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Methods for morphological longitudinal brain modeling through
atlasing and registration

Abstract: Understanding brain development involves studying the relationship between age
as one of the explanatory variables and explained variables, observations of this organ, which
can take many forms. Magnetic Resonance Imaging (MRI) gives the opportunity to extract
such observations in a non-invasive and non-irradiating way. This powerful technique allows
notably to gain insights about the functional activity of the brain or its internal diffusivity
characteristics. Yet, it is rather on the purely morphological aspects that this thesis is focused
on. The approach followed the study of the brain as a mathematical object, thus enabling the
analysis of its shape and growth by the means of the geometric transformations connecting
those objects. In the finding of those transformations, across structures of topological interest,
lies the concept of registration. This opens the door to the statistical analysis of shapes and
the creation of average anatomical models called atlases.
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Résumé en français

Comprendre le développement du cerveau implique d’étudier la relation entre l’âge comme
l’une des variables explicatives et des variables expliquées, les observations de cet organe, qui
peuvent prendre de nombreuses formes. L’imagerie par résonance magnétique (IRM) permet
d’extraire ces observations de manière non invasive et non irradiante. Cette technique puis-
sante permet notamment d’obtenir des informations sur l’activité fonctionnelle du cerveau ou
sur ses caractéristiques de diffusivité interne. Pourtant, c’est plutôt sur les aspects purement
morphologiques que porte cette thèse. L’approche suivie est celle de l’étude du cerveau en tant
qu’objet mathématique, permettant ainsi l’analyse de sa forme et de sa croissance au moyen des
transformations géométriques reliant ces objets. Dans la découverte de ces transformations, à
travers des structures topologiquement intéressantes, repose le concept de recalage. Cela ouvre
la porte à l’analyse statistique des formes et à la création de modèles anatomiques moyens
appelés atlas.

Contexte

Images anatomicales IRM pour la modélisation du cerveau

Être capable de modéliser le développement du cerveau présente divers intérêts cliniques. Cela
permet de mieux comprendre les mécanismes impliqués dans la maturation cérébrale. Ce peut
également être un moyen de prédire l’évolution d’une maladie. De nombreux bouleversements
ont lieu dans les premiers stades de la vie (en incluant la période prénatale) sur l’aspect struc-
turel. En effet, la croissance cérébrale obéit à un changement d’échelle allométrique : l’expansion
n’est pas homogène dans les différentes zones. De plus, des plis apparaissent et s’approfondissent
au cours d’un processus appelé gyrification, déformant une forme quelque peu arrondie, assez
lisse (le cerveau fœtal précoce) en une forme complexe et convolutée (le cerveau adulte). Paral-
lèlement à cela, une maturation des tissus se produit via le phénomène de myélinisation donnant
à la substance blanche sa couleur caractéristique et renforçant la conductivité biologique de
l’information. Ces différents aspects du développement précoce du cerveau sont illustrés dans
la Figure 1.

L’IRM (imagerie par résonance magnétique) offre un moyen non-invasif et non-irradiant de
suivre l’évolution du cerveau. Il existe de multiples modalités IRM qui servent des objectifs
différents. L’IRM de diffusion [Johansen-Berg 2013] vise à caractériser le processus de diffu-
sion des molécules d’eau dans les tissus, donnant ainsi des indications sur l’organisation des
voies neurales. L’IRM fonctionnelle [Huettel 2004], quant à elle, mesure l’activité cérébrale
en utilisant l’effet BOLD (le sang dans les régions activées est plus oxygéné, ce qui entraîne
une modification du signal RM). La modalité qui nous intéresse ici concerne les acquisitions
anatomiques telles que les images pondérées en T1 et en T2 qui sont bien adaptées pour ex-
traire des caractéristiques morphologiques. En effet, elles sont de bonne résolution (taille de
voxel autour de 1× 1× 1 mm) et ne sont presque pas sujettes à la distorsion spatiale. De plus,
elles permettent de bien distinguer les compositions tissulaires : matière grise (MB), matière
blanche (MG) et liquide céphalorachidien (LCR). Ce sont donc celles qui sont utilisées pour la
segmentation et le recalage inter-sujets. Lorsqu’il est appliqué à l’échelle d’une population de
sujets d’une tranche d’âge donnée, le recalage offre une pléthore de mesures morphométriques
possibles (volume cérébral, surface corticale...) qui peuvent être régressées selon l’âge pour
fournir des modèles de développement. On peut même créer des modèles moyens du cerveau
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Figure 1: Images pondérées en T2, volume cerebral et aire de la surface corticale d’un sujet
féminin normal entre 26 et 39 semaine de gestation.a

aImage issue de [Kapellou 2006] - https://doi.org/10.1371/journal.pmed.0030265.g002

en utilisant l’ensemble des informations de l’image : les atlas.

Les atlas sont utilisés de façon intensive notamment pour la normalisation spatiale [Gholipour 2007],
la propagation de labels de zones segmentées [Cabezas 2011] ou pour calculer des statistiques à
l’échelle d’une population [Whitcher 2007]. Ces processus sont plus efficaces lorsque les modèles
moyens sont adaptés à l’âge des sujets, afin de tenir compte des spécificités liées à la matura-
tion cérébrale mentionnées ci-dessus. Lorsqu’il est réalisé dans un contexte spatio-temporel, un
atlas donne un aperçu des tendances de l’évolution du cerveau. Les bases de données d’IRM
s’élargissant, incluant toujours plus de sujets et couvrant de multiples tranches d’âge, de nou-
veaux défis apparaissent dans la création d’atlas.

Motivations

Dans ce contexte, cette thèse est motivée par le désir de contribuer à répondre aux interroga-
tions suivantes :

I Comment extraire des informations sur la croissance anisotrope des différentes régions du
cerveau ?

De nombreuses mesures morphologiques ont été explorées pour caractériser la croissance du
cerveau. La volumétrie est l’approche la plus courante, que ce soit à l’échelle du cerveau en-
tier ou d’un point de vue plus régional. Elle donne une idée de la croissance globale, mais ne
fournit aucune information sur les directions d’expansion ou la forme des régions. En revanche,

https://doi.org/10.1371/journal.pmed.0030265.g002
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les mesures basées sur la surface sont souvent plus susceptibles de quantifier les processus de
circonvolution du cerveau et l’expansion de sa surface corticale.

I Comment produire des atlas spatio-temporels qui soient non-biaisés au sein d’une popu-
lation tout en étant bien représentatifs des âges qu’ils sont censés représenter ?

Les atlas spatio-temporels sont des modèles moyens du cerveau pour différents points temporels.
Les différences de maturité, entre les sujets concernés, nécessitent l’utilisation d’outils robustes.
Ces atlas doivent être représentatifs à la fois de la population et des points temporels considérés
et ne doivent donc pas être biaisés en faveur d’un sujet donné ou décalés dans le temps.

I Comment mettre à jour les atlas existants de manière pertinente sans avoir à recommencer
tout le processus à zéro ?

La création d’un atlas est un processus qui consomme beaucoup de temps car il implique
une quantité élevé de recalages, de compositions de transformations... qui augmente avec le
nombre d’images. Dans les méthodes de création d’atlas habituelles, tout le processus doit être
recommencé à partir de zéro lorsqu’une nouvelle image arrive, ce qui est une lourde charge
compte tenu de la tendance actuelle pour les bases de données massives qui s’agrandissent
progressivement.

Organisation du manuscrit

Partie I: Cette partie fournit en premier lieu les bases théoriques sur les transformations
géométriques qui permettent ensuite d’exposer les généralités et l’état de l’art concernant le
recalage et la création d’atlas.

Le chapitre 2 présente quelques transformations géométriques couramment utilisées en
anatomie computationnelle. En détail, ce chapitre inclut la façon dont celles-ci peuvent être
paramétrées et décomposées en commençant par les plus basiques, les transformations affines
qui opèrent globalement, aux difféomorphismes qui agissent localement tout en assurant des
propriétés d’inversibilité et de différentiabilité. Le calcul de statistiques sur ces transformations
tout en préservant la topologie via leur structure de groupe de Lie (à dimension infinie) est
ensuite détaillé.

Cela ouvre la voie à la description du processus de recalage dans le chapitre 3. Cet outil
élémentaire en traitement d’images consiste à trouver la transformation, parmi un ensemble de
transformations acceptables, qui fait correspondre au mieux une image à une autre. Certaines
des méthodes de recalage les plus courantes qui reposent sur l’optimisation d’une mesure de
similarité entre les deux images sont décrites, qu’elles concernent la recherche de transformations
linéaires ou non-linéaires.

Le chapitre 4 aborde le sujet de la création d’atlas. Un atlas consiste en un modèle moyen
du cerveau, tant en termes de forme que d’intensité. Cela implique notamment des recalages
et des manipulations de transformations telles que la composition et l’inversion, mais aussi des
moyennages qui doivent être bien définis. Les atlas longitudinaux constituent une extension
tenant également compte de la dimension temporelle, fournissant ainsi des informations sur le
développement du cerveau.

Partie II: Cette partie décrit mes contributions sur le thème de l’analyse d’images pédia-
triques. Cela comprend une méthode d’extraction de facteurs de changement d’échelle pour la
modélisation de la croissance anisotrope du cerveau anisotrope et un travail applicatif sur les
nouveau-nés impliquant l’adaptation d’outils de traitement conçus à l’origine pour les adultes.
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Dans le chapitre 5, une transformation affine contrainte est introduite, offrant un moyen
d’extraire des facteurs de changement d’échelle dans trois directions orthogonales via recalage.
Appliqué à une base de données longitudinale, ce recalage spécial permet de modéliser, à une
échelle régionale, la croissance anisotrope du cerveau.

Le chapitre 6 est consacré à l’étude de la perfusion cérébrale chez les nouveau-nés atteints
d’encéphalopathie hypoxique et ischémique. Mon rôle, dans ce travail commun avec les cliniciens
du CHU de Rennes, a été d’adapter et de développer de nouvelles chaîne de traitement afin
de pouvoir prendre en charge de manière adaptée ce type de population très différente des
populations adultes classiques.
Partie III: Cette partie est consacrée à mes contributions aux méthodes de création d’atlas, à
commencer par une technique permettant d’améliorer le recalage rigide en cas de cerveaux de
tailles différentes dans le chapitre 7.

Une méthode de création d’atlas spatio-temporel est ensuite détaillée dans le chapitre 8 qui
tire parti d’un cadre mathématique propice pour traiter les transformations difféomorphiques.
Cette méthode permet également de créer des atlas non-biaisés à une transformation rigide près,
tenant compte à la fois de la croissance globale et des déformations locales. Enfin, cette méthode
veille à la précision temporelle grâce à une fonction poids flexible qui module la contribution
des sujets.

Une approche de création d’atlas de type centroïde itératif est ensuite présentée dans le
chapitre 9, qui permet de mettre à jour un atlas au fur et à mesure que de nouvelles images
arrivent sans avoir à recommencer tout le processus depuis le début. Cet aspect sera très
bénéfique à l’avenir, car des bases de données de plus en plus importantes sont en cours de
constitution, notamment sur plusieurs années d’acquisition.

Enfin, Partie IV conclut ce manuscrit en deux chapitres résumant les contributions de cette
thèse (Chapitre 10) et les perspectives de ce travail (Chapitre 11).
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1.1 Context

1.1.1 Anatomical MR images for brain modeling

Being able to model the brain development has various clinical interests. It allows to better
understand the mechanisms involved in the cerebral maturation. It can also be a way to predict
the evolution of a disease. Quite a lot is happening in the early stages of life (including the
prenatal period) on the structural aspect. Indeed, the brain growth obeys an allometric scaling:
the expansion is not homogeneous throughout the different areas. In addition, folds form and
deepen as it undergoes a process known as gyrification distorting a somewhat smooth rounded
shape (the early fetal brain) toward a complex, convoluted one (the adult brain). In parallel to
that, a maturation of the tissues occurs through the myelination phenomenon giving the white
matter its characteristic color and enhancing the biological conductivity of information. Those
different aspects of the early brain development are exhibited in Figure 1.1.

MRI (magnetic resonance imaging) provides a non-invasive and non-irradiating way of moni-
toring the cerebral evolution. Multiple MR modalities exist serving different purposes. Diffusion
MRI [Johansen-Berg 2013] aims at characterizing the diffusion process of water molecules in
tissues, thus giving insights on the neural tracts organization. Functional MRI [Huettel 2004],
on its part, measures brain activity using the BOLD effect (blood in activated regions is more
oxygenated thus leading to a change of MR signal). The modality of interest here will concern
anatomical acquisitions such as T1 and T2-weighted images that are well suited to extract
morphological characteristics. Indeed they are of good resolution (voxel size around 1 × 1 × 1

mm) and are almost not subject to spatial distortion. Also, they allow to distinguish well
between tissue compositions: gray matter (GM), white matter (WM) and cerebrospinal fluid
(CSF). They are therefore the ones that are used for segmentation and inter-subject registration.
When gathered for a population of subjects on a given age range, registration offers plethora
of possible morphometric measurements (brain volume, cortical surface area...) that can be
regressed over age to provide developmental models. One can even create average models of
the brain using the whole image information: atlases.

Atlases are intensively used notably for spatial normalization [Gholipour 2007], label propa-
gation of segmented areas [Cabezas 2011] or to compute statistics on a population [Whitcher 2007].
These processes show greater efficiency when the average models are age-adapted to the sub-
jects, in order to account for the above-mentioned brain maturation specificities. When per-
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Figure 1.1: T2-weighted images, cerebral volumes and cortical surface areas of a normal female
subject between 26 and 39 gestational weeks.a

aImage courtesy from [Kapellou 2006] - https://doi.org/10.1371/journal.pmed.0030265.g002

formed in a spatio-temporal context, an atlas gives an overview of the trends in brain evolution.
As MR databases are getting larger, including subjects across a variety of age ranges, new chal-
lenges appear in atlasing.

1.1.2 Motivations

With this context in mind, this thesis is motivated by the desire to contribute in answering of
the following interrogations:

I How to extract information about the anisotropic growth of the different regions of the
brain ?

Many morphological measurement have been explored to characterize brain growth. Volumetry
is the most common approach, either at whole brain scale or regionally. It gives an idea of the
overall growth, but does not provide any information about the directions of expansion or the
shape of the regions. On the other hand, surface based measurements are often more prone to
quantify the folding of the brain and its cortical surface expansion.

I How to produce spatio-temporal atlases that are unbiased with respect to a population
while being well-representative of the ages it is supposed to portray ?

Spatio-temporal atlases are average models of the brain for different timepoints. The maturity
differences, between the subjects involved, requires the use of robust tools. Those atlases have

https://doi.org/10.1371/journal.pmed.0030265.g002
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to be representative both of the population and the considered timepoints thus not biased to-
ward a given subject or temporally shifted.

I How to update existing atlases in a pertinent fashion without having to restart the whole
process from scratch ?

Atlas creation is a time consuming process as it involves a high number of registrations, transfor-
mation compositions... which increases with the number of images. In usual atlasing methods,
the whole process has to be restarted from scratch as a new image arrives which is quite a
burden considering the actual trend in massive databases that are enlarged gradually.

1.2 Organization of the manuscript

Part I: This part first provides theoretical foundations about geometric transformations that
enable next to expose generalities and state-of-the-art methods for registration and atlasing.

Chapter 2 introduces some geometric transformations commonly used in computational
anatomy. In details, this chapter includes the way they can be parametrized and decomposed
starting with the most basic ones, affine transformations that operate globally, to diffeomor-
phisms that act locally while ensuring smoothness and invertibility properties. The compu-
tation of statistics on those transformations while preserving topology through their (infinite
dimensional) Lie group structure is then detailed.

This paves the way for the depiction of the registration process in Chapter 3. This elemen-
tary tool of image processing consists in finding the transformation, among a set of acceptable
ones, that best maps an image onto another. Some of the most common registration methods
that rely on the optimization of a similarity between the two images are depicted whether they
are seeking linear or non-linear transformations.

Chapter 4 addresses the topic of atlasing. An atlas consists in an average model of the brain
both in terms of shape and intensity. This notably involves registrations and transformation
manipulations such as composition and inversion but also averages that need to be well defined.
A extension is longitudinal atlases that also account for the temporal dimension thus providing
information on brain development.

Part II: This part describes my contributions on the topic of pediatric image analysis. It
includes a method for scaling factors extraction for anisotropic brain growth modeling and an
applicative work on newborns involving the adaptation of processing tools originally designed
for adults.

In Chapter 5, a constrained affine transformation is introduced providing a way to extract
scaling factors in three orthogonal directions through registration. Applied to a longitudinal
database, this allows to model, at a regional scale, the anisotropic brain growth.

Chapter 6 is devoted to a study of brain perfusion on neonates suffering from hypoxic-
ischemic encephalopathy. My role was, in this joint work with clinicians at the university
hospital of Rennes, was to adapt and develop new processing pipelines such that they handle
this kind of population that greatly differs from the classical adult populations.

Part III: This part is dedicated to my contributions in atlas creation methods, starting with
a method to improve rigid registration in case of brains of different sizes in Chapter 7.

A spatio-temporal atlas creation method is then detailed in Chapter 8 that takes advantage
of a convenient mathematical framework to deal with diffeomorphic transformations. Also this
method creates atlases that are unbiased up to a rigid transformation both accounting for
global growth and local deformations. Finally it takes care of a the temporal accuracy through
a flexible weight function modulating the contribution of the subjects.
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An iterative centroid atlasing approach is then presented in Chapter 9 that allows to up-
date an atlas as new images gradually arrive without having to restart the whole process from
scratch. This theme will be very beneficial in the future as larger and larger databases are being
constituted, especially over several years of acquisitions.

Finally, Part IV concludes this manuscript over two chapters summarizing the contributions
of this thesis (Chapter 10) and the perspectives of this work (Chapter 11).
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Geometric transformations
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The approach followed is this thesis is the study of brain anatomies by the prism of the
transformations that matches them. Before we get into the subject of how the matching is
performed, it is necessary to first recall some generalities on the geometric transformations
involved.

2.1 Generalities

A geometric transformation is a map usually from R2 or R3 to itself that affects the spatial
position of the points of those sets. It is often constrained to be bijective and can be classified
according to its degrees of freedom (several to an infinite number) or the geometric properties
that it preserves (distance between points, parallel lines...). This is a crucial tool for images
registration, a task which consists in finding the geometric transformation, among a set of
acceptable ones, that best matches two images.

We will cover in this chapter the two main classes of transformations. First, the linear and
affine transformations which are of finite low dimension. They are globals in the sense that each
point is transformed the same way through a single matrix operating on coordinates. We will
next focus on diffeomorphisms which are capable of handling local changes without limits in
terms of degrees of freedom, however with constraints on smoothness and invertibility. Finally
we will show how the Lie group structures of some transformations sets can be used to compute
Euclidean statistics on them.
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2.2 Linear and affine transformations

We start by presenting the general linear and affine maps and their relations to geometric
transformations.

2.2.1 Overview

Linear map: Let V and W be two vector spaces over a field K. The function f : V →W is a
linear map if ∀ u, v ∈ V and c ∈ K:

f(u+ v) = f(u) + f(v) additivity

f(cu) = cf(u) homogeneity
(2.1)

If V and W are finite dimensional vector spaces of dimensions n and m respectively, then ev-
ery linear map from V to W can be represented by a matrix A ∈ Km×n such that ∀x ∈ V ,
f(x) = Ax.

Affine map: The function f : V → W is an affine map if it is a composition of a linear map
A ∈ Km×n and a translation t ∈ Kn following: f(x) = Ax + t. In the context of geometric
transformations, x represents a vector of coordinates: x ∈ Rn with typically n = 2 or 3, which is
mapped into the same space so that the linear map is a square real matrix: A ∈ Rn×n that oper-
ates those coordinates through matrix multiplication and the translation t is also a vector of Rn.

This Cartesian formulation does not allow the representation of an affine transformation
using only a simple matrix multiplication. However, using an homogeneous coordinates system
which is a tool from projective geometry, one can overcome that burden. Those homogeneous
coordinates are constructed by adding 1 as the (n+ 1)th element of the Cartesian coordinates
of x while the matrix that embeds the whole affine transformation is built by concatenating
the vector of translation on the right of the linear map and by adding a new line that contains
only zeros except at the last column where it is a 1:

Cartesian coordinates ←→ Homogeneous coordinates

y = Ax+ t ←→

 y

1

 =

 A t

0 · · · 0 1

 x

1

 (2.2)

One can reformulate this as:
ỹ = T x̃ (2.3)

where x̃ and ỹ are the homogeneous counterparts of the Cartesian coordinates x and y re-
spectively and T encapsulates both the linear part A and the translational part t into a single
matrix. This compact representation makes it computationally powerful and therefore very
popular in image processing.

Affine transformations are considered as global in the sense that all the coordinates are
multiplied by the same matrix.

Orthogonal group: Let R be a n× n real matrix that represents a linear map. R belongs to
the orthogonal group denoted O(n) if:

RRT = RTR = Id (2.4)

It corresponds to the transformations that preserve distances while preserving one point fixed

(the origin). Given this constraint, such matrices have
n(n− 1)

2
degrees of freedom.
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Special orthogonal group: If R ∈ O(n) and det(R) = 1, R also belongs to a subgroup of
O(n) called the special orthogonal group denoted SO(n). In dimension 2 or 3, R is designated
as a rotation matrix since it acts as such when applied to Cartesian coordinates. On the other
hand, if det(R) = −1, the matrix is considered as improper and the associated transformation
contains reflections.

2.2.2 Quaternions and spatial rotations

2.2.2.1 Quaternions

Quaternions, introduced byWilliam Rowan Hamilton in 1843 and formalized in [Hamilton 1843],
are an extension of complex numbers. The set of quaternions denoted H is a noncommutative
division algebra over real numbers, generated by the canonical basis of four elements {1, i, j, k}
and such that the Hamilton’s rule is satisfied:

i2 = j2 = k2 = i ∗ j ∗ k = −1 (2.5)

where ∗ is the quaternion multiplication. Any quaternion q can therefore be written:

q = a+ b i +c j +d k (2.6)

where a, b, c, d ∈ R. H is therefore isomorph to R4 leading to the representation q = a +

b i +c j +d k ∈ H ≡ q = (a b c d)T ∈ R4 which can be reformulated (a, v) where a is called the
scalar part and v ∈ R3 the vector part. If a = 0 the quaternion is considered as pure while it
is referred as scalar if v = (0 0 0)T . The following operations rule the algebra of quaternions:

• addition: q1 + q2 = (a1 + a2, v1 + v2)

• internal multiplication: q1 ∗ q2 = (a1a2 − v1 · v2, v1 × v2 + a1v2 + a2v1)

where · and × are the dot and cross product in R3. q1 ∗ q2 6= q2 ∗ q1

• external multiplication: let λ ∈ R, λq = (λa, λv)

• conjugate: q̄ = (a, −v)

• dot product: q1 · q2 = 1
2 (q̄1 ∗ q2 + q̄2 ∗ q1) = a1a2 + v1 · v2

• norm: ‖q‖2H = q · q = q ∗ q̄ = q̄ ∗ q = ‖q‖2R4 = a2 + ‖v‖2R3

If ‖q‖ = 1, it is called a unit quaternion.

• inverse: q−1 =
q̄

‖q‖2
for q 6= 0

2.2.2.2 Matrix representations of quaternion products

There exists a representation allowing to express a quaternion product as a matrix product. We
will call these 4× 4 matrices L and R for respectively left and right quaternion multiplication.
Let’s consider p ∗ q the product of two quaternions. Lp associated to p and Rq associated to q
are defined such that:

Lpq = Rqp = p ∗ q (2.7)

For any quaternion q =
(
q0, (q1 q2 q3)T

)
, its associated left and right multiplication matrices

Lq and Rq can be constructed following:

Lq =


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

 and Rq =


q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0

 (2.8)

Those matrices also have some interesting properties such as:



16 Chapter 2. Geometric transformations

• Lq̄ = LTq and Rq̄ = RTq (2.9)

• LqLTq = LTq Lq = RqR
T
q = RTq Rq = ‖q‖2 Id (2.10)

• Lq + LTq = Rq +RTq = 2q0 Id (2.11)

• det(Lq) = det(Rq) = ‖q‖4 (2.12)

If q is a pure quaternion: q0 = 0, then (2.11) implies that Lq and Rq are skew-symmetric.
If q is a unit quaternion: ‖q‖ = 1, then (2.10) and (2.12) imply that Lq, Rq ∈ SO(4): they are
rotation matrices.

2.2.2.3 Representation of rotations through unit quaternions

Any 3-dimensional vector can be rewritten as a pure quaternion: v ∈ R3 → (0, v) ∈ H. Thanks
to Euler’s theorem, the axis-angle representation allows the parametrization of any combination
of spatial rotations only by a unit vector u indicating the direction of the rotation axis and an
angle θ describing the magnitude of the rotation about this axis. The image v′ of the vector v
through this rotation can be expressed using the Rodrigues formula from [Rodrigues 1840]:

v′ = cos(θ)v + sin(θ)(u× v) + (1− cos(θ))(u · v)u (2.13)

Given that, lets consider the following unit quaternion:

q = ±
(

cos

(
θ

2

)
, sin

(
θ

2

)
u

)
(2.14)

Then, v′ can also be expressed by a quaternion representation of form:

(0, v′) = q ∗ (0, v) ∗ q−1 = q ∗ (0, v) ∗ q̄ (2.15)

Intermediate calculations are detailed in Appendix A.
Unit quaternions are widely used in computer graphics to represent spatial rotations for the
following reasons:

• They are compact and more numerically stable than rotation matrices reducing round-off
errors.

• They vary continuously over the unit sphere in R4 avoiding discontinuous jumps.

• It is easy to compose rotations through quaternion products.

• It is easy to interpolate between quaternions.

Unit quaternion to rotation matrix
Let q = a + b i +c j +d k be a unit quaternion i.e. a2 + b2 + c2 + d2 = 1 and a vector v ∈ R3

(→ (0, v) ∈ H). An associated rotation matrix A ∈ SO(3) such that Av and q ∗ (0, v) ∗ q̄
represent the same rotation can be constructed following:

q ∗ (0, v) ∗ q̄ = LqRq̄(0, v) = LqR
T
q (0, v) =

(
1 0

0 A

)
(0, v) (2.16)

Leading to:

A =

 a2 + b2 − c2 − d2 2bc− 2ad 2ac+ 2bd

2ad+ 2bc a2 − b2 + c2 − d2 2cd− 2ab

2bd− 2ac 2ab+ 2cd a2 − b2 − c2 + d2

 (2.17)

Rotation matrix to unit quaternion
Let A be a rotation matrix and a vector v ∈ R3 (→ (0, v) ∈ H). An associated unit quaternion
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q = a+b i +c j +d k such that q∗(0, v)∗ q̄ and Av represent the same rotation can be constructed
following:

if Tr(A) 6= −1 if Tr(A) = −1

a = 1
2

√
1 + Tr(A) a = 0

b = 1
4a (A32 −A23) b =

√
− 1

2 (A22 +A33)

c = 1
4a (A13 −A31) c =

√
− 1

2 (A11 +A33)

d = 1
4a (A21 −A12) d =

√
− 1

2 (A11 +A22)

(2.18)

Another obvious possibility is the quaternion −q.

2.2.3 Matrix decomposition

The linear part of an affine transformation is a matrix that can be decomposed into more
elementary elements such as rotations and scalings.

2.2.3.1 Using singular value decomposition

Let T be an affine transformation matrix with linear part A and translational part t. Using
singular value decomposition (SVD) on A, we obtain:

A = V DWT (2.19)

Where W and V are orthogonal matrices and D is a positive diagonal matrix. In this config-
uration, V and W are not guaranteed to be proper i.e. det(V ) and/or det(W ) may be equal
to −1, therefore containing reflexions. Yet, we would like them to be rotation matrices to take
advantage of the quaternion formulation. To this end, one can consider another akin decompo-
sition by multiplying the first columns of V , W and D by their determinants:

• P = V

(
det(V ) 0

0 In−1

)
−→ P is a rotation matrix

• U = W

(
det(W ) 0

0 In−1

)
−→ U is a rotation matrix defining the di-

rections of scaling

• S = D

(
det(V ). det(W ) 0

0 In−1

)
−→ S is a diagonal scaling matrix

leading to what we will refer as the rotations and scaling decomposition (RSD):

A = PSUT (2.20)

Unlike in the SVD case, it is the diagonal matrix that bears the responsibility of possible
reflections while the left and right matrices are guaranteed to be proper. Given that, the
rotation induced by the matrices P and U can be represented using unit quaternions.

2.2.3.2 Using polar decomposition

Let T be an affine transformation matrix with linear part A and translational part t. Using
polar decomposition (PD) on A, we obtain:

A = QH (2.21)

where Q is an orthogonal matrix and H is a positive-semidefinite symmetric matrix. One can
easily retrieve PD from SVD. Let A = V DWT through SVD, we can reformulate the expression
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to get Q and H:

A = V DWT

= VWT︸ ︷︷ ︸
Q

WDWT︸ ︷︷ ︸
H=

(2.22)

2.2.4 Subsets of affine transformations

By imposing additional constraints, one can define subsets of affine transformations:

• A rigid transformation preserves Euclidean distance between any pair of points leading
to a transformed object that has the same shape and size as the original one. This type of
transformation is only composed of a rotation R i.e. putting S to identity in Equation 2.20:
R = PUT and a translation.

• A similarity is a transformation that preserves the shape of an object but scales it
uniformly. This is done by imposing the scaling matrix in Equation 2.20 to be composed
of equal elements in the diagonal: S = s Id where s ∈ R. This type of transformation is
composed of a rotation R = PUT , an isotropic scaling s and a translation leading to a
linear part of form: A = sR.

• An affine transformation preserves points, lines and planes while ensuring parallel lines
to remain that way. It is composed of a non-constrained linear part A = PSUT and a
translation.

A summary of those subsets of affine transformations together with their respective degrees of
freedom in 3 dimensions is available in Table 2.1. An overview of those transformations applied
to a 2D grid is shown in Figure 2.1

Transformation Degrees of freedom

Rigid 6
. a rotation (3 dof): R = PUT

. a translation (3 dof): t

Similarity 7

. a rotation (3 dof): R = PUT

. an isotropic scaling (1 dof): s

. a translation (3 dof): t

Affine 12

. a rotation (3 dof) that settles scaling directions: U

. an anisotropic scaling (3 dof): S

. a rotation (3 dof): P

. a translation (3 dof): t

Table 2.1: Subsets of affine transformations and their respective degrees of freedom

identity rigid similarity affine

Figure 2.1: Linear transformations applied to a 2D regular grid.
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2.3 Diffeomorphisms

The global aspect of the above-mentioned transformations forbids the characterization of local
changes between two objects. We will describe in this section a transformation of infinite
dimension with interesting topology-preservation properties.

2.3.1 Presentation

Let M and N be two differentiable manifolds. A map f : M → N is a diffeomorphism if:

• f is bijective.

• f is differentiable

• f−1 is differentiable.

It is a smooth one-to-one mapping which preserves topology thus not generating foldings or
holes. A diffeomorphism is characterized at each point by a non-zero determinant of the jacobian
matrix.

Let M be a differentiable manifold, we denote by Diff(M) the set of all diffeomorphisms of
M onto itself. The set Diff(M) together with the composition law ◦: (Diff(M), ◦) is given a
group structure of infinite dimension.

Figure 2.2: Regular grid before (left) and after (right) diffeomorphic transformation together
with the associated deformation field (center).

In this work, we focus a lot on these transformations and their processing. We present in
the remaining part of this section two usual parameterizations of diffeomorphisms: LDDMM
and SVF.

2.3.2 LDDMM parametrization

Following the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework,
formalized in [Christensen 1996] and taken up notably in [Beg 2005], a diffeomorphism φ ∈
Diff(M) (withM being typically R2 or R3 in our case) can be parametrized by a time-varying
velocity field v(t). In this context, diffeomorphisms are seen as the flow of vector fields γ(t)

initiated at the identity given by the following ordinary differential equation (ODE):

∂γ(x, t)

∂t
= v(t, γ(x, t)) , with initial condition: γ(x, 0) = x (2.23)

The applied transformation φ is then generated through the integration of this ODE during
one unit of time:

φ(x) , γ(x, 1) = x+

∫ 1

0

v(t, γ(t))dt (2.24)
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It has been proved in [Dupuis 1998] that if the field v is smooth enough, the associated φ is
indeed a diffeomorphism.

2.3.3 SVF parametrization

In a more restricted parametrization, diffeomorphisms are obtained through the integration of
stationary ordinary differential equations (ODEs), i.e the ones whose velocity vector field do
not depend on time [Arsigny 2006a]:

∂γ(x, t)

∂t
= v(γ(x, t)) , with initial condition: γ(x, 0) = x (2.25)

Here v is called a stationary velocity field (SVF). This stationary aspect of the velocity field
is the key difference with the above mentioned LDDMM framework. Contrary to the latter, this
approach using SVF does not allow the parametrization of the whole group of diffeomorphisms
Diff(M) (see [Grabowski 1988]). Despite this fact (and some other Riemannian aspects), we
will see in the following its convenience notably for calculation through its infinite-dimensional
Lie group structure.

2.4 On computing statistics on transformations

Whether transformations take the form of a matrix or a deformation field, the natural operation
i.e. the one that preserves topology, is the composition. On the other hand, since they generally
do not form a vector space, the addition often appear geometrically meaningless. Indeed the
addition and therefore the Euclidean average of multiple transformations of a given type with
given properties is not ensured to keep those attributes.

This is quite critical for atlas creation that we will review in Chapter 4. Since an atlas
corresponds to an average model both in terms of shape and intensity, it is not surprising
that some averages of images and transformations between individuals will be required in the
creation process. This burden is shared with interpolation where e.g. one wants to compute a
transformation at a given point by interpolating through averages from known transformations
at control points. Also, in registration which is commonly an iterative process, one generally
cannot simply update a transformation by adding a new displacement.

The need is therefore felt for a theoretical framework allowing to compute statistics on those
transformations while preserving nice properties such as smoothness and invertibility.

The goal of this chapter is to expose some fundamentals and properties about Lie groups
and show how this structure will allow us to compute statistics on geometric transformations.
A main source of inspiration comes from [Bossa 2007, Vercauteren 2008, Arsigny 2006a] and
the recently published [Pennec 2020].

2.4.1 Theoretical background on Lie groups

We will introduce the notion of Lie group and overview some of its properties, especially the
relations with its tangent space at identity through logarithm and exponential maps.

2.4.1.1 Basics

Group: Let G be a set and · a binary operation on G (group law), namely that applies on two
elements to form a new element. Together they form a group denoted (G, ·) if the following
four group axioms are satisfied:

• Closure: ∀a, b ∈ G, a · b ∈ G

• Associativity: ∀a, b, c ∈ G, (a · b) · c = a ·(b · c)
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• Identity element: ∃e ∈ G called the identity element such that ∀a ∈ G, e · a = a · e = a

• Inverse: ∀a ∈ G ∃a−1 called the inverse of a such that a · a−1 = a−1 · a = e

where e is the identity element.

Lie group: Let (G, ·) be a group. G is a Lie group if:

• G is a finite-dimensional smooth manifold.

• f : G×G→ G

(a, b) 7→ a · b
is smooth.

• g : G→ G

a 7→ a−1

is smooth.

Lie algebra: A Lie algebra denoted g is a vector space over a field K together with a binary
operation [·, ·] : g × g → g called the Lie bracket satisfying the following axioms: ∀a, b ∈ K,
x, y, z ∈ g

• Bilinearity: [ax+ by, z] = a[x, z] + b[y, z] and [z, ax+ by] = a[z, x] + b[z, y]

• Alternativity: [x, x] = 0

• Jacobi identity: [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

To every Lie group G can be associated a Lie algebra g of the same dimension, whose underly-
ing vector space is the tangent space of G at the identity element. The Lie algebra completely
captures the local structure of its associated Lie group. This correspondence is not one-to-one
as a given Lie algebra can be associated to several Lie groups.

One-parameter subgroup: Let (G, ·) be a group with identity element e. A family of element
{γ(s) | γ : R→ G}s∈R is a one-parameter subgroup of G if and only if: ∀s, t ∈ R:

• γ(0) = e

• γ(s) · γ(t) = γ(s+ t)

The one-parameter subgroup forms a path over its associated Lie group, starting at the identity.

If γ if differentiable, its derivative at 0: Xγ =
dγ(s)

ds

∣∣∣∣
s=0

is called the infinitesimal generator

of the one-parameter subgroup. An illustration is shown in Figure 2.3.

Exponential map: Let G be a Lie group and g be its associated Lie algebra. One can define
the exponential map exp as:

exp: g → G

X 7→ γ(1)

(2.26)

Where γ is the unique one-parameter subgroup of G whose tangent vector at the identity is
equal to X, X being therefore the infinitesimal generator of γ.
Now, the exponential map is a diffeomorphism from an open neighborhood of 0 in g to an open
neighborhood of Id in G. One can therefore define an inverse map called the logarithm map
log from an open neighborhood of Id in G such that for every g in this neighborhood, there
exists a unique x in the open neighborhood of 0 in g such that g = exp(x) and thus x = log(g).

It is therefore possible to, locally around the identity, unfold a Lie group through the
logarithm map onto its Lie algebra which is a vector space where it is easy to work with since
linear algebra applies. After working on the Lie algebra, one can use the exponential map to
fold it back onto its original structure.
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Figure 2.3: A Lie groupe: G, its tangent space at identity (associated Lie algebra): g, and a
one-parameter subgroup on G: γ.

2.4.1.2 Baker-Campbell-Hausdorff formula

Since Lie algebras are vector spaces, the natural operations are additions and multiplications by
a scalar while it is the internal composition law that prevails in the associated Lie group. One
might want to compute what would be the representation in the Lie algebra of the composition
of two elements of the Lie group without any logarithm computation. This is especially desirable
since the logarithm is not always well-defined and can be computationally expensive. The Baker-
Campbell-Hausdorff (BCH) formula allows an estimation of the logarithm of the composition
of two elements of the Lie group only using corresponding elements of Lie algebra through a
series of Lie bracket terms.
Baker-Campbell-Hausdorff formula: Let v, w ∈ g close enough to 0. Then the following
series converges:

log(exp(v) · exp(w)) ≈ v + w +
1

2
[v, w] +

1

12
([v, [v, w]] + [[v, w], w]) + . . . (2.27)

2.4.1.3 Fast computation of exponential and logarithm

Those techniques are not well suited for all couple of Lie algebras and groups but they will show
themselves very efficient in our context of interest which is geometric transformations [Arsigny 2006b,
Arsigny 2006a].

Scaling and squaring for exponential

The scaling and squaring method allows the fast computation of φ ∈ G, the exponential of v ∈ g.
The idea is to benefit from the fact that the exponential can often be easily approximated near
the origin and that exp(v) = exp

(
2−kv

)2k .
1. Scaling: Choose k such that 2−kv is small enough.

2. Approximation: exp
(
2−kv

)
≈
0

Id +2−kv (Padé approximant of order [1, 0])

3. Squaring: let α0 = Id +2−kv. k recursive squarings: αi = αi−1 ◦ αi−1︸ ︷︷ ︸
for i=1 to k

leading to exp(v) ≈ αk

Inverse scaling and squaring for logarithm

The inverse scaling and squaring method allows the fast computation of v ∈ g the logarithm
of φ ∈ G . The idea is to benefit from the fact that the logarithm can be easily approximated
near the identity and that log(φ) = 2k log

(
φ2−k

)
.
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1. Scaling: Choose k big enough.

2. Rooting: Compute φ2−k through k recursive square rootings.

3. Approximation: log
(
φ2−k

)
≈
Id
φ2−k − Id, leading to: log(φ) ≈ 2k log

(
φ2−k

)
It should be noted that the rooting process is not straightforward and can therefore show itself
computationally expensive.

2.4.2 Lie group structure of linear transformations

As previously explained, a linear transformation T can be written as a (n+ 1)× (n+ 1) matrix
of form:

T =

 A t

0 · · · 0 1

 (2.28)

Where A is the linear part and t the translational part of T . A defines the type of transforma-
tion: if A ∈ GLn(R), the transformation is affine; if A ∈ SO(n), the transformation is rigid.

The group of n×n invertible matrices over the field of real numbers: GLn(R) together with
the matrix multiplication forms a Lie group of dimension n2.

The Lie algebra of GLn(R), denoted gln, consists of all n × n real matrices i.e. the whole
Mn(R).

The group of n × n orthogonal matrices (orthogonal group): O(n) and the group of n × n
rotation matrices: SO(n) are both Lie groups of dimension n(n−1)

2 .
O(n) and SO(n) share the same Lie algebra, denoted on that consists of all n × n real

skew-symmetric matrices.

In all those cases, the group law is the matrix multiplication, the identity element is the
identity matrix of dimension n and the Lie bracket associated to those Lie algebra is the
commutator: [X,Y ] = XY − Y X. A recap is provided in Table 2.2.

Lie group Lie algebra

GLn(R) {A ∈Mn(R) | det(A) 6= 0} Mn(R) all n× n matrices
O(n) {A ∈Mn(R) | AAT = ATA = Id} on {X ∈Mn(R) | XT = −X}
SO(n) {A ∈ O(n) | det(A) = 1} on {X ∈Mn(R) | XT = −X}

Table 2.2: Some common Lie groups of matrices and their respective Lie algebras

Let the matrix X ∈ Mn(R), the exponential map A ∈ GLn(R) is well-known and can be
constructed following:

A = exp(X) =
+∞∑
k=0

1

k!
Xk (2.29)

Where X0 is defined to be the identity matrix. This series converges for any X and can
be computed quickly using Jordan-Chevalley decomposition or using the scaling and squaring
method depicted previously.

In the special case of X being in the Lie algebra of spatial rotation matrices: X ∈ o(3), an
analytic expression derived from the Rodrigues formula exists for the associated exponential
R ∈ SO(3) [Davis 2010]:

R = exp(X) =

{
Id , if θ = 0

Id +
sin θ

θ
X +

1− cos θ

θ2
X2 , if θ 6= 0 and θ 6= kπ, k ∈ Z

(2.30)
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Where θ =
√

1
2 Tr(XTX).

The formalization of the matrix logarithm is not as straightforward as the exponential.
Because the exponential map is not one-to-one, a real matrix may not have any logarithm.
The conditions for existence and uniqueness of logarithm for real and complex matrices are
investigated in [Higham 2008, Gallier 2008, Arsigny 2009]. What matter for us here is the
following: Let A ∈ GLn(R). If A has no negative eigenvalues, then A has a unique real
logarithm log(A) whose imaginary parts of eigenvalues Im(λ) are such that: −π < Im(λ) < π.

This logarithm is usually referred as the principal logarithm. Even though this constraint on
eigenvalues does not have a straightforward translation in terms of transformation constraints,
it appears that, in the absence of reflexions, only very large (thus non-realistic in practice)
transformations would go beyond the frame. It can be notably computed using the inverse
scaling and squaring method depicted previously.

In the special case of R being a spatial rotation matrices: R ∈ SO(3), an analytic expression
derived also exists for the associated logarithm X ∈ o(3) [Davis 2010]:

X = log(R) =

{
Id , if θ = 0

Id +
θ

2 sin θ
(R−RT ) , if θ 6= 0 and θ 6= kπ, k ∈ Z

(2.31)

Where θ = arccos

(
Tr(R)− 1

2

)
.

Now interestingly, given an affine transformation T of linear part A and transformation part
t, its logarithm lies in the set of matrices that contain only zeros in last row and is closely linked
to the one of its linear part:

log(T ) = log

(
A t

0 1

)
=

(
log(A) v

0 0

)
(2.32)

Given that, since the type of an affine transform (rigid, affine...) is totally determined by the
type of its linear part (rotation matrix, free matrix...), they directly inherit from their Lie group
properties. Interestingly, in the specific case of A being the identity i.e the transformation is
only a translation, we have v = t.

2.4.3 Infinite dimensional Lie group structure for diffeomorphisms

The group of diffeomorphisms parametrized by SVFs, together with the composition law ◦ shares
all the prerequisites for being a Lie group except that it is not finite-dimensional. Despite that
difference for which it is referred as an infinite dimensional Lie group and that causes some
unsolved issues, a framework developed in [Arsigny 2006a] that applies some of the above-
mentioned tools of Lie group theory to diffeomorphisms has proven its relevance.

By using the SVF parametrization of diffeomorphisms, their one-parameter subgroups are
obtained through the integration of the associated stationary ordinary differential equation 2.25.
A one-parameter subgroup of diffeomorphisms is given by the flow associated to this station-
ary ODE i.e. the family of elements: {γ(., t) ∈ Diff(M) | γ : R→ Diff(M)}t∈R and v is the
infinitesimal generator of this subgroup.

Given that, diffeomorphisms belonging to the above-mentioned one-parameter subgroup can
be computed through an exponential map exp. The exponential of a SVF v can be defined as
the flow at time 1 of the ODE expressed in Equation 2.25:

exp(v) = γ(x, 1) (2.33)

This leads to a definition of the logarithm log such that for a diffeomorphism φ close enough to
the identity, log(φ) is the only SVF v in the neighborhood of 0 such that exp(v) = φ. Exponen-
tials and logarithms can be computed using the technique presented in Section 2.4.1.3. More
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details about their implementations for diffeomorphisms parametrized by SVFs are available
in [Arsigny 2006a]. SVF are therefore the Lie algebra of this subset of diffeomorphisms and the
associated Lie bracket is given for u and v two SVF by:

[v, w](x) = Jac(v)(x).w(x)− Jac(w)(x).v(x) (2.34)

Where Jac(v)(x) is the Jacobian matrix of v at point x:

Jac(v)(x) ,


∂v1

∂x1
(x) . . .

∂v1

∂xn
(x)

...
. . .

...
∂vn
∂x1

(x) . . .
∂vn
∂xn

(x)

 (2.35)

The logarithm is not always well-defined and its computation is very costly. This statement
is particularly true for diffeomorphisms as multiple SVF square roots are required, which have
to be computed by gradient descent. Given that, it is preferable to limit its use as much
as possible. Fortunately, the BCH formula allows the estimation of the composition of two
diffeomorphisms only knowing their associated SVF thus not requiring logarithm computation.
The theoretical justification underlying the use of the BCH for diffeomorphisms parametrized
by SVF is a bit wobbly since diffeomorphisms are not a finite Lie group. Yet it as found its
practical relevance in the context of image processing as in [Bossa 2007, Vercauteren 2008].
many registration algorithms such as in [Vercauteren 2008, Commowick 2012a] are nowadays
implemented to directly estimate and update the transformation in the SVF domain thus only
necessitating exponentiations to apply the transformation to the image.

To simplify notations, unless specified otherwise, the composition of two transformations
associated to two SVFs v and w is performed via the BCH: exp(v) ◦ exp(w) = exp(BCH(v, w)).

Taking advantage of the Lie group structure of diffeomorphisms parametrized by SVFs, one
can express the power of a diffeomorphism defined as Tα = γ(α) = exp (α log(T )). Tα is the
flow at time α along the diffeomorphic path from the identity to T .

2.4.4 Log-Euclidean statistics on transformations

Let G be a Lie group and g its associated Lie algebra. For example, in this work, G may be the
set of affine transformations, rigid transformations or diffeomorphic transformations parame-
terized as SVF. g being a vector space, if the field over which it lies is real, which is the case in
the context of geometric transformations, one can define a norm. From this norm on g emerge
log-Euclidean statistics on G [Arsigny 2009, Arsigny 2006b] including:

A log-Euclidean distance: Given two transformations: φ1, φ2:

dist(φ1, φ2) = ‖ log(φ1)− log(φ2)‖ (2.36)

Which happens to have a nice inversion-invariant property since log
(
φ−1

)
= − log (φ).

A log-Euclidean Mean: Given a collection of n transformations {φi, . . . φn} and their asso-
ciated weights {wi, . . . , wn} such that

∑n
i=1 wi = 1:

φ̄ = arg min
φ∈G

∑
i

wi‖ log(φ)− log(φi)‖2 ⇒ φ̄ = exp

(∑
i

wi log(φi)

)
(2.37)

An scheme comparing the classical Euclidean mean and this topology preserving log-Euclidean
mean is available in Figure 2.4.

This paves the way for averages on groups of geometric transformations while ensuring the
result to that very same group. By operating on their Lie algebras, averages preserve their
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properties such as invertibility, rigidity... This log-Euclidean framework is therefore a crucial
tool in the context of registration and atlasing.

Figure 2.4: Average of two elements X1 and X2 of a group G through an Euclidean mean (left)
and a log-Euclidean mean (right).

2.5 Conclusion

In this chapter we introduced two types of transformations. First the linear transformations
that act globally on all coordinates though a single matrix multiplication. We saw notably how
to decompose them and how to conveniently represent rotations using quaternions. We then
evoked the infinite-dimensional diffeomorphic transformation and how to parametrize them
into SVF and the LDDMM framework. We saw finally that, when equipped with a Lie group
structure, one can perform statistics on those transformations.

Those are the geometric transformations that are commonly used in the mapping of two
images namely the process of registration detailed in the next chapter. The quaternion repre-
sentation of rotation will be a crucial tool for optimizing over the set of rigid transformations
but also over a new type of linear transformations in Chapter 5. The SVF framework will be
intensively used whether it is for transformation update in registration or averages in atlasing.
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Image registration
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3.1 Generalities

Omnipresent in this thesis, whether in the context of atlas creation or brain growth modeling,
registration deserves a dedicated part. While it is impossible to provide a complete review of
the field, we will rather quickly present the generic concepts and a specific algorithm used in the
rest of this thesis: block-matching. We will then focus in Chapters 3.2 and 3.3 more specifically
on the geometric transformations involved, all already presented in the previous chapter.

3.1.1 Principle

Registration consists in the spatial matching of two images i.e. transforming one onto the other
so that their anatomical structures match. In our case, we consider specifically 3D anatomical
representations of brains acquired from a single or multiple MRI modalities (T1,T2-weigthed,
proton density...), or even from other type of scanners (PET, CT...). This technique is widely
used in clinical routine to reorient an image to make it more convenient for examination, to
compare an individual with a reference or to monitor the evolution of a disease. It is also a
crucial tool to produce atlases (i.e. average models of the brain), to propagate segmentations
from a subject (or an atlas) onto another, to correct distortion or to extract developmental
metrics when a longitudinal database of subjects is involved.

Usually one of the images is considered as the reference, and the other one is considered as
the moving one. In this context, registration consists in finding the transformation T , among a
set Ω of acceptable ones, that will best superimpose the transformed moving image J ◦ T onto
the reference image I. Based on this definition, three main parts need to be defined for an
algorithm: the set Ω, what best superimpose means, and how to optimize T [Brown 1992]. In
the rest of the manuscript, the notation J ◦ T ∼ I will be used to designate the transformed
image J from the registration onto I.

Historically, methods are usually divided in two main categories which operate as follow:



28 Chapter 3. Image registration

The first one regroups feature-based approaches.

• It begins with a feature extraction: the identification of common geometric traits
between the two images such as extremal points [Thirion 1996], crest lines [Declerck 1995],
surfaces [Pelizzari 1989, Malandain 1993]. . . .

• Then, an optimization is performed looking for the transformation that best matches
analogous features between the two images, usually through least squares minimization
of a given norm. Let {Fk | k = 1, . . . , N} be a collection of features such that Fk(I) are
selected on the reference image and Fk(J) are the analogous ones in the moving image.
The optimal transformation T̂ can be computed by solving a problem of the form:

T̂ = arg min
T∈Ω

N∑
k=1

‖Fk(I)− Fk(J ◦ T )‖2 (3.1)

The features can be manually defined by an expert or automatically detected. Often per-
formed through an iterative scheme, the feature matching aspect confers a certain tangibility
and ensures a relative robustness. Based on purely geometric considerations, it may however
sometimes be considered as too parsimonious as the extraction of sufficiently local features can
be difficult to achieve.

The second category regroups iconic methods. Those are entirely based on the intensities
of the voxels of the images and do not rely on pre-extracted features. Instead they work as
follow:

• A similarity measure sim that quantifies the resemblance in terms of intensity between
the voxels of the two images needs to be defined.

• The registration is then performed through an iterative optimization procedure seek-
ing the transformation that maximizes this similarity criterion sim leading to a problem
of form:

T̂ = arg max
T∈Ω

sim(I, J ◦ T ) (3.2)

As detailed in [Roche 2000], the similarity measure must be chosen based on the assumed
relationship (functional or not) between the images intensities once registered:

• Identity relationship: the sum of squared differences of the intensities can be considered,
especially for mono-modal images of a single subject.

• Affine relationship: a good choice may be the correlation coefficient which quantifies how
strong this linear relationship is. This measurement is especially well suited for mono-
modal registration but also in the multi-modal case when used at a local scale.

• Functional relationship: in that case, no assumption is made regarding the function map-
ping the intensity of one image to the other, except that it is still a continuous function.
This makes it therefore appropriate for multi-modal registration. Among these techniques,
the correlation ratio developed in [Roche 1998] is quite popular.

• Statistical relationship: even less restrictive, it mainly contains the mutual information
detailed in [Wells 1996, Maes 1997]. Based on information theory, this last measure is
computed from joint histograms of the two images thus giving it a universal aspect.

In order to find the transformation that maximizes this similarity criterion, an optimization
scheme must be put in place. Gradient descent or Powell’s methods are commonly used. The
similarity measures are however known to be non-convex with respect to the transformation
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parameters resulting in potential swamp in local minima. Solving for this generally involves
an iterative, multi-scale procedure requiring downsampling interpolations for the resampling of
the transformed moving image at each step further worsening the non-convex aspect.

This separation in two categories can however be permeable, some approaches such as block-
matching detailed in Section 3.1.2 having both iconic and feature-based aspects.

If we are dealing with two images of the same subject, it is referred as intra-subject
registration. Unless there is a longitudinal aspect, we assume that the two representations
of the brain are identical in terms of shape and we therefore only want to realign the two
volumes without geometric warping or stretching. The set Ω is therefore restricted to rigid
transformations that are only composed of rotations and translations. This occurs typically
when dealing with two (undistorted) images of a subject coming from different modalities or
acquired at different times (in the case of no major evolution between the two acquisitions) but
also when several volumes are acquired sequentially (e.g. in functional MRI).

On the other hand, in the case of brains from different subjects being registered, because of
the inter-subject variability, more degrees of freedom are needed. To compensate for global
changes in terms of scale, one can open the field of acceptable transformations to affine ones
that are composed of stretches in addition to rotations and translations. Doing so, the whole
moving image is transformed the same way to globally match the size and orientation of the
reference one.

However, those are not flexible enough to take into account local changes in the anatomies.
This requires more subtle transformations that can handle specific displacements for each par-
ticle of the moving image. Those non-global transformations studied in depth in Chapter 3.3.,
usually referred as non-linear, however need some safeguard to prevent aberrations through the
introduction of constraints and regularization terms to ensure a certain degree of smoothness,
invertibility... This leads to energy maximization problems of form:

T̂ = arg max
T∈Ω

sim(I, J ◦ T ) + reg(T ) (3.3)

Several measures have been developed in order to evaluate the accuracy of registration al-
gorithms. Among the most widely used are overlap score (Dice, Jaccard) of segmented regions
and image similarity, even though their reliability has been questioned in [Rohlfing 2012].

The choice of the acceptable transformations (rigid, affine, non-linear...) for the registration
is called the transformation model. The study of the transformations involved in registration
and how to find the optimal one according to the transformation model will be the main
focus in the following chapter neglecting somewhat the purely iconic aspects such as similarity
measures. For a more exhaustive overview of registration see [Hajnal 2001], an excellent survey
is also available in [Gholipour 2007] or more recently in [Oliveira 2014]. For a retrospective
view of the field and questioning about the usual classifications of the registration methods,
see [Viergever 2016]. For a global point of view of both feature-based and iconic registration
techniques, see [Malandain 2006] (in french).

3.1.2 Generalities about block-matching registration

Before digging deeper into the depiction of global and non-global registrations specificities, some
generalities about block-matching will be exposed. This approach is indeed the one of interest
in this thesis. To go beyond the hereafter overview, see the appendix B of [Commowick 2019]
where implementation details and variants are fully detailed.

At the beginning of the algorithm, the moving image is resampled into the grid of the
reference one. A set of blocks is established in the reference image. A block is a subpart of an
image, a set of voxels in a neighborhood defined around a given point of the space. They are
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usually chosen of cuboid shape for simple implementation and should be large enough (several
times a voxel size in every direction) to keep the similarity measure meaningful. The blocks
must be numerous in order to overdetermine the system as much as possible for a good accuracy
(the blocks may overlap). Then, the two following steps are iterated until convergence:

1. Matching: for a set of blocks established in the reference image, homologous blocks best
satisfying a similarity criterion are searched in the moving image.

2. Aggregation: the local relations between the homologous blocks are combined to pro-
duce an overall transformation updating the current one.

Block-matching strategies present therefore some kind of a feature-based / iconic duality. In-
deed, the features are defined on the reference image and their counterparts are searched in the
moving image using multiple local iconic matchings.

3.1.2.1 Matching

This is a generic step, it is performed the same way whatever the transformation model (linear
or not) of the registration. It can be viewed as a feature extraction that is performed by locally
maximizing a similarity criterion therefore based on iconic considerations.

Homologous blocks to the ones in the reference image are searched in the (resampled)
moving image. They are the ones that locally best satisfy the chosen similarity criterion with
the ones in the reference image. For each defined block in the reference image, the search is, for
computational reasons, only performed in a neighborhood (typically several block sizes) around
its center.

• In [Ourselin 2000], an exhaustive search is performed over discrete, grid-based transla-
tions. This results in point-to-point correspondences between the center of the homol-
ogous blocks of the two images. This approach is computationally interesting but the
restriction to translations for the relation between blocks may suffer scarcity in case of
large rotations or subvoxel displacements.

• To address this concern, it was proposed in [Commowick 2012b] in the case of rigid regis-
tration and in [Commowick 2012a] for the case of diffeomorphic registration, to perform
a search over local rigid transformations. Doing so, the candidate blocks are no longer
constrained to the grid and resampling is therefore needed in order to compute a simi-
larity measure. Exhaustive search is no longer possible and an optimization scheme has
to be chosen. This results in a much more expensive process even though derivative-free
algorithms in [Powell 2009] have shown good efficiency. We end up with more than simple
point-to-point correspondences since we actually obtain a set of local rigid transforma-
tions, one for each block. The same approach is imaginable searching over the set of affine
transformations but the computation cost may appear prohibitive.

Together with each relation between two homologous blocks, one can associate a weight that
quantifies how strong this relationship is. It can typically be proportional to the similarity
measure between the blocks.

3.1.2.2 Aggregation

This step is totally dependent upon the chosen transformation model. It consists in gathering
all the local relations between the blocks extracted in the previous step and aggregate them into
an overall update transformation. It therefore relies both on which kind of relations there is
between the blocks and which kind of overall transformation is sought. Different configurations
are exposed in the next chapters:
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• The aggregation into a linear transformation in the case of a point-to-point correspondence
between the blocks is detailed in Section 3.2.2.

• The aggregation into a non-linear transformation is detailed in Section 3.3.2.4.

3.2 Linear registration

3.2.1 Generalities

Preliminary disambiguation: The term linear registration is widely used to designate reg-
istrations where the set of acceptable transformations is restrained to rigid ones or any other
type or affinity. However, theoretically, these do not generally belong to the set of linear
transformations. Indeed, the introduction of a translational part causes a shift of the origin
which is in contradiction with the properties of linear maps (see Equation 2.1). This ambiguity
comes from the definition of a linear function in other fields than linear algebra and geometry
such as calculus and statistics where any function whose graph is a straight line is considered as
linear. That being said, we will comply with the standing practice in the rest of this manuscript.

In case of images from different modalities, registration methods using mutual information
as similarity measure have been quite dominant for about twenty years already. This popu-
larity is explained by the flexibility of that kind of similarity which does not require a well
defined relationship between the intensities of the two images. It is especially powerful to align
CT/PET/MR images of a single anatomy therefore only necessitating a rigid transformation
but it is also widely used in the mono-modal case and for affine transformations. The max-
imization of the criterion is usually performed in a global fashion (at the scale of the whole
image) such as in [Wells 1996] and [Maes 1997] where it showed nice results in the case of rigid
registration. The correlation ratio depicted in [Roche 1998] is also a relevant choice in the
multi-modal configuration.

Other methods rely on local similarities. Among this second category of approaches, block
matching strategies exposed in [Ourselin 2000] and [Commowick 2012b] have gained in popu-
larity especially in the linear case. The local similarity criterion to be maximized can typically
be the correlation coefficient which quantifies how strong is the affine relationship between the
intensities of two homologous blocks. The general concept of block-matching has been exposed
in Section 3.1.2 and particularly the matching step in Section 3.1.2.1 which is independent upon
the transformation model. In the following, the aggregation part consisting in the research of an
acceptable (with respect to the transformation model) overall transformation from local rela-
tions between the blocks will be detailed for different types of linear transformations. This step
also relies on the kind of relations coming from the matching step, whether it is a point-to-point
correspondence or a linear transformation for each couple of homologous blocks. We consider
here for the sake of conciseness that the relations between blocks are translations.

Not much revolutionary is happening nowadays in the field of linear registration methods,
yet some ideas for robustness improvement have emerged for existing frameworks. In the case
of rigid registration, [Prima 2013] proposed to take into account the bilateral symmetry of the
brain through a constraint on the rigid transformation such that the mid-sagittal planes of the
two brains are ensured to be superimposed. We also use while transformation decomposition
in Chapter 7 for rigid registration of brains of different sizes.

3.2.2 Optimal transformations from two sets of paired points

The matching step outputs two sets of paired points: x and y that are in our case the centers
of the homologous blocks. The second step (aggregation into a global transformation) however
is dependent on the type of linear transformation we want to determine leading to an adapted
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optimization in each case. The following is not restricted to block-matching algorithm but to
any method that first established a correspondence between points of the two images.

This optimization step consists in finding, in the set of eligible transformations, the one
that best maps x onto y. Let x = {x1, . . . , xM} and y = {y1, . . . , yM} be two sets of M paired
points coming from the matching step. For a global transformation with linear part A and
translational part t, the least squares problem associated to the matching of x and y consists
in the minimization of the following criterion C:

C(A, t) =
∑
i

‖yi − (Axi + t)‖2 (3.4)

Remark. For the sake of clarity we present a version with a non-weighted least squares problem
but the reasoning is the same with a weighted one.

3.2.2.1 Optimal translation

Computing the derivative of C with respect to the translation part, we get:

∂C

∂t
= −2

∑
i

(yi −Axi − t) (3.5)

Let x̄ = 1
M

∑M
i xi and ȳ = 1

M

∑M
i yi. After some algebraic operations, we get:

∂C

∂t
= 0 for t̂ = ȳ − Âx̄ (3.6)

The optimal translation t̂ can then be directly obtained from the optimal linear part Â (inde-
pendently of the type of linear transformation) and the barycenters of the two sets of points as
developed in [Pennec 1996].

3.2.2.2 Optimal linear part

Now, let x′i = xi − x̄ and y′i = yi − ȳ be the barycentric coordinates. Since t̂ can be directly
expressed from Â, the problem can be simplified as the minimization of:

C ′(A) =
∑
i

‖y′i −Ax′i‖
2 (3.7)

Affine case

In the case of the linear part being affine, there is no constraint on A. We thus compute directly
its derivative:

∂C ′

∂A
=
∑
i

2Ax′ix
′
i
T − 2

∑
i

y′ix
′
i
T (3.8)

A closed form solution Â can therefore be easily found as shown in [Pennec 1996].

∂C ′

∂A
= 0 for Â =

∑
i

y′ix
′
i
T

(∑
i

x′ix
′
i
T

)−1

(3.9)

Rigid case

In the case of a rigid transformation, the linear part A is constrained to be a rotation matrix:{
ATA = AAT = Id

det(A) = 1
(3.10)
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Those constraints lead to more complicated lagrangians but a closed form solution can be
found as well. There are mainly two methods to solve this problem. The first, which has the
advantage of being valid in any dimension, uses singular value decomposition. It is depicted
in [Pennec 1996], based on [Umeyama 1991]. The second one, developed in [Horn 1987], makes
use of unit quaternions to parametrize spatial rotation. It is therefore quite elegant but only
valid in 3D space. It is this approach that will be briefly depicted here because of its kinship
with the work we developed in Section 5.3.

As seen in Section 2.2.2.3, the rotation induced by the matrix A can be expressed using unit
quaternions. The problem then becomes (see Appendix B.1):

C̃ ′(q, S) =
∑
i

||(0, y′i) ∗ q − q ∗ (0, x′i)||2 (3.11)

Where q is a unit quaternion and ∗ is the quaternion multiplication. As explained in Sec-
tion 2.2.2.2 and following the same notations, one can express this quaternion product as a
matrix product using L and R matrices respectively associated to left and right multiplication.

Since (0, y′i) and (0, x′i) are pure quaternions, their associated multiplication matrices are
skew-symmetric. It leads to:

C̃ ′(q, S) = qT

(
−
∑
i

(
Ly′i +RTx′i

)2
)
q (3.12)

For further computation, we denote Bi = −
(
Ly′i +RTx′i

)2

and B =
∑
iBi. A lagrangian with

unit constraint qT q = 1 has then to be added to ensure a unit quaternion:

Λ = qTBq − λ(qT q − 1) (3.13)

Leading to:
∂Λ

∂q
= (B − λI4)q (3.14)

Solving (B−λI4)q = 0 amounts finding the eigen vectors of B. More precisely, the global mini-
mum q̂ is the eigen vector of B associated to the smallest eigen value as shown in [Horn 1987,
Pennec 1996].

3.3 Non-linear registration

3.3.1 Generalities

The anatomic variability being very large and subtle, the use of global transformations that
operate the same way on all voxel coordinates cannot be flexible enough when a refined matching
is needed for different subjects or for a single person whose anatomy has undergone local
changes. In that context, the transformation is no longer characterized by a matrix but rather
by a deformation field u : RN → RN that associates to each voxel x a displacement vector that
links x to its transformed-self T (x) such that: T (x) = x + u(x). The high number of degrees
of freedom of those transformations implies a greater volatility compared to linear registration
algorithm. Given that, it is usually preferable to first roughly align the two images through
an affine registration. Also it is mainly used within a pyramidal scheme in order to iteratively
refine the matching.

In addition to the similarity term, a regularization term is added that will penalize the cost
function to ensure some topological properties such as smoothness and invertibility. The cost
function becomes therefore a trade-off between the similarity of the images and the constraints
imposed on the deformation field. Non-linear registration algorithms are usually divided in two
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main categories. The ones known as parametric methods rely on a limited number (less than
the number of voxels) of control points where the transformation is estimated. Then a dense
field is interpolated for each voxel. On the other hand, in non-parametric methods, each
voxel has some degrees of freedom. Extensive reviews about non-linear registration methods
can be found in [Sotiras 2013] and [Oliveira 2014]. A review of the usual non-linear geometric
transformations, in addition to the ones exposed in Chapter 2, is available in [Holden 2008].
An evaluation of some of the most commons algorithms has been conducted in [Klein 2009].

Many registration algorithms lie in what is called in [Ashburner 2007] the small-deformation
framework. In that context, a transformation Tk = Id +uk is updated by simply adding the
new deformation field vk following: Tk+1 = Id +uk + vk. The resulting transformation is not
invertible in general unless the deformations are small enough. This leads to either theoretical
weakness or a relatively slow convergence.

On the other hand, in the large-deformation framework, transformations are updated
through the natural operation on the group of diffeomorphisms which is the composition:
Tk+1 = (Id +uk) ◦ (Id +vk). Thus, the resulting transformation is also ensured to be a dif-
feomorphism. This includes LDDMM algorithms which are very clean from a theoretical point
of view but may appear computationally extensive. Using the SVF parametrization of diffeo-
morphisms efficiency is improved at the cost of theory. Using this approach, one can benefit from
Lie group properties leading to an update transformation following: Tk+1 = exp(uk) ◦ exp(vk).

Diffeomorphisms evoked in Section 2.3 is often the best choice as transformation model for
non-linear image registration since similar structures are assumed to be present in both images
and thus a smooth bijective mapping is expected. Though, it does not fit the case where the
brains to be registered contains additional material (e.g. tumor) or, on the contrary, lacks some
(e.g. degeneration).

3.3.2 Parametric methods

Those methods require the construction of a grid (regular or not depending on the case) of
control points underlying the image structure. To each of these control points is associated a
given number of parameters that will characterize a local transformation. Those parameters can
typically be a vector of R3 which contains a displacement along each three directions of space.
The control points are moved individually in the direction that optimizes a similarity measure,
defining local deformations. The parameters for any point of space in-between the control
points can then be interpolated or approximated. Let U be the sparse set of transformations
parameters at each control points and u the dense field defined at each point of space influenced
by U . If, by constraint, u(pi) = U(pi), we are dealing with interpolation. On the other hand,
if there is a certain degree of uncertainty concerning the evaluation at the control points, an
approximation is preferable where the exact matching constraint is relaxed.

3.3.2.1 Radial basis functions

Once the transformation parameters have been estimated for all control points, the parameters
for any point of space in-between the control points can then be approximated by a linear
combinations of the ones associated to control points, the contribution of each being modulated
by the basis function:

u(x) =
∑
i

B(‖x− pi‖)U(pi) (3.15)

A major advantage of this approach is that the control points can be placed arbitrarily, no
regularity constraint is required. A plethora of basis functions have been experimented, a
comparative study of some of the most commons is available in [Zagorchev 2006], a topol-
ogy preservation evaluation is conducted in [Yang 2011]. Among them, some rely on infinite
supports:



3.3. Non-linear registration 35

Figure 3.1: Regular grid before and after deformation parametrized by control points. Approx-
imation using B-splines

• Thin-plate splines as in [Bookstein 1989, Bookstein 1991]

• Gaussian as in [Arad 1995]

• Hardy’s multi-quadrics as in [Ruprecht 1995, Little 1997].

The infiniteness of the support implies that a control point influences the whole image. This
may not be optimal in terms of computation cost. Also one might prefer a more localized area
of influence leading to compact supports:

• Piecewise polynomial positive definite from [Wendland 1995] as in [Fornefett 2003].

• Truncated Gaussian

• Compact support thin-plate splines as in [Zhang 2008].

Those lists are far from exhaustive. We detail three of these algorithms to give an example.

3.3.2.2 Free-form deformation model

In [Rueckert 1999], then extended and generalized in [Schnabel 2001], it was proposed to ap-
proximate the displacement between the control points using cubic B-splines. This technique
is very popular, so we are going to dwell on it a little bit.

Let a regular grid of control points that are denoted pi,j,k. They are spaced by distances
sx, sy, sz such that pi,j,k is at position (i.sx j.sy k.sz)

T in the image voxel grid. Once a
displacement U(pi,j,k) at each control point has been estimated, one can approximate the
displacement at any point x only using the 64 surrounding control points through tensor product
of 1-Dimensional B-splines:

u(x) =
3∑
l=0

3∑
m=0

3∑
n=0

Bl(δx)Bm(δy)Bn(δz)U(pi+l,j+m,k+n) (3.16)

Where:

B0(x) =
(1− x)3

6

B1(x) =
3x3 − 6x2 + 4

6

B2(x) =
−3x3 + 3x2 + 3x+ 1

6

B3(x) =
x3

6

i =

⌊
x

dx

⌋
− 1

j =

⌊
y

dy

⌋
− 1

k =

⌊
z

dz

⌋
− 1

δx =
x

sx
−
⌊
x

sx

⌋
δy =

y

sy
−
⌊
y

sy

⌋
δz =

z

sz
−
⌊
z

sz

⌋
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The compactness of the support is computationally appealing. Also, the resulting deformation
field is smooth, without however being diffeomorphic in general. Two different approaches have
been discussed in [Rueckert 2006] to ensure the transformation obtained by B-splines to be
one-to-one and therefore diffeomorphic.

• The first one uses soft constraints. In addition to the similarity measure, a penalty term
is brought the function cost to be minimized for the registration. This penalty term
is activated when det(Jac(x, y, z)) goes below a given threshold and explodes as this
determinant of the Jacobian tends to zero.

• The second one uses hard constraints. If the displacement of the control points is small
enough, the transformation is ensured to be diffeomorphic. The bounds on the maximum
amplitude of the displacement of the control points that guarantee the local injectivity of
cubic B-splines has been established in [Choi 2000]. This leads to displacements that are
however generally too small to model realistic transformations. Yet, the set of diffeomor-
phism together with the composition law being given a group structure, one can compose
a succession of those small diffeomorphic displacements to produce a larger one.

3.3.2.3 Polyaffine

In the above-mentioned examples, the transformation parameters that were linearly combined
were displacement vectors. The same reasoning can be applied to transformation matrices. To
each control point is attached a local linear transformation, rigid or affine in general. Those are
then fused to obtain an overall transformation locally affine or rigid. In the polyaffine framework
designed by [Arsigny 2006b, Arsigny 2009], the fusion is performed using a log-Euclidean mean:

T (x) = exp

(∑
i

log(T (pi))B(‖x− pi‖)

)
(3.17)

The resulting log-Euclidean polyaffine transformation (LEPT) has nice properties: it is
smooth and invertible, the inverse is also a LEPT, and it is affine-invariant. LEPT are used in
registration notably in [Commowick 2008] (following the theoretical framework from [Arsigny 2009])
where areas of the brain have first been segmented and independently registered using affine
transformations. In this context, the log-Euclidean average was also used as a regularization
term for the affine matrices computed.

3.3.2.4 Block-Matching

Generalities about block-matching have been presented in Section 3.1.2. Even though this is
the non-linear registration algorithm that will be used for experiments in the next chapters, no
contribution is to be noted for it in this thesis thus the treatment will be reduced compared to
the linear case.

One assumes that the matching step outputed for each block a linear transformation that
best matches it to the moving image. Each center of the block can therefore be viewed
as a control point pi to which is associated a transformation Ai. In the method proposed
in [Commowick 2012a] and lately updated in Appendix B of [Commowick 2019], it is proposed
to directly estimate an update SVF from the Ai.

To do so, a simple method is to consider a sparse set of log-vectors U attached to the control
points following U(pi) = log(Ai)pi. A (dense) SVF u can then be computed at any point of
space through a Gaussian kernel also incorporating a weighting taking into account the strength
of the similarity between the blocks.

To ensure a more efficient outliers rejection, another method has been imagined in the same
papers which is similar to an M-smoothing filter [Mrazek 2006]. Following this approach, a
log-transformation is estimated at each voxel through the minimization of a cost function. At a
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given voxel, this cost function penalizes both for a distance to the control points and a distance
between the estimated transformation and the ones associated to the control points. The opti-
mization is performed through gradient descent to get the update SVF. The SVF composition
is done as in [Vercauteren 2008] using the BCH formula [Bossa 2008].

In the case of blocks being defined at each voxel, block matching approaches can be viewed
as non-parametric methods. This is the case of the algorithm depicted in [Ardekani 2005] that
happens to be one of the top performers of the evaluation conducted in [Klein 2009].

3.3.3 Non-parametric methods

The non-parametric qualifier is a bit of an abuse of language here. Actually it is more that
there are so many parameters that each voxel has 3 degrees of freedom.

3.3.3.1 Demons

The demons approach can be summarized by an unconstrained update followed by a gaussian
smoothing. It has been imagined in [Thirion 1998] to consider image registration as a diffusion
process. By analogy to Maxwell’s work in thermodynamic, demons are imagined at each voxel
locations that push the voxels of the moving image according to the local characteristics of the
images.

Working in a iterative way, a deformation u that update an existing deformation s is com-
puted voxel by voxel. The s is then updated by a regularization of s+u to provide smoothness
properties. Using optical flow equations, one can estimate a deformation for each voxels through
the following formula:

uk+1(x) =
I(x)− J(x+ sk(x))

‖∇I(x)‖2 + (I(x)− J(x+ sk(x)))
2∇I(x) (3.18)

The demons locally push along the intensity gradient of the reference image direction or the
opposite depending upon the intensity difference of the two images. An elastic regularization
through Gaussian smoothing is then applied.

Following this kind of algorithm, there is for each voxel a direct formula to compute the
associated displacement leading to a high efficiency. However, the way it works may appear
quite ad-hoc since it is unclear when, why and how it converges. Digging up into the theoretical
understanding of the demons algorithm, [Pennec 1999] has shown it is actually closely linked
to a second order gradient descent on the SSD criterion.

An adaptation of the demons approach into an energy minimization problem was proposed
in [Cachier 2003]. It involves the introduction of an hidden variable c, a vector field that attracts
the points of the moving images to their correspondence in the reference one while u is a smooth
vector field constrained by a regularization reg leading to an energy to minimize of form:

E(c, s) = α‖I − J ◦ c‖2 + β‖c− s‖2︸ ︷︷ ︸
Correspondence energy

+γreg(s) (3.19)

This leads to an alternate optimization. The correspondence energy is minimized with respect
to u. Using optical flow equation, it results in an expression for u very similar to Equation 3.18.
The field c is then updated in this so-called additive demons following c = s + u. The
regularization part is taken care of through Gaussian smoothing of c.

Now, even if the demons framework appears cleaner using this energy minimization some
kind of discomfort remains using a geometrically unnatural additive update. To overcome that
burden, it was proposed in [Vercauteren 2007, Vercauteren 2009] to update the transformation
field through a more geometrically appropriate operation: the composition, thus leading to the
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so-called compositive demons approach. The field c is updated in this configuration following
c = s ◦ (Id +u).

Once again, despite the improvements of this compositive approach compared to the additive
version, one can reproach some aspects and especially the fact that it does not yield invertible
transformations. In the very same [Vercauteren 2007, Vercauteren 2009], a diffeomorphic
demons is introduced. Taking advantage of the SVF detailed in Section 2.4.3, the field c

is updated following c = s ◦ exp(u). This has been reformulated into a so-called log-domain
demon in [Vercauteren 2008] exploiting logarithms in a smarter and more efficient way through
notably the use of the Baker-Campbell-Hausdorff formula (see Section 2.4.1.2) and extended
with a symmetric design.

One of the latest variants, the LCC-demons developed in [Lorenzi 2013], also presents a
symmetric log-domain design but uses local correlation coefficient as similarity measure and
shows implementation improvements.

The demons approach is therefore rather a generic framework than a specific algorithm. A
nice tutorial about demons registration, overviewing the framework from the early Thirion’s
idea until the diffeomorphic version, is available in [Vercauteren 2010].

3.3.3.2 LDDMM

Formulating the registration problem under the LDDMM framework is probably the most
elegant on the theoretical point of view. Indeed it proposes to compute the geodesic namely
the path of minimum length along the Riemannian manifold of diffeomorphisms that links the
two images. The problem takes the form of the following minimization [Beg 2005]:

v̂ = arg min
v

(∫ 1

0

‖v‖2V dt+ λ‖I ◦ φ(x, 1)− J‖
)

(3.20)

Where v is a time-varying velocity field, ‖.‖V an appropriate norm on v. The first terms
accounts for the path length over the group of diffeomorphisms while the second is a SSD
criterion on image intensities whose contribution is modulated by a weight λ.

The cost function in Eq 3.20 can be optimized through gradient descent. Each iteration
however necessitates ordinary differential equation integration to compute the diffeomorphic
path. Usually done via Runge-Kutta, this can be computationally extensive.

Many variants of the LDDMM framework are available, with various similarity measures,
symmetric implementations [Avants 2008]. A noteworthy example is the ANTs software de-
picted in [Avants 2011] that includes the Syn algorithm that showed top results in [Klein 2009].

3.4 Conclusion

Many algorithms have been developed in order to match two images. Those rely on the op-
timization over various transformations sets evoked in Chapter 2. In the following, we will
adopt block-matching methods for registration, which are based on local similarities, as they
allow versatile implementations, able with the same core, to optimize many different types of
transformations. Those were implemented by the team in Anima [Anima] for both the linear
case [Commowick 2012b] and the non-linear one [Commowick 2012a] (more recent precisions
in Appendix B of [Commowick 2019]). They have shown reliability and good performances
through their intense use in the team. Our non-linear block matching algorithm is based on
the SVF parametrization for diffeomorphisms such that transformations can easily be updated
and averaged by taking advantage of the log-Euclidean framework.

We will see in the next chapter how, through operations on the transformations resulting
from registration processes, one can produce an average shape of the brains of a population,
i.e. an atlas.
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4.1 Generalities

An atlas is a generic term covering several uses.
In the sense of [Talairach 1988], it consists in a single post-mortem anatomy of the left part

of the brain of a sixty years old woman dissected and photographed, symmetrized to obtain a
whole brain representation. Originally conceived as a reference for stereotaxy, it is delivered
together with anatomical fiducial points and stretching instructions to be used for a rough
spatial normalization.

The term is also often used to refer to a single structural image of an individual to-
gether with an associated segmentation map, i.e. labeled areas delineated by an expert. It
is used in this context to propagate the joint segmentations to another subject through regis-
tration [Miller 1993, Bondiau 2005]. As shown in [Heckemann 2006, Aljabar 2009], the prop-
agation and fusion of multiple couples of anatomic images and labels maps increases the ac-
curacy [Iglesias 2015]. This is referred as multi-atlas segmentation. A review of atlas-based
segmentation is available in [Cabezas 2011].

However, the definition of interest here is the one that considers an atlas to be an average
model of the brain both in terms of shape and intensity. It is therefore a powerful tool
to understand brain variability, to compute statistics of to identify for differences on popula-
tions [Whitcher 2007] or to segment regions. An atlas is said to be cross-sectional when the
data used for its construction are each collected at a single point in time, like a snapshot of the
population. They are ideally made from a large number of subjects by combining their images
through registration and transformation composition. They are willingly unbiased in relation
to the subjects of which they are composed so as to best represent the population or serve as
neutral reference for normalization.

An extension to those temporally static atlases are longitudinal (time dependent) atlases
which allow in addition the comprehension of brain development or aging, to highlight changes
in growth, shape, structure etc. Technically, the term longitudinal is reserved for studies that
follow the same sample of individuals repeatedly over time. However, and this is the case in
this manuscript, the longitudinal term is widely overused so that it often refers to any atlas
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with a temporal component including multiple cross-sectional ones i.e. performed for multiple
timepoints. The latter 4D models are based on a set of 3D atlases each for a desired age using
e.g. weight functions that modulate the contributions of the subjects according to their age fit
with that timepoint.

Focus will be made in this manuscript on the methodology underlying the atlas creation
process rather than on potential clinical applications. Moreover, only methods producing
image atlases will be studied in detail even though it also exists for curves and surfaces as
in [Durrleman 2009]. We will detail how to use the theoretical notions developed in Chapter 2
and the image processing tools from Chapter 3 in order to produce atlases with interesting
properties.

A critical issue while validating an atlasing method is the absence of ground truth. Yet,
some aspects can still be evaluated. Among the ones that need to be particularly taken care
of, one can consider:

• The bias: Many atlasing methods rely on an initial reference image; This may lead to
an over-influence of the associated subject compared to the others. The bias is the rep-
resentative criterion of this over-influence. However, not all biases are always a problem.
Indeed a rigid bias is not important since it only affects the position and orientation.
It can even be desirable if the reference image has a convenient orientation. Also some
atlases are designed to be unbiased up to an affine transformation thus ignoring bias
induced by global changes in size. This is typically the case when only the local inter-
subject variability is under consideration and all subjects have roughly the same age. For
longitudinal atlases however affine bias has to be eliminated to account for developmental
growth.

• The image quality: Most atlasing methods contain in their midst a step consisting in an
average of the subject images after they have undergone transformations to align them.
This alignment not being exact and relying on the assumption that the structures are
identical, it necessarily generates blur. This blur is heavily dependent upon the accuracy
and the number of dof (degrees of freedom) of the registration algorithm involved in
the computation of the above-mentioned transformations. Another source of blur are
the resampling processes inherent to the fact that we are working with samplings on
discrete grids. Those resamplings therefore have to be used sparingly; most of the well-
implemented algorithms only require one for each subject. Given that, a measure of
sharpness is interesting for image quality assessment.

• The computational cost: Atlasing methods are known for their heavy computational
cost which increases with the number of subjects involved. The source of it comes mainly
from registrations and operations on transformations. Those image processing tools gen-
erally needs to be run numerous times to take into account all the subjects and reduce the
bias. In some methods, a single groupwise registration is required but this one is massive
by itself. Yet, the creation of an atlas is not a routine procedure, so that even a high
calculation cost can sometimes be tolerable.

For longitudinal atlases, one can in addition consider:

• The temporal accuracy: It is of great importance to assess if the 3D sub-atlases are
well representative of the ages they are supposed to model. An irregular repartition of
the subjects in terms of age may indeed lead to temporal errors.

One can consider the dof of an atlas as the dof of the transformations used in the registrations
inherent to its creation. One of the earliest average model is the MNI-305 from [Evans 1993,
Collins 1994]. It was created through a landmark registration of 250 young adults onto the
Talairach atlas, then completed by 55 other subjects through affine (9 dof) registration. The
low number of dof leads to a quite image (see Figure 4.1a). In the same vein was created the
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(a) affine MNI-305a

aMNI-305 - [Evans 1993, Collins 1994]
https://www.mcgill.ca/bic/software/
tools-data-analysis/anatomical-mri/atlases/mni-305

(b) non-linear ICBM-152b

bICBM-152 v. 2009c symmetric - [Fonov 2011]
http://www.bic.mni.mcgill.ca/ServicesAtlases/
ICBM152NLin2009

Figure 4.1: Two Talairach-like brain atlases

ICBM-152 [Mazziotta 2001], also through affine registrations, using better quality images from
152 young adults. Using the same database, [Fonov 2011] dramatically increased in the number
of dof through the use of non-linear registration resulting in a much more refined, sharper result
(see Figure 4.1b). Both those atlases are qualified of Talairach-like in the sense that they are
totally biased (voluntarily) toward it.

In [Fréchet 1948] the Euclidean notion of mean is generalized in any metric space (Ω, d)

following:
x̄ = arg min

x∈Ω

∑
i

d2(x, xi) (4.1)

By translating the distance between two images as the amount of deformation needed to map one
to the other, i.e. the distance between the identity and the transformation from the registration
of one to the other, one can reformulate the average image model problem using the Fréchet
mean in the space of transformations as in [Joshi 2004].

To produce an unbiased atlas, two main families of approaches, detailed in the next sections,
are commonly used:

• Template-based approaches require the choice of an initial reference image onto which
each subjects will be registered. The bias toward this first reference is then compensated
using the inverse transformations from the registration. See section 4.2 for more details.

• Template-free approaches on the other hand do not rely on an initial reference image
thus avoiding the introduction of a bias. They can be subdivided into two categories:

– Pairwise methods that require to register each subjects to all the others. This
generates unbiased versions of the subjects that are then averaged.

– Groupwisemethods propose to directly compute an average model through a group-
wise registration of all the subjects simultaneously.

Those different approaches have all in common that they first establish a set of transformations
to map the images onto a common space and then average the transformed images to create

https://www.mcgill.ca/bic/software/tools-data-analysis/anatomical-mri/atlases/mni-305
https://www.mcgill.ca/bic/software/tools-data-analysis/anatomical-mri/atlases/mni-305
http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009
http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009
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the atlas. A particular focus will be made on the template-based approach since it is the one
we will be using.

Reviews of atlasing methods are parsimonious compared to the registration case. One can
however mention [Dickie 2017] for a review of existing atlases where the under-representation
of childhood and elderly populations is notably pointed out. For global point of views of the
domain, see [Evans 2012] and [Thompson 2010].

In the following, it will be assumed that we want to compute an atlas from the set of n
images {I1, . . . , In}.

4.2 Template-based approach

One of the first methods developed in this group was proposed by [Guimond 2000]. It consists in
first registering all the subjects onto an arbitrary chosen image (typically one from the popula-
tion or a pre-existing atlas). Then, an unbiasing transformation is computed through inversion
and average of the transformations outputed from registrations. Finally, a new reference image
is constructed by averaging the unbiased transformed subject images. This produces an atlas
that can now be taken as a new reference image. By iterating the process, it leads to atlases
that become less and less biased by the initial reference image.

Recipe

Let R be an initial reference image. The main loop of the algorithm consists in the following
steps (see Figure 4.2a):

1. Registrations

i. Affine registration of the Ii onto R in order find the affine transformations Ai that
best superimpose each subject to the reference, leading to the transformed images
Ii,A = Ii ◦Ai.

ii. Non-linear registration of the Ii,A onto I in order find the residual local variations
Ti, leading to the transformed images Ii,T = Ii ◦Ai ◦ Ti.

2. Creation of the new reference
In the following, take θi = Ti for an atlas unbiased up to an affine transformation and
θi = Ai ◦ Ti to account for both affine and local bias.

i. Averaging of the θi to produce θ̄ the mean transformation.
ii. Inversion of θ̄ to produce the unbiasing transformation θ̄−1.
iii. Application of Ai ◦ Ti ◦ θ̄−1 to each Ii producing images Ii,R that are all aligned.
iv. Averaging of the Ii,R to produce the new reference image.

Registration being an imperfect process, a bias toward the first reference image remains.
However, by iterating the above-mentioned steps, taking as new reference image the average of
the registered subjects corrected in shape by the unbiasing transformation, the result should
be less and less biased by the first reference image and therefore converge to the theoretical
solution (see Figure 4.2b). One can see in [Li 2018, Hernandez 2007] that, for diffeomorphisms,
this method can actually be comparable to a gradient descent of the Fréchet mean criterion
(Equation 4.1) in the transformation group.

In the SVF framework, one can benefit from the log-Euclidean mean on the transformations
to ensure a diffeomorphic result:

θ̄ = exp

(
1

n

n∑
i=1

log(θi)

)
(4.2)
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(a) Main loop (b) Effect of iterating

Figure 4.2: Overview of a template based atlasing method [Guimond 2000].

Effect of iterating

This aspect was studied in [Guimond 2000] using different measures such as the shape difference
between the atlases at successive iterations or the average distance of the subjects to the atlas
at current iteration. The first evaluates whether it converges and at what rate, while the
second assesses whether it get closer to an average form of the subjects. Results show that the
method quickly converges (stabilization already after four iterations) to an average model of
the population.

Influence of the initial reference image

This facet was also studied in [Guimond 2000] through notably the measure of shape differences
between resulting atlases built from different initial reference images. Result also show a quick
decrease with the iterations suggesting that the method indeed corrects well for the bias. The
small remaining differences are probably due to registration imprecisions.

Various implementations

The version developed in [Guimond 2000] provides a good average shape but it defines unbiased
atlases up to an affine transformation, thus losing information on brain growth. Also, trans-
formations are not guaranteed to lie in a diffeomorphic framework. In [Hernandez 2007], it is
proposed to take advantage of the log-Euclidean framework to ensure diffeomorphic transfor-
mations, and to use a clever initialization reducing the bias. Unfortunately, the unfamiliarity at
that time with the BCH formula in this context led to an algorithm requiring heavy logarithm
calculations, making it de facto impractical for 3D images. In [Fonov 2011], diffeomorphic reg-
istration is used in the process but the Euclidean average of those may lead to non-diffeomorphic
unbiasing transformations. On the other hand, in [Kuklisova Murgasova Deprez 2010, Kuklisova Murgasova Deprez 2011],
a longitudinal version is presented that corrects well global size and shape (affine features) to
account for brain growth but ignores local deformations, thus leading to a quite blurry result.
In [Pontabry 2013] (in french), the method has been used to produce a longitudinal diffusion
atlas based on a fetal population.

4.3 Template-free approaches

Those methods have the advantage to be unbiased by construction since they are not skewed
initially toward a reference. A review is available in [Wu 2012].



44 Chapter 4. Atlasing

4.3.1 Exhaustive pairwise

This approach has been developed in [Seghers 2004] and notably taken over for longitudinal
extensions in [Serag 2012a]. It consists first in computing all the pairwise registrations between
the subjects leading to an extensive number of n(n − 1) registrations (reducible to half of
that using symmetric registration). Then, each subject undergoes an unbiasing transformation
which is the average of all the transformations from him to the others. Finally, the atlas is
constructed by averaging the resulting unbiased versions of the images. An overview of the
method is shown in Figure 4.3.

Recipe

1. Registrations

i. Affine registration of the Ii onto each Ij in order find the affine transformations Aij
that best superimpose each subject to another, leading to the transformed images
Iij,A = Ii ◦Aij .

ii. Non-linear registration of the Iij,A onto Ij in order find the residual local variations
Tij , leading to the transformed images Iij,T = Ii ◦Aij ◦ Tij .

2. Creation of the atlas
In the following, θij = Aij ◦ Tij .

i. For each subject i, computation of θ̄i, the average over j of the transformations θij .

ii. Application of θ̄i to each Ii producing images Ii,R that are all aligned.

iii. Averaging of the Ii,R to produce the atlas.

Figure 4.3: Overview of a pairwise atlasing method

This method is straightforward (by opposition to iterative) and unbiased by construction
but requires a quadratic amount of registrations with respect to the number of subjects, which
may be problematic in case of large datasets.

4.3.2 Groupwise

Following groupwise registration, all the images are simultaneously registered onto an hidden
common space. This is done following an optimization scheme on a cost function covering two
aspects:

• Ensuring the alignment through a similarity term between all the transformed images:
sim(I1 ◦ T1, . . . , In ◦ Tn), that is to be maximized.
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• Enforcing the convergence toward the centroid of the population. It can take a form similar
to the Fréchet mean criterion (Equation 4.1):

∑
i d

2(Id, Ti), that is to be minimized as
in [Lorenzen 2004, Joshi 2004]. It can also be set as a hard constraint on the sum of the
transformations:

∑
i Ti = 0, as in [Bhatia 2004, Rohlfing 2009].

Recipe

1. Groupwise registrations

i. Groupwise affine registration of the Ii that outputs, simultaneously for each i, affine
transformations Ai and transformed images Ii,A, revealing an affine common space
RA such that Ii,A = Ii ◦Ai ∼ RA.

ii. Groupwise non-linear registration of the Ii,A that outputs, simultaneously fo all i,
non-linear transformations Ti and transformed images Ii,T , revealing a non-linear
common space RT such that Ii,T = Ii ◦Ai ◦ Ti ∼ RT .

2. Creation of the atlas by averaging of the Ii,T .

Figure 4.4: Overview of a groupwise atlasing method

This kind of approach is also straightforward and unbiased. Also, it only requires a single
groupwise registration. The computation of this one, however, can be prohibitive. This method
is notably implemented in the popular ANTs software following [Avants 2004, Avants 2010].

4.4 Including the temporal dimension

The above-mentioned methods are designed to well represent the centroid of a given population.
However, the temporal dimension is totally ignored thus hindering assessment of anatomical
development.

In case of a dataset containing a single observation of multiple subjects of different ages,
the most common approach is to constitute a set of multiple cross-sectional 3D sub-atlases for
chosen timepoints through kernel regression over the temporal domain. Within the construction
of one of these sub-atlases, the contribution of each subjects is modulated by a kernel acting as
a weight function that gives more influence to subjects closer in age to the associated timepoint.

In case of a (truly) longitudinal dataset i.e. containing several observations for each subjects
taken at different times, one estimates a growth model for a given subject through intra-subject
shape regression over time. Using spatio-temporal registrations on the different subject growth
trajectories, a spatio-temporal atlas can be estimated as the mean scenario.
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22 weeks 25 weeks 28 weeks 31 weeks 34 weeks 37 weeks

Figure 4.5: Longitudinal fetal brain atlas for six different gestational agesc

c[Gholipour 2017] - http://crl.med.harvard.edu/research/fetal_brain_atlas/

4.4.1 Kernel regression

Following this method proposed notably in [Davis 2010, Ericsson 2008], a sub-atlas at time t is
constructed such that the contribution of the subjects is modulated by a weight function that
gives more importance to the ones closer in age to t. This weight function will intervene in the
averaging processes inherent to the atlas creation.

The most common approach is to use the non-parametric regression technique known as
kernel regression, developed in [Nadaraya 1964]. Following this, given a set of N observation
{ti, yi}Ni=1, one can can compute an estimator for y at a given time t using an average of the yi
weighted by a kernel K on the ti, centered at t:

ŷ(t) =

∑N
i=1K(t− ti)yi∑N
i=1K(t− ti)

(4.3)

Plethora of kernels are available, some on compact supports such as cosine or Epanechnikov,
others on infinite supports such as logistic or Gaussian. The latter is the most commonly used,
it is defined following:

K(u) =
1

σ
√

2π
e−

u2

2σ2 (4.4)

A Gaussian kernel regression for brain volumes over time of 308 children (between 0 and 19
years old) is shown in Figure 4.6. In this example it takes the form of a simple Euclidean
average on volume values but one can imagine a reasoning in a similar vein for more compli-
cated structures such as transformation groups through e.g. log-Euclidean means in the SVF
framework. Since the support of the Gaussian kernel is infinite, a version truncated on a limited
age range is often preferred, thus avoiding computations for subjects of negligible contribution.
This kernel has a degree of freedom σ corresponding to the standard deviation, thus influencing
the width of the kernel. One can take opportunity of this dof to adjust for uneven subject age
distribution. In [Serag 2012a] it was proposed to adjust the width of the Gaussian such that an
arbitrary chosen number of subjects have a weight above a given threshold. Working through
an iterative procedure, the idea is to increase the width when there are too many subjects
and, conversely, reduce it when there are too few. Though, this does not compensate for an
asymmetric distribution around a considered timepoint. The choice is however not restricted to
kernels, one can consider more flexible weight functions as soon as it associates to each subject
i a weight wi such that wi ≥ 0 and

∑
i wi = 1.

The idea for the creation of a spatio-temporal atlas is therefore the following: for each
desired timepoint t, construct a cross-sectional atlas using e.g. one of the methods detailed in
Sections 4.2 and 4.3 but weighted for subjects closer in age to t to further influence the result.
This temporal modulation takes different forms depending on the atlas creation strategy:

http://crl.med.harvard.edu/research/fetal_brain_atlas/
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Figure 4.6: Gaussian kernel regression on brain volumes (in mm3) as a function of the age
(in years). Data from ASLpedia [ASLpedia], C-MIND [C-MIND] and the Developing Human
Connectome Project (dHCP) [dHCP].

• For the template-based and the exhaustive pairwise approach, the weighting takes place
at the level of the averaging that takes place on the images and the transformations.

In [Ericsson 2008], 575 adult subjects are used to create a 4D atlas through a template-
based strategy only taking into account local deformations.

In [Schuh 2015], the exhaustive pairwise strategy is used while taking advantage of the
SVF framework tools to produce a spatio-temporal atlas from 118 neonates for different
timepoints between 28 and 44 gestational weeks.

For both, regression over time was performed using a Gaussian kernel.

• For the groupwise registration, the weighting process is directly included into the cost
function terms, but also at the final step when transformed images are averaged.

In [Gholipour 2017], a fetal spatio-temporal atlas using such a technique has been built,
also using a Gaussian kernel. It covers a period between 19 and 38 gestational weeks, the
result is shown in 4.5.

Thus, each 3D sub-atlas is constructed through a regression process over the temporal do-
main both on the transformation space and the image intensities. If the spatio-temporal atlas
aims at accounting for developmental growth, atlases only unbiased up to an affine transforma-
tion are not sufficient, both global size changes and local deformations between the brains have
to be taken care of.

We saw that all the above-mentioned atlasing methods are ultimately a mapping of the
images into a common space followed by an averaging of the transformed images. The weighting
process will shift that common space closer to the ones with higher weights while also giving
them more influence on the intensity of the final image.

4.4.2 Growth model

In the case of a longitudinal dataset i.e. the population has undergone observations repeatedly
over time, one can extract more comprehensive developmental information.

In [Durrleman 2009, Durrleman 2013], it is proposed to estimate a regression model for the
evolution of each subject. This consists in finding a diffeomorphic path transporting over time
a baseline image (actually a shape in the above-mentioned papers) of a subject minimizing the
sum of the distances to the other images of the same subject taken at different times. This
allows notably to compare two subjects at a given time even though they is no observation at
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that time. One can then perform a spatio-temporal registration of the evolution trajectories of
the subjects to estimate a mean evolution scenario which is essentially a spatio-temporal atlas.

In the same vein, [Liao 2012] proposed a framework also including the estimation of an evo-
lution model for each subject. It is followed by an iterative procedure of estimating transforma-
tions to map from the subjects to the atlas space through groupwise registration, construction
of a sub-atlas for each timepoint using kernel regression and estimation of the atlas evolution
model.

Those methods present the advantage of accounting not only for population information but
also for subject-specific longitudinal specificities.

4.5 Conclusion

This chapter is far from an exhaustive review about atlas creation methods but was rather
made as an introduction to them. In the following, it is the template-based approach inspired
by [Guimond 2000] that will be mainly adopted because of its easy implementation and mod-
erate computational cost (growing linearly with the number of images). A spatio-temporal
extension is developed in Chapter 8 with a special weight function. The latter is notably used
for the studies in Chapters 5 and 6. Finally, an iterative centroid approach, quite distinctive to
the above-mentioned methods is introduced in Chapter 9.
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We propose in this chapter a novel method to quantify brain growth in 3 arbitrary orthog-
onal directions of the brain or its sub-regions through linear registration. This is achieved by
introducing a 9 degrees of freedom (dof) transformation called anisotropic similarity which is
an affine transformation with constrained scaling directions along arbitrarily chosen orthogonal
vectors. This gives the opportunity to extract scaling factors describing brain growth along
those directions by registering a database of subjects onto a common reference. This infor-
mation about directional growth brings insights that are not usually available in longitudinal
volumetric analysis. The interest of this method is illustrated by studying the anisotropic re-
gional and global brain development of 308 healthy subjects betwen 0 and 19 years old. A
gender comparison of those scaling factors is also performed for four age-intervals. We demon-
strate through these applications the stability of the method to the chosen reference and its
ability to highlight growth differences accros regions and gender.

5.1 Introduction

In pediatric image analysis, the study of brain development provides insights in the normal trend
of brain evolution and enables early detection of abnormalities. Many types of morphometric
measurements based on structural images have been explored and have shown their reliabil-
ity as biomarkers in clinical use as established in [Dubois 2019, Giorgio 2013, Durazzo 2011,
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Figure 5.1: Ages covered by different brain volumetric studies, group comparison between: a -
normal / mental retardation, b - male / female, c - normal / motor disturbances, d - normal /
premature.

Frisoni 2010, Novak 2009, Tosun 2015]. Evaluated on a database of subjects covering a pe-
riod of interest, it allows to better model the brain development and to highlight changes
in growth, shape, structure, etc. Those measurements can be conducted on geometrical ob-
jects of different dimensions. Unidimensional ones such as the bicaudate ratio (minimum
intercaudate distance divided by brain width along the same line) have been explored in
[Aylward 1991] and [Bermel 2002] but also biparietal, bifrontal and transverse cerebellar di-
ameters in [Nguyen The Tich 2011]. Surface-based quantities such as cortical surface area in
[Winkler 2012], corpus callosum mid-sagittal area in [Giedd 2010] or cortical folding metrics
as in [Lefèvre 2016] have also been studied. However, the vast majority of studies are based
on 3D features through the assessment of region of interest (ROI) volumes. Volumetric mea-
sures of different regions of the brain have been considered for specific ages or various temporal
ranges. A far from exhaustive list is presented in Figure 5.1. Studied regions are very heteroge-
neous from large areas such as the whole brain itself, cerebellum, lobes or partitions of those to
smaller ones such as basal ganglia, hippocampus, thalamus sometimes even separated according
to the composition of their tissues (white matter (WM), gray matter (GM), cerebro-spinal fluid
(CSF)). Some group comparisons have also been performed mostly between male and female
or between preterm and term newborns.

Morphometric measurements can be determined manually. However, this requires the inter-
vention of a medical expert able to select specific landmarks or perform segmentation. These
tasks are highly time consuming with a potentially large inter-expert variability. Advances in
computational medical imaging allow nowadays the use of semi-automated (requiring some hu-
man intervention) or fully-automated techniques. They involve algorithms able to automatically
perform operations such as registration and segmentation.

A major drawback of purely volumetric measurements is that they do not provide any
information on the shape of the regions or about the anisotropy of their development. In this
chapter, a new method is proposed that aims at quantifying global and regional brain growth in
three arbitrary orthogonal directions of the brain (or ROI) through linear registration. To do so,
a transformation called anisotropic similarity introduced in Section 2.2.4 is used. It is an affine
transformation with scaling directions constrained by orthogonal vectors arbitrarily chosen. A
method to estimate, in a 3 dimensional space, the optimal anisotropic similarity for the least
squares problem of distances between two sets of paired points is presented in section 5.3. Those
results will then be used to create a registration algorithm based on this transformation. By
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registering a database of subjects onto a common basis (i.e. an atlas segmented in different
ROIs) using anisotropic similarity, we have the opportunity to extract global or regional scaling
ratios for all those subjects along arbitrary chosen orthogonal directions.

A direct application is, using the pipeline exposed in section 5.4, the exploration of regional
scaling ratios growth charts along three fixed orthogonal directions through the ages highlight-
ing anisotropic brain development. Resulting curves for whole brain and ROIs (lobes, basal
ganglias, cerebellum...) are presented in section 5.5.2. A comparison of scaling factors from
males and females is performed for four different age-intervals between 0 and 19 years old in
section 5.5.3. Finally, the influence of the common reference image on the resulting scaling
factors is studied in section 5.5.5.

Anisotropic similarity registration algorithm as well as other image processing tools used in
this work are publicly available in Anima [Anima].

5.2 Generalities about linear registration

As seen in Section 3.2.1, in block matching registration algorithms, two steps are iterated:

1. Matching: for a set of blocks established in the reference image, homologous blocks best
satisfying a similarity criterion are searched in the moving image.

2. Aggregation into a global transformation: an optimization is performed in order to find
the global transformation minimizing a distance between the sets of blocks and is then
applied to the moving image.

In order to perform an anisotropic similarity registration using this kind of approach, the first
step (matching) is performed the same way it would be for any regular linear transformation.
It outputs two sets of paired points: x and y that are the centers of the homologous blocks.
The second step (aggregation onto a global transformation) however is dependent on the type
of linear transformation we want to determine so an adapted version for anisotropic similarity
transformation is needed.

This optimization step consists in finding, in the set of anisotropic similarity transformations,
the one that best maps x onto y. Let x = {x1, . . . , xM} and y = {y1, . . . , yM} be two sets of
M paired points coming from the matching step.

Let x′i = xi − x̄ and y′i = yi − ȳ be the barycentric coordinates. Since t̂ can be directly
expressed from Â, the problem can then be simplified as the minimization of:

C(A) =
∑
i

‖y′i −Ax′i‖
2 (5.1)

5.3 Optimal anisotropic similarity between two sets of paired
points

We define a new type of affine transformation, hereafter named anisotropic similarity, which
has constrained directions of scaling. Using the RSD decomposition depicted in Section 2.2.3.1,
an affine transformation matrix can be written PSUT where P and U are rotation matrices and
S is diagonal. In case of an anisotropic similarity transformation, the matrix U is imposed to be
fixed, arbitrary chosen. This type of transformation is composed of a rotation, an anisotropic
scaling which is directed by another fixed rotation matrix and a translation leading to a linear
part of form: A = PSUT with U fixed. The Table 2.1 can therefore be completed with the row
for anisotropic similarity presented in Table 5.1.

To our knowledge, the optimization procedure in the case of anisotropic similarities has not
been considered in the literature. We thus present a method to find the optimal anisotropic
similarity between two sets of paired points. Similarly to the rigid case by [Horn 1987] and
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Transformation Degrees of freedom

Anisotropic
similarity

9

. an anisotropic scaling (3 dof): S

. a rotation (3 dof): P

. a translation (3 dof): t

Table 5.1: Anisotropic similarity transformation and its degrees of freedom

[Pennec 1996], unit quaternions are used as a representation of spatial rotations. The optimiza-
tion over variable A therefore becomes an optimization over variables P and S:

C(P, S) =
∑
i

∥∥y′i − PSUTx′i∥∥2
(5.2)

Let x̃i = UTx′i and ξi = Sx̃i:
C(P, S) =

∑
i

‖y′i − Pξi‖2 (5.3)

As seen in Section 2.2.2.3, the rotation induced by the matrix P can be expressed using unit
quaternions. Similarly to [Horn 1987] and [Pennec 1996], the problem then becomes:

C̃(q, S) =
∑
i

||(0, y′i) ∗ q − q ∗ (0, ξi)||2 (5.4)

Where q is a unit quaternion and ∗ is the quaternion multiplication. Let p and q be quaternions,
p̄ and q̄ their conjugated quaternions respectively. There is a representation where the quater-
nion product can be expressed as a matrix product (see Section 2.2.2.2). The left and right
multiplication matrix L and R associated to p and q are defined such that: Lpq = Rqp = p ∗ q.

Since (0, y′i) and (0, ξi) are pure quaternions, their associated multiplications matrices are
skew-symmetric. We have (0, y′i) ∗ q = Ly′iq and −q ∗ (0, ξi) = −Rξiq = RTξiq. Thus, we obtain
the following criterion (see Appendix B.2 for detailed calculations):

C̃(q, S) = qT

(
−
∑
i

(
Ly′i +RTξi

)2)
q (5.5)

For further computation, we denote Bi = −
(
Ly′i +RTξi

)2

and B =
∑
iBi. A lagrangian with

unit constraint qT q = 1 has then to be added to ensure a unit quaternion:

Λ = qTBq − λ(qT q − 1) (5.6)

Let sj = Sjj . The derivatives of this new formulation can then be written as:
∂Λ

∂q
= (B − λI4)q

∂Λ

∂sj
= −qT

(∑
i

Ly′i
∂RTξi
∂sj

)
q + sj

∑
i

x̃2
ji

(5.7)

Derivative with respect to q depends upon sj and vice versa. Therefore, a direct solution to
the problem of minimizing C̃(q, S) is difficult to find if not impossible. However, separating the
problem between S and q leads to an alternate optimization scheme, each having an analytical
solution.
Rotation:

∂Λ

∂q
= 0⇔ (B − λI4)q = 0 (5.8)
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Solving this equation amounts finding the eigen vectors of B. More precisely, the global
minimum q̂ is the one associated to the smallest eigen value of B as shown in [Horn 1987,
Pennec 1996].
Scaling: (see Appendix B.3)

∂Λ

∂sj
= 0⇔ ŝj =

1∑
i x̃

2
ji

qT

(∑
i

Ly′i
∂RTξi
∂sj

)
q (5.9)

Now, interestingly the matrices Ly′i
∂RTξi
∂sj

have a quite trivial form. They are all symmetric,

only the placing and indexes change (see Appendix B.4). We finally get the following iterative
alternate optimization scheme:

• For a fixed value of Ŝ, estimate the new optimal rotation quaternion: q̂ as the eigenvector
with the smallest eigenvalue of B

• For a fixed value of q̂, estimate the new optimal scaling matrix Ŝ = Diag(ŝ1, ŝ2, ŝ3)

following:

ŝj =
1∑
i x̃

2
ji

q̂T

(∑
i

Ly′i
∂RTξi
∂sj

)
q̂ (5.10)

5.4 Material and methods

In the previous section, a method to find the optimal anisotropic similarity between two sets of
paired points has been depicted. This gives the opportunity to register a database of subjects
onto a common reference image using this type of linear transformation to extract scaling factors
along chosen orthogonal directions and to study the variation of these factors on different ROIs
between populations or among normal subjects.

5.4.1 Material

308 T1-weighted images of healthy subjects between 0 and 19 years old have been used, coming
from three different studies: ASLpedia [ASLpedia], C-MIND [C-MIND] and the Developing
Human Connectome Project (dHCP) [dHCP]. Details on age repartition among databases and
on image characteristics are given in Figure 5.2.
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Figure 5.2: Repartition of the subjects selected from three studies over age
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5.4.2 Methods

We have developed a pipeline composed of 5 steps to extract scaling factors for 3 orthogonal
directions on ROIs from a database of subjects:

1. Choice and construction of the common reference image,

2. Segmentation of the common reference image into different ROIs,

3. Choice of the constrained directions of scaling for the anisotropic similarity registration,

4. Anisotropic similarity registration of a database of subjects to each ROIs of the common
reference image to extract relative scaling factors,

5. Renormalization of the relative scaling factors to obtain absolute scaling factors.

The above numbers associated to the steps are also associated to the subsections numbering
below and to the numbers in Figure 5.3.

Figure 5.3: Pipeline for the extraction of scaling factors of a database of subjects using
anisotropic similarity registration onto an atlas based on them as common reference image.

5.4.2.1 Creation of the common reference image

For genericity, the common reference image has been chosen to be an atlas made from all the
subjects using a modified version of the atlas creation algorithm from [Guimond 2000]. Our
method, developed in [Legouhy 2019] and detailed in Chapter 8 produces atlases up to a rigid
transformation thus accounting for both global growth and local deformations. Also it includes
mechanisms conceived to improve the robustness of the registration algorithms in case of brains
of different sizes through adapted initialization and linear transformation decompositions.
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5.4.2.2 Segmentation of the common reference image

The atlas has then been segmented into 21 regions of interest (ROIs): whole brain, hemispheres,
frontal lobe, parietal lobe, temporal lobe, occipital lobe, basal ganglias, cerebellum, insulas,
ventricles, corpus callusum and brainstem. All structures were also separated in their left and
right sides. To do this segmentation, ALBERTs [ALBERTs] manual ones have been used: 20
brains segmented into 50 regions manually drawn based on MRI brain scans that we fused to
obtain the wider desired regions. The T1-weighted images of those brains have been registered
onto our atlas through affine then diffeomorphic registration. The outputs have then been used
to transfer all the segmentations onto our atlas which have been then merged using majority
voting following [Heckemann 2006]. The segmented atlas is shown in Figure 5.4. It should be
noted that the 20 brains associated to ALBERTs data were only used for segmentation of the
ROIs. They were not used for the creation of the common reference and, not used either as
subjects registered with anisotropic similarity.

ROI ID color

whole brain 0
left hemisphere 01
right hemisphere 02
left temporal 1
right temporal 2
left parietal 3
right parietal 4
left frontal 5
right frontal 6
left cerebellum 7
right cerebellum 8
left occipital 9
right occipital 10
left basal ganglia 11
right basal ganglia 12
left insula 13
right insula 14
left ventricule 15
right ventricule 16
corpus callossum 17
brainstem 18

direction ID color

orthogonal to the sagittal plane 1
principal direction of voxels positions projected on sagittal plane 2
secondary direction of voxels positions projected on sagittal plane 3

Figure 5.4: Regions of interest (ROIs) segmented and represented on the common reference
image (top), chosen directions of scaling for anisotropic similarity registration defined and
represented on the common reference image (bottom).

5.4.2.3 Choice of the constrained directions of scaling

The fixed scaling directions (characterized by the column vectors of the matrix U) are chosen
on the reference image such that the first direction (blue in Figure 5.4) is orthogonal to the
mid-sagittal plane (determined using [Prima 2002]) for symmetry reasons. The other two di-
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rections are set using principal component analysis (PCA) on the non zero voxels coordinates
projected onto the mid-sagittal plane. The second direction (red in Figure 5.4) corresponds to
the principal direction from the PCA while the third (green in Figure 5.4) corresponds to the
secondary one. Three orthogonal directions are now chosen: one through iconic considerations
and the other two based on purely geometrical features. In our application, the matrix U is
the same for all ROIs of the reference image and is defined using the whole brain. However, it
is possible to define a different U for each ROI independently. Chosen directions of scaling are
shown in Figure 5.4.

These directions have been chosen as a proof of concept. Depending on the purpose of the
study, other choice may appear more relevant (see discussion Section 5.6).

5.4.2.4 Anisotropic similarity registration

For each ROI, all subjects undergo an anisotropic similarity registration onto the reference
image masked by this ROI. This registration is performed in two steps using in each case our
block matching algorithm implemented in Anima [Anima]:

1. A similarity TB from whole brain subjects onto whole brain common reference is first
estimated.

2. An anisotropic similarity TC initialized from the previous step output is then computed
to bring the subjects onto the atlas masked by the current ROI.

The first transformation, a similarity, is computed indirectly during a process of affine
registration using the method depicted in Section 7. Let A be the linear part of an affine
transformation TA. We consider the following SVD: A = V DWT with D diagonal positive,
V and W unitary matrices. We define TB (the nearest similarity associated to TA) as the
transformation with linear part B = d̄V WT with d̄ being the average of the singular values
namely the mean of the diagonal of D, and translation part t = ȳ − Bx̄. We chose the
initialization to be a similarity since the composition of a similarity TB and an anisotropic
similarity TC associated to a matrix U is still an anisotropic similarity associated to the same
U : TBTC = (sBRB)(RCSCU

T ) = (RBRC)(sBSC)UT = RSUT . The whole registration process
is summarized in Figure 5.5.

affine
registration

anisotropic
similarity

registration

moving

reference

moving reference
Transformation types: 

ROI j 

affine

anisotropic similarity
nearest similarity from

anisotropic similarity

Figure 5.5: Two steps registration process: first an affine from which a nearest similarity is
deduced, then an anisotropic similarity. Transformations are composed and represented with
arrows from destination to start since the interpolations occurring in the resampling are done
using the backward mapping. The inverse transformation is actually used on each voxel of the
output images to determine the position in the input image from which a value is sampled.
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5.4.2.5 Extraction of absolute scaling factors

From the output transformations of the registration step, the relative scaling parameters along
the three fixed directions are extracted. Those scaling factors are relative to the reference image.
We want to normalize them such that they become about equal to 1 at birth and represent, for
other ages, how much a region expanded along the chosen directions since birth. To this end, the
fact that all dHCP subjects are very young (less than 1 month) is exploited. The normalization
step consist in dividing the relative scaling factors of all the dataset by the average of the ones
associated to the dHCP subjects considered as the “root" of the brain expansion. Those new
scaling factors will now be considered as absolute scaling factors. At this stage, for each subject,
an absolute scaling factor has been determined for each ROI. Those absolute scaling factors are
used to model the expansion of the brain toward the chosen directions.

5.5 Experiments and results

5.5.1 Model selection

Several models are traditionally used to represent growth in biostatistics such as the exponential
or Weibull models. The second one has been considered by [Peterson 2018] as the best suited
to model brain growth in terms of volume. Our case however is different: it can be viewed as a
3-way unidimensional approach. In our quest to find the function best suited to model growth
curves for our data, we decided to consider, as a prior, that the brain expansion is stopping at
some point. Therefore, we restricted the spectrum to functions that have a horizontal asymptote
at infinity. The selected candidates to model directional brain growth are the following:

• Rational with polynomials of degree 1 as numerator and denominator : y =
ax+ b

x+ c

• Weibull: y = a− be−cxd

• Gompertz: y = ae−be
−cx

• Exponential: y = a+ be−cx

For each candidate, the optimal coefficients are estimated through nonlinear regression using
the Levenberg-Marquardt iterative weighted least squares algorithm from [Seber 1989]. In this
process, weights are chosen to compensate for local gender repartition. For each subject i, a
window of width l = 2 years centered on the subject age is considered. Let nf , nm and n

be the number of female, male and total subjects respectively in that window. A correction
coefficient cf =

nm
n

is applied if i is a female and cm =
nf
n

if i is a male. Let {y1, . . . , yn} be the
observations (i.e. here the obtained scaling factors), ȳ be the average of those and {ŷ1, . . . , ŷn}
be the fitted values.

Based on these statistics, the chosen candidate for the modeling will be the one that best
satisfies a criterion quantifying the goodness of fit. This indicator should evaluate the accuracy
of the model i.e. how close the model is to the observation while discouraging overfitting.
It therefore consists in a tradeoff between accuracy and parsimony. It has been shown in
[Spiess 2010] that the coefficient of determination is not, at least when considered alone, an
appropriate measure for the goodness of fit in the case of nonlinear model selection. A more
adapted goodness of fit for nonlinear model selection is the Akaike information criterion (AIC)
developed in [Akaike 1974] and [Burnham 2002]. Based on information theory, it proposes to
estimate the information loss induced by each candidate model to represent an unknown process
that supposedly generated the data as shown in [Burnham 2004]. This is made possible through
the estimation of the Kullback-Leibler divergence related to the maximized log-likelihood. AIC
is defined by: AIC = −2p − 2 ln(L̂), where L̂ is the maximum likelihood of the candidate
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model and the first term penalizes a large number of parameters p. Therefore, the preferred
model among the candidates is the one with the lower AIC. Note that AIC of a model taken
alone is meaningless, it makes sense only when compared to the one of the other models. This
is why it is recommended to consider it along with another statistic that quantifies the error
between the model and the data like mean of squared errors (MSE): MSE = 1

n

∑
i(yi − ŷi)2

which is the average of the residuals. A corrected version of the AIC has been developed to

avoid overfitting in the case of small sample sizes: AICc = AIC +
2p(2p+ 1)

n− p− 1
. To facilitate

the interpretation that can be quite obscure using raw AIC, following [Wagenmakers 2004], it
is possible to transform those values into conditional probabilities for each model called Akaike

weights. Defined for each model i by wi,AIC =
e−

1
2 (AICi−AICmin)∑

j e
− 1

2 (AICj−AICmin)
, those weights represent

the probability for each candidate i to be the best suited in the sense of AIC to model the data
among all the candidates.

Figure 5.6: Goodness of fits for each candidate to model the ouputed scaling factors averaged
in the 3 directions. Boxplots are performed along the ROIs, ROI IDs are displayed on the left.
Akaike weights are computed on mean (blue) and median (red) AICc

All the goodness of fit depicted above as well as MSE have been evaluated for each of our
candidates to model the scaling factors for each ROI. We present the results of this evaluation
in Figure 5.6. The Gompertz and exponential models are largely below the other two. Even
though the Weibull model behaves relatively well, the rational one shows better scores whatever
the tested goodness of fit.

5.5.2 Directional growth curves

From the previous sections, scaling factors in each direction for each ROI are now modeled
using a rational function with polynomials of degree 1 as numerator and denominator chosen
after model selection. Results for all regions studied are presented in Figure 5.7. The method
presented by [Lane 1994] is used to compute simultaneous 99% confidence intervals for fitted
values. The black curve represents the average brain growth computed as the mean of the
directional models (Figure 5.7).

Those curves exhibit various characteristics of the developments of those different ROIs.
Firstly, the pace: some regions grow at a relatively slow pace like the frontal lobes which also
to still expand after 16 years old. In the other hand, some parts of the brain show a steeper
pace like the occipital lobes that show a quick growth until about 3 years old followed by an
early stagnation. Secondly, the amplitude: some regions grow up to a higher asymptote than
other. The cerebellum for example expands in average along the 3 directions up to 1.8 times
its initial size while the parietal lobe barely reach 1.5 times its initial size. And thirdly, the
main advantage of our method compared to classic volumetry, the anisotropy: some parts of
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Figure 5.7: Resulting scaling factors as a function of the age in years for different ROIs, along
direction 1 (blue), 2 (red), 3 (green). Fitted using rational model together with 99% confidence
intervals for fitted values. Black curves represent the average models along the three directions.

the brain evolve quite isotropically such as parietal lobes while other have a very anisotropic
expansion like the temporal lobes that expand way less in the third direction (green) compared
to the other two.

5.5.3 Male vs female comparison

Gender, like age, is a characteristic of the subjects available in all the studies we considered. The
aim of this section is to evaluate if differences in terms of scaling factor can be found between
genders. We divided our data into four age-intervals based on the age of the subjects. The first
one contains dHCP participants (newborns), the second one is composed of all non-newborn
subjects between 0 and 6 years old, the third one between 6 and 12 and the fourth older to 12.
Repartition of the subjects in terms of gender, age class and study is shown in Table 5.2.

dHCP (0, 6] (6, 12] > 12

male
dHCP

22
22

51
0

48
0

26
0

147c-mind 0 29 37 24

ASLpedia 0 22 11 2

female
dHCP

15
15

54
0

57
0

35
0

161c-mind 0 43 43 21

ASLpedia 0 11 14 14

37 105 105 61 308

Table 5.2: Repartition of the subjects in term of age class, gender and study

For each of these age-intervals, and each of the chosen scaling directions, and each ROI, we
performed a test to evaluate if the scaling factors for male subjects are greater than scaling
factors for female subjects. Since these data are not normally distributed in those subdivisions,
we used two-tailed Wilcoxon-Man-Whitney U-tests. For each of those tests, the null hypothesis
H0 is the following: the distributions of the scaling factors between males and females are equal,
while the alternative hypothesis H1 states: the distributions of males and females are different.
We performed 252 tests in total: 4 age-intervals × 21 ROIs × 3 directions whose results are
shown in Figure 5.8.
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7.7 FDR 
threshold

Figure 5.8: Male vs female comparison using Wilcoxon-Man-Whitney U-test and H0: the
distribution of the scaling factors of males and females are equal, H1: the distributions of males
and females are different. In color: p-values for H0 rejection for FDR at level 5% (Benjamini
and Hochberg method). Numerically: the size of the effect d for each test.

A type 1 error, or false positive, occurs when H0 is incorrectly rejected. Since we are doing
multiple comparisons, rejecting H0 based on the risk of type 1 error α = 5%, may lead in our
case to an expected number of false positives greater than 12. Instead of using α, we therefore
adopted the false discovery rate (FDR) that controls the proportion of false positives among
the tests where H0 has been rejected. Therefore, we stated the acceptance or rejection of H0

based on a FDR at level 5%. This has been done using Benjamini and Hochberg procedure from
[Benjamini 1995] and corresponds to reject H0 when the p-value is less than 0.0077 (Figure 5.8).
FDR has been preferred to family-wise error rate (FWER), that controls the risk of at least 1
false positive among the whole family of tests, because of the over-conservatism of this last type
of procedure leading to poor test power (probability of correctly rejecting H0). Additionally,
we calculated and presented in Figure 5.8, for each test, the effect size d following:

d =
med({Sm})−med({Sf})
σ({Sm}) + σ({Sf})

(5.11)

Where {Sm} (resp. {Sf}) is the set of scaling factor of males (resp. females) used for the
test. We preferred the use of median instead of mean due to the fact that we do not know the
distribution of the data a priori and we performed ranksum type tests.

For all the tests that lead to a rejection of the null hypothesis, scaling factors were higher
for males both in terms of means and medians. Tests show that scaling factors of males seem
higher in the second age class (0-6), brainwise and mainly in temporal and cerebellum areas
along the direction 1. This is also notable in the same regions between 6 and 12 years, this time
along direction 3. For the older class (12-19), this phenomenon essentially appears brainwise
along the direction 3 and in the parietal lobes along direction 1.

5.5.4 Multi-directional growth charts

Additionally to previous experiments (and to partially overcome direction selection problems),
it is possible to repeat the process of scaling factor extraction along different directions. Due
to symmetry reasons, the first direction, which is the one orthogonal to the sagittal plane, is
quite relevant so we chose to keep it in all repetitions. This leaves us the freedom to rotate the
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couple of remaining orthogonal directions in the perpendicular plane of the first one. Actually,
a [0, π2 ] angle interval is enough to cover all the possibilities. We sub-sampled this interval into
20 equidistant values of angles leading to the same amount of different couples of orthogonal
directions.

We then extracted scaling factors for all those directions, for all ROIs of all subjects. In order
to obtain an easily interpretable visualization, we imagined a chart to display the average growth
at different timepoints in every direction from a longitudinal point of view. We chose those
timepoints to be every months between 0 and 1 year. For each timepoint, a weighted average
of the scaling factors is computed such that the contribution of each subject is modulated
according to its temporal distance to that timepoint. This has been done using an adaptive
quintic weight function, flexible enough to avoid temporal error (more details in Section 8.2).
We end up for each month with average scaling factors in each of the 21 sampled directions.
Then smoothing splines with periodic boundary condition were used to obtain values of scaling
factors along any direction. It is thenceforth possible to create a polar representation were
the angular coordinates are the directions of scaling and radial coordinates are the associated
scaling factors. Those multi-directional growth charts are shown in Figure 5.9. Concerning the
growth speed, those charts should be read in the opposite way to the contours found on maps.
Indeed, the further apart the lines are, the greater the expansion during the month.

Once again, the anisotropic development of the chosen structures of the brain is highlighted.
The most noticeable is the temporal lobe case. It could have been possible to extract the scaling
factors in a 3D sampling of the directions instead of restraining ourselves to the one coplanar
to the sagittal plane. However, this requires a huge number of registrations and it was not clear
for us how to produce an easily understandable visual representation of it.

age
(months)

age
(months)



66
Chapter 5. Directional brain expansion through anisotropic similarity

registration

age
(months)

age
(months)

age
(months)

Figure 5.9: Multi-directional monthly growth charts from a sagittal point of view between 0
and 1 year. Scaling factors in every directions coplanar to the sagittal plane are displayed using
a polar representation, the unit circle corresponds to birth. Scaling factors along the direction
orthogonal to the sagittal plane are displayed below the polar plots.
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5.5.5 Influence of the common reference

To evaluate the influence of the common reference image, the whole process described previously
is reproduced using six different reference images. Those are atlases for six arbitrary chosen
time-points t1, . . . , t6 using subjects among the population depicted in Section 5.4.1. Time-
points are chosen such that five of them cover the period in which the majority of the brain
expansion occurs, the last is positioned later, in a stabilized area. Following [Legouhy 2019],
an atlas for a time-point ti is created using only the subjects with ages in a range around ti
(in Figure 5.10, line 4). The contributions of those subjects are then weighted using a weight
function (plotted in Figure 5.10, line 6) such that subjects closer in age to ti are given more
importance. The six outputed atlases (presented Figure 5.10) are different in terms of shape
and intensity, they will be used to challenge the robustness of our method to extract scaling
factors.

The method developed in Section 5.4.2 is used for each of these reference images, on which
directions of scaling for the anisotropic similarity registration have been established the same
way. A scaling factor s(i, j, d, k) is thus computed for each ROI j of each subject i based on
each reference image k along each chosen direction d. To quantify the influence of the reference
image on absolute scaling factors, the results, using the six reference images previously depicted,
are compared through two approaches:

1. A pairwise study to evaluate whether or not reference atlases closer to each other in age
are more likely to generate closer results.

2. A study of the standard deviation among results for all reference atlases to evaluate how
far they are from the average results.

Atlas ID 1 2 3 4 5 6

Time point 0.5 1 1.5 2 2.5 13

Number of subjects 60 26 24 21 26 21

Age range of subjects [0.003, 1.23] [0.53, 1.57] [1.02, 1.98] [1.57, 2.47] [1.98, 3.14] [12.07, 13.67]

Atlas

Weights on subjects

0.5 1 1.5 2 2.5 13
0

0.05

0.1

Figure 5.10: Characteristics of the 6 atlases used as reference image (time is displayed in years).

5.5.5.1 Study of pairwise distances between scaling factors by reference images in
each direction for each ROI

Our aim is to determine whether or not reference images closer to each other (atlases at shorter
temporal distances) are more likely to generate less important absolute differences between their
results. We therefore compute the absolute difference of the resulting scaling factors between
each pairwise combinations of reference images. Then, those distances are normalized by the
average of corresponding scaling factors between the two atlases such that it can be seen as a
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percentage of it (relative distance). The relative distance between scaling factors from reference
atlases k and l is then computed as:

Dk,l(i, j, d) = 2
|s(i, j, d, k)− s(i, j, d, l)|
s(i, j, d, k) + s(i, j, d, l)

(5.12)

After examination of all the pairwise combinations, the temporal distance between the
reference images does not seem to have an impact on the distance of the scaling ratios associated
to each other (Figure 5.11). The highest median of relative distance happens to be between
atlases 2 and 5 for right basal ganglia, but does go above 8% of difference.

Figure 5.11: Relative distances between reference atlas 1 and 2 (top), 1 and 6 (bottom). Box-
plots among subjects for each ROI j, each direction d: boxplot(Dk,l(., j, d)).

5.5.5.2 Study of the standard deviation among reference images in each direction
for each ROI

This method gives an average measure of the distances between the results for each atlas and
the average results. Those distances are normalized by the average of corresponding scaling
factors of all the atlases. The relative standard deviation between scaling from all reference
atlases is then computed as:

D(i, j, d) =
σ(s(i, j, d, .))

s(i, j, d, .)
(5.13)

The graphs (Figure 5.12) suggest that the method, when applied to large regions such as
whole brain and hemispheres, is really robust to reference image change. Occipital lobes and
cerebellum however seem to be more vulnerable areas. Those two regions share a common bor-
der and we believe that the segmentation process is a crucial step in that case. The cerebellum
position indeed varies quickly in early stages of life and our decision to use segmentations based
on neonates can be a bit inadequate for this area in particular. We also think that the way we
chose to define the constrained directions of scaling (especially those using purely geometrical
considerations through PCA on voxel coordinates) may not be the most robust in those areas.
More anatomical features could lead to even smaller influence of the reference image.
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Figure 5.12: Relative standard deviation between reference atlases. Boxplots among subjects
for each ROI j, each direction d: boxplot(D(., j, d)).

5.6 Discussion

5.6.1 Comparison of the results to the literature

Our method aims at characterizing directional growth at the scale of a ROI through the extrac-
tion of scaling factors, which are easily interpretable measures. In most longitudinal analyses
of brain development, the focus is on volumetry. This type of measurement reflects the global
growth of a region but lacks characterization of directional expansion. Other approaches are
based on cortical surface curvature as in [Lefèvre 2016], [Auzias 2015] or [Kim 2016] to reflect
gyri and sulci widening or deepening, giving information about directional expansion at a more
local scale.

Values from volumetric measurements cannot be directly compared to our scaling factors:
they are three-times unidimensional whereas volume is not. Our anisotropic scaling factors
should instead be seen as a complementary information to the volume data. However, there
are still some aspects that we can compare:

• The pace of growth: is the growth monotonous or does it increase or decrease in speed at
given ages? Are there regions that seem to evolve at a quicker pace than the others do?

• The asymptote: at what age does the growth reach a peak and begins to stagnate? Are
there regions that seem to reach a higher growth asymptote than others do?

Since the anisotropy is a missing information in volumetric studies, it is appropriate to use
the average models of the three directions (black curves in Figure 5.7) for the comparisons.
In [Hamano 1990], [Peterson 2018], [Courchesne 2000] and [Iwasaki 1997], the pace of the whole
brain volume curves is quite similar to our findings, showing a strong initial increase followed
by a decline around 2 years. In [Knickmeyer 2010], it is also noticeable that, analogously to
our results, the cerebellum grows by a much more important factor than the brain as a whole.
In [Iwasaki 1997], basal ganglia grow by a factor comparable to the whole brain which is also
consistent with our results.

5.6.2 Implementation considerations

5.6.2.1 Directions of scaling

The choice of the scaling directions, characterized by the matrix U , is crucial. These three
directions can be different for each ROI, they are defined on the reference image and must be
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orthogonal. The brain being a rather symmetrical organ about its mid-sagittal plane, choosing a
direction orthogonal to it seems natural. Given that, there is no obvious choice for the other two.
Using PCA on non-zeros voxel coordinates of the reference image (atlas of the population in our
case) projected on mid-sagittal plane (since the last two directions have to be orthogonal to the
first one) seemed to be quite intuitive. This corresponds to the principal sagittal directions of
the average model of the population. However, it is based on purely geometric features ignoring
iconic or anatomical considerations. This choice must above all be seen as a proof of concept
and should not be considered as the one to be necessarily adopted. A future work could be to
define, for a given purpose, a criterion of goodness for the chosen directions and, to optimize
to find the directions that best satisfy this criterion. A more anatomically-oriented approach
could be to ask a medical expert to point, on the reference image, the anterior commissure -
posterior commissure (AC-PC) line. This has been well adopted as a standard by the clinical
neuroimaging community even though it is mostly a convention for visualization and at the
cost of introducing a human interaction or a preprocessing step. This method is therefore very
flexible in the choice of the scaling directions and the ROIs, yet it has shown oneself robust
concerning the choice of the common reference image.

5.6.2.2 ROI segmentation

Although it does not call into question the method itself, there is room for improvements in the
way we segmented the ROIs. The main difficulty is to find a method that is reproducible while
being adaptable to brains from subjects scanned across a wide range of ages, which induces a
large variability in contrast and shape. It has been shown in [Gousias 2010] that the automatic
segmentation of 1 year old subjects was more successful when using prior segmentations of 2
years old than when using prior segmentations of adults. In addition, [Aljabar 2009] showed
that, in the context of multi-atlas segmentation, similarity selection of the atlases increases
significantly the accuracy compared to the fusion of random sets of atlases. In the same paper,
it has also been established that using an age-based selection gives similar results to similar-
ity selection. Those results support the assertion that segmentation accuracy is improved by
using age-adapted atlases. However, the concern of producing segmentations on a longitudinal
database that are adapted to the maturation of each brain while being consistent among the
subjects is still, to our knowledge, an open question. Our choice to use ALBERTs atlases to seg-
ment all the subjects regardless of their age was driven by a desire of consistency/reproducibility
to the expense of age-adaptation since we did not find methods offering a satisfying trade-off
between the two.

5.6.2.3 Normalization step

We have used a normalization step instead of the raw scaling factors relative to the reference
image. Even though it is in a way more abstract, the relative scaling factors can actually be
used as such. A subject with abnormalities that would show itself atypical in terms of scaling
factors compared to the normal model would be so, with or without normalization. Now it is
indeed more tangible for interpretation to have a concrete base like birth. In that case, scaling
factors have an intuitive meaning since they quantify how much a region grows along a given
direction since birth. In the event that there is no neonatal data to normalize the relative
results, the following could be done:

• If a model can be fitted from the relative scaling factors, it might be possible to extrapolate
values for birth and therefore use them for normalization.

• If not, relative scaling factors may be used or another base should be considered. Taking
values in the growth stabilization zone may also be considered as it gives easily inter-
pretable results as well.
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That being said, neonatal MRI data are nowadays quite abundant in open access, especially
structural images. The dHCP team (see Acknowledgment C) announced in September their
second release with over 500 neonates. Our normalization can therefore be performed when
using this data.

5.6.2.4 Image quality

Images used in the experiments are of good quality compared to what can be commonly found in
clinical routine. Registration is sensitive to image quality but it is mostly the case in the context
of non-linear registration where there are many degrees of freedom and very local displacements
are involved. Even if the image quality can have an impact, the sparsity in terms of degrees
of freedom and the global aspect of the anisotropic registration make it much more resilient
about image size and quality. In addition, the bigger is the size of the ROI is, the less sensitive
to image quality the result will be. The registration algorithm being based on block-matching,
the ROI must be chosen such that their sizes are at least one order larger than the size of the
blocks. A block being a neighborhood of voxels, the poorer the image quality, the larger the
ROI must be and too narrow structures should be avoided. Finally, conducting the study at a
group scale attenuates the influence of potential registrations errors induced by a poor image
quality.

5.6.3 Clinical applications

We focused on the expansion of structures of a database of healthy subjects but we can also
imagine using this method for patients. Intra-individual surveys are also possible, for subjects
that had multiple scans through time, to monitor the evolution of a brain sub-region or any
part of the body and infer the way it is going to expand.

Brain morphometric measurements have been performed on infants with deformational pla-
giocephaly and controls in [Collett 2012]. They found that volume analysis does not allow the
distinction between cases and controls. However, their unidimensional measurements based es-
pecially on distances between landmarks were more successful. Those nevertheless necessitate
point picking on all subjects and may be sensitive to human error. Considering this, it could
be interesting to try, in future work, our automatic method (only the computation of directions
for each ROI on the common reference is needed) on this kind of pathology. Some chosen
directions could for example be colinear to the line segments that have proved to be relevant
in this paper. Those measurements might be linked to developmental delays that affect infants
with deformational plagiocephaly.

5.7 Conclusion

We have presented a method that allows the extraction of regional and global scaling factors
along arbitrary chosen orthogonal directions. This is done through linear registration using a
9 dof transformation, anisotropic similarity, which is an affine transformation with constrained
directions of scaling.

The main methodological contribution of this paper concerns the resolution of the problem
of finding the optimal anisotropic similarity that best matches two sets of paired points. This
result has made possible the development of a block-matching registration algorithm based on
this transformation.

Given this new type of registration, our second contribution was to map a database of sub-
jects between 0 and 19 years old using anisotropic similarity onto a common reference image on
which the constrained directions of scaling of our choosing have been fixed. Registrations have
been performed brainwise and ROI wise (lobes, cerebellum, basal ganglias...). For genericity
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purpose, we chose this reference image to be an atlas made from the subjects. Based on sym-
metry and geometrical considerations, we defined the same constrained directions of scaling for
all ROIs even though it is possible to choose different ones for each. As an output, we obtained
for each subject, for each ROI, for each chosen direction a scaling, a scaling factor that we
normalized such that it represents an expansion factor from birth.

Those scaling factors have been used to model the anisotropic development of the brain.
After model selection, it has been determined that rational function with polynomials of degree 1
as numerator and denominator is the best suited among the tested candidates for that modeling.
Curves representing scaling factors as a function of the age for each ROIs, each chosen direction,
along with associated confidence intervals have then beeen computed on a combination of four
databases.

Tests to determine the influence of gender in those scaling factors have been performed for
different age-intervals. Finally, two experiments have been conducted to evaluate the influence of
the aforementioned common reference image. The results have shown small relative differences
depending on the choice of the reference image leading to the conclusion that the method is
robust in that aspect.
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In this chapter are reported the main results of the study we jointly performed with Maia
Proisy on quantitative ASL imaging in a specific newborn population. The study, initiated by
Maia Proisy, gave rise to a journal publication in NeuroImage: Clinical [Proisy 2019].

My role in this study was mainly to adapt pre-existing processing tools designed for adults
such that they can be applied for newborns. This includes robust registration for brains of
different maturity, brain extraction, and atlas-based segmentation.

A newborn brain is not simply a smaller version of an adult one. In the early stages of life, the
brain undergoes rapid structural and functional changes. Regions grow at an asynchronous pace
and also shows local shape evolutions due to the gyrification process as shown in [Dubois 2019].
In addition, the myelination process leads to important tissue composition changes as shown
in [Dubois 2014] which is translated in terms of images intensities. The massive disparities in
terms of shape and intensity between infant and adult images explain why most of processing
tools designed for adults often suffer flaws when used on infant data. This has been shown
notably in [Muzik 2000]. An effort of adaptation of the tools is however currently being made
as in [Baxter 2019].

The following is a concise version of [Proisy 2019] with an emphasis on the image processing
aspects.

6.1 Introduction

Hypoxic-ischemic encephalopathy (HIE) is the leading cause of neonatal encephalopathy and
occurs after perinatal asphyxia in full-term neonates, it is a major cause of perinatal mortality
and morbidity. MRI plays a key role in the diagnosis and prognosis of this pathology. An
early MRI (performed during the first week of life) reliably detects severe injuries and there
is good agreement between early MRI and late MRI (after 1 week) [Charon 2015]. The brain
perfusion model and its relationship to other biomarkers could help guide the development of
therapies in order to improve management of high-risk neonates. Cerebral perfusion imaging
is challenging in neonates due to physiological and technical issues [Proisy 2016]. The Arterial
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Spin Labeling (ASL) MRI perfusion sequence is one of the most suitable imaging modalities
owing to its non-invasive and non-irradiating nature. However, the post-processing of ASL data
requires specific adaptations to this age group, in particular with respect to the automated
segmentation of brain tissues and the parameters used for the quantification models of cerebral
blood flow (CBF) [Varela 2015]. There are a dozen articles in the literature concerning the
study of cerebral perfusion in neonates using ASL, four of which are focused on neonates with
HIE [Pienaar 2012, Wintermark 2011, Massaro 2013, De Vis 2015].

The primary objective of our study was to evaluate the changes in CBF between an early
MRI (at day 4 of life) and a late MRI (at day 11 of life) in infants with HIE treated with
hypothermia. The secondary objectives were to compare CBF values between the different
regions of interest (ROIs) and between infants with ischemic MRI lesions and those with normal
MRI.

6.2 Material

6.2.1 Patients

This prospective study included all consecutive neonates with HIE admitted to the neonatal
intensive care unit of our institution between April 2015 and December 2017. The criteria of
national guidelines in [Saliba 2010] were used to determine eligibility for therapeutic hypother-
mia. All included neonates were aged of at least 36 gestational weeks with birth weight ≤ 1800

g. They had signs of perinatal asphyxia with an acute perinatal event (such as severe foetal
heart rate abnormalities, cord prolapse or placental abruption) and at least one of the fol-
lowing criteria: APGAR score ≤ 5 at 10 min (Appearance, Pulse, Grimace, Activity, Res-
piration [Apgar 1953]); mechanical ventilation or intubation at 10 min after birth; metabolic
acidosis, including cord, arterial, venous or capillary blood pH < 7 or base deficit ≥ 16 mmol/L
or lactate ≥ 11 mmol/L within 60 min of birth. Neonates with stroke, congenital malformation
or metabolic disorders were not included. Hypothermia was induced within 6 h after birth and
continued for 72 h, with a target temperature of 33-34 ◦C. The institutional medical ethics
review board approved the study and parental consent was obtained.

6.2.2 MR acquisitions

Each included neonate systematically underwent two MRI scans as follows: an early MRI
performed as close as possible to day 4 of life (DOL4) and a late MRI performed as close as
possible to day 11 of life (DOL11). The early MRI was performed after rewarming, at the end of
hypothermia treatment. The neonates received no additional medication for the imaging study.
Ventilated infants were sedated with morphine and midazolam. Spontaneously breathing infants
were not sedated and were fed before the MRI scan and wrapped with a vacuum immobilizer.

All MRI scans were acquired using a Siemens 1.5 T Magnetom Aera scanner with a 20-
channel head/neck coil. Among the sequences included in the routine protocol, the following
two were used for processing:

• 3D T1-weighted (T1w): acquired in sagittal plane, TR = 2090 ms, TE = 4.9 ms, resolu-
tion 1× 1× 1 mm3.

• 2D axial pulsed ASL PICORE Q2TIPS: TR = 3500 ms, TE = 12 ms, TI1 = 700 ms,
TI2 = 2000 ms, in-plane resolution 4× 4 mm2, slice thickness 8 mm, gap 2 mm, 9 slices,
30 label/control pairs. This lead to a total scan time of 3 min 39 s. The first volume of
the ASL series was used as the M0 reference image.
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6.3 Image processing

6.3.1 Anatomical data

In order to compute CBF values in chosen areas of the brain, a segmentation step has been
performed on the structural T1-weighted images. For the segmentation to be done properly, it
is required to work with brains only thus necessitating first a skull stripping process.

This step turned out to perform very poorly using standard tools such as fsl BET1 or
Volbrain2 which are designed for adult data. Given that, we chose to opt for atlas-based brain
extraction and segmentation which can be adapted easily to any age range given the appropriate
atlas, and shows nice reproducibility properties. We used for that purpose an age-adapted set
of anatomical images and segmentation maps pairs from ALBERTs [ALBERTs]. It consists in
20 neonates brain T1 and T2-weighted images with associated manual delineation of 50 regions.
The cohort is composed of 15 preterm neonates scanned at term (age range: 26-35 gestational
weeks), 5 term control (age range: 39-45 gestational weeks), and 36 preterm neonates scanned
at birth (age range 24-36 gestational weeks).

Atlas creation

We first created an atlas from all ALBERTs T1-weighted data using the algorithm developed
in [Legouhy 2019] based on [Guimond 2000], and detailed in Chapter 8. The associated segmen-
tations were then mapped onto this common space using the transformations from the atlasing
process and fused using majority voting.

Brain extraction

In order to create a whole brain mask, we merged all the labels and performed a special closing
composed of a dilation (4 mm), followed by a hole filling, followed by an erosion (4 mm).

However, it was not straightforward to propagate this brain mask onto our patients. Indeed,
due to massive differences in terms of field of view (FOV) between our data and those of
ALBERTs, the registration algorithms failed to aptly map the atlas on our images. Indeed the
FOV of our data goes below the chest while it stops at about the jaw for ALBERTs ones (see
Figure 6.1 for an illustration of the difference of FOV). We thus had to find a way to crop our
images to make them compatible with ALBERTs.

Hopefully, we had in our possession a pre-built atlas with exactly the same FOV as the data
on this study. It was also made from newborns and included associated segmentations that
have been drawn by a junior radiologist (AN) at our institution. Those however do not cover
the brain, the union of all the labels only roughly representing the cerebrum. Summarizing, we
therefore have two atlases shown in Figure 6.1 with complementary qualities:

• The in-house atlas, compatible with our data in terms of FOV but associated with novice
segmentation of a limited amount of regions.

• The ALBERTs atlas, not adapted to our data but together with expert segmentations of
a high number of regions.

In order to take advantage of both, we linked the two through a rigid registration of the
biggest common segmented region which happened to be just about the cerebrum. This gave
us a transformation allowing to propagate the FOV of ALBERTs to produce a cropped version
of our in-house atlas. As shown in Figure 6.2, it was then possible to also propagate this FOV
from the in-house atlas to all patient images of the study.

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET
2https://www.volbrain.upv.es/index.php

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET
https://www.volbrain.upv.es/index.php
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in-house

ALBERTs

Figure 6.1: In-house and ALBERTs atlases together with the associated segmentation maps.

ALBERTs cerebrum in-house cerebrum ALBERTs FOV 
on in-house

cropped in-house

Figure 6.2: Largest common segmented part of ALBERTs atlas (first) and in-house atlas (sec-
ond). The registration of the two allows to propagate the FOV of ALBERTs onto the in-house
atlas (third) to create a cropped version of the in-house atlas (fourth) the linking the two atlases

From then on, it is feasible to properly map the ALBERTs atlas to our data through an
affine followed by a diffeomorphic registration using block matching algorithms from [Anima].
This allows to propagate the brain mask and thus perform brain extraction on our patients.

All the registration mentioned below were then performed on brain-extracted images.

Intra-patient registration

For each patient, the DOL4 T1-weighted image was mapped onto the DOL11 one through an
affine registration using Anima to recover the slight yet non-negligible changes in brain growth.

ROIs segmentation

The 50 regions delineated in ALBERTs were too refined compared to the voxel size of our ASL
data so we chose to select and merge subsets of those ROIs to obtain larger ones. The resulting
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regions were: frontal, parietal, temporal and occipital lobes, and the basal ganglia and thalamus
(BGT) for the left and right hemispheres. A cortical gray matter (GM) ROI was additionally
defined as the union of the four lobes in order observe cortical GM without BGT.

Those regions were then propagated to the patient DOL4 images using once again affine then
diffeomorphic registration and carried over to the DOL11 images through the above computed
intra-patient transformation.

We thus ended up at this stage with segmentations for all patient both at DOL4 and DOL11.

Tissue class segmentation

In order to obtain probability maps for tissue segmentation of gray matter (GM), white matter
(WM) and cerebro-spinal fluid (CSF), we used SPM8 toolbox (Wellcome Department of Imaging
Neuroscience, University College London, London, UK). Instead of using the default SPM8
template (MNI ICBM-152) tissue probability maps as an a priori for brain tissue classification,
we chose instead the more age-appropriate ones from Serag’s neonatal atlas [Serag atlas].

Note that we defined the gray matter a priori probability map as the sum of the [Serag
atlas] atlas cortex, deep gray matter, brainstem and cerebellum maps. The quality of the
segmentation was visually checked by a radiologist.

For some unclear reasons, the anatomical images needed to be first roughly aligned with
the a priori maps for the SPM segmentation algorithm to work. One hypothesis is that SPM
was not well able to recover for large rotations. This reorientation has been performed through
rigid registration using [Anima].

6.3.2 Perfusion data

The ASL images for all patient and all time points were processed using a custom-built ASL
pipeline based on SPM83 software and MatlabR© (The MathWorks, Inc.).

Motion correction

For each patient, the native ASL series was first visually inspected in order to detect too large
motion and perform manual suppression of control/label pairs where appropriate. An intra
patient rigid registration was then performed to align all volumes within the ASL 4D image
onto the first one.

Quantification

Leaving aside the first volume of the series, the M0, the labels and controls were pairwise
subtracted to produce a series of perfusion-weighted maps. Along with the M0 map, this
series undergone a multi-modal rigid registration onto the T1-weighted image using mutual
information as similarity criterion. The perfusion-weighted (PW) map has then been computed
through a robust average, using Huber’s loss function [Huber 1964], across the repetitions.

This robust PW map was eventually converted into a quantitative ASL CBF map by ap-
plying the standard kinetic model [Buxton 1998, Wong 1998]:

CBF = 6000
λ∆Me

TI2+idxslTIsl
T1b

2αTI1M0b
[mL/100 g/min] (6.1)

Where the factor 6000 converts the unit from mL/g/s to mL/100 g/min. The labeling effi-
ciency α was assumed to be 98% and the blood/tissue water partition coefficient λ to be 0.9
mL/g [Alsop 2015]. δM is the PW map. TI1 = 700 ms is the temporal width of the bolus. TI2,
inversion time, is the time from the initial pulse to image acquisition (2000 ms). TI2 is adjusted

3SPM: https://www.fil.ion.ucl.ac.uk/spm/

https://www.fil.ion.ucl.ac.uk/spm/
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for each slice to take into account the time interval TIsl (47 ms) between slice acquisitions in
our 2D multi-slice ASL sequences. idxsl is the slice index (0 for the first slice). T1b is the
longitudinal relaxation time of blood that was assumed to be 1350 ms. M0b is the longitudinal
magnetization of blood at equilibrium and is approximated by the M0 map.

CBF map segmentation

To perform the CBF analysis on previously segmented ROIs, the label maps of each patient
were resampled into the grid of the CBF maps and intersected with the gray matter probability
maps thresholded at 0.7. Basic statistics on CBF were then performed for each ROI on the
CBF ROIs.

6.4 Experiments and results

6.4.1 Study population

The 28 neonates included in the study were composed of 16 boys and 12 girls. All of them un-
derwent the DOL4 early MRI. There was no DOL11 MRI for 5 neonates, due to non-availability
of an ASL sequence (n=4) or death of the patient before DOL11 (n=1), giving 51 scans in total.
The median age of the early MRI was day of life 3.7 (range: 3-5) and that of the late MRI was
day of life 10.6 (range: 9-12). The mean gestational age at birth was 39.7 weeks (range: 36.7-
41.9). Blood hematocrit values were available in 25/28 patients at DOL4 and 11/23 patients at
DOL11, and the respective means were 43%± 6% (range: 27-58) and 38%± 7% (range: 26-55).

Quality check

ASL CBF maps were rated according to their image quality by MP (7 years’ experience with
ASL images). Images were considered as good quality when no or only minor artifacts were
present, as moderate quality when moderate artifacts were present and did not prevent image
interpretation, and as poor quality when marked artifacts were present or images were con-
sidered unreadable. In addition to visual evaluation of the ASL data, we also performed an
automated quality check. As the PW map may present with negative values due to the inherent
low resolution and SNR of ASL, the percentage of negative values was calculated in the whole
brain, GM and WM.

Fourteen (27%) MRIs were excluded because of poor CBF map image quality and more
than 20% negative values in GM. This left 37 MRIs: 17 DOL4 and 20 DOL11. 11 neonates had
both early and late MRIs of good quality available.

MR images classification

Two experienced pediatric radiologists (VC and MP with, respectively, 7 and 9 years’ expe-
rience) scored brain injury on MRI (T1, T2-weighted and DWI). Early and late MRIs were
assessed independently. The reviewers were blinded to the ASL sequence, clinical details and
outcome of the neonates but knew the age at the time of the MRI. Assessment of brain injury
was based on a previously described simplified classification [Charon 2015] adapted from the
Barkovich system [Barkovich 1998]. It distinguishes between normal and abnormal images. The
differences were resolved by consensus between the two reviewers.

The conventional MRI scoring by the two experienced pediatric radiologists concluded that
8 out of 17 neonates (47%) had an abnormal DOL4 MRI and that 7 out of 20 neonates (35%)
had an abnormal DOL11 MRI. For every patient, the scoring result was the same for the early
and late MRI. No patients changed groups between the two time points.
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6.4.2 Statistical analysis

The normality of the data distribution was checked through Shapiro-Wilk tests. As the distri-
bution of the sample was not normal for the majority of data and because of the small sample
size, non-parametric tests were used. Wilcoxon signed rank test was used to evaluate difference
between DOL4 and DOL11 (paired samples), and differences between ROIs (paired samples) on
DOL4 and DOL11. Wilcoxon ranksum test was used to evaluate differences between normal and
abnormal MRI (independent samples) for each ROI. A p-value < 0.05 (two-tailed probability)
was considered significant. The results are provided in bilateral ROIs.

Comparison of CBF values between DOL4 and DOL11, by ROI

As shown in Figure 6.3, a global decrease in CBF values occurred between DOL4 and DOL11
in all ROIs. Yet this difference was only significant for BGT (p = 0.0049) and temporal lobes
(p = 0.042).
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Figure 6.3: Box-and-whisker plots and mean (+ marker) for CBF by ROI on DOL4 (n=17)
and DOL11 (n=20). Blue dot-and-line diagrams indicate infants with both DOL4 and DOL11
MRI (n=11).

Comparison of CBF values between ROIs, by DOL

Figure 6.3 also shows high CBF values in BGT compared to the other ROIs both at DOL4 and
DOL11.

Comparison of CBF values between normal and abnormal MRI morphology, by
DOL, by ROI

As shown in Figure 6.4, CBF values are globally higher for the group with abnormal MR images,
for all ROIs, for both DOL4 and DOL11.

• On DOL4, those differences were significant for GM (p = 0.0433), BGT (p = 0.0269),
frontal lobes (p = 0.0209) and parietal lobes (p = 0.0161).

• On DOL11, those differences were only significant for temporal lobes (p = 0.0357)
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Figure 6.4: Box-and-whisker plots for CBF by ROI for patients with normal (9 on DOL4 and
13 on DOL11) and abnormal MRI (8 on DOL4 and 7 on DOL11).

6.5 Discussion

For a more complete discussion, see the one in [Proisy 2019]. We can however roughly extract
some key points (clinical hypotheses and conclusions are left to Maïa Proisy’s expertise).

From an implementation point of view, it appeared that ASL MRI seems to be well suited
to study brain perfusion in newborns and was quite easy to operate. However, the automatic
processing of those data was not straightforward. This is mainly due to the fact that most
existing pipelines, for segmentation notably, are designed for adults. Since the time this study
was made, progress have been made to adapt pipelines to newborn data as in [Baxter 2019]
thanks notably to the emergence of the Developing Human Connectome Project [dHCP]. It
seemed, at the time of the study, that the eye of a medical expert was necessary.

Regarding the results, the study exhibited higher CBF values in the BGT at DOL4, probably
due to hyperperfusion of the BGT in patients with an abnormal MRI. Our results are consistent
with the literature [Pienaar 2012, Wintermark 2011]. Also, some significant differences were
found in DOL4 between normal and abnormal MRI groups but not at DOL11, which may
suggest a normalization during the second week of life. We also found hyperperfusion in the
cerebral cortex (cortical GM) on early MRI in patients with abnormal MRI, which has not been
much studied in the literature. Finally, we found higher CBF values in the BGT compared to
the cortical gray matter at both DOL4 and DOL11, which is consistent with literature, even in
healthy neonates [Miranda 2006].

One of the main limitations of this study is the low number of patients accentuated by a
27% exclusion rate based on image quality. Those were not motivated by motion artifacts,
which questions potential failures in the acquisition, notably the labeling process. Also ASL
images shows very low SNR and quite massive voxel sizes leading to important partial volume
effects. The choice of the quantification parameters is a matter of debate. Finally the absence
of a control group may be pointed out.
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7.1 Introduction

Dealing with brain scans coming from longitudinal studies implies differences of maturation
between the subjects and therefore a large variability in terms of brains size and shape. This
can be an issue for the proper functioning of image processing algorithms and more particularly
for registration. Indeed, direct rigid registration can be corrupted by strong similarities on the
edges of the brain. Estimating directly a rigid transformation between the images may then lead
to shifted brain barycenters and misaligned mid-sagittal planes as shown later in Figure 7.1.
This kind of feature is however occasionally needed especially in longitudinal atlasing where
the 3D sub-atlases constituting average models of the brain at different timepoints have to be
well aligned despite of their differences of maturation. In [Prima 2013], it was proposed to use
the bilateral symmetry of the brain to guarantee the mid-sagittal alignment. The problem still
persist though when searching in the remaining 2D-plane. We propose here a simple yet very
efficient tool to improve the robustness of linear registration algorithms in this scenario. It
consists in a robust rigid and similarity registration based on affine decomposition. This will
be notably used implicitly in the longitudinal atlasing method developed in Section 8.

7.2 Method

To cope with robustness issues in linear registration, we propose to first estimate an affine
transformation and then extract the rigid part from it through polar decomposition (PD).

Let T̂A be the optimal affine transformation resulting from an affine registration. Let Â
and t̂ be respectively the linear and translation parts of T̂A. As seen in Section 2.2.3.2, PD
allows the factorization of Â into Â = Q̂Ĥ, where Q̂ is an orthogonal matrix and Ĥ is a
positive-semidefinite symmetric matrix. Q̂ satisfies the requirements of the linear part of a
rigid transformation. Also, we have seen in Section 3.2.2.1 that, knowing an optimal linear
part Q̂ and the barycenters x̄ and ȳ of the two sets of homologous points, one can express
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Figure 7.1: Reference image (left), transformed image after direct rigid registration (middle)
and both superimposed (right).

the associated optimal translation t̂ following t̂ = ȳ − Q̂x̄. This leads to the following rigid
transformation T̂Q extracted from T̂A ans the two barycenters:

T̂Q =

 Q̂ ȳ − Q̂x̄

0 · · · 0 1

 (7.1)

Stripped of its rigid part, the remaining of the transformation T̂A will be referred as a stretching
transformation noted here T̂H , it embeds the scaling directions and factors, and is obtained as
follows:

T̂H = T̂−1
Q T̂A = T̂TQ T̂A =

 Ĥ
(

Id−Ĥ
)
x̄

0 · · · 0 1

 (7.2)

Remark. An analogous reasoning can be applied to similarity registration. As seen in Sec-
tion 2.2.3.1, SVD allows the factorization of Â, the linear part of the optimal affine transfor-
mation, into Â = V̂ D̂ŴT , where V̂ and Ŵ are orthogonal matrices and D̂ is a diagonal positive
matrix. Considering that those matrices are of dimension n× n, we define the average scaling
factor d̂ through an arithmetic mean (or a geometric one since Dii > 0 ∀i):

d̂ =
1

n

n∑
i=1

D̂ii

or d̂ =

(
n∏
i=1

D̂ii

) 1
n

 (7.3)

Then, K̂ = d̂V̂ ŴT is a similarity matrix leading to the following similarity transformation T̂K
extracted from T̂A:

T̂K =

 d̂V̂ ŴT ȳ − d̂V̂ ŴT x̄

0 · · · 0 1

 (7.4)

This similarity registration will only be used in the presented work as an initialization for local
anisotropic similarity registration and not as an end in itself. A precise evaluation as for the
rigid case is therefore not exposed.
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7.3 Experiments and results

From a qualitative point of view, the proposed method shows improvements in terms of sagittal
alignment and correspondence between central structures. This is exhibited in Figure 7.2 where
the same images as in Figure 7.1 have been registered using this time a rigid transformation
coming from affine decomposition. Orientation is globally better preserved and the small brain
no longer seems to be pressed against the edge of the bigger one.

Figure 7.2: Reference image (left), transformed image after rigid registration from affine de-
composition (middle) and both superimposed (right)

In order to perform a more quantitative analysis, two different experiments were conducted
to evaluate the robustness of the rigid registration resulting from affine decomposition compared
to a direct one using the same tools. The affine and rigid registrations are performed using the
same block matching algorithm available in [Anima] with only a difference in the aggregation
step to output the desired type of transformation. We used T1-weighted images from the
ASLpedia study [ASLpedia]. Their voxel size is 0.5× 0.5× 1 mm (axial, coronal, sagittal).

7.3.1 Fiducial points validation

The validation test is based on fiducial points picked according to anatomical considerations.
As detailed in Table 7.1, ten subjects have been selected between 0 and 14 years old to represent
different maturations of the brain and therefore a high variability in terms of size and shape.

age
(years)

0.01 0.09 0.26 0.53 0.66 0.79 1.07 1.83 4.01 13.44

brain volume(
mm3

) 344 599 822 914 1003 1114 1104 1231 1172 1617

Table 7.1: Age and brain volume of the subjects selected to evaluate the method.

To facilitate the point picking and improve reproducibility, all subjects were first reoriented
such that the symmetry plane of the brain and the mid-sagittal slice of each image are coplanar
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and the barycenter of the brain is at the center of the image. This step, performed using the
method developed by [Prima 2002], induces a rigid transformation of the images.

Eleven points where then meticulously picked on each subject on various areas (corpus callo-
sum, ventricles, brainstem, cerebellum, frontal and parietal lobes) as shown in Figure 7.3. Five
are located in the mid-sagittal plane: points 1, 2, 9, 10 and 11 while the other are symmetrical
pairs with respect to it: pairs of points {3, 4}, {5, 6} and {7, 8}. The quality of the point picking
was checked by an experienced radiologist (MP).

Figure 7.3: Fiducial points

The inverse of the reorientation transformations have then been applied to those points
coordinates such that they match the native orientation. All subjects were registered to each
other using i. direct rigid, ii. rigid from affine decomposition and iii. affine registration
producing 90 resulting transformations for each. An error E1 has then been calculated between
transformed fiducial points associated to moving images PT and those associated to reference
images PR using squared 2-norm:

E1 = ‖PT − PR‖22
Boxplots of errors E1 for direct rigid, rigid from PD and affine registrations are shown in Figure
7.4, the lower the better.

Figure 7.4: Boxplots with 1 and 9 decile whiskers of error E1 in mm2 for direct rigid (blue),
rigid from PD on affine (red) and affine (green) registration. Globally (left) and for each fiducial
points (right).
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The fiducial point validation shows better results for the rigid registration from PD compared
to the direct rigid one, especially for fiducial points 3-6 situated in the central-anterior part of
the brain. The error is still high in the edges since changes in terms of scaling are not recovered.

7.3.2 Random transformations validation

The second validation technique evaluates the ability of the algorithm to match an image with
a noisy, affine transformed version of itself. Three T1 images associated to subjects 1, 5 and 10
have been each transformed by 300 random transformations of form A = PUdUTSdUUT where
UT is the orthogonal matrix of scaling direction computed via a PCA on the voxel coordinates,
dU is a small rotation matrix deviating scaling directions (angle range: [− π

18 ,
π
18 ]), S is an

anisotropic scaling matrix (scaling range: [0.6, 1.8]) and P is a rotation matrix (angle range:
[−π6 ,

π
6 ]). A Rician noise (average signal to noise ratio: 25dB) has then been added.

An error E2 has been calculated between generated transformations TG and estimated ones
from registrations TE using the log-Euclidean distance:

E2 = ‖log(TG)− log(TE)‖F

where ‖.‖F is the Frobenius norm. Results are shown Figure 7.5, the lower the better.

Figure 7.5: Boxplots with 1 and 9 decile whiskers of error E2 for direct rigid (blue), rigid from
PD on affine (red) and affine (green) registration.

The random transformations validation shows once again better results for the rigid regis-
tration from PD compared to the direct rigid one. This means that the output transformation
from PD is closer to the initial induced affine one than the direct rigid counterpart.

7.4 Conclusion

Despite its simplicity and no traces found of it in the literature, this approach is surprisingly
efficient to perform a rigid registration of two images of different sizes that preserves orientation
and centering. This may seems at first glance to be a pointless concern but this simple addition
to the domain of rigid registration will be of crucial help for further longitudinal studies in the
following chapters.
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We present a new method to create a diffeomorphic longitudinal (4D) atlas composed of
a set of 3D atlases each representing an average model at a given age. This is achieved by
generalizing atlasing methods to produce atlases unbiased with respect to the initial reference
up to a rigid transformation and ensuring diffeomorphic deformations thanks to the Baker-
Campbell-Hausdorff formula and the log-Euclidean framework for diffeomorphisms. Subjects
are additionally weighted using an asymmetric function to closely match specified target ages.
Creating a longitudinal atlas also implies dealing with subjects with large brain differences
that can lead to registration errors. This is overcome by the robust rigid registration based on
polar decomposition proposed in the preceding chapter. We illustrate these techniques for the
creation of a 4D pediatric atlas, showing their ability to create a temporally consistent atlas.

8.1 Introduction

Brain atlases are a crucial tool in medical imaging. They consist in an unbiased average model
of the brain providing a way to compute statistics on populations, understanding brain vari-
ability but also to segment regions. Longitudinal (time dependent) atlases allow in addition the
comprehension of brain development to highlight changes in growth, shape, structure etc. Those
4-D models are based on a set of 3-D atlases each for a desired timepoint using weight functions
that modulate the contributions of the subjects according to their age fit with that timepoint.
To produce an unbiased atlas, two different approaches are commonly used. The first one
chooses a reference to register all the subjects to and iteratively unbias the atlas with respect to
it [Guimond 2000]. The second common approach performs a direct groupwise registration of
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all the subjects simultaneously [Rohlfing 2009]. This family of methods however often relies on a
number of registrations in the order of the square of the number of subjects which can quickly be
computationally expensive. Atlasing methods such as [Guimond 2000] provide a good average
shape and intensity. However they define unbiased atlases up to an affine transformation, thus
losing information on brain growth. On the other hand, [Kuklisova Murgasova Deprez 2011]
corrects well for global size and shape (affine features) but ignores local deformations and thus
leads to blurry images. [Serag 2012a] presented a technique that takes into account both global
and local changes and uses a Gaussian kernel with adaptive width adjusted according to the
temporal distribution of the subjects. However, the inflexibility of the Gaussian kernel does
not guarantee that the age of the resulting atlas corresponds to the expected one.

We propose a longitudinal atlas creation method that is unbiased up to a rigid transforma-
tion accounting both for global and local transformations in the unbiasing step. Generalizing the
procedure from [Guimond 2000] to longitudinal atlases, it only requires a number of iterations in
the order of the number of subjects times the number of iterations. Additionally we extend this
framework to handle diffeomorphisms using the log-Euclidean framework [Arsigny 2006a] and
the Baker-Campbell-Hausdorff formula to quickly compose and average those transformations.
In addition, a quintic polynomial weight function is introduced giving enough degrees of freedom
to reduce temporal error of the 3D atlases while ensuring adaptivity to data distribution.

All these contributions are put together to construct a longitudinal atlas from a database
of pediatric patients, illustrating the ability of our framework to obtain well defined temporal
atlases in a robust manner.

8.2 Quintic polynomial weight function

Given a sample of N subjects of ages {τ1, . . . , τN}, to create an atlas representative of an age
τ , it seems natural to give more importance to subjects closer in age to τ . This can be done
by associating to each subject i a weight wi based on its temporal difference to τ . The weights
are then used in the averaging process (see section 8.3). The most common approach is to use
a Gaussian kernel centered in τ with standard deviation σ. An adaptative σ can be used to
harmonize the number of subjects of non-negligible weight in case of non-uniformly distributed
sample ages [Serag 2012a]. Still, the inflexibility of the Gaussian kernel implies that if the τi are
not distributed symmetrically around τ , the temporal error E = |τ −

∑
i wiτi| between τ and

the computed age will be large leading to a temporally shifted atlas. We thus propose instead
to use a more flexible weight function that is constraint driven and has an analytical solution.
It consists in a quintic polynomial P , supported on a window [α, α+ δ] constrained as follow:

Figure 8.1: Quintic polynomial weight function



P (α) = 0 〈1〉
P (α+ δ) = 0 〈2〉

P ′(α) = 0 〈3〉
P ′(α+ δ) = 0 〈4〉

P ′(τ) = 0 〈5〉∫ α+δ

α
P (x)dx = 1 〈6〉

(8.1)

Constraints 〈1〉 and 〈2〉 implie: P (x) = (x− α)(x− (α+ δ))(ax3 + bx2 + cx+ d). In turn, this
leads to a system of 4 equations (remaining constraints) and 4 unknowns which has an analytic
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solution: 

a =
60(2α− 2τ + δ)

δ5(δ2 + 5δ(α− τ) + 5(α2 − 2τα+ τ2))

b =


a

5τ2 + 2τα+ τδ − 7α2 − 7αδ − 2δ2

4α− 4τ + 2δ
if α 6= τ − δ

2

30

δ5
if α = τ − δ

2

c = a(−3α2 − 3αδ − δ2) + b(−2α− δ)
d = −aα3 − bα2 − cα

(8.2)

In addition, it is also necessary that P (x) ≥ 0, ∀x ∈]α, α+δ[ and τ ∈ [α, α+δ]. This condition
is fulfilled for α ∈ [τ − 3δ/5, τ − 2δ/5]. The flexibility of this weight function allows to optimize
over α in its bounds to minimize E for a given τ . The width of the kernel δ allows to adapt to
data disparities to guarantee a number of subjects used to compute the atlas. This is done using
an iterative procedure similar to [Serag 2012a]. The age range is subsampled into a collection
of potential ages and an ideal number of subjects n per atlas is chosen. Then, for each tentative
age, if the number of subjects inside the window is less than n, δ is increased, otherwise it is
reduced. Finally, smoothing is applied for a smooth transition between consecutive potential
ages.

8.3 Longitudinal atlas creation method

We define a longitudinal (4D) atlas as a succession of 3D atlases each representing an average
model at a given age. Those atlases are created using a generalized version of the method
proposed by Guimond et al. [Guimond 2000] to provide an unbiased 3D atlas up to a rigid
transformation and with variable weights. For each desired age, an initial reference is chosen
among the subjects and the following steps are then iterated:

1. Registration: all the subjects are registered on the current reference image Al.

2. Creation of the new reference Al+1:

i. Computation of θ̄ the weighted average of output transformations

ii. Computation of Ī the weighted average of registered images

iii. Application of θ̄−1 to Ī to obtain Al+1.

This creates a succession of reference images that are less and less biased by the choice of the
first reference image and converges to an unbiased average model of the subjects namely an
atlas. To be representative of a given time τ , it is necessary to give more importance to subjects
with an age closer to τ . This is handled in the averaging processes described below.

8.3.1 Registration

At a given iteration l, each subject i is registered onto Al in two steps using our block matching
registration implemented in Anima [Anima] (see Figure 8.2).

1. An affine registration of the subject onto the current reference using [Commowick 2012b]
that outputs an affine transformation ai and a registered image Ii,a = Ii ◦ ai . The
algorithm is initialized by a transformation determined using principal component analysis
on the non-zero voxels of the two images as depicted in Appendix C. This makes the
barycenters of the two images coincide and align and stretch their principal directions
according to the corresponding eigenvalues. The output transformation is decomposed,
using the method depicted in Chapter 7, into a robust rigid part ri and a stretching part
si.
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2. A diffeomorphic registration of the registered image from the previous step onto the
reference using [Commowick 2012a] that outputs a stationary velocity field (SVF) log(di)

where di is the associated diffeomorphism through exponential map and a registered image
Ii,d = Ii,a ◦ di.

diffeomorphic
registration

affine
registration

Figure 8.2: Two steps registration process of Ii on Al: affine registration decomposed in a rigid
part ri and a stretching part si followed by a diffeomorphic registration (transformation di).

We therefore end up with a series of transformations that we can separate in two parts: a robust
rigid part ri and a deformation part θi = si ◦ di that both takes into account global scalings
and local differences. To further simplify θi and average them in a simple manner, we compute
the SVF associated to si by taking its matrix logarithm and applying it to each spatial point
of the image, thus obtaining a SVF log(si). The logarithm of the composition of si and di is
then approximated through the BCH formula (see Section 2.4.3).

8.3.2 Creation of the new reference image

After the registration stage, we then compute the new average reference for the temporal point
of interest from a set of SVFs {log(θi)} with θi = si◦di and a set of registered images {Ii,d} with
Ii,d = Ii◦ri◦θi. The debiasing transformation corresponding to the inverse of the log-Euclidean
average of the transformations (Section 2.4.4) is computed:

θ̄−1 = exp

(
−
∑
i

wi log(θi)

)
(8.3)

The latter is then applied to the average of registered images: Ī =
∑
i wiIi,d to create Al+1:

Al+1 = θ̄−1Ī (8.4)

Doing so over several iterations ensures, similarly to [Guimond 2000], to obtain an unbiased
atlas this time with respect to a rigid transformation. To compute the 3D atlas for a given
age, the weights wi are chosen using the weight function depicted in Section 8.2 and normalized
such that they sum up to 1.

The fact that only the stretching part of the affine transformations has been taken into
account leads to reference images that stay rigidly registered to the first one. This ensures the
brain of the new reference image not to be outside of bounds when resampled in the geometry
of the previous one. Also, given an image with a convenient orientation, taking this one as
reference for all the sub-atlases allows them to also all have that very same pose.

8.4 Material, experiments and results

The proposed method has been tested on T1 images (size: 200 × 200 × 200, voxel resolution:
1× 1× 1 mm3) from the C-MIND database [C-MIND]. 197 healthy subjects with ages ranging
from less than a month to almost 19 years old have been selected after quality check.
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8.4.1 Weight functions establishment

We have chosen the following parameters for the weight functions algorithm:

• Desired number of subjects per 3D atlas: n = 25

• Ages subsampling: 1000 equidistant timepoints between the minimum age (0.08 years
old) and the maximum age (18.85 years old).

• Window size optimization: initial size of δ = 3 years, then, at each iteration, the window
width is updated such that the number of subjects in the window gets closer to n. Let
δk(τ) be the width of the window at timepoint τ and iteration k and nk(τ) be the number
of subjects in it. If nk(τ) > n, δk+1(τ) = δk(τ)− 0.5× 0.8k else, if nk(τ) < n, δk+1(τ) =

δk(τ) + 0.5 × 0.8k, else δk+1(τ) = δk(τ) (arbitrary choices). The smoothing step has
been performed using Savitzky-Golay filter from scipy.signal.savgol_filter1 with window
smoothing length 101 and order 3 polynomial.

8.4.2 Temporal error evaluation

The main advantage of our weight function is the possibility of obtaining an asymmetric function
to reduce temporal error through optimization over α. We thus compared our method (a) with
a similar one (b) with a fixed α = T − δ/2 leading to symmetric weight functions around τ .
The temporal errors for each method are shown in Table 8.1. Method (a) proves its ability to
correct the temporal error allowing to construct well-timed atlases up to a day for almost half
of the age range while it happens only for 2% using method (b).

method median error temporal error inferior to

1 day 1 week

proposed weight function (a) 0.0046 49.5 % 57.7 %
symmetric weight function (b) 0.0868 2.2 % 13.1 %

Table 8.1: Comparison of the median of the temporal errors (in years), percentage of timepoints
where the error is less than 1 day and 1 week respectively for methods (a) and (b).

More information about the weight functions from methods (a) and (b) for each point of
the age subsampling is available in Figure 8.3. The latter shows in addition the age distribution
of the subjects but also the temporal error and the specificities of the weight function support
with respect to age.

8.4.3 Pediatric atlas construction

We then conducted the creation of a pediatric atlas from the C-MIND [C-MIND] database.
The parameters were set as:

• Number of main loop iterations: 8

• Age of the sub-atlases: 1, 1.5, 2, 2.5, 3, 4.5, 6.5, 11 and 16 years old. Ages for which the
temporal error was less than a day.

• Reference image: Same first reference image for the construction of all 3D sub-atlases.
This reference is a pre-built atlas with a convenient orientation: the mid-sagittal plane
has been ensured to be vertical in axial view by using the algorithm in [Prima 2002] and
the anterior commissure - posterior commissure (AC-PC) line is roughly horizontal in
sagittal view.

1https://www.scipy.org/index.html

https://www.scipy.org/index.html
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Figure 8.3: Age distribution of subjects in years (i), comparison of weight functions from
methods (a) in blue and (b) in red in terms of: temporal error (ii), width of the window
that supports the weight function (iii), position of the start of the window relatively to the
timepoint: τ − α (iv) with the interval of authorized values:

[
2δ
5 ,

3δ
5

]
in light blue for method

(a), and number of subjects (iv).

• Order of the BCH used for transformations composition: 2

We present the computed atlases in Figure 8.4 together with the age of the subjects used for
their construction together with the weights that modulate their contributions.

Visual checkup on this longitudinal atlas explicits quick general brain growth in the early
stages of life until a stabilization around 5 years old except for the antero-posterior direction
that continues until the older ages. Thanks to our robust rigid extraction, all temporal atlases
are well centered on their barycenters and their sagittal planes are well aligned.
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Figure 8.4: Longitudinal atlas for various ages together with the weights associated to each subjects for each sub-atlas.
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8.5 Conclusion

We presented a longitudinal atlas creation method using a generalized version of the algorithm
from [Guimond 2000]. It takes advantages of the log-Euclidean framework and the BCH formula
to produce individual age atlases unbiased up to a rigid transformation giving the opportunity
to highlight global changes and local deformations in the atlas. To be representative of a given
age, we introduced a quintic polynomial weight function to modulate the influence of each
subject. Through its flexibility (potential asymmetry), it ensures a large choice of ages on
which the associated atlas is not temporally erroneous. Finally, by denoting N the number
of subjects and L the number of iterations in the main loop of the algorithm, our method
necessitates only a number of registrations equal to LN (M being in practice much smaller
than N) while numerous atlas creation methods require this number to be in O(N2).
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Online atlasing, i.e. incrementing an atlas with new images as they are acquired, is key
when performing studies on databases very large or still being gathered. We propose to this
end a new diffeomorphic online atlasing method without having to perform again the atlasing
process from scratch. New subjects are integrated following an iterative procedure gradually
shifting the centroid of the images to its final position, making it computationally cheap to
update regularly an atlas as new images are acquired (only needing a number of registrations
equal to the number of new subjects). We evaluate this iterative centroid approach through
the analysis of the sharpness and variance of the resulting atlases, and the transformations
of images, comparing their deviations from a conventional method. We demonstrate that the
transformations divergence between the two approaches is small and stable and that both atlases
reach equivalent levels of image quality.

9.1 Introduction

In this chapter, we focus on a different definition of an atlas where we do not for now consider
the temporal dimension. An atlas is therefore an average model of the brain both in terms of
shape and intensity. It is a powerful tool to understand brain variability, to compute statistics
on populations [Whitcher 2007] or to segment regions [Cabezas 2011]. The interested reader
may look at Chapter 4 for a presentation of some of the most common atlasing methods. Those
requires a large number of heavy computations (registrations, transformation compositions...)
that increases with the number of subjects (linearly or even quadratically), their computational
cost can thus be prohibitive.

Historically databases used for atlas construction were small (about 50 to 100 subjects
at most). However, there is a recent trend for the creation of large databases, out of which
great atlases depicting the variability of the population across the life span could be inferred.
Among these databases, the human connectome project (HCP [HCP], now completed) is made
of around 1200 subjects of the same age range [Van Essen 2012]. Even bigger databases are
currently being constituted from more subjects (up to 100,000 in the UK biobank [Miller 2016])
or across the life span (HCP lifespan) on which researchers already wish to start studies. This
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causes a problem as the databases are still being gathered and thus the atlas needs to be
updated. With current methods, the atlas needs to be recomputed each time new acquisitions
are added which is very costly. New methods are therefore needed to allow online atlasing, i.e.
the capacity of incrementing atlases with new images as they come without having to perform
again the whole atlas construction, as opposed to the above-mentioned direct atlasing.

We propose a new method that considers atlasing from a different angle. Inspired by the
notion of centroid for a set of points in a Euclidean space and the way it can be constructed
following an iterative procedure, [Cury 2014] derived a diffeomorphic atlas construction method
working on surfaces while [Noblet 2012]presented an approach for images. We propose here a
generalization of this iterative centroid method for image atlasing where the centroid (atlas)
is updated gradually as new images are incorporated. The online aspect of this technique has
several advantages: when a new images arrives, its integration does not necessitate to restart
the atlasing process from scratch. Also, it only requires one registration per new image making
it computationally cheap. Benefiting from the log-Euclidean framework for diffeomorphisms
from [Arsigny 2006a], the method allows the production of a diffeomorphic atlas unbiased up
to a linear transformation (rigid or affine at the choosing of the user).

We first introduce the iterative centroid method and its specificities for image atlasing
in Section 9.2. Then in Section 9.3, we present experiments comparing how the atlases,
built using direct atlasing (here a modified version of the [Guimond 2000] method, developed
in [Legouhy 2019] and detailed in Chapter 8) and with the method proposed here, differ from
each other as they include more and more subjects. We demonstrate with three different met-
rics that the iterative centroid and direct atlases diverge only by a small amount in terms of
transformations and that their intensity based features do not vary.

9.2 Method

9.2.1 Theoretical background

As exposed in Chapter 3, considering the registration of an image J onto an image I, we denote
by J̃ the registered image and T the transformation operating on coordinates x used to resample
J onto I: I(x) ∼ J̃(x) = J ◦ T (x).

Diffeomorphisms are widely used in non-linear registration because of their interesting prop-
erties: differentiability, bijectivity and differentiability of the inverse map. In the SVF frame-
work presented in Section 2.3.3, one can parametrize a diffeomorphic transformation T be-
tween two images by a stationary velocity field integrated over time. It generates γ(t), a
diffeomorphic path between Id and T such that γ(0) = Id and γ(1) = T . As depicted in
Section 2.4.3, for such diffeomorphisms, operations are defined as their Euclidean counterparts
on the SVFs [Arsigny 2006a]. One of interest is the power of a diffeomorphism defined as
Tα = γ(α) = exp (α log(T )). In the following, all non-linear transformations are assumed to
be diffeomorphisms parameterized with SVFs. Additionally, given 2 SVFs v and w, it is possi-
ble to approximate the logarithm of their composition while avoiding a very costly logarithm
computation using the BCH formula as presented in Section 2.3.3.

9.2.2 Iterative centroid atlas construction

In a Euclidean space Ω, the centroid bn of a set of points {x1, . . . , xn} is defined as bn =

arg miny∈Ω

∑n
i=1 ‖y − xi‖2. A direct solution is 1

n

∑n
i=1 xi but an iterative approach is also

imaginable. Starting from b1 = x1, we can use the recursion:

bk+1 =
k

k + 1
bk +

1

k + 1
xk+1 (9.1)

As depicted in [Cury 2014], one can extend this formulation to the Riemannian case for surfaces
by using the generalization of the notion of straight line through geodesics. The updated
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centroid bk+1, in that case, is on the geodesic linking bk and xk+1, at 1
k+1 times the distance

from bk.
We define our iterative centroid atlasing, following the same spirit, on images and diffeomor-

phisms parameterized by SVFs. Thereafter we assume that the registration of an image I onto
an atlas A provides two transformations L and T , where L is linear and T is a diffeomorphism,
so that A ∼ I ◦ L ◦ T . Generalizing Equation 9.1 to a set of images {I1, . . . , In}, we start from
A1 = I1 and get:

Ak+1 =
k

k + 1
Ak ◦ T

− 1
k+1

k+1 +
1

k + 1
Ik+1 ◦ Lk+1 ◦ T

k
k+1

k+1 (9.2)

The atlasing scheme is illustrated Figure 9.1. We apply to Ak a transformation situated at
1
k+1 of the distance from the identity to T−1

k+1 along the geodesic. We also apply to Ik+1, in
addition to the linear transformation, a transformation situated at k

k+1 of the distance from
the identity to Tk+1 along the geodesic. Also, Ak is made from k images so a weight k

k+1 is
affected to its intensities while Ik+1 intensities get a weight 1

k+1 . At the end, those two images
are transformed and weighted according to their contribution to the atlas.

...

Figure 9.1: Shift of the centroid as new images are incorporated.

Unlike [Cury 2014], we are dealing with images and therefore interpolations on a voxel grid
to reconstruct a new image after a transformation. This resampling step has to be avoided as
much as possible to keep a maximum of details. To this end it is preferable not to use Ak (already
a resampled image) when constructing Ak+1, but instead to operate on the initial images using
transformation compositions such that each image undergoes only one resampling. This is
achieved by expressing the sequence (Ak)k∈N using only the initial images {Ij , j = 1, . . . , k}.
Rearranging Equation 9.2, the following formulation emerges:

Ak+1 =
1

k + 1

 k∑
j=1

(
Ij ◦ Lj ◦Θj,k ◦ T

− 1
k+1

k+1

)
+ Ik+1 ◦ Lk+1 ◦ T

k
k+1

k+1

 (9.3)

Where θj,k is the non-linear part of the transformation bringing Ij onto Ak. There are k
compositions using BCH to perform at iteration k which correspond to the update of the
transformations θj,k for j ≤ k.

Initialization

One can start at iteration 1 by initiating A1 = I1 and θ1,1 = Id. However, a very interesting
point of the method is the possibility to complement an already existing atlas Ap constituted
of p images as long as it can be written as Ap = 1

p

∑p
j=1 Ij ◦Lj ◦Tj . To do so, we simply assign

θj,p = Tj , ∀j ≤ p.
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Iterative procedure

At the end of iteration k, we have, for each j ≤ k, transformations θj,k that map images Ij
onto the atlas Ak: Ak ∼ Ij ◦ Lj ◦ θj,k. To build Ak+1 from these, we do the following:

1. we register Ik+1 onto Ak: Ak ∼ Ik+1 ◦ Lk+1 ◦ Tk+1 (1 registration)

2. For j ≤ k, we compute the updated θj,k+1 as θj,k+1 = θj,k ◦ T
− 1
k+1

k+1 (k BCH)

3. We assign θk+1,k+1 = T
k
k+1

k+1

4. Finally we build Ak+1 = 1
k+1

∑k+1
j=1 Ij ◦ Lj ◦ θj,k+1.

9.2.3 Unbiased atlas construction

So far, we have only assumed that the registration produced a linear and a non-linear part.
Going in more details, let us now assume that this registration can be written A ∼ I ◦R ◦S ◦D
where: R ◦ S is an affine transformation decomposed into a rigid part R and a stretching part
S, and D is a diffeomorphism. Herebefore, by taking L = R◦S and T = D i.e. L encapsulating
all the linear transformations and T only local displacements, the method will lead - similarly
to [Guimond 2000] - to an atlas unbiased up to an affine transformation. On the other hand,
if we take L = R and T = S ◦ D i.e. L only considering rigid motion while T encapsulating
both growth and local displacements, the method will lead to an atlas unbiased up to a rigid
transformation (useful typically for longitudinal studies).

9.3 Experiments and results

9.3.1 MRI database

For our experiments, we have used T1 weighted preprocessed images (brain extracted) from 100
subjects randomly chosen among the Human Connectome Project [HCP] database (for more
details, see [Van Essen 2012]). The size of the images is 260× 311× 260 with a voxel size of 0.7
mm isotropic.

9.3.2 Implementation details

9.3.2.1 Registration

Our method is agnostic to the registration used. We performed registrations in two steps using
symmetric block matching algorithms from Anima [Anima].

1. An affine registration that outputs a transformation matrix B which is decomposed
through polar decomposition into a rigid part R and a stretching part S as depicted
in [Legouhy 2019].

2. A diffeomorphic registration that directly outputs the SVF of the diffeomorphism log(D)

linking the two images. This allows to take advantage of the log-Euclidean framework
without logarithm computation (see Chapter 2.4.3).

We chose to compute atlases up to a rigid transformation. Therefore, the linear transformation
L is rigid: L = R and the non-linear transformation is the combination of stretching and local
displacements: T = S ◦D.
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9.3.2.2 Transformation composition

Compositions of two diffeomorphisms are performed on their SVFs using order 2 BCH. To
compose a linear transformation L and a SVF, we first apply log(L) to the real coordinates of
an image grid to transform it into an SVF and then compose using 2nd order BCH.

9.3.3 Comparison between iterative centroid and direct atlasing

In the following experiments, we evaluate the quality of the iterative centroid atlas and its
divergence with respect to direct atlasing, here a method developed in [Legouhy 2019] available
in Anima [Anima-Scripts] based on [Guimond 2000]. For both methods, we used the same
registration and composition tools with the same parameters. Starting from an atlas built with
50 images using direct atlasing, we added one by one the 50 other images using our online
atlasing. We then compared the direct atlases computed at several steps with the online ones
using three metrics.

9.3.3.1 Divergence

Both methods output linear and non-linear transformations (denoted Tj for online atlasing and
T̃j for direct atlasing) mapping each image onto the atlas. We first propose to evaluate the
divergence between the two atlases A and Ã by an image δ defined from the transformations:

δ
(
A, Ã

)
=

1

n

n∑
j=1

√√√√ 3∑
d=1

(
Tj,d − T̃j,d

)2

(9.4)

where d indexes the three components in space. This measure has the advantage of being
agnostic to edge issues that can happen in intensities comparisons.

Figure 9.2: From left to right atlases with 60, 70, 80 and 100 images. Top: intensity differences
between iterative centroid and direct atlases (knowing that the intensities are comprised between
0 and 1046). Bottom: atlases from iterative centroid method overlaid with divergence measure
δ.
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Figure 9.2 presents a qualitative view of the evolution of the differences between the direct
and online atlases with respect to the number of subjects. We observe that most of the differ-
ences increase with the number of added subjects and occur in the cortical areas while central
structures of the brain are spared. Figure 9.3 gives quantitative plots over the brain of the
divergence measures. It suggests that the divergence tends to grow (from a median of 0.777
mm for 60 images, to 1.095 mm for 100) but at a slow pace that decreases (+0.153 mm between
60 and 70 images but only +0.025 mm between 90 and 100).

60 70 80 90 100
0

1

2

3

4

Figure 9.3: Boxplots and violin plots of the divergence δ between the atlases (restrained to the
union of the masks) with 60, 70, 80, 90 and 100 images.

9.3.3.2 Iconic evaluations

The second part of the evaluation assesses the quality of the atlases based on image intensities.
We evaluate first the atlas standard deviation across subject images after transformation on
the atlas, the transformations being constructed differently upon the atlasing method. This
measure allows to quantify how well the images are aligned after atlas construction (the lower
the standard deviation, the better):

sdis(A) =

√√√√ 1

n

n∑
i=j

(Ij ◦ Lj ◦ Tj −A)
2 (9.5)

For better interpretation, we normalized sdis by the average of the intensities of the atlases
from the two methods to create sdisn.

In addition, we propose a measure of the sharpness of the atlases. Given N(i), a patch
around a voxel i of an image A, we define a local measure of the sharpness at voxel i, sha(A(i)),
as the standard deviation of the patch normalized by its average:

sha(A(i)) =
sdN(i)(A)

meanN(i)(A)
(9.6)

In our experiments, we chose a patch of diameter 5 voxels. We present in Figure 9.4 a quanti-
tative view over voxels inside the brain mask of these two iconic measures with respect to the
number of images in the atlas. These results show that both methods output atlases that are
very similar in terms of image quality. The sharpness remains equivalent for both methods in-
dependently of the number of images added. sdisn increases only between 60 and 70 images and
is then stable, but the evolution and values are the same for both atlas construction methods.
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Figure 9.4: Boxplots and violin plots of inter-subjects normalized standard deviations sdisn (a)
and sharpness sha (b) for atlases (restrained to the union of the masks) with 60, 70, 80, 90 and
100 images. Blue: iterative centroid. Red: direct atlasing.

9.3.3.3 Computational cost

In both compared methods, there are two main sources of time consumption which are the
non-linear registrations and the transformation compositions through BCH. As an indication,
using a computer with 2 × 20 cores Intel Xeon Processor E5-2660 v3 2.60GHz, for images of
dimension 160× 256× 190 (1× 1× 1 mm), it takes about 213 seconds to compute a non-linear
registration and 16 seconds to perform a transformation composition through 2nd order BCH.

Let us consider we already have a pre-existing atlas made of k images. We are looking for
a measure of the cost of completing this atlas with new images so that it contains a total of n
images (including the k initial ones). We have compared the two options evaluated earlier to
perform this task:

• Direct method: Whatever the previous atlas, the new one has to be built from scratch.
Let p be the number of iterations of the main loop. The method requires:

I pn non-linear registrations.

I pn transformation compositions through BCH corresponding to the composition of
the affine and the non-linear transformations from the registrations (only for an atlas
up to a rigid transformation).

• Iterative centroid method: Using the pre-existing atlas, the method requires:

I n− k non-linear registrations.

I (n − k) +
∑n
i=k+1 i = 1

2 (n − k)(n + k + 3) transformations compositions through
BCH. The first part corresponds to the composition of the affine and the non-linear
transformations from the registrations. The second corresponds to the update of the
θ transformations (only for an atlas up to a rigid transformation).

Now we showcase two examples that give an idea of the strengths and weaknesses of both
methods in terms of computational cost:

1. We already have in our possession 300 images and we want to build an atlas from it.
The amount of non-linear registrations and BCH computations as well as an indicative
processing time for both methods necessary to build this atlas is presented in Table 9.1.
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method direct atlasing iterative centroid

main loop iterations 4 8

number of non-linear registrations 1200 2400 300
number of BCH computations 1200 2400 45450
indicative processing time (hours) 76.3 152.7 219.8

Table 9.1: Number non-linear registrations, number of BCH computations and indicative
processing time to create an atlas of 300 images from scratch using iterative centroid and
a direct atlasing with 4 and 8 main loop iterations.

In this configuration, where a single atlas in built from scratch, direct atlasing is the best
suited method.

2. We now have a pre-existing atlas made of 200 images and, acquisitions being gathered
gradually, we want to update this atlas every 10 new images until we have a final amount
of 300. The amount of non-linear registrations and BCH computations as well as an
indicative processing time for both methods necessary to update the previous atlas is
presented in Figure 9.5.

Figure 9.5: Number non-linear registrations, number of BCH computations and indicative
processing time to update the atlas at each step (every 10 new images from 200 to 300)
using iterative centroid (blue) and a direct atlasing (red) with 4 ( ) and 8 ( ) main loop
iterations. Abscissa represents the number of images of the atlas at each step.

In this configuration, where an atlas in updated gradually as new images arrive, iterative
centroid is the best suited method. Indeed, updates take only from 9.77 hours at first
step to 13.77 at the last (+0.44 hours at each step) for iterative centroid. In comparison,
even for only 4 main loop iterations (which is not much), it takes from 53.37 hours for
the first step to 76.27 hours for the last (+2.54 hours at each step) for the direct atlasing
method.

To sum up, in terms of computational cost, direct atlasing shows better results when it
comes to build a single atlas from scratch. On the other hand, the iterative centroid method
performs better in case of an atlas being updated gradually. The more images there is in
total and the shorter the steps are, the better iterative centroid behaves compared to its direct
counterpart.
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9.4 Conclusion

We have presented an online atlasing method that allows the incorporation of new images into
an existing atlas without having to restart the atlasing process from the beginning. Based on
an iterative centroid process, this approach only necessitates one registration per new image.
We observed that the divergence between our method and direct atlasing using the same tools
is pretty negligible, localized in cortical areas and tends to grow but at a slow and decreasing
pace. Also, the obtained atlases from both approaches have shown no differences in terms
of image quality. The trend being at large, growing databases, the proposed online atlasing
method offers an interesting tool to update an atlas at reasonable computational cost as new
images arrive. Finally, we derived a construction method up to either an affine or a rigid
transformation. This makes the method especially eligible for longitudinal atlasing as a future
work, simply by adapting the weight of each image in Equation 9.3.
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Chapter 10

Contributions

The contributions highlighted in this manuscript have lead to several international peer-reviewed
journal and conferences papers. The list of publications that arose form this PhD is the follow-
ing:

Journal papers

NeuroImage: Clinical 2019
Changes in brain perfusion in successive arterial spin labeling MRI

scans in neonates with hypoxic-ischemic encephalopathy

Maïa Proisya,b,∗, Isabelle Corougea, Antoine Legouhya, Amélie Nicolasb, Valérie Charonb,
Nadia Mazillec, Stéphanie Lerouxc, Bertrand Bruneaub, Christian Barillota and Jean-Christophe
Ferréa,b
aUniv Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France
bCHU Rennes, Radiology Department, F-35033 Rennes, France
cCHU Rennes, Neonatology Department, F-35033 Rennes, France

PLOS ONE 2020
Regional brain development analysis through registration using

anisotropic similarity, a constrained affine transformation

Antoine Legouhya,∗, Olivier Commowicka, Maïa Proisya,b, François Rousseauc and Christian
Barillota
aUniv Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France
bCHU Rennes, Radiology Department, F-35033 Rennes, France
cIMT Atlantique, LaTIM U1101 INSERM, UBL, Brest, France

Conference papers

ISMRM 2018
(abstract + poster)

Anisotropic similarity , a constrained affine transformation :
Application to brain development analysis

Antoine Legouhya,∗, Olivier Commowicka, François Rousseaub and Christian Barillota
aUniv Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France
bIMT Atlantique, LaTIM U1101 INSERM, UBL, Brest, France
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ISBI 2019
(4 pages paper + oral presentation)

Unbiased longitudinal brain atlas creation using robust linear
registration and log-Euclidean framework for diffeomorphisms

Antoine Legouhya,∗, Olivier Commowicka, François Rousseaub and Christian Barillota
aUniv Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France
bIMT Atlantique, LaTIM U1101 INSERM, UBL, Brest, France

MICCAI 2019
(8 pages paper + poster)

Online atlasing using an iterative centroid

Antoine Legouhya,∗, Olivier Commowicka, François Rousseaub and Christian Barillota
aUniv Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France
bIMT Atlantique, LaTIM U1101 INSERM, UBL, Brest, France

I summarize in the following sections these contributions.

10.1 Unbiased longitudinal brain atlas creation using ro-
bust linear registration and log-Euclidean framework
for diffeomorphisms

This contribution concerns the development of an unbiased spatio-temporal atlas creation
method using a template-based approach inspired by [Guimond 2000]. The topology-preserving
behavior of the transformations involved is ensured through the parametrization of diffeomor-
phisms by stationary velocity fields (SVF), thus allowing log-Euclidean statistics and easy
composition using the Baker-Campbell-Hausdorff (BCH) formula. This results in a set of 3D
sub-atlases that both account for global changes and local diffeomorphic deformations. The
concern of the temproal accuracy of these atlasses is also adressed by introducing a flexible
quintic polynomial weight function to modulate the influence of each subject. Finally, this
method is computationaly reasonable since its cost grows linearly with the number of images.
The method has been experimented on a set of 197 images from the C-Mind database [C-MIND]
to build a spatio-temporal atlas with timepoints between 0 and 18 years of life.

The code provision for this atlas creation pipeline is freely available in [Anima-Scripts].

10.2 Changes in brain perfusion in successive arterial spin
labeling MRI scans in neonates with hypoxic-ischemic
encephalopathy

This study, mainly conducted by Maïa Proisy was the occasion to produce a more applicative
work at the expense of major methodological contributions. It essentially consisted in adapting
pipelines in order to process a newborn population incompatible with tools designed for adult
subjects. The challenge was to be able to properly perform registrations, brain extraction,
segmentation and perfusion quantification on some twenty neonates suffering from hypoxic-
ischemic encephalopathy, that have been scanned twice at 4 and 11 days of life. This task has
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been raised through notably the creation of specific atlases allowing to link ALBERTs [AL-
BERTs] segmentation to ours, despite initial incompatibilities.

10.3 Online atlasing using an iterative centroid

This contribution concerns an online atlasing method that allows to update an existing atlas
as new images arrive without having to restart the atlasing process from scratch. It is based
on an iterative centroid process. This approach only necessitates one registration per new im-
age. Also, it takes advantages of the log-Euclidean framework. This method has been tested
on images from the HCP database [HCP] by updating an atlas of 50 subjects until it reaches
200. The result has been compared to the above-mentioned template-based method using the
same tools showing only a subtle divergence tending to grow but at a slow and decreasing
pace. Also, the obtained atlases from both approaches have shown no differences in terms of
image quality (notably sharpness). The proposed method is well adapted to the trend of large,
growing databases since a gradual update can be done a reasonable computational cost. Also,
this iterative centroid approach embeds the possibility to produce atlases unbiased up to a rigid
transformation, which makes it eligible, in a future work, for a spatio-temporal extension only
necessitating a weighting adjustment.

The code provision for this atlas creation pipeline is freely available in Anima-Scripts].

10.4 Regional brain development analysis through registra-
tion using anisotropic similarity, a constrained affine
transformation

We have finally presented a method that allows the extraction of regional and global scal-
ing factors along arbitrary chosen orthogonal directions through linear registration. This is
done through registration using a special kind of transformation: the anisotropic similarity
which is an affine transformation with constrained directions of scaling. The main contribution
is the introduction of this transformation set and the optimization over it to find the opti-
mal anisotropic similarity that best matches two sets of paired points. The interest of this
transformation has been illustrated through regional registrations using anisotropic similarity
of 308 subjects onto a common reference image on which the constrained directions of scal-
ing of our choosing have been fixed. Those subjects were selected from 3 different databases
(dHCP [dHCP], C-MIND [C-MIND] and ASLpedia [ASLpedia]) and cover an age range from 0
to 19 years old. The extraction of their scaling factors allowed regression of those over age, and
thus the modeling of the anisotropic growth of various regions of the brain. The robustness of
the method with respect to the choice of the reference image has been challenged and showed a
good stability. A nice interest of the method is the possibility to create informative and easily
interpretable graphical representations of the regional anisotropic brain growth.

The code provision for this scaling factor extraction pipeline is freely available in [Anima-
Scripts].
The anisotropic similarity registration algorithm is implemented in [Anima].





Chapter 11

Perspectives

Finally, I present in this chapter some perspectives coming from this work that I believe should
be studied at a short or longer term.

11.1 Variants of the iterative centroid approach

The online aspect of the iterative centroid atlasing method developed in Chapter 9 is quite
promising considering the trend of large datasets with new images being released regularly.

The presented version however does not account for the temporal dimension. Yet, the
formulation does not forbid the incorporation of a weight function modulating the weight of
the subjects according to their age. This spatio-temporal extension might be a bit tricky at
first in order not to be entangled with the already existing weights inherent to the approach,
but still pretty straightforward.

Also, we presented a version that is based on the SVF parametrization for diffeomorphisms,
mainly for computational reasons. Yet, since this method is designed for the case of images that
arrive gradually, it might not be that much of a burden to perform an heavy registration once in
a while. Given that, one can consider a more theoretically ambitious version, as [Cury 2014] did
for surfaces, through the parametrization of the diffeomorphisms following the LDDMM frame-
work. They are also other versions of the iterative centroid algorithm proposed in [Cury 2018]
that would be worth translating to images. This includes a more parallelizable hierarchical one
that could achieve faster results when adding more than one image at a time.

11.2 Application of the spatio-temporal atlasing method

The food source for the creation of spatio-temporal atlases of the developing brain has re-
cently considerably increased thanks notably to the extensions of the Human Connectom
Project [Harms 2018] that are the HCP Lifespan Babies1 (BCP) and the HCP Lifespan in
Development2 (HCP-D). The BCP aims at including 500 children between 0 and 5 years old.
This is a very interesting age range as it cover most of the postnatal brain maturation. In
addition, 385 of the subjects undergo a longitudinal follow up (4 to 6 repetitions). This might
be the chance to experiment techniques involving the regression of individual longitudinal brain
growth models in the same vein as in [Durrleman 2009].

Focus has been made, during this thesis, on developmental data but it could be interesting
to apply the same methods on aging brains using e.g. the HCP Lifespan in aging3 (HCP-A)
that includes 1200+ subjects amongst which 600+ have undergone a follow-up about 24 month
later.

Also we only evoked anatomical atlases but one can translate the creation process to other
modalities such as diffusion [Pontabry 2013].

1BCP: [Howell 2019] - https://www.humanconnectome.org/study/lifespan-baby-connectome-project
2HCP-D: [Somerville 2018] - https://www.humanconnectome.org/study/hcp-lifespan-development
3HCP-A: [Bookheimer 2019] - https://www.humanconnectome.org/study/hcp-lifespan-aging

https://www.humanconnectome.org/study/lifespan-baby-connectome-project
https://www.humanconnectome.org/study/hcp-lifespan-development
https://www.humanconnectome.org/study/hcp-lifespan-aging


114 Chapter 11. Perspectives

11.3 Application and upgrades of the scaling factor extrac-
tion method

11.3.1 Clinical applications

As evoked in the discussion Chapter 5, understanding the growth along chosen directions of
areas of the brain may have some interesting clinical applications.

Those measurements that are performed at the scale of a ROI could be pertinent to charac-
terize the brain deformations induced by plagiocephaly, also known as flat head syndrome, that
is an early asymmetrical distortion of the skull. Indeed, volumetric studies are irrelevant in that
case since the amount of biological material is the same for patient and control, only the dis-
position differs. The current assessments are the ones depicted in [Collett 2012] are somewhat
ad-hoc and human dependent. One can imagine the construction of an age-adapted control atlas
onto which ROIs are segmented, and three orthogonal directions are chosen for each through
considerations that are yet to be defined. Then, by registering patients through anisotropic
similarity registrations constrained in scaling by those directions, one can then extract reliable
and automatic measurements that could be used as biomarkers.

11.3.2 Polyaffine upgrade

In the current version, the anisotropic similarity registration of the ROIs is initialized by an
isotropic similarity on the whole brain. This choice has been motivated by the fact that the
composition of an isotropic and an anisotropic similarity yield an anisotropic similarity, which
is not the case if we replace the first one by an affine transformation. Yet this initialization may
fail to even roughly align small structures. This is a critical issue for the anisotropic similarity
registration of the ROI that follows.

An interesting implementation would be to take advantage of the polyaffine framework
from [Arsigny 2009]. Similarly to the work in [Commowick 2008], one can imagine to directly
perform a piecewise anisotropic similarity registration of all the ROIs (one transformation by
ROI) with a log-Euclidean regularization in between, thus allowing them to slide in relation
to each other. With that extra flexibility, one can expect great improvement on the way small
structures are treated.

11.4 Consistent processing when dealing with developing
brains acquired differently

Those are more open questions for which I have no real insight on how to approach them but
that will definitely deserve looking at in the future to see their influence.

11.4.1 Intensity normalization

Anatomical MR image intensities only have a qualitative meaning. There is a massive variability
due notably to scanner specificities and differences in the choice of the acquisition parameters.
Furthermore, two images taken at different times of a single patient, in the same machine, show
differences in terms of intensities that are not negligible. To cope with this, normalization tech-
niques using i.e. histogram matching such as in [Nyúl 1999, Nyúl 2000] have been developed.
However, a hidden hypothesis is those approaches is that the repartition of the tissue compo-
sition is roughly the same between the images, which is obviously not the case when working
with brains of different maturation. Given that, it is still unclear on how to have a consistent
intensity meaning across ages for spatio-temporal atlas creation, and especially when mixing
data from different studies.
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A solution for this might comes from incorporating, in the intensity normalization process,
informations from quantitative imaging (relaxometry, diffusion...). If a spatio-temporal atlas
with consistent, meaningful intensity is ever performed and covers a sufficient number of age
samples, one can then use it as reference to normalize intensities for subjects of any age using
usual normalization techniques.

This incapacity of the classical T1 and T2-weighted images where the intensities have a fixed
meaning emphasize the importance of multichannel atlases such as the one built in [Rohlfing 2009].
Looking at the creation of such multichannel, longitudinal atlases of the developing brain will
then be of great interest too.

11.4.2 Segmentation

Atlas based segmentation is very common, it has notably very good reproducibilty properties
across a dataset of subjects. It is well-known that the atlases should be chosen in age adequacy
with the the subjects [Muzik 2000]. One can therefore not propagate the segmentations from
the same atlases to a population covering a wide age range (especially during development).
On the other hand, choosing different atlases for subsamples of the population may lead to
inconstancies. Very little concern is given in the literature about methods to have age adapted
segmentations while those being consistent across the subjects.

An obvious solution would be for an expert to manually segment a large cohort of subjects
covering a sufficient number of age samples. This would be, though, an incredibly fastidious
task...

11.5 Investigations on the convergence of the BCH formula

We experienced some intriguing behaviors when dealing with order 3 or more Baker-Campbell-
Hausdorff (BCH) formula. Even though the accuracy of the BCH is globally getting better as
the order increases, it is getting very wrong in some very localized areas. This phenomenon is
illustrated in Figure 11.1 where the approximation from BCH is compared to the true value
via the following error criterion: E = ‖exp (BCH(u, v))− exp(u) ◦ exp(v)‖2, where u and v are
SVFs. One can clearly see an overall improvement as the order of the BCH increases at the
exception of the area designed by the white arrow where a higher error spot is present. We
suspect that those issues are related to the approximations inherent to the fact that we work
with discrete grids. Also it seems that those divergent spots are localized in areas where the
determinant of the jacobian is especially high. This definitely deserves some investigations.

0
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BCH order: 2 3 4

Figure 11.1: Error E in mm2 for BCH order 2, 3 and 4





Part V

Appendix





Appendix A

Detailed calculations for axis-angle
to quaternion rotation
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Using basic trigonometry formulas one can retrieve the Rodrigues formula where v′ is the image
of the vector v through a rotation of magnitude θ about the axis u .The same reasoning applies

to q = −
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Appendix B

Detailed calculations for optimizing
anisotropic similarity between two

sets of paired points

B.1

Let R be a rotation matrix. Then, an associated unit quaternion q is defined such as if Rx =

q ∗ x ∗ q̄. Thus:
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B.2

If p is a vector, the associated quaternion is pure: p0 = 0 which implies that Lp and Rp are
skew-symmetric. Yet y′i and ξi are vectors, thus:
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B.3

If p is a vector, the associated quaternion is pure: p0 = 0 which implies that Lp and Rp are
skew-symmetric and L2

p = R2
p = −pT pI4.
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Yet y′i and ξi are vectors, thus:
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Thus, by considering xji such that xi = (0x1ix2jx3j)
T ∈ R4, and Ejj the matrix with a 1 at

the intersection of the jth row and the column and zeros elsewhere, we have:
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Yet
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2
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Initial transformation for affine
registration

Let x = {x1, . . . , xm} and y = {y1, . . . , yn} with xi, yi ∈ Rk be sets of the non-zero voxels coor-
dinates in a k−dimensional space of each of the two images that are supposed to be registered.
One can perform principal component analysis (PCA) on x and y:

Let x̄ and ȳ be the barycenters of x and y:
x̄ = 1

m

∑m
i=1 xi and ȳ = 1

n

∑n
i=1 yi

Let Cx and Cy be the covariance matrices as-
sociated to x and y:

Cx = 1
m

∑m
i=1(xi − x̄)(xi − x̄)T

Cy = 1
n

∑n
i=1(yi − ȳ)(yi − ȳ)T

Let X1, . . . , Xk be the eigen vectors of Cx and
λ1, . . . , λk be the associated eigen values.

Let Y1, . . . , Yk be the eigen vectors of Cy and
µ1, . . . , µk be the associated eigen values.

Xi and Yi are the vectors that orient the prin-
cipal directions of x and y. λi and µi quantify
the variance of x and y along those directions.

Figure C.1: Eigen vectors of the covariance
matrix of x and y scaled by the square root of
their eigen values, shifted to the barycenters.

Given that, an adequate initial transformation T0 is the one that maps the two object presented
Figure C.1 namely the barycenters translated by the eigen vectors of the covariance matrix x
and y scaled by the square root of their eigen values and the barycenters themselves:

T0 =
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(C.1)

This kind of initialization is purely geometric, it does not takes into account the intensities
of the images but only whether a voxel belong to the mask or not. It allows to roughly match
both brain orientation and barycenter but also to estimate a first anisotropic scaling.
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Titre : Méthodes pour la modélisation morphologique longitudinale du cerveau via le recalage
et la création d’atlas
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Résumé : Comprendre le développement du
cerveau implique d’étudier la relation entre
l’âge comme l’une des variables explicatives
et des variables expliquées, les observations
de cet organe, qui peuvent prendre de nom-
breuses formes. L’imagerie par résonance ma-
gnétique (IRM) permet d’extraire ces obser-
vations de manière non invasive et non irra-
diante. Cette technique puissante permet no-
tamment d’obtenir des informations sur l’acti-
vité fonctionnelle du cerveau ou sur ses ca-
ractéristiques de diffusivité interne. Pourtant,

c’est plutôt sur les aspects purement morpho-
logiques que porte cette thèse. L’approche sui-
vie est celle de l’étude du cerveau en tant
qu’objet mathématique, permettant ainsi l’ana-
lyse de sa forme et de sa croissance au moyen
des transformations géométriques reliant ces
objets. Dans la découverte de ces transfor-
mations, à travers des structures topologique-
ment intéressantes, repose le concept de re-
calage. Cela ouvre la porte à l’analyse statis-
tique des formes et à la création de modèles
anatomiques moyens appelés atlas

Title: Methods for morphological longitudinal brain modeling through atlasing and registration

Keywords: Atlasing, Registration, Brain development, Morphometry, MRI

Abstract: Understanding brain development
involves studying the relationship between age
as one of the explanatory variables and ex-
plained variables, observations of this organ,
which can take many forms. Magnetic Res-
onance Imaging (MRI) gives the opportunity
to extract such observations in a non-invasive
and non-irradiating way. This powerful tech-
nique allows notably to gain insights about the
functional activity of the brain or its internal
diffusivity characteristics. Yet, it is rather on

the purely morphological aspects that this the-
sis is focused on. The approach followed the
study of the brain as a mathematical object,
thus enabling the analysis of its shape and
growth by the means of the geometric transfor-
mations connecting those objects. In the find-
ing of those transformations, across structures
of topological interest, lies the concept of reg-
istration. This opens the door to the statistical
analysis of shapes and the creation of average
anatomical models called atlases.
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