

There are three main cases to consider. First, we can have i < n. In this case,
we simply get the first i bits of p[0]. In the second case, the range pi−n . . . pi−1

fits within a single limb. This is the “else” branch of the “if” statement at line 10.
This case is similar to the getbit function. We simply locate pi−n and shift it
to the least significant position, and then remove everything but the bottom n
bits. Note that the mod computations at lines 3 and 12 are fast (a logical shift

4.3. MODULAR EXPONENTIATION 121

to compute the power of 2 minus one, and a bitwise and operation). Finally,
in the third case, pi−n is in one limb, and pi−1 is in the next one. Note that
they cannot be more than one limb apart, as we require n < 64. In this case, at
line 9 after shifting pi−n to the least significant position, the bottom s bits of r
are pi−n . . . pi−n+s−1, with s < n. The top 64 − s bits are zeroes. At line 11,
we compute p[k + 1] � s. Its bottom s bits are zeroes, and its top 64 − s bits
are pi−n+s . . . pi−n+63. We sum this to r, and the result is pi−n . . . pi−n+63. At
this point, all there is left to do is remove everything but the bottom n bits.

4.3.4 The main algorithm
We now have all the tools to describe the modular exponentiation algorithm
proper. The powm function can be found in Alg. 15. It takes five pointers
r, b, e, m and t, as parameters, as well as the lengths bn, en, and n. Let
B = value(b, bn), E = value(e, en), and M = value(m,n). It computes BE
mod M and stores it in r. The extra buffer t is used as scratch space.

The core idea of the algorithm is Brauer 2k-ary method [16]. Rather than
considering E bit by bit, like in the usual square-and-multiply algorithm, we use
a window of w bits, where w is a small number that depends on the length of e.
It is chosen to optimize the number of multiplications and is always between 1
and 10.

Let us analyze the algorithm step by step.

Initialization (lines 2-4) The first thing the algorithm does is count the
number of nontrivial bits in E. As a precondition requires e[en−1] > 0, we know
that there are less than 64 leading zeros. Therefore, the number of useful bits
is 64en − k, where k is the number of leading zeros in the limb e[en − 1]. There
are various ways to count the leading zeroes of a machine integer. However,
most compilers now provide efficient built-ins to do so. GMP uses the compiler
built-in on many architectures. WhyMP uses the compiler built-in in all cases.
We declare count_leading_zeroes as a val with the following specification.
At extraction, it is replaced by calls to __builtin_clzll.

val count_leading_zeros (x:uint64) : int32
requires { to_int x > 0 }
ensures { (power 2 (Int32.to_int result)) * to_int x ≤ max_uint64 }
ensures { 2 * (power 2 (Int32.to_int result)) * to_int x > max_uint64 }
ensures { 0 ≤ Int32.to_int result < 64 }

Once the number of bits in E is known, we can choose the window size
w (line 3). The function win_size simply uses a lookup table to pick w be-
tween 1 and 10 depending on i. I did not bother reproducing it here, as the
only important thing for the proof of correctness is that w is between 1 and 10.

We also need to compute the inverse of M modulo β in order to use the
REDC algorithm. This is done at line 4 using the algorithm from Sec. 4.3.2.

Precomputing the odd powers of B (lines 5-13) The first step of the
algorithm proper is to precompute a table of the odd powers of B up to 2w − 1
in Montgomery form. First, we allocate a pointer p of length n · 2w−1 (there
are 2w−1 powers of B to store, and they have length n). We apply redcify
(Alg. 11) to compute B in Montgomery form (line 7). At lines 8−9, we perform a
multiplication in Montgomery form to compute B2. As explained in Sec. 4.3.1,

122 CHAPTER 4. WHYMP

Algorithm 15 Modular exponentiation.

Require: valid(r, n)∧valid(b, bn)∧valid(e, en)∧valid(m,n)∧valid(t, 2n)
Require: value(m,n) odd
Require: value(e, en) > 1
Require: en ≥ 1 ∧ e[en − 1] > 0
Require: n ≥ 1 ∧m[n− 1] > 0
Require: bn ≥ 1 ∧ bn + n < 232 − 1 . Precondition of redcify.
Require: 512n ≤ 232 . Prevents overflow at line 12.
Require: 64(en + 1) < 232 − 1 . Prevents overflow at line 20.
Ensure: value(r, n) ≡ value(b, bn)value(e,en) mod value(m,n)
Ensure: 0 ≤ value(r, n) < value(m,n)
1: function powm(r, b, bn, e, en,m, n, t)
2: i← 64 · en − count_leading_zeros(e[en − 1]) . e is i bits long.
3: w ← window_size(i) . Length of the window.
4: v ← −binvert_limb(m[0]) . Let E = bitvalue(e, i).
5: p← tmp_alloc(n · 2w−1) . Let B = value(b, bn).
6: p′ ← p . Let M = value(m,n).
7: redcify(p, b, bn,m, n) . value(p, n) ≡ βn ·B mod M .
8: mul_n(t, p, p, n)
9: redc_1(r, t,m, n, v) . value(r, n) ≡ βn ·B2 mod M .

10: for j = 1 to 2w−1 − 1 do . Precompute a table of the odd powers of b.
11: mul_n(t, p′, r, n)
12: p′ ← p′ + n
13: redc_1(p′, t,m, n, v) . value(p′, n) ≡ βn ·B2j+1 mod M .
14: x← getbits(e, i, w)
15: if i < w then
16: i← 0
17: else
18: i← i− w
19: c← count_trailing_zeros(x) . E = bitvalue(e, i) + 2ix.
20: i← i+ c
21: x← x� c . x is now odd.
22: h← x� 1 . x = 2h+ 1.
23: copyi(r, p+ n · h, n) . value(r, n) ≡ βn ·Bx mod M .
24: ghost d← x . Invariant: E = bitvalue(e, i) + 2id.
25: while i > 0 do . Invariant: value(r, n) ≡ βn ·Bd mod M .
26: while getbit(e, i) = 0 do . Sliding window optimization.
27: mul_n(t, r, r, n)
28: redc_1(r, t,m, n, v)
29: i← i− 1
30: d← 2d
31: if i = 0 then
32: goto end
33: x← getbits(e, i, w)
34: if i < w then
35: w′ ← i
36: else
37: w′ ← w
38: i← i− w′ . E = bitvalue(e, i) + 2i(x+ 2w

′
d).

4.3. MODULAR EXPONENTIATION 123

39: c← count_trailing_zeros(x)
40: i← i+ c
41: x← x� c . x is odd.
42: w′ ← w′ − c
43: while w′ > 0 do . Invariant: E = bitvalue(e, i) + 2i(x+ 2w

′
d).

44: mul_n(t, r, r, n)
45: redc_1(r, t,m, n, v)
46: w′ ← w′ − 1
47: d← 2d

. E = bitvalue(e, i) + 2ix+ 2id.
48: h← x� 1 . x = 2h+ 1.
49: mul_n(t, r, p+ n · h, n)
50: redc_1(r, t,m, n, v)
51: d← d+ x

. value(r, n) ≡ βn ·BE mod M
52: end:
53: copyi(t, r, n)
54: zero(t+ n, n)
55: redc_1(r, t,m, n, v) . value(r, n) ≡ BE mod M
56: if cmp(r,m, n) ≥ 0 then . M ≤ value(r, n) < 2M , adjust.
57: sub_n(r, r,m, n)

to perform a multiplication in Montgomery form, we first perform a regular
multiplication with mul_n, and then divide by βn using the REDC algorithm.
This pattern occurs throughout the algorithm. The scratch buffer t is used to
store the intermediary result of mul_n. The pointer r, which is meant to store
the final result of the modular exponentiation, is used as temporary scratch
space to store B2 during the precomputation phase. Once we have B and B2,
the for loop at lines 10-13 computes all the remaining odd powers of B by
repeatedly multiplying the last computed power of B by B2.

More precisely, the loop invariants are as follows:

1) p′ = p+ (j − 1) · n,

2) ∀k. 0 ≤ k < j =⇒ value(p+ kn, n) ≡ βn ·B2k+1 mod M.

First loop iteration, unrolled (lines 14-23) We extract the top w bits of E
(line 14) and get some number x. We decrease i (lines 15-18) to reflect the re-
maining numbers of bits to consider in E. After the if block at line 18, the value
of i has been updated and the following equality holds: E = bitvalue(e, i)+2ix.
This is a direct consequence of the postcondition of getbits (Alg. 14).

The objective is now to compute Bx in Montgomery form. More precisely,
let us decompose x as a product 2cx′ of some odd number x′ and a power of 2.
As x′ is odd and smaller than 2w, Bx

′
is stored in the precomputed table p. So,

we can compute Bx by getting Bx
′
from the table and squaring it c times. The

decomposition happens at line 19. The function count_trailing_zeros is the
dual of count_leading_zeros. It is also a compiler built-in. The computation
of Bx

′
occurs at lines 21-23. We compute x′ by shifting x to the right by c bits.

We then compute h = bx/2c at line 22. From the invariant of the first loop, we
get that value(p + hn, n) ≡ βnBx

′
, so we simply copy it over to r at line 23.

124 CHAPTER 4. WHYMP

Now would be the time to square r c times to obtain Bx. However, GMP’s
implementation instead postpones this by increasing i by c at line 20. This puts
back the c zero bits at the top of e, to be handled later on.

After line 23, the following equalities hold:

1) value(r, n) = βn ·Bx′
mod M,

2) E = bitvalue(e, i) + 2ix′.

Moreover, we know that ei−c . . . ei−1 are all zeroes, although that is not
really needed for our correctness proof. Finally, let us point out that this initial
computation was actually an unrolled and optimized iteration of the main loop.
The reason why it can be optimized is that we know that the top bit of e is a
one after computing i.

The main loop (lines 25-51) This loop is the core of the algorithm. It
consumes all the bits in e to compute BE mod M in Montgomery form. Its
invariants are best expressed using a ghost variable. We use the variable d to
store the current exponent of B that is stored in r. Equivalently, d stores the
bits of e that have already been handled. The fact that these two quantities are
equal constitutes the loop invariant. More formally, the loop invariants are as
follows:

1) value(r, n) = βn ·Bd mod M,

2) E = bitvalue(e, i) + 2id.

Of course, the invariants are initialized by setting d to x at line 24. As an
aside, this is a very good use case for ghost code. It would be possible to express
the invariants without making the variable d explicit, but they would be much
harder to understand and it would result in harder goals for automated provers.

Let us now prove that these invariants are maintained through a loop itera-
tion, and that i decreases at each loop iteration.

Sliding window optimization (lines 26-32) The first inner loop performs a
small optimization. Rather than always handling blocks of w bits, we first absorb
all the leading zeroes (and square r for each of them). The loop invariants of the
inner loop are the same as those of the outer loop. They are obviously initialized,
since the inner loop occurs at the very start of the outer loop iteration. It is easy
to see that the invariants are maintained. At each iteration, d doubles and i is
decreased by 1, while r is squared (in Montgomery form). If i becomes 0, we
exit both this loop and the outer loop (and its invariants are valid).

The main loop, continued (lines 33-42) After the first inner loop, the
situation is essentially the same as before (that is, the loop invariants are valid).
We also know that the top bit of e is a one, which matters for the proof that
the loop terminates. We call getbits to extract the top w bits of e (line 33).
We store the number of bits that were actually extracted in a variable w′ (lines
34-37). In every iteration except potentially the last one, w = w′. At line 38, we
update i to reflect the new number of bits in e. At that point, the old value of i

4.3. MODULAR EXPONENTIATION 125

is i + w′, so the following equality follows from the postcondition of getbits:
E = bitvalue(e, i) + 2ix+ 2i+w

′
d.

Much like in the unrolled iteration before the loop, we then split x into a
product 2cx′ of a power of 2 and an odd number. Note that the top bit of x
was known to be a one, so we know that c < w′. We put back the bottom c bits
(which are all zeroes) on top of e, while increasing i by c and decreasing w′ by c as
well. We set x = x′. At this point, the equality E = bitvalue(e, i)+2ix+2i+w

′
d

still holds, although the values of i, x and w′ have changed. However, as the top
bit of e was a one, we know that i has decreased by at least one. This proves
the termination of the loop.

Squaring (lines 43-47) At this point, r stores Bd mod M in Montgomery
form. We need it to store Bx+2w′

d at the end of the loop to validate the invariant.
The loop at lines 43-47 computes B2w′

d (in Montgomery form) by squaring r w′
times. More precisely, the invariants are as follows.

1) value(r, n) ≡ βn ·Bd mod M,

2) E = bitvalue(e, i) + 2i(x+ 2w
′
d).

At each iteration, d is doubled, w′ is decreased by one, and r is squared (in
Montgomery form), which ensures that the invariants are maintained.

The main loop, cont’d (lines 48-51) At line 48, the invariants of the last
loop yield the following equality: E = bitvalue(e, i) + 2i(x+ d). So, all there
is to do is multiply r by Bx in Montgomery form. x is odd and less than 2w,
so we simply fetch Bx from the table p of precomputed values, much like in the
unrolled loop iteration.

Final adjustments (lines 53-57) After the main loop, the invariants yield
value(r, n) ≡ βn · BE mod M . So, we use the REDC algorithm (Alg. 10) to
get it out of Montgomery form by dividing it by βn. Since REDC requires a
workspace of size 2n, we copy r to the bottom n limbs of t and zero the top n
limbs such that value(t, 2n) = value(r, n). After the call to REDC at line 55,
we have value(r, n) ≡ BE mod M , which fulfills the first postcondition. More-
over, since value(r, n) < βn, in particular it is smaller than βnM . Therefore,
the second postcondition of redc_1 yields value(r, n) < 2M . We need it smaller
than M for the second postcondition, so we simply compare it to M (line 56)
and subtract M from it if needed. Therefore, the first and third postcondition
are fulfilled. The second postcondition is that r is unchanged except the range
[r, r+n). This is true because we never write anything into the cells that should
be preserved (in the WhyML development, it is an additional invariant of all
the loops in the function).

4.3.5 Side-channel resistance
A common use case for modular exponentiation is cryptography algorithms. A
common concern for cryptography algorithms is side-channel resistance. Sup-
pose the exponent e of modular exponentiation is a secret (such as a private
key). Assume that the length of e is public knowledge (for example, it could be

126 CHAPTER 4. WHYMP

a property of the cryptographic protocol). Can we ensure that each execution
of powm takes the same amount of time for all possible values of e with that
length, and that the control flow is the same? Clearly, the algorithm from the
previous section does not have this property. Indeed, the control flow is not
always the same across calls to powm. The biggest offenders are the final ad-
justment step and the sliding window optimization. Moreover, the underlying
primitives (add_n, redc_1, and so on) should be channel-resistant themselves,
which is not the case.

GMP features another modular exponentiation algorithm called sec_powm.
According to the documentation, it is channel-resistant, at the cost of some
performance. I currently have no good way to use Why3 to prove the side-
channel resistance of a program. However, it would be nice to at least verify the
functional correctness of sec_powm, so as to increase the usefulness of WhyMP in
practical contexts. Sadly, the verification of sec_powm is still a work in progress.
The modular exponentiation itself is extremely similar to powm. However, there
is a large number of nontrivial primitives to verify. In particular, a side-channel
resistant division is required to implement redcify.

4.4 Toom-Cook multiplication
The schoolbook multiplication algorithm from Sec. 4.2.3 has quadratic complex-
ity and is only optimal for numbers shorter than about 30 limbs, or 2000 bits2.
For larger numbers (between 2000 and about 100 000 bits), GMP uses a fam-
ily of recursive multiplication algorithms initially introduced by Toom [92] and
Cook [23]. These algorithms for integer and polynomial multiplication can be
viewed as solving a multipoint evaluation and polynomial interpolation problem.

The general principle of Toom-Cook algorithms is to choose a base B, typi-
cally a power of 264, and to view the digits of the factors in base B as coefficients
of polynomials a and b. We then evaluate those polynomials at well-chosen
points vi, compute the products a(vi)b(vi) by calling the algorithm recursively,
and interpolate to obtain the coefficients of the product polynomial c. The
product is then obtained by evaluating c(B).

We have verified two Toom-Cook algorithms: Toom-2 (Sec. 4.4.1), which is
similar to Karatsuba multiplication [55], and its unbalanced variant Toom-2.5
(Sec. 4.4.2), introduced by Bodrato and Zanoni [15].

Toom-2 (also called toom22 in the code) splits each of the operands into
two parts roughly equal in length, and Toom-2.5 (or toom32) splits the largest
operand into three parts and the smallest into two. Toom-2 is called on operands
of roughly equal length and Toom-2.5 is called when one of the operands is
about 1.5 times as long as the other. This way, after splitting, we are left
with parts that have roughly equal length. A general case algorithm, which we
describe in Sec. 4.4.3, reduces all cases to applications of the two former ones.

4.4.1 Toom-2
The parameters of the toom22_mul function (Alg. 16) are as follows: r is the
destination buffer, a and b are the source operands, m and n are their lengths
in limbs, and s is an extra buffer to store temporary results.

2The exact threshold depends on the compiler and architecture.

4.4. TOOM-COOK MULTIPLICATION 127

Algorithm 16 Toom-2 multiplication.

Require: 2 ≤ n ≤ m < 30 · 2k
Require: valid(r,m+ n), valid(a,m), valid(b, n), valid(s, 2(m+ k))
Require: 4 ·m < 5 · n
Ensure: value(r,m+ n) = value(a,m) · value(b, n)
1: function toom22_mul(r, a, b, s,m, n, k)
2: µ← m� 1
3: λ← m− µ
4: ν ← n− λ
5: (a0, a1)← (a, a+ λ)
6: (b0, b1)← (b, b+ λ)
7: Compute |a(−1)| in r, |b(−1)| in r + λ, sign in ε (see Alg. 18)
8: (c0, c∞)← (r, r + 2λ)
9: s′ ← s+ 2λ

10: toom22_mul_rec(s, r, r + λ, s′, λ, λ, k − 1) . Compute |c(−1)|.
11: toom22_mul_rec(c∞, a1, b1, s

′, µ, ν, k − 1) . Compute c(+∞).
12: toom22_mul_rec(c0, a0, b0, s

′, λ, λ, k − 1) . Compute c(0).
13: v ← add_n(c∞, c0 + λ, c∞, λ) . H0 + L∞.
14: v2 ← v + add_n(c0 + λ, c∞, c0, λ) . L0 +H0 + L∞.
15: v ← v + add(c∞, c∞, λ, c∞ + λ, µ+ ν − λ) . H0 + L∞ +H∞.
16: if ε = −1 then
17: v ← v + add(r + λ, r + λ, c−1, 2λ)
18: else v ← v − sub(r + λ, r + λ, c−1, 2λ) mod β . v ∈ {0, 1, 2, β − 1}.
19: incr(c∞, v2)
20: if v ≤ 2 then . Implies 0 ≤ v.
21: incr(r + 3λ, v)
22: else decr(r + 3λ, 1) . v = β − 1 instead of −1, due to integer

representation.

Algorithm 17 Recursive call in Toom-2.

Require: valid(r,m+ n), valid(a,m), valid(b, n), valid(s, 2(m+ k))
Require: 0 < n ≤ m ≤ 2 · n
Ensure: value(r,m+ n) = value(a,m) · value(b, n)
function toom22_mul_rec(r, a, b, s,m, n, k)

if n < 30 then . Operands are small, use the schoolbook algorithm.
mul_basecase(r, a, b,m, n)

else
if 4 ·m < 5 · n then

toom22_mul(r, a, b, s,m, n, k)
else . Operands are unbalanced, use Toom-2.5.

toom32_mul(r, a, b, s,m, n, k)

128 CHAPTER 4. WHYMP

Algorithm 18 Computation of |a(−1)| in r and |b(−1)| in r + λ.

Ensure: value(r, λ) = |a(−1)|
Ensure: value(r + λ, λ) = |b(−1)|
Ensure: ε · value(r, λ) · value(r + λ, λ) = a(−1)b(−1)
ε← 1 . Will hold the sign of a(−1)b(−1).
if λ = µ then . Compute a(−1).

if compare(a0, a1, λ) < 0 then . A1 > A0

sub_n(r, a1, a0, λ)
ε← −ε

else sub_n(r, a0, a1, λ)

else . λ = µ+ 1
if a0[µ] = 0 ∧ compare(a0, a1, µ) < 0 then . A1 > A0

sub_n(r, a1, a0, µ)
r[µ]← 0
ε← −ε

else
t← sub_n(r, a0, a1, µ)
r[µ]← a0[µ]− t . No borrow, as we know a0 ≥ a1.

if λ = ν then . Compute b(−1).
if compare(b0, b1, λ) < 0 then . B1 > B0

sub_n(r + λ, b1, b0, λ)
ε← −ε . Change the sign of a(−1)b(−1).

else sub_n(r + λ, b0, b1, λ)

else
if is_zero(b0 + ν, λ− ν) ∧ compare(b0, b1, ν) < 0 then . B1 > B0

sub_n(r + λ, b1, b0, ν) . b0 also has length at most ν.
zero(r+λ+ ν, λ− ν) . We still have to initialize the rest of (r+λ, λ).
ε← −ε

else sub(r + λ, b0, λ, b1, ν)

4.4. TOOM-COOK MULTIPLICATION 129

The amount of space needed for s is approximately 2(m + log2(m)) limbs.
Rather than explicitly talking about logarithms in the specification, we use an
extra parameter k. The variable k is ghost, which means that it is never used in
the computations, but only in the proof. The first precondition ensures that k is
a suitable bound. In practice, the caller of Toom-2 can give k = 64 (and allocate
2m + 128 limbs as scratch space), as integer lengths are machine integers, so
smaller than 264.

The last precondition makes sure that the operands are sufficiently close in
size. It could be a bit looser without breaking the algorithm.

The algorithm is organized in four steps. First we split the operands into
two parts of roughly equal length (Sec. 4.4.1). Then we evaluate the product
polynomial c at three points (Sec. 4.4.1). We then recompose the coefficients
of c through interpolation (Sec. 4.4.1). Finally, we propagate the remaining
carries (Sec. 4.4.1).

Splitting (Alg. 16, lines 2-6)

We pose µ = bm2 c, λ = m−µ, ν = n−λ. The preconditions ensure the following:

0 < ν ≤ µ ≤ λ < m,

λ− 1 ≤ µ ≤ λ,
λ < µ+ ν.

We can split a into two subwords a0 and a1 such that value(a,m) equals
value(a0, λ)+βλ·value(a1, µ). Similarly we have b0 and b1 such that value(b, n)
equals value(b0, λ) + βλ · value(b1, ν).

We denote A0 := value(a0, λ) and so on. Likewise, we define the polyno-
mials a(X) := A0 + A1X and b(X) := B0 + B1X. The goal is to compute
c(βλ), where c(X) = a(X)b(X) is a degree-2 polynomial. We pose c(X) =
C0 + C1X + C2X

2.

A0 A1a

λ µ

B0 B1b

λ ν

Evaluation (Alg. 16, lines 7-12)

The first step is to obtain three values of c(X). GMP chooses to evaluate c at 0,
−1, and +∞ (where c(+∞) is defined as C2). We first evaluate a(−1) = A0−A1

and b(−1) = B0 − B1 (Alg. 18). To avoid carry propagations, we first check
which of A0 and A1 is larger to compute |a(−1)| and store its sign separately in
a variable ε. If µ = λ− 1, we can optimize slightly by performing a subtraction
of length µ instead of λ.

Similarly, we compute |b(−1)| and update ε to contain the sign of a(−1)b(−1).
We store |a(−1)| in the first λ limbs of r (we denote this subarray r(0, λ)) and
|b(−1)| in the next λ limbs (which we denote r(λ, 2λ)). We then call Toom-2
recursively to compute |a(−1)b(−1)| and store the result in s(0, 2λ) (Alg. 16,
line 10). We use s(2λ, . . .) as scratch space (there is enough space because k
decreased by one).

130 CHAPTER 4. WHYMP

The constant 30 in the recursive call function toom22_mul_rec (Alg. 17) is
the minimum integer length for which our library calls Toom-Cook multiplica-
tion algorithms. For smaller numbers, the schoolbook multiplication is called
instead. The value 30 was picked experimentally, and the optimum can vary
from machine to machine. What matters is that the value is high enough that
the preconditions of toom22_mul and toom32_mul are respected. The relevant
precondition of toom32_mul is n+ 2 ≤ m ∧m+ 6 ≤ 3 · n (the full specification
can be found in Sec. 4.4.2). Provided the threshold is above 8, the precondition
is met.

After the recursive call at line 10, the memory layout is as follows. Through-
out this section, the memory layout will be illustrated with such diagrams (in
addition to the formulas) to help visualize the current state of the computation.

|a(−1)| |b(−1)|r

λ λ µ+ ν

|a(−1)b(−1)|s

2λ remaining scratch space

The next step is to compute c(+∞), that is, A1B1. This is done with a
simple recursive call to Toom-2 (Alg. 16, line 11), using s(2λ, . . .) as scratch
space again. The result has size µ+ ν, which fits in r(2λ, 2λ+ µ+ ν).

Finally, we compute c(0), that is, A0B0 (line 12). We use the second half
of s as scratch space again, and store the result in r(0, 2λ), writing over |a(−1)|
and |b(−1)| (but their product still is in the first half of s).

A0B0 A1B1r

2λ µ+ ν

|a(−1)b(−1)|s

2λ remaining scratch space

We further decompose c(0), c(−1), and c(+∞) in halves of size λ or less:

A0B0 = c(0) = L0 + βλ ·H0

A1B1 = c(+∞) = L∞ + βλ ·H∞.

At the end of the evaluation step, we have the following memory layout:

L0 H0 L∞ H∞r

λ λ λ µ+ ν − λ

|a(−1)b(−1)|s

2λ remaining scratch space

Recomposition (Alg. 16, lines 13-18)

We first add H0 to L∞ in place, storing the carry in a variable v (line 13). The
outgoing up-right arrows in the following diagrams represent the carry out.

4.4. TOOM-COOK MULTIPLICATION 131

→
v

L0 L∞ H∞

+ H0

r

λ λ λ µ+ ν − λ

We then add the result to L0, writing over the original location of H0

(line 14). We store the sum of v and the new carry in v2. At that point,
value(r + λ, λ) + βλv2 = L0 +H0 + L∞.

→
v2

→
v

L0 H0 L∞ H∞

+ L0 H0

+ L∞

r

λ λ λ µ+ ν − λ

We add H∞ to r(2λ, 3λ) in place, incrementing v if needed (line 15). At
that point, we have:

value(r + λ, 2λ) + βλv2 + β2λv

= (H0 + L0 + L∞) + βλ(H0 + L∞ +H∞)

= A0B0 +A1B1 +H0 + βλL∞. (4.1)

→
v2

→
v

L0 H0 L∞ H∞

+ L0 H0

+ L∞ H∞

r

λ λ λ µ+ ν − λ

Finally, we subtract c(−1) from r(λ, 3λ) by adding or subtracting |a(−1)b(−1)|,
depending on the stored sign (lines 16-18). At that point, we have −1 ≤ v ≤ 3,
and:

value(r + λ, 2λ) + βλv2 + β2λv

= A0B0 +A1B1 +H0 + βλL∞ − (A0 −A1)(B0 −B1)

= A0B1 +A1B0 +H0 + βλL∞.

→
v2

→
v

L0 H0 L∞ H∞

+ A0B1 +A1B0

r

λ 2λ µ+ ν − λ

132 CHAPTER 4. WHYMP

Therefore,

value(r,m+ n) + β2λv2 + β3λv

= L0 + βλ(value(r + λ, 2λ) + βλv2 + β2λv) + β3λH∞

= A0B0 + βλ(A0B1 +A1B0) + β2λA1B1

= (A0 + βλA1)(B0 + βλB1).

The only thing left to do is propagating the carries.

Carry propagation (Alg. 16, lines 19-22)

We first propagate v2 at line 19, then v (lines 20-22). There is an if statement
because the case v2 = −1 (represented as the unsigned integer β − 1) requires
special treatment, as incr(·, β − 1) is not the same thing as decr(·, 1). Indeed,
when propagating the carries, the functions incr and decr never check whether
they reach the bounds of the array that holds the number to be incremented.
Rather, they perform an addition (or subtraction) and propagate the carry until
there is none. Their preconditions include the fact that this computation should
not overflow. Calling these functions incorrectly could result in buffer overflows.
Notably, this is a situation where the memory safety of the program (absence of
buffer overflow) directly depends on its functional correctness (the number that
is being incremented fits between certain bounds).

The most difficult part of the whole Toom-2 proof is ensuring that the prop-
agation of the carries v and v2 does not overflow. This is easy when v ≥ 0,
as the total product ab (obtained after propagating both carries) is certain to
fit in m + n limbs and the intermediate value obtained after propagating one
of the carries is certain to be between 0 and ab. The only nontrivial case is
v = −1, v2 6= 0. There, it is not obvious that the propagation of v2 does not
overflow out of r, as we have:

value(r,m+ n) = (A0 + βλA1)(B0 + βλB1)− β2λv2 + β3λ,

and we might have (A0 + βλA1)(B0 + βλB1) + β3λ ≥ βm+n.
It is sufficient to show that H∞ < βµ+ν−λ − 1, that is, that the binary

representation of H∞ is not all ones. Indeed, the carry is absorbed somewhere
in H∞ if it is the case. If v = −1, the first addition (of H0 and L∞) cannot
overflow, and we must have v2 ≤ 1. The only case to consider is therefore
v = −1, v2 = 1. If v = −1, the subtraction of c−1 from r + λ necessarily
underflows, that is,

A0B0 +A1B1 +H0 + βλL∞ − βλ < (A0 −A1)(B0 −B1)

(Equation (4.1) with v2 = 1, v = 0).
Noticing that 0 ≤ H0 and 0 ≤ A0B1 + A1B0 = A0B0 + A1B1 − (A0 −

A1)(B0 −B1), we are left with βλL∞ − βλ < 0, which implies L∞ = 0. Let us
pose x, y the 2-adic valuations of A1 and B1, and a′, b′ odd integers such that
A1 = 2xa′, B1 = 2yb′. We have 2x+ya′b′ = A1B1 = βλH∞ = 264λH∞. As
a′ and b′ are odd we must have x + y ≥ 64λ. If H∞ is even we are done (its
binary representation cannot be all ones), so we can assume x + y = 64λ and
a′b′ = H∞ without loss of generality. Notice now that A1 < 264µ as it fits in

4.4. TOOM-COOK MULTIPLICATION 133

a zone of length µ. We therefore have x < 64µ and a′ ≤ 264µ−x − 1, similarly
y < 64ν and b′ ≤ 264ν−y − 1. Therefore,

H∞ = a′b′ ≤ (264µ−x − 1)(264ν−y − 1)

= βµ+ν−λ − 264ν−y − 264µ−x + 1

≤ βµ+ν−λ − 3,

and we can conclude that the propagation of v2 does not overflow.
We did not expect this fact to require such a complex proof, especially

because there were no comments in the GMP source code to indicate that non-
trivial reasoning was needed. We discussed this with the developers, and they
ended up changing the algorithm to make it more clearly correct at no perfor-
mance cost.3

4.4.2 Toom-2.5

Toom-2.5, also known as toom32, has the same signature as Toom-2. The algo-
rithm is similar (Alg. 19), but splits the larger operand into three parts rather
than two. It is optimally used when the first operand is longer than the second
by half.

The algorithm is organized into similar phases as Toom-2. First we split the
larger operand into three parts and the smaller one into two parts. Then we
evaluate c at four points, and finally we recompose the coefficients of c.

Splitting (Alg. 19, lines 2-9)

We pose either λ = 1 + bm−1
3 c (that is, dm/3e) or λ = 1 + bn−1

2 c (or dn/2e),
whichever is largest. We also pose µ = m−2λ and ν = n−λ. The preconditions
ensure that 0 < ν ≤ λ, 0 < µ ≤ λ, and λ ≤ µ+ ν.

Similarly to Toom-2, we split a into three subwords a0, a1 and a2 of lengths
λ, λ, and µ, respectively. We also split b into two subwords b0 and b1 of lengths
λ and ν. We denote A0 := value(a0, λ) and so on. We define the polynomials
a(X) := A0 + A1X + A2X

2 and b(X) := B0 + B1X. The goal is to compute
c(βλ), where c(X) = a(X)b(X) is a degree-3 polynomial. We pose c(X) =
C0 + C1X + C2X

2 + C3X
3, and we have the following:

C0 = A0B0,

C1 = A1B0 +A0B1,

C2 = A2B0 +A1B1,

C3 = A2B1.

The lengths of Ai and Bi coefficients imply that C0 has length 2λ, C1 and
C2 have length 2λ+ 1 and C3 has length µ+ ν.

A0 A1 A2a

λ λ µ

B0 B1b

λ ν

3https://gmplib.org/repo/gmp/rev/02a2ec6e1bce

https://gmplib.org/repo/gmp/rev/02a2ec6e1bce

134 CHAPTER 4. WHYMP

Algorithm 19 Toom-2.5 multiplication.

Require: 30 ≤ n ≤ m < 30 · 2k
Require: valid(r,m+ n), valid(a,m), valid(b, n), valid(s, 2(m+ k))
Require: n+ 2 ≤ m ∧m+ 6 ≤ 3 · n
Ensure: value(r,m+ n) = value(a,m) · value(b, n)
1: function toom32_mul(r, a, b, s,m, n, k)
2: if 2m ≥ 3n then
3: λ← 1 + bm−1

3 c
4: else
5: λ← 1 + bn−1

2 c
6: µ← m− 2λ
7: ν ← n− λ
8: (a0, a1, a2)← (a, a+ λ, a+ 2λ)
9: (b0, b1)← (b, b+ λ)

Compute a(1), b(1), |a(−1)|, |b(−1)| in r, sign in ε (see Alg. 20).
Carries of a(1) and b(1) are in a] and b], carry of |a(−1)| in a[.

10: s′ ← s+ 2λ+ 1
11: toom22_mul_rec(s, r, r + λ, s′, λ, λ, k − 1) . Compute c(1)

recursively.
12: if a] = 1 then . Propagate the carry for c(1).
13: v ← b] + add_n(s+ λ, s+ λ, r + λ, λ)
14: else
15: if a] = 2 then
16: v ← 2b] + addmul_1(s+ λ, r + λ, λ, 2)
17: else . a] = 0
18: v ← 0
19: if b] then
20: v ← v + add_n(s+ λ, s+ λ, r, λ)

21: s[2λ]← v
22: toom22_mul_rec(r, r + 2λ, r + 3λ, s′, λ, λ, k − 1) . Compute |c(−1)|

recursively.
23: if a[then . Propagate the carry for |c(−1)|.
24: a[← add_n(r + λ, r + λ, r + 3λ, λ)

25: r[2λ]← a[

26: if ε = −1 then
27: sub_n(s, s, r, 2λ+ 1)
28: else
29: add_n(s, s, r, 2λ+ 1)

30: rshift(s, s, 2λ+ 1, 1) . s← c(1)+c(−1)
2 = C0 + C2

31: v ← add_n(r + 2λ, s, s+ λ, λ) . Add L and M in D1.
32: incr(s+ λ, λ+ 1, v + s[2λ]) . Propagate v and h to D2.
33: if ε = −1 then
34: v ← add_n(s, s, r, λ)
35: v′ ← r[2λ] + add_nc(r + 2λ, r + 2λ, r + λ, λ, v)
36: incr(s+ λ, λ+ 1, v′)

4.4. TOOM-COOK MULTIPLICATION 135

37: else
38: v ← sub_n(s, s, r, λ)
39: v′ ← r[2λ] + sub_nc(r + 2λ, r + 2λ, r + λ, λ, v)
40: decr(s+ λ, λ+ 1, v′)

41: toom22_mul_rec(r, a0, b0, s
′, λ, λ, k − 1) . Compute c(0) recursively.

42: if µ > ν then . Compute c(+∞) recursively.
43: mul(r + 3λ, a2, µ, b1, ν)
44: else
45: mul(r + 3λ, b1, ν, a2, µ)

46: v ← sub_n(r + λ, r + λ, r + 3λ, λ)
47: v′ ← s[2λ] + v
48: v ← sub_nc(r + 2λ, r + 2λ, r, λ, v)
49: v′ ← v′ − sub_nc(r + 3λ, s+ λ, r + λ, λ, v)
50: v′ ← v′ + add(r + λ, r + λ, 3λ, s, λ)
51: if µ+ ν > λ then . Propagate v′.
52: v′ ← v′ − sub(r + 2λ, r + 2λ, 2λ, r + 4λ, µ+ ν − λ)
53: if v′ < 0 then
54: decr(r + 4λ, µ+ ν − λ,−v′)
55: else
56: incr(r + 4λ, µ+ ν − λ, v′)

Evaluation in 1 and −1 (Alg. 19, lines 10-25, and full Alg. 20)

As c(X) has degree 3, this time we need to obtain four values for interpolation.
GMP chooses to evaluate c at 0,−1, 1 and +∞. We remark that a(−1) =
A0−A1 +A2 and a(1) = A0 +A1 +A2. Therefore, some evaluation steps can be
saved by computing A0 +A2 only once and using this result for both evaluations
(Alg. 20). Just like in Toom-2, we actually compute |a(−1)| and |b(−1)| and
store the sign of the product separately in a variable ε. The carries of the
evaluation of a(1), b(1) and |a(−1)| are stored in a], b] and a[respectively. The
evaluation of |b(−1)| = |B0 − B1| cannot overflow (and this is why we bother
computing absolute values and storing the sign separately).

→
a
]

→
b
]

→
a
[

a(1) b(1) |a(−1)| |b(−1)|r

λ λ λ λ µ+ ν − λ

After this step, we have a(1) = value(r, λ) + βλa] and so on. We also have
0 ≤ a] ≤ 2, 0 ≤ b] ≤ 1, and 0 ≤ a[≤ 1. The next thing to do is to compute
c(1).

c(1) = a(1)b(1) = (value(r, λ) + βλa]) · (value(r + λ, λ) + βλb])

The recursive call at line 11 of Alg. 19 computes value(r, λ) ·value(r+λ, λ)
in s. The if statement at line 12 adds a]value(r + λ, λ), shifted by λ as this
term must be multiplied by βλ. It also accumulates the carry and a]b] into the
variable v. After this, we have

value(s, 2λ) + β2λv = (value(r, λ) + βλa]) · value(r + λ, λ) + β2λa]b]

136 CHAPTER 4. WHYMP

Algorithm 20 Toom-2.5: evaluation in 1 and -1.

Ensure: value(r, λ) + βλa] = a(1)
Ensure: value(r + λ, λ) + βλb] = b(1)
Ensure: value(r + 2λ, λ) + βλa[= |a(−1)|
Ensure: value(r + 3λ, λ) = |b(−1)|
Ensure: ε · (value(r + 2λ, λ) + βλa[) · value(r + 3λ, λ) = a(−1)b(−1)
a′ ← add(r, a0, λ, a2, µ)
if a′ = 0 ∧ cmp(r, a1, λ) < 0 then . A0 +A2 < A1

sub_n(r + 2λ, a1, r, λ)
a[← 0
ε← −1

else . A1 ≤ A0 +A2

v ← sub_n(r + 2λ, r, a1, λ)
a[← a′ − v
ε← 1

a] ← a′ + add_n(r, r, a1, λ) . Finish computing a(1).
if λ = ν then

b] ← add_n(r + λ, b0, b1, λ)
if cmp(b0, b1, λ) < 0 then . B0 < B1

sub_n(r + 3λ, b1, b0, λ)
ε← −ε

else
sub_n(r + 3λ, b0, b1, λ)

else
b] ← add(r + λ, b0, λ, b1, ν)
if is_zero(b0 + ν, λ− ν) ∧ cmp(b0, b1, ν) < 0 then . B0 < B1

sub_n(r + 3λ, b1, b0, ν) . b0 also has length at most ν.
zero(r + 3λ+ ν, λ− ν) . We still have to initialize the rest of

(r + 3λ, λ).
ε← −ε

else
sub(r + 3λ, b0, λ, b1, ν)

4.4. TOOM-COOK MULTIPLICATION 137

The only missing term is βλb] ·value(r, λ), which is handled in the if statement
at line 16 of Alg. 19. After this, we have value(s, 2λ) + β2λv = c(1), and we
can set s[2λ] to v.

c(1)s

2λ+ 1 remaining scratch space

The product |c(−1)| = |a(−1)b(−1)| is computed similarly at lines 22-25.
As there is no carry corresponding to |b(−1)|, the procedure is a bit simpler.
The term βλa[· value(r + 3λ, λ) is added in the if statement at line 23. The
product is stored in r(0, 2λ+ 1). This overwrites a(1), b(1) and part of |a(−1)|,
but these intermediate results are no longer needed.

|c(−1)|r

2λ+ 1 λ+ µ+ ν − 1

c(1)s

2λ+ 1 remaining scratch space

Recomposition (Alg. 19, lines 26-40)

We use the intermediate variable d := C1 + C3 + βλ · (C0 + C2). The sizes
of the Ci imply that d has length 3λ + 1, so we pose D0, D1, D2 such that
d = D0 + βλD1 + β2λD2 with D0 and D1 of length λ and D2 of length λ+ 1.

Note that C1 +C3 = C0 +C2− (C0−C1 +C2−C3) = C0 +C2− c(−1), so:

d = C0 + C2 − c(−1) + βλ · (C0 + C2).

The computation of d goes as follows.

C0 + C2

+ C0 + C2

- c(−1)

= D0 D1 D2

d

λ λ λ+ 1

We compute D0 at s, D1 at r+2λ and D2 at s+λ. The first step is to write
C0 +C2 in s. Noticing that c(1) + c(−1) = 2 · (C0 +C2), this is easy to do with
one long addition or subtraction (depending on ε) of r and s (lines 26-29), and
then a logical shift on the result to do the division by 2 (line 30).

|c(−1)|r

2λ+ 1 λ+ µ+ ν − 1

C0 + C2s

2λ+ 1 remaining scratch space

Let us note h the highest limb of C0 + C2 and split the 2λ remaining limbs
into two subwords L and M , such that C0 + C2 = L+ βλM + β2λh.

138 CHAPTER 4. WHYMP

We add L and M together and write the result in r + 2λ, λ, the location
of D1 (line 31 Alg. 19). This overwrites the most significant limb of |c(−1)|, but
it is still stored in a[. The carry v is propagated and added to D2, or s + λ,
which already contains the higher half of C0 + C2 (line 32).

→
a
[

→
v

|c(−1)| L+Mr

2λ λ µ+ ν

L M + βλh+ v + hs

λ λ+ 1 remaining scratch space

The only thing left to do in the computation of d is to subtract c(−1). The
if statement at line 33 does so (by adding or subtracting |c(−1)| depending
on ε). As D0 and D1 are not stored contiguously, we have to subtract both
halves of c(−1) separately. The add_nc and sub_nc functions are variants of
addition and subtraction that take a carry input to add or subtract to the result,
they allow to propagate the carry from the subtraction of the lower half of c(−1)
to the upper half. The carry of the upper half subtraction and a[(the high limb
of |c(−1)|) are propagated to D2.

At that point, we can check the following:

value(s, λ) + βλvalue(r + 2λ, λ) + β2λvalue(s+ λ, λ+ 1)

= L+ βλ(L+M − βλv) + β2λ(M + βλh+ v + h)− c(−1)

= L+ βλM + β2λh+ βλ(L+ βλM + β2λh)− c(−1)

= C0 + C2 + βλ(C0 + C2)− c(−1)

= d.

D1r

2λ λ µ+ ν

D0 D2s

λ λ+ 1 remaining scratch space

Evaluation in 0 and +∞ (Alg. 19, lines 41-45)

We recursively compute C0 in (r, 2λ) and C3 in (r + 3λ, µ + ν). The upper
half of s is still available and is used as scratch space. As the operands can be
very unbalanced in the case of C3, we have used the generic multiplication (see
Sec. 4.4.3) instead of calling Toom-2 or Toom-2.5 directly.

C0 D1 C3r

2λ λ µ+ ν

D0 D2s

λ λ+ 1 remaining scratch space

4.4. TOOM-COOK MULTIPLICATION 139

Recomposition (Alg. 19, lines 46-56)

Let us note L0 and H0 the two halves of C0, and split C3 = c(∞) into L∞ and
H∞ of length λ and µ+ ν − λ respectively. Note that H∞ can have length 0.

C0 = L0 + βλH0

C3 = L∞ + βλH∞

The product c(βλ) = a(βλ)b(βλ) can be expressed only in terms of C0, C3

and d:

C0 + βλd+ β3λC3 − C0β
2λ − βλC3

= C0 + βλ(C1 + C3) + β2λ(C0 + C2) + β3λC3 − C0β
2λ − βλC3

= C0 + βλC1 + β2λC2 + β3λC3

= c(βλ).

This implies the following decomposition for c(βλ):

c(βλ) = C0 + βλd+ β3λC3 − C0β
2λ − βλC3

= L0 + βλ(D0 + (H0 − L∞)) + β2λ(D1 − L0 −H∞) + β3λ(D2 − (H0 − L∞)) + β4λH∞.

The first step is to subtract L∞ from H0 at r+ λ (lines 46-47). The borrow
is stored in v. The variable v′ contains the sum of v and the high limb of D2.

→
v

L0 H0 − L∞ D1 L∞ H∞r

λ λ λ λ µ+ ν − λ

D0 D2s

λ λ+ 1 remaining scratch space

The next step is to subtract L0 from r + 2λ (line 48). The borrom v from
the previous computation at r + λ is also propagated into r + 2λ. The final
borrow is stored in v.

→
v

L0 H0 − L∞ → D1 − L0 L∞ H∞r

λ λ λ λ µ+ ν − λ

D0 D2s

λ λ+ 1 remaining scratch space

We then subtract H0 − L∞ from D2 at r + 3λ, propagating the previous
carry (line 49). The carry out is accumulated in v′.

→
+
v
′

L0 H0 − L∞ → D1 − L0 →D2 −H0 + L∞ H∞r

λ λ λ λ µ+ ν − λ

140 CHAPTER 4. WHYMP

D0 D2s

λ λ+ 1 remaining scratch space

We add D0 at r + λ, and propagate the carry all the way to r + 4λ (as the
parameter 3λ is passed in the add call at line 50 of Alg. 19). Similarly, we then
subtract H∞ from r + 2λ and propagate the carry all the way to r + 4λ.

→
v
′

L0 D0 +H0 − L∞→D1 − L0 −H∞→D2 −H0 + L∞ H∞r

λ λ λ λ µ+ ν − λ

D0 D2s

λ λ+ 1 remaining scratch space

We then only have to propagate v′ to r+ 4λ to finish the computation. The
proof that this propagation does not overflow is much more straightforward than
for Toom-2. Indeed, this time there is only one carry to propagate, so we can
rely on the fact that we know for sure that the final result fits in space 3λ+µ+ν.
This also proves that if µ + ν = λ (so there is no space to propagate the carry
to), then v′ must be 0.

4.4.3 General case
When the two operands have sufficiently similar sizes, we can compute their
product using either Toom-2 or Toom-2.5. When the operand sizes are very
unbalanced, none of these algorithms can be used directly without violating their
preconditions. In this case, WhyMP performs a block product by decomposing
the larger operand in blocks of sizes 3/2 times that of the smaller operand, and
calling Toom-2.5 repeatedly (Alg. 21). This is a small departure from GMP.
GMP implements a third Toom-Cook algorithm called toom42, which expects
the larger operand to be twice as long as the smaller one. It calls toom42
repeatedly to perform the general case multiplication, rather than toom32. I
chose to not verify toom42 due to time constraints, expecting the performance
difference to not be egregious as toom42 is not called by any of the recursive
calls in GMP. More detailed benchmarks can be found in Sec. 4.8.2.

The general case multiplication function is meant to be exposed to the user,
with previous multiplication routines left internal. It calls other multiplication
algorithms that depend on the operand sizes. If one operand is very small, the
schoolbook multiplication is the best one (line 3). Otherwise, if the operands
are of sufficiently similar sizes, then we simply call Toom-2 or Toom-2.5 (line 34
of Alg. 21). Finally, if the operands are large and very unbalanced, we need to
perform a block product.

The main loop invariants are as follow:

value(r,m+ n− u) = value(a,m− u) · value(b, n)

a′ = a+m− u
r′ = r +m− u.

At the beginning of a loop iteration, a′ points to the first limb of a that has
not been multiplied yet, and r′ points to the zone in r where the next subresult

4.4. TOOM-COOK MULTIPLICATION 141

Algorithm 21 General case multiplication.

Require: valid(r,m+ n), valid(a,m), valid(b, n)
Require: 0 < n ≤ m
Ensure: value(r,m+ n) = value(a,m) · value(b, n)
1: function mul(r, a,m, b, n)
2: if n < 30 then . Small operands, use schoolbook algorithm.
3: mul_basecase(r, a,m, b, n)
4: else
5: k ← 64
6: s← alloc(5n+ 128) . Allocate sufficiently large scratch space.
7: if 2m ≥ 5n then . Unbalanced operands, use block product.
8: m′ ← b3n/2c . Block size (rounded down).
9: w ← alloc(4n) . Allocate workspace to store Toom-2.5 result.

10: u← m . Remaining section of a to multiply.
11: toom32_mul(r, a, b, s,m′, n, k)
12: u← u−m′
13: a′ ← a+m′

14: r′ ← r +m′

15: while u ≥ 2n do
16: toom32_mul(w, a′, b, s,m′, n, k)
17: v ← add_n(r′, r′, w, n) . Add result to subtotal.
18: copy(r′ + n,w + n,m′) . Continue the addition.
19: incr(r′ + n, v) . Propagate the carry.
20: u← u−m′
21: a′ ← a′ +m′

22: r′ ← r′ +m′

23: if n ≤ u then . Multiply the last block.
24: if 4u < 5n then
25: toom22_mul(w, a′, b, s, u, n, k)
26: else
27: toom32_mul(w, a′, b, s, u, n, k)

28: else . Operand sizes are reversed
29: mul(w, b, n, a′, u)

30: v ← add_n(r′, r′, w, n)
31: copy(r′ + n,w + n, u)
32: incr(r′ + n, v)
33: else
34: if 4m < 5n then
35: toom22_mul(r, a, b, s,m, n, k)
36: else
37: toom32_mul(r, a, b, s,m, n, k)

142 CHAPTER 4. WHYMP

should be added. Note that the first n limbs after r′ already contain a part of
the subtotal.

After multiplying (a′,m′) by (b, n), we need to add the product (stored in w)
to r′. This is done in lines 17-19. Instead of performing one addition of length
m′ + n, we take advantage of the fact that only the first n limbs of r′ are
occupied. We perform an addition of length n on that zone and simply copy
over the rest of w to r′ + n, and then propagate the carry of the addition.

What happens after the loop is similar to one last iteration of the loop. The
only change is that the last block of a that is left to multiply has length u,
not exactly 3n/2. Depending on the ratio between n and u, either Toom-2 or
Toom-2.5 is called. If u < n, the operands are still balanced enough that the
recursive call at line 29 will necessarily jump to line 34 and call one of these two
functions, or call the schoolbook algorithm.

4.5 Divide-and-conquer square root
The GMP square root algorithm computes the square root s and the remainder r
of its operand a such that a = s2 + r and 0 ≤ r ≤ 2s, or equivalently, s2 ≤ a <
(s+ 1)2.

It consists in four functions. From a verification standpoint, the most in-
teresting one was by far the base case algorithm sqrtrem1 (Sec. 4.5.1), which
computes the square root of a limb. It is essentially a fixed-point arithmetic
algorithm, which required a good amount of modeling work. This work was
paid off when the Gappa tool turned out to be able to discharge almost all
the verification conditions automatically. The second function (Sec. 4.5.2) com-
putes the square root of a 2-limb number and is essentially a wrapper around
the first. The third function (Sec. 4.5.3) is a general case divide-and-conquer
algorithm. It is far from trivial, but it was already formally verified by Bertot
et al. using Coq [11]. As a result, I was able to heavily inspire my proof from
theirs. Finally, the last function (Sec. 4.5.4) is a wrapper around the general
case algorithm that takes care of normalizing.

4.5.1 Square root, n = 1: a fixed-point algorithm
GMP’s mpn_sqrtrem1 function computes the square root of a 64-bit integer.
Although it manipulates only integers, it is best understood as a fixed-point
arithmetic algorithm that implements Newton’s method. The source code is
relatively short, but very intricate. We verified it semi-automatically using the
Gappa tool [26] in addition to the usual SMT solvers. This section is drawn from
a previous paper in which we describe our formal proof of this algorithm [71].

The algorithm

Let us start by briefly explaining the algorithm. It relies on many C-specific
features, such as the way numbers are represented in memory, type casts and
bitwise logical shifts. Therefore, a pseudocode would not make much sense
or be more readable than the original source code. So, let us analyze GMP’s
implementation directly. The source code is reproduced in Fig. 4.3. For the sake
of readability, some comments, whitespace, and variable names were modified,
and some macros were expanded.

4.5. DIVIDE-AND-CONQUER SQUARE ROOT 143

1 #define MAGIC 0x10000000000
2
3 mp_limb_t mpn_sqrtrem1(mp_ptr rp, mp_limb_t a0) {
4 mp_limb_t a1, x0, x1, x2, c, t, t1, t2, s;
5 unsigned abits = a0 >> (64 - 1 - 8);
6 x0 = 0x100 | invsqrttab[abits - 0x80];
7 // x0 is the 1st approximation of 1/sqrt(a0)
8 a1 = a0 >> (64 - 1 - 32);
9 t1 = (mp_limb_signed_t) (0x2000000000000 - 0x30000 - a1 * x0 * x0) >> 16;

10 x1 = (x0 << 16) + ((mp_limb_signed_t) (x0 * t1) >> (16+2));
11 // x1 is the 2nd approximation of 1/sqrt(a0)
12 t2 = x1 * (a0 >> (32-8));
13 t = t2 >> 25;
14 t = ((mp_limb_signed_t) ((a0 << 14) - t * t - MAGIC) >> (32-8));
15 x2 = t2 + ((mp_limb_signed_t) (x1 * t) >> 15);
16 c = x2 >> 32;
17 // c is a full limb approximation of sqrt(a0)
18 s = c * c;
19 if (s + 2*c <= a0 - 1) {
20 s += 2*c + 1;
21 c++;
22 }
23 *rp = a0 - s;
24 return c;
25 }

Figure 4.3: Square root of a 64-bit integer.

The function takes an unsigned 64-bit integer a0 larger than or equal to 262

and returns its square root, storing the remainder in *rp. The best way to
understand this algorithm is to view it as a fixed-point arithmetic algorithm,
with the binary point initially placed such that the input a0 represents a ∈
[0.25; 1].

The main part of the algorithm consists in performing two iterations of
Newton’s method to approximate a−1/2 with 32 bits of precision. As part of
the last iteration, the approximation is multiplied by a to obtain a suitable
approximation of

√
a. More precisely, we are looking for a root of f(x) = x−2−a.

Given xi = a−1/2(1 + εi), we define xi+1 = xi − f(xi)/f
′(xi) = xi(3 − ax2

i)/2.
Furthermore, if we pose εi+1 such that xi+1 = a−1/2(1 + εi+1), we find |εi+1| ≈
3
2 · |εi|

2.
Note that the iteration can be computed with only additions, multiplications,

and logical shifts, which all take considerably fewer cycles than a division. For
instance, we compute x1 as x0 +x0t1/2, with t1 ≈ 1−ax2

0 at line 9. The division
by 2 is implicitly performed by the right shift at line 10. The absence of division
primitives is the main reason why the algorithm looks for an approximation of
the inverse square root rather than the square root itself, which would involve
a division by xi at each step of the iteration.

The initial approximation of a−1/2 is taken from the precomputed array
invsqrttab of 384 constants of type char. Using interval arithmetic, we have
checked exhaustively that the initial approximation x0 has a relative error ε0

smaller than about 2−8.5 for all values of a0. It follows that after an iteration, we
have |ε1| . 2−16.5 and after two steps, |ε2| . 2−32.5. The square root of a0 can
be represented using at most 32 bits, so we would expect the final approximation

144 CHAPTER 4. WHYMP

to be either exactly the truncated square root of a0 or off by one. Note that we
are computing using fixed-point numbers rather than real numbers, so additional
rounding errors are introduced during the computation and worsen this error
bound somewhat. However, the quadratic nature of the convergence absorbs
most of the rounding errors from the first iteration, and the final result is still
off by at most one. The magic constants 0x30000 and MAGIC, which would not
be part of an ideal Newton iteration, ensure that the approximation is always
by default. As a result, the approximation after two steps is known to be either
exactly the truncated square root, or its immediate predecessor. The final if
block performs the required adjustment step, by adding 1 to the result if it does
not make its square exceed a0.

There are several implementation tricks that make this algorithm both ef-
ficient and difficult to prove. For instance, some computations intentionally
overflow, such as the left shift and the multiplication at line 14. In this case, t
is represented using 39 bits, and a0 uses all 64 bits, so both computations over-
flow by 14 bits. However, the top part of t*t is known to be equal to the top
part of a0, and these numbers are subtracted, so no information is lost. Another
thing to note is that the variable t, which is an error term, essentially represents
a signed value even though it is an unsigned 64-bit integer. Indeed, we cast it
into a signed integer before shifting it to the right. This means that its sign is
preserved by the shift. However, t could not be represented as an actual signed
integer because some computations involving it overflow, such as the product
t*t at line 14.

Modeling fixed-point arithmetic inside Why3

For the most part, the C code uses only one number type: unsigned 64-bit
integers. Relevant arithmetic operations are addition, multiplication, left shift,
and right shift. We could write the WhyML code using our existing model
of unsigned integers, but we would lose some helpful information about the
algorithm. Indeed, the integers that the algorithm manipulates are fixed-point
representations of real numbers. So, it is important to carry around the position
of their binary point. To do so, an initial idea could be to introduce a new
WhyML record type with two fields:

type fxp = { ival: uint64; ghost iexp: int }

The iexp field denotes the position of the binary point. As it is a ghost
field, from an implementation point of view, a value of type fxp is indistin-
guishable from the value of its field ival, which is an unsigned 64-bit integer.
The extraction mechanism features a record optimization mechanism that sim-
plifies records with a single non-ghost field into values of the type of that field.
So, after extraction, values of type fxp would be extracted to 64-bit unsigned
integers, which is exactly what we want.

We also need a way to relate fixed-point integers to the real numbers they
represent. WhyML features an axiomatized type real that represents real num-
bers. Much like the int type of unbounded integers, it is meant to be used in
specifications, lemmas and proofs, but not in extracted programs. Let us for
now assume that we have a function rval that maps fxp values to real numbers,
and leave its definition for later.

function rval (x:fxp): real

4.5. DIVIDE-AND-CONQUER SQUARE ROOT 145

We can now specify the basic arithmetic operations on fixed-point values.
As an illustration, here is part of the declaration of addition. It takes two fixed-
point numbers x and y as inputs and returns a fixed-point number denoted
result in the specification. The precondition requires that the binary points of x
and y are aligned; the user will have to prove this property. The postcondition
ensures that the result is aligned with x (and thus y too); this property will be
available in any subsequent proof.

val fxp_add (x y: fxp): fxp
requires { iexp x = iexp y }
ensures { iexp result = iexp x }
ensures { rval result = rval x +. rval y }

The last line of the specification ensures that the real number represented
by result is the sum of the two real numbers represented by x and y . The “+.”
operator is the addition on reals. Of course, in the extraction driver, we specify
that fxp_add should simply be replaced by the (+) operator. However, this is
when we run into trouble.

Let us come back to the issue of defining rval. An initial idea would be to
define it intuitively as rval = ival · 2iexp . Unfortunately, that would make the
algorithm impossible to prove. Indeed, with this definition of rval, the above
specification of fxp_add would be an incorrect model of C integer addition due
to wraparound. A fix would be to add a requires clause that forbids the sum
ival x + ival y to overflow. However, the algorithm that we want to prove
violates this precondition! Indeed, as mentioned before, the algorithm features
intentional overflows. When they occur, the real numbers that are represented
may indeed exceed 264, which the proposed definition of rval disallows. So, we
need a more subtle specification for fxp operations.

To circumvent this issue, we add rval as another ghost field of fxp. We also
add two type invariants to state that the values of the three fields are related.
Now, whenever the code creates a fixed-point value, the user has to prove that
the invariants hold.

type fxp = { ival: uint64; ghost rval: real; ghost iexp: int }
invariant { rval = floor_at rval iexp }
invariant { ival =

mod (floor (rval *. pow2 (-iexp))) (uint64’maxInt + 1) }

The first invariant forces the real number to be a multiple of 2iexp by stating
that rval is left unchanged by truncating it at this position. The second invariant
states that the 64-bit integer can be obtained by first scaling the real number
so that it becomes an integer, and then making it fit into the uint64 type using
the remainder of an Euclidean division. The floor_at function that appears in
the first invariant is defined as follows:

function floor_at (x: real) (k: int): real =
floor (x *. pow2 (-k)) *. pow2 k

A fixed-point value can be created using the following function. It takes a
64-bit integer, usually a literal one, and the position of the binary point. Since
this position is ghost, and so are the fields iexp and rval, this function is
effectively the identity function.

let fxp_init (x: uint64) (ghost k: int): fxp
= { ival = x; iexp = k; rval = x *. pow2 k }

146 CHAPTER 4. WHYMP

Subtraction and multiplication are not fundamentally different from addi-
tion. Left and right shifts are more interesting. Contrarily to plain integer
arithmetic, their role is not just to perform some cheap multiplication or divi-
sion by a power of two; they can also be used to move the binary point to a
given position. Let us illustrate this situation with the following function, which
performs an arithmetic right shift “(mp_limb_signed_t)x >> k”.

val fxp_asr’ (x: fxp) (k: uint64) (ghost m: int): fxp
requires { int64’minInt *. pow2 (iexp x) ≤.

rval x ≤. int64’maxInt *. pow2 (iexp x) }
ensures { iexp result = iexp x + k - m }
ensures { rval result =

floor_at (rval x *. pow2 (-m)) (iexp x + k - m) }

The precondition requires that the real number represented by x is bounded,
so that the sign bit contains enough information to fill the k+1 most significant
bits. In particular, to use this function, the user will have to prove that, if some
previous operation overflowed, it has been compensated in some way. The ghost
argument m tells how much of the shift is actually a division of the real number,
so the binary point is moved by k−m as stated by the first postcondition. (The
fxp_asr variant corresponds to m = 0.) Finally, the second postcondition
expresses that the real result is x · 2−m except for the least significant bits
that are lost. One example of this occurs at line 10 of the square root. The
quantity x0 * t1 is right-shifted by 18 bits, but this should be interpreted as
a division by 2 that also truncates the 17 least significant bits. In the WhyML
transcription, the right shift is translated as a call to fxp_asr’ with k = 18 and
m = 1.

This loss of accuracy is expressed using the aforementioned floor_at func-
tion. This function can be interpreted as a rounding toward −∞ in some fixed-
point format. As such, when verification conditions will be sent by Why3 to
Gappa, an expression “floor_at x p” will be translated to “fixed<p,dn>(x)”.
Note that Gappa requires p to be an integer literal, so it would choke on “iexp x
+ k - m”. So, we improved Why3 a bit to make it precompute such expressions
before sending them to Gappa. As a side effect, this change also made it pos-
sible to turn constant expressions such as “int64’minInt *. pow2 (iexp x)”
into proper numbers. That is the only change we had to make to Why3.

WhyML transcription and proof

Once fixed-point arithmetic has been modeled as a Why3 theory, translating
GMP’s square root algorithm from C code to WhyML is mostly straightfor-
ward. The only details we had to guess are the ghost arguments passed to func-
tions fxp_init and fxp_asr’, which are obvious only if one knows that the
algorithm implements Newton’s method. The complete specification and part
of the WhyML code are given in Figure 4.4. The specification requires that
the function is called with a valid pointer rp and an integer a0 large enough.
It ensures that the unsigned integer returned by the function is the truncated
square root and that the unsigned integer pointed by rp holds the remainder.

The main difference between this WhyML transcription and the original C
code is the call to rsa_estimate at line 11. In the original C code, the initial
estimate of the inverse square root of a0 is looked up from a global array. Sadly,
Why3 does not yet support this, so we abstract it in a val declaration. The

4.5. DIVIDE-AND-CONQUER SQUARE ROOT 147

1 let sqrt1 (rp: ptr uint64) (a0: uint64): uint64
2 requires { valid rp 1 }
3 requires { 0x4000000000000000 ≤ a0 }
4 ensures { result*result ≤ a0 < (result+1)*(result+1) }
5 ensures { result*result + get rp = a0 }
6 =
7 let a = fxp_init a0 (-64) in
8 assert { 0.25 ≤. a ≤. 0xffffffffffffffffp-64};
9 assert { 0. <. a };

10 let ghost rsa = 1. /. sqrt a in
11 let x0 = rsa_estimate a in
12 let ghost e0 = (x0 -. rsa) /. rsa in
13 let a1 = fxp_lsr a 31 in
14 let ghost ea1 = (a1 -. a) /. a in
15 let m1 = fxp_sub
16 (fxp_init 0x2000000000000 (-49))
17 (fxp_init 0x30000 (-49)) in
18 let t1’ = fxp_sub m1 (fxp_mul (fxp_mul x0 x0) a1) in
19 let t1 = fxp_asr t1’ 16 in
20 let x1 = fxp_add (fxp_lsl x0 16) (fxp_asr’ (fxp_mul x0 t1) 18 1) in
21 let ghost mx1 = x0 +. x0 *. t1’ *. 0.5 in
22 assert { (mx1 -. rsa) /. rsa =
23 -0.5 *. (e0*.e0 *. (3.+.e0) +. (1.+.e0) *.
24 (1.-.m1 +. (1.+.e0)*.(1.+.e0) *. ea1)) };
25 ...

Figure 4.4: WhyML square root up to the assertion on the first Newton iteration.

specification of rsa_estimate is reproduced below. Its postcondition specifies
an upper bound of the relative error on the initial estimate. In the extraction
driver, we reproduce the invsqrttab array from the original GMP code and
replace calls to rsa_estimate by lookups in the array. This means that the
extracted code ends up very similar to the original code. However, the error
bound in the postcondition is an axiom in our Why3 development. Since the
array contains only a few hundred elements, we were able to simply verify it
outside Why3.

val rsa_estimate (a: fxp): fxp
requires { 0.25 ≤. a ≤. 0xffffffffffffffffp-64 }
requires { iexp a = - 64 }
ensures { iexp result = -8 }
ensures { 256 ≤ ival result ≤ 511 }
ensures { 1. ≤. rval result ≤. 2. }
ensures { let rsa = 1. /. sqrt a in

let e0 = (rval result -. rsa) /. rsa in -0.00281 ≤. e0 ≤. 0.002655
}

Let us now describe the proof of the algorithm proper. The most critical
part of the algorithm is the verification of the following assertion, which states
that the fixed-point value x approximates sa = 2−32b√a0c with an accuracy
of 32 bits:

assert { -0x1.p-32 ≤. x -. sa ≤. 0. };

This is exactly the kind of verification condition Gappa is meant to verify.
Unfortunately, Gappa is unable to automatically discharge it, as it does not
know anything about Newton’s method. So, we have to write additional asser-
tions in the code to help Gappa. In particular, we have to make it clear that the

148 CHAPTER 4. WHYMP

convergence is quadratic. For example, the following equality gives the relative
error between a−1/2 and an idealized version x′1 of the second approximation x1.

x′1 − a−1/2

a−1/2
= − 1

2 (ε2
0(3 + ε0) + . . .).

The value x′1, denoted by mx1 in Figure 4.4, is not exactly the theoretical x1

from the Newton iteration, as it replaces a by a1 and takes into account the
magic constant 0x30000. However, the formula does not contain any rounding
operator, so it can be obtained using a computer algebra system without much
trouble. From this formula, Gappa will then deduce a way to bound the relative
error between a−1/2 and x1, despite the rounding errors.

All in all, Gappa needs four equalities to be able to prove the main error
bound. Two of them are the relative errors of both Newton iterations. The
other two are just there to help Gappa fight the dependency effect of interval
arithmetic, e.g., a · a−1/2 =

√
a. All these equalities are written as WhyML

assertions and have to be discharged by Why3 using some other prover. Fortu-
nately, the field tactic makes it straightforward to do so using the Coq proof
assistant, once it has been told a =

√
a

2. In the end, the most difficult part of
the proof was to determine the contents of these assertions, which was not that
hard.

The verification went surprisingly well and Gappa was able to discharge
all the preconditions of the right-shift functions. It failed at discharging the
main error bound, though. (It would have presumably succeeded, had we let it
run long enough.) We first tried to modify slightly the equality describing the
relative error of the second Newton iteration. This made the verification faster,
but it would still have taken hours at best. So, we ended up modifying the code
a bit. GMP’s square root makes use of a second magic constant 240 (line 14 of
Fig. 4.3); we replaced it by 2.25 · 240. Gappa was then able to discharge the
verification condition in a few seconds.

This does not mean that GMP’s algorithm is incorrect. It just means that
Gappa overestimates some error, which prevents it from proving the code for
the original constant. Interestingly enough, a comment in the C code indicates
that this magic constant can be chosen between 0.9997 · 240 and 35.16 · 240.

Once we have proved x− sa ∈ [−2−32; 0], proving c−b
√
ac ∈ [−1; 0] (with c

the integer representing x) is mostly a matter of unfolding the definitions and
performing some simplifications. Then, by stating a suitable assertion, we get
SMT solvers to automatically prove that none of the operations in the compu-
tation of c · c+ 2c can overflow. All that is left is verifying the postcondition of
the function, which SMT solvers have no difficulty discharging automatically.

The verification of this function ended up very different from the other proofs
in this chapter. The reason is that the most difficult part of the proof (the
assertion that the estimate after two Newton steps has 32 bits of precision)
was actually performed automatically. For the other algorithms, the non-trivial
parts of the proof are performed using long Why3 assertions. Of course, these
assertions are checked by automated solvers, but they are long precisely because
many intermediary steps are needed to make the solvers accept them. From
the point of view of the programmer, writing these long assertions is not so
different from writing a pen-and-paper proof, in that a similar level of detail
and understanding is required and it takes a similar amount of time. For this

4.5. DIVIDE-AND-CONQUER SQUARE ROOT 149

square root algorithm, it was not so. Indeed, I would not have been able to write
a rigorous pen-and-paper proof that the 32-bit estimate is accurate, or even
understand the algorithm well enough to be convinced that it is correct. Yet,
I managed to get Why3 and Gappa to prove the correctness of the algorithm.
The main reason for this success is that the hard part of the proof is exactly the
sort of problem that Gappa is designed to handle. Furthermore, it was easy to
separate this core problem from the subproblems that Gappa cannot handle well
(the equalities on the relative errors) and treat these separately. Conversely, the
goals that require large assertions do not quite fit in the domain of any of the
automated solvers, so more user effort is required. Chapter 5 further discusses
this effort, as well as an attempt to increase the degree of automation of these
proofs.

4.5.2 Square root, n = 2

The sqrtrem2 function (Alg. 22) computes the square root of a, which must be
two limbs long. It takes two destinations operands, s to store the square root
of a and r to store the remainder. It returns the high limb c of the remainder,
such that value(a, 2) = s[0]2 + βc+ r[0]. The parameters r and s are pointers
that only need space for 1 limb. We assume a to be normalized such that its
high limb is greater than or equal to β/4. The algorithm computes an initial
estimate of the square root by calling sqrtrem1 on the high limb of a, and then
adjusts toward the correct square root.

Initial estimate (lines 2-4)

After the call to sqrtrem1 at line 2, we have s2
0 + r[0] = a1 and a = 264a1 + a0.

The value 232s0 is the initial estimate for the square root of a. We compute an
initial remainder r0 such that 233r0 + (a[0] mod 233) = βr[0] + a[0].

First adjustment (lines 5-13)

We compute the quotient q of r0 by s0, such that at line 6, s0q is somewhat close
to r0 and q < 232. We pose s1 = 232s0 + q as a candidate square root. Indeed,
233qs0 ≈ βr[0] + a[0], so at line 8: s2

1 = βs2
0 + 233qs0 + q2 ≈ βa[1] + a[0] + q2.

More precisely,

s2
1 = βa[1] + a[0] + q2 − (233(r0 − qs0) + a[0] mod 233).

We pose u = r0 − qs0, and r1, c such that r1 + βc = 233(r0 − qs0) +
a[0] mod 233, r1 ∈ [0, β−1]. Therefore, at line 11 we have s2

1 + r1 +βc = a+ q2.
At lines 12-13, we subtract q2 from r1 + βc in a way that avoids arithmetic
underflows. At that point, s2

1 + r1 + βc = a.

No underapproximation of the square root

Let us show that s1 is not an underapproximation of the square root, or in other
terms, b

√
ac ≤ s1. This is equivalent to a < (s1 + 1)2, or r1 + βc ≤ 2s1. We

have r1 + βc = 233u+ al − q2.
If q0 < 232, then q = q0 and u = r0 mod s0 < s0, and al < 233, so r1 + βc ≤

233s0 ≤ 2s1.

150 CHAPTER 4. WHYMP

The only remaining case is q0 = 232, q = 232 − 1. In this case, we notice
that r[0] ≤ 2s0 (postcondition of sqrtrem1). This implies r0 ≤ 232s0 + ah, so
u = r0 − (232 − 1)s0 ≤ s0 + ah. We also have β = (q + 1)2, so:

233u+ al − q2 ≤ 233s0 + a[0]− q2

≤ 233s0 + β − 1− q2

= 233s0 + 2q

≤ 2s1.

Avoiding overapproximation (lines 14-19)

Let us now show that s1 < b
√
ac + 1, or equivalently, s2

1 ≤ a (no overapprox-
imation of the square root). If we had s2

1 > a, it would imply r1 + βc < 0,
or equivalently, c ≤ −1. The conditional at line 14 takes care of this case by
adding 2s1 − 1 to r1 + βc and removing 1 from s1, leaving the sum s2

1 + r1 + βc
unchanged and avoiding arithmetic overflows.

Algorithm 22 Square root of a 2-limb number.

Require: valid(a, 2), valid(s, 1), valid(r, 1)
Require: a[1] ≥ β/4
Ensure: value(a, 2) = s[0]2 + β · result + r[0]
Ensure: 0 ≤ result ≤ 1
Ensure: r[0] + β · result ≤ 2s[0]
1: function sqrtrem2(s, r, a)
2: s0 ← sqrtrem1(r, a[1])
3: ah ← a[0]� 33
4: r0 ← (r[0]� 31) + ah
5: q0 ← br0/s0c . q0 ≤ 232.
6: q ← q0 − (q0 � 32) . If q0 = 232, reduce it by 1.
7: u← r0 − qs0

8: s1 ← (s0 � 32) + q
9: c← u� 31

10: al ← a[0] mod 233

11: r1 ← (u� 33) + al
12: c← c− (r1 < q2) . −1 ≤ c.
13: r1 ← r1 − q2 mod β
14: if c < 0 then . Square root too large, adjust.
15: r1 ← r1 + s1 mod β
16: c← c+ (r1 < s1) . Carry propagation.
17: s1 ← s1 − 1
18: r1 ← r1 + s1 mod β
19: c← c+ (r1 < s1) . Carry propagation.
20: r[0]← r1

21: s[0]← s1

22: return c

4.5. DIVIDE-AND-CONQUER SQUARE ROOT 151

4.5.3 Square root, general case

My Why3 proof of the general case divide-and-conquer square root algorithm is
largely lifted from Bertot et al. [11]. Their article describes their Coq formaliza-
tion and provides a detailed paper proof of a transcription of the algorithm in
pseudocode. If I described my Why3 proof here in the same style as the other
algorithms, it would end up extremely similar to their proof, with only tiny
adjustments to account for small changes in the GMP implementation since the
publication of their article. Therefore, only the signature and specification of
the algorithm are given in Alg. 23. The variable w is a scratch buffer meant to
store intermediate results.

Algorithm 23 Square root of a normalized integer (specification).

Require: valid(a, 2n), valid(s, n), valid(w, bn/2c+ 1)
Require: 1 ≤ n
Require: a[2n− 1] ≥ β/4
Ensure: value(s, n)2 + value(a, n) + βnresult = value(old a, 2n)
Ensure: value(a, n) + βnresult ≤ 2 · value(s, n)
Ensure: 0 ≤ result ≤ 1
function dc_sqrtrem(s, a, w, n)

4.5.4 Square root, normalizing wrapper

The previous “general case” algorithm still requires its input to have even length
and to be normalized (the highest limb of a must be greater than or equal to
β/4). The final algorithm (Alg. 24) is essentially a wrapper around the two
previous ones that normalizes its operand, calls the appropriate square root
function, and denormalizes the result. It returns the size of the remainder in
limbs. If the result is 0, the operand is a perfect square. The key idea of this
algorithm is the following lemma from Bertot et al., which justifies that simply
denormalizing the square root of the normalized operand gives the correct square
root [11].

Lemma 8 (normalization). Let N,N1, S1, c such that S2
1 ≤ N1 < (S1 + 1)2,

N1 = 22cN . Let S, s0 such that S1 = 2cS + s0, 0 ≤ s0 < 2c. Then S2 ≤ N <
(S + 1)2.

We first compute c, the floor of half the number of leading zeros of the high
limb of a. This means that shifting a to the left by 2c will multiply it by a
power of 2 such that at most one leading zero remains, which is exactly the
precondition of the previous square root algorithms.

Special case n = 1

This case is a direct application of the lemma above. If the operand is not
already normalized, we shift it to the left by 2c and shift the result to the
right by c. The lemma ensures that this yields the correct square root, and we
compute a remainder straightforwardly.

152 CHAPTER 4. WHYMP

Algorithm 24 Square root of an integer.

Require: valid(s, bn/2c+ 1), valid(r, n), valid(a, n)
Require: 1 ≤ n
Require: a[n− 1] > 0
Ensure: value(a, n) = value(s, bn/2c+ 1)2 + value(r, result)
Ensure: value(r, result) ≤ 2 · value(s, n)
Ensure: result > 0 =⇒ r[result− 1] > 0
1: function sqrtrem(s, r, a, n)
2: h← a[n− 1]
3: c = count_leading_zeros(h)/2
4: if n = 1 then
5: if c = 0 then
6: s[0] = sqrtrem1(r, h)
7: else
8: h′ ← h� 2c
9: s′ ← sqrtrem1(r, h′)� c

10: s[0]← s′

11: r[0]← h− s′2

12: if r[0] = 0 then
13: return 0
14: else
15: return 1
16: k ← (n+ 1)/2
17: w ← alloc(bk/2c+ 1)
18: t← alloc(2k)
19: if n = mod 2 = 1 ∨ c 6= 0 then
20: t[0]← 0
21: t′ ← t+ (n mod 2)
22: if c 6= 0 then
23: lshift(t′, a, n, 2c)
24: else
25: copy(t′, a, n)

26: if n mod 2 = 1 then
27: c← c+ 32

28: rl ← dc_sqrtrem(s, t, w, k)
29: s0 ← alloc(1)
30: s0[0]← s[0] mod 2c . c ≤ 63.
31: rl ← rl + addmul_1(t, s, k, 2s0[0])
32: b← submul_1(t, s0, s0[0], 1)
33: if k > 1 then
34: b← sub_1(t+ 1, t+ 1, b, k − 1)

35: rl ← rl − b
36: rshift(s, s, k, c)
37: t[k]← rl

4.5. DIVIDE-AND-CONQUER SQUARE ROOT 153

38: c2 ← 2c
39: if c2 < 64 then
40: k ← k + 1
41: else
42: t← t+ 1
43: c2 ← c2 − 64

44: if c2 6= 0 then
45: rshift(r, t, k, c2)
46: else
47: copy(r, t, k)

48: rn ← k
49: else
50: copy(r, a, n)
51: h← dc_sqrtrem(s, r, w, k) . 0 ≤ h ≤ 1
52: r[k]← h
53: rn ← k + h

54: normalize(r, rn)
55: return rn

General case

We compute k = b(n+ 1)/2c such that 2k = n+ (n mod 2). If the conditional
at line 19 is true, then a is either not normalized or of odd length, so we must
normalize it before calling dc_sqrtrem. After line 27, this is done and we have
value(t, 2k) = 22cvalue(a, n). The value of c is incremented by 32 if n is odd,
so that we shift a by an extra limb (which is what the computation of t′ does)
and end up with an even-length number.

At that point, we can call dc_sqrtrem. The normalization lemma implies
that b value(s,k)

2c c is the correct square root (using the same variables as the
lemma, S = bS12−cc). We still need to compute the remainder.

At line 29, we pose S1 = value(s, k), R1 = value(t, k) + βkrl, N =
value(a, n), N1 = 22cN . We have S2

1 + R1 = N1. We pose s0 = S1 mod 2c, so
that N1 can be written as (S1 − s0)2 + 2S1s0 − s2

0 +R1. We add 2S1s0 to t at
line 31, and then subtract s2

0 at line 32. After line 32, value(t, k) +βkrl−βb =
R1 + 2S1s0 − s2

0. Note that the borrow b has not yet been propagated, instead
the subtraction was only over a length of 1. The propagation occurs at lines
33-34, and after line 35 we have value(t, k) +βkrl = R1 + 2S1s0− s2

0. Since the
latter quantity is non-negative, the subtraction at line 35 cannot overflow. At
line 37 we write rl at t[k] such that value(t, k + 1) = R1 + 2S1s0 − s2

0.
We pose S such that S1 = s0+2cS. The normalization lemma implies that S

is the square root of N . At line 36, we denormalize s such that value(s, k) = S.
Furthermore, S1 − s0 = 2cS, so t holds the remainder of the square root:
value(t, k + 1) = R1 + 2S1s0 − s2

0 = N1 − 22cS2 = 22c(N − S2). The only
remaining thing to do is to shift t by 2c. As c can be up to 63, 2c can be up
to 126 and rshift only accepts parameters smaller than 64. The conditional at
lines 39-43 takes care of this. If c2 ≥ 64, then the low limb of t is all zeroes, so
we can cheaply shift t by 64 by simply incrementing the pointer t. At line 44,
value(t, k) = 2c2(N − S2) and 0 ≤ c2 ≤ 63, so we only have to shift t to the

154 CHAPTER 4. WHYMP

right to get the correct remainder.

Normalized case

If the operand is already normalized and of even length, we can simply call
dc_sqrtrem. This is done at lines 50-53.

Normalizing the remainder

At line 54, rn contains an upper bound on the length of the remainder. However,
any number of high limbs may be zero. We call normalize, a small helper
function that loops through the higher limb and decreases rn for each zero limb
until a non-zero limb is found or rn = 0.

4.6 The mpz layer

The mpz layer of GMP supports relative integers. It is essentially a wrapper
around mpn that keeps track of number signs and sizes. Most mpz functions
perform almost no arithmetic except calling the appropriate mpn functions. A
relative integer is represented in the mpz layer by a pointer to a record with
three fields: an mpn pointer, the size of the number in limbs, and the length of
the allocated block. The size is a relative integer and also encodes the sign of
the number. The definition of the mpz_ptr type from the GMP source code is
reproduced below.

typedef struct
{
int _mp_alloc; /* Number of *limbs* allocated and pointed

to by the _mp_d field. */
int _mp_size; /* abs(_mp_size) is the number of limbs the

last field points to. If _mp_size is
negative this is a negative number. */

mp_limb_t *_mp_d; /* Pointer to the limbs. */
} __mpz_struct;

typedef __mpz_struct *mpz_ptr;

#define SIZ(x) ((x)->_mp_size)
#define ABSIZ(x) ABS (SIZ (x))
#define PTR(x) ((x)->_mp_d)
#define ALLOC(x) ((x)->_mp_alloc)

The main challenge to the verification of mpz functions is aliasing. Let us
take the multiplication function as an example. The function mpz_mul takes
three parameters of type mpz_ptr. For example, mpz_mul(w, u, v) computes
the product of u and v and stores the result in w. To compute the product, it
simply needs to call the mpn multiplication function. However, its code is not
trivial. It has to handle a number of cases depending on whether w is equal
to either u or v. So, the parameters of the mpz function may or may not be
aliased. When this situation occurred in mpn functions, we typically verified
several variants of the function (one for the case of aliased parameters, and one
for the case of separate parameters). We applied the trick from Sec. 3.3.4 to
reduce code duplication when relevant. We cannot do the same for mpz functions
without trivializing them entirely. In some cases, handling aliasing issues is all

4.6. THE MPZ LAYER 155

they do apart from calling mpn functions! So, we need to address the issue head
on, and actually verify WhyML functions whose parameters may or may not
be aliased. This means that we cannot simply model the mpz_struct type as a
record that contains an mpn pointer from the usual memory model. Indeed, we
need to avoid putting Why3 regions in the mpz_ptr objects, and track aliasing
in some other way.

WhyMP currently implements about twenty-five mpz functions. Most of
them are relatively trivial wrappers around mpn functions. There are also many
repeats. For example, there are five comparison functions, which handle various
cases: comparison of a large integer and a machine signed integer, machine
unsigned integer, another large integer, comparison of absolute values, and so
on. It would not be interesting to go into the details of each function. Let us first
present our memory model of mpz (Sec. 4.6.1), and then go over a few functions
which posed interesting verification challenges: comparison (Sec. 4.6.2), addition
(Sec. 4.6.3), and division (Sec. 4.6.4).

4.6.1 Model

I have developed an ad-hoc WhyML model of mpz objects. The design con-
straints are as follows. First, there should be an mpz_ptr type that maps to
GMP’s definition after extraction. Second, it should not contain any region.
Third, we should be able to perform all the operations that are expected from
mpz_ptr objects. In particular, we need to be able to get from any valid mpz_ptr
a valid pointer to limbs that store the expected values.

Since we cannot store aliasing information in the mpz_ptr objects them-
selves, we model the memory as some global store. We model mpz_ptr objects
as an abstract type with an equality operation (extracted to the == equality
operator).

type mpz_ptr

val predicate mpz_eq (x y: mpz_ptr)
ensures { result ↔ x = y }

The mpz store

The actual contents of all mpz objects are stored in a single global ghost store.
Its definition is in Fig. 4.5. From an mpz_ptr object, one should be able to get
the following information: a pointer to its limbs, the number of limbs, and the
length of the allocated zone. We define the type mpz_memo of a global store
with six different fields, and declare a global variable mpz of that type. All mpz
functions write in this global variable.

The mpz_memo type cannot store pointers to limbs directly with a map such
as mpz_ptr -> ptr limb, for the same reason we cannot define Why3 types
that carry an unbounded amount of regions. So, we need to store the limb
information in a roundabout way. The abs_value_of field stores the absolute
value of each mpz number as a mathematical integer. The sign is stored in sgn,
and the number of limbs in abs_size. The alloc field stores the length of
the allocated pointers. The logical function value_of maps mpz pointers to the
integer they represent.

156 CHAPTER 4. WHYMP

It would also have been possible to define a size field containing the product
of sgn and abs_size, equivalent to the actual contents of the _mp_size field in
the actual C struct. Separating this information into two separate fields happens
to be more convenient for the proofs.

Using these fields, it is easy to define getters that are equivalent to (and ex-
tracted to) the SIZ, ABSIZ and ALLOC macros. They are the functions size_of,
abs_size_of and alloc_of respectively. The difficult part is to model the PTR
macro. We need some function that takes a mpz_ptr and returns a pointer to
limbs. The alloc, abs_size and abs_value_of fields contain all the relevant
information on the length and contents of the pointer. However, there are con-
sistency and data race issues. If we get a pointer from the PTR macro and update
the pointed block, we need to update the contents of the mpz structure. If PTR
is used twice on the same mpz_ptr object, the two resulting pointers also need
to be aliased.

One solution to the data race issue is to restrict calls to the PTRmacro so that
no data races can occur. This is where the readers field comes into play. Calls to
the PTRmacro can be seen as borrowing the ownership of the mpz_ptr in question
from the global store. We distinguish between read-only borrows and read-write
ones. The global store contains an accurate representation of the contents of a
pointer only as long as no read-write borrow is ongoing. We allow either any
number of simultaneous read-only calls to PTR, or a single read-write one, but not
both at the same time. This is analogous to the rules that govern borrowing in
the Rust programming language. The number of ongoing borrows is represented
in the readers field as follows. If readers > 0, there are that many ongoing
read-only borrows. If readers = 0, there is none, and if readers = −1, there
is one ongoing read-write borrow. The special value −2 is used to indicate an
invalid mpz pointer (such as a pointer to an uninitialized struct). Using the
readers field, we can specify two separate borrowing functions. The function
get_read_ptr returns a read-only limb pointer, and get_write_ptr returns a
pointer with read and write permissions. The writable field has been added to
the memory model from Sec. 3.3. It is an immutable boolean field. Once we are
done with a pointer obtained using a borrow function, we end the borrow using
either the release_reader or the release_writer function. This invalidates
the limb pointer and all its aliases. The release functions are erased at extraction
(that is, extracted to no-ops). The zones field ensures that the release_*
functions cannot be called on the wrong pointers.

Let us now discuss how to update the actual contents of the mpz store.
The release_writer function can only be called if the state of the pointer
is already consistent with the contents of the store (final precondition). We
make it consistent by calling setter functions during the borrow, before calling
release_writer. The setter functions are defined in Fig. 4.6.

Let us go over them one by one. The set_size function changes the
_mp_size field of an mpz number. It also updates its value in the global store.
It is the main way to do so. In order to know the value, it takes a ghost mpn
pointer as an extra argument. The zone field is checked to make sure that the
pointer is actually the one that was obtained by way of borrowing x. It may
seem artificial that the main way to update the value of an mpz pointer in the
global store is to update its size. The reason for this design choice is that the
size gets updated nearly every time the contents of an mpz pointer are modified.
Indeed, as a global invariant, the sizes of mpz pointers are normalized. All the

4.6. THE MPZ LAYER 157

type mpz_memo = abstract {
mutable abs_value_of : mpz_ptr → int;
mutable alloc : mpz_ptr → int;
mutable abs_size : mpz_ptr → int;
mutable sgn : mpz_ptr → int;
mutable readers : mpz_ptr → int;
mutable zones : mpz_ptr → zone;

} invariant { forall p: mpz_ptr.
0 ≤ abs_size p ≤ alloc p ≤ max_int32
∧ (sgn p = 1 ∨ sgn p = -1)
∧ 0 ≤ abs_value_of p < power radix (abs_size p)
∧ (abs_size p ≥ 1 → power radix (abs_size p - 1) ≤ abs_value_of p) }

function value_of (x:mpz_ptr) (memo: mpz_memo) : int
= memo.sgn[x] * memo.abs_value_of[x]

val ghost mpz : mpz_memo

val size_of (x: mpz_ptr) : int32 (* SIZ mpz macro *)
requires { mpz.readers[x] > -2 }
ensures { result = mpz.sgn[x] * mpz.abs_size[x] }

let abs_size_of [@extraction:inline] (x: mpz_ptr) : int32 (* ABSIZ mpz macro *)
requires { mpz.readers[x] > -2 }
ensures { result = mpz.abs_size[x] }

= abs (size_of x)

val alloc_of (x: mpz_ptr) : int32 (* ALLOC mpz macro *)
requires { mpz.readers[x] > -2 }
ensures { result = mpz.alloc[x] }

val get_read_ptr (x: mpz_ptr) : ptr limb
requires { mpz.readers[x] ≥ 0 }
writes { mpz.readers }
ensures { mpz.readers[x] = old mpz.readers[x] + 1 }
ensures { forall y. x 6= y → mpz.readers[y] = old mpz.readers[y] }
ensures { value result mpz.abs_size[x] = mpz.abs_value_of[x] }
ensures { result.data.length = mpz.alloc[x] }
ensures { offset result = 0 ∧ zone result = mpz.zones[x] }
ensures { min result = 0 ∧ max result = result.data.length }

val get_write_ptr (x: mpz_ptr) : ptr limb
requires { mpz.readers[x] = 0 }
writes { mpz.readers }
ensures { mpz.readers[x] = -1 }
ensures { forall y. x 6= y → mpz.readers[y] = old mpz.readers[y] }
ensures { value result mpz.abs_size[x] = mpz.abs_value_of[x] }
ensures { result.data.length = mpz.alloc[x] }
ensures { offset result = 0 ∧ zone result = mpz.zones[x]
ensures { min result = 0 ∧ max result = result.data.length }
ensures { writable result }

val release_reader (x: mpz_ptr) (p:ptr limb) : unit
requires { mpz.zones[x] = zone p ∧ mpz.readers[x] ≥ 1 }
requires { min p = 0 ∧ max p = p.data.length }
writes { mpz.readers, p } (* invalidates p and its aliases *)
ensures { mpz.readers[x] = old mpz.readers[x] - 1 }
ensures { forall y. y 6= x → mpz.readers[y] = old mpz.readers[y] }

val release_writer (x: mpz_ptr) (p:ptr limb) : unit
requires { mpz.zones[x] = zone p ∧ mpz.readers[x] = -1 }
requires { min p = 0 ∧ max p = p.data.length }
requires { mpz.abs_value_of[x] = value p mpz.abs_size[x] }
writes { mpz.readers, p } (* invalidates p and its aliases *)
ensures { mpz.readers[x] = 0 }
ensures { forall y. y 6= x → mpz.readers[y] = old mpz.readers[y] }

Figure 4.5: Global store mpz model.

158 CHAPTER 4. WHYMP

predicate mpz_unchanged (x: mpz_ptr) (memo1 memo2: mpz_memo)
= memo1.readers[x] = memo2.readers[x] ∧

(memo1.readers[x] > - 2 →
(memo1.abs_value_of[x] = memo2.abs_value_of[x]
∧ memo1.alloc[x] = memo2.alloc[x]
∧ memo1.abs_size[x] = memo2.abs_size[x]
∧ memo1.sgn[x] = memo2.sgn[x]
∧ memo1.zones[x] = memo2.zones[x]))

val set_size (x:mpz_ptr) (sz:int32) (ghost p: ptr limb) : unit
requires { mpz.zones[x] = zone p }
requires { mpz.readers[x] = -1 }
requires { offset p = 0 }
requires { min p = 0 }
requires { max p = p.data.length }
requires { abs sz ≤ p.data.length }
requires { p.data.length = mpz.alloc[x] }
requires { sz 6= 0 → value p (abs sz) ≥ power radix (abs sz - 1) }
writes { mpz.sgn, mpz.abs_size, mpz.abs_value_of }
ensures { forall y. y 6= x → mpz_unchanged y mpz (old mpz) }
ensures { mpz.sgn[x] = 1 ↔ 0 ≤ sz }
ensures { mpz.abs_size[x] = abs sz }
ensures { mpz.abs_value_of[x] = value p (abs sz) }
(* ensures size_of x = sz *)

val set_size_0 (x:mpz_ptr) : unit
requires { -1 ≤ mpz.readers[x] ≤ 0 }
writes { mpz.abs_size, mpz.abs_value_of }
ensures { forall y. y 6= x → mpz_unchanged y mpz (old mpz) }
ensures { mpz.abs_size[x] = 0 }
ensures { mpz.abs_value_of[x] = 0 }

val set_alloc (x:mpz_ptr) (al:int32) : unit
requires { mpz.abs_size[x] ≤ al }
requires { -1 ≤ mpz.readers[x] ≤ 0 }
writes { mpz.alloc }
ensures { forall y. y 6= x → mpz_unchanged y mpz (old mpz) }
ensures { mpz.alloc[x] = al }

val set_ptr (x:mpz_ptr) (p:ptr limb) : unit
requires { offset p = 0 }
requires { writable p }
requires { min p = 0 }
requires { max p = p.data.length }
requires { p.data.length = mpz.alloc[x] }
requires { mpz.readers[x] = 0 ∨ mpz.readers[x] = -1 }
writes { mpz.abs_value_of, mpz.zones, mpz.readers }
ensures { forall y. y 6= x → mpz_unchanged y mpz (old mpz) }
ensures { mpz.abs_value_of[x] = value p mpz.abs_size[x] }
ensures { mpz.readers[x] = -1 }
ensures { mpz.zones[x] = zone p }

Figure 4.6: Setter functions.

4.6. THE MPZ LAYER 159

functions from the GMP source code make this assumption. It is also one of the
invariants of the global store in our model. Since sizes need to be normalized,
in every GMP function that writes into an mpz pointer, a new size is computed
(eliminating the leading zero limbs that may have resulted from the computa-
tion). In the WhyML code, this translates into the following pattern (where
normalize, previously seen in Sec. 4.5.4, is a small helper function that loops
through the higher limbs and decreases sz for each leading zero limb).

let sz = abs_size_of x in
let p = get_write_ptr x in
... (* computations on p *)
normalize p sz; (* compute normalized size *)
set_size x sz p;
release_writer x p

The set_size_0 function is a special case of set_size with relaxed require-
ments. It exists because some GMP functions set the size of an mpz pointer to 0
without ever looking up its limbs. A typical example is when a subtraction x -
x is computed.

The set_alloc function sets the _mp_alloc field of an mpz pointer. It has
fewer requirements than set_size, where one could have expected a witness
to be required to ensure that the pointer indeed has the reported length. The
reason why this is not necessary is that the length is checked again in the
preconditions of set_ptr and release_writer.

The set_ptr function is more interesting. It updates the pointer field of an
mpz_ptr object. It has a similar specification as release_writer, except that
it does not release the borrow: p still has write access on x. It cannot be used if
there are read-only borrows of x, but it can be used if there is a read-write one.
In that case, the pointer that had previously been borrowed can no longer be
released by release_writer, as the zones field has been updated. Typically,
it is freed or reallocated.

The main use case for set_ptr is the mpz_realloc function. It takes an
mpz_ptr object x and a length sz, and reallocates the data buffer of x so that it
has length at least sz (if it was already long enough, it does nothing). The code
of a simplified WhyML implementation of mpz_realloc can be found in Fig. 4.7.
It has a similar profile as get_write_ptr, in that it returns a pointer that is a
read-write borrow of x. The value stored in x is left unchanged. Indeed, when
realloc is called to enlarge a pointer, the contents of the original pointer are
left unchanged. In the Why3 proof, the last postcondition is proved using the
call to the value_sub_frame lemma function at line 26. The lemma essentially
states that two arrays that have the same contents have the same value. It can
be found in Sec. 4.2.1. It is called on q, which is returned by realloc, and op,
which is a snapshot of p taken at line 21, before it was passed to realloc.

Creating and clearing mpz pointers

In GMP, the process to obtain a new mpz pointer is as follows. One first de-
clares a mpz_struct, and then calls mpz_init() on its address. The mpz_init
function allocates a limb pointer of length 14 and initializes the fields of the
struct. The mpz_t type is defined as an array of one mpz_struct. This makes
the GMP idiom for obtaining a new mpz and initializing it relatively concise.

4This was changed in GMP 6.2.0.

160 CHAPTER 4. WHYMP

1 let wmpz_realloc (x:mpz_ptr) (sz:int32) : ptr limb
2 requires { mpz.readers[x] = 0 }
3 requires { 1 ≤ mpz.alloc[x] }
4 ensures { forall y. y 6= x → mpz_unchanged y mpz (old mpz) }
5 ensures { mpz.readers[x] = -1 }
6 ensures { mpz.abs_value_of[x] = value result (mpz.abs_size[x]) }
7 ensures { mpz.zones[x] = zone result }
8 ensures { offset result = 0 }
9 ensures { result.data.length = mpz.alloc[x] }

10 ensures { min result = 0 ∧ max result = result.data.length }
11 ensures { writable result }
12 ensures { mpz.abs_size[x] = old mpz.abs_size[x] }
13 ensures { if sz > old mpz.alloc[x]
14 then mpz.alloc[x] = sz
15 else mpz.alloc[x] = old mpz.alloc[x] }
16 ensures { value result (old mpz.abs_size[x]) = old mpz.abs_value_of[x] }
17 = if sz > alloc_of x
18 then begin
19 let p = get_write_ptr x in
20 assert { forall y. y 6= x → mpz_unchanged y mpz (old mpz) };
21 let ghost op = pure { p } in
22 let ghost os = abs_size_of x in
23 let q = realloc p sz in
24 c_assert (is_not_null q); (* test realloc result and abort if it is NULL *)
25 (* q and op have the same contents (postcondition of realloc) *)
26 value_sub_frame q.data.elts op.data.elts 0 (int32’int os);
27 set_alloc x sz;
28 set_ptr x q;
29 q
30 end
31 else get_write_ptr x

Figure 4.7: The wmpz_realloc function.

4.6. THE MPZ LAYER 161

At the end of the program, the mpz_clear function is called to avoid memory
leaks. It frees the data buffer stored in the _mp_d field. The struct itself is
allocated on the stack, so it does not need to be explicitly freed. A synopsis is
represented below.

mpz_t x;
mpz_init(x);
...
mpz_clear(x);

The mpz_init and mpz_clear functions can be modeled without issues.
Their specifications are listed below. In order to simplify the specification of
mpz_init, we exclude the case of malloc returning a null pointer. As a result,
in the extracted code, the result of malloc is checked and the program aborts if
a null pointer was returned. In order to account for this, wmpz_init is marked
partial (see Sec. 3.3.5 for details on the partial keyword).

val partial wmpz_init (p: mpz_ptr) : unit
requires { mpz.readers[p] = 0 }
writes { mpz }
ensures { forall x. x 6= p → mpz_unchanged x mpz (old mpz) }
ensures { mpz.readers[p] = 0 }
ensures { mpz.abs_value_of[p] = 0 }
ensures { mpz.abs_size[p] = 0 }
ensures { mpz.sgn[p] = 1 }
ensures { mpz.alloc[p] = 1 }
ensures { mpz.zones[p] 6= null_zone }

val wmpz_clear (x:mpz_ptr) : unit (* scrambles mpz._[x] *)
writes { mpz }
requires { mpz.readers[x] = 0 }
ensures { forall y. y 6= x → mpz_unchanged y mpz (old mpz) }

One might wonder why the wmpz_init function is not simply given a body
using a regular let definition. The reason is that the primitives that could be
used to implement wmpz_init all have preconditions that require their argument
to be a valid mpz number. Indeed, in our model, the only legal operation that
can be performed on an invalid number is to call wmpz_init on it. Rather
than adding unsafe versions of the primitives and using them to implement
wmpz_init, it is simpler to simply specify it and replace it by a handwritten C
function at extraction.

While the initialization function can be specified in our model, it takes a
mpz_ptr argument, which is meant to point to an unitialized mpz_struct. How
do we obtain one in the first place? The model presented above abstracts away
the mpz_struct type and hides its fields in a global ghost store. However, the
extracted code uses the same representation as GMP. In order to obtain new
mpz objects, the WhyML code needs to contain some instructions that declare
the struct and initialize it.

type mpz_struct = { ghost addr: mpz_ptr }

val wmpz_tmp_decl [@extraction:c_declaration] () : mpz_struct
writes { mpz }
ensures { old mpz.readers[result.addr] = -2 } (*result is fresh*)
ensures { forall x. x 6= result.addr → mpz_unchanged x mpz (old mpz) }
ensures { mpz.readers[result.addr] = 0 }
ensures { mpz.alloc[result.addr] = 0 }
ensures { mpz.abs_size[result.addr] = 0 }

162 CHAPTER 4. WHYMP

type mpz_mem = abstract { ptr: mpz_ptr; mutable ok: bool }

val wmpz_struct_to_ptr (x:mpz_struct)
: (res:mpz_ptr, ghost memo:mpz_mem)

ensures { res = x.addr }
ensures { memo.ptr = res }
ensures { memo.ok }

val ghost wmpz_tmp_clear (x:mpz_ptr) (memo: mpz_mem) : unit
requires { memo.ok }
requires { x = memo.ptr }
requires { -1 ≤ mpz.readers[x] ≤ 0 }
writes { mpz, memo }
ensures { mpz.readers[x] = -2 }
ensures { forall y. y 6= x → mpz_unchanged y mpz (old mpz) }

The mpz_struct type is an abstract type that only contains a mpz_ptr,
which is the address of the struct. The wmpz_tmp_decl function creates a new
mpz_struct object. The corresponding pointer is a valid mpz_ptr object with
no ongoing borrows. The first two postconditions ensure that the address of the
result is distinct from all existing valid mpz_ptr objects. They are necessary to
specify that the values of existing mpz numbers do not change. This function is
extracted to a local variable declaration initialized with the struct {0,0,NULL}.
The [@extraction:c_declaration] attribute specifies to the extraction mech-
anism that this function call is replaced by a local variable definition, so the
extraction should check that the new variable does not escape the scope of the
function.

The wmpz_struct_to_ptr function gets an mpz_ptr from the mpz_struct it
points at. It is extracted to the address operator &. It also returns a ghost token
of type mpz_mem. The purpose of this token is to prevent calling wmpz_tmp_clear
on mpz pointers that were not declared locally. This last function invalidates a
local variable of type mpz_ptr. It is called at the end of the function in which
the latter is declared. Indeed, most mpz functions have specifications that state
that the mpz store is unchanged, except as far as the function arguments are
concerned (this is written as an instance of the mpz_unchanged predicate). In
order to satisfy this, local variables need to be cleaned at the end of the function.
As their readers field is set to −2, they do not invalidate the mpz_unchanged
predicate. Cleaning local variables naturally happens in C programs, so there
is no need to extract this function and it can be ghost.

4.6.2 A simple function and a GMP bug report

The comparison function is one of the simpler mpz functions. It takes two mpz
numbers u and v, and returns an integer. The result is 0 if and only if they
have the same value. It is positive if u is bigger than v, and negative otherwise.
The algorithm is very simple and the memory model takes up a large chunk of
the WhyML implementation. Therefore, a pseudocode would not be meaningful.
The WhyML implementation is reproduced in Fig. 4.8. It contains a bug, which
is also present in GMP 6.1.2.

Let us first discuss the specification of wmpz_cmp. The precondition states
that there should be no ongoing read-write borrow of u or v. It is necessary
to perform read-only borrows in the body of the function. This is a restriction

4.6. THE MPZ LAYER 163

let wmpz_cmp (u v:mpz_ptr) : int32
requires { mpz.readers[u] ≥ 0 ∧ mpz.readers[v] ≥ 0 }
ensures { forall w. mpz_unchanged w mpz (old mpz) }
ensures { result > 0 → value_of u mpz > value_of v mpz }
ensures { result < 0 → value_of u mpz < value_of v mpz }
ensures { result = 0 → value_of u mpz = value_of v mpz }

=
let usize = size_of u in
let vsize = size_of v in
let dsize = usize - vsize in
if dsize 6= 0 then return dsize;
let asize = abs usize in
let up = get_read_ptr u in
let vp = get_read_ptr v in
let cmp = wmpn_cmp up vp asize in
release_reader u up;
release_reader v vp;
return (if usize ≥ 0 then cmp else -cmp)

Figure 4.8: A buggy comparison function.

compared to GMP. However, the caller could, in principle, release its read-write
borrows, then call wmpn_cmp, then borrow once again. The first postcondition
states that the state of all mpz pointers is unchanged at the end of the function.
It is necessary to state it because the borrows and releases in the body of the
function write into the mpz global variable. Therefore, it appears in the writes
of the function, so we have to state that the original contents are restored. The
final three postconditions are the documented postconditions of the algorithm.

We can now discuss the algorithm itself. The core concept is that if the sizes
of u and v are not equal, then the difference of the sizes has the same sign as
u-v. Indeed, the sizes are signed integers (the sign of the size is the sign of the
represented number). Furthermore, all mpz numbers are normalized, that is, if u
has size usize, then the number represented by u has absolute value greater
than or equal to 2|usize|−1.

Therefore, the algorithm computes the difference dsize of the sizes of u
and v. If it is not 0, it returns dsize. Otherwise, the numbers have the same
size, so the mpn function for comparing natural numbers of the same size can be
called to compare their absolute values. This result is reversed if both numbers
are negative.

However, the algorithm contains a bug. Indeed, the subtraction usize -
vsize may overflow if usize and vsize are very large and have opposite sign.
In case of overflow, the extracted program invokes undefined behavior. On
most machines, the subtraction is computed modulo 232 (or 264, depending on
number sizes) and may return an incorrect result. Note that the bug is unlikely
to occur in practice, as the operands need to be several gigabytes long.

I was not able to verify the algorithm presented above, as the subtraction
usize - vsize has an unprovable precondition stating the absence of over-
flow. As a result, the verification of WhyMP uncovered the bug. This bug was
reported to the GMP developers in February 2020 and has since been fixed5.

5https://gmplib.org/list-archives/gmp-bugs/2020-February/004733.html

https://gmplib.org/list-archives/gmp-bugs/2020-February/004733.html

164 CHAPTER 4. WHYMP

4.6.3 Aliasing-related combinatorics

Many mpn functions take parameters that are allowed to be either aliased or
separated. WhyML’s aliasing restrictions typically force us to define and verify
several versions of these functions. Although the tricks from Sec. 3.3.4 collapse
them back into a single extracted function, this is still an issue in the WhyML
code. This issue is resolved at the mpz layer, where the region-free model allows
us to write functions with potentially aliased parameters. However, this makes
the body of some mpz functions more convoluted than the original.

The mpz addition functions are a good example of this. Consider the excerpt
from the wmpz_add_ui function in Fig. 4.9. It adds an mpz integer u and an
unsigned machine integer v, and stores the result in w.

Let us briefly explain the algorithm. There are three main cases, depending
on the sign of u. If u is 0, we simply need to set w to v. This is handled in lines
11-20 and poses no particular challenge. Let us now focus only on the case of
positive u (the case of negative u is treated in a similar way, swapping additions
for subtractions). The first step is to allocate enough space for the new value
of w. At most, the sum of u and a limb occupies the size of u plus one limb. At
line 25, we call wmpz_realloc, and we have a read-write borrow of w that has
sufficient space to store the result.

The actual addition occurs at lines 36-45. There are two cases: either u
and w are the same pointer, in which case we call add_1_in_place, or they
are not, and we call add_1 (which assumes that the operands are separate in
our formalization). This test does not occur in the original C code, which just
calls add_1 regardless. In the general case addition (where v is also an mpz
integer), the same sort of duplication occurs. A combinatorial explosion occurs,
as we have to check equality between u and w as well as between v and w, and
there are several cases to handle depending on the (signed) sizes of u and v.
Each branch calls a distinct addition or subtraction function, but they are all
wrappers around the same core function that accepts aliased pointers, using the
trick from Sec. 3.3.4. The wrappers are inlined at extraction. The extracted
code ends up needlessly convoluted, with many branches that do very similar
things. Some compilers notice this and factor the branches away, but this is not
a trivial optimization.

After the carry has been propagated at line 45, wp contains the sum u+v,
and it is already the data buffer of w. The only remaining thing to do is some
bookkeeping. First, the normalized size of the result is computed. If the addition
resulted in a carry, then the result occupies the full abs_usize + 1 limbs. If it
did not, then the top limb is empty, and the result occupies abs_usize limbs.
It cannot occupy fewer limbs, as u originally occupied abs_usize limbs, and a
non-negative integer is added to it. Once the correct size is computed, all that
remains to do is storing it in w (line 54) and releasing the borrow.

4.6.4 Aliasing restrictions solved by extra mpz variables

Some mpz functions manipulate mpn pointers directly in ways that cannot be
implemented in WhyML due to aliasing restrictions. In these cases, I fell back
on the region-free mpz memory model to bypass these restrictions. A good
example is the mpz_tdiv_qr function. It is one of several mpz long division
functions. It takes four mpz parameters quot, rem, num, and den. As one may

4.6. THE MPZ LAYER 165

1 let wmpz_add_ui (w u: mpz_ptr) (v: uint64) : unit
2 requires { mpz.alloc[w] ≥ 1 ∧ mpz.alloc[u] ≥ 1 }
3 requires { mpz.readers[w] = 0 ∧ mpz.readers[u] = 0 }
4 requires { mpz.abs_size[u] < max_int32 }
5 ensures { value_of w mpz = old (value_of u mpz + v) }
6 ensures { forall x. x 6= w → mpz_unchanged x mpz (old mpz) }
7 ensures { mpz.readers[w] = 0 ∧ mpz.readers[u] = 0 }
8 =
9 label Start in

10 let usize = size_of u in
11 if usize = 0
12 then begin
13 let wp = get_write_ptr w in
14 C.set wp v;
15 assert { value wp 1 = v };
16 set_size w (if v 6= 0 then 1 else 0) wp;
17 assert { value_of w mpz = v };
18 release_writer w wp;
19 return;
20 end;
21 let abs_usize = abs usize in
22 assert { 0 < abs_usize ≤ mpz.alloc[u] };
23 let uw = mpz_eq u w in
24 let ref wsize = abs_usize + 1 in
25 let wp = wmpz_realloc w wsize in
26 assert { forall x. x 6= w → mpz_unchanged x mpz (mpz at Start) };
27 let ref cy = 0 in
28 if usize ≥ 0
29 then begin
30 begin ensures { value wp abs_usize + power radix abs_usize * cy
31 = old (value_of u mpz) + v }
32 ensures { 0 ≤ cy ≤ 1 }
33 ensures { uw ∨ mpz.readers[u] = 0 }
34 ensures { mpz.readers[w] = -1 }
35 ensures { forall x. x 6= w → mpz_unchanged x mpz (mpz at Start) }
36 if uw
37 then
38 cy ← wmpn_add_1_in_place wp abs_usize v
39 else begin
40 let up = get_read_ptr u in
41 cy ← wmpn_add_1 wp up abs_usize v;
42 release_reader u up;
43 end
44 end;
45 C.set_ofs wp abs_usize cy;
46 value_tail wp abs_usize; (* wrapper around value_sub_tail *)
47 wsize ← abs_usize + (Limb.to_int32 cy);
48 assert { value wp wsize = (value_of u mpz at Start + v) };
49 assert { wsize 6= 0 → value wp wsize ≥ power radix (wsize - 1) };
50 end
51 else begin
52 (* subtraction case, omitted for brevity *)
53 end;
54 set_size w wsize wp;
55 release_writer w wp

Figure 4.9: Addition of an mpz integer and a machine integer.

166 CHAPTER 4. WHYMP

expect, it divides num by den, stores the quotient in quot and the remainder
in rem. In the general case, the algorithm simply consists in calling the mpn
division and doing the size- and sign-related bookkeeping. The complications
arise when some of the parameters are aliased. The specification of the function
forbids the case quot == rem. However, num and den are allowed to be aliased
with quot or rem. This case is forbidden by the mpn division. The original mpz
source code extracts the four mpn pointers of the operands and compares them.
If needed, temporary fresh buffers are allocated and passed to the mpn division
instead of the original pointer. A relevant excerpt of GMP’s source code is
reproduced below. Some edits have been made for readability.

rp = MPZ_REALLOC (rem, dl);
if (ql <= 0) {

...
return;

}
qp = MPZ_REALLOC (quot, ql);
np = PTR (num);
dp = PTR (den);
/* Copy denominator to temporary space if it overlaps with the quotient or

remainder. */
if (dp == rp || dp == qp) {

mp_ptr tp;
tp = TMP_ALLOC_LIMBS (dl);
MPN_COPY (tp, dp, dl);
dp = tp;

}
/* Copy numerator to temporary space if it overlaps with the quotient or

remainder. */
if (np == rp || np == qp) {

mp_ptr tp;
tp = TMP_ALLOC_LIMBS (nl);
MPN_COPY (tp, np, nl);
np = tp;

}
mpn_tdiv_qr (qp, rp, 0L, np, nl, dp, dl);

We cannot implement this in WhyML as is. First, our C memory model
does not have a primitive to test whether two pointers are equal. We could
replace the equality tests on mpn pointers by tests on mpz pointers, but it is
still not enough. The strong updates dp = tp and np = tp induce reset effects
and invalidate the former values of dp and np, preventing us from releasing the
corresponding borrows.

The easiest solution would be to move the call to mpn_tdiv_qr inside each
if construct, preventing the need for pointer references. The end result would
look similar to the addition example from last section, and introduce code and
proof duplication.

In order to avoid such code duplication, my WhyML implementation instead
creates new mpz variables and performs strong updates on mpz pointers, rather
than mpn ones. Since the mpz model has no regions, no reset occurs and the
strong updates are no longer a problem. A relevant excerpt of the WhyML
implementation can be found in Fig. 4.10. Most of the proof code (assertions,
lemmas, and so on) has been omitted for readability.

At lines 16-20, we compute the relevant number sizes. We first eliminate the
case where the quotient is 0, in which case calling the mpn division function is
not necessary. At line 26, we start preparing for the division proper. We declare

4.6. THE MPZ LAYER 167

1 let wmpz_tdiv_qr (quot rem num den: mpz_ptr) : unit
2 requires { mpz.alloc[num] > 0 ∧ mpz.alloc[den] > 0 }
3 requires { mpz.alloc[quot] > 0 ∧ mpz.alloc[rem] > 0 }
4 requires { mpz.readers[num] = 0 ∧ mpz.readers[den] = 0
5 ∧ mpz.readers[quot] = 0 ∧ mpz.readers[rem] = 0 }
6 requires { quot 6= rem }
7 requires { value_of den mpz 6= 0 }
8 requires { mpz.abs_size[num] ≤ max_int32 - 1 }
9 ensures { value_of quot mpz * (old value_of den mpz) + value_of rem mpz

10 = old value_of num mpz }
11 ensures { 0 ≤ mpz.abs_value_of rem < old mpz.abs_value_of den }
12 ensures { forall x. x 6= quot → x 6= rem → mpz_unchanged x mpz (old mpz) }
13 ensures { mpz.readers[num] = 0 ∧ mpz.readers[den] = 0
14 ∧ mpz.readers[quot] = 0 ∧ mpz.readers[rem] = 0 }
15 =
16 let ns = size_of num in
17 let ds = size_of den in
18 let nl = abs ns in
19 let ref dl = abs ds in
20 let ref ql = nl - dl + 1 in
21 if ql ≤ 0
22 then begin
23 ... (* quotient is 0, remainder is equal to num *)
24 return
25 end;
26 let ref d’ = den in
27 let ref n’ = num in
28 let ghost ref cmemd = any mpz_mem in
29 let ghost ref cmemn = any mpz_mem in
30 let ghost ref clear_d = false in
31 let ghost ref clear_n = false in
32 if mpz_eq den rem || mpz_eq den quot
33 then begin
34 let dp = get_read_ptr den in
35 let newd, memd = wmpz_struct_to_ptr (wmpz_tmp_decl ()) in
36 d’ ← newd;
37 cmemd ← memd;
38 clear_d ← true;
39 let tdp = salloc (UInt32.of_int32 dl) in (* in GMP, either salloc or malloc

depending on length *)
40 set_alloc d’ dl;
41 wmpn_copyd_sep tdp dp dl;
42 set_ptr d’ tdp;
43 set_size d’ ds tdp;
44 release_writer d’ tdp;
45 release_reader den dp;
46 end;
47 if mpz_eq num rem || mpz_eq num quot
48 then begin
49 ... (* same treatment for n’ as for d’ *)
50 end;
51 assert { d’ 6= quot ∧ d’ 6= rem ∧ n’ 6= quot ∧ n’ 6= rem };
52 let qp = wmpz_realloc quot ql in
53 let rp = wmpz_realloc rem dl in
54 let np = get_read_ptr n’ in
55 let dp = get_read_ptr d’ in
56 wmpn_tdiv_qr qp rp 0 np nl dp dl;
57 ... (* normalize sizes, handle signs *)
58 release_writer rem rp;
59 release_writer quot qp;
60 release_reader n’ np;
61 release_reader d’ dp;
62 ghost (if clear_d then wmpz_tmp_clear d’ cmemd);
63 ghost (if clear_n then wmpz_tmp_clear n’ cmemn);
64 return

Figure 4.10: Division of relative numbers, in WhyML.

168 CHAPTER 4. WHYMP

two mutable mpz variables n’ and d’, initialized at num and den respectively. We
also declare four ghost variables at line 28-31. Their semantics are as follows.
The denominator that will be passed to the mpn division is the data buffer
of d’. If den is aliased to either quot or rem, we cannot have d’ == den, so we
create a new mpz variable newd and set d’ to newd. In this case, the temporary
variable newd needs to be cleared at the end of the function, or it would violate
the penultimate postcondition. We store the information that newd should be
cleared in the clear_d ghost boolean, and the token that allows the user to
clear it in cmemd. The variables clear_n and cmemn serve the same role for the
numerator.

Note that the operation that clears newd, wmpz_tmp_clear, is a ghost func-
tion. Therefore, the flags clear_d and clear_n are themselves allowed to be
ghost, and the if statements that clear the temporary variables (lines 62-63) are
ghost code as well. Since the mpz_mem tokens are ghost as well, we are allowed
to use the any construct at lines 28-29. This constructs tells the proof context
that an arbitrary value was assigned. A specification can be added to give extra
details about the arbitrary value, although we do not need to do so here. The
any construct cannot be extracted. In this case, the use of any is an idiom that
allows us to not initialize the ghost references. The arbitrary value is unused
anyway. Indeed, the value of cmemd is only used if clear_d is true, in which
case cmemd was set to a new value.

The if statement at lines 32-46 sets d’ to an mpz pointer that contains the
same value as den and is not aliased with quot or rem. If it cannot be den itself,
we create newd at line 35. It comes with a write access (readers[newd]= -1).
We allocate a temporary pointer tdp on the stack (line 39) and copy den’s data
to it (line 41). We set tdp as the data pointer of d’ at line 42. At line 44, we
invalidate tdp and release the borrow on d’. This is allowed because we first
used set_ptr. In order to preserve mpz invariants, we also need to set the size
and alloc fields of d’. In the end, the if statement is a bit more involved than
the original C version. The costly operations (allocating a buffer and copying dp
to it) are the same, but our version also allocates a few mpz fields.

The elided if statement at lines 47-50 performs the same treatment for n’
as the previous one did for d’. At line 51, we have two pointers d’ and n’ that
are not aliased to quot and rem. Whether they are equal to den and num or
not does not need to be known in non-ghost code. At lines 52-55, we get four
pointers qp, rp, np, and dp, which are guaranteed to point to separate areas
except maybe np and dp (but this is not problematic, as they are read-only).
We use realloc rather than get_write_ptr to get qp and rp in order to ensure
that they are large enough. At line 56, we can finally call the mpn division. At
the end of the function, we release the four data buffers, and invalidate any
temporary variables that may exist. At this point, two possibilities exist for
the original den pointer. First, it was not aliased with either quot of rem, in
which case d’ = den, and the test at line 62 is false. Second, it was aliased
with one of them, in which case d’ is a temporary pointer and den was only
ever dereferenced through its alias quot or rem.

4.7. INPUT/OUTPUT, STRING FUNCTIONS 169

4.7 Input/output, string functions

Internally, numbers can be said to be represented in base 264 by GMP. How-
ever, GMP needs to interact with client code, which might represent numbers
differently. Therefore, it features functions that convert back and forth between
GMP’s number representation and character strings in which each character
encodes a digit in some base.

The work is split between mpn and mpz functions as follows. The functions
mpn_get_str and mpn_set_str convert back and forth between mpn numbers
and arrays of unsigned characters that encode numbers in some base b smaller
than 256. In C, unsigned characters are integers that range from 0 to 255, so
character arrays are well-suited to encoding numbers in base b (we simply use
the characters from 0 to b− 1).

However, user input typically does not take the form of such an array of un-
signed characters. Typically, it is a string such as "42" or "0xdeadbeef". In the
latter, the string encodes a number in base 16 (as specified by the "0x" prefix).
The characters are encoded in memory using the ASCII scheme [1], in which the
character “4” is represented by the number 52 and “2” by the number 50. The
characters represented by the numbers 4 and 2 are unprintable control char-
acters. Clearly, another conversion needs to be performed. It happens in the
higher-level mpz layer, with which most users interact.

The functions mpz_get_str and mpz_set_str convert back and forth be-
tween human-readable character strings (in bases 2 to 62, where digits above 10
are represented by alphabetic letters) and mpz numbers. They perform the con-
version between ASCII characters and unsigned characters from 0 to b− 1, and
call the corresponding mpn functions.

The mpn functions feature not-quite-trivial arithmetic. The mpz functions
do not perform many meaningful computations, but they manipulate character
strings in ways that pose interesting modeling challenges. For example, the con-
version from digit in base b to ASCII character is performed using a hardcoded
string literal as a lookup table.

I have verified simplified implementations of all four functions. The original
GMP code features divide-and-conquer algorithms and custom optimizations
for the common case b = 10. Verifying them would have taken too much time.
Instead, I verified an implementation that comes from Mini-GMP. Mini-GMP
is a single-file, portable, GMP-compatible library that implements a subset
of GMP’s algorithms. It is “intended for applications which need arithmetic
on numbers larger than a machine word, but which don’t need to handle very
large numbers very efficiently.” Its base conversion functions are asymptoti-
cally slower, but much simpler. They implement the naive algorithms with an
optimization when the base is a power of two.

The section is structured as follows. We introduce some notations in Sec. 4.7.1.
We describe the algorithms converting from strings to mpn numbers in Sec. 4.7.2,
and the ones converting from mpn numbers to strings in Sec. 4.7.3. We model
the conversion between digits and ASCII characters in Sec. 4.7.4. Finally, we
deal with the mpz conversion functions in Sec. 4.7.5.

170 CHAPTER 4. WHYMP

4.7.1 Notations
Before describing the mpn base conversion algorithms, let us introduce a few
notations. The mpn conversion algorithms convert back and forth between mpn
numbers and big-endian arrays of unsigned characters. The fact that the charac-
ter arrays are big-endian may seem counter-intuitive, since the mpn numbers are
represented as little-endian arrays of machine integers. The explanation is that
human-readable strings are necessarily big-endian, that is, the first character of
a string that represents a number is that number’s most significant digit.

Suppose the array s has length n and contains characters that lie between 0
and b − 1, where 2 ≤ b ≤ 256. We represent s as the sequence s0 . . . sn−1, and
we define svalue_sub(b, s, i, j) =

∑j−1
k=i skb

j−1−k the number encoded by the
subarray si . . . sj−1 in base b. We sometimes represent it as si . . . sj−1b.We also
define svalue(b, s, n) = svalue_sub(b, s, 0, n) =

∑n−1
k=0 skb

n−1−k the number
encoded by the whole array.

As expected, the svalue_sub and svalue functions have similar properties
to the value_sub and value functions.

Lemma 9. Let s a sufficiently long array of characters between 0 and b − 1,
with 2 ≤ b ≤ 256.

s0 . . . sn−1b
= sk . . . sn−1b

+ bn−ks0 . . . sk−1b
[svalue_sub_concat]

s0 . . . sn−1b
= s1 . . . sn−1b

+ bn−1s0 [svalue_sub_tail]

s0 . . . snb = sn + b · s0 . . . sn−1b
[svalue_sub_head]

4.7.2 From base b to base β
Let us now verify Mini-GMP’s mpn_set_str function. It reads from an array
of characters in some base b and converts the result to an mpn number. The
algorithm is split into two main cases: a general case set_str_other, and a
special case set_str_bits. The latter is an optimization for the case where b
is a power of two.

Special case: b = 2i

Let us first go over set_str_bits (Alg. 25). It takes four parameters: an
array s of characters, its length n, a small integer i, and a buffer r. It converts
s0 . . . sn−12i

to base β and stores it in r. Our WhyML implementation takes
an extra ghost parameter z, which is a lower bound on the required length of
the buffer r. This way, specifications such as “there is sufficient space in r to
store the result” can be expressed concisely. For readability, the pseudocode is
specialized for the case β = 264.

The algorithm is straightforward. Indeed, 2i and β are both powers of two.
If r was a contiguous array of bits, all we would have to do would be to concate-
nate the characters from s (and reverse their order, to account for endianness).
Instead, r is split into 64-bit limbs, and the algorithm needs to account for the
case of a character being split between two limbs.

The algorithm is a simple loop that reads characters from s one by one. The
loop invariants are as follows.

4.7. INPUT/OUTPUT, STRING FUNCTIONS 171

Algorithm 25 Converting from base 2i to base β = 264.
Require: 0 < n ≤ 232 − 1
Require: valid(r, z) ∧ 0 < z
Require: valid(s, n)
Require: 1 ≤ i ≤ 8
Require: 2i·n ≤ βz . There is enough space in r.
Require: ∀k. 0 ≤ k < n =⇒ 0 ≤ sk < 2i . s is in base 2i.
Ensure: 0 ≤ result ≤ z
Ensure: svalue(2i, s, n) = value(r, result)
Ensure: result > 0 =⇒ r[result− 1] > 0 . The result is normalized.
1: function set_str_bits(r, ghost z, s, n, i)
2: l← 0
3: h← 0 . Currently occupied bits in r[l − 1]. 0 means no space left.
4: j ← n
5: while j > 0 do
6: j ← j − 1
7: if h = 0 then . No space left in r[l − 1], go to r[l].
8: r[l]← sj
9: l← l + 1

10: h← i
11: else . Add as much of sj as fits.
12: r[l − 1]← r[l − 1] + (sj � h)
13: h← h+ i
14: if h ≥ 64 then
15: h← h− 64
16: if h > 0 then . It did not fit entirely.
17: r[l]← sj � (i− h) . Add the rest to the next limb.
18: l← l + 1

19: normalize(r, l)
20: return l

172 CHAPTER 4. WHYMP

1) 0 ≤ h < 64

2) 0 ≤ j < n

3) value(r, l) = sj . . . sn−1
2i

4) h > 0 =⇒ r[l − 1] < 2h

5) 0 ≤ l ≤ z

6) j > 0 =⇒ i · (n− j) =

{
64l if h = 0

64(l − 1) + h if h > 0

The first two are self-explanatory and the third states that the base conver-
sion is correct. The fourth states how the variable h tracks how much space is
taken in the current limb. The last two are needed to prove that we are not
writing outside the bounds of r. In the last invariant, the left-hand side of the
equality is the number of bits already consumed from s, and the right-hand side
is the number of bits currently written in r.

The initialization is trivial to prove for all six invariants. Let us show that
they are maintained through a loop iteration. Instantiating svalue_sub_tail
yields that we need to increase value(r, l) by 2i·(n−j)sj to validate invariant 3).

There are three main cases. Either h = 0, 0 < h ≤ 64− i, or h > 64− i. In
the first case, r[l − 1] is full, so we write in r[l] and increment l. This increases
value(r, l) by βlsj (for the old value of l), which equals 2i·(n−j)sj as per the
last invariant.

The second case is similar. At line 12, we add 2hsj to r[l − 1]. There is
no carry, because r[l − 1] was less than 2h, and 2hsj ≤ 2h(2i − 1) ≤ β − 2h.
Furthermore, the total quantity added to r is βl−12hsj = 2i·(n−j)sj as per the
last invariant. The variable h is incremented by i modulo 64 and the end result
fails the condition at line 16.

In the third case, we have h + i > 64 and there is not enough room for sj
in r[l − 1]. We split sj into two halves sl and sh, with sj = sl + 264−hsh
and sl < 264−h. At line 12, we add 2hsl to r[l − 1]. Indeed, we compute
2hsj = 2hsl + βsh = 2hsl mod β. The addition does not overflow for the same
reason it did not in the previous case. At line 17, we write sh into r[l]. The total
quantity added to r is βl−12hsl + βlsh = βl−12h(sl + 264−hsh) = 2i·(n−j)sj .

This concludes the proof that invariant 3) is maintained. The only other
non-trivial invariant is 5), that is, l ≤ z. The reason it holds is the following.
Without loss of generality, consider an iteration of the loop where l increases.
The preconditions gives us i·n ≤ 64z. Since j ≥ 1, per the last invariant, if h = 0
we have 64l ≤ 64z − i so l < z. If h > 0, then similarly, 64(l− 1) + h ≤ 64z − i,
so 64l ≤ 64z − (h − (64 − i)). Since l increases in this loop iteration, we have
h > 64 − i, so l < z. Since l increases by at most 1, we still have l ≤ z at the
end of the iteration.

After the loops, invariants imply svalue(2i, s, n) = value(r, l). However, l
may not satisfy the third postcondition (for example, if the first few characters
of s were zeroes). We call the normalize function, which iterates through the
high limbs of l and decreases l for each leading zero limb. This leaves value(r, l)
unchanged and validates the last postcondition.

4.7. INPUT/OUTPUT, STRING FUNCTIONS 173

General case

Let us now go over the general case algorithm. The naive algorithm for convert-
ing a number s from base b to base β is as follows. We iterate over the digits
of s starting from the most significant one. For each digit w, we multiply our
currently accumulated result by b and add w. This algorithm is correct, but
requires a long multiplication per digit in s. Mini-GMP’s algorithm is a slightly
optimized version of the naive algorithm. In order to reduce the number of long
multiplications, the digits are handled by batches of e, where be fits into a limb.
For each batch of e digits, we apply the naive algorithm to convert them to a
limb, and then we multiply the accumulated result by be and add that limb. Let
us formalize this algorithm. The pseudocode can be found in Alg. 26.

Algorithm 26 Conversion from base b to base β = 264: general case.
Require: 0 ≤ n < 232 ∧ valid(s, n)
Require: 0 < z ∧ valid(r, z)
Require: 2 ≤ b ≤ 256
Require: bn ≤ βz . There is enough space in r.
Require: ∀k. 0 ≤ k < n =⇒ 0 ≤ sk < b . s is in base b.
Require: B = be

Require: B < β ≤ B · b . B is the largest power of b that fits in a limb.
Ensure: value(r, result) = svalue(b, s, n)
Ensure: 1 ≤ result ≤ z
Ensure: svalue(b, s, n) > 0 =⇒ r[result− 1] > 0
Ensure: svalue(b, s, n) = 0 =⇒ result = 1
1: function set_str_other(r, ghost z, s, n, b, B, e)
2: k ← 1 + (n− 1 mod e)
3: w ← s0

4: j ← 1
5: while k > 1 do
6: k ← k − 1
7: w ← w · b+ sj
8: j ← j + 1

9: r[0]← w
10: l← 1
11: while j < n do
12: w ← sj
13: j ← j + 1
14: for k = 1 to e− 1 do
15: w ← w · b+ sj
16: j ← j + 1

17: c← mul_1(r, r, l, B)
18: c′ ← add_1(r, r, l, w)
19: c← c+ c′

20: if c > 0 then . l < z.
21: r[l]← c
22: l← l + 1

23: return l

174 CHAPTER 4. WHYMP

The function takes the same parameters as the previous one, plus two ad-
ditional ones. In addition to the base b, it also takes an exponent e, and a
precomputed B = be. B is the largest power of b that fits in a limb.

The algorithm splits s in batches of e characters. However, e may not di-
vide n. The first loop (lines 5-9) handles the odd batch of fewer than e char-
acters. Its main invariant is that w stores the information from the first j
characters: w = svalue(b, s, j). The number of iterations is chosen such that
after the loop, e divides n− j.

The main loop handles the rest of the characters from s. Each iteration
handles a batch of e characters. The loop invariants are as follow:

1) 0 ≤ j ≤ n

2) 0 ≤ l ≤ z

3) svalue(b, s, j) > 0 =⇒ r[l − 1] > 0

4) svalue(b, s, j) = 0 =⇒ l = 1

5) value(r, l) = svalue(b, s, j)

6) n− j ≡ 0 mod e

The first four invariants are clearly initialized. The first loop sets up the
last two. Let us justify that they are maintained through a loop iteration. The
for loop at lines 14-16 computes svalue_sub(b, s, j, j + e) into w (the loop
invariant is w = svalue_sub(b, s, j, j + k)). The lemma svalue_sub_concat
gives svalue(b, s, j + e) = w+B · svalue(b, s, j). This quantity is computed at
lines 17-18. More precisely, we have value(r, l) + βl(c + c′) = svalue(b, s, j),
with j having been increased by e. At lines 19-22, if there is a carry, we write it
into r[l] and increment l. This validates invariant 5). Invariant 6) is also valid,
since j was increased by e. The remaining non-trivial invariant is the second,
that is, l ≤ z. Without loss of generality, we assume svalue(b, s, j) > 0. Since
j ≤ n, svalue(b, s, j) < bj ≤ βz. Since r[l− 1] > 0, we have value(r, l) ≥ βl−1.
Therefore, l − 1 < z.

4.7.3 From base β to base b

The conversion from mpn numbers to arrays of characters in base b is also split
into two algorithms. Let us first handle the case where b is a power of two.

Special case b = 2i

When b is a power of two, say 2i, the algorithm is simple. Each batch of i bits
in the input corresponds to a character in base 2i in the output. The function
get_str_bits (Alg. 27) takes an mpn number u, its length n, and an exponent i,
converts value(u, n) to base 2i and writes the result in the array s. Much like
in the previous case, we add a ghost parameter z that is a lower bound on the
length of s, which makes the specification more concise. Note that z is in bits
this time.

The algorithm first computes the length of the input number in base 2i.
There are c leading zeros in u[n − 1], and u[n − 1] > 0 per the preconditions.

4.7. INPUT/OUTPUT, STRING FUNCTIONS 175

Algorithm 27 Converting from base β = 264 to base 2i.
Require: 1 ≤ n ∧ valid(u, n)
Require: 1 ≤ i ≤ 8
Require: 0 ≤ z ∧ valid(s, d zi e)
Require: value(u, n) < 2z . There is enough space in s.
Require: u[n− 1] > 0
Require: 64n+ 7 < 232

Ensure: ∀k. 0 ≤ k < result =⇒ 0 ≤ sk < 2i

Ensure: svalue(2i, s, result) = value(u, n)
Ensure: s0 > 0
1: function get_str_bits(s, ghost z, u, n, i)
2: c← count_leading_zeros(u[n− 1])
3: e← 64n− c+ (i− 1)
4: l← e/i . Length of the result in base 2i.
5: b← 1� i
6: j ← l . Current position in s.
7: k ← 0 . Current position in u.
8: h← 0 . Number of bits consumed in current limb.
9: while j > 0 do

10: j ← j − 1
11: g ← u[k]� h
12: h← h+ i
13: if h ≥ 64 then . We consumed the full limb, go to the next one.
14: k ← k + 1
15: if k < n then
16: h← h− 64
17: g ← g + (u[k]� (i− h)) . Make sure g has at least i bits.
18: sj ← (g mod b)

19: return l

176 CHAPTER 4. WHYMP

Therefore, we have 264n−c−1 ≤ value(u, n) < 264n−c, that is, u is 64n − c bits
long. We compute l = d 64n−c

i e, which is the length of that number in base 2i.
The main loop reads i bits from u at each iteration, converts them to a

character in base 2i, and writes it into s. Since the final length of s is already
known, it can start with the least significant bits. The loop invariants are as
follows. They use the function bitvalue from Sec. 4.3.3 to talk about values
of u at the bit granularity. Much like in the set_str_bits function, h tracks
how many bits were already consumed for the current limb.

1) 0 ≤ k ≤ n

2) 0 ≤ j ≤ l

3) j > 0 =⇒ i(l − j) = 64k + h

4) 0 ≤ h < 64 ∨ k = n

5) ∀x. j ≤ x < l =⇒ 0 ≤ sx < 2i

6) svalue_sub(2i, s, j, l) =

{
bitvalue(u, 64k + h) if j > 0

value(u, n) if j = 0

The initialization of the invariants is trivial. Let us justify that they are
maintained through a loop iteration. At line 11, g contains the top 64− h bits
of u, that is, value(u, k+ 1) = bitvalue(u, 64k+ h) + 264k+hg. We first notice
that if k = n, j = 0. Indeed, at the beginning of the loop iteration where k
is incremented to n, we have i(l − j) = 64(n − 1) + h and h + i ≥ 64, so
64n− i ≤ i(l− j). Since il ≤ e < 64n+ i, we have ij < 2i, so j = 1 at the start
of the loop, and it is decreased to 0 at line 10. This validates the first invariant.
The remaining non-trivial ones are the last two. There are two main cases.

The easy case is h+ i ≤ 64, that is, there are at least i bits in g. In this case,
the test at line 13 fails. We split g into g′ + 2ig′′, with 0 ≤ g′ < 2i. We have
bitvalue(u, 64k+h+i) = bitvalue(u, 64k+h)+264k+hg′. We write g′ into sj−1

at line 18, and we have svalue_sub(2i, s, j − 1, l) = svalue_sub(2i, s, j, l) +
2i(l−j)g′. Since i(l − j) = 64k + h per the invariant hypotheses, this validates
the last invariant if j > 0. If j = 0, then we have read the last non-zero bits of u,
that is, 64k+h+ i ≥ 64n−c. Therefore, value(u, n) = bitvalue(u, 64k+h+ i)
and the last invariant is also validated. Invariant 5) is also valid, since g′ is
between 0 and 2i.

In the second case, h + i > 64. At line 11, g only has 64 − h bits. If
k = n, then j is decreased to 0 at line 10 as explained earlier, and value(u, n) =
svalue_sub(2i, s, 1, l)+2i(l−j)g. At line 18, since g < 2i, we write g into s0 and
the invariants are valid. If k < n, we get the remaining bits from u[k+ 1]. More
precisely, at line 11, we have value(u, k+ 1) = bitvalue(u, 64k+h) + 264k+hg.
Let us split u[k + 1] into g′ + 2h+i−64g′′, with 0 ≤ g′ < 2h+i−64. We have
bitvalue(u, 64k+ h+ i) = value(u, k+ 1) + βk+1g′ = bitvalue(u, 64k+ h) +
264k+h(g + 264−hg′). Since 264k+h = 2i(l−j), we need to compute g + 264−hg′

and write it in s[j − 1]. At line 16, the new value of i− h is i− (h0 + i− 64) =
64 − h0, where h0 is the old value of h. The addition at line 17 computes
g + 264−h0g′ + 2ig′′ modulo β. There is no carry because g < 264−h0 (in fact,
this addition is implemented as a bitwise or in the original code). At line 18,

4.7. INPUT/OUTPUT, STRING FUNCTIONS 177

the reduction modulo b leaves g+264−h0g′ to be written in sj−1, which validates
the last two invariants.

Let us now assume that the two invariants are valid. The only thing left to
check is that s0 > 0, and this is a consequence of the fact that we computed l pre-
cisely. Indeed, value(u, n) ≥ 264n−c−1 ≥ 2i(l−1). Moreover, svalue(2i, s, l) =
2i(l−1)s0 + svalue_sub(2i, s, 1, l) and svalue_sub(2i, s, 1, l) < 2i(l−1), so we
must have s0 > 0.

General case for one limb

The general case conversion from base β to base b uses an auxiliary function
that converts one limb to base b. The algorithm is the naive one: the input
is repeatedly divided by b, and each remainder is a digit in base b. The only
issue is that the least significant digits are computed first, and it is not trivial
to compute the size of the output in advance. Since the output should be big-
endian, where to write the least significant digits? The solution adopted by
Mini-GMP is to produce a little-endian array first, and then reverse it.

We define yet another value function to represent little-endian arrays. If s
is an array s0 . . . sn−1 of characters whose values are between 0 and b − 1,
we define svalue_le(b, s, n) =

∑n−1
i=0 sib

i. It is essentially a generalized ver-
sion of the value function where the base is specified, rather than fixed to β.
The same lemmas apply, such as svalue_le(b, s, k + l) = svalue_le(b, s, k) +
bksvalue_le(b, s+ k, l) (svalue_le_sub_concat).

The function limb_get_str (Alg. 28) converts a limb to a little-endian array
in base b using an optimized version of the naive algorithm. The gist of it is as
follows. We want to divide the limb by b repeatedly. However, GMP’s division
algorithm normalizes the divisor so that it is greater than β/2, and then com-
putes its pseudo-inverse. Rather than letting it perform the same normalization
and pseudo-inverse computation many times, the caller normalizes b in advance
and supplies a pseudo-inverse. As a result, the function has seven parameters:
the input limb w, the output array s and its (ghost) length z, the normalized
base d, its pseudoinverse v, and a shift h such that d = 2hb, as well as b itself,
which is not used by the code but is passed as a ghost parameter to simplify
the specification.
Let us call w0 the initial value of w. The algorithm is a simple loop. Its
invariants are the following.

1) 0 ≤ w < β

2) 0 ≤ i ≤ z

3) w > 0 =⇒ i < z

4) ∀k. 0 ≤ k < i =⇒ 0 ≤ sk < b

5) w = 0 =⇒ (i = 0 ∨ si−1 > 0)

6) w0 = svalue_le(b, s, i) + biw

Once again, the initialization is trivial. The invariants also clearly imply the
postconditions. Let us prove that the invariants are maintained through a loop
iteration. At lines 4 − 5, we compute l and m such that l + βm = 2hw. At

178 CHAPTER 4. WHYMP

Algorithm 28 Converting a limb to base b.
Require: 2 ≤ b ≤ 256
Require: d ≥ β/2
Require: d = 2hb ∧ 0 ≤ h ≤ 63
Require: v = reciprocal(d)
Require: 0 < z ∧ valid(s, z)
Require: w < bz . There is enough room in s.
Ensure: svalue_le(b, s, result) = old w
Ensure: 0 ≤ result ≤ z
Ensure: ∀k. 0 ≤ k < result =⇒ 0 ≤ sk < b
Ensure: result > 0 =⇒ sresult−1 > 0
1: function limb_get_str(s, ghost z, w, d, v, h, ghost b)
2: i← 0
3: while w > 0 do
4: m← w � (64− h)
5: l← w � h . l + βm = 2hw.
6: q, r ← div2by1_inv(m, l, d, v) . qd+ r = 2hw.
7: si ← r � h
8: w ← q
9: i← i+ 1

10: return i

line 6, we divide l + βm by d (using the precomputed pseudoinverse v). We
obtain q and r such that qd + r = 2hw, with 0 ≤ r < d. Moreover, d = 2hb.
Therefore, we have 2hw = 2hbq+ r. Therefore, 2h divides r, so the logical right
shift at line 7 does not overflow. Let us define r′ such that r = 2hr′. We have
w = bq+r′. After writing r′ in si, we have w0 = svalue_le(b, s, i)+bi(bq+r′) =
svalue_le(b, s, i + 1) + bi+1q, which validates the last invariant. Let us check
the other five. The first two are trivial. The third is a consequence of the fact
that at the end of the iteration, bi+1q ≤ w0 < bz, so if q > 0, then i+1 < z. The
fourth invariant is valid because r < 2hb, so r′ < b. The fifth is valid because
at the beginning of the loop iteration, w > 0, so if q = 0, then r = 2hw ≥ 2h,
so r′ ≥ 1.

General case

We are now ready to review the general case algorithm (Alg. 29). The main idea
is still the naive one, that is, repeatedly dividing the input by b. However, in
order to reduce the number of long divisions, the algorithm is instead repeatedly
dividing by some large power of b that fits into a limb. Each chunk is then
handled by the limb_get_str function, which only performs short divisions.

The function takes seven parameters: the output array s and its ghost size,
the base b, its largest power B that fits in a limb, the corresponding exponent e,
the input u, and its size n. Let us call U = value(u, n) the value of the input.
The function first precomputes the necessary information to later call limb_-
get_str: the normalized base d, its pseudoinverse v, and the shift h such that
d = 2hb. Then, if there is more than one limb in the input, it is repeatedly
divided by B until only one limb remains. The invariants of the main loop are
as follows. The ghost variable i tracks the number of loop iterations, which

4.7. INPUT/OUTPUT, STRING FUNCTIONS 179

Algorithm 29 Conversion from base β to base b.
Require: 1 ≤ n ∧ valid(u, n)
Require: u[n− 1] > 0
Require: 0 < z ∧ valid(s, z)
Require: value(u, n) < bz−1 . There is enough space for u, plus one extra

character.
Require: B = be

Require: B < β ≤ B · b . B is the largest power of b that fits in a limb.
Ensure: 0 ≤ result < z . The conversion leaves one free cell at the end.
Ensure: svalue(b, s, result) = old value(u, n)
Ensure: ∀k. 0 ≤ k < result =⇒ 0 ≤ sk < b . The result is in base b.
Ensure: s0 > 0
1: function get_str_other(s, ghost z, b, B, e, u, n)
2: h← count_leading_zeros(b)
3: d← b� h . Normalized base for division.
4: v ← invert_limb(d) . Precomputed pseudoinverse.
5: l← 0
6: k ← n
7: if k > 1 then
8: t← alloc(n)
9: ghost i← 0

10: while k > 1 do
11: w ← divrem_1(t, u, k,B)
12: copyi(u, t, k)
13: k ← k − (if u[k − 1] = 0 then 1 else 0)
14: o← limb_get_str(s+ l, e, w, d, v, h, b)
15: l← l + o
16: while o < e do . If w was small, pad with zeroes.
17: sl ← 0
18: l← l + 1
19: o← o+ 1

20: i← i+ 1

21: o← limb_get_str(s+ l, z− 1− l, u[0], d, v, h, b) . Read the last limb.
22: l← l + o . U = svalue_le(b, s, l).
23: j ← 0
24: while 2j + 1 < l do . Reverse s.
25: x← sj
26: sj ← sl−j−1

27: sl−j−1 ← x
28: j ← j + 1

29: return l

180 CHAPTER 4. WHYMP

makes the invariants a bit more concise.

1) 1 ≤ k ≤ n

2) n− k ≤ i

3) l = ie

4) ∀j. 0 ≤ j < l =⇒ 0 ≤ sj < b

5) 0 ≤ l < z

6) u[k − 1] > 0

7) U = svalue_le(b, s, l) + bl · value(u, k)

Let us justify that they are maintained. At lines 11− 12, u is divided by B.
The remainder is stored in w and the quotient is copied back in u. As a result,
we have U = svalue_le(b, s, l) + blw + bl+evalue(u, k). This is left unchanged
by line 13, which normalizes u by decreasing k if needed. We cannot have
both u[k − 1] = 0 and u[k − 2] = 0 before normalization. Indeed, value(u, k)
was greater than βk−1 (by invariant hypothesis 6)), and it was divided by
B < β, so it is still greater than βk−2. Therefore, u is indeed normalized
after line 13, which validates invariant 6). At line 14, limb_get_str is called.
Per its postcondition and the concatenation lemma on svalue_le, we have
U = svalue_le(b, s, l + o) + bl+evalue(u, k). If o < e, the inner loop pads s
with zeroes until e characters have been written. The size l is increased while
svalue_le(b, s, l) remains unchanged. The main invariant of the inner loop
is U = svalue_le(b, s, l) + bl−o+evalue(u, k). After the inner loop, the last
invariant is maintained. This justifies the last two invariants. The first four are
clearly valid by construction. Let us now justify the fifth, that is, l < z. By
precondition, U < bz−1, and the last loop invariant yields bl · value(u, k) ≤ U .
Since value(u, k) > 0 (invariant 6)), we have l < z − 1.

After the loop, we have k = 1, and we have U = svalue_le(b, s, l) + blu[0]
per the last invariant. The function limb_get_str is called one last time. (The
reason it could not be done inside the loop is that the result may be greater
than e.) We have blu[0] ≤ U < bz−1, so u[0] < bz−1−l, which validates the
relevant precondition of limb_get_str. After the call, the concatenation lemma
on svalue_le yields U = svalue_le(b, s, l). Furthermore, the postcondition
yields o ≤ z − 1 − l, so after line 22, we have l < z, which validates the first
postcondition. We also have sl−1 > 0. All that remains to do is reverse the
array s, which is done at lines 24− 27.

Let us call s′ the state of the array s after the loop. For all 0 ≤ i < l, we
have s′i = sl−1−i. If l is even, each cell of the array is swapped with the mirrored
cell exactly once. If l is odd, the middle cell is never swapped. More precisely,
the main invariant is as follows:

∀i. 0 ≤ i < l, s′i =

{
si if j ≤ i < l − j
sl−1−i if 0 < j or l − j ≤ i.

After s is reversed into s′, we have s′0 > 0 and all the postconditions are valid,
as svalue(b, s′, l) = svalue_le(b, s, l) = U .

4.7. INPUT/OUTPUT, STRING FUNCTIONS 181

4.7.4 ASCII conversions

The mpn algorithms from the previous section convert back and forth between
mpn numbers (in base β) and arrays of digits in base b, with 2 ≤ b ≤ 256.
However, they are not in a printable format. The mpz conversion algorithms
convert back and forth between ASCII characters and the digits they encode.
The code of the mpz conversion functions is not particularly interesting from a
verification standpoint, but their specifications are.

The mpz conversion functions support bases ranging from 2 to 62. For bases
between 2 and 35, digits greater than 9 are encoded by the lowercase letters a-z.
For bases greater than 36, digits from 10 to 35 are encoded by the uppercase
letters A-Z, and digits from 36 to 61 are encoded by the lowercase letters a-z.
Negative bases from −36 to −2 are also supported. They are similar to their
positive counterparts, but encode digits from 10 to 35 as uppercase letters.
Therefore, one can get the conversion functions to output a hexadecimal number
in lowercase, such as "0xdeadbeef" by setting the base to 16. Setting the base
to −16 would output "0xDEADBEEF", in uppercase.

Let us first briefly present a Why3 formalization of the conversion between
digit and ASCII character. We define the ASCII codes of the alphanumeric
characters using string constants, as follows.

constant digitstring : string = "0123456789"
constant lowstring : string = "abcdefghijklmnopqrstuvwxyz"
constant upstring : string = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

axiom numcodes:
forall i. 0 ≤ i < 10 →

code (get digitstring i) = code (get "0" 0) + i

axiom lowcodes:
forall i. 0 ≤ i < 26 →

code (get lowstring i) = code (get "a" 0) + i

axiom upcodes:
forall i. 0 ≤ i < 26 →

code (get upstring i) = code (get "A" 0) + i

axiom code_0: code (get "0" 0) = 48
axiom code_a: code (get "a" 0) = 97
axiom code_A: code (get "A" 0) = 65
axiom code_minus: code (get "-" 0) = 45

Using these values, we define logical functions that serve as a specification of
the conversion between an unsigned integer d (with the type unsigned char)
and an ASCII character c. The formalization appears in Fig. 4.11. These
functions cannot be used directly in WhyML programs, but they appear in
specifications. As they are logical functions, they need to be total. However,
we are not interested in specifying the conversions for non-alphanumeric char-
acters. The text_to_num returns the bogus value -1 when applied to an invalid
character. Similarly, we are not interested in specifying what num_to_text does
to numbers that are not between 0 and 61. Therefore, we define a bogus value
dummy_char as some character whose ASCII code is −1. (The chr function is
defined as the reciprocal of the code function. It is total, but its specification
only covers the case where its argument is between 0 and 255.)

As a sanity check, we verify a lemma that states that text_to_num is re-

182 CHAPTER 4. WHYMP

constant dummy_char = chr (-1)

constant numlowstring : string = "0123456789abcdefghijklmnopqrstuvwxyz"

function num_to_lowercase_text (d:uchar) : char
= if 0 ≤ d < 36

then get numlowstring d
else dummy_char

constant numupstring : string = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"

function num_to_uppercase_text (d:uchar) : char
= if 0 ≤ d < 36

then get numupstring d
else dummy_char

constant numuplowstring : string
= "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

function num_to_bothcase_text (d:uchar): char
= if 0 ≤ d < 62

then get numuplowstring d
else dummy_char

function num_to_text (base:int) (d:uchar) : char
= if 0 ≤ base ≤ 36

then num_to_lowercase_text d
else if 36 < base ≤ 62
then num_to_bothcase_text d
else if -36 ≤ base
then num_to_uppercase_text d
else dummy_char

function text_to_num_onecase (c:char) : int
= if (get "0" 0) ≤ c ≤ (get "9" 0)

then c - (get "0" 0)
else if (get "a" 0) ≤ c ≤ (get "z" 0)
then c - (get "a" 0) + 10
else if (get "A" 0) ≤ c ≤ (get "Z" 0)
then c - (get "A" 0) + 10
else -1

function text_to_num_bothcase (c:char) : int
= if (get "0" 0) ≤ c ≤ (get "9" 0)

then c - (get "0" 0)
else if (get "a" 0) ≤ c ≤ (get "z" 0)
then c - (get "a" 0) + 36
else if (get "A" 0) ≤ c ≤ (get "Z" 0)
then c - (get "A" 0) + 10
else -1

function text_to_num (base:int) (c:char) : int
= if - 36 ≤ base ≤ 36

then text_to_num_onecase c
else text_to_num_bothcase c

Figure 4.11: Converting back and forth between ASCII characters and digits.

4.7. INPUT/OUTPUT, STRING FUNCTIONS 183

ciprocal to num_to_text. The proof involves a number of intermediate lemmas
and is about 100 lines long.

let lemma tnt (base:int) (d:uchar)
requires { -36 ≤ base ≤ 62 }
requires { 0 ≤ d < abs base }
ensures { text_to_num base (num_to_text base d) = d }

= ...

Using the conversion functions, we can define the value of a given array of
characters in some base b as a mathematical integer. In addition to the alphanu-
meric characters that encode the digits in base b, we also recognize minus signs
at the beginning of the array. The body of the abs_value_sub_text function
calls strlen, when one may have expected an extra length argument. Indeed,
C strings are unlike mpn numbers in that they are typically not accompanied by
an integer that specifies their length. Instead, they are terminated by the null
character, encoded by the number 0. Their length is the position of the first null
character. The function strlen from the <string.h> header is used to compute
the length. We declare a function strlen and give it a formal specification. At
extraction, it can be replaced by its C counterpart.

let rec ghost function abs_value_sub_text (b:int) (s:map int char) (n m: int)
: int

variant { m - n }
= if n < m

then text_to_num b s[m-1] + b * abs_value_sub_text b s n (m-1)
else 0

function abs_value_text (b:int) (s:map int char) (ofs:int) : int
= abs_value_sub_text b s ofs (ofs + strlen s ofs)

function value_text (b:int) (s:map int char) (ofs:int) : int
= if Char.(=) s[ofs] minus_char

then - abs_value_text b s (ofs + 1)
else abs_value_text b s ofs

function strlen (s:map int char) (ofs:int) : int

axiom strlen_def:
forall s ofs i. 0 ≤ i
→ (forall j. 0 ≤ j < i → code s[ofs + j] 6= 0)
→ code s[ofs + i] = 0
→ strlen s ofs = i

axiom strlen_invalid:
forall s ofs. (forall i. 0 ≤ i → code s[ofs + i] 6= 0)
→ strlen s ofs < 0

predicate valid_string (p: ptr char)
= strlen p.data.elts (offset p) ≥ 0
∧ valid p (1 + strlen p.data.elts (offset p))

val strlen (p: ptr char) : uint32
requires { valid_string p }
ensures { result = strlen p.data.elts (offset p) }

It may seem strange that there are two separate strlen declarations. The
reason is that the behavior of strlen is specified by the strlen_def and
strlen_invalid axioms, and only logical functions can be referred to in the
logic. Therefore, we need to first declare a logical function strlen, specify its

184 CHAPTER 4. WHYMP

behavior using the axioms, and finally declare a program function (also called
strlen) and state that it behaves like the logical function.

4.7.5 Base conversions in mpz

We have now laid out the tools needed to verify the mpz conversion functions.
Rather than a full algorithm, we simply show the specifications and the sections
of code that perform the conversion between ASCII character and digit.

From string to mpz

Let us start with the mpz_set_str function (Fig. 4.12). It takes a character
string and a base (between 2 and 62) as inputs, and converts the string into
an mpz number if it is well-formed, in which case it returns 0. If the string is
ill-formed, the function returns −1. Note that our WhyMP formalization of this
function is not quite feature-complete. The mini-GMP version accepts 0 as a
base, in which case it tries to infer the base by checking the beginning of string
for a prefix such as "0x" or "0b". It also accepts and ignores whitespace in the
string. Our version does not accept any whitespace, and requires the base to be
explicitly specified.

The well-formedness of a string is defined using the string_in_base predi-
cate below. A string is well-formed if it contains only characters that are valid
digits in its base (with the exceptions of the null terminator and a possible
minus sign) and has at least one digit.

predicate text_in_base (b:int) (t: map int char) (n m:int)
= forall i. n ≤ i < m → 0 ≤ text_to_num b t[i] < b

predicate string_in_base (b:int) (s:map int char) (ofs: int)
= (text_in_base b s ofs (ofs + strlen s ofs) ∧ strlen s ofs > 0)
∨ (s[ofs] = minus_char
∧ text_in_base b s (ofs + 1) (ofs + strlen s ofs)
∧ strlen s ofs > 1)

The function computes the length of the input string, allocates an array
of the same length, and converts the string to digits in base b. It then calls
the relevant wmpn_set_str function to convert them to base β. The snippet
that converts a character to a digit has the same structure as the logical func-
tion text_to_num, which was designed for this exact purpose. Therefore, the
assertion digit = text_to_num base c is easy to prove.

From mpz to string

The mpz_get_str function (Fig. 4.13) converts an mpz number to a character
string. Bases from 2 to 62 are supported, as well as bases from −36 to −2
(which are used to output uppercase letters). If the base is between −1 and 1,
the function still accepts it but treats it as 10. The logical function effective is
used to specify this behavior. In our version of the algorithm, the output buffer
needs to be already allocated and have enough space to store the output. In
order to specify the length needed for the output buffer, we use an extra ghost
parameter sz. This is a missing feature compared to the mini-GMP version,
which allocates a sufficiently large buffer for the user if they pass a null pointer.

4.7. INPUT/OUTPUT, STRING FUNCTIONS 185

let wmpz_set_str (r: mpz_ptr) (sp: ptr char) (base: int32) : int32
requires { valid_string sp }
requires { (strlen sp.data.elts (offset sp)) * 8 + 63 ≤ max_int32 }
(* avoids an overflow when computing the size of the result *)
requires { mpz.readers[r] = 0 }
requires { mpz.alloc[r] ≥ 1 }
requires { 2 ≤ base ≤ 62 }
ensures { forall x. x 6= r → mpz_unchanged x mpz (old mpz) }
ensures { mpz.readers[r] = 0 }
ensures { result = 0 →

value_of r mpz = value_text base sp.data.elts (offset sp) }
ensures { -1 ≤ result ≤ 0 }
ensures { result = 0 ↔ string_in_base base sp.data.elts (offset sp) }

=
...
let dp : ptr uchar = salloc (strlen sp) in
let sign = if C.get sp = minus_char then 1 else 0 in
let ref spi = C.incr sp sign in
let ref digit : uchar = 0 in
let ref dn = 0 in
while (C.get spi 6= zero_char) do

...
invariant { abs_value_sub_text base (pelts sp)

(offset sp + sign) (offset spi)
= svalue_sub base (pelts dp) 0 dn }

...
if 36 < base
then begin

if code zero_num ≤ code c && code c ≤ code nine_num
then digit ← UChar.of_int32 (code c - code zero_num)
else if code small_a ≤ code c && code c ≤ code small_z
then digit ← UChar.of_int32 (code c - code small_a + 36)
else if code big_a ≤ code c && code c ≤ code big_z
then digit ← UChar.of_int32 (code c - code big_a + 10)
else begin

(* invalid string *)
digit ← UChar.of_int32 base

end
end
else begin

...
end;
assert { 0 ≤ digit < base → digit = text_to_num base c }
if digit ≥ UChar.of_int32 base
then begin

(* invalid string, abort *)
set_size_0 r;
return -1

end;
...
done;
...
(* call wmpn_set_str *)
return 0;

Figure 4.12: Conversion from string to mpz number.

186 CHAPTER 4. WHYMP

function effective (b:int) : int = if (abs b < 2) then 10 else abs b

let wmpz_get_str (sp: ptr char) (ghost sz:int32)
(base:int32) (u: mpz_ptr) : ptr char

requires { valid sp sz }
requires { writable sp }
requires { 2 ≤ sz }
(* need two extra spaces to store the minus sign and the null terminator *)
requires { mpz.abs_value_of[u] < power (effective base) (sz-2) }
requires { mpz.readers[u] = 0 }
requires { 64 * mpz.abs_size[u] + 7 ≤ max_int32 }
(* precondition of get_str_bits *)
requires { -36 ≤ base ≤ 62 }
ensures { result = sp }
ensures { valid_string sp }
ensures { string_in_base (effective base) sp.data.elts (offset sp) }
ensures { forall x. mpz_unchanged x mpz (old mpz) }
ensures { value_text (effective base) sp.data.elts (offset sp)

= value_of u mpz }
=

let digits =
if base > 36
then "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
else if base ≥ 0
then "0123456789abcdefghijklmnopqrstuvwxyz"
else "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" in

...
let ref i : int32 = 0 in
if size_of u < 0
then begin

C.set_ofs sp 0 minus_char;
i ← i+1

end;
(* call to wmpn_get_str_bits or wmpn_get_str_other,

digits written in sp *)
for j = i to sn - 1 do

...
let cj = UChar.of_char (C.get_ofs sp j) in
let dc = String.get digits (UChar.to_int32 cj) in
assert { cj = text_to_num base dc };
C.set_ots sp j dc;
...

done;
...
C.set_ofs sp sn zero_char; (* null terminator *)
return sp;

Figure 4.13: Conversion from mpz number to string.

4.8. COMPARING WHYMP AND GMP 187

The function calls the relevant mpn_get_str function and writes the result
in sp. It then converts the characters in sp, and adds a null terminator. The
conversion is performed using the alphabetical string digits as a lookup ta-
ble. This is exactly how the logical function num_to_text was defined, so the
assertion that the conversion was correct is easily proved.

4.8 Comparing WhyMP and GMP
WhyMP is designed as a verified clone of the GMP library. It implements a
subset of GMP’s interface, and it is intended to serve as a drop-in replacement
for GMP. Nonetheless, it is not a perfect clone of GMP. Many GMP functions are
simply not implemented yet. Furthermore, some code changes had to be made
for the sake of the verification process, although the intent was for WhyMP to be
almost as efficient as GMP. This section presents the main differences between
the libraries (Sec. 4.8.1), as well as some performance benchmarks (Sec. 4.8.2).

4.8.1 Compatibility, code changes
WhyMP is largely compatible with GMP. Both libraries represent the numbers
in the same way. WhyMP’s generated C functions have the same signature as
their GMP counterparts. Using the appropriate headers, one can either use
WhyMP as a replacement for GMP, or mix and match the libraries. However,
there are two potential sources of incompatibility. First, WhyMP currently
lacks some genericity. It represents limbs as 64-bit numbers, so it should not be
interfaced with a 32-bit GMP. However, the mpz layer hides this detail of number
representation from the user, so WhyMP can still be used as a replacement for
a 32-bit GMP as long as the user code does not mix both libraries and interacts
only with mpz numbers. Second, GMP supports custom memory handlers passed
by the user, while WhyMP performs its allocations using malloc. Therefore,
in order to interface both libraries, one needs to use GMP’s default memory
handler as well.

Aliasing

Due to WhyML’s aliasing restrictions, some WhyMP functions in the mpn layer
have restricted specifications compared to their GMP counterparts. For ex-
ample, GMP’s division allows the numerator to be identical to the remainder,
while WhyMP’s does not. In principle, this restriction can be overcome using
the methods from Sec. 3.3.4. I have done so for WhyMP’s long addition and
subtraction. Due to time and effort constraints, this was not done yet for the
following functions: addition and subtraction of a limb to an mpn number, mul-
tiplication of a limb by an mpn number, addition or subtraction of the product
of a limb and an mpn number to another mpn number (addmul_1 and submul_1),
and all variants of division. This does not make these functions incorrect, they
are simply unverified in the aliased case.

The main reason why I have not yet taken the time to implement this is
that these constraints are hidden by the mpz wrappers, which do have the exact
same signature and specification as their GMP counterparts. Therefore, this
issue does not affect the users who only interact with WhyMP or GMP through
the mpz layer, which is a very common case.

188 CHAPTER 4. WHYMP

However, in order to account for the calling restrictions of the mpn layer,
the code of many mpz functions had to be modified. Examples can be found
in Sec. 4.6.3, 4.6.4, and 4.7. These changes make the code less idiomatic, but
should not have an overly large impact on performance. Indeed, they mostly
add operations whose costs do not scale with the length of the numbers involved,
and few costly operations such as copies of mpn numbers.

Missing algorithms

Some differences between GMP and WhyMP do have a meaningful impact on
performance. First and foremost, WhyMP implements fewer algorithms than
GMP. For example, GMP features more than ten different multiplication algo-
rithms, while WhyMP only has Toom-2, Toom-2.5, and the base case algorithm.
As a result, for very large inputs, GMP uses algorithms that are much more
asymptotically efficient. Similarly, GMP features a subquadratic divide-and-
conquer division algorithm in addition to the optimized schoolbook algorithm
that WhyMP implements.

When reimplementing GMP’s algorithms in WhyMP, I strove to preserve all
the optimizations present in GMP’s implementation. However, I gave up on a
small number of optimizations that required a very large amount of effort and
did not seem critical in terms of performance. For example, GMP features a
relatively complex dedicated squaring algorithm. It uses it instead of the regu-
lar multiplication algorithm when the operands are known to be equal. It also
sometimes checks operands for pointer equality, and calls the squaring function
if they are equal. The latter pattern would be hard to implement in the mpn
layer WhyMP due to the aliasing restrictions of our memory model. As a re-
sult, I gave up on verifying the dedicated squaring algorithm, assuming that
there were not that many contexts where operands are known to be equal. In
retrospect, this was a mistake. The square function is explicitly used by GMP’s
divide-and-conquer square root, as well as the critical loop of the modular ex-
ponentiation algorithm. Their performances are worse in WhyMP as a result. I
also underestimated the performance difference between the dedicated squaring
algorithm and the generic multiplication.

Primitives

A sizable difference between the internals of GMP and WhyMP lies in the un-
derlying arithmetic primitives. Both WhyMP and GMP rely on the availability
of a multiplication of one limb by one limb returning two limbs, as well as a
division of two limbs by one limb. For most architectures, with default compila-
tion options, GMP implements these primitives, as well as many basic functions,
with native assembly routines. These assembly routines are not terribly compli-
cated, but not trivial either. In order to minimize the trusted computing base,
WhyMP instead relies on the 128-bit support from C compilers. For example,
here is the primitive that WhyMP uses for division.

uint64_t div64_2by1 (uint64_t ul, uint64_t uh, uint64_t d)
{ return (((uint128_t)uh << 64) | ul) / d; }

The code uses the type uint128_t, which is not a standard C99 type. However,
it is arguably simple enough to trust it.

4.8. COMPARING WHYMP AND GMP 189

4.8.2 Benchmarking

The following benchmarks show how GMP and WhyMP compare on three
benchmarks: multiplication, square root, and a primality test. More precisely,
three variants of GMP and three variants of WhyMP are tested. The differ-
ence between these variants is the implementation of the underlying primitives.
Indeed, there is a large performance gap between the performance of native
assembly routines and the performance of routines written in C, even with the
128-bit extension. Therefore, the direct comparison between WhyMP and de-
fault GMP is not that meaningful, so we measure more timings to give a better
view of the performances.

First, GMP is also compiled without support for assembly, which means
that only the generic C code is compiled. GMP without assembly and WhyMP
are not exactly in the same ballpark though, since they do not use the same
primitive operations for doing a 64 × 64 → 128 multiplication and a 128-by-
64 division. Indeed, in assembly-free GMP, these are implemented in C using
only 64-bit operations, which are much less efficient than the 128-bit ones that
WhyMP gets from the compiler.

Second, to measure the impact of these two primitives, WhyMP is also com-
piled in a way such that their 128-bit implementation is replaced by the 64-bit
one from GMP without assembly.

Third, the timings of Mini-GMP are measured. It uses the same kind of
implementation as GMP without assembly for the two primitives above, that
is, it uses only 64-bit operations.

Finally, in an attempt to measure the performance of higher-level algorithms
in isolation, some low-level mpn functions of WhyMP are replaced by their re-
spective GMP counterparts, as these functions are typically written in assembly.
Those functions are add_n (resp. sub_n), which computes the sum (resp. differ-
ence) of equally-sized mpn numbers; add and sub, for mpn numbers with different
sizes; mul_1, which multiplies an mpn number by a single limb; addmul_1 (resp.
addmul_2), which multiplies an mpn number by a single limb (resp. a two-limb
number), and then accumulates the product into the destination; and submul_1,
which accumulates the opposite of the product. Note that we could have re-
placed a lot more functions of WhyMP by their assembly counterparts from
GMP, including rather complicated ones, such as division by two-limb numbers.
Instead, we chose to focus on a few simple functions, so as to not blow the
trusted code base out of proportions, which would defeat the point of formally
verifying an arithmetic library.

The version of GMP is 6.1.2, which was the most recent release when this
work started. The benchmarks are executed on an Intel Xeon E5-2450 at
2.50GHz. All the libraries are compiled using GCC 8.3.0 using the options
selected by GMP, that is, “-O2 -march=sandybridge -mtune=sandybridge
-fomit-frame-pointer”.

Figures 4.14 to 4.16 show the timings obtained on the various benchmarks.
On every figure, abscissas are the number of 64-bit limbs, while ordinates are the
time in microseconds. All the figures are in log-log scale, so that the asymptotic
complexity is apparent. Performance-wise, the general ordering of the plots is
the same on every figure: GMP is the fastest, then comes WhyMP with GMP’s
assembly primitives, then WhyMP, then GMP without assembly support, then
WhyMP without 128-bit support, and finally Mini-GMP is the slowest.

190 CHAPTER 4. WHYMP

10-2

10-1

100

101

102

103

104

 4 8 16 32 64 128 256 512 1024

Mini-GMP
WhyMP without 128-bit ops

GMP without assembly
WhyMP

WhyMP with assembly
GMP

(a) Multiplication n× n.

10-1

100

101

102

103

104

105

 4 8 16 32 64 128 256 512

Mini-GMP
WhyMP without 128-bit ops

GMP without assembly
WhyMP

WhyMP with assembly
GMP

(b) Multiplication n× 24n.

Figure 4.14: Timings for multiplication.

4.8. COMPARING WHYMP AND GMP 191

10-2

10-1

100

101

102

103

 1 4 16 64 256 1024 4096

Mini-GMP
WhyMP without 128-bit ops

GMP without assembly
WhyMP

WhyMP with assembly
GMP

Figure 4.15: Timings for square root.

102

103

104

105

106

107

 16 32 64 128 256

Mini-GMP
WhyMP without 128-bit ops

GMP without assembly
WhyMP

WhyMP with assembly
GMP

Figure 4.16: Timing for Miller-Rabin.

192 CHAPTER 4. WHYMP

Multiplication (Fig. 4.14)

The first benchmark simply tests multiplication for various sizes of mpn num-
bers, so as to exercise both the base-case multiplication as well as Toom-Cook
algorithms. Two cases are tested: equal-sized inputs, and n × 24n unbalanced
inputs.

The unbalanced case tests the algorithmic differences between WhyMP and
GMP. Indeed, WhyMP performs 16 calls to toom_32, which results in 64 n

2 ×
n
2

multiplications, while GMP performs 12 calls to toom_42, which results in 60
n
2 ×

n
2 multiplications. Due to the extra cost of interpolation for toom_42,

WhyMP hardly suffers from not having toom_42 at this level of unbalance.
Comparing the plots of Mini-GMP, WhyMP without 128-bit support, and

GMP without assembly, makes it apparent when the libraries switch to different
algorithms. Mini-GMP sticks with the quadratic schoolbook algorithm, while
WhyMP and GMP switch to toom_22 around n = 30, and then GMP switches
to toom_33 around n = 60. Starting around n = 170 (toom_44 for GMP),
the lack of higher variants of Toom-Cook in WhyMP becomes noticeable, as
the library becomes progressively slower with respect to GMP. For n ≤ 170,
WhyMP is at most twice as slow as GMP, and when replacing the primitive
operations with the assembly ones from GMP, the slowdown does not exceed
20%. The smaller n is, the smaller the slowdown, down to about 5% for n ≤ 20.

Square root (Fig. 4.15)

The second benchmark tests the square root for various sizes of mpn numbers.
GMP’s algorithm performs a long division, so WhyMP greatly suffers from fea-
turing only the schoolbook division, despite using the same divide-and-conquer
square-root algorithm as GMP. This makes WhyMP with assembly about 50%
slower than GMP for n ≤ 600. Without assembly, WhyMP is twice as slow for
n ≤ 90, and thrice as slow for n ≤ 600. As for Mini-GMP, its poor performance
(up to ×150 times slower for n ≤ 600) can be explained by the fact that its mul-
tiplication algorithm is quadratic, as well as the use of a converging sequence
yn+1 = (x/yn + yn)/2, rather than a dedicated square root algorithm.

Miller-Rabin’s primality test (Fig. 4.16)

The third benchmark implements Miller-Rabin’s primality test for number sizes
commonly encountered in cryptography applications. This is a simple imple-
mentation inspired from GMP’s one. It exercises the mpz layer as well as the
modular exponentiation. Note that the modular exponentiation used in WhyMP
is just a wrapper over mpn_powm, so it supports neither even moduli nor nega-
tive exponents, contrarily to mpz_powm. WhyMP is 110% slower than GMP for
n ≤ 28, and 140% slower for n ≤ 60. With assembly primitives, the slowdown
is less than 30% for n ≤ 60.

Evaluation

Overall, two factors have a large impact on performance: the complexity of
the algorithms, and the quality of the underlying arithmetic primitives. On
large numbers, WhyMP’s multiplication and division fall behind even that of
the assembly-free version of GMP when the latter switches to asymptotically

4.9. EVALUATION, PERSPECTIVES 193

better algorithms. In all other cases, the algorithms are similar enough that the
primitives seem to be the deciding factor. What we conclude from this is that
WhyMP’s algorithms are close enough to the original that most of the perfor-
mance difference comes from the primitives written in handwritten assembly, at
least for smaller inputs.

4.9 Evaluation, perspectives

WhyMP was developed concurrently with my Why3 model of the C language, as
well as the extraction mechanism from WhyML to C. It served both as a proof of
concept of the verification approach they enable and as a way to evaluate these
tools. Let us go over some lessons learned from the development of WhyMP,
related work, and possible lines of future work.

4.9.1 Proof effort and lessons learned

As far as I am aware, WhyMP is the largest existing Why3 development, as
well as one of the first to span more than a few thousand lines of code. The
WhyMP sources currently total about 22 000 lines of WhyML code. A more
detailed breakdown can be found in Fig. 4.17. The automated solvers that I
used are Alt-Ergo (2.0.0, 2.2.0 and 2.3.0), CVC3 (2.4.1), CVC4 (1.5, 1.6 and
1.7), Z3 (4.5.0 and 4.6.0), the E prover (1.9.1-001 and 2.0), and the Gappa tool
(version 1.3.5). Replaying the proofs takes about an hour.

Each of the provers is necessary, in the sense that there are goals that only
this prover can check. It would be plausible to use only the most recent version
of each prover (the old versions are mostly used for historical reasons), but even
this would take a non-trivial amount of work that I was unable to do due to time
constraints. This naturally raises the question of the soundness of the solvers,
especially in the suspicious cases where only one prover manages to check a goal.
All these provers are indeed in the trusted code base. This issue is somewhat
mitigated by Why3’s bisect feature. After one solver manages to prove a goal,
bisect can be used to reduce the logical context to the smallest one that still
leaves the goal provable, using the succesful solver as an oracle to shave off
useless premises. In most cases, several other provers also manage to prove the
goal using the reduced context.

Among the 22 000 lines of code in the WhyMP sources, only about 8 000 of
them are program code. The other 14 000 are made up of specifications and
(mostly) assertions. It is worth mentioning that this ratio is not particularly
efficient as Why3 proofs go. As a point of comparison, the Why3 sources contain
a repository of about 200 example proofs. It contains about 400 WhyML files.
Discounting WhyMP, it totals about 18 000 lines of program code and 27 000
lines of proof code.

This relative inefficiency is not particularly surprising. Indeed, most of the
proofs of complex arithmetic facts in WhyMP were performed using many ex-
plicit proof hints in the form of very long assertions, sometimes over a hundred
lines long. This also explains how time-consuming the verification process was.
The next chapter focuses on explaining why the automated provers were not
well suited to automatically proving these facts, and describing the efforts that

194 CHAPTER 4. WHYMP

comparison 100
addition 1000
subtraction 1000
mul (naïve) 700
mul (Toom) 2400
division 4500
helper lemmas 300
reflection 1700
shifts 1000
square root 1600
exponentiation 1700
base conversions 2000
mpz layer 3600
utilities 200

Figure 4.17: Proof effort in lines of code per WhyMP function.

were made to automate some of these proofs by implementing and verifying a
dedicated decision procedure in WhyML.

Some proofs went much better than expected. An example of this is the
proof of the fixed-point square root algorithm. Although the algorithm is best
understood as an instance of Newton iteration, the concept did not need to ap-
pear in the WhyML development. Furthermore, the Gappa tool was extremely
well-suited to proving the required inequalities. Most of them were automat-
ically discharged while I did not understand the full details of why they were
true and would not have been able to write a pen-and-paper proof for them.

The proof served as a meaningful test of my region-based C memory model.
I initially expected the GMP functions to not be overly complex in terms of
aliasing, making such a region-based model a natural choice. This turned out
to not be entirely accurate. Throughout the verification process, I ended up
needing to add more and more ways for the memory model to circumvent the
aliasing constraints of WhyML. I still do believe that the choice of a region-based
memory model was correct. Indeed, I was very well served by the automated
alias tracking in all the situations where there were no complex aliases in the mpn
layer. By contrast, the formalization of the mpz layer used a region-free memory
model, where the aliasing needed to be handled directly in the logic. This was
a forced choice, as the functions of the mpz layer are very permissive in terms
of aliasing of the parameters. However, the lack of a region-based model was
harshly felt. A significant part of the proof effort was spent solving the frame
problem manually, by instantiating lemmas that stated that the values of most
mpz numbers had not changed between two program points. In the end, I still
believe that a region-based memory model was the right tool to verify a subset of
GMP in Why3, by making the best use of the latter’s type system. However, it
turned out that GMP was not as convenient a case study as I initially believed.

4.9.2 Related work

We have used Why3 to formally verify GMP’s integer arithmetic layer. We
obtain a verified and efficient C library. Previous work generally did not deal

4.9. EVALUATION, PERSPECTIVES 195

with a large number of highly optimized algorithms. As far as we know, this
work is the first formal verification of a comprehensive and efficient arbitrary-
precision integer library. Let us now list some examples of existing verifications
of arithmetic functions or libraries. Many of these examples were already listed
in the introduction, but we can now discuss them in more detail and compare
them to this work.

Myreen and Curello produced a verified arbitrary-precision integer arith-
metic library using the HOL4 theorem prover and separation logic [77]. Their
library covers the four basic arithmetic operations, but not the square root.
They do not attempt to produce highly efficient code. As a result, the algo-
rithms they proved are simpler and less efficient than the optimized ones that
we proved. For example, their multiplication algorithm is the schoolbook one.
However, their verification goes all the way down to x86 machine code, using
formally verified proof-generating compilers and decompilers to do part of the
proof on a higher-level implementation. Using these tools, they also managed
to avoid most proofs involving pointer reasoning. The total proof effort is about
6 000 lines. Their proof effort per algorithm is roughly similar to ours despite
them using an interactive tool.

Affeldt used Coq to verify a binary extended GCD algorithm implemented
in a variant of MIPS assembly [4], as well as the functions it depends on, such as
addition, subtraction, and halving. The work encompasses both signed and un-
signed integer arithmetic. It uses GMP’s number representation and a memory
model based on separation logic. The author verifies the algorithm in a pseudo-
code language and proves a forward simulation relation between the pseudo-code
and the MIPS assembly code to prove the latter’s correctness. It makes some
simplifying assumptions, such as requiring that the operands share the same
length. The GCD algorithm that is verified is not trivial, but it is much less
involved and efficient than the one implemented in GMP (which we have not
verified). The proof effort is hard to quantify, as the development relies on pre-
existing frameworks by the same author for pseudocode and assembly code, but
it is rather high. The proofs of the algorithms amount to about 15 000 lines of
Coq.

Fischer designed a modular exponentiation library [39] verified using Is-
abelle/HOL and a framework for verifying imperative programs developed by
Schirmer [88]. The verified algorithms include multiplication, division, and
square-and-multiply modular exponentiation. The library is not meant to be
as efficient as GMP, as it represents arbitrary-precision integers as garbage-
collected doubly-linked lists of machine integers. The algorithms are imple-
mented in a restricted variant of the C language and are automatically tran-
scribed into Isabelle. The functional correctness of the algorithms and the
pointer-level correctness of the data structure are proved, but not termina-
tion or the absence of arithmetic overflows. The author reports running into
slowdown and memory issues inside the tool due to the great number of invari-
ants and conditions present in the logical context to keep track of aliasing. By
contrast, Why3 automatically keeps track of aliases inside its region-based type
system, rather than in the logic. This means that the user does not need to
mention in specifications and proofs that such and such pointers are not aliased,
which would otherwise cause large slowdown issues similar to those reported by
Fischer.

Berghofer developed a verified bignum library programmed in the Spark

196 CHAPTER 4. WHYMP

fragment of the Ada programming language, using a verification framework
that sends goals to Isabelle/HOL [10]. The library provides modular exponen-
tiation, as well as the primitives required to implement it: modular multipli-
cation and squaring, modular inverse, and basic operations such as subtraction
and doubling. A simple square-and-multiply algorithm is used for modular
exponentiation, without the Montgomery reduction or the sliding window op-
timization that are featured in GMP and WhyMP. The author reports a 150%
slowdown compared to OpenSSL for their implementation of RSA using their
library. However, OpenSSL uses hand-written assembly code, which accounts
for a large part of the discrepancy. The proof effort for the library is only about
2 000 lines of Isabelle written over three weeks, which is surprisingly low, even
taking into account the low amount of verified algorithms.

Fixed-point square root algorithms have not been the subject of much for-
mal verification work. However, there has been extensive work on floating-point
square root algorithms with quadratic convergence. Harrison used HOL Light to
verify such an algorithm for the Intel Itanium architecture [50]. Russinoff used
ACL2 to verify the correctness of the AMD K5 floating-point square root [86].
Finally, Rager et al. used ACL2 and interval arithmetic to verify the low-level
Verilog descriptions of the floating-point division and square root implementa-
tions in the SPARC ISA, and found new optimizations in the process [82].

Bertot et al. verified GMP’s square-root general case algorithm [11] using
Coq and the Correctness tool, which translates an imperative program and its
specifications into verification conditions to be proved with Coq. Our Why3
proof of the same algorithm is directly lifted from their article. They specify
the memory as one large array of machine integers, so their specifications must
include additional clauses to tell which memory zones are left unchanged. Their
formalization is otherwise quite similar to ours. Their proof is about 13 000 lines
long, which is about half as long as all our proofs combined. However, Why3
proofs are partially automatic, while Coq proofs are entirely interactive, so it is
not surprising that we enjoy a lower proof effort.

Unlike our semi-automatic Why3 proofs, most of the approaches described
above use interactive proof assistants. There have also been efforts to prove
arithmetic libraries using automated tools. Schoolderman used Why3 to ver-
ify hand-optimized Karatsuba multiplication branch-free assembly routines for
the AVR microcontroller architecture [89]. The algorithms are not arbitrary-
precision, instead there are many routines, each suited for a particular operand
size up to 96× 96 bits. The fact that the size of the operands is fixed and rel-
atively small means the loops can be unrolled, which is why the algorithms are
branch-free. The size being known also makes the proof much easier for SMT
solvers, and the authors only needed to add a very small number of annotations
to make the automatic proof succeed.

Zinzindohoué et al. developed HACL*, a formally verified cryptography li-
brary written in F* and extracted to C [96]. It implements the full NaCl API,
and includes a bignum library. The extracted code is as fast as state-of-the-art
C implementations, and part of it is now deployed in the Mozilla Firefox web
browser. Their approach is similar to ours in that it consists in verifying the
algorithms in a high-level language suited for verification, and then compiling
them to C. The integers have a small, fixed size that depends on the choice
of elliptic curve. Again, the fact that the number sizes are known makes the
problem much easier for automated solvers. As a result, their proof enjoys a

4.9. EVALUATION, PERSPECTIVES 197

higher degree of automation than ours. While their specifications are similar or
larger in length, the function bodies require much fewer annotations than what
we needed for WhyMP.

Finally, Erbsen et al. used Coq to produce Fiat-Crypto, a verified C elliptic
curve cryptography library that is faster than existing handwritten implemen-
tations [30]. The algorithms are first implemented as high-level, parameter-
agnostic templates in continuation passing style. This high-level style facilitates
the functional verification of the algorithms. A certified compilation scheme,
written in Coq’s functional programming language Gallina, specializes these
templates for each of the many supported prime fields and produces fast C
code that is similar to what an expert implementer may write. Several of these
implementations are used in BoringSSL, the SSL library currently used in the
Chrome web browser.

4.9.3 WhyMP
In addition to being a test for our verification approach, WhyMP stands on its
own as a formally verified C development. It is not quite exhaustive enough
to be used as a replacement of GMP outside of carefully chosen contexts, but
it could get there with only a moderate amount of work on the mpz layer. Its
performance is reasonably close to GMP for smaller inputs, in particular when
comparing the assembly-free configurations. Enough cosmetic work has been
done in the extraction that the generated source code is not much harder to read
than GMP’s original code. One limitation of WhyMP is a lack of genericity. In
the current Why3 development, all number sizes are fixed, we assume that the
type int is 32 bits wide, and many driver directives rely on GCC/Clang builtins.
The library is not as portable as we could expect of a pure C implementation.
However, it is not too far off. For example, removing the 128-bit code and
using malloc instead of alloca for temporary allocations is sufficient to make
it compile with CompCert. Crucially, the WhyML code itself does not need to
be changed.

A natural direction for future work on WhyMP would be to add support for
GMP’s cryptography-oriented functions. GMP features side-channel resistant
variants of most basic operations and modular exponentiation. They are cur-
rently not implemented in WhyMP. (Some work was started on the side-channel
resistant exponentiation algorithm, but not finished.) As a result, WhyMP can-
not really be used in security-sensitive cryptographic applications. GMP also
features a number of number-theoretic algorithms, such as an efficient greatest
common divisor algorithm and various variants of the Legendre symbol, which
WhyMP also lacks.

Another line of future work would be to verify assembly code for some main-
stream instruction sets. This way, we could close the performance gap with
GMP by also using arithmetic primitives written in handwritten assembly with-
out extending the trusted code base overmuch. In principle, one could develop
a memory model and extraction mechanism for x86_64 assembly much as I
did for C, and verify assembly primitives that way. One obstacle to this ap-
proach is that the control flow of assembly programs is not as structured as that
of supported fragment of C. In particular, assembly programs tend to feature
backward jumps that may not be supported by Why3’s current WP calculus,
so we would need to extend it first.

Chapter 5

Proofs by reflection

The previous chapter mentioned that the proof effort required to verify WhyMP’s
algorithms was large, but did not go into much more detail. Let us now briefly
discuss the process of carrying out a Why3 proof in practice. When a user opens
a WhyML file with Why3’s graphical user interface, they are presented with a
number of tasks. A task is made up of a logical formula to prove (the goal), and
a set of declarations and logical premises (also called the proof context). When
the user has managed to prove all the tasks, the WhyML program is considered
proved.

Why3 gives the user several tools to prove the tasks. The first resort is the
various automated solvers that Why3 interfaces with. The user chooses one or
more solvers, sets a time and memory limit, and waits for a solver to declare the
goal valid. If that happens, the task is ticked in the graphical interface and the
user moves on to the next one. Unfortunately, sometimes no solver manages to
prove the goal. This may mean that the goal is in fact invalid. However, there
are other reasons why a goal may not be proved by the solvers. For example,
the goal may not be well supported by an SMT solver’s built-in theories. The
user may also have set an overly low time limit. In the case of the verification
of WhyMP, these two issues were pervasive. Indeed, many goals featured non-
linear arithmetic with symbolic exponents, which many solvers did not handle
well. Furthermore, I often set relatively low time limits, such as two to five
seconds. Indeed, having a shorter feedback loop tended to make the process
more efficient overall, even if it led me to perform extra work for goals that
solvers might have eventually proved after several minutes.

Assume now that none of the automated solvers at the user’s disposal have
managed to discharge a given goal. The user has several remaining options.
First, they can attempt to verify the goal in an interactive theorem prover such
as Coq or Isabelle. However, I was reluctant to do so, mainly because of my lack
of proficiency with these tools. Why3 also offers some native interactive theorem
proving capabilities in the form of task transformations. Transformations take
a task and return one or more tasks that, once proved, imply that the original
task is valid. As an example, a transformation might turn the goal P ∧ Q into
two subgoals P and Q. The most commonly used transformations are analogous
to simple Coq tactics such as split, apply or rewrite. Through sufficient
massaging of the goals, the user often succeeds in getting the automated solvers
to prove them. However, there is no equivalent to Coq’s tactic language for the

199

200 CHAPTER 5. PROOFS BY REFLECTION

user to program their own transformations in. They are restricted to Why3’s
built-in ones.

If the solvers still cannot discharge the goals, the final resort of the user is to
edit the original WhyML source file to make it easier to verify. This edit usually
takes the form of additional proof annotations such as assertions, lemmas, and
so on. When reloading the graphical user interface, the goals change to reflect
the new file, and they are hopefully easier to discharge. The user iterates this
process until all goals are proved. This iterative process is an instance of what
Leino calls auto-active verification [62].

During the verification of WhyMP, I had to resort to this method for a
very large number of goals. In many cases, the additional proof annotations
were themselves difficult to verify, prompting me to add even more. Using the
by and so connectives [20], I was able to write a large number of very long
assertions (sometimes more than a hundred lines long!) that looked more like
pen-and-paper, declarative proofs than anything else. This explains why the
ratio between proof code and program code was so skewed in favor of proofs in
the breakdown from Sec. 4.9.

A frustrating fact was that many of these assertions did not contain many
clever mathematical insights, but simply performed simple algebraic symbol
manipulations that I would have expected the automated solvers to be able to do
by themselves. Furthermore, similar kinds of goals ended up being problematic
in a variety of WhyMP proofs, and the resulting assertions were themselves very
similar to each other. This led me to try to automate these tedious proofs using
computational reflection.

This chapter describes my efforts to increase the degree of automation of
WhyMP proofs. It is largely drawn from a previous article [70]. I have added
to Why3 a framework for proofs by reflection, described in Sec. 5.1. Section 5.2
explains how I used it in the verification of WhyMP. Finally, Sec. 5.3 evaluates
the proof effort saved by this increased automation and draws possible lines of
future work.

5.1 Introducing reflection in Why3

When one wants to extends a theorem prover with new capabilities (e.g., an
inference rule dedicated to the problem at hand), one way is to “incorporate
a reflection principle, so that the user can verify within the existing theorem
proving infrastructure that the code implementing a new rule is correct, and to
add that code to the system” [49]. We have modified Why3 to offer computa-
tional reflection, and made use of this to discharge some very large assertions in
WhyMP proofs. We first explain the principle of proofs by reflection using the
example of Strassen’s matrix multiplication algorithm (Sec. 5.1.1). In Sec. 5.1.2,
we explain how to reify logical propositions into inductive objects that can be
manipulated inside Why3’s logic. Section 5.1.3 describes how verified and ef-
fectful WhyML programs can be used as decision procedures. Finally, Sec. 5.1.4
discusses the soundness of our approach and its impact on Why3’s trusted code
base.

5.1. INTRODUCING REFLECTION IN WHY3 201

5.1.1 An example: Strassen’s matrix multiplication
When designing a decision procedure by reflection, one first finds an embedding
of the propositions P of interest into the logical language of the formal system.
Let us denote pPq the resulting term, e.g., the abstract syntax tree of P . Then
one proves that, if pPq satisfies some property ϕ, then P holds. Thus, when one
wants to prove that some proposition P holds, one just has to check that ϕ(pPq)
does. If ϕ is designed so that ϕ(pPq) can be validated just by computations,
then we have a proof procedure by computational reflection.

Let us illustrate this process on a toy example: the correctness of Strassen’s
matrix multiplication algorithm. Among other properties, one has to prove four
matrix equalities such as the following one:

A1,1B1,1 + A1,2B2,1 = M1,1,

with

M1,1 = (A1,1 + A2,2) · (B1,1 + B2,2) + A2,2 · (B2,1 −B1,1)

− (A1,1 + A1,2) ·B2,2 + (A1,2 −A2,2) · (B2,1 + B2,2).

By the group laws of matrix addition and by distributivity of matrix mul-
tiplication, one easily shows that the right-hand side of the equality can be
turned into the left-hand side. Unfortunately, in practice, SMT solvers (Alt-
Ergo, CVC4, Z3) and TPTP solvers (the E prover) fail to prove such a propo-
sition. There are two reasons. First, a solver should instantiate the above
algebraic laws on the order of one hundred times, assuming they apply them in
an optimal way. Second, when verifying programs, the proof context is usually
filled with hundreds of other instantiable theorems, which will delay applying
the algebraic laws. As a consequence, unless an automated prover implements
a dedicated decision procedure for this kind of property, there is no way its
proof can be found. Let us see how to supplement the lack of such a dedicated
decision procedure.

Embedding terms

The first step is to embed M1,1 into the logical language of Why3. We define
the following inductive type t to represent its abstract syntax tree:

type t = Var int | Add t t | Mul t t | Sub t t | Ext r t

Matrices appearing at the leaves of the expression (e.g., A2,1) are assigned
a unique integer identifier and are represented using the Var constructor. The
sum, product, and differences of two matrices, are represented using the con-
structors Add, Mul, and Sub. Finally, the Ext constructor represents the external
product (by a value of type r), which is not needed in the case of Strassen’s
algorithm.

Note that the function M 7→ pMq cannot be expressed in the logical lan-
guage, but its inverse can. We thus define a function that maps a term of type t
into a matrix, as shown in Fig. 5.1. That definition causes Why3 to create a re-
cursive function interp inside the logical system, since its termination is visibly
guaranteed by the structural decrease of its argument x.

When aplus, resp. atimes, is instantiated using matrix sum, resp. prod-
uct, one can prove that the Why3 term interp (Mul (Add (Var 0) (Var 1))

202 CHAPTER 5. PROOFS BY REFLECTION

type vars = int → a
let rec function interp (x: t) (y: vars) : a =

match x with
| Var n → y n
| Add x1 x2 → aplus (interp x1 y) (interp x2 y)
| Mul x1 x2 → atimes (interp x1 y) (interp x2 y)
| Sub x1 x2 → asub (interp x1 y) (interp x2 y)
| Ext r x → (#) r (interp x y)
end

Figure 5.1: Interpreting the abstract syntax tree of a polynomial.

(Var 7)) y is equal to (A1,1 + A1,2) · B2,2, assuming that y maps 0 to A1,1,
1 to A1,2, and 7 to B2,2. This proof can be done by unfolding the definition
of interp, by reducing the match with constructs, and by substituting the
applications of y by the corresponding results. Why3 provides a small rewrit-
ing engine that is powerful enough for such a proof, but one could also use an
external prover.

Normalizing terms

Let us suppose that we now have two concrete expressions x1 and x2 of type t
and a single map y of type vars, and that we want to prove the following
equality:

goal g: interp x1 y = interp x2 y

The actual value of y does not matter, but the facts that aplus is a group
operation and that amult is distributive do. In other words, we want to see
x1 and x2 as non-commutative polynomials and we want to prove that they
have the same monomials with the same coefficients. To do so, let us turn them
into weighted lists of monomials. Figure 5.2 shows an excerpt of the code. For
example, the term (A1,1 + A1,2) ·B2,2 gets turned into the list

Cons (M 1 (Cons 0 (Cons 7 Nil))) (Cons (M 1 (Cons 1 (Cons 7 Nil))) Nil)

type m = M int (list int)
type t’ = list m

let rec function interp’ (x: t’) (y: vars) : a =
match x with
| Nil → azero
| Cons (M r m) l → aplus ((#) r (mon m y)) (interp’ l y)
end

let rec function conv (x:t) : t’
ensures { forall y. interp x y = interp’ result y }

= match x with
| Var v → Cons (M rone (Cons v Nil)) Nil
| Add x1 x2 → (conv x1) ++ (conv x2)
| Mul x1 x2 → ... (* develop and sort monomials *)
end

Figure 5.2: Converting a polynomial to a list of monomials.

5.1. INTRODUCING REFLECTION IN WHY3 203

Note that we have introduced a new interpretation function interp’ and
we have stated the postcondition of conv accordingly. Why3 requires us to
prove that this postcondition holds. The proof is straightforward, even in the
multiplication case. Once done, we obtain the following lemma in the context:

lemma conv_def: forall x y. interp x y = interp’ (conv x) y

We define one last function, norm, which sorts a weighted list of monomials
by insertion using a lexicographic order, merging contiguous monomials along
the way. Its postcondition, once proved, leads to

lemma norm_def: forall x y. interp’ x y = interp’ (norm x) y

Note that we do not even need to prove that norm actually sorts the input list
or that it merges monomials, so the proof is again trivial. If there is some bug
in norm, it only endangers the completeness of the approach, not its soundness,
as long as norm_def is provable. For example, defining norm as the identity
function would ultimately be fine but pointless.

By composing norm and conv and equality, we get our decision procedure ϕ
dedicated to verifying Strassen’s algorithm. Indeed, to prove the goal g above,
we just need to prove the following intermediate lemma:

lemma g_aux: norm (conv x1) = norm (conv x2)

As with interp before, norm and conv are logic functions defined by in-
duction on their argument, so there is no difficulty in proving g_aux using the
rewriting engine of Why3 or an external automated prover.

Advantages

There are several advantages to this approach. The most important one is that
the user can easily design a decision procedure dedicated to the problem at
hand. Indeed, the inductive type for representing expressions does not have
to handle the full extent of the language, but can focus on the constructions
that matter (e.g., addition). Moreover, the soundness of the system is not
endangered, since the user has to prove the correctness of the procedure (e.g.,
the lemmas conv_def and norm_def). Finally, since the procedure is ad hoc,
performances in the general case do not matter much, so one can write it so that
both the code and the proof are straightforward. For instance, in the example
above, the sorting algorithm has quadratic complexity and one only has to prove
that the interpretation of the list is left unchanged. Thus, SMT solvers quickly
discharge all the verification conditions that Why3 generates to guarantee that
the implementation of the decision procedure satisfies its specification.

Even if this normalization procedure is dedicated to proving Strassen’s algo-
rithm, we took advantage of Why3’s module system to make it generic: coeffi-
cients are in an arbitrary commutative ring and variables are in a (noncommu-
tative) ring. Both rings are potentially different, as in the case of matrices. The
genericity of the presented decision procedure does not extend to supporting
variables in a commutative ring, but it is just a matter of duplicating the code
of the decision procedure to modify the ordering relation, which we did.

5.1.2 Reification
We have not yet explained how one obtains the inductive objects used to in-
stantiate the decision procedure. Without modifying Why3, it would be up to

204 CHAPTER 5. PROOFS BY REFLECTION

the user to provide them, which is too much work in practice. Even for an al-
gorithm as simple to verify as Strassen’s, the user might forfeit before finishing
to translate all the terms of the algorithm.

Possible approaches

To circumvent this issue, the original Why3 proof of Strassen’s algorithm uses a
clever approach [21]. The type of matrices has been modified so that a matrix
contains not only the values of its cells but also the normalized list of monomials
representing all the operations performed to obtain the matrix. In other words,
the decision procedure has been split and embedded into all the matrix opera-
tions and it is executed symbolically along them. The lists of monomials (and
the operations to build them) are declared ghost, so they do not interfere with
actual matrix computations and can be erased from the final algorithm, which
is therefore still fundamentally the same. Nonetheless, this approach forces the
user to instrument the matrix operations, and while these modifications are
suitable to prove Strassen’s algorithm, they might be useless when verifying an-
other matrix algorithm, if not detrimental by polluting the proof context with
all the symbolic computations.

Thus, for a reflection-based decision procedure to be useful, we have to
provide some ways to automate the reification process, that is, the conversion
of expressions into their inductive representation.

As mentioned above, one difficulty lies in defining pq, which is an inverse
function of interp. This inverse is usually written using the meta-language of
a formal system to parse the term and to produce the corresponding inductive
object. Since Why3 can load plugins written in OCaml, one could certainly use
OCaml as a meta-language for Why3. This unfortunately requires the user to
learn the inner workings of Why3.

Another possibility would be to use WhyML as a meta-language by providing
some primitives to visit the abstract syntax trees of expressions and by making
Why3 able to interpret it. As is the case for other formal systems [95, 29],
any WhyML function using such primitives would no longer be meaningful for
the remainder of the logical system, so as to avoid inconsistencies. The user
would thus no longer need to leave the confines of WhyML, but this is still not
completely satisfactory. Indeed, as written before, pq is the inverse of interp, so
any explicit definition seems superfluous. Instead, I have implemented a Why3
task transformation that can invert such interpretation functions on the fly.

Inversion of the interpretation function

Consider the following function, which is just a variant of the decision procedure
for Strassen’s algorithm:

let norm_f (x1 x2: t) : bool
ensures { forall y:vars. result = True → interp x1 y = interp x2 y }

= match norm (conv (Sub x1 x2)) with
| Nil → True (* the difference evaluates to the empty polynomial *)
| _ → False
end

Whenever the user wants to use this decision procedure to prove a goal, we
would like Why3 to automatically find x1, x2, and y, so that the right-hand
side of the post-condition matches the goal. This is done by a straightforward

5.1. INTRODUCING REFLECTION IN WHY3 205

recursive walk of the goal. Let us illustrate this walk with foo a + b = c. This
goal is an equality, and so is the right-hand side of the postcondition of norm_f,
so the transformation proceeds recursively on each side of the equality. The
left-hand side starts with an addition, while there is an application of interp in
the postcondition, so Why3 assumes that interp is an interpretation function.

The interp function starts with a pattern matching on its first argument, so
Why3 looks at all of the branches. The second branch starts with an addition
(i.e., aplus, which we assume was instantiated with +). So Why3 registers
that x1 should start with the constructor Add, and so on, recursively. Eventually,
Why3 has to match foo a against a branch. None of them matches, but the one
for the Var constructor returns y n, with y a variable of type arrow. So Why3
selects a fresh integer for n, e.g., 0, and remembers that y maps 0 to foo a.

Extensions

The previous process works fine when a goal has to be proved in isolation, irre-
spective of the proof context. To remove this limitation, Why3 also recognizes
the presence of an implication inside a branch of an interpretation function. In
that case, it tries to match a hypothesis of the proof context against the left-
hand side of the implication, and it does so recursively until all the hypotheses
of the context have been tried. The following functions illustrate this behavior.
They serve as interpretation functions of a decision procedure that needs to
consider all the equalities from the proof context. In this example taken from
the verification of GMP’s algorithms, the fact that the goal also has to be an
equality is a coincidence.

function interp_eq (g:equality) (y:vars) (z:C.cvars) : bool
= match g with (g1, g2) → interp g1 y z = interp g2 y z end

function interp_ctx (l:list equality) (g:equality) (y:vars) (z:C.cvars) : bool
= match l with

| Nil → interp_eq g y z (* goal *)
| Cons h t → (interp_eq h y z) → (interp_ctx t g y z)
end

Notice that, since Why3’s logical system does not permit functions returning
logical propositions, we have defined these interpretation functions as returning
Boolean values. But this has no impact on the way reification proceeds.

While the decision procedures presented here ignore quantified formulas, our
reification transformation does support them. For example, the excerpt below
would handle universal quantifiers in a nameless fashion, using negative indices
to store the depth of the quantifier:

function interp_fmla (f:fmla) (l:int) (b:vars) : bool
= match f with

| Forall f’ → forall v. interp_fmla f’ (l-1) b[l ← v]
| ...
end

A current limitation of our approach is the purely syntactic nature of the
reification step. For example, for an uninterpreted function foo, the terms
foo (a+b) and foo (b+a) are mapped to distinct variables, even though they
are provably equal. This requires a significant amount of extra work from the
user. However, this can be mitigated either in the reification step itself or by
composition with another decision procedure.

206 CHAPTER 5. PROOFS BY REFLECTION

5.1.3 Effectful decision procedures

Computations in the reflection-based proof from Sec. 5.1.1 are all done in logic
functions, which are unfolded by automated provers or Why3’s rewriting engine.
A limitation of this approach is that Why3’s language of logic functions is not
very expressive, as they must be side effect-free and their termination must be
guaranteed by a structurally decreasing argument.

In this section, we show how we can instead write decision procedures as
regular WhyML programs, making full use of the language’s imperative features
such as loops, references, arrays, and exceptions. These decision procedures
are proved correct using Why3 and some automated theorem provers. Their
contract can then be instantiated by reification of the goal and context, and
used as a cut indication.

Running example: systems of linear equalities

As an example, let us consider a decision procedure for linear equation systems
in an arbitrary field (code excerpts in Fig. 5.3). Given some assumed-valid linear
equalities in the context, the procedure attempts to prove a linear equality by
showing that it is a linear combination of the context.

This is done by representing the context and goal by a matrix and performing
a Gaussian elimination (function gauss_jordan). In case of success, we obtain a
vector of coefficients and we check whether the corresponding linear combination
of the context is equal to the goal (function check_combination). Otherwise,
the procedure returns False and proves nothing, since its postcondition has
result = True as premise.

As is done in Coq with the tactics lia and lra [12], this is a proof by
certificate, since we check if the linear combination of the context returned
by gauss_jordan matches the goal. There is no need to prove the Gaussian
elimination algorithm itself, nor to define a semantics for the matrix passed to
it as a parameter. In fact, we do not prove anything about the content of any
matrix in the program. This makes the proof of the decision procedure very
easy in relation to its length and intricacy.

Let us now examine the contract of the decision procedure. The postcon-
dition states that the goal holds if the procedure returns True, for any valua-
tions y and z of the variables such that the equalities in the context hold. The
valid_ctx and valid_eq preconditions state that the integers used as variable
identifiers (second argument of the Term constructor) in the context and goal
are all nonnegative. This is needed to prove the safety of array accesses. The
nature of the reification procedure ensures that these preconditions will always
be true in practice, but as reification is not trusted, the user has to verify them
explicitly; SMT solvers do this very easily. Finally, the raises clause expresses
that an exception may escape the procedure (typically an arithmetic error, as
we allow the field operations to be partial). In that case, nothing is proven.

Notice that the decision procedure is independent from Why3 (apart from
the fact that it is formally verified), in the sense that it does not contain meta-
instructions for reification or anything linked to Why3 internals. One could
easily imagine finding the same kind of code in an automatic prover.

5.1. INTRODUCING REFLECTION IN WHY3 207

clone LinearEquationsCoeffs as C with type t = coeff

type expr = Term coeff int | Add expr expr | Cst coeff
type equality = (expr, expr)

let linear_decision (l: list equality) (g: equality) : bool
requires { valid_ctx l }
requires { valid_eq g }
ensures { forall y z. result = True → interp_ctx l g y z }
raises { C.Unknown → true | Failure → true }

=
let nv = (max (max_var_e g) (max_var_ctx l)) in
...
let nv = Int63.of_int nv in
let ll = Int63.of_int (length l) in
let a = Matrix63.make ll (nv+1) C.czero in
let b = Array63.make ll C.czero in (* ax = b *)
let v = Array63.make (nv+1) C.czero in (* goal *)
...
fill_ctx l 0;
let (ex, d) = norm_eq g in
fill_goal ex;
let ab = m_append a b in
let cd = v_append v d in
match gauss_jordan (m_append (transpose ab) cd) with

| Some r → check_combination l g (to_list r 0 ll)
| None → False

end

Figure 5.3: Decision procedure for linear equation systems.

208 CHAPTER 5. PROOFS BY REFLECTION

Interpreter

Due to their side effects, functions from WhyML programs only have abstract
declarations in the logical world (as opposed to the concrete logic functions used
in Sec. 5.1.1). Therefore, they cannot be unfolded by automatic provers or by
Why3’s rewriting engine. In order to compute the results of decision procedures
such as the previous one, I have added an interpreter to Why3. It operates on
the ML-like intermediate language produced by the first step of the extraction
mechanism (see Sec. 3.4.1). It corresponds to WhyML programs from which
logic terms, assertions, and ghost code, were erased, thereby assuming that the
program was proved beforehand and that the preconditions are met.

Our interpreter provides built-in implementations for some axiomatized parts
of the Why3 standard library, such as integer arithmetic, arrays, and references.
To ease the debugging of decision procedures, I have added to Why3’s standard
library a print function of type ’a -> unit that does nothing. It is interpreted
as a polymorphic printf function.

5.1.4 Soundness, trusted code base
The implementation of our framework requires two additions to Why3: a reifi-
cation transformation and an interpreter of WhyML programs. Let us discuss
the soundness of our approach.

First, the rather large and intricate code needed for reification is not part
of the trusted computing base of Why3. Indeed, the reification merely guesses
values for all the relevant variables and asks Why3 to instantiate the contract
of the decision procedure with them. Assuming the user has proved the sound-
ness of the decision procedure, this instantiated proposition holds, whether the
reification algorithm is correct or not. A reification failure would either prevent
a well-typed instantiation of the post-condition, or the resulting cut would be
useless for proving the current goal.

Contrarily to the reification code, our interpreter is part of the trusted com-
puting base. Fortunately, it is quite simple, since it only manipulates concrete
values. There is no need for partial evaluation nor symbolic execution nor poly-
morphic equality, which makes this new interpreter much simpler than the ex-
isting rewriting engine. Another reason for its simplicity is that the interpreted
language is not WhyML, but the intermediary representation used by the ex-
traction mechanism (see Sec. 3.4.1). This intermediate language has relatively
few constructions, since program transformations performed by the existing ex-
traction mechanism eliminate potentially confusing behaviors from the surface
language such as parallel assignation.

5.2 Proofs by reflection in WhyMP
The motivation that led me to develop this framework for proofs by reflection
was the large amount of tedious proofs that had to be performed during the
early stages of the verification of WhyMP. This section explains how I was able
to use computational reflection to automate some of these proofs. We begin by
presenting a tedious proof from WhyMP as a motivating example (Sec. 5.2.1).
Then, we reduce the problem to a system of equations that can be seen as linear
using a well-chosen set of coefficients (Sec. 5.2.2). Finally, Sec. 5.2.3 shows how

5.2. PROOFS BY REFLECTION IN WHYMP 209

the decision procedure from the previous chapter can be composed with some
well-chosen normalization functions to solve the problem.

5.2.1 Motivating example: an easy yet tedious proof

Many proofs in WhyMP involve very large assertions that use the by and so
connectives. Many of these assertions are proofs of relatively simple identi-
ties through symbolic manipulation of algebraic expressions. Their proofs are
straightforward, but time-consuming when there are many intermediate steps.
In an ideal world, automated provers would be able to discharge these by them-
selves, but they are not. An excerpt of an earlier version of the WhyMP long
addition function can be found in Fig. 5.4. It features one such assertion.

1 let wmpn_add_n (r x y: ptr uint64) (sz: int32) : uint64
2 requires { valid x sz ∧ valid y sz ∧ valid r sz }
3 ensures { 0 ≤ result ≤ 1 }
4 ensures { value r sz + (power radix sz) * result = value x sz + value y sz }
5 =
6 let ref i = 0 in
7 let ref lx = 0 in
8 let ref ly = 0 in
9 let ref c = 0 in

10 while Int32.(<) i sz do
11 invariant { value r i + (power radix i) * c = value x i + value y i }
12 lx ← get_ofs x i;
13 ly ← get_ofs y i;
14 let res, carry = add_with_carry lx ly c in
15 set_ofs r i res;
16 c ← carry;
17 assert { value r (i+1) + (power radix (i+1)) * c
18 = value x (i+1) + value y (i+1)
19 by value r (i+1) + (power radix (i+1)) * c
20 = value r i + (power radix i) * res
21 + (power radix i) * c
22 = ... (* 10+ subgoals *) };
23 i ← i + 1;
24 done;
25 c

Figure 5.4: WhyML proof of the long addition function.

The proof of this assertion consists in a sequence of about ten rather simple
steps (rewrite an equality in the context, use distributivity, etc.) but the large
search space prevents the automatic provers from succeeding. Therefore, we
had to provide many cut indications by hand using the by construct.

Yet, with a judicious choice of coefficients, this goal (and many others in
the proofs of our library) can be seen as a linear combination of the context.
Therefore, we should be able to use the decision procedure from Sec. 5.1.3 to
prove the assertion in one go. In the up-to-date version, only the goal is stated,
and there is no need for a by keyword and a subsequent proof. Let us now
explain how.

210 CHAPTER 5. PROOFS BY REFLECTION

5.2.2 Coefficients

The following is a simplified version of the context and goal obtained for the
assertion of the main loop of wmpn_add_n (Fig. 5.4, line 17). The variables r1
and c1 denote the values of r and c at the start of the loop (before the mod-
ifications that occur at lines 15 and 16). Notice that the linear combination
H5− H4− H3 + H2 + βi · H1 + H simplifies to an equality equivalent to g. In or-
der to prove this, our decision procedure has to include powers of β (radix in
the WhyML code) in its coefficients, and to support symbolic exponents (as i
is a variable).

axiom H: value r1 i + (power radix i) * c1 = value x i + value y i
axiom H1: res + radix * c = lx + ly + c1
axiom H2: value r i = value r1 i
axiom H3: value x (i+1) = value x i + (power radix i) * lx
axiom H4: value y (i+1) = value y i + (power radix i) * ly
axiom H5: value r (i+1) = value r i + (power radix i) * res
goal g: value r (i+1) + power radix (i+1) * c

= value x (i+1) + value y (i+1)

More precisely, the coefficients of our decision procedure are the product of
a rational number and a (symbolic) power of β. Fig. 5.5 is an excerpt of the
WhyML implementation of the coefficients. The decision procedure of Fig. 5.3
is instantiated with type coeff = t.

type exp = Lit int | Var int | Plus exp exp | Minus exp | Sub exp exp
type rat = (int, int)
type t = (rat, exp)

function qinterp (q:rat) : real
= match q with (n,d) → from_int n /. from_int d end

function interp_exp (e:exp) (y:vars) : int
= match e with

| Lit n → n
| Var v → y v
| Plus e1 e2 → interp_exp e1 y + interp_exp e2 y
| Sub e1 e2 → interp_exp e1 y - interp_exp e2 y
| Minus e’ → - (interp_exp e’ y)
end

function interp (t:t) (y:vars) : real
= match t with

(q,e) → qinterp q *. pow radix (from_int (interp_exp e y))
end

Figure 5.5: Definition of the coefficients.

One can define addition, multiplication, and multiplicative inverse over these
coefficients. Addition is partial, since one may only add two coefficients with
equal exponents (otherwise the result would not be a valid coefficient). If this is
not the case, the addition raises an exception, which is accounted for in the spec-
ification of the decision procedure (exception C.Unknown in Figure 5.3). Note
that exponents do not have to be structurally equal, only to have equal interp_-
exp interpretations for all values of y, which can be automatically proved within
the decision procedure.

5.3. EVALUATION, PERSPECTIVES 211

5.2.3 Modular decision procedures
The coefficients above are expressive enough to prove assertions such as the one
in Figure 5.4. However, notice that their interpretation (function interp in
Figure 5.5) is expressed in terms of real numbers (this is needed because the
Gaussian elimination algorithm used in the decision procedure needs to compute
the multiplicative inverse of some coefficients), while the context and goal consist
in equalities over integers. Moreover, the inductive type for expressions that
is used in the decision procedure (type expr in Figure 5.3) is quite restrictive,
which simplifies the code of the decision procedure. However, this is problematic
for the user, since a term such as 2 * 3 * x cannot be reified by inversion of
interp.

These constraints can be lifted thanks to an approach similar to the conv
function in Sec. 5.1.1. We compose the decision procedure linear_decision
with a function that converts integer-valued coefficients to real-valued coeffi-
cients (called by m_ctx and m_eq), and the function simp_ctx, which converts
from a more expressive expression type to the expr type (code excerpts in Fig-
ure 5.6).

let decision (l:list equality’) (g:equality’) : bool
requires { valid_ctx’ l ∧ valid_eq’ g }
ensures { forall y z. result = True → interp_ctx’ l g y z }
raises { Unknown → true }

= let sl, sg = simp_ctx l g in
linear_decision sl sg

let mp_decision (l: list equality’’) (g: equality’’) : bool
requires { valid_ctx’’ l ∧ valid_eq’’ g }
ensures { forall y z. result = True → pos_ctx’’ l z → pos_eq’’ g z

→ interp_ctx’’ l g y z }
raises { Unknown → true }

= decision (m_ctx l) (m_eq g)

Figure 5.6: Composition of decision procedures.

The conversion procedure from integer-valued to real-valued coefficients is
only sound when the exponents of β are nonnegative. This is always the case
for GMP algorithms. Due to the symbolic exponents, it is not yet possible to
automatically prove this property within the decision procedure, so we instead
add it as an extra precondition (the pos_* predicates in mp_decision). In
practice, SMT solvers prove it easily.

While the final decision procedure is specialized for WhyMP goals, almost all
the reasoning is done in the generic linear decision procedure linear_decision,
presented in the previous section. For other use cases than GMP, users should
also be able to develop their own interpretation and conversion layers and reuse
the primary linear decision procedure (available in the source code of WhyMP)
as is.

5.3 Evaluation, perspectives
Let us now compare this reflection framework to previous work, evaluate how
useful it was to the verification of WhyMP, and lay out future work perspectives.

212 CHAPTER 5. PROOFS BY REFLECTION

5.3.1 Related work

Computational reflection is a widely used way to automate proofs in formal
verification systems. A few examples are discussed below.

Grégoire and Mahboubi developed a reflexive tactic to efficiently decide
equality over rings and semi-rings in the Coq theorem prover [48]. The core
decision procedure normalizes polynomials of C[X] into sparse Horner form,
where the set C of coefficients is a parameter. The algorithm is optimized
and the normal form is carefully chosen to maximize performance. However, a
large part of the computations occurs in the underlying coefficient set, which
is generally a Coq type that is not necessarily computationally efficient. For
example, the authors report that the most commonly used coefficient set is Z, a
representation of relative integers using lists of bits. Reification is performed by
relatively simple functions written in Coq’s meta-language Ltac, which allows
pattern matching over Coq terms. Presumably, a user wishing to use the tactic
on an unusual ring would need to write their own reification function in Ltac,
but most veteran Coq users can be expected to be able to do so.

Besson developed the Coq tactics lia and lra (named after the Linear
Integer Arithmetic and Linear Real Arithmetic SMT theories) using a different
approach [12]. Rather than programming a decision procedure inside Coq, a
skeptical approach is used. The proof search is delegated to external solvers.
They produce certificates that are then checked by a verified decision procedure
implemented in Coq.

There is not as much existing work on computational reflection using effectful
decision procedures. One may cite Claret et al. [19]. They use a monadic
encoding of effectful computations in Coq (e.g., non-termination). Monadic
decision procedures are turned into impure programs that are executed outside
of Coq. The result of these external computations is used as a “prophecy” to
simulate the execution of the decision procedure inside of Coq. Since we are
working with Why3, which natively supports impure computations, we sidestep
the need for a heavyweight simulation mechanism.

Chaieb and Nipkow implemented quantifier elimination procedures for both
linear integer arithmetic and linear real arithmetic in Isabelle/HOL [18]. They
implemented both procedures twice: once directly as Isabelle tactics written
in a meta-language, and once by reflection, that is, as verified programs that
perform computations inside the logic, and can be extracted to ML code using
Isabelle’s code generator. They benchmarked both implementations and report
that the reflexive approach is one to two orders of magnitude faster. The key
advantage seems to be that the execution environment of the tactics is much
slower than native extracted ML code.

Martínez et al. introduced a metaprogramming framework in F* that allows
the development of reflexive decision procedures [68]. The framework converts
back and forth between F* terms and an embedding of their abstract syntax
trees, thus enabling reification. Using this framework, the authors developed a
ring-like reflexive decision procedure to automate the resolution of non-linear
arithmetic goals and increase the replay speed and robustness of their proof of
a real-world cryptographic algorithm. Using F*’s extensible effect system, they
define metaprograms as first-class F* programs that have a particular effect:
manipulating the proof state. Metaprograms can be run using F*’s reduction
engine, or extracted to OCaml and run natively. They can be specified and

5.3. EVALUATION, PERSPECTIVES 213

verified, but only to a degree. Safety properties can be verified, but the fact that
a tactic correctly solves a goal cannot be proven, or even expressed in F*’s logic.
By contrast, our framework lets users verify that their decision procedures are
correct, since the reification transformation is kept separate from the decision
procedures.

5.3.2 WhyMP and proofs by reflection

When I developed this reflection framework at the end of 2017, WhyMP only
contained a few algorithms: addition, subtraction, schoolbook multiplication,
logical shifts, and division. At that point, the library contained about 6000
lines of WhyML code, including 4000 lines of proof code. After completing the
decision procedure for linear equation systems and its specialization for GMP
goals, I revisited the existing proofs to see if many assertions could be replaced
by proofs by reflection.

It was reasonably successful. I was able to delete almost a thousand lines’
worth of assertions, including about half of the proof code of the addition,
subtraction and multiplication proofs. The division contained a much bigger
amount of assertions, many of which were not in the fragment supported by my
decision procedure. It is worth noting that while it only deals with linear equa-
tion systems, I was able to use it to prove goals in the proofs of multiplication,
division, and logical shifts that appeared completely nonlinear at first glance.
Indeed, in many cases, it was possible to replace fifty-line long assertions by only
one or two short proof indications containing the nonlinear part of the proof,
and let the decision procedure do the rest. However, careful manual review was
necessary to figure out which indications should be added.

This brings us to the main limitation of the reflection framework in its cur-
rent state. From the user’s perspective, the reflection framework is implemented
as a Why3 transformation. The user invokes the transformation from the Why3
IDE by supplying the name of the decision procedure to be used. Why3 at-
tempts to reify the goal, infers the parameters to pass to the decision procedure
and executes it. If it is successful, the original task is replaced by a set of simple
tasks that check that the decision procedure’s postcondition implies the original
goal, and check the decision procedure’s preconditions. However, if the decision
procedure does not succeed in finding a proof, the user is left with this infor-
mation and not much actionable feedback. (Indeed, our “decision procedures”
are really semi-decision procedures.) I made liberal use of the printf function
mentioned in Sec. 5.1.3 in the process of developing the linear equations decision
procedure, which helped a little, but the problem largely remains. In the end,
it is still difficult for the user to understand what should be changed to help a
proof by reflection succeed.

Unfortunately, I did not end up using the reflection framework all that much
in subsequent proofs. While the existing decision procedure was used a few
times, I never found a good case for implementing new ones. Indeed, developing
and proving a usable decision procedure has a non-trivial cost. In order to
justify this cost, a large number of sufficiently similar goals must exist. Apart
from the linear equation systems, the only other type of goal in the WhyMP
proof that may justify this is the instantiation of mpz frame lemmas. Indeed,
since my mpz memory model does not use Why3’s alias tracking (see Sec. 4.6),
a large amount of proof effort in the mpz proofs was spent convincing Why3

214 CHAPTER 5. PROOFS BY REFLECTION

that the state of most mpz variables was left unchanged by various operations.
However, by the time I realized how recurring this issue was, most of the proofs
were already completed, so it was not really worth going back and developing a
dedicated decision procedure for it.

5.3.3 Perspectives
The framework for proofs by reflection is not in a very mature state yet. It is
available in Why3, but hasn’t been used much outside of WhyMP. Indeed, it is
difficult to use compared to the SMT solvers, and the reification transformation
does not cover quite as many cases as I would like. Getting it to work on
WhyMP proofs was a rather tedious process. Still, automating proofs that used
to require hundred-line long assertions was a promising success. In order to
make this framework into a more mature tool, an important priority is to find
a way to provide more feedback to the user, so that they can understand more
easily why their reflection proofs do not succeed.

The performance of the decision procedures has not been a big issue so
far. The most difficult goal that was solved by the linear equations decision
procedure was an assertion in the proof of the schoolbook division that required
performing Gaussian elimination on a matrix of size about 150×90. The decision
procedure terminated in about 3 seconds, which was acceptable from a user-
experience standpoint. If larger goals become problematic, one possible solution
to improve performance would be to give up on our WhyML interpreter, extract
the decision procedures all the way to OCaml and execute the resulting binaries.

Finally, a more ambitious project could be to partially automate the user’s
role in Why3 proofs. Indeed, my experience when verifying WhyMP has been
that similar user actions were often needed to prove syntactically similar goals.
For examples, goals that were conjunctive formulas very often required the use
of a split transformation. Goals that involved a certain predicate almost always
needed to be inlined. Goals that required non-linear arithmetic could often only
be solved by a specific automated prover, and goals that required instantiating
many lemmas by another. In the end, for many simple goals I only needed
to perform a brief syntactical analysis of the goal before choosing the correct
action in the graphical user interface. However, the sheer amount of such goals
made it a very time-consuming activity. I would have saved a large amount of
time if I had been able to program a decision procedure to attempt to make
some of these decisions automatically. The possibility of extending the current
framework by embedding a representation of user actions in a built-in theory,
essentially enabling users to implement their own tactics as WhyML programs,
seems worth exploring.

Chapter 6

Conclusion

This thesis makes three contributions. I have verified a clone of an extensive and
efficient arbitrary-precision arithmetic library using Why3. In order to be able to
do so, I have added to Why3 the tools needed to verify and extract C programs.
Finally, in order to increase the degree of automation of my verification work,
I have developed a framework for proofs by reflection in Why3. My technical
choices were already evaluated in the conclusions of each chapter, so we simply
summarize each of these contributions briefly. We then go over a few longer-term
challenges, and discuss possible lines of future work.

6.1 Contributions

WhyMP. I have used Why3 to verify a significant subset of the algorithms
in the mpn layer of the GMP library (using Mini-GMP for the base conversion
functions), as well as a smaller fragment of the mpz layer. The result is a
verified arbitrary-precision library called WhyMP. It is compatible with GMP
in terms of number representation and function signatures. It also preserves
the vast majority of the implementation tricks found in GMP’s source code.
As a result, it is competitive with the assembly-free version of GMP in terms
of performance. The regular version of GMP, which uses assembly routines
for the most critical inner loops, is twice as fast. However, by incorporating
a small selection of (unverified) multiply-and-accumulate assembly primitives
from GMP into the trusted code base, WhyMP can be brought closer to GMP,
up to a 5-20% slowdown depending on the operation.

WhyMP was a huge undertaking. It took more than twenty thousand lines of
verified WhyML code, which were written over four years. It goes far beyond the
existing verified arbitrary-precision arithmetic libraries in terms of amount and
intricacy of algorithms, as well as performance. The extracted C code is available
at https://gitlab.inria.fr/why3/whymp/. The WhyML code and proofs can
be found in the examples/multiprecision directory packaged with the source
code of Why3 1.3, available at https://gitlab.inria.fr/why3/why3/.

Verification of C programs with Why3. In order to make the development
of WhyMP possible, I have extended Why3’s extraction mechanism to accept C
as a target language, and added to Why3’s standard library a model of C’s

215

https://gitlab.inria.fr/why3/whymp/
https://gitlab.inria.fr/why3/why3/

216 CHAPTER 6. CONCLUSION

memory and datatypes. As a result, Why3 users may now write WhyML pro-
grams on top of these models, and these programs can be compiled to idiomatic
C code. These additions to Why3 enable a method for developing verified C
programs that compares favorably with the state of the art. It scales up to the
verification of multiple thousands of lines worth of C code, while also enabling
the user to verify very complex goals by leveraging powerful theorem proving
capabilities.

The verification of WhyMP informed the development of the C extraction
mechanism and memory models in many ways that toy examples could not
have, discovering both subtle bugs and missing features. While the C extraction
mechanism is still not quite as mature as I would like, I expect it to steadily
improve as it sees more use.

In the case of small programs that do not make use of any C-specific features,
the embedding of C into WhyML comes almost for free, in that it does not make
the programs significantly more difficult to verify. As a result, other Why3 users
have started to use the C extraction mechanism in their own work, even in the
situations where using C would not have been strictly required [38].

C is the first imperative language with manual memory management to be
supported by Why3 in this fashion, and it paves the way to new ones. Indeed,
the approach I have presented is not specific to C in nature. Memory models and
extraction printers for other languages can be developed as needed. Moreover,
part of the work done on the readability of the extracted code (precedence sys-
tem, proxy variable elimination) is independent of the target language. Indeed,
the readability of the OCaml code produced by Why3’s extraction mechanism
has sharply improved as a side effect of this work.

Proofs by reflection. In the early stages of the verification of WhyMP, many
seemingly easy goals required a surprisingly high amount of proof effort in the
form of very long proof annotations. In an effort to increase the degree of
automation of these proofs, I have added to Why3 a framework for proofs by
reflection. Within this framework, I was able to implement a dedicated decision
procedure as a formally verified program. Interestingly, such decision procedures
make full use of WhyML’s imperative features, whereas existing frameworks
for reflection proofs require decision procedures to have no side effects. Using
my decision procedure, I was able to replace almost a thousand lines of proof
annotations by automated proofs.

6.2 Challenges and roadblocks

Scalability and proof robustness. In addition to the tools specific to the
verification of C programs, WhyMP also had some influence on the development
of Why3 at large. WhyMP is arguably the largest Why3 development in total
code length. It breaks records by far on a number of metrics, such as the number
of subgoals in a single function, the number of subgoals in a single assertion,
or the number of subgoals in a proof session. As a result, WhyMP exercises
the scalability of Why3 in many interesting ways. For example, the Toom-Cook
multiplication algorithm is implemented as a set of mutually recursive functions.
Since they are mutually recursive, they need to be in the same WhyML source
file. As a result, this source file is several thousand lines long. At some points,

6.2. CHALLENGES AND ROADBLOCKS 217

everytime a change was made to the file, it took Why3 almost two minutes to
parse the file and match each subgoal to their existing proofs. This issue has
now been fixed by Why3’s developers.

Proof robustness was another recurrent issue. When a WhyML source file
is modified, the generated verification conditions may not be the same as the
previous ones. Why3 attempts to preserve as much of the proof by pairing the
new goals with the old ones, but this is not always successful, especially for
sessions where many transformations were applied through the graphical user
interface. Even when pairing is successful, the proof context may change in
ways that make automated provers fail at replaying the proofs. As a result,
modifying a file that is high up in the dependency tree requires spending a
nontrivial amount of effort getting old proofs to replay, which puts a significant
damper on experimentation. This is now also partly fixed. Work on increasing
the robustness of Why3 proofs is ongoing and is a necessity as the tool matures.

Trusted code base. In order to be convinced that WhyMP is correct, one
needs to trust several components. Some formal verification systems such as Coq
or Isabelle are built in such a way that only a small kernel of code needs to be
trusted. This is not the case for Why3. The component that performs the WP
computations and produces verification conditions is implicitly trusted, as well
as the typer (especially the region-based alias handling), and the various goal
transformations that can be applied from the user interface. Fortunately, the
verification condition generator relies on well-established theoretical principles
and has been used in numerous occasions by now. While its codebase is larger
than ideal, it would be plausible to trust it. There is also ongoing work on
making Why3 task transformations output a machine-checkable certificate [43],
with the eventual goal of removing them from the trusted code base.

One also needs to trust that the goals are accurately translated by Why3
into the input languages of the various automated solvers, as well as in the
correctness of the solvers themselves. Most automated solvers used in the proof
are off-the-shelf tools and have been used in a variety of contexts. While this
does not ensure that they are free of bugs, they are not the most worrying
component. It is also possible to increase the confidence in a given proof by
systematically requiring several provers to agree on a goal before considering it
proved, although this was not done for WhyMP.

Various underlying WhyML theories (memory model, arithmetic primitives,
lemma libraries, etc.) should also be trusted. There is no real way around the
fact that trusted axioms exists. The main line of defence against errors in these
axioms is to make the trusted theories as short as possible, so that they may be
reviewed manually.

Trusting these various components, one can be confident that WhyMP as a
WhyML program is correct. The manual translation from the GMP source code
to WhyML is unverified, which means that WhyMP may not be a precise clone
of GMP, although that does not affect the correctness of WhyMP as a standalone
program. More importantly, the extraction procedure from WhyML to C, as
well as the associated extraction driver, should also to be trusted in order to
be convinced of the correctness of WhyMP as a C library. This component is
more worrying. It is a relatively recent addition to Why3, and the C printer
even more so. Although the development of WhyMP put it to the test and

218 CHAPTER 6. CONCLUSION

uncovered a significant amount of bugs, it is not yet as mature as one would
want it to be. The principles of the extraction mechanism have been the subject
of a pen-and-paper formalization [79], but this is not the case of the C printer,
and the existing formalization does not take the extraction drivers into account.
A natural line of future work would be to strive to increase the trust in the C
extraction with a proof that it preserves the semantics of the extracted program.
The first step would probably be the development of a formalized semantics of
WhyML.

Automation and expertise. The reason why WhyMP took so much effort
to verify is not fully represented by the amount of lines of verified code. Indeed,
a significant part of the proof effort for the verification of WhyMP was spent
trying to understand why the algorithms were correct. This would have posed no
issues to an expert, but arbitrary-precision arithmetic was initially far from my
specialty. More generally, the formal verification of non-trivial programs tends
to require both domain-specific expertise and expertise in formal methods. This
is a significant obstacle to the spread of formally verified software. It seems to
me that an important long-term goal of formal verification research should be
to develop tools and methods that are accessible to users who are not experts
in formal methods. In an ideal world, developers of critical code should be able
to verify their software even as it is being developed.

Looking back to the verification of WhyMP, the only step that came close
to this ideal in terms of automation was the verification of the first half of the
mpn_sqrt1 function, that is, the Newton iteration that computes the square
root of a machine integer. In order to perform this proof, we had to develop
a WhyML model of fixed-point arithmetic, but it can now be reused in future
proofs. We also had to write four simple assertions that connected the error
terms of the various steps of the Newton iteration. However, once this was
done, the Gappa tool was able to automatically prove the error bounds at the
end of the iteration, which was the most difficult part of the proof by far. It
would have taken me much more time to write a pen-and-paper proof, or even to
fully convince myself that the algorithm was correct, than it took me to formally
verify it using Why3 and Gappa. The realization that I had formally verified
an algorithm that I did not fully understand was one of my happiest moments
of this work. This sort of automation is also what I believe is required, in order
for non-experts to use our tools.

The key factor to this success was that the goal, while complex, fell squarely
within the domain of the Gappa solver. More precisely, it was easy to iso-
late the parts of the goal that were not and treat them separately (the four
aforementioned assertions), and let the tool do the rest of the work. This is
evidence in favor of Why3’s strategy of interfacing with a wide collection of au-
tomated solvers. The built-in theories of real number arithmetic featured in the
mainstream general-purpose SMT solvers would not have been able to discharge
these goals, but a specialized tool did the trick. But what to do when we have
another very specialized problem and no off-the-shelf tool suited to tackle it?
A possibility is to develop a verified dedicated decision procedure for it within
our new framework for proofs by reflection in Why3, as we did to solve the
almost-linear-arithmetic goals from last chapter.

6.3. FUTURE WORK 219

6.3 Future work
WhyMP. WhyMP is not quite a suitable replacement for GMP yet. The
main reason is a lack of exhaustivity in the mpz routines, although that can
likely be fixed in a few months of work for those that rely on already imple-
mented mpn routines. WhyMP also lacks GMP’s number theory functions. I
expect their verification to be a more ambitious project which will likely only
be undertaken if a specific need arises. Finally, WhyMP does not implement
GMP’s cryptography-oriented functions. In order to do so in an interesting way,
I would like to first find a way to specify and prove their side-channel resistance
properties, that is, the fact that the control flow and execution times do not
depend on the input. Another ambitious continuation to this project would
be to develop the tools needed to verify assembly code in Why3, allowing us to
bring WhyMP to the level of performance of GMP’s main configuration without
needing to trust extra code.

Proofs by reflection. Although I replaced many assertions by automated
proofs using my initial decision procedure, I did not end up using the reflection
framework very much in subsequent WhyMP proofs. One reason is that these
proofs did not involve a large amount of goals that were well covered by my
decision procedure, and I did not find another large set of similar goals that jus-
tified implementing a new one. Another reason is that the reflection framework
is not a very mature tool yet, and I prioritized completing WhyMP proofs over
improving it. In the medium term, it seems important to find a good way to
provide actionable feedback to the users that helps them understand why their
proofs by reflection do not succeed.

In the longer term, an enticing prospect could be to enable users to auto-
mate transformation and prover calls in their decision procedures, essentially
extending the reflection framework into a more general tactic system. Ideally,
such a system would be able to automate the separation of concerns between
subgoals that can be discharged by an automated prover or decision procedure,
and those that require user intervention.

Bibliography

[1] The ASCII Graphic Character Set, 1975.

[2] IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pages
1–70, 2008.

[3] Jean-Raymond Abrial. The B-Book, assigning programs to meaning. Cam-
bridge University Press, 1996.

[4] Reynald Affeldt. On construction of a library of formally verified low-level
arithmetic functions. Innovations in Systems and Software Engineering,
9(2):59–77, 2013.

[5] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb,
Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim, Thomas
Sewell, et al. Cogent: Verifying high-assurance file system implementations.
ACM SIGARCH Computer Architecture News, 44(2):175–188, 2016.

[6] Andrew W. Appel. Verified software toolchain. In European Symposium
on Programming, pages 1–17. Springer, 2011.

[7] Patrick Baudin, François Bobot, Loïc Correnson, and Zaynah Dargaye. WP
Plug-in Manual, 2020.

[8] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin
Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI C specification
language, 2008.

[9] Josh Berdine, Cristiano Calcagno, and Peter W. O’hearn. Smallfoot: Mod-
ular automatic assertion checking with separation logic. In International
Symposium on Formal Methods for Components and Objects, pages 115–
137. Springer, 2005.

[10] Stefan Berghofer. Verification of dependable software using SPARK and
Isabelle. In Jörg Brauer, Marco Roveri, and Hendrik Tews, editors, 6th In-
ternational Workshop on Systems Software Verification, volume 24 of Ope-
nAccess Series in Informatics (OASIcs), pages 15–31, Dagstuhl, Germany,
2012.

[11] Yves Bertot, Nicolas Magaud, and Paul Zimmermann. A proof of GMP
square root. Journal of Automated Reasoning, 29(3-4):225–252, 2002.

221

222 BIBLIOGRAPHY

[12] Frédéric Besson. Fast reflexive arithmetic tactics the linear case and be-
yond. In Thorsten Altenkirch and Conor McBride, editors, International
Workshop on Types for Proofs and Programs, volume 4502 of Lecture Notes
in Computer Science, pages 48–62, Nottingham, UK, 2007.

[13] Régis William Blanc, Etienne Kneuss, Viktor Kuncak, and Philippe Suter.
An overview of the Leon verification system: Verification by translation to
recursive functions. In 4th Annual Scala Workshop, 2013.

[14] Allan Blanchard, Nikolai Kosmatov, and Frédéric Loulergue. Ghosts for
lists: A critical module of Contiki verified in Frama-C. In NASA Formal
Methods Symposium, pages 37–53. Springer, 2018.

[15] Marco Bodrato and Alberto Zanoni. Integer and polynomial multiplication:
Towards optimal Toom-Cook matrices. In 2007 International Symposium
on Symbolic and Algebraic Computation, pages 17–24. ACM, 2007.

[16] Alfred Brauer. On addition chains. Bulletin of the American mathematical
Society, 45(10):736–739, 1939.

[17] Richard P. Brent and Paul Zimmermann. Modern Computer Arithmetic.
Cambridge University Press, 2010.

[18] Amine Chaieb and Tobias Nipkow. Proof synthesis and reflection for linear
arithmetic. Journal of Automated Reasoning, 41(1):33–59, 2008.

[19] Guillaume Claret, Lourdes del Carmen González Huesca, Yann Régis-
Gianas, and Beta Ziliani. Lightweight proof by reflection using a posteriori
simulation of effectful computation. In 4th International Conference on
Interactive Theorem Proving, volume 7998 of Lecture Notes in Computer
Science, pages 67–83. Springer, July 2013.

[20] Martin Clochard. Preuves taillées en biseau. In vingt-huitièmes Journées
Francophones des Langages Applicatifs (JFLA), Gourette, France, January
2017.

[21] Martin Clochard, Léon Gondelman, and Mário Pereira. The Matrix re-
proved. Journal of Automated Reasoning, 60(3):365–383, 2017.

[22] Cyrille Comar, Johannes Kanig, Yannick Moy, Johannes Kanig, Rod Chap-
man, Cyrille Comar, Jerôme Guitton, Yannick Moy, Emyr Rees, Sylvain
Conchon, et al. Why Hi-Lite Ada? In Boogie 2011: First International
Workshop on Intermediate Verification Languages, volume 198, pages 51–
69. Springer, 2011.

[23] Stephen A. Cook. On the minimum computation time of functions. PhD
thesis, Department of Mathematics, Harvard University, 1966.

[24] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, An-
toine Miné, David Monniaux, and Xavier Rival. The ASTRÉE analyzer.
In European Symposium on Programming, pages 21–30. Springer, 2005.

BIBLIOGRAPHY 223

[25] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien
Signoles, and Boris Yakobowski. Frama-C: A software analysis perspec-
tive. In 10th International Conference on Software Engineering and For-
mal Methods, number 7504 in Lecture Notes in Computer Science, pages
233–247, 2012.

[26] Marc Daumas and Guillaume Melquiond. Certification of bounds on expres-
sions involving rounded operators. Transactions on Mathematical Software,
37(1):1–20, 2010.

[27] Florent de Dinechin, Christoph Lauter, and Guillaume Melquiond. Cer-
tifying the floating-point implementation of an elementary function using
Gappa. IEEE Transactions on Computers, 60(2):242–253, 2010.

[28] Edsger W. Dijkstra. A discipline of programming, volume 1. Prentice-Hall
Englewood Cliffs, 1976.

[29] Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and
Leonardo de Moura. A metaprogramming framework for formal verifi-
cation. In 22nd ACM SIGPLAN International Conference on Functional
Programming, pages 34:1–34:29, Oxford, UK, September 2017.

[30] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam
Chlipala. Simple high-level code for cryptographic arithmetic - with proofs,
without compromises. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 1202–1219. IEEE, 2019.

[31] Federal Aviation Administration. Airworthiness directives, pages 24789–
24791, 2015.

[32] Gaspard Férey and Natarajan Shankar. Code generation using a formal
model of reference counting. In NASA Formal Methods Symposium, pages
150–165. Springer, 2016.

[33] Jean-Christophe Filliâtre. Verifying two lines of C with Why3: an exercise
in program verification. In International Conference on Verified Software:
Tools, Theories, Experiments, pages 83–97. Springer, 2012.

[34] Jean-Christophe Filliâtre. One logic to use them all. In 24th International
Conference on Automated Deduction (CADE-24), volume 7898 of Lecture
Notes in Artificial Intelligence, pages 1–20, Lake Placid, USA, June 2013.

[35] Jean-Christophe Filliâtre, Léon Gondelman, and Andrei Paskevich. The
spirit of ghost code. Formal Methods in System Design, 48(3):152–174,
2016.

[36] Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Ca-
duceus platform for deductive program verification. In Werner Damm
and Holger Hermanns, editors, 19th International Conference on Computer
Aided Verification, volume 4590 of Lecture Notes in Computer Science,
pages 173–177, Berlin, Germany, July 2007.

224 BIBLIOGRAPHY

[37] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs
meet provers. In Matthias Felleisen and Philippa Gardner, editors, 22nd
European Symposium on Programming, volume 7792 of Lecture Notes in
Computer Science, pages 125–128, Heidelberg, Germany, March 2013.

[38] Jean-Christophe Filliâtre and Andrei Paskevich. Abstraction and Gener-
icity in Why3. In International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation, October 2020.

[39] Sabine Fischer. Formal verification of a big integer library. In DATE
Workshop on Dependable Software Systems, 2008.

[40] Robert W. Floyd. Assigning meanings to programs. In Program Verifica-
tion, pages 65–81. Springer, 1993.

[41] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and
Paul Zimmermann. MPFR: A multiple-precision binary floating-point li-
brary with correct rounding. ACM Transactions on Mathematical Software
(TOMS), 33(2):13–es, 2007.

[42] Clément Fumex, Claire Dross, Jens Gerlach, and Claude Marché. Specifi-
cation and proof of high-level functional properties of bit-level programs.
In Sanjai Rayadurgam and Oksana Tkachuk, editors, 8th NASA Formal
Methods Symposium, volume 9690 of Lecture Notes in Computer Science,
pages 291–306, Minneapolis, MN, USA, June 2016.

[43] Quentin Garchery, Chantal Keller, Claude Marché, and Andrei Paske-
vich. Des transformations logiques passent leur certificat. In JFLA 2020
- Journées Francophones des Langages Applicatifs, Gruissan, France, Jan-
uary 2020.

[44] Léon Gondelman. A Pragmatic Type System for Deductive Software Veri-
fication. PhD thesis, Université Paris-Saclay, December 2016.

[45] Torbjörn Granlund and the GMP development team. GNU MP: The GNU
multiple precision arithmetic library, 6.1.2. 2016.

[46] David Greenaway. Automated proof-producing abstraction of C code. PhD
thesis, University of New South Wales, Sydney, Australia, 2014.

[47] David Greenaway, Japheth Lim, June Andronick, and Gerwin Klein. Don’t
sweat the small stuff: formal verification of C code without the pain. ACM
SIGPLAN Notices, 49(6):429–439, 2014.

[48] Benjamin Grégoire and Assia Mahboubi. Proving equalities in a commu-
tative ring done right in Coq. In Joe Hurd and Tom Melham, editors,
18th International Conference on Theorem Proving in Higher Order Log-
ics, pages 98–113, Oxford, UK, August 2005.

[49] John Harrison. Metatheory and reflection in theorem proving: A survey
and critique. Technical Report CRC-053, SRI International Cambridge
Computer Science Research Centre, 1995.

[50] John Harrison. Formal verification of square root algorithms. Formal Meth-
ods in System Design, 22(2):143–153, 2003.

BIBLIOGRAPHY 225

[51] C. A. R. Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576–580, 1969.

[52] Thierry Hubert and Claude Marché. A case study of C source code verifica-
tion: the Schorr-Waite algorithm. In Third IEEE International Conference
on Software Engineering and Formal Methods (SEFM’05), pages 190–199.
IEEE, 2005.

[53] International Organization for Standardization. ISO/IEC 9899:1999: Pro-
gramming Languages – C, 2000.

[54] Bart Jacobs and Frank Piessens. The VeriFast program verifier. CW Re-
ports, 2008.

[55] Anatolii Karatsuba. Multiplication of multidigit numbers on automata. In
Soviet Physics Doklady, volume 7, pages 595–596, 1963.

[56] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood.
seL4: Formal verification of an OS kernel. Communications of the ACM,
53(6):107–115, June 2010.

[57] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

[58] Nikolai Kosmatov, Claude Marché, Yannick Moy, and Julien Signoles.
Static versus dynamic verification in Why3, Frama-C and SPARK 2014.
In Tiziana Margaria and Bernhard Steffen, editors, 7th International Sym-
posium on Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA), volume 9952 of Lecture Notes in Computer Science,
pages 461–478, Corfu, Greece, October 2016.

[59] Herb Krasner. The cost of poor software quality in the US: A 2018 report,
2018.

[60] Daniel Kroening and Michael Tautschnig. CBMC–C bounded model
checker. In International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 389–391. Springer, 2014.

[61] K. Rustan M. Leino. Dafny: An automatic program verifier for functional
correctness. In LPAR-16, volume 6355 of Lecture Notes in Computer Sci-
ence, pages 348–370. Springer, 2010.

[62] K. Rustan M. Leino and Michał Moskal. Usable auto-active verification.
In Usable Verification Workshop, Redmond, WA, USA, November 2010.

[63] Xavier Leroy et al. The CompCert verified compiler, 2012.

[64] Nancy G. Leveson and Clark S. Turner. An investigation of the Therac-25
accidents. Computer, 26(7):18–41, 1993.

[65] Jacques-Louis Lions. Ariane 501 failure: Report by the inquiry board. 1996.

226 BIBLIOGRAPHY

[66] William Mansky, Andrew W. Appel, and Aleksey Nogin. A verified messag-
ing system. In ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 1–28. ACM New York, NY, USA, 2017.

[67] Claude Marché and Yannick Moy. The Jessie plugin for deductive verifi-
cation in Frama-C. INRIA Saclay Île-de-France and LRI, CNRS UMR,
2012.

[68] Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick Gian-
narakis, Chris Hawblitzel, Cătălin Hrit,cu, Monal Narasimhamurthy, Zoe
Paraskevopoulou, Clément Pit-Claudel, Jonathan Protzenko, et al. Meta-
F*: Proof automation with SMT, tactics, and metaprograms. In European
Symposium on Programming, pages 30–59. Springer, 2019.

[69] Steve McConnell. Code complete. Pearson Education, 2004.

[70] Guillaume Melquiond and Raphaël Rieu-Helft. A Why3 framework for re-
flection proofs and its application to GMP’s algorithms. In Didier Galmiche,
Stephan Schulz, and Roberto Sebastiani, editors, 9th International Joint
Conference on Automated Reasoning, number 10900 in Lecture Notes in
Computer Science, pages 178–193, Oxford, United Kingdom, July 2018.

[71] Guillaume Melquiond and Raphaël Rieu-Helft. Formal verification of a
state-of-the-art integer square root. In IEEE 26th Symposium on Computer
Arithmetic (ARITH), Kyoto, Japan, June 2019.

[72] Guillaume Melquiond and Raphaël Rieu-Helft. WhyMP, a formally veri-
fied arbitrary-precision integer library. In ISSAC 2020: 45th International
Symposium on Symbolic and Algebraic Computation, Kalamata, Greece,
July 2020.

[73] Niels Moller and Torbjörn Granlund. Improved division by invariant inte-
gers. IEEE Transactions on Computers, 60:165–175, 2011.

[74] Peter L. Montgomery. Modular multiplication without trial division. Math-
ematics of Computation, 44(170):519–521, 1985.

[75] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A
verification infrastructure for permission-based reasoning. In Barbara Job-
stmann and K. Rustan M. Leino, editors, Verification, Model Checking,
and Abstract Interpretation (VMCAI), volume 9583 of LNCS, pages 41–62.
Springer-Verlag, 2016.

[76] Glenford J Myers, Tom Badgett, Todd M Thomas, and Corey Sandler. The
art of software testing, volume 2. Wiley Online Library, 2004.

[77] Magnus O. Myreen and Gregorio Curello. Proof pearl: A verified bignum
implementation in x86-64 machine code. In Georges Gonthier and Michael
Norrish, editors, 3rd International Conference on Certified Programs and
Proofs (CPP), volume 8307 of Lecture Notes in Computer Science, pages
66–81, Melbourne, Australia, December 2013.

[78] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL:
a proof assistant for higher-order logic, volume 2283 of LNCS. Springer
Science & Business Media, 2002.

BIBLIOGRAPHY 227

[79] Mário José Parreira Pereira. Tools and Techniques for the Verification
of Modular Stateful Code. PhD thesis, Université Paris-Saclay, December
2018.

[80] Alexandre Peyrard, Nikolai Kosmatov, Simon Duquennoy, and Shahid
Raza. Towards formal verification of contiki: Analysis of the AES–CCM*
modules with Frama-C. In RED-IOT 2018 - Workshop on Recent advances
in secure management of data and resources in the IoT, 2018.

[81] Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina
Ramananandro, Peng Wang, Santiago Zanella-Béguelin, Antoine Delignat-
Lavaud, Cătălin Hrit,cu, Karthikeyan Bhargavan, Cédric Fournet, and
Nikhil Swamy. Verified low-level programming embedded in F*. In 22nd
ACM SIGPLAN International Conference on Functional Programming,
September 2017.

[82] David L. Rager, Jo Ebergen, Dmitry Nadezhin, Austin Lee, Cuong Kim
Chau, and Ben Selfridge. Formal verification of division and square root
implementations, an Oracle report. In 16th Conference on Formal Methods
in Computer-Aided Design, pages 149–152, October 2016.

[83] John C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In Proceedings 17th Annual IEEE Symposium on Logic in Computer
Science, pages 55–74. IEEE, 2002.

[84] Raphaël Rieu-Helft. A Why3 proof of GMP algorithms. Journal of For-
malized Reasoning, 12(1):53–97, 2019.

[85] Raphaël Rieu-Helft, Claude Marché, and Guillaume Melquiond. How to
get an efficient yet verified arbitrary-precision integer library. In 9th Work-
ing Conference on Verified Software: Theories, Tools, and Experiments,
volume 10712 of Lecture Notes in Computer Science, pages 84–101, Heidel-
berg, Germany, July 2017.

[86] David M. Russinoff. A mechanically checked proof of correctness of the
AMD K5 floating point square root microcode. Formal Methods in System
Design, 14(1):75–125, 1999.

[87] Amr Sabry and Matthias Felleisen. Reasoning about programs in
continuation-passing style. Lisp and symbolic computation, 6(3-4):289–360,
1993.

[88] Norbert Schirmer. A verification environment for sequential imperative
programs in Isabelle/HOL. In International Conference on Logic for Pro-
gramming Artificial Intelligence and Reasoning, pages 398–414, 2005.

[89] Marc Schoolderman. Verifying branch-free assembly code in Why3. In
Working Conference on Verified Software: Theories, Tools, and Experi-
ments, pages 66–83, 2017.

[90] Natarajan Shankar. A brief introduction to the PVS2C code generator. In
AFM@ NFM, pages 109–116, 2017.

228 BIBLIOGRAPHY

[91] Nikhil Swamy, Cătălin Hrit,cu, Chantal Keller, Aseem Rastogi, Antoine
Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet,
Pierre-Yves Strub, Markulf Kohlweiss, et al. Dependent types and multi-
monadic effects in F*. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 256–
270, 2016.

[92] Andrei L. Toom. The complexity of a scheme of functional elements realiz-
ing the multiplication of integers. In Soviet Mathematics Doklady, volume 3,
pages 714–716, 1963.

[93] Alan Turing. Checking a large routine. In Report of a Conference on High
Speed Automatic Calculating-machines, 1949.

[94] Henry S. Warren. Hacker’s Delight. Addison-Wesley Professional, 2nd
edition, 2012.

[95] Beta Ziliani, Derek Dreyer, Neelakantan R. Krishnaswami, Aleksandar
Nanevski, and Viktor Vafeiadis. Mtac: A monad for typed tactic pro-
gramming in Coq. Journal of Functional Programming, 25, 2015.

[96] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko,
and Benjamin Beurdouche. HACL*: A verified modern cryptographic
library. Cryptology ePrint Archive, Report 2017/536, 2017. https:
//eprint.iacr.org/2017/536.

https://eprint.iacr.org/2017/536
https://eprint.iacr.org/2017/536

Titre : Développement et vérification de bibliothèques d’arithmétique entière en précision arbitraire

Mots clés : Analyse statique, Vérification déductive, Why3, Arithmétique entière en précision arbitraire, Preuve par

réflexion

Résumé : Les algorithmes d’arithmétique entière en

précision arbitraire sont utilisés dans des contextes où

leur correction et leurs performances sont critiques,

comme les logiciels de cryptographie ou de calcul

formel. GMP est une bibliothèque d’arithmétique entière

en précision arbitraire très utilisée. Elle propose des al-

gorithmes de pointe, suffisamment complexes pour qu’il

soit à la fois justifié et difficile de les vérifier formelle-

ment. Cette thèse traite de la vérification formelle de

la correction fonctionelle d’une partie significative de

GMP à l’aide de la plateforme de vérification déductive

Why3. Afin de rendre cette preuve possible, j’ai fait

plusieurs ajouts à Why3 qui permettent la vérification

de programmes C. Why3 propose un langage fonction-

nel de programmation et de spécification appelé WhyML.

J’ai développé des modèles de la gestion de la mé-

moire et des types du langage C. Ceci m’a permis de

réimplanter des algorithmes de GMP en WhyML et de

les vérifier formellement. J’ai aussi étendu le mécan-

isme d’extraction de Why3. Les programmes WhyML

peuvent maintenant être compilés vers du C idioma-

tique, alors que le seul langage cible était OCaml au-

paravant. La compilation de mes programmes WhyML

résulte en une bibliothèque C vérifiée appelée WhyMP.

Elle implémente de nombreux algorithmes de pointe

tirés de GMP en préservant presque toutes les astuces

d’implémentation. WhyMP est compatible avec GMP, et

est comparable à la version de GMP sans assembleur

écrit à la main en termes de performances. Elle va

bien au-delà des bibliothèques d’arithmétique en préci-

sion arbitraire vérifiées existantes. C’est sans doute le

développement Why3 le plus ambitieux à ce jour en ter-

mes de longueur et d’effort de preuve. Afin d’augmenter

le degré d’automatisation de mes preuves, j’ai ajouté à

Why3 un mécanisme de preuves par réflexion. Il per-

met aux utilisateurs de Why3 d’écrire des procédures de

décision dédiées, formellement vérifiées et qui utilisent

pleinement les fonctionnalités impératives de WhyML. À

l’aide de ce mécanisme, j’ai pu remplacer des centaines

d’annotations manuelles de ma preuve de GMP par des

preuves automatiques.

Title: Development and verification of arbitrary-precision integer arithmetic libraries

Keywords: Static analysis, Deductive verification, Why3, Arbitrary-precision integer arithmetic, Proof by reflection

Abstract: Arbitrary-precision integer arithmetic algo-

rithms are used in contexts where both their perfor-

mance and their correctness are critical, such as cryp-

tographic software or computer algebra systems. GMP is

a very widely-used arbitrary-precision integer arithmetic

library. It features state-of-the-art algorithms that are in-

tricate enough that their formal verification is both jus-

tified and difficult. This thesis tackles the formal ver-

ification of the functional correctness of a large frag-

ment of GMP using the Why3 deductive verification plat-

form. In order to make this verification possible, I have

made several additions to Why3 that enable the verifi-

cation of C programs. Why3 features a functional pro-

gramming and specification language called WhyML. I

have developed models of the memory management

and datatypes of the C language, allowing me to reim-

plement GMP’s algorithms in WhyML and formally verify

them. I have also extended Why3’s extraction mecha-

nism so that WhyML programs can be compiled to id-

iomatic C code, where only OCaml used to be sup-

ported. The compilation of my WhyML algorithms re-

sults in a verified C library called WhyMP. It implements

many state-of-the-art algorithms from GMP, with almost

all of the optimization tricks preserved. WhyMP is com-

patible with GMP and performance-competitive with the

assembly-free version. It goes far beyond existing ver-

ified arbitrary-precision arithmetic libraries, and is ar-

guably the most ambitious existing Why3 development

in terms of size and proof effort. In an attempt to in-

crease the degree of automation of my proofs, I have

also added to Why3 a framework for proofs by reflec-

tion. It enables Why3 users to easily write dedicated

decision procedures that are formally verified programs

and make full use of WhyML’s imperative features. Using

this new framework, I was able to replace hundreds of

handwritten proof annotations in my GMP verification by

automated proofs.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Acknowledgments
	Contents
	List of Figures
	Synthèse (en français)
	Introduction
	Why3 basics
	The WhyML programming language
	Basic syntax
	Mutability
	Data types

	Logic and specifications
	Computing the verification conditions
	Weakest precondition calculus
	Aliasing

	Why3 in practice

	Verifying C programs with Why3
	Modeling C types
	Integer types
	Characters, strings

	Example: Contiki's ring buffer library
	C code overview
	Contiki's ring buffer, in WhyML

	Memory model
	An explicit memory model
	A block-based memory model
	Finer-grained aliases: splitting pointers
	Finer-grained aliases: aliasing separate pointers
	Error handling

	Extraction
	Why3 extraction basics
	Design choices, supported WhyML fragment
	Basic constructs
	Extraction drivers
	Control structures
	Tuples
	Mutable structures
	Arrays
	Extracting a multi-file library
	Making extracted code readable
	Contiki's ring buffer, extracted back to C

	State of the art, conclusion
	Related work
	Memory model evaluation
	Correctness, trusted code base

	WhyMP
	Modeling GMP inside Why3
	Integer representation
	Example GMP function: mpn_copyd

	Schoolbook algorithms
	Comparison
	Addition, subtraction
	Schoolbook multiplication
	Division

	Modular exponentiation
	Computations in Montgomery form
	Auxiliary function: limb inversion modulo
	Auxiliary functions: bit-level computations
	The main algorithm
	Side-channel resistance

	Toom-Cook multiplication
	Toom-2
	Toom-2.5
	General case

	Divide-and-conquer square root
	Square root, n=1: a fixed-point algorithm
	Square root, n=2
	Square root, general case
	Square root, normalizing wrapper

	The mpz layer
	Model
	A simple function and a GMP bug report
	Aliasing-related combinatorics
	Aliasing restrictions solved by extra mpz variables

	Input/output, string functions
	Notations
	From base b to base
	From base to base b
	ASCII conversions
	Base conversions in mpz

	Comparing WhyMP and GMP
	Compatibility, code changes
	Benchmarking

	Evaluation, perspectives
	Proof effort and lessons learned
	Related work
	WhyMP

	Proofs by reflection
	Introducing reflection in Why3
	An example: Strassen's matrix multiplication
	Reification
	Effectful decision procedures
	Soundness, trusted code base

	Proofs by reflection in WhyMP
	Motivating example: an easy yet tedious proof
	Coefficients
	Modular decision procedures

	Evaluation, perspectives
	Related work
	WhyMP and proofs by reflection
	Perspectives

	Conclusion
	Contributions
	Challenges and roadblocks
	Future work

	Bibliography

