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Trigeneration systems with thermal storage (CCHP-TS) contribute to the distributed generation of energy and the reduction of greenhouse gas emissions. They are designed to decouple the production and consumption of heating, cooling and electricity. Nevertheless, it is important to assess their techno-economic feasibility to ensure long-term implementation. Moreover, determining and characterizing the influential variables is essential to identify the most viable application fields.

Potentially, this could foster the interest of project managers, investors, and policymakers, therefore encouraging the adoption of this technology.

Several authors suggest that energy prices and loads are important variables for the techno-economic feasibility of combined thermal and power energy systems.

, assess the prices and loads together. Moreover, they present some limitations in their analysis. Hajabdollahi study the loads in monthly basis, but a smaller time-step in the loads is important because it gives more precision to the feasibility analysis. As for Cardona et al., they analyze prices and loads in hourly basis, but the model they propose only optimizes the operation strategy, while the design (installed capacity of the equipment) is an assumption.

As the literature reveals that energy prices and loads size are important variables, this study aims to take a university campus as case study and analyze two hypotheses proposed: 1) There is a combination of energy prices and the size of the annual energy loads that makes techno-economically feasible a CCHP-TS system;

2) The energy prices (electricity and natural gas) should be considered separately instead of consolidating them into the spark spread rate (SS).
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"The important thing is not to stop questioning.

Curiosity has its own reason for existence.

One cannot help but be in awe when he contemplates the mysteries of eternity, of life, of the marvelous structure of reality.

It is enough if one tries merely to comprehend a little of this mystery each day.

-Old Man's Advice to Youth: 'Never Lose a Holy Curiosity.' LIFE Magazine (2 May 1955) p. 64" -Albert Einstein 
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Figure 2 General methodology of this thesis

The first one is an exploratory study aiming to demonstrate that the model for CCHP-TS is relevant and sensitive to the variables of analysis (energy prices and loads). To take advantage of the computational tools, we use DER-CAM and its embedded model to optimize the energy system. As for the sensitivity analysis method, it implements a full factorial design of experiments, due to its simplicity, ability to analyze globally, and the possibility of identifying interaction effects. Once the simulations are conducted, the data gets analyzed using a novel combination of k-Means clustering and multicriteria decision making (MCDM). The learnings from this first phase are the cornerstone for the second one, because the objective is to demonstrate that the model is relevant and sensitive to the variables of analysis.

The second is a in depth sensitivity analysis and the comparison of three approaches:

Morris (derivative-based approach), Sobol (variance-based approach), and VARS (variogram-based approach). Each of them incorporates their corresponding sampling methods (LHS and Monte Carlo). Regarding the energy system optimization, DER-CAM is a limited tool to perform the amount of simulations required for a global sensitivity analysis. Therefore, for the second phase, we adapted the model of a CCHP-TS system into the programming language Python. The model is based on energy balances and uses MILP as optimization algorithm. In Python, the MILP model is solved using the optimization library PYOMO and the solver CPLEX.

This combination is a powerful alternative to commercial software such as GAMS, which is commonly used in this context. In addition, it is worth mentioning that at this

PHASE I

Exploratory study of the CCHP-TS feasibility

PHASE II

Sensitivity analysis of the CCHP-TS feasibility

LHS and Monte Carlo

Sampling

Energy system optimization Data analysis 3) The factorial design of experiments is primarily for screening purposes and provides an idea of the individual and interaction effects of the parameters, while global sensitivity analysis methods, such as Sobol, are useful also for ranking and quantifying the relative sensitivity of the parameters. In general, the complementary implementation of the three global sensitivity analysis methods in this second phase thereby reinforced the techno-economic feasibility analysis.

Results interpretation

The results of the sensitivity analysis rank five variables from the least to the most relevant, as well as their interaction effects. The variables are: the electricity price 

HYPOTHESIS 1

Yes, there are combination of energy prices and size of the energy loads that make a Trigeneration -Thermal Storage feasible. The optimal combination depends on the metric considered.

When talking about the amount of savings, pE, pNG, and E are, by far, the most relevant variables. While H and C seem comparatively unimportant. The main interaction effects are between the electricity load and the energy prices (E -pNG and E -pE). In other words, having a large E is good, but it should be along with a small pNG and high pE. Vice versa it is also true. It was show that, for determined pE and pNG, an increase of the loads rises the amount of savings. Finally, it is good to mention that pNG is a singular variable that has interaction effects with all the others.

When talking about the percentage of savings, the energy prices pE, and pNG are the most relevant variables. E is still more influential than H and C, but it becomes less influential compared with its analysis for the amount of savings. That is because, when measuring the amount of savings, there is a direct link between the money saved and the size of E. But when measuring percentage of savings, it considers the proportions, rather than the total amount. Nevertheless, an important remark is that in the percentage of savings, the influence of the three loads (E, H, and C) is slightly more equilibrated than in the amount of savings. On the other hand, pNG is again the only variable that has interaction effects with all the others, but some aspects draw attention. The index pNG -pE is notably bigger compared with its analogous in the amount of savings, suggesting that the Spark Spread rate (SS) could be relevant for the relative savings. However, that resolution becomes weak when noticing that the energy loads have interaction effects almost exclusively with pNG. Therefore, the relevance of E, H, and C is strongly linked only to the price of natural gas.

HYPOTHESIS 2

Concerning the interest of studying the energy prices separately, it can be said that both, pE and pNG, are relevant individually regardless of the output measure (amount or percentage of savings). Also, they are clearly tied, either directly or indirectly.

However, the main difference between them is that, in either output (amount or percentage of savings), pNG keeps interaction effects with all the other variables, indicating that its influence is wider. Specifically talking about the percentage of savings, the energy loads interact almost exclusively with pNG. Moreover, although pE also has a strong interaction effects with pNG, it is shown that contrary to the general rule established by international governmental organisms, the spark spread threshold could be lower than three depending on the price of natural gas. Therefore, it is recommendable to analyze separately the energy prices while assessing the feasibility of Trigeneration systems with Thermal Storage.

Beyond the technical results, the contribution of this thesis includes adapting an hourly time-step model of the CCHP-TS systems into a programming language that allows an agile sensitivity analysis. Additionally, the implementation of the three sensitivity analysis methods allowed identifying their advantages and limitations. Moreover, this complementarity thereby reinforced the techno-economic feasibility analysis of the Trigeneration systems with Thermal Storage.

INTRODUCTION

Context

Throughout the years, several authors have suggested that there is a relationship between the energy consumption and the economic growth of a region [START_REF] Al-Mulali | The impact of energy consumption and CO 2 emission on the economic and financial development in 19 selected countries[END_REF]- [START_REF] Pinzón | Dynamics between energy consumption and economic growth in Ecuador: A granger causality analysis[END_REF]. With regards to the environmental impact of the energy consumption, the IPCC report [START_REF] Ipcc | Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team[END_REF] indicates that half of the anthropogenic CO2 emissions between 1750 and 2011 have occurred in the last 40 years. From those, 40% were kept in the atmosphere and 60% were removed and stored on land (plants and soils) and ocean, causing ocean acidification. The report also identified the energy sector as the largest contributor to the greenhouse gas emissions. Burning coal, natural gas, and oil for electricity and heat production represented 25% of the emissions in 2010, while fuel extraction, refining, processing, and transportation represented another 10%. Therefore, reducing energy demand is one of the most important mitigation strategies proposed by the IPCC report [START_REF] Ipcc | Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team[END_REF].

Given the dependency between energy consumption and economic growth and the impact of energy consumption in climate change, one of the major challenges faced by society today is how to promote the economic growth of developing regions like Africa, southeast Asia, middle east and Latin America without increasing the emissions of greenhouse gases. The only way to solve this challenge is by promoting the efficient use of energy demand and supply it using the most efficient generation technologies and renewable resources.

Combined thermal and power energy systems

Around the globe, society requires electrical and thermal energy to cover their needs in the building sector and industry (which together account from almost 60% of the total final energy consumption [START_REF]Total final energy consumption, by sector[END_REF]). Typically, they are produced separately, but a combined thermal and power energy system can generate both using the same fuel.

There are several advantages in using combined thermal and power energy systems: 1) improving the energy efficiency and reducing emissions; 2) enabling the use of local renewable and residual thermal energy; 3) increasing the security of energy supply by decentralizing its production; 4) reducing the transmission and distribution losses because such decentralized systems are closer to the location of the demand; and 5) generating cost-savings for the energy consumer ( [START_REF] Galindo Fernández | Efficient district heating and cooling markets in the EU: Case studies analysis, replicable key success factors and potential policy implications[END_REF], [START_REF]Cogeneration and District Energy[END_REF]). In general, combined heat and power generation technologies contribute to a low-carbon and resilient local energy system.

The combined generation of heat and power may have different approaches.

The following sections 1.2.1, 1.2.2, and 1.2.3 provide a more detailed insight.

Cogeneration

Combined Heating and Power (CHP), also known as cogeneration, is a process that generates simultaneously heat and electrical energy from a single fuel. The fuel could be either fossil or non-fossil.

According to the CODE2 [START_REF]CODE2 -Cogeneration Observatory and Dissemination Europe[END_REF], CHP can save up to 25% of the primary energy compared to the separate production of both outputs. The increase of this number depends on the carbon intensity of the electricity from the grid [START_REF] Moro | Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles[END_REF], and the efficiency of the CHP. The Fraunhofer Institute reports an overall CHP efficiency up to 93% [START_REF]Assessment of the National and Regional Potential for the Application of High-Efficiency Cogeneration and Efficient District Heating[END_REF].

In general, CHP can significantly reduce greenhouse gases emissions in residential, industry, and tertiary sectors, by lowering fuel demand and transmission losses [START_REF] Angrisani | Performance assessment of cogeneration and trigeneration systems for small scale applications[END_REF]. The latter happens because it produces the energy closer to the consumer.

In 2012, the EU published the Energy Efficiency Directive (EED) 2012/27/EU that replaced the 2004/8/EC, to promote the use of CHP. Specifically, the EED talks about cogeneration in its Art. 14 and annexes I, II, VIII, IX, and X. The method to calculate the CHP efficiency is detailed in the Annexes I and II [START_REF]The European Parliament and the Council of the European Union[END_REF].

As part of the Directive 2012/27/EU, in 2015, all EU members assessed the potential for high-efficiency CHP and DHC, to promote the join generation of electricity and useful heat. In Portugal [START_REF]Cogeração na Indústria. A cogeração como medida de eficiência energética na indústria: vantagens, enquadramento regulatório e situação em Portugal[END_REF], [START_REF]A Cogeração em Portugal -Desafios e Oportunidades[END_REF], the transposition of the Directive 2004/8/EC was through the Decree-Law nº. 23/2010, and later, in 2015, the Decree-Law nº. 68-A/15 transposed the Directive 2012/27/EU. Portugal has mainly used CHP for industrial purposes. However, the Decree-Law nº. 68-A/15 [START_REF] Sopas | Auditoria Energética e Aplicação de Medidas de Eficiência Energética a uma Instalação Industrial do Sector Farmacêutico[END_REF] introduced changes to the regulation that made more difficult for the CHP owners to access to supports such as the remuneration according to a reference tariff and the bonus per efficiency. Potentially, this has had a negative impact in the CHP for Portugal.

Trigeneration

Combined Heating, Cooling and Power (CCHP), also known as trigeneration, is a system that includes CHP and additional technologies, such as heat pumps or absorption cooling systems, to produce cooling from the heat and electricity generated by the CHP. These systems can reach overall efficiencies as high as 90%, depending on the configuration [START_REF] Fu | Laboratory research on combined cooling, heating and power (CCHP) systems[END_REF].

Trigeneration with Thermal Storage

In CHP and CCHP systems, the production of electricity, heat, and cold are coupled, but this is not necessarily true for the consumption. A solution is to install Thermal Storage (TS) units that decouple the heat and cold supply from the electricity one [START_REF] Song | Comparative analysis on operation strategies of CCHP system with cool thermal storage for a data center[END_REF]. Additionally, this helps to shave peaks of demand [START_REF] Liu | Hourly operation strategy of a CCHP system with GSHP and thermal energy storage (TES) under variable loads: A case study[END_REF],

and reduce operation cost, primary energy use and emissions [START_REF] Smith | Benefits of thermal energy storage option combined with CHP system for different commercial building types[END_REF], [START_REF] Pagliarini | Modeling of a thermal energy storage system coupled with combined heat and power generation for the heating requirements of a University Campus[END_REF]. This type of system is then called Trigeneration -Thermal Storage (CCHP-TS) and it is a specific configuration of the Combined Thermal and Power Energy Systems.

There are already successful examples of application of this approach. In Denmark, it has been proven that using thermal storage within DHC networks, helps to manage intermittency from wind and solar PV, by optimizing the operation of thermo-electric equipment like heat pumps, electric boilers and CHP [START_REF] Galindo Fernández | Efficient district heating and cooling markets in the EU: Case studies analysis, replicable key success factors and potential policy implications[END_REF]. Figure 3 illustrates an example of the configuration for a CCHP-TS system (right)

and compares it with a conventional energy system, called reference design (left). The latter uses electricity from the grid to meet the annual electric and cooling loads (through a vapor-compression chiller) and uses a natural gas boiler to meet the annual heating loads.

The CCHP-TS system uses grid and boiler just as auxiliary units. The main supply of energy comes from the CHP unit, that produces electricity and heat.

Both energy vectors can be used directly to cover their loads, or they can be used to produce cold (through an electrical and/or absorption chiller respectively). The cold, like the heat, can be directly used to cover cooling and heating demand, or they can be stored using sensible thermal storage systems (hot-water tanks or cold-water tanks). 

Market framework

Size of the thermal sector

Only in Europe, the heating and cooling represent about 50% of the final energy consumption. From that, 84% is still generated from fossil fuels and only 16% from renewable energy [START_REF] Galindo Fernández | Efficient district heating and cooling markets in the EU: Case studies analysis, replicable key success factors and potential policy implications[END_REF].

The heat demand in the EU28 in 2010 reached approximately 4,306 PWh (Peta-Watt hour) [START_REF] Persson | STRATEGO: Quantifying the Heating and Cooling Demand in Europe[END_REF]. From that, only 12% was covered with district heating, other 12% with electricity, and 66% with natural gas, oil, and coal products. According to Persson [START_REF] Persson | STRATEGO: Quantifying the Heating and Cooling Demand in Europe[END_REF], the demand of heat depends on factors such as: the climate, the levels of building insulation, the energy services available and desired, as well as the level of comfort. It is worth mentioning that the largest heat demand in the European markets are located in Germany, France, the United Kingdom, Italy, Poland, Spain, and the Netherlands (Figure 4). The reason is that, according to the JRC [START_REF] Nicolas | Heat and Cooling Demand and Market Perspective[END_REF], the heat demand of those countries is representative in the three main sectors (industrial, residential, and services). Regarding the cooling demand, Figure 5 presents an estimate for selected countries in 2000 and 2017 across the world. The increase of the total cooling demand (top of Figure 5) shows that the market is growing around the world.

Also, it is evident that Asia is taking relevance, especially with the market growth in China and India. The demand per capita (bottom of Figure 5) shows that countries such as the US consume significantly more than others [START_REF]The Future of Cooling in China suistainable air conditioning[END_REF].

Therefore, if other countries follow the same trend, the cooling demand could grow exponentially. 

Current status of CHP market

As mentioned at the beginning of the section 1.2, a combined thermal and power energy system produces electricity and thermal energy from the same fuel. That increases its efficiency dramatically. Typically, the total efficiency of a CHP system is between 77% and 83% [START_REF]Combined Heat and Power Technology Fact Sheet Series: Reciprocating Engines[END_REF], however, in some systems, it can reach up to 90% [START_REF]Combined Heat and Power: Evaluating the benefits of greater global investment[END_REF].

Worldwide, CHP accounts for 10% of the electricity production [START_REF]Cogeneration and District Energy[END_REF]. But most of the contribution comes from countries with focused governmental policies.

Figure 6 shows the CHP electricity generation and its share for the European countries in 2017. The blue line indicates the European average CHP share in the gross electricity production. It was 11.3% in 2017 [START_REF]Combined Heat and Power (CHP) data 2005-2017[END_REF]. Countries such as Denmark, Latvia, and the Netherlands have the largest share of CHP electricity production. Whilst Germany and Italy are leading the absolute electricity generation.

Figure 6 CHP electricity generation [TWh] and CHP share in the gross electricity generation for European countries in 2017 [START_REF]Combined Heat and Power (CHP) data 2005-2017[END_REF] On the other hand, in recent years, the Asia-Pacific region has fostered CHP systems installation in new industrial facilities. China and India were leading this path in 2012 with 13% and 5% of their electricity production respectively [START_REF]Low carbon green growth roadmap for Asia and the Pacific[END_REF], [START_REF]Low carbon green growth roadmap for Asia and the Pacific: CHP fact sheet[END_REF]. In 2017, CHP was already accounting for 20% of the total electricity production in China [START_REF] Euroheat | District Energy in China[END_REF].

Relevant sectors for combined thermal and power energy systems

Combined thermal and power energy systems can be used mainly in three different sectors: industry, services, and households, in the form of district heating and cooling (DHC) [START_REF]Combined Heat and Power: Evaluating the benefits of greater global investment[END_REF].

Industry

For the OECD countries, the industry represents 25% of the total final energy consumption, only behind the transport (37%).

The industry is the application par excellence of the CHP technology, as it usually requires high temperature thermal energy. Until 2007, this represented 80% of the installed capacity of CHP worldwide [START_REF]Combined Heat and Power: Evaluating the benefits of greater global investment[END_REF]. In the European context, 55% of the industry in 2009 had high temperature energy requirements (Figure 7). The typical industrial sectors using CHP are metallurgy, mining, chemical, petrochemical, food processing, pulp & paper, etc. The common characteristic among all is their high needs of thermal energy, usually in high temperatures.

Figure 8 shows the European industrial sectors that required thermal energy in 2009. The most representative ones for high temperature are Iron & steel, and non-metallic minerals. For low temperature, it is the chemical sector. Figure 9 illustrates that the Germany, Italy, Spain, and France concentrate the highest thermal demand due to these sectors, therefore, they are the largest industrial markets for CHP. 

Services

For the OECD countries, the sector of services represents more than 70% of their GDP and 13% of their total final energy consumption. A significant share of this energy consumption, around 50%, is for heating and cooling, in order to provide thermal comfort for the building users (offices, schools, hospitals, shopping centers, etc.) Figure 10 

Households

For the OECD countries, the sector of households represents 21% of their total final energy consumption. And within the households, space heating consumes the most (Figure 11), in general with at least 50% of the share. As for the delivery of heating, hot water and cooling services to households, it is usually done through District Heating and Cooling (DHC) networks. These networks deliver hot water or cold water through a network of insulated pipes, from a central point of generation to the end user [START_REF] Euroheat | District Energy Explained[END_REF]. The generation can be done through a combined thermal and power energy system.

In Europe, the countries that have the largest energy demand for households are Germany, France, United Kingdom, Italy, and Poland (Figure 12). and urban planning, and tax incentives. This statement is backed-up by multiple governmental reports ( [START_REF]Cogeneration and District Energy[END_REF], [START_REF]Combined Heat and Power: Evaluating the benefits of greater global investment[END_REF]) that highlight case studies with different policies in place: building regulations and interconnection standards, feed-in-tariffs, green certificates, emission trading, and installed capacity grants. Galindo Fernández also identified some factors in terms of the market characteristics:

competitive prices, local energy resources, possibility of economies of scale, and operation flexibility.

Perspective for thermal storage

There are three types of thermal energy storage technologies: sensible, latent and thermochemical. The first includes tank, pit, borehole, and aquifer. The second refers to phase change materials, and the third uses reversible chemical reactions.

According to the Department for Business Energy & Industrial Strategy in the UK [START_REF]Evidence Gathering: Thermal Energy Storage (TES) Technologies[END_REF], the cheapest are the pits and boreholes with a cost of 0.3-0.8 £/kWh.

While the thermochemical storage can go up to 400 £/kWh. The report highlights that for any thermal storage technology, the cost decreases with the economies of scale, in other word, the size of the installation. Regarding the operation and maintenance cost, they are almost negligible.

The technology with the largest penetration is the water tank (sensible thermal storage). Although its price is not the lowest (25-180 £/kWh). It has an efficiency of 50-90% and the sector that mainly use it is the residential. However, it is also found on district heating and some commercial applications. They are generally coupled with solar thermal power systems (solar receivers), heat pumps, CHP, biomass, district heating, and solar PV (to transform the surplus of electricity into thermal energy). This technology foresees low chances of cost reduction. Mainly because the technology is already mature. In contrast, phase change materials and reversible chemical reactions have large probability to reduce their cost, but the forecast is uncertain.

Finally, the time-of-use tariffs are among the most relevant measures fostering the implementation of thermal storage technologies. This incentivize the consumption of energy at off-peak times and therefore the storing it.

Motivation

Cogeneration and trigeneration systems, with or without thermal storage, can contribute to the distributed generation of energy and reduce greenhouse gas emissions [START_REF]Cogeneration and District Energy[END_REF], [START_REF]CODE2 -Cogeneration Observatory and Dissemination Europe[END_REF], [START_REF] Angrisani | Performance assessment of cogeneration and trigeneration systems for small scale applications[END_REF], [START_REF] Arteconi | Distributed generation and trigeneration: Energy saving opportunities in Italian supermarket sector[END_REF], [START_REF] Streckiene | Feasibility of CHP-plants with thermal stores in the German spot market[END_REF]. Still, and despite the maturity of the technology and its efficiency, its dissemination is still limited to some geographical areas and the potential of implementation is far from being exploited.

As identified, the barriers are mostly in the economic and regulatory domain, so the techno-economic assessment of this type of systems is vital to demonstrate the sustainability of its implementation and disseminate its use.

Research until now has targeted mostly their operational performance and feasibility. Regarding the techno-economic feasibility, several authors have established that the energy prices are important variables when assessing the systems. Their analysis is mostly focused on the impact of the Spark Spread rate (SS), which has been widely used across the scientific and industrial community as the economic indicator to evaluate the feasibility of implementation of this type of systems.

The spark spread, expressing the ratio between the cost of electricity from the grid and the CHP fuel (usually natural gas), is a variable that influences the economic feasibility of the systems. Still, many other variables also impact, such as the type of loads and its size, the individual prices of electricity and fuels (natural gas), rather than consolidated in the SS rate.

This thesis proposes a methodology to perform a systematic techno-economic analysis of the CCHP-TS systems. The objective is identifying the conditions that determine the feasibility of their implementation. In particular, the aim of this study is to identify and quantify the importance of five different variables while Finding the set of values for theses variables that make the CCHP-TS systems feasible could foster the interest of project managers, investors, and policymakers, and therefore encourage the adoption of this technology. Thus, it would be possible to also characterize the potential niche markets for its implementation. As an example, trigeneration systems with thermal storage are conceived to supply electricity, heating, and cooling in a decoupled manner. A potential market for this type of systems are the regions with sub-tropical desert climates (using the Köppen classification [START_REF]Tropical and subtropical desert climate[END_REF]). Those are the regions with the most intense solar radiation, according to the Global Solar Atlas [START_REF][END_REF], and potentially with the largest cooling demand (Figure 13). One of the objectives of this thesis is to explore the relevance of the size of energy demand, that indeed varies with the geography of the place. 

Hypothesis and Research questions

Overall, this work aims to give answer to the following hypotheses:

1. There is a combination of energy prices (pE and pNG) and size of the energy loads (E, H, C) that make a Trigeneration -Thermal Storage feasible,

2. The energy prices should be considered separately, instead of consolidating them into the spark spread rate (SS).

Therefore, the main research question for this thesis is: What are the key variables and their combination that make more feasible the usage of Trigeneration -Thermal Storage?

The reader should note that the variables E, H, and C are in this work expressed in terms of energy, instead of power.

Beyond the technical questioning presented above in the form of hypotheses and a research question, the development of the thesis required the implementation of different tools and approaches to give answer to these premises. Then, another objective of this work is to analyze and contrast the different steps taken at the methodology of the thesis. Finally, it is worthy to highlight that this work is developed using a university campus as a case study, as it is a representative profile of a combination of multiple energy services profiles (education, offices, etc.).

Outline of the thesis

This thesis is divided in six chapters. Chapter 1 introduces the context of the study, as well as the potential market and relevant sectors for a combined thermal and power energy system. It also outlines the motivation of the thesis and poses the hypotheses and research questions.

Chapter 2 reviews the state of the art of the feasibility analysis for combined thermal and power energy systems. It discusses the relevant variables that different authors have studied, the existent computational tools used to simulate these energy systems, the optimization algorithms typically implemented, as well as the general structure of the model used. Then, the chapter introduces an alternative to the existent computational tools. Finally, the chapter concludes with a discussion contrasting the typical sensitivity analysis methods used for the research in energy context and used for combined thermal and power energy systems.

Chapter 3 explains the general methodology of the work, which has been divided into two phases: the first is an exploratory analysis of the CCHP-TS model, and the second a deep sensitivity analysis of the feasibility study, combined with a comparison of three GSA approaches. In this phase, thousands of simulations were required. Therefore, we needed to increase the simulation efficiency. For that, the CCHP-TS model was adapted into the programming language Python, using the optimization library PYOMO and the solver CPLEX.

Finally, chapter 6 outlines the overall conclusions of the thesis.

LITERATURE REVIEW

This chapter examines the state-of-art of the combined thermal and power energy systems. It summarizes how different authors assess their feasibility and the main features considered. It specially outlines which variables have been studied as main drivers. After that, it presents a review of the computational tools which use simulation to assist in the design, operation strategy and assessment of a CCHP-TS system. Among them, it highlights DER-CAM, a tool that comprises an optimization algorithm to maximize the benefits. Next section analyses those models which aim to optimize the design, and the operation strategy of combined thermal and power energy systems. Lastly, the chapter presents a review of works on the sensitivity analysis in the energy context.

The afore mentioned allows to conclude the chapter explaining the contributions of this thesis.

Combined thermal and power energy systems

Table 1 provides a list of journal papers studying the combined thermal and power energy systems. It indicates the type of system, the technologies studied (CHP, CCHP, or CCHP-TS), and the type of feasibility assessment (economically, environmentally, energetically, etc.). The assessment of a systems implies 1) determining the best design (installed capacity) and operation strategy of the proposed technologies, and 2) quantifying the benefits. This requires evaluating a model either analytically or through a simulation software.

The evaluation is carried out through a parametric analysis or using an optimization algorithm.

The subsection 2.4.1 deepen the analysis of the optimization algorithms of these works. Regarding the case studies, there are several papers focusing on offices, hotels, and residential buildings. Others study district heating or different high energy intensity buildings such as hospitals, restaurants, supermarkets, and airports.

On the other hand, the timestep for the loads is interesting because the smaller it is, the higher the precision of the feasibility analysis. Table 1 shows that only Cardona [START_REF] Cardona | Energy saving in airports by trigeneration. Part II: Short and long term planning for the Malpensa 2000 CHCP plant[END_REF], [START_REF] Cardona | Energy saving in airports by trigeneration. Part I: Assessing economic and technical potential[END_REF], Wang [START_REF] Wang | Performance comparison of combined cooling heating and power system in different operation modes[END_REF], Li [START_REF] Li | Sensitivity analysis of energy demands on performance of CCHP system[END_REF], Li [START_REF] Li | Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system[END_REF], and Sundberg [START_REF] Sundberg | Ranking factors of an investment in cogeneration: Sensitivity analysis ranking the technical and economical factors[END_REF] conduct it hourly.

But the last three only analyze a typical day per season (S-H), instead of each month or day of the year, as Cardona [START_REF] Cardona | Energy saving in airports by trigeneration. Part II: Short and long term planning for the Malpensa 2000 CHCP plant[END_REF], [START_REF] Cardona | Energy saving in airports by trigeneration. Part I: Assessing economic and technical potential[END_REF], and Wang [START_REF] Wang | Performance comparison of combined cooling heating and power system in different operation modes[END_REF] do it.

Finally, Table 1 also displays the variables that different authors have studied, considering them relevant to assess the feasibility of combined thermal and power energy systems. It is evident that most of them focus on energy prices and energy loads. But only Wu [START_REF] Wu | Multi-objective optimal operation strategy study of micro-CCHP system[END_REF], Hajabdollahi [START_REF] Hajabdollahi | Investigating the effects of load demands on selection of optimum CCHP-ORC plant[END_REF], Memon [START_REF] Memon | Parametric based economic analysis of a trigeneration system proposed for residential buildings[END_REF], and Cardona [START_REF] Cardona | Energy saving in airports by trigeneration. Part II: Short and long term planning for the Malpensa 2000 CHCP plant[END_REF], [START_REF] Cardona | Energy saving in airports by trigeneration. Part I: Assessing economic and technical potential[END_REF] analyze them together. And from those, only Cardona [START_REF] Cardona | Energy saving in airports by trigeneration. Part II: Short and long term planning for the Malpensa 2000 CHCP plant[END_REF], [START_REF] Cardona | Energy saving in airports by trigeneration. Part I: Assessing economic and technical potential[END_REF] considers loads with hourly timestep. The following section 2.2 extends the analysis of the variables that different authors have studied.

Relevant variables for the feasibility analysis

The feasibility of combined thermal and power energy systems can be evaluated based on energy savings or cost savings. For the latter, the ratio between the cost of electricity and the CHP fuel, called spark spread rate (SS), has been identified as the key variable. Hong Kong, and Dubai) [START_REF] Chan | Key success factors for global application of micro energy grid model[END_REF]. Moreover, some international governmental organisms have established as a general rule that the technology is economically feasible when the SS rate is higher than three [START_REF]CODE2 -Cogeneration Observatory and Dissemination Europe[END_REF]. In other words, the systems are likely to be feasible when the fuel is three or more times cheaper than the electricity from the grid. The physical understanding of this rule can be explained by the electrical efficiency of the older thermal power plants, which is around 33% [START_REF] Afework | Thermal power[END_REF]. Intuitively the CHP is feasible if it has a better cost efficiency.

Then, the SS threshold of three is inversely related with the electrical efficiency of thermal power plants [START_REF] Neves | Q&A session during the oral dissertation of Mexitli Eva Sandoval Reyes to obtain the PhD degree[END_REF].

Other key variables have been proposed in the literature to explain the feasibility of combined thermal and power energy systems. For example, to evaluate the primary energy savings generated by the CCHP system, Wang et al. [START_REF] Wang | Performance comparison of combined cooling heating and power system in different operation modes[END_REF] studied the influence of performance from different equipment. They found that the most sensitive parameter belongs to the electric generation at the separate production system, that is, the electric efficiency of the grid. Fumo et al [START_REF] Fumo | Energy and economic evaluation of cooling, heating, and power systems based on primary energy[END_REF] showed the relevance of the electrical efficiency of CHP and found that an increase of it reduces the primary energy used more than proportionally. The Midwest CHP Application Center [START_REF]Combined Heat and Power Resource Guide[END_REF] highlighted the importance of having a large number of CHP operating hours (greater than 3,000 hours/year). Mago et al. [START_REF] Mago | Methodology to perform a nonconventional evaluation of cooling, heating, and power systems[END_REF] evaluated the CCHP system based on the reduction of pollutants and identified the interest of the fuel mix used to generate electricity at the grid of each region. Then they propose that the CCHP system avoids more emissions in regions where electricity from the grid comes mainly from fossil fuels, especially coal.

In recent years, some authors have suggested that the size of energy loads also plays an important role to evaluate the feasibility of combined thermal and power energy systems. Authors such as Cardona et al. [START_REF] Cardona | Energy saving in airports by trigeneration. Part I: Assessing economic and technical potential[END_REF], Wang et al. [START_REF] Wang | Performance comparison of combined cooling heating and power system in different operation modes[END_REF], Mago et al. [START_REF] Mago | Methodology to perform a nonconventional evaluation of cooling, heating, and power systems[END_REF] and Fumo et al. [START_REF] Fumo | Analysis of combined cooling, heating, and power systems based on source primary energy consumption[END_REF] assessed the energy reduction generated by these systems, using respectively load rates (Heating/Electricity, Cooling/Electricity or Heating/Cooling), load rates vs. CHP production rates, and the fraction of electricity, heating and cooling loads covered by the CCHP. Similarly, Memon et al. [START_REF] Memon | Parametric based economic analysis of a trigeneration system proposed for residential buildings[END_REF], Wu et al. [START_REF] Wu | Multi-objective optimal operation strategy study of micro-CCHP system[END_REF], Knizley et al. [START_REF] Knizley | Evaluation of the operational cost savings potential from a D-CHP system based on a monthly power-to-heat ratio analysis[END_REF] and Hajabdollahi [START_REF] Hajabdollahi | Investigating the effects of load demands on selection of optimum CCHP-ORC plant[END_REF] used measures related to load size to assess the cost reduction of CHP or CCHP systems.

Memon et al. [START_REF] Memon | Parametric based economic analysis of a trigeneration system proposed for residential buildings[END_REF] analyzed the net present value and payback period for using a trigeneration system in residential buildings. The authors found that the economic feasibility improves with the rise of fuel prices and load factors. They defined the heating and cooling load factors as the fraction of time the products are required in a year. Their parametric study included a variation between 0.2-0.5 in the heating load factor and 0.4-0.75 in the cooling load factor. Wu et al. [START_REF] Wu | Multi-objective optimal operation strategy study of micro-CCHP system[END_REF] applied Mixed Integer Nonlinear Programming (MINLP) to optimize the operation strategy of a micro-CCHP, conducting a screening analysis over a small range of SS and the size of electric and heating loads. They concluded that the operation strategy of a micro-CCHP is affected by load size (in instant energy, or power) and SS. For their part, Knizley et al. [START_REF] Knizley | Evaluation of the operational cost savings potential from a D-CHP system based on a monthly power-to-heat ratio analysis[END_REF] proposed that the economic savings of a CHP system can be guaranteed when the ratio between electricity and heating loads of a building is less than three. Six out of eight case studies verify the hypothesis, using an SS=2.77. Finally, Hajabdollahi [START_REF] Hajabdollahi | Investigating the effects of load demands on selection of optimum CCHP-ORC plant[END_REF] studied the influence of load rates over the selection of the optimal prime mover for a

Trigeneration system with Organic Rankine Cycle. The author concluded that, at given constant loads during the whole year, the gas turbine is convenient when heating loads are high, and the diesel engine is more suitable for high electric and heating loads.

The literature review indicates that energy prices and loads size are two interesting variables for the techno-economic assessment. Subsections 2.2.1 and 2.2.2 provide a context regarding their ranges of interest.

Energy prices

The last section introduced the spark spread as a relevant term for the feasibility of combined thermal and power energy systems. It was coined in the UK during the late 1990's in the context of trading and hedging opportunities [START_REF] Dillingham | Microgrids with CHP -Improving campus and community resilience[END_REF]. And nowadays, this metric is widely used in the financial energy markets to quantify the profitability of buying fuel and selling electricity [START_REF] Blumsack | Lesson 10.1 Risk in Electricity Markets: Temporal, Locational and the Spark Spread[END_REF].

In the scientific context, authors such as Smith et al. [START_REF] Smith | Spark spread -A screening parameter for combined heating and power systems[END_REF] and Kavvadias et al. [START_REF] Kavvadias | Energy price spread as a driving force for combined generation investments: A view on Europe[END_REF] proposed steady state equations to determine the minimum spark spread rate based on the efficiency of the CHP (electric and thermal), costs and loads.

The spark spread rate (SS) comprises the price of electricity and fuel (natural gas, for the purposes of the thesis). Therefore, it is relevant to explore their status worldwide. Figure 14 outlines that the largest electricity prices are paid in Europe and North America, while the lowest are in the Sub-Saharan Africa.

Sadly, these low prices in the sub-Saharan Africa have driven to bankruptcy to a number of power utility companies and obliged the state to subsidy part of the electrification costs [START_REF] Alli | African governments ' quest for cheap electricity has kept millions of us in the dark[END_REF]. Regarding the price of natural gas, Figure 15 shows that the largest prices are paid in Asia-Pacific and Europe, whereas the lowest are in the Former Soviet Union, Middle East, and North America. The low prices in the latter regions are related to the natural gas deposit they have available. Household electricity price per region (2016)

Europe, in average, has the largest electricity prices available, but also one of the highest prices of natural gas. Therefore, the interest of buying fuel and selling electricity is not straight forward. Then, it is crucial to conduct a feasibility analysis for combined thermal and power energy systems as detailed as possible.

Figure 16 shows the prices of electricity and natural gas for different European countries in 2017, according to Eurostat [START_REF]Electricity and natural gas prices charged to final consumers[END_REF]. In the household context, the prices of electricity and natural gas present a strong linear correlation. However,

In the industrial context, the prices are more independent.

Figure 16 European energy prices 2017 [START_REF]Electricity and natural gas prices charged to final consumers[END_REF] It worth highlighting that the information of this section is based in average values. However, studying the average values of prices is a good approximation even for energy market with volatile prices, such as Europe. The reason is that empirically, the spot prices for these commodities display mean reversion [START_REF] Ronn | Real Options and Energy Management: Using Options Methodology to Enhance Capital Budgeting Decisions[END_REF], [START_REF] Elias | The spark spread and clean spark spread option based valuation of a power plant with multiple turbines[END_REF]. In other words, the price will tend to move to the average price over time.

Given the above-mentioned, this work considers simply the average prices of energy, rather than the spot prices.

Energy loads

Combined thermal and power energy systems are recommended by multiple institutional reports [START_REF]CODE2 -Cogeneration Observatory and Dissemination Europe[END_REF], [START_REF]Combined Heat and Power: Evaluating the benefits of greater global investment[END_REF], [START_REF]Combined Heat and Power Resource Guide[END_REF], [START_REF]Combined Heat & Power Guide A best practice guide for businesses in Northern Ireland[END_REF]- [START_REF]Combined Heat and Power -A guide to developing and implementing greenhouse gas reduction programs[END_REF] as a sustainability measure. This subsection provides some references of the possible cases for implementation, as well as their range of energy loads. Figure 17 describes these ranges depending on the dimensions of analysis.

Figure 17 Electric energy demand depending on the dimension of the case study

At a household level: According to the World Bank and the IEA statistics in 2014, the worldwide average electric consumption per capita was 3.13 MWh/y [START_REF]Electric power consumption (kWh per capita)[END_REF].

Moreover, the United Nations published that worldwide, the number of members per household ranges from three to six persons [START_REF] Nations | Household Size and Composition Around the World 2017[END_REF]. Therefore, an average household worldwide, consumes between 9.39 and 18.78 MWh/y.

At block and neighborhood level: It is possible to take the example of some of the most energy intensive squares in Manhattan, New York [START_REF]Estimated Total Annual Building Energy Consumption at the Block and Lot Level for NYC[END_REF], that can go up to 80.2 GWh/y of electricity, 70 GWh/y for space heating and 12 GWh/y for space cooling.

At buildings level: There are some high intensity buildings in terms of energy consumption, such as airports, hotels, hospitals, university campi, etc. For At a regional level: A reasonable energy demand size for region could start in 500 GWh/y. This would be assuming a region with 160,000 inhabitants, and considering 3.13 MWh/y as the electric consumption per capita, as given above [START_REF]Electric power consumption (kWh per capita)[END_REF]. In terms of technical viability, Wu et al. [START_REF] Wu | Combined cooling, heating and power: A review[END_REF] found, as part of their literature review, that CCHP systems could be as large as 300MW when supplying energy to districts.

Computational tools to simulate energy system

Some computational tools assisting the design, operation and feasibility assessment of distributed energy generation are in Table 2 and Table 3 [79]- [START_REF] Ravn | The Balmorel Model Structure[END_REF]. All tools analyzed assess the techno-economic feasibility (Assmnt.), and some also the environmental one. Most of them running easily in Windows platform, while others require GAMS programming language to run.

A very important aspect is the solution method which can be run either by scenarios or optimization. The first reside on the idea that the user tests different setups and manually distinguishes the most appropriate. In contrast, software with optimization capabilities such as DER-CAM, BALMOREL, COMPOSE, TIMES/MARKAL, and HOMER use algorithms to get the proper type, size and operation schedule of technologies. From the five aforesaid, only DER-CAM, and COMPOSE are free access. But the second is mostly designed to assess single project, rather than microgrids (Table 3). A microgrid is usually more complex than a single project, because it is a local energy grid with control capability and able to operate autonomously from the traditional grid [START_REF]How Microgrids Work[END_REF].

Software Institution

Platform required to run

Comments

DER-CAM LBNL, US Web-based Windows

Written in GAMS and uses MILP as optimization algorithm. 

Energy PLAN

TIMES/ MARKAL

IEA-ETSAP (international)

Windows It runs with GAMS and a solver.

HOMER NREL, US

Windows It is designed for stand-alone systems. There are other six relevant characteristics of a software tool that this thesis evaluates. 1) The approach it uses (Apch.): Mostly all tools use a bottom-up approach, where the user builds the case study by taking small pieces of information and constructing the subsystem-level as accurate as possible.

2)

The technologies it can simulate: Modeling a CCHP-TS system requires at least the use of CHP, boiler, absorption chiller, and heat and cold storage. All tools, except EnergyPLAN, RETScreen, and Homer have them available.

3) The possibility to vary the price of electricity: That is relevant for markets with timevarying price, such as Europe. Only DER-CAM, Energy PLAN, EnergyPRO, COMPOSE, and HOMER have that feature. 4) The time step during the simulation: That determines the precision of the loads, and the smaller the time step in the loads, the higher the precision of the feasibility analysis and operation strategy. Any tool with hourly or by the minute time step is preferable. 5) the planification timespan: One year would be enough for operative and financial purposes, but the user must verify that the installation costs consider the time value of money. 6) The adoption of the tool over the scientific community: This is related to the relevance of the tool, as well as the documentation and support available. We quantify it in the last column of Table 3, reporting the number of papers referring to the software tool. That could include papers that use it to conduct an analysis, or papers that only mention its name.

After the analysis in this section, it is possible to state that DER-CAM offers some comparative strengths over the others computational resources optimizing the design and operation strategy of a microgrid. DER-CAM is a free access tool that follows a bottom-up approach and includes all the technologies required to simulate a CCHP-TS system. It allows for an energy price variation. Its planification time span is one-year, and the simulation time-step is in hourly basis. Moreover, the documentation available is detailed enough to understand and analyze the methods used and the assumptions done. The subsection 3.2.2 describes its characteristic in detail.

Modeling and optimization of combined thermal and power energy systems

Until this point, it has been discussed that the assessment of combined thermal and power energy systems is done either analytically or through computational tool to simulate. Moreover, the section 2.3 emphasized the importance of using computational tool that provide the optimal solution.

This section presents a review of the optimization algorithms that different authors have used. Afterwards, it explains the general mathematical model to optimize a trigeneration systems with thermal storage. And finally, it presents a free computational solution to modeling and optimization.

Optimization algorithms for combined thermal and power energy systems

A model is a set of mathematical expressions that describe a system. An analytical model is based on Physics laws and a parametrical one is based on the characterization of experimental data. Once the model is formulated, it can be used to simulate or optimize.

To assess the feasibility of combined thermal and power energy systems, authors such as Cardona et al. [START_REF] Cardona | A measurement methodology for monitoring a CHCP pilot plant for an office building[END_REF] and Angrisani et al. [START_REF] Angrisani | Experimental results of a micro-trigeneration installation[END_REF] collect data through experimental pilot plants. This is the basis to build a parametric model. While Cardona et al. [START_REF] Cardona | A measurement methodology for monitoring a CHCP pilot plant for an office building[END_REF] provides the detailed experimental measurement methodology, Angrisani et al. [START_REF] Angrisani | Experimental results of a micro-trigeneration installation[END_REF] reports the results of a case study in Frignano, Italy. They even formulate a set of expressions comparing the operational cost, PES (primary energy savings) and CO2 emissions with the conventional scenario. On the other hand, Mago et al. [START_REF] Mago | Methodology to perform a nonconventional evaluation of cooling, heating, and power systems[END_REF], Fumo et al. [START_REF] Fumo | Analysis of combined cooling, heating, and power systems based on source primary energy consumption[END_REF], Wang et al. [START_REF] Wang | Performance comparison of combined cooling heating and power system in different operation modes[END_REF],

and Knizley et al. [START_REF] Knizley | Evaluation of the operational cost savings potential from a D-CHP system based on a monthly power-to-heat ratio analysis[END_REF] are authors who develop analytical models to simulate in steady-state. The first three assess the energy and emission reduction, and the other assesses the cost reduction.

However, the object of interest for this section and Table 4 are authors that design analytical models to optimize. Wu et al. [START_REF] Wu | Multi-objective optimal operation strategy study of micro-CCHP system[END_REF], Hajabdollahi [START_REF] Hajabdollahi | Investigating the effects of load demands on selection of optimum CCHP-ORC plant[END_REF], and

Hajabdollahi [START_REF] Hajabdollahi | Assessment of new operational strategy in optimization of CCHP plant for different climates using evolutionary algorithms[END_REF] develop models for steady-state. They implement a multiobjective MINLP, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) respectively as optimization algorithms for the cost reduction. However, there are other authors that work with dynamic models. These capture the behavior of the systems across the different hours of the year. For example, Cardona et al. [START_REF] Cardona | Energy saving in airports by trigeneration. Part II: Short and long term planning for the Malpensa 2000 CHCP plant[END_REF], [START_REF] Cardona | Energy saving in airports by trigeneration. Part I: Assessing economic and technical potential[END_REF] and Li et al. [START_REF] Li | Performance analysis and optimization of a CCHP-GSHP coupling system based on quantum genetic algorithm[END_REF] dynamically assess the energy reduction for CCHP systems using LP and GA. While H. Li et al. [START_REF] Li | Thermal-economic optimization of a distributed multi-generation energy system -A case study of Beijing[END_REF], C.Z. Li et al. [START_REF] Li | Sensitivity analysis of energy demands on performance of CCHP system[END_REF],

and Sundberg [START_REF] Sundberg | Ranking factors of an investment in cogeneration: Sensitivity analysis ranking the technical and economical factors[END_REF] dynamically assess the cost reduction using GA, MINLP, and MILP respectively. Similarly, computational tools, such as DER-CAM, BALMOREL, and COMPOSE, base their dynamic analysis in MILP.

As side comment, the LP optimization used by Cardona [START_REF] Cardona | Energy saving in airports by trigeneration. Part II: Short and long term planning for the Malpensa 2000 CHCP plant[END_REF], [START_REF] Cardona | Energy saving in airports by trigeneration. Part I: Assessing economic and technical potential[END_REF] * Table 4 Papers using optimization algorithms to assess the feasibility of combined thermal and power energy systems From the table above, it can be said that MILP and GA are the most often used optimization methods [START_REF] Pickering | Comparison of Metaheuristic and Linear Programming Models for the Purpose of Optimising Building Energy Supply Operation Schedule Comparison of Metaheuristic and Linear Programming Models for the Purpose of Optimising Building Energy Supply Operation Sche[END_REF]. Although metaheuristic methods, such as GA, produce good solution quickly, the optimality is impossible to guarantee [START_REF] Ikeda | Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system[END_REF]. In contrast, MILP find optimal solutions, but they require the simplification of nonlinear behaviors embedded in the energy scheduling optimization [START_REF] Pickering | Comparison of Metaheuristic and Linear Programming Models for the Purpose of Optimising Building Energy Supply Operation Schedule Comparison of Metaheuristic and Linear Programming Models for the Purpose of Optimising Building Energy Supply Operation Sche[END_REF]. In any case, mathematical methods, such as MILP, are a good first choice [START_REF] Fügenschuh | What is the advantages of MIP model over metaheuristics?[END_REF]. It is due to their simplicity that allows gaining insight in the structure of the problem, and because there is a wider amount of solvers available [START_REF] Fügenschuh | What is the advantages of MIP model over metaheuristics?[END_REF], [START_REF] Fischetti | Local branching[END_REF].

The general structure of the optimization model

All the models mentioned in subsection 2.4.1, are based on energy balances.

And, independently from the optimization algorithm used, the general structure of the model is as follows:

Objective function: Minimizing cost, emissions, or energy consumption.

Constraints

▪ Equality Constraints

-The demand of the three energy vectors is fully covered (electricity, heat, and cold).

-The heat produced by each CHP units is tied to its electricity production (considering the corresponding efficiencies).

-The state-of-charge of the thermal storage at each hour is tied to its state-of-charge on the previous hour: inputs and outputs (considering the decays of energy corresponding to its storage)

▪ Inequality Constraints

-The electricity production of all CHP units does not exceed their installed capacity, but it is larger than a minimum production level.

It also considers the efficiency of the equipment.

-The amount of active CHP units each hour does not exceed the CHP units installed.

-The Installed capacity of units such as boiler, vapor-compression chiller, absorption chiller, and thermal storage, is not exceeded (considering the corresponding efficiencies).

-The state-of-charge of the thermal storage does not go lower than a minimum level. This is a technological constraint.

-The input and output of the thermal storage do not exceed the maximum charge and discharge rate.

-A restriction to avoid an input and an output from the thermal storage within the same hour (timestep). That would not make sense in terms of optimal management of energy.

The variables of the model are divided into three types: 

✓

PYOMO -CPLEX : a computational alternative

The section 2.3 provided a list of computational tools assisting the design, operation and feasibility assessment of distributed energy generation. At least three of them have been written in GAMS. Which is a commercial software system combining mathematical algebra and computer programming to solve optimization problems [START_REF]About the Company[END_REF].

As an alternative to GAMS, the combination of PYOMO -CPLEX has the capability to solve MILP problems, appropriate for the feasibility assessment of CCHP-TS systems.

PYOMO [START_REF]About Pyomo[END_REF], [START_REF][END_REF] The functionality of PYOMO is usually associated with algebraic modelling languages (AML) that support the analysis of mathematical models with a highlevel language. An AML does not solve the problems directly. Instead, it calls external algorithms (solvers), to obtain a solution [START_REF] Fourer | A Modeling Language for Mathematical Programming[END_REF]. Then PYOMO provides a general interface for the solver, such as CBC, CPLEX, FortMP, Gurobi, MINOS, IPOPT, SNOPT, KNITRO, and LGO.

Among them, the IBM ILOG CPLEX Optimization Studio [101] is a recognized solver in the industrial and academic contexts. CPLEX is suitable to solve MILP problems, that are much harder to solve than LPs, and uses the Branch & Bound (B&B) algorithm [START_REF]CPLEX Performance Tuning for Mixed Integer Programs[END_REF]. This is a systematic search over the possible combinations of the discrete variables (as if they were branches of a tree).

Moreover, it uses linear or quadratic programming relaxations to find bounds on the solution. The B&B search stops when every partial solution in the tree has been either branched or terminated, or when the gap between the upper and lower bounds becomes smaller than a certain threshold [START_REF]relative MIP gap tolerance: CPLEX[END_REF].

Sensitivity analysis

Sections 2.1 and 2.2 have explored the variables that different authors have studied, considering them relevant to assess the feasibility of combined thermal and power energy systems. This section aims to show 1) how the authors of Table 1 have conducted their variables analysis and, 2) how other authors in the field of energy analysis have done it in different contexts. The following paragraphs, along with Table 5 give the insights.

Across the literature, there are different ways to assess the impact of the parameters or variables within an output function. The simplest way is to vary one parameter around an initial baseline value and measure the impact on the output. That is called "one-at-a-time" (OAT) sensitivity analysis [START_REF] Sundberg | Ranking factors of an investment in cogeneration: Sensitivity analysis ranking the technical and economical factors[END_REF], [START_REF] Jaxa-Rozen | Tree-based ensemble methods for sensitivity analysis of environmental models: A performance comparison with Sobol and Morris techniques[END_REF] and normally it is made locally. The disadvantages of OAT include that it is time consuming when parameters are numerous, it does not capture non-linear and interactions effects (when the effect of one factor depends on the value of another one), and it becomes a non-explorative method at high dimensional space. The latter is the result of the curse of dimensionality, and it means that the more parameters, the lower the size of the hyperspace that is explored, converging to zero [START_REF] Saltelli | How to avoid a perfunctory sensitivity analysis[END_REF], [START_REF] Vidal | The beginning and the end: The meaning of life in a cosmological perspective[END_REF]. Li, 2016 [START_REF] Li | Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system[END_REF] * Fuzzy logic analysis w/weighting method for different set of factors.

OAT (parametric analysis)

Sets

Table 5 Types of sensitivity analysis methods used in energy analysis

Another alternative is to build scenarios with different sets of parameters. This is suitable for the analysis of major changes, but neither does it captures nonlinear and interactions effects [START_REF] Sundberg | Ranking factors of an investment in cogeneration: Sensitivity analysis ranking the technical and economical factors[END_REF].

Most of the papers assessing the feasibility of combined thermal and power energy systems belong to the two categories above [START_REF] Hajabdollahi | Investigating the effects of load demands on selection of optimum CCHP-ORC plant[END_REF], [START_REF] Cardona | Energy saving in airports by trigeneration. Part II: Short and long term planning for the Malpensa 2000 CHCP plant[END_REF], [START_REF] Hajabdollahi | Assessment of new operational strategy in optimization of CCHP plant for different climates using evolutionary algorithms[END_REF], [START_REF] Memon | Parametric based economic analysis of a trigeneration system proposed for residential buildings[END_REF], [START_REF] Mago | Methodology to perform a nonconventional evaluation of cooling, heating, and power systems[END_REF]- [START_REF] Li | Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system[END_REF].

A more rigorous alternative is to use a global sensitivity analysis (GSA) method. It evaluates the importance of each input over the model output by exploring each parameter across the domain of all the other inputs. Yet, using GSA methods is not a fully deployed practice in the scientific community. Saltelli et al. found that less than 40% of papers of the energy field use GSA methods [START_REF] Saltelli | Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices[END_REF]. In 2013, Wei et al. [START_REF] Wei | A review of sensitivity analysis methods in building energy analysis[END_REF] conducted a review which concluded that the main GSA methods used for energy analysis are: screening-based, variancebased, regression, and meta-model based approaches. Similarly, Song et al.

[109] presented a pie chart reflecting that Morris, Sobol, and FAST were the most popular GSA methods used between the years 1996 and 2013 for water resources and environmental sciences. Table 5 consolidates a number of papers that take Morris and Sobol as regular reference methods [START_REF] Jaxa-Rozen | Tree-based ensemble methods for sensitivity analysis of environmental models: A performance comparison with Sobol and Morris techniques[END_REF], [START_REF] Razavi | A new framework for comprehensive, robust, and efficient global sensitivity analysis:2. Application[END_REF]- [START_REF] Sarrazin | Global Sensitivity Analysis of environmental models: Convergence and validation[END_REF], or use them separately [START_REF] Sanchez | Application of sensitivity analysis in building energy simulations: Combining first-and second-order elementary effects methods[END_REF], [START_REF] Spitz | Practical application of uncertainty analysis and sensitivity analysis on an experimental house[END_REF]. Similarly, there are specific cases using FAST [START_REF] Shen | Sensitivity analysis on daylighting and energy performance of perimeter offices with automated shading[END_REF], RSA [START_REF] Sarrazin | Global Sensitivity Analysis of environmental models: Convergence and validation[END_REF] and VARS [START_REF] Razavi | A new framework for comprehensive, robust, and efficient global sensitivity analysis:2. Application[END_REF], [START_REF] Razavi | A new framework for comprehensive, robust, and efficient global sensitivity analysis: 1. Theory[END_REF].

Apart from the GSA methods, there are other "unconventional" methods to assess sensitivity analysis. For example, Jaxa-Rozen suggests using decision tree-based ensemble methods (random forests and extra-trees) applied to sensitivity analysis problems [START_REF] Jaxa-Rozen | Tree-based ensemble methods for sensitivity analysis of environmental models: A performance comparison with Sobol and Morris techniques[END_REF]. The method of extra-tree performs favorably compared to Morris. But that is not the case against Sobol, because decision tree-based methods only return the relative importance of the inputs, rather than their direct effect on the output variance. Finally, another option is to use design of experiment (DOE) methods for sensitivity analysis purposes [START_REF]Difference between Sensitivity analysis and Design of Experiments[END_REF]. That is the case of Sundberg et al. [START_REF] Sundberg | Ranking factors of an investment in cogeneration: Sensitivity analysis ranking the technical and economical factors[END_REF] which assess the economic feasibility of a CCHP system by varying 25 factors using a full factorial design of experiments with runs at two levels. Besides, there are different experimental design methods: full factorial, central composite design (CCD), Box-Behnken design (BBD), among others. Rakic et al. [START_REF] Rakić | Comparison of Full Factorial Design, Central Composite Design, and Box-Behnken Design in Chromatographic Method Development for the Determination of Fluconazole and Its Impurities[END_REF] conducted a comparative analysis of them for a pharmaceutical application and found that the three-level full factorial design and CCD created significantly better models than the two-level full factorial design and BBD. They also highlighted that CCD requires less samples than three-level full factorial design, but that also means that the latter has more degrees of freedom. This is helpful to create more reliable models, especially when experimental errors are present. Additionally, the National Institute of Standards and Technology (NIST) [START_REF]How do you select an experimental design?[END_REF] shows a table indicating that when a there are five factors or more, it is better to use a DoE such as factorial design for screening purposes.

In summary, the factorial DoE seems an adequate alternative to the popular OAT and the rigorous GSA. It ensures the best choice of sample points within a space, it is simpler than GSA methods, but at the same time corrects the main drawback of OAT regarding its local analysis. Additionally, it gives an idea of the interaction effects between parameters because it changes several factors simultaneously.

Altogether, this section revealed that most of the authors conducting sensitivity analysis for combined thermal and power energy systems, use a simple parametric analysis (OAT) [START_REF] Hajabdollahi | Investigating the effects of load demands on selection of optimum CCHP-ORC plant[END_REF], [START_REF] Cardona | Energy saving in airports by trigeneration. Part II: Short and long term planning for the Malpensa 2000 CHCP plant[END_REF], [START_REF] Mago | Methodology to perform a nonconventional evaluation of cooling, heating, and power systems[END_REF]- [START_REF] Wu | Multi-objective optimal operation strategy study of micro-CCHP system[END_REF], [START_REF] Memon | Parametric based economic analysis of a trigeneration system proposed for residential buildings[END_REF]. As for the use of global sensitivity analysis methods (GSA), it is rare for this application although it is extensively used in the energy analysis context. Morris and Sobol are the most popular GSA methods across the literature. However, VARS is also an interesting and novel approach that characterizes the variation of the model at different points and scales.

Morris is a derivative-based or screening-based method, ideal to identify the significant factors for the output, without quantifying it exactly. It aims to deal with many input factors while keeping a small number of samples. As a drawback, while it helps to recognize that interaction effects among parameters exist, it does not identify them precisely. Unless the second order sensitivity index is calculated [START_REF] Sanchez | Application of sensitivity analysis in building energy simulations: Combining first-and second-order elementary effects methods[END_REF], but that in turn makes the method computationally expensive.

On the other hand, derivative-based approaches, similar to OAT, suffer the curse of dimensionality and becomes a non-explorative method at a high dimensional space [START_REF] Saltelli | How to avoid a perfunctory sensitivity analysis[END_REF].

Sobol is a variance-based method ideal for risk assessment, but it is computationally expensive [START_REF] Saltelli | Global Sensitivity Analysis : The Primer[END_REF]. It assesses how much the variance of the output depends on the uncertain input factors and decomposes it accordingly.

Moreover, it identifies non-linearities and non-additive properties of the model, quantifying the interaction effects among parameters. According to Saltelli et al.

[120], Sobol method is superior than FAST on the capacity to easily compute high-order indexes. Moreover, this method does not suffer the curse of dimensionality.

VARS (Variogram Analysis of Response Surfaces) [START_REF] Razavi | A new framework for comprehensive, robust, and efficient global sensitivity analysis:2. Application[END_REF], [START_REF] Razavi | A new framework for comprehensive, robust, and efficient global sensitivity analysis: 1. Theory[END_REF] 

Position of the thesis

Chapter 2 is devoted to exhibiting the state of art for the feasibility assessment of combined thermal and power energy systems. Likewise, it highlights the importance of energy prices and energy loads as relevant variables. Moreover, several institutional and industrial reports present them as a usual application of CHP [START_REF]Combined Heat & Power Guide A best practice guide for businesses in Northern Ireland[END_REF]- [START_REF]Combined Heat and Power -A guide to developing and implementing greenhouse gas reduction programs[END_REF]. Therefore, the analysis of their load profiles seems promising.

The last remark is the high relevance of the economic feasibility. Most of the papers assess it, and all governmental organizations take it as parameter to invest in this kind of projects.

Said the above, this thesis aims to study the techno-economic feasibility of Trigeneration-Thermal Storage systems (CCHP-TS). The focus is the attribute relevance analysis for energy prices and size of the energy loads. All this, taking a university campus as case study.

METHODOLOGY

General methodology

The methodology is divided in two phases, presented in Figure 18.

The first phase (developed in chapter 4) corresponds to an exploratory analysis to examine the relevance of the CCHP-TS model, its feasibility, and its sensitivity to the selected variables (energy prices and loads). To do so, DER-CAM and its embedded model is used. As for the sensitivity analysis method, full factorial There are different DoE methods: one-at-a-time (OAT) that explore the factors one by one, but does not identify interaction effects; orthogonal design of experiments, such as Taguchi, that reduces experimental runs at a loss in experimental resolution and do not find interaction effects; and factorial DoE, that explores all the factors at the same time and recognizes interactions effects.

Full factorial DoE [START_REF] Shivhare | Practical considerations for DoE implementation in quality by design[END_REF], [START_REF] Capetillo | Multiphase injector modelling for automotive SCR systems: A full factorial design of experiment and optimization[END_REF] When there is a previous knowledge of the system, it is possible to reduce the samples, by conducting a fractional factorial DoE, although the full factorial DoE is more useful in terms of the information. Another alternative is to conduct it with a low resolution full factorial DoE to identify the main effects, and then a high-resolution one [START_REF] Shivhare | Practical considerations for DoE implementation in quality by design[END_REF].

In this work, a full factorial DoE is conducted, aiming to examine a wide range of the variables. The results of this exploratory phase provide the direction to increase the resolution in following steps. DER-CAM has been typically used in the context of microgrids [START_REF] Stadler | Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel[END_REF], [START_REF] Stadler | DER -CAM User Manual[END_REF] supporting the investment and planning of energy services such as space heating and cooling, hot water, and electricity for appliances. Additionally, it includes modules for thermal storage [START_REF] Steen | Modeling of thermal storage systems in MILP distributed energy resource models[END_REF], demand response, ancillary grid services [START_REF] Cardoso | The impact of ancillary services in optimal DER investment decisions[END_REF] and multi-node modeling approach [START_REF] Mashayekh | A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids[END_REF]. All these features have made DER-CAM the chosen tool for a number of publications with different purposes: assessing the feasibility of distributed energy generation [START_REF] Morgan | Boston Community Energy Study -Zonal Analysis for Urban Microgrids[END_REF], [START_REF]California CHP Potential In 2030[END_REF];

combining the distributed generation with energy conservation measures [START_REF] Lee | Integrated control of dynamic facades and distributed energy resources for energy cost minimization in commercial buildings[END_REF];

analyzing the performance of the electrical distribution circuit for microgrids [START_REF] Jung | Optimal planning and design of hybrid renewable energy systems for microgrids[END_REF]; and even studying the integration of communication technologies and information models for the integration and interoperability of distributed energy generation systems [START_REF] Ghatikar | Distributed energy systems integration and demand optimization for autonomous operations and electric grid transactions[END_REF].

A significant drawback of DER-CAM is the impossibility to conduct sensitivity analysis in an efficient manner. DER-CAM, in its current state, requires running scenarios time and again, modifying the user's variable of interest. Moreover, once the results are obtained, the calculation of the sensitivity analysis indexes must be done separately. In other words, DER-CAM does not have any sensitivity analysis capability.

How DER-CAM works?

Last subsection mentioned that DER-CAM minimizes total annual cost and/or CO2 emissions. To do that, a reference scenario is required. The total annual cost and CO2 emissions of the reference scenario are calculated and then compared with the proposed scenario. In this thesis, the reference scenario (shown in Figure 3) uses electricity from the grid to meet the annual electric and cooling loads (through a vapor-compression chiller) and uses a natural gas boiler to meet the annual heating loads.

Then, the four key inputs of the model in DER-CAM are: the end-use energy loads (electricity, heating, and cooling), based on hourly information and typical days per month (week, weekend and peak days); the tariff structures of electricity and other fuels; the characteristics of the pool of technologies available (installed capacities, investment and maintenance costs and efficiencies); and the total annual cost and CO2 emissions of the reference scenario.

Notice that the first and second input (energy loads and prices) are based on the combinations proposed with the full factorial DoE, as per the methodology anticipated in this thesis.

On the other hand, the outputs of the model, after simulating all the combinations proposed by the full factorial DoE, are: the corresponding total annual cost and CO2 emissions, the optimal combination of technologies and their installed capacity (design of the system), the hourly schedule for each technology (operation strategy), and the hourly consumption per type of energy vector and fuel.

Analyzing and extracting insights from the output of DER-CAM requires data analysis techniques that will be introduced in subsection 3.2.3.

Data analysis

Data analysis [START_REF] Adèr | Advising on Research Methods: a consultant ś companion[END_REF] is the process of evaluating data to get useful insight and support decision-making. It implements analytical and statistical tools aiming to inspect, clean, transform and model.

Given the number of scenarios explored in this work, the use of data analysis tools, such as clustering, is essential. It aims to understand the effects of the variables, as well as the coupling effects, over the feasibility of the system.

Data clustering

Clustering is a part of the exploratory data analysis, used for pattern recognition, image analysis, information retrieval, data compression, machine learning, etc.

Clustering methods are a solution to segregate the data in relevant categories, based on a concept of similarity or proximity among them [START_REF] Ramos | A data-mining-based methodology to support MV electricity customers' characterization[END_REF]. Several studies of the energy fields have used them, ranging from social studies [START_REF] Ochoa | Privation of energy services in Mexican households: An alternative measure of energy poverty[END_REF] to the assessment of renewable energy [START_REF] Grigoras | An assessment of the renewable energy potential using a clustering based data mining method. Case study in Romania[END_REF], [START_REF] Sánchez-Pérez | Real time Markov chains: Wind states in anemometric data[END_REF] and analysis of energy loads [START_REF] Ramos | A data-mining-based methodology to support MV electricity customers' characterization[END_REF].

For example, Grigoras et al. [START_REF] Grigoras | An assessment of the renewable energy potential using a clustering based data mining method. Case study in Romania[END_REF] There are four types of clustering commonly used: centroid, density, distribution, and connectivity [START_REF]4 Types of Cluster Analysis Techniques Used in Data Science[END_REF]. Table 6 indicates inputs and outputs, as well as the characteristic methods for each type. The centroid clustering relies on iterating to find the coordinate for the centroid of each cluster and gathering the surrounding points. For this method, the analyst must decide the number of clusters in advance and the method could form forced clusters to comply with this number. In contrast, the density clustering identifies the areas with the higher concentration of points and the clusters are formed based on the distance between them. Setting up the desired is of key importance because it should be large enough to perceive the difference between clusters, and small enough to group the similar points. On the other hand, the distribution clustering works by proposing a density distribution for each cluster (the analyst must decide the number of clusters in advance). The process iterates until finding the distributions that best represent the data. A particularity of this method is that instead of determining that a point A belongs to cluster 1 (hard clustering), it quantifies the probability of point A belonging to cluster 1 or cluster 2 (soft clustering). Lastly, the connectivity clustering is characterized by the hierarchies represented with dendrograms. It uses a bottom-up approach where each point starts with its own cluster, but along the process similar points get merged.

Inputs Output Characteristic method

Centroid clustering

No. of clusters Max no. of iterations

Converging tolerance

Clusters k-Means

Density clustering

Max distance between points

Min points for cluster

Clusters DBSCAN

Distribution clustering

No. of clusters

Convergence setpoint

Probability property of each clusters (μ,σ).

Proportion of points mainly described by each cluster.

Gaussian mixtures

Connectivity clustering

No. of clusters OR Distance threshold (maximum distance between clusters)

Clusters Hierarchical method

Table 6 Types of clustering: Inputs and outputs Table 7 consolidates the characteristics of their corresponding methods [START_REF]2.3. Clustering[END_REF]- [START_REF] Molchanov | Overcoming the curse of dimensionality when clustering multivariate volume data[END_REF]. Each column relates to one feature, either positive or negative (indicated by a sign). ♦ Analyzing the probabilities provided by the soft clustering. ▲ It depends on the accuracy of the method to determine the number of clusters. ‡ It is possible to solve this by implementing a method to estimate the optimal number of clusters.

Kind

Among the four methods shown in Table 7, k-Means has some advantages over the others. It is well known for being easy to implement as an exploratory method in data analysis and data mining. It is computationally more efficient (low memory consumption [START_REF] Morissette | The k-means clustering technique: General considerations and implementation in Mathematica[END_REF]) than the Ward hierarchical method. It scales well in large samples, compared to the Gaussian mixture method. And, contrary to DBSCAN, it avoids large differences in cluster density. Moreover, k-Means can identify clusters that are next to each other.

One drawback that k-Means and other methods share is its stochastic nature.

In the case of DBSCAN, the results depend on the starting point considered. For k-Means and Gaussian mixtures, they depend on the random proposal during the first iteration (place of centroids and characteristics of the clusters respectively). A practical countermeasure is to repeat the clustering several times and ensure that the solution does not change dramatically. To do that, it is helpful to use an inexpensive method in terms of computational resources.

It is good to mention that some of the disadvantages of k-Means can be offset by using a pre-assessment method. The objective is to determine the optimal number of clusters and include measures to restrict the variance within clusters.

The k-Means method is selected for the analysis proposed in this work.

k-Means

The algorithm k-means [START_REF] Ramos | A data-mining-based methodology to support MV electricity customers' characterization[END_REF], [START_REF] Hartigan | Algorithm AS 136 : A K-Means Clustering Algorithm[END_REF], [START_REF] Mcloughlin | A clustering approach to domestic electricity load profile characterisation using smart metering data[END_REF] is the most popular unsupervised clustering tool used in scientific and industrial applications [START_REF] Kogan | Grouping multidimensional data: Recent advances in clustering[END_REF]. It is a heuristic clustering analysis method from the field of machine learning and data mining [START_REF]2.3. Clustering[END_REF] Eq. 1

The distances ‖𝑥 𝑖 -𝜇 𝑗 ‖ between the observation x i ∈ S j , and the centroïd μ j of subset S j can be Euclidian, Manhattan or others. In our case, Euclidian distance has been used:

d (x i , μ j ) = ‖x i -μ j ‖ 2 = √∑ (v x i ,l -v μ j ,l ) 2 p l=1
Eq. 2

The three key parameters required for k-Means are:

1. The number of clusters desired 2. The maximum number of iterations 3. The tolerance to declare convergence between iterations, measured by either the relative decrease in the objective function or centroids moving less than the tolerance Choosing the desired number of subsets or clusters 𝑘 that are used to segregate the data is not trivial. There should be a balance between minimizing the cluster dispersion (making elements of a cluster alike) and maximizing inter-cluster dispersion (making clusters different enough from each other). For example, a larger k minimizes the cluster dispersion because it encourages having small clusters with more similar elements within them. However, a larger k could also cause that those small clusters have similar properties, that could allow to aggregate them in a single cluster.

If k is based on the knowledge of the data behavior [START_REF] Estrada | Smart City Visualization Tool for the Open Data Georeferenced Analysis Utilizing Machine Learning[END_REF], there are different approaches to determine it. Some authors compare the variance within groups vs. the variance between the groups, making sure that the latter is larger [START_REF] Cruz-Cárdenas | Delineation of Environmental Units by Multivariate Techniques in the Duero River Watershed, Michoacán, Mexico[END_REF];

other use the silhouette and the Calinski-Harabasz criteria [START_REF] Silva-Flores | Does community-based forest ownership favour conservation of tree species diversity? A comparison of forest ownership regimes in the Sierra Madre Occidental, Mexico[END_REF]; others like Ramos [START_REF] Ramos | A data-mining-based methodology to support MV electricity customers' characterization[END_REF] conclude that none of the possible methods get the best result for all datasets. In section 3.2.3.3, we propose a methodology to determine the optimal number of clusters.

Proposed methodology: ELECTRE 1S determining the number of clusters in k-Means

In k-Means, the number of clusters k is the key parameter to determine. The higher k, the smaller and the denser the clusters are, increasing the similarity of the points that constitute each cluster. On another hand, each cluster must highlight a specific behavior so that inter-cluster dissimilarity and distance must be maximized. A good cluster formation is when clusters are very dense, but also very far from each other. Finally, it seems relevant to minimize the number of clusters in order to draw general rules and conclusions that are applicable to many situations. These three targets are conflicting so that compromise must be found. To sort out these conflict targets, Multi Criteria Decision Making (MCDM) is used in this work to determine k. One of the most well-known families in MCDM is ELECTRE and its variations can be used in choice, ranking or sorting decision-making problems. The theoretical background of MCDM ELECTRE 1S is described in Annex III.

In this work, each data point corresponds to one DER-CAM simulation, consolidating a vector of different outputs, called segregation parameters. These segregation parameters describe important design and operation results. They include the percentage of cost savings obtained with the CCHP-TS system, the production means for each energy carrier (i.e. if the electricity comes from the national grid or is produced in-house) and the energy flows within a CCHP-TS system (i.e. if the heat produced by the CHP is used to cover the heating load, or it is devoted producing cooling through the usage of Absorption chiller).

Then, these data points are classified with k-means using different values of k (number of clusters). These different values of k give origin to several clustering alternatives that are discriminated pair by pair with MCDM ELECTRE 1S. Last, it is selected the clustering alternative (depending on the k value) that minimizes the cluster dispersion and maximizes the inter-cluster dispersion. All these steps are followed and explained thoroughly in section 4.3.

Phase II: Sensitivity analysis of the CCHP-TS feasibility

Modeling and optimization solutions adapted to SA implementation DER-CAM is appropriate for the energy system optimization in the Phase I due to its interface, making the implementation of the tests easier. However, as explained in subsection 3.2.2.1, it is not designed to conduct many simulations (on the order of thousands), which is required to perform a global sensitivity analysis study in Phase II.

Therefore, a faster and adapted model has been designed in collaboration with the group developing DER-CAM in the Lawrence Berkeley National Laboratory.

This new tool keeps the good representation of the systems given by DER-CAM, because it uses the same thermo-dynamical and economical logic (described in section 2.4.2). The difference is that it is coded in the Python programming language, using the PYOMO library and the CPLEX solver to optimize (see subsection 2.4.3 further detail). The main advantages of this Python-PYOMO-CPLEX tool over DER-CAM is that it works without human-machine interface and aims to perform faster thousands of simulations.

The main equations governing the model, are the objective function that minimizes the total annual cost (Eq. 3), and the equality constraints to cover the energy loads at each hourly timestep t (Eq. 4, Eq. 5, and Eq. 6). These are explained below, and the full model is given in Annex IV.

𝐌𝐈𝐍 𝐀𝐧𝐧𝐮𝐚𝐥 𝐂𝐨𝐬𝐭

= 𝐆𝐫𝐢𝐝(𝐂𝐨𝐬𝐭) + 𝐂𝐇𝐏(𝐂𝐨𝐬𝐭) + 𝐁𝐨𝐢𝐥𝐞𝐫(𝐂𝐨𝐬𝐭) + 𝐀𝐛𝐬(𝐂𝐨𝐬𝐭)

+ 𝐕𝐂𝐜𝐡𝐢𝐥𝐥𝐞𝐫(𝐂𝐨𝐬𝐭) + 𝐂𝐒𝐭𝐠(𝐂𝐨𝐬𝐭) + 𝐇𝐒𝐭𝐠(𝐂𝐨𝐬𝐭)

Eq. 3

The total annual cost (Eq. 3) is the sum of all cost related to importing electricity from the grid, producing energy with the CHP, using the boiler, absorption chiller (Abs), vapor-compression chiller (VCchiller), and cold and heat storage (CStg and HStg respectively). The costs also include the investment and maintenance cost of the technologies, considering their lifetime and the interest rate of the investment.

When the objective function is minimizing the cost, it includes the investment and s --it is not obvious... say it includes investment.... ). Note that the cold storage stores thermal energy, but its equations are expressed in terms of the electricity required by a vapor-compression chiller to produce the cold.

eGrid
On the other hand, we tested the good correspondence between the Python-PYOMO-CPLEX tool and DER-CAM, by running 30 different scenarios in both and comparing the results given by each of the tool.

The input data corresponding to the scenarios was the same for Python-PYOMO-CPLEX tool and DER-CAM. However, an important setting for the branch and bound method (B&B) in CPLEX, explained in section 2.4.3, is the relative MIP gap tolerance. This is the relative tolerance on the gap between the best integer objective and the objective of the best node remaining (Eq. 7) [START_REF]relative MIP gap tolerance: CPLEX[END_REF].

The smaller this number, the more accurate the solution will be, but the time to obtain the solution is larger. In the case of this code, the relative MIP gap tolerance = 0.02, and the average solution time is 1 hour per simulation.

relative MIP gap tolerance ≤ |Best integer solution-Best B&B solution| (1𝑒10 -10 )|Best integer solution| Eq. 7

As an illustration of the test results, the Figure 19 shows that for all the cases, the difference between both tools regarding the percentage of savings is less than 1%, showing the good correspondence between DER-CAM and the Python-PYOMO-CPLEX tool. 

Sensitivity analysistheoretical background

A sensitivity analysis (SA) assesses the uncertainty of a dependent function given the change of its independent parameters [START_REF] Saltelli | Sensitivity analysis in practice: a guide to assessing scientific models[END_REF]. It is commonly used to identify the most influential variables and quantify their effects. In the field of building energy analysis [START_REF] Wei | A review of sensitivity analysis methods in building energy analysis[END_REF], it is useful for building design [START_REF] Sanchez | Application of sensitivity analysis in building energy simulations: Combining first-and second-order elementary effects methods[END_REF]- [START_REF] Shen | Sensitivity analysis on daylighting and energy performance of perimeter offices with automated shading[END_REF],

calibration of energy models [START_REF] Fabrizio | Methodologies and advancements in the calibration of building energy models[END_REF], building retrofit [START_REF] Lam | Sensitivity analysis and energy conservation measures implications[END_REF], building stock [START_REF] Sandberg | Sensitivity analysis in longterm dynamic building stock modeling -Exploring the importance of uncertainty of input parameters in Norwegian segmented dwelling stock model[END_REF],

impact of climate change on buildings [START_REF] Tian | Uncertainty and sensitivity analysis of building performance using probabilistic climate projections: A UK case study[END_REF], etc. As introduced in section 2. In a two-dimension space this gives: 

Global sensitivity analysis methods

Across the literature, Morris and Sobol are the most popular GSA methods, even used as benchmark [START_REF] Jaxa-Rozen | Tree-based ensemble methods for sensitivity analysis of environmental models: A performance comparison with Sobol and Morris techniques[END_REF], [START_REF] Razavi | A new framework for comprehensive, robust, and efficient global sensitivity analysis:2. Application[END_REF]- [START_REF] Spitz | Practical application of uncertainty analysis and sensitivity analysis on an experimental house[END_REF]. While VARS [START_REF] Razavi | A new framework for comprehensive, robust, and efficient global sensitivity analysis:2. Application[END_REF], [START_REF] Razavi | A new framework for comprehensive, robust, and efficient global sensitivity analysis: 1. Theory[END_REF], [START_REF] Razavi | VARS-Tool: A Comprehensive, Efficient, and Robust Toolbox for Global sensitivity analysis[END_REF] is a novel approach, based on a variogram analysis, that characterizes the variation of the model at different points and scales.

Morris -Derivative based approach

Morris [START_REF] Wei | A review of sensitivity analysis methods in building energy analysis[END_REF], [START_REF] Razavi | A new framework for comprehensive, robust, and efficient global sensitivity analysis: 1. Theory[END_REF], [START_REF] Saltelli | Global Sensitivity Analysis : The Primer[END_REF], [START_REF] Morris | Factorial Sampling Plans for Preliminary Computational Experiments[END_REF], [START_REF] Campolongo | An effective screening design for sensitivity analysis of large models[END_REF] This method is used when there is no interest in knowing quantitatively the sensitivity of each variable but instead, it is a qualitative way to identify the influential variables at a low simulation cost [START_REF] Saltelli | Global Sensitivity Analysis : The Primer[END_REF], [START_REF] Saltelli | A quantitative modelindependent method for global sensitivity analysis of model output[END_REF], [START_REF] Gomes | A multidisciplinary approach for building retrofit driven by thermal comfort[END_REF]. It is also good to mention that Morris becomes a non-explorative method at high dimensional space due to the curse of dimensionality. In other words, when the number of parameters increase, the size of the hyperspace explored converges to zero and the sensitivity analysis becomes less relevant [START_REF] Saltelli | How to avoid a perfunctory sensitivity analysis[END_REF]. Eq. 12

𝜇 𝑖 * = 1 𝑟 ∑ |𝐸𝐸 𝑖 | 𝑟 𝑚=1
Eq. 13

𝜎 𝑖 2 = 1 𝑟 -1 ∑ (𝐸𝐸 𝑖 -𝜇 𝑖 ) 2 𝑟 𝑚=1
Eq. 14

To obtain the r random samples within the uncertainty domain, Morris [START_REF] Morris | Factorial Sampling Plans for Preliminary Computational Experiments[END_REF] proposes the design of r trajectories, establishing for each a starting point and allowing the k independent variables vary one by one, in steps of Δ. The establishment of the starting point is random, as well as the order to vary the parameters and their direction. In 2007, Campolongo proposed a sampling strategy that maximizes the dispersion of the r trajectories within the domain Ω [START_REF] Saltelli | Global Sensitivity Analysis : The Primer[END_REF], [START_REF] Campolongo | An effective screening design for sensitivity analysis of large models[END_REF]. But in 2014, Sohier et al. [START_REF] Gomes | A multidisciplinary approach for building retrofit driven by thermal comfort[END_REF], [START_REF] Sohier | Improvement of the representativity of the morris method for air-launch-to-orbit separation[END_REF] demonstrated that using the Latin Hypercube Sampling (LHS) to determine the starting point of the route gives a uniform cover of the domain. Moreover, LHS is the most used method due to its stratification properties [START_REF] Wei | A review of sensitivity analysis methods in building energy analysis[END_REF].

The SA indexes obtained out of the Morris method correspond to Eq. 12, Eq.

13, and Eq. 14. They are:

1. μ : Mean of the distribution of the elementary effects EEi ~ Fi. For the interpretation of the indexes, the reader should know that Morris in 1991 [START_REF] Saltelli | Global Sensitivity Analysis : The Primer[END_REF], [START_REF] Morris | Factorial Sampling Plans for Preliminary Computational Experiments[END_REF] proposed μ to assess the overall influence of a variable on the output, while σ estimates the impact of non-linearity or the interaction effects.

Therefore, a large σ means that the influence of the variable strongly depends on the choice of the sample (non-linear effect) and/or the values of the other variables (interaction effects). On the other hand, similar μ and σ means that there are small non-linear and/or interaction behavior. Finally, a small σ means that the variable has an approximately linear behavior [START_REF] Saltelli | Global Sensitivity Analysis : The Primer[END_REF]. Morris suggests representing results in a plane (μ,σ). And Garcia Sanchez et al. [START_REF] Sanchez | Application of sensitivity analysis in building energy simulations: Combining first-and second-order elementary effects methods[END_REF] added a line μ=σ to this plane, to recognize easily the factors that are linear and monotonic from the ones that are non-monotonic, non-linear or have interaction effects. Morris also recommends analyzing μ and σ together, to avoid error type II during the interpretation process. The error type II in statistics, specifically in hypothesis testing, refers to the false positive. In this case, it is when the method fails to identify an influent factor [START_REF] Campolongo | An effective screening design for sensitivity analysis of large models[END_REF]. This happens with non-monotonic variables that have positive and negative elementary effects which cancel each other when accounted in μ. As an alternative solution, Campolongo et al. [START_REF] Saltelli | Global Sensitivity Analysis : The Primer[END_REF], [START_REF] Campolongo | An effective screening design for sensitivity analysis of large models[END_REF] proposed in 2007 using μ*, that prevents this type of error. Therefore, when μ* has different magnitude than μ, it means that the variable has a nonmonotonic effect. Therefore, μ* becomes a good estimator of the total sensitivity index, measuring the overall effect of a variable on the output (including the interactions effects) [START_REF] Saltelli | Global Sensitivity Analysis : The Primer[END_REF].

Sobol -Variance based approach

Sobol [START_REF] Wei | A review of sensitivity analysis methods in building energy analysis[END_REF], [START_REF] Razavi | A new framework for comprehensive, robust, and efficient global sensitivity analysis: 1. Theory[END_REF], [START_REF] Saltelli | Global Sensitivity Analysis : The Primer[END_REF] is a variance-based approach. It recognizes that the response function Y can be described by a probability density function F(Y) and its associated variance V(Y). Then, the challenge is to separate the effect of each parameter xi.

Sobol proposes decomposing the variance V(Y) of the function F(Y)

. This is called the high-dimensional model representation decomposition, ANOVA-HDMR (Eq. [START_REF]Assessment of the National and Regional Potential for the Application of High-Efficiency Cogeneration and Efficient District Heating[END_REF].

𝑉(𝑌) = ∑ 𝑉 𝑖 𝑖 + ∑ ∑ 𝑉 𝑖𝑗 𝑗>𝑖 𝑖 + ⋯ + 𝑉 12…𝑘
Eq. 15

Where Vi is the variance of the function only due to the change in variable i (Eq. [START_REF] Angrisani | Performance assessment of cogeneration and trigeneration systems for small scale applications[END_REF]. It is also called first-order variance or main effect contribution of i.

𝑉 𝑖 = 𝑉[𝐸(𝑌|𝑋 𝑖 )]

Eq. 16

Vij is the variance of the function due to the interaction between variable i and j (Eq. 17). It is also called second-order variance or interaction effects between i and j. Variables i and j interact, for example, when a value of i is exclusively associated to another of j. The interaction exists when the first order variance Vi and Vj cannot fully explain the effect of Xi and Xj over Y.

𝑉 𝑖𝑗 = 𝑉[𝐸(𝑌|𝑋 𝑖 , 𝑋 𝑗 )] -𝑉[𝐸(𝑌|𝑋 𝑖 )] -𝑉[𝐸(𝑌|𝑋 𝑗 )]
Eq. 17

Similarly, there is third, fourth, and n-order variance.

To calculate the sensitivity indices corresponding to each term of the ANOVA-HDMR decomposition (Eq. 18), divide both sides of Eq. 15 by V(Y).

∑ 𝑆 𝑖 𝑖 + ∑ ∑ 𝑆 𝑖𝑗 𝑗>𝑖 𝑖 + ⋯ + 𝑆 12…𝑘 = 1
Eq. 18

Then, for example the sensitivity analysis index of the main effect contribution for variable i is (Eq. [START_REF]A Cogeração em Portugal -Desafios e Oportunidades[END_REF],

𝑆 𝑖 = 𝑉 𝑖 𝑉(𝑌) = 𝑉[𝐸(𝑌|𝑋 𝑖 )] 𝑉(𝑌) Eq. 19
While the total effect index of the variable i accounts for the total contribution to the output variation due to factor Xi, therefore, it counts the first-order effect plus all higher-order effects due to interactions (Eq. [START_REF] Sopas | Auditoria Energética e Aplicação de Medidas de Eficiência Energética a uma Instalação Industrial do Sector Farmacêutico[END_REF].

𝑆 𝑇𝑖 = 𝑆 𝑖 + ∑ 𝑆 𝑖𝑗 𝑗>𝑖 + ∑ ∑ 𝑆 𝑖𝑗𝑙 𝑙>𝑗 𝑗>𝑖 + ⋯ + 𝑆 𝑖2…𝑘
Eq. 20

For a given factor Xi, a significant difference between 𝑆 𝑇𝑖 and 𝑆 𝑖 indicates an important interaction involving that factor. In contrast, 𝑆 𝑖 = 𝑆 𝑇𝑖 means that Xi is an additive factor within the model [START_REF] Saltelli | How to avoid a perfunctory sensitivity analysis[END_REF]. On the other hand, the condition 𝑆 𝑇𝑖 = 0 is necessary and enough for Xi to be a noninfluential factor. It means that the factor can be fixed anywhere, without affecting the output (Factor Fixing). For practical terms, if 𝑆 𝑇𝑖 ≈ 0 , the analyst can fix Xi anywhere without affecting the output variance 𝑉(𝑌) significantly and the approximation error made when this model simplification is carried out depends on the value 𝑆 𝑇𝑖 .

For this method, it is not rare to find negative value in the SA indexes. It is part of the numerical error due to estimations within the method. They are generally found in SA indexes close to zero (unimportant factors), and increasing the sample reduces the likelihood of these events [START_REF] Saltelli | Global Sensitivity Analysis : The Primer[END_REF].

According to Saltelli [START_REF] Saltelli | Global Sensitivity Analysis : The Primer[END_REF], some advantages of the variance-based methods are: 1) the sensitivity measure is model-free, 2) it is useful for parameters under uncertainty because it captures the influence of their full range of variation, and

3) it measures the interaction effects among parameters. Moreover, by definition, Sobol decomposes the output variance into terms attributed to different combinations of parameters. In counterpart, the disadvantage is their computational cost. On the other hand, the variance-based approach is useful for: 1) Factor prioritization: identifying the most relevant parameter (or group of them) into the variance; 2) Factor fixing: identifying the non-relevant parameters;

3) Variance Cutting: guaranteeing that the output variance or uncertainty V(Y) is below a given tolerance.

Numerical sampling procedure based on Monte-Carlo

The variance-based methods usually require special sampling methods [START_REF] Sundberg | Ranking factors of an investment in cogeneration: Sensitivity analysis ranking the technical and economical factors[END_REF].

In 2002, Saltelli [START_REF] Saltelli | Making best use of model evaluations to compute sensitivity indices[END_REF] proposed a numerical procedure to calculate the sensitivity analysis indexes. The steps are the following:

1. Generate two matrices of data (A and B). Each with N random samples that contain the k independent variables. The order of magnitude of N is typically a few hundreds to a few thousands.

                = - - - - ) ( ) ( ) ( 2 
) ( 1 ) 1 ( ) 1 ( ) 1 ( 2 ) 1 ( 1 ) 2 ( ) 2 ( ) 2 ( 2 ) 2 ( 1 ) 1 ( ) 1 ( ) 1 ( 2 ) 1 ( 1 
N k N i N N N k N i N N k i k i x x x x x x x x x x x x x x x x A               Eq. 21                 = - - - - + + + + + + + + ) 2 ( ) 2 ( ) 2 ( 2 ) 2 ( 1 ) 1 2 ( ) 1 2 ( ) 1 2 ( 2 ) 1 2 ( 1 ) 2 ( ) 2 ( ) 2 ( 2 ) 2 ( 1 ) 1 ( ) 1 ( ) 1 ( 2 ) 1 ( 1 N k N i N N N k N i N N N k N i N N N k N i N N x x x x x x x x x x x x x x x x B               Eq. 22
2. Define k matrices corresponding to each independent variable. Where Ci contains the columns of B, except the i th column, that comes from A. 

                = - - - - + + + + + + ) 2 ( ) ( ) 2 ( 2 ) 2 ( 1 ) 1 2 ( ) 1 ( ) 1 2 ( 2 ) 1 2 ( 1 ) 2 ( ) 2 ( ) 2 ( 2 ) 2 ( 1 ) 1 ( ) 1 ( ) 1 ( 2 ) 1 ( 1 N k N i N N N k N i N N N k i N N N k i N N i x x x x x x x x x x x x x x x x C               Eq. 23
𝑆 𝑇 𝑖 = 1 - 𝑉[𝐸(𝑌|𝑋 ~𝑖)] 𝑉(𝑌) = 1 - 𝑦 𝐵 • 𝑦 𝐶 𝑖 -𝑓 0 2 𝑦 𝐴 • 𝑦 𝐴 -𝑓 0 2 = 1 - 1 𝑁 ∑ 𝑦 𝐵 (𝑗) 𝑦 𝐶 𝑖 (𝑗) 𝑁 𝑗=1 -𝑓 0 2 1 𝑁 ∑ (𝑦 𝐴 (𝑗) ) 2 𝑁 𝑗=1 -𝑓 0 2
Eq. 29

The computational cost if this method is N(k+2).

VARS -Variogram based approach

VARS [START_REF] Razavi | A new framework for comprehensive, robust, and efficient global sensitivity analysis:2. Application[END_REF], [START_REF] Razavi | A new framework for comprehensive, robust, and efficient global sensitivity analysis: 1. Theory[END_REF] stands for Variogram Analysis of Response Surface. The method considers the model output Y=f(Xi) Ɐ i=1,…,k. The k independent variables can vary within a continuous or discrete range. The method characterizes the spatial structure of Y and its variability.

Studying the shape of Y give information about its sensitivity, such as: 1) the degree on non-smooth or roughness at different points and scales (zoom-in or zoom-out); 2) Multimodality, that reflect the spatial order of the structure because the response values might not be randomly distributed.

VARS is built considering the distance between pairs of observations across the response surface Y (Figure 20) and characterizing it based on directional variograms and covariograms. VARS uses a STAR-based sampling strategy [START_REF] Razavi | A new framework for comprehensive, robust, and efficient global sensitivity analysis:2. Application[END_REF], that allow sampling all across the full range of the k independent variables. The steps of the strategy are described below, and in parallel, the Figure 22 shows the example for k = 2 variables:

1. Scale all variables on the range zero to one. In Figure 22, there are k = 2 independent variables (x1 and x2).

2. Select the levels h={h1,…,hj ,…,hn} and the resolution Δh = hj -hj-1. Note that dim(h) expresses the number of levels. For Figure 22, Δh = 0.1 and dim(h)=9 for each variable.

3. Generate r STAR-center (using for example, LHS). The location of these centers are 𝑥 𝑗 * = {𝑥 𝑗,1 * , … , 𝑥 𝑗,𝑖 * , … , 𝑥 𝑗,𝑘 * } where j = 1,…,r. In Figure 22, there are r = 2 STAR-centers and they are marked with diamonds.

Generate cross sections for each STAR-center with equally spaced points

Δh, along each k input (Figure 22). In Figure 22, each r STAR-center generate dim(h)-1 points, marked with circles.

5. Extract pairs and generate directional variograms, such as the ones in Figure 21. 

Sampling methods

The previous subsections explained that Latin Hypercube Sampling (LHS) are the sampling methods used by Morris and VARS, while Monte Carlo is used by Sobol. This section intends to give a theoretical background of them.

Latin Hypercube Sampling

Latin Hypercube (LHS) designs ensures that the sample points are uniformly scattered across the input space with minimal unsampled regions. It is well known for their flexibility to provide data for modeling techniques based on very different statistical assumptions, and to cover small or large design spaces (no constraints in terms of data density and location) [START_REF] Saltelli | How to avoid a perfunctory sensitivity analysis[END_REF], [START_REF] Viana | A Tutorial on Latin Hypercube Design of Experiments[END_REF]. The steps followed to generate r* sampling points with the LHS, are:

i.

Divide the test range of each variable in r* intervals. Note that the number of intervals must be equal for all the factors.

ii. Generate r* samples randomly, making sure that each column and row are selected just once.

One of its drawbacks of LHS is that the user needs to specify the sample size (r) prior to the associated sampling-based analysis, then, if the sample needs to be enlarged, the user needs to discard the previous sample, or generate a new sample by LHS, knowing that the union of the two samples will not be Latin

Hypercube. For such cases, the alternative is to implement a Progressive Latin Hypercube (PLHS).

Progressive Latin Hypercube Sampling

The Progressive Latin Hypercube (PLHS) is a technique to extend an original LHS, in such a way that the result is still an LHS achieving the maximum stratification in any one-dimensional projection. The Figure 24, taken from Sheikholeslami, 2017 [START_REF] Sheikholeslami | Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models[END_REF], describes the steps of PLHS. Monte Carlos is useful when it is not possible to use any other algorithm. For example, when the system has unknown or uncertain parameters, many coupled degrees of freedom, or complicated boundary conditions.

Global sensitivity analysis vs. full factorial DoE

As explained at the beginning of chapter 3, although OAT is very popular to assess the feasibility of combined thermal and power energy systems, it is a local method.

In contrast, full factorial DoE explores the global range of variables at lower simulation cost than the GSA methods. It is a simple method that gives a good understanding of the impact and interaction effects of parameters. Then, full factorial DoE is selected for first phase of the thesis due to its efficiency and acceptable accuracy.

For the second phase of the thesis the objective is to rank the important parameters and accurately measure their interaction effects. Then, it is proposed to conduct an in-depth sensitivity analysis using three GSA methods:

Morris, Sobol, and VARS. The first two are well known methods typically used as reference across the literature, and the third is a novel approach that characterizes the variation of the model at different points and scales.

The main advantages of GSA methods over simply using a full factorial DoE, are explain below and shown in Table 8:

• GSA are robust model-free methods, also called sample-based [START_REF] Saltelli | Global Sensitivity Analysis : The Primer[END_REF],

[166]- [START_REF] Wang | Practical experience and framework for sensitivity analysis of hydrological models: six methods, three models, three criteria[END_REF]. While full factorial DoE, in this work, has the characteristics of a model-based method.

Model-free methods are not related to any local reference at the model.

They are recommended when the analyst does not have prior knowledge of the process model (relevant parameters, ranges, structure of the model, etc.) [START_REF] Thaler | Automotive Battery Technology[END_REF]. Therefore, typically they use space-filling designs, that intend to distribute uniformly the samples in the design space [START_REF] Joseph | Space-Filling Designs for Robustness Experiments[END_REF]. In contrast, a model-based method is tailored according to the process to maximize the information obtained with the samples (starting point, ranges to analyses, sampling according to the distribution of the parameters, etc.) [START_REF] Thaler | Automotive Battery Technology[END_REF].

Full-factorial and fractional factorial DoE are among the techniques that require proper space-filling [START_REF] Datadvance | Generic Tool for Design of Experiments (GT DoE)[END_REF]. Therefore, it is natural to conclude that the are model-free methods. However, to implement them for this work, it is a precondition to define the discrete levels of analysis for each continuous variable. Then, the method becomes a model-based one.

• Full factorial DoE gives a sense of the individual and interaction effects of parameters, although the accuracy depends on its resolution and dispersion, in other words, the number and location of the levels studied in full factorial DoE. Contrary, GSA methods ensure a random and disperse sampling across the range (using sampling techniques such as LHC, Monte Carlo, etc.). Moreover, methods like Sobol are very robust in terms of resolution, due to the number of samples required.

• Full factorial DoE is mainly for screening purposes (determining the influential variables), but GSA methods such as Sobol are useful also for ranking and quantifying the relative sensitivity of the parameters.

In terms of simulations cost, GSA approaches such as Morris could be similar to the full factorial DoE [START_REF] Saltelli | How to avoid a perfunctory sensitivity analysis[END_REF]. However, that is not the case for Sobol. 

Case study: A university campus

To illustrate the implementation of the proposed methodology, the hourly load profiles of a University Campus are used as it corresponds to an example of a large set of buildings that reflect different use patterns. Eq. 31

The hourly energy load L n (t) are the ones introduced at the modeling and optimization tools, like DER-CAM and the Python-PYOMO-CPLEX tool. As mentioned in subsection 2.6, the hourly analysis of energy loads aims to provide more precision to the feasibility analysis.

PHASE I: Exploratory study of the CCHP-TS feasibility

This chapter corresponds to the first phase of the thesis. It is an exploratory analysis to examine the techno-economic relevance of the CCHP-TS model, as well as the impact of load size and energy prices.

In this phase, the energy prices are consolidated into the spark spread rate (SS) and the CCHP-TS model used is the one embedded in DER-CAM. The analysis is based on the percentage of cost savings obtained by using a Trigeneration systems with thermal storage, instead of the reference scenario (Figure 26).

Figure 26 Comparison of a trigeneration-thermal storage system vs. a conventional system, while meeting the annual loads Ln Ɐ n={E: electricity, H:heating, C:cooling} NOTE: Energy Supply (dotted lines) and Energy Loads (solid lines)

The scheme in Figure 27 details the methodology of this phase. To start, a full factorial DoE aims to generate different scenarios of CCHP-TS based on different levels of electricity, heating, and cooling loads and spark spread rates.

After that, the optimal system configuration for each scenario is obtained with DER-CAM. Once the results of all the simulations are obtained, it is essential to identify the functioning variables and segregate data implementing clustering.

For the latter, the methodology presented in the Chapter 3 is used. Finally, the influence of the variables under different conditions is analyzed. Some of these levels are arbitrarily big with the sole objective of widely explore the possible spectrum of annual energy loads, introduced in section 2.2.2.

Regarding the Spark Spread rate, the four levels selected are SS = {3.0 , 3.9 , 5.4 , 6.6}. These rates correspond to spark spread rates in different regions around the world (two in Europe, Africa, and US respectively) [START_REF]DER-CAM Web Optimization tool[END_REF], [START_REF]Electricity and gas prices, 2013-15[END_REF], intending to emulate different conditions of electricity and natural gas prices. In this work, the electricity and natural gas tariffs are constant, independently of the day and time.

Then, a full factorial design of experiments is followed, testing the 600 scenarios resulting from the combination of 6 levels for electricity, 5 levels of heating, 5 levels of cooling and 4 levels of SS rate. Figure 28 shows the cube sketching all the possible combinations for the SS=3.0 and takes one as example.
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Energy system optimization Data analysis Result interpretation Figure 28 Example of one scenario out of the 600 possible, as part of the full factorial design of experiments.

These hourly energy loads are used as inputs of the optimization process done with DER-CAM and the scenario of using CCHP-TS is compared against the reference scenario (Figure 3).

Energy system optimization: DER-CAM

DER-CAM is configured to minimize the annual total cost, and it calculates the percentage of cost savings that are reached by using the CCHP-TS system compared to the reference scenario. The three key inputs are configured as follows:

-End-use energy loads L n (t) of electricity, heating, and cooling. They result from the E, H and C mentioned in section 3.4 and the use of Eq. 31. The loads L n (t) are in hourly basis and expressed as typical days per month (week, weekend and peak days);

-The tariff structures of electricity and fuel, listed in Table 9;

-The characteristics of the pool of technologies available to be chosen by DER-CAM. These are the installed capacities, efficiencies, emissions, variable and fixed cost of the technologies: absorption and vapor- 10 to Table 14.

Table 9 shows the energy prices corresponding to each spark spread level. They follow a fixed and constant tariff structure. Table 14 reports the interest rate used to evaluate the project and the carbon intensity of the electricity from the grid. The latter takes as reference the average in Europe [START_REF] Moro | Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles[END_REF].

Interest rate [%] 5%

Carbon intensity of electricity from the grid [kg CO2 eq. / kWh] 0.447 Table 14 Other settings used in DERCAM On the other hand, the outputs from DER-CAM are:

• The CCHP and Thermal Storage technologies selected, as well as their installed capacity;

Note: As explained in Table 11, the optimal CHP installed capacity is conformed in a modular way.

• The hourly production for each technology (CHP units, Absorption Chiller and Boiler) and/or import from the national grid, as well as hourly consumption for each type of energy (Electricity, Heat and Cooling);

• The monthly consumption of fuel (Natural Gas), as well as the allocation per technology (CHP and Boiler);

• The hourly energy stored at the Thermal Storage;

• The total annual cost and CO2 emissions of the scenario proposed, as well as the percentage of cost savings and CO2 reduction compared with the reference scenario.

The general results of the simulation in DER-CAM for the 600 scenarios are in Both, the number of feasible scenarios and the average percentage of savings, increase with the spark spread rate. A larger SS means a higher difference in price between the electricity imported from the grid and the fuel to run the CHP (natural gas for this paper). Therefore, a larger SS improves the economic advantage of producing electricity in-house with the CHP.

For the sake of explaining in detail the need of a further analysis and the different steps, the rest of section 4.2 and 4.3 are developing the example of SS4=6.6.

However, the reader should note that the same analysis was followed with the other three SS rates. Section 4.4 analyze them all together again, allowing an effective comparison.

Having said this, Figure 29 and Figure 30 presents the DER-CAM results obtained with SS=6.6. They were a total of 150 simulations (six levels of E, five of H, five of C and one of SS). From those, only 133 showed that using a CCHP-TS system is economically and environmentally better than using the reference scenario, while for the other 17 simulations, the reference system is preferred.

Figure 29 shows the percentage of savings obtained for each of the 133 feasible scenarios, depending on the loads (E , H, and C). At a first glance, three different regions are perceived. Firstly, when electricity demand is higher (500 to 1000 GWh/y), savings are practically stable, no matter the value of heating and cooling demand. Secondly, when electricity demand is 100GWh/y, savings are quasi-stable across cooling demand variation, but they drop when heat demand reaches 400GWh/y. Thirdly, when electricity demand is from 0.1 to 10 GWh/y, savings are impacted by variations in any of the three carriers.

However, from Figure 29, it is not possible to detect why the scenarios have certain savings. For example, the two circled dots correspond to events with similar percentage of savings (16.2% and 16.4% respectively) and annual energy load alike (E1-H10-C100 and E1-H10-C500). However, the installed capacity of the CHP units and absorption chiller are completely different. NOTE: The CHP technology is modular, as explained in Table 11. Then, the number before the type of prime movers indicates the number of units installed. As example, 4xICE5 -ICE2.5 denote the installation is four units of ICE of 5MW, and one ICE of 2.5MW. small ICE units just to manage peak demand. This is related with the fact that CT configuration allows a better rate of heat production and higher electric production, but electric efficiency of CHP slightly decreases. This gives an understanding that the selection of the prime mover is influenced by the relative size of electricity and heating loads. Although it does not affect directly the percentage of savings obtained.

An important difference in savings can be noted when focusing on two cases having the same installed capacity (green box in the Figure 30) but using two different technical solutions (5xICE5 and CT25). As mentioned, this main difference is coherent with the electricity demand level in each case. However, one of the cases has a significant dispersion in savings, mainly driven by the dispersion bar observed in heat and cooling demand (associated to the boiler usage in case of heat). This example illustrates the potential coupling effects of different demands and justifies a deeper analysis of the possible interactions, which is done using clustering analysis. 

Data analysis: Clustering

The Data Clustering objective is to understand the relation between energy demand and techno-economic feasibility of the system, analyzing the interaction among the driving parameters. Ten segregation parameters are selected, using MATLAB to automatize the extraction of information from DER-CAM reports (code in Annex II). Each scenario, obtained from the full factorial DoE, represents a data point that can be described as a vector with the following parameters:

-The percentage of cost savings obtained with the CCHP-TS system when compared to the reference system (heating covered with natural gas boilers and electricity and cooling covered using electricity from the grid);

-The generation means for each energy carrier (%Grid, %Boiler and % Absorption);

-The percentage of heat generated by the CHP units, that is not consumed (% heat scrap); and

-The energy flows within a CCHP-TS system (electricity for electricity (E4E), electricity for cooling (E4C), electricity for cooling storage (E4CS), heat for heating (H4H), heat for cooling (H4C), and heat for cooling storage (H4CS))

The production means for each energy carrier can be followed in Figure 26 and described by Eq. 32 to Eq. 34: electricity can be generated by the CHP or imported from the Grid, Heating can be produced by the CHP or a Boiler, and

Cooling can be produced by an absorption chiller or the vapor-compression chiller. Eq. 33 the 600 simulations, each of them characterized by the ten segregation parameters mentioned above. The settings for k-Means to be used in this work, are:

• Number of clusters desired.

• Maximum number of iterations = 100,000 iterations

• Tolerance to declare convergence (relative to centroids) = 0.00000001

As mentioned in subsection 3.2.3.2, while performing the k-Means clustering method, an input parameter is the number of k desired clusters.

Therefore, the outranking approach of Multi Criteria Decision Making (MCDM)

ELECTRE 1S [START_REF] Roy | Classement et choix en présence de points de vue multiples[END_REF], [START_REF] Haurant | Multicriteria selection aiding related to photovoltaic plants on farming fields on Corsica island: A real case study using the ELECTRE outranking framework[END_REF], is used to discriminate different alternatives (k number of cluster), as explained in section 3. 31 describes the criteria for MCDM. The criteria g 2 to g 5 evaluate the similarity of points inside each cluster through its intra-cluster Euclidian distance. That is measured from the center of each cluster to its different quartiles, and afterwards an average of all the clusters is calculated :

g 2 quantifies the size of a cluster's core (1 st quartile), while g 3 and g 4 estimate the distance of peripheral points (2 nd and 3 rd quartile), and g 5 give the distances to the furthest point of the cluster. On the other hand, the criterion g 6 is based on the mean of the distances between the clusters' centroids. As note, the points located in the maximum and minimum distances within each cluster are excluded from these criteria, since they statistically bias the measures. Finally, 29 and Figure 30). The performance table displays the seven alternatives that comply with the additional constraint of N min = 8. It specifies the partial concordance index for the six criteria 𝑔 𝑖 , their corresponding weights, thresholds of indifference, preference, and veto, as well as their majority level.

g

Alternative [𝐚

The weights have been determined with the intention of balancing and leaving no predominance among the criteria. The g 1 refers to the number of clusters, g 6 to the intercluster distance and g 2 to g 5 deal with the core size of the clusters.

Therefore, the sum of weight of g 2 to g 5 balance the weight of the other criteria.

The thresholds allow making difference and drawing preferences between alternatives for driving decision. In that view, all the indifference thresholds are set to 0, considering that the smallest difference leads at least to a weak preference of an alternative over another. It is been decided that the preference threshold for each criterion, correspond to the 1 st quartile of all values Ω j (a k , a i ).

In other words, 75% of the cases lead to a strict preference of one alternative over the other. That allows drawing strong preferences necessary for outranking relation. Note that Ω j (a k , a i ) is defined in Annex III and refers to the difference defining the advantage of alternative k over alternative i, considering criterion j.

Regarding the veto thresholds, it corresponds to the 3 rd quartile of advantages values. Therefore, 25 % of them lead to a veto situation. Finally, the majority level has been set to 60 %, which means that it is necessary to have at least 60 % of the criteria total weights in concordance, to set an outranking relationship.

The level is quite high in order to increase the requirements of an outranking relation.

Given the information above, it is possible to calculate the concordance and discordance matrixes (Table 18 and Table 19), that allow to identify respectively if the concordance and non-veto conditions are fulfilled for each pair of alternatives.

The proper way to read the concordance matrix (Table 18) is from horizontal to vertical, for example, "The alternative a 5 of forming six clusters is at least as good as the alterative a 1 of forming two clusters, with a value of 0. Thus a 5 , corresponding to six clusters, is the only alternative defeating all the others in concordance matrix (Table 18) and complies the non-veto condition expressed at the discordance matrix (Table 19). Then, for the simulations with SS4=6.6 (following the example in Figure 29 and Figure 30), the MCDM ELECTRE 1S suggests creating six clusters with K-Means.

The clusters group solutions according to similarities in the features before mentioned. Figure 32, shows the distribution of clusters across the axis of annual loads E, H, C for SS4=6.6. It illustrates that the solutions within each cluster share common characteristics regarding load size.

Figure 32 Clusters across the axis of annual loads E, H, C (example for SS4=6.6). 

SS4

The implementation of the methodology for the rest spark spread rates suggests that the best alternative is to group the solutions into three clusters (k=3) for SS1 and six clusters (k=6) for SS2, SS3, and SS4. To ensure obtaining relevant clusters that segregate properly the techno-economic performance of scenarios, the segregation criterion in SS1 is the percentage of savings, while the other use the savings, in addition to the Grid, Boiler, Absorption, and energy flows.

Results interpretation

To delve deeper into the impacts of the spark spread rate and the size of loads, the analysis is structured as follows:

Analysis of generation mean for each energy carrier Analysis of energy flows within the CCHP-TS system

Analysis of the percentage of savings

The results analysis in the following sections is in terms of the load dominance rates r n (Eq. 42 to Eq. 44). They are parameters to measure the relative weight of the annual loads of electricity, heating, and cooling (E, H, and C respectively). The sum of these three dominance rates reflects the energy conservation (r E + r H + r C = 1). Then, using them in ternary diagrams aims to show the behavior of the functioning variables and compare them among the spark spread rates.

Figure 33 Ternary diagram for the distribution of the percentage of Grid, Boiler, Absorption, and Heat Scrap across dominance rates (𝑟 𝐸 , 𝑟 𝐻 , 𝑟 𝐶 ) and SS rates.

PERCENTAGE OF GRID

The percentage of the grid measures how much electricity is imported from the grid, apart from the electricity that results from the CHP units. This electricity can be used directly to meet electric load or to produce cooling through vapor compression chillers. The first line of diagrams of the Figure 33 For all the spark spread and especially for SS1=3, the percentage of the grid reduces in two cases. First, when the heating load dominates because it does not need the grid to cover them. Second, when the dominance of loads is balanced (referring to the points in the middle of the diagrams). It suggests that a load balance promotes the usage of the CCHP-TS system, especially for SS1.

For SS2-SS4 (when the spark spread rate is larger than 3), the percentage of the grid is small when the dominance of electric load is high. Therefore, this condition promotes the use of the CCHP-TS system.

In contrast, the percentage of the grid is high when cooling load dominates. It is because it is more convenient to use vapor compression chiller powered by the grid under these circumstances. There is more detail of this in the analysis corresponding to the percentage of absorption.

The analysis above points out that the behavior and trend of %Grid in SS1 is slightly different from SS2-SS4. In the latter, the use of CCHP-TS systems is especially feasible when electric load dominates.

PERCENTAGE OF BOILER

The percentage of Boiler (second line of diagrams in the Figure 33) measures how much heating is provided directly from a natural gas boiler. For all the SS rates, it is larger when the heating load dominates, r H (Figure 33), while 𝑟 𝐸 , and 𝑟 𝐶 have no real influence. Therefore, heating load alone never justifies the use of CHP, and then Boiler is used as the generation unit. Note that the trend and average value (square size) are the same for all the SS rates, differing only in the number of feasible scenarios that reduce with the SS rate.

PERCENTAGE OF ABSORPTION AND HEAT SCRAP

The percentages of Absorption and Heat Scrap are large when electric loads dominate (Figure 33). Because when there is a surplus of heat produced by the CHP, the Absorption is used as much as possible, trying to reduce the Heat Scrap.

On the contrary, Absorption and Heat Scrap are small when cooling loads dominate. Because in those cases there is a preference for vapor-compression chiller due to the large difference in COP (4.5 for vapor-compression [START_REF] Alzoubi | Characterization of Energy Efficient Vapor Compression Cycle Prototype with a Linear Compressor[END_REF] and 0.8 for absorption [START_REF] Majid | Studies on Steam Absorption Chillers Performance at a Cogeneration Plant[END_REF]). the size of the squares. There, it is well shown that, especially for SS2-SS4, some of the clusters with the highest percentage of savings also have the largest percentages of Heat Scrap. This is important because it reflects that the Heat Scrap does not affect greatly the percentage of savings obtained. The reason is that from the economic point of view (and not strictly from the energy point of view), it is cheaper to produce electricity rather than buying it from the grid, even if it produces a surplus of heat.

The trends for the percentage of Absorption and Heat Scrap are the same for all the SS rates. The only difference is the number of feasible scenarios that reduce accompanying the SS rate.

Analysis of the energy flows within the CCHP-TS system

Regarding the energy flow variables (Figure 34), the main flows of CHP (electricity and heat) -E4E, E4C, H4H, and H4C-have the same trend and average value (square size) across the spark spread rates. In other words, they are equal for all SS rates, except that the number of feasible scenarios reduces.

In contrast, the flows for the storage -E4CS and H4CS-are different in square size (average value) but follow the same trend across the different SS rates.

Observe that none feasible solution includes heat storage. The reason is related to the marginal cost of storing heat, which is larger than the marginal cost of activating the boiler to produce the shortage of heat.

As expected, E4E grows with the electric dominance r E , and H4H grows with the heating dominance r H . While E4C and H4C grow with the cooling dominance r C , but these are respectively more representative when Electric and Heating dominance is low.

Figure 34 Ternary diagram for the distribution of E4E, E4C, E4CS, H4H, H4C and H4CS across dominance rates (𝑟 𝐸 , 𝑟 𝐻 , 𝑟 𝐶 ) and SS rates.

For SS1 On the other hand, the Cooling Storage gives flexibility to the CCHP-TS systems because it decouples its production and consumption. The functioning variables E4CS and H4CS (Figure 34) indicate if the accumulated cooling is produced with electricity or heat respectively. In general, E4CS and H4CS are small, but they are slightly more representative for SS4=6.6. Because a high SS favors the use of CHP for electricity loads, leaving the heat as co-product and available to produce cooling and store it. E4CS is larger in clusters C0 and C3 (from SS2-SS4) because it is preferable using the vapor-compression chiller when cooling loads dominate (C0: r C =98% and C3: r C =58%). On the other hand, H4CS exists when r E ≫ r H , using heat from the CHP to produce cooling and store it.

Therefore, Cooling Storage promotes the usage of Absorption and potentializes Trigeneration.

Analysis of the percentage of savings

This section analyzes the percentage of cost savings reached by using the CCHP-TS system compared to the reference design of the energy system. For better characterization, the analysis divides the cases when the spark spread is higher than three, and when it is equal to three.

THE CASES OF SS > 3

This section analyzes the feasible scenarios corresponding to SS2=3.9, SS3=5.4, and SS4=6.6. Note from Figure 35 that the three have the same number of clusters (six clusters). Moreover, these clusters have similar characteristics along the three SS rates. The following paragraph gives a brief outline of each cluster, making some references to the characterization variables of section 4.3.

Cluster C5 consolidates the scenarios where electric load dominates and use the CHP almost exclusively to cover it (high E4E and low %Grid). For scenarios in C1, electricity load dominates slightly more than cooling. Therefore, electricity from the CHP covers the corresponding load and the heat is used to produce cooling (refer to the analysis of E4E, and H4C). Regarding C4, it is a cluster with a shared dominance between electricity and cooling demand, then it uses CHP electricity production to cover electric demand, and uses both, electricity and heat, to cover cooling demand (refer to the analysis of E4E, E4C, and H4C). As for C2 has a shared dominance between electricity and heat demand, therefore, uses CHP to cover these demands directly (refer to the analysis of E4E, and H4H). On the other hand, C0 consolidates scenarios where the cooling demand is very high and then it uses electricity and heat produced by the CHP to cover cooling demand (refer to the analysis of E4C, and H4C). Finally, C3 has a shared dominance between heat and cooling demand, so, it uses electricity to produce cooling and heat to cover the demand (refer to the analysis of H4H, and E4C).

Regarding the percentage of savings, indicated by the size of the squares at 

%savings

On the other hand, the difference among SS2, SS3, and SS4 is that the percentage of savings increases with the spark spread rate (Table 15 and Figure 35) because a higher SS makes more feasible to produce electricity in-house. Finally, the clusters with lower dominance of electric load have the lowest average percentage of savings (C0: r E =7% and %sav=16%; C3: r E =3% and %sav=11%). This pair of clusters is an excellent example of the low impact that the heating and cooling loads have over the percentage of savings when electric loads are not present. For the dominance of cooling loads, note that C0 and C3

have the largest r C among all the clusters. Section 4.4.1 shows that they are covered mostly with a vapor-compression chiller. However, this transformation of cooling loads into electric one is not enough to drive savings up. On the other hand, the dominance of heating loads (r H ) also demonstrates a lack of relevance since both clusters have the same level of %savings, although only C3 has larger heating loads.

Figure 36 Boxplots comparing 𝑟 𝐸 , 𝑟 𝐻 , 𝑟 𝐶 , and the percentage of savings for each cluster across the spark spread rates SS2-SS3-SS4.

THE CASE OF SS=3

This section analyzes the 50 scenarios that are feasible with SS1=3. Note that the scenarios in SS1, different from SS2-SS3-SS4, have a lower percentage of savings and are segregated into three clusters only. The ternary diagram in Figure 37 shows them distributed according to their dominance load rates. The finding in this section regarding the relationship between the savings and the balance of loads is aligned with the study presented by Knizley et al. [START_REF] Knizley | Evaluation of the operational cost savings potential from a D-CHP system based on a monthly power-to-heat ratio analysis[END_REF].

SS1

Size 6.6% 5.6% 2.9%

For SS1 (C0) Cluster 0 (C1) Cluster 1 (C2) Cluster 2 %savings

They use an SS rate=2.77 and propose that the monthly economic savings of a CHP system are likely to occur if electricity loads are not much larger than the heating loads. These authors measure it with the monthly PHR (power to heat ratio). They verified their hypothesis with seven out of eight case studies (buildings).

Summary of results

The proposed methodology allowed to analyze multiple optimal scenarios of trigeneration systems with thermal storage, bringing further insights on the rules of thumb for their design.

The results stemming from the analysis indicate that the techno-economic feasibility of a CCHP-TS system relies upon different combination of spark spread and the load dominance rates. For low spark spreads (SS=3), the loads should be balanced among the energy vectors. While for high spark spreads (SS>3), the savings are higher when the electricity load dominates.

The trend for the percentage of Boiler, Absorption and Heat Scrap are the same for all the SS rates, differing only in the number of feasible scenarios. In general, it is more profitable to use the boiler when heating loads dominate. Regarding absorption for cooling, it is only economically better when the cooling loads are relatively low. Furthermore, when electric loads dominate, it favors the use of Absorption and Cooling Storage (H4CS), because it reduces the Heat Scrap.

This behavior is stronger with larger SS rates.

However, heat scrap does not affect the percentage of savings significantly. In other words, it is more profitable to oversize heat production and ensure that the CHP covers the electricity load.

Here, it is evident that the CCHP-TS is a flexible system because it supplies the energy (electricity, heating, and cooling) with different units. Moreover, the thermal storage improves this flexibility by decoupling the supply and demand.

The work developed in this chapter reveals that there is a two-level characterization. First, there is a threshold in the Spark Spread rate (SS) influencing the techno-economic feasibility of a CCHP-TS system. And that threshold indicates how the size of the annual loads influence.

The work also reveals the importance of electricity loads for any spark spread rate, because the use of CCHP-TS is feasible when these exist or even dominate. In contrast, heating loads do not have the same relevance because the system could be feasible despite a high percentage of Heat Scrap. In general, when heating or cooling loads dominate, it is preferable to use the auxiliary units (boiler and vapor-compression chiller). However, the reader should notice that the existence (not dominance) of heating and cooling improves the environmental performance, by reducing the heat scrap [START_REF] Neves | Q&A session during the oral dissertation of Mexitli Eva Sandoval Reyes to obtain the PhD degree[END_REF]. 3). Figure 36 shows how the percentage of cost savings changes across the three SS rates for each cluster. Interestingly, this change is not linear.

Hypothesis regarding the impact of energy prices

Taking the averages of the boxplot corresponding to the percentage of cost savings in Figure 36, we have the following pattern for each cluster (Figure 39).

Figure 39 Average percentage of savings for each cluster across spark spread rates SS2-SS3-SS4.

KEY C0 -C5 correspond to the data of cluster 0, cluster 1, …, cluster 5. The patterns present a bow in the SS3, that in some cases even suggest lower savings for SS3 than for SS2. A possible way to explain this non-linear behavior is that each spark spread (SS2, SS3, and SS4) has different prices of electricity and natural gas (see Table 20).

SS2 SS3 SS4

Spark spread 3.9 5.4 If the reader observes carefully, the price of electricity for SS2 and SS4 are close to 16 cents of EUR. While the one of SS2 is completely different (~10 cents).

Creating a hypothesis

In the diagram outlying the percentage of savings and the spark spread rate (Figure 39), exist isolines corresponding to each price of electricity. The behavior of those isolines respects the following trend: the larger the spark spread, the larger the percentage of savings. In the Figure 39, the line corresponding to the cluster 3 (C3) presents a bow, suggesting that the percentage of savings is lower for SS3 = 5.4, than for SS2 = 3.9. The reason might be that SS2 and SS4 belong to one isoline of electricity price, while SS3 belongs to a different one.

Testing the hypothesis

To prove the hypothesis, we are exploring the impact of varying one price at a time (parametric analysis). The steps below will follow the example of analyzing the price of electricity.

1. Determine the variable to analyze, E.g. price of electricity.

2. Fix the values to explored regarding the spark spread and the variable of analysis, E.g. spark spread and price of electricity.

3. Determine the values of the other variable, E.g. price of natural gas.

Note that from the combinations created (see Table 21), some of them are feasible to implement a CCHP-TS systems (white), some other are unfeasible (blue), and other are technically feasible although they do not exist in a real European context (gray). 4. Simulate the different combinations in DER-CAM.

5. Build the isolines of the selected variable, E.g. price of electricity.

Isolines for the price of electricity

Figure 40 shows the isolines obtained after getting the percentage of savings for each combination of prices. Moreover, those isolines never cross each other, even if they become closer and closer. Therefore, it is possible to conclude that in Figure 39, SS3 belongs to a different isoline than SS2 and SS4. In fact, in the strict sense, SS2 and SS4 should belong to two different isolines.

Value of pNG

SS

Isolines for the price of natural gas

A similar hypothesis can be confirmed for gas prices. Once we already proved that there are isolines of electricity prices, it is interesting to test the following hypothesis as well:

Similarly, in the diagram outlying the percentage of savings and the spark spread rate (Figure 39), there are isolines corresponding to each price of natural gas. Like in the Table 21, Table 22 shows the feasible scenarios for a CCHP-TS systems (white), the unfeasible ones (blue), and others that are technically feasible although they do not exist in a real European context (gray) Figure 41 shows the isolines obtained after using DER-CAM to obtain the percentage of savings corresponding to each combination of prices.

Figure 41 Isolines for the price of natural gas

There are isolines for the price of natural gas in the diagram outlying the percentage of savings vs. the spark spread rate. In these isolines, the larger the spark spread, the larger the percentage of savings. And the isolines never touch each other, even if they become closer and closer.

In the feasibility assessment of a CCHP-TS system, there is a clear relationship between the percentage of savings and the spark spread rate. However, this relationship can be described also by isolines for the price of electricity and natural gas. These isolines presents different slopes among them and specially between the two prices. That suggests that the price of electricity and natural gas are impacting differently. Therefore, it would be interesting to explore them as individual variables, rather than consolidate them into the spark spread rate.

Conclusions of the section

The work in this chapter demonstrates the importance of analyzing multiple scenarios of energy load size and spark spread rates to assess the technoeconomic feasibility of a Trigeneration system with Thermal Storage (CCHP-TS). The methodology proposed combines a full factorial DoE, the energy system optimization with DER-CAM, the clustering method k-means, and the Multi-Criteria Decision-Making method ELECTRE 1S.

The results highlight the joined influence of spark spread and energy loads over the percentage of savings. Moreover, the analysis emphasizes the interest of using load dominance rates r E , r H , r C . These quantify the relative weight of the loads for each energy vector. In other words, the results of this chapter strongly advise about the existing interaction effects between the variables of analysis.

Additionally, the work in this chapter gave some hints to suspect that the impact of the prices (electricity and natural gas) on the feasibility of a CCHP-TS system could be different in magnitude (section 4.5). Therefore, in the next section, the prices are analyzed separately, instead of consolidated into the spark spread rate.

In conclusion, the work in chapter 4 demonstrates that the CCHP-TS model used is relevant and sensitive to the variables of analysis (energy prices and annual size of the loads). The next part of the research will deepen the impact of these variables by implementing global sensitivity analysis methods and analyzing the prices separately.

PHASE II: Sensitivity analysis of the CCHP-TS feasibility

Introduction

This chapter consists in examining the impact of five variables -the price of electricity (pE), the price of natural gas (pNG), and the annual loads (E:

electricity, H: heating, C: cooling)on the feasibility of the Trigeneration-Thermal Storage systems considering two metrics: the amount of savings, and the percentage of savings. The first metric quantifies the absolute savings of using the CCHP-TS system, while the second measures the relative savings.

Studying both aim to understand if the variables impact differently in each case.

The tool used for the energy system optimization is the adapted model explained in section 3.3.1, and the technological settings showed in Table 10 to Table 14.

The methods used to perform the sensitivity analysis are Morris (derivativebased approach), Sobol (variance-based approach), and VARS (variogrambased approach). By using the three methods, we intend to compare the capacity of each, evaluating their computational cost, as well as precision and information given in an operational context of feasibility analysis.

We introduce in this chapter the use of isolines for each variable, to allow a deeper understanding of the impact of the different variables.

At the end of the chapter, we determine 1) the combination of energy prices (pE and pNG) and size of the annual energy loads (E, H, C) that make a Trigeneration -Thermal Storage feasible; 2) the impact of each price component, establishing the real relevance of using the Spark Spread rate as a common ratio to access the economic feasibility of a Trigeneration-Thermal Storage. Additionally, there is an overall comparison of the three sensitivity analysis methods studied.

Morris -Derivative based approach

As explained in subsection 3.3.3.1, Morris SA calculates the sensitivity analysis indexes based on r routes that change all the variables one by one. The generation of routes is based on the method of Latin Hypercube (LHS) proposed by [START_REF] Morris | Factorial Sampling Plans for Preliminary Computational Experiments[END_REF]. Afterwards, the sensitivity indexes are given and interpreted for different ranges of loads.

For this work, r=20 routes that allow varying each of the five variables (pE, pNG, E, H, and C). All of them use a p=4 levels, Δ=2/3, and uniform distribution.

Campolongo [START_REF] Saltelli | Global Sensitivity Analysis : The Primer[END_REF] suggests r=10 and p=4 to ensure a representative sample, ours is double the size, then it is reasonable to trust in ours. The prices are expressed in $/kWh and their ranges are R={0.10 ; 0.28} for pE and R={0.02 ; 0.10} for pNG. The ranges of the prices are chosen to include the case of different European countries (Figure 16 and Eurostat [START_REF]Electricity and natural gas prices charged to final consumers[END_REF]). On the other hand, the different loads (E, H, and C) vary in three ranges, all expressed in GWh/y: firstly, in the range from 0 to 10, when E={0,3.3,6.6,10}, H={0,3.3,6.6,10}, and C={0,3.3,6.6,10}; secondly, the range from 0 to 100, when E={0,33,66,100}, H={0,33,66,100}, and C={0,33,66,100}; and thirdly, the range from 0 to 1000, when E={0,333,666,1000}, H={0,333,666,1000}, and C={0,333,666,1000}.

These ranges aim the cover logarithmically the energy loads presented in the subsection 2.2.2. The computational cost of this method represents 120 simulations per each range of loads. Table 23 shows the first points of the r=20 routes, generated with LHS. Table 23 First point of the 20 routes for the Morris SA

The results are given in planes (μ,σ), following the proposal of Morris and Saltelli [START_REF] Saltelli | Global Sensitivity Analysis : The Primer[END_REF], [START_REF] Morris | Factorial Sampling Plans for Preliminary Computational Experiments[END_REF]. For comparison purposes among the variables, the plane (μ,σ) uses the absolute value |μ|, instead of μ. A the line μ = σ helps to identify three types of variables: 1) when σ>μ, it is a variable with non-linear and/or interaction effects, 2) when σ≈μ, the non-linear and/or interaction effects are small, 3) when σ<μ, the variable has strong additive effect (linear), without interactions.

Additionally, the tables below each chart show the values of μ, to compare it with μ*, giving information regarding the monotonic or non-monotonic behavior of variables.

The three charts and tables at the left part of Figure 42 analyze the amount of savings when E,H, and C range from 0 to 10, from 0 to 100, and from 0 to 1000 (top, middle, and bottom respectively).

Similarly, the three charts and tables at the right part of Figure 42 give the information for the percentage of savings when E,H, and C range from 0 to 10, from 0 to 100, and from 0 to 1000 (top, middle, and bottom respectively). Regarding the amount of savings, Figure 42 (left) first shows that σ ≥ μ for all the variables and all the ranges. That suggests that all these variables have interaction effects. Second, it describes the influence of the variables on the output. In general, the value μ is larger for pNG, pE and E than for H and C, therefore pNG, pE and E are more influential for all the cases. The order of relevance depends on the range. For the range 0 to 10, pNG and pE are highly influential variables; whilst for the range 0 to 100, it is pE and E; and then for the range 0 to 1000, pNG, pE and E are nearly equivalent. It worth noticing that H and C became middling influential for the range 0 to 100, but never became as important as the other variables. Thirdly, the variables are completely monotonic (|μ| = μ*), except for pNG and H in the range 0 to 100, and H for the range 0 to 1000. Finally, notice that in all the ranges pNG has a negative μ, meaning that the larger pNG, the lower the amount of savings. That also happens for H, but only in the range 0 to 100.

Regarding the percentage of savings, Figure 42 (right) first shows that pE and pNG have low or no interaction effects (σ ≈< μ) for all the ranges, and E has the largest interaction effects. Second, it describes the influence of the variables on the output. It is quite clear that pNG is the most influential variable and pE is middling important. The relevance of loads varies depending on the range. E becomes a very relevant in the range of 0 to 100 but seems middling important on the other two. H and C are in general non-relevant. Third, variables are completely monotonic (|μ| = μ*), except pNG and H in the range 0 to 100, and H and E in the range 0 to 1000. Finally, the pNG and H have a negative μ in all the ranges, therefore, the larger they are, the lower the percentage of savings.

From the description above, it is evident that the prices and electricity load are the most influential variables, either over the amount or the percentage of savings. The order of relevance depends on the resolution and range of analysis, but this relates with the fact that Morris method is mostly a qualitative way to identify the influential variables. Then, different resolutions and ranges are explored below, to corroborate the above-mentioned findings.

The range from 0 to 100 GWh/y is particularly relevant because the high energy intensity building presented in subsection 2.2.2 are within this range [START_REF] Wang | Performance comparison of combined cooling heating and power system in different operation modes[END_REF], [START_REF] Cardona | Energy saving in airports by trigeneration. Part I: Assessing economic and technical potential[END_REF],

[76], [START_REF] Doe | Combined Heat and Power Installation Database[END_REF]. Therefore, the next part of the section intends to refine its analysis by studying it in smaller partitions and increasing the resolution, thereby complementing the findings above. The new ranges are 0 to 5, 5 to 10, 10 to 40, 40 to 70, and 70 to 100 GWh/y (Figure 43 and Figure 44).

Regarding the amount of savings, Figure 43 (left) and Figure 44 (left) shows that pE is as influential or even more than pNG, because μ(pE) >≈ μ(pNG). The figure also displays that E is generally more relevant than H and C, but less than the prices. Regarding the interaction effects, all variables have them at the range 0 to 5. However, especially for the prices, the interaction effects gradually decrease while passing through the different ranges. On the other hand, all variables exhibit non-monotonic behavior in at least one of the ranges analyzed.

And finally, pNG has a negative μ in all the ranges, therefore, the larger it is, the lower the amount of savings.

Regarding the percentage of savings, Figure 43 (right) and Figure 44 (right)

shows that pNG is the most influential variable, except for the range 0 to 5, where pE is. For the loads, their relevance changes from range to range, but frequently E seems more relevant. Regarding the interaction effects for the prices, they gradually decrease while increasing the energy loads. As for the non-monotonic behavior, μ and μ* indicate that all variables have it in at least one of the ranges. Finally, pNG has a negative μ in all the ranges, and H has it for three of them, therefore, the larger they are, the lower the percentage of savings.

A way to explain why the ranges present different order in the relevance of the variables is that Morris is a method based on the derivative of the range (local slopes). But the derivatives differ across the function, even more if it is a multivariable function. In general, the conclusions that the Morris SA reveal for this case study are:

• For the amount of savings: The most relevant variables are pE, pNG, and E. All variables have interaction effects, but the larger the energy loads, the lower the interaction effects. All variables present some nonmonotonic behavior in at least one range, but it is more frequent for the case of H and pNG. Finally, an increase in pNG has always a negative impact on the amount of savings, and the case is similar for H at a few ranges (from example, with loads from 40 to 70 GWh/y).

• For the percentage of savings: The most relevant variables are pNG, pE, and E. This finding matches with the conclusion of chapter 4. The variables, especially the prices, seems to have less interaction effects than on the analysis of amount of savings. But E is the contrary. On the other hand, the variables that present non-monotonic behavior at some ranges are mostly H, and pNG. Finally, in all the cases, an increase in pNG and H has a negative impact on the percentage of savings.

• Regarding the prices: At a first glance, pE is in general more relevant than pNG when the analysis is in amount of savings. In contrast, when it is in percentage of savings, pNG is generally more influent.

For this case study, the Morris sensitivity analysis method has some limitations:

1. The calculation of the elementary effects and SA indexes are strongly affected by the choice of the sample, which in turn depends on a. The resolution of the range b. The point of the range where the sample is taken 2. It does not quantify the interaction effects of the variables Therefore, the following two Sensitivity Analysis methods intend to solve these limitations. VARS is a method that outlines the importance of the variables across their whole range. And Sobol can quantify the interaction effects.

VARS -Variogram based approach

As explained in subsection 3.3.3.3, this method explores each variable along its range by fixing the other ones. It uses Latin Hypercube Sampling (LHS) to choose four seed points. Afterwards, the charts of distance and variograms are drawn for each variable to outline the relevance of each variable.

Similarly than in Morris method, the prices are expressed in $/kWh and the loads in GWh/y, with ranges (R), increments (Δh) and number of levels Table 24 Seed point for VARS SA Figure 45 shows the behavior of the variograms for the amount of savings.

Firstly, it indicates that the most relevant variables are pE, pNG and E, which is in line with the Morris method results. The three have variogram curves with big slopes, compared with H and C. A large slope, for example in pE, means that the larger the difference in pE, the larger the difference in amount of savings.

One of the advantages of VARS is that it outlines the relevance of variables across the range of analysis. With that said, notice that the order of relevance is the same along the whole range of analysis (pE, pNG, E, H, and C). See the zoom at the bottom of Figure 45, showing the first part of the curve.

Secondly, Figure 45 shows that all variables keep the same sign of the slope. This is contrary to Morris method, that identifies a non-monotonic behavior of the variables for some sampling points. What happens is that VARS method dilutes the non-monotonic behavior when it is found only in some specific spots of the range. That is possible because VARS consider a larger sample and is able to build a more general trend. From the operational conclusion (feasibility), it implies that VARS helps to identify general trends, instead of focusing on small differences. on the output, it is necessary to observe the sign of its slope by plotting the raw data obtained from the four seed points (Figure 46). It is observed that a grow in pE, E, or C drives an increment of the amount of savings (positive slope). In contrast, when pNG grows, it decreases (negative slope). In the case of H:

Morris SA detected than for some ranges, its increment has a negative impact on the amount of savings. But VARS, that has more sample points, shows instead that the behavior is quite asymptotic (slope≈0). Regarding the prices, both, VARS and Morris agree that pE is more relevant than pNG when the analysis is in amount of savings. And it is vice versa for the percentage of savings.
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In general, the conclusions obtained with VARS and Morris are similar, except that VARS:

• It has a computational cost around three more times than Morris.

• It does not give any idea of the interaction effects.

• It provides a more holistic understanding of the direction of influence for each variable. For example, for the analysis of the amount of savings, it shows that the effect of H is quite asymptotic instead of focusing on its non-monotonic nature, as Morris did.

Sobol -Variance based approach

As explained in subsection 3.3.3.2, this method is a variance decomposition approach and it is based on a Monte-Carlo numerical procedure to generate random samples. It calculates the contribution of each variable, as well as the interaction among them.

Like VARS and Morris, the ranges of analysis are for pE a R={0.10;0.28}, for pNG a R={0.02;0.10}, and for E, H and C a R={0;100}. All variables with uniform distribution. The prices are expressed in $/kWh and the loads in GWh/y. The computational cost of this method is 12,000 simulations.

The Sobol SA indexes for the amount of savings are in Figure 49. The top part shows S1 and ST, the individual and total effects of the variables respectively.

The difference between S1 and ST corresponds to the interaction effects. Just as Morris SA suggests, all the variables have interaction effects (σ ≥ μ). But different than Morris, Sobol does not identify if they exist at a specific part of the range. Additionally, just as Morris and VARS SA stated, the most influential variable for the amount of savings is pE, closely followed by pNG and E.

Contrary, H and C are non-influential factors.

The bottom part of Figure 49 shows S2, the 2 nd order SA index that describes the interaction effects of the variables per pair. The largest interaction effects are between E -pNG and E -pE. Then, it means that the relevance of E is highly tied to the value of pNG and pE. Other interesting observation is that pNG is the only variable that has interaction effects with all the others. This is an indication of its relevance, even though it does not have the largest individual and total index (S1 and ST). 

Interation effects [S2]

The bottom part of Figure 50 displays the 2 nd order SA indexes. Sobol suggests that all the variables have interaction effects, contrary to Morris SA where prices had several cases of σ≤μ (no interaction effects) in Figure 42, Figure 43, and Figure 44.

Similar than with the analysis of the amount of savings above, pNG is the only variable that has interaction effects with all the others. The largest one is the index pE -pNG, which is notably bigger compared with its analogous in the amount of savings (Figure 49). This could suggest that the Spark Spread rate (SS) is more relevant in the case of the percentage of savings.

On the other hand, the interaction effect pNG -E is lower for the percentage of savings than for the amount of savings, but the interaction pNG -H and pNG -C are slightly higher (see Figure 49 vs. Figure 50). This suggests two things:

First, the influence of the three loads is more equilibrated when analyzing the percentage of savings, but it depends on the level of pNG. The last sentence matches with the analysis of Figure 37 and Figure 38, where the percentage of savings for the SS1 seems larger in the middle of the ternary diagram, corresponding to a balance among the loads. Second, the analysis in chapter 4 highlights the relevance of the spark spread. Although the interaction pNG -pE is significant in this Sobol SA analysis, the variable that mostly interacts with the loads is the price of natural gas.

Finally, Figure 51 shows the data obtained with SOBOL, consolidating it by bins.

They describe the general trend of the average amount and percentage of savings throughout the axis of pE, pNG, and E (the three most influential variables).

There are some important differences between the images shown in Figure 51:

First, the number of cases with high feasibility (given by the red-yellow color scale) is larger when measuring in terms of percentage of savings. That is because the latter quantifies the relative savings. Then, a scenario with a small amount of savings could be shown blue in at the left image of Figure 51, but red in the right one because the relative savings (percentage of savings) is large.

The second difference is that E is more influential in the amount than in the percentage of savings (also discussed in Figure 50). For the percentage of savings (right in Figure 51), the highly feasible scenarios are found all along the edge of the cube where pNG is smaller and pE is larger. In contrast, the highly feasible scenarios for the amount of savings (left of Figure 51) are found at the corner of the cube where pNG is smaller, pE is larger, and E is higher. This matches with the interaction effects E -pNG and E -pE found and discussed in Figure 49. Finally, it is good to highlight that 99% of the CCHP-TS scenarios analyzed in this section have better environmental performance than their reference scenario, where is considered a carbon intensity of electricity equal to 0.447 kg CO2 eq. / kWh. This corresponds to the average in Europe [START_REF] Moro | Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles[END_REF].

General conclusion of the sensitivity analysis

The results stemming from the GSA method aim to establish the influence of energy prices and loads over the feasibility of Trigeneration-Thermal Storage systems. The analysis considers two metrics: the amount of savings, and the percentage of savings.

The amounts of savings quantify the nominal sum of money saved by using the CCHP-TS system. Here, the most relevant variables are pE, pNG, and E, in that order. Regarding the interaction effects, E -pNG and E -pE are the most significant. It is because, as observed in Figure 51 (left), the smaller pNG and larger pE, it is more relevant to have a high E. Another important remark is that pNG is the only variable having interaction effects with all the other.

The percentage of savings measures the relative savings regardless of its nominal value. Here, the most relevant variables are pNG, pE, and E, while H and C seem quite irrelevant. However, E becomes less influential, compared with the analysis of amount of savings. That is because, when measuring the amount of savings, there is a direct link between the money saved and the size of E. But when measuring percentage of savings, it considers the proportions, rather than the total amount. On the other hand, pNG and H have negative slopes, therefore, an increase in any of them leads to a decrease in the percentage of savings. Regarding the interaction effects, pNG is again the variable that has coupling effects with all the others. The largest interaction is between the two prices. The same does not happen with the amount of savings, which suggests that the SS is more relevant in the case of the percentage of savings.

Other interesting aspect is connecting the conclusions reached here, and the ones obtained in chapter 4. To start, regarding the lack of relevance of H and C, note that chapter 4 gave a grasp of this while concluding that it is it is more profitable to use boiler and vapor-compression chiller when heating or cooling loads dominate. In a similar vein, it concludes that the heat scrap does not affect the percentage of savings significantly. On the other hand, chapter 4 implements load dominance rates and ternary diagrams to show the results. It could be said that it was the first sign of existing interaction effects between the variables of analysis. Finally, the chapter also proposes a two-level characterization, firstly based on Spark Spread rate, and secondly on the annual loads. This is well explained by the results of the sensitivity analysis, indicating that the prices are more relevant than the loads. However, the sensitivity analysis quantifies the relevance and even separates the effect of each variable, including the prices.

It is interesting to see how chapter 4 and 5 match and complement each other.

Because the first provides the physical explanation to the numerical results of the second.

Concerning the interest of studying the energy prices separately, it can be said that both, pE and pNG, are relevant individually regardless of the output measure (amount or percentage of savings). Also, they are clearly tied, either directly or indirectly. For the percentage of savings, the interaction effect between them is very strong. While for the amount of savings, each price has interaction effects with E, therefore, they have an indirect link. However, the main difference between both energy prices is that, in either output (amount or percentage of savings), pNG keeps interaction effects with all the other variables, indicating that its influence is wider. Moreover, when referring to the percentage of savings, the energy loads interact almost exclusively with pNG.

Due to this, it is recommendable to analyze them separately, to clearly quantify their contribution to the feasibility of CCHP-TS systems.

Overall comparison of the three SA methods

Given the results across this chapter, it is possible to see some of the strengths and weaknesses of the different GSA methods.

Morris is computationally cheap and easy to implement. However, the method is more useful to differentiate between the influential and non-influential variables, rather than clearly ranking them [START_REF] Saltelli | Global Sensitivity Analysis : The Primer[END_REF]. This is because the rank of the variables is very sensitive to the range of analysis and its resolution. As observed in Figure 42, Figure 43, and Figure 44 where the output depends on the location of the different levels explored). Morris also gives an idea of the interaction effects present in each variable, but it does not measure them.

Additionally, Morris identifies when a variable has a non-monotonic behavior, but its outcome is limited by the information acquired with the sampling points.

VARS is a medium expensive method in computational terms. The method outlines the importance of the variables across their whole range quite precisely (its ranking matches with the Sobol method). However, it does not give an idea of the interaction effects among variables. Because, as mentioned in section 5.3, a directional variogram only assesses the sensitivity of the response surface Y in the direction of variable Xi. Another characteristic of VARS is that it provides a more holistic understanding of the sign of the slope (direction of influence) for each variable and its monotonic or non-monotonic behavior. While Morris suggest that the effect of the heating demand, H, is non-monotonic for the amount of savings, VARS shows that this effect in general is asymptotic (Figure 46). Therefore, VARS provides a more integrated view thanks to the number of samples.

Sobol is an extremely expensive method in terms of computational resources.

Its most important advantage is that it gives accurate information regarding the individual effect of a variable and its interaction effects with the other variables.

However, this method does not give any information neither regarding the nonmonotonic behavior of variables nor their sign of the slope (direction of influence on the output). The reason is simple. As mentioned in subsection 3.3.3.2, Sobol is a variance-based approach, contrary to Morris (a derivative-based approach)

and VARS that analyze sensitivity out of the slopes and derivatives of the variables.

Therefore, the decision to implement one method or the other depends on the interest of the analyst. Morris is a quick way to discard non-influential variables, identifies a non-monotonic behavior and gives an idea of the interaction effects.

Crossing the analysis of the results given by Morris and VARS, could provide a precise rank of the influential variables, an idea of the interaction effects, and a more holistic vision of the direction of influence for each variable (including nonmonotonic behaviors). Otherwise, crossing the analysis of the results given by VARS and Sobol would perfectly rank the influential variables, estimate their interaction effects, and provide a holistic vision of the direction of influence for each variable. However, the latter combination is computationally costly.

are perfectly parallel. Therefore, now it is clear that an increase of the loads drives a growth in the slope of the pNG isolines, rising the amount of savings. 

Similarly, Figure 53 shows especially the effect of pNG on the percentage of savings. The latter increases while decreasing the price of natural gas and increasing the price of electricity. The threshold of spark spread rate when the scenarios start being feasible, is different for each isoline (SS=2.52 for pNG=0.095, SS=2.26 for pNG=0.075, SS=2.36 for pNG=0.055). Therefore, the spark spread threshold could be lower than 3, depending on the price of natural gas. This is a reason why the prices should be analyzed separately. Similarly, Figure 54 shows that the larger pNG, the lower the amount and percentage of savings. Also, it presents that the threshold when each scenario is feasible depends on the combination of pE and pNG. And it is evident that the size of the loads makes a difference on the slope of each curve. For example, it is interesting that for small values of pNG, the amount and percentage of savings are higher for the isolines pE=0.15 and pE=0.22, than for pE=0. [START_REF] Smith | Benefits of thermal energy storage option combined with CHP system for different commercial building types[END_REF]. This is due to the size of the loads (E, H, C), that have larger impact when pNG is smaller.

That is related with the 2 nd order effects identified between pNG and the loads during the analysis with the Sobol SA method (section 5.4). For the case of annual electricity load, Figure 55 top shows that the larger E, the higher the amount of savings. But notice that for two isolines (pE=0. However, the percentage of savings has an asymptotic behavior (Figure 55 bottom). Each E isoline has a threshold where the percentage of savings reaches a stable point for any larger load. Then, for example in the isoline of pE=0.22 and pNG=0.020, it should not be a big difference in percentage of savings between having an E=35 or an E=95.

For the case of annual heating load, Figure 56 shows feasible scenarios only for the largest spark spread rate (pE=0. These diagrams (Figure 58) showed qualitatively that the percentage of savings is firstly driven by the spark spread rate (SS) and secondly by the size of energy loads. Specifically, the size of the electric annual load (E) proved to be relevant in all the cases.

The second part of the work had the objective to conduct a sensitivity analysis of five variables affecting the feasibility of CCHP-TS (the price of electricity pE, the price of natural gas pNG, and the annual loads E: electricity, H: heating, C: cooling). There was a special emphasis in analyzing the electricity and natural gas prices separately, instead of consolidating them into the spark spread rate.

For that, three sensitivity analysis methods were used and compared: Morris (derivative-based approach), Sobol (variance-based approach), and VARS (variogram-based approach). The analysis was conducted considering two metrics: the amount of savings, and the percentage of savings. The first one quantifies the absolute savings of using the CCHP-TS system instead of the reference scenario, and the second measures the relative savings. The results of this part gave answer to the two hypotheses raised.

HYPOTHESIS 1

Yes, there are combination of energy prices and size of the energy loads that make a Trigeneration -Thermal Storage feasible. The optimal combination depends on the metric considered. main interaction effects are between the electricity load and the energy prices (E -pNG and E -pE). In other words, having a large E is good, but it should be along with a small pNG and high pE (see Figure 51 left). Vice versa it is also true. The discussion of Figure 52 shows that, for determined pE and pNG, an increase of the loads rises the amount of savings. Finally, it is good to mention that pNG is a singular variable that has interaction effects with all the others. When talking about the percentage of savings, the energy prices pE, and pNG are the most relevant variables. E is still more influential than H and C, but it becomes less influential compared with its analysis for the amount of savings.

That is because, when measuring the amount of savings, there is a direct link between the money saved and the size of E. But when measuring percentage of savings, it considers the proportions, rather than the total amount. Nevertheless, an important remark is that in the percentage of savings, the influence of the three loads (E, H, and C) is slightly more equilibrated than in the amount of savings (individually and in terms of interaction effects). All this fit with the analysis of chapter 4. On the other hand, pNG is again the only variable that has interaction effects with all the others, but some aspects draw attention. The index pNG -pE is notably bigger compared with its analogous in the amount of savings, suggesting that the Spark Spread rate (SS) could be relevant for the relative savings. However, that resolution becomes weak when noticing that the energy loads have interaction effects almost exclusively with pNG. Therefore, the relevance of E, H, and C is strongly linked only to the price of natural gas.

HYPOTHESIS 2

Concerning the interest of studying the energy prices separately, it can be said that both, pE and pNG, are relevant individually regardless of the output measure (amount or percentage of savings). Also, they are clearly tied, either directly or indirectly. For the percentage of savings, the interaction effect between them is very strong. While for the amount of savings, each price has interaction effects with E, therefore, they have an indirect link. However, the main difference between them is that, in either output (amount or percentage of savings), pNG keeps interaction effects with all the other variables, indicating that its influence is wider. Specifically talking about the percentage of savings, the energy loads interact almost exclusively with pNG. Moreover, although pE also has a strong interaction effects with pNG, section 5.7 shows that, contrary to the general rule established by international governmental organisms [START_REF]CODE2 -Cogeneration Observatory and Dissemination Europe[END_REF] and explained in section 2.2, the spark spread threshold could be lower than three depending on the price of natural gas. Therefore, it is recommendable to analyze separately the energy prices while assessing the feasibility of Trigeneration systems with Thermal Storage. Some pertinent final remarks regarding the nature of this work include the following:

First, the thesis provides a grasp on the flexibility of the CCHP-TS system by presenting the different combinations of the variables that fluctuate across their range. Then, it is possible to determine at what extend the CCHP-TS system keeps being economically feasible.

Second, all the analysis in this thesis is conducted without considering any regulatory incentive. Therefore, when the analysis shows that a scenario is feasible, it means that the characteristics of the technology and the market are enough.

Third, the work exhibits that electricity loads have a larger influence than heating and cooling in the techno-economic feasibility of CCHP-TS system. However, note that the presence (not dominance) of heating and cooling potentially fosters the environmental performance, because it takes advantage of the residual heat.

Then, a recommendation for policy makers is to identify facilities that have a large electric load and incentivize, through pricing mechanisms, the aggregation of thermal loads and the use of CCHP-TS. This would encompass the heating and cooling infrastructure with the urban planning.

Finally, the conclusions of the work are quite aligned with the hypothesis proposed by Knizley et. al. when analyzing CHP systems [START_REF] Knizley | Evaluation of the operational cost savings potential from a D-CHP system based on a monthly power-to-heat ratio analysis[END_REF]. However, this work goes a step further by 1) analyzing the CCHP-TS system, 2) analyzing many combinations of energy prices and loads, 3) getting conclusive results, by using many tools, regarding the impact of each variable for the case study of a University campus.

Conclusions from the methodology

Aside from the technical results discussed above, the objective of this work is to analyze and contrast the different steps taken at the methodology of the thesis.

The general methodology is presented in section 3.1 and starts with a division in two phases. Each of them with a clear purpose. The first examines the relevance of the CCHP-TS model (feasibility and sensitivity to four selected variables). The second conduct a global sensitivity analysis of the feasibility studying five selected variables.

These two phases are complementary in two way. To start, developing the work in phase one helped to get familiarized with the model, the variables, and their synergy. As an example, one of the hypotheses proposed in this thesis is an outcome of the first phase. To continue, while the second phase (developed in chapter 5) clearly estimates the relevance of each variable, the first phase (in chapter 4) helps to understand the physical behavior of the technology. For example, while chapter 5 finds that H and C are not relevant variables, chapter 4 explains that the reason is that it is more profitable to use boiler and vaporcompression chiller when heating or cooling loads dominate.

Other valuable remark of the methodology is regarding the energy system optimization. DER-CAM model was a good way to get the first general approach.

But eventually, the level of automatization required in the simulation process obliged us to move forward (see subsection 3.3.1). Then, we adapted an hourly time-step model of the CCHP-TS systems into the programming language Python. This allowed to run thousands of simulations in a very agile way.

Finally, the sensitivity analysis is another key part of the methodology. The first approach was using a full factorial DoE as an exploratory analysis. It is computationally cheap and easy to implement; therefore, we were able to use DER-CAM for the energy system optimization. Later on, we needed a more robust way to assess the influence of variables (see subsection 3.3.5). Then, using the model adapted into Python, we used and compared three global sensitivity analysis methods. This allowed identifying their advantages and limitations (detailed in section 5.6), but more important, this complementarity thereby reinforced the techno-economic feasibility analysis of the Trigeneration systems with Thermal Storage.

Future work

Across the literature there are several works using modeling and data analysis to study the feasibility of Trigeneration and Thermal Storage system. Nevertheless, there is still room for research and innovation. Some opportunities for future work include the study of different hourly load profiles, and price schemes.

Regarding the price schemes, we recommend performing a similar analysis to this work, but now considering variable pE and pNG, that could differ across the days of the week and even along the same day. Including this into the model, intuitively, will foster the use of thermal storage during the hours of the day when the prices of electricity and natural gas are lower.

Regarding the hourly load profile, an option is to characterize it through the study of load duration curves, taking as references works as Poulin et. al. and Ueckerdt et al. [START_REF] Poulin | Load duration curve: A tool for technico-economic analysis of energy solutions[END_REF], [START_REF] Ueckerdt | Representing power sector variability and the integration of variable renewables in long-term energy-economy models using residual load duration curves[END_REF]. Similarly, it is pertinent to measure the interdependence between E, H, and C in different case studies. This would give the opportunity to create more reasonable scenarios while conducting sensitivity analysis. Following the same line of thought, it is also relevant to deepen the study for the flexibility of the CCHP-TS system. It includes analyzing the impact in the optimal solution due to climate change, considering extreme peaks of heating and cooling.

ANNEX I. Consolidated output data from DERCAM

This annex presents the output data from DERCAM, once it was automatically extracted from the individual reports. All this, using the code in Annex II. 

ANNEX II. Equation used in MATLAB to extract information from DER-CAM reports

This annex presents the code used in Matlab to automatically extract the data from the reports of DER-CAM. The information obtained from here was used in section 4.3.

From DER CAM report, it is obtained the following information: Then c(a k , a i ) is compared to a level of majority s ∈ [0.5; 1 -min(w j )] to verify the concordance condition in Eq. 49:

c(a k , a i ) ≥ s Eq. 49

The reader should recall that the relation Alternative A is at least as good as alternative B is verified if the concordance and non-veto conditions are fulfilled for each pair of alternatives.

The first, the concordance condition, requires building the concordance matrix by applying Eq. 49 to each pair of alternatives. The concordance condition expresses that the coalition of criteria supporting that one alternative outranks the other, surpasses a minimum level of agreement, which is called the majority principle.

The second, the non-veto condition, requires building the discordance matrix by applying Eq. 50 to each pair of alternatives.

Ω j (a k , a i ) ≥ v 𝑗 Eq. 50

The non-veto condition for each criterion (Eq. 50), is a maximum limit on the predilection of an alternative: if alternative B is better than A for a given criterion and surpasses its veto condition, B will be better than A no matter the value of the other criteria. In other words, if an alternative is extremely worse in a specific criterion, it does not matter how good it is in the others, it will be discarded. The veto threshold is established by the analyst. Therefore, Ω j (a k , a i ) must be on the interval [pj, vj] [START_REF] Roy | The outranking foundations aproach and the methods[END_REF]. The veto effect works on the principle of all or nothing. 
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  variable i (in VARS SA) Δ Resolution or size of the step (in Morris SA) Δh Resolution or size of the step (in VARS SA) μ Mean of the distribution of the elementary effects EEi ~ Fi (in Morris SA) μ* Mean of the distribution of the absolute values of the elementary effects | EEi | ~ Gi (in Morris SA) σ Standard deviation of the distribution of elementary effects EEi ~ Fi (in Morris SA) RÉSUMÉ LONG (Français) Mots clés: Systèmes de trigénération couplés à du stockage thermique, faisabilité technico-économique, demandes en énergies, prix de l'énergie, analyse de sensibilité. Les systèmes de trigénération couplés à du stockage thermique (CCHP-TS) contribuent à la production distribuée d'énergie et à la réduction des émissions de gaz à effet de serre. Ils sont conçus pour découpler la production et la consommation de chauffage, de froid et d'électricité. Néanmoins, il est important d'évaluer leur faisabilité technico-économique pour assurer une mise en oeuvre à long terme. Par ailleurs, la détermination et la caractérisation des variables influentes sont essentielles pour identifier les domaines d'application les plus viables. Potentiellement, cela peut stimuler l'intérêt des chefs de projet, des investisseurs et des décideurs politiques, encourageant ainsi l'adoption de cette technologie. Plusieurs auteurs suggèrent que les prix et les demandes en énergies (électricité, chaleur et froid) sont des variables importantes de la faisabilité technico-économique des systèmes combinés d'énergie thermique et électrique. Ils ont notamment utilisé le ratio Spark Spread (SS) qui est le rapport entre le prix de l'électricité du réseau et du combustible de cogénération. Cependant, seules quelques études, telles que celles de Hajabdollahi [1], et Cardona et al. [2], évaluent l'influence combinée des prix et de la demande en énergies. De plus, ces travaux présentent certaines limites dans leur modèle. Ainsi, Hajabdollahi étudie les charges mensuellement uniquement alors qu'une résolution temporelle plus courte de la demande est nécessaire pour plus de précision pour une analyse de faisabilité. Quant à Cardona et al., ils analysent les prix et les charges sur une base horaire, mais le modèle qu'ils proposent n'optimise que la stratégie d'opération et non la conception (puissances installées des systèmes) qu'ils supposent définie a priori. La littérature mettant en avant les prix de l'énergie et les niveaux de demandes comme variables importantes, ce travail propose et analyse deux hypothèses : 1) Il existe un couplage entre les prix de l'énergie et la variabilité des demandes en énergies qui influe techniquement et économiquement sur la faisabilité des systèmes CCHP-TS; 2) Les prix de l'énergie (électricité et gaz naturel) doivent être considérés séparément plutôt que d'utiliser seulement le ratio Spark Spread (SS).

Figure 1

 1 Figure 1 Méthodologie générale de cette thèse

  and natural gas prices are studied separately, rather than consolidating them into Spark Spread. Three aspects exhibit the importance of conducting a global sensitivity analysis in the second phase, instead of keeping the results obtained with the full factorial design of experiments during the first phase: 1) The factorial design of experiments is a modelbased method, while global sensitivity analysis is model-free. Model-free methods are not related to any local reference at the model. In other words, while a model-free method takes the samples randomly, a model-based method takes them based on a specific starting point or indication given by the user. 2) The accuracy of the factorial design of experiments relies on the sample dispersion, while the global sensitivity analysis ensures a random and dispersed sampling across the range of the variables.

[

  pE], the natural gas price [pNG], the annual size of electric loads [E], the annual size of heating loads [H], and the annual size of cooling loads [C] (Note that E, H, and C are expressed in energy). The order of relevance relies on the measure used for the techno-economic performance of the CCHP-TS system. It can be amount of savings [$] or the percentage of savings [%]. Below the description of the results and the answer to the two hypotheses formulated.

Figure 3

 3 Figure 3 Comparison of a trigeneration-thermal storage system vs. a conventional system, while meeting the annual loads Ln Ɐ n={E: electricity, H:heating, C:cooling} NOTE: Energy Supply (dotted lines) and Energy Loads (solid lines)

Figure 4

 4 Figure 4 Estimated European heat market in 2010 including residential and service sector (Adapted from Persson, 2015 [26])

Figure 5

 5 Figure 5 Cooling demand total (top) and per capita (bottom) for selected countries in 2000 and 2017 (image adapted from [28])

Figure 7

 7 Figure 7 Share of type of useful thermal energy (by temperature) for the industry of EU27 in 2009 [27]

Figure 8 Figure 9

 89 Figure 8 Industrial sectors that require thermal energy in Peta-Joules [PJ] (by temperature) for EU27 in 2009[START_REF] Nicolas | Heat and Cooling Demand and Market Perspective[END_REF] 

Figure 10

 10 Figure 10 Breakdown of useful energy demand for the service sector in EU-27 for 2009

Figure 11

 11 Figure 11 Household energy use (by end use) around the world[START_REF] Nicolas | Heat and Cooling Demand and Market Perspective[END_REF] 

Figure 12 Figure 6

 126 Figure 12 Useful energy demand for the residential sector in EU-27 for 2009

  evaluating the feasibility of trigeneration systems with thermal storage: the price of electricity [pE], the price of natural gas [pNG], the size of the annual energy loads of electricity [E], heating [H], and cooling [C].

Figure 13

 13 Figure 13 Subtropical desert places (adapted from the Global Solar Atlas [40])

Chapter 4

 4 corresponds to the first phase of the work. The objective is to demonstrate that the model for the CCHP-TS systems is relevant and sensitive to the variables of analysis (energy prices and loads). It combines tools such as full factorial design of experiments (DoE), DER-CAM simulation tool, k-Means clustering, and multicriteria decision making (MCDM). The results are shown in ternary diagrams and using load dominance rates. Chapter 5 corresponds to the second phase of the work. It is a rigorous sensitivity analysis and compares three approaches: Morris, Sobol, and VARS.

Figure 14 Figure 15

 1415 Figure 14 Household electricity price worldwide in 2016, by region (published by Statista Research Department [64])

  hotels, Wang et al.[START_REF] Wang | Performance comparison of combined cooling heating and power system in different operation modes[END_REF] Fig. 4,[START_REF] Stjepanović | Relationship between energy consumption and economic growth in 30 countries in Europe -panel[END_REF][START_REF] Ouedraogo | Energy consumption and economic growth: Evidence from the economic community of West African States (ECOWAS)[END_REF].a] studied a 5-stars hotel with electricity, heat and cooling demand of approximately 1.5, 2.4 and 3.9 GWh/y respectively. Regarding University campi, there are examples such as the IST Alameda Campus[START_REF]Campus Sustentável[END_REF], which demand is approximately 2.4, 0.6 and 1 GWh/y, respectively for electricity, heat and cooling, but there are some other examples of larger demand; such as the West Campus of the University of Illinois, in Chicago [77] that has an CHP installed capacity of 21 MWe , being able to produce up to 147 GWh/y. Talking about airports, according to the examples provided by Cardona et al. [52, Fig. 1,2], their energy consumption can go from 20 GWh/y to more than 150 GWh/y, such as the Malpensa Airport in Milan, whose electricity, heat and cooling demand are approximately 151, 129.3 and 102.5 GWh/y. However, there are larger airports such as Heathrow, that is 17 times larger in area than Malpensa and serves 3.5 times the number of passengers than in Milan.

  is possible because it is a simpler model without integer variables. The model already proposes the design of the system (installed and functional capacity of the equipment) and simply optimizes the operation strategy. Then, the authors calculate the marginal cost of each configuration and conducts a LP for each hour of the year.

oo

  Non-negative integer variables o To determine the installed capacity of units such as boiler, vaporcompression chiller, absorption chiller, and thermal storage. o To determine the number of CHP units installed, and how many are active at the time t. ✓ Non-negative real variables o To quantify the electricity imported from the grid at the time t. To quantify the electricity and heat produced by the CHP and boiler, at the time t. To quantify the electricity and heat consumed by the vaporcompression and absorption chiller at the time t. o To quantify the state-of-charge, input and output of the thermal storage at the time t. ✓ Binary variables o To activate the fixed capital cost of units such as boiler, vaporcompression chiller, absorption chiller, and thermal storage, when their installed capacity is over zero. o To avoid having an input and output of the thermal storage within the same hour.

  is a Python-based open-source software package supporting optimization capabilities. It is an effective framework to develop Python scripts, and includes optimization solvers for stochastic programming, dynamic optimization with differential algebraic equations, and mathematical programming with equilibrium conditions. It allows the formulation of complex model, even as object-oriented, allowing a variety of modelling components: sets, scalar and multidimensional parameters, decision variables, objectives, constraints, equations, etc.

  DoE is used due to its simplicity, capacity to analyze globally, and possibility to identify interaction effects. Once the simulations are conducted, clustering is implemented to analyze the data and get the pertinent conclusions. The learnings from this phase are cornerstone for the second one, because the objective is to demonstrate that the model developed in DER-CAM is sensitive to the variables of analysis.The second phase (developed in chapter 5) is a deep sensitivity analysis of the feasibility study, combined with a comparison of three GSA approaches: Morris, Sobol, and VARS. Each of them uses their corresponding sampling methods (LHS, and Monte Carlo). To understand the relevance of a sensitivity analysis, subsection 3.3.5 highlights how a study with GSA complements the insights obtained by a full factorial DoE. Regarding the energy system optimization, as DER-CAM is not adapted to conduct global sensitivity analysis (developed further in subsection 3.2.2.1), it is proposed an adapted model of a CCHP-TS system developed in Python. The model is based on energy balances and uses the MILP algorithm for the optimization step. As seen in the subsection 2.4.1, MILP is the most appropriate method for this type of application. The implementation is done by using the library PYOMO and the solver CPLEX to optimize.

Figure 18

 18 Figure 18 General methodology of this thesis

  Modeling and optimization in DER-CAM 3.2.2.1 About DER-CAM DER-CAM (Distributed Energy Resources Customer Adoption Model) is a tool created by the Lawrence Berkeley National Laboratory (LBNL) in 2000. Its purpose is the simulation of buildings or multi-energy microgrids finding their optimal design and operation strategy (best combination of technology) to supply energetic needs. DER-CAM is written in GAMS but runs either in a Web-based environment or in the Windows platform. The solvers included in GAMS allow to use a Mixed Integer Linear Programming algorithm (MILP) to minimize the total annual cost, or the CO2 emissions, or both.

Figure 19

 19 Figure 19 Difference of percentage of savings reported by DER-CAM and the Python-PYOMO-CPLEX tool for 30 scenarios

5 ,

 5 SA methods can be local or global. Local SA uses the first and second order partial derivatives to find the change of the response function Y=f(x1,…,xk), while varying xi Ɐ i=1,..,k, around one point of the domain Ω in the k-dimensional space.

2 *

 2 Change of Y given the interaction between x1 and x2, at the point (x1*, x2*) Eq. 10 On the other hand, global sensitivity analysis (GSA) methods quantify the influence of the model's parameters xi over Y across its whole domain of uncertainty Ω.

2 .

 2 σ : Standard deviation of the distribution of elementary effects EEi ~ Fi. 3. μ* : Mean of the distribution of the absolute values of the elementary effects | EEi | ~ Gi.

3 . 26 4. 2 𝑦 5 .

 32625 Compute the model output for all the input values in the sample matrices A, B and Ci, obtaining three vectors of model outputs of dimension Nx1. 𝑦 𝐴 = 𝑓(𝐴) Eq. 24 𝑦 𝐵 = 𝑓(𝐵) Eq. 25 𝑦 𝐶 𝑖 = 𝑓(𝐶 𝑖 ) Eq. Calculate the first-order sensitivity index 𝑆 𝑖 = 𝑉[𝐸(𝑌|𝑋 𝑖 )] 𝑉(𝑌) = 𝑦 𝐴 • 𝑦 𝐶 𝑖 -𝑓 0 Calculate the total-effect indices

Figure 20 VARS

 20 Figure 20 VARS is based on pairs of points at the response surface. Adapted from Razavi, 2016 [161]

Figure 21

 21 Figure 21 Image taken from Razavi, 2016[START_REF] Razavi | A new framework for comprehensive, robust, and efficient global sensitivity analysis: 1. Theory[END_REF]. At left, the profile of three different response surfaces f1(x), f2(x), and f3(x). At right, their respective directional variograms.

Figure 21 (

 21 Figure 21 (left) shows three different response surfaces Y, called f1(x), f2(x) and f3(x). The directional variograms (right), show the change of the response surfaces with respect to x, across the different values of ℎ 𝑖 (scale). For h<1, f3(x)is the most sensitive (blue curve). When h=1, the three response surfaces are equally sensitive. And for h>1, f1(x) is the most sensitive (red curve).

Figure 22 STAR

 22 Figure 22 STAR-based sampling with k=2 independent variables and r=2STAR-centers[START_REF] Razavi | A new framework for comprehensive, robust, and efficient global sensitivity analysis: 1. Theory[END_REF] 

Figure 23

 23 Figure 23 (a) Optimal LHS with low correlated factors and optimal space-filling (distribution of samples), (b) Sampling with good space-filling only, (c) LHS with very poor space-filling and highly correlated factorsImage taken from Sheikholeslami, 2017[START_REF] Sheikholeslami | Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models[END_REF] 

Figure 24 4 .

 244 Figure 24 Doubling procedure of PLHS with k=2 variables (a) Initial LHS with r=3 samples, (b) Dividing initial sample domain into 6 intervals with equal marginal probabilityImage taken from Sheikholeslami, 2017[START_REF] Sheikholeslami | Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models[END_REF] 

  at the IST -Alameda Campus[START_REF]Campus Sustentável[END_REF].The load duration curves and the normalized campus hourly patterns [d n ] of each n carrier (E: Electricity, H: Heating, C: Cooling) are represented in Figure25. From the normalized campus hourly patterns (Figure25, right), it is possible to observe the behavior of energy loads across the 8760 hours of the year and notice that they decay for the three energy carriers every weekend and during the first two weeks of August. During the weekdays, electricity load reaches its maximum during January-February, the minimum during the first two weeks of August and in general, the rest of the year is 60% of the maximum values; the heating has the highest values from December to February and cooling load spans from March to November, with the maximum from June to the end of August.

Figure 25

 25 Figure 25 Load duration curves (left) and the normalized hourly pattern of the Electricity, Heating and Cooling loads for the IST Alameda Campus, expressed in hourly basis

Figure 27 4 . 1

 2741 Figure 27 Refined methodology of Phase I

  boiler, thermal storage and CHP generators-ICE (Internal Combustion Engines) ranging from 75kW to 5MW installed capacity, CT (Combustion Turbines) and CTDB (Combustion Turbine Duct Burner) ranging from 15MW to 25MW installed capacity. All this information is available on the DER-CAM default database. They are listed in Table

Figure 29

 29 Figure 29 Simulation data obtained from the full factorial design of experiments, using DER-CAM (example of SS4=6.6) KEY: ICE (Internal Combustion Engine), CT (Combustion Turbine), and CTDB (Combustion Turbine Duct Burner).

  -CT25 Abs chiller: 4.7 MW Cold Stg: 25.8 MWhOn the other hand, Figure30shows a frequency histogram of CHP Technology Mix and displays the related ranges of energy loads levels and savings. In this chart also, is possible to perceive that the percentage of savings trend roughly follows the behavior of Electricity demand, particularly for high values of the load. Further, the installed capacity (increasing values along the X-axis) is influenced by Electricity demand. For example, the plateau of electricity demand 1000 GWh/y is between 225-275 MW installed capacity, the one of 500 GWh/y is located between 100-125 MW, the one for 100 GWh/y goes from 20-25 MW and finally, the one for 10 GWh/y is between 1.75-3.5 MW. On the other hand, there is a threshold of CHP installed capacity (25MW), where Internal Combustion Engines (ICE) technology is no longer the most economically feasible solution, and then combustion turbines (CT) start being used, adding

Figure 30 CHP

 30 Figure 30 CHP Technology Mix Histogram (example of SS4=6.6) and its relationship with levels E, H, C, and percentage of savings. KEY: ICE (Internal Combustion Engine), CT (Combustion Turbine), and CTDB (Combustion Turbine Duct Burner). NOTE: The CHP technology is modular, as explained in Table11. Then, the number before the type of prime movers indicates the number of units installed. As example, 4xICE5 -ICE2.5 denote the installation is four units of ICE of 5MW, and one ICE of 2.5MW.
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 56 2.3.3. Nineteen different values of k ϵ [2,20] clusters are to be tested. Generating the set 𝐴 = { a 1 : 𝑘 = 2, a 2 : 𝑘 = 3, ⋯ , a 19 : 𝑘 = 20}. These alternatives are discriminated pair by pair. A detailed theoretical explanation about MCDM ELECTRE 1S is provided in Annex III. The use of MCDM aims finding the number of k clusters that meet the balance between minimizing the cluster dispersion (making elements of a cluster alike) and maximizing inter-cluster dispersion (making clusters different enough from each other). Therefore, six decision criteria are considered to evaluate the best alternative. Q 1 of the intra-clusters distances g 3 2 nd quartile Q 2 of the intra-clusters distances g 4 3 rd quartile Q 3 of the intra-clusters distances g Maximum M of the intra-clusters Maximize g Mean inter-clusters distances

1

 1 indicates that number of clusters should be as less as possible, to reduce the number analysis points. As an additional constraint in the methodology framework, each cluster must have a minimum number of eight points for the alternative to eligible (N min = 8), since making statistics on less than eight points makes no sense.

Figure 31

 31 Figure 31 Graphical explanation of the set of criteria for the MCDM ELECTRE 1S method

Subsection 4 . 4 .Figure 33 .

 4433 Figure 33. The Figure 35 and Figure 37 represent the percentage of savings by

Figure 35 ,

 35 Figure 35, the smaller are at the bottom-left of the three diagrams (r H →1) and the larger at the top (r E →1). In other words, the dominance of the electric load favors the percentage of savings for the CCHP-TS systems. In contrast the dominance of heating loads disfavors it. Regarding the dominance of cooling, this diagram does not show that r C governs the percentage of savings.

Figure 35 For

 35 Figure 35 Ternary diagrams of SS2, SS3 and SS4 for the distribution of the percentage of savings across dominance rates (𝑟 𝐸 , 𝑟 𝐻 , 𝑟 𝐶 ) NOTE: The percentage of savings are represented by the square size

Figure 36 showsFigure 35 .

 3635 Figure 36 shows boxplots for each cluster in terms of the percentage of savings and r E -r H -r C . It allows confirming the remark from the ternary diagram of Figure 35. The clusters with the largest dominance of electric load have the largest average percentage of savings (C5: r E =92% and %savings=39%; C1:r E =60% and %savings=37%). The clusters with middle dominance of electric load have a middle average percentage of savings (C4: r E =22% and %savings=33%; C2: r E =30% and %savings=23%). Note that C2 has larger r E than C4, but the latter has a better percentage of savings. This situation is related to the larger dominance of cooling load (r C ) in C4. The analysis of the percentage of absorption in section 4.4.1 shows that C4 uses more vaporcompression chiller than C2. Therefore, the trend established is still valid because the cooling load of C4 contributes to an increase in the electric load.

Figure 37

 37 Figure 37 Ternary diagrams of SS1 for the distribution of the percentage of savings across dominance rates (𝑟 𝐸 , 𝑟 𝐻 , 𝑟 𝐶 ) NOTE: The percentage of savings are represented by the square size

Figure 38 presents

 38 Figure 38 presents the boxplots of dominance load rates and the percentage of savings for the three clusters. The charts show that C1, the cluster with the higher percentage of savings, is the only one where all the scenarios present the three loads, while the others could have the absence of heating or cooling loads. Although the boxplots show big ranges of variation for r E -r H -r C , it is possible to infer that the higher percentage of savings in SS1=3 relates to the balance of Electric, Heating, and Cooling loads (as suggested as well per the ternary diagram in Figure37).

Figure 38

 38 Figure 38 Boxplots comparing 𝑟 𝐸 , 𝑟 𝐻 , 𝑟 𝐶 , and the percentage of savings for each cluster across the spark spread rate SS1 = 3.0

Subsection 4 . 4 .

 44 3 was devoted to analyzing the behavior of the percentage of cost savings. For the case of SS > 3, there are three spark spread rates (SS) to analyze. The simulations corresponding to each are classified within six different clusters. Those six clusters are comparable among the three spark spread rates, because they share similarities regarding their segregation parameters (read subsection 4.4.

pEFigure 40

 40 Figure 40 Isolines for the price of electricity [$/kWh]

Figure 42

 42 Figure 42 Morris sensitivity indexes for the ranges 0 to 10 GWh/y (top), 0 to 100 GWh/y (middle), and 0 to 1000 GWh/y (bottom). Each range shows the analysis for the amount of savings (left) and the percentage of savings (right)

Figure 43

 43 Figure 43 Morris sensitivity indexes for the ranges 0 to 5 GWh/y, 5 to 10 GWh/y, and 10 to 40 GWh/y. Each range shows the analysis for the amount of savings (left) and the percentage of savings (right)

Figure 44

 44 Figure 44 Morris sensitivity indexes for the ranges 40 to 70 GWh/y, and 70 to 100 GWh/y. Each range shows the analysis for the amount of savings (left) and the percentage of savings (right)

Figure 45

 45 Figure 45 Variogram of variables for the amount of savings (top), zoom (bottom)

Figure 46

 46 Figure 46 Response surface (amount of savings) vs. the raw data corresponding to the four seed points for variables pE, pNG, E, H, and C.

Figure 47

 47 Figure 47 Variogram of variables for the percentage of savings (top), zoom (bottom)

Figure 48

 48 Figure 48 Response surface (percentage of savings) vs. the raw data corresponding to the four seed points for variables pE, pNG, E, H, and C.

Figure 49 Sobol

 49 Figure 49 Sobol SA indexes for amount of savings

Figure 51

 51 Figure 51 Three dimensional charts of the average amount and percentage of savings (left and right respectively), across pE, pNG, and E. KEY: The units of the color scale for the average amount of savings (left) is M$, while the average percentage of savings (right) is expressed in fraction.

Figure 52

 52 Figure 52 Isolines of pNG-E-H-C across the electricity price [pE] for the amount of savings (top); and addition of the isoline pNG=0.075, E=40, H=70, C=65 (bottom)

Figure 55

 55 Figure 55 Isolines of pE-pNG-H-C across the annual electricity load [E] for the amount and percentage of savings (top and bottom respectively)

Figure 58

 58 Figure 58 Ternary diagrams of SS1, SS2, SS3, and SS4 for the distribution of the percentage of savings across dominance rates (rE , rH , rC). Taken from subsection 4.4.3.

Eq. 52 Cost

 52 related to the vapor-compression chiller VCchiller(Cost) = d 0 • w VCchiller + d 1 • VCchillerIC + ∑ Ndays t • d 2 • eVCchiller t • d the Cold Storage CStg(Cost) = e 0 • w CStg + e 1 • CStgIC + ∑ Ndays t • e 2 the Heat Storage HStg(Cost) = f 0 • w HStg + f 1

  activates the fixed capital cost of Heat Storage These constraints use a binary variable to activates the fixed capital cost of Heat Storage. It values one if the installed capacity of the Eq.202Heat storage is larger than zero. In contrast it is zero if the installed capacity is 0.HStgIC ≥ 0.001 -M(1 -w HStg ) *Note that a strict inequality constraint HStgIC > 0 -M(1w HStg ) would make the optimization not well-defined.Because it would always be possible to make the objective value better by moving closer and closer to the value of the inequality, without reaching the optimum.HStgIC ≤ 0 + M • w HStgTitre : Méthodologie pour identifier les variables clés conduisant à la faisabilité technicoéconomique de la trigénération -systèmes de stockage thermique Mots clés : Systèmes de trigénération couplés à du stockage thermique, faisabilité technicoéconomique, demandes en énergies, prix de l'énergie, analyse de sensibilité .Résumé :Les systèmes de trigénération couplés à du stockage thermique (CCHP-TS) contribuent à la production distribuée d'énergie et à la réduction des émissions de gaz à effet de serre. Néanmoins, il est important d'évaluer leur faisabilité technico-économique pour assurer une mise en oeuvre à long terme. Par ailleurs, la détermination et la caractérisation des variables influentes sont essentielles pour identifier les domaines d'application les plus viables. Potentiellement, cela peut stimuler l'intérêt des chefs de projet, des investisseurs et des décideurs politiques, encourageant ainsi l'adoption de cette technologie. Plusieurs auteurs suggèrent que les prix et les demandes en énergies (électricité, chaleur et froid) sont des variables importantes de la faisabilité technico-économique des systèmes CCHP-TS. Ils ont notamment utilisé le ratio Spark Spread (SS) qui est le rapport entre le coût de l'électricité du réseau et le combustible de cogénération. Cependant, seules quelques études évaluent l'influence combinée des prix et de la demande en énergies, avec certaines limites dans leur modèle, la technologie analysée ou même la résolution temporelle de la demande. Comme la littérature révèle que les prix de l'énergie et les niveaux de demandes sont des variables importantes, cette étude propose et analyse deux hypothèses : 1) Il existe un couplage entre les prix de l'énergie et la variabilité des demandes en énergies qui influe techniquement et économiquement sur la faisabilité des systèmes CCHP-TS; 2) Les prix de l'énergie (électricité et gaz naturel) doivent être considérés séparément plutôt que d'utiliser le ratio Spark Spread. Le travail est divisé en deux phases. La première est une analyse exploratoire visant à démontrer que le modèle utilisé de CCHP-TS est pertinent et sensible aux variables d'analyse (prix et demandes énergétiques). La seconde est une analyse de sensibilité rigoureuse qui permet de plus une comparaison de trois «approches»: Morris, Sobol et VARS. Les résultats indiquent que les prix de l'énergie et l'importance de la demande électrique sont les variables les plus importantes pour garantir la faisabilité d'un système CCHP-TS. L'ordre d'importance entre les prix de l'énergie diffère selon que l'indicateur de performance économique utilisé soit absolu (montant d'économies réalisées [$]) ou relatif (pourcentage d'économies réalisées [%]). Dans les deux cas, le prix du carburant est la variable ayant un effet d'interaction avec les autres variables le plus importants. La méthodologie de la première phase intègre des outils tels que le plan d'expériences factoriel complet, l'outil de simulation et d'optimisation DER-CAM et une nouvelle combinaison de la méthode de clustering k-Means et d'une méthode d'aide à la décision multicritère (MCDM). Pour la deuxième phase, il s'agit principalement de l'utilisation des méthodes globales d'analyse de sensibilité et de l'adaptation d'un modèle CCHP-TS programmée en langage Python qui utilise la bibliothèque d'optimisation PYOMO et le solveur CPLEX. Dans cette deuxième phase, la mise en oeuvre des trois méthodes d'analyse de sensibilité a permis une identification des avantages et limites de chacune. L'analyse de la faisabilité techno-économique s'en trouve renforcée en utilisant leurs complémentarités.
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	ABBREVIATIONS
	Abs	Absorption chiller
	C#	Cluster number # (in k-Means application)
	CStg	Cold storage
	E4C	Electricity produced by the CHP and used to cover cooling loads
	E4CS	Electricity produced by the CHP and used to produce cold that will be stored
	E4E	Electricity produced by the CHP and used to cover electric loads
	HStg	Heat storage
	H4CS	Heat produced by the CHP and used to produce cold that will be stored
	H4C	Heat produced by the CHP and used to cover cooling loads
	H4H	Heat produced by the CHP and used to cover heating loads
	pSav	Percentage of savings
	VCchiller	Vapor-compression chiller

n (t) Hourly load pattern of the n energy carrier, where n={E: electricity , H: heating , C: cooling } [-/h] E Annual size of the electric load (in terms of energy) [GWh/y] EEi Elementary effects of the variable i (in Morris SA) Electricity CHP (t) Electricity produced by CHP, expressed in hourly basis [kW] H Annual size of the heating load (in terms of energy) [GWh/y] Heating Boiler (t) Heating produced by a boiler, expressed in hourly basis [kW] Heating CHP (t) n (t) Hourly energy load of n carrier [kW], where n={E: electricity , H: heating , C: cooling } n Number of seed point (in VARS SA) p Number of levels (in Morris SA) pE Price of the electricity from the national grid [$/kWh] pNG Price of the natural gas from the national grid [$/kWh] R Range r Number of seed point (in Morris SA) r n Dominance rates of n carrier [-], where n={E: electricity , H:

Useful heat demand [PJ] Iron & Steel : High temp EU27 in 2009
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									shows that Germany, France, UK, and Italy
	concentrate the highest thermal demand in the service sector. CHP is used in
	this sector through the connection of the buildings to district heating (and
	cooling) networks or with the direct installation of CHP units in the facilities, like
	in the case of hospitals.						

Useful heat demand [PJ] Non-metallic mineral products : High temp EU27 in 2009
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Useful heat demand [PJ] Chemical : Low temp EU27 in 2009

  

Useful energy demand [PWh] Space heating Water heating Space cooling
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	Space heating
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	Water heating
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Useful energy demand [PWh] Space heating Water heating Space cooling
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						], the climate, architectural characteristics, and cultural
	context are important because they determine the level of demand. However,
	Galindo Fernández [11] presented a list of key factors determining the success
	of the technology. They include governmental interest to reduce CO2 emissions,
	a liberalized thermal energy market with low regulation, predictability of prices

Table 2

 2 

																		)	
		Multi-objective	Economic	Environmental	Optimization	Scenarios	Single plant/equipment analysis	Microgrid	Bottom-up approach	Top-down approach	CHP	Boiler	Absorption chiller	Heat storage	Cold storage	Allow variation of the electricity price?	Free access? (P) -partial free access	/ M / Y Simulation time step ( m / H / D	Time span for planification	No. of papers referring it (since 2005 until Dec 1 st , 2019)
		Assmnt. Sol. Case Apch. Technologies		Other charac.
	DER-CAM [86]	* * * *			* *		* * * * * * * H 1y 397
	Energy PLAN		* *		*		* *		* * * *		* * H 1y 1220
	EnergyPRO		*			* *		*		* * * * * *		m 40y 521
	LEAP		*			*		* * * * * * * *		P Y any 712
	BALMOREL [87]		*		*				*		* * * * *			H 50y 1160
	COMPOSE [83]		*		*		*		*		* * * * * * * H any 17
	BCHP Screening Tool		*			* *		*		* * * * *		* H 1y	68
	RETScreen [84]		*			*		* *		* * * *			P M 50y 3750
	TIMES / MARKAL		* * *			* P * * * * * *			H 50y 147
	HOMER [82], [85]		*		*			* *		* * *			*		m 1y 16000

General characteristics of the computational tools

[START_REF]Modeling tools[END_REF]

-

[START_REF]Department of Development and Planning[END_REF]

,

[START_REF]DER-CAM Web Optimization tool[END_REF]

,

[START_REF] Ravn | The Balmorel Model Structure[END_REF] 

Table 3

 3 

Specific characteristics of the computational tools

[START_REF]Modeling tools[END_REF]

-

[START_REF] Ravn | The Balmorel Model Structure[END_REF] 

KEY: Partially (P); by minute (m); hourly (H), daily (D), monthly (M); yearly (Y); years (y). NOTE: The last column reports the number of papers that appear by searching in Google Scholar the keywords: "name of the software" + simulation. For LEAP: simulation + LEAP + "Long-range Energy Alternatives Planning system". For COMPOSE: simulation + COMPOSE + "Compare Options for Sustainable Energy". For HOMER: simulation + model + HOMER + energy + software.

Table 1 )

 1 have a dearth in the joined analysis of energy prices and loads as relevant variables. Hajabdollahi study, both, energy prices and loads, but the loads are in monthly basis. As explained in section 2.1, a smaller time-step in the loads is important because it gives more precision to the feasibility analysis. This higher precision is a must for context like the European, where the interest of buying fuel and selling electricity is not straight forward due to the large energy prices (see the last paragraph of subsection 2.2.1). Regarding Li et al., they do not study neither energy prices nor loads. As for Cardona et al., they analyze both in hourly basis, but the model they propose only optimizes the operation strategy, while the design (installed capacity of the equipment) is an assumption.

	The second remark from subsection 2.2.2 is that university campi, depending on
	the place and climate, are suitable application for combined thermal and power
	energy systems. The reason is that they are high energy intensity buildings.

The first and most evident remark across chapter 2 is the lack of studies on the technological combination of Trigeneration and Thermal Storage. Moreover, the ones studying it ( Hajabdollahi

[START_REF] Hajabdollahi | Investigating the effects of load demands on selection of optimum CCHP-ORC plant[END_REF]

, Li et al.

[START_REF] Li | Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system[END_REF]

, and Cardona et al.

[START_REF] Cardona | Energy saving in airports by trigeneration. Part II: Short and long term planning for the Malpensa 2000 CHCP plant[END_REF] 

from

Exploratory study of the CCHP-TS feasibility PHASE II Sensitivity analysis of the CCHP-TS feasibility

  is an design of experiments method studying the effect of the input factors over the model. It explores every possible combination of factors and their levels. The method requires n

	Full factorial		K-Means	Ternary diagrams
	experimental	DER-CAM	clustering &	and dominance
	design		MCDM analysis	load rates
	LHS and Monte Carlo	Python PYOMO -CPLEX	GSA methods: VARS Morris, Sobol,	SA indexes
	Sampling	Energy system optimization	Data analysis	Results interpretation

k runs, where k is the number of factors, and n the number of levels. Full factorial DoE is an expensive method; therefore, it is recommendable when a reduced number of features are studied.

PHASE I

  {𝑠 𝑗 } 𝑗∈[1,𝐾] = {𝑠 1 , 𝑠 2 , … 𝑠 𝐾 } , mainly characterized by their clusters centroids 𝜇 𝑗 . The set of centroids {μ} is iteratively determined following the objective of minimizing the global sum of distances between them and the corresponding observations of the all the subsets. In other words, the objective is to minimize the sum of square distance (SSD) between each observation 𝑥 𝑖 and its corresponding 𝜇 𝑗 ; these centroids do not necessarily coincide with any observations, although they live in the same

	space 𝑋.			
	𝑘 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠			
	min 𝑆𝑆𝐷 = min ∑	∑	‖𝑥 𝑖 -𝜇 𝑗 ‖	2
	𝑗=1	𝑥 𝑖 ∈ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑗		

. Its function is to segregate m data observations, 𝑋 = (𝑥 𝑖 ) 𝑖∈[1,𝑚] = (𝑥 1 , 𝑥 2 , … 𝑥 𝑚 ) characterized by a set of 𝑝 parameters, in k clusters; where each 𝑥 𝑖 𝜖 𝑋 is a real vector of length 𝑝 : ∀𝑖 ∈ [1, 𝑚], 𝑥 𝑖 = (𝑣 𝑥 𝑖 ,1 , 𝑣 𝑥 𝑖 ,2 , … 𝑣 𝑥 𝑖 ,𝑝 ) , corresponding to the number of parameters contained. K-Means algorithm aims to distribute these m observations into 𝐾 subsets 𝑆 =

  The constraint to cover the cooling demand each hour t (Eq. 6) is expressed in terms of the electricity required by a vapor-compression chiller to produce the cold. The objective is to have a standard unit measuring the cold produced by technologies that use different energy drivers. Then, Eq. 6 is the sum of the cold produced by the absorption chiller (COP Abs * Habs t ) divided by the COP of the vapor-compression chiller (COP VCchiller ) to have the term expressed in electricity required to cover the cooling; plus the electricity used by the vapor-compression chiller (eVCchiller t ); minus the electricity required to produce the cold stored in the cold storage at time t (eCStgIn t ); plus the avoided cooling consumption (transformed into electricity) by taking cold out of the cold storage at time t ( eCStgOut t ), multiplied by the factor φ discharge CStg to consider the losses of discharge. All the above mentioned equal the loads of cooling at the timestep t divided by the COP of the vapor-compression chiller to express it in electricity required to cover the cooling (

					C t
					COP VCchiller
	Hboiler t + ∑ HCHP u,t u	-Habs t -hHStgIn t + (φ discharge HStg	) hHStgOut t =	Eq.
	H t			
	( COP VCchiller COP Abs	) Habs t + eVCchiller t -eCStgIn t +	Eq.
	(φ discharge CStg	) eCStgOut t =	C t COP VCchiller

t + ∑ eCHP u,t u -eVCchiller t = E t Eq. The constraint to cover the electric demand each hour t (Eq. 4) sums the electricity imported from the grid (eGrid t ), the electricity produced by the CHP type u at the timestep t (∑ eCHP u,t u ) and subtracts the electricity used by the vapor-compression chiller (eVCchiller t ). All this is equal to the loads of electricity at the timestep t (E t ). The constraint to cover the heating demand each hour t (Eq. 5) sums the heat produced by the boiler (Hboiler t ), the heat produced by the CHP type u at the timestep t (∑ HCHP u,t u

), subtracts the heat used by the absorption chiller (Habs t ), subtracts also the heat stored in the heat storage (hHStgIn t ) and sums the heat taken from the heat storage at the time t (hHStgOut t ). This latter is multiplied by a factor φ discharge HStg to consider the losses of discharge (due to heat transfer with pipes, equipment, etc.). All the before mentioned equal the loads of heating at the timestep t (H t ).

  The Morris method aggregates the local sensitivity (partial derivatives), creating a global distribution of derivatives for each independent parameter 𝐹 𝑖 ( The distribution 𝐹 𝑖 ~N(𝜇 𝑖 , 𝜎 𝑖 ) is a normal distribution of the elementary effects of the variable i (Eq. 11, Eq. 12, and Eq. 14). While 𝐺 𝑖 ~N(𝜇 𝑖 * , 𝜎 𝑖 ) is a normal distribution of the absolute values of the elementary effects (Eq. 11, Eq. 13, and Eq. 14). Each elementary effect EEi corresponds to the change of Y, given the variation of the variable xi Ɐ i=1,…k at certain point (partial derivative). The axis of each variable is divided into p different levels. And Δ corresponds to the sampling step in the scale [0,1], independently of the distribution of each input.

	𝑑𝑌 𝑑𝑥 𝑖 ). 𝐸𝐸 𝑖 = ∆ [𝑌(𝑥 1 , 𝑥 2 , … , 𝑥 𝑖 + ∆, … , 𝑥 𝑘 ) -𝑌(𝑥 1 , 𝑥 2 , … , 𝑥 𝑖 , … , 𝑥 𝑘 )] Eq. 11
	𝜇 𝑖 =	1 𝑟	𝑟 ∑ 𝐸𝐸 𝑖 𝑚=1

The p is an even number, usually suggested as p=4

[START_REF] Saltelli | Global Sensitivity Analysis : The Primer[END_REF]

,

[START_REF] Campolongo | An effective screening design for sensitivity analysis of large models[END_REF]

. And a convenient choice of Δ, to guarantee an equal probability in the sampling level, is Δ=p/[2(p-1)]

[START_REF] Saltelli | Global Sensitivity Analysis : The Primer[END_REF]

. Finally, r is the number of independent random samples of EEi.

Table 9
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		SS1 = 3.0	SS2 = 3.9	SS3 = 5.4	SS4 = 6.6
	Price of electricity [€ / kWh]	0.1223	0.1580	0.1030	0.1623
	Price of natural gas [€ / kWh]	0.0404	0.0400	0.0190	0.0246
			Efficiency [-]	Lifetime [y]	
	Vapor-compression chiller	COP = 0.1223	10	
	Boiler		η = 0.0404	10	

Energy prices used in DERCAM

Table

10

shows the characteristics of the technologies used for the reference scenario. It is considered that the equipment belonging to the reference scenario is already installed, therefore, it does not show any installation cost.

Table 10

 10 Technological settings for the reference scenario in DERCAM

Table 11 ,

 11 Table 12, and Table13show the characteristics of the technologies used for the CCHP-TS scenario.It is good to mention that in this work the CHP technology is considered modular.In other words, several units from Table11, of the same or different type, could be joined to conform the optimal CHP installed capacity.

	Type	Installed	Fixed capital	O&M variable	Electric	Heat to	Lifetime
		capacity	cost [k€]	cost [€ / kWh]	efficiency [-]	Electricity rate [-]	[years]
	CT25	25 MW	31,191.78	0.00720	0.35970	1.05300	20
	CTDB25	25 MW	31,831.72	0.00740	0.35970	1.05300	20
	CT15	15 MW	22,783.32	0.00730	0.33250	1.20440	20
	CTDB15	15 MW	23,272.36	0.00755	0.33250	1.20440	20
	ICE5	5 MW	7,021.58	0.00875	0.41600	0.79740	20
	ICE2.5	2.5 MW	5,005.66	0.01625	0.40400	0.78570	20
	ICE1	1 MW	2,340.00	0.01950	0.36800	1.01940	20
	ICE0.75	750 kW	2,047.72	0.02150	0.34500	1.16050	20
	ICE0.25	250 kW	675.97	0.02500	0.27000	1.82970	15
	ICE0.075	75 kW	225.80	0.02550	0.26000	2.00640	15
	Table 11 Technological settings for the CCHP-TS scenario (CHP prime
				movers)			

Table 13 Technological

 13 

settings for the CCHP-TS scenario (thermal storage) NOTE: (*) The maximum charge and discharge rate, as well as the minimum state of charge are expressed as a percentage of the installed capacity.

Table 15

 15 and show the results per Spark Spread rate. Notice that installing a CCHP-TS system is economically and environmentally feasible only for 419 out of the 600 scenarios. For the rest, it is either cheaper or less polluting to use the reference design of the energy system defined in Figure3. Annex I show the consolidated output data for each feasible scenario within the four SS rates.

		SS1 = 3.0	SS2 =3.9	SS3 = 5.4	SS4 = 6.6
	Number of Feasible scenarios (419 out of 600)	50 out of 150	118 out of 150	118 out of 150	133 out of 150
	Maximum % cost savings	6.6%	21.8%	25.2%	42.9%
	Average % cost savings	4.3%	12.1%	15.1%	26.7%
	Minimum % cost savings	2.9%	1.1%	1.1%	1.6%

Table 15

 15 

General information of the energy analysis for the scenarios belonging to the different SS rates

Table 16

 16 Set of criteria for the MCDM ELECTRE 1S method

Table 16 and

 16 Figure

Table 17

 17 illustrates the MCDM performance table for the feasible scenarios from the simulations with SS4=6.6 (continuing with the example shown in Figure

Table 17

 17 

Enlarged performance table (example of SS4=6.6)

Table 18

 18 Concordance matrix and outranking relations (example of SS4=6.6) However, from Table19, a 7 is in veto situation with alternatives a 2 , a 3 , a 4 and a 5 , which means that it does not outrank these alternatives, even if exceeds the majority level in the concordance matrix.

		a 1	a 2	a 3	a 4	a 5	a 6	a 7
	a 1	1.	0.29 0.2	0.2 0.31 0.4	0.4
	a 2	0.8	1.	0.2	0.2	0.4	0.4	0.4
	a 3	0.8	0.8	1.	0.58 0.41 0.4	0.4
	a 4	0.8	0.8	0.6	1.	0.52 0.61 0.4
	a 5	0.8 0.78 0.60 0.60	1.	0.99 0.68
	a 6	0.69 0.6	0.6	0.6	0.5	1.	0.58
	a 7	0.6	0.6	0.6	0.6	0.6	0.6	1

8". Then it is evident that alternatives a 5 and a 7 present concordance value bigger than the majority level in all the cases.

Table 19

 19 Discordance matrix (example of SS4=6.6). Note: one means veto condition.

  presents the ternary diagrams in terms of percentage of the grid.

			For SS2-SS4	
			(C0) Cluster 0	
			(C1) Cluster 1	
	For SS1		(C2) Cluster 2	
	(C0) Cluster 0		(C3) Cluster 3	
	(C1) Cluster 1		(C4) Cluster 4	
	(C2) Cluster 2		(C5) Cluster 5	
	SS1	SS2	SS3	SS4
		Size		
		94%		
		64%		
	%Grid	33% 2%		
		Size		
	%Abs %Boiler	99% 66% 33% 1% Size 92% 62% 31% 1%		
	%HeatScrap	Size 44% 30% 16% 1%		

Table 20

 20 Prices of electricity and natural gas (in cents of EUR / kWh) for the spark spread rates in chapter 4.

Table 21

 21 Feasible combinations by fixing price of electricity and spark spread rate.

KEY: Non-feasible scenarios (blue); Scenarios technically feasible, but non-existent at the European context (gray); Existent and feasible scenarios (white).

Table 22

 22 Feasible combinations by fixing price of natural gas and spark spread rate

KEY: Non-feasible scenarios (blue); Scenarios technically feasible, but non-existent at the European context (gray); Existent and feasible scenarios (white).

  ('dim(h)' as follows: for pE a R={0.10 ; 0.28}, with Δh=0.01 and dim(h)=17, for pNG a R={0.02 ; 0.10} with Δh =0.005 and dim(h)=15, and for E, H and C a R={0 ; 100} with Δh=5 and dim(h)=20. All variables have uniform distribution. The computational cost of this method is 376 simulations, which is around three times more than Morris. Table24shows the n=4 seed points obtained with Latin Hypercube Sampling (LHS). Razavi[START_REF] Razavi | A new framework for comprehensive, robust, and efficient global sensitivity analysis:2. Application[END_REF] suggests n=2 to ensure a representative sample, ours is double the size, then it is reasonable to trust in ours. The values for R, Δh and dim(h) are chosen to explore the prices and loads presented in subsection 2.2 and have similar dim(h) among all the variables.

		pE	pNG	E	H	C
	seed 1	0.10	0.055	40	70	65
	seed 2	0.15	0.075	95	85	75
	seed 3	0.22	0.020	55	0	10
	seed 4	0.24	0.095	10	40	25

  Figure50shows the Sobol SA indexes for the percentage of savings. Same than Morris and VARS, Sobol individual indexes indicate that the most influential variable is pNG, followed by pE. Here, E becomes less influential, compared with the analysis of the amount of savings. That is because, when measuring the amount of savings, there is a direct link between the money saved and the size of E. But when measuring percentage of savings, it considers the proportions, rather than the total amount. Still E is slightly more influential than H and C, just as Morris and VARS also point out.

		Amount of savings	
	Individual [S1] and total [ST] effect
	0.50					
	0.40	Percentage of savings	
	0.30					
	0.60 0.10 0.70 0.20 Individual [S1] and total [ST] effect
	Individual effect Total effect 0.20 0.30 0.40 -0.50	pE 0.26 0.39		pNG 0.22 0.33	E 0.14 0.29	H 0.00 0.02	0.03 0.01 C
	-0.10	pE Interation effects [S2] pNG E	H	C
	C -H Individual effect	0.01 0.30	0.53	0.04	0.00	-
	Total effect	0.39		0.64	0.08	0.02	0.02
	C -E	-				
	H -E	-				
	C -pNG C -H	0.00	0.01			
	H -pNG C -E	-	0.01			
	E -pNG H -E	-				0.07
	C -pE C -pNG	-	0.02		
	H -pE H -pNG	-		0.02		
	E -pE E -pNG			0.03 0.03		
	pNG -pE C -pE	0.00	0.02		
	H -pE	-				
	E -pE	-				
	pNG -pE					0.07
	Figure 50 Sobol SA indexes for percentage of savings

  [START_REF] Song | Comparative analysis on operation strategies of CCHP system with cool thermal storage for a data center[END_REF] pNG=0.020, SS=11).Figure 56 top shows that the amount of savings behaves asymptotic after certain threshold of H, but in general almost constant. This behavior is different for the percentage of savings because the larger H, the larger the reference cost, while the amount of savings keep the same (asymptotic behavior). Therefore, the larger H, the lower the percentage of savings.For the case of annual cooling load, Figure57top shows that the amount of savings grows with C. While Figure57bottom presents an asymptotic behavior in the percentage of savings (almost constant).

					Amount of Savings		
	$12,000,000								
	$10,000,000								
	$8,000,000								
	$6,000,000								pE=0.10, pNG=0.055, E=40, H=70
	$4,000,000								pE=0.15, pNG=0.075, E=95, H=85
	$2,000,000								pE=0.22, pNG=0.020, E=55, H=0
	$-								pE=0.24, pNG=0.095, E=10, H=40
	-		20	40		60	80	100	
					C				
						Percentage of Savings	
	70%								
	50% 60%					Amount of Savings		
	$10,000,000 40%								pE=0.10, pNG=0.055, E=40, H=70
	$8,000,000 30%								pE=0.15, pNG=0.075, E=95, H=85
	$6,000,000 10% 20%								pE=0.10, pNG=0.055, E=40, C=65 pE=0.22, pNG=0.020, E=55, H=0
	$-$2,000,000 $4,000,000 0%	-	20	40	C	60	80	100	pE=0.24, pNG=0.095, E=10, C=25 pE=0.22, pNG=0.020, E=55, C=10 pE=0.15, pNG=0.075, E=95, C=75 pE=0.24, pNG=0.095, E=10, H=40
	-Figure 57 Isolines of pE-pNG-E-H across the annual cooling load [C] for the 20.00 40.00 60.00 80.00 100.00
	H amount and percentage of savings (top and bottom respectively)
						Percentage of Savings	
	70%								
	60%								
	50%								
	40%								pE=0.10, pNG=0.055, E=40, C=65
	30%								pE=0.15, pNG=0.075, E=95, C=75
	0% 20% 10%								pE=0.22, pNG=0.020, E=55, C=10 pE=0.24, pNG=0.095, E=10, C=25
		-	20.00	40.00		60.00	80.00	100.00	
					H				
	Figure 56 Isolines of pE-pNG-E-C across the annual heating load [H] for the
	amount and percentage of savings (top and bottom respectively)
						136			

Table 25

 25 Raw data obtained from DER-CAM report (part 1)

	Name of the variable	Units		Description
	at the code			
	Cool_Storage_Out	kWh		Total annual Cooling output of the Cooling Storage
	Cool_Storage_In	kWh		Total annual Cooling input of the Cooling Storage
				Total annual Electricity consumption that is
	Offset	kWh		avoided through the usage of Absorption chiller
				(compared with the reference scenario)
	CHP_InstCap	kW MW	or	Installed capacity of CHP units for each technology type (ICE, CT, MT, FC) at the selected optimal scenario
				Number of CHP units for each technology type
	CHP_Nunits	units		and installed capacity (ICE, CT, MT, FC) at the
				selected optimal scenario
	CHP_TS or			Total annual Electricity production by the CHP
	Discrete Technologies	kWh		units technology i, where i = 1,2,…n
	(i)			
	%savings	-		Percentage of economic savings of the system, compared with the reference scenario
	%CO2 reduc	-		Percentage of CO2 reduction of the system, compared with the reference scenario

Table 26

 26 Raw data obtained from DER-CAM report (part 2) Now, with this information, the following indexes are calculated.

	Name	of	the	Nomenclature	Units Description
	variable at the	at the paper	
	code				
	propElectScrapped	E pCHP scrap	-	Portion of Electricity produced by the CHP that is being scrapped
	propHeatScrapped	H pCHP scrap	-	Portion of Heat produced by the CHP that is being scrapped

❖ Amount of Electricity / Heat scrapped (reported per year, but calculated in hourly basis)

Table 27

 27 Electricity and Heat produced by the CHP and scrapped c(a 𝑘 , a 𝑖 ) = ∑ w j c j (a 𝑘 , a 𝑖 )

	𝑟
	j=1

  • HStgIC + ∑ Ndays t • f 2 • eHStgState t t and hHStgOut t are mutually exclusiveThe two following constraints express that the Heat storage input and output are mutually exclusive. A binary value of 0, enables output from the Heat storage. When it is 1, input is active.

	Max state of charge of the Heat Storage (1 restriction/h)	Eq.
	HStgState t ≤ HStgIC	
	Max charge rate of the Heat Storage (1 restriction/h)	Eq.
	(φ charge HStg ) hHCStgIn t ≤ MaxCharge HStg • HStgIC	
	Max discharge rate of the Heat Storage (1 restriction/h)	Eq.
	hHStgOut t ≤ MaxDischarge HStg • HStgIC	
	(φ charge HStg ) hHStgIn t ≤ M • y HStg	
		Eq.
	863	
	t=0	
	with,	
	f 0 = B • CCFix HStg	

hHStgIn

Li, 2016[START_REF] Li | Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system[END_REF] * * * * * * * * * * * * * S-H Sundberg, 2001[START_REF] Sundberg | Ranking factors of an investment in cogeneration: Sensitivity analysis ranking the technical and economical factors[END_REF] 

Hajabdollahi, 2015[START_REF] Hajabdollahi | Assessment of new operational strategy in optimization of CCHP plant for different climates using evolutionary algorithms[END_REF] 

Memon, 2017 [51] 
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Eq.

The energy flows can be can be followed in Figure 3 and described by Eq. [START_REF] Euroheat | District Energy Explained[END_REF] to Eq. 40.

Part of the electricity generated by the CHP that is used to meet the electric load:

Energy CHP (t)

Eq.

Part of the electricity generated by the CHP that is used to meet the cooling load through a vapor compression chiller:

Energy CHP (t)

Eq.

Part of the electricity generated by the CHP that is used to supply the cooling storage:

Energy CHP (t)

Eq.

Part of the heat produced by the CHP that is used to meet the heating load:

Energy CHP (t)

Eq.

Part of the heat produced by the CHP that is used to meet the cooling load through an absorption chiller:

Energy CHP (t)

Eq.

Part of the heat generated by the CHP that is used to supply the cooling storage:

Energy CHP (t)

Eq.

where,

The total energy generated by the CHP, expressed in hourly basis [kW] Energy CHP (t) Eq. 41

Once the segregation parameters are established, the objective is to understand better the interaction among the segregation parameters. For this, k-Means algorithm from the scikit-learn module of Python is used. k-Means will cluster Each vertex of the ternary diagrams represents dominance rates equal to 1 for each energy carrier. In other words, the left, right, and top vertices represent respectively Heat, Cooling, and Electricity load only. Each square in the diagram embodies a scenario, while the size reflects the value of the characterization variable. The colors identify the different clusters that are particularly relevant for the analysis of the percentage of savings. However, the color code keeps for all the section to facilitate tracking and analyzing the different simulations across all the functioning variables.

The following two subsections analyze the results for each functional variable.

They focus on describing their behavior , across the load dominance and spark spread rates. The relevance relies on showing the operational and economic performance of the CCHP-TS system under different conditions.

Analysis of generation means for each energy carrier

This section aims to characterize the generation means for the energy carriers,

given the dominance of loads and spark spread rates.

Another option yet to explore in future research is extending the Morris approach to calculate the second order sensitivity index, just as Garcia Sanchez does for the context of energy in buildings [START_REF] Sanchez | Application of sensitivity analysis in building energy simulations: Combining first-and second-order elementary effects methods[END_REF]. Although, this option is computationally expensive and removes one of the advantages of Morris method.

Isolines of the variables

This section presents isolines that deepen the impact of one variable depending on the values of the others. This analysis is especially important to verify or discard the hypothesis laid out in section 4.6: the impact of the energy prices might be different. Therefore, it aims to understand if using a spark spread rate is reasonable or the price of electricity and natural gas should be considered separately.

To exemplify how isolines are built, let us take Figure 52 Multicriterial Decision Making (MCDM) [START_REF] Haurant | Multicriteria selection aiding related to photovoltaic plants on farming fields on Corsica island: A real case study using the ELECTRE outranking framework[END_REF] is a modern decisional and mathematical tool from operational research that treats complex problems with conflicting targets. It allows the comparison between different 𝑎 alternatives based on 𝑓 "conflicting" decision criteria, in order to lead to the more judicious choice [START_REF] Roy | Classement et choix en présence de points de vue multiples[END_REF], [START_REF] Bouyssou | La notion de seuils de discrimination en analyse multicritère[END_REF].

Total aggregations such as summatory or arithmetic mean are widely diffused tools despite their significant drawbacks such as the fact that a single common scale is evaluating all the criteria or that there are losses of information due to the synthesis and compensations. The outranking approach is relevant to avoid these limitations, since its aggregation process allows different evaluation scales while compensation is eluded thanks to thresholds.

ELECTRE 1S is an outranking approach of MCDM, used to state the relation between two alternatives. It is a binary relation meaning Alternative A is at least as good as alternative B. The relation is verified [START_REF] Roy | Classement et choix en présence de points de vue multiples[END_REF], if:

1. the concordance condition is verified, following the majority principle according to which a sufficient level of criteria is concordant with the outranking hypothesis, 2. The non-veto condition is verified: none criterion in the set of criteria that are discordant with the outranking hypothesis is in a veto situation.

To provide a clearer explanation, consider a set of alternatives 𝐴 = {a 1 , ⋯ , a i , ⋯ , a k } and a family of r criteria G = {g 1 … g j … g r }. Each criterion g j has a corresponding weight to define priorities w j ∈ [0,1]. The values of a i and a k on criterion g j are g j (a i ) and g j (a k ) respectively. And Ω j (a k , a i ) defines the advantage of a 𝑘 over a 𝑖 for criterion g j in Eq. 45 [START_REF] Haurant | Multicriteria selection aiding related to photovoltaic plants on farming fields on Corsica island: A real case study using the ELECTRE outranking framework[END_REF].

Ω j (a k , a i ) = { g j (a k ) -g j (a i ) if g j has to be maximized g j (a i ) -g j (a k ) if g j has to be minimized Eq. 45

For each criterion, there are thresholds of indifference 𝑞 𝑗 and strict preference 𝑝 𝑗 , which allow drawing preferences between alternatives for driving decision.

When Ω j (a k , a i ) is lower than 𝑞 𝑗 or larger than 𝑝 𝑗 , this leads to a situation of indifference or strict preference of one of the alternative over another, from criterion 𝑔 𝑗 point of view [START_REF] Bouyssou | La Notion De Seuils De Discrimination En Analyse Multicritère[END_REF]. Then the partial concordance index for the criterion 𝑔 𝑗 (Eq. 46) quantifies the preference relation between the alternatives and the level of agreement of the criterion with the outranking relation (Figure 60).

if Ω j (a k , a i ) ≥ p j (a k strictely preferred to a i ) if p j > 𝛺 j (a k , a i ) > q j (a k weakely preferred to a i )

if Ω j (a k , a i ) ≤ q j (a i at least as good as a k )

Eq. 46

Figure 60 Behavior of partial concordance Index [c j (a i , a k )], depending on the value of qi, pi and Ωi.

We deduce then c(a k , a i ) the global concordance index calculated per pair of alternatives in Eq. 47:

ANNEX IV. Adaptation of DER-CAM model into Python

This annex the mathematical model adapted from DER-CAM and coded in the programming language Python. This process is deeply described in subsection 3.3.1. 

CONSTANTS Annual loads and energy prices

CONSTRAINT RELATED TO BOILER

Installed capacity of boiler is not exceed (1 restriction/h) BoilerIC ≥ Hboiler t Eq.

Binary variable that activates the fixed capital cost of Boiler

The binary variable is zero if the installed capacity is larger than one.

In contrast it is one if the installed capacity is zero. The binary variable is zero if the installed capacity is larger than one.

In contrast it is one if the installed capacity is zero. 

Binary variable that activates the fixed capital cost of Abs

The binary variable is zero if the installed capacity is larger than one.

In contrast it is one if the installed capacity is zero.

AbsIC ≥ 0.001 -M(1 -w Abs ) *A strict inequality constraint AbsIC > 0 -M(1 -w Abs ) would make the optimization not well-defined. Because it would always be possible to make the objective value better by moving closer and closer to the value of the inequality, without reaching the optimum.

AbsIC ≤ 0 + M • w Abs

Eq. *Note that a strict inequality constraint CStgIC > 0 -M(1w CStg ) would make the optimization not well-defined.

CONSTRAINTS RELATED TO COLD STORAGE

Because it would always be possible to make the objective value better by moving closer and closer to the value of the inequality, without reaching the optimum.

CStgIC ≤ 0 + M • w CStg

Eq.

CONSTRAINTS RELATED TO HEAT STORAGE

Charging state of the Heat storage (1 restriction/h) Several authors suggest that energy prices and loads are important variables for the technoeconomic feasibility of CCHP-TS systems. Particularly they have explored the Spark Spread rate, a ratio between the cost of electricity from the grid and the CHP fuel. However, just a few studies are assessing the prices and loads together, with some limitations in their model, the technology analyzed, or even the resolution of the loads.

As the literature reveals that energy prices and loads size are important variables, this study aims to analyze two hypotheses proposed: 1) There is a combination of energy prices and the size of the annual energy loads that makes techno-economically feasible a CCHP-TS system; 2) The energy prices (electricity and natural gas) should be considered separately instead of consolidating them into the spark spread rate (SS).

The analysis is divided into two phases. The first one is an exploratory analysis aiming to demonstrate that the model for CCHP-TS is relevant and sensitive to the variables of analysis (energy prices and loads). The second is a rigorous sensitivity analysis and the comparison of three approaches: Morris, Sobol, and VARS.

The results state that energy prices and the annual size of the electric load are the most relevant variables on the feasibility of a CCHP-TS system. The order of relevance between the energy prices relies on the measure used for the economic performance: either absolute (expressed in the amount of savings [$]) or relative (expressed in the percentage of savings [%]). But in both cases, the price of the fuel is the variable with the largest interaction effects. The methodology of the first phase incorporates tools such as full factorial design of experiments (DoE), DER-CAM simulation and optimization tool, and a novel combination of k-Means clustering and multicriteria decision making (MCDM). For the second phase, it is mainly the use of global sensitivity analysis methods and the adaptation of a CCHP-TS model into the programming language Python, using the optimization library PYOMO and the solver CPLEX. In this second phase, the implementation of the three sensitivity analysis methods allowed identifying their advantages and limitations. Moreover, this complementarity thereby reinforced the techno-economic feasibility analysis.