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“The important thing is not to stop questioning.  

Curiosity has its own reason for existence.  
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RÉSUMÉ LONG (Français) 

Mots clés: Systèmes de trigénération couplés à du stockage thermique, faisabilité 

technico-économique, demandes en énergies, prix de l'énergie, analyse de 

sensibilité. 

 

Les systèmes de trigénération couplés à du stockage thermique (CCHP-TS) 

contribuent à la production distribuée d'énergie et à la réduction des émissions de 

gaz à effet de serre. Ils sont conçus pour découpler la production et la consommation 

de chauffage, de froid et d'électricité. Néanmoins, il est important d'évaluer leur 

faisabilité technico-économique pour assurer une mise en œuvre à long terme. Par 

ailleurs, la détermination et la caractérisation des variables influentes sont 

essentielles pour identifier les domaines d'application les plus viables. 

Potentiellement, cela peut stimuler l'intérêt des chefs de projet, des investisseurs et 

des décideurs politiques, encourageant ainsi l'adoption de cette technologie. 

Plusieurs auteurs suggèrent que les prix et les demandes en énergies (électricité, 

chaleur et froid) sont des variables importantes de la faisabilité technico-économique 

des systèmes combinés d'énergie thermique et électrique. Ils ont notamment utilisé 

le ratio Spark Spread (SS) qui est le rapport entre le prix de l'électricité du réseau et 

du combustible de cogénération. Cependant, seules quelques études, telles que 

celles de Hajabdollahi [1], et Cardona et al. [2], évaluent l’influence combinée des prix 

et de la demande en énergies. De plus, ces travaux présentent certaines limites dans 

leur modèle. Ainsi, Hajabdollahi étudie les charges mensuellement uniquement alors 

qu’une résolution temporelle plus courte de la demande est nécessaire pour plus de 

précision pour une analyse de faisabilité. Quant à Cardona et al., ils analysent les 

prix et les charges sur une base horaire, mais le modèle qu'ils proposent n'optimise 

que la stratégie d'opération et non la conception (puissances installées des 

systèmes) qu’ils supposent définie a priori. 

La littérature mettant en avant les prix de l'énergie et les niveaux de demandes 

comme variables importantes, ce travail propose et analyse deux hypothèses : 1) Il 

existe un couplage entre les prix de l'énergie et la variabilité des demandes en 

énergies qui influe techniquement et économiquement sur la faisabilité des systèmes 



 

 

CCHP-TS; 2) Les prix de l'énergie (électricité et gaz naturel) doivent être considérés 

séparément plutôt que d’utiliser seulement le ratio Spark Spread (SS). 

Le travail repose sur une méthodologie divisée en deux phases, présentées sur la 

Figure 1. 

 

Figure 1 Méthodologie générale de cette thèse  
 

La première phase est une analyse exploratoire visant à démontrer que le modèle 

utilisé de CCHP-TS est pertinent et sensible aux variables d'analyse (prix et 

demandes énergétiques). Pour ce faire, nous utilisons l’outil DER-CAM et son modèle 

pour optimiser le système énergétique. La méthode d'analyse de sensibilité, quant à 

elle, met en œuvre un plan factoriel complet, en raison de sa simplicité, de sa capacité 

d'analyse globale et de la possibilité d'identifier les effets d'interaction. Après avoir 

effectué les simulations, les données sont analysées à l'aide d'une nouvelle 

combinaison de la méthode de «clustering» k-Means et d’une méthode d’aide à la 

décision multicritère (MCDM). Les enseignements tirés de cette première phase 

permettent de définir la méthodologie de la seconde phase et de proposer un modèle 

de simulation et d’optimisation pertinent et sensible aux variables d'analyse. 

La seconde phase propose donc une analyse de sensibilité rigoureuse qui permet de 

plus une comparaison de trois «approches»: Morris («aproche» basée sur la dérivé), 

Sobol («aproche» basée sur la variance)  et VARS («aproche» basée sur le 

variogramme). Chacune de ces méthodes est associée à différentes méthodes 

d'échantillonnage (Hypercube latin et Monte Carlo). Concernant la simulation et 

l'optimisation du système énergétique, DER-CAM est un outil limité pour effectuer le 

nombre de simulations nécessaires à une analyse de sensibilité globale. Par 
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conséquent, pour la deuxième phase, un modèle adapté de simulation et 

d’optimisation de systèmes CCHP-TS (dévelopés en langage Python) est proposé. 

Le modèle est basé sur les bilans énergétiques et utilise la méthode MILP comme 

algorithme d'optimisation. En Python, cette approche MILP est mise en oeuvre à 

l'aide de la bibliothèque d'optimisation PYOMO et du solveur CPLEX. Cette 

combinaison puissante est une alternative aux logiciels commerciaux tels que GAMS, 

qui est couramment utilisé dans ce type de travaux. Par ailleurs,  les prix de 

l'électricité et du gaz naturel sont étudiés de façon découplée, au lieu de les 

consolider dans le ratio Spark Spread. 

Trois aspects montrent l'importance d’effectuer une analyse de sensibilité globale 

dans la deuxième phase, au lieu de conserver les résultats obtenus avec le plan 

factoriel complet pendant la première phase: 1) Le plan factoriel complet est une 

méthode guidée par le modèle utilisé, tandis que l'analyse de sensibilité globale est 

indépendante de celui-ci. Ces dernières reposent sur une exploration globale de 

l’espace contrairement aux méthodes guidées par un modèle 2) La précision du plan 

factoriel complet repose sur la dispersion de l'échantillon, tandis que l'analyse de 

sensibilité globale garantit un échantillonnage aléatoire et dispersé sur toute la plage 

des variables. 3) Le plan factoriel complet permet principalement l’identification 

d’effets individuels des paramètres et d'interaction possibles, tandis que les 

méthodes d'analyse de sensibilité globale, telles que Sobol, sont également utiles 

pour classer et quantifier la sensibilité relative des paramètres. La mise en œuvre 

complémentaire des trois méthodes d'analyse de sensibilité globales de cette 

deuxième phase a ainsi renforcé l'analyse de faisabilité technico-économique. 

Les résultats de cette analyse de sensibilité identifient cinq variables importantes à 

prendre en compte dans l’analyse de faisabilité, ainsi que les effets de leurs 

interactions. Ces variables sont: le prix de l'électricité [pE], le prix du gaz naturel 

[pNG], la demande électrique [E], la demande en chauffage [H] et la demande en 

froid [C]. L'ordre d’importance diffère selon que l’indicateur de performance 

économique utilisé soit absolu (montant d'économies réalisées [$]) ou relatif 

(pourcentage d'économies réalisées [%]). Ci-dessous, la description des résultats et 

la réponse aux deux hypothèses formulées. 

 



 

 

HYPOTHÈSE 1 

Oui, il existe un couplage entre les prix de l'énergie et les demandes énergétiques 

qui influe sur la faisabilité des systèmes de trigénération couplés à du stockage 

thermique. Les effets de ce couplage dépendent de l’indicateur de performance 

économique considérée. 

Concernant leur impact sur le montant d'économies réalisées, le prix de l’électricité 

(pE), le prix du gaz (pNG) et la demande en électricité (E) sont, de loin, les variables 

les plus importantes, tandis que les effets des demandes en chaleur et en froid (H et 

C respectivement) semblent relativement négligeables. Les principaux effets 

d'interaction impliquent la demande électrique et les prix de l'énergie (E-pNG et E-

pE). En d'autres termes, avoir une demande électrique importante est en faveur d’un 

système CCHP-TS, d’autant plus que le prix du gaz sera faible et celui de l’écetricité 

élevé, et inversement Il est par ailleurs montré que, pour des valeurs pE et pNG 

déterminées, une augmentation des demandes améliore le montant des économies 

réalisées par la mise en oeuvre de ce type de systèmes . Enfin, il est important de 

mentionner que le prix du gaz pNG est une variable singulière qui a des effets 

d'interaction avec toutes les autres. 

Concernant les effets  d'économies relatives réalisées, les prix de l'énergie pE et pNG 

apparaissent comme les variables les plus importantes. La demande en électricité E 

reste plus influente que H et C, mais devient moins impactante que sur les économies 

absolues. Cela tiend au fait que pour l’indicateur du montant d'économies, il existe 

un lien direct entre l'argent économisé et la demande E, tandis que le pourcentage 

d'économies tient compte des proportions plutôt que du montant total. Néanmoins, il 

est à noter que lorsque les économies relatives sont utilisées comme indicateur de 

faisabilité, l'influence des trois demandes (E, H et C) est légèrement plus équilibrée 

que lorsque la faisabilité est étudiée via le montant des économies. Le prix du gaz 

pNG est icic aussi la seule variable qui a des effets d'interaction avec toutes les autres 

dont certains aspects attirent l'attention. Le couplage pNG-pE est notablement plus 

fort que dans le cas d’un montant absolue d'économies, ce qui suggère que le ratio 

Spark Spread pourrait être plus pertinent pour analyser les économies relatives que 

les économies absolues. Cependant, on constate que les demandes énergétiques 

ont des effets d'interaction presque exclusivement avec le pNG. Par conséquent, la 

importance de E, H et C n'est fortement liée qu'au prix du gaz naturel. 



 

 

 

HYPOTHÈSE 2 

Concernant l'intérêt d'étudier séparément les prix de l'énergie, on peut dire que les 

deux paramètres pE et pNG, sont importants individuellement quelle que soit 

l’indicateur de performance économique utilisé (montant absolu ou pourcentage 

d'économies réalisées). De plus, ils sont clairement liés, directement ou 

indirectement. Cependant, la principale différence entre les deux est que pNG 

intéragit avec toutes les autres variables, indiquant une influence plus large. En ce 

qui concerne spécifiquement le pourcentage d'économies, les demandes 

énergétiques interagissent presque exclusivement avec le pNG. De plus, bien que le 

pE ait également de forts effets d'interaction avec le pNG, il est montré que 

contrairement à la règle générale établie par les organismes gouvernementaux 

internationaux, le seuil du ratio Spark Spread pourrait être inférieur à la valeur usuelle 

(SS=3) en fonction du prix du gaz naturel. Il est donc recommandé d'analyser 

séparément les prix de l'énergie pour évaluer la faisabilité des systèmes de 

trigénération couplés à du stockage thermique 

 

Au-delà des résultats techniques, la contribution de cette thèse comprend l'adaptation 

d'un modèle de pas de temps horaire des systèmes CCHP-TS dans un langage de 

programmation qui permet une analyse de sensibilité agile. De plus, la mise en œuvre 

des trois méthodes d'analyse de sensibilité a permis d'identifier leurs avantages et 

leurs limites. Cette complémentarité a ainsi renforcé l'analyse de faisabilité technico-

économique des systèmes de trigénération couplés à du stockage thermique. 

 

  



 

 

 

 

 

  



 

 

LONG ABSTRACT (English) 

Key words: Trigeneration systems with thermal storage, techno-economic feasibility, 

energy loads, energy prices, sensitivity analysis. 

 

Trigeneration systems with thermal storage (CCHP-TS) contribute to the distributed 

generation of energy and the reduction of greenhouse gas emissions. They are 

designed to decouple the production and consumption of heating, cooling and 

electricity. Nevertheless, it is important to assess their techno-economic feasibility to 

ensure long-term implementation. Moreover, determining and characterizing the 

influential variables is essential to identify the most viable application fields. 

Potentially, this could foster the interest of project managers, investors, and 

policymakers, therefore encouraging the adoption of this technology. 

Several authors suggest that energy prices and loads are important variables for the 

techno-economic feasibility of combined thermal and power energy systems. 

Particularly they have explored the Spark Spread rate, a ratio between the price of 

electricity from the grid and the price of CHP fuel. However, just a few studies, such 

as Hajabdollahi [1], and Cardona et al. [2], assess the prices and loads together. 

Moreover, they present some limitations in their analysis. Hajabdollahi study the loads 

in monthly basis, but a smaller time-step in the loads is important because it gives 

more precision to the feasibility analysis. As for Cardona et al., they analyze prices 

and loads in hourly basis, but the model they propose only optimizes the operation 

strategy, while the design (installed capacity of the equipment) is an assumption. 

As the literature reveals that energy prices and loads size are important variables, 

this study aims to take a university campus as case study and analyze two 

hypotheses proposed: 1) There is a combination of energy prices and the size of the 

annual energy loads that makes techno-economically feasible a CCHP-TS system; 

2) The energy prices (electricity and natural gas) should be considered separately 

instead of consolidating them into the spark spread rate (SS). 

The analysis is divided into two phases, exhibited the general methodology of Figure 

18. 



 

 

 

Figure 2 General methodology of this thesis  
 

The first one is an exploratory study aiming to demonstrate that the model for CCHP-

TS is relevant and sensitive to the variables of analysis (energy prices and loads). To 

take advantage of the computational tools, we use DER-CAM and its embedded 

model to optimize the energy system. As for the sensitivity analysis method, it 

implements a full factorial design of experiments, due to its simplicity, ability to analyze 

globally, and the possibility of identifying interaction effects. Once the simulations are 

conducted, the data gets analyzed using a novel combination of k-Means clustering 

and  multicriteria decision making (MCDM). The learnings from this first phase are the 

cornerstone for the second one, because the objective is to demonstrate that the 

model is relevant and sensitive to the variables of analysis. 

The second is a in depth sensitivity analysis and the comparison of three approaches: 

Morris (derivative-based approach), Sobol (variance-based approach), and VARS 

(variogram-based approach). Each of them incorporates their corresponding 

sampling methods (LHS and Monte Carlo). Regarding the energy system 

optimization, DER-CAM is a limited tool to perform the amount of simulations required 

for a global sensitivity analysis. Therefore, for the second phase, we adapted the 

model of a CCHP-TS system into the programming language Python. The model is 

based on energy balances and uses MILP as optimization algorithm. In Python, the 

MILP model is solved using the optimization library PYOMO and the solver CPLEX. 

This combination is a powerful alternative to commercial software such as GAMS, 

which is commonly used in this context. In addition, it is worth mentioning that at this 
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stage, electricity and natural gas prices are studied separately, rather than 

consolidating them into Spark Spread.  

Three aspects exhibit the importance of conducting a global sensitivity analysis in the 

second phase, instead of keeping the results obtained with the full factorial design of 

experiments during the first phase: 1) The factorial design of experiments is a model-

based method, while global sensitivity analysis is model-free. Model-free methods are 

not related to any local reference at the model. In other words, while a model-free 

method takes the samples randomly, a model-based method takes them based on a 

specific starting point or indication given by the user. 2)  The accuracy of the factorial 

design of experiments relies on the sample dispersion, while the global sensitivity 

analysis ensures a random and dispersed sampling across the range of the variables. 

3) The factorial design of experiments is primarily for screening purposes and 

provides an idea of the individual and interaction effects of the parameters, while 

global sensitivity analysis methods, such as Sobol, are useful also for ranking and 

quantifying the relative sensitivity of the parameters. In general, the complementary 

implementation of the three global sensitivity analysis methods in this second phase 

thereby reinforced the techno-economic feasibility analysis. 

The results of the sensitivity analysis rank five variables from the least to the most 

relevant, as well as their interaction effects. The variables are: the electricity price 

[pE], the natural gas price [pNG], the annual size of electric loads [E], the annual size 

of heating loads [H], and the annual size of cooling loads [C] (Note that E, H, and C 

are expressed in energy). The order of relevance relies on the measure used for the 

techno-economic performance of the CCHP-TS system. It can be amount of savings 

[$] or the percentage of savings [%]. Below the description of the results and the 

answer to the two hypotheses formulated. 

 

HYPOTHESIS 1 

Yes, there are combination of energy prices and size of the energy loads that make 

a Trigeneration – Thermal Storage feasible. The optimal combination depends on the 

metric considered. 

When talking about the amount of savings, pE, pNG, and E are, by far, the most 

relevant variables. While H and C seem comparatively unimportant. The main 



 

 

interaction effects are between the electricity load and the energy prices (E – pNG 

and E – pE). In other words, having a large E is good, but it should be along with a 

small pNG and high pE. Vice versa it is also true. It was show that, for determined pE 

and pNG, an increase of the loads rises the amount of savings. Finally, it is good to 

mention that pNG is a singular variable that has interaction effects with all the others. 

When talking about the percentage of savings, the energy prices pE, and pNG are 

the most relevant variables. E is still more influential than H and C, but it becomes 

less influential compared with its analysis for the amount of savings. That is because, 

when measuring the amount of savings, there is a direct link between the money 

saved and the size of E. But when measuring percentage of savings, it considers the 

proportions, rather than the total amount. Nevertheless, an important remark is that 

in the percentage of savings, the influence of the three loads (E, H, and C) is slightly 

more equilibrated than in the amount of savings. On the other hand, pNG is again the 

only variable that has interaction effects with all the others, but some aspects draw 

attention. The index pNG – pE is notably bigger compared with its analogous in the 

amount of savings, suggesting that the Spark Spread rate (SS) could be relevant for 

the relative savings. However, that resolution becomes weak when noticing that the 

energy loads have interaction effects almost exclusively with pNG. Therefore, the 

relevance of E, H, and C is strongly linked only to the price of natural gas. 

 

HYPOTHESIS 2 

Concerning the interest of studying the energy prices separately, it can be said that 

both, pE and pNG, are relevant individually regardless of the output measure (amount 

or percentage of savings). Also, they are clearly tied, either directly or indirectly. 

However, the main difference between them is that, in either output (amount or 

percentage of savings), pNG keeps interaction effects with all the other variables, 

indicating that its influence is wider. Specifically talking about the percentage of 

savings, the energy loads interact almost exclusively with pNG. Moreover, although 

pE also has a strong interaction effects with pNG, it is shown that contrary to the 

general rule established by international governmental organisms, the  spark spread 

threshold could be lower than three depending on the price of natural gas. Therefore, 



 

 

it is recommendable to analyze separately the energy prices while assessing the 

feasibility of Trigeneration systems with Thermal Storage.  

 

Beyond the technical results, the contribution of this thesis includes adapting an hourly 

time-step model of the CCHP-TS systems into a programming language that allows an 

agile sensitivity analysis. Additionally, the implementation of the three sensitivity 

analysis methods allowed identifying their advantages and limitations. Moreover, this 

complementarity thereby reinforced the techno-economic feasibility analysis of the 

Trigeneration systems with Thermal Storage. 
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1 INTRODUCTION 

1.1 Context 

Throughout the years, several authors have suggested that there is a 

relationship between the energy consumption and the economic growth of a 

region [3]–[8]. With regards to the environmental impact of the energy 

consumption, the IPCC report [9] indicates that half of the anthropogenic CO2 

emissions between 1750 and 2011 have occurred in the last 40 years. From 

those, 40% were kept in the atmosphere and 60% were removed and stored on 

land (plants and soils) and ocean, causing ocean acidification. The report also 

identified the energy sector as the largest contributor to the greenhouse gas 

emissions. Burning coal, natural gas, and oil for electricity and heat production 

represented 25% of the emissions in 2010, while fuel extraction, refining, 

processing, and transportation represented another 10%. Therefore, reducing 

energy demand is one of the most important mitigation strategies proposed by 

the IPCC report [9]. 

Given the dependency between energy consumption and economic growth and 

the impact of energy consumption in climate change, one of the major 

challenges faced by society today is how to promote the economic growth of 

developing regions like Africa, southeast Asia, middle east and Latin America 

without increasing the emissions of greenhouse gases. The only way to solve 

this challenge is by promoting the efficient use of energy demand and supply it 

using the most efficient generation technologies and renewable resources. 

 

 

1.2 Combined thermal and power energy systems 

Around the globe, society requires electrical and thermal energy to cover their 

needs in the building sector and industry (which together account from almost 

60% of the total final energy consumption [10]). Typically, they are produced 
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separately, but a combined thermal and power energy system can generate both 

using the same fuel.  

There are several advantages in using combined thermal and power energy 

systems: 1) improving the energy efficiency and reducing emissions; 2) enabling 

the use of local renewable and residual thermal energy; 3) increasing the 

security of energy supply by decentralizing its production; 4) reducing the 

transmission and distribution losses because such decentralized systems are 

closer to the location of the demand; and 5) generating cost-savings for the 

energy consumer ([11], [12]). In general, combined heat and power generation 

technologies contribute to a low-carbon and resilient local energy system. 

The combined generation of heat and power may have different approaches. 

The following sections 1.2.1, 1.2.2, and 1.2.3 provide a more detailed insight. 

 

 Cogeneration 

Combined Heating and Power (CHP), also known as cogeneration, is a process 

that generates simultaneously heat and electrical energy from a single fuel. The 

fuel could be either fossil or non-fossil. 

According to the CODE2 [13], CHP can save up to 25% of the primary energy 

compared to the separate production of both outputs. The increase of this 

number depends on the carbon intensity of the electricity from the grid [14], and 

the efficiency of the CHP. The Fraunhofer Institute reports an overall CHP 

efficiency up to 93% [15].  

In general, CHP can significantly reduce greenhouse gases emissions in 

residential, industry, and tertiary sectors, by lowering fuel demand and 

transmission losses [16]. The latter happens because it produces the energy 

closer to the consumer.  

In 2012, the EU published the Energy Efficiency Directive (EED) 2012/27/EU 

that replaced the 2004/8/EC, to promote the use of CHP. Specifically, the EED 

talks about cogeneration in its Art. 14 and annexes I, II, VIII, IX, and X. The 

method to calculate the CHP efficiency is detailed in the Annexes I and II [17]. 



 

 

3 

 

 

As part of the Directive 2012/27/EU, in 2015, all EU members assessed the 

potential for high-efficiency CHP and DHC, to promote the join generation of 

electricity and useful heat. In Portugal [18], [19], the transposition of the Directive 

2004/8/EC was through the Decree-Law nº. 23/2010, and later, in 2015, the 

Decree-Law nº. 68-A/15 transposed the Directive 2012/27/EU. Portugal has 

mainly used CHP for industrial purposes. However, the Decree-Law nº. 68-A/15 

[20] introduced changes to the regulation that made more difficult for the CHP 

owners to access to supports such as the remuneration according to a reference 

tariff and the bonus per efficiency. Potentially, this has had a negative impact in 

the CHP for Portugal. 

 

 Trigeneration 

Combined Heating, Cooling and Power (CCHP), also known as trigeneration, is 

a system that includes CHP and additional technologies, such as heat pumps or 

absorption cooling systems, to produce cooling from the heat and electricity 

generated by the CHP. These systems can reach overall efficiencies as high as 

90%, depending on the configuration [21]. 

 

 Trigeneration with Thermal Storage 

In CHP and CCHP systems, the production of electricity, heat, and cold are 

coupled, but this is not necessarily true for the consumption. A solution is to 

install Thermal Storage (TS) units that decouple the heat and cold supply from 

the electricity one [22]. Additionally, this helps to shave peaks of demand [23], 

and reduce operation cost, primary energy use and emissions [24], [25]. This 

type of system is then called Trigeneration – Thermal Storage (CCHP-TS) and 

it is a specific configuration of the Combined Thermal and Power Energy 

Systems. 

There are already successful examples of application of this approach. In 

Denmark, it has been proven that using thermal storage within DHC networks, 

helps to manage intermittency from wind and solar PV, by optimizing the 
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operation of thermo-electric equipment like heat pumps, electric boilers and 

CHP [11]. 

Figure 3 illustrates an example of the configuration for a CCHP-TS system (right) 

and compares it with a conventional energy system, called reference design 

(left). The latter uses electricity from the grid to meet the annual electric and 

cooling loads (through a vapor-compression chiller) and uses a natural gas 

boiler to meet the annual heating loads.  

The CCHP-TS system uses grid and boiler just as auxiliary units. The main 

supply of energy comes from the CHP unit, that produces electricity and heat. 

Both energy vectors can be used directly to cover their loads, or they can be 

used to produce cold (through an electrical and/or absorption chiller 

respectively). The cold, like the heat, can be directly used to cover cooling and 

heating demand, or they can be stored using sensible thermal storage systems 

(hot-water tanks or cold-water tanks). 

 

Figure 3 Comparison of a trigeneration-thermal storage system vs. a 
conventional system, while meeting the annual loads Ln Ɐ n={E: electricity, 

H:heating, C:cooling} 
NOTE: Energy Supply (dotted lines) and Energy Loads (solid lines) 
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1.3 Market framework 

 Size of the thermal sector 

Only in Europe, the heating and cooling represent about 50% of the final energy 

consumption. From that, 84% is still generated from fossil fuels and only 16% 

from renewable energy [11]. 

The heat demand in the EU28 in 2010 reached approximately 4,306 PWh (Peta-

Watt hour) [26]. From that, only 12% was covered with district heating, other 

12% with electricity, and 66% with natural gas, oil, and coal products. According 

to Persson [26], the demand of heat depends on factors such as: the climate, 

the levels of building insulation, the energy services available and desired, as 

well as the level of comfort. 

 

Figure 4 Estimated European heat market in 2010 including residential and 
service sector (Adapted from Persson, 2015 [26]) 

 

It is worth mentioning that the largest heat demand in the European markets are 

located in Germany, France, the United Kingdom, Italy, Poland, Spain, and the 

Netherlands (Figure 4). The reason is that, according to the JRC [27], the heat 

demand of those countries is representative in the three main sectors (industrial, 

residential, and services). 
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Regarding the cooling demand, Figure 5 presents an estimate for selected 

countries in 2000 and 2017 across the world. The increase of the total cooling 

demand (top of Figure 5)  shows that the market is growing around the world. 

Also, it is evident that Asia is taking relevance, especially with the market growth 

in China and India. The demand per capita (bottom of Figure 5) shows that 

countries such as the US consume significantly more than others [28]. 

Therefore, if other countries follow the same trend, the cooling demand could 

grow exponentially. 

 

 

Figure 5 Cooling demand total (top) and per capita (bottom) for selected 
countries in 2000 and 2017 (image adapted from [28]) 
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 Current status of CHP market 

As mentioned at the beginning of the section 1.2, a combined thermal and power 

energy system produces electricity and thermal energy from the same fuel. That 

increases its efficiency dramatically. Typically,  the total efficiency of a CHP 

system is between 77% and 83% [29], however, in some systems, it can reach 

up to 90% [30]. 

Worldwide, CHP accounts for 10% of the electricity production [12]. But most of 

the contribution comes from countries with focused governmental policies.  

Figure 6 shows the CHP electricity generation and its share for the European 

countries in 2017. The blue line indicates the European average CHP share in 

the gross electricity production. It was 11.3% in 2017 [31]. Countries such as 

Denmark, Latvia, and the Netherlands have the largest share of CHP electricity 

production. Whilst Germany and Italy are leading the absolute electricity 

generation. 

 

Figure 6 CHP electricity generation [TWh] and CHP share in the gross 
electricity generation for European countries in 2017 [31] 
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On the other hand, in recent years, the Asia-Pacific region has fostered CHP 

systems installation in new industrial facilities. China and India were leading this 

path in 2012 with 13% and 5% of their electricity production respectively [32], 

[33]. In 2017, CHP was already accounting for 20% of the total electricity 

production in China [34]. 

 

 Relevant sectors for combined thermal and power energy systems 

Combined thermal and power energy systems can be used mainly in three 

different sectors: industry, services, and households, in the form of district 

heating and cooling (DHC) [30]. 

 

Industry 

For the OECD countries, the industry represents 25% of the total final energy 

consumption, only behind the transport (37%). 

The industry is the application par excellence of the CHP technology, as it 

usually requires high temperature thermal energy. Until 2007, this represented 

80% of the installed capacity of CHP worldwide [30]. In the European context, 

55% of the industry in 2009 had high temperature energy requirements (Figure 

7).   

 

Figure 7 Share of type of useful thermal energy (by temperature) for the 
industry of EU27 in 2009 [27] 
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The typical industrial sectors using CHP are metallurgy, mining, chemical, 

petrochemical, food processing, pulp & paper, etc. The common characteristic 

among all is their high needs of thermal energy, usually in high temperatures.  

Figure 8 shows the European industrial sectors that required thermal energy in 

2009. The most representative ones for high temperature are Iron & steel, and 

non-metallic minerals. For low temperature, it is the chemical sector. Figure 9 

illustrates that the Germany, Italy, Spain, and France concentrate the highest 

thermal demand due to these sectors, therefore, they are the largest industrial 

markets for CHP. 

 

Figure 8 Industrial sectors that require thermal energy in Peta-Joules [PJ] (by 
temperature) for EU27 in 2009 [27] 
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Figure 9 Useful heat demand for Iron & steel, and non-metallic minerals (high 
temperature) and chemical (for low temperature). EU27 in 2009 [27] 
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For the OECD countries, the sector of services represents more than 70% of 

their GDP and 13% of their total final energy consumption. A significant share 

of this energy consumption, around 50%, is for heating and cooling, in order to 

provide thermal comfort for the building users (offices, schools, hospitals, 

shopping centers, etc.) Figure 10 shows that Germany, France, UK, and Italy 

concentrate the highest thermal demand in the service sector. CHP is used in 

this sector through the connection of the buildings to district heating (and 

cooling) networks or with the direct installation of CHP units in the facilities, like 

in the case of hospitals. 
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Figure 10 Breakdown of useful energy demand for the service sector in EU-27 
for 2009 

 

 

Households 

For the OECD countries, the sector of households represents 21% of their total 

final energy consumption. And within the households, space heating consumes 

the most (Figure 11), in general with at least 50% of the share. 

 

Figure 11 Household energy use (by end use) around the world [27] 
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As for the delivery of heating, hot water and cooling services to households, it is 

usually done through District Heating and Cooling (DHC) networks. These 

networks deliver hot water or cold water through a network of insulated pipes, 

from a central point of generation to the end user [35]. The generation can be 

done through a combined thermal and power energy system.  

In Europe, the countries that have the largest energy demand for households 

are Germany, France, United Kingdom, Italy, and Poland (Figure 12). 

 

Figure 12 Useful energy demand for the residential sector in EU-27 for 2009 
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and urban planning, and tax incentives. This statement is backed-up by multiple 

governmental reports ([12], [30]) that highlight case studies with different policies 

in place: building regulations and interconnection standards, feed-in-tariffs, 

green certificates, emission trading, and installed capacity grants. Galindo 

Fernández also identified some factors in terms of the market characteristics: 

competitive prices, local energy resources, possibility of economies of scale, 

and operation flexibility.  

 

 Perspective for thermal storage 

There are three types of thermal energy storage technologies: sensible, latent 

and thermochemical. The first includes tank, pit, borehole, and aquifer. The 

second refers to phase change materials, and the third uses reversible chemical 

reactions. 

According to the Department for Business Energy & Industrial Strategy in the 

UK [36], the cheapest are the pits and boreholes with a cost of 0.3-0.8 £/kWh. 

While the thermochemical storage can go up to 400 £/kWh. The report highlights 

that for any thermal storage technology, the cost decreases with the economies 

of scale, in other word, the size of the installation. Regarding the operation and 

maintenance cost, they are almost negligible. 

The technology with the largest penetration is the water tank (sensible thermal 

storage). Although its price is not the lowest (25-180 £/kWh). It has an efficiency 

of 50-90% and the sector that mainly use it is the residential. However, it is also 

found on district heating and some commercial applications. They are generally 

coupled with solar thermal power systems (solar receivers), heat pumps, CHP, 

biomass, district heating, and solar PV (to transform the surplus of electricity into 

thermal energy). This technology foresees low chances of cost reduction. Mainly 

because the technology is already mature. In contrast, phase change materials 

and reversible chemical reactions have large probability to reduce their cost, but 

the forecast is uncertain. 
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Finally, the time-of-use tariffs are among the most relevant measures fostering 

the implementation of thermal storage technologies. This incentivize the 

consumption of energy at off-peak times and therefore the storing it. 

 

1.4 Motivation 

Cogeneration and trigeneration systems, with or without thermal storage, can 

contribute to the distributed generation of energy and reduce greenhouse gas 

emissions [12], [13], [16], [37], [38]. Still, and despite the maturity of the 

technology and its efficiency, its dissemination is still limited to some 

geographical areas and the potential of implementation is far from being 

exploited. 

As identified, the barriers are mostly in the economic and regulatory domain, so 

the techno-economic assessment of this type of systems is vital to demonstrate 

the sustainability of its implementation and disseminate its use. 

Research until now has targeted mostly their operational performance and 

feasibility. Regarding the techno-economic feasibility, several authors have 

established that the energy prices are important variables when assessing the 

systems. Their analysis is mostly focused on the impact of  the Spark Spread 

rate (SS), which has been widely used across the scientific and industrial 

community as the economic indicator to evaluate the feasibility of 

implementation of this type of systems. 

The spark spread, expressing the ratio between the cost of electricity from the 

grid and the CHP fuel (usually natural gas), is a variable that influences the 

economic feasibility of the systems. Still, many other variables also impact, such 

as the type of loads and its size, the individual prices of electricity and fuels 

(natural gas), rather than consolidated in the SS rate. 

This thesis proposes a methodology to perform a systematic techno-economic 

analysis of the CCHP-TS systems. The objective is identifying the conditions 

that determine the feasibility of their implementation. In particular, the aim of this 

study is to identify and quantify the importance of five different variables while 
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evaluating the feasibility of trigeneration systems with thermal storage: the price 

of electricity [pE], the price of natural gas [pNG], the size of the annual energy 

loads of electricity [E], heating [H], and cooling [C]. 

Finding the set of values for theses variables that make the CCHP-TS systems 

feasible could foster the interest of project managers, investors, and 

policymakers, and therefore encourage the adoption of this technology. Thus, it 

would be possible to also characterize the potential niche markets for its 

implementation. As an example, trigeneration systems with thermal storage are 

conceived to supply electricity, heating, and cooling in a decoupled manner. A  

potential market for this type of systems are the regions with sub-tropical desert 

climates (using the Köppen classification [39]). Those are the regions with the 

most intense solar radiation, according to the Global Solar Atlas [40], and 

potentially with the largest cooling demand (Figure 13). One of the objectives of 

this thesis is to explore the relevance of the size of energy demand, that indeed 

varies with the geography of the place. 

 

Figure 13 Subtropical desert places (adapted from the Global Solar Atlas [40]) 
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1.5 Hypothesis and Research questions 

Overall, this work aims to give answer to the following hypotheses: 

1. There is a combination of energy prices (pE and pNG) and size of the 

energy loads (E, H, C) that make a Trigeneration – Thermal Storage 

feasible, 

2. The energy prices should be considered separately, instead of 

consolidating them into the spark spread rate (SS). 

Therefore, the main research question for this thesis is: What are the key 

variables and their combination that make more feasible the usage of 

Trigeneration – Thermal Storage? 

The reader should note that the variables E, H, and C are in this work expressed 

in terms of energy, instead of power.  

Beyond the technical questioning presented above in the form of hypotheses 

and a research question, the development of the thesis required the 

implementation of different tools and approaches to give answer to these 

premises. Then, another objective of this work is to analyze and contrast the 

different steps taken at the methodology of the thesis. Finally, it is worthy to 

highlight that this work is developed using a university campus as a case study, 

as it is a representative profile of a combination of multiple energy services 

profiles (education, offices, etc.). 

 

 

1.6 Outline of the thesis 

This thesis is divided in six chapters. Chapter 1 introduces the context of the 

study, as well as the potential market and relevant sectors for a combined 

thermal and power energy system. It also outlines the motivation of the thesis 

and poses the hypotheses and research questions.  
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Chapter 2 reviews the state of the art of the feasibility analysis for combined 

thermal and power energy systems. It discusses the relevant variables that 

different authors have studied, the existent computational tools used to simulate 

these energy systems, the optimization algorithms typically implemented, as well 

as the general structure of the model used. Then, the chapter introduces an 

alternative to the existent computational tools. Finally, the chapter concludes 

with a discussion contrasting the typical sensitivity analysis methods used for 

the research in energy context and used for combined thermal and power energy 

systems.  

Chapter 3 explains the general methodology of the work, which has been divided 

into two phases: the first is an exploratory analysis of the CCHP-TS model, and 

the second a deep sensitivity analysis of the feasibility study, combined with a 

comparison of three GSA approaches.  

Chapter 4 corresponds to the first phase of the work. The objective is to 

demonstrate that the model for the CCHP-TS systems is relevant and sensitive 

to the variables of analysis (energy prices and loads). It combines tools such as 

full factorial design of experiments (DoE), DER-CAM simulation tool, k-Means 

clustering, and multicriteria decision making (MCDM). The results are shown in 

ternary diagrams and using load dominance rates.  

Chapter 5 corresponds to the second phase of the work. It is a rigorous 

sensitivity analysis and compares three approaches: Morris, Sobol, and VARS. 

In this phase, thousands of simulations were required. Therefore, we needed to 

increase the simulation efficiency. For that, the CCHP-TS model was adapted 

into the programming language Python, using the optimization library PYOMO 

and the solver CPLEX.  

Finally, chapter 6 outlines the overall conclusions of the thesis. 
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2 LITERATURE REVIEW 

This chapter examines the state-of-art of the combined thermal and power 

energy systems. It summarizes how different authors assess their feasibility and 

the main features considered. It specially outlines which variables have been 

studied as main drivers. After that, it presents a review of the computational tools 

which use simulation to assist in the design, operation strategy and assessment 

of a CCHP-TS system. Among them, it highlights DER-CAM, a tool that 

comprises an optimization algorithm to maximize the benefits. Next section 

analyses those models which aim to optimize the design, and the operation 

strategy of combined thermal and power energy systems. Lastly, the chapter 

presents a review of works on the sensitivity analysis in the energy context. 

The afore mentioned allows to conclude the chapter explaining the contributions 

of this thesis. 

 

2.1 Combined thermal and power energy systems 

Table 1 provides a list of journal papers studying the combined thermal and 

power energy systems. It indicates the type of system, the technologies studied 

(CHP, CCHP, or CCHP-TS), and the type of feasibility assessment 

(economically, environmentally, energetically, etc.). The assessment of a 

systems implies 1) determining the best design (installed capacity) and operation 

strategy of the proposed technologies, and 2) quantifying the benefits. This 

requires evaluating a model either analytically or through a simulation software. 

The evaluation is carried out through a parametric analysis or using an 

optimization algorithm. 

The subsection 2.4.1 deepen the analysis of the optimization algorithms of these 

works. 

 



 

 

20 

 

 

 

C
H

P
 

C
C

H
P

 

C
C

H
P

-T
S

 

M
u

lt
i-

o
b
je

c
ti
v
e
 

E
c
o
n
o
m

ic
 

E
n
v
ir
o
n
m

e
n
ta

l 

E
n
e
rg

e
ti
c
 

E
x
e
rg

y
 

A
n
a
ly

ti
c
s
 –

 P
a
ra

m
e
tr

ic
 

A
n
a
ly

ti
c
s
 –

 O
p
ti
m

iz
a
ti
o
n
 

S
im

u
la

ti
o
n
 -

 P
a
ra

m
e
tr

ic
 

S
im

u
la

ti
o
n
 -

 O
p
ti
m

iz
a
ti
o
n
 

O
th

e
rs

 

C
h
a
ra

c
te

ri
s
ti
c
s
 o

f 
c
a
s
e
 s

tu
d
y
 

E
n
e
rg

y
 p

ri
c
e
s
 

F
u
e
l 
m

ix
 a

t 
g

ri
d
 g

e
n
e
ra

ti
o
n
 

T
y
p
e
 o

f 
p
ri

m
e

 m
o

v
e
r 

E
n
e
rg

y
 l
o
a
d
s
 /
 E

n
e
rg

y
 l
o
a
d
 r

a
ti
o
s
 

P
e
a
k
 l
o
a
d
s
 

F
ra

c
ti
o
n
 o

f 
e
n
e

rg
y
 p

ro
d
u
c
e
d
 w

it
h
 C

H
P

 

E
ff
ic

ie
n
c
y
 o

f 
 d

iv
e
rs

e
 e

q
u
ip

m
e
n
t 

O
th

e
r 

c
h
a
ra

c
te

ri
s
ti
c
s
 o

f 
th

e
 e

q
u
ip

m
e
n
t 

O
ff
ic

e
s
 

H
o
te

l 

H
o
s
p
it
a
l 
/ 
O

u
tp

a
ti
e
n
t 

R
e
s
ta

u
ra

n
t 

S
u
p
e
rm

a
rk

e
t 
/ 
R

e
ta

il 
/ 
M

a
ll 

A
p
a
rt

m
e
n
t 

/ 
R

e
s
id

e
n
ti
a
l 
b
ld

g
 

A
ir
p
o
rt

 

D
is

tr
ic

t 
h
e
a

ti
n
g
 

G
e
n
e
ri

c
 

T
im

e
s
te

p
 f

o
r 

lo
a
d
s
 (

F
 /
 A

 /
 S

 /
 M

 /
 D

 /
 H

 )
 ?

 

Tech Assmnt. 
Solution 

type 
Variables in 

sensitivity analysis 

 
Case study 

Mago, 2007 
[41]  *    * *    *   *  *    *   *         

A 

Fumo, 2010 
[42]  *     *  *           *           * 

F 

Fumo, 2009 
[43]  *   *  *  *            *  *         

A 

Wang, 2011 
[44]  *    * * * *         *   *   *        

H 

Li, 2008 [45] 
 *   *     *        *      * *       

S-H 

Wu, 2012 [46] 
 *  * *  *   *     *   *             * 

F 

Hajabdollahi, 
2015 [1]  *   *     *     *  * *             * 

F 

Knizley, 2015 
[47] *    *    *         *     *  * * * *    

M 

Li, 2016 [48] 
* * * * * * *      * *   *      * *    *    

S-H 

Sundberg, 
2001 [49] *    *       *   *  *  *  * *        *  

S-H 

Hajabdollahi, 
2015 [50]   *  *     *        *      *        

M 

Memon, 2017 
[51]  *   *    *     * *   *   *       *    

F 

Cardona, 
2006 [2], [52]   *  *  *     *   *   *           *   

H 

Table 1 Papers studying combined thermal and power energy systems 
KEY for Loads: Fixed (F); seasonal (S); annual (A); monthly (M); daily (D); hourly (H). 

 

These works can be sort into different categories depending on the variables the 

authors approach, the case studies used, and the timestep considered for the 

energy loads. 
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Regarding the case studies, there are several papers focusing on offices, hotels, 

and residential buildings. Others study district heating or different high energy 

intensity buildings such as hospitals, restaurants, supermarkets, and airports. 

On the other hand, the timestep for the loads is interesting because the smaller 

it is, the higher the precision of the feasibility analysis. Table 1 shows that only 

Cardona [2], [52], Wang [44], Li [45], Li [48], and Sundberg [49] conduct it hourly. 

But the last three only analyze a typical day per season (S-H), instead of each 

month or day of the year, as Cardona [2], [52], and Wang [44] do it. 

Finally, Table 1 also displays the variables that different authors have studied, 

considering them relevant to assess the feasibility of combined thermal and 

power energy systems. It is evident that most of them focus on energy prices 

and energy loads. But only Wu [46], Hajabdollahi [1], Memon [51], and Cardona 

[2], [52] analyze them together. And from those, only Cardona [2], [52] considers 

loads with hourly timestep. The following section 2.2 extends the analysis of the 

variables that different authors have studied. 

 

 

2.2 Relevant variables for the feasibility analysis 

The feasibility of combined thermal and power energy systems can be evaluated 

based on energy savings or cost savings. For the latter, the ratio between the 

cost of electricity and the CHP fuel, called spark spread rate (SS), has been 

identified as the key variable. Many authors have studied this variable. Some 

examples are Smith et al. [53] in the US context, Kavvadias et al. [54] and 

Fonseca et al. [55] in the European context, Tookanlou et al. [53]–[57] in the 

Canadian context, and Chan et al. analyzing four cities (Qingdao, New York, 

Hong Kong, and Dubai) [57]. Moreover, some international governmental 

organisms have established as a general rule that the technology is 

economically feasible when the SS rate is higher than three [13]. In other words, 

the systems are likely to be feasible when the fuel is three or more times cheaper 

than the electricity from the grid. The physical understanding of this rule can be 
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explained by the electrical efficiency of the older thermal power plants, which is 

around 33% [58]. Intuitively the CHP is feasible if it has a better cost efficiency. 

Then, the SS threshold of three is inversely related with the electrical efficiency 

of thermal power plants [59]. 

Other key variables have been proposed in the literature to explain the feasibility 

of combined thermal and power energy systems. For example, to evaluate the 

primary energy savings generated by the CCHP system, Wang et al. [44] studied 

the influence of performance from different equipment. They found that the most 

sensitive parameter belongs to the electric generation at the separate production 

system, that is, the electric efficiency of the grid. Fumo et al [43] showed the 

relevance of the electrical efficiency of CHP and found that an increase of it 

reduces the primary energy used more than proportionally. The Midwest CHP 

Application Center [60] highlighted the importance of having a large number of 

CHP operating hours (greater than 3,000 hours/year). Mago et al. [41] evaluated 

the CCHP system based on the reduction of pollutants and identified the interest 

of the fuel mix used to generate electricity at the grid of each region. Then they 

propose that the CCHP system avoids more emissions in regions where 

electricity from the grid comes mainly from fossil fuels, especially coal. 

In recent years, some authors have suggested that the size of energy loads also 

plays an important role to evaluate the feasibility of combined thermal and power 

energy systems. Authors such as Cardona et al. [52], Wang et al. [44], Mago et 

al. [41] and Fumo et al. [42] assessed the energy reduction generated by these 

systems, using respectively load rates (Heating/Electricity, Cooling/Electricity or 

Heating/Cooling), load rates vs. CHP production rates, and the fraction of 

electricity, heating and cooling loads covered by the CCHP. Similarly, Memon 

et al. [51], Wu et al. [46], Knizley et al. [47] and Hajabdollahi [1] used measures 

related to load size to assess the cost reduction of CHP or CCHP systems. 

Memon et al. [51] analyzed the net present value and payback period for using 

a trigeneration system in residential buildings. The authors found that the 

economic feasibility improves with the rise of fuel prices and load factors. They 

defined the heating and cooling load factors as the fraction of time the products 

are required in a year. Their parametric study included a variation between 0.2–
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0.5 in the heating load factor and 0.4–0.75 in the cooling load factor. Wu et al. 

[46] applied Mixed Integer Nonlinear Programming (MINLP) to optimize the 

operation strategy of a micro-CCHP, conducting a screening analysis over a 

small range of SS and the size of electric and heating loads. They concluded 

that the operation strategy of a micro-CCHP is affected by load size (in instant 

energy, or power) and SS. For their part, Knizley et al. [47] proposed that the 

economic savings of a CHP system can be guaranteed when the ratio between 

electricity and heating loads of a building is less than three. Six out of eight case 

studies verify the hypothesis, using an SS=2.77. Finally, Hajabdollahi [1] studied 

the influence of load rates over the selection of the optimal prime mover for a 

Trigeneration system with Organic Rankine Cycle. The author concluded that, 

at given constant loads during the whole year, the gas turbine is convenient 

when heating loads are high, and the diesel engine is more suitable for high 

electric and heating loads. 

The literature review indicates that energy prices and loads size are two 

interesting variables for the techno-economic assessment. Subsections 2.2.1 

and 2.2.2 provide a context regarding their ranges of interest. 

 

 Energy prices 

The last section introduced the spark spread as a relevant term for the feasibility 

of combined thermal and power energy systems. It was coined in the UK during 

the late 1990’s in the context of trading and hedging opportunities [61]. And 

nowadays, this metric is widely used in the financial energy markets to quantify 

the profitability of buying fuel and selling electricity [62].  

In the scientific context, authors such as Smith et al. [53] and Kavvadias et al. 

[54] proposed steady state equations to determine the minimum spark spread 

rate based on the efficiency of the CHP (electric and thermal), costs and loads. 

The spark spread rate (SS) comprises the price of electricity and fuel (natural 

gas, for the purposes of the thesis). Therefore, it is relevant to explore their 

status worldwide. Figure 14 outlines that the largest electricity prices are paid in 

Europe and North America, while the lowest are in the Sub-Saharan Africa. 
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Sadly, these low prices in the sub-Saharan Africa have driven to bankruptcy to 

a number of power utility companies and obliged the state to subsidy part of the 

electrification costs [63]. Regarding the price of natural gas, Figure 15 shows 

that the largest prices are paid in Asia-Pacific and Europe, whereas the lowest 

are in the Former Soviet Union, Middle East, and North America. The low prices 

in the latter regions are related to the natural gas deposit they have available. 

 

Figure 14 Household electricity price worldwide in 2016, by region (published 
by Statista Research Department [64])  

 

 

Figure 15 Wholesale natural gas prices worldwide in 2018, by region (data 

from the International Gas Union [65]) 
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Europe, in average, has the largest electricity prices available, but also one of 

the highest prices of natural gas. Therefore, the interest of buying fuel and selling 

electricity is not straight forward. Then, it is crucial to conduct a feasibility 

analysis for combined thermal and power energy systems as detailed as 

possible.  

Figure 16 shows the prices of electricity and natural gas for different European 

countries in  2017, according to Eurostat [66]. In the household context, the 

prices of electricity and natural gas present a strong linear correlation. However, 

In the industrial context, the prices are more independent. 

  

Figure 16 European energy prices 2017 [66] 
 

It worth highlighting that the information of this section is based in average 

values. However, studying the average values of prices is a good approximation 

even for energy market with volatile prices, such as Europe. The reason is that 

empirically, the spot prices for these commodities display mean reversion [67], 

[68]. In other words, the price will tend to move to the average price over time. 

Given the above-mentioned, this work considers simply the average prices of 

energy, rather than the spot prices. 

 

 Energy loads 

Combined thermal and power energy systems are recommended by multiple 

institutional reports [13], [30], [60], [69]–[72] as a sustainability measure. 
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This subsection provides some references of the possible cases for 

implementation, as well as their range of energy loads. Figure 17 describes 

these ranges depending on the dimensions of analysis. 

 

Figure 17 Electric energy demand depending on the dimension of the case 
study 

 

At a household level: According to the World Bank and the IEA statistics in 2014, 

the worldwide average electric consumption per capita was 3.13 MWh/y [73]. 

Moreover, the United Nations published that worldwide, the number of members 

per household ranges from three to six persons [74]. Therefore, an average 

household worldwide, consumes between 9.39 and 18.78 MWh/y. 

At block and neighborhood level: It is possible to take the example of some of 

the most energy intensive squares in Manhattan, New York [75], that can go up 

to 80.2 GWh/y of electricity, 70 GWh/y for space heating and 12 GWh/y for 

space cooling. 

At buildings level: There are some high intensity buildings in terms of energy 

consumption, such as airports, hotels, hospitals, university campi, etc. For 

hotels, Wang et al. [44, Fig. 4,5,6.a] studied a 5-stars hotel with electricity, heat 

and cooling demand of approximately 1.5, 2.4 and 3.9 GWh/y respectively. 

Regarding University campi, there are examples such as the IST Alameda 

Campus [76], which demand is approximately 2.4, 0.6 and 1 GWh/y, 

respectively for electricity, heat and cooling, but there are some other examples 

of larger demand; such as the West Campus of the University of Illinois, in 

Chicago [77] that has an CHP installed capacity of 21 MWe , being able to 

produce up to 147 GWh/y. Talking about airports, according to the examples 

provided by Cardona et al. [52, Fig. 1,2], their energy consumption can go from 

20 GWh/y to more than 150 GWh/y, such as the Malpensa Airport in Milan, 

HOUSEHOLD
0.01-0.02 GWh/y

BLOCK AND NEIGHBORHOOD
0.1-80 GWh/y

REGIONAL OR COUNTRY
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whose electricity, heat and cooling demand are approximately 151, 129.3 and 

102.5 GWh/y. However, there are larger airports such as Heathrow, that is 17 

times larger in area than Malpensa and serves 3.5 times the number of 

passengers than in Milan.  

At a regional level: A reasonable energy demand size for region could start in 

500 GWh/y. This would be assuming a region with 160,000 inhabitants, and 

considering 3.13 MWh/y as the electric consumption per capita, as given above 

[73]. In terms of technical viability, Wu et al. [78] found, as part of their literature 

review, that CCHP systems could be as large as 300MW when supplying energy 

to districts.  

 

 

2.3 Computational tools to simulate energy system 

Some computational tools assisting the design, operation and feasibility 

assessment of distributed energy generation are in Table 2 and Table 3 [79]–

[87]. All tools analyzed assess the techno-economic feasibility (Assmnt.), and 

some also the environmental one. Most of them running easily in Windows 

platform, while others require GAMS programming language to run.  

A very important aspect is the solution method which can be run either by 

scenarios or optimization. The first reside on the idea that the user tests different 

setups and manually distinguishes the most appropriate. In contrast, software 

with optimization capabilities such as DER-CAM, BALMOREL, COMPOSE, 

TIMES/MARKAL, and HOMER use algorithms to get the proper type, size and 

operation schedule of technologies. From the five aforesaid, only DER-CAM, 

and COMPOSE are free access. But the second is mostly designed to assess 

single project, rather than microgrids (Table 3). A microgrid is usually more 

complex than a single project, because it is a local energy grid with control 

capability and able to operate autonomously from the traditional grid [88]. 
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Software Institution 
Platform 

required to 
run 

Comments 

DER-CAM LBNL, US 
Web-based 
Windows 

Written in GAMS and uses MILP as 
optimization algorithm. 

Energy 
PLAN 

Aalborg University, 
Denmark 

Windows  

Energy PRO 
EMD International 

A/S, Denmark 
Windows  

LEAP 
Stockholm 

Environment Institute, 
Sweden 

Windows  

BALMOREL 
Different institutions in 

Baltic countries 
GAMS 

-Any user can modify the tool to suit specific 
requirements (open source). 
-BALMOREL is free, but GAMS is not. 
-Depending on the situation, the optimization 
algorithms used are LP (linear 
programming), QP (quadratic programming), 
MILP (Mixed Integer Linear Programming), 
MIQCP (mixed integer quadratic 
programming), or RMIP (relaxed mixed 
integer programming). 

COMPOSE 
Aalborg University, 

Denmark 
Windows 

-It is a parametric linear programming model. 
-It integrates MILP model generation and 
solving. It works with any solver (Gurobi, 
CPLEX, COINMP, etc.). 
-It has Monte Carlo risk assessment. 
-It interacts with energyPRO, EnergyPLAN, 
and RETScreen 

BCHP 
Screening 

Tool 

Oak Ridge National 
Lab, US 

  

RETScreen NRCAN, Canada 
Excel / 

Windows 
 

TIMES/ 
MARKAL 

IEA-ETSAP 
(international) 

Windows It runs with GAMS and a solver. 

HOMER NREL, US Windows It is designed for stand-alone systems. 

Table 2 General characteristics of the computational tools [79]–[81], [86], [87] 
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Assmnt. Sol. Case Apch. Technologies Other charac. 

DER-CAM [86] * * * *   * *  * * * * * * * H 1y 397 

Energy PLAN  * *  *  * *  * * * *  * * H 1y 1220 

EnergyPRO  *   * *  *  * * * * * *  m 40y 521 

LEAP  *   *  * * * * * * * *  P Y any 712 

BALMOREL [87]  *  *    *  * * * * *   H 50y 1160 

COMPOSE [83]  *  *  *  *  * * * * * * * H any 17 

BCHP Screening Tool  *   * *  *  * * * * *  * H 1y 68 

RETScreen [84]  *   *  * *  * * * *   P M 50y 3750 

TIMES / MARKAL  * * *   * P * * * * * *   H 50y 147 

HOMER [82], [85]  *  *   * *  * * *   *  m 1y 16000 

Table 3 Specific characteristics of the computational tools [79]–[87] 

KEY: Partially (P); by minute (m); hourly (H), daily (D), monthly (M); yearly (Y); years (y). 
NOTE: The last column reports the number of papers that appear by searching in Google Scholar 
the keywords: “name of the software” + simulation. For LEAP: simulation + LEAP + "Long-range 
Energy Alternatives Planning system”. For COMPOSE: simulation + COMPOSE + "Compare 
Options for Sustainable Energy". For HOMER: simulation + model + HOMER + energy + 
software. 
 

There are other six relevant characteristics of a software tool that this thesis 

evaluates. 1) The approach it uses (Apch.): Mostly all tools use a bottom-up 

approach, where the user builds the case study by taking small pieces of 

information and constructing the subsystem-level as accurate as possible. 2) 

The technologies it can simulate: Modeling a CCHP-TS system requires at least 

the use of CHP, boiler, absorption chiller, and heat and cold storage. All tools, 
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except EnergyPLAN, RETScreen, and Homer have them available. 3) The 

possibility to vary the price of electricity: That is relevant for markets with time-

varying price, such as Europe. Only DER-CAM, Energy PLAN, EnergyPRO, 

COMPOSE, and HOMER have that feature. 4) The time step during the 

simulation: That determines the precision of the loads, and the smaller the time 

step in the loads, the higher the precision of the feasibility analysis and operation 

strategy. Any tool with hourly or by the minute time step is preferable. 5) the 

planification timespan: One year would be enough for operative and financial 

purposes, but the user must verify that the installation costs consider the time 

value of money. 6) The adoption of the tool over the scientific community: This 

is related to the relevance of the tool, as well as the documentation and support 

available. We quantify it in the last column of Table 3, reporting the number of 

papers referring to the software tool. That could include papers that use it to 

conduct an analysis, or papers that only mention its name. 

 

After the analysis in this section, it is possible to state that DER-CAM offers some 

comparative strengths over the others computational resources optimizing the 

design and operation strategy of a microgrid. DER-CAM is a free access tool 

that follows a  bottom-up approach and includes all the technologies required to 

simulate a CCHP-TS system. It allows for an energy price variation. Its 

planification time span is one-year, and the simulation time-step is in hourly 

basis. Moreover, the documentation available is detailed enough to understand 

and analyze the methods used and the assumptions done. The subsection 3.2.2 

describes its characteristic in detail. 

 

 

2.4 Modeling and optimization of combined thermal and 

power energy systems 

Until this point, it has been discussed that the assessment of combined thermal 

and power energy systems is done either analytically or through computational 
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tool to simulate. Moreover, the section 2.3 emphasized the importance of using 

computational tool that provide the optimal solution.  

This section presents a review of the optimization algorithms that different 

authors have used. Afterwards, it explains the general mathematical model to 

optimize a trigeneration systems with thermal storage. And finally, it presents a 

free computational solution to modeling and optimization. 

 

 Optimization algorithms for combined thermal and power energy 

systems  

A model is a set of mathematical expressions that describe a system. An 

analytical model is based on Physics laws and a parametrical one is based on 

the characterization of experimental data. Once the model is formulated, it can 

be used to simulate or optimize. 

To assess the feasibility of combined thermal and power energy systems, 

authors such as Cardona et al. [89] and Angrisani et al. [90] collect data through 

experimental pilot plants. This is the basis to build a parametric model. While 

Cardona et al. [89] provides the detailed experimental measurement 

methodology, Angrisani et al. [90] reports the results of a case study in Frignano, 

Italy. They even formulate a set of expressions comparing the operational cost, 

PES (primary energy savings) and CO2 emissions with the conventional 

scenario. On the other hand, Mago et al. [41], Fumo et al. [42], Wang et al. [44], 

and Knizley et al. [47] are authors who develop analytical models to simulate in 

steady-state. The first three assess the energy and emission reduction, and the 

other assesses the cost reduction.  

However, the object of interest for this section and Table 4 are authors that 

design analytical models to optimize. Wu et al. [46], Hajabdollahi [1], and 

Hajabdollahi [50] develop models for steady-state. They implement a multi-

objective MINLP, Genetic Algorithms (GA) and Particle Swarm Optimization 

(PSO) respectively as optimization algorithms for the cost reduction. However, 

there are other authors that work with dynamic models. These capture the 

behavior of the systems across the different hours of the year. For example, 
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Cardona et al. [2], [52] and Li et al. [91] dynamically assess the energy reduction 

for CCHP systems using LP and GA. While H. Li et al. [92], C.Z. Li et al. [45], 

and Sundberg [49] dynamically assess the cost reduction using GA, MINLP, and 

MILP respectively. Similarly, computational tools, such as DER-CAM, 

BALMOREL, and COMPOSE, base their dynamic analysis in MILP. 

As side comment, the LP optimization used by Cardona [2], [52] is possible 

because it is a simpler model without integer variables. The model already 

proposes the design of the system (installed and functional capacity of the 

equipment) and simply optimizes the operation strategy. Then, the authors 

calculate the marginal cost of each configuration and conducts a LP for each 

hour of the year. 
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Optimization 
algorithm 

Comments 

Li, 2008 [45]   *   
Linearize the non-linear items. And uses the barrier 
method and branch & bound. 

Wu, 2012 [46]   *   
Multi-objective MINLP calculated hierarchically 
through the lexicographically stratified method. 

Hajabdollahi, 2015 [1]     * Real Parameter Genetic Algorithm (RPGA). 

Sundberg, 2001 [49]  *    MILP with Branch & Bound in the software MODEST. 

Hajabdollahi, 2015 [50]    * *  

Cardona, 2006 [2] *     Linear programming with a code in Visual Basic. 

Li, 2019 [91]     * 
It uses quantum genetic algorithm (QGA) and simple 
genetic algorithm (SGA) 

H. Li, 2006 [92]     *  

DER-CAM [86]  *    Uses GAMS 

BALMOREL [87]  *    Uses GAMS 

COMPOSE [83]  *     

Table 4 Papers using optimization algorithms to assess the feasibility of 

combined thermal and power energy systems 
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From the table above, it can be said that MILP and GA are the most often used 

optimization methods [93]. Although metaheuristic methods, such as GA, 

produce good solution quickly, the optimality is impossible to guarantee [94]. In 

contrast, MILP find optimal solutions, but they require the simplification of non-

linear behaviors embedded in the energy scheduling optimization [93]. In any 

case, mathematical methods, such as MILP, are a good first choice [95]. It is 

due to their simplicity that allows gaining insight in the structure of the problem, 

and because there is a wider amount of solvers available [95], [96]. 

 

 The general structure of the optimization model  

All the models mentioned in subsection 2.4.1, are based on energy balances. 

And, independently from the optimization algorithm used, the general structure 

of the model is as follows:   

 

Objective function: Minimizing cost, emissions, or energy consumption. 

 

Constraints 

▪ Equality Constraints 

- The demand of the three energy vectors is fully covered (electricity, 

heat, and cold). 

- The heat produced by each CHP units is tied to its electricity 

production (considering the corresponding efficiencies). 

- The state-of-charge of the thermal storage at each hour is tied to 

its state-of-charge on the previous hour: inputs and outputs 

(considering the decays of energy corresponding to its storage) 

▪ Inequality Constraints 

- The electricity production of all CHP units does not exceed their 

installed capacity, but it is larger than a minimum production level. 

It also considers the efficiency of the equipment. 
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- The amount of active CHP units each hour does not exceed the 

CHP units installed. 

- The Installed capacity of units such as boiler, vapor-compression 

chiller, absorption chiller, and thermal storage, is not exceeded 

(considering the corresponding efficiencies). 

- The state-of-charge of the thermal storage does not go lower than 

a minimum level. This is a technological constraint. 

- The input and output of the thermal storage do not exceed the 

maximum charge and discharge rate. 

- A restriction to avoid an input and an output from the thermal 

storage within the same hour (timestep). That would not make 

sense in terms of optimal management of energy. 

 

 

The variables of the model are divided into three types: 

✓ Non-negative integer variables 

o To determine the installed capacity of units such as boiler, vapor-

compression chiller, absorption chiller, and thermal storage. 

o To determine the number of CHP units installed, and how many 

are active at the time t. 

✓ Non-negative real variables 

o To quantify the electricity imported from the grid at the time t. 

o To quantify the electricity and heat produced by the CHP and 

boiler,  at the time t. 

o To quantify the electricity and heat consumed by the vapor-

compression and absorption chiller at the time t. 

o To quantify the state-of-charge, input and output of the thermal 

storage at the time t. 
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✓ Binary variables 

o To activate the fixed capital cost of units such as boiler, vapor-

compression chiller, absorption chiller, and thermal storage, when 

their installed capacity is over zero. 

o To avoid having an input and output of the thermal storage within 

the same hour. 

 

 PYOMO – CPLEX : a computational alternative 

The section 2.3 provided a list of computational tools assisting the design, 

operation and feasibility assessment of distributed energy generation. At least 

three of them have been written in GAMS. Which is a commercial software 

system combining mathematical algebra and computer programming to solve 

optimization problems [97]. 

As an alternative to GAMS, the combination of PYOMO – CPLEX has the 

capability to solve MILP problems, appropriate for the feasibility assessment of 

CCHP-TS systems. 

PYOMO [98], [99] is a Python-based open-source software package supporting 

optimization capabilities. It is an effective framework to develop Python scripts, 

and includes optimization solvers for stochastic programming, dynamic 

optimization with differential algebraic equations, and mathematical 

programming with equilibrium conditions. It allows the formulation of complex 

model, even as object-oriented, allowing a variety of modelling components: 

sets, scalar and multidimensional parameters, decision variables, objectives, 

constraints, equations, etc. 

The functionality of PYOMO is usually associated with algebraic modelling 

languages (AML) that support the analysis of mathematical models with a high-

level language. An AML does not solve the problems directly. Instead, it calls 

external algorithms (solvers), to obtain a solution [100]. Then PYOMO provides 

a general interface for the solver, such as CBC, CPLEX, FortMP, Gurobi, 

MINOS, IPOPT, SNOPT, KNITRO, and LGO. 
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Among them, the IBM ILOG CPLEX Optimization Studio [101] is a recognized 

solver in the industrial and academic contexts. CPLEX is suitable to solve MILP 

problems, that are much harder to solve than LPs, and uses the Branch & Bound 

(B&B) algorithm [102]. This is a systematic search over the possible 

combinations of the discrete variables (as if they were branches of a tree). 

Moreover, it uses linear or quadratic programming relaxations to find bounds on 

the solution. The B&B search stops when every partial solution in the tree has 

been either branched or terminated, or when the gap between the upper and 

lower bounds becomes smaller than a certain threshold [103]. 

 

 

2.5 Sensitivity analysis 

Sections 2.1 and 2.2 have explored the variables that different authors have 

studied, considering them relevant to assess the feasibility of combined thermal 

and power energy systems. This section aims to show 1) how the authors of 

Table 1 have conducted their variables analysis and, 2) how other authors in the 

field of energy analysis have done it in different contexts. The following 

paragraphs, along with Table 5 give the insights. 

Across the literature, there are different ways to assess the impact of the 

parameters or variables within an output function. The simplest way is to vary 

one parameter around an initial baseline value and measure the impact on the 

output. That is called “one-at-a-time” (OAT) sensitivity analysis [49], [104] and 

normally it is made locally. The disadvantages of OAT include that it is time 

consuming when parameters are numerous, it does not capture non-linear and 

interactions effects (when the effect of one factor depends on the value of 

another one), and it becomes a non-explorative method at high dimensional 

space. The latter is the result of the curse of dimensionality, and it means that 

the more parameters, the lower the size of the hyperspace that is explored, 

converging to zero [105], [106].  
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Paper Application Approach Comments 

Jaxa-Rozen, 2018 
[104] 

Generic   *  *   * 
Random forests and extra-Trees 
compared with Sobol and Morris. 

Razavi, 2016 
[110], [111] Hydrological 

modeling 

  *  * *   
VARS is compared with Sobol and 
Morris as reference. 

Sarrazin 2016 
[112] 

  * * *    Analysis with Morris, RSA, and Sobol. 

Garcia Sanchez, 
2014 [113] 

Building 
thermal 
energy model 

  *      
Morris method with first and second-
order sensitivity analysis. 

Shen, 2013 [115]     *    
FAST, with uncertainty analysis based 
on the Monte Carlo with LHS. 

Spitz, 2012 [114]     *    Analysis with Sobol. 

Knizley, 2015 [47] 
Feasibility of 
CHP 

 *        

Sundberg, 2001 
[49] 

      *  
Full factorial design of experiments 
with runs at two levels. 

Memon, 2017 [51] 

Feasibility of 
CCHP 

*         

Mago, 2007 [41] *         

Fumo, 2010 [42] *         

Fumo, 2009 [43] *         

Wang, 2011 [44] *         

Li, 2008 [45] *         

Wu, 2012 [46] *         

Hajabdollahi, 
2015 [1] 

*         

Cardona, 2006 [2] *         

Hajabdollahi, 
2015 [50] Feasibility of 

CCHP-TS 

 *       
Varies the case study in three different 
climates. 

Li, 2016 [48]  *       
Fuzzy logic analysis w/weighting 
method for different set of factors. 

Table 5 Types of sensitivity analysis methods used in energy analysis  
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Another alternative is to build scenarios with different sets of parameters. This 

is suitable for the analysis of major changes, but neither does it captures non-

linear and interactions effects [49].  

Most of the papers assessing the feasibility of combined thermal and power 

energy systems belong to the two categories above [1], [2], [50], [51], [41]–[48]. 

A more rigorous alternative is to use a global sensitivity analysis (GSA) 

method. It evaluates the importance of each input over the model output by 

exploring each parameter across the domain of all the other inputs. Yet, using 

GSA methods is not a fully deployed practice in the scientific community. Saltelli 

et al. found that less than 40% of papers of the energy field use GSA methods 

[107]. In 2013, Wei et al. [108] conducted a review which concluded that the 

main GSA methods used for energy analysis are: screening-based, variance-

based, regression, and meta-model based approaches. Similarly, Song et al. 

[109] presented a pie chart reflecting that Morris, Sobol, and FAST were the 

most popular GSA methods used between the years 1996 and 2013 for water 

resources and environmental sciences. Table 5 consolidates a number of papers 

that take Morris and Sobol as regular reference methods [104], [110]–[112], or 

use them separately [113], [114]. Similarly, there are specific cases using FAST 

[115], RSA [112] and VARS [110], [111]. 

Apart from the GSA methods, there are other “unconventional” methods to 

assess sensitivity analysis. For example, Jaxa-Rozen suggests using decision 

tree-based ensemble methods (random forests and extra-trees) applied to 

sensitivity analysis problems [104]. The method of extra-tree performs favorably 

compared to Morris. But that is not the case against Sobol, because decision 

tree-based methods only return the relative importance of the inputs, rather than 

their direct effect on the output variance. Finally, another option is to use design 

of experiment (DOE) methods for sensitivity analysis purposes [116]. That is 

the case of Sundberg et al. [49] which assess the economic feasibility of a CCHP 

system by varying 25 factors using a full factorial design of experiments with runs 

at two levels. Besides, there are different experimental design methods: full 

factorial, central composite design (CCD), Box-Behnken design (BBD), among 

others. Rakic et al. [117] conducted a comparative analysis of them for a 
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pharmaceutical application and found that the three-level full factorial design and 

CCD created significantly better models than the two-level full factorial design 

and BBD. They also highlighted that CCD requires less samples than three-level 

full factorial design, but that also means that the latter has more degrees of 

freedom. This is helpful to create more reliable models, especially when 

experimental errors are present. Additionally, the National Institute of Standards 

and Technology (NIST) [118] shows a table indicating that when a there are five 

factors or more, it is better to use a DoE such as factorial design for screening 

purposes.  

In summary, the  factorial DoE seems an adequate alternative to the popular 

OAT and the rigorous GSA. It ensures the best choice of sample points within a 

space, it is simpler than GSA methods, but at the same time corrects the main 

drawback of OAT regarding its local analysis. Additionally, it gives an idea of the 

interaction effects between parameters because it changes several factors 

simultaneously. 

Altogether, this section revealed that most of the authors conducting sensitivity 

analysis for combined thermal and power energy systems, use a simple 

parametric analysis (OAT) [1], [2], [41]–[46], [51]. As for the use of global 

sensitivity analysis methods (GSA), it is rare for this application although it is 

extensively used in the energy analysis context. Morris and Sobol are the most 

popular GSA methods across the literature. However, VARS is also an 

interesting and novel approach that characterizes the variation of the model at 

different points and scales.  

 

Morris is a derivative-based or screening-based method, ideal to identify the 

significant factors for the output, without quantifying it exactly. It aims to deal with 

many input factors while keeping a small number of samples. As a drawback, 

while it helps to recognize that interaction effects among parameters exist, it 

does not identify them precisely. Unless the second order sensitivity index is 

calculated [113], but that in turn makes the method computationally expensive. 

On the other hand, derivative-based approaches, similar to OAT, suffer the curse 
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of dimensionality and becomes a non-explorative method at a high dimensional 

space [105].  

Sobol is a variance-based method ideal for risk assessment, but it is 

computationally expensive [119]. It assesses how much the variance of the 

output depends on the uncertain input factors and decomposes it accordingly. 

Moreover, it identifies non-linearities and non-additive properties of the model, 

quantifying the interaction effects among parameters. According to Saltelli et al. 

[120], Sobol method is superior than FAST on the capacity to easily compute 

high-order indexes. Moreover, this method does not suffer the curse of 

dimensionality.   

VARS (Variogram Analysis of Response Surfaces) [110], [111] is a new GSA 

method proposed by Razavi in 2016. It arises as an alternative to Morris and 

Sobol. VARS is computationally less expensive than Sobol, but it explores the 

full range of the input factors. It uses an anisotropic variogram concept to 

characterize the variation of the model at different points and scales. Thus, it 

allows raking the relevant variables at different points of the range.  

 

 

2.6 Position of the thesis 

Chapter 2 is devoted to exhibiting the state of art for the feasibility assessment 

of combined thermal and power energy systems. Likewise, it highlights the 

importance of energy prices and energy loads as relevant variables. 

The first and most evident remark across chapter 2 is the lack of studies on the 

technological combination of Trigeneration and Thermal Storage. Moreover, the 

ones studying it ( Hajabdollahi [1], Li et al. [48], and Cardona et al. [2] from Table 

1) have a dearth in the joined analysis of energy prices and loads as relevant 

variables. Hajabdollahi study, both, energy prices and loads, but the loads are 

in monthly basis. As explained in section 2.1, a smaller time-step in the loads is 

important because it gives more precision to the feasibility analysis. This higher 

precision is a must for context like the European, where the interest of buying 
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fuel and selling electricity is not straight forward due to the large energy prices 

(see the last paragraph of subsection 2.2.1). Regarding Li et al., they do not 

study neither energy prices nor loads. As for Cardona et al., they analyze both 

in hourly basis, but the model they propose only optimizes the operation 

strategy, while the design (installed capacity of the equipment) is an assumption. 

The second remark from subsection 2.2.2 is that university campi, depending on 

the place and climate, are suitable application for combined thermal and power 

energy systems. The reason is that they are high energy intensity buildings. 

Moreover, several institutional and industrial reports present them as a usual 

application of CHP [69]–[72]. Therefore, the analysis of their load profiles seems 

promising. 

The last remark is the high relevance of the economic feasibility. Most of the 

papers assess it, and all governmental organizations take it as parameter to 

invest in this kind of projects. 

Said the above, this thesis aims to study the techno-economic feasibility of 

Trigeneration-Thermal Storage systems (CCHP-TS). The focus is the attribute 

relevance analysis for energy prices and size of the energy loads. All this, taking 

a university campus as case study. 
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3 METHODOLOGY 

  

3.1 General methodology 

The methodology is divided in two phases, presented in Figure 18.  

The first phase (developed in chapter 4) corresponds to an exploratory analysis 

to examine the relevance of the CCHP-TS model, its feasibility, and its sensitivity 

to the selected variables (energy prices and loads). To do so, DER-CAM and its 

embedded model is used. As for the sensitivity analysis method, full factorial 

DoE is used due to its simplicity, capacity to analyze globally, and possibility to 

identify interaction effects. Once the simulations are conducted, clustering is 

implemented to analyze the data and get the pertinent conclusions. The 

learnings from this phase are cornerstone for the second one, because the 

objective is to demonstrate that the model developed in DER-CAM is sensitive 

to the variables of analysis. 

The second phase (developed in chapter 5) is a deep sensitivity analysis of the 

feasibility study, combined with a comparison of three GSA approaches: Morris, 

Sobol, and VARS. Each of them uses their corresponding sampling methods 

(LHS, and Monte Carlo). To understand the relevance of a sensitivity analysis, 

subsection 3.3.5 highlights how a study with GSA complements the insights 

obtained by a full factorial DoE. Regarding the energy system optimization, as 

DER-CAM is not adapted to conduct global sensitivity analysis (developed 

further in subsection 3.2.2.1), it is proposed an adapted model of a CCHP-TS 

system developed in Python. The model is based on energy balances and uses 

the MILP algorithm for the optimization step. As seen in the subsection 2.4.1, 

MILP is the most appropriate method for this type of application. The 

implementation is done by using the library PYOMO and the solver CPLEX to 

optimize. 
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Figure 18 General methodology of this thesis  
 

 

3.2 Phase I: Exploratory study of the CCHP-TS feasibility 

 Full factorial DoE 

Design of experiments (DoE) is a branch of statistics [121], [122] with the 

objective of obtaining the maximum information from the minimum number of 

experiments. Conduct an ideal DoE should include: 1) designing the 

experimental space to include the critical ranges of the inputs of a model; 2) 

varying the inputs to study their individual and interaction effects; 3) designing 

the experiment to account the variability due to external factors (operators, raw 

materials, or processes). The latter mainly applies to experiments, rather than 

simulations.   

There are different DoE methods: one-at-a-time (OAT) that explore the factors 

one by one, but does not identify interaction effects; orthogonal design of 

experiments, such as Taguchi, that reduces experimental runs at a loss in 

experimental resolution and do not find interaction effects; and factorial DoE, 

that explores all the factors at the same time and recognizes interactions effects. 

Full factorial DoE [122], [123] is an design of experiments method studying the 

effect of the input factors over the model. It explores every possible combination 

of factors and their levels. The method requires nk runs, where k is the number 

of factors, and n the number of levels. Full factorial DoE is an expensive method; 

therefore, it is recommendable when a reduced number of features are studied. 

PHASE I
Exploratory study of 

the CCHP-TS feasibility

PHASE II
Sensitivity analysis of 

the CCHP-TS feasibility

LHS and 
Monte Carlo

Sampling
Energy system 
optimization

Data analysis
Results 
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SA indexes

Full factorial 
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DER-CAM
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clustering & 
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Ternary diagrams 
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When there is a previous knowledge of the system, it is possible to reduce the 

samples, by conducting a fractional factorial DoE, although the full factorial DoE 

is more useful in terms of the information. Another alternative is to conduct it 

with a low resolution full factorial DoE to identify the main effects, and then a 

high-resolution one [122]. 

In this work, a full factorial DoE is conducted, aiming to examine a wide range 

of the variables. The results of this exploratory phase provide the direction to 

increase the resolution in following steps.  

 

 Modeling and optimization in DER-CAM 

 

3.2.2.1 About DER-CAM 

DER-CAM (Distributed Energy Resources Customer Adoption Model) is a tool 

created by the Lawrence Berkeley National Laboratory (LBNL) in 2000. Its 

purpose is the simulation of buildings or multi-energy microgrids finding their 

optimal design and operation strategy (best combination of technology) to 

supply energetic needs.  

DER-CAM is written in GAMS but runs either in a Web-based environment or in 

the Windows platform. The solvers included in GAMS allow to use a Mixed 

Integer Linear Programming algorithm (MILP) to minimize the total annual cost, 

or the CO2 emissions, or both. 

DER-CAM has been typically used in the context of microgrids [124], [125] 

supporting the investment and planning of energy services such as space 

heating and cooling, hot water, and electricity for appliances. Additionally, it 

includes modules for thermal storage [126], demand response, ancillary grid 

services [127] and multi-node modeling approach [128]. All these features have 

made DER-CAM the chosen tool for a number of publications with different 

purposes: assessing the feasibility of distributed energy generation [129], [130];  

combining the distributed generation with energy conservation measures [131]; 

analyzing the performance of the electrical distribution circuit for microgrids 
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[132]; and even studying the integration of communication technologies and 

information models for the integration and interoperability of distributed energy 

generation systems [133]. 

A significant drawback of DER-CAM is the impossibility to conduct sensitivity 

analysis in an efficient manner. DER-CAM, in its current state, requires running 

scenarios time and again, modifying the user’s variable of interest. Moreover, 

once the results are obtained, the calculation of the sensitivity analysis indexes 

must be done separately. In other words, DER-CAM does not have any 

sensitivity analysis capability. 

 

3.2.2.2 How DER-CAM works? 

Last subsection mentioned that DER-CAM minimizes total annual cost and/or 

CO2 emissions. To do that, a reference scenario is required. The total annual 

cost and CO2 emissions of the reference scenario are calculated and then 

compared with the proposed scenario. In this thesis, the reference scenario 

(shown in Figure 3) uses electricity from the grid to meet the annual electric and 

cooling loads (through a vapor-compression chiller) and uses a natural gas 

boiler to meet the annual heating loads. 

Then, the four key inputs of the model in DER-CAM are: the end-use energy 

loads (electricity, heating, and cooling), based on hourly information and typical 

days per month (week, weekend and peak days); the tariff structures of 

electricity and other fuels; the characteristics of the pool of technologies 

available (installed capacities, investment and maintenance costs and 

efficiencies); and the total annual cost and CO2 emissions of the reference 

scenario.  

Notice that the first and second input (energy loads and prices) are based on 

the combinations proposed with the full factorial DoE, as per the methodology 

anticipated in this thesis. 

On the other hand, the outputs of the model, after simulating all the combinations 

proposed by the full factorial DoE, are: the corresponding total annual cost and 
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CO2 emissions, the optimal combination of technologies and their installed 

capacity (design of the system), the hourly schedule for each technology 

(operation strategy), and the hourly consumption per type of energy vector and 

fuel. 

Analyzing and extracting insights from the output of DER-CAM requires data 

analysis techniques that will be introduced in subsection 3.2.3.  

 

 Data analysis 

Data analysis [134] is the process of evaluating data to get useful insight and 

support decision-making. It implements analytical and statistical tools aiming to 

inspect, clean, transform and model. 

Given the number of scenarios explored in this work, the use of data analysis 

tools, such as clustering, is essential. It aims to understand the effects of the 

variables, as well as the coupling effects, over the feasibility of the system.  

 

3.2.3.1 Data clustering 

Clustering is a part of the exploratory data analysis, used for pattern recognition, 

image analysis, information retrieval, data compression, machine learning, etc. 

Clustering methods are a solution to segregate the data in relevant categories, 

based on a concept of similarity or proximity among them [135]. Several studies 

of the energy fields have used them, ranging from social studies [136] to the 

assessment of renewable energy [137], [138] and analysis of energy loads [135]. 

For example, Grigoras et al. [137] uses k-Means clustering algorithm for data 

mining on renewable energy generation in Romania, based on the analysis of 

different variables such as installed capacity, level voltage, type of renewable 

technology and geographical location. The results are useful to take decision 

regarding retrofitting substations and upgrading or redesigning transmission and 

distribution lines. 

There are four types of clustering commonly used: centroid, density, distribution, 

and connectivity [139]. Table 6 indicates inputs and outputs, as well as the 
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characteristic methods for each type. The centroid clustering relies on iterating 

to find the coordinate for the centroid of each cluster and gathering the 

surrounding points. For this method, the analyst must decide the number of 

clusters in advance and the method could form forced clusters to comply with 

this number. In contrast, the density clustering identifies the areas with the 

higher concentration of points and the clusters are formed based on the distance 

between them. Setting up the desired is of key importance because it should be 

large enough to perceive the difference between clusters, and small enough to 

group the similar points. On the other hand, the distribution clustering works by 

proposing a density distribution for each cluster (the analyst must decide the 

number of clusters in advance). The process iterates until finding the 

distributions that best represent the data. A particularity of this method is that 

instead of determining that a point A belongs to cluster 1 (hard clustering), it 

quantifies the probability of point A belonging to cluster 1 or cluster 2 (soft 

clustering). Lastly, the connectivity clustering is characterized by the hierarchies 

represented with dendrograms. It uses a bottom-up approach where each point 

starts with its own cluster, but along the process similar points get merged. 

 
Inputs Output 

Characteristic 
method 

Centroid 
clustering 

No. of clusters 
 
Max no. of iterations 
 
Converging tolerance 

Clusters k-Means 

Density 
clustering 

Max distance between 
points 
 
Min points for cluster 

Clusters DBSCAN 

Distribution 
clustering 

No. of clusters 
 
Convergence setpoint 

Probability property of 
each clusters (μ,σ). 
 
Proportion of points mainly 
described by each cluster. 

Gaussian mixtures 

Connectivity 
clustering 

No. of clusters  
OR 
Distance threshold 
(maximum distance 
between clusters) 

Clusters 
Hierarchical 
method 

Table 6 Types of clustering: Inputs and outputs 
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Table 7 consolidates the characteristics of their corresponding methods [140]–

[142]. Each column relates to one feature, either positive or negative (indicated 

by a sign).  
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kMeans H No‡ No‡ No Yes▲ No Yes Low Yes Yes No 

DBSCAN H Yes Yes Yes No Yes Yes Low Yes Yes Yes 

Gaussian 
mixtures 

S No No Yes♦ Yes♦ No No Low Yes Yes Yes 

Ward 
hierarchical 

H No* No Yes* n.a. n.a. Yes High Yes n.f. Yes 

Table 7 Comparison of clustering types 
KEY general: non-applicable (n.a.); not found (n.f.) 
KEY for Type of clustering : Hard (H); Soft (S). 
* When the analyst provides the distance threshold alternatively to the number of clusters. 
♦ Analyzing the probabilities provided by the soft clustering. 
▲ It depends on the accuracy of the method to determine the number of clusters. 
‡ It is possible to solve this by implementing a method to estimate the optimal number of clusters. 

 

Among the four methods shown in Table 7, k-Means has some advantages over 

the others. It is well known for being easy to implement as an exploratory method 

in data analysis and data mining. It is computationally more efficient (low 

memory consumption [143]) than the Ward hierarchical method. It scales well in 
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large samples, compared to the Gaussian mixture method. And, contrary to 

DBSCAN, it avoids large differences in cluster density. Moreover, k-Means can 

identify clusters that are next to each other.  

One drawback that k-Means and other methods share is its stochastic nature. 

In the case of DBSCAN, the results depend on the starting point considered. For 

k-Means and Gaussian mixtures, they depend on the random proposal during 

the first iteration (place of centroids and characteristics of the clusters 

respectively). A practical countermeasure is to repeat the clustering several 

times and ensure that the solution does not change dramatically. To do that, it 

is helpful to use an inexpensive method in terms of computational resources. 

It is good to mention that some of the disadvantages of k-Means can be offset 

by using a pre-assessment method. The objective is to determine the optimal 

number of clusters and include measures to restrict the variance within clusters.  

The k-Means method is selected for the analysis proposed in this work. 

 

3.2.3.2 k-Means 

The algorithm k-means [135], [144], [145] is the most popular unsupervised 

clustering tool used in scientific and industrial applications [146]. It is a heuristic 

clustering analysis method from the field of machine learning and data mining 

[140]. Its function is to segregate m data observations, 𝑋 = (𝑥𝑖)𝑖∈[1,𝑚] =

(𝑥1, 𝑥2, … 𝑥𝑚) characterized by a set of 𝑝 parameters, in k clusters; where each 

𝑥𝑖  𝜖 𝑋  is a real vector of length 𝑝 :  ∀𝑖 ∈ [1,𝑚], 𝑥𝑖 = (𝑣𝑥𝑖,1, 𝑣𝑥𝑖,2, … 𝑣𝑥𝑖,𝑝) , 

corresponding to the number of parameters contained. K-Means algorithm aims 

to distribute these m observations into 𝐾 subsets 𝑆 = {𝑠𝑗}𝑗∈[1,𝐾] =
{𝑠1, 𝑠2, … 𝑠𝐾} , 

mainly characterized by their clusters centroids 𝜇𝑗. The set of centroids {μ} is 

iteratively determined following the objective of minimizing the global sum of 

distances between them and the corresponding observations of the all the 

subsets. In other words, the objective is to minimize the sum of square distance 

(SSD) between each observation 𝑥𝑖 and its corresponding 𝜇𝑗; these centroids 
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do not necessarily coincide with any observations, although they live in the same 

space 𝑋. 

min𝑆𝑆𝐷 = min ∑ ∑ ‖𝑥𝑖 − 𝜇𝑗‖
2

𝑥𝑖  ∈  𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑗

𝑘 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

𝑗=1

 
Eq.  1 

The distances ‖𝑥𝑖 − 𝜇𝑗‖ between the observation xi ∈ Sj, and the centroïd μj of 

subset Sj can be Euclidian, Manhattan or others. In our case, Euclidian distance 

has been used: 

d (xi, μj) = ‖xi − μj‖
2
= √∑(vxi,l − vμj,l)

2
p

l=1

 
Eq.  2 

 

The three key parameters required for k-Means are: 

1. The number of clusters desired 

2. The maximum number of iterations 

3. The tolerance to declare convergence between iterations, measured by 

either the relative decrease in the objective function or centroids moving 

less than the tolerance 

Choosing the desired number of subsets or clusters 𝑘 that are used to segregate 

the data is not trivial. There should be a balance between minimizing the cluster 

dispersion (making elements of a cluster alike) and maximizing inter-cluster 

dispersion (making clusters different enough from each other). For example, a 

larger k minimizes the cluster dispersion because it encourages having small 

clusters with more similar elements within them. However, a larger k could also 

cause that those small clusters have similar properties, that could allow to 

aggregate them in a single cluster. 

If k is based on the knowledge of the data behavior [147], there are different 

approaches to determine it. Some authors compare the variance within groups 

vs. the variance between the groups, making sure that the latter is larger [148]; 

other use the silhouette and the Calinski–Harabasz criteria [149]; others like 

Ramos [135] conclude that none of the possible methods get the best result for 
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all datasets. In section 3.2.3.3, we propose a methodology to determine the 

optimal number of clusters. 

 

3.2.3.3 Proposed methodology: ELECTRE 1S determining the number of clusters in 

k-Means 

In k-Means, the number of clusters k is the key parameter to determine. The 

higher k, the smaller and the denser the clusters are, increasing the similarity of 

the points that constitute each cluster. On another hand, each cluster must 

highlight a specific behavior so that inter-cluster dissimilarity and distance must 

be maximized. A good cluster formation is when clusters are very dense, but 

also very far from each other. Finally, it seems relevant to minimize the number 

of clusters in order to draw general rules and conclusions that are applicable to 

many situations. These three  targets are conflicting so that compromise must 

be found. To sort out these conflict targets, Multi Criteria Decision Making 

(MCDM) is used in this work to determine k. One of the most well-known families 

in MCDM is ELECTRE and its variations can be used in choice, ranking or 

sorting decision-making problems. The theoretical background of MCDM 

ELECTRE 1S is described in Annex III. 

In this work, each data point corresponds to one DER-CAM simulation, 

consolidating a vector of different outputs, called segregation parameters. These 

segregation parameters describe important design and operation results. They 

include the percentage of cost savings obtained with the CCHP-TS system, the 

production means for each energy carrier (i.e. if the electricity comes from the 

national grid or is produced in-house) and the energy flows within a CCHP-TS 

system (i.e. if the heat produced by the CHP is used to cover the heating load, 

or it is devoted producing cooling through the usage of Absorption chiller). 

Then, these data points are classified with k-means using different values of k 

(number of clusters). These different values of k give origin to several clustering 

alternatives that are discriminated pair by pair with MCDM ELECTRE 1S. Last, 

it is selected the clustering alternative (depending on the k value) that minimizes 
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the cluster dispersion and maximizes the inter-cluster dispersion. All these steps 

are followed and explained thoroughly in section 4.3. 

 

 

3.3 Phase II: Sensitivity analysis of the CCHP-TS feasibility 

 

 Modeling and optimization solutions adapted to SA implementation 

DER-CAM is appropriate for the energy system optimization in the Phase I due 

to its interface, making the implementation of the tests easier. However, as 

explained in subsection 3.2.2.1, it is not designed to conduct many simulations 

(on the order of thousands), which is required to perform a global sensitivity 

analysis study in Phase II.  

Therefore, a faster and adapted model has been designed in collaboration with 

the group developing DER-CAM in the Lawrence Berkeley National Laboratory. 

This new tool keeps the good representation of the systems given by DER-CAM, 

because it uses the same thermo-dynamical and economical logic (described in 

section 2.4.2). The difference is that it is coded in the Python programming 

language, using the PYOMO library and the CPLEX solver to optimize (see 

subsection 2.4.3 further detail). The main advantages of this Python-PYOMO-

CPLEX tool over DER-CAM is that it works without human-machine interface 

and aims to perform faster thousands of simulations. 

The main equations governing the model, are the objective function that 

minimizes the total annual cost (Eq.  3), and the equality constraints to cover the 

energy loads at each hourly timestep t (Eq.  4, Eq.  5, and Eq.  6). These are 

explained below, and the full model is given in Annex IV. 

𝐌𝐈𝐍 𝐀𝐧𝐧𝐮𝐚𝐥 𝐂𝐨𝐬𝐭

= 𝐆𝐫𝐢𝐝(𝐂𝐨𝐬𝐭) + 𝐂𝐇𝐏(𝐂𝐨𝐬𝐭) + 𝐁𝐨𝐢𝐥𝐞𝐫(𝐂𝐨𝐬𝐭) + 𝐀𝐛𝐬(𝐂𝐨𝐬𝐭)

+ 𝐕𝐂𝐜𝐡𝐢𝐥𝐥𝐞𝐫(𝐂𝐨𝐬𝐭) + 𝐂𝐒𝐭𝐠(𝐂𝐨𝐬𝐭) + 𝐇𝐒𝐭𝐠(𝐂𝐨𝐬𝐭) 

Eq.  3 
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The total annual cost (Eq.  3) is the sum of all cost related to importing electricity 

from the grid, producing energy with the CHP, using the boiler, absorption chiller 

(Abs), vapor-compression chiller (VCchiller), and cold and heat storage (CStg 

and HStg respectively). The costs also include the investment and maintenance 

cost of the technologies, considering their lifetime and the interest rate of the 

investment. 

When the objective function is minimizing the cost, it includes the investment 

and s -- it is not obvious... say it includes investment.... 

 

eGridt +∑ eCHPu,tu − eVCchillert = Et  Eq.  4 

The constraint to cover the electric demand each hour t (Eq.  4) sums the 

electricity imported from the grid (eGridt), the electricity produced by the CHP 

type u at the timestep t (∑ eCHPu,tu ) and subtracts the electricity used by the 

vapor-compression chiller (eVCchillert). All this is equal to the loads of electricity 

at the timestep t (Et). 

Hboilert + ∑ HCHPu,tu − Habst − hHStgInt + (φdischarge
HStg

) hHStgOutt =

Ht  

Eq.  5 

The constraint to cover the heating demand each hour t (Eq.  5) sums the heat 

produced by the boiler (Hboilert), the heat produced by the CHP type u at the 

timestep t (∑ HCHPu,tu ), subtracts the heat used by the absorption chiller (Habst), 

subtracts also the heat stored in the heat storage (hHStgInt) and sums the heat 

taken from the heat storage at the time t (hHStgOutt). This latter is multiplied by 

a factor φdischarge
HStg

 to consider the losses of discharge (due to heat transfer with 

pipes, equipment, etc.). All the before mentioned equal the loads of heating at 

the timestep t (Ht). 

(
COPAbs

COPVCchiller
)Habst + eVCchillert − eCStgInt +

(φdischarge
CStg

) eCStgOutt =
Ct

COPVCchiller
  

Eq.  6 
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The constraint to cover the cooling demand each hour t (Eq.  6) is expressed in 

terms of the electricity required by a vapor-compression chiller to produce the 

cold. The objective is to have a standard unit measuring the cold produced by 

technologies that use different energy drivers. Then, Eq.  6 is the sum of the cold 

produced by the absorption chiller (COPAbs ∗ Habst) divided by the COP of the 

vapor-compression chiller (COPVCchiller) to have the term expressed in electricity 

required to cover the cooling; plus the electricity used by the vapor-compression 

chiller (eVCchillert); minus the electricity required to produce the cold stored in 

the cold storage at time t (eCStgInt ); plus the avoided cooling consumption 

(transformed into electricity) by taking cold out of the cold storage at time t 

( eCStgOutt ), multiplied by the factor φdischarge
CStg

 to consider the losses of 

discharge. All the above mentioned equal the loads of cooling at the timestep t  

divided by the COP of the vapor-compression chiller to express it in electricity 

required to cover the cooling (
Ct

COPVCchiller
). Note that the cold storage stores 

thermal energy, but its equations are expressed in terms of the electricity 

required by a vapor-compression chiller to produce the cold. 

On the other hand, we tested the good correspondence between the Python-

PYOMO-CPLEX tool and DER-CAM, by running 30 different scenarios in both 

and comparing the results given by each of the tool.  

The input data corresponding to the scenarios was the same for Python-

PYOMO-CPLEX tool and DER-CAM. However, an important setting for the 

branch and bound method (B&B) in CPLEX, explained in section 2.4.3, is the 

relative MIP gap tolerance. This is the relative tolerance on the gap between the 

best integer objective and the objective of the best node remaining (Eq. 7) [103]. 

The smaller this number, the more accurate the solution will be, but the time to 

obtain the solution  is larger. In the case of this code, the relative MIP gap 

tolerance = 0.02, and the average solution time is 1 hour per simulation. 

relative MIP gap tolerance ≤
|Best integer solution−Best B&B solution|

(1𝑒10−10)|Best integer solution|
  Eq.  7 

As an illustration of the test results, the Figure 19 shows that for all the cases, 

the difference between both tools regarding the percentage of savings is less 
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than 1%, showing the good correspondence between DER-CAM and the 

Python-PYOMO-CPLEX tool. 

 

Figure 19 Difference of percentage of savings reported by DER-CAM and the 
Python-PYOMO-CPLEX tool for 30 scenarios 

 

Other advantages of the Python-PYOMO-CPLEX tool in comparison with DER-

CAM, is: 1) PYOMO allows using an object-oriented approach, which gives 

scalability to the model; 2) The model includes only the modules of interest 

(CCHP-TS), therefore, it is smaller and more controllable (DER-CAM has 

several default settings that are difficult to control). 3) All the parameters of 

interest can be tracked, and simulation can be performed  in a more agile way. 

 

 Sensitivity analysis – theoretical background 

A sensitivity analysis (SA) assesses the uncertainty of a dependent function 

given the change of its independent parameters [150]. It is commonly used to 

identify the most influential variables and quantify their effects. In the field of 

building energy analysis [108], it is useful for building design [113]–[115], 

calibration of energy models [151], building retrofit [152], building stock [153], 

impact of climate change on buildings [154], etc. As introduced in section 2.5, 

SA methods can be local or global. 

Local SA uses the first and second order partial derivatives to find the change 

of the response function Y=f(x1,…,xk), while varying xi Ɐ i=1,..,k, around one 

point of the domain Ω in the k-dimensional space. 

In a two-dimension space this gives: 
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𝑆𝑥1 =
𝑑𝑌

𝑑𝑥1
|
𝑥1
∗𝑥2

∗

 
Change of Y given the change in x1, at the 

point (x1*, x2*) Eq.  8 

𝑆𝑥2 =
𝑑𝑌

𝑑𝑥2
|
𝑥1
∗𝑥2

∗

 
Change of Y given the change in x2, at the 

point (x1*, x2*) 
Eq.  9 

𝑆𝑥1,2 =
𝑑𝑌

𝑑𝑥1 𝑑𝑥2
|
𝑥1
∗𝑥2

∗

 
Change of Y given the interaction 

between x1 and x2, at the point (x1*, x2*) 
Eq.  10 

 

On the other hand, global sensitivity analysis (GSA) methods quantify the 

influence of the model’s parameters xi over Y across its whole domain of 

uncertainty Ω.  

 

 Global sensitivity analysis methods 

Across the literature, Morris and Sobol are the most popular GSA methods, even 

used as benchmark [104], [110]–[114]. While VARS [110], [111], [155] is a novel 

approach, based on a variogram analysis, that characterizes the variation of the 

model at different points and scales. 

 

3.3.3.1 Morris – Derivative based approach 

Morris [108], [111], [119], [156], [157] is a screening-based or derivative-based 

approach. Its objective is determining which parameters have (a) negligible 

effects, (b) linear and additive, or (c) nonlinear effects or interactions with other 

factors. Note that Morris captures interactions interaction effects, but it cannot 

separate them  from nonlinearities [105]. 

This method is used when there is no interest in knowing quantitatively the 

sensitivity of each variable but instead, it is a qualitative way to identify the 

influential variables at a low simulation cost [119], [120], [158]. It is also good to 

mention that Morris becomes a non-explorative method at high dimensional 

space due to the curse of dimensionality. In other words, when the number of 
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parameters increase, the size of the hyperspace explored converges to zero and 

the sensitivity analysis becomes less relevant [105]. 

The Morris method aggregates the local sensitivity (partial derivatives), creating 

a global distribution of derivatives for each independent parameter  𝐹𝑖 (
𝑑𝑌

𝑑𝑥𝑖
). The 

distribution 𝐹𝑖~N(𝜇𝑖, 𝜎𝑖) is a normal distribution of the elementary effects of the 

variable i (Eq.  11, Eq.  12, and Eq.  14). While 𝐺𝑖~N(𝜇𝑖
∗, 𝜎𝑖)  is a normal 

distribution of the absolute values of the elementary effects (Eq.  11, Eq.  13, 

and Eq.  14). Each elementary effect EEi corresponds to the change of Y, given 

the variation of the variable xi Ɐ i=1,…k at certain point (partial derivative). The 

axis of each variable is divided into p different levels. And Δ corresponds to the 

sampling step in the scale [0,1], independently of the distribution of each input. 

The p is an even number, usually suggested as p=4 [119], [157]. And a 

convenient choice of Δ, to guarantee an equal probability in the sampling level, 

is Δ=p/[2(p-1)] [119]. Finally, r is the number of independent random samples of 

EEi.  

 

𝐸𝐸𝑖 =
[𝑌(𝑥1, 𝑥2, … , 𝑥𝑖 + ∆,… , 𝑥𝑘) − 𝑌(𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑘)]

∆
 

Eq.  11 

𝜇𝑖 =
1

𝑟
∑ 𝐸𝐸𝑖

𝑟

𝑚=1

 

 

Eq.  12 

𝜇𝑖
∗ =

1

𝑟
∑|𝐸𝐸𝑖|

𝑟

𝑚=1

 

 

Eq.  13 

𝜎𝑖
2 =

1

𝑟 − 1
∑(𝐸𝐸𝑖 − 𝜇𝑖)

2

𝑟

𝑚=1

 Eq.  14 

To obtain the r random samples within the uncertainty domain, Morris [156] 

proposes the design of r trajectories, establishing for each a starting point and 

allowing the k independent variables vary one by one, in steps of Δ. The 



 

 

59 

 

 

establishment of the starting point is random, as well as the order to vary the 

parameters and their direction. In 2007, Campolongo proposed a sampling 

strategy that maximizes the dispersion of the r trajectories within the domain Ω 

[119], [157]. But in 2014, Sohier et al. [158], [159] demonstrated that using the 

Latin Hypercube Sampling (LHS) to determine the starting point of the route 

gives a uniform cover of the domain. Moreover, LHS is the most used method 

due to its stratification properties [108]. 

The SA indexes obtained out of the Morris method correspond to Eq.  12, Eq.  

13, and Eq.  14. They are: 

1. μ : Mean of the distribution of the elementary effects EEi ~ Fi. 

2. σ : Standard deviation of the distribution of elementary effects EEi ~ Fi. 

3. μ* : Mean of the distribution of the absolute values of the elementary 

effects | EEi | ~ Gi.  

For the interpretation of the indexes, the reader should know that Morris in 1991 

[119], [156] proposed μ to assess the overall influence of a variable on the 

output, while σ estimates the impact of non-linearity or the interaction effects. 

Therefore, a large σ means that the influence of the variable strongly depends 

on the choice of the sample (non-linear effect) and/or the values of the other 

variables (interaction effects). On the other hand, similar μ and σ means that 

there are small non-linear and/or interaction behavior. Finally, a small σ means 

that the variable has an approximately linear behavior [119]. Morris suggests 

representing results in a plane (μ,σ). And Garcia Sanchez et al. [113] added a 

line μ=σ to this plane, to recognize easily the factors that are linear and 

monotonic from the ones that are non-monotonic, non-linear or have interaction 

effects. Morris also recommends analyzing μ and σ together, to avoid error type 

II during the interpretation process. The error type II in statistics, specifically in 

hypothesis testing, refers to the false positive. In this case, it is when the method 

fails to identify an influent factor [157]. This happens with non-monotonic 

variables that have positive and negative elementary effects which cancel each 

other when accounted in μ. As an alternative solution, Campolongo et al. [119], 

[157] proposed in 2007 using μ*, that prevents this type of error. Therefore, when 
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μ* has different magnitude than μ, it means that the variable has a non-

monotonic effect. Therefore, μ* becomes a good estimator of the total sensitivity 

index, measuring the overall effect of a variable on the output (including the 

interactions effects) [119]. 

 

3.3.3.2 Sobol – Variance based approach 

Sobol [108], [111], [119] is a variance-based approach. It recognizes that the 

response function Y can be described by a probability density function F(Y) and 

its associated variance V(Y). Then, the challenge is to separate the effect of 

each parameter xi. 

Sobol proposes decomposing the variance V(Y) of the function F(Y). This is 

called the high-dimensional model representation decomposition, ANOVA-

HDMR (Eq.  15). 

𝑉(𝑌) =∑𝑉𝑖
𝑖

+∑∑𝑉𝑖𝑗
𝑗>𝑖𝑖

+⋯+ 𝑉12…𝑘 
Eq.  15 

Where Vi is the variance of the function only due to the change in variable i (Eq.  

16). It is also called first-order variance or main effect contribution of i. 

𝑉𝑖 = 𝑉[𝐸(𝑌|𝑋𝑖)] 
Eq.  16 

Vij is the variance of the function due to the interaction between variable i and j 

(Eq.  17). It is also called second-order variance or interaction effects between i 

and j. Variables i and j interact, for example, when a value of i is exclusively 

associated to another of j. The interaction exists when the first order variance Vi 

and Vj cannot fully explain the effect of Xi and Xj over Y. 

𝑉𝑖𝑗 = 𝑉[𝐸(𝑌|𝑋𝑖, 𝑋𝑗)] − 𝑉[𝐸(𝑌|𝑋𝑖)] − 𝑉[𝐸(𝑌|𝑋𝑗)] 
Eq.  17 

Similarly, there is third, fourth, and n-order variance. 

To calculate the sensitivity indices corresponding to each term of the ANOVA-

HDMR decomposition (Eq.  18), divide both sides of Eq.  15 by V(Y). 
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∑𝑆𝑖
𝑖

+∑∑𝑆𝑖𝑗
𝑗>𝑖𝑖

+⋯+ 𝑆12…𝑘 = 1 
Eq.  18 

Then, for example the sensitivity analysis index of the main effect contribution 

for variable i is (Eq.  19), 

𝑆𝑖 =
𝑉𝑖
𝑉(𝑌)

=
𝑉[𝐸(𝑌|𝑋𝑖)]

𝑉(𝑌)
 

Eq.  19 

While the total effect index of the variable i accounts for the total contribution to 

the output variation due to factor Xi, therefore, it counts the first-order effect plus 

all higher-order effects due to interactions (Eq.  20). 

𝑆𝑇𝑖 = 𝑆𝑖 +∑𝑆𝑖𝑗
𝑗>𝑖

+∑∑𝑆𝑖𝑗𝑙
𝑙>𝑗𝑗>𝑖

+⋯+ 𝑆𝑖2…𝑘 Eq.  20 

For a given factor Xi, a significant difference between 𝑆𝑇𝑖 and 𝑆𝑖 indicates an 

important interaction involving that factor. In contrast, 𝑆𝑖 = 𝑆𝑇𝑖 means that Xi is 

an additive factor within the model [105]. On the other hand, the condition 𝑆𝑇𝑖 =

0 is necessary and enough for Xi to be a noninfluential factor. It means that the 

factor can be fixed anywhere, without affecting the output (Factor Fixing). For 

practical terms, if 𝑆𝑇𝑖 ≈ 0 , the analyst can fix Xi anywhere without affecting the 

output variance 𝑉(𝑌) significantly and the approximation error made when this 

model simplification is carried out depends on the value 𝑆𝑇𝑖. 

For this method, it is not rare to find negative value in the SA indexes. It is part 

of the numerical error due to estimations within the method. They are generally 

found in SA indexes close to zero (unimportant factors), and increasing the 

sample reduces the likelihood of these events [119]. 

According to Saltelli [119], some advantages of the variance-based methods 

are: 1) the sensitivity measure is model-free, 2) it is useful for parameters under 

uncertainty because it captures the influence of their full range of variation, and 

3) it measures the interaction effects among parameters. Moreover, by 

definition, Sobol decomposes the output variance into terms attributed to 

different combinations of parameters. In counterpart, the disadvantage is their 

computational cost. On the other hand, the variance-based approach is useful 
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for: 1) Factor prioritization: identifying the most relevant parameter (or group of 

them) into the variance; 2) Factor fixing: identifying the non-relevant parameters; 

3) Variance Cutting: guaranteeing that the output variance or uncertainty V(Y) is 

below a given tolerance. 

 

Numerical sampling procedure based on Monte-Carlo 

The variance-based methods usually require special sampling methods [49]. 

In 2002, Saltelli [160] proposed a numerical procedure to calculate the sensitivity 

analysis indexes. The steps are the following: 

1. Generate two matrices of data (A and B). Each with N random samples 

that contain the k independent variables. The order of magnitude of N is 

typically a few hundreds to a few thousands. 
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Eq.  22 

2. Define k matrices corresponding to each independent variable. Where Ci 

contains the columns of B, except the ith column, that comes from A. 
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Eq.  23 

3. Compute the model output for all the input values in the sample matrices 

A, B and Ci, obtaining three vectors of model outputs of dimension Nx1. 

𝑦𝐴 = 𝑓(𝐴) 
Eq.  24 

𝑦𝐵 = 𝑓(𝐵) 

 
Eq.  25 

𝑦𝐶𝑖 = 𝑓(𝐶𝑖) 

 
Eq.  26 

4. Calculate the first-order sensitivity index 

𝑆𝑖 =
𝑉[𝐸(𝑌|𝑋𝑖)]

𝑉(𝑌)
=
𝑦𝐴 ∙ 𝑦𝐶𝑖 − 𝑓0

2

𝑦𝐴 ∙ 𝑦𝐴 − 𝑓0
2 =

1

𝑁
∑ 𝑦𝐴

(𝑗)
𝑦𝐶𝑖
(𝑗)𝑁

𝑗=1 − 𝑓0
2

1

𝑁
∑ (𝑦𝐴

(𝑗)
)
2

𝑁
𝑗=1 − 𝑓0

2
 

Eq.  27 

where… 

𝑓0
2 = (

1

𝑁
∑𝑦𝐴

(𝑗)

𝑁

𝑗=1

)

2

 
Eq.  28 

5. Calculate the total-effect indices 

𝑆𝑇𝑖 = 1 −
𝑉[𝐸(𝑌|𝑋~𝑖)]

𝑉(𝑌)
= 1 −

𝑦𝐵 ∙ 𝑦𝐶𝑖 − 𝑓0
2

𝑦𝐴 ∙ 𝑦𝐴 − 𝑓0
2

= 1 −

1

𝑁
∑ 𝑦𝐵

(𝑗)
𝑦𝐶𝑖
(𝑗)𝑁

𝑗=1 − 𝑓0
2

1

𝑁
∑ (𝑦𝐴

(𝑗)
)
2

𝑁
𝑗=1 − 𝑓0

2
 

Eq.  29 

The computational cost if this method is N(k+2). 



 

 

64 

 

 

3.3.3.3 VARS – Variogram based approach 

VARS  [110], [111] stands for Variogram Analysis of Response Surface. The 

method considers the model output Y=f(Xi) Ɐ i=1,…,k. The k independent 

variables can vary within a continuous or discrete range. The method 

characterizes the spatial structure of Y and its variability. 

Studying the shape of Y give information about its sensitivity, such as: 1) the 

degree on non-smooth or roughness at different points and scales (zoom-in or 

zoom-out); 2) Multimodality, that reflect the spatial order of the structure 

because the response values might not be randomly distributed. 

VARS is built considering the distance between pairs of observations across the 

response surface Y (Figure 20) and characterizing it based on directional 

variograms and covariograms. 

 

Figure 20 VARS is based on pairs of points at the response surface. Adapted 
from Razavi, 2016 [161] 

 

A variogram 𝛾(ℎ) measures the variance of change in the response surface Y 

between two points (A and B) separated by a distance h=xA-xB  (Eq.  30). The 

measure is taken at different distances h={h1,…,hj ,…,hn} for each independent 

variable Xi. 



 

 

65 

 

 

𝛾(ℎ) =
1

2
𝑉[𝑌(𝑋1 + ℎ) − 𝑌(𝑋1)] Eq.  30 

Directional variograms 𝛾(ℎ𝑖) of variable Xi, are one-dimensional functions used 

to assess the sensitivity of the response surface Y in the direction of variable Xi 

when varying the distance ℎ (Figure 21). 

 

Figure 21 Image taken from Razavi, 2016 [111]. At left, the profile of three 
different response surfaces f1(x), f2(x), and f3(x). At right, their respective 

directional variograms.  
 

Figure 21 (left) shows three different response surfaces Y, called f1(x), f2(x) and 

f3(x). The directional variograms (right), show the change of the response 

surfaces with respect to x, across the different values of ℎ𝑖 (scale). For h<1, f3(x) 

is the most sensitive (blue curve). When h=1, the three response surfaces are 

equally sensitive. And for h>1, f1(x) is the most sensitive (red curve). 

VARS uses a STAR-based sampling strategy [110], that allow sampling all 

across the full range of the k independent variables. The steps of the strategy 

are described below, and in parallel, the Figure 22 shows the example for k = 2 

variables: 

1. Scale all variables on the range zero to one. In Figure 22, there are k = 2 

independent variables (x1 and x2). 

2. Select the levels h={h1,…,hj ,…,hn} and the resolution Δh = hj - hj-1. Note 

that dim(h) expresses the number of levels. For Figure 22, Δh = 0.1 and 

dim(h)=9 for each variable. 

3. Generate r STAR-center (using for example, LHS). The location of these 

centers are 𝑥𝑗
∗ = {𝑥𝑗,1

∗ , … , 𝑥𝑗,𝑖
∗ , … , 𝑥𝑗,𝑘

∗ } where j = 1,…,r. In Figure 22, there 

are r = 2 STAR-centers and they are marked with diamonds.  
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4. Generate cross sections for each STAR-center with equally spaced points 

Δh, along each k input (Figure 22). In Figure 22, each r STAR-center 

generate dim(h)-1 points, marked with circles. 

5. Extract pairs and generate directional variograms, such as the ones in 

Figure 21. 

 

Figure 22 STAR-based sampling with k=2 independent variables and r=2 
STAR-centers [111] 

 

 

 Sampling methods 

 

The previous subsections explained that Latin Hypercube Sampling (LHS) are 

the sampling methods used by Morris and VARS, while Monte Carlo is used by 

Sobol. This section intends to give a theoretical background of them.  

 

3.3.4.1 Latin Hypercube Sampling 

Latin Hypercube (LHS) designs ensures that the sample points are uniformly 

scattered across the input space with minimal unsampled regions. It is well 

known for their flexibility to provide data for modeling techniques based on very 

different statistical assumptions, and to cover small or large design spaces (no 

constraints in terms of data density and location) [105], [162]. The objective 

functions are (1) maximizing the minimum interpoint distance among all possible 

pairs of sample points, and (2) minimizing the correlations (absolute value) 
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between all pairs of columns of the sample matrix. Figure 23 is an image taken 

from Sheikholeslami, 2017 [163] contrasting what a good LHS is. 

 
                      (a)                                   (b)                                  (c) 

Figure 23 (a) Optimal LHS with low correlated factors and optimal space-filling 
(distribution of samples), (b) Sampling with good space-filling only, (c) LHS with 

very poor space-filling and highly correlated factors 

Image taken from Sheikholeslami, 2017 [163]  
 

The steps followed to generate r* sampling points with the LHS, are: 

i. Divide the test range of each variable in r* intervals. Note that the number 

of intervals must be equal for all the factors. 

ii. Generate r* samples randomly, making sure that each column and row are 

selected just once.  

One of its drawbacks of LHS is that the user needs to specify the sample size 

(r) prior to the associated sampling-based analysis, then, if the sample needs to 

be enlarged, the user needs to discard the previous sample, or generate a new 

sample by LHS, knowing that the union of the two samples will not be Latin 

Hypercube. For such cases, the alternative is to implement a Progressive Latin 

Hypercube (PLHS). 

 

Progressive Latin Hypercube Sampling 

The Progressive Latin Hypercube (PLHS) is a technique to extend an original 

LHS, in such a way that the result is still an LHS achieving the maximum 

stratification in any one-dimensional projection. The Figure 24, taken from 

Sheikholeslami, 2017 [163], describes the steps of PLHS. 
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Figure 24 Doubling procedure of PLHS with k=2 variables (a) Initial LHS with 
r=3 samples, (b) Dividing initial sample domain into 6 intervals with equal 

marginal probability 
Image taken from Sheikholeslami, 2017 [163]  
 

 

3.3.4.2 Monte Carlo sampling 

Monte Carlo [164], [165] is a computational algorithm based on random 

sampling and statistical analysis. It performs a numerical experiment taking N 

random samples from a system and obtains the statistical properties that 

describe them.  

Some characteristics and conditions of the Monte Carlo algorithm, are: 

1. The systems analyzed should be described by probability density 

functions (PDF), 

2. Monte Carlo is suitable for continuous or discrete probability distribution, 

3. The random samples are chosen by using a generator for random 

numbers. This picks numbers uniformly distributed on a unit interval that 

could pass tests for randomness. 

4. The statistical error (variance) is function of the number of trials. And 

there are variance reduction techniques. 

Monte Carlos is useful when it is not possible to use any other algorithm. For 

example, when the system has unknown or uncertain parameters, many 

coupled degrees of freedom, or complicated boundary conditions. 
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 Global sensitivity analysis vs. full factorial DoE 

As explained at the beginning of chapter 3, although OAT is very popular to 

assess the feasibility of combined thermal and power energy systems, it is a 

local method.  

In contrast, full factorial DoE explores the global range of variables at lower 

simulation cost than the GSA methods. It is a simple method that gives a good 

understanding of the impact and interaction effects of parameters. Then, full 

factorial DoE is selected for first phase of the thesis due to its efficiency and 

acceptable accuracy. 

For the second phase of the thesis the objective is to rank the important 

parameters and accurately measure their interaction effects. Then, it is 

proposed to conduct an in-depth sensitivity analysis using three GSA methods: 

Morris, Sobol, and VARS. The first two are well known methods typically used 

as reference across the literature, and the third is a novel approach that 

characterizes the variation of the model at different points and scales. 

The main advantages of GSA methods over simply using a full factorial DoE, 

are explain below and shown in Table 8: 

• GSA are robust model-free methods, also called sample-based [119], 

[166]–[168]. While full factorial DoE, in this work, has the characteristics 

of a model-based method. 

Model-free methods are not related to any local reference at the model. 

They are recommended when the analyst does not have prior knowledge 

of the process model (relevant parameters, ranges, structure of the 

model, etc.) [169]. Therefore, typically they use space-filling designs, that 

intend to distribute uniformly the samples in the design space [170]. In 

contrast, a model-based method is tailored according to the process to 

maximize the information obtained with the samples (starting point, 

ranges to analyses, sampling according to the distribution of the 

parameters, etc.) [169]. 

Full-factorial and fractional factorial DoE are among the techniques that 

require proper space-filling [171]. Therefore, it is natural to conclude that 
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the are model-free methods. However, to implement them for this work, 

it is a precondition to define the discrete levels of analysis for each 

continuous variable. Then, the method becomes a model-based one. 

• Full factorial DoE gives a sense of the individual and interaction effects 

of parameters, although the accuracy depends on its resolution and 

dispersion, in other words, the number and location of the levels studied 

in full factorial DoE. Contrary, GSA methods ensure a random and 

disperse sampling across the range (using sampling techniques such as 

LHC, Monte Carlo, etc.). Moreover, methods like Sobol are very robust in 

terms of resolution, due to the number of samples required. 

• Full factorial DoE is mainly for screening purposes (determining the 

influential variables), but GSA methods such as Sobol are useful also for 

ranking and quantifying the relative sensitivity of the parameters. 

In terms of simulations cost, GSA approaches such as Morris could be similar 

to  the full factorial DoE [105]. However, that is not the case for Sobol. 
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OAT L Low M   S 

Full factorial DoE G Mid M * * S, R 

Morris G Mid S *  S, R 

Sobol G High S *  S, R, Q 

VARS G Mid S * * S, R 

Table 8 Comparison of GSA methods against OAT, and full factorial DoE 
Key for Scale of the method : Local (L); Global (G). 
KEY for Type of method : Model-based (M); Sampling-based (S). 
KEY for Application : Screening (S); Ranking (R); Quantifying relative sensitivity (Q). 
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3.4 Case study: A university campus 

To illustrate the implementation of the proposed methodology, the hourly load 

profiles of a University Campus are used as it corresponds to an example of a 

large set of buildings that reflect different use patterns. 

This University Campus is the IST – Alameda Campus in Lisbon, Portugal. It is 

a typical university comprising 26 buildings including classrooms, labs, multiple 

cafeterias with cooking installations, sports facilities and a day nursery. The 

campus is used during weekdays by students, faculty members, researchers, 

and general staff. The activity is reduced during weekends and holidays (August, 

Christmas and New Year). The IST Alameda Campus has four main buildings 

that contribute to its energy demand. By 2015, the aggregated annual loads of 

them were 2.4 GWh/y of electricity [E], 0.63 GWh/y of heating [H], and 0.98 

GWh/y of cooling [C]. This data comes from the energy analysis performed with 

EnergyPlus calibrated with real data as part of the Project Campus Sustentável 

at the IST – Alameda Campus [76].  

The load duration curves and the normalized campus hourly patterns [dn] of 

each n carrier (E: Electricity, H: Heating, C: Cooling) are represented in Figure 

25. From the normalized campus hourly patterns (Figure 25, right), it is possible 

to observe the behavior of energy loads across the 8760 hours of the year and 

notice that they decay for the three energy carriers every weekend and during 

the first two weeks of August. During the weekdays, electricity load reaches its 

maximum during January-February, the minimum during the first two weeks of 

August and in general, the rest of the year is 60% of the maximum values; the 

heating has the highest values from December to February and cooling load 

spans from March to November, with the maximum from June to the end of 

August.  
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Figure 25 Load duration curves (left) and the normalized hourly pattern of the 
Electricity, Heating and Cooling loads for the IST Alameda Campus, expressed 

in hourly basis 
 

The sections 4.1, 5.2, 5.3, and 5.4 of this thesis introduce the simulation of 

scenarios with different size of the annual energy load for each n carrier (E: 

Electricity, H: Heating, C: Cooling). Afterwards, a homothetic transformation is 

used to adapt these annual loads to the hourly load patterns dn(𝑡) of the IST – 

Alameda Campus. The Eq.  31 allows obtaining the hourly energy load Ln(t) 

corresponding to each carrier n. Note that the denominator 1x106 transforms the 

loads from GWh to kWh. 
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Ln(t) = (

n

1000000
)

dn(t)

∑ dn(t)
8760
t=1

 Eq.  31 

 

The hourly energy load Ln(t)  are the ones introduced at the modeling and 

optimization tools, like DER-CAM and the Python-PYOMO-CPLEX tool. As 

mentioned in subsection 2.6, the hourly analysis of energy loads aims to provide 

more precision to the feasibility analysis. 
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4 PHASE I: Exploratory study of the CCHP-TS feasibility 

This chapter corresponds to the first phase of the thesis. It is an exploratory 

analysis to examine the techno-economic relevance of the CCHP-TS model, as 

well as the impact of load size and energy prices.  

In this phase, the energy prices are consolidated into the spark spread rate (SS) 

and the CCHP-TS model used is the one embedded in DER-CAM. The analysis 

is based on the percentage of cost savings obtained by using a Trigeneration 

systems with thermal storage, instead of the reference scenario (Figure 26). 

 

Figure 26 Comparison of a trigeneration-thermal storage system vs. a 
conventional system, while meeting the annual loads Ln Ɐ n={E: electricity, 

H:heating, C:cooling} 
NOTE: Energy Supply (dotted lines) and Energy Loads (solid lines) 

 

The scheme in Figure 27 details the methodology of this phase. To start, a full 

factorial DoE aims to generate different scenarios of CCHP-TS based on 

different levels of electricity, heating, and cooling loads and spark spread rates. 

After that, the optimal system configuration for each scenario is obtained with 

DER-CAM. Once the results of all the simulations are obtained, it is essential to 

identify the functioning variables and segregate data implementing clustering. 

For the latter, the methodology presented in the Chapter 3 is used. Finally, the 

influence of the variables under different conditions is analyzed. 
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Figure 27 Refined methodology of Phase I 
 

 

4.1 Sampling of scenarios from the case study 

The analysis comes in two levels: Firstly, four Spark Spread rates (SS) are 

analyzed. Secondly, within each SS, to evaluate the impact of Electricity, 

Heating and Cooling loads, a set of scenarios are defined by varying the size of 

the three. 

The levels of the annual energy load of each n carrier (where E: Electricity, H: 

Heating, C: Cooling) are selected in a logarithmical way, to test different orders 

of magnitude in terms of load size. The levels (in GWh/y) are 𝐸 =

{0.1, 1,10,100,500,1000}  , 𝐻 = {0.1, 1,10,100,400}  and 𝐶 = {0.1, 1,10,100,500} . 

Some of these levels are arbitrarily big with the sole objective of widely explore 

the possible spectrum of annual energy loads, introduced in section 2.2.2. 

Regarding the Spark Spread rate, the four levels selected are SS = {3.0 , 3.9 , 

5.4 , 6.6}. These rates correspond to spark spread rates in different regions 

around the world (two in Europe, Africa, and US respectively) [86], [172], 

intending to emulate different conditions of electricity and natural gas prices. In 

this work, the electricity and natural gas tariffs are constant, independently of 

the day and time. 

Then, a full factorial design of experiments is followed, testing the 600 scenarios 

resulting from the combination of 6 levels for electricity, 5 levels of heating, 5 

levels of cooling and 4 levels of SS rate. Figure 28 shows the cube sketching all 

the possible combinations for the SS=3.0 and takes one as example. 
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Figure 28 Example of one scenario out of the 600 possible, as part of the full 
factorial design of experiments. 

 

These hourly energy loads are used as inputs of the optimization process done 

with DER-CAM and the scenario of using CCHP-TS is compared against the 

reference scenario (Figure 3). 

 

 

4.2 Energy system optimization: DER-CAM 

DER-CAM is configured to minimize the annual total cost, and it calculates the 

percentage of cost savings that are reached by using the CCHP-TS system 

compared to the reference scenario. The three key inputs are configured as 

follows: 

- End-use energy loads Ln(t) of electricity, heating, and cooling. They result 

from the E, H and C mentioned in section 3.4 and the use of Eq.  31. The 

loads Ln(t) are in hourly basis and expressed as typical days per month 

(week, weekend and peak days); 

- The tariff structures of electricity and fuel, listed in Table 9;  

- The characteristics of the pool of technologies available to be chosen by 

DER-CAM. These are the installed capacities, efficiencies, emissions, 

variable and fixed cost of the technologies: absorption and vapor-
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compression chiller, boiler, thermal storage and CHP generators–ICE 

(Internal Combustion Engines) ranging from 75kW to 5MW installed 

capacity, CT (Combustion Turbines) and CTDB (Combustion Turbine Duct 

Burner) ranging from 15MW to 25MW installed capacity. All this 

information is available on the DER-CAM default database. They are listed 

in Table 10 to Table 14. 

Table 9 shows the energy prices corresponding to each spark spread level. They 

follow a fixed and constant tariff structure. 

 SS1 = 3.0 SS2 = 3.9 SS3 = 5.4 SS4 = 6.6 

Price of electricity [€ / kWh] 0.1223 0.1580 0.1030 0.1623 

Price of natural gas [€ / kWh] 0.0404 0.0400 0.0190 0.0246 

Table 9 Energy prices used in DERCAM 
 

Table 10 shows the characteristics of the technologies used for the reference 

scenario. It is considered that the equipment belonging to the reference scenario 

is already installed, therefore, it does not show any installation cost. 

 Efficiency [-] Lifetime [y] 

Vapor-compression chiller COP = 0.1223 10 

Boiler  η = 0.0404 10 

Table 10 Technological settings for the reference scenario in DERCAM 
 

Table 11, Table 12, and Table 13 show the characteristics of the technologies 

used for the CCHP-TS scenario. 

Type Installed 
capacity 

Fixed capital 
cost [k€] 

O&M variable 
cost [€ / kWh] 

Electric 
efficiency [-] 

Heat to 
Electricity rate [-] 

Lifetime 

[years] 

CT25 25 MW  31,191.78  0.00720 0.35970 1.05300 20 

CTDB25 25 MW  31,831.72  0.00740 0.35970 1.05300 20 

CT15 15 MW  22,783.32  0.00730 0.33250 1.20440 20 

CTDB15 15 MW  23,272.36  0.00755 0.33250 1.20440 20 

ICE5 5 MW  7,021.58  0.00875 0.41600 0.79740 20 

ICE2.5 2.5 MW  5,005.66  0.01625 0.40400 0.78570 20 

ICE1 1 MW  2,340.00  0.01950 0.36800 1.01940 20 

ICE0.75 750 kW  2,047.72  0.02150 0.34500 1.16050 20 

ICE0.25 250 kW  675.97  0.02500 0.27000 1.82970 15 

ICE0.075 75 kW  225.80  0.02550 0.26000 2.00640 15 

Table 11 Technological settings for the CCHP-TS scenario (CHP prime 
movers) 
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It is good to mention that in this work the CHP technology is considered modular. 

In other words, several units from Table 11, of the same or different type, could 

be joined to conform the optimal CHP installed capacity. 

 

 Efficiency [-] Variable capital 
cost [€ / kW inst] 

O&M fixed cost [€ 
/ month / kW inst] 

Lifetime 

[years] 

Absorption chiller COP = 0.7 685 1.88 20 

Table 12 Technological settings for the CCHP-TS scenario (absorption chiller) 
 

 Charge / 
discharge 

efficiency [-] 

Decay 
rate [h-1] 

Max charge 
and discharge 

rate* 

Min 
state of 
charge* 

Variable 
capital cost 
[€ / kW inst] 

Lifetime 

[years] 

Heat Storage 0.9 0.0006 0.25 0 100 17 

Cold Storage 0.9 0.0006 0.25 0 100 17 

Table 13 Technological settings for the CCHP-TS scenario (thermal storage) 
NOTE: (*) The maximum charge and discharge rate, as well as the minimum state of charge are 
expressed as a percentage of the installed capacity. 
 

 

Table 14 reports the interest rate used to evaluate the project and the carbon 

intensity of the electricity from the grid. The latter takes as reference the average 

in Europe [14]. 

Interest rate [%] 5% 

Carbon intensity of electricity 
from the grid [kg CO2 eq. / kWh] 

0.447  

Table 14 Other settings used in DERCAM 
 

 

On the other hand, the outputs from DER-CAM are: 

• The CCHP and Thermal Storage technologies selected, as well as their 

installed capacity; 

Note: As explained in Table 11, the optimal CHP installed capacity is 

conformed in a modular way. 

• The hourly production for each technology (CHP units, Absorption Chiller 

and Boiler) and/or import from the national grid, as well as hourly 

consumption for each type of energy (Electricity, Heat and Cooling); 
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• The monthly consumption of fuel (Natural Gas), as well as the allocation 

per technology (CHP and Boiler); 

• The hourly energy stored at the Thermal Storage; 

• The total annual cost and CO2 emissions of the scenario proposed, as well 

as the percentage of cost savings and CO2 reduction compared with the 

reference scenario. 

 

The general results of the simulation in DER-CAM for the 600 scenarios are in 

Table 15 and show the results per Spark Spread rate. Notice that installing a 

CCHP-TS system is economically and environmentally feasible only for 419 out 

of the 600 scenarios. For the rest, it is either cheaper or less polluting to use the 

reference design of the energy system defined in Figure 3. Annex I show the 

consolidated output data for each feasible scenario within the four SS rates. 

 SS1 = 3.0 SS2 =3.9 SS3 = 5.4 SS4 = 6.6 

Number of Feasible scenarios  

(419 out of 600) 
50 out of 150 

118 out of 
150 

118 out of 
150 

133 out of 
150 

Maximum % cost savings 6.6% 21.8% 25.2% 42.9% 

Average % cost savings 4.3% 12.1% 15.1% 26.7% 

Minimum % cost savings 2.9% 1.1% 1.1% 1.6% 

Table 15 General information of the energy analysis for the scenarios 
belonging to the different SS rates 

 

Both, the number of feasible scenarios and the average percentage of savings, 

increase with the spark spread rate. A larger SS means a higher difference in 

price between the electricity imported from the grid and the fuel to run the CHP 

(natural gas for this paper). Therefore, a larger SS improves the economic 

advantage of producing electricity in-house with the CHP. 

For the sake of explaining in detail the need of a further analysis and the different 

steps, the rest of section 4.2 and 4.3 are developing the example of SS4=6.6. 

However, the reader should note that the same analysis was followed with the 

other three SS rates. Section 4.4 analyze them all together again, allowing an 

effective comparison.  
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Having said this, Figure 29 and Figure 30 presents the DER-CAM results 

obtained with SS=6.6. They were a total of 150 simulations (six levels of E, five 

of H, five of C and one of SS). From those, only 133 showed that using a CCHP-

TS system is economically and environmentally better than using the reference 

scenario, while for the other 17 simulations, the reference system is preferred.  

Figure 29 shows the percentage of savings obtained for each of the 133 feasible 

scenarios, depending on the loads (E , H, and C). At a first glance, three different 

regions are perceived. Firstly, when electricity demand is higher (500 to 1000 

GWh/y), savings are practically stable, no matter the value of heating and 

cooling demand. Secondly, when electricity demand is 100GWh/y, savings are 

quasi-stable across cooling demand variation, but they drop when heat demand 

reaches 400GWh/y. Thirdly, when electricity demand is from 0.1 to 10 GWh/y, 

savings are impacted by variations in any of the three carriers. 

However, from Figure 29, it is not possible to detect why the scenarios have 

certain savings. For example, the two circled dots correspond to events with 

similar percentage of savings (16.2% and 16.4% respectively) and annual 

energy load alike (E1-H10-C100 and E1-H10-C500). However, the installed 

capacity of the CHP units and absorption chiller are completely different. 

 

Figure 29 Simulation data obtained from the full factorial design of 
experiments, using DER-CAM (example of SS4=6.6) 

KEY: ICE (Internal Combustion Engine), CT (Combustion Turbine), and CTDB (Combustion 
Turbine Duct Burner). 

NOTE: The CHP technology is modular, as explained in Table 11. Then, the number before the 
type of prime movers indicates the number of units installed. As example, 4xICE5 – ICE2.5 
denote the installation is four units of ICE of 5MW, and one ICE of 2.5MW. 
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On the other hand, Figure 30 shows a frequency histogram of CHP Technology 

Mix and displays the related ranges of energy loads levels and savings. In this 

chart also, is possible to perceive that the percentage of savings trend roughly 

follows the behavior of Electricity demand, particularly for high values of the 

load. Further, the installed capacity (increasing values along the X-axis) is 

influenced by Electricity demand. For example, the plateau of electricity demand 

1000 GWh/y is between 225-275 MW installed capacity, the one of 500 GWh/y 

is located between 100-125 MW, the one for 100 GWh/y goes from 20-25 MW 

and finally, the one for 10 GWh/y is between 1.75-3.5 MW. On the other hand, 

there is a threshold of CHP installed capacity (25MW), where Internal 

Combustion Engines (ICE) technology is no longer the most economically 

feasible solution, and then combustion turbines (CT) start being used, adding 

small ICE units just to manage peak demand. This is related with the fact that 

CT configuration allows a better rate of heat production and higher electric 

production, but electric efficiency of CHP slightly decreases. This gives an 

understanding that the selection of the prime mover is influenced by the relative 

size of electricity and heating loads. Although it does not affect directly the 

percentage of savings obtained. 

An important difference in savings can be noted when focusing on two cases 

having the same installed capacity (green box in the Figure 30) but using two 

different technical solutions (5xICE5 and CT25). As mentioned, this main 

difference is coherent with the electricity demand level in each case. However, 

one of the cases has a significant dispersion in savings, mainly driven by the 

dispersion bar observed in heat and cooling demand (associated to the boiler 

usage in case of heat). This example illustrates the potential coupling effects of 

different demands and justifies a deeper analysis of the possible interactions, 

which is done using clustering analysis. 
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Figure 30 CHP Technology Mix Histogram (example of SS4=6.6) and its 
relationship with levels E, H, C, and percentage of savings.  

KEY: ICE (Internal Combustion Engine), CT (Combustion Turbine), and CTDB (Combustion 
Turbine Duct Burner). 
NOTE: The CHP technology is modular, as explained in Table 11. Then, the number before the 
type of prime movers indicates the number of units installed. As example, 4xICE5 – ICE2.5 
denote the installation is four units of ICE of 5MW, and one ICE of 2.5MW. 

 

It is difficult to see the actual influence of E, H and C from Figure 29 and Figure 

30. A deeper data analysis, presented in the next section, aims to understand 

the coupling effect of loads on the percentage of savings. It includes Data 

segregation and clustering, based on segregation parameters, k-Means 

clustering method and Multi-Criteria Decision-Making type ELECTRE 1S. 
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4.3 Data analysis: Clustering 

The Data Clustering objective is to understand the relation between energy 

demand and techno-economic feasibility of the system, analyzing the interaction 

among the driving parameters. Ten segregation parameters are selected, using 

MATLAB to automatize the extraction of information from DER-CAM reports 

(code in Annex II). Each scenario, obtained from the full factorial DoE, 

represents a data point that can be described as a vector with the following 

parameters: 

- The percentage of cost savings obtained with the CCHP-TS system when 

compared to the reference system (heating covered with natural gas 

boilers and electricity and cooling covered using electricity from the grid); 

- The generation means for each energy carrier (%Grid, %Boiler and % 

Absorption); 

- The percentage of heat generated by the CHP units, that is not consumed 

(% heat scrap); and 

- The energy flows within a CCHP-TS system (electricity for electricity 

(E4E), electricity for cooling (E4C), electricity for cooling storage (E4CS), 

heat for heating (H4H), heat for cooling (H4C), and heat for cooling storage 

(H4CS)) 

The production means for each energy carrier can be followed in Figure 26 and 

described by  Eq.  32 to Eq.  34: electricity can be generated by the CHP or 

imported from the Grid, Heating can be produced by the CHP or a Boiler, and 

Cooling can be produced by an absorption chiller or the vapor-compression 

chiller. 

 Percentage of Electricity imported from the Grid 

% Grid =
∑ ElectricityGrid(t)t

(∑ ElectricityGrid(t)t  +  ∑ ElectricityCHP(t)t )
 

Eq.  32 

 

 Percentage of Heating produced with Boiler 

% Boiler =
∑ HeatingBoiler(t)t

(∑ HeatingBoiler(t)t  +  ∑ HeatingCHP(t)t )
 

 

Eq.  33 
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 Percentage of Cooling produced with Absorption Chiller 

% Absorption =
∑ CoolingAbsorption(t)t

(∑ CoolingAbsorption(t)t  +  ∑ CoolingElectric(t)t )
 

Eq.  34 

 

The energy flows can be can be followed in Figure 3 and described by Eq.  35 

to Eq.  40. 

 Part of the electricity generated by the CHP that is used to meet the electric load: 

E4E =
ElectricityCHP

LE (t)

EnergyCHP(t)
 

Eq.  35 

 

 Part of the electricity generated by the CHP that is used to meet the cooling load through 

a vapor compression chiller: 

E4C =
ElectricityCHP

LC (t)

EnergyCHP(t)
 

Eq.  36 

 Part of the electricity generated by the CHP that is used to supply the cooling storage: 

E4CS =
ElectricityCHP

CS (t)

EnergyCHP(t)
 

Eq.  37 

 Part of the heat produced by the CHP that is used to meet the heating load: 

H4H =
HeatCHP

LH (t)

EnergyCHP(t)
 

Eq.  38 

 Part of the heat produced by the CHP that is used to meet the cooling load through an 

absorption chiller: 

H4C =
HeatCHP

LC (t)

EnergyCHP(t)
 

Eq.  39 

 Part of the heat generated by the CHP that is used to supply the cooling storage: 

H4CS =
HeatCHP

CS (t)

EnergyCHP(t)
 

Eq.  40 

where,  

 

 

The total energy generated by the CHP, expressed in hourly basis [kW] 

EnergyCHP(t)

= ElectricityCHP
LE (t) + ElectricityCHP

LC (t) + ElectricityCHP
CS (t) + HeatCHP

LH (t) + HeatCHP
LC (t) + HeatCHP

CS (t) 

Eq.  41 

 

 

Once the segregation parameters are established, the objective is to understand 

better the interaction among the segregation parameters. For this, k-Means 

algorithm from the scikit-learn module of Python is used. k-Means will cluster 
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the 600 simulations, each of them characterized by the ten segregation 

parameters mentioned above. The settings for k-Means to be used in this work, 

are: 

• Number of clusters desired. 

• Maximum number of iterations = 100,000 iterations 

• Tolerance to declare convergence (relative to centroids) = 0.00000001 

As mentioned in subsection 3.2.3.2, while performing the k-Means clustering 

method, an input parameter is the number of k desired clusters. 

Therefore, the outranking approach of Multi Criteria Decision Making (MCDM) 

ELECTRE 1S [173], [174], is used to discriminate different alternatives (k 

number of cluster), as explained in section 3.2.3.3. Nineteen different values of 

k ϵ [2,20] clusters are to be tested. Generating the set 𝐴 = { a1: 𝑘 = 2, a2: 𝑘 =

3,⋯  , a19: 𝑘 = 20}. These alternatives are discriminated pair by pair. A detailed 

theoretical explanation about MCDM ELECTRE 1S is provided in Annex III. 

The use of MCDM aims finding the number of k clusters that meet the balance 

between minimizing the cluster dispersion (making elements of a cluster alike) 

and maximizing inter-cluster dispersion (making clusters different enough from 

each other). Therefore, six decision criteria are considered to evaluate the best 

alternative.  

Objective Criteria Description 

Minimize 

g1 Number of clusters k 

g2 1st quartile Q1 of the intra-clusters distances 

g3 2nd quartile Q2 of the intra-clusters distances 

g4 3rd quartile Q3 of the intra-clusters distances 

g5 Maximum M of the intra-clusters 

Maximize g6 Mean inter-clusters distances 

Table 16 Set of criteria for the MCDM ELECTRE 1S method 
 

Table 16 and Figure 31 describes the criteria for MCDM. The criteria g2 to g5 

evaluate the similarity of points inside each cluster through its intra-cluster 
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Euclidian distance. That is measured from the center of each cluster to its 

different quartiles, and afterwards an average of all the clusters is calculated : 

g2 quantifies the size of a cluster’s core (1st quartile), while g3 and g4 estimate 

the distance of peripheral points (2nd and 3rd quartile), and g5 give the distances 

to the furthest point of the cluster. On the other hand, the criterion g6 is based 

on the mean of the distances between the clusters’ centroids. As note, the points 

located in the maximum and minimum distances within each cluster are 

excluded from these criteria, since they statistically bias the measures. Finally, 

g1 indicates that number of clusters should be as less as possible, to reduce the 

number analysis points. As an additional constraint in the methodology 

framework, each cluster must have a minimum number of eight points for the 

alternative to eligible (Nmin = 8), since making statistics on less than eight points 

makes no sense. 

 

Figure 31 Graphical explanation of the set of criteria for the MCDM ELECTRE 
1S method 

 

Center Q1 : 25% observations  (g2)

Q2 : 50% observations  (g3)

Q3 : 75% observations (g4)

MaxDist : Further point  (g5)

(g6)
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Table 17 illustrates the MCDM performance table for the feasible scenarios from 

the simulations with SS4=6.6 (continuing with the example shown in Figure 29 

and Figure 30).  

Alternative [𝐚𝐢] 

Criteria [𝐠𝐣] 

g1 g2 g3 g4 g5 g6 

MINIMIZE MAXIMIZE 

𝐚𝟏 2 0.335 0.387 0.497 0.95 0.654 

𝐚𝟐 3 0.273 0.317 0.428 0.643 0.660 

𝐚𝟑 4 0.217 0.264 0.339 0.536 0.689 

𝐚𝟒 5 0.176 0.224 0.301 0.537 0.675 

𝐚𝟓 6 0.151 0.198 0.253 0.502 0.659 

𝐚𝟔 7 0.152 0.207 0.271 0.500 0.646 

𝐚𝟕 8 0.134 0.177 0.242 0.450 0.628 

Weight [𝐰𝐣] 0.2 0.15 0.15 0.15 0.15 0.2 

Thresholds 

Indifference [𝐪𝐣] 0 0 0 0 0 0 

Preference  [𝐩𝐣] 1 0.0415 0.0394 0.0484 0.0367 0.01346 

Veto  [𝐯𝐣] 7 0.122 0.1235 0.1749 0.3068 0.0311 

Level of majority [s] 0.60 

Table 17 Enlarged performance table (example of SS4=6.6) 

 

The performance table displays the seven alternatives that comply with the 

additional constraint of Nmin = 8. It specifies the partial concordance index for 

the six criteria 𝑔𝑖  , their corresponding weights, thresholds of indifference, 

preference, and veto, as well as their majority level. 

The weights have been determined with the intention of balancing and leaving 

no predominance among the criteria. The g1 refers to the number of clusters, g6 

to the intercluster distance and g2 to g5 deal with the core size of the clusters. 

Therefore, the sum of weight of g2 to g5 balance the weight of the other criteria. 

The thresholds allow making difference and drawing preferences between 

alternatives for driving decision. In that view, all the indifference thresholds are 

set to 0, considering that the smallest difference leads at least to a weak 
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preference of an alternative over another. It is been decided that the preference 

threshold for each criterion, correspond to the 1st quartile of all values Ωj(ak, ai). 

In other words, 75% of the cases lead to a strict preference of one alternative 

over the other. That allows drawing strong preferences necessary for outranking 

relation. Note that Ωj(ak, ai) is defined in Annex III and refers to the difference 

defining the advantage of alternative k over alternative i, considering criterion j. 

Regarding the veto thresholds, it corresponds to the 3rd quartile of advantages 

values. Therefore, 25 % of them lead to a veto situation. Finally, the majority 

level has been set to 60 %, which means that it is necessary to have at least 60 

% of the criteria total weights in concordance, to set an outranking relationship. 

The level is quite high in order to increase the requirements of an outranking 

relation. 

Given the information above, it is possible to calculate the concordance and 

discordance matrixes (Table 18 and Table 19), that allow to identify respectively 

if the concordance and non-veto conditions are fulfilled for each pair of 

alternatives.  

The proper way to read the concordance matrix (Table 18) is from horizontal to 

vertical, for example, “The alternative a5 of forming six clusters is at least as 

good as the alterative a1 of forming two clusters, with a value of 0.8”. Then it is 

evident that alternatives a5 and a7 present concordance value bigger than the 

majority level in all the cases. 

 a1 a2 a3 a4 a5 a6 a7 

a1 1. 0.29 0.2 0.2 0.31 0.4 0.4 

a2 0.8 1. 0.2 0.2 0.4 0.4 0.4 

a3 0.8 0.8 1. 0.58 0.41 0.4 0.4 

a4 0.8 0.8 0.6 1. 0.52 0.61 0.4 

a5 0.8 0.78 0.60 0.60 1. 0.99 0.68 

a6 0.69 0.6 0.6 0.6 0.5 1. 0.58 

a7 0.6 0.6 0.6 0.6 0.6 0.6 1 

Table 18 Concordance matrix and outranking relations (example of SS4=6.6) 
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However, from Table 19, a7 is in veto situation with alternatives a2, a3, a4 and 

a5, which means that it does not outrank these alternatives, even if exceeds the 

majority level in the concordance matrix.  

 a1 a2 a3 a4 a5 a6 a7 

a1 0 1 1 1 1 1 1 

a2 0 0 0 0 1 0 1 

a3 0 0 0 0 0 0 0 

a4 0 0 0 0 0 0 0 

a5 0 0 0 0 0 0 0 

a6 0 0 1 0 0 0 0 

a7 0 1 1 1 1 0 0 

Table 19 Discordance matrix (example of SS4=6.6). Note: one means veto 
condition. 

 

Thus a5, corresponding to six clusters, is the only alternative defeating all the 

others in concordance matrix (Table 18) and complies the non-veto condition 

expressed at the discordance matrix (Table 19). Then, for the simulations with 

SS4=6.6 (following the example in Figure 29 and Figure 30), the MCDM 

ELECTRE 1S suggests creating six clusters with K-Means. 

The clusters group solutions according to similarities in the features before 

mentioned. Figure 32, shows the distribution of clusters across the axis of 

annual loads E, H, C for SS4=6.6. It illustrates that the solutions within each 

cluster share common characteristics regarding load size. 

 

Figure 32 Clusters across the axis of annual loads E, H, C (example for 
SS4=6.6). 
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The implementation of the methodology for the rest spark spread rates suggests 

that the best alternative is to group the solutions into three clusters (k=3) for SS1 

and six clusters (k=6) for SS2, SS3, and SS4. To ensure obtaining relevant 

clusters that segregate properly the techno-economic performance of scenarios, 

the segregation criterion in SS1 is the percentage of savings, while the other 

use the savings, in addition to the Grid, Boiler, Absorption, and energy flows. 

 

 

4.4 Results interpretation 

To delve deeper into the impacts of the spark spread rate and the size of loads, 

the analysis is structured as follows: 

Analysis of generation mean for each energy carrier 

Analysis of energy flows within the CCHP-TS system  

Analysis of the percentage of savings 

The results analysis in the following sections is in terms of the load dominance 

rates rn (Eq.  42 to Eq.  44). They are parameters to measure the relative weight 

of the annual loads of electricity, heating, and cooling (E, H, and C respectively). 

 Dominance rate for annual electricity load 

rE =
𝐸

𝐸 + 𝐻 + 𝐶
 

Eq.  42 

 Dominance rate for annual heating load 

rH =
𝐻

𝐸 + 𝐻 + 𝐶
 

Eq.  43 

 Dominance rate of annual cooling load 

rC =
C

𝐸 + 𝐻 + 𝐶
 

Eq.  44 

The sum of these three dominance rates reflects the energy conservation (rE +

rH + rC = 1). Then, using them in ternary diagrams aims to show the behavior 

of the functioning variables and compare them among the spark spread rates. 
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Each vertex of the ternary diagrams represents dominance rates equal to 1 for 

each energy carrier. In other words, the left, right, and top vertices represent 

respectively Heat, Cooling, and Electricity load only. Each square in the diagram 

embodies a scenario, while the size reflects the value of the characterization 

variable. The colors identify the different clusters that are particularly relevant 

for the analysis of the percentage of savings. However, the color code keeps for 

all the section to facilitate tracking and analyzing the different simulations across 

all the functioning variables.  

The following two subsections analyze the results for each functional variable. 

They focus on describing their behavior , across the load dominance and spark 

spread rates. The relevance relies on showing the operational and economic 

performance of the CCHP-TS system under different conditions.  

 

 Analysis of generation means for each energy carrier 

This section aims to characterize the generation means for the energy carriers, 

given the dominance of loads and spark spread rates. 
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Figure 33 Ternary diagram for the distribution of the percentage of Grid, Boiler, 
Absorption, and Heat Scrap across dominance rates (𝑟𝐸 , 𝑟𝐻 , 𝑟𝐶) and SS rates. 
 

PERCENTAGE OF GRID 

The percentage of the grid measures how much electricity is imported from the 

grid, apart from the electricity that results from the CHP units. This electricity can 

be used directly to meet electric load or to produce cooling through vapor 

compression chillers. The first line of diagrams of the Figure 33 presents the 

ternary diagrams in terms of percentage of the grid. 
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For all the spark spread and especially for SS1=3, the percentage of the grid 

reduces in two cases. First, when the heating load dominates because it does 

not need the grid to cover them. Second, when the dominance of loads is 

balanced (referring to the points in the middle of the diagrams). It suggests that 

a load balance promotes the usage of the CCHP-TS system, especially for SS1. 

For SS2-SS4 (when the spark spread rate is larger than 3), the percentage of 

the grid is small when the dominance of electric load is high. Therefore, this 

condition promotes the use of the CCHP-TS system. 

In contrast, the percentage of the grid is high when cooling load dominates. It is 

because it is more convenient to use vapor compression chiller powered by the 

grid under these circumstances. There is more detail of this in the analysis 

corresponding to the percentage of absorption. 

The analysis above points out that the behavior and trend of %Grid in SS1 is 

slightly different from SS2-SS4. In the latter, the use of CCHP-TS systems is 

especially feasible when electric load dominates. 

 

PERCENTAGE OF BOILER 

The percentage of Boiler (second line of diagrams in the Figure 33) measures 

how much heating is provided directly from a natural gas boiler. For all the SS 

rates, it is larger when the heating load dominates, rH (Figure 33), while 𝑟𝐸, and 

𝑟𝐶 have no real influence. Therefore, heating load alone never justifies the use 

of CHP, and then Boiler is used as the generation unit. Note that the trend and 

average value (square size) are the same for all the SS rates, differing only in 

the number of feasible scenarios that reduce with the SS rate. 

 

PERCENTAGE OF ABSORPTION AND HEAT SCRAP 

The percentages of Absorption and Heat Scrap are large when electric loads 

dominate (Figure 33). Because when there is a surplus of heat produced by the 

CHP, the Absorption is used as much as possible, trying to reduce the Heat 

Scrap. 
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On the contrary, Absorption and Heat Scrap are small when cooling loads 

dominate. Because in those cases there is a preference for vapor-compression 

chiller due to the large difference in COP (4.5 for vapor-compression [175] and 

0.8 for absorption [176]). 

Subsection 4.4.3 analyze the percentage of savings for the clusters identified in 

Figure 33. The Figure 35 and Figure 37 represent the percentage of savings by 

the size of the squares. There, it is well shown that, especially for SS2-SS4, 

some of the clusters with the highest percentage of savings also have the largest 

percentages of Heat Scrap. This is important because it reflects that the Heat 

Scrap does not affect greatly the percentage of savings obtained. The reason is 

that from the economic point of view (and not strictly from the energy point of 

view), it is cheaper to produce electricity rather than buying it from the grid, even 

if it produces a surplus of heat. 

The trends for the percentage of Absorption and Heat Scrap are the same for 

all the SS rates. The only difference is the number of feasible scenarios that 

reduce accompanying the SS rate. 

 

 Analysis of the energy flows within the CCHP-TS system 

Regarding the energy flow variables (Figure 34), the main flows of CHP 

(electricity and heat) –E4E, E4C, H4H, and H4C– have the same trend and 

average value (square size) across the spark spread rates. In other words, they 

are equal for all SS rates, except that the number of feasible scenarios reduces. 

In contrast, the flows for the storage –E4CS and H4CS– are different in square 

size (average value) but follow the same trend across the different SS rates. 

Observe that none feasible solution includes heat storage. The reason is related 

to the marginal cost of storing heat, which is larger than the marginal cost of 

activating the boiler to produce the shortage of heat.   

As expected, E4E grows with the electric dominance rE, and H4H grows with 

the heating dominance rH. While E4C and H4C grow with the cooling dominance 

rC, but these are respectively more representative when Electric and Heating 

dominance is low. 
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Figure 34 Ternary diagram for the distribution of E4E, E4C, E4CS, H4H, H4C 
and H4CS across dominance rates (𝑟𝐸 , 𝑟𝐻 , 𝑟𝐶) and SS rates. 
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On the other hand, the Cooling Storage gives flexibility to the CCHP-TS systems 

because it decouples its production and consumption. The functioning variables 

E4CS and H4CS (Figure 34) indicate if the accumulated cooling is produced 

with electricity or heat respectively. In general, E4CS and H4CS are small, but 

they are slightly more representative for SS4=6.6. Because a high SS favors the 

use of CHP for electricity loads, leaving the heat as co-product and available to 

produce cooling and store it. E4CS is larger in clusters C0 and C3   (from SS2-

SS4) because it is preferable using the vapor-compression chiller when cooling 

loads dominate (C0: rC=98% and C3: rC=58%). On the other hand, H4CS exists 

when rE ≫ rH , using heat from the CHP to produce cooling and store it. 

Therefore, Cooling Storage promotes the usage of Absorption and potentializes 

Trigeneration. 

 

 Analysis of the percentage of savings 

This section analyzes the percentage of cost savings reached by using the 

CCHP-TS system compared to the reference design of the energy system. For 

better characterization, the analysis divides the cases when the spark spread is 

higher than three, and when it is equal to three. 

 

THE CASES OF SS > 3 

This section analyzes the feasible scenarios corresponding to SS2=3.9, 

SS3=5.4, and SS4=6.6. Note from Figure 35 that the three have the same 

number of clusters (six clusters). Moreover, these clusters have similar 

characteristics along the three SS rates. The following paragraph gives a brief 

outline of each cluster, making some references to the characterization variables 

of section 4.3. 

Cluster C5 consolidates the scenarios where electric load dominates and use 

the CHP almost exclusively to cover it (high E4E and low %Grid). For scenarios 

in C1, electricity load dominates slightly more than cooling. Therefore, electricity 

from the CHP covers the corresponding load and the heat is used to produce 
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cooling (refer to the analysis of E4E, and H4C). Regarding C4, it is a cluster with 

a shared dominance between electricity and cooling demand, then it uses CHP 

electricity production to cover electric demand, and uses both, electricity and 

heat, to cover cooling demand (refer to the analysis of E4E, E4C, and H4C). As 

for C2 has a shared dominance between electricity and heat demand, therefore, 

uses CHP to cover these demands directly (refer to the analysis of E4E, and 

H4H). On the other hand, C0 consolidates scenarios where the cooling demand 

is very high and then it uses electricity and heat produced by the CHP to cover 

cooling demand (refer to the analysis of E4C, and H4C). Finally, C3 has a shared 

dominance between heat and cooling demand, so, it uses electricity to produce 

cooling and heat to cover the demand (refer to the analysis of H4H, and E4C). 

Regarding the percentage of savings, indicated by the size of the squares at 

Figure 35, the smaller are at the bottom-left of the three diagrams (rH→1) and 

the larger at the top (rE→1). In other words, the dominance of the electric load 

favors the percentage of savings for the CCHP-TS systems. In contrast the 

dominance of heating loads disfavors it. Regarding the dominance of cooling, 

this diagram does not show that rC governs the percentage of savings.  

 

Figure 35 Ternary diagrams of SS2, SS3 and SS4 for the distribution of the 
percentage of savings across dominance rates (𝑟𝐸 , 𝑟𝐻 , 𝑟𝐶) 

NOTE: The percentage of savings are represented by the square size 
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On the other hand, the difference among SS2, SS3, and SS4 is that the 

percentage of savings increases with the spark spread rate (Table 15 and Figure 

35) because a higher SS makes more feasible to produce electricity in-house. 

Figure 36 shows boxplots for each cluster in terms of the percentage of savings 

and rE – rH – rC. It allows confirming the remark from the ternary diagram of 

Figure 35. The clusters with the largest dominance of electric load have the 

largest average percentage of savings (C5: rE=92% and %savings=39%;  C1: 

rE=60% and %savings=37%). The clusters with middle dominance of electric 

load have a middle average percentage of savings (C4: rE =22% and 

%savings=33%;  C2: rE=30% and %savings=23%). Note that C2 has larger rE 

than C4, but the latter has a better percentage of savings. This situation is 

related to the larger dominance of cooling load (rC) in C4. The analysis of the 

percentage of absorption in section 4.4.1 shows that C4 uses more vapor-

compression chiller than C2. Therefore, the trend established is still valid 

because the cooling load of C4 contributes to an increase in the electric load. 

Finally, the clusters with lower dominance of electric load have the lowest 

average percentage of savings (C0: rE=7% and %sav=16%; C3: rE=3% and 

%sav=11%). This pair of clusters is an excellent example of the low impact that 

the heating and cooling loads have over the percentage of savings when electric 

loads are not present. For the dominance of cooling loads, note that C0 and C3 

have the largest rC among all the clusters. Section 4.4.1 shows that they are 

covered mostly with a vapor-compression chiller. However, this transformation 

of cooling loads into electric one is not enough to drive savings up. On the other 

hand, the dominance of heating loads (rH) also demonstrates a lack of relevance 

since both clusters have the same level of %savings, although only C3 has 

larger heating loads. 
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Figure 36 Boxplots comparing 𝑟𝐸, 𝑟𝐻, 𝑟𝐶, and the percentage of savings for 
each cluster across the spark spread rates SS2-SS3-SS4. 

 

THE CASE OF SS=3 

This section analyzes the 50 scenarios that are feasible with SS1=3. Note that 

the scenarios in SS1, different from SS2-SS3-SS4, have a lower percentage of 

savings and are segregated into three clusters only. The ternary diagram in 

Figure 37 shows them distributed according to their dominance load rates.  



 

 

101 

 

 

 

Figure 37 Ternary diagrams of SS1 for the distribution of the percentage of 
savings across dominance rates (𝑟𝐸 , 𝑟𝐻 , 𝑟𝐶) 

NOTE: The percentage of savings are represented by the square size 

 

Cluster C1 consolidates the scenarios with the highest percentage of savings 

(bigger squares). It is in the middle-right of the ternary diagram, corresponding 

to a balance among the loads with a slight trend to a low dominance of heating. 

Figure 38 presents the boxplots of dominance load rates and the percentage of 

savings for the three clusters. The charts show that C1, the cluster with the 

higher percentage of savings, is the only one where all the scenarios present 

the three loads, while the others could have the absence of heating or cooling 

loads. Although the boxplots show big ranges of variation for rE – rH – rC, it is 

possible to infer that the higher percentage of savings in SS1=3 relates to the 

balance of Electric, Heating, and Cooling loads (as suggested as well per the 

ternary diagram in Figure 37). 

 

Figure 38 Boxplots comparing 𝑟𝐸, 𝑟𝐻, 𝑟𝐶, and the percentage of savings for 
each cluster across the spark spread rate SS1 = 3.0 

 

The finding in this section regarding the relationship between the savings and 

the balance of loads is aligned with the study presented by Knizley et al. [47]. 
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They use an SS rate=2.77 and propose that the monthly economic savings of a 

CHP system are likely to occur if electricity loads are not much larger than the 

heating loads. These authors measure it with the monthly PHR (power to heat 

ratio). They verified their hypothesis with seven out of eight case studies 

(buildings). 

 

 Summary of results 

The proposed methodology allowed to analyze multiple optimal scenarios of 

trigeneration systems with thermal storage, bringing further insights on the rules 

of thumb for their design. 

The results stemming from the analysis indicate that the techno-economic 

feasibility of a CCHP-TS system relies upon different combination of spark 

spread and the load dominance rates. For low spark spreads (SS=3), the loads 

should be balanced among the energy vectors. While for high spark spreads 

(SS>3), the savings are higher when the electricity load dominates. 

The trend for the percentage of Boiler, Absorption and Heat Scrap are the same 

for all the SS rates, differing only in the number of feasible scenarios. In general, 

it is more profitable to use the boiler when heating loads dominate. Regarding 

absorption for cooling, it is only economically better when the cooling loads are 

relatively low. Furthermore, when electric loads dominate, it favors the use of 

Absorption and Cooling Storage (H4CS), because it reduces the Heat Scrap. 

This behavior is stronger with larger SS rates. 

However, heat scrap does not affect the percentage of savings significantly. In 

other words, it is more profitable to oversize heat production and ensure that the 

CHP covers the electricity load.  

Here, it is evident that the CCHP-TS is a flexible system because it supplies the 

energy (electricity, heating, and cooling) with different units. Moreover, the 

thermal storage improves this flexibility by decoupling the supply and demand. 

The work developed in this chapter reveals that there is a two-level 

characterization. First, there is a threshold in the Spark Spread rate (SS) 
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influencing the techno-economic feasibility of a CCHP-TS system. And that 

threshold indicates how the size of the annual loads influence. 

The work also reveals the importance of electricity loads for any spark spread 

rate, because the use of CCHP-TS is feasible when these exist or even 

dominate. In contrast, heating loads do not have the same relevance because 

the system could be feasible despite a high percentage of Heat Scrap. In 

general, when heating or cooling loads dominate, it is preferable to use the 

auxiliary units (boiler and vapor-compression chiller). However, the reader 

should notice that the existence (not dominance) of heating and cooling 

improves the environmental performance, by reducing the heat scrap [59]. 

 

 

4.5 Hypothesis regarding the impact of energy prices 

 Problem statement 

Subsection 4.4.3 was devoted to analyzing the behavior of the percentage of 

cost savings. For the case of SS > 3, there are three spark spread rates (SS) to 

analyze. The simulations corresponding to each are classified within six different 

clusters. Those six clusters are comparable among the three spark spread rates, 

because they share similarities regarding their segregation parameters (read 

subsection 4.4.3). Figure 36 shows how the percentage of cost savings changes 

across the three SS rates for each cluster. Interestingly, this change is not linear. 

Taking the averages of the boxplot corresponding to the percentage of cost 

savings in Figure 36, we have the following pattern for each cluster (Figure 39). 

 

Figure 39 Average percentage of savings for each cluster across spark spread 
rates SS2-SS3-SS4. 

KEY C0 – C5 correspond to the data of cluster 0, cluster 1, …, cluster 5. 
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The patterns present a bow in the SS3, that in some cases even suggest lower 

savings for SS3 than for SS2. A possible way to explain this non-linear behavior 

is that each spark spread (SS2, SS3, and SS4) has different prices of electricity 

and natural gas (see Table 20).  

 SS2 SS3 SS4 

Spark spread 3.9 5.4 6.6 

Price of electricity [pE] 15.8 10.3 16.23 

Price of natural gas [pNG] 4.0 1.9 2.46 

Table 20 Prices of electricity and natural gas (in cents of EUR / kWh) for the 

spark spread rates in chapter 4. 

 

If the reader observes carefully, the price of electricity for SS2 and SS4 are close 

to 16 cents of EUR. While the one of SS2 is completely different (~10 cents).  

 

 Creating a hypothesis 

In the diagram outlying the percentage of savings and the spark spread rate 

(Figure 39), exist isolines corresponding to each price of electricity. The behavior 

of those isolines respects the following trend: the larger the spark spread, the 

larger the percentage of savings. In the Figure 39, the line corresponding to the 

cluster 3 (C3) presents a bow, suggesting that the percentage of savings is lower 

for SS3 = 5.4, than for SS2 = 3.9. The reason might be that SS2 and SS4 belong 

to one isoline of electricity price, while SS3 belongs to a different one. 

 

 Testing the hypothesis 

 

To prove the hypothesis, we are exploring the impact of varying one price at a 

time (parametric analysis). The steps below will follow the example of analyzing 

the price of electricity. 

1. Determine the variable to analyze, E.g. price of electricity. 
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2. Fix the values to explored regarding the spark spread and the variable of 

analysis, E.g. spark spread and price of electricity. 

3. Determine the values of the other variable, E.g. price of natural gas. 

Note that from the combinations created (see Table 21), some of them 

are feasible to implement a CCHP-TS systems (white), some other are 

unfeasible (blue), and other are technically feasible although they do not 

exist in a real European context (gray). 

 

Table 21 Feasible combinations by fixing price of electricity and spark 

spread rate. 

KEY: Non-feasible scenarios (blue); Scenarios technically feasible, but non-existent at 

the European context (gray); Existent and feasible scenarios (white). 

 

4. Simulate the different combinations in DER-CAM. 

5. Build the isolines of the selected variable, E.g. price of electricity. 

 

Isolines for the price of electricity 

Figure 40 shows the isolines obtained after getting the percentage of savings 

for each combination of prices. 

1.5      2.0   2.5   3.0   3.5      4.0      4.5      5.0      5.5      6.0      

0.28  0.19      0.14   0.11   0.09   0.08      0.07      0.06      0.06      0.05      0.05      

0.25  0.17      0.13   0.10   0.08   0.07      0.06      0.06      0.05      0.05      0.04      

0.22  0.15      0.11   0.09   0.07   0.06      0.06      0.05      0.04      0.04      0.04      

0.19  0.13      0.10   0.08   0.06   0.05      0.05      0.04      0.04      0.03      0.03      

0.16  0.11      0.08   0.06   0.05   0.05      0.04      0.04      0.03      0.03      0.03      

0.13  0.09      0.07   0.05   0.04   0.04      0.03      0.03      0.03      0.02      0.02      

0.10  0.07      0.05   0.04   0.03   0.03      0.03      0.02      0.02      0.02      0.02      

Value of pNG

SS

pE
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Figure 40 Isolines for the price of electricity [$/kWh] 

 

The Figure 40 confirms what was seen in the diagram outlying the percentage 

of savings and the spark spread rate (Figure 39), there are isolines 

corresponding to each price of electricity. The behavior of those isolines 

respects the following trend: the larger the spark spread, the larger the 

percentage of savings”. 

Moreover, those isolines never cross each other, even if they become closer 

and closer. Therefore, it is possible to conclude that in Figure 39, SS3 belongs 

to a different isoline than SS2 and SS4. In fact, in the strict sense, SS2 and SS4 

should belong to two different isolines. 

 

Isolines for the price of natural gas 

A similar hypothesis can be confirmed for gas prices. Once we already proved 

that there are isolines of electricity prices, it is interesting to test the following 

hypothesis as well: 

Similarly, in the diagram outlying the percentage of savings and the spark 

spread rate (Figure 39), there are isolines corresponding to each price of natural 

gas. 
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Like in the Table 21, Table 22 shows the feasible scenarios for a CCHP-TS 

systems (white), the unfeasible ones (blue), and others that are technically 

feasible although they do not exist in a real European context (gray) 

 

Table 22 Feasible combinations by fixing price of natural gas and spark spread 

rate 

KEY: Non-feasible scenarios (blue); Scenarios technically feasible, but non-existent at the 

European context (gray); Existent and feasible scenarios (white). 

 

Figure 41 shows the isolines obtained after using DER-CAM to obtain the 

percentage of savings corresponding to each combination of prices. 

 

Figure 41 Isolines for the price of natural gas 

 

There are isolines for the price of natural gas in the diagram outlying the 

percentage of savings vs. the spark spread rate. In these isolines, the larger the 

spark spread, the larger the percentage of savings. And the isolines never touch 

each other, even if they become closer and closer. 

In the feasibility assessment of a CCHP-TS system, there is a clear relationship 

between the percentage of savings and the spark spread rate. However, this 
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relationship can be described also by isolines for the price of electricity and 

natural gas. These isolines presents different slopes among them and specially 

between the two prices. That suggests that the price of electricity and natural 

gas are impacting differently. Therefore, it would be interesting to explore them 

as individual variables, rather than consolidate them into the spark spread rate. 

 

 

4.6 Conclusions of the section 

The work in this chapter demonstrates the importance of analyzing multiple 

scenarios of energy load size and spark spread rates to assess the techno-

economic feasibility of a Trigeneration system with Thermal Storage (CCHP-

TS). The methodology proposed combines a full factorial DoE, the energy 

system optimization with DER-CAM, the clustering method k-means, and the 

Multi-Criteria Decision-Making method ELECTRE 1S.  

The results highlight the joined influence of spark spread and energy loads over 

the percentage of savings. Moreover, the analysis emphasizes the interest of 

using load dominance rates rE, rH, rC. These quantify the relative weight of the 

loads for each energy vector. In other words, the results of this chapter strongly 

advise about the existing interaction effects between the variables of analysis. 

Additionally, the work in this chapter gave some hints to suspect that the impact 

of the prices (electricity and natural gas) on the feasibility of a CCHP-TS system 

could be different in magnitude (section 4.5). Therefore, in the next section, the 

prices are analyzed separately, instead of consolidated into the spark spread 

rate. 

In conclusion, the work in chapter 4 demonstrates that the CCHP-TS model 

used is relevant and sensitive to the variables of analysis (energy prices and 

annual size of the loads). The next part of the research will deepen the impact 

of these variables by implementing global sensitivity analysis methods and 

analyzing the prices separately.  
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5 PHASE II: Sensitivity analysis of the CCHP-TS feasibility 

 

5.1 Introduction 

This chapter consists in examining the impact of five variables  -  the price of 

electricity (pE), the price of natural gas (pNG), and the annual loads (E: 

electricity, H: heating, C: cooling) – on the feasibility of the Trigeneration-

Thermal Storage systems considering two metrics: the amount of savings, and 

the percentage of savings. The first metric quantifies the absolute savings of 

using the CCHP-TS system, while the second measures the relative savings. 

Studying both aim to understand if the variables impact differently in each case. 

The tool used for the energy system optimization is the adapted model explained 

in section 3.3.1, and the technological settings showed in Table 10 to Table 14. 

The methods used to perform the sensitivity analysis are Morris (derivative-

based approach), Sobol (variance-based approach), and VARS (variogram-

based approach). By using the three methods, we intend to compare the 

capacity of each, evaluating their computational cost, as well as precision and 

information given in an operational context of feasibility analysis. 

We introduce in this chapter the use of isolines for each variable, to allow a 

deeper understanding of the impact of the different variables. 

At the end of the chapter, we determine 1) the combination of energy prices (pE 

and pNG) and size of the annual energy loads (E, H, C) that make a 

Trigeneration – Thermal Storage feasible; 2) the impact of each price 

component, establishing the real relevance of using the Spark Spread rate as a 

common ratio to access the economic feasibility of a Trigeneration-Thermal 

Storage. Additionally, there is an overall comparison of the three sensitivity 

analysis methods studied. 
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5.2 Morris – Derivative based approach 

As explained in subsection 3.3.3.1, Morris SA calculates the sensitivity analysis 

indexes based on r routes that change all the variables one by one. The 

generation of routes is based on the method of Latin Hypercube (LHS) proposed 

by Morris (1991). Afterwards, the sensitivity indexes are given and interpreted 

for different ranges of loads. 

For this work, r=20 routes that allow varying each of the five variables (pE, pNG, 

E, H, and C). All of them use a p=4 levels, Δ=2/3, and uniform distribution. 

Campolongo [119] suggests r=10 and p=4 to ensure a representative sample, 

ours is double the size, then it is reasonable to trust in ours. The prices are 

expressed in $/kWh and their ranges are R={0.10 ; 0.28} for pE and R={0.02 ; 

0.10} for pNG. The ranges of the prices are chosen to include the case of 

different European countries (Figure 16 and Eurostat [66]). On the other hand, 

the different loads (E, H, and C) vary in three ranges, all expressed in GWh/y: 

firstly, in the range from 0 to 10, when E={0,3.3,6.6,10}, H={0,3.3,6.6,10}, and 

C={0,3.3,6.6,10}; secondly, the range from 0 to 100, when E={0,33,66,100}, 

H={0,33,66,100}, and C={0,33,66,100}; and thirdly, the range from 0 to 1000, 

when E={0,333,666,1000}, H={0,333,666,1000}, and C={0,333,666,1000}. 

These ranges aim the cover logarithmically the energy loads presented in the 

subsection 2.2.2. The computational cost of this method represents 120 

simulations per each range of loads. Table 23 shows the first points of the r=20 

routes, generated with LHS. 
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1rs point of route… pE pNG E H C

1 0.28     0.100   100.00 33.33 100.00

2 0.16     0.020   0.00 100.00 100.00

3 0.10     0.073   100.00 33.33 0.00

4 0.22     0.020   33.33 66.67 33.33

5 0.28     0.020   100.00 0.00 66.67

6 0.22     0.047   0.00 100.00 0.00

7 0.16     0.047   66.67 0.00 33.33

8 0.28     0.100   66.67 33.33 0.00

9 0.22     0.073   66.67 66.67 66.67

10 0.10     0.073   33.33 100.00 66.67

11 0.22     0.020   0.00 66.67 66.67

12 0.28     0.047   33.33 0.00 100.00

13 0.16     0.073   100.00 100.00 100.00

14 0.22     0.100   66.67 0.00 33.33

15 0.10     0.100   33.33 33.33 0.00

16 0.28     0.020   0.00 66.67 33.33

17 0.16     0.073   66.67 100.00 33.33

18 0.10     0.047   0.00 33.33 66.67

19 0.10     0.047   33.33 66.67 0.00

20 0.16     0.100   100.00 0.00 100.00  

Table 23 First point of the 20 routes for the Morris SA 
 

The results are given in planes (μ,σ), following the proposal of Morris and Saltelli 

[119], [156]. For comparison purposes among the variables, the plane (μ,σ) uses 

the absolute value |μ|, instead of μ. A the line μ = σ helps to identify three types 

of variables: 1) when σ>μ, it is a variable with non-linear and/or interaction 

effects, 2) when σ≈μ, the non-linear and/or interaction effects are small, 3) when 

σ<μ, the variable has strong additive effect (linear), without interactions. 

Additionally, the tables below each chart show the values of μ, to compare it with 

μ*, giving information regarding the monotonic or non-monotonic behavior of 

variables. 

The three charts and tables at the left part of Figure 42 analyze the amount of 

savings when E,H, and C range from 0 to 10, from 0 to 100, and from 0 to 1000 

(top, middle, and bottom respectively). 

Similarly, the three charts and tables at the right part of Figure 42 give the 

information for the percentage of savings when E,H, and C range from 0 to 10, 

from 0 to 100, and from 0 to 1000 (top, middle, and bottom respectively). 
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Parameter μ* μ σ

pE 257,595 257,595 301,104

pNG 289,411 -289,411 329,031

E 154,534 154,395 220,748

H 9,608 9,608 18,528

C 54,278 54,210 87,317   

Parameter μ* μ σ

pE 0.11 0.11 0.12

pNG 0.15 -0.15 0.16

E 0.03 0.03 0.05

H 0.01 0.00 0.02

C 0.02 0.02 0.03  
 

  
Parameter μ* μ σ

pE 2,669,796 2,669,796 3,250,379

pNG 2,136,661 -1,497,704 3,168,391

E 2,780,388 2,780,388 3,451,706

H 855,156 -384,349 2,896,074

C 1,205,430 1,205,430 1,730,378   

Parameter μ* μ σ

pE 0.12 0.12 0.10

pNG 0.16 -0.14 0.17

E 0.13 0.13 0.23

H 0.05 -0.03 0.10

C 0.07 0.07 0.12  
 

  
Parameter μ* μ σ

pE 28,290,128 28,290,128 28,012,717

pNG 25,260,280 -25,260,280 27,393,063

E 23,821,583 23,821,583 28,168,247

H 2,017,753 2,010,932 4,833,183

C 5,505,114 5,505,114 6,137,699   

Parameter μ* μ σ

pE 0.13 0.13 0.08

pNG 0.21 -0.21 0.18

E 0.07 0.06 0.10

H 0.02 -0.01 0.03

C 0.02 0.02 0.03  

Figure 42 Morris sensitivity indexes for the ranges 0 to 10 GWh/y (top), 0 to 
100 GWh/y (middle), and 0 to 1000 GWh/y (bottom). Each range shows the 

analysis for the amount of savings (left) and the percentage of savings (right) 
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Regarding the amount of savings, Figure 42 (left) first shows that σ ≥ μ for all 

the variables and all the ranges. That suggests that all these variables have 

interaction effects. Second, it describes the influence of the variables on the 

output. In general, the value μ is larger for pNG, pE and E than for H and C, 

therefore pNG, pE and E are more influential for all the cases. The order of 

relevance depends on the range. For the range 0 to 10, pNG and pE are highly 

influential variables; whilst for the range 0 to 100, it is pE and E; and then for the 

range 0 to 1000, pNG, pE and E are nearly equivalent. It worth noticing that H 

and C became middling influential for the range 0 to 100, but never became as 

important as the other variables. Thirdly, the variables are completely monotonic 

(|μ| = μ*), except for pNG and H in the range 0 to 100, and H for the range 0 to 

1000. Finally, notice that in all the ranges pNG has a negative μ, meaning that 

the larger pNG, the lower the amount of savings. That also happens for H, but 

only in the range 0 to 100. 

Regarding the percentage of savings, Figure 42 (right) first shows that pE and 

pNG have low or no interaction effects (σ ≈< μ) for all the ranges, and E has the 

largest interaction effects. Second, it describes the influence of the variables on 

the output. It is quite clear that pNG is the most influential variable and pE is 

middling important. The relevance of loads varies depending on the range. E 

becomes a very relevant in the range of 0 to 100 but seems middling important 

on the other two. H and C are in general non-relevant. Third, variables are 

completely monotonic (|μ| = μ*), except pNG and H in the range 0 to 100, and H 

and E in the range 0 to 1000. Finally, the pNG and H have a negative μ in all the 

ranges, therefore, the larger they are, the lower the percentage of savings. 

From the description above, it is evident that the prices and electricity load are 

the most influential variables, either over the amount or the percentage of 

savings. The order of relevance depends on the resolution and range of 

analysis, but this relates with the fact that Morris method is mostly a qualitative 

way to identify the influential variables. Then, different resolutions and ranges 

are explored below, to corroborate the above-mentioned findings.  

The range from 0 to 100 GWh/y is particularly relevant because the high energy 

intensity building presented in subsection 2.2.2 are within this range [44], [52], 
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[76], [77]. Therefore, the next part of the section intends to refine its analysis by 

studying it in smaller partitions and increasing the resolution, thereby 

complementing the findings above. The new ranges are 0 to 5, 5 to 10, 10 to 40, 

40 to 70, and 70 to 100 GWh/y (Figure 43 and Figure 44). 

Regarding the amount of savings, Figure 43 (left) and Figure 44 (left) shows that 

pE is as influential or even more than pNG, because μ(pE) >≈ μ(pNG). The figure 

also displays that E is generally more relevant than H and C, but less than the 

prices. Regarding the interaction effects, all variables have them at the range 0 

to 5. However, especially for the prices, the interaction effects gradually 

decrease while passing through the different ranges. On the other hand, all 

variables exhibit non-monotonic behavior in at least one of the ranges analyzed. 

And finally, pNG has a negative μ in all the ranges, therefore, the larger it is, the 

lower the amount of savings. 

Regarding the percentage of savings, Figure 43 (right) and Figure 44 (right) 

shows that pNG is the most influential variable, except for the range 0 to 5, 

where pE is. For the loads, their relevance changes from range to range, but 

frequently E seems more relevant. Regarding the interaction effects for the 

prices, they gradually decrease while increasing the energy loads. As for the 

non-monotonic behavior, μ and μ* indicate that all variables have it in at least 

one of the ranges. Finally, pNG has a negative μ in all the ranges, and H has it 

for three of them, therefore, the larger they are, the lower the percentage of 

savings. 

A way to explain why the ranges present different order in the relevance of the 

variables is that Morris is a method based on the derivative of the range (local 

slopes). But the derivatives differ across the function, even more if it is a multi-

variable function.  
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Parameter μ* μ σ

pE 114,893 114,892 137,885

pNG 72,264 -72,229 147,236

E 34,129 34,129 76,130

H 11,833 11,827 22,824

C 19,194 19,194 32,259   

Parameter μ* μ σ

pE 0.12 0.12 0.12

pNG 0.09 -0.09 0.15

E 0.02 0.02 0.06

H 0.01 0.01 0.02

C 0.02 0.02 0.04  

  
Parameter μ* μ σ

pE 331,241 317,769 333,833

pNG 332,582 -276,919 428,896

E 132,021 -50,347 292,705

H 110,460 110,460 339,229

C 29,992 13,929 48,440   

Parameter μ* μ σ

pE 0.11 0.11 0.11

pNG 0.15 -0.13 0.18

E 0.04 -0.03 0.11

H 0.04 0.03 0.12

C 0.01 0.00 0.01  

  
Parameter μ* μ σ

pE 1,209,486 1,209,486 1,221,216

pNG 1,055,926 -1,055,926 1,000,230

E 848,560 848,560 915,860

H 14,446 14,073 19,288

C 210,607 210,607 212,842   

Parameter μ* μ σ

pE 0.12 0.12 0.11

pNG 0.19 -0.19 0.16

E 0.05 0.05 0.05

H 0.02 -0.02 0.02

C 0.01 0.01 0.02  

Figure 43 Morris sensitivity indexes for the ranges 0 to 5 GWh/y, 5 to 10 
GWh/y, and 10 to 40 GWh/y. Each range shows the analysis for the amount of 

savings (left) and the percentage of savings (right) 
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Parameter μ* μ σ

pE 4,715,388 4,368,471 2,800,356

pNG 3,173,742 -3,159,218 2,120,416

E 979,373 979,055 967,783

H 621,810 -596,988 2,039,421

C 544,603 495,896 976,835   

Parameter μ* μ σ

pE 0.22 0.20 0.14

pNG 0.23 -0.23 0.17

E 0.02 0.02 0.02

H 0.04 -0.04 0.10

C 0.02 0.02 0.05  

  
Parameter μ* μ σ

pE 5,417,905 5,417,905 4,211,966

pNG 5,435,112 -5,435,112 3,404,135

E 723,510 715,951 847,458

H 17,292 15,493 28,498

C 221,433 214,400 263,510   

Parameter μ* μ σ

pE 0.13 0.13 0.11

pNG 0.23 -0.23 0.15

E 0.00 0.00 0.01

H 0.01 -0.01 0.01

C 0.00 0.00 0.00  

Figure 44 Morris sensitivity indexes for the ranges 40 to 70 GWh/y, and 70 to 
100 GWh/y. Each range shows the analysis for the amount of savings (left) and 

the percentage of savings (right) 
 

In general, the conclusions that the Morris SA reveal for this case study are: 

• For the amount of savings: The most relevant variables are pE, pNG, 

and E. All variables have interaction effects, but the larger the energy 

loads, the lower the interaction effects. All variables present some non-

monotonic behavior in at least one range, but it is more frequent for the 

case of H and pNG. Finally, an increase in pNG has always a negative 

impact on the amount of savings, and the case is similar for H at a few 

ranges (from example, with loads from 40 to 70 GWh/y). 
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•  For the percentage of savings: The most relevant variables are pNG, 

pE, and E. This finding matches with the conclusion of chapter 4. The 

variables, especially the prices, seems to have less interaction effects 

than on the analysis of amount of savings. But E is the contrary. On the 

other hand, the variables that present non-monotonic behavior at some 

ranges are mostly H, and pNG. Finally, in all the cases, an increase in 

pNG and H has a negative impact on the percentage of savings. 

• Regarding the prices: At a first glance, pE is in general more relevant 

than pNG when the analysis is in amount of savings. In contrast, when it 

is in percentage of savings, pNG is generally more influent. 

For this case study, the Morris sensitivity analysis method has some limitations: 

1. The calculation of the elementary effects and SA indexes are strongly 

affected by the choice of the sample, which in turn depends on 

a. The resolution of the range 

b. The point of the range where the sample is taken 

2. It does not quantify the interaction effects of the variables 

Therefore, the following two Sensitivity Analysis methods intend to solve these 

limitations. VARS is a method that outlines the importance of the variables 

across their whole range. And Sobol can quantify the interaction effects.  

 

 

5.3 VARS – Variogram based approach 

As explained in subsection 3.3.3.3, this method explores each variable along its 

range by fixing  the other ones. It uses Latin Hypercube Sampling (LHS) to 

choose four seed points. Afterwards, the charts of distance and variograms are 

drawn for each variable to outline the relevance of each variable. 

Similarly than in Morris method, the prices are expressed in $/kWh and the loads 

in GWh/y, with ranges (R), increments (Δh) and number of levels (‘dim(h)’ as 
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follows: for pE a R={0.10 ; 0.28}, with Δh=0.01 and dim(h)=17, for pNG a 

R={0.02 ; 0.10} with Δh =0.005 and dim(h)=15, and for E, H and C a R={0 ; 100} 

with Δh=5 and dim(h)=20. All variables have uniform distribution. The 

computational cost of this method is 376 simulations, which is around three 

times more than Morris. Table 24 shows the n=4 seed points obtained with Latin 

Hypercube Sampling (LHS). Razavi [110] suggests n=2 to ensure a 

representative sample, ours is double the size, then it is reasonable to trust in 

ours. The values for R, Δh and dim(h) are chosen to explore the prices and loads 

presented in subsection 2.2 and have similar dim(h) among all the variables.  

pE pNG E H C

seed 1 0.10     0.055   40 70 65

seed 2 0.15     0.075   95 85 75

seed 3 0.22     0.020   55 0 10

seed 4 0.24     0.095   10 40 25  

Table 24 Seed point for VARS SA 
 

Figure 45 shows the behavior of the variograms for the amount of savings. 

Firstly, it indicates that the most relevant variables are pE, pNG and E, which is 

in line with the Morris method results. The three have variogram curves with big 

slopes, compared with H and C. A large slope, for example in pE, means that 

the larger the difference in pE, the larger the difference in amount of savings. 

One of the advantages of VARS is that it outlines the relevance of variables 

across the range of analysis. With that said, notice that the order of relevance is 

the same along the whole range of analysis (pE, pNG, E, H, and C). See the 

zoom at the bottom of Figure 45, showing the first part of the curve. 

Secondly, Figure 45 shows that all variables keep the same sign of the slope. 

This is contrary to Morris method, that identifies a non-monotonic behavior of 

the variables for some sampling points. What happens is that VARS method 

dilutes the non-monotonic behavior when it is found only in some specific spots 

of the range. That is possible because VARS consider a larger sample and is 

able to build a more general trend. From the operational conclusion (feasibility), 

it implies that VARS helps to identify general trends, instead of focusing on small 

differences. 
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Figure 45 Variogram of variables for the amount of savings (top), zoom 
(bottom) 

 

By design, the variogram of a variable is always in the first quadrant of the 

cartesian plane. Therefore, to clearly understand the influence for each variable 

on the output, it is necessary to observe the sign of its slope by plotting the raw 

data obtained from the four seed points (Figure 46). It is observed that a grow 

in pE, E, or C drives an increment of the amount of savings (positive slope). In 

contrast, when pNG grows, it decreases (negative slope). In the case of H: 

Morris SA detected than for some ranges, its increment has a negative impact 

on the amount of savings. But VARS, that has more sample points, shows 

instead that the behavior is quite asymptotic (slope≈0). 
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Figure 46 Response surface (amount of savings) vs. the raw data 
corresponding to the four seed points for variables pE, pNG, E, H, and C. 

 

On the other hand, Figure 47 shows the behavior of the variograms for the 

percentage of savings. Similar than in Morris, it indicates that the most relevant 

variables are pNG, and pE. E is mediumly important and H and C are almost 

negligible. The order of relevance keeps, the same even along the whole range 

of analysis (see the zoom at the bottom of Figure 47), but the difference in 

relevance makes bigger, while h grows (bigger values of the variables). This 

matches with the analysis in subsections 4.4.3 and 4.4.4, showing that the prices 

are always the most important variables, afterwards the E loads display a 
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unfading relevance, but H and C show relevance only for small spark spread 

rates. 

 

 

Figure 47 Variogram of variables for the percentage of savings (top), zoom 
(bottom) 

 

The variograms of Figure 47 locate in the first quadrant of the cartesian plane. 

Therefore, to understand the influence for each variable on the output, Figure 

48 plots the raw data obtained from the four seed points. It is observed that a 

grow in pE, E, or C increases the percentage of savings (positive slope). 

However, when pNG or H grow, the output decreases (negative slope). The 

latter analysis of H matches with the remark in subsections 4.4.1 and 4.4.4 
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stating that it is preferable to use the boiler when heating loads dominate. Also 

notice that although the slope of C is positive, it is close to zero. Therefore, it is 

not a surprise that sections 4.4.1 and 4.4.4 mentioned that the absorption 

chiller is feasible only in certain conditions. 

 

 

 

Figure 48 Response surface (percentage of savings) vs. the raw data 
corresponding to the four seed points for variables pE, pNG, E, H, and C. 

 

Regarding the prices, both, VARS and Morris agree that pE is more relevant 

than pNG when the analysis is in amount of savings. And it is vice versa for the 

percentage of savings. 
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In general, the conclusions obtained with VARS and Morris are similar, except 

that VARS: 

• It has a computational cost around three more times than Morris. 

• It does not give any idea of the interaction effects. 

• It provides a more holistic understanding of the direction of influence for 

each variable. For example, for the analysis of the amount of savings, it 

shows that the effect of H is quite asymptotic instead of focusing on its 

non-monotonic nature, as Morris did. 

 

 

5.4 Sobol – Variance based approach 

As explained in subsection 3.3.3.2, this method is a variance decomposition 

approach and it is based on a Monte-Carlo numerical procedure to generate 

random samples. It calculates the contribution of each variable, as well as the 

interaction among them. 

Like VARS and Morris, the ranges of analysis are for pE a R={0.10;0.28}, for 

pNG a R={0.02;0.10}, and for E, H and C a R={0;100}. All variables with uniform 

distribution. The prices are expressed in $/kWh and the loads in GWh/y. The 

computational cost of this method is 12,000 simulations. 

The Sobol SA indexes for the amount of savings are in Figure 49. The top part 

shows S1 and ST, the individual and total effects of the variables respectively. 

The difference between S1 and ST corresponds to the interaction effects. Just 

as Morris SA suggests, all the variables have interaction effects (σ ≥ μ). But 

different than Morris, Sobol does not identify if they exist at a specific part of the 

range. Additionally, just as Morris and VARS SA stated, the most influential 

variable for the amount of savings is pE, closely followed by pNG and E. 

Contrary, H and C are non-influential factors. 

The bottom part of Figure 49 shows S2, the 2nd order SA index that describes 

the interaction effects of the variables per pair. The largest interaction effects 



 

 

124 

 

 

are between E – pNG and E – pE. Then, it means that the relevance of E is 

highly tied to the value of pNG and pE. Other interesting observation is that pNG 

is the only variable that has interaction effects with all the others. This is an 

indication of its relevance, even though it does not have the largest individual 

and total index (S1 and ST). 

 

 

Figure 49 Sobol SA indexes for amount of savings 
 

Some drawbacks of Sobol SA method in comparison with Morris and VARS, is 

that it does not give any information regarding: 1) the non-monotonic behavior 

of the variables; 2) the direction of influence for each variable on the output. 

pE pNG E H C

Individual effect 0.26 0.22 0.14 0.00 0.01

Total effect 0.39 0.33 0.29 0.02 0.03

 -

 0.10

 0.20

 0.30

 0.40

 0.50

Amount of savings

Individual [S1] and total [ST] effect

0.02 

0.03 

-

-

0.07 

0.01 

0.01 

-

-

0.01 

pNG - pE

E - pE

H - pE

C - pE

E - pNG

H - pNG

C - pNG

H - E

C - E

C - H

Interation effects [S2]



 

 

125 

 

 

Figure 50 shows the Sobol SA indexes for the percentage of savings. Same 

than Morris and VARS, Sobol individual indexes indicate that the most influential 

variable is pNG, followed by pE. Here, E becomes less influential, compared 

with the analysis of the amount of savings. That is because, when measuring 

the amount of savings, there is a direct link between the money saved and the 

size of E. But when measuring percentage of savings, it considers the 

proportions, rather than the total amount. Still E is slightly more influential than 

H and C, just as Morris and VARS also point out. 

 

 

Figure 50 Sobol SA indexes for percentage of savings 
 

pE pNG E H C

Individual effect 0.30 0.53 0.04 0.00 -

Total effect 0.39 0.64 0.08 0.02 0.02
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The bottom part of Figure 50 displays the 2nd order SA indexes. Sobol suggests 

that all the variables have interaction effects, contrary to Morris SA where prices 

had several cases of σ≤μ (no interaction effects) in Figure 42, Figure 43, and 

Figure 44.  

Similar than with the analysis of the amount of savings above, pNG is the only 

variable that has interaction effects with all the others. The largest one is the 

index pE – pNG, which is notably bigger compared with its analogous in the 

amount of savings (Figure 49). This could suggest that the Spark Spread rate 

(SS) is more relevant in the case of the percentage of savings. 

On the other hand, the interaction effect pNG – E is lower for the percentage of 

savings than for the amount of savings, but the interaction pNG - H and pNG - 

C are slightly higher (see Figure 49 vs. Figure 50). This suggests two things: 

First, the influence of the three loads is more equilibrated when analyzing the 

percentage of savings, but it depends on the level of pNG. The last sentence 

matches with the analysis of Figure 37 and Figure 38, where the percentage of 

savings for the SS1 seems larger in the middle of the ternary diagram, 

corresponding to a balance among the loads. Second, the analysis in chapter 4 

highlights the relevance of the spark spread. Although the interaction pNG – pE 

is significant in this Sobol SA analysis, the variable that mostly interacts with the 

loads is the price of natural gas. 

Finally, Figure 51 shows the data obtained with SOBOL, consolidating it by bins. 

They describe the general trend of the average amount and percentage of 

savings throughout the axis of pE, pNG, and E (the three most influential 

variables). 

There are some important differences between the images shown in Figure 51: 

First, the number of cases with high feasibility (given by the red-yellow color 

scale) is larger when measuring in terms of percentage of savings. That is 

because the latter quantifies the relative savings. Then, a scenario with a small 

amount of savings could be shown blue in at the left image of Figure 51, but red 

in the right one because the relative savings (percentage of savings) is large. 

The second difference is that E is more influential in the amount than in the 
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percentage of savings (also discussed in Figure 50). For the percentage of 

savings (right in Figure 51), the highly feasible scenarios are found all along the 

edge of the cube where pNG is smaller and pE is larger. In contrast, the highly 

feasible scenarios for the amount of savings (left of Figure 51) are found at the 

corner of the cube where pNG is smaller, pE is larger, and E is higher. This 

matches with the interaction effects E – pNG and E – pE found and discussed 

in Figure 49. 

 

Figure 51 Three dimensional charts of the average amount and percentage of 
savings (left and right respectively), across pE, pNG, and E.  

KEY: The units of the color scale for the average amount of savings (left) is M$, while the 
average percentage of savings (right) is expressed in fraction. 
 

Finally, it is good to highlight that 99% of the CCHP-TS scenarios analyzed in this 

section have better environmental performance than their reference scenario, 

where is considered a carbon intensity of electricity equal to 0.447 kg CO2 eq. / 

kWh. This corresponds to the average in Europe [14]. 

 

 

5.5 General conclusion of the sensitivity analysis 

The results stemming from the GSA method aim to establish the influence of 

energy prices and loads over the feasibility of Trigeneration-Thermal Storage 

systems. The analysis considers two metrics: the amount of savings, and the 

percentage of savings.  
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The amounts of savings quantify the nominal sum of money saved by using 

the CCHP-TS system. Here, the most relevant variables are pE, pNG, and E, in 

that order. Regarding the interaction effects, E – pNG and E – pE are the most 

significant. It is because, as observed in Figure 51 (left), the smaller pNG and 

larger pE, it is more relevant to have a high E. Another important remark is that 

pNG is the only variable having interaction effects with all the other. 

The percentage of savings measures the relative savings regardless of its 

nominal value. Here, the most relevant variables are pNG, pE, and E, while H 

and C seem quite irrelevant. However, E becomes less influential, compared 

with the analysis of amount of savings. That is because, when measuring the 

amount of savings, there is a direct link between the money saved and the size 

of E. But when measuring percentage of savings, it considers the proportions, 

rather than the total amount. On the other hand, pNG and H have negative 

slopes, therefore, an increase in any of them leads to a decrease in the 

percentage of savings. Regarding the interaction effects, pNG is again the 

variable that has coupling effects with all the others. The largest interaction is 

between the two prices. The same does not happen with the amount of savings, 

which suggests that the SS is more relevant in the case of the percentage of 

savings.  

Other interesting aspect is connecting the conclusions reached here, and the 

ones obtained in chapter 4. To start, regarding the lack of relevance of H and C, 

note that chapter 4 gave a grasp of this while concluding that it is it is more 

profitable to use boiler and vapor-compression chiller when heating or cooling 

loads dominate. In a similar vein, it concludes that the heat scrap does not affect 

the percentage of savings significantly. On the other hand, chapter 4 implements 

load dominance rates and ternary diagrams to show the results. It could be said 

that it was the first sign of existing interaction effects between the variables of 

analysis. Finally, the chapter also proposes a two-level characterization, firstly 

based on Spark Spread rate, and secondly on the annual loads. This is well 

explained by the results of the sensitivity analysis, indicating that the prices are 

more relevant than the loads. However, the sensitivity analysis quantifies the 

relevance and even separates the effect of each variable, including the prices. 
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It is interesting to see how chapter 4 and 5 match and complement each other. 

Because the first provides the physical explanation to the numerical results of 

the second. 

Concerning the interest of studying the energy prices separately, it can be said 

that both, pE and pNG, are relevant individually regardless of the output 

measure (amount or percentage of savings). Also, they are clearly tied, either 

directly or indirectly. For the percentage of savings, the interaction effect 

between them is very strong. While for the amount of savings, each price has 

interaction effects with E, therefore, they have an indirect link. However, the 

main difference between both energy prices is that, in either output (amount or 

percentage of savings), pNG keeps interaction effects with all the other 

variables, indicating that its influence is wider. Moreover, when referring to the 

percentage of savings, the energy loads interact almost exclusively with pNG. 

Due to this, it is recommendable to analyze them separately, to clearly quantify 

their contribution to the feasibility of CCHP-TS systems. 

 

 

5.6 Overall comparison of the three SA methods 

Given the results across this chapter, it is possible to see some of the strengths 

and weaknesses of the different GSA methods. 

Morris is computationally cheap and easy to implement. However, the method 

is more useful to differentiate between the influential and non- influential 

variables, rather than clearly ranking them [119]. This is because the rank of the 

variables is very sensitive to the range of analysis and its resolution. As 

observed in Figure 42, Figure 43, and Figure 44 where the output depends on 

the location of the different levels explored). Morris also gives an idea of the 

interaction effects present in each variable, but it does not measure them. 

Additionally, Morris identifies when a variable has a non-monotonic behavior, 

but its outcome is limited by the information acquired with the sampling points. 
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VARS is a medium expensive method in computational terms. The method 

outlines the importance of the variables across their whole range quite precisely 

(its ranking matches with the Sobol method). However, it does not give an idea 

of the interaction effects among variables. Because, as mentioned in section 

5.3, a directional variogram only assesses the sensitivity of the response surface 

Y in the direction of variable Xi. Another characteristic of VARS is that it provides 

a more holistic understanding of the sign of the slope (direction of influence) for 

each variable and its monotonic or non-monotonic behavior. While Morris 

suggest that the effect of the heating demand, H, is non-monotonic for the 

amount of savings, VARS shows that this effect in general is asymptotic (Figure 

46). Therefore, VARS provides a more integrated view thanks to the number of 

samples. 

Sobol is an extremely expensive method in terms of computational resources. 

Its most important advantage is that it gives accurate information regarding the 

individual effect of a variable and its interaction effects with the other variables. 

However, this method does not give any information neither regarding the non-

monotonic behavior of variables nor their sign of the slope (direction of influence 

on the output). The reason is simple. As mentioned in subsection 3.3.3.2, Sobol 

is a variance-based approach, contrary to Morris (a derivative-based approach) 

and VARS that analyze sensitivity out of the slopes and derivatives of the 

variables. 

Therefore, the decision to implement one method or the other depends on the 

interest of the analyst. Morris is a quick way to discard non-influential variables, 

identifies a non-monotonic behavior and gives an idea of the interaction effects. 

Crossing the analysis of the results given by Morris and VARS, could provide a 

precise rank of the influential variables, an idea of the interaction effects, and a 

more holistic vision of the direction of influence for each variable (including non-

monotonic behaviors). Otherwise, crossing the analysis of the results given by 

VARS and Sobol would perfectly rank the influential variables, estimate their 

interaction effects, and provide a holistic vision of the direction of influence for 

each variable. However, the latter combination is computationally costly.  
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Another option yet to explore in future research is extending the Morris approach 

to calculate the second order sensitivity index, just as Garcia Sanchez does for 

the context of energy in buildings [113]. Although, this option is computationally 

expensive and removes one of the advantages of Morris method. 

 

 

5.7 Isolines of the variables 

This section presents isolines that deepen the impact of one variable depending 

on the values of the others. This analysis is especially important to verify or 

discard the hypothesis laid out in section 4.6: the impact of the energy prices 

might be different. Therefore, it aims to understand if using a spark spread rate 

is reasonable or the price of electricity and natural gas should be considered 

separately. 

To exemplify how isolines are built, let us take Figure 52 (top). Each isoline 

corresponds to the optimized sequence of scenarios for the given values pNG, 

E, H, and C, while varying pE step by step (taking the seed points and samples 

generated for VARS SA). The optimization is conducted with the Python-

PYOMO.CPLEX tool. 

Figure 52 (top) shows especially the effect of pNG on the amount of savings. As 

expected, pNG=0.020 gives the largest amount of savings and pNG=0.095 

gives the lowest. But the effect between the isolines pNG=0.055 (blue) and 

pNG=0.075 (orange) worth analyzing. At pE=0.22, the orange isoline of 

pNG=0.075 exceeds the blue one of pNG=0.055. In other words, a higher price 

of natural gas gives larger amount of savings. At a first glance, this sounds 

divergent from the normal trend, but the effect is due to the size of the loads (E, 

H, and C). The orange isoline pNG=0.075 exceeds in magnitude all the loads of 

the blue isoline pNG=0.055. Then, with the objective of separating the effect of 

pNG and the loads (E, H, and C), the Figure 52 (bottom) adds an extra isoline 

(light blue). The extra isoline has pNG=0.075, but the loads are equal to the blue 

isoline of pNG=0.055. The result is that, both, the blue and the light blue isolines 
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are perfectly parallel. Therefore, now it is clear that an increase of the loads 

drives a growth in the slope of the pNG isolines, rising the amount of savings. 

 

 

Figure 52 Isolines of pNG-E-H-C across the electricity price [pE] for the amount 
of savings (top); and addition of the isoline pNG=0.075, E=40, H=70, C=65 

(bottom) 
 

Similarly, Figure 53 shows especially the effect of pNG on the percentage of 

savings. The latter increases while decreasing the price of natural gas and 

increasing the price of electricity. The threshold of spark spread rate when the 

scenarios start being feasible, is different for each isoline (SS=2.52 for 

pNG=0.095, SS=2.26 for pNG=0.075, SS=2.36 for pNG=0.055). Therefore, the 

spark spread threshold could be lower than 3, depending on the price of natural 

gas. This is a reason why the prices should be analyzed separately. 
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Figure 53 Isolines of pNG-E-H-C across the electricity price [pE] for the 
percentage of savings 

 

 

 

Figure 54 Isolines of pE-E-H-C across the natural gas price [pNG] for the 
amount and percentage of savings (top and bottom respectively) 
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Similarly, Figure 54 shows that the larger pNG, the lower the amount and 

percentage of savings. Also, it presents that the threshold when each scenario 

is feasible depends on the combination of pE and pNG. And it is evident that the 

size of the loads makes a difference on the slope of each curve. For example, it 

is interesting that for small values of pNG, the amount and percentage of savings 

are higher for the isolines pE=0.15 and pE=0.22, than for pE=0.24. This is due 

to the size of the loads (E, H, C), that have larger impact when pNG is smaller. 

That is related with the 2nd order effects identified between pNG and the loads 

during the analysis with the Sobol SA method (section 5.4).  

 

 

Figure 55 Isolines of pE-pNG-H-C across the annual electricity load [E] for the 
amount and percentage of savings (top and bottom respectively) 

 

For the case of annual electricity load, Figure 55 top shows that the larger E, the 

higher the amount of savings. But notice that for two isolines (pE=0.10, 

pNG=0.055 and pE=0.15, pNG=0.075), none of the scenarios is feasible. It is 

because of the low spark spread ratio (two or less). 
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However, the percentage of savings has an asymptotic behavior (Figure 55 

bottom). Each E isoline has a threshold where the percentage of savings 

reaches a stable point for any larger load. Then, for example in the isoline of 

pE=0.22 and pNG=0.020, it should not be a big difference in percentage of 

savings between having an E=35 or an E=95. 

For the case of annual heating load, Figure 56 shows feasible scenarios only for 

the largest spark spread rate (pE=0.22, pNG=0.020, SS=11). Figure 56 top 

shows that the amount of savings behaves asymptotic after certain threshold of 

H, but in general almost constant. This behavior is different for the percentage 

of savings because the larger H, the larger the reference cost, while the amount 

of savings keep the same (asymptotic behavior). Therefore, the larger H, the 

lower the percentage of savings.   

 

 

Figure 56 Isolines of pE-pNG-E-C across the annual heating load [H] for the 
amount and percentage of savings (top and bottom respectively) 
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For the case of annual cooling load, Figure 57 top shows that the amount of 

savings grows with C. While Figure 57 bottom presents an asymptotic behavior 

in the percentage of savings (almost constant). 

 

 

Figure 57 Isolines of pE-pNG-E-H across the annual cooling load [C] for the 
amount and percentage of savings (top and bottom respectively) 
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6 CONCLUSIONS AND FUTURE WORK 

6.1 General conclusions 

The trigeneration systems with thermal storage (CCHP-TS) are key 

technologies to reduce greenhouse gas emissions and improve the distributed 

generation of energy. The study of their feasibility has been crucial across the 

scientific community and governmental organizations. Therefore, this work aims 

to contribute by systematically identifying the most relevant variables to assess 

if CCHP-TS systems is techno-economically feasible.  

It is worth mentioning that this work is conducted in hourly timestep. Not all the 

authors and computational tools do it, and its relevance is because the smaller 

the timestep, the higher the precision of the assessment. This is a must in 

context like the European, where the interest of buying fuel and selling electricity 

is not straight forward due to the large energy prices. 

The study considers the relevance of five variables: the price of electricity [pE], 

the price of natural gas [pNG], the size of the annual loads of electricity [E], 

heating [H], and cooling [C]. In particular, the objective of this work is to proof 

(or discard) the following hypothesis: 

1. There is a combination of energy prices (pE and pNG) and size of the 

energy loads (E, H, and C) that makes a Trigeneration – Thermal Storage 

feasible, 

2. The energy prices should be considered separately, instead of 

consolidating them into the spark spread rate (SS). 

The first part of this work assessed the techno-economic feasibility, measuring 

the percentage of savings obtained by using a CCHP-TS system instead of the 

reference scenario (Figure 3). Techniques of clustering and MCDM allowed to 

analyze the data and generate ternary diagrams. 
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Figure 58 Ternary diagrams of SS1, SS2, SS3, and SS4 for the distribution of 
the percentage of savings across dominance rates (rE , rH , rC). Taken from 

subsection 4.4.3. 
 

These diagrams (Figure 58) showed qualitatively that the percentage of savings 

is firstly driven by the spark spread rate (SS) and secondly by the size of energy 

loads. Specifically, the size of the electric annual load (E) proved to be relevant 

in all the cases. 

The second part of the work had the objective to conduct a sensitivity analysis 

of five variables affecting the feasibility of CCHP-TS (the price of electricity pE, 

the price of natural gas pNG, and the annual loads E: electricity, H: heating, C: 

cooling). There was a special emphasis in analyzing the electricity and natural 

gas prices separately, instead of consolidating them into the spark spread rate. 

For that, three sensitivity analysis methods were used and compared: Morris 

(derivative-based approach), Sobol (variance-based approach), and VARS 

(variogram-based approach). The analysis was conducted considering two 

metrics: the amount of savings, and the percentage of savings. The first one 

quantifies the absolute savings of using the CCHP-TS system instead of the 

reference scenario, and the second measures the relative savings. The results 

of this part gave answer to the two hypotheses raised. 

 

HYPOTHESIS 1 

Yes, there are combination of energy prices and size of the energy loads that 

make a Trigeneration – Thermal Storage feasible. The optimal combination 

depends on the metric considered. 

When talking about the amount of savings, pE, pNG, and E are, by far, the 

most relevant variables. While H and C seem comparatively unimportant. The 
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main interaction effects are between the electricity load and the energy prices 

(E – pNG and E – pE). In other words, having a large E is good, but it should be 

along with a small pNG and high pE (see Figure 51 left). Vice versa it is also 

true. The discussion of Figure 52 shows that, for determined pE and pNG, an 

increase of the loads rises the amount of savings. Finally, it is good to mention 

that pNG is a singular variable that has interaction effects with all the others. 

When talking about the percentage of savings, the energy prices pE, and pNG 

are the most relevant variables. E is still more influential than H and C, but it 

becomes less influential compared with its analysis for the amount of savings. 

That is because, when measuring the amount of savings, there is a direct link 

between the money saved and the size of E. But when measuring percentage 

of savings, it considers the proportions, rather than the total amount. 

Nevertheless, an important remark is that in the percentage of savings, the 

influence of the three loads (E, H, and C) is slightly more equilibrated than in the 

amount of savings (individually and in terms of interaction effects). All this fit with 

the analysis of chapter 4. On the other hand, pNG is again the only variable that 

has interaction effects with all the others, but some aspects draw attention. The 

index pNG – pE is notably bigger compared with its analogous in the amount of 

savings, suggesting that the Spark Spread rate (SS) could be relevant for the 

relative savings. However, that resolution becomes weak when noticing that the 

energy loads have interaction effects almost exclusively with pNG. Therefore, 

the relevance of E, H, and C is strongly linked only to the price of natural gas. 

 

HYPOTHESIS 2 

Concerning the interest of studying the energy prices separately, it can be said 

that both, pE and pNG, are relevant individually regardless of the output 

measure (amount or percentage of savings). Also, they are clearly tied, either 

directly or indirectly. For the percentage of savings, the interaction effect 

between them is very strong. While for the amount of savings, each price has 

interaction effects with E, therefore, they have an indirect link. However, the 

main difference between them is that, in either output (amount or percentage of 
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savings), pNG keeps interaction effects with all the other variables, indicating 

that its influence is wider. Specifically talking about the percentage of savings, 

the energy loads interact almost exclusively with pNG. Moreover, although pE 

also has a strong interaction effects with pNG, section 5.7 shows that, contrary 

to the general rule established by international governmental organisms [13] and 

explained in section 2.2, the  spark spread threshold could be lower than three 

depending on the price of natural gas. Therefore, it is recommendable to analyze 

separately the energy prices while assessing the feasibility of Trigeneration 

systems with Thermal Storage.  

 

Some pertinent final remarks regarding the nature of this work include the 

following: 

First, the thesis provides a grasp on the flexibility of the CCHP-TS system by 

presenting the different combinations of the variables that fluctuate across their 

range. Then, it is possible to determine at what extend the CCHP-TS system 

keeps being economically feasible. 

Second, all the analysis in this thesis is conducted without considering any 

regulatory incentive. Therefore, when the analysis shows that a scenario is 

feasible, it means that the characteristics of the technology and the market are 

enough. 

Third, the work exhibits that electricity loads have a larger influence than heating 

and cooling in the techno-economic feasibility of CCHP-TS system. However, 

note that the presence (not dominance) of heating and cooling potentially fosters 

the environmental performance, because it takes advantage of the residual heat. 

Then, a recommendation for policy makers is to identify facilities that have a 

large electric load and incentivize, through pricing mechanisms, the aggregation 

of thermal loads and the use of CCHP-TS. This would encompass the heating 

and cooling infrastructure with the urban planning. 

Finally, the conclusions of the work are quite aligned with the hypothesis 

proposed by Knizley et. al. when analyzing CHP systems [47]. However, this 

work goes a step further by 1) analyzing the CCHP-TS system, 2) analyzing 
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many combinations of energy prices and loads, 3) getting conclusive results, by 

using many tools, regarding the impact of each variable for the case study of a 

University campus. 

 

 

6.2 Conclusions from the methodology 

Aside from the technical results discussed above, the objective of this work is to 

analyze and contrast the different steps taken at the methodology of the thesis. 

The general methodology is presented in section 3.1 and starts with a division 

in two phases. Each of them with a clear purpose. The first examines the 

relevance of the CCHP-TS model (feasibility and sensitivity to four selected 

variables). The second conduct a global sensitivity analysis of the feasibility 

studying five selected variables.  

These two phases are complementary in two way. To start, developing the work 

in phase one helped to get familiarized with the model, the variables, and their 

synergy. As an example, one of the hypotheses proposed in this thesis is an 

outcome of the first phase. To continue, while the second phase (developed in 

chapter 5) clearly estimates the relevance of each variable, the first phase (in 

chapter 4) helps to understand the physical behavior of the technology. For 

example, while chapter 5 finds that H and C are not relevant variables, chapter 

4 explains that the reason is that it is more profitable to use boiler and vapor-

compression chiller when heating or cooling loads dominate. 

Other valuable remark of the methodology is regarding the energy system 

optimization. DER-CAM model was a good way to get the first general approach. 

But eventually, the level of automatization required in the simulation process 

obliged us to move forward (see subsection 3.3.1). Then, we adapted an hourly 

time-step model of the CCHP-TS systems into the programming language 

Python. This allowed to run thousands of simulations in a very agile way.  

Finally, the sensitivity analysis is another key part of the methodology. The first 

approach was using a full factorial DoE as an exploratory analysis. It is 
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computationally cheap and easy to implement; therefore, we were able to use 

DER-CAM for the energy system optimization. Later on, we needed a more 

robust way to assess the influence of variables (see subsection 3.3.5). Then, 

using the model adapted into Python, we used and compared three global 

sensitivity analysis methods. This allowed identifying their advantages and 

limitations (detailed in section 5.6), but more important, this complementarity 

thereby reinforced the techno-economic feasibility analysis of the Trigeneration 

systems with Thermal Storage. 

 

 

6.3 Future work 

Across the literature there are several works using modeling and data analysis 

to study the feasibility of Trigeneration and Thermal Storage system. 

Nevertheless, there is still room for research and innovation.  

Some opportunities for future work include the study of different hourly load 

profiles, and price schemes. 

Regarding the price schemes, we recommend performing a similar analysis to 

this work, but now considering variable pE and pNG, that could differ across the 

days of the week and even along the same day. Including this into the model, 

intuitively, will foster the use of thermal storage during the hours of the day when 

the prices of electricity and natural gas are lower. 

Regarding the hourly load profile, an option is to characterize it through the study 

of load duration curves, taking as references works as Poulin et. al. and 

Ueckerdt et al. [177], [178]. Similarly, it is pertinent to measure the 

interdependence between E, H, and C in different case studies. This would give 

the opportunity to create more reasonable scenarios while conducting sensitivity 

analysis. Following the same line of thought, it is also relevant to deepen the 

study for the flexibility of the CCHP-TS system. It includes analyzing the impact 

in the optimal solution due to climate change, considering extreme peaks of 

heating and cooling. 
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Another interesting study would be to perform a sensitivity analysis to know how 

the different regulatory incentives could affect positively (or negatively) the 

feasibility of the CCHP-TS system. A valuable extend of the model could even 

include other technologies such as PV, fuel cells, solar collectors, heat pumps, 

etc. Then, it would be possible to verify how their current price and governmental 

incentives could affect the feasibility of CCHP-TS systems. 

Specifically, we recommend continue working with pE and pNG separated, 

instead of consolidating them into the spark spread.  
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ANNEX I. Consolidated output data from DERCAM 

This annex presents the output data from DERCAM, once it was automatically 

extracted from the individual reports. All this, using the code in Annex II. 

Data from SS=3.0 

E H C E4E E4C E4CS H4H H4C H4CS Grid Boiler Abs %sav

% CO2 

reduction

%Heat 

scrap

100 0.1 10 62% 4% 0% 0% 30% 3% 62% 0% 29% 4% 9% 37%

100 0.1 100 29% 27% 0% 0% 44% 0% 66% 0% 8% 4% 10% 1%

100 0.1 500 9% 47% 0% 0% 44% 0% 82% 0% 3% 3% 6% 1%

100 1 10 61% 4% 1% 2% 29% 4% 63% 0% 29% 4% 9% 36%

100 1 100 29% 27% 0% 1% 43% 0% 66% 0% 8% 5% 10% 0%

100 1 500 9% 47% 0% 1% 43% 0% 82% 0% 2% 3% 6% 5%

100 10 0.1 87% 0% 0% 12% 0% 0% 60% 45% 69% 4% 9% 81%

100 10 1 78% 0% 0% 14% 6% 2% 60% 30% 82% 4% 10% 65%

100 10 10 60% 3% 1% 10% 22% 4% 37% 4% 42% 6% 16% 29%

100 10 100 28% 27% 0% 8% 36% 0% 64% 3% 7% 6% 11% 1%

100 10 500 9% 46% 0% 5% 39% 0% 82% 0% 2% 3% 6% 0%

100 100 0.1 81% 0% 0% 19% 0% 0% 34% 85% 90% 5% 12% 70%

100 100 1 75% 0% 0% 24% 1% 1% 35% 80% 90% 5% 12% 58%

100 100 10 58% 3% 1% 30% 7% 2% 22% 61% 45% 7% 17% 20%

100 100 100 29% 27% 1% 29% 15% 0% 46% 48% 8% 6% 15% 1%

100 100 500 9% 46% 0% 25% 19% 0% 77% 39% 2% 4% 8% 0%

100 400 0.1 77% 0% 0% 23% 0% 0% 19% 94% 84% 4% 9% 62%

100 400 1 72% 0% 0% 27% 0% 0% 21% 93% 84% 4% 9% 52%

100 400 10 57% 3% 1% 36% 2% 0% 24% 88% 40% 4% 10% 20%

100 400 100 29% 27% 0% 39% 5% 0% 48% 83% 8% 5% 10% 1%

100 400 500 9% 46% 0% 38% 7% 0% 77% 77% 2% 4% 7% 0%

1000 0.1 400 40% 16% 0% 0% 44% 0% 85% 0% 6% 3% 5% 0%

1000 1 400 40% 15% 0% 0% 44% 1% 70% 0% 12% 3% 7% 12%

1000 10 100 56% 5% 0% 3% 34% 2% 81% 0% 18% 3% 6% 66%

1000 10 400 40% 14% 0% 1% 43% 1% 71% 0% 12% 3% 7% 10%

1000 100 10 71% 0% 0% 20% 7% 3% 80% 46% 69% 3% 6% 78%

1000 100 100 55% 4% 1% 13% 24% 4% 62% 13% 31% 4% 9% 26%

1000 100 400 40% 13% 1% 9% 36% 2% 57% 4% 16% 5% 10% 10%

1000 400 0.1 82% 0% 0% 18% 0% 0% 42% 70% 91% 3% 9% 77%

1000 400 1 81% 0% 0% 18% 0% 0% 42% 69% 91% 3% 9% 76%

1000 400 10 75% 0% 0% 22% 2% 2% 42% 60% 90% 3% 9% 65%

1000 400 100 55% 3% 1% 23% 14% 4% 34% 34% 47% 5% 13% 28%

1000 400 400 39% 12% 1% 22% 25% 1% 42% 24% 19% 6% 13% 7%

500 0.1 100 54% 9% 0% 0% 35% 2% 65% 0% 18% 4% 9% 68%

500 0.1 500 28% 28% 0% 0% 44% 0% 80% 0% 5% 4% 6% 57%

500 1 100 53% 9% 0% 0% 35% 2% 65% 0% 18% 4% 9% 68%

500 1 500 28% 28% 0% 0% 44% 0% 80% 0% 5% 4% 6% 57%

500 10 10 76% 0% 0% 4% 15% 5% 60% 0% 74% 3% 9% 83%

500 10 100 52% 9% 0% 3% 34% 2% 65% 0% 18% 5% 9% 66%

500 10 500 28% 28% 0% 3% 41% 0% 80% 0% 5% 4% 7% 57%

500 100 0.1 85% 0% 0% 15% 0% 0% 59% 67% 87% 4% 9% 91%

500 100 1 83% 0% 0% 16% 1% 0% 59% 63% 88% 4% 9% 89%

500 100 10 68% 0% 0% 20% 7% 5% 60% 43% 78% 5% 10% 75%

500 100 100 49% 7% 1% 15% 25% 3% 41% 13% 29% 6% 14% 15%

500 100 500 27% 26% 0% 14% 33% 0% 66% 12% 7% 5% 10% 0%

500 400 0.1 80% 0% 0% 20% 0% 0% 34% 80% 90% 4% 11% 72%

500 400 1 79% 0% 0% 21% 0% 0% 34% 79% 90% 4% 11% 70%

500 400 10 68% 0% 0% 27% 2% 2% 33% 69% 90% 5% 12% 49%

500 400 100 48% 6% 1% 30% 14% 2% 28% 46% 32% 6% 16% 10%

500 400 500 27% 25% 0% 30% 19% 0% 57% 43% 8% 5% 12% 0%
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Data from SS=3.9 

 

E H C E4E E4C E4CS H4H H4C H4CS Grid Boiler Abs %sav

% CO2 

reduction

%Heat 

scrap

0.1 0.1 100 0% 53% 2% 0% 42% 2% 65% 0% 4% 4% 9% 0%

0.1 0.1 1000 0% 52% 0% 0% 48% 0% 66% 0% 5% 6% 8% 0%

0.1 0.1 500 0% 53% 0% 0% 47% 0% 73% 0% 4% 5% 7% 0%

0.1 1 10 0% 33% 0% 35% 32% 0% 94% 39% 1% 1% 1% 0%

0.1 1 100 0% 54% 2% 2% 40% 2% 66% 2% 4% 4% 9% 2%

0.1 1 500 0% 53% 0% 0% 47% 0% 73% 0% 4% 5% 7% 0%

0.1 10 10 0% 33% 0% 62% 5% 0% 94% 89% 1% 1% 1% 0%

0.1 10 100 0% 54% 2% 14% 30% 1% 66% 20% 3% 4% 10% 0%

0.1 10 500 0% 53% 0% 4% 43% 0% 73% 3% 3% 6% 8% 0%

0.1 100 100 0% 54% 2% 37% 7% 0% 67% 78% 3% 4% 8% 0%

0.1 100 500 0% 52% 1% 24% 23% 0% 71% 39% 3% 6% 8% 0%

0.1 400 100 0% 53% 2% 43% 2% 0% 65% 94% 3% 3% 5% 0%

0.1 400 500 0% 51% 1% 37% 11% 0% 63% 69% 4% 6% 8% 0%

1 0.1 100 1% 53% 2% 0% 42% 2% 65% 0% 4% 4% 9% 1%

1 0.1 500 0% 53% 0% 0% 47% 0% 73% 0% 4% 5% 7% 0%

1 1 10 3% 30% 0% 35% 32% 0% 95% 39% 1% 1% 1% 0%

1 1 100 1% 52% 3% 2% 40% 3% 62% 1% 4% 5% 10% 0%

1 1 500 0% 53% 0% 0% 47% 0% 73% 0% 4% 6% 7% 0%

1 10 100 1% 52% 3% 13% 30% 2% 63% 16% 4% 5% 11% 0%

1 10 500 0% 53% 0% 4% 43% 0% 73% 3% 3% 6% 8% 0%

1 100 100 1% 54% 2% 37% 7% 0% 67% 78% 3% 4% 8% 0%

1 100 500 0% 52% 1% 24% 23% 0% 71% 39% 3% 6% 8% 0%

1 400 100 1% 53% 2% 43% 2% 0% 66% 94% 3% 3% 5% 0%

1 400 500 0% 52% 0% 37% 11% 0% 63% 69% 4% 6% 8% 0%

10 0.1 1 62% 3% 1% 1% 23% 10% 41% 0% 43% 3% 7% 49%

10 0.1 10 27% 24% 1% 1% 46% 2% 65% 0% 9% 5% 7% 9%

10 0.1 100 5% 50% 1% 0% 42% 1% 65% 0% 4% 5% 10% 2%

10 0.1 500 1% 52% 0% 0% 47% 0% 73% 0% 4% 6% 7% 0%

10 1 1 57% 3% 1% 10% 21% 9% 41% 2% 42% 6% 10% 36%

10 1 10 26% 24% 1% 8% 40% 2% 65% 1% 8% 6% 8% 4%

10 1 100 5% 49% 2% 1% 41% 1% 64% 0% 5% 6% 10% 0%

10 1 500 1% 52% 0% 0% 47% 0% 73% 0% 4% 6% 7% 0%

10 10 0.1 70% 0% 0% 28% 0% 1% 45% 79% 48% 4% 8% 59%

10 10 1 53% 2% 1% 34% 6% 3% 42% 64% 40% 6% 10% 24%

10 10 10 26% 23% 1% 31% 19% 1% 48% 41% 10% 6% 12% 0%

10 10 100 5% 48% 3% 12% 31% 2% 61% 12% 4% 7% 11% 0%

10 10 500 1% 52% 0% 4% 43% 0% 72% 2% 4% 6% 8% 0%

10 100 1 52% 3% 1% 43% 1% 0% 42% 95% 36% 3% 4% 21%

10 100 10 28% 22% 6% 41% 2% 0% 36% 91% 8% 4% 7% 3%

10 100 100 5% 49% 2% 36% 8% 0% 58% 71% 4% 6% 11% 0%

10 100 500 1% 51% 1% 23% 23% 0% 71% 37% 3% 6% 8% 0%

10 400 10 28% 22% 6% 44% 0% 0% 35% 98% 7% 2% 3% 1%

10 400 100 5% 49% 2% 42% 2% 0% 64% 93% 3% 4% 6% 0%

10 400 500 1% 50% 1% 36% 11% 0% 63% 68% 4% 6% 9% 0%

100 0.1 0.1 99% 0% 0% 0% 1% 0% 19% 0% 88% 17% 13% 99%

100 0.1 1 93% 0% 0% 0% 6% 2% 21% 0% 88% 17% 13% 90%

100 0.1 10 68% 3% 1% 0% 23% 6% 11% 0% 55% 20% 18% 49%

100 0.1 100 30% 27% 0% 0% 42% 1% 41% 0% 13% 16% 15% 6%

100 0.1 500 9% 44% 0% 0% 47% 0% 59% 0% 6% 9% 10% 0%

100 1 0.1 98% 0% 0% 1% 1% 0% 19% 0% 87% 18% 13% 97%

100 1 1 92% 0% 0% 1% 6% 1% 19% 0% 84% 18% 14% 89%

100 1 10 67% 3% 1% 1% 23% 6% 10% 0% 55% 20% 18% 47%

100 1 100 30% 27% 0% 1% 42% 1% 41% 0% 12% 16% 15% 5%

100 1 500 9% 44% 0% 0% 47% 0% 59% 0% 6% 9% 10% 0%

100 10 0.1 88% 0% 0% 11% 0% 0% 19% 3% 77% 20% 16% 83%

100 10 1 83% 0% 0% 11% 5% 1% 21% 2% 88% 20% 17% 74%

100 10 10 63% 3% 0% 8% 23% 4% 13% 0% 54% 22% 21% 35%

100 10 100 29% 26% 1% 5% 38% 1% 41% 0% 12% 17% 17% 0%

100 10 500 9% 44% 0% 2% 45% 0% 59% 0% 6% 9% 10% 0%

100 100 0.1 77% 0% 0% 22% 0% 0% 11% 75% 84% 19% 17% 64%

continue…
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continue…

E H C E4E E4C E4CS H4H H4C H4CS Grid Boiler Abs %sav

% CO2 

reduction

%Heat 

scrap

100 100 1 74% 0% 0% 25% 1% 1% 11% 72% 84% 19% 18% 56%

100 100 10 58% 2% 1% 29% 7% 2% 10% 57% 49% 21% 20% 20%

100 100 100 29% 26% 1% 28% 16% 1% 40% 44% 9% 17% 17% 0%

100 100 500 9% 43% 1% 18% 30% 0% 57% 19% 5% 10% 12% 0%

100 400 0.1 75% 0% 0% 25% 0% 0% 10% 93% 82% 12% 10% 59%

100 400 1 72% 0% 0% 28% 0% 0% 9% 92% 84% 12% 10% 51%

100 400 10 57% 3% 1% 37% 2% 1% 10% 86% 47% 13% 11% 18%

100 400 100 28% 26% 1% 39% 5% 0% 40% 80% 9% 12% 12% 0%

100 400 500 9% 43% 0% 35% 13% 0% 58% 60% 5% 10% 10% 0%

1000 0.1 0.1 100% 0% 0% 0% 0% 0% 16% 0% 87% 14% 5% 100%

1000 0.1 1 99% 0% 0% 0% 1% 0% 16% 0% 87% 14% 5% 99%

1000 0.1 10 93% 0% 0% 0% 5% 1% 16% 0% 89% 14% 5% 93%

1000 0.1 100 64% 2% 1% 0% 27% 6% 19% 0% 58% 17% 10% 51%

1000 0.1 400 45% 13% 1% 0% 39% 2% 19% 0% 28% 17% 12% 28%

1000 1 0.1 100% 0% 0% 0% 0% 0% 16% 0% 87% 14% 5% 100%

1000 1 1 99% 0% 0% 0% 1% 0% 16% 0% 87% 14% 5% 99%

1000 1 10 93% 0% 0% 0% 6% 1% 16% 0% 89% 14% 6% 92%

1000 1 100 64% 2% 1% 0% 27% 6% 19% 0% 58% 17% 10% 51%

1000 1 400 45% 13% 1% 0% 39% 2% 19% 0% 28% 17% 12% 28%

1000 10 0.1 99% 0% 0% 1% 0% 0% 16% 0% 87% 14% 5% 99%

1000 10 1 98% 0% 0% 1% 1% 0% 16% 0% 87% 14% 5% 98%

1000 10 10 92% 0% 0% 1% 6% 1% 17% 0% 89% 15% 6% 91%

1000 10 100 64% 2% 1% 1% 26% 6% 19% 0% 58% 17% 10% 50%

1000 10 400 45% 13% 1% 1% 39% 2% 19% 0% 28% 17% 12% 28%

1000 100 0.1 89% 0% 0% 11% 0% 0% 16% 0% 89% 17% 9% 87%

1000 100 1 88% 0% 0% 11% 1% 0% 16% 0% 89% 17% 9% 87%

1000 100 10 83% 0% 0% 10% 5% 1% 17% 0% 89% 17% 10% 80%

1000 100 100 60% 2% 1% 8% 24% 6% 19% 0% 58% 19% 13% 39%

1000 100 400 43% 12% 1% 5% 37% 2% 19% 0% 28% 19% 14% 20%

1000 400 0.1 78% 0% 0% 22% 0% 0% 7% 36% 85% 19% 14% 71%

1000 400 1 77% 0% 0% 22% 0% 0% 7% 36% 85% 19% 14% 71%

1000 400 10 74% 0% 0% 23% 3% 1% 7% 32% 87% 19% 15% 65%

1000 400 100 56% 2% 0% 21% 17% 4% 8% 18% 61% 21% 18% 27%

1000 400 400 40% 11% 1% 17% 29% 2% 15% 11% 28% 21% 19% 6%

500 0.1 0.1 100% 0% 0% 0% 0% 0% 17% 0% 85% 15% 7% 100%

500 0.1 1 99% 0% 0% 0% 1% 0% 17% 0% 86% 15% 7% 98%

500 0.1 10 87% 0% 0% 0% 10% 3% 17% 0% 87% 16% 8% 84%

500 0.1 100 55% 6% 1% 0% 34% 4% 17% 0% 42% 18% 13% 35%

500 0.1 500 28% 25% 0% 0% 46% 1% 36% 0% 16% 15% 12% 9%

500 1 0.1 100% 0% 0% 0% 0% 0% 17% 0% 86% 15% 7% 100%

500 1 1 98% 0% 0% 0% 1% 0% 17% 0% 86% 15% 7% 98%

500 1 10 87% 0% 0% 0% 10% 3% 17% 0% 87% 16% 8% 84%

500 1 100 56% 6% 1% 0% 34% 3% 17% 0% 41% 18% 13% 37%

500 1 500 28% 24% 0% 0% 46% 1% 36% 0% 16% 15% 12% 9%

500 10 0.1 97% 0% 0% 3% 0% 0% 19% 0% 87% 15% 8% 97%

500 10 1 96% 0% 0% 2% 1% 0% 17% 0% 86% 16% 8% 96%

500 10 10 85% 0% 0% 2% 10% 3% 17% 0% 87% 16% 9% 81%

500 10 100 55% 6% 1% 1% 33% 4% 13% 0% 42% 19% 14% 36%

500 10 500 28% 24% 0% 1% 46% 0% 36% 0% 16% 15% 13% 8%

500 100 0.1 83% 0% 0% 17% 0% 0% 17% 20% 90% 19% 13% 79%

500 100 1 82% 0% 0% 17% 1% 0% 17% 19% 88% 19% 13% 77%

500 100 10 74% 0% 0% 16% 6% 3% 7% 6% 85% 19% 15% 65%

500 100 100 50% 6% 1% 12% 28% 4% 13% 3% 41% 22% 18% 20%

500 100 500 27% 24% 0% 9% 40% 0% 36% 0% 14% 17% 15% 0%

500 400 0.1 75% 0% 0% 25% 0% 0% 7% 63% 87% 19% 15% 65%

500 400 1 74% 0% 0% 26% 0% 0% 10% 62% 88% 19% 16% 62%

500 400 10 67% 0% 0% 28% 3% 1% 11% 55% 85% 19% 16% 49%

500 400 100 48% 5% 1% 28% 16% 2% 6% 35% 41% 21% 20% 11%

500 400 500 27% 24% 1% 25% 24% 1% 34% 26% 12% 17% 16% 0%
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Data from SS=5.4 

 

E H C E4E E4C E4CS H4H H4C H4CS Grid Boiler Abs %sav

% CO2 

reduction

%Heat 

scrap

0.1 0.1 100 0% 53% 3% 0% 42% 2% 83% 0% 2% 4% 5% 2%

0.1 0.1 500 0% 51% 0% 0% 49% 0% 72% 0% 4% 5% 6% 1%

0.1 1 10 0% 33% 0% 35% 32% 0% 94% 39% 1% 1% 1% 0%

0.1 1 100 0% 54% 3% 3% 38% 2% 82% 3% 2% 4% 5% 3%

0.1 1 500 0% 51% 0% 0% 49% 0% 72% 0% 4% 5% 7% 1%

0.1 10 10 0% 33% 0% 62% 5% 0% 94% 89% 1% 1% 1% 0%

0.1 10 100 0% 53% 3% 22% 21% 1% 82% 32% 2% 4% 6% 2%

0.1 10 500 0% 50% 0% 4% 46% 0% 72% 5% 4% 5% 7% 0%

0.1 100 100 0% 54% 2% 41% 3% 0% 84% 88% 1% 3% 5% 0%

0.1 100 500 0% 51% 0% 29% 20% 0% 81% 48% 2% 5% 6% 0%

0.1 400 100 0% 53% 2% 44% 1% 0% 84% 97% 1% 2% 3% 0%

0.1 400 500 0% 50% 0% 40% 10% 0% 72% 74% 3% 4% 6% 0%

1 0.1 100 1% 52% 3% 0% 42% 2% 83% 0% 2% 4% 5% 0%

1 0.1 500 0% 51% 0% 0% 49% 0% 72% 0% 4% 5% 6% 1%

1 1 10 3% 30% 0% 35% 32% 0% 95% 40% 1% 1% 1% 0%

1 1 100 1% 52% 3% 3% 39% 2% 82% 3% 2% 4% 5% 1%

1 1 500 0% 50% 0% 0% 49% 0% 72% 0% 4% 5% 7% 1%

1 10 10 3% 30% 0% 57% 9% 0% 90% 81% 3% 1% 2% 0%

1 10 100 1% 53% 3% 22% 21% 1% 82% 30% 2% 4% 6% 0%

1 10 500 0% 50% 0% 4% 46% 0% 71% 4% 4% 5% 7% 1%

1 100 100 1% 53% 2% 41% 3% 0% 84% 88% 1% 3% 5% 0%

1 100 500 0% 50% 1% 29% 19% 0% 81% 46% 2% 4% 6% 0%

1 400 100 1% 54% 1% 44% 1% 0% 85% 97% 1% 2% 3% 0%

1 400 500 0% 50% 0% 40% 10% 0% 72% 74% 3% 4% 6% 0%

10 0.1 1 62% 3% 1% 1% 23% 10% 41% 0% 42% 3% 7% 50%

10 0.1 10 28% 26% 1% 1% 43% 1% 63% 0% 9% 6% 6% 20%

10 0.1 100 5% 48% 3% 0% 41% 2% 78% 0% 3% 7% 6% 4%

10 0.1 500 1% 50% 0% 0% 49% 0% 72% 0% 4% 5% 6% 1%

10 1 1 57% 3% 1% 10% 20% 9% 41% 2% 41% 5% 10% 38%

10 1 10 25% 23% 1% 8% 41% 2% 67% 1% 8% 6% 8% 1%

10 1 100 5% 48% 3% 2% 39% 2% 78% 0% 3% 7% 6% 2%

10 1 500 1% 50% 0% 0% 49% 0% 72% 0% 4% 5% 7% 1%

10 10 0.1 72% 0% 1% 26% 0% 1% 42% 80% 28% 3% 8% 63%

10 10 1 54% 3% 1% 34% 6% 3% 41% 65% 38% 6% 10% 28%

10 10 10 28% 27% 1% 33% 12% 0% 64% 60% 6% 6% 7% 20%

10 10 100 5% 48% 3% 14% 28% 2% 69% 15% 3% 7% 10% 0%

10 10 500 1% 50% 0% 4% 46% 0% 72% 4% 4% 5% 7% 1%

10 100 10 28% 23% 5% 42% 2% 0% 45% 92% 7% 3% 6% 1%

10 100 100 5% 49% 2% 39% 5% 0% 72% 79% 2% 5% 8% 0%

10 100 500 1% 49% 1% 27% 21% 0% 77% 41% 2% 5% 6% 0%

10 400 10 28% 23% 6% 42% 0% 0% 37% 98% 6% 1% 3% 6%

10 400 100 5% 49% 2% 43% 1% 0% 72% 94% 2% 4% 5% 0%

10 400 500 1% 49% 1% 41% 7% 0% 77% 78% 2% 5% 6% 0%

100 0.1 0.1 99% 0% 0% 0% 1% 0% 19% 0% 62% 22% 13% 99%

100 0.1 1 95% 0% 0% 0% 5% 0% 19% 0% 62% 23% 13% 93%

100 0.1 10 68% 3% 1% 0% 23% 5% 21% 0% 47% 24% 16% 51%

100 0.1 100 30% 27% 0% 0% 42% 0% 42% 0% 12% 18% 15% 6%

100 0.1 500 9% 43% 0% 0% 47% 0% 61% 0% 6% 10% 9% 2%

100 1 0.1 98% 0% 0% 1% 0% 0% 19% 0% 62% 23% 13% 98%

100 1 1 94% 0% 0% 1% 5% 0% 19% 0% 62% 23% 14% 92%

100 1 10 68% 3% 1% 1% 22% 5% 21% 0% 45% 24% 16% 51%

100 1 100 30% 27% 0% 1% 42% 0% 42% 0% 12% 18% 15% 6%

100 1 500 9% 43% 0% 0% 47% 0% 62% 0% 6% 10% 9% 2%

100 10 0.1 88% 0% 0% 11% 0% 1% 20% 3% 74% 24% 16% 83%

100 10 1 84% 0% 0% 11% 4% 0% 21% 2% 65% 24% 17% 77%

100 10 10 64% 3% 1% 8% 21% 4% 13% 0% 48% 24% 21% 40%

100 10 100 29% 26% 0% 5% 39% 1% 41% 0% 12% 19% 17% 0%

100 10 500 9% 43% 0% 2% 46% 0% 62% 0% 6% 10% 9% 0%

100 100 0.1 78% 0% 0% 22% 0% 0% 10% 75% 48% 22% 18% 64%

continue…
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continue…

E H C E4E E4C E4CS H4H H4C H4CS Grid Boiler Abs %sav

% CO2 

reduction

%Heat 

scrap

100 100 1 75% 0% 0% 24% 1% 0% 11% 73% 52% 22% 18% 60%

100 100 10 59% 3% 1% 29% 6% 2% 21% 63% 41% 23% 17% 26%

100 100 100 27% 24% 1% 27% 21% 1% 30% 34% 12% 19% 17% 1%

100 100 500 9% 42% 0% 20% 29% 0% 65% 22% 5% 10% 10% 0%

100 400 0.1 77% 0% 0% 23% 0% 0% 21% 94% 60% 14% 9% 62%

100 400 1 74% 0% 0% 25% 0% 0% 8% 92% 34% 15% 10% 57%

100 400 10 59% 3% 1% 34% 2% 1% 10% 87% 37% 16% 11% 28%

100 400 100 27% 24% 1% 40% 7% 0% 29% 75% 12% 15% 12% 1%

100 400 500 9% 42% 0% 37% 12% 0% 65% 63% 4% 9% 9% 0%

1000 0.1 0.1 100% 0% 0% 0% 0% 0% 16% 0% 63% 22% 5% 100%

1000 0.1 1 99% 0% 0% 0% 0% 0% 16% 0% 63% 22% 5% 99%

1000 0.1 10 95% 0% 0% 0% 5% 0% 16% 0% 66% 22% 5% 95%

1000 0.1 100 67% 3% 0% 0% 26% 4% 19% 0% 53% 23% 9% 57%

1000 0.1 400 45% 13% 1% 0% 39% 3% 19% 0% 28% 23% 12% 28%

1000 1 0.1 100% 0% 0% 0% 0% 0% 16% 0% 59% 22% 5% 100%

1000 1 1 99% 0% 0% 0% 0% 0% 16% 0% 63% 22% 5% 99%

1000 1 10 95% 0% 0% 0% 5% 0% 16% 0% 66% 22% 5% 95%

1000 1 100 67% 3% 0% 0% 26% 4% 19% 0% 53% 23% 9% 57%

1000 1 400 45% 13% 1% 0% 39% 2% 19% 0% 28% 23% 12% 29%

1000 10 0.1 99% 0% 0% 1% 0% 0% 16% 0% 63% 22% 5% 99%

1000 10 1 98% 0% 0% 1% 0% 0% 16% 0% 63% 22% 5% 98%

1000 10 10 94% 0% 0% 1% 5% 0% 16% 0% 66% 22% 6% 93%

1000 10 100 66% 3% 0% 1% 26% 4% 19% 0% 52% 23% 9% 56%

1000 10 400 45% 13% 1% 1% 39% 2% 19% 0% 28% 23% 12% 28%

1000 100 0.1 89% 0% 0% 11% 0% 0% 16% 0% 64% 24% 9% 87%

1000 100 1 89% 0% 0% 11% 0% 0% 16% 0% 63% 24% 9% 87%

1000 100 10 85% 0% 0% 11% 4% 0% 16% 0% 66% 24% 9% 82%

1000 100 100 61% 3% 0% 8% 24% 4% 19% 0% 55% 25% 13% 43%

1000 100 400 43% 12% 1% 5% 37% 2% 19% 0% 28% 24% 14% 20%

1000 400 0.1 78% 0% 0% 22% 0% 0% 11% 41% 66% 25% 13% 72%

1000 400 1 78% 0% 0% 22% 0% 0% 11% 40% 65% 25% 13% 72%

1000 400 10 75% 0% 0% 22% 2% 0% 11% 37% 64% 25% 14% 67%

1000 400 100 57% 3% 0% 22% 16% 3% 15% 22% 51% 25% 16% 32%

1000 400 400 39% 11% 1% 18% 29% 2% 16% 11% 28% 25% 18% 6%

500 0.1 0.1 100% 0% 0% 0% 0% 0% 16% 0% 64% 22% 7% 100%

500 0.1 1 99% 0% 0% 0% 1% 0% 17% 0% 64% 22% 7% 99%

500 0.1 10 90% 1% 0% 0% 10% 0% 17% 0% 66% 23% 8% 89%

500 0.1 100 56% 6% 1% 0% 34% 4% 17% 0% 41% 23% 13% 37%

500 0.1 500 28% 25% 0% 0% 46% 0% 36% 0% 16% 18% 12% 9%

500 1 0.1 100% 0% 0% 0% 0% 0% 20% 0% 65% 21% 7% 100%

500 1 1 99% 0% 0% 0% 1% 0% 16% 0% 68% 23% 7% 98%

500 1 10 89% 1% 0% 0% 10% 0% 21% 0% 66% 21% 9% 88%

500 1 100 56% 6% 1% 0% 34% 3% 17% 0% 41% 23% 13% 37%

500 1 500 28% 25% 0% 0% 46% 0% 36% 0% 16% 18% 12% 9%

500 10 0.1 97% 0% 0% 2% 0% 0% 16% 0% 62% 23% 7% 97%

500 10 1 97% 0% 0% 2% 1% 0% 17% 0% 63% 23% 8% 96%

500 10 10 88% 1% 0% 2% 9% 0% 17% 0% 66% 23% 9% 86%

500 10 100 55% 6% 1% 1% 33% 3% 17% 0% 41% 23% 14% 35%

500 10 500 28% 25% 0% 1% 46% 0% 42% 0% 14% 18% 12% 8%

500 100 0.1 83% 0% 0% 17% 0% 0% 16% 20% 63% 25% 13% 79%

500 100 1 83% 0% 0% 17% 1% 0% 17% 20% 71% 25% 13% 78%

500 100 10 76% 0% 0% 16% 7% 1% 17% 14% 67% 25% 14% 68%

500 100 100 50% 6% 1% 12% 29% 3% 17% 3% 40% 25% 18% 18%

500 100 500 27% 24% 0% 9% 40% 0% 36% 1% 14% 19% 15% 0%

500 400 0.1 74% 0% 0% 26% 0% 0% 11% 63% 60% 23% 15% 63%

500 400 1 74% 0% 0% 26% 0% 0% 11% 63% 57% 23% 15% 62%

500 400 10 70% 0% 0% 27% 2% 1% 7% 57% 63% 24% 16% 56%

500 400 100 48% 6% 1% 29% 15% 2% 17% 40% 36% 24% 18% 10%

500 400 500 27% 24% 0% 25% 24% 0% 35% 27% 12% 19% 16% 0%
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Data from SS=6.6 

 

E H C E4E E4C E4CS H4H H4C H4CS Grid Boiler Abs %sav

% CO2 

reduction

%Heat 

scrap

0.1 1 10 1% 41% 15% 6% 27% 10% 15% 12% 9% 10% 17% 7%

0.1 10 100 0% 47% 4% 8% 38% 3% 42% 11% 8% 16% 11% 0%

0.1 10 500 0% 50% 1% 2% 47% 1% 44% 1% 8% 17% 12% 0%

0.1 100 10 1% 42% 15% 41% 1% 0% 15% 94% 6% 5% 5% 7%

0.1 100 100 0% 46% 5% 34% 13% 1% 41% 63% 7% 14% 10% 0%

0.1 100 500 0% 48% 2% 15% 33% 1% 45% 21% 7% 16% 11% 0%

0.1 0.1 10 1% 41% 16% 1% 30% 12% 15% 1% 9% 9% 17% 10%

0.1 0.1 100 0% 46% 5% 0% 45% 4% 41% 0% 8% 16% 11% 1%

0.1 0.1 500 0% 50% 0% 0% 49% 0% 46% 0% 8% 16% 11% 0%

0.1 1 1 3% 26% 4% 46% 18% 3% 69% 55% 7% 2% 2% 0%

0.1 1 100 0% 47% 4% 1% 44% 4% 42% 1% 8% 15% 11% 0%

0.1 1 500 0% 50% 0% 0% 49% 0% 46% 0% 8% 16% 11% 0%

0.1 10 11 1% 41% 14% 28% 12% 4% 19% 57% 8% 11% 15% 1%

0.1 400 100 0% 41% 7% 47% 4% 1% 44% 87% 6% 9% 5% 0%

0.1 400 500 0% 48% 2% 33% 16% 1% 44% 57% 6% 15% 10% 0%

1 0.1 10 5% 38% 14% 1% 30% 12% 20% 1% 9% 10% 16% 8%

1 0.1 100 1% 46% 4% 0% 45% 4% 42% 0% 8% 16% 11% 0%

1 0.1 500 0% 50% 0% 0% 49% 0% 45% 0% 8% 17% 11% 0%

1 1 1 19% 14% 2% 30% 31% 4% 51% 25% 18% 9% 3% 6%

1 1 10 5% 38% 13% 6% 28% 10% 16% 8% 10% 11% 16% 9%

1 1 100 1% 46% 5% 1% 44% 4% 41% 0% 8% 17% 11% 1%

1 1 500 0% 50% 0% 0% 49% 0% 46% 0% 8% 17% 11% 0%

1 10 0.1 41% 1% 1% 55% 1% 1% 47% 93% 58% 4% 1% 33%

1 10 1 18% 14% 2% 59% 6% 1% 52% 85% 16% 6% 2% 6%

1 10 10 5% 38% 13% 28% 12% 4% 16% 56% 8% 10% 14% 11%

1 10 100 1% 46% 4% 8% 37% 3% 42% 11% 8% 16% 11% 1%

1 10 500 0% 50% 1% 2% 47% 1% 45% 1% 7% 16% 11% 0%

1 100 10 5% 39% 13% 42% 1% 0% 21% 94% 7% 5% 5% 3%

1 100 100 1% 46% 5% 34% 14% 1% 42% 63% 7% 14% 10% 0%

1 100 500 0% 48% 2% 15% 33% 1% 45% 21% 7% 16% 11% 0%

1 400 10 5% 37% 14% 44% 0% 0% 20% 98% 6% 2% 2% 0%

1 400 100 0% 39% 9% 46% 4% 1% 40% 86% 6% 10% 5% 2%

1 400 500 0% 48% 2% 33% 16% 1% 44% 57% 6% 15% 10% 0%

10 0.1 0.1 92% 0% 0% 1% 2% 4% 12% 0% 60% 19% 2% 93%

10 0.1 1 64% 2% 1% 1% 21% 11% 13% 0% 58% 21% 7% 55%

10 0.1 10 33% 26% 6% 0% 29% 7% 13% 0% 13% 23% 14% 36%

10 0.1 100 5% 43% 5% 0% 42% 5% 39% 0% 9% 18% 11% 5%

10 0.1 500 1% 49% 0% 0% 49% 0% 46% 0% 8% 17% 11% 1%

10 1 0.1 84% 0% 0% 10% 2% 3% 12% 0% 60% 20% 6% 83%

10 1 1 60% 2% 1% 7% 22% 7% 13% 0% 59% 23% 10% 46%

10 1 10 30% 23% 5% 4% 30% 7% 13% 0% 15% 24% 16% 21%

10 1 100 5% 42% 4% 1% 44% 4% 41% 0% 9% 18% 12% 0%

10 1 500 1% 49% 0% 0% 49% 0% 46% 0% 8% 17% 11% 1%

10 10 0.1 70% 0% 0% 28% 0% 1% 12% 66% 59% 20% 11% 61%

10 10 1 53% 2% 1% 32% 8% 4% 13% 51% 55% 23% 13% 28%

10 10 10 28% 21% 7% 22% 16% 5% 11% 33% 14% 24% 18% 10%

10 10 100 5% 42% 4% 8% 37% 4% 40% 8% 8% 18% 12% 0%

10 10 500 1% 49% 1% 2% 47% 1% 46% 0% 8% 17% 11% 0%

10 100 0.1 67% 0% 0% 33% 0% 0% 12% 96% 51% 9% 4% 55%

10 100 1 52% 2% 1% 44% 1% 0% 14% 93% 50% 10% 5% 24%

10 100 10 29% 23% 6% 40% 3% 1% 12% 88% 12% 14% 8% 13%

10 100 100 5% 42% 4% 34% 14% 1% 40% 59% 7% 17% 11% 0%

10 100 500 1% 48% 1% 15% 34% 1% 45% 22% 7% 17% 11% 0%

10 400 0.1 65% 0% 1% 34% 0% 0% 21% 99% 10% 2% 2% 42%

10 400 1 50% 2% 2% 46% 0% 0% 19% 98% 38% 4% 2% 15%

10 400 10 27% 20% 8% 43% 0% 0% 31% 97% 8% 5% 3% 2%

10 400 100 5% 42% 4% 44% 4% 0% 37% 86% 7% 12% 7% 1%

10 400 500 1% 47% 2% 33% 16% 1% 46% 58% 6% 15% 10% 0%

100 0.1 0.1 99% 0% 0% 0% 0% 0% 9% 0% 18% 39% 14% 99%

100 0.1 1 94% 0% 0% 0% 3% 2% 9% 0% 62% 40% 15% 93%

100 0.1 10 68% 3% 1% 0% 22% 6% 10% 0% 52% 41% 18% 51%

100 0.1 100 30% 24% 2% 0% 42% 3% 22% 0% 18% 33% 17% 7%

100 0.1 500 9% 42% 0% 0% 48% 1% 39% 0% 10% 22% 13% 0%

100 1 0.1 98% 0% 0% 1% 0% 0% 10% 0% 74% 40% 14% 98%

100 1 1 94% 0% 0% 1% 2% 2% 9% 0% 50% 40% 15% 93%

100 1 10 69% 3% 1% 1% 22% 4% 10% 0% 51% 41% 18% 53%

100 1 100 29% 24% 2% 0% 42% 3% 22% 0% 18% 33% 17% 6%

continue…
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continue…

E H C E4E E4C E4CS H4H H4C H4CS Grid Boiler Abs %sav

% CO2 

reduction

%Heat 

scrap

100 1 500 9% 42% 0% 0% 48% 1% 39% 0% 10% 22% 13% 0%

100 10 0.1 89% 0% 1% 10% 0% 0% 8% 0% 1% 40% 17% 86%

100 10 1 86% 0% 0% 10% 3% 1% 6% 0% 67% 41% 18% 80%

100 10 10 65% 3% 1% 7% 21% 4% 6% 0% 52% 42% 22% 41%

100 10 100 29% 23% 2% 4% 40% 3% 22% 0% 17% 33% 19% 1%

100 10 500 9% 42% 0% 2% 47% 0% 39% 0% 10% 23% 13% 0%

100 100 0.1 77% 0% 0% 23% 0% 0% 6% 73% 56% 37% 19% 62%

100 100 1 74% 0% 0% 24% 1% 0% 9% 72% 69% 37% 18% 58%

100 100 10 59% 3% 1% 29% 7% 2% 5% 56% 43% 39% 21% 26%

100 100 100 27% 23% 1% 26% 21% 1% 23% 32% 13% 33% 18% 1%

100 100 500 9% 41% 1% 13% 35% 1% 39% 13% 8% 22% 14% 0%

100 400 0.1 76% 0% 0% 24% 0% 0% 4% 93% 51% 26% 11% 60%

100 400 1 72% 0% 0% 28% 0% 0% 5% 91% 62% 25% 11% 52%

100 400 10 58% 3% 1% 36% 2% 0% 7% 86% 45% 27% 12% 20%

100 400 100 28% 24% 2% 39% 7% 0% 24% 74% 12% 26% 13% 3%

100 400 500 9% 41% 1% 30% 18% 1% 38% 48% 8% 21% 13% 0%

1000 0.1 0.1 100% 0% 0% 0% 0% 0% 4% 0% 58% 39% 5% 100%

1000 0.1 1 100% 0% 0% 0% 0% 0% 4% 0% 58% 39% 5% 100%

1000 0.1 10 95% 0% 0% 0% 4% 1% 4% 0% 70% 39% 5% 95%

1000 0.1 100 67% 2% 1% 0% 25% 6% 5% 0% 63% 41% 10% 56%

1000 0.1 400 45% 12% 1% 0% 39% 2% 12% 0% 30% 39% 12% 29%

1000 1 0.1 100% 0% 0% 0% 0% 0% 4% 0% 58% 39% 5% 100%

1000 1 1 99% 0% 0% 0% 0% 0% 4% 0% 58% 39% 5% 99%

1000 1 10 95% 0% 0% 0% 4% 1% 4% 0% 70% 39% 5% 95%

1000 1 100 67% 2% 1% 0% 25% 6% 5% 0% 63% 41% 10% 56%

1000 1 400 45% 12% 1% 0% 40% 2% 12% 0% 31% 39% 13% 28%

1000 10 0.1 99% 0% 0% 1% 0% 0% 4% 0% 58% 39% 5% 99%

1000 10 1 98% 0% 0% 1% 0% 0% 4% 0% 58% 39% 5% 99%

1000 10 10 94% 0% 0% 1% 4% 0% 4% 0% 67% 39% 6% 94%

1000 10 100 66% 2% 1% 1% 24% 6% 5% 0% 63% 41% 10% 55%

1000 10 400 45% 12% 1% 1% 39% 2% 12% 0% 30% 39% 13% 28%

1000 100 0.1 90% 0% 0% 10% 0% 0% 4% 0% 58% 40% 9% 89%

1000 100 1 90% 0% 0% 10% 0% 0% 4% 0% 58% 40% 9% 89%

1000 100 10 86% 0% 0% 9% 4% 0% 4% 0% 68% 40% 10% 84%

1000 100 100 62% 2% 1% 7% 23% 6% 5% 0% 63% 42% 14% 45%

1000 100 400 43% 12% 1% 5% 37% 2% 12% 0% 30% 40% 15% 21%

1000 400 0.1 77% 0% 0% 23% 0% 0% 4% 33% 58% 41% 15% 71%

1000 400 1 77% 0% 0% 23% 0% 0% 4% 32% 58% 41% 15% 70%

1000 400 10 74% 0% 0% 23% 2% 0% 4% 29% 68% 41% 15% 66%

1000 400 100 57% 2% 1% 21% 16% 4% 2% 15% 58% 42% 18% 32%

1000 400 400 39% 11% 1% 17% 30% 2% 12% 10% 29% 41% 19% 5%

500 0.1 0.1 100% 0% 0% 0% 0% 0% 7% 0% 76% 39% 7% 100%

500 0.1 1 99% 0% 0% 0% 1% 0% 7% 0% 76% 39% 7% 99%

500 0.1 10 89% 0% 0% 0% 8% 3% 7% 0% 76% 40% 8% 88%

500 0.1 100 57% 6% 1% 0% 33% 4% 5% 0% 45% 41% 13% 40%

500 0.1 500 29% 23% 0% 0% 47% 1% 22% 0% 19% 33% 14% 8%

500 1 0.1 100% 0% 0% 0% 0% 0% 3% 0% 58% 39% 7% 100%

500 1 1 99% 0% 0% 0% 1% 0% 9% 0% 76% 38% 7% 99%

500 1 10 89% 0% 0% 0% 8% 2% 7% 0% 74% 39% 9% 88%

500 1 100 57% 6% 1% 0% 33% 3% 5% 0% 45% 41% 13% 41%

500 1 500 29% 23% 0% 0% 47% 1% 22% 0% 20% 33% 14% 8%

500 10 0.1 98% 0% 0% 2% 0% 0% 4% 0% 78% 39% 7% 98%

500 10 1 97% 0% 0% 2% 1% 1% 3% 0% 82% 39% 8% 96%

500 10 10 88% 0% 0% 2% 8% 2% 6% 0% 74% 40% 10% 86%

500 10 100 56% 6% 1% 1% 33% 3% 5% 0% 45% 41% 14% 39%

500 10 500 28% 23% 0% 1% 46% 1% 22% 0% 19% 33% 14% 7%

500 100 0.1 83% 0% 0% 17% 0% 0% 7% 9% 76% 41% 14% 79%

500 100 1 82% 0% 0% 17% 1% 0% 7% 9% 76% 41% 14% 77%

500 100 10 76% 0% 0% 16% 6% 2% 3% 4% 72% 41% 15% 68%

500 100 100 51% 6% 1% 11% 29% 3% 5% 1% 43% 43% 19% 23%

500 100 500 27% 23% 0% 7% 42% 1% 22% 0% 18% 34% 17% 0%

500 400 0.1 74% 0% 0% 26% 0% 0% 4% 60% 59% 39% 16% 63%

500 400 1 73% 0% 0% 26% 0% 0% 4% 59% 72% 39% 16% 62%

500 400 10 69% 1% 0% 28% 2% 0% 3% 53% 55% 39% 17% 55%

500 400 100 48% 5% 1% 28% 16% 2% 6% 34% 41% 41% 20% 10%

500 400 500 27% 23% 1% 22% 27% 1% 21% 22% 16% 34% 18% 0%
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ANNEX II. Equation used in MATLAB to extract 

information from DER-CAM reports 

This annex presents the code used in Matlab to automatically extract the data 

from the reports of DER-CAM. The information obtained from here was used in 

section 4.3. 

From DER CAM report, it is obtained the following information: 

Name of the variable 

at the code 

Units Description 

Fuel_Consump_CHP kWh 
Total annual Natural Gas consumption of CHP 

system 

Fuel_Consump_Boiler kWh Total annual Natural Gas consumption of boiler 

COP_Abs - COP of the Absorption chiller 

COP_Elect - COP of the Electric chiller 

Price_ElectGrid 
EUR / 

kWh 

Electricity price at the grid 

Price_Fuel 
EUR / 

kWh 

Natural Gas price 

Elect_Load kWh Total annual Electricty load 

Heat_Load kWh Total annual Heat load 

Cool_Load kWh Total annual Cooling load 

Elect_CHP kWh 
Total annual Electricity produced by all the CHP 

system 

Elect_Grid kWh Total annual Electricity imported from the Grid 

Heat_CHP kWh Total annual Heat produced by the CHP 

Heat_Boiler kWh Total annual Heat produced by the boiler 

Cool_Absorption kWh 
Total annual Cooling produced by Absorption 

chiller 

Cool_Electric kWh Total annual Cooling produced by Electric chiller 

Table 25 Raw data obtained from DER-CAM report (part 1) 
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Name of the variable 
at the code 

Units Description 

Cool_Storage_Out kWh 
Total annual Cooling output of the Cooling 
Storage 

Cool_Storage_In kWh 
Total annual Cooling input of the Cooling 
Storage 

Offset kWh 
Total annual Electricity consumption that is 
avoided through the usage of Absorption chiller 
(compared with the reference scenario) 

CHP_InstCap 
kW or 
MW 

Installed capacity of CHP units for each 
technology type (ICE, CT, MT, FC) at the 
selected optimal scenario 

CHP_Nunits units 
Number of CHP units for each technology type 
and installed capacity (ICE, CT, MT, FC) at the 
selected optimal scenario 

CHP_TS  or  

Discrete Technologies 
(i) 

kWh 

Total annual Electricity production by the CHP 
units  technology i, where i = 1,2,…n 

%savings - 
Percentage of economic savings of the system, 
compared with the reference scenario 

%CO2
reduc - 

Percentage of CO2 reduction of the system, 
compared with the reference scenario 

Table 26 Raw data obtained from DER-CAM report (part 2) 
 

Now, with this information, the following indexes are calculated. 

❖ Amount of Electricity / Heat scrapped (reported per year, but calculated in 

hourly basis)  

Name of the 

variable at the 

code 

Nomenclature 

at the paper 

Units Description 

propElectScrapped EpCHP
scrap - 

Portion of Electricity produced by 

the CHP that is being scrapped 

propHeatScrapped HpCHP
scrap - 

Portion of Heat produced by the 

CHP that is being scrapped 

Table 27 Electricity and Heat produced by the CHP and scrapped 
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propElectScrapped = Elect_CHP_scrap / [ Elect_CHP + Elect_CHP_scrap ] 

propHeatScrapped = Heat_CHP_scrap / [ Heat_CHP + Heat_CHP_scrap ] 

 

where Elect_CHP_scrap and Heat_CHP_scrap are calculated as follows, 

 

It is known that the average Heat-to-Power ratio at the CHP units is HtP=1.4, 

therefore, for each unit of electricity produced, 1.4 units of heat are produced. 

Then, the following analysis is conducted for each hour of the year, 

If (HtP*Elect_CHP) < (Heat_CHP) 

Elect_CHP_scrap = (Heat_CHP/HtP)- (Elect_CHP) 

If (HtP*Elect_CHP) > (Heat_CHP) 

Heat_CHP_scrap = (HtP*Elect_CHP) - (Heat_CHP) 

Table 28 Energy scrap produced by the CHP 

 

❖ Source proportion per energy type (calculated per year) 

Name of the variable 

at the code 

Nomenclature 

at the paper 

Units Description 

prop_Elect_CHP EconsCHP - 

Portion of Electricity 

consumed coming from the 

CHP 

prop_Elect_Grid EconsGrid - 

Portion of Electricity 

consumed coming from the 

Grid 

prop_Heat_CHP HconsCHP - 
Portion of Heat consumed 

coming from the CHP 

prop_Heat_Boiler HconsBoiler - 
Portion of Heat consumed 

coming from the Boiler 

prop_Cool_Absorption CAbsorp - 
Portion of Cooling produced 

with Absorption chiller 

prop_Cool_Electric - - 
Portion of Cooling produced 

with Electric chiller 

Table 29 Source proportion per type of energy 
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prop_Elect_CHP = Elect_CHP /  [ Elect_CHP + Elect_Grid ] 

prop_Elect_Grid = 1 - prop_Elect_CHP 

prop_Heat_CHP = Heat_CHP /  [ Heat_CHP + Heat_Boiler ] 

prop_Heat_Boiler = 1 - prop_Heat_CHP 

prop_Cool_Absorption = Cool_Absorption /  [Cool_Absorption + Cool_Electric ] 

prop_Cool_Electric =  1 - prop_Cool_Absorption 

 

❖ Proportion of energy source for the system (for all the year) 

Name of the variable 

at the code 

Nomenclature 

at the paper 

Units Description 

prop_Elec_Grid_Sys EGRID - 

Portion of total energy at the 

system coming from 

Electricity of the Grid  

prop_Elec_CHP_used

_Sys 
ECHPused - 

Portion of total energy at the 

system coming from 

Electricity produced by the 

CHP that is being used 

prop_Elect_CHP_scra

p_Sys 
ECHPscrap - 

Portion of total energy at the 

system coming from 

Electricity produced by the 

CHP that is being scrapped 

prop_Heat_Boiler_Sys HBOILER - 

Portion of total energy at the 

system coming from Heat 

produced by Boiler 

prop_Heat_CHP_used

_Sys 
HCHPused - 

Portion of total energy at the 

system coming from Heat 

produced by the CHP that is 

being used 

prop_Heat_CHP_scra

p_Sys 
HCHPscrap - 

Portion of total energy at the 

system coming from Heat 

produced by the CHP that is 

being scrapped 

Table 30 Source proportion for the whole system 
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prop_Elec_Grid_Sys  =  Elect_Grid /   [ Elect_Grid + Elect_CHP_Used + 

Elect_CHP_scrap + Heat_Boiler + Heat_CHP_Used + Heat_CHP_scrap ] 

where, Elect_Grid, Elect_CHP_scrap, Heat_Boiler and Heat_CHP_scrap 

are given in Table 25 and Table 27. And, the following equalities are 

established, 

Elect_CHP_Used = Elect_CHP 

Heat_CHP_Used = Heat_CHP 

prop_Elec_CHP_used_Sys = Elect_CHP_Used /   [ Elect_Grid + 

Elect_CHP_Used + Elect_CHP_scrap + Heat_Boiler + Heat_CHP_Used + 

Heat_CHP_scrap ] 

prop_Elect_CHP_scrap_Sys = Elect_CHP_scrap /   [ Elect_Grid + 

Elect_CHP_Used + Elect_CHP_scrap + Heat_Boiler + Heat_CHP_Used + 

Heat_CHP_scrap ] 

prop_Heat_Boiler_Sys = Heat_Boiler) /   [ Elect_Grid + Elect_CHP_Used + 

Elect_CHP_scrap + Heat_Boiler + Heat_CHP_Used + Heat_CHP_scrap ] 

prop_Heat_CHP_used_Sys = Heat_CHP_Used /   [ Elect_Grid + 

Elect_CHP_Used + Elect_CHP_scrap + Heat_Boiler + Heat_CHP_Used + 

Heat_CHP_scrap ] 

prop_Heat_CHP_scrap_Sys = Heat_CHP_scrap /   [ Elect_Grid + 

Elect_CHP_Used + Elect_CHP_scrap + Heat_Boiler + Heat_CHP_Used + 

Heat_CHP_scrap ] 
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❖ Flow shares at the CCHP-Thermal Storage system (for all the year) 

Name of the 

variable at the 

code 

Nomenclature 

at the paper 

Units Description 

prop_Elect4Elect E4E 

- Proportion of Electricity produced 

by CHP and used to supply Electric 

Demand compared with the total 

energy produced by the CHP 

prop_Elect4Cool E4C 

- Proportion of Electricity produced 

by CHP and used to supply Cooling 

Demand compared with the total 

energy produced by the CHP 

prop_Elect4CoolStg E4CS 

- Proportion of Electricity produced 

by CHP and used for Cooling 

Storage compared with the total 

energy produced by the CHP 

prop_Heat4Heat H4H 

- Proportion of Heat produced by 

CHP and used to supply Heat 

Demand compared with the total 

energy produced by the CHP 

prop_Heat4Cool H4C 

- Proportion of Heat produced by 

CHP and used to supply Cooling 

Demand compared with the total 

energy produced by the CHP 

prop_Heat4CoolStg H4CS 

- Proportion of Heat produced by 

CHP and used for Cooling Storage 

compared with the total energy 

produced by the CHP 

Table 31 Source proportion for the whole system 
 

prop_Elect4Elect = Elect4Elect / [ Elect4Elect + Elect4Cool + Elect4CoolStg + 

Heat4Heat + Heat4Cool + Heat4CoolStg ] 

where, 

Heat4Heat = Heat_Load * prop_Heat_CHP 
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Heat4Cool = { [ Cool_Load - Cool_Storage_Out ] * COP_Elect }  / 

{_[_COP_Abs_*_prop_Cool_Absorption_*_prop_Heat_CHP_} 

Heat4CoolStg =  [ Cool_Storage_In * COP_Elect ] / 

[_COP_Abs_*_prop_Cool_Absorption_*_prop_Heat_CHP_]  

 

The reason for the formulas of Heat4Cool and Heat4CoolStg are 

described in the following diagram: 

 

Figure 59 Graphical explanation of Heat for Cooling (H4C) and Heat for 
Cooling Storage (H4CS) 

 

similarly, 

Elect4Elect = Elect_Load * prop_Elect_CHP 

Elect4Cool = { [ Cool_Load - Cool_Storage_Out ] * COP_Elect }  / 

{_[_COP_Elect_*_prop_Cool_Electric_*_prop_Elect_CHP_} 

Elect4CoolStg = [ Cool_Storage_In * COP_Elect ] / 

[_COP_Elect_*_prop_Cool_Electric_*_prop_Elect_CHP_] 

 

prop_Elect4Cool = Elect4Cool / [ Elect4Elect + Elect4Cool + Elect4CoolStg + 

Heat4Heat + Heat4Cool + Heat4CoolStg ] 

prop_Elect4CoolStg = Elect4CoolStg / [ Elect4Elect + Elect4Cool + 

Elect4CoolStg + Heat4Heat + Heat4Cool + Heat4CoolStg ] 

E4E

E4C & E4CS

H4H

H4C

H4CS

H4C & H4CS

CHP dynamic

Heat_Load Cooling_Load_Absorption + Cooling_Storage_Losses
Cooling_Load_Absorption + [Cool_Sorage_In – Cool_Storage_Out]

Cooling_Load_Absorption
– Cool_Storage_Out
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prop_Heat4Heat = Heat4Heat / [ Elect4Elect + Elect4Cool + Elect4CoolStg + 

Heat4Heat + Heat4Cool + Heat4CoolStg ] 

prop_Heat4Cool = Heat4Cool / [ Elect4Elect + Elect4Cool + Elect4CoolStg + 

Heat4Heat + Heat4Cool + Heat4CoolStg ] 

prop_Heat4CoolStg = Heat4CoolStg / [ Elect4Elect + Elect4Cool + 

Elect4CoolStg + Heat4Heat + Heat4Cool + Heat4CoolStg ] 

 

❖ Demand and consumption rates 

Name of the variable 

at the code 

Nomenclature 

at the paper 

Units Description 

Elect2Heat_Consumed 
E(consumption)/ 

C(consumption) 

- Rate of total electricity to heat 

consumption  

Elect2Cool_Load E(load) / C(load) 
- Rate of total electricity to 

cooling load 

propFuelBoiler2CHP  
- Rate of Boiler to CHP natural 

gas consumption 

Table 32 Source proportion for the whole system 
 

Elect2Heat_Consumed= ElectConsumed / HeatConsumed 

where, 

ElectConsumed = Elect_CHP + Elect_Grid 

propElectConsumedCoveredCHP = Elect_CHP / ElectConsumed = 

prop_Elect_CHP 

HeatConsumed = Heat_CHP + Heat_Boiler  

propHeatConsumedCoveredCHP = Heat_CHP / HeatConsumed = 

prop_Heat_CHP 

 

Elect2Cool_Load = Elect_Load / Cool_Load 

propFuelBoiler2CHP = Fuel_Consump_Boiler / Fuel_Consump_CHP 
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**-_-** 

Relations that were already verified: 

ElectConsumed = Elect_CHP + Elect_Grid 

HeatConsumed = Heat_CHP + Heat_Boiler 

Cool_Absorption + Cool_Electric = Cool_Load 

 

The assumption made: 

Elect_CHP + Elect_Grid - Elect_Load = Elect_Cool 

Heat_CHP + Heat_Boiler - Heat_Load = Heat_Cool 
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ANNEX III. Multi-criteria Decision Making ELECTRE 1S 

This annex presents the theoretical background of the Multi-criteria Decision 

Making ELECTRE 1S, that is used to determine the k number of clusters within 

the methodology k-Means. This reference is used in subsection 3.2.3.3 and 

section 4.3. 

 

Multicriterial Decision Making (MCDM) [174] is a modern decisional and 

mathematical tool from operational research that treats complex problems with 

conflicting targets. It allows the comparison between different 𝑎  alternatives 

based on 𝑓 “conflicting” decision criteria, in order to lead to the more judicious 

choice [173], [179]. 

Total aggregations such as summatory or arithmetic mean are widely diffused 

tools despite their significant drawbacks such as the fact that a single common 

scale is evaluating all the criteria or that there are losses of information due to 

the synthesis and compensations. The outranking approach is relevant to avoid 

these limitations, since its aggregation process allows different evaluation scales 

while compensation is eluded thanks to thresholds. 

ELECTRE 1S is an outranking approach of MCDM, used to state the relation 

between two alternatives. It is a binary relation meaning Alternative A is at least 

as good as alternative B. The relation is verified [180], if: 

1. the concordance condition is verified, following the majority principle 

according to which a sufficient level of criteria is concordant with the 

outranking hypothesis, 

2. The non-veto condition is verified: none criterion in the set of criteria that 

are discordant with the outranking hypothesis is in a veto situation.  

To provide a clearer explanation, consider a set of alternatives 𝐴 =

{a1, ⋯ , ai, ⋯ , ak} and a family of r criteria G = {g1…gj…gr}. Each criterion gj has 

a corresponding weight to define priorities wj ∈ [0,1]. The values of ai and  ak 
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on criterion gj  are gj(ai)  and gj(ak)  respectively. And Ωj(ak, ai)  defines the 

advantage of a𝑘 over a𝑖 for criterion gj in Eq.  45 [174]. 

Ωj(ak, ai) = {
g
j
(ak) − gj(ai) if gj has to be maximized

g
j
(ai) − gj(ak) if gj has to be minimized

 
Eq.  45 

For each criterion, there are thresholds of indifference 𝑞𝑗 and strict preference 

𝑝𝑗, which allow drawing preferences between alternatives for driving decision. 

When Ωj(ak, ai) is lower than 𝑞𝑗  or larger than 𝑝𝑗 , this leads to a situation of 

indifference or strict preference of one of the alternative over another, from 

criterion 𝑔𝑗  point of view [181]. Then the partial concordance index for the 

criterion 𝑔𝑗 (Eq.  46) quantifies the preference relation between the alternatives 

and the level of agreement of the criterion with the outranking relation (Figure 

60). 

cj(ai, ak) =

{
 
 

 
 

0

p
j
− Ωj(ak, ai)

p
j
− q

j

1

 

if Ωj(ak, ai) ≥ p
j
  (ak strictely preferred to ai) 

if pj > 𝛺j(ak, ai) > qj (ak weakely preferred to ai) 

if Ωj(ak, ai) ≤ qj   (ai at least as good as ak) 

 

Eq.  46 

 

Figure 60 Behavior of partial concordance Index [cj(ai, ak)], depending on the 

value of qi, pi and Ωi. 
 

We deduce then c(ak, ai) the global concordance index calculated per pair of 

alternatives in Eq.  47: 
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c(a𝑘, a𝑖) =∑wjcj(a𝑘, a𝑖)

𝑟

j=1

 
Eq.  47 

where, 

∑wj

r

j=1

= 1 
Eq.  48 

Then c(ak, ai) is compared to a level of majority s ∈ [0.5; 1 − min(wj)] to verify 

the concordance condition in Eq.  49: 

c(ak, ai) ≥ s 
Eq.  49 

The reader should recall that the relation Alternative A is at least as good as 

alternative B is verified if the concordance and non-veto conditions are fulfilled 

for each pair of alternatives. 

The first, the concordance condition, requires building the concordance matrix 

by applying Eq.  49 to each pair of alternatives. The concordance condition 

expresses that the coalition of criteria supporting that one alternative outranks 

the other, surpasses a minimum level of agreement, which is called the majority 

principle. 

The second, the non-veto condition, requires building the discordance matrix by 

applying Eq.  50 to each pair of alternatives.  

Ωj(ak, ai) ≥ v𝑗 
Eq.  50 

The non-veto condition for each criterion (Eq.  50), is a maximum limit on the 

predilection of an alternative: if alternative B is better than A for a given criterion 

and surpasses its veto condition, B will be better than A no matter the value of 

the other criteria. In other words, if an alternative is extremely worse in a specific 

criterion, it does not matter how good it is in the others, it will be discarded. The 

veto threshold is established by the analyst. Therefore, Ωj(ak, ai) must be on the 

interval [pj, vj] [182]. The veto effect works on the principle of all or nothing. 
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ANNEX IV. Adaptation of DER-CAM model into Python  

This annex the mathematical model adapted from DER-CAM and coded in the 

programming language Python. This process is deeply described in subsection 

3.3.1. 

 

CONSTANTS 

Annual loads and energy prices 

𝐸𝑡  Annual electricity load at time t [kWhE] 

𝐻𝑡  Annual heating load at time t [kWhH] 

𝐶𝑡  Annual cooling load at time t [kWhC] 

pE  Price of electricity from the grid [
$

kWhE
] 

pNG  Price of natural gas [
$

kWhNG
] 

 

Costs per technology 

CCFixu  Fixed capital cost of CHP type u [$/CHP unit installed] 

CCFixv  Fixed capital cost of technology v [$] Ɐ v={Boiler,Abs,VCchiller,CStg, 

HStg} 

CCVaru  Variable capital cost of CHP type u [$/kW installed] 

CCVarv  Variable capital cost of technology v [$/kW or kWh installed]   

Ɐ  v={Boiler: [$/kWH], Abs: [$/kWE], VCchiller: [$/kWE], CStg: [$/kWhE], HStg: 

[$/kWhH]}  

OMFixu Fix O&M cost of CHP type u [$/kW installed] 

OMFixv  Fix O&M cost of technology v [$/kW or kWh installed]  

Ɐ  v={Boiler: [$/kWH], Abs: [$/kWE], VCchiller: [$/kWE], CStg: [$/kWhE], HStg: 

[$/kWhH]}  

OMVaru Variable O&M cost of CHP type u [$/kWhE produced] 
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OMVarv Variable O&M cost of technology v [$/kWh produced]  

Ɐ  v={Boiler: [$/kWhH], Abs: [$/kWhE], VCchiller: [$/kWhE], CStg: [$/kWhE], HStg: 

[$/kWhH]}  

Lifetimev Lifetime of technology u or v [years]  

 

Interest rate and factor to annualize capital costs 

IR  Discount rate [-] 

B =
IR

(1 − (1 + IR)−LIfetimes)
 

 

Others 

φcharge
s   Charge efficiency of the storage unit s [-]      

                             Ɐ s={HStg: Heat Storage, CStg: Cold Storage} 

φdischarge
s  Discharge efficiency of the storage unit s [-] 

                            Ɐ s={HStg: Heat Storage, CStg: Cold Storage} 

φdecay
s   Decay of the storage unit s [-]  

                            Ɐ s={HStg: Heat Storage, CStg: Cold Storage} 

ηBoiler  Efficiency of the boiler [-] 

chpICu  Installed capacity of the CHP type u [kWE] 

CHPminLoadu Minimum load of the CHP type u [% of the chpICu] 

COPVCchiller COP of the vapor compression chiller for space cooling [
kWhC

kWhE
] 

COPAbs  COP of the absorption chiller for space cooling [
kWhC

kWhH
] 

HtEu  Heat to electricity rate of the CHP type u [
kWhH

kWhE
] 

M = 10000000 Big constant used at the constraints involving binary variables [-] 

MinStates Minimum state of charge of the storage unit s [% of the Installed 

capacity]                                  
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                           Ɐ s={HStg: Heat Storage, CStg: Cold Storage} 

MaxCharges Maximum charge rate of the storage unit s [% of the Installed capacity]  

                            Ɐ s={HStg: Heat Storage, CStg: Cold Storage} 

MaxDischarges Maximum discharge rate of the storage unit s [% of the Installed 

capacity] 

                            Ɐ s={HStg: Heat Storage, CStg: Cold Storage} 

 

*The COP is a unitless measure of performance that expresses the radio of output 

and input energy. The list above expresses the units just to specify the kind of output 

and input energy { E:electricity, H:heating, C:cooling }. 

 

 

SETS to count iterations 

firstHours = [0,24,…,840] List containing the row of the 1st hour of each 

characteristic  

                                              day  {Jan-week-Hour0, Jan-weekend-Hour0, … , Dec-peak-

Hour0} 

HoursDay = {0,23}  Set to loop the 24 hours of each characteristic day 

NchpTech = {0,9}  Set to loop the types of CHP technology available 

Ndayst List containing the number of characteristic days per 

month  

{ Jan: week=22days, weekend=8days, peak=1day ; … ; Dec: 

week=21days, weekend=9days, peak=1day } 

Nhours = {0,863}  Set to loop the characteristic hours of the year  

{Jan: week (1,24), weekend (1,24), peak (1,24) ; … ; Dec: 

week (1,24), weekend (1,24), peak (1,24)} 
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VARIABLES 

Non-negative integer variables 

CStgI Installed capacity of the Cold Storage, 

expressed as the electricity consumed 

by the vapor-compression chiller [kWhE] 

HStgIC      Installed capacity of the Heat Storage 

[kWhH] 

mCHPu,t   ∀ u ∈  NchpTech , t ∈ NHours Number of active units of CHP type u at 

time  

                                                                        t [no. of units] 

nCHPu   ∀ u ∈  NchpTech   Number of installed units of CHP type u  

                                                                        [no. of units] 

 

Binary variables 

wv  Binary variable to activate the fixed capital cost of the unit v 

                        Ɐ  v={Boiler, Abs, VCchiller, CStg, HStg} 

ys  Binary variable making input and output mutually exclusive in the 

storage  

                         unit s    Ɐ s={HStg: Heat Storage, CStg: Cold Storage} 

 

NON-NEGATIVE REAL VARIABLES 

Grid 

eGridt  ∀ t ∈ NHours Electricity imported from the grid at time t [kWhe] 

 

CHP units 

eCHPu,t   ∀ u ∈  NchpTech , t ∈ NHours Electricity produced by the CHP type u 

at time t [kWhE] 
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HCHPu,t   ∀ u ∈  NchpTech , t ∈ NHours Heat produced by the CHP type u at 

time t [kWhH] 

HscrapCHPu,t   ∀ u ∈  NchpTech , t ∈ NHours Heat scrap from the production of the 

CHP type u at time t [kWhH] 

 

Boiler 

BoilerIC     Installed capacity of boiler [kWH] 

Hboilert   ∀ t ∈ NHours   Heat produced by the boiler at time t 

[kWhH] 

 

Absorption chiller 

AbsIC  Installed capacity of absorption chiller, 

expressed as the electricity consumed 

by the vapor-compression chiller [kWE] 

Habst   ∀ t ∈ NHours    Heat consumed by the absorption 

chiller at time t [kWhH] 

 

Vapor-compression chiller 

VCchillerIC  Installed capacity of vapor-compression 

chiller, expressed as the electricity 

consumed by the vapor-compression 

chiller [kWE] 

eVCchillert   ∀ t ∈ NHours   Electricity consumed by the vapor- 

compression chiller at time t [kWhE] 

 

Cold Storage 

eCStgStatet  ∀ t ∈ NHours Charging state of the Cold Storage at 

time t, expressed as the electricity 
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consumed by the vapor-compression 

chiller [kWhE] 

eCStgInt  ∀ t ∈ NHours  Input to the Cold Storage at time t, 

expressed as the electricity consumed 

by the vapor-compression chiller [kWhE] 

eCStgOutt  ∀ t ∈ NHours                         Output to the Cold Storage at time t, 

                                                                      expressed as the electricity consumed 

by the 

                                                                      vapor-compression chiller [kWhE] 

 

Heat Storage 

HStgStatet  ∀ t ∈ NHours Charging state of the Heat Storage at 

time t [kWhH] 

hHStgInu,t  ∀ t ∈ NHours  Input to the Heat Storage at time t 

[kWhH] 

hHStgOutt  ∀ t ∈ NHours                         Output to the Heat Storage at time t 

[kWhH 

 

 

OBJECTIVE FUNCTION: MINIMIZING TOTAL ANNUAL COST 

𝐌𝐈𝐍 𝐂𝐨𝐬𝐭

= 𝐆𝐫𝐢𝐝(𝐂𝐨𝐬𝐭) + 𝐂𝐇𝐏(𝐂𝐨𝐬𝐭) + 𝐁𝐨𝐢𝐥𝐞𝐫(𝐂𝐨𝐬𝐭) + 𝐀𝐛𝐬(𝐂𝐨𝐬𝐭)

+ 𝐕𝐂𝐜𝐡𝐢𝐥𝐥𝐞𝐫(𝐂𝐨𝐬𝐭) + 𝐂𝐒𝐭𝐠(𝐂𝐨𝐬𝐭) + 𝐇𝐒𝐭𝐠(𝐂𝐨𝐬𝐭) 

where, 

Eq.  51 

Cost related to the grid 

Grid(Cost) = ∑ Ndayst ∙ pE ∙ eGridt
863
t=0    

 

Eq.  52 
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Cost related to the CHP unit 

CHP(Cost) = ∑a1,u ∙ nCHPu

9

u=0

+∑∑Ndayst ∙ a2,u ∙ eCHPu,t

863

t=0

9

u=0

 

with, 

a1,u = B[CCFixu + (chpICu)CCVaru] + (chpICu)OMFixu 

a2,u = OMVaru +
pNG
ηBoiler

  

 

Eq.  53 

Cost related to the boiler 

Boiler(Cost) = b0 ∙ w
Boiler + b1 ∙ BoilerIC +∑Ndayst ∙ b2 ∙ Hboilert

863

t=0

 

with, 

b0 = B ∙ CCFixBoiler 

b1 = B ∙ CCVarBoiler + OMFixBoiler 

           b2 = OMVarBoiler +
pNG

ηBoiler
 

 

Eq.  54 

Cost related to the absorption chiller 

Abs(Cost) = c0 ∙ w
Abs + c1 ∙ AbsIC +∑Ndayst ∙ c2 ∙ Habst ∙ c3

863

t=0

 

with, 

c0 = B ∙ CCFixAbs 

c1 = B ∙ CCVarAbs + OMFixAbs 

c2 = OMVarAbs  

c3 =
COPAbs

COPVCchiller
  

Eq.  55 
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Cost related to the vapor-compression chiller 

VCchiller(Cost)

= d0 ∙ w
VCchiller + d1 ∙ VCchillerIC +∑Ndayst ∙ d2 ∙ eVCchillert ∙ d3

863

t=0

 

with, 

d0 = B ∙ CCFixVCchiller 

d1 = B ∙ CCVarVCchiller + OMFixVCchiller 

d2 = OMVarVCchiller  

d3 = 1 

 

Eq.  56 

Cost related to the Cold Storage 

CStg(Cost) = e0 ∙ w
CStg + e1 ∙ CStgIC +∑Ndayst ∙ e2 ∙ eCStgStatet

863

t=0

 

with, 

e0 = B ∙ CCFixCStg 

e1 = B ∙ CCVarCStg + OMFixCStg 

e2 = OMVarCStg 

 

Eq.  57 

Cost related to the Heat Storage 

HStg(Cost) = f0 ∙ w
HStg + f1 ∙ HStgIC +∑Ndayst ∙ f2 ∙ eHStgStatet

863

t=0

 

with, 

f0 = B ∙ CCFixHStg 

Eq.  58 
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f1 = B ∙ CCVarHStg + OMFixHStg 

f2 = OMVarHStg 

 

 

CONSTRAINTS RELATED TO ENERGY BALANCES 

Covering Electric demand (1 restriction/h) 

 

eGridt +∑ eCHPu,tu − eVCchillert = Et  

 

Eq.  59 

Covering Heat demand (1 restriction/h) 

 

Hboilert + ∑ HCHPu,tu − Habst − hHStgInt + (φdischarge
HStg

) hHStgOutt =

Ht  

 

Eq.  60 

Covering Cooling demand (1 restriction/h) 

 

(
COPAbs

COPVCchiller
)Habst + eVCchillert − eCStgInt +

(φdischarge
CStg

) eCStgOutt =
Ct

COPVCchiller
  

 

Eq.  61 

 

CONSTRAINT RELATED TO CHP UNITS 

Electricity production of CHP does not exceed the installed capacity 

of the CHP units (10 restrictions/h, one per each CHP type) 

 

chpICu ∙ mCHPu,t ≥ eCHPu,t  

 

Eq.  62 
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Electricity prod of CHP is minimum the MinLoad  

(10 restrictions/h, one per each CHP type) 

 

CHPminLoadu ∙ chpICu ∙ mCHPu,t ≤ eCHPu,t  

 

Eq.  63 

The amount of active CHP units each hour, does not exceed the CHP 

units installed (10 restrictions/h, one per each CHP type) 

 

nCHPu ≥ mCHPu,t  

 

Eq.  64 

Heat produced and scrap by each CHP units, is tied to its Electricity 

production (10 restrictions/h, one per each CHP type) 

 

HtEu ∙ eCHPu,t = HCHPu,t + HscrapCHPu,t  

 

Eq.  65 

 

CONSTRAINT RELATED TO BOILER 

Installed capacity of boiler is not exceed (1 restriction/h) 

 

BoilerIC ≥ Hboilert  

 

Eq.  66 

Binary variable that activates the fixed capital cost of Boiler 

 

The binary variable is zero if the installed capacity is larger than one. 

In contrast it is one if the installed capacity is zero. 

 

BoilerIC ≥ 0.001 − M(1 − wBoiler)  

Eq.  67 
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*A strict inequality constraint BoilerIC > 0 − M(1 − wBoiler) 

would make the optimization not well-defined. Because it 

would always be possible to make the objective value better 

by moving closer and closer to the value of the inequality, 

without reaching the optimum. 

BoilerIC ≤ 0 + M ∙ wBoiler  

 

 

CONSTRAINT RELATED TO VAPOR – COMPRESSION CHILLER 

Installed capacity of vapor-compression chiller is not exceed  

(1 restriction/h) 

 

VCchillerIC ≥ eVCchillert     

 

Eq.  68 

Binary variable that activates the fixed capital cost of VCchiller 

 

The binary variable is zero if the installed capacity is larger than one. 

In contrast it is one if the installed capacity is zero. 

 

VCchillerIC ≥ 0.001 − M(1 − wVCchiller)  

*A strict inequality constraint VCchillerIC > 0 − M(1 −

wVCchiller)  would make the optimization not well-defined. 

Because it would always be possible to make the objective 

value better by moving closer and closer to the value of the 

inequality, without reaching the optimum. 

VCchillerIC ≤ 0 + M ∙ wVCchiller  

 

Eq.  69 
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CONSTRAINT RELATED TO ABSORPTION CHILLER 

Installed capacity of absorption chiller is not exceed (1 restriction/h) 

 

AbsIC ≥ (
COPAbs

COPVCchiller
)Habst     

 

Eq.  70 

Binary variable that activates the fixed capital cost of Abs 

 

The binary variable is zero if the installed capacity is larger than one. 

In contrast it is one if the installed capacity is zero. 

 

AbsIC ≥ 0.001 − M(1 − wAbs)  

*A strict inequality constraint AbsIC > 0 − M(1 − wAbs) would 

make the optimization not well-defined. Because it would 

always be possible to make the objective value better by 

moving closer and closer to the value of the inequality, without 

reaching the optimum. 

AbsIC ≤ 0 + M ∙ wAbs  

 

Eq.  71 

CONSTRAINTS RELATED TO COLD STORAGE 

Charging state of the Cold storage (1 restriction/h) 

eCStgStatet =

{
(φcharge

CStg
) eCStgInt − eCStgOutt  ,      if t ∈ firstHours

(1 − φdecay
CStg

) eCStgStatet−1 + (φcharge
CStg

) eCStgInt − eCStgOutt  ,      otherwise
  

 

Eq.  72 

Cold Storage level ends the day as it started (1 restriction/day = 36) 

eCStgStatet = {
eCStgStatet+(24−1),      if t ∈ firstHours

none,      otherwise
  

Eq.  73 
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Min state of charge of the Cold Storage (1 restriction/h) 

eCStgStatet ≥ MinStateCStg ∙ CStgIC  

 

Eq.  74 

Max state of charge of the Cold Storage (1 restriction/h) 

 

eCStgStatet ≤ CStgIC  

 

Eq.  75 

Max charge rate of the Cold Storage (1 restriction/h) 

 

(φcharge
CStg

) eCStgInt ≤ MaxCharge
CStg ∙ CStgIC  

 

Eq.  76 

Max discharge rate of the Cold Storage (1 restriction/h) 

 

eCStgOutt ≤ MaxDischargeCStg ∙ CStgIC  

 

Eq.  77 

eCStgInt and eCStgOutt are mutually exclusive 

 

The two following constraints express that the Cold storage input and 

output are mutually exclusive. A binary value of 0, enables output 

from the Cold storage. When it is 1, input is active. 

 

(φcharge
CStg

) eCStgInt ≤ M ∙ yCStg  

 

eCStgOutt   ≤ M(1 − yCStg)  

 

Eq.  78 
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Binary variable that activates the fixed capital cost of Cold Storage. 

 

These constraints use a binary variable to activates the fixed capital 

cost of Cold Storage. It values one if the installed capacity of the Cold 

storage is larger than zero. In contrast it is zero if the installed 

capacity is 0. 

CStgIC ≥ 0.001 − M(1 − wCStg)  

*Note that a strict inequality constraint CStgIC > 0 − M(1 −

wCStg)  would make the optimization not well-defined. 

Because it would always be possible to make the objective 

value better by moving closer and closer to the value of the 

inequality, without reaching the optimum. 

CStgIC ≤ 0 + M ∙ wCStg  

 

Eq.  79 

 

CONSTRAINTS RELATED TO HEAT STORAGE 

Charging state of the Heat storage (1 restriction/h) 

HStgStatet =

{
(φcharge

HStg
) hHStgInt − hHStgOutt  ,      if t ∈ firstHours

(1 − φdecay
HStg

)HStgStatet−1 + (φcharge
HStg

) hHStgInt − hHStgOutt  ,      otherwise
  

 

Eq.  80 

Heat Storage level ends the day as it started (1 restriction/day = 36) 

 

HStgStatet = {
HStgStatet+(24−1),      if t ∈ firstHours

none,      otherwise
  

 

Eq.  81 

Min state of charge of the Heat Storage (1 restriction/h) 

HStgStatet ≥ MinStateHStg ∙ HStgIC  

Eq.  82 
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Max state of charge of the Heat Storage (1 restriction/h) 

 

HStgStatet ≤ HStgIC  

 

Eq.  83 

Max charge rate of the Heat Storage (1 restriction/h) 

 

(φcharge
HStg

) hHCStgInt ≤ MaxCharge
HStg ∙ HStgIC  

 

Eq.  84 

Max discharge rate of the Heat Storage (1 restriction/h) 

 

hHStgOutt ≤ MaxDischarge
HStg ∙ HStgIC  

 

Eq.  85 

hHStgInt and hHStgOutt are mutually exclusive 

 

The two following constraints express that the Heat storage input 

and output are mutually exclusive. A binary value of 0, enables 

output from the Heat storage. When it is 1, input is active. 

 

(φcharge
HStg

) hHStgInt ≤ M ∙ yHStg  

 

hHStgOutt   ≤ M(1 − y
HStg)  

 

Eq.  86 

Binary variable that activates the fixed capital cost of Heat Storage 

 

These constraints use a binary variable to activates the fixed capital 

cost of Heat Storage. It values one if the installed capacity of the 

Eq.  87 
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Heat storage is larger than zero. In contrast it is zero if the installed 

capacity is 0. 

HStgIC ≥ 0.001 − M(1 − wHStg)  

*Note that a strict inequality constraint HStgIC > 0 − M(1 −

wHStg)  would make the optimization not well-defined. 

Because it would always be possible to make the objective 

value better by moving closer and closer to the value of the 

inequality, without reaching the optimum. 

HStgIC ≤ 0 + M ∙ wHStg  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Titre :    Méthodologie pour identifier les variables clés conduisant à la faisabilité technico-
économique de la trigénération - systèmes de stockage thermique 

Mots clés :   Systèmes de trigénération couplés à du stockage thermique, faisabilité technico-
économique, demandes en énergies, prix de l'énergie, analyse de sensibilité . 

Résumé :   Les systèmes de trigénération 
couplés à du stockage thermique (CCHP-TS) 
contribuent à la production distribuée d'énergie 
et à la réduction des émissions de gaz à effet de 
serre. Néanmoins, il est important d'évaluer leur 
faisabilité technico-économique pour assurer 
une mise en œuvre à long terme. Par ailleurs, la 
détermination et la caractérisation des variables 
influentes sont essentielles pour identifier les 
domaines d'application les plus viables. 
Potentiellement, cela peut stimuler l'intérêt des 
chefs de projet, des investisseurs et des 
décideurs politiques, encourageant ainsi 
l'adoption de cette technologie. 

Plusieurs auteurs suggèrent que les prix et les 
demandes en énergies (électricité, chaleur et 
froid) sont des variables importantes de la 
faisabilité technico-économique des systèmes 
CCHP-TS. Ils ont notamment utilisé le ratio 
Spark Spread (SS) qui est le rapport entre le 
coût de l'électricité du réseau et le combustible 
de cogénération. Cependant, seules quelques 
études évaluent l’influence combinée des prix et 
de la demande en énergies, avec certaines 
limites dans leur modèle, la technologie 
analysée ou même la résolution temporelle de 
la demande. 

Comme la littérature révèle que les prix de 
l'énergie et les niveaux de demandes sont des 
variables importantes, cette étude propose et 
analyse deux hypothèses : 1) Il existe un 
couplage entre les prix de l'énergie et la 
variabilité des demandes en énergies qui influe 
techniquement et économiquement sur la 
faisabilité des systèmes CCHP-TS; 2) Les prix 
de l'énergie (électricité et gaz naturel) doivent 
être considérés séparément plutôt que d’utiliser 
le ratio Spark Spread. 

Le travail est divisé en deux phases. La 
première est une analyse exploratoire visant à 
démontrer que le modèle utilisé de CCHP-TS 
est pertinent et sensible aux variables d'analyse 
(prix et demandes énergétiques). La seconde 
est une analyse de sensibilité rigoureuse qui 
permet de plus une comparaison de trois 
«approches»: Morris, Sobol et VARS. 

Les résultats indiquent que les prix de l'énergie 
et l’importance de la demande électrique sont 
les variables les plus importantes pour garantir 
la faisabilité d'un système CCHP-TS. L'ordre 
d’importance entre les prix de l'énergie diffère 
selon que l’indicateur de performance 
économique utilisé soit absolu (montant 
d'économies réalisées [$]) ou relatif 
(pourcentage d'économies réalisées [%]). Dans 
les deux cas, le prix du carburant est la variable 
ayant un effet d'interaction avec les autres 
variables le plus importants. 

La méthodologie de la première phase intègre 
des outils tels que le plan d'expériences factoriel 
complet, l'outil de simulation et d'optimisation 
DER-CAM et une nouvelle combinaison de la 
méthode de clustering k-Means et d’une 
méthode d’aide à la décision multicritère 
(MCDM). Pour la deuxième phase, il s'agit 
principalement de l'utilisation des méthodes 
globales d'analyse de sensibilité et de 
l'adaptation d'un modèle CCHP-TS 
programmée en langage Python qui utilise la 
bibliothèque d'optimisation PYOMO et le solveur 
CPLEX. Dans cette deuxième phase, la mise en 
œuvre des trois méthodes d’analyse de 
sensibilité a permis une identification des 
avantages et limites de chacune. L’analyse de 
la faisabilité techno-économique s’en trouve 
renforcée en utilisant leurs complémentarités. 

 



 

 

 

 

 

 

 

 

 

 

 

Title :  Methodology to identify the key variables driving the techno-economic feasibility of 
Trigeneration – Thermal Storage systems 

Keywords :  Trigeneration systems with thermal storage, techno-economic feasibility, energy loads, 
energy prices, sensitivity analysis. 

Abstract :  Trigeneration systems with thermal 
storage (CCHP-TS) contribute to the distributed 
generation of energy and the reduction of 
greenhouse gas emissions. Nevertheless, it is 
important to assess their techno-economic 
feasibility to ensure long-term implementation. 
Moreover, determining and characterizing the 
influential variables is essential to identify the 
most viable application fields. Potentially, this 
could foster the interest of project managers, 
investors, and policymakers, therefore 
encouraging the adoption of this technology. 

Several authors suggest that energy prices and 
loads are important variables for the techno-
economic feasibility of CCHP-TS systems. 
Particularly they have explored the Spark 
Spread rate, a ratio between the cost of 
electricity from the grid and the CHP fuel. 
However, just a few studies are assessing the 
prices and loads together, with some limitations 
in their model, the technology analyzed, or even 
the resolution of the loads. 

As the literature reveals that energy prices and 
loads size are important variables, this study 
aims to analyze two hypotheses proposed: 1) 
There is a combination of energy prices and the 
size of the annual energy loads that makes 
techno-economically feasible a CCHP-TS 
system; 2) The energy prices (electricity and 
natural gas) should be considered separately 
instead of consolidating them into the spark 
spread rate (SS).  

The analysis is divided into two phases. The first 
one is an exploratory analysis aiming to 
demonstrate that the model for CCHP-TS is 
relevant and sensitive to the variables of 
analysis (energy prices and loads). The second 
is a rigorous sensitivity analysis and the 
comparison of three approaches: Morris, Sobol, 
and VARS.  

The results state that energy prices and the 
annual size of the electric load are the most 
relevant variables on the feasibility of a CCHP-
TS system. The order of relevance between the 
energy prices relies on the measure used for the 
economic performance: either absolute 
(expressed in the amount of savings [$]) or 
relative (expressed in the percentage of savings 
[%]). But in both cases, the price of the fuel is 
the variable with the largest interaction effects. 

The methodology of the first phase incorporates 
tools such as full factorial design of experiments 
(DoE), DER-CAM simulation and optimization 
tool, and a novel combination of k-Means 
clustering and multicriteria decision making 
(MCDM).  For the second phase, it is mainly the 
use of global sensitivity analysis methods and 
the adaptation of a CCHP-TS model into the 
programming language Python, using the 
optimization library PYOMO and the solver 
CPLEX. In this second phase, the 
implementation of the three sensitivity analysis 
methods allowed identifying their advantages 
and limitations. Moreover, this complementarity 
thereby reinforced the techno-economic 
feasibility analysis. 
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